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Spinal degenerations can lead to segmental instability that is regarded as a major cause of 

back pain and is often an important factor in deciding on surgical fusion or prosthesis implant. 

The  spinal kinematics analysis can provide useful information for diagnosis of instability and for 

the assessment of therapy and surgical treatment or for performance evaluation of disc 

prostheses. Digitized videofluoroscopy permits to analyze spinal motion during the full patient‘s 

movement, with an acceptable low X-ray dose. By recognizing the vertebrae position on 

successive fluoroscopic images through manual selection or automated algorithms the relative 

kinematics between pairs of adjacent vertebrae (i.e. intervertebral kinematics) can be easily 

estimated. The application of fluoroscopy in the study of spinal kinematics is, however, limited 

because large errors can occur in the measurements. 

This thesis presents a comprehensive study of an innovative technique designed to provide a 

more accurate estimation of intervertebral kinematics. The recognition of vertebrae along the 

fluoroscopic sequence is implemented using an automated template-matching algorithm and 

involving a strong enhancement of the outline of vertebrae by resorting to derivative operators. 

Particular attention is devoted to fluoroscopic noise suppression and to edge-preserving filter 

design. Spline interpolation of the kinematic data extracted by videofluoroscopy is applied in 

order to obtain a more complete, continuous description of spinal kinematics and, more 

specifically, of instantaneous center of rotation. 

In the introductory part of the thesis (Chapter I and II) the motivation of the study and a survey of 

spinal measurement techniques are given. The feasibility of videofluoroscopic analysis of spinal 

motion is extensively discussed. In Chapter III common kinematic parameters (such as range of 

motion, center of rotation, etc.) utilized for describing intervertebral spinal behaviour are 

presented, providing particular emphasis on the difficulty to determine a ―boundary‖ between 

normal and abnormal measures of segmental kinematics for the definition of spinal instability. 

An extensive review of recent proposals in analysis of segmental motion is reported.  

Manual recognition of anatomical landmarks in videofluoroscopy can be very problematic. It is 

also well-known that derivative operators, commonly used for automatic recognition, are highly 

sensitive to noise. Chapter IV attempts to address this issue: fluoroscopic noise model, also in 

presence of non-linear gray-level transformations for image enhancement, is presented; various 

denoising algorithms specifically designed for signal-dependent noise and AWGN are examined 

and a performance comparison among them is carried out.  

In Chapter V the proposed algorithm for  automated vertebrae recognition is described and its 

performance is experimentally analyzed on fluoroscopic images of a calibration model. A 

comparison with a manual selection procedure and other automated algorithms on real lumbar 

fluoroscopic sequences is presented.  

In Chapter VI a continuous-time description of intervertebral motion by cubic smoothing spline 

interpolation is presented and the evaluation of instantaneous center of rotation of spinal motion 

segments by videofluoroscopy is discussed. 
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Chapter 1 

Introduction 

 

 

Any fact becomes important when it’s connected to another. The connection changes 

the perspective; it leads you to think that every detail of the world, every voice, every 

word written or spoken has more than its literal meaning, that it tells us of a Secret.  

The rule is simple: Suspect, only suspect. 

 Umberto Eco 

 

 

 

1.1   Motivation of the study 
____________________________________________________________________ 

Common spinal disorders can be associated with segmental instability that is 

considered a potential cause of back pain and an important factor in deciding on 

surgical treatment. Segmental instability can be recognized by estimating range of 

motion (i.e. relative translation and rotation of two adjacent vertebrae between full 

flexion and full extension) and/or finite center of rotation observed on lateral spine 

radiographs. This information is, however, incomplete (i.e. only end-of-range spinal 

positions are assumed in order to limit the X-ray dosage to the patient) and may not 

be sufficient to characterize any deviation of spinal motion that might be associated 

with spinal disorders. The use of a fluoroscopic device can offer a continuous 

screening of spontaneous spinal motion with an acceptable, low X-ray dose. 
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Fluoroscopic measurement of intervertebral kinematics is, however, generally 

confined to the flexion-extension planar motion and requires the assumption of no 

out-of-plane coupled motion (that is longer valid in flexion-extension movement). 

The application of fluoroscopy has been, to date, partially limited by the contention 

about the appropriateness of the technique: several authors have expressed concern 

about studying a three-dimensional dynamic system using a two-dimensional 

imaging method. Recently, three-dimensional vertebral displacements have been 

successfully represented utilising biplanar fluoroscopy. This method is, however, 

considered radiation intensive. In addition, biplanar fluoroscopic devices are not 

generally available in clinical environment. 

By recognizing the vertebrae position on successive fluoroscopic images through 

manual landmarking or automated algorithms the intervertebral kinematics can be 

easily estimated. Manual landmarking is widely employed in clinical setting, but it 

can result in a very subjective and inaccurate procedure. Various automated 

approaches have been proposed in order to limit the reliance on the operator of the 

recognition procedures. However, regardless of the specific methodology employed 

(i.e. manual landmarking or automated recognition), the image noise appears to be, 

to date, a significant restriction to an accurate estimate of intervertebral kinematics 

(i.e. large relative errors can occur in the kinematic measurements as a consequence 

of the low quality of fluoroscopic images). Actually, the need of extremely accurate 

intervertebral kinematic measurements has limited the clinical application of 

videofluoroscopy. This is particularly true for estimation of intervertebral center of 

rotation.  

This thesis intends to present a comprehensive study of an innovative technique 

designed to support a very accurate estimation of intervertebral kinematics by 

videofluoroscopy and to aid clinicians in diagnosing lumbar segmental instability. At 

this aim, the improvement of estimation accuracy with respect to the state-of-art 

algorithms has been addressed and clinical effectiveness of the proposed 

methodology has been considered as a primary target in designing the estimation 

procedure. A very extensive investigation of fluoroscopic noise has been presented, 

providing an experimental validation of the proposed noise models, and various 

denoising algorithms have been investigated and compared in order to obtain the 
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most effective trade-off between noise reduction and edge preservation for 

improving the accuracy of the vertebrae recognition procedures in the fluoroscopic 

images. 

The scope of the study is presented in paragraph 1.2, while the main results are 

summarized in paragraph 1.3. The outline of contents is illustrated in paragraph 1.4. 

The research presented in this thesis was carried out within the PhD program in 

Electronic and Telecommunication Engineering of University ―Federico II‖ of 

Naples and has been financially supported by the Local Heath Unit ASL Napoli 1 

Centro. 

 

1.2   Scope of the study 
____________________________________________________________________ 

This work of thesis is motivated by the need of an accurate estimation of 

intervertebral kinematics by videofluoroscopy in order to support clinicians in 

diagnosing segmental instability. In summary, the main objectives of this thesis are: 

 to investigate noise statistics and its characteristics in fluoroscopic images, also 

in presence of image white-compression transformations applied for image 

enhancement; 

 

 to compare different denoising algorithms in order to select the most effective in 

terms of noise reduction and edge preservation for quantum-limited medical 

images (such as fluoroscopic images); 

 

 to design an automated vertebrae recognition procedure in order to improve 

accuracy of the estimation of intervertebral kinematic parameters with respect to 

state-of-art processing methods of in vivo fluoroscopic sequences; 

 

 to investigate the feasibility of spline interpolation of discrete-time intervertebral 

kinematic data for obtaining a continuous-time representation of intervertebral 

kinematic signals and for estimating intervertebral instantaneous center of 

rotation. 
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1.3   Summary of the main results 
____________________________________________________________________ 

The original contributions of this thesis can be summarized as: 

 a derivation of the relationship between variance and mean of the fluoroscopic 

image noise after applying image gamma-correction transformation for image 

enhancement; 

 

 an experimental comparison on piecewise simulated and spinal real data of 

various denoising algorithms specifically designed for both the signal-dependent 

noise and AWGN; 

 

 the design of an automated vertebrae recognition procedure based on gradient 

cross-correlation template matching for estimating intervertebral kinematics 

during flexion-extension spinal motion in the sagittal plane and its experimental 

validation with respect to a calibration model and other state-of-art estimation 

procedures;  

 

 a theoretical investigation of the smoothing and continuous-time representation 

of experimental kinematic data extracted by spinal videofluoroscopy, specifically 

designed to estimate the actual trajectory of ICR in lumbar spine during in vivo 

flexion-extension motion. 

 

1.4   Structure and organisation 
____________________________________________________________________ 

In the introductory part of the thesis (Chapter I and II) the motivation of the study 

and a survey of spinal measurement techniques are given. The feasibility of 

videofluoroscopic analysis of spinal motion is extensively discussed. In Chapter III 

common kinematic parameters (such as range of motion, center of rotation, etc.) 

utilized for describing intervertebral spinal behaviour are presented, providing 

particular emphasis on the difficulty to determine a ―boundary‖ between normal and 
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abnormal measures of segmental kinematics for the definition of spinal instability. 

An extensive review of recent proposals in analysis of segmental motion is reported.  

Manual recognition of anatomical landmarks in videofluoroscopy can be very 

problematic. It is also well-known that derivative operators, commonly used for 

automatic recognition, are highly sensitive to noise. Chapter IV attempts to address 

this issue: fluoroscopic noise model, also in presence of non-linear gray-level 

transformations for image enhancement, is presented; various denoising algorithms 

specifically designed for signal-dependent noise and AWGN are examined and a 

performance comparison among them is carried out.  

In Chapter V the proposed algorithm for  automated vertebrae recognition is 

described and its performance is experimentally analyzed on fluoroscopic images of 

a calibration model. A comparison with a manual selection procedure and other 

automated algorithms on real lumbar fluoroscopic sequences is presented.  

In Chapter VI a continuous-time description of intervertebral motion by cubic 

smoothing spline interpolation is presented and the evaluation of instantaneous 

center of rotation of spinal motion segments by videofluoroscopy is discussed. 
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Chapter 2 

Spinal measurements 

 

 

Measure what is measurable, and make measurable what is not so 

Galileo Galilei 

 

 

 

Measurement of segmental motion can offer an objective, valuable method to assess 

functionality of spinal segments. Very accurate measurements of segmental motion 

can be achieved by the attachment of metal pins to the vertebral bone. This method 

has, however, serious limitations due to its invasiveness and its application is 

confined to surgical setting. Spinal motion measurements can be also inferred from 

the anatomical relationship between spinal column and body surface. Skin-mounted 

sensors have been extensively employed in clinical setting due to their non-

invasiveness, simplicity and availability. Their accuracy is, however, considerably 

limited by skin extensibility (i.e. non-rigid connection with bones) and no reliable 

information about the behaviour of a single motion segment can be extracted. In the 

last decades imaging technologies (fluoroscopy, MRI, etc.) have allowed a 

significant advancement in the investigation of segmental instability. Nowadays, it is 

commonly accepted that radiological assessment of intervertebral kinematics is the 

most reliable non-invasive method for diagnosis of instability. In this Chapter some 

common techniques used for spinal measurements are presented, providing particular 
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emphasis on the appropriateness of videofluoroscopy to the analysis of spinal 

motion. 

 

2.1   Skin surface measurements 
____________________________________________________________________ 

Inclinometers, goniometers and skin-mounted sensors are very simple tools for 

clinical measurement of spinal movements. Despite their simplicity, they have 

proved useful in providing reference values and demonstrating range of motion 

changes (Burton and Tillotson, 1988). Accurate clinical measurements are, however, 

provided only for large spinal tracts; as a result, it is very difficult to recognize a 

specific intervertebral disorder (Anderson and Sweetman, 1975; Pearcy, 1986). In 

addition, skin markers are prone to large measurement errors due to skin extensibility 

(Portek et al., 1983).  In a cross-comparison study of several clinical measures of 

lumbar spine mobility with biplanar radiography, Portek et al. (1983) pointed out 

little correlation between different surface techniques (inclinometer, skin distraction 

and plumb line) or between surface techniques and radiographic measurements 

(considered as reference standard).  

More recent three-dimensional surface measurement devices can offer a more 

acceptable and effective clinical tools in investigating spinal motion (Dolan and 

Adams, 1993; Hindle et al., 1990; McGill and Brown, 1992; Pearcy and Hindle, 

1989). Nevertheless, surface measurements have been largely superseded by 

radiographic methods that are currently the mainstay of movement analysis of human 

spine. 

 

2.2   Radiographic measurements 
____________________________________________________________________ 

Biplanar or stereo radiography can provide a highly accurate measure of three-

dimensional vertebral motion (Pearcy et al., 1984a). In particular, Roentgen 

stereophotogrammetric, based on the attachment of small opaque markers to the 

vertebral bone, has been regarded as the most accurate method for measuring spinal 

kinematics (Axelsson et al., 1992; Selvik, 1989). Its employment is, however, limited 

to post-surgical assessment of intervertebral kinematics due to its invasiveness. In 
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addition, as a consequence of the use of two radiological sources, some general 

issues on X-ray exposure to the patient exist. 

For these restrictions, in clinical setting diagnosis of segmental instability is 

generally based on uniplanar functional radiography (i.e. with the use of a single 

radiological equipment). Estimation of segmental motion is achieved either 

graphically, using superimposed serial radiographs of the type used by Penning et al. 

(1984), or by digitization of points marked on these radiographs and their subsequent 

computer-based computation, as employed by Pearcy et al. (1984ab).  

Functional radiography is not, however, without risks and limitations. The number of 

exposures to the patient must be restricted to maintain radiation at an acceptable 

level. X-ray exposure restriction confines the technique to clinical measurements of 

few, end-of-range spinal positions. This information, though valuable, is incomplete 

and may not be sufficient to characterize ―abnormal‖ spinal motion that might be 

associated with spinal disorders (Breen et al., 1989; Hindle et al., 1990). 

 

2.3   Fluoroscopy 
____________________________________________________________________ 

X-ray fluoroscopy provides digital-television viewing of structures inside the body, 

with an acceptable, low X-ray dose. In the last decades the use of fluoroscopic 

devices has been extended to the screen of spine during patient‘s motion for 

diagnosis of spinal disorders. 

At the beginning the large doses of radiation constrained the application of X-ray 

fluoroscopy, but successive improvements in screen phosphors, image intensifier and 

flat panel detectors have allowed for increasing image quality while minimizing the 

radiation dose to the patient. This has widened the possibilities for clinical 

investigation by fluoroscopy that, despite many recent developments in magnetic 

resonance and computer tomography, remains the principal imaging method for 

continuous-time analysis of spinal motion. 

The application of fluoroscopy (and also of plain radiography) in the field of spinal 

kinematics has been, however, partially limited by the contention about the 

appropriateness of the technique: several authors have expressed concern about 

studying a three-dimensional dynamic system using a two-dimensional imaging 
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method (Hindle et al., 1990). The use of a single fluoroscopic device limits spinal 

analysis to planar motion (e.g. flexion-extension in the sagittal plane) and requires 

the assumption of absence of out-of-plane coupled motion (i.e. axial rotation). 

Although this hypothesis can be assumed in flexion-extension motion (mainly due to 

the anatomic symmetry), it is no longer valid in lateral bending (Panjabi et al., 1992a; 

Van Mameren et al., 1992, Breen, 1991; Bifulco et al., 2002; Bifulco et al., 2010). 

Recently, three-dimensional displacements have been successfully represented 

utilising biplanar fluoroscopy (Bifulco et al., 2010). This method is, however, 

thought cumbersome and radiation intensive. In addition, biplanar fluoroscopic 

devices are not generally available in clinical environment. 

 

2.3.1   Digitized videofluoroscopy 

It has long been supposed that initial and final position plain-film radiographs of 

trunk bending also represent the extremes of intervertebral motion. However, using 

videofluoroscopy Breen et al. (1989) observed that it is quite possible for vertebral 

segments to undergo their largest rotation within the trunk range and not simply 

mirror trunk motion. Aberrant intervertebral motion may be, therefore, missed if only 

extreme spinal positions are evaluated.  

Digitized videofluoroscopy (DVF) permits to continuously screen spinal motion: 

low-dose, planar motion X-rays of the spine are captured during the full patient‘s 

movement (and not only at the extremes) and digitized for successive analysis. Breen 

et al. (1989) were the first to demonstrate the feasibility of obtaining a quantitative 

analysis of lumbar intervertebral motion by DVF. However, since long sessions can 

be required during spinal sequence acquisition giving potentially large X-ray dose to 

the patient, the use of videofluoroscopy had initially raised issue of patient safety. In 

answer to this, Breen (1991) determined absorbed radiation dosage values for a 

typical patient screening and proved that X-ray exposure associated with DVF is 

significantly reduced with respect to standard plain-film X-ray. 

DVF images can be achieved actively in the patient‘s upright position (i.e. 

spontaneous motion) or passively in the recumbent position. By recognizing the 

position of vertebrae from successive fluoroscopic images it is possible to estimate 

the motion occurred (e.g. intervertebral translation and rotation). Previous studies on 
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the subject utilized manual identification of anatomical landmarks for vertebrae 

recognition (Van Mameren et al., 1992; Breen, 1991; Simonis, 1994; Kondracki, 

2001). It requires that, for each frame of a fluoroscopic spinal sequence, the operator 

locates vertebral landmarks (e.g. vertebra corners) by hand. This operation can, 

however, result in a subjective, tedious and often insufficiently accurate procedure. 

Indeed, large errors in the estimation of kinematic parameters may result from 

relatively small errors in the identification of spatial landmark coordinates (Panjabi, 

1979; Panjabi et al., 1992a). More recent methods involve automated vertebrae 

recognition in the attempt to reduce the reliance on the operator and to improve 

estimation accuracy: common approaches are based on template matching techniques 

(Bifulco et al., 2001; Cerciello et al., 2011b; Van Mameren and Allen, 1997), 

vertebral body outline descriptors (McCane et al., 2006; Zheng et al., 2004) or 

Bayesian estimators (Lam et al., 2009), for example. Recently, Person et al. (2011) 

proved that the use of computer-assisted quantitative motion analysis software 

substantially improves the reliability of intervertebral measurements and the 

classification of segmental instability with respect to manual identification. 

Nevertheless, manual landmarking is still the most employed technique for vertebrae 

recognition in clinical setting. 

The effectiveness of DVF analysis of spinal motion does not commonly recognize 

mainly due to the large errors in the kinematic measurements. Regardless of the 

specific methodology employed (i.e. manual landmarking or automated recognition), 

image noise appears to be a major limitation to an accurate estimate of intervertebral 

kinematics (Cerciello et al., 2011b). An appropriate denoising of fluoroscopic images 

should be, therefore, applied in order to improve the accuracy of kinematic 

estimation. In Chapter IV a literature review of a few algorithms for fluoroscopic 

image denoising is discussed. 

 

2.4   Kinematic MRI 
____________________________________________________________________ 

Magnetic resonance (MRI) has largely superseded radiography and fluoroscopy in 

clinical setting. Nevertheless, DVF is still regarded as the most suited for the 
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dynamic analysis of spinal motion with respect to the single slices or surfaces of 

structures observed on MRI scans. 

Traditional MR imaging can be a powerful tool in the assessment of disc 

degeneration and herniation (Leone et al., 2007), but its clinical application for 

diagnosis of segmental instability is limited. Real-time imaging analysis required for 

the full investigation of spinal motion in patient‘s upright, weight-bearing or 

recumbent conditions has been, for a long time, hampered by the bore size of 

traditional MRI systems and their slow imaging times. More recently, kinematic MRI 

(often referred to as dynamic or dynamic-kinetic MRI) technology has been 

developed to allow clinicians to examine and analyze mechanical instability of 

human joint. In particular, the proliferation in clinical environment of open MRI 

units and short-bore high-field systems are providing a great opportunity to apply 

kinematic MRI techniques to spinal motion analysis.  

In recent works kinematic MR imaging is resulted to be effective in quantifying the 

lumbar spine range of motion and changes in disc height (Leone et al., 2007). 

However, the potential of kinematic MRI in evaluating segmental instability has not 

been yet completely investigated and no comparison of accuracy of different imaging 

techniques (fluoroscopy, MRI, etc.) in estimating segmental kinematics has been 

provided. 
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Chapter 3 

Segmental instability 

 

 

The vertebral column is a flexuous and flexible column,  

formed of a series of bone called vertebræ  

Henry Gray 

 

 

 

Spinal degeneration can lead to segmental instability that is suggested to be a major 

cause of back pain and is often an important factor in deciding on surgical fusion or 

prosthesis implant (Dimnet et al., 1982; Leone et al., 2007; Niosi and Oxland, 2004; 

Panjabi, 1992a; Panjabi, 1992b;  Panjabi, 2003). Analysis of intervertebral 

kinematics can provide useful information for diagnosis of instability, for assessment 

of therapy and surgical treatment or for evaluation of performance of disc prostheses. 

Intervertebral kinematics is, however, difficult to measure in vivo: direct 

measurements are not clinically feasible and small errors in the estimation of 

vertebrae position may cause large errors in the kinematic measurements. In addition, 

no acceptable definition of segmental instability appears to exist. In 1990, White and 

Panjabi proposed a general definition of instability
1
 based on the observation that 

                                                 

 

1 ―the loss of the ability of the spine under physiologic loads to maintain its pattern of displacement so 

that there is no initial or additional neurological deficit, no major deformity, and no incapacitating 

pain‖ (White and Panjabi, 1990). 
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―normal‖ loads imposed on an unstable spine lead to ―abnormal‖ deformations or 

displacements. However, researchers do not agree on the interpretation of this 

definition. Some authors have suggested that greater acknowledgment should be paid 

to the magnitude of the force, or perturbation, required to destabilize spinal segments 

(Farfan and Gracovetsky, 1984). On the contrary, for others the emphasis has been 

on the magnitude of vertebral displacement (i.e. kinematic parameters) associated 

with abnormal deformations and loss of tissue stiffness (Scholten et al., 1988). This 

latter approach is more appreciated in clinical environment due to the possibility to 

more easily attained an objective, valuable measurement of the effects of instability 

with respect to its causes. In this Chapter a description of different radiological 

techniques proposed in literature for measuring kinematic descriptors of instability is 

provided. In addition, a wide review of recent, significant findings in the analysis of 

segmental motion is reported. 

 

3.1   Radiological instability 
____________________________________________________________________ 

Segmental instability is generally diagnosed by measuring abnormal vertebral 

displacements observed on lateral radiological projections (Leone et al., 2007).  

Knuttson (1944) was the first to report vacuum phenomenon in intervertebral disc 

and to present its association with lumbar spine instability through radiographic 

investigation. Since the work of Knuttson, segmental instability has been 

traditionally diagnosed by radiological measurements of range of motion (ROM)  

(i.e. intervertebral rotation and translation) between full flexion and full extension in 

the sagittal plane (i.e. functional radiography). White and Bernhardt (1999) proposed 

a checklist approach to radiographic diagnosis of instability based on evaluation of 

segmental ROM and/or local tissue damage. Similarly, many surgeons use, to date, 

flexion-extension lateral spinal views to disclose abnormal vertebral motion before 

deciding on surgical treatment: intervertebral anterior translation greater than 3 mm 

and intervertebral sagittal rotation greater than 10° are generally indications for 

surgical fusion or prosthesis implant (Leone et al., 2007). However, as reported by 

Nizard et al. (2001), this method is challenging and debatable for several reasons: its 

diagnostic value cannot be determined because of the lack of a non traumatic and 
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routinely applicable reference standard to define intervertebral instability; its 

reproducibility is difficult, a slight variation in patient positioning or in the direction 

of X-ray beam may result in a significant variation in the intervertebral ROM; the 

appropriate way to obtain flexion-extension radiographs and the method to measure 

ROM are still not standardized. In addition, clinical measurements of ROM can be 

affected by large errors due to low quality of radiographs and concomitant vertebral 

rotation about the vertical axis of spine (i.e. out-of-plane coupled motion). As a 

result, a large range of ―abnormal‖ motion has been reported in literature with a 

substantial overlap of asymptomatic motion patterns, and the cut-off between normal 

and abnormal spinal movement is difficult to determine. Nevertheless, the majority 

of clinicians still use functional radiography for diagnosis of instability due to its 

simplicity, low expense and wide availability. 

 

3.2   Range of motion 
____________________________________________________________________ 

Several methods for directly measuring vertebral displacements through lateral 

flexion-extension radiographs have been proposed. These generally determine the 

segmental ROM (i.e. translation and rotation of the upper vertebra with respect to the 

lower of a motion segment) by end-of-range spinal positions (i.e. full flexion – full 

flexion).  

A simple radiological assessment of vertebral translation is based on ―George‘s line‖ 

(Yochum and Row, 1996). This line is formed by the posterior vertebral bodies as 

viewed on a lateral X-ray radiograph and involves no quantification, being simply a 

visual inspection: normally, the line should be smooth and unbroken with any 

deviation suggesting excessive translation (Figure 3.1). One of the earliest study that 

related radiological measurement of excessive lumbar translation in sagittal plane 

and segmental instability was conducted by Morgan and King (1957). This technique 

is, to date, one of the few employing the anterior borders of lumbar vertebrae (Figure 

3.2). Stokes and Frymoyer (1987) improved this simple technique using biplanar 

radiography in order to obtain a more accurate measure of translation by reducing the 

artefact produced by angular motion between segments. Posner et al. (1982) adapted 

this method incorporating the measurement of sagittal intervertebral rotation and also 
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measuring translation as a percentage of vertebral body width. This approach has 

allowed to directly compare data extracted by different studies without the need to 

account for magnification or distortion of radiographs. A further modification of this 

measurement technique was then developed by Dupuis et al. (1985) (Figure 3.3). 

Although several recent works have utilized ―Dupuis‖ method or modified version of 

it (Bram et al., 1998; Fujiwara et al., 2000; Murata et al., 1994), a comparison study, 

based on an experimental model of the L4-L5 motion segment, suggested that the 

method described by Morgan and King (1957) provides the overall best performance 

and the least interference due to concomitant motion (Shaffer et al., 1990). In this 

regard, it is interesting to note that the earliest and simplest technique is resulted 

superior to later, more elaborate approaches.  

Unlike functional radiography, videofluoroscopy permits to describe intervertebral 

kinematics during the full patient‘s movement. Once located the vertebral bodies at 

each frame of the fluoroscopic sequence (by manual landmarking or automated 

recognition), the planar, rigid motion of the vertebrae results to be completely 

described in terms of vertebral translation and rotation (i.e. three degrees of 

freedom). For each pair of adjacent vertebrae (i.e. motion segment), the motion of the 

upper vertebra can be thus estimated with respect to the lower which is considered 

fixed (i.e. intervertebral kinematics) and concise measurements of segmental ROM 

can be easily derived from the computed kinematic data. The clinical effectiveness of 

in vivo ROM estimation by videofluoroscopy is, however, questioned: both manual 

marking and automated recognition of vertebral bodies might result in an 

insufficiently accurate procedure mainly due to the low quality of fluoroscopic 

images (Cerciello et al., 2011b). Recently, Cerciello and colleagues have proposed a 

new methodology for automated recognition of vertebrae in fluoroscopic sequences 

that was proved to provide an estimate of in vivo intervertebral kinematics with a 

measurement error reasonably smaller that the expected measurements of abnormal 

translation and rotation. This offers encouraging expectations on future clinical 

application of DVF analysis for diagnosis of intervertebral instability. 
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Figure 3.1. A particular of the George's line (or the Posterior Body line) for cervical spine. 

 

 

Figure 3.2. Segmental instability can be demonstrated by drawing a line along the front border 

of each individual vertebral body. Instability exists if the line does not pass close to the anterior 

lip of the vertebral body (epiphysial bone ring) immediately below and above it (from Morgan 

and King, 1957). 
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Figure 3.3. Translation is measured by drawing lines U and L along the posterior cortices of 

upper and lower vertebral bodies. A third line I along inferior endplate of the superior vertebral 

body is drawn and a fourth line R is drawn parallel to L through the intersection point of lines I 

and U. Translation is defined as the perpendicular distance between parallel lines L and R. To 

obviate inaccuracies due to X-ray magnification factor, translation is measured as percentage of 

the width of the upper vertebral body (W). Sagittal rotation is measured by drawing 

perpendicular lines to posterior body lines (U and L) (from Dupuis et al., 1985). 

3.3   Center of rotation 
____________________________________________________________________ 

Center of rotation (CR) is frequently used to characterize joint motion, to detect 

abnormality and to evaluate treatment and rehabilitation. Its first application in the 

field of intervertebral kinematics appears to be that of Rosenberg (1955), who 

applied it to serial lumbar radiographs of thirty subjects in a preliminary attempt to 

establish its normal location. Since then it has gained much favour as a kinematic 

parameter in the study of spinal motion through lateral radiographs, especially in 

regard to cervical and lumbar regions.  

In clinical setting a rough approximation to ICR
2
, the so-called finite center of 

rotation (FCR),  is generally assumed due to the small number of spinal positions 

available (to limit the X-ray exposure to the patient). By plotting FCRs obtained 

between different pairs of spinal positions in flexion-extension movement or 

                                                 

 

2 If a body is both translating and rotating in a single plane, the instantaneous centre of rotation is 

defined as the point about which the body moves, at any instant of time, with pure rotation (Meriam 

and Kraige, 2002; Wilcox, 2006). 
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sidebending, it is possible to describe a path of CRs, or centrode.  How far apart 

these CRs  are from each other and where, in relation to the anatomy, they are 

located is thought to tell us something about the mechanical behaviour of each 

motion segment.  

Several approaches for computing FCR from lateral plain-film X-rays have been 

proposed. Reuleaux (1875) graphically demonstrated that FCR is the point of 

intersection of the mid-perpendiculars of two distinct landmark displacement vectors 

(Figure 3.4). This approach assumes that the pairs of landmark coordinates are error-

free, but if there are errors in the landmark positions the errors in FCR can be large 

for small angles of rotation. Panjabi (1979) presented an analytical expression for the 

procedure of Reuleaux, and successively White and Panjabi (1978) showed that the 

accuracy of the procedure can be improved by using multiple marker pairs with the 

weighted mean of multiple FCR estimates. Spielgeman and Woo (1987) and Crisco 

et al. (1994) presented procedures which only require a pair of markers. Challis 

(1995; 2001) firstly proposed an innovative approach based on a least-squares 

procedure that is resulted to be slightly more accurate than other earlier procedures. 

More recently, McCane et al. (2005) have provided a least-squares derivation similar 

to that proposed by Challis (2001), but more trivial to implement. 

 

 

Figure 3.4. Consider a body moving from position i (ABCD) to position i+1 (A’B’C’D’). If at the 

two positions the coordinates of any two points (A and D, for example) are known, then the CR 

for this increment of movement can be calculated by erecting perpendicular bisectors between A 

and A’ and between D and D’. The CR is at the intersection of the bisectors. Thus, the body can 

move from any initial position (i ) to any final position (i+1) by a pure rotation about the CR 

(from Chen and Katona, 1999). 
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 Large inconsistencies in FCR location have been reported in literature (see 

paragraph 3.7.2). They have been attributed to highly sensitive of FCR to 

measurement errors indeed, small measurement errors at segmental level can 

determine a significant misalignment of FCR, especially for small angles of rotation. 

In accord to this, Panjabi et al. (1982) observed that accuracy of FCR estimation is 

directly proportion to the magnitude of sagittal rotation (Figure 3.5). This finding has 

been confirmed by several, more recent studies (Chen and Katona, 1999; Panjabi et 

al., 1992a). In order to minimize the measurement errors, FCR is calculated between 

end-of-range spinal positions (i.e. full flexion and full extension), but, as a result, no 

information are available about the motion occurred in between the extremes of 

motion path. Although these aspects limit the clinical effectiveness of FCR, this 

continues to be a widely used parameter for evaluation of segmental instability, 

probably because of its inherent potential for addressing rotational and translational 

motion together. Indeed, it is commonly believed that an inconsistent distribution of 

the proportional amounts of translation and rotation, corresponding to mechanical 

irregularity of the joint, would result in a lengthened centrode that, therefore, may 

directly illustrate segmental instability. It is important to note, however, that the 

segmental motion occurred in between the extremes of spinal movement may be 

significantly varied with respect to that represented by the corresponding FCR.  

 

 

Figure 3.5. Error sensitivity of CR location as a function of the angle of rotation. It becomes 

increasingly difficult to determine the location of a CR of a joint as the angle of rotation 

decreases (form Panjabi et al., 1984). 
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The evaluation of CR at any instant of the patient‘s movement (i.e. the estimate of 

ICR) can be very useful for correctly diagnosing segmental instability. DVF, 

providing a continuous screen of spinal motion, appears to offer a perfect match for 

the estimation of ICR. This can be calculated along all the DVF sequence (and not 

only between end-of-range spinal positions) by the knowledge of intervertebral 

kinematics at the frame rate. Nevertheless, DVF has not been extensively used for 

measuring CR in vivo spinal motion. This is most probably a consequence of the 

highly sensitive of CR to measurement errors that can be significant in DVF analysis. 

Recently, Bifulco et al. (2011) have preliminary proposed a spline-based method 

designed for a continuous-time description of intervertebral motion extracted by 

videofluoroscopy. This study has presented, for the first time, in vivo ICR locations. 

The method seems to provide an effective technique for continuous description of 

intervertebral motion and, in particular, of CR, while maintaining standard clinical 

measurements for diagnosis of instability.  

 

3.4   Axis of rotation 
____________________________________________________________________ 

For a three-dimensional rotating body with one fixed point the concept of ICR can be 

extent to instantaneous axis of rotation (IAR). Generally, in planar motion the term 

―ICR‖ is generally preferred (since IAR is perpendicular to the plane and 

corresponds to ICR) (for instance, Cossette et al., 1971; Soudan et al., 1979; Van 

Mameren et al., 1992), while in those studies where the three-dimensional 

information can be recovered (e.g. in bi-planar radiography) the use of the term 

―IAR‖ can be more appropriate (Pearcy, 1985). This concept cannot be, however, 

overemphasised since the index is applied to projections or images of spine and, thus, 

can provide only inferential data regarding the actual three-dimensional structures. In 

any case, it is not bad thing that terminology, as applied to the image, should 

acknowledge and remind us about the true three-dimensional nature of the original 

examined structure. It must also be borne in mind that IAR and ICR are hypothetical 

concepts, not absolute measures. Their location only represent an axis or a point 

about which a vertebra, or other body, could be rotated to produce the roto-

translation movement observed between two radiological images. 
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Where there are sufficient data to fully describe the complex three-dimensional 

motion of human joint, a more appropriate index, such as the instantaneous helical 

axis of motion (IHA), might be preferred (Dimnet and Guinguand, 1984; Woltring et 

al., 1985). This is achieved by describing the motion of a rigid body in terms of 

helical or screw motion. IHA is, in other words, the three-dimensional counterpart to 

the two-dimensional ICR. The precision of IHA index is, however, far outweighed 

by its conceptual complexity which at the present time prevents its use with regard to 

spinal motion in clinical setting (White and Panjabi, 1990).  

 

3.5   The neutral zone 
____________________________________________________________________ 

Spinal ligaments and intervertebral disc are able to vary their stiffness throughout a 

ROM. This viscoelastic behaviour allows greater movement within and around the 

neutral position (i.e. when vertebral bodies are aligned), but progressively limits 

motion towards the end of ROM (i.e. full flexion-extension). This suggests that 

lumbar spine offers little resistance to bending throughout this range (with low 

energy expenditure and stress in spinal soft tissue), but provides a significant 

opposition to potentially damaging movements at the end of range. From this 

information it has been inferred that subjects with poor mobility in lumbar spine can 

generate high, potentially harmful, stresses in lumbar disc and ligaments on simple 

forward bending (Panjabi, 1992c). 

The region of relative ligamentous ―laxity‖ around the neutral position is generally 

termed as ―neutral zone‖ (NZ), while that part of the ROM associated with 

increasing ligament stiffness as ―elastic zone‖ (EZ) (Panjabi, 1992c). Panjabi (1992c; 

1998) demonstrated a method of measuring NZ in vitro and proposed that it 

represents an index of segmental instability by showing that NZ is more sensitive to 

injury and degeneration than the corresponding ROM. This notion continues to find 

support in literature. 

The procedure for determining NZ involves repeated loading of a spinal specimen. 

After removal of the load it was noted that the specimen does not return fully to its 

initial position, but only partially, showing residual displacement. Loading, and 

hence displacement, can then undertaken in the opposite direction. When this 
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load/unload cycle is repeated three times, the residual displacement just prior to the 

third load cycle, for each direction, defines the end of the NZ. Further 

load/displacement form this point defines the EZ and the point midway between the 

two NZ is taken as the neutral position (Figure 3.6).  

Although the determination of NZ is an in vitro process involving load/deformation 

data, it is possible to relate this concept to the time/displacement information 

generated by in vivo videofluoroscopic studies. For example, since viscoelasticity is a 

time-dependent phenomenon, one might expect the angular change through the NZ 

to be greater per time increment than motion during the EZ. In particular, by 

considering that NZ must be found at the commencement of the motion and EZ 

towards the end of range, Kondracki and Breen (1993) have developed a ―laxity 

index‖ (analogous to NZ concept) comparing displacement during each half of a 

motion sequence. However, few studies have, to date, investigated the matter and in 

vivo techniques for measuring NZ appear to be still lack of confidence 

. 

 

Figure 3.6. The load-deformation curve of a soft tissue or a body joint is highly nonlinear. The 

joint is highly flexible at low loads; it stiffnes as the load increases. To analyze this nonlinear 

biphasic behavior, the load-displacement curve is divided into two parts: neutral zone (NZ), the 

region of high flexibility; and elastic zone (EZ), the region of high stiffness. The two zones 

together constitute the physiological range of motion (ROM) of a joint (from Panjabi, 1992b). 
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3.6   A novel approach to instability 
____________________________________________________________________ 

Spinal muscle actions can vary the laxity of motion segments, but these active 

counterparts have been long thought to have smaller influence than their 

corresponding passive mechanisms. In 1992 Panjabi attempted to question this 

approach and to conceptualise a novel model of segmental instability based on a 

broader view of how stability might be achieved physiologically. The concept is that 

human spine is a dynamic structure and thus stability cannot be reduced to a static 

resolution of forces. Stability must be, therefore, a function of a rapidly adapting 

system capable of responding to constantly fluctuating loading conditions. This 

necessitates the inclusion of neuromuscular elements into any dynamic model of 

spinal stability. In answer to this suggestion, Panjabi (1992b) proposed a model 

including three interacting subsystems (Figure 3.7). 

The passive subsystem consists of solid structures such as vertebral bodies, facet 

joints and capsules, discs and ligaments. In addition, it also includes the passive 

mechanical properties of skeletal muscles. It is here that the concept of NZ is 

evident. Around the neutral position the components of the passive subsystem are 

unable to provide any significant resistance. This subsystem is, however,  considered 

passive only for these structures that do not generate forces or produce movement. In 

other words, they are also dynamic in the sense that transducers, as an integral part of 

the these tissues, are capable of monitoring the mechanical behaviour of spine during 

motion. This information can then be fed-back to the neural subsystem. Since passive 

elements contribute little resistance throughout the NZ it is likely that, during this 

phase, they almost entirely function as transducers. 

The active subsystem comprises the paraspinal musculature and tendons. These 

structures generate forces and moments required in maintaining stability. The force 

transducers, that reside in the muscle tendons and muscle spindles, are responsible 

for gathering information on the magnitude forces being produced by each muscle 

and as such as are part of the neural control subsystem.  

The neural subsystem processes the information received from the various 

transducers. Acting on this information the active subsystem can then controlled to 

achieve the required tension in individual muscles until the condition for stability are 



24 

 

met. Panjabi (1992bc) suggested that the magnitude of muscle contraction is 

determined most probably on basis of information received regarding ligament strain 

rather than internal stresses. This is particularly expected throughout the NZ where 

the reactive forces are small compared to the relatively large ligament deformations.  

This remarkably coordinated arrangement is likely to be capable of a great degree of 

compensation and optimisation and is, furthermore, liable to achieve this in a highly 

variable fashion.  

Given that, it is not surprising that instability is difficult to evaluate. With a multitude 

of compensatory mechanism in place it is not unexpected that attempts to reveal 

instability by provocation, a common clinical technique for divulging latent 

abnormalities, are met with resistance by the patient. A control system of this nature 

is, by necessity, complex and must function on an instantaneous basis under almost 

infinitely variable conditions. It is, therefore, prone to dysfunction. Muscles may be 

recruited inappropriately, contracting too soon or too late, with insufficient force or 

too vigorously. Overall the objectives for immediate stability might be accomplished 

at the expense of long-term component damage. Accumulated injury to various 

anatomical tissues such as the disc, ligaments and facet joints may result in 

accelerated degeneration with all its attendant problems of pain and dysfunction. 

Furthermore, it is not inconceivable that degeneration or damage of this kind can 

lead to additional stability compromise. 

 

 

Figure 3.7.  The spinal stabilizing system. It can be thought of as consisting of three 

subsystems: spinal column; muscles surrounding the spine; and motor control unit. The spinal 

column carries the loads and provides information about the position, motion, and loads of the 

spinal column. This information is transformed into action by the control unit. The action is 

provided by the muscles, which must take into consideration the spinal column, but also the 

dynamic changes in spinal posture and loads (from Panjabi, 2003). 
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3.7   A literature review 
____________________________________________________________________ 

A large number of in vitro (or cadaveric) studies were traditionally directed to 

analyze segmental kinematics and its relationship with the properties of spinal 

tissues. By improving our understanding of how the intervertebral disc and other 

structures behave under differing mechanical conditions we can better explain any 

spinal motion changes in the patient. At this aim, in the last decades researchers have 

attempted to combine in vitro findings with the in vivo observations of human spine 

function. Nevertheless, no model of segmental instability has been, to date, proposed 

that adequately relates patient‘s symptoms, biomechanical aspects and clinical 

measurements. This is probably due to the complex spinal function (i.e. a large 

number of factors contributes to spinal motion) and the great variability of symptoms 

and motion changes observed between individuals.  

In paragraph 3.7.1 and 3.72 recent findings in determining the intervertebral ROM 

and CR of lumbar spine are presented, respectively.  

 

3.7.1   Lumbar spine range of motion 

Several studies have attempted to determine the ―boundary‖ between normal and 

abnormal measures of segmental ROM in order to numerically define the segmental 

instability. Much of the early experimental works on cadaveric specimens involved 

the smallest functional component of spine, the motion segment. This was described 

by Junghanns (1931) as comprising two adjacent vertebrae and all intervening soft 

tissues. The definition of motion segment, however, led to confusion since the 

majority of researchers left only ligamentous tissue between segments. In 1978, 

White and Panjabi revised the definition of motion segment including only the disc, 

apophyseal joint and ligaments as intervening tissues. They renamed this motion 

segment as the functional spinal unit (FSU) (Figure 3.8). This definition was largely 

accepted by the scientific community and FSU is still adopted for investigating 

mechanical behaviour of spine.  

In 1982, Posner and colleagues undertook one of the first in vitro studies of lumbar 

and lumbosacral spine in an attempt to obtain numerically-based information on 

normal motion. They suggested that maximal anterior translation in normal lumbar 
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motion segment was no more that 2.3 mm or 8% of the anteroposterior (AP) 

diameter of the lower vertebral body. These figures are in good agreement with the in 

vivo stereoradiographic work of Pearcy (1985) and with a previous in vitro study of 

Nachemson (1981) who suggested that only translatory motion in excess of 4 mm 

between two vertebrae could safely be described as abnormal. Posner and co-workers 

were also one of the first groups to counsel the subdivision of lumbar spine into 

lumbar (L3-L5) and lumbosacral (L5-S1) regions on a functional basis. To be fair, 

this kinematic demarcation, particularly for flexion-extension, was first noted by 

Knutsson (1944). Based on the findings of Posner et al. (1982), White and Panjabi 

(1990) revised the figures for anterior translation and suggested that 4.5 mm or 15% 

of the adjacent vertebral body diameter as the upper limit of normal motion. It is 

interesting to note that also this revised figure is open to contention. In a more recent 

in vivo study involving radiographic measurement of asymptomatic individuals the 

determination of 5 mm translation was so common in the L3-L5 region, as 4 mm in 

the L5-S1 segments, that these values cannot be considered pathological (Tallroth e 

al., 1992). According to this, Soini et al. (1991), using discography and plain-film 

radiography on a series of 77 patients, concluded that disc degeneration seldom 

results in abnormal angular movement and instability of lumbar spine. Similarly, the 

seminal work by Boos et al. (1995) was unable to establish any significant 

differences between a group of patients with symptomatic disc herniation and 

asymptomatic volunteers matched for age, sex and work-related risk factors.  

 

 

Figure 3.8. A schematic representation of the functional spinal unit (from Bogduk, 1997). 
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In the same years a Japanese group using both standard plain-film radiographic 

methods and MRI imaging of disc changes were again unable to confirm any clear 

association (Murata et al., 1994). The authors, employing conventional kinematic 

parameters of vertebral tilting and translation on 109 low back pain patients, could 

show only a little correlation with the degree of disc degeneration as evaluated on 

MRI. Using the method proposed by Dupuis et al. (1985), measurements of angular 

and translatory motion were taken from recumbent films, while standing, weight-

bearing radiographs were used to measure disc height. With these criteria the authors 

claimed to identify segmental instability at all lumbar levels, even in patients who 

appeared to have normal discs or only mildly degenerated ones. A similar study on 

cervical spine instability and disc degeneration concluded that signs of instability 

were more likely in the early phases of degeneration (Dai, 1998). This result is in 

agreement with similar findings obtained by Kirkaldy-Willis (1992) and Gertzbein 

(1985). Another study employing MRI techniques attempted to use abnormal disc 

findings to predict lumbar segmental instability (Bram et al.,1998). The authors 

reviewed case files of 60 patients with both MR image and sagittal flexion-extension 

radiographs. Instability was, again, defined using measurements of shear translation 

adapted from Dupuis et al. (1985). Instability was assigned where the horizontal 

translation exceeded 3 mm. These measures were taken by radiologists blinded to the 

MR results of disc abnormalities. They concluded that the presence of annular tears 

in the disc and traction osteophytes were the findings most related to segmental 

lumbar instability. These conclusions are interesting, but are questionable when the 

sole basis for the definition of instability rests on a 3 mm shear translation. More 

recently, a study has claimed to have established a relationship between disc 

degeneration, facet arthrosis  and segmental instability (Fujiwara et al., 2000a). 

Again using MRI and the Dupuis method for determining ranges of rotation and 

translation, Fujiwara and co-workers showed a positive association between disc 

degeneration and anterior translatory instability. Fujiwara‘s team employed the 

recumbent radiographic protocol proposed by Wood et al. (1994). This non-weight 

bearing and unloaded method is thought to reveal abnormal movements concealed by 

compression preload. In addition, they noted a negative association with facet joint 

osteoarthritis and both abnormal tilting movements and anteroposterior translatory 
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instability. In conclusion, they suggested that, with increasing degeneration of the 

disc and facet joints, the disc loses its anterior translation stiffness, but that facet joint 

osteoarthritis limits abnormal tilting movement and anteroposterior translation. Once 

again, however, the basis upon which the diagnosis of instability rests is subject to 

question. In this study, Fujiwara and colleagues subdivided translatory instability 

into anterior, posterior and anteroposterior by using the difference in magnitude of 

intervertebral displacements in flexion and extension. Where anterior displacement 

exceeded posterior displacement, by 1 mm or greater, the motion segment was 

determined to have anterior translatory instability. Their intraobserver error (1 mm 

for translation and 3.2° for rotation) was, however, comparable to the expected 

measurement of abnormal motion. In addition, their sample population comprised 70 

patients with low back pain, leg symptoms or both with no matched control group. 

This approach is likely to lead to false conclusions because of the well-established 

lack of correlation between degeneration and symptoms.  

These studies do not appear, thus, to provide the detailed correlative findings 

between spinal disorders and experimental or clinical measurements that might be 

anticipated. Nevertheless, the notion that intervertebral disc forms the most important 

restraint between spinal segments, and thus that disc degeneration is the primary 

cause of segmental instability, has been commonly expressed.   

 

3.7.2   Lumbar spine center of rotation 

Clinical investigations have extensively supported that CR is more sensitive to spinal 

disorders with respect to segmental ROM that can result within a normal range even 

in presence of severe disc degeneration (for instance, Fujiwara et al., 2000; Schneider 

et al., 2005). Similar considerations have been raised by a few studies on cervical 

spine kinematics which recognized CR as the most sensitive parameter to assess disc 

degeneration (Bogduk and Mercer, 2000; Dimnet et al., 1982; Hwang et al., 2008; 

Lee et al., 1997; Subramanian et al., 2007; Van Mameren et al., 1992). The 

knowledge of the location of CR can be, therefore, relevant for clinicians to diagnose 

mechanical instability of spine. A proper interpretation of CR location could allow 

the clinician to objectively choose the best surgical approach and the appropriate 

instrumentation to correct a misleading CR. Another potential value of determining 
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the CR is the development and evaluation of arthroplasty technoogies. This may be 

achieved by optimizing the CR location for implant systems attempting an CR 

location close to that of healthy motion segments.  

Several studies have reported intervertebral FCRs of lumbar spine during flexion–

extension in the sagittal plane. Yoshioka et al. (1990) studied 61 healthy cases of L1–

L5 lumbar segment using 2D X-ray measurements and concluded that the flexion–

extension center of rotation was 2.6 to 5.9 mm posterior to the central axis of the 

lower vertebral body. Gertzbein et al. (1984, 1985) reported that a greater scatter of 

FCRs was detected for spinal segments having morphologic changes caused by disc 

degeneration. In their first work Gertzbein and co-workers (1984) studied the 

flexion–extension FCRs of 10 cadaveric specimens and reported an average location 

of the FCR of 11.6 mm from the posterior edge of the vertebral body. Similar results 

have also been reported in separate cadaveric series by White and Panjabi (1990) and 

Rousseau et al. (2006ab). Xia et al. (2010), using a combined dual fluoroscopic and 

MR imaging technique during flexion–extension and left–right twisting of trunk, 

have found that the FCRs in the sagittal plane was located posterior to the centers of 

the lower vertebral bodies for the L2-L3 and L3-L4 segments.  

 

 

Figure 3.9. A few locations of the center of rotation in the lumbar spine proposed in literature.  
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Relatively few studies have reported the FCRs of lumbar vertebrae in the transverse 

plane. Cossette et al. (1971) determined the FCR in the anterior region of the disc for 

axial rotation. On the contrary, Haher et al. (1992) explored the CR in the posterior 

region of the disc under lower moments and posterior to the disc in the area of the 

neural channel for larger moments. More recently, Qiu et al. (2003) determined the 

location of FCRs in flexion, extension and lateral bending but for thoracic spine.  

In these studies the relationship between CRs and facet joint forces remained 

unconsidered. Nevertheless, disc and facets work together to constrain spinal 

kinematics. Few in vitro studies have measured the facet joint forces in the lumbar 

spine (Rousseau et al., 2006a; Rousseau et al., 2006b; Wilson et al., 2006; Luo et al., 

1996): these studies, however, require to cut through the facet joint capsules 

modifying biomechanical behavior. A finite element (FE) model can avoid many of 

the restrictions of experimental studies while providing more detailed information 

about the complex motion pattern and stress–strain distribution in a FSU during 

flexion-extension or axial motion. Shirazi-Adl et al. (1986) analyzed motion of the 

L2-L3 segment under an axial torque alone and combined with a compression load 

using a finite element (FE) model. They found that with the application of a small 

torque (1 Nm) the FCR in transverse plane was located roughly at the center of the 

vertebral body. When a larger torque was applied, however, the FCR shifted 

posteriorly and with hypertorsion (60Nm) it was posterior to the vertebral body. 

Schmidt et al. (2008a) using an FE model found, similarly, that when a larger torque 

(7.5Nm) was applied the FCR was  closer to the facet joints.  

The analysis of CR loci may have important clinical implications for evaluation of 

performance of disc prostheses and for deciding on the location of disc implantation. 

Several short and mid-range follow-up studies have recently reported satisfactory 

clinical results using various total disc replacement designs (Blumenthal et al., 2005; 

Le Huec et al., 2005; Zigler et al., 2007). Other reports argued that long-term follow-

up studies of the currently available total disc replacement designs do not show better 

results than spinal fusion surgeries (Putzier et al., 2006). There  are studies showing 

that the location of the artificial disc during implantation can significantly affect the 

clinical outcome (McAfee etal.,2005).). In clinical practice the artificial disc was 

generally positioned in a relatively posterior position during surgery. McAfee et al. 



31 

 

(2005) described that the ideal location for placement of the Charité prosthesis is 2 

mm posterior to the midpoint of the vertebral body in the sagittal plane. This is 

consistent with the fact that the CR in the sagittal plane is at the posterior portion of 

the vertebra. However, no study has, to date, investigated the effect of the CR of an 

artificial disc in the transverse plane. From a biomechanical standpoint, changes in 

the location of CR in the transverse plane may introduce additional constraints to the  

rotational motion of lumbar spine 

Many of the above mentioned studies propose findings that diverge from each other 

(Figure 3.9). Most probably, this is associated with the highly sensitivity of CR to 

measurement errors, especially when it is determined from anatomical landmarks 

(Panjabi, 1992a). In addition, there are no in vivo measurements regarding the 

instantaneous position of the center of rotation (i.e. ICR) and even only few data 

regarding this parameter in vitro. Recently, Wachowski et al. (2007; 2009a; 2009b; 

2010) have reported, for the first time, the actual IHA for different L3-L4 cadaveric 

specimens that is resulted to migrate from one facet joint to the other under 

combined compressive loads and axial torques and from the facets to the centre of 

the disc in flexion-extension. Similar findings have been found by Bifulco et al. 

(2011) for the L2-L3 segment in a preliminary in vivo study based on fluoroscopic 

analysis of passive flexion-extension spinal movement. 

 

3.8   Summary 
____________________________________________________________________ 

Radiological measurement of segmental ROM is commonly adopted in deciding on 

surgical fusion or prosthesis implant. However, the definition of a ―boundary‖ 

between normal and abnormal measures of segmental ROM appears to be 

problematic due to the large number of biomechanical aspects involved and the 

insufficient accuracy of measurement techniques. A great effort is taking place in 

order to correlate in vitro findings to the clinical measurements of healthy and 

symptomatic subjects. However, no acceptable definition of segmental instability has 

been, to date, proposed. Encouraging expectations on a better definition of instability 

would seem to derive from the assessment of segmental CR. It has been long 

recognized that CR is much more sensitive to disc and ligamentous degeneration 
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with respect to segmental ROM. An appropriate interpretation of the CR location 

could, therefore, permit to more objectively diagnose instability and to choose the 

best rehabilitative or surgical approach. At the present, large inconsistencies have 

been reported on FCR locations in cadaveric and in vivo studies. However, recent 

works seem to confirm the possibility to calculate the actual ICR of in vivo spinal 

segments. 
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Chapter 4 

Noise modeling and reduction  

in X-ray fluoroscopy 
 

 

It remains completely unknown to us what objects may be by  

themselves and apart from the receptivity of our senses.  

We know nothing but our manner of perceiving them 

Immanuel Kant 

 

 

 

Noise removal is essential in order to enhance and recover anatomical details that 

may be hidden in the fluoroscopic images and, consequently, to prevent large errors 

in kinematic measurements. As shown in the following, various image restoration 

and enhancement methods are available in the literature for counteract the 

degradation due to the noise. The effectiveness of these image restoration algorithms 

strongly depends on the validity of the utilized image noise model. The literature is 

rich in methods which assume the additive white Gaussian noise (AWGN) model. 

However, many important medical imaging modalities, including X-ray fluoroscopy, 

a reasonable noise model is the signal-dependent Poisson noise one that, of course . 

In the first section of this Chapter a description of fluoroscopic noise model and of 

some common noise estimation techniques is presented. In the second section a 

performance comparison of denoising algorithms specifically designed for both the 

signal-dependent noise and AWGN is proposed. 
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4.1    Image noise modeling 
____________________________________________________________________ 

The degradation process (q) of an imaging acquisition system is generally modeled 

as a function that, together with an additive noise term, operates on an input image 

f(x,y) (with x        and y        ) to produce a degraded image g(x,y) (Figure 

4.1). The objective of restoration is to obtain an estimate ḟ(x,y) of the original image 

from some knowledge about the degradation function and the additive noise term. In 

the case that q is a linear, position-invariant process, the degraded image is given in 

the spatial domain by: 

 

                                  (1) 

 

where q(x,y) is the spatial representation of the degradation function and the symbol 

―*‖ indicates convolution. Since the convolution in the spatial domain is equal to 

multiplication in the frequency domain, the previous equation can be also expressed 

as: 

 

                                       (2) 

 

where the terms in capital letters are the Fourier transforms of the corresponding 

terms in Eq. (1). 

In several situations the major degradation in an image is represented by the additive 

noise, while other degradation sources can be often neglected. In these cases, Eqs. (1) 

and (2) become: 

 

                             (3) 

 

and 

 

                       .         (4) 
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The principal sources of noise in digital images arise during image acquisition, pre-

processing and/or transmission. The level of noise during acquisition depends on a 

variety of factors, such as environmental conditions, and on the quality of sensing 

elements. Interference in the channel used for transmission and quantization error are 

other typical noises superimposed to the images. 

As in the previous example, image noise is frequently assumed to be additive, 

independent of spatial coordinates and uncorrelated with respect to the image itself 

(i.e. there is no correlation between pixel values and values of noise components). 

Because of its mathematical tractability in both the spatial and frequency domains, 

Gaussian noise model is also commonly used.   

These assumptions (i.e. AWGN model) are, however, unreasonable in several 

applications and in particular for imaging acquisition systems using photon-counting 

devices (e.g. X-ray fluoroscopy) that are dominated by signal-dependent Poisson 

noise. In the next section the Poisson noise model generally adopted for X-ray 

fluoroscopy is extensively discussed. 

 

 

Figure 4.1. Model of the image degradation/restoration process (from Gonzalez and Woods, 

1992). 
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4.2   Fluoroscopic noise modeling 
____________________________________________________________________  

Fluoroscopy is commonly used when dynamic images of anatomical structures are 

required. In these cases long sessions of X-ray exposure are necessary and the dosage 

to the patient must be limited. The most direct method of reducing the dosage lies in 

the manipulation of parameters in the X-ray generator (i.e. tube current and potential, 

pulse width and filtration). By varying these parameters the radiological technologist 

attempts to effectively administer X-ray dosage levels satisfactory to both patient‘s 

risk and image quality.  

However, as a consequence of the limited number of photons available for imaging, 

fluoroscopic images result affected by severe noise, also known as ―quantum noise‖. 

Several researchers already derived similar spatial noise models for a single or 

multiple fluoroscopic images (for instance, Chan et al., 1993; Harrison and Kotre, 

1986; Hensel et al., 2007; Lo and Sawchuk, 1979), while the effect of non-linear 

gray-level image transforms (typically applied for medical image enhancement) on 

the statistics of fluoroscopic noise has been long ignored. In the paragraph 4.2.1 an 

accurate characterization of fluoroscopic noise is reported; the effect of non-linear 

transforms on the fluoroscopic noise characteristics is investigated in paragraph 

4.2.2. 

 

 

Figure 4.2. Digital fluoroscopic system front end (from Chan et al., 1993). 
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4.2.1   Image quantum noise 

At low exposure levels the passage of photons out of the patient under a fluoroscopy 

system can be described by a temporally stochastic Poisson point process, as shown 

in Figure 4.2. The number N of photons detected at the position r = [x,y]
T
 can be 

modeled in time by a Poisson distribution (for instance, Chan et al., 1993; Hensel etl 

al., 2007) with probability mass function equal to: 

 

         
                

     
 ,         (5) 

 

where   >> 1 is the expected number of photons in a given interval of time 

(depending on the fluoroscope frame rate) and the mean and variance of the Poisson 

distribution are equal to: 

 

                      .        (6)      

 

Generally, image intensity is linearly dependent on the number of detected photons 

(Hensel et al., 2007): 

 

           ,          (7) 

 

with cd positive constant detector gain depending on the characteristics of the 

fluoroscope. As a result, image intensity can be, in turn, modeled as Poisson-

distributed: 

 

         
                 

      
              .      (8) 

 

The Poisson noise model can be locally well-approximated with  an additive sampled 

Gaussian noise with zero-mean and signal-dependent variance. Recently, Hensel et 

al. (2007) have shown that, for at least     , the Poisson noise approximation to a 

Gaussian distribution in X-ray fluoroscopy yields maximum relative errors below 

0.1% and maximum absolute cumulative errors below 0.02. 
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Image intensity can be, therefore, locally decomposed as a summation of the 

expected pixel-intensity (s) plus a zero-mean signal-dependent noise component (for 

instance, Aach and Kunz, 1996; Hensel et al., 2007): 

    

                       (9) 

 

with  

 

          
     .          (10) 

 

The mean and variance of image intensity thus result: 

 

                               (11) 

       

and  

 

                      
             

                  .   (12) 

   

According to the Poisson distribution model, variance of image noise is proportional 

to mean image intensity and results strongly signal-dependent (heteroscedasticity). 

As a consequence, given a fluoroscopic sequence the noise variance at an image 

location (pixel) is linearly dependent on the mean of the observed pixel values (g) at 

that location: 

 

  
               

 .          (13) 

 

Although the additive Gaussian noise model has been assumed (that is more practical 

for addressing the problem of image non-linear transformation, discussed in 

paragraph 4.2.2), the relationship between noise variance and mean image intensity 

can be also easily derived from the properties of the Poisson distribution (see also 

Eqs. (7) and (8). 
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It should be also noted that pixel values are generally mapped within a limited data 

range, for instance [0, 2
b-1

] for images with b-bit precision. As a result of the noise 

intensity variation, pixel values could exceed the bounds of this data range. In these 

cases values exceeding the bounds are replaced by the bounds themselves: 

 

                          .         (14) 

 

This process is called clipping (or censoring) and corresponds to the behaviour of 

digital imaging sensors in the case of over- or under-exposure. 

Figure 4.3 shows the experimental image noise variance as a function of the mean 

pixel intensity observed from a sequence of fluoroscopic images of a step phantom. 

To obtain the mean-variance relationship of the fluoroscopic images, about 100 

repeated fluoroscopic images of the step phantom were acquired when the platform 

was static (image size was 1024 by 1024 pixels, image intensity had 16-bit precision; 

the fluoroscope system was set to 52 kVp and 28 mA.) (Figure 4.4). The mean and 

variance of each pixel were then calculated from the repeated measurements and 

plotted. It can be observed that mean and variance of the measured data are linear, 

which reflects the Poisson noise nature of X-ray photons. The clipping phenomena 

can be also observed at the extremes of the pixel value data range.  

 

 

Figure 4.3. Sample noise variance (bright-gray points) obtained as a function of the mean pixel 

value from a fluoroscopic sequence of a step phantom. The estimated linear  mean-variance 

characteristic is shown as a solid black line. The clipped observations (dark-gray points) have 

been excluded from the analysis (from Cerciello et al., 2011a). 
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Figure 4.4. (a) Fluoroscopic images of the step phantom; (b) An enlargement of the averaged 

image (from Cerciello et al., 2011a). 

4.2.2   White Compression 

In order to compensate the exponential attenuation of X-ray photons, the 

logarithmic-mapping of fluoroscopic images is generally involved, according to:  

 

                              (15) 

 

where cln is a positive constant and image intensity is incremented by one unit to 

avoid undefined expression (Gonzalez and Wood, 1992; Hensel et al., 2007). 

Logarithmic-mapping determines an expansion of darker pixels and a compression of 

brighter ones (i.e. white compression); in general, this improves the contrast between 

tissues, enhancing anatomical details, but also modifies the statistics of the noise and 

its characteristics.  

Hensel et al. (2007)  observed that after logarithmic-mapping image intensity can be 

still decomposed as the summation of a deterministic signal component and noise: 

 

                         
    

    
                      ,    (16) 

 

 

and derived the analytical expression between noise level and mean image intensity 

of logarithmized data, given by: 

 

               
                

        
         

   
 .     (17) 
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More recent medical imaging devices usually introduce a luminance non-linearity by 

image exponentiation (i.e. gamma-correction) of the fluoroscopic images instead of 

using logarithmic-mapping. In this case image intensity can be expressed as: 

 

            
           (18) 

 

where c  is a positive constant and  -parameter for fluoroscopic medical imaging is 

typically ranged between 0.3 and 0.45. By varying this value it is possible to set the 

more appropriate level of white compression for the representation of medical image.  

An analytical derivation of the relationship between noise level and mean image 

intensity of gamma-corrected data has been recently proposed by Cerciello et al. 

(2011a). Cerciello and co-workers started from the observation that, according to 

Eqs. (9) and (18), image intensity can be re-arranged as: 

 

             
     

    

    
 
 

        
           

 

     (19) 

 

and the expression          
 

 approximated to the linear term of the binomial 

series. The series provide a good approximation for      which is fulfilled in this 

case having mean and variance given by: 

 

                     (20) 

  

           
         

     
 

  

    
 

  

       
 

  

         
 

 

 
.     (21) 

 

Therefore, image intensity can be approximated as follows: 

 

             
                            

           (22) 
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and decomposed as the summation of a deterministic signal component and a noise 

one with variance: 

 

                
                     

 
   

         
      

                            
            

    .       (23) 

 

Noise level of gamma-corrected data may be referred to the signal (s ) observed after 

the gamma-correction of the image. Indeed, by noting that noise is a function of: 

 

            
           

                 (24) 

 

which is equivalent to: 

 

      
     

  
 

 

 

,          (25) 

 

noise level can be also expressed as a monotonically decreasing power function of 

gamma-corrected mean image intensity, given by: 

 

                

 

       
  

 

       

 

             
  

 

 .     (26) 

 

Figures 4.5 and 4.6 show the experimental observations of the image noise level 

against the mean pixel intensity obtained from fluoroscopic static images undergone 

logarithmic-mapping and gamma correction. The clipping phenomena at the 

extremes of the pixel value data range are observable again. 
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Figure 4.5. Sample noise variance (bright-gray points) obtained as a function of the mean pixel 

value from a logarithmized fluoroscopic sequence of a step phantom. The estimated mean-

variance characteristic is shown as a solid black line. The clipped observations (dark-gray 

points) have been excluded from the analysis (from Cerciello et al., 2011a). 

 

 

Figure 4.6. Sample noise variance (bright-gray points) obtained as a function of the mean pixel 

value from a gamma-corrected fluoroscopic sequence of a step phantom. The estimated  mean-

variance characteristic is shown as a solid black line. The clipped observations (dark-gray 

points) have been excluded from the analysis (from Cerciello et al., 2011a). 
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4.3   Estimation of noise parameters 
____________________________________________________________________ 

Noise estimation methods typically assume the presence of AWGN. Under this 

hypothesis, common approaches estimate the noise variance in homogeneous image 

regions since  these regions do not likely contain structure falsifying the result. More 

simple approaches are based on local pixel differences: if all differences between the 

pixel of an image block are below a selected threshold a homogeneous area is 

assumed and the noise level is estimated from the noise histogram (Bosco et al., 

2005). Other histogram-based  approaches involve more complicated procedures 

based on segmentation of the image in order to exclude the intensity variation 

associated with the signal from the estimation of noise variance. For instance, only 

edge pixels with a gradient below a threshold, or a percent of pixels with lowest 

gradients, are assumed to contribute to the estimate (Amer et al., 2005; Olsen, 1993). 

In any case, the definition of homogeneity for the selection of the image blocks 

remains problematic. 

If static (i.e. motionless) images are available, a simple and very accurate noise 

variance estimation can be performed (see paragraph 5.2.1). However, static images 

are rarely obtainable and in many application the noise estimation must be performed 

on a single noisy image. 

In a comparison study, Olsen (1993) found that pre-filtering generates a more 

accurate estimate of noise level with respect to the image block approach. Pre-

filtering requires that an observed image is filtered to reduce the influence of 

structure (i.e. image inhomogeneities) and that the difference between the observed 

(i.e. noisy) image and the estimated (i.e. filtered) image is computed for obtaining the 

noise component available for the estimation. Common pre-filters are binomial and 

median filters. Pre-filtering method presents, however, a main restriction because the 

estimated image is different from the expected image (i.e. without noise); as a 

consequence, noise is overestimated in presence of structures.  

These estimation methods are not completely valid for X-ray fluoroscopy since they 

assume that noise is signal-independent and provide results that are of a global nature 

(i.e. ―average‖ values which are meant to be valid for the whole image). On the 



45 

 

contrary, an accurate pixel-wise knowledge of the fluoroscopic signal-dependent 

noise would be necessary in order to properly restore the image details.  

Wavelet-domain image analysis can improve the accuracy of noise level estimation 

with respect to spatial analysis of the image content. Foi et al. (2008) have recently 

proposed a highly accurate algorithm based on wavelet-domain analysis for the 

automatic estimation of noise parameters given a single image affected by Poisson-

Gaussian noise. The algorithm utilizes a special maximum-likelihood fitting of the 

parametric model on a collection of local wavelet-domain estimates of mean and 

standard-deviation. The problem of clipping (over- and under-exposure) is also taken 

into account, faithfully reproducing the non-linear response of imaging sensors. Foi 

and co-workers have adopted a noise model on the considerations that noise in digital 

imaging sensors is signal-dependent with a Poissonian component, modeling the 

photon sensing, and a Gaussian component, for the remaining stationary disturbances 

in output data. Even if this model has been proposed for commercial imaging sensors 

it can be applied to X-ray fluoroscopy (in this case the Gaussian component of noise 

model can be neglected). 

Noise level estimation is commonly performed in spatial or transform domains, 

while less emphasis has been devoted in literature to the estimation of noise in time 

(i.e. from multiple images). Recently, Foi and colleagues (2007) have also presented 

an innovative approach for measuring the temporal noise in raw-data of digital 

imaging sensors. The method is specially designed to estimate the standard-deviation 

of noise as a function of the expectation of pixel raw-data output. By using an 

automatic segmentation of the recorded images, Foi and colleagues separate samples 

with different expected output and calculate their standard-deviation. Unlike other 

techniques that require an uniform target, their method benefits from the target non-

uniformity by simultaneously estimating the variance function over a large range of 

output values and has the quality of showing that multiple images can provide a 

significant advantage in measuring the noise level. 
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4.4    Denoising of fluoroscopic images 
____________________________________________________________________ 

Medical images are often noisy owing to the physical mechanisms of the acquisition 

process. The majority of the denoising algorithms assume additive white Gaussian 

noise (AWGN). However, common medical image modalities are degraded by non-

Gaussian noise. In particular, Poisson noise is generally adopted for modeling the 

counting processes associated with many imaging modalities such as PET, SPECT or 

X-ray fluoroscopy. A comparison of several denoising algorithms specifically 

designed for signal-dependent Poisson noise and for AWGN  is carried on. 

Denoising algorithms have been applied to simulated and real data affected by 

Poisson noise. Denoising algorithms are presented in paragraph 4.4.1. Results of the 

performance comparison are reported in paragraph 4.4.2 and 4.4.3 for the case of 

simulated data and real data, respectively. 

 

4.4.1   Denoising algorithms 

An adaptive averaging spatial filter (AVS) specifically designed for signal-dependent 

noise has been considered (see also Chapter V) (Cerciello et al., 2011b). The filter 

performs the average of the only neighbouring pixels that differ less than a selected 

threshold from the gray level of the central pixel of the filter mask. The threshold is 

set to two times the estimated standard deviation of the noise associated with the 

local gray level. This permits to preserve image edges with a gray-level range greater 

than the local noise intensity. 

The TLS is an image denoising algorithm based on total least square technique for a 

mixture of independent additive and multiplicative Gaussian noise (Hirakawa and 

Parks, 2006). Although this noise is characteristic of CMOS sensors, it can be 

extended to the case of X-ray fluoroscopic images. An ideal image patch is modeled 

as a linear combination of vectors cropped from the noisy image, and the model is 

fitted to the real image data by allowing a small perturbation in the TLS sense. A 

new technique to solve the TLS problem without the knowledge of the ideal image 

patch when the image is corrupted by signal-dependent noise is performed. 

Denoising algorithms based on gradient dependent regularizers, such as nonlinear 

diffusion processes and total variation denoising, modify images towards piecewise 
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constant functions. Although edge sharpness and location is well preserved, 

important information, encoded in image features like textures or certain details, is 

often compromised in the process of denoising. The A-TV is a mechanism that better 

preserves fine scale features in such denoising processes (Gilboa, 2006). A basic 

pyramidal structure-texture decomposition of images is employed. A first level of 

this pyramid is used to isolate the noise and the relevant texture components in order 

to compute spatially varying constraints based on local variance measures. A 

variational formulation with a spatially varying fidelity term controls the extent of 

denoising over image regions. In other words, regions of the residual part with higher 

local variance than that of the noise are treated as textured regions where denoising is 

inhibited. 

Wavelet-domain denoising is generally based on the assumption that the wavelet 

coefficients are statistically independent or jointly Gaussian. However, in several 

cases (e.g. image compression) non-Gaussian models for individual wavelet 

coefficients are required. Moreover, statistical dependencies between coefficients 

should be characterized in order to derive optimal signal processing algorithms. A 

framework for statistical signal processing based on wavelet-domain hidden Markov 

models (HMM‘s) that concisely models the statistical dependencies and non-

Gaussian statistics encountered in real signals have been assumed (Crouse et al., 

1998). The method involves an efficient expectation maximization algorithm for 

fitting the HMM‘s to observational signal data. This approach can be also very useful 

for reconstructing image affected by non-Gaussian noise. 

The K-SVD is an image denoising algorithm for AWGN based on sparse and 

redundant representations over trained dictionaries (Elad and Aharon, 2006). Using 

the K-SVD algorithm, a dictionary that describes the image content effectively can 

be obtained. Two training options are considered: using the corrupted image itself or 

training on a corpus of high-quality image database. Since the K-SVD is limited in 

handling small image patches, its deployment is extended to arbitrary image sizes by 

defining a global image prior that forces sparsity over patches in every location in the 

image.  

The BM3D performs an image collaborative denoising strategy based on an 

enhanced sparse representation in transform domain (Dabov et al., 2007). The 
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enhancement of the sparsity is achieved by grouping similar (e.g. blocks) into 3-D 

data arrays which are called ―groups.‖ Collaborative filtering is realized using the 

three successive steps: 3-D transformation of 2-D image blocks into a group, 

shrinkage of the transform spectrum and inverse 3-D transformation. The result is a 

3-D estimate that consists of the jointly filtered grouped image blocks. By 

attenuating the noise, the collaborative filtering reveals even the finest details shared 

by grouped blocks and, at the same time, it preserves the essential unique features of 

each individual block. The filtered blocks are then returned to their original 

positions. Because these blocks are overlapping, for each pixel, we obtain many 

different estimates which need to be combined. Aggregation is a particular averaging 

procedure which is exploited to take advantage of this redundancy. A significant 

improvement is obtained by a specially developed collaborative Wiener filtering. 

Although the BM3D algorithm is designed for AWGN, it has been also widely used 

for non-Gaussian noise. 

A denoising algorithm (BM3Dc) for signal-dependent clipped noisy observations, 

(such as digital fluoroscopic images) has been performed (Foi, 2009). The approach 

involves a BM3D algorithm designed for AWGN and derive specific homomorphic 

transformations to stabilize the variance of the clipped observations, to compensate 

the bias due to the clipped distribution in the variance-stabilized domain and to 

compensate the estimation bias between the denoised clipped variables and the non-

clipped true variables. 

Signal-dependent methods require to estimate the noise variance for each image pixel 

value (see also paragraph 4.3). At this aim, noise variance estimation has been 

performed through a wavelet-domain analysis approach specifically intended for 

clipping Poisson noise (Foi et al., 2008). This approach has been then adapted for the 

gamma-corrected images. 

For the other denoising methods a global estimate of noise variance which are meant 

to be valid for the whole image is required. Noise level has been estimated as 

average of the sample noise variance computed on different homogeneous image 

areas. Canny algorithm has been performed in order to exclude intensity variation 

associated with the signal from the estimation of noise variance (i.e. to exclude 

image edges from the areas assumed for noise estimation). 
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4.4.2    Simulated data 

The performance comparison presented in this section has been performed by using a 

computed radiography (CR)  image of a human chest. Image size was 2140 × 1760 

pixels and gray scale ranged from 0 to 65535. Algorithms have been performed by 

MatLab R2009b (64-bit) on a 2.27-Ghz Intel Core i3 with 4.00-GB memory.  Figure 

4.7 displays the original CR image and the image corrupted with Poisson noise. The 

CR image was scaled and corrupted by Poisson noise in order to obtain a 13 dB SNR 

(signal-to-noise ratio). The performance of the denoising algorithms has been 

evaluated in terms of PSNR (peak signal-to-noise ratio). The SNR of the denoised 

image (SNRf), the MSE (mean square error) between the original image and the 

denoised image and the computational time (T)  have been also computed. The 

performance of the algorithms depends on various parameters that are chosen by the 

user while running the software. A different tuning of these parameters for a specific 

image may lead to different results. In our case the parameters were chosen in order 

to obtain the finest image restoration (to the detriment of the computational time). In 

this regard, it should be stressed that diagnosis of segmental instability by 

videofluoroscopy does not require hard real-time computation. Therefore, 

computational time has not been considered as critical for evaluation of denoising 

algorithm. 

 

 

Figure 4.7. (a) The original test image; (b) The corresponding noisy image. 
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Figure 4.8. (a) A particular of the original test image; (b) The corresponding denoised image by 

BM3Dc filter. 

 

 

 

As shown in Table 4.1,  on average, wavelet-based methods are resulted the most 

competitive. In particular, the BM3Dc filter presents the highest PSNR and SNRf and 

simultaneously the shorter CPU time. Figure 4.8 shows the original CR image and 

the denoised image obtained by BM3Dc filtering. The AVS filter also offers an 

excellent image restoration against a very low computational complexity, while other 

denoising algorithms result slightly less performing. It is interesting to note that the 

filters specifically designed for signal-dependent noise provide a better image 

restoration with respect to the others designed for AWGN. This is consistent with the 

characterization of Poisson noise (see also paragraph 4.4).  
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The comparison has been repeated after applying a gamma-correction transformation 

to the noisy test image (  = 0.35) (Figure 4.9). Results are shown in Table 4.2. In this 

case, denoising algorithms designed for AWGN appear to be more competitive. It 

might depend on the unsuitable noise model used from the other denoising 

algorithms with respect to the noise model change due to the gamma-correction 

transformation. It is not surprising that AWGN denoising algorithms perform better 

after applying gamma-correction. Indeed, gamma-correction inherently determines a 

reduction of noise variance associated with the brighter image pixels that are 

prevalent in the original test image. 

 

 

Figure 4.9. Gamma-corrected test image. 
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4.4.3    Real data 

In this section the algorithms under comparison have been applied to real spinal data 

from fluoroscopic images.  

Although an accurate evaluation of denoising effectiveness is not achievable (i.e. an 

uncorrupted  test image is not available), a more quantitative comparison of 

denoising algorithms has been proposed. The effectiveness of algorithms in reducing 

the noise mottle in fluoroscopic spinal image has been evaluated in terms of sample 

noise variance reduction on different homogeneous image areas between the noisy 

image and the output of the noise suppression algorithms  (Figure 4.10). Canny 

algorithm has been performed in order to exclude image edges from the areas 

assumed for the estimation of noise variance. Image regions with different mean 

pixel intensity has been chosen and an average value of the noise variance reduction 

has been also computed. Edge blurring has been calculated by measuring the 

percentage reduction of the slope of image edge profiles in the gradient direction and 

also in its opposing direction between raw and filtered images (Wang et al., 2008) 

(Figure 4.10).  

Results of comparison are summarized in Table 4.3. They are about consistent with 

those obtained from simulated data corrupted by Poisson noise except for the 

BM3Dc filter. In particular, AVS filters show a good trade-off between noise 

variance reduction and edge preservation with respect other denoising algorithms, 

simultaneously providing a less computation complexity.  
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Figure 4. 10. (a) Original fluoroscopic image with an example of the areas selected for the 

sample noise variance and the edge blurring measurement; (b) The output of the Canny 

algorithm applied to the fluoroscopic image. 

4.5   Summary 
____________________________________________________________________ 

Image denoising is necessary to recover anatomical details that may be hidden in the 

fluoroscopic data and, consequently, to provide an accurate kinematic estimation. 

This is particularly true when edge detection algorithm are used for the estimation 

procedure. Various image restoration and enhancement methods have been proposed 

for removing degradations due to the noise. The effectiveness of these image 

restoration algorithms mainly depends on the validity of the image noise model. An 

extensive investigation of fluoroscopic noise has been proposed. The noise model 

changes in the case of image non-linear transformation (e.g. white compression) have 

been also investigated. A comparison of denoising algorithms specifically designed 

for both the signal-dependent noise and AWGN has been provided. Signal-dependent 

denoising algorithms are resulted to be, on average, more competitive. This is 

consistent with the characterization of the fluoroscopic noise. With respect to real 

noisy fluoroscopic data, adaptive averaging spatial (AVS) filters show a great 

balance between noise removal and low edge blurring. In the light of this, a more 

elaborated AVS denoising algorithm has been performed for noise reduction in the 

fluoroscopic spinal images in order to improve the accuracy of the estimation 

procedure presented in Chapter V and VI. 
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Chapter 5 

Intervertebral kinematic estimation  

by digitized videofluoroscopy 
 

 

[We] as people don't like uncertainty, don't like knowing that there's something  

we can't comprehend. And if we can't fit something into an existing pattern,  

then by golly we'll come up with one 

William Gibson 

 

 

 

Estimation of rigid motion between two distinct poses is a common technique for 

assessing joint function. For instance, by extracting the position of vertebrae from 

two successive radiological images it is possible to estimate the intervertebral motion 

that is occurred. In clinical setting very few radiographic measurements are generally 

performed in order to limit the X-ray dosage to the patient. As a consequence, no 

information are available about the intervertebral kinematics during the entire spinal 

motion. On the contrary, the use of a fluoroscopic device can offer a continuous 

screening during the full spinal motion with an acceptable X-ray dose. Fluoroscopic 

measurement of intervertebral kinematics is, however, confined to the planar motion 

and required the assumption of no out-of-plane coupled motion. Although this 

hypothesis can be neglected in flexion-extension motion (mainly due to the anatomic 

symmetry), it is no longer valid in lateral bending (Panjabi et al., 1992a; Van 

Mameren et al., 1992, Breen, 1991; Bifulco et al., 2002; Bifulco et al., 2010).  In 

addition, a hypothesis of rigidity must be held for vertebrae (this is consistent with 
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the negligible deformation of vertebral bodies caused by the forces acting on the 

vertebral column during motion (Frankel and Burstein, 1974)).  

Estimation of kinematic parameters describing  the functionality of motion segment 

(i.e. intervertebral angle and position) by videofluoroscopy requires the recognition 

of vertebral bodies in each frame of the fluoroscopic sequence. A variety of different 

features or landmarks (e.g. vertebral body edges or corners, spinal processes, etc.) 

and measurement techniques have been proposed for the vertebrae recognition. 

Manual identification of anatomical landmarks is widely employed in clinical setting 

mainly due to its simplicity. This operation results, however, in a subjective, tedious 

and often insufficiently accurate procedure. Indeed, large errors in the computation 

of kinematic parameters may result from relatively small errors in the identification 

of spatial landmark coordinates. More recently, different automated approaches have 

been proposed in order to limit the reliance on the operator and to improve the 

accuracy of intervertebral kinematic estimation. In this Chapter, after a brief 

description of the main vertebrae recognition approaches (paragraph 5.1), a recently 

proposed automated method based on cross-correlation template matching for 

vertebrae recognition in fluoroscopic image sequences is presented in paragraph 5.2, 

5.3 and 5.4. A few considerations about the clinical effectiveness of the proposed 

method are reported in paragraph 5.5. 

  

5.1   Vertebrae recognition algorithms 
____________________________________________________________________ 

Manual landmarking is a very tedious and laborious procedure for vertebrae 

recognition. Furthermore, it can be error prone (Panjabi, 1979; Panjabi, 1992a). For 

these reasons, there have been several previous attempts to automate landmarking 

procedure. Template-based approach has been generally considered to be more 

reliable with respect to geometric feature-based matching approaches mainly due to 

its robustness to image noise. This aspect is critical in determining the location of 

vertebral bodies as fluoroscopic images are generally affected by severe noise. In 

addition, by using template matching the geometrical properties of the vertebra of 

interest are preserved and no vertebral shape model is required (i.e. the vertebral 

template is selected from an image of the video sequence). As a result, variations in 
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the vertebral shape between individuals and between the segmental levels in one 

individual can be accounted for. Template-based approach suffers, however, from 

some disadvantages. Template matching typically needs more computationally time; 

if there has been any out-of-plane motion, the vertebral shape will be distorted and an 

exact match will be never found; since soft tissue does not move rigidly with the 

vertebrae, the gray level contribution from the soft tissue will change frame by frame 

(reducing the matching with the vertebral template).  

At first, Simonis et al. (1993) developed a parallel computing technique using 

template matching for planar kinematic parameter calculation. Muggleton and Allen 

(1997) performed template matching by using an annular template which contains 

only the margins of the vertebra. Bifulco et al. (2001) also applied a template 

matching algorithm based on cross-correlation. In this case the vertebral template is 

utilized for a preliminary estimation of the location of the vertebra, while four small 

corner templates are utilized to precisely locate the vertebral landmarks from which 

the vertebral position can be estimated and the kinematics computed. A procedure for 

the restoration of vertebral rigidity based on the evaluation of the maintenance of the 

mutual distances between corners is also performed. These methods offer a good 

accuracy in recognizing vertebrae in a fluoroscopic image sequence of a calibration 

model, but their usability in vivo human sequences is not yet proved.  

Zheng et al. (2004) proposed an innovative method based on the generalized Hough 

transform with Fourier descriptors to represent the vertebral shape. However, this 

approach, as others based on vertebral outline descriptors (for instance, McCane et 

al., 2006), strongly suffers from the image noise, especially for in vivo fluoroscopic 

images where the noise level can be comparable to the gray-level profile of vertebral 

edges. 

Wong et al. (2004) developed a tracking algorithm using a Kalman filter which 

requires analytical, linear and Gaussian trajectory and measurement models. Its 

applicability is, however, limited as measurements from images are usually non-

linear and it is difficult to obtain an analytical solution for the model in most cases.  

A possible solution to tracking vertebrae is formulating it within a Bayesian 

framework. Lam et al. (2009) have proposed a tracking algorithm for vertebrae in a 

Bayesian paradigm. They set up a dynamic Bayesian network (DBN) based on prior 
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knowledge of anatomical configurations with a particle filter at each DBN node to 

track the vertebrae from digital fluoroscopic sequences. This method shows a high 

accuracy against known values of intervertebral angle of a calibration model 

(average error within about 1°) and in tracking vertebrae in vivo fluoroscopic 

sequences with respect to manual landmarking. However, in vivo results are 

presented only for absolute vertebral angle and position and not for intervertebral 

kinematics. In this regard, it is interesting to note that intervertebral data are obtained 

by difference between close values. Therefore, their relative error is considerably 

greater with respect to the error of absolute vertebral measures. 

Recently, Cerciello et al. (2011b) have proposed a new, automated method based on 

cross-correlation template matching of the contour of vertebral bodies for estimating 

intervertebral kinematics during flexion-extension spinal motion in sagittal plane (see 

section 5.2). Accuracy of the method has been tested using images of a calibration 

model. The method has been also compared to manual landmarking (Kondracki, 

2001) and other automated methods (Bifulco et al., 2001; Muggleton and Allen, 

1997; Zheng et al., 2004) and is resulted to provide a better representation of the 

evolution over time of in vivo intervertebral data in terms of lower noise content (i.e. 

measurement error).  

 

5.2   Advanced template matching for intervertebral   

        kinematic estimation 
____________________________________________________________________ 

A method based on cross-correlation template matching for automatic recognition of 

vertebrae in fluoroscopic sequences of lumbar flexion-extension spine motion in the 

sagittal plane is presented (see also Cerciello et al., 2011b). The method involves a 

strong enhancement of the outline of vertebrae by estimating gradient images. In 

order to achieve a reliable estimate of the gradient images severe image denoising is 

also applied  

In the paragraph 5.2.1 particular attention is paid to fluoroscopic noise suppression 

and to edge-preserving filter design. The cross-correlation index adopted for template 

matching and the vertebrae recognition procedure are then described in the 

paragraphs 5.2.2 and 5.2.3, respectively.  
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5.2.1   Fluoroscopic image noise filtering 

Image template matching can perform much more effectively when the contours of 

the object are matched (Argyriou and Vlachos, 2003). By using gradient images a 

high cross-correlation will be produced when the template is in the correct position 

but will be poor elsewhere: this will significantly increase accuracy of the object 

recognition. A simple central difference filter can be employed to estimate the 

gradient of a raw image along both horizontal and vertical directions. Gradient 

operators are, however, very sensitive to noise. Therefore, emphasis should be 

devoted to the suppression of image noise before the gradient estimation.  

As discussed in Chapter IV, fluoroscopic images exhibit severe noise that should be 

reduced while preserving diagnostic structures in order to avoid the failure of the 

gradient template matching algorithm. Quantum noise is by far the dominating noise 

in X-ray fluoroscopy, while other types of noise can be neglected (for instance, Chan 

et al., 2003; Hensel et al., 2007). Image quantum noise is generally modeled as 

Poisson-distributed. Although Poisson noise does not exactly fit the general concept 

of additive or multiplicative noise, it can be well-approximated to a local zero-mean 

additive Gaussian noise with signal-dependent variance (Aach and Kunz, 1996; 

Hensel et al., 2007).  

Various methods have been proposed for reducing noise in low-dose X-ray images. 

The simpler methods are based on a linear filter that is composed of a temporal 

and/or a spatial low-pass filter. Although linear low-pass filters can strongly reduce 

noise, they also reduce the signal components (e.g. edge and structures) and, thus, 

they are not appropriate for object recognition (usually based on edge detection). For 

overcoming the limitations of linear filters, several improvements have been 

proposed, including temporal filters combined with motion detection, edge-

preserving adaptive filters, non-linear diffusion or multi-resolution filters (for 

instance, Cerciello et al., 2011b; Crouse et al., 1998; Dabov et al., 2007; Elad and 

Aharon, 2006; Foi, 2009; Gilboa, 2006; Hirakawa and Parks, 2006;) 

In particular, in Chapter IV it has been suggested that spatial adaptive averaging 

filters, specifically designed for signal-dependent noise, can provide a good trade-off 

between noise reduction and edge preservation in fluoroscopic spinal images. In 

practice, a filter that performs a local conditional average, by considering the local 
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noise variance, combined with a novel approach to preserve edges has been adopted 

for the noise reduction of the spinal fluoroscopic images (Cerciello et al., 2011b).  

The filter performs the average of the only neighbouring pixels that differ less than 

±τ (filter threshold) from the gray level of the central pixel of the filter mask. The 

threshold τ is set to two times the estimated standard deviation (2 gl) of the noise 

associated with the local gray level, but an upper limit for τ has been applied 

corresponding to the average gray level transition (Δs) between the vertebrae and 

surrounding soft tissues (the latter quantity must be heuristically measured for each 

fluoroscopic sequence). If static (i.e. when scene is motionless) images are available, 

they can be used for estimating the sample noise variance as a function of the mean 

pixel gray level           
 ). More specifically, the noise sample variance at each 

image pixel has been calculated from all possible differences between the available 

static images and associated with the mean of the raw pixel gray levels at that pixel. 

Once estimated the local Skellam moments, the local variance of the image Poisson 

noise has been easily computed (see Appendix C). It is interesting to note that, since 

the Skellam parameters are extracted from all the possible differences between static 

frames, estimation of quantum-noise parameters by difference can be effectively 

performed also when few statics frames are available. In our case, about 10 static 

frames were acquired during patient‘s apnea at the beginning of the clinical 

procedure. Furthermore, the sampling rate was fairly below the 25 frames per second 

that was consistent to the hypothesis of not correlation of noise components frame by 

frame (required for the Skellam modeling, see Appendix C).  

The formula of the emplyed filter is: 
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where g‘(x,y) is the filtered pixel; g(k,l) are the pixels of the raw image around the 

coordinates (x,y); w is the spatial hemi-dimension of the filter;  gl is the noise 

standard deviation corresponding to the gray level at the position (x,y); ΔS is the 
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average gray-level transition at the vertebra edges.  The hemi-dimension of the filter 

is fixed to about 2.5 mm (corresponding to an odd number of pixels depending on the 

pixel size) which is much lower than the average lumbar disc height (about 12 mm).  

With reference to an entire real fluoroscopic sequence of lumbar spine (for image 

characteristics, see paragraph 4.4.3) the spatial averaging operation, processed such 

as in Eq. (27), is resulted to be computed on about 70% of the filter mask (mean 

value computed on all image processed) with a mean decrease of the noise standard 

deviation of about nine times. The related edge blurring, calculated by measuring the 

percentage reduction of the average slope of the edges in the gradient direction and 

also in its opposing direction between raw and filtered images (Wang et al., 2008), is 

resulted of about 15%. Figure 5.1ab represents an original fluoroscopic image of 

lumbar spine beside the output of the noise suppression filter; in order to appreciate 

the noise suppression and edge preservation it is also shown a profile of the gray 

levels along a vertical image segment (Figure 5.1c) depicted in white on both images. 

Figure 5.2a shows the result obtained processing the fluoroscopic image of Figure 

5.1b with the central difference filter (only the magnitude of the gradient image was 

displayed). For sake of comparison, Figure 5.2b presents the magnitude of the 

gradient image obtained by directly applying the Sobel filter to the raw 

(unprocessed) fluoroscopic image of Figure 5.1a.  

 

 

Figure 5.1. (a) Original fluoroscopic image; (b) The output of  the noise suppression filter; (c) 

Gray level profile along the vertical image segment (depicted in white) before and after applying 

the noise suppression filter (from Cerciello et al., 2011b). 
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Figure 5.2. (a) Magnitude of the gradient image with the current method, the template relative 

to the vertebra L3 is also shown (dashed white line); (b) Estimation of the image gradient by 

using a common Sobel operator (from Cerciello et al., 2011b). 

5.2.2   Cross-correlation index 

Cross-correlation has been adopted as measure of similarity for template matching. 

Although cross-correlation is computationally more expensive and more sensitive to 

imaging scale, large rotation and perspective distortions with respect to other criteria, 

it is much more robust to image noise. In addition, cross-correlation can be 

formulated in order to be insensitive to both contrast and brightness variations: the 

effect of local image contrast can be removed by using a normalized expression of 

cross-correlation, while the variations of brightness can be compensated using a 

mean-centered cross-correlation (Lewis, 1995). A suitable expression of the zero-

mean normalized cross-correlation index has been considered, given by (Cerciello et 

al., 2001b):  
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where Gx and Gy are the components of the gradient vector in the horizontal and 

vertical directions relative to the observed fluoroscopic image; Tx and Ty are the 

components of the gradient vector relative to the template; I and J are the dimensions 

of the template (in pixels). It is worth noting that this expression for the cross-



62 

 

correlation index not only takes into account the product of the gradient magnitudes, 

but also performs a scalar product between the gradient vectors: 

 

                                         (29)

        

where cos θ is the angle between the two vectors. This results in a more accurate 

match between image and template (Figure 5.3). 

In order to reduce the computational time required for the image processing, the 

cross-correlation index can be carried out as a multiplication in the frequency domain 

and the frames of the video sequence can be cropped such that only areas that contain 

information about  the vertebrae are kept. 

 

5.2.3   Vertebrae recognition procedure 

The recognition procedure has been designed to minimize the reliance on the 

operator. Four landmarks on the corners of each vertebral body of interest are 

required to be selected in a single frame of the sequence, generally in the first frame 

that is motionless (i.e. no motion blurring)
3
. After noise suppression, the gradient 

images are computed from each raw image of the fluoroscopic sequence and the 

gradient vertebral template, which includes the entire vertebral body and its close 

surroundings, is automatically generated from the selected landmark coordinates.  

 

                                                 

 

3 It must be noted that in some real cases, such as a severe disc degeneration, it is not always possible 

to select a template which entirely surrounds the vertebral body without including other parts of 

adjacent vertebrae. The inclusion of other anatomical structures, which are not rigidly fixed to the 

vertebra of interest, would lead to a decrease in vertebra tracking capability. This problem could be, 

however, solved by designing an opportune shape of the template, instead of a rectangular one, which 

includes only the unambiguous vertebra edges. 
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Figure 5.3. (a) Normalized cross correlation map obtained using a fluoroscopic gradient-image; 

(b) The correspondent map obtained using the unprocessed image. 

The location of the selected vertebra is carried out by searching for the coordinates of 

the maximum of the cross-correlation index in each gradient image. Since the 

template and observed images are both spatially translated and rotated, the cross-

correlation function maximum is searched in the three-parameter space: x-position, 

y-position and rotation angle. The cross-correlation index is computed rotating the 

main template progressively with 1° increments. It is then repeatedly computed 

around the cross-correlation function maximum while progressively rotating the 

template with 0.1° increments. The coordinates of the global maximum of the cross-

correlation estimate the vertebra position, while the angle corresponding to that 

maximum is held as the vertebra angle of rotation. 

Since pixel grid structure results from the spatial sampling at the image acquisition 

stage, the accuracy of vertebra location depends on the image acquisition system. To 

provide a location that is more accurate than the pixel dimension, sub-pixel 

interpolation by least-squares fitting of cubic polynomial is performed in the 

neighbourhood of the cross-correlation maximum. 

At the end of the vertebra recognition procedure, the x- and y-position and the angles 

of rotation of the selected vertebra are available for all the frames of the fluoroscopic 

sequence. These three parameters over time completely describe the planar, rigid 

motion of the vertebra (i.e. three degrees of freedom). The procedure must be 

repeated for different vertebrae. For each pair of adjacent vertebrae (i.e. motion 

segment) the relative motion of the upper vertebra is then estimated with respect to 

the lower which is considered fixed (i.e. intervertebral kinematics).  
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5.3   Method validation 
____________________________________________________________________ 

Fluoroscopic images of a calibration model, already employed in previous studies 

(Bifulco et al., 2001; Breen, 1991; Lam et al., 2009; Muggleton and Allen, 1997; 

Simonis, 1994, Zheng et al., 2004), have been used to assess the accuracy of the 

estimation method (Figure 5.4). The model consists of two human lumbar vertebrae 

(L3 and L4) linked, at the disc level, by means of a universal joint (Figure 5.5). The 

joint allows the vertebra L3 to rotate with known preset angles with respect to L4 

which is fixed to a support. The fluoroscopic images were obtained by progressively 

rotating L3 in the sagittal plane with respect to L4 in steps of 5°. The size of digital 

image was 512 by 512 pixels, while image intensity was quantized to 256 gray 

levels. Pixel size was about 0.25 mm by 0.25 mm. 

Table 5.1 shows the results obtained by processing the fluoroscopic images of the 

calibration model. Intervertebral angles has been compared to the preset angles and 

also to previous results reported in literature obtained by other automated methods 

from the same image set (Bifulco et al., 2001; Muggleton and Allen, 1997; Zheng et 

al., 2004). To complete the assessment of the intervertebral kinematics, the 

coordinates of the intervertebral center of rotation has been computed for each 

rotation step, as suggested in McCane at al. (2005). They has been compared to the 

coordinates of the center of the universal joint, which is the true pivot point for the 

intervertebral motion. Table 5.2 shows the expected coordinates of the center of 

intervertebral rotation together with the computed coordinates; the distances between 

the center of the universal joint and the estimated intervertebral centers of rotation 

are also reported. Average error achieved for the intervertebral angle is of the order 

of 0.4 degrees and approximately 2 mm for the intervertebral center of rotation. 

Figure 5.6a shows a fluoroscopic image of the calibration model and the location of 

the computed intervertebral centers of rotation (white crosses) superimposed on an 

enlargement of the image (Figure 5.6b); the true center of the joint is represented as a 

white dot.  
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Figure 5.4. Fluoroscopic image sequence of the calibration model employed for the method 

validation (from Bifulco et al. 2001). 

 

 

Figure 5.5. The calibration model (from Breen et al., 2006). 
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Figure 5.6. (a) Fluoroscopic image of the calibration model; (b) An enlargement of the universal 

joint with the estimated intervertebral centres of rotation superimposed (from Cerciello et al., 

2011b). 

5.4    Case study 1: in vivo fluoroscopic sequences 
____________________________________________________________________ 

Five fluoroscopic image sequences of lumbar spine of healthy subjects
4
 (Figure 5.7), 

have been processed in order to assess the described method with respect to manual 

landmarking and other automated approaches.  

During the image acquisition the subjects lay on their side and were secured to a 

motorized table (Breen et al., 2006). The passive motion table had a lower section 

that could execute a smooth arc from the neutral position to 40° left, then to 40° right 

and back to neutral in one motion. The X-ray parameters were set to 73 kV and 2mA 

and the duration of the subject's movement took no more than 24s. Dosimeters 

measured about 0.9 Gycm
2
. Images were captured from fluoroscope at a rate of 5 

                                                 

 

4 These sequences have been already used in previous studies of Kondracki, 2001 and Zheng et al., 

2004. 
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frames per second. Pixel size was 0.43mm by 0.43mm and images were digitized 

with 256 gray levels.  

The comparison between the described method, manual landmarking and other 

examined automated methods is reported in paragraph 5.4.1. The clinical feasibility 

of the proposed method for the diagnosis of intervertebral instability is discussed in 

paragraph 5.4.2. 

 

5.4.1    Data comparison 

The vertebrae recognition procedure has been performed and results (i.e. estimated 

intervertebral angle and position) has been compared to the results obtained by other 

methods from the same images. The following methods has been compared: manual 

selection (Kondracki, 2001), template matching by simple cross-correlation (as that 

presented by (Muggleton and Allen, 1997)), multiple template matching (Bifulco et 

al., 2001), generalized Hough transform (Zheng et al., 2004) and the current method 

(gradient cross-correlation). The comparison between the different methods has been 

performed in terms of evaluation of the noise content (i.e. measurement error) in the 

resulting intervertebral data.  

Intervertebral angles and positions obtained by videofluoroscopy can be considered 

as a superposition of the sampled true kinematic signal (i.e. intervertebral motion) 

and noise (i.e. measurement error). Since intervertebral motion can be only gradual 

and smooth (also due to viscoelastic properties of disc and other soft tissues, which 

provide a damping effect (Niosi and Oxland, 2004)), the true kinematic signal is 

band-limited (Cerciello et al., 2011b). On the contrary, measurement error depends 

on several factors (e.g. imperfections of algorithms, computation approximation, 

etc.) and can be considered as additive and white (i.e. uncorrelated, band-unlimited) 

(Challis, 1995; Cholewicki et al., 1991). Therefore, the lower frequency part of the 

estimated signals is mainly associated with motion, while the remaining (high-

frequency content) with noise. Noise content can be significantly reduced by low-

pass filtering and the residuals of the filtering operation (high frequency content) can 

be assumed indicative of the level of noise (i.e. measurement error) committed by 

each method.  
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Figure 5.7. Fluoroscopic images of lumbar spine. 

 

By considering the dynamics of motion of the motorized table, which took a full 

course of lumbar flexion-extension in about 20 seconds, the spectral content of 

motion can be considered to be fairly included in a band of 0.14 Hz (low-pass 

Butterworth filter cut-off frequency) (for instance, Figure 5.8). The Ljung–Box 

whiteness test has been performed (with a significance level of 0.05) for all the 

residuals to ensure that they are uncorrelated and, hence, representative of random 

noise and not of motion. For each estimation method the root mean square (RMS) 

value of the residuals has been the calculated;  this provides a concise index of the 

amount of noise. Table 5.3 summarizes and compares the RMS values of the 

residuals corresponding to the different estimation methods. As an example, for one 

of the sequences (subject #4), results obtained by the analysis of noise level in the in 

vivo intervertebral data are shown in Figure 5.9. 

 

 

Figure 5.8. Spectral content (Fourier Transform) of the intervertebral angle signal 

(experimental raw data). 
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Figure 5.9. (a, at the top) Kinematic signals estimated with the different methods (subject #4); 

(b, at the middle) Corresponding low-passed kinematic signals; (c, at the bottom) Residuals of 

the low-pass operation (i.e. measurement error). Manual data: dashed lines; current results: 

continuous bold lines; Muggleton et al. (similar to): continuous lines; Bifulco et al. data: dash-

dotted lines; Zheng et al. data: dotted lines (from Cerciello et al., 2011b). 
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Since manual identification of vertebrae is still the most employed clinical technique, 

the current kinematic data have been carefully compared to previous data obtained 

from the same images through a manual selection of each vertebra carried out with 

great care and attention by an experienced clinician (Kondracki, 2001). In order to 

test the similarity between the two methods (manual selection and current method) 

the root mean square (RMS) differences between the two entire datasets (absolute 

and relative kinematic data) have been computed. For the L2 absolute angles the 

RMS difference is 0.97 degrees and for L2 trajectory the RMS difference is 0.78 

mm. For the L3 vertebra the results are 1.05 degrees and 0.72 mm, respectively. For 

the intervertebral angles the RMS difference is 1.3 degrees and for the intervertebral 

trajectory the RMS difference is 0.9 mm.  Figure 5.10 shows the distribution of the 

differences between the datasets of the L2-L33 intervertebral angles: the mean of this 

distribution is 0.13 degrees and the SD is 1.29 degrees.  Figure 5.11 shows the 

distribution of the differences between the datasets of the x-coordinate (Figure 5.11a) 

and y-coordinate (Figure 5.11b) of the L23 intervertebral trajectories. The 

distribution of the differences between the x-coordinates has a mean value of -0.25 

mm and an SD of 1.0 mm. The distribution of the differences between the y-

coordinates has a mean value of -0.01 mm and an SD of 0.49 mm. By using 

Lilliefors test, the distribution of the differences resulted to be consistent with a 

normal distribution (all p-values were greater than 0.1 at significance level of 0.05). 
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Figure 5.10. Distribution of the difference between datasets of the L2-L3 intervertebral angles 

(from Cerciello et al., 2011b). 

 

Figure 5.11. Distribution of the difference between datasets of the x-coordinate (a) and of the y-

coordinate (b) of the L2-L3 intervertebral trajectories (from Cerciello et al., 2011b). 

As an example, Fig. 5.12 shows the computed vertebral angle of L2 and L3 against 

time as obtained using the two different methods. From the figure it is possible to 

appreciate the progressive motion impressed by the motorized table.  

Figure 5.13 represents the L2-L3 segment of the subject #1 and the intervertebral 

kinematic parameters estimated by manual selection and the current method. The 

graph representing the L2-L3 intervertebral angles against time (Figure 5.13c) is 

much more significant than that represented in Figure 5.12 to appreciate the current 

method accuracy; being intervertebral angle obtained by difference, it is affected by a 

greater measurement error due to the propagation of errors. The enhanced 

smoothness of the time-evolution of the intervertebral angles obtained by the current 

method with respect to those obtained using manual selection (that appears more 

alternating) is evident. This is also particularly clear for the intervertebral trajectory 

data (Figure 5.13b); however, it is worth noting that the trajectory is confined within 

1-2 mm in the y-dimension (inferior-superior direction) and within 6-7 mm in the x-

dimension (anterior-posterior direction). Figure 5.14 and 5.15 show the L2-L3 

intervertebral kinematics computed for the other four subjects (#2, #3, #4, #5).  
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Figure 5.12. L2 and L3 vertebral angle plotted against time (subject #1). Positive angles 

correspond to flexion while negative angles to extension. L3 manual selection: continuous 

thinner lines; L2 manual selection: dashed thinner lines; L3 current method: continuous bold 

line; L2 current method: dashed bold lines (Cerciello et al., 2011b). 

 

 

Figure 5.13. Intervertebral kinematics of the L2-L3 segment of the subject #1. (a) Drawing of 

the L2-L3 segment at two different time instants (t=3.2 s, dash-dotted lines, and t=16.8 s, 

continuous lines); (b) Intervertebral trajectory of L2 with respect to L3 (fixed); (c) L2-L3 

intervertebral angle against time. Manual data: dashed lines; current results: continuous bold 

lines (from Cerciello et al., 2011b). 
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Figure 5.14. L2-L3 intervertebral angle plotted against time. Manual data: dashed lines; current 

results: continuous bold lines ((a): subject #2, (b): subject #3, (c): subject #4, (d): subject #5) 

(from Cerciello et al., 2011b). 
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Figure 5.15. L2-L3 intervertebral trajectory. Manual data: dashed lines; current results: 

continuous bold lines ((a): subject #2, (b): subject #3, (c): subject #4, (d): subject #5) (from 

Cerciello et al., 2011b). 
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5.4.2    Discussion 

Results obtained from the calibration model have assessed the proposed 

methodology against known values of intervertebral angle and position. In this 

regard, it is worth highlighting that the model was built with some tolerances for the 

rotation angle contained within ±1° (Breem, 1991; Bifulco et al., 2001; Muggleton 

and Allen, 1997; Simonis, 1994); as a result, all the examined studies have provided 

results within this range, but with a common, small bias for the intervertebral angle 

values. In the light of this, results obtained for the center of rotation are more 

significant in order to assess the accuracy of intervertebral kinematic estimation. The 

proposed method has provided an excellent localization of the center of rotation, in 

spite of the fact that it is the most sensitive to measurement errors (i.e. is the most 

sensitive to vertebrae mislocation) (Panjabi, 1979; Panjabi, 1992a).  

The employed model represents, however, a highly simplified setting: the lower 

vertebra is fixed, the upper vertebra performs a pure rotation around the fixed center 

of the joint, there is no soft tissue and images do not show motion artefacts.  In vivo 

measurements will be, therefore, affected by higher errors than those obtained using 

the calibration model. A comparison of different methods (manual and automated) 

by using in vivo fluoroscopic spinal images has been thus performed in order to 

better evaluate the clinical feasibility of the proposed methodology. 

According to the results obtained by the estimation of measurement errors, the 

proposed methodology is resulted to provide a better estimate of the in vivo 

intervertebral kinematics with respect to the other examined methods (Kondracki, 

2001; Bifulco et al., 2001; Muggleton and Allen, 1997; Zheng et al., 2004). In 

particular, a more gradual and smoother evolution of the intervertebral kinematic 

parameters over time has been observed respect to those obtained by manual 

landmarking. This should indicate a better performance in describing the 

intervertebral kinematics. Indeed, it is reasonable to expect that intervertebral motion 

is smooth and progressive; this hypothesis is also enforced by considering that 

intervertebral disc acts as a shock absorber and, therefore, smoothes sudden 

variations in intervertebral rotation and translation (Adams et al., 1996). Therefore, 

the alternating variations around the local mean of the intervertebral angle and 
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position is associated with measurement random errors and not to real intervertebral 

motion.  

It is also important to note that measurement errors are also resulted to be reasonably 

smaller that the expected measurements of abnormal translation and rotation (range 

of motion) for diagnosis of intervertebral instability. This offers encouraging 

expectations for clinical application of the method. 

 

5.5    Summary 
____________________________________________________________________ 

Intervertebral kinematic estimation is based on the recognition of vertebral bodies in 

fluoroscopic image sequences. Manual landmarking is generally used in clinical 

setting mainly due to its simplicity . This operation can, however, result in an 

inaccurate estimation of kinematic parameters. Automated approaches can, on the 

contrary, limit the reliance on the operator and improve the accuracy of estimation. 

In this Chapter the main automated approaches proposed in literature for vertebrae 

recognition in fluoroscopic image sequences have been examined and compared. In 

addition, a recently proposed automated method based on cross-correlation template 

matching has been described in details. The innovative part of this method is the use 

of gradient images (instead of raw images) combined with an adapted cross-

correlation index for template matching procedure. The analysis of the accuracy of  

the proposed method witnesses its clinical potential with respect to manual 

landmarking and other automated approaches.  

In Chapter VI the possibility to represent the estimated intervertebral kinematic data 

as continuous-time signals and to describe the actual motion pattern of instantaneous 

center of rotation is explored. 
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Chapter 6 

Continuous description of 

intervertebral motion 
 

 

If a function x(t) contains no frequencies higher than B hertz, it is completely 

determined by giving its ordinates at a series of points spaced 1/(2B) seconds apart 

Claude Elwood Shannon 

 

 

 

Diagnosis of segmental instability is commonly based on measurement of abnormal 

range of motion (i.e. sagittal translation and rotation) through plain radiographs of 

end-of-range spinal positions. Anterior translation greater than 3 mm and sagittal 

rotation greater than 10° are generally assumed as suggestions for surgical operation 

(Leone et al., 2007). Several studies on lumbar spine seem, however, to suggest that 

disc degeneration can maintain intervertebral ROM within a normal range, while 

providing an abnormal location of intervertebral center of rotation (for instance, 

Fujiwara et al., 2000; Schneider et al., 2005). Similar considerations have been raised 

by a few studies on cervical spine kinematics (Bogduk and Mercer, 2000; Dimnet et 

al., 1982; Hwang et al., 2008; Lee et al., 1997; Subramanian et al., 2007; Van 

Mameren et al., 1992),, which recognized center of rotation as the most sensitive 

parameter to assess mild disc degeneration. The estimation of intervertebral CR 

suffers, however, from some restrictions that limit its feasibility in clinical setting. 

An appropriate representation of instantaneous center of rotation requires that the 
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continuous-time functions of intervertebral rotation and translation or at least a large 

number of intervertebral positions representing the motion are known. However, in 

clinical setting a limited number of spinal radiographs are generally acquired in order 

to limit the X-ray exposure to the patient; as a consequence, a rough approximation 

to ICR, the so-called finite center of rotation, estimated between two end-of-range 

spinal positions
5
, must be assumed. FCR can offer only a qualitative representation 

of segmental motion: the motion occurred in between the assumed spinal positions 

can be significantly varied with respect to that represented by the FCR. At the 

present, only very few in vitro studies have reported accurate estimation of actual 

instantaneous helical axes of rotation (IHA) for spinal segments (Mansour et al., 

2004; Nägerl et al., 2009; Wachowski et al., 2007; Wachowski et al., 2009a; 

Wachowski et al., 2009b; Wachowski et al., 2010), while no in vivo trajectory of ICR 

has been reported yet.  

A continuous-time description of lumbar intervertebral kinematics can offer the 

opportunity to estimate the actual ICR during the entire segmental motion. Unlike 

functional flexion-extension radiography, videofluoroscopy provides a continuous 

screening (at the frame rate) of specific spinal tracts during patient's motion with an 

acceptable X-ray dose. Intervertebral kinematic estimation is, however, generally 

affected by large errors due to the low quality of fluoroscopic images, especially for 

lumbar spine sequences because of the larger amount of soft tissue involved (Bifulco 

et al., 2001; Cerciello et al., 2011b; Muggleton and Allen, 1997). This is particularly 

true for estimation of center of rotation (Chen and Katona, 1999; Panjabi, 1979; 

Panjabi et al., 1982; Panjabi et al., 1992a). Indeed, ICR is very sensitive to the 

sudden oscillations (i.e. measurement errors) of the estimated intervertebral motion 

signals (see also paragraph 5.4.1) and can result displaced very far from the motion 

segment (i.e. its location provides no clinical information). In addition, CR estimate 

would result restricted to the fluoroscope frame rate (i.e. set-up resolution). 

Both needs to reduce measurement errors and to obtain a continuous-time 

representation of motion extracted by videofluoroscopy can be met through the 

                                                 

 

5 Accuracy of FCR estimation is proportional to the magnitude of intervertebral angle of rotation (…). 

End-of-range spinal positions (i.e. full flexion and full extension) are assumed also for reducing 

measurement errors. 
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application of smoothing spline to the kinematic data. Smoothing spline, introduced 

by Schoenberg (1964) and Reinsch (1967), provides a practical method of smoothing 

and accurately fitting of biomechanical data (D'Amico and Ferrigno, 1992; Fazel-

Rezai and Shwedyk, 1998; McLaughlin et al., 1977; Woltring, 1985; Wood and 

Jennings, 1979; Wood 1982; Xu et al., 2010a; Xu et al., 2010b). By using spline 

interpolation kinematic signals and their derivatives can be calculated at any instant 

of time, while the  level of their smoothing is controlled by a single parameter. This 

can be particularly useful for accurately estimating ICR at any instant of the entire 

segmental motion. 

In this Chapter the application of smoothing spline for obtaining a smooth and 

continuous-time description of intervertebral kinematics and, more specifically, the 

estimation of instantaneous center of rotation is discussed. Geometrical 

considerations on the estimation of ICR are reported in paragraph 6.1, while 

theoretical considerations supporting the spline interpolation of kinematic data for 

estimating ICR are illustrated in paragraph 6.2. The application of the spline 

interpolation method to the estimated experimental intervertebral data (see Chapter 

V) is discussed in paragraph 6.3. 

 

6.1   Estimation of instantaneous center of rotation 
____________________________________________________________________ 

Given a 2D rigid body performing an arbitrary roto-translation motion on a plane x,y 

(in our case the relative motion of L2 vertebra with respect to L3 on the sagittal 

plane, Figure 6.1), indicating with  (t) the continuous-time function of its angular 

rotation, with rx(t) and ry(t) the x- and y-component of its translation, with ω(t) 

(=d (t)/dt) its angular velocity and with vx(t) (=drx(t)/dt) and vy(t) (=dry(t)/dt) the x- 

and y-component of its linear velocity, the coordinates of the ICR ((t) with respect to 

the reference system xOy (fixed to L3) are given by (Meriam and Kraige, 2002; 

Wilcox, 2006): 

 

         
     

    
                 

     

    
      .    (30)
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Figure 6.1. Angular and linear velocities used for estimating the ICR of the motion segment. 

It is worth noting that ICR could be extremely misplaced from the motion segment 

when angular velocity is close to zero (i.e. it tends to infinity for pure translations: 

this is consistent with the definition of ICR). For this reason, the trajectory of the 

ICR is generally represented only if the absolute value of angular velocity is 

sufficiently large (i.e. only during the actual performance of  intervertebral motion). 

 

6.2   Interpolation and smoothing of noisy discrete 

        kinematic data by splines 
____________________________________________________________________ 

According to Eq. (30) the estimation of the actual ICR requires the knowledge of the 

continuous-time functions of intervertebral angular and linear velocities (i.e. ω(t), 

vx(t) and vy(t)). As a consequence of its dependence on the first derivative of 

intervertebral motion signals, ICR results very sensitive to measurement errors that 

must be minimized. 

A smooth and continuous-time representation of the joint kinematics can be obtained 

by interpolating the dataset of estimated kinematic data by cubic smoothing spline 

functions. Cubic smoothing spline offers a good tradeoff between simplicity and 

efficiency in adjusting the level of data smoothing, ensures strong continuity up to 

acceleration and provides a fine convergence to kinematic data with respect to high-
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order polynomials that tend to oscillate strongly due to the effect of Runge‘s 

phenomenon (D'Amico and Ferrigno, 1992; Xu et al., 2010a; Xu et al., 2010b). 

Let the noisy data               be given and assume that: 

 

          ,         (31)

      

the cubic smoothing spline c(t) is the function that minimizes:   

         

               
  

                
  
  

      (32)

      

 

where the smoothing parameter (p) (ranging from 0 to 1) controls the level of 

smoothing data and c‘‘(t) denotes the second derivate of c(t) (Reinsch, 1967; 

Schoenberg, 1964). 

Using cubic spline a time-continuous polynomial function is obtained for each pair 

of successive samples of the interpolated kinematic data. Motion signals and their 

derivatives can be, therefore, calculated at any instant of time by the knowledge of 

the polynomial coefficients. The kinematic smoothed data obtained by cubic spline 

can be also considered as the result of a linear low-pass filtering whose level of 

smoothing is controlled by the smoothing parameter p. In case that the noisy data are 

equispaced and sufficiently long, Feng (1998) established the transfer function of 

cubic smoothing spline filter (Figure 6.2), given by: 

 

        
 

 
         

 

 
     

 

 
      

  

 
     

 

 
           

.      (33)

       

Using Feng‘s formulation, low-pass filter cut-off frequency (wt) can be obtained 

giving the corresponding value for the smoothing parameter (p) by the expression:  

 

           
 

           (34)
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Figure 6.2. Transfer functions of the cubic spline smoothing filter for p = 0:0001; 0:001; 0:01; 

0:1, and 1. The filter is equivalent to a fourth-order lowpass filter with a maximum flatness 

feature (from Feng, 1998). 

In other words, the choice of the smoothing parameter (associated with the required 

level of smoothing) can be inferred by the analysis of the frequency content of 

signals. As discussed in Chapter V, the lower frequency part of the estimated 

intervertebral signals within a bandwidth of 0.14 Hz can be associated with motion, 

while the remaining high-frequency content with noise. This is also consistent to the 

Sampling Theorem due to the fluoroscope frame-rate of 5 Hz. In other words, for this 

―enough slow‖ movement the sampling frequency (frame rate of the fluoroscope) 

results higher than that minimum required by the Sampling Theorem for a complete, 

continuous-time reconstruction of the motion signals. 

In accord to Eq. (34) the smoothing parameter has been set to 0.6 corresponding to a 

low-pass filter cut-off frequency equal to 0.14 Hz. The Ljung–Box whiteness test has 

been performed to ensure that the residuals of the filtering operation (i.e. the filtered 

out high frequency content) are uncorrelated and, then, representative of random 

noise and not motion (see also Burkhart et al., 2011). 
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6.3   Case study 2: in vivo fluoroscopic sequences 
____________________________________________________________________ 

Experimental intervertebral data obtained by (L2 and L3) vertebrae tracking in five 

fluoroscopic spinal sequence of healthy subjects undergone passive lumbar motion 

have been utilized (see Chapter V) (Cerciello et al, 2001v). Cubic spline 

interpolation of experimental data have been performed in order to obtain a smooth 

and continuous-time representation of the intervertebral motion signals and to 

estimate the ICRs during the actual intervertebral motion. Results of spline 

interpolation are reported in paragraph 6.3.1, while the clinical feasibility of the 

described methodology is discussed in paragraph 6.3.2. 

 

6.3.1   Data comparison 

The experimental discrete data (i.e. estimated L2-L3 intervertebral angles,  , and 

positions, rx and ry) have been interpolated by a cubic smoothing spline (with the 

smoothing parameter set to 0.6). As an example, Figure 6.3 shows a description of 

L2-L3 intervertebral motion extracted by videofluoroscopy and the corresponding 

smoothing spline approximation (subject #4: intervertebral angle and x- and y-

displacement against time). According to the motion impressed by the motorized 

table, it is recognizable a joint extension followed by a flexion. Below, the residuals 

of the smoothing operation are also shown.  

For each pair of successive samples a time-continuous polynomial function is 

obtained. By the knowledge of the polynomial coefficients of the interpolating 

functions the first derivative of the kinematic signals (i.e. angular velocity, ω(t), and 

linear velocities, vx(t) and vy(t)) can be calculated at any instant of time.  

To better appreciate the continuous-time interpolation and the low-pass filtering 

provided by splines, Figure 6.4 presents an enlargement of Fig. 6.3a (from the 7
th

 to 

the 11
th

 second), where the experimental data of intervertebral rotation are 

represented as white circles, while the resulting smoothing spline as a continuous 

bold line. As an example, for a time interval between two subsequent samples (at the 

times t=9.2[s] and t=9.4[s]) the expression of the continuous-time function is shown. 

Below, the corresponding angular velocity signal associated with this inter-sample 

time interval is also reported. 
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Figure 6.3. (a, from left to right) Intervertebral angle, x- and y-displacement of the L2 vertebra 

with respect to L3 plotted against time (subject #1). Raw data: continuous line; filtered data (by 

smoothing spline, p=0.6): dotted line. During patient’s motion, the intervertebral joint performs 

an extension followed by a flexion. On filtered data, extension is shown as a continuous bold line 

and flexion as a dashed bold line in correspondence of intervertebral angular velocity (absolute 

value) greater than 1 degree per second; (b) corresponding residuals of the smoothing operation 

(difference between the raw and filtered signals). Residual values are plotted using an expanded 

y-scale (from Bifulco et al., expected 2012). 
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Figure 6.4. (a) A particular of the interpolation of experimental data relative to the 

intervertebral rotation (already shown in Fig. 2a) in the time interval that goes from 7 [s] to 11 

[s]. Experimental data are depicted as white circles, while the continuous-time function 

provided by the smoothing spline interpolation is represented as a continuous bold line. As an 

example, the expression of the interpolating function between two subsequent samples (t=9.2[s] 

and t=9.4[s]) is reported; (b) The corresponding angular velocity signal (i.e. ω(t)) associated to 

the regarded time interval (t=9.2[s] - t=9.4[s]) and the expression of the interpolating function 

(from Bifulco et al., expected 2012). 

Figure 6.5 represents the estimated intervertebral angular and linear velocities 

obtained by the polynomial differentiation of the spline approximations depicted in 

Figure 6.3a. The angular accelerations resulted lower than 1.08 degree/s
2
 which is 

consistent with the table motion. 

Concise measurements of overall intervertebral rotation (i.e. angle extent) and 

translation (i.e. horizontal displacement) have been extracted from the continuous-

time kinematic signals. To evaluate the clinical effectiveness of the spline 

interpolation method, a comparison between these concise measurements and 

standard parameters currently used in clinical application has been performed (see 

Table 6.1, results are shown as mean +/- standard deviation): intervertebral sagittal 

rotation and translation have been repeatedly computed at patient‘s full extension (at 

time t=12.6[s]) using the technique proposed by Dupuis et al. (1985), while FCR 

have been calculated between different image-pairs according to McCane et al. 

(2005). Having multiple images at either end of the spinal motion, not a single FCR 
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measurement, but a set of them has been calculated between the neutral position (at 

ti,1=1.8[s], ti,2=2.0, ti,3=2.2, ti,4=2.4; ti,5=2.6, ti,6=2.8,  ti,7=3.0, ti,8=3.2, ti,9=3.4, ti,10=3.6, 

for a total of 10 images) and the full extension (at tf,1=12.6[s], tf,2=12.8, tf,3=13.0, 

tf,4=13.2; tf,5=13.4, tf,6=13.6, tf,7=13.8, tf,8=14.0, tf,9=14.2, tf,10=14.4, for a total of 10 

images) of the L2-L3 segmental motion (Figure 6.6). On average, absolute 

differences result 0.74 degrees for sagittal rotation, 0.59 mm for translation and 1.02 

mm for the x- and y-position of center of rotation.  

 

 

Figure 6.5. (a) Angular linear velocity, (b) linear horizontal velocity (anterior-posterior 

direction) and (c) linear vertical velocity (cranial-caudal direction) of the L2 vertebra with 

respect to L3 (that is assumed to be fixed) plotted against time (subject #1). Extension: 

continuous bold line; flexion: dashed bold line (as in Fig. 2a) (from Bifulco et al., expected 2012). 
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Figure 6.6.  (a) Intervertebral angle of the L2 vertebra with respect to L3 plotted against time 
(subject #1) with the instants of time between which the FCRs have been computed; (b) FCRs 

obtained by considering different image-pairs between the neutral position and the full extension 
of the motion segment. 

 

As previous mentioned, the spectral content of the experimental raw data (angle, x- 

and y-position) results highly similar for all subjects, showing a main component at 

about 0.05 Hz and concentrating more than 95% of the energy below 0.14 Hz that is 

the equivalent cut-off frequency for a spline smoothing parameter of about 0.6 (see 

Eq. (34). Residual analysis has been performed for all the subjects and smoothing 

parameters. The whiteness of the filtering residuals has been verified (with a 

significance level of 0.05) for smoothing parameters greater than 0.3. 

As an example, the trajectory of the estimated ICR of the subject #4 is represented in 

Figure 6.7c superimposed on a schematic profile of the L2-L3 vertebral segment. 

The ICRs are located just below the superior endplate of the L3 vertebra in the 

posterior half. During the extension the ICR moves from a posterior position to an 

anterior, while during the flexion on the contrary direction. The corresponding L2-L3 

FCR loci (presented as mean +/- standard deviation) are plotted for comparison 

(Figure 6.7d). On the top, the trajectory of the L2 vertebra center with respect to the 
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L3 (fixed) is also represented (Figure 6.7b). For sake of completeness, the ICR 

trajectories obtained for different smoothing parameters are shown in Figure 6.8. 

Some authors have suggested that a higher-order smoothing spline (than cubic) 

should produce a better approximation to derivatives of kinematic data at endpoints 

((Fazel-Rezai and Shwedyk, 1998; Woltring, 1985; Wood and Jennings, 1979; Wood 

1982). However, endpoints errors in first derivative data (i.e. velocity) are negligible 

(Vint and Hinrichs, 1996) and, in any case, no points have been considered at the 

extremities of data sets. In addition, spinal motion is generally smooth and 

progressive (i.e. acceleration is close to zero). In practice, no significant evidence can 

be recognized between results obtained by quintic smoothing spline with respect to 

cubic spline interpolation. As a confirmation, Figure 6.9 shows the ICR locations 

estimated by quintic spline interpolation. A comparison between measurements 

obtained after cubic and quintic spline interpolation has been also performed (see 

Table 6.1); on average, absolute differences between cubic and quintic spline result 

0.05 degrees for sagittal rotation, 0.11 mm for translation and 0.07 mm and 0.32 mm 

for the x- and y-average position of ICR, respectively.  

Figure 6.11 represents the L2-L3 ICR locations obtained for the other subjects (#1, 

#2, #3, #5). 
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Figure 6.7. (a) Schematic drawing of the L2-L3 segment of the subject #1 at two different time 

instants (t=0.6s, dash-dotted lines, and t=10.6 s, continuous lines); (b) Enlarged detail of the 

intervertebral trajectory of the L2 vertebra with respect to L3 (fixed). Positive angles 

correspond to flexion, while negative angles to extension. Raw data: continuous gray line; 

filtered data (by cubic spline, p=0.6): dotted line; extension: continuous bold line; flexion: 

dashed bold line; (c) Enlarged detail of the trajectory of the instantaneous center of rotation 

(ICR) obtained using cubic spline, p=0.6. Extension: continuous bold line; flexion: dashed bold 

line. Initial ICR positions in extension and in flexion are represented as a white circles, solid 

black arrows represent the directions of the ICR trajectory during extension and flexion; (d) 

Loci (mean ± standard deviation) of the finite center of rotation (FCR) obtained (McCane et al., 

2005) by considering different image-pairs between the neutral position (at ti,1=1.8[s], ti,2=2.0, 

ti,3=2.2, ti,4=2.4; ti,5=2.6, ti,6=2.8,  ti,7=3.0, ti,8=3.2, ti,9=3.4, ti,10=3.6, for a total of 10 images) and the 

full extension (at tf,1=12.6[s], tf,2=12.8, tf,3=13.0, tf,4=13.2; tf,5=13.4, tf,6=13.6, tf,7=13.8, tf,8=14.0, 

tf,9=14.2, tf,10=14.4, for a total of 10 images) of the segmental motion; a set of 100 FCRs were 

obtained by considering all possible combinations of images-couples between the initial stage of 

motion (neutral position) and the final stage of motion (full extension). The location of this 

distribution should be compared to the ICR trajectory in extension (from Bifulco et al., expected 

2012). 
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Figure 6.8. ICR trajectories obtained by cubic spline using different smoothing parameter ( (a) 

p=0.4; (b) p=0.5; (c) p=0.7; (d) p=0.8 ) superimposed on the schematic drawing of the L2-L3 

segment (subject #1). Extension: continuous bold line; flexion: dashed bold line. The whiteness 

of the residuals was positively verified for all these smoothing parameters by Ljung–Box test 

(with a significance level of 0.05) (from Bifulco et al., expected 2012). 
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Figure 6.9. ICR trajectory obtained by using quintic smoothing spline (smoothing parameter: 

(a) p=0.4; (b) p=0.5; (c) p=0.6; (d) p=0.7) superimposed on the schematic drawing of the L2-L3 

segment (subject #1). Extension: continuous bold line; flexion: dashed bold line. The whiteness 

of the residuals was positively verified for all these smoothing parameters by Ljung–Box test 

(with a significance level of 0.05). These trajectories (quintic spline) should be compared with 

those correspondent (cubic spline) showed in Fig. 6.8 (from Bifulco et al., expected 2012). 
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6.3.2   Discussion 

For using smoothing spline interpolation the degree of the piecewise-polynomial 

function and the smoothing parameter has been conveniently chosen. In this regard, 

it is important to note that patient‘s motion must be slow enough both to satisfy the 

Sampling Theorem due to the fluoroscope frame rate (see also paragraph 6.2) and to 

provide good quality images (i.e. small motion blurring). Furthermore, it is well-

known that intervertebral disc acts as a damper (Niosi and Oxland, 2004) and 

segmental motion is limited in its performance. As a consequence, true kinematic 

signals are confined within very low-frequency, while the sudden oscillations of the 

estimated kinematic signals (Figure 6.4a) are associated with measurement error and 

not with motion (otherwise, this would require an excessive amount of energy loss 

due to viscoelastic properties of soft tissues) (Cerciello et al., 2001b; Challis, 1995; 

Cholewicki et al., 1991). In practice, continuous-time kinematics can be obtained by 

smoothing spline without using higher degree polynomials (than cubic) and very low 

smoothing parameter. This is also confirmed by the small difference occurs on the 

estimated ICR locations by using different smoothing parameters (Figure 6.9) or 

quintic spline instead of cubic (Figure 6.10). As an evidence of the appropriateness 

of the filtering operation, it has been also observed that the residuals between the raw 

and filtered kinematic signals are uncorrelated (i.e. corresponding to white noise and 

not to motion). 

Kinematic measurements extracted from the continuous-time description of 

intervertebral motion are resulted to be consistent with those estimated by methods 

currently employed for clinical diagnosis of segmental instability (Dupuis et al., 

1985; McCane et al., 2005). Intervertebral ICR trajectories also result in accordance 

with accurate kinematic data (IHA migration) obtained in vitro for a flexion-

extension movement of lumbar segments by using a high resolution kinematic 

tracking system (Mansour et al., 2004; Nägerl et al., 2009; Wachowski et al., 2007; 

Wachowski et al., 2009a; Wachowski et al., 2009b; Wachowski et al., 2010).  

As previously mentioned, the estimated ICR is located at the posterior half of the 

lower vertebra (L3), slightly below the superior endplate. This is about in agreement 

with previous FCR locations presented in literature for in vivo spinal motion (Pearcy 

and Bogduk, 1988; Schneider et al., 2005; Xia et al., 2010) and in vitro studies 
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(Gertzbein et al., 1984; Haher et al., 1992; Rousseau et al., 2006a; Rousseau et al., 

2006b; Schmidt et al., 2008a; Schmidt et al., 2008b; White and Panjabi, 1990). 

However, it is important to note that the spinal motion was passively performed by a 

motorized table and neither load on the spine nor the action of neuromuscular 

elements were involved. In principle, this could alter the segmental kinematics. 

 

6.4   Summary 
____________________________________________________________________ 

Intervertebral kinematics closely depends on condition of the soft tissue intended for 

constraining segmental motion. Disc degeneration, facet joints osteoarthritis, 

ligamentous degeneration and muscle alterations can lead to vertebral instability that 

is suggested to be a major cause of low back pain. 

In clinical practice diagnosis of intervertebral instability is based on concise 

measurements of range of intervertebral motion through functional flexion-extension 

radiography. However, it was largely pointed out that intervertebral instantaneous 

center of rotation is much more sensitive to mild degeneration of disc and ligament 

with respect to range of motion. Generally, FCR is computed from only two or a few 

more segmental positions using functional radiography and is improperly assumed as 

a rough approximation to ICR. Errors in FCR computation are even larger than for 

the other kinematic parameters. 

With respect to functional radiography, videofluoroscopy can provide the description 

of the complete performance of intervertebral motion. However, the need of 

extremely accurate intervertebral kinematic measurements has, to date, limited the 

clinical application of videofluoroscopy. Smoothing spline can offer a suitable and 

practical technique for interpolation and differentiation of sampled kinematic data 

extracted by videofluoroscopy, offering both noise reduction (that is necessary to 

avoid erroneous misplacements of ICR from the motion segments) and continuous-

time motion representation (that permits to estimate the CR at any instant of time).  

Continuous-time description of intervertebral motion by smoothing spline is 

appeared to provide an enrichment of information obtained by functional 

radiography and, more specifically, the possibility to estimate the trajectories of the 

actual ICR in lumbar spine during in vivo flexion-extension motion. This can have a 
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significant impact on clinical evaluation of early disc degeneration and segmental 

instability and in evaluating prosthetic implant performance. 
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Conclusion 

 

 

When something can be read without effort, 
great effort has gone into its writing. 

Enrique Jardiel Poncela 
 

 

 

An automated method specifically designed for a very accurate recognition of 

vertebral bodies in fluoroscopic sequences of lumbar spine motion in the sagittal 

plane has been described. The method involves a strong enhancement of the outline 

of vertebral bodies by estimating gradient images. An accurate characterization of 

fluoroscopic noise has been proposed and severe image denoising has been 

performed in order to achieve a more reliable estimate of the gradient images. The 

method has been validated against known values of intervertebral angle and position 

of a spinal calibration model and results for real fluoroscopic sequences of lumbar 

spine motion in the sagittal plane have been compared to results obtained from the 

same image sequences using manual landmarking and other automated algorithms.  

A smooth and continuous-time representation of intervertebral motion based on 

cubic spline interpolation of the experimental kinematic data extracted by 

videofluoroscopy has been proposed. Analysis of frequency content of intervertebral 

signals has been involved to choose the most suitable smoothing parameter. 

Instantaneous center of rotation has been estimated during the entire intervertebral 

motion by the knowledge of the continuous-time intervertebral signals and their 

derivatives. To evaluate the clinical feasibility of the proposed spline interpolation 
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method, a comparison has been performed between concise measurements of  

sagittal rotation and translation extracted from the continuous-time description of 

intervertebral motion and as obtained in clinical setting. The locations of the 

instantaneous center of rotation have been compared to clinical estimates of finite 

center of rotation. 

Results achieved with the proposed methodology offer a better representation of 

intervertebral kinematics with respect to manual landmarking and other automated 

approaches. Fluoroscopic image denoising improves image quality that can be 

resulted comparable to that expected from more expensive sensors or higher X-ray 

dosage. In particular, spatial adaptive filtering, specifically designed for signal-

dependent noise, has been proved to improve the vertebrae recognition procedure 

providing a good trade-off between noise reduction and edge preservation in 

fluoroscopic images. Naturally, to fully take advantage of the potential of the 

denoising algorithm, an accurate noise modeling have been investigated. Continuous-

time representation of intervertebral motion has provided an improvement of the 

information available from functional radiography and allowed to describe the actual 

instantaneous center of rotation during the entire segmental motion. This may have 

important clinical implications in diagnosis of segmental instability and evaluation of 

prosthetic implant. 

In the future, the application of denoising algorithms combined to more complex 

gradient operators can be explored in order to further improve the accuracy of 

vertebrae recognition. The design of an opportune shape of vertebral template which 

includes only unambiguous vertebral edges (without including other parts of adjacent 

vertebrae) is also suggested. This can be particularly useful for cervical spine 

analysis due to the more complex anatomy of cervical vertebrae. Furthermore, a new 

spinal calibration model that more closely reproduces actual in vivo conditions 

should be adopted in order to obtain a more accurate and reliable assessment of 

estimation methods of intervertebral kinematics. Future works should also 

concentrate on definition of normal intervertebral path (healthy subjects) and 

identification of abnormal paths and their association to specific spine pathologies. 

Application on assessment of rehabilitation, physical therapy and prosthesis implant 

performance might be successively explored.  
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Appendix A 

Anatomy of lumbar spine 
 

 

 

Lumbar spine is the lower region of spinal column, as shown in Figure A.1. In a 

human, there are five lumbar vertebrae connecting proximally to the thoracic spine 

and distally to the sacrum. Each vertebra is often referred to as a ‗level‘ and 

represented with an ‗L‘ to define the lumbar spine and a number to specify the 

particular level. The individual lumbar vertebrae are designated L1 (being the most 

proximal vertebra), L2, L3, L4 and L5 (being the most distal vertebra). 

 

Figure A.1. Lumbar spine (from Bogduk, 1997). 
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Figure A.2. Bony anatomy of lumbar vertebrae: VB – Vertebral Body; TP – Transverse 

Process; SP – Spinous Process; P – Pedicle; L – Lamina; SAP – Superior Articulating Process; 

IAP – Inferior Articulating Process (from Bogduk, 1997). 

 

 

Figure A.3. Anatomy of the intervertebral disc: AF – Anulus Fibrosus; NP – Nucleus Pulposus; 

VEP – Vertebral Endplate (from Bogduk, 1997). 

The bony anatomy of each vertebra is shown in Figure A.2. The anterior portion of 

the vertebra consists of the vertebral body. The vertebral body is the main load 

bearing structure of the vertebra. The superior and inferior surfaces of the vertebral 

bodies are flat to enhance their load carrying capacity. The vertebral body consists of 

an external shell of cortical bone surrounding a core of cancellous bone. The 

trabeculae of the cancellous core are arranged in a grid type pattern longitudinally to 

improve strength and allow dynamic flexibility during loading of spine. 



99 

 

Lumbar spine also consists of a complex array of soft tissue elements. The major soft 

tissues are intervertebral disc, spinal musculature and ligaments. In particular, 

intervertebral disc is thought to have an important role in contributing and 

controlling the spinal motion. As a result, disc degeneration is usually considered the 

primary cause of segmental instability.  

Intervertebral disc is the soft tissue present between adjacent vertebral bodies. Any 

two adjacent vertebrae and their intervening intervertebral disc are generally termed 

as motion segment. Intervertebral disc height is the vertical distance between 

adjacent vertebral bodies. As can be seen from Figure 3.8, intervertebral disc varies 

from front to back. Anteriorly the disc height is larger than in the posterior disc. The 

anatomy of the intervertebral disc is shown in Figure A.3. Each intervertebral disc 

consists of a central, fluid-like mass called the nucleus pulposus. Peripherally to the 

nucleus pulposus the anulus fibrosus is observable. It consists of discontinuous 

concentric sheets or lamellae of collagen fibers. Both superiorly and inferiorly to the 

nucleus pulposus and the inner rings of the anulus fibrosus are then the vertebral 

endplates. 

The function of intervertebral disc is three-fold. Firstly, it serves to bind adjacent 

vertebral bodies together. Secondly, it allows for load transfer from one vertebral 

body to an adjacent vertebral body. Thirdly (and probably the most important), it 

allows for movement of vertebrae.  

 

 

Figure A.4. Bending (flexion-extension) of the lumbar motion segment (from Bogduk, 1997). 
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Figure A.5. Axial rotation of the lumbar motion segment (from Bogduk, 1997). 

The knowledge of the forces/loads acting on the intervertebral disc during spinal 

motion can tell us something about the mechanical behavior of each motion segment. 

Rotation of one vertebra with respect to another in the sagittal (i.e. flexion and 

extension) or coronal (i.e. lateral bending) planes produces a combination of 

compressive and tensile loading to the disc. The region of the disc in the direction of 

motion and in front of the point of rotation will experience a compressive load. The 

region behind the centre of rotation and in the opposite direction of motion will 

experience tension. This is shown in Figure A.4. Rotation in the transverse plane (i.e. 

axial rotation or twisting) invokes a different mechanism in the disc to carry the load. 

As one vertebra twists relative to another, the anular fibers oriented in the direction 

of the rotation are loaded, while the fibers oriented away from the direction of 

rotation slacken (see Figure A.5). Hence, only half of the anular fibres are used to 

resist axial rotation. However, if torsion is performed under a physiological 

compressive load, tension of the fibers in the opposite direction to loading is 

maintained. 

  



101 

 

 

 

 

 

 

 

 

Appendix B 

Fluoroscopic image intensifier 

 

 

 

X-ray fluoroscopy provides digital-television viewing of anatomical structures inside 

the body with an acceptable, low X-ray dose. The components included in a modern 

fluoroscopic imaging system are shown in Figure B.1. Some components are similar 

to those included in systems used exclusively for radiography, whereas others are 

unique to fluoroscopy. For instance, additional apparatus are typically attached to 

allow for image recording, such as a spot-film device, film changer, photospot 

camera, cine camera, or analog-to-digital converter. 

 

Figure B.1. Diagram shows the components of a fluoroscopic imaging chain (from Schueler, 

2000 
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The image intensifier is surely the most important component of modern 

fluoroscopic equipments providing the brightness gain necessary to reduce X-ray 

dosage to the patient during the long acquisition of anatomical dynamic images. The 

image intensifier converts incident X-rays into a minified visible light image and, in 

the process, amplifies the image brightness by about 10,000 times for better visibility 

to the viewer. The major components of an image intensifier include an input layer 

(photocathode) to convert X-rays to electrons, electron lenses to focus the electrons, 

an anode to accelerate them, and an output layer (fluorescent screen) to convert them 

into a visible image (Figure B.2). An optical coupling system generally distributes 

light from the image intensifier output window to a video camera and/or other digital 

image recording devices for post-processing. All the components of the image 

intensifier are contained within an evacuated bottle. As a result of the acceleration of 

the electrons and image minification, the illumination level of the output image 

compared with that of the input image is greatly increased. This illumination 

increase, known as brightness gain, ranges from 5,000 to 20,000. The conversion 

factor is another measure of image intensifier brightness gain. In modern image 

intensifiers, conversion factors are 100–300 cd × m
-2

/mR × s
-1

, where cd × m
-2

 is the 

unit of measure of the light output of the image intensifier and mR × s
-1

 is the unit of 

measure of the X-ray exposure rate into the image intensifier. Image intensifiers can 

be also described by their contrast ratio, spatial resolution or detected quantum 

efficiency.  

 

Figure B.2. Cross-sectional schematic of an image intensifier shows its major components (from 

Wang and Blackburn, 2000). 
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Image intensifiers are available with different diameter input windows of 10–40 cm. 

The selection of the diameter depends on the maximum FOV (field of view) 

requirements of the clinical application. Fluoroscopic systems designed for 

extremities may be configured with a 10–15-cm-diameter image intensifier, whereas 

a 40-cm-diameter unit is useful for imaging the abdomen or peripheral vasculature. 

Most image intensifiers also allow selection of a magnification mode. In 

magnification mode, the central circular area of the input layer is focused onto the 

full output layer by adjusting the voltage of the electron optics electrodes. Multiple 

magnification mode sizes are available on most fluoroscopic systems. 

 

  



104 

 

 

 

 

 

 

 

 

Appendix C 

Fluoroscopic difference-image modeling 

by Skellam distribution 
 

 

 

At low exposure levels the difference K between two independent X-ray photon 

counts N1 and N2 each having Poisson distribution can be modeled as Skellam-

distributed (Skellam, 1946): 

 

      
                    

  

  
 

 

 
              

  

where  1 and  2 are the expected photon counts and Ik(z) is the modified Bessel 

function of the first kind. The mean and variance of the Skellam distribution are 

given by: 

 

                ,                       

 

with 

 

                ,                         

  

for the properties of the Poisson distributions. 
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Image intensity of the difference between two fluoroscopic images at the position r = 

[x,y]
T
 is linearly dependent on the difference between the numbers of detected 

photons at that position and can be, in turn, characterized as a Skellam distribution: 

 

             
                             

                  . 

 

If fluoroscopic static (i.e. motionless) images are adopted                 

         , the mean and variance of difference-image intensity result: 

 

                                

 

and  

 

                                          .  

 

Therefore, given a fluoroscopic sequence the noise variance of the differences 

between pairs of fluoroscopic static frames at an image location (pixel) is linearly 

dependent on the mean of the raw pixel values (g) at that location: 

 

  
                

 . 

 

Once estimated the Skellam parameters, the characteristics of the fluoroscopic noise 

can be easily derived (i.e. Skellam noise variance is proportional to the Poisson noise 

variance). Noise Skellam modeling requires, however, that noise components must 

be uncorrelated  frame by frame (Skellam, 1946; Hwang et al., 2007a; Hwang et al., 

2007b). This assumption can be assumed only if the lag (i.e. persistence of 

luminescence) of the fluoroscopic device is shorter than the sampling interval. Older 

image intensifier had phosphors with lag times on the order of 30–40 ms, while 

current image intensifier tubes have lag times of approximately 1 ms (Wang and 

Blackburn, 2000). Therefore, the sampling frequency should be at least less than 25 

frames per second to consider noise sample uncorrelated between two subsequent 

images. 
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Figures C.1 shows the experimental observations of the image noise level against the 

mean pixel intensity obtained from difference-images between about 100 

fluoroscopic static images of a step phantom. The clipping phenomena at the 

extremes of the pixel value data range are observable. 

 

Figure C.1. Sample noise variance (bright-gray points) obtained by difference-images from a 

fluoroscopic sequence of a step phantom. The estimated  mean-variance characteristic is shown 

as a solid black line. The clipped observations (dark-gray points) have been excluded from the 

analysis (from Cerciello et al., 2011a). 

  



107 

 

 

 

 

 

 

 

 

Bibliography 
 

 

 

Aach, T., Kunz, D., 1996. Noise Reduction and Image Enhancement Algorithms for Low-Dose X-Ray 

Fluoroscopy. In: Proceedings of Bildverarbeitung für die Medizin: Algorithmen, Systeme, 

Anwendungen, Aachen, Germany, 95–100. 

 

Adams, M.A., McNally, D.S., Dolan, P., 1996. 'Stress' distributions inside intervertebral discs. The 

effects of age and degeneration. Journal of Bone and Joint Surgery, British Volume 78(6), 965-

972. 

 

Amer A., Dubois E., 2005. Fast and Reliable Structure-Oriented Video Noise Estimation, IEEE 

Transaction. on Circuits and Systems for Video Technology, IEEE Proceedings 15, 113–118. 

 

Anderson, J.A.D., Sweetman, B.I.A., 1975. Combined flexirule/hydrogoniometer for measurement of 

lumbar spine and its sagittal movement. Rheumatology & Rehabilitation 14, 173-179. 

 

Anderst, W.J., Vaidya, R., Tashman, S., 2008. A technique to measure three-dimensional in vivo 

rotation of fused and adjacent lumbar vertebrae, Spine Journal, 2008, 8(6), 991-997. 

 

Argyriou, V., Vlachos, T., 2003. Estimation of sub-pixel motion using gradient cross-correlation. 

Electronic Letters 39(13), 980-982. 

 

Auerbach, J.D., Wills, B.P., McIntosh, T.C., Balderston, R.A., 2007. Evaluation of spinal kinematics 

following lumbar total disc replacement and circumferential fusion using in vivo fluoroscopy. 

Spine 32(5), 527-536. 

 



108 

 

Axelsson, P., Johnsson, R., Stromqvist, B., 1992. Effect of lumbar orthosis on intervertebral mobility. 

A roentgen stereophotogrammetric analysis. Spine 17, 678–681. 

 

Barrett, H.H., Swindell, W., 1981. Radiological imaging. New York Academic, New York, 29-61.  

 

Bifulco, P., Cesarelli, M., Allen, R., Sansone, M., Bracale, M., 2001. Automatic Recognition of 

Vertebral Landmarks in Fluoroscopic Sequences for Analysis of Intervertebral Kinematics. 

Journal of Medical and Biological Engineering and Computing 39 (1), 65-75. 

 

Bifulco, P., Sansone, M., Cesarelli, M., Allen, R., Bracale, M., 2002. Estimation of out-of-plane 

vertebra rotations on radiographic projections using CT data: a simulation study. Medical 

Engineering & Physics 24(4), 295-300. 

 

Bifulco, P., Cesarelli, M., Romano, M., Allen, R., Cerciello, T., 2009. Vertebrae tracking through 

fluoroscopic sequence: a novel approach. In: Proceedings of the World Congress on Medical 

Physics and Biomedical Engineering: The Triennial Scientific Meeting of the IUPESM, Munich, 

Germany, Springer IFMBE Proceedings 25(4), 619-622. 

 

Bifulco, P., Cesarelli, M., Allen, R., Romano, M., Fratini, A., Pasquariello, G., 2010. 2D-3D 

Registration of CT Vertebra Volume to Fluoroscopy Projection: A Calibration Model Assessment. 

EURASIP Journal on Advances in Signal Processing (10), 1-8. 

 

Bifulco, P., Cesarelli, M., Cerciello, T., Romano, M., 2012 (expected). A continuous description of 

intervertebral motion by means of spline interpolation of kinematic data extracted by 

videofluoroscopy. Journal of Biomechanics (submitted: under second revision). 

 

Blumenthal, S., McAfee, P.C., Guyer, R.D., et al., 2005. A prospective, randomized, multicenter Food 

and Drug Administration investigational device exemptions study of lumbar total disc replacement 

with the CHARITE artificial disc versus lumbar fusion: part I: evaluation of clinical outcomes. 

Spine 30, 1565–1575 discussion E387-91. 

 

Bogduk, N., Amevo, B., Pearcy, M., 1995. A biological basis for instantaneous centres of rotation of 

the vertebral column. Proceedings of the Institution of Mechanical Engineers, Part H. Journal of 

Engineering in Medicine 209, 177-183. 

 

Bogduk, N., 1997. Clinical Anatomy of the Lumbar Spine and Sacrum, 3rd edition. Churchill 

Livingstone, Melbourne. 

 



109 

 

Bogduk, N., Mercer, S., 2000. Biomechanics of the cervical spine. I: Normal kinematics. Clinical 

Biomechanics 15, 633-648. 

 

Boos, N., Rieder, R., Schade, V., Spratt, K.F., Semmer, N., Aebi, M., 1995. The diagnostic accuracy 

of MRI, work perception, and psychosocial factors in identifying symptomatic disc hisniations.  

Spine 20, 2613-2625. 

 

Bosco, A., Bruna, A., Messina, G., Spampinato, G., 2005. Fast Method for Noise Level Estimation 

and Denoising. In: Proceedings of International Conference on Consumer Electronics, Las Vegas, 

2005, SPIE Proceedings, 211–212. 

 

Bram, J., Zanetti, M., Min, K., Jodler, J., 1998. MR abnormalities of the intervertebral disk and 

adjacent bone marrow as predictors of segmental instability of the lumbar spine. Acta Radiologica 

39, 18–23. 

 

Breen, A.C., Allen, R., Morris, A., 1989. Spine kinematics: a digital videofluoroscopic technique. 

Journal of Biomedical Engineering 11, 224-228. 

 

Breen, A.C., 1991. The measurement of the kinematics of the human spine using videofluoroscopy 

and image processing. PhD thesis, University of Southampton, Southampton. 

 

Breen, A.C., Muggleton, J.M., Mellor, F.E., 2006. An objective spinal motion imaging assessment 

(OSMIA): reliability, accuracy and exposure data. BMC Musculoskeletal Disorders 7(1), 1-10 

 

Brunelli, R., Poggio, T., 1993. Face Recognition: Features versus Templates. IEEE Transaction 

Pattern Analysis and Machine Intelligence 15(10), 1042-1052. 

 

Burkhart, T.A., Dunning, C.E., Andrews, D.M, 2011. Determining the optimal system-specific cut-off 

frequencies for filtering in-vitro upper extremity impact force and acceleration data by residual 

analysis. Journal of Biomechanics 44, 2728–2731. 

 

Burton, A., Tillotson, M., 1988. Reference values for 'normal' regional lumbar sagittal mobility. 

Clinical Biomechanics 3 (2), 106-113. 

 

Cerciello, T., Bifulco, P., Cesarelli, M., Romano, M., Allen, R., 2009. Automatic vertebra tracking 

through dynamic fluoroscopic sequence by smooth derivative template matching. In: Proceeding 

of the 9th International Conference on Information Technology and Applications in Biomedicine, 

Larnaca, Greece, IEEE Proceedings, 1-4. 

 



110 

 

Cerciello, T., Bifulco, P., Cesarelli, M., Paura, L., Pasquariello, G., Allen, R., 2010a. Noise reduction 

in fluroscopic image sequences for joint kinematics analysis. In: Proceedings of the 22nd 

Mediterranean Conference on Medical and Biological Engineering and Computing, Chalkidiki, 

Greece, Springer IFMBE Proceedings, 29, 323-326. 

 

Cerciello, T., Bifulco, P., Cesarelli, M., Romano, M., D‘Antò, M., Pasquariello, G., 2010b. 

Continuous description of intervertebral kinematics by spline interpolation of motion data obtained 

processing fluoroscopic lumbar sequences. In: Proceedings of the Second National Congress of 

Bioengineering, Turin, Italy, Atti del Congresso Nazionale di Bioingegneria, Pàtron Editore, 1-2. 

 

Cerciello, T., Cesarelli, M., Paura, L., Bifulco, P., Romano, M., Allen, R., 2011a. Noise-parameter 

modeling and estimation for X-ray fluoroscopy. In: Proceedings of the 4th International 

Symposium on Applied Sciences in Biomedical and Communication Technologies, Barcelona, 

Spain, ACM Proceedings, 1-5. 

 

Cerciello, T., Romano, M., Bifulco, P., Cesarelli, M., Allen R., 2011b. Advanced template matching 

method for estimation of intervertebral kinematics of lumbar spine. Medical Engineering & 

Physics 33 (10), 1293-1302. 

 

Challis, J.H., 1995. An examination of procedures for determining body segment attitude and position 

from noisy biomechanical data. Medical Engineering & Physics 17(2), 83-90. 

 

Challis, J.H., 2001. Estimation of the finite center of rotation in planar movements. Medical 

Engineering & Physics 23 (1), 227–233. 

 

Chan, C.L., Katsaggelos, A.K., Sahakian, A.V., 1993. Image Sequence Filtering in Quantum-Limited 

Noise with Applications to Low-Dose Fluoroscopy. IEEE Transactions on Medical Imaging  

12(3), 610-621. 

 

Chen, J., Katona, T.R., 1999. The limitations of the instantaneous centre of rotation in joint research. 

Journal of Oral Rehabilitation 26, 274-279. 

 

Cholewicki, J., McGill, S.M., Wells, R.P., Vernon, H., 1991. Method for measuring vertebral 

kinematics from videofluoroscopy. Clinical Biomechanics 6(2), 73-78.  

 

Cossette, J.W., Farfan, H.F, Robertson, G.H., Wells R.V., 1971. The instantaneous center of rotation 

of the third lumbar intervertebral joint. Journal of Biomechanics 4, 149-153. 

 



111 

 

Crisco, J.J., Chen, X., Panjabi, M.M., Wolfe, S.W.. Optimal marker placement for calculating the 

instantaneous center of rotation. Journal of Biomechanics 27,1183–1187. 

 

Crouse, M.S.,  Nowak, R.D., Baraniuk, R.G., 1998. Wavelet-based statistical signal processing using 

hidden Markov models. IEEE Transactions on Signal Processing 46(4), 886 – 902. 

 

D'Amico, M., Ferrigno, G., 1992.Comparison between the more recent techniques for smoothing and 

derivative assessment in biomechanics. Medical and Biological Engineering and Computing 30(2), 

193-204. 

 

D‘Antò, M., Cesarelli, M., Bifulco, P., Romano, M., Fiore, F., Cerciello, V., Cerciello, T., 2010. 

Perfusion CT of the liver: slop method analysis. In: Proceedings of the Second National Congress 

of Bioengineering, Turin, Italy, Atti del Congresso Nazionale di Bioingegneria, Pàtron Editore, 1-

2. 

 

Dabov, K., Foi, A.,  Katkovnik, V.,  Egiazarian, K., 2007. Image denoising by sparse 3-D transform-

domain collaborative filtering. IEEE Transactions on Image Processing 16(8), 2080-2095. 

 

Dickey, J.P., Pierrynowski, M.R., Bednar, D.A., Yang, S.X., 2002. Relationship between pain and 

vertebral motion in chronic low-back pain subjects. Clinical Biomechanics  17, 345-352. 

 

Dimnet, J., Pasquet, A., Krag, M.H., Panjabi, M.M., 1982. Cervical spine motion in the sagittal plane: 

Kinematics and geometric parameters. Journal of Biomechanics 15, 959-969. 

 

Dimnet, J., Guinguand, M., 1984. The finite displacements vector's method: an application to the 

scoliotic spine. Journal of Biomechics 17(6), 397-408. 

 

Dolan, P., Adams, M.A., 1993. The relationship between EMG activity and extensor moment 

generation in the erector spinae muscles during bending and lifting activities. Journal of 

Biomechanics 26, 513-522. 

 

Dupuis, P.R., Yong-Hing, K., Cassidy, J.D., Kirkaldy-Willis, W.H., 1985. Radiological diagnosis of 

degenerative lumbar spinal instability. Spine 10, 262-266. 

 

Elad, M., Aharon, M., 2006. Image denoising via sparse and redundant representations over learned 

dictionaries. IEEE Transactions On Image Processing 15(12), 3736-3745. 

 

Farfan, H.F., Gracovetsky, S., 1984. The Nature of Instability. Spine 9(7), 714-719. 

 



112 

 

Fazel-Rezai, R., Shwedyk, E., 1998. Biomechanic signal filtering for dynamic analysis purpose: a 

quantitative comparison between different methods. Journal of Biomechanics 31(Supplement 1), 

85. 

 

Feng, G., 1998. Data Smoothing by Cubic Spline Filters. IEEE Transactions on signal processing 

46(10), 2790-2796. 

 

Foi, A., Alenius, S., Katkovnik, V., Egiazarian, K., 2007. Noise measurement for raw-data of digital 

imaging sensors by automatic segmentation of non-uniform targets. IEEE Sensors Journal 7, 

1456–1461 

 

Foi, A., Trimeche, M., Katkovnik, V., Egiazarian, K, 2008. Practical Poissonian-Gaussian noise 

modeling and fitting for single-image raw-data. IEEE Transactions on Image Processing 17(10), 

1737-1754. 

 

Foi, A., 2009. Clipped noisy images: Heteroskedastic modeling and practical denoising. Signal 

Processing, 89(12), 2609-2629. 

 

Frankel, V., Burstein, A., 1974.Biomechanics of the locomotor system. In: Ray, C.D. (Ed.), Medical 

engineering. Year book. Medical Publishers, Chicago, pp. 505-515. 

 

Fujiwara, A., Lim, T.H., An, H.S., Nobuhiro, T., Jeon, C.H., Andersson, G.B.J., Haughton, V.M., 

2000. The effect of disc degeneration and facet joint osteoarthritis on the segmental flexibility of 

the lumbar spine, Spine 25(23), 3036-3044. 

 

Gertzbein, S.D., Holtby, R., Tile, M., Kapasouri, A., Chan, K.W., Cruickshank, B., 1984. 

Determination of a locus of instantaneous centers of rotation of the lumbar disc by moire fringes. 

A new technique. Spine 9, 409-413. 

 

Gertzbein, S.D., Seligman, J., Holtby, R., Chan, K.H., Kapasouri, A., Tile, M., Cruickshank, B., 1985. 

Centrode patterns and segmental instability in degenerative disc disease. Spine 10, 257-261. 

 

Gilboa, G., Sochen, N., Zeevi, Y.Y., 2006.  Variational denoising of partly textured images by 

spatially varying constraints. IEEE Transactions on Image Processing 15(8), 2281 – 2289. 

 

Gonzalez, R.C., Woods, R.E., 1992. Digital Image Processing, third edition. Addison-Wesley, 

Reading, Massachusetts. 

 



113 

 

Haher, T.R., O‘Brien, M., Felmly, W.T., Welin, D., Perrier, G., Choueka, J., Devlin, V., Vassiliou, A., 

Chow, G., 1992.Instantaneous axis of rotation as a function of the three columns of the spine. 

Spine 17, S149-S154. 

 

Harrison, R.M., Kotre, C.J., 1986. Noise and threshold contrast characteristics of a digital 

fluoroscopic system. Physics in Medicine and Biology 31, 512-586. 

 

Hensel, M., Pralow, T., Grigat, R.R., 2007. Modeling and Real-Time Estimation of Signal-Dependent 

Noise in Quantum-Limited Imaging. In: Proceedings of the 6th WSEAS International Conference 

on Signal Processing, Robotics and Automation, Corfu Island, Greece, 183-191. 

 

Hindle, R.J., Pearcy, M.J., Cross, A., 1990. Mechanical function of the human lumbar interspinous 

and supraspinous ligaments. Journal of Biomedical Engineering 12, 340-344. 

 

Hirakawa, K., Parks, T.W., 2006. Image denoising using total least squares. IEEE Transaction on 

Image Processing 15(9), 2730-42. 

 

Hwang, Y., Kim, J.S., Kweon, I.S., 2007a. Sensor noise modeling using the Skellam distribution: 

Application to the color edge detection. IEEE Conference on Computer Vision and Pattern 

Recognition, Minneapolis, Minnesota, Stati Uniti, IEEE, 1-8. 

 

Hwang, Y., Kweon, I.S., Kim, J.S., 2007b. Color edge detection using the Skellam distribution as a 

sensor noise model. In: Proceedings of Annual Conference Society of Instrumentation and Control 

Engineers, Takamatsu, Japan IEEE, 1972-1979. 

 

Hwang, H., Hipp, J.A., Ben-Galim, P., Reitman, C.A., 2008. Threshold cervical range-of-motion 

necessary to detect abnormal intervertebral motion in cervical spine radiographs. Spine 33(8), 261-

267. 

 

Junghanns, H., 1931. Spondylolisthesis ohne spalt in zwischengelenstuck. Archiv fur Orthopadische 

und Unfall-Chirurgie. l 129, 118–127. 

 

Kirkaldy-Willis, W.H., Farfan, H.F., 1982. Instability of the lumbar spine. Clinical Orthopaedics and 

Related Research 1165, 110–123. 

 

Knutsson, F., 1944. The instability associated with disc degeneration in the lumbar spine. Acta 

Radiologica 25,593–609. 

 



114 

 

Kondracki, M., 2011. Clinical applications of digitized videofluoroscopy in the lumbar spine. PhD 

thesis, University of Southampton, Southampton. 

 

Krismer, M., van Tulder, M., 2007. Low back pain (non-specific). Best Practice & Research Clinical 

Rheumatology 21(1), 77-91. 

 

Lam, S.C., McCane, B., Allen, R., 2009. Automated tracking in digitized videofluoroscopy sequences 

for spine kinematic analysis. Image and Vision Computing 27, 1555-1571. 

 

Le Huec, J.C., Mathews, H., Basso, Y., et al., 2005. Clinical results of Maverick lumbar total disc 

replacement: two-year prospective follow-up. Orthop. Clin. North Am. 36, 315–322. 

 

Lee, S.W., Draper, E.R., Hughes, S.P., 1997. Instantaneous center of rotation and instability of the 

cervical spine.A clinical study. Spine 22(6), 641-648. 

 

Leone, A., Guglielmi, G., Cassar-Pullicino, V.N., Bonomo, L., 2007. Lumbar Intervertebral 

Instability: A Review.  Radiology 245(1), 62-77. 

 

Lewis, J.P., 1995. Fast Template Matching. Vision Interface, 120-123. 

 

Lo, C.M., Sawchuk, A.A., 1979. Nonlinear restoration of filtered images with Poisson noise. In: 

Applications of digital image processing III; Proceedings of the Seminar, San Diego, California, 

84-91. 

 

Luo, Z.P., Buttermann, G.R., Lewis, J.L., 1996. Determination of spinal facet joint loads from extra 

articular strains – a theoretical validation. Journal of Biomechics 29, 785–790. 

 

Manek, N.J., MacGregor, A.J., 2005. Epidemiology of Back Disorders: Prevalence, Risk Factors, and 

Prognosis. Current Opinion in Rheumatology 17(2), 134-140. 

 

Mansour, M., Spiering, S., Lee, C., Dathe, H., Kalscheuer, A.K., Kubein-Meesenburg, D., Nägerl, H., 

2004. Evidence for IHA migration during axial rotation of a lumbar spine segment by using a 

novel high-resolution 6D kinematic tracking. Journal of Biomechanics 37, 583–592. 

 

McCane, B., Abbott, J.H., King, T., 2005. On calculating the finite centre of rotation for rigid planar 

motion. Medical Engineering & Physics 27(1), 75-79. 

 

McAfee, P.C., Cunningham, B., Holsapple, G., et al., 2005. A prospective, randomized, multicenter 

Food and Drug Administration investigational device exemption study of lumbar total disc 



115 

 

replacement with the CHARITE artificial disc versus lumbar fusion: part II: evaluation of 

radiographic outcomes and correlation of surgical technique accuracy with clinical outcomes. 

Spine 30, 1576–1583 discussion E388-90. 

McCane, B., King, T.I., Abbott, J.H., 2006. Calculating the 2D motion of lumbar vertebrae using 

splines. Journal of Biomechanics 39, 2703-2708.  

 

McGill, S.M., Brown, S., 1992. Creep response of the lumbar spine to prolonged full flexion. Clinical 

Biomechics 7, 43-46. 

 

McLaughlin, T.M., Diltman, C.J., Lardner, T.J., 1977. Biomechanical analysis with cubic spline 

functions. Research Quarterly 48(3), 569-582. 

 

Meriam, J.L., Kraige, L.G., 2002. Engineering Mechanics: Dynamics (5th Edition). John Wiley & 

Sons, New York. 

 

Morgan, F.P., King, T., 1957. Primary instability of lumbar vertebrae as a common cause of low back 

pain. Journal of  Bone Joint Surgery British 39-B, 6–22. 

 

Muggleton, J.M., Allen, R., 1997. Automatic location of vertebrae in digitized videofluoroscopic 

images of the lumbar spine. Medical Engineering & Physics 19(1), 77-89. 

 

Murata, M., Morio, Y., Kuranobu, K.., 1994. Lumbar disc degeneration and segmental instability: a 

comparison of magnetic resonance imaging and plain radiographs of patients with low back pain. 

Archives of Orthopaedic and Trauma Surgery 113, 297–301. 

 

Nachemson, A.L., Schultz, A.B., Berkson, M.H., 1979. Mechanical properties of human lumbar spine 

motion segments: influence of age, sex, disc level, and degeneration. Spine 4, 1–8. 

 

Nägerl, H., Hawellek,T., Lehmann, A., Hubert, J., Saptschak, J., Dörner, J., Raab, B.W., Fanghänel, 

J., Kubein-Meesenburg, D., Wachowski, M.M., 2008. Non-linearity of flexion-extension 

characteristics in spinal segments. Acta of Bioengineering and Biomechanics 11(4), 3-8. 

 

Niosi, C.A., Oxland, T.R., 2004.Degenerative mechanics of the lumbar spine. The Spine Journal 4, 

202S-208S. 

 

Nizard, R.S., Wybier, M., Laredo, J.D. 2001. Radiologic assessment of lumbar intervertebral 

instability and degenerative spondylolisthesis. Radiologic Clinics of North America 39(1), 55-71. 

 



116 

 

Olsen S.I., 1993. Estimation of noise in images: An evaluation. In: Proceedings of CVGIP: Graphical 

Models and Image Processing 55,  319–323. 

 

Panjabi, M., 1979. Centers and angles of rotation of body joints: a study of errors and optimization. 

Journal of Biomechanics 12, 911-920. 

 

Panjabi, M.M., Goel, V.K., Walter, S.D., Schick, S., 1982. Errors in the center of and angle of rotation 

of a joint: An experimental study. Journal of Biomechanical Engineering 104, 232-237. 

 

Panjabi, M.M., Krag, M.H., Dimnet, J.C., Walter, S.D., Brand, R.A., 1984. Thoracic spine centers of 

rotation in the sagittal plane. Journal of Orthopaedic Research 1, 387-394. 

 

Panjabi, M., Chang, D., Dvorak, J., 1992a. An analysis of errors in kinematics parameters associated 

with in vivo functional radiographs. Spine 2, 200-205. 

 

Panjabi, M., 1992b. The stabilizing system of the spine. Part I. Function, dysfunction, adaption, and 

enhancement. Journal of Spinal Disorder 5(4), 383-389. 

 

Panjabi, M.M., 1992c. The stabilizing system of the spine. Part II. Neutral zone and instability 

hypothesis.  Journal of Spinal Disorders 5(4), 390-396. 

 

Panjabi, M.M., 2003. Clinical spinal instability and low back pain. Journal of Electromyography and 

Kinesiology 13, 371-379. 

 

Penning, L., Wilmink, J.T., van Woerden, H.H., 1984. Inability to prove instability. A critical 

appraisal of clinical radiological flexion-extension studies in lumbar disc degeneration. Diagnostic 

Imaging in Clinical Medicine 53: 186-192. 

 

Pearcy, M., Portek, I., Shepherd, J., 1984a. Three-dimensional x-ray analysis of normal movement in 

the lumbar spine. Spine 9, 294-297. 

 

Pearcy, M.J., Tibrewal, S.B., 1984b. Axial rotation and lateral bending in the normal lumbar spine 

measured by three-dimensional radiography. Spine 9(6), 582-587. 

 

Pearcy, M.J., Shepherd, J., 1985. Is there instability in spondylolisthesis?. Spine 10, 175-177. 

 

Pearcy, M.J., 1986.  Measurment of back and spinal mobility. Clincal Biomechanics, 44-51, 

 



117 

 

Pearcy, M.J., Bogduk, N., 1988. Instantaneous axes of rotation of the lumbar intervertebral joints. 

Spine 13(9), 1033-41.  

 

Pearcy, M.I., Hindle, R.J., 1989. New method for the non-invasive three-dimensional measurement of 

human back movement. Clinical Biomechics 4 (2),73-79. 

 

Posner, I., White, A.A. 3rd, Edwards, W.T., Hayes, W.C., 1982. A biomechanical analysis of the 

clinical stability of the lumbar and lumbosacra spine. Spine 7, 374–389. 

 

Portek, I., Pearcy, M.J., Reader, G.P., Mowat, A.G., 1983. Correlation between radiographic and 

clinical measurement of lumbar spine movement. British Journal of Rheumatology 22, 197–205. 

77. 

 

Putzier, M.,Funk,J.F.,Schneider,S.V.,etal.,2006.Charite total disc replacement — clinical  and 

radiographical results after an average follow-up of 17 years. European Spine Journal 15,183–195. 

 

Qiu, T.X., Teo, E.C., Lee, K.K., Ng, H.W., Yang, K., 2003. Validation of T10–T11 finite element 

model and determination of instantaneous axes of rotations in three anatomical planes. Spine 28, 

2694–2699. 

 

Reinsch, C.H., 1967. Smoothing by Spline Functions. Numerische Mathematik 10, 177-183. 

 

Rosenberg, P., 1955. The R-center method, a new method for analyzing vertebral motion by x-rays. 

Journal of the American Osteopathic Association 1, 103-111. 

 

Reichmann, S., Berglund, E., Lundgren, K., 1972. Das bewegungszentrum in der lendenwirbelsa¨ule 

bei flexion und extension. Z. Anat. Entwickl. 138, 283–287. 

 

Reuleaux, F., 1875. The Kinematics of Machinery: Outline of a Theory of Machines (translated by 

A.B.W. Kennedy). Dover. 

 

Rousseau, M.A., Bradford, D.S., Bertagnoli, R., Hu, S.S., Lotz, J.C., 2006a. Disc arthroplasty design 

influences intervertebral kinematics and facet forces. Spine Journal 6(3), 258-266. 

 

Rousseau, M.A., Bradford, D.S., Hadi, T.M., Pedersen, K.L., Lotz, J.C., 2006b. The instant axis of 

rotation influences facet forces at L5/S1 during flexion/extension and lateral bending. European 

Spine Journal 15, 299-307. 

 



118 

 

SariAli, el-H., Lemaire, J.P., Pascal-Mousselard, H., Carrier, H., Skalli, W., 2006. In vivo study of the 

kinematics in axial rotation of the lumbar spine after total intervertebral disc replacement: long-

term results: a 10-14 years follow up evaluation. European Spine Journal 15(10), 1501-1510. 

 

Schmidt, H., Heuer, F., Claes, L., Wilke, H.J., 2008a. The relation between the instantaneous center of 

rotation and facet joint forces - A finite element analysis. Clinical Biomechanics 23, 270-278.  

 

Schmidt, H., Heuer, F., Wilke, H.J., 2008b. Interaction between finite helical axes and facet joint 

forces under combined loading. Spine 33(25), 2741-2748. 

 

Schneider, G., Pearcy, M.J., Bogduk, N., 2005. Abnormal motion in spondylolytic spondylolisthesis. 

Spine 30(10), 1159-64. 

 

Schoenberg, I.J., 1964. Spline functions and the problem of graduation.Mathematics 52, 947-950. 

 

Scholten, P.J.M., Veldhuizen, A.G., Grootenboer, H.J., 1988. Stability of the human spine: a 

biomechanical study. Clinical Biomechanics, 3(1), 27-33. 

 

Selvik, G., 1989. Roentgen stereophotogrammetry. A method for the study of the kinematics of the 

skeletal system. Acta Orthopaedica Scandinavica, 60 (Suppl 232), 1-51. 

 

Shaffer, W.O., Spratt, K.F., Weinstein, J., Lehmann, T.R., Goel, V., 1990. The consistency and 

accuracy of roentgenograms for measuring sagittal translation in the lumbar vertebra motion 

segment. Spine 15, 741–750. 

 

Simonis C, 1994. Parallel calculation and analysis of spine kinematics using videofluoroscopy and 

image processing. PhD thesis, University of Southampton, Southampton. 

 

 Skellam, J.G., 1946. The frequency distribution of the difference between two poisson variates 

belonging to different populations. Journal of the Royal Statistical Society: Series A 109(3), 296. 

 

Spiegelman, J.J., Woo, S.L.. A rigid-body method for finding centers of rotation and angular 

displacements of planar joint motion. Journal of Biomechics 20(7), 715-721. 

 

Soini, J., Antti-Poika, I., Tallroth, K., Konttinen, Y.T., Honkanen, V., Santavirta, S., 1991. Disc 

degeneration and angular movement of the lumbar spine comparative study using plain and 

flexion-extension radiography and discography. Journal of Spinal Disorders 4, 183–187. 

 

Stokes, I.A., Frymoyer, J.W., 1987. Segmental motion and instability. Spine  12, 688–691. 



119 

 

 

Subramanian, N., Reitman, C.A., Nguyen, L., Hipp, J.A., 2007. Radiographic assessment and 

quantitative motion analysis of the cervical spine after serial sectioning of the anterior ligamentous 

structure. Spine 32(5), 518-526. 

 

Tallroth, K., Alaranta, H., Soukka, A., 1992. Lumbar mobility in asymptomatic individuals. Journal of  

Spinal Disorder 5, 481–484. 

 

Van Mameren, H., Sanches, H., Beurgens, J., Drukker, J., 1992. Cervical spine motion in the sagittal 

plane (II) position of segmental averaged instantaneous centers of rotation: a cineradiographic 

study. Spine 17, 467-474. 

 

Vint, P.F., Hinrichs,R.N., 1996. Endpoint error in smoothing and differentiating raw kinematic data: 

An evaluation of four popular methods. Journal of Biomechanics 29(12), 1637-1642. 

 

Wachowski, M.M., Ackenhausen, A., Dumont, C., Fanghänel, J., Kubein-Meesenburg, D., Nägerl, H, 

2007. Mechanical properties of cervical motion segments. The archive of mechanical engineering 

LIV(1), 5-15. 

 

Yoshioka, T., Tsuji, H., Hirano, N., et al., 1990. Motion characteristic of the normal lumbar spine in 

young adults: instantaneous axis of rotation and vertebral center motion analyses. Journal of Spinal 

Disorder 3, 103–113. 

 

Yochum, T.R., Rowe, L.J., 1996. Essentials of skeletal radiology, 2nd Ed. Williams and Wilkins, 

Baltimore. 

 

Wachowski, M.M., Mansour, M., Lee, C., Ackenhausen, A., Spiering, S., Fanghänel, J., Dumont, C., 

Kubein-Meesenburg, D., Nägerl, H., 2009a. How do spinal segments move?. Journal of 

Biomechanics 42, 2286-2293. 

 

Wachowski, M.M., Hubert, J., Hawellek, T., Mansour, M., Dorner, J., Kubein-Meesenburg, D., 

Fanghanel, J., Raab, B.W., Dumont, C., Nagerl, H, 2009b. Axial rotation in the lumbar spine 

following axial force wrench. Journal of Physiology and Pharmacology 60(Suppl. 8), 61-64. 

 

Wachowski, M.M., Hawellek, T., Hubert, J., Lehmann, A., Mansour, M., Dumont, C., Dörner, J., 

Raab, B.W., Kubein-Meesenburg, D., Nägerl, H, 2010. Migration of the Instantaneous Axis of 

Motion during Axial Rotation in Lumbar Segments and Role of the Zygapophysial Joints. Acta of 

Bioengineering and Biomechanics 12(4), 39-47. 

 



120 

 

Wang, J., Blackburn, T.J., 2000. The AAPM/RSNA physics tutorial for residents: X-ray image 

intensifiers for fluoroscopy. Radiographics 20(5), 1471-1477. 

 

Wang, X., Tian, B., Liang, C., Shi, D., 2008. Blind Image Quality Assessment for Measuring Image 

Blur. In: Proceedings of Congress on Image and Signal Processing, Sanya, Hainan, China, IEEE, 

467-470. 

 

White, A.A., Panjabi, M.M., The basic kinematics of human spine: a review of past and current 

knowledge. Spine 3 (1978), 12–20. 

 

White, A.A., Panjabi, M.M., 1990. Clinical Biomechanics of the Spine. Lippincott Williams & 

Wilkins, Philadelphia. 

 

Wilcox, R.K., 2006. An introduction to basic mechanics. Current Orthopaedics 20, 1-8. 

 

Wilson, D.C., Niosi, C.A., Zhu, Q.A., Oxland, T.R., Wilson, D.R., 2006. Accuracy and repeatability 

of a new method for measuring facet loads in the lumbar spine. Journal of Biomechics 39, 348–

353. 

 

Woltring, H.J., 1985. On optimal smoothing and derivative estimation from noisy displacement data 

in biomechanics. Human Movement Science 4(3), 229-245. 

 

Wood, G.A., Jennings, L.S., 1979. On the use of spline functions for data smoothing. Journal of 

Biomechanics 12, 477-479. 

 

Wood, G.A., 1982. Data smoothing and differentiation procedures in biomechanics. Exercise and 

Sport Science Reviews 10(1), 308-362. 

 

Wood, K.B., Popp, C.A., Transfeldt, E.E., Geissele, A.E., 1994. Radiographic evaluation of instability 

in spondylolisthesis. Spine 19:1697–1703. 

 

Xia, Q., Wang, S., Kozanek, M., Passias, P., Wood, K., Li, G., 2010. In-vivo motion characteristics of 

lumbar vertebrae in sagittal and transverse planes. Journal of Biomechanics 43, 1905-1909. 

 

Xu X., Chang, C.C., Faber, G.S., Kingma, I., Dennerlein, J.T., 2010a. Comparing polynomial and 

cubic spline interpolation of segment angles for estimating L5/S1 net moment during symmetric 

lifting tasks.Journal of Biomechanics 43(3), 583-586. 

 



121 

 

Xu, X., Chang, C.C., Faber, G.S., Kingma, I., Dennerlein, J.T., 2010b. Interpolation of segment Euler 

angles can provide a robust estimation of segment angular trajectories during asymmetric lifting 

tasks. Journal of Biomechanics 43, 2043-2048. 

 

Zheng, Y., Nixon, M.S., Allen, R., 2004. Automated segmentation of lumbar vertebrae in digital 

videofluoroscopic images. IEEE Transactions on Medical Imaging 23(1), 45-52. 

 

Zigler, J., Delamarter, R., Spivak, J.M. et al., 2007. Results of the prospective, randomized, 

multicenter Food and Drug Administration investigational device exemption study of the ProDisc-

L total disc replacement versus circumfer- ential fusion for the treatment of 1-level degenerative 

disc disease. Spine.32, 1155-62; discussion 1163. 


