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Abstract

Aircraft design, as many other engineering applications, are increasingly

relying on computational power. The growing need for multi-disciplinarity

and high-fidelity in design optimization and industrial applications implies

a huge number of repeated simulations to find an optimal design candidate.

Indeed, a strong effort has been done in the recent past to introduce po-

tentially highly accurate analysis methods both in geometry and physics

modelling. The main drawback is that they are computationally expensive.

The solution of non-linear steady or unsteady aerodynamic flows by numeri-

cally solving the Navier-Stokes equations implies an amount of data storage,

data handling and processor costs that may result very intensive even when

implemented on modern state-of-art computing platforms. This turns out

to be an even bigger issue when used within parametric studies, automated

search or optimization loops which typically may require thousands analysis

evaluations. The core issue of a design optimization problem is the search

process of an optimal solution. However, when facing complex problems,

the high-dimensionality of the design space and the high-multi-modality of

the target functions cannot be tackled with standard techniques. Surrogate

and reduced order modelling can provide a valuable alternative at a much

lower computational cost. A global surrogate model is generally referred to

as a low-cost model able to provide an approximation of a selected objective

function over the whole design space. A reduced order model is a surrogate

which is further able to capture and reproduce the physics embedded in

the high-fidelity model by using a low-dimensional basis. Hence, a reduced

order modelling of high-fidelity data (e.g. coming from accurate numerical

solvers) with limited computational cost is a highly desirable feature. This is

particularly true in CFD-based aerodynamic optimization. Commonly used

RANS solvers are still time-consuming when complex fluid dynamics cases



have to be faced, e.g. a wing-body aircraft configuration including engine

and tailplanes. In this perspective, the present research aims at making

a step towards bridging the gap between design stages through the cou-

pling and exploitation of advanced analysis methods, reduced order/meta-

modeling, optimization techniques and CAD-based tools towards the aero-

dynamic design of innovative aircraft configurations with reasonable com-

putational resources. The introduction of physics-based surrogate models

will allow to correctly drive the design process since the very early stages

and, hence, to refine the evaluation of potentially cost/environment saving

concepts.
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1

Introduction

1.1 Motivations

Modern air vehicle design has been increasingly driven by environmental as well as

operational constraints. The growing impact of ecological and economical issues re-

lated to a change in climate has made urgent regulations and industrial actions for a

future greening of air traffic. Among the most recognized within academic and indus-

try community, the Advisory Council for Aeronautics Research in Europe (ACARE)

2020 goals (see ref. (2)) ask to halve the emitted carbon dioxides (CO2) and air-

craft community noise as well as reducing emissions of nitrogen oxides (NOx) by 80%,

based on the technological level of 2000. Therefore, environmental concerns, including

emissions and noise, are gaining increasing importance in the design and operations

of commercial aircraft. Taking into account the current prognoses for the growth in

air traffic, the above mentioned challenges become even more significant. Despite the

current dip in air traffic growth both Airbus and Boeing agree in their current market

forecast that an annual growth of 5% for passenger services as well as for the air cargo

market is likely. From the point of view of the aircraft design task, environmental

objectives and constraints are translated into two main design targets: increase the

aerodynamic efficiency and reduce the aircraft noise. To reach these objectives and to

obtain substantial gain with respect to actual technology, new innovative and aggres-

sive configurations have to be studied. Indeed, the environmental impact of air traffic

is strongly affected by propulsion technology (fan, turbine, combustion, materials), air-

frame technology (aerodynamics, structures, systems), air traffic management, physics

1



1. INTRODUCTION

of the atmosphere. With particular reference to the airframe impact, aerodynamics can

play a significant role in fuel burn reduction. Figure 1.1 shows the relative importance

of each aerodynamic drag contribution and the corresponding potential of reduction by

investigating ad-hoc technologies. Here, the aerodynamic designer has a crucial task as

he can provide several contributions:

• passively enhance the laminar flow, i.e. shaping the aircraft components to max-

imize the portion of laminar flow to reduce the viscous drag;

• reduce the lift-induced drag by investigating new wing configurations (e.g., high

aspect ratio wings), optimizing the wing load and conceiving advanced wing tip

devices;

• control the wave drag by designing shock-less wing airfoils;

• mitigate the aerodynamic impact of engine-nacelle-pylon interference by properly

shaping the single components in order to avoid strong pressure jumps which

would cause shock waves and flow separations.

• search for novel aircraft configurations to reduce the tailplane/interference drag.

Figure 1.1: Aerodynamic drag reduction technology - The figure shows the aero-

dynamic drag break-down and, for each contribution, the potential solutions to mitigate it

(picture taken from ref. (3)).

2



1.2 Surrogate-Based Optimization

As usual, in order to correctly define the design paths, one should look to the

market. The regional market is already a large part of Air Transport System and in

2020 the share is estimated to rise to around 50% (according to references (4) and

(5)). Therefore regional aircraft are contributors to pollution mainly around regional

airports (noise, CO2 and NOx). Both Airbus and Boeing agree in their forecasts that

the market share of the regional and the single-aisle aircraft will be by far the biggest.

In these market segments the typical mission flown is often not longer that 500 to 750

NM. Due to the shortness and high number of the mission cycles, an improvement in

efficiency during cruise is not sufficient. Hence, the efficiency during all flight phases

has to be improved. This means that the design optimization problem should be cast

into a multi-(design)point and multi-objective form in order to take into account the

aircraft performances with changing flight conditions along the whole mission profile.

Another important goal addressed by ACARE 2020 view is related to the improve-

ment of the cost efficiency through the enhancement of the design workflow. The main

objectives are the time reduction of the product development and the halving of the

time-to-market. In this perspective, the present research aims at making a step to-

wards bridging the gap between design stages (e.g. as conceived by Raymer (6) and

summarized in table 1.1) through the coupling and exploitation of advanced analysis

methods, reduced order/meta-modeling, optimization techniques and CAD-based tools

towards the aerodynamic design of innovative aircraft configurations with reasonable

computational resources. The introduction of physics-based surrogate models will allow

to correctly drive the design process since the very early stages and, hence, to refine

the evaluation of potentially cost/environment saving concepts.

1.2 Surrogate-Based Optimization

The intrinsic design complexity of modern aircraft relies more and more on the devel-

opment and assessment of new theoretical methodologies capable of reducing or even

replacing the experimental load. Moreover, theoretical methods are often used to fur-

ther explore the trade-offs and alternatives when a decision about design path to be

undertaken must be faced or a down selection among design candidates must be done.

Two main characteristics are usually required to theoretical predictions in aircraft de-

sign and analysis: high-fidelity and low cost. High-fidelity is related to the capability

3



1. INTRODUCTION

of the theoretical method to reproduce “real-life” phenomena with a significant degree

of accuracy (e.g., flow transition and separation, aerodynamic stall prediction). In-

deed, due to global competition which pushes towards ever increasing technical and

commercial requirements, the theoretical/numerical representation of analysis details

and physical behaviour are applied in the early stages of the design process where the

design space has few limitations and therefore the number of degrees of freedom is

still large. Semi-empirical tools and rules, derived from classical configurations data,

have been traditionally applied thanks to their computational efficiency. However they

exhibit validity and flexibility issues in modern design as they loose accuracy when

the design path moves away from conventional. Moreover, to reach the environmental

objective of ACARE 2020, it is necessary to address non conventional configuration for

which existing semi-empirical simulation tools are not applicable. Therefore, a strong

effort has been done in the recent past to introduce potentially highly accurate design

analysis methods both in geometry and physics modelling. The main drawback is that

they are computationally expensive. For example, the solution of non-linear steady

or unsteady aerodynamic flows by numerically solving the Navier-Stokes equations im-

plies an amount of data storage, data handling and processor costs that may result

very intensive even when implemented on modern state-of-art computing platforms.

This turns out to be an even bigger issue when used within parametric studies, au-

tomated search or optimization loops which typically may require thousands analysis

evaluations.

In order to speed up the analysis process while keeping a high level of fidelity, re-

searchers from across the world are increasingly focusing on surrogate methodologies

like meta-models or reduced order models. They can provide a compact, accurate and

computationally efficient representation of the aircraft design performance index, usu-

ally referred to as objective or fitness function in an optimization context. Among the

various surrogate models, here with the term data-fits or meta-models we will address

all the methodologies which are based on the interpolation or reconstruction through

response surfaces of the objective function. On the other hand, reduced order models

(ROM) are mathematical models of the physical system under analysis (i.e., not just

the objective function is considered) which contain fewer degrees of freedom than the

original one and therefore it is relatively inexpensive to compute. Their use is primar-

ily motivated by the need to have detailed knowledge of the physics together with an

4



1.2 Surrogate-Based Optimization

Conceptual design Preliminary design Detail design

Definition of requirements Quick trade-offs and perfor-

mance evaluation

Design the actual pieces to

be built

Sketch of the general layout Configuration design Finalize weight and perfor-

mance estimates

Identification of trade-offs ”Low-fidelity” tools ”High-fidelity” tools

Gross estimation of weight

and cost

Table 1.1: The aircraft design phases according to Raymer

efficient and reliable prediction tool. Both data-fits and reduced order models are very

sensible to the so-called training phase, which consists in feeding the model with high-

fidelity data and finding the set of parameters which best fit the model to the available

data. For this purpose, effective sampling of the multi-dimensional design space is usu-

ally achieved by Design of Experiments (DOE) methods. The selected sampling points

are evaluated with the high-fidelity tools and, depending on the adopted surrogate tech-

nique, design objectives and constraints or vector/scalar fields of interests are used to

train the surrogate model. However, as we will discuss in the final chapters, sampling

the design space for surrogate building purposes is not a trivial operation, as a trade-

off exists between the exploration of the design solutions and the improvement of the

surrogate accuracy near predicted minima. Indeed, we will show how a proper balance

between these two concepts should be sought, especially when a shape optimization

problem, implying multi-modal objective functions, constraints and highly non-linear

characteristics, has to be faced.

1.2.1 The Aircraft Design Optimization Problem

A broad class of aircraft design applications can be numerically modeled with the

minimization of a function f which depends on two sets of variables: the design variables

x, which the designer can directly control, and the state variables y which provide the

evolution of the system representing the underlying physics. The design problem can

be formulated as a nonlinear programming problem:

5



1. INTRODUCTION

min
x,y

f(x,y)

subject to r(x,y) = 0

g(x,y) ≤ 0,

xL ≤ x ≤ xU

(1.1)

f is the objective function which the designer wants to minimize to improve the

performances. In aircraft design, typical objective functions are the weight, the noise,

the drag, the aerodynamic efficiency or a combination of them. r(x,y) is the state

equations set which links the design variables and the state variables and it usually

represents the governing laws, inspired by the physics, that the physical system must

satisfy. In aerodynamic design, the state equations are modelled through computational

fluid dynamics, e.g. the Navier Stokes equations, which relates scalar of vector field

(state) variables, like pressure or velocity, to the aircraft component shape. This is

made dependent on the design vector by means of a parameterization approach, which

is another fundamental ingredient in a shape optimization problem. The vector g(x,y)

and h(x,y) are filled respectively with inequality and equality constraint functions

which must be satisfied to consider a design candidate feasible. Examples in aircraft

design are the generation of a minimum lift level to balance the weight or a threshold

pitching moment coefficient to allow for trim. xL and xU are the lower and upper

bounds of the design variables and thus specify the range of allowable values for the

design vector x. The computational time required to solve this problem is basically

affected by two parameters: given a vector x∗, the cost for a single evaluations of

f (x∗,y) and g,h(x∗,y), which require the satisfaction of r(x∗,y) = 0, and the number

of function evaluations required to effectively minimize the objective function. By

adopting a surrogate model, we overcome the first of the two time-consuming factor. A

surrogate model consists in replacing the expensive objective f and constraint functions

g,h with less expensive, lower-fidelity models f̂ and ĝ, ĥ. In the next section, a brief

overview of typical surrogate models will be given. Concerning the reduced order

modelling, it can be observed that the dimensionality of the optimization problem is

twofold: the state vector and design vector dimension. As the first one is usually much

bigger than the second, model reduction can be applied to explicit the dependency of

y on x and solve the state variables as functions of the design ones. In other words,

6
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the reduced order optimization problem 1.1 can be cast in a simplified form as:

min
x

f(x)

subject to c(x,y) ≤ 0
(1.2)

where the dependence on the state variables has been dropped and all the constraint

functions have been enclosed in a single vector.

1.2.1.1 The importance of geometry parameterization

An important issue is the link between the response function and the design param-

eters. A proper parameterization has to be carefully chosen when using a surrogate

model because the training phase has to include not only as much physics as possible

(i.e., right selection of the high-fidelity solver) but also as much information about the

design sensitivities as possible. As an example, let’s consider the optimization of a wing

airfoil for maximum natural laminar flow in transonic conditions. It is well known that

one of the key desgin parameter is the leading edge radius: indeed, the front part of the

airfoil should be shaped in order to avoid leading edge suction peak that would enhance

the transition to turbulence and destroy the laminarity of the boundary layer. Even

using an aerodynamic method able to catch the physics behind the laminar to tur-

bulent transition, the design would fail if the chosen parameterization would not take

into account the complete shape modification around the leading edge. Indeed, when

representing the geometry of an aircraft or an aircraft component in any particular

aerodynamic design optimization process, the choice of a proper mathematical repre-

sentation can significantly alter the computational resources of the overall optimization

process, the size and characteristics of the design space and the smoothness/feasibility

of a design solution. Moreover, the coupling between the optimization and the pa-

rameterization methods should be carefully evaluated in order to avoid incompatibility

issues. A classic example is the use of discrete coordinates as design variables in an

evolutionary optimization process, where the resulting design space could be heavily

populated with irregular, bumpy and not smooth geometries; thus, finding a realistic

smooth optimum may be practically impossible. The geometry representation method

also affects whether a meaningful optimum is contained in the design space and if an

optimum design exists,whether or not it can be found. So, high-fidelity is not enough:

geometry parameterization is another key point towards the optimal solution of a given

aircraft design problem.

7
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1.2.2 Surrogate models

Surrogate models or meta-models have been introduced into the design optimization

community to capture the salient features of an expensive high-fidelity model at low

computational cost. In the aircraft design common practice, they are used as response

functions in parametric analyses over the design space to understand the variations

of the objective functions, as quick evaluator in an optimization problem or even in

uncertainty quantification studies. Basically, surrogate models can be divided in three

groups: data fits surrogates, multi-fidelity models and reduced order models.

1.2.2.1 Data-fit models

Data fitting methods involve construction of an approximation or surrogate model

using data (response values, gradients, and Hessians) generated from the original truth

model. Global methods, often referred to as response surface methods, involve many

points spread over the parameter ranges of interest. These surface fitting methods work

in conjunction with the sampling methods and design of experiments methods. Some

examples of global methods are:

Polynomial Regression: nth order polynomial approximations computed using

linear least squares regression methods;

Kriging interpolation and Gaussian process: it is a regression method used in

geostatistical sciences which interpolates the value of a random field at an unobserved

location from observations of its value at nearby locations. The algorithm used in the

kriging process generates a C2-continuous surface that exactly interpolates the data

values. Similar to Kriging, a Gaussian process is a spatial interpolation method that

assumes the outputs of the simulation model follow a multivariate normal distribution.

The hyper-parameters governing the covariance matrix are obtained through Maximum

Likelihood Estimation (MLE);

Artificial Neural Networks: a neural network consists of an interconnected

group of artificial neurons. In most cases a neural network is an adaptive system

that changes its structure based on external or internal information that flows through

the network during the learning phase;

Radial Basis Functions: Radial basis functions (RBFs) are functions whose value

typically depends on the distance from a center point, called the centroid. The surrogate
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1.2 Surrogate-Based Optimization

model approximation is constructed as the weighted sum of individual radial basis

functions;

Moving Least Squares: it can be considered a more specialized version of linear

regression models. It provides a weighted least squares approach where the weighting

is “moved” or recalculated for every new point where a prediction is desired;

1.2.2.2 Multi-fidelity models

A second type of surrogate is the hierarchical one (also called multi-fidelity or variable

fidelity). In this case, the surrogate model is built with a lower fidelity approximation

which, however, is still inspired by the physical behaviour of the system. Multi-fidelity

models are classified according to the way they operate the fidelity reduction: examples

in aerodynamics are coarser mesh discretization, same high-fidelity model but at higher

residual convergence levels, simplified methods obtained by neglecting part of the basic

physics of the high-fidelity (e.g., neglecting the effects of fluid viscosity and heat transfer

into Navier-Stokes model allows to derive the Euler model).

1.2.2.3 Reduced order modelling

A reduced-order model (ROM) is mathematically derived from a high-fidelity model

using a projection technique. It consists in computing a set of basis functions (e.g,

eigenmodes, left singular vectors) from an ensemble of representative dataset of real

scalar or vector fields, identifying how many of them capture the principal dynamics

of the system and projecting the high-order system onto the retained basis. Hence,

reduced order methods require the a priori, off-line solution of high-fidelity, very ex-

pensive governing equations in order to build the ensemble dataset. The advantage of

reduced order models with respect to data fits is that they are derived by projection

of the high-fidelity field solution rather than by interpolation of some quantities, thus

having the potential to keep more physics within the approximation. The Proper Or-

thogonal Decomposition (POD) or Principal Component Analysis (PCA) is an elegant

and powerful data-reduction method for non-linear physical systems. Its application to

the aerodynamic optimization of aircraft components is the core of the present research

work. The basic theory and techniques will be described later on in dedicated chapters.
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x y z

0.429604 0.756743 0.533522

0.034125 0.085996 0.216432

0.538876 0.463501 0.680638

0.213985 0.308366 0.734739

0.855647 0.022770 0.037772

0.195779 0.849284 0.082571

0.213159 0.445299 0.472457

0.317270 0.193087 0.123772

0.280803 0.298640 0.481686

0.249933 0.608013 0.963503

Table 1.2: Three-dimensional data set

1.2.2.4 An example of dimensionality reduction

In this section, a very simple example of Proper Orthogonal Decomposition data re-

duction of a discrete set is presented to give a basic understanding of the technique.

Consider a set of N = 10 three-dimensional data (d = 3), reported in table 1.2 and

depicted in figure 1.2. These points can be projected from a three-dimensional space

to smaller subspaces, e.g. two-dimensional (d = 2) or one-dimensional (d = 1). Here,

a tutorial on how to perform such a projection in an “optimal” way with POD is

illustrated. First of all, let’s define the mean, variance and covariance of the data set:

x̄ =
1

N

N∑
i=1

xi; σ2 =
1

N − 1

N∑
i=1

(xi − x̄)2; Cxy =
1

N − 1

N∑
i=1

(xi − x̄)(yi − ȳ)

It the variance is a measure of how far a set of numbers are spread out from each

other, the covariance is a measure of how two variables change together.

Variance and covariance can be summarized in the so-called covariance matrix,

where the (ith, jth) element is the covariance between the variable i and j. Obviously,

the elements along the main diagonal represent the variance and the matrix is symmetric

positive semi-definite. In the present case, the mean values are x̄ = 0.332918, ȳ =

0.403169, z̄ = 0.432709 while the covariance matrix has the following form:
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Figure 1.2: Three-dimensional data set, graphical representation

C =

 0.052381 −0.013409 −0.012827
−0.013409 0.075640 0.028309
−0.012827 0.028309 0.096596


The variance along the z-direction is almost double than along x and this clearly

indicates that, being the variance of the data set dependent on the projection direction,

there should exist a peculiar unit vector (data reduction to d = 1) which maximizes the

variance when projecting the three-dimensional data onto it. Similarly, there should

exist a plane which maximizes the covariance when projecting the data set onto it and

minimizes the variance along the normal direction. These “optimal” directions can be

determined by finding the eigenvalues of the covariance matrix and their corresponding

eigenvectors. The eigenvalues and eigenvectors are:

λ1 = 0.046261; λ2 = 0.057225; λ3 = 0.121131;

[v1,v2,v3] =

 0.9083706 −0.3302926 −0.2564559
0.4181497 0.7120389 0.5640491
−0.0036946 −0.6196026 0.7849070


In figure 1.3 the three eigenvectors, centered on the ensemble mean value, are plot-

ted on the same graph with data points (green, grey and blue colors respectively for

v1,v2,v3) : not only they are perpendicular, but also the eigenvector with the cor-

responding bigger eigenvalue (v1, blue vector in the figure) provides the best linear
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Figure 1.3: POD basis graphical representation

fit of the data. This is because the magnitude of an eigenvalue gives the variance of

the dataset when projecting along the corresponding eigenvector. Hence, ranking the

eigenvalues means to introduce an ordering of the eigenvectors according to their “im-

portance” in fitting the original data. By ignoring the last eigenvectors, as they are

the less significant, the original data set will be described in terms of a reduced set of

dimensions. This is the main concept behind the notion of dimensionality reduction.

Now, suppose that we keep just two out of three eigenvectors (known also as POD

modes): in this case, a two-dimensional data set is derived from the original three-

dimensional one by multiplying the centered data (obtained by subtracting the mean

value to the initial ensemble) with v2,v3:



0.096686 0.353573 0.100812

−0.298793 −0.317174 −0.216277

0.205958 0.060331 0.247929

−0.118933 −0.094804 0.302030

0.522729 −0.380400 −0.394937

−0.137140 0.446114 −0.350138

−0.119759 0.042129 0.039748

−0.015648 −0.210083 −0.308937

−0.052115 −0.104529 0.048977

−0.082985 0.204843 0.530793



−0.3302926 −0.2564559

0.7120389 0.5640491

−0.6196026 0.7849070

 =



0.1573598 0.2537654

0.0068553 −0.2720319

−0.1786861 0.1758118

−0.2153595 0.2140922

−0.1988088 −0.6586102

0.5798934 0.0119745

0.0449246 0.0856744

0.0469992 −0.3569709

−0.0875623 −0.0071520

−0.1556155 0.5534469


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The obtained data, known as POD coefficients, represent the projections of the cen-

tered original data onto the two directions with the most significant variance. Hence,

a new three-dimensional data set can be reconstructed by multiplying the POD coeffi-

cients with v2,v3:



0.1573598 0.2537654

0.0068553 −0.2720319

−0.1786861 0.1758118

−0.2153595 0.2140922

−0.1988088 −0.6586102

0.5798934 0.0119745

0.0449246 0.0856744

0.0469992 −0.3569709

−0.0875623 −0.0071520

−0.1556155 0.5534469



[
−0.33029 0.71204 −0.61960

−0.25646 0.56405 0.78491

]
=



−0.117054 0.255182 0.101682

0.067500 −0.148558 −0.217767

0.013931 −0.028065 0.248710

0.016226 −0.032586 0.301480

0.234570 −0.513048 −0.393765

−0.194605 0.419661 −0.349905

−0.036810 0.080313 0.039411

0.076024 −0.167884 −0.309310

0.030755 −0.066382 0.048640

−0.090536 0.201367 0.530824



Figure 1.4 plots the reconstructed three-dimensional data compared to the original

ones on the XY plane. Such a representation is very useful because the less energetic

mode, i.e. the first eigenvector, has almost a zero-valued component along the z-

axis, meaning that it lies in a plane perpendicular to the z-axis: because of their

mutual orthogonality, the first two modes necessarily define a plane almost parallel

to the z-axis along which the reconstructed data are placed as only two eigenvectors

have been used. Hence, a visualization on the XY plane is particurarly interesting to

understand the result of the projection. It is evident that the reconstruction will loose

some information, but nevertheless a good approximation of the original ensemble is

obtained. The approximated data can be represented in three dimensions, but they

are basically two-dimensional as they can be represented by two basis vector only.

Therefore, the original three-dimensional set of data was reduced to a two-dimensional

set of data represented by the coordinates in the v2,v3 plane.

It must be underlined that in the proposed example the data ensemble has been

generated randomly, so as no clear patterns or coherent trends can be identified between

the lines. Indeed, when applying the POD technique to real cases, where the ensemble

is assembled on results coming from a physics-based model, the main challenge will be

to extract the most significant features through the model reduction. Moreover, when

the POD concept is extended to the handling of large data sets as in computational

fluid dynamics (CFD), a bigger potential can be seen to reduce such multi-dimensional
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Figure 1.4: 3D data reconstruction with 2 POD modes - XY plane projection

problems. In particular, a significant saving in computational time, resources and

storing is expected to be achieved.

1.3 Aim and objectives

The main objective of the present research is to investigate a surrogate-based optimiza-

tion method for aerodynamic design which adopts POD-based techniques as approxi-

mation models for computational efficiency and improved accuracy. Two-dimensional

Reynolds-averaged Navier-Stokes flows are considered, but the proposed methodolo-

gies, dealing with linear algebra techniques, can be easily extended to three-dimensional

flows. The suitability of the model reduction is particularly studied for the treatment of

transonic conditions. To this aims, several contributions and steps have been identified

and accomplished.

• Build a mathematical model for dimensionality reduction through Proper Or-

thogonal Decomposition;

• Develop a physics-based global surrogate model by coupling the POD module with

a data-fit interpolation method. This step is needed to make the meta-model able

to predict the flow solution outside the training ensemble;

14
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• Develop an alternative computational approach to overcome the limits of surro-

gate models in predicting transonic flows. In particular, a zonal approach can

be effective as it decomposes the flow domain in two parts: a full-order domain

where the high-fidelity analysis is carried out and a reduced order domain where

the POD prediction is applied;

• Develop adaptive design of experiments techiques to cleverly train the POD mod-

ule when highly non-linear, rapidly varying design landscapes and large design

spaces have to be explored;

• Validate the POD-based global surrogate in a two-dimensional transonic case;

• Integrate the POD surrogate model into an evolutionary optimization workflow;

• Perform a surrogate-based evolutionary optimization of a two-dimensional tran-

sonic case by exploiting the validated approach and comparing it with standard

techniques to understand pros and cons of the physics-based meta-model;

1.4 Thesis outline

The thesis can be ideally divided into three main parts. The first is devoted to the illus-

tration of state-of-the-art computational tools and computational procedures for aero-

dynamic design. The second is devoted to the presentation of POD theory and POD-

based reduced order models. The third part contains the application of surrogate-based

optimizations to aerodynamic design in transonic flow. The next chapter is dedicated

to an extensive literature review about surrogate-based optimization and POD-based

modelling. In chapter three, an overview of the ingredients for aerodynamic optimiza-

tion are presented. An advanced geometry parameterization with CAD integration

is proposed as an accurate method to describe aerodynamic shapes and to be consis-

tently used in a design optimization process. Therefore, the governing equations of

Fluid Dynamics are introduced, the aerodynamic flow solver ZEN is described as it

has been used to generate the surrogate training solutions and it provides the reference

aerodynamic evaluator in our optimization chain. The evolutionary optimization tool

is briefly described and an example of aircraft wing-body aerodynamic optimization in
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transonic conditions is shown to provide a state-of-the-art approach and further moti-

vations to the present research. Chapter four is devoted to the POD surrogate theory

with special focus on the singular value decomposition solution and pseudo-continuous

representation of POD coefficients. Chapter five proposes some techniques to enhance

the reduced order prediction in presence of a highly non-linear design optimization.

Moreover, adaptive design of experiments techniques based on the improvement of

POD modal coefficients and basis vectors are discussed. Finally, chapter six focuses on

the application of adaptive and non-adaptive, data-fit surrogates and POD-based re-

duced order models in aerodynamic optimization: the optimization a two-dimensional

airfoil in transonic flow with and without surrogates is presented and a detailed analysis

of the obtained results lay the foundations for further work and improvements.
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Literature review

This chapter proposes a survey of the most relevant literature articles concerning

surrogate-based evolutionary optimization and reduced order modelling with Proper

Orthogonal Decomposition applied to aircraft aerodynamic design. The topics have

been widely discussed in the recent past, thanks to their innovative character and broad

application areas. The introduction of surrogate models as fitness approximation within

an evolutionary optimization system mitigates the demand for large computational re-

sources associated to such search algorithms, allowing to find a proper balance between

the complete exploration of huge design spaces and limited cost. To this aim, reduced

order modelling through POD is a step forward, as a modal decomposition of an ensem-

ble of functions, derived from numerical simulations, is performed to extract the most

relevant patterns in the data set. Hence, compared to standard, interpolating meta-

models which are usually trained on an integral function representing the objective,

reduced order models should assure a deeper insight into the modelled phenomena.

2.1 Surrogate-based Optimization

Surrogate-based optimization (SBO) has been introduced to tackle the number of func-

tion evaluations in many engineering optimization problems. This represents a special

challenge in the field of global optimization as state-of-the-art methods often requires

more function evaluations than can be comfortably affordable. A well-established ap-

proach consists in fitting some kind of response functions to basic data obtained by

evaluating the objectives and constraints at a few points. The resulting surfaces, af-
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fordable at low cost, can provide fast answers in terms of trade-off analysis and opti-

mization as well as just an intuitive sketch behaviour by means of simple visualization.

The basic process is the following:

1. design space sampling: once the design variables have been chosen, a sampling

plan is defined and some initial sample designs are analysed with an accurate

solver;

2. surrogate model selection and construction: a surrogate model type is selected

and used to build a meta-model of the underlying problem;

3. model validation: the model is checked according to some statistical metrics and,

if not enough accurate, a search is carried out using the model to identify new

design points for analysis;

4. model updating: the new results are added to those already available and a new

meta-model is built (repeating the last three steps;

5. optimization: the refined surrogate is used to provide objective/constraint func-

tions;

As SBO covers so many topics, the literature on the subject is huge. A plenty of ideas

have been proposed in the last twenty years, classified for design space dimensions,

surrogate methods, search algorithms, updating algorithms, application areas. Hence,

an exhaustive survey of all the possible ideas for each topic and all the possible com-

bination of them would go beyond the scope of the present research. Here we take

a more in depth look at the various methods of constructing a surrogate model and,

in particular, at optimization assisted with the surrogate. Jones et al. (7), among

the first, proposed a response surface methodology based on modelling the objective

and constraint functions with stochastic processes (Kriging). The so-called Design and

Analysis of Computed Experiments (DACE) stochastic process model was built as a

sum of regression terms and normally distributed error terms. The main conceptual

assumption was that the lack of fit due only to the regression terms can be consid-

ered as entirely due to modelling error, not measurement error or noise, because the

training data are derived from a deterministic simulation. Hence, by assuming that
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the errors at different points in the design space are not independent and the correla-

tion between them is related to the distance between the computed points, the authors

came up with an interpolating surrogate model able to provide not only the prediction

of objectives/constraints at a desired sample point, but also an estimation of the ap-

proximation error. After the construction of such a surrogate model, this last powerful

property is exploited to build an Efficient Global Optimization (EGO), which can be

considered as the progenitor of a long and still in development chain of SBO methods.

Indeed, they found a proper balancing between the need to exploit the approximation

surface (by sampling where it is minimized) with the need to improve the approxima-

tion (by sampling where prediction error may be high). This was done by introducing

the Expected Improvement (EI) concept, already proposed by Schonlau (8), that is an

auxiliary function to be maximized instead of the original objective. Figure 2.1 well

explains the underlying idea. At each point along the x-axis, a normal density function

with the mean and standard deviation suggested by the DACE predictor can be drawn.

The tail of such distributions extends below the current best function value fmin . The

integral of the area below fmin represents the probability of improvement. By weighting

the possible improvements by the associated density value, the Expected Improvement

is obtained. Figure 2.2 shows an example taken from (7). The red curves represent the

DACE prediction built on blue sample points, while the green curve show the Expected

Improvement curves. It is easy to see that sampling at a point where this auxiliary

function is maximized improves both the local (exploitation) and global (exploration)

search.

In a further work, Jones (1) proposed a taxonomy of global SBO methods. Seven

methods were identified and classified on whether they were interpolating (cubic splines,

thin-plate splines, multiquadrics, kriging) or not (quadratic polynomials), whether they

provided statistical information (kriging) or not (splines) and whether the method for

selecting search points (updating the model by adding new sample points) was two-

stage (probability/expected improvement) or one-stage (goal-seeking, credibility func-

tion). Figure 2.3 reports the considered taxonomy. The seven SBO methods described

hereinafter refer to those described in the figure.

The first two methods consisted in four steps: fitting a surface through sample

points, finding the minimum of the surface, evaluating the function at the surface min-

imum and then iterating. In particular, the first one, based on a quadratic polynomial

19



2. LITERATURE REVIEW

Figure 2.1: DACE prediction error - The figure shows how a normal density function

can be built at each point having the standard deviation equal to the DACE prediction

error.

Figure 2.2: Expected Improvement measure to improve the goodness-of-fit -

(a) The expected improvement function when only five points have been sampled; (b) the

expected improvement function after adding a point at x=2.8. In both (a) and (b) the left

scale is for the objective function and the right scale is for the expected improvement
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Figure 2.3: Taxonomy of response surface-based global optimization methods,

according to Jones (1) -

surface, completely failed due to a lack of fitting. Even the second method, built on

kriging or spline interpolating surfaces, easily missed the global optimum, but at least

converged to a local minimum. Torn and Zilinskas (9) proved that, in order to converge

to the global optimum for a general continuous function, the sequence of iterates must

be dense. In other words, we are asking the method to converge to every point in the

domain. The practical lesson of the theorem is that any globally convergent method

must have a feature that forces it to pay attention to parts of the space that have been

relatively unexplored and, from time to time, to go back and sample in these regions.

Methods 1 and 2 failed to find a global minimum in our examples because they have no

such feature. As discussed by Alexandrov et. al. (10), a comfortable way to improve

such methods and to ensure convergence to a critical point is to force the gradient of the

surface to match the gradient of the function whenever the search stagnates. Alexan-

drov showed that this additional condition is not sufficient: by using also a trust region

approach, a locally convergent method was developed. In this context, it is worth to

mention the work from Booker et.al. (11), who showed how response surfaces can be

used to accelerate a derivative-free method of local optimization.

Proceeding with the proposed taxonomy, Jones studied three more methods based

on kriging ability to estimate potential error in its predictions. The first one (Method

21



2. LITERATURE REVIEW

3) minimizes an auxiliary function called statistical lower bounding function obtained

by subtracting several standard errors from the predictor. However, the successive it-

erates resulted to not be dense, hence the search could fail to find the global minimum

according to Torn and Zilinskas theorem. Method 4 built the next iterate by maximiz-

ing the estimated probability that the function value at a point would be better than a

pre-defined target T. Obviously, the search would depend on the value of T, which we

do not know a-priori, rather it is the goal of the search process. Anyway, by computing

several search points for several values of T, an enhanced method was obtained which

showed promising results. The last kriging-based Method 5 maximized the expected

improvement, as described above. Methods 3−5, relying upon the standard error com-

puted in kriging, could perform poorly if initial sample was highly deceptive. Deceptive

samples could cause the kriging standard error to underestimate the true error in the

predictor and, as a result, Methods 3−5 might converge prematurely or slowly. The

use of several targets in Enhanced Method 4 seemed to reduce the negative impact of

a deceptive initial sample, which is one reason why this approach was considered very

promising. The five methods reviewed so far were “two-stage” methods, because the

meta-model was first built on the sampling set and then exploited through auxiliary

functions optimization to search for new updating points. In the same work, Jones

turned his attention to “one-stage” methods with the aim of completely avoiding to be

diverted by deceptive samples.

These methods make some hypotheses about the location of the optimum and then,

by using the response surface mathematical support, measure the “credibility” of such

hypotheses. In Method 6 Jones assumed that a known goal f∗ value should be reached

for the objective function. The next iterate was the point x∗ where, based on some

mathematical definitions, it was “most credible” to find the value f∗ . This method

was found to converge quickly to the goal. In Method 7, the author again aimed at

find the global minimum of the objective function, but this time the minimal function

value was not known neither fixed in advance. This case was handled by comput-

ing several search points using several values of f∗, just as several values of T were

used in Enhanced Method 4. Gutmann (12) reported excellent numerical results for a

spline-based implementation of Method 7 and proved the convergence of the method.

Compared to previous methods, Method 7 required a high number of true function

evaluations to find the global optimum, but, as Jones wrote, “this is the price we pay
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for the additional robustness”. An overview of SBO techniques was presented also by

Queipo et al. (13) and Simpson et al. (14). They covered some of the most popular

methods in design space sampling, surrogate model construction, model selection and

validation, sensitivity analysis, and surrogate-based optimization. Forrester and Keane

(15) recently proposed a review of some advances in surrogate-based optimization. An

important lesson learned is that only calling the true function can confirm the results

coming from the surrogate model. Indeed, the path towards the global optimum is

made of iterative steps where, even exploiting some surrogate model, only the best

results coming from the true function evaluations are taken as optimal or sub−optimal

design. The true function evaluation has to be also invoked to improve the surrogate

model. With the term “in-fill criteria” it is usually meant some principles which allow

to intelligently place new points (in-fill points) at which the true function should be

called. The selection of infill points, also referred to as adaptive sampling or model

updating, represent the core of a surrogate-based optimization method and helps to

improve the surrogate prediction in promising areas of the objective space.

The right choice of the number of points which the initial sampling plan would

comprise and the ratio between initial/in-fill points has been the focus of several recent

studies. However, it must be underlined that no universal rules exist, as each choice

should be carefully evaluated according to the design problem (e.g., number of variables,

computational budget, type of surrogate). Forrester and Keane assumed that there is

a maximum budget of function evaluations, so as to define the number of points as

a fraction of this budget. They identified three main cases according to the aim of

the surrogate construction: pure visualization and design space comprehension, model

exploitation and balanced exploration/exploitation. In the firs case, the sampling plan

should contain all of budgeted points as no further refinement of the model is foreseen.

In the exploitation case, the surrogate can be used as the basis for an in-fill criterion,

that means some computational budget must be saved for adding points to improve

the model. They also proposed to reserve less than one half points to the exploitation

phase as a small amount of surrogate enhancement is possible during the in-fill process.

In the third case, that is two-stage balanced exploitation/exploration in-fill criterion, as

also shown by Sobester et al. (16), they suggested to employ one third of the points in

the initial sample while saving the remaining for the in-fill stage. Indeed, such balanced

methods rely less on the initial prediction and so fewer points are required. Concerning
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the choice of the surrogate, the authors observed that it should depend on the problem

size, i.e. the dimensionality of the design space, the expected complexity, the cost of

the true analyses and the in-fill strategy to be adopted. They proposed their own SBO

methods taxonomy, shown in table 2.4.

Figure 2.4: SBO methods taxonomy according to Forrester - SBO methods are

classified according to problem size k, computational budget in terms of number of true

computations n and initial/in-fill samples ratio

However, for a given problem, there is not a general rule. The proper choice could

come up past various model selection and validation criteria. The accuracy of a number

of surrogates could be compared by assessing their ability to predict a validation data

set. Therefore, part of the true computed data should be used for validation purposes

only and not for model training. This approach can be infeasible when the true evalu-

ations is computationally expensive. To overcome this issue, Goel et al. (17) proposed

a weighted average of an ensemble of surrogates. For example, a better model can be

achieved by combining Kriging, which might accurately predict the non-linear aspects

of a function, and polynomials to better capture the regression trends. Forrester also

underlined that some in-fill criteria and certain surrogate models are somewhat inti-

mately connected. For a surrogate model to be considered suitable for a give in-fill

criterion, the mathematical machinery of the surrogate should exhibit the capability to

adapt to unexpected, local non-linear behaviour of the true function to be mimicked.

From this point of view, polynomials can be immediately excluded since a very high

order would be required to match this capability, implying a high number of sampling

points. Figure 2.5, taken from Forrester research work, shows how the convergence to a

local optimum can be achieved by simply minimizing the surrogate, evaluating the true
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function at the minimum point and in-filling it for updating the model. In general,

a global search would require a surrogate model able to provide an estimate of the

error it commits when predicting. Thus, the authors suggested to use Gaussian process

based methods like Kriging, although citing the work of Gutmann (12) as an example

of one−stage goal seeking approach employing various radial basis functions. Finally,

some interesting suitable convergence criterion to stop the surrogate in-fill process were

proposed. In an exploitation case, i.e. when minimizing the surrogate prediction as in

Figure 2.5, one can rather obviously choose to stop when no further significant improve-

ment is detected. On the other hand, when an exploration method is employed, one is

interested in obtaining a satisfying prediction everywhere, so that he can decide to stop

the in-filling when some generalization error metrics, e.g. cross−validation, falls below

a certain threshold. When using the probability or expectation of improvement, a nat-

ural choice is to consider the algorithm converged when the probability is very low or

the expected improvement drops below a percentage of the range of observed objective

function values. However, the authors also observed that discussing on convergence

criterion may be interesting and fruitful, but ”in many real engineering problems we

actually stop when we run out of available time or resources, dictated by design cycle

scheduling or costs”. This is what typically happens in aerodynamic design, where the

high-dimensionality of the design space and expensive computer simulations often do

not allow to reach the global optimum of the design problem but suggest to consider

even a premature, sub-optimal solution as a converged point.

2.2 Proper Orthogonal Decomposition

Proper Orthogonal Decomposition is exploited in the present research as a model re-

duction technique. A wide and comprehensive review of POD-based applications can

be found in (18). Following the classification made by Antoulas et al. (19), they

can be based on the singular value decomposition (SVD) and on moment matching.

The Karhunen-Loéve expansion turns out to be a popular method for both linear and

non-linear systems and, hence, an appropriate choice for model order reduction in non-

linear systems Euler or Navier-Stokes equations in aerodynamics. The technique was

proposed by several authors at different times, in different fields and under a variety of

names (20). It is essentially a linear transformation to diagonalize a given matrix. Due
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Figure 2.5: Example of SBO minimizing the predictor - Starting from squares

(initial samples), the method converges to a local minimum after adding five in-fill points

(circles) in five steps of surrogate minimization

to the large number of computations required to extract the matrix eigenvectors, this

technique was left aside until the increase of computational power produced efficient

algorithms to get rid of this issue. The Proper Orthogonal Decomposition (also known

as Principal Component Analysis) and the Singular Value Decomposition are generally

treated as the same thing, however it must be underlined that the second technique is

just a method of solution of the orthogonal basis, hence they are not strictly the same.

In the perspective of a fluid dynamic problem, the POD can be defined as a

statistically-derived process which provides a mathematical representation of the high-

energy components of a fluid flow field. This is done by decomposing the observed

structure into a set of uncorrelated linear components which provide a low-dimensional

representation of the problem. The components are the eigenfunctions of a correlation

tensor and the expansion is optimal in the sense that the POD eigenfunctions maximize

the total energy captured in each co-ordinate direction, subject to orthogonality con-

straints. Restricting the overview to the fluid dynamics applications, the method has

been originally used in stochastic turbulence problems (21), where the POD eigenfunc-

tions were related to the characteristic eddies of the turbulence field. The method has

also been used in steady aerodynamic analysis such as the design of inviscid aerofoils
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by LeGresley and Alonso (22) and parametric studies by Epureanu et al. (23) and

Bui-Thanh et al. (24, 25).

Concerning reduced order models derivation, Sirovich (26) introduced the method

of snapshots as a way for efficiently determining the POD basis functions or modes

for large problems. This technique can be used for a variety of applications, includ-

ing derivation of reduced-order dynamical models for fluid dynamic applications as in

Holmes et al. (27). Combined with CFD and unsteady aerodynamics, the method of

snapshots has been widely used as in Dowell et al. (28) and Hall et al. (29). The

general approach is to first compute a set of instantaneous flow solutions or snapshots

and then apply the POD process to extract an optimal set of basis functions, where

optimal means that the error between the originally computed and the reconstructed

data is minimized. Once built the optimal orthogonal basis, reduced-order models can

be derived by projecting the model onto the reduced space spanned by the POD modes.

Therefore, the original problem, formulated in terms of non-linear partial differential

equations as Navier Stokes model, can be converted into a small system of ordinary

differential equations which can be solved efficiently.

Everson and Sirovich (30) have presented a variation of the basic POD method to

handle incomplete data sets (also known as “gappy POD”). The method relies on a least

square approximation, built on known data, to reconstruct an incomplete snapshot.

Indeed, once computed the POD modes from the known data, an incomplete data

vector can be reconstructed accurately by imposing the optimal conditions and solving

the resulting linear system of equations. Another approach is also proposed, i.e. when

the snapshots themselves are damaged or incomplete. In this case, an iterative method

can be used to derive the POD basis, which is in turn used to reconstruct the incomplete

data. This method has been successfully applied for the reconstruction of human face

images, from partial data with 25% of the data missing.

The “gappy POD” method has been also exploited by Bui-Thanh et al. (24, 25) in

transonic flow analysis and optimization. The case considered is a NACA 0012 aerofoil

at a free-stream Mach number of 0.8. The POD bases were created from 51 snapshots.

These were computed at uniformly spaced values of the angle of attack in the interval

[−1.25◦, 1.25◦]. An incomplete flow field was generated by a computation of the flow

solution at an angle of attack of 0.77◦ and retaining only 121 surface pressure values out

of a total number of 6369 pressure values throughout the whole flow field. With just
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this limited surface pressure data available, the complete pressure field was determined

accurately with only six POD modes. Moreover, in this work the authors examined

the sensitivity of the reconstruction result to both the quantity and location of this

surface data. In order to select a limited number of pressure measurements, a heuristic

approach for unsteady flows was adopted. This approach suggests that sensors should

be located in areas of high modal activity. The POD modes of a flow often exhibit

sinusoidal spatial variation and sensors placed at local POD modal minima and maxima

yield effective flow sensing results. This heuristic procedure was applied in that work to

study the sensitivity of the reconstruction results to the amount of available data. An

initial configuration of 11 measurement points corresponding to spatial optima of the

first POD mode plus a few other points near the leading edge, where all POD modes

were seen to vary rapidly, was chosen. Additional measurements were then considered

by adding in turn the spatial optima of modes 2, 3, 4, 5 and 6 resulting in studies with

15, 21, 29, 31 and 39 sensing points respectively. From this work it was observed that

the percentage error between the exact and reconstructed pressure measurements was

very low even with a very small number of sensors, confirming the effectiveness of the

heuristic sensor placement algorithm. It was also noticed that subsequent reduction in

the error diminishes as higher modes are considered in the sensing which is consistent

with the fact that subsequent modes constitute progressively less of the total energy.

The POD eigenvalues can therefore be used not only to select the number of modes but

also to choose an appropriate number of sensors. A further investigation was conducted

by creating a set of POD basis vectors from an incomplete set of snapshots. Again,

the NACA 0012 aerofoil at a free-stream Mach number of 0.8 was considered. A 26

snapshot ensemble was used with steady pressure solutions at angles of attack in the

interval [0◦, 1.25◦]. To create the incomplete snapshot set, 30% of the pressure data

of each snapshot was discarded randomly. The data was repaired by first repairing

the missing data points in each snapshot with the average over the available data at

that point. Thus a new ensemble of data was created which had no missing values.

With the new ensemble, a first approximation to the POD basis was constructed. Then

each snapshot in the ensemble was repaired using the first approximation of the POD

basis. The repaired ensemble was then used to construct a second approximation to

the POD basis. An iterative procedure was adopted and stopped after 50 iterations.

From the convergence of the POD eigenvalue spectrum of the incomplete ensemble it
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was observed that after one iteration, the first two eigenvalues converged. After 45

iterations, only the first five eigenvalues converged; however these accounted for almost

all of the flow energy.

From technical literature analysis, the use of POD methods for capturing the time

variation in unsteady fluid dynamics problems is widespread, while few papers focusing

on its application to parametric variation or even shape modification problems can be

found. In the same works by Bui-Thanh et al. (24, 25), the authors apply the POD

technique to steady transonic external aerodynamic problem. In both works, all snap-

shots were computed by an inviscid steady-state CFD code which uses a finite volume

formulation. In (24) the POD technique was coupled with a cubic-spline interpolation

method in order to develop low-order models that capture the variation in parameters.

The problem considered in this work is steady flow about the NACA 0012 aerofoil

with varying angle of attack and Mach number. The Mach number range considered

[0.75, 0.85] was divided into 20 uniform intervals and the angle of attack range [0, 1.25◦]

was divided into 10 uniform intervals. This resulted in a total number of snapshots

in the ensemble of 231. Based on this snapshot set, interpolation was used to predict

the flow pressure contours at any Mach number and angle of attack within the range

considered. When the pressure flow field was predicted at an angle of attack of 0.45◦

which was not one of the snapshots and a Mach number of 0.8, with twenty-five eigen-

functions the contours of the reduced order model matched closely with the computed

one. When the pressure flow field was predicted at an angle of attack of 0.5◦ and a

Mach number of 0.812 which was not one of the snapshots, thirty eigenfunctions were

required to achieve the desired level of accuracy. This indicated that the prediction is

more sensitive to Mach number rather than the angle of attack. When the pressure

flow field was predicted at an angle of attack of 0.45◦ and a Mach number of 0.812, as

none of these values were used to generate the snapshots, 40 POD modes offered a sat-

isfactory level of accuracy. These results showed that the POD method combined with

interpolation allows models to be derived that accurately predict steady-state pressure

fields over a range of parameter values. However, it is emphasized that in order for the

interpolated result to be reliable, the properties of interest must vary smoothly with the

parameters under consideration. It has been stated that the approach can be extended

to the case where more than two parameters vary and which may include geometrical

properties in order to apply the models in an optimization context. The POD combined
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with a response surface method was employed by Tang et al. (31) for the reconstruction

and prediction of aerodynamic and aerothermal solutions of an X- 34 configuration. It

was reported that this module proved to be not only computationally more efficient

than the low-level engineering methods, but also as accurate as the high-level CFD

methods, making it valid for MDO and real-time applications.

In the field of aerodynamic shape optimization, the work by LeGresley and Alonso

(22, 32) and Bui-Thanh et al. (25) demonstrated that the POD method could be used

as a low-cost, low-order approximation to enhance the design process. The method

proposed by LeGresley and Alonso is based on the gradient approach to cost function

optimization. In both cases, conventional CFD methods were used to generate the data

ensemble for the aerofoil inverse design problem. The POD procedure is then used to

compute a set of optimal eigenfunctions from these snapshots. The two methods differ

from each other in the way the cost function is evaluated and the way the optimal

solutions are arrived at. In particular, LeGresley and Alonso have used the POD

technique for both direct and inverse aerofoil design problems. In that work, a set of

pressure field distributions corresponding to different aerofoil profiles were computed

using an Euler solver. Different aerofoil profiles were created by perturbing the design

variables of the base shape. The POD basis is then computed and used to construct

a reduced-order model for Euler equations to compute new, approximate solutions for

any arbitrary aerofoil at significantly lower computational costs. In this manner, both

direct and inverse aerofoil design problems can be done efficiently using a gradient-based

optimization procedure with the information from the reduced-order model. Bui-Thanh

et al. applied the POD method to the problem of inverse aerofoil design. In that

work, a collection of snapshots was generated by choosing a set of aerofoil shapes and

computing their corresponding surface pressure distributions. The POD technique was

then used to determine the optimal aerofoil shape that produces a given target pressure

distribution. An important point of this method is that rather than containing only the

flow variables, the snapshots are augmented to contain also the aerofoil co-ordinates.

The minimal solution of the cost function is sought with a target vector that contains

the required target pressure distribution and the unknown corresponding aerofoil co-

ordinates. Thus, the target vector contains both known and unknown elements and so

the procedure of Everson and Sirovich is used to reconstruct the missing data points.
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However, one of the most significant challenges is the use of POD-based reduced or-

der models in high-speed flows with parametric variation. Indeed, as the shape/boundary

condition parameter changes, the shock waves moves and classical POD/ROM tech-

niques, which work well for subsonic flows, no longer provide reliable and accurate

predictions. Lucia (33, 34) proposed and used a technique to exploit POD for accu-

rately treating moving shock waves. This technique involves the decomposition of the

solution domain to isolate those regions that contain shocks and so produces internal

boundaries within the flow-field between the various domains. The main idea behind

this is to use the POD modes for a global approximation of the flow field and to use a

standard finite volume scheme in the region where the shocks occur. A reduced-order

model for each region is developed independently and the solution for the entire domain

is formed through a linking of the boundaries of each region, using optimization based

solvers to ensure a smooth solution between overlapping parts of the internal bound-

aries. This technique was applied to a one-dimensional quasi-steady nozzle flow-field by

Lucia for demonstration. However, LeGresley and Alonso (32) applied this technique

for the shape optimization of a two-dimensional aerofoil. The results attained are good

though some discrepancy could still be detected between the high-fidelity solution and

the POD/ROM with domain decomposition.

Buffoni et al. (35) discuss three possible methods to adapt domain decomposition to

transonic flows with shocks. The first is based on a Schur iteration where the solution of

the low-order model is obtained by a projection step in the space spanned by the POD

modes. The second is in the same spirit but instead of a DirichletNeumann iteration

they employ a DirichletDirichlet iteration in the frame of a classical Schwartz method.

The last approach is of different nature since the solution of the low-order model is not

simply based on a projection in the space of the POD modes. It takes into account in

a weak sense the governing equations by minimizing the residual norm of the canonical

approximation in the space spanned by the POD modes. The main application is about

the compressible Euler equations in a nozzle. The authors observe that the obtained

results depend to a large extent on the database used for the POD modes. The locality

of the approach is recognized, meaning that the approximation error can be large when

the reconstructed solution is far from the training ones in the parameter space. They

also point out that a major limitation of their method lies in the non avilability of an

efficient method to improve the approximation quality. Indeed, they conclude that, in
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order to get better results, it is fundamental to increase the approximation accuracy by

enriching the functional space in which the solution is sought, based on some objective

in-fill criteria.

Toal et. al (36) proposed a POD-based re-parameterization for optimization pur-

poses. This strategy, termed geometric filtration, was found to outperform a traditional

kriging-based optimization, producing better designs for a considerable reduction in

overall optimization cost. The geometric filtration strategy applies an initial kriging

response surface model optimization to the original problem. From the results of this

optimization a number of good design points are selected to form a snapshot ensemble

for the purposes of POD. The POD basis functions then act as a re-parameterization of

the original problem, filtering out badly performing designs and reducing the number

of variables. A secondary kriging response surface based optimization is then carried

out in which the modal coefficients of the POD bases are optimized. The optimiza-

tion of a transonic airfoil for minimum drag to lift ratio was used as a test case to

compare the geometric filtration strategy to a traditional kriging based optimization

and an extensive direct optimization using a genetic algorithm. The traditional kriging

strategy achieved 76.3% of the improvement obtained by the genetic algorithm but

with only 300 objective function evaluations. However, applying geometric filtration

to the same problem, again using 300 objective function evaluations, produced designs

achieving 84.1% of the improvement obtained with the genetic algorithm, a substantial

improvement over the traditional kriging strategy.

In a more recent paper, Braconnier et al. (37) combined steady compressible RANS

equations, a POD reduced-basis method and a leave-one-out adaptive sampling tech-

nique. The proposed strategy was tested on an analytic test case and on the two-

dimensional turbulent flow around a RAE2822 airfoil. It was shown that the adaptive

resampling led to a higher speed of convergence with respect to classical Latin Hyper-

cube a-priori design of experiments. However, the method applicability is not demon-

strated on a real shape optimization problem, but just on a two-parameter Mach-angle

of attach design space.

POD has been also investigated in Multi-disciplinary analysis and design. Lieu et

al. (38, 39) applied POD-based ROMs for an aero-elastic analysis of a complete F-16

aircraft configuration with clean wings for varying Mach number and low angles of at-

tack. In that work it has been shown that the POD method produces accurate ROMs
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for the aero-elastic analysis of a complete aircraft configuration at a fixed flight condi-

tion. However, changes in the Mach number or the angle of attack often require the

reconstruction of the ROM in order to maintain accuracy. Consequently, this destroys

computational efficiency. In that work it was shown that straightforward approaches

for ROM adaptation lead to inaccurate POD bases in the transonic flight regime. Thus,

a new ROM adaptation scheme is proposed and evaluated for varying Mach number

and angle of attack. This scheme interpolates the subspace angles between two POD

subspaces and then generates a new POD basis through an orthogonal transformation

based on the interpolated subspace angles. This computational methodology is applied

to a complete F-16 configuration in various air-streams. The predicted aero-elastic

frequencies and damping ratio coefficients were compared with counterparts obtained

from full-order non-linear aero-elastic simulations and flight test data. Good correla-

tions are reported in the transonic flow regime. It is reported that this technique has

a significant potential for accurate, real-time, aero-elastic predictions.

2.3 Progress beyond the State of the Art

With respect to the overview of state-of-the-art methods and techniques in physics

and non physics-based surrogate modelling, the present research aims at providing

some advances and opening further questions on surrogate-assisted aerodynamic shape

optimization of transonic aircraft.

2.3.1 Progress in geometry parameterization

The very first step when approaching a shape optimization problem is building a cor-

respondence between the design variables, which are real or integer numbers controlled

by the optimizer or decision maker, and the shape, which is typically a surface or a

set of surfaces. However, common parameterizations, when exploring some regions of

very large design spaces, often incur in unfeasible design candidates, where the source

of unfeasibility is not related to constraint violation, but rather to unnatural, not re-

alizable or exotic geometry. From another point of view, the designer is more and

more interested to virtually reproduce and analyse any sort of shape, at least in a first,

deeply explorative phase. Hence, the ideal parameterization is required to generate

smooth and continuously varying shapes, hopefully controlled by parameters which are

33



2. LITERATURE REVIEW

well known to the designer. The contribution of the present research to this topic is

given in chapter 3, where the CST parameterization is introduced and coupled to a

CAD system able to generate the aircraft surfaces in a suitable format: the combined

approach enhances the geometry parameterization through easy-to-use, analytic, fast,

reliable, suitable to reproducing aircraft shapes and accurate methodology.

2.3.2 Progress in POD-based surrogate modelling

Another original contribution is related to the application of a Proper Orthogonal De-

composition technique as a surrogate model of aerodynamic flow fields under shape

modifications and shock wave movement. POD has been generally used on fixed grids,

so that only the aerodynamic variables are used to build the approximation. This ap-

proach is valid until the shape of the body is not modified and external flow parameters,

like Mach number, angle of attack and so on, are sampled to generate POD snapshots.

But, in a shape optimization problem, the geometry, and hence the mesh laying upon

it, is changing with the design parameters and the relation between aerodynamic flow

change and grid points movement represents a big issue. The present proposal is to

solve it by including the grid coordinates in the snapshots definition and treating them

as field variables as well as pressure, density, velocity and so on. Indeed, by employing

a mesh generator with fixed block topology, the grid coordinates have almost the same

properties of aerodynamic variables, as their amount of change decrease as the distance

from the body increases.

2.3.3 Progress in transonic flow shape optimization

Moreover, dealing with transonic flow conditions, the shape optimization problem offers

another fundamental question: how to deal with the movement of the shock wave and

the variation of its intensity with the design parameters? As no investigations have

been proposed in the literature on the specific topic (POD-based shape optimization

in transonic flow), this represents a genuine original contribution, as a mixed zonal

POD/CFD approach is introduced to partially get rid of discontinuities. The idea is to

get a reduced order model of the aerodynamic flow where the shock wave is damped,

i.e. in an outer domain sufficiently far from the body, and use this prediction to

derive a physical boundary condition for the CFD flow solver to accurately compute

the aerodynamic flow in the inner domain. Besides, the present insight into POD-based
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surrogate modelling for transonic flow optimization allows to also provide an innovative

contribution in the training phase. The quality of the prediction, and hence of the

optimal search, highly depends on the dataset used to build the POD approximation,

as the POD is as good as the feeding data. Indeed, the issue of how many computations

should be performed to train a high-performance surrogate model has been already

studied in the past, but the equally fundamental question about how to choose the

training samples has marginally been investigated. Thanks to the joint work with

Belgium research center CENAERO within an European Community funded project,

some innovative techniques will be proposed in chapters 3 and 4 aimed at refining the

surrogate model through adaptive Design of Experiment sampling based on POD model

quality measures both in an off-line process, i.e. before the real optimization process,

and in an on-line mode.
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Ingredients for aerodynamic

design optimization

An aerodynamic design optimization task usually consists of an iterative process. Even

if various approaches have been proposed in the past with different levels of complexity

and innovation, the basic ingredients can be summarized as follows:

• choice of the design parameter set;

• parameterization of the geometry, i.e. translation of design parameters into

shapes;

• surface/volume mesh generation, i.e. discretization of the shape and of the sur-

rounding volume;

• CFD analysis, i.e. computation of the flow field variables in the discretized volume

and onto the surface;

• computation of the objective function, usually given as a combination of integral

quantities (like lift, drag, pitching moment) and extracted from the CFD analysis;

• return of the objective function to a minimization/search method (stochastic or

deterministic approaches, with or without the computation of the derivative of

any order) and identification of a new set, or a group, of design parameters;

• go back to the parameterization.
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In this chapter, a general overview of our design optimization process is presented, as

it configures as the core architecture which the surrogate/reduced order optimization is

built upon in the following chapters. A particular focus is given to the parameterization

approach through the coupling of the Class Shape Transformation (CST) method with

a CAD system and to the governing equations for solving the aerodynamic flow. A

state of the art optimization study is finally presented as an application example of the

overall design process.

3.1 An evolutionary optimization tool for aerodynamic

design

Several techniques are today available for design through numerical optimization; con-

cerning in particular the field of aerodynamic design, beyond methods developed ad hoc

and characterized by inverse design capabilities, the techniques more properly related

to direct optimization include mature gradient based methods, including more recent

approaches like automatic differentiation and control theory based methods, and ge-

netic algorithms. Generally speaking, it is not possible to state the superiority of one

method over the others, if not with reference to a specific problem that needs to be

faced. The important features that need to be evaluated are numerous:

• generality of the formulation vs. dependence on the problem;

• robustness vs. the need of human interaction;

• capability of multiple objective optimization vs. single-objective one;

• computational efficiency vs. the need of large computational resources.

From this point of view, the choice of one particular optimization technique implies

to give up some possible advantages in favour of some others. On the other hand, due

to the fact that aerodynamic shape design represents only a part of the overall design

of a flying vehicle, and that the need for an effective multidisciplinary approach to the

design task is arising, it is important for an optimization tool to combine as much as

possible all the favourable characteristics stated above while avoiding the shortcomings.
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3.1.1 Optimization and design concepts

An aeronautical optimization system is an automatic procedure that starts from a given

configuration and looks for an improved one. In order to do that, design variables, which

can measure the absolute position in the design space or the changes with respect

to the given configuration, and an objective function, which allows to measure the

improvement of the configuration, must be defined.

From a theoretical point of view, the design variables represent the coordinates of

a point in a sub-set of the real space in N dimensions <N , where N is the number of

design variables. Integer or discrete design variables can also be employed, for example

to map different topological settings of the configuration under analysis. We assume

that an aeronautic configuration can be associated to each point of such a set, and

an objective function can be evaluated for each configuration. With this assumption,

a correspondence exists between the space of the design variables and the objective

function, and points, which correspond to the absolute minimum of the objective, can

be located. We call optimum the configuration(s) which is (are) associated to the

minimum of the objective function.

Constraint functions can also be defined and evaluated, in the same way as the

objective; by convention those points of the design space, which correspond to positive

values of at least one constraint function, are taken out from the set.

Our optimization system is based on three main procedures: the optimizer, the

configuration generator, and the objective and constraint functions evaluator.

From the mathematical point of view, the optimizer is an algorithm that looks for

the absolute minimum of a function, which is defined in a sub-set of <N . When this

function is continuous, together with its first derivatives, gradient-based optimization

algorithms can be adopted. In case that no information is available concerning the

derivatives of the objective, or in case that the definition domain is multi-connected,

then a stochastic, gradient-free approach (e.g., genetic algorithm) is more appropriated.

Constraint functions can restrict the searching region by setting boundaries inside

the domain, and in this way they can help the optimizer (particularly when a gradient-

based method is adopted, which is capable to locate and follow the boundaries); on

the other hand, boundaries could also dissect the definition domain, creating a multi-

connected region, which cannot be handled anymore by a gradient-based optimization
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method.

The configuration generator is a procedure that associates a point of the design

variables space to an aeronautic configuration and produces all the information required

to execute the evaluation procedure.

The technique adopted here is based on the concept of a reference configuration,

i.e. the configuration generator starts from a given (reference) configuration, which

corresponds to a specific point of the design variables space (the usual convention is to

consider as reference the configuration corresponding to the design variables all equal

to 0), and modifies it according to the modifications of the design variables. When

the values of the design variables are modified, the modifications are reflected to some

of the physical parameters which define the aeronautic configuration. Links between

the physical parameters and design variables are set in the phase preliminary to the

optimization, named Problem Definition (see par. 3.1.2). For each configuration a

unique value of each objective and constraint functions must exist.

During the evaluation procedure the configuration is analyzed, in order to compute

the objective function and the constraints. For aerodynamic analysis a grid generator

and a CFD solver are required, together with tools for post-processing the solver output

data. Geometric analysis could also be required (for example to compute wing tank

volume or spar thickness).

Each operational condition that has to be considered to evaluate the objective and

constraint functions is called design point. When more operational conditions must be

taken into account to evaluate the objective and the constraints, then we are performing

a multi-point optimization.

Multi-point optimization can be performed in two substantially different ways. The

first one combines each design point in a single objective function using different weights

related to the importance given to each design point. Another approach is multi-

objective optimization (40, 41) where several objective functions can be considered by

introducing a ranking criteria so that the configurations can be classified into dominated

and non-dominated. The procedure here adopted can be used both for single and multi-

objective optimization.

It is worth to note that in the multi-objective case the final result is not a config-

uration corresponding to the absolute minimum of an objective function, but a set of

candidate solutions (Pareto set of non-dominated solutions). Each solution optimizes
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the design problem at different level of compromise, in the sense that it is not possible

to improve one objective function without deteriorating one of the others. In this case

the choice of the final configuration is made after the optimization phase by introducing

further decision-making criteria.

3.1.2 Problem definition

Before the optimization process begins, a preliminary phase must take place, in which

a reference configuration is selected and the optimization criteria are chosen. We call

this preliminary phase Problem Definition. The operations performed in this phase are

described in the present section. They are listed below:

• Links between design variables and physical parameters setting

• Design point(s) definition

• Optimization algorithm selection

• Objective and constraint functions selection

3.1.3 Configuration definition and geometry parameterization

In any aerodynamic design optimization process, the choice of the mathematical rep-

resentation of the geometry of an aircraft or its component, together with the fidelity

of the flow solver and the type of optimization algorithm, has a significant impact

on the computational resources, the exploration of the design space and the feasibil-

ity/smoothness of the generated geometries. The parameterization method also affects

whether a meaningful “optimum” is contained in the design space and if an optimum

design exists, whether or not it can be found. Desirable characteristics for any geometric

representation technique include:

1. well behaved and produces smooth and realistic shapes;

2. mathematically efficient and numerically stable process that is fast, accurate, and

consistent;

3. requires relatively few variables to represent a large enough design space to contain

optimum aerodynamic shapes for a variety of design conditions and constraints;
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4. allows specification of design parameters such as leading-edge radius, boat-tail

angle, airfoil closure;

5. provides easy control for designing and editing the shape of a curve;

6. intuitive and geometric interpretation.

The idea behind the Class-Shape Transformation (CST) method, developed at Boe-

ing and made popular by Brenda Kulfan (42), is that, even though aircraft shapes can

vary a lot, the geometric representation is obtained through basic components of the

configuration (e.g., wing, fuselage, nacelle, pylon, tailplane, canard, and so on) and, for

each of them, two types of shapes can be identified:

• Class 1: airfoil-like shapes, basically defined by sweeping/lofting/twisting an aero-

dynamic shape (e.g., an airfoil) over one or more directions. Examples are wings,

helicopter rotors, turbomachinery blades, tails, canards, winglets, nacelles ob-

tained by revolution.

• Class 2: body cross-section shapes, whose cross-sections do not have an aero-

dynamic aspect, like fuselages, rotor hubs and shrouds, channel, ducts, lifting

bodies.

Both types of shapes are troublesome as concerns the mathematical description.

Indeed, some of their intrinsic properties, like the round nose of airfoil-like shapes and

the large curvature variations over the body cross-section surfaces, generally imply a

non-analytic function representation. Consequently, a large number of coordinates may

be typically required to describe either class 1 or class 2 types of geometries. Numer-

ous methods have been devised to numerically represent class 1 airfoil type geometries

for use in aerodynamic design, optimization, and parametric studies. Commonly used

geometry representation methods typically fail to meet the complete set of the previ-

ously defined desirable features. The CST method proposes the concept of representing

arbitrary three-dimensional geometries as a distribution of fundamental shapes. The

method has been successfully applied to describe and reproduce a large variety of air-

craft component shapes, from airfoils/wings to axi-symmetric nacelles and bodies of

revolution.
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The present approach consists in coupling the Class-Shape Transformation method

with the open-source CAD tool named GEOM, which is part of the SALOME package

(43). The CST method is able to provide a wide range of aeronautic shape with

reduced effort and good accuracy properties, but in a stand-alone mode it is not useful

when a design process based on the definition of CAD surfaces is addressed. Indeed,

even if the obtained surface definition is completely analytical, it is quite complex

to directly include it into a CAD system, either because one does not usually have

access to the sources and underlying mathematics of the CAD system and because

this kind of developments would require IT skills which goes beyond the scope of the

present research. Moreover, the flexibility and customization properties which come

with scripting capabilities, available with SALOME, make the integration work easier

and generalizable.

3.1.3.1 The Class-Shape Transformation

In the most general case, the aircraft external shape is a surface ζ, hence defined by two

parameters (ψ, η). The CST method allows to get any shapes as a “factorization” of a

class function, representing the type of geometry, common to all the shapes belonging

to that class, and a shape function

ζ(ψ, η) = C(ψ, η)S(ψ, η) (3.1)

The shape function is a simple, well behaved analytic function with easily controlled

key physical design features and inherent strong smoothing capability. The class func-

tion is introduced to generalize the methodology for applications to a wide variety of

fundamental shapes. In the following sections, the detailed expression for class and

shape functions, as in equation 3.1, and the corresponding shapes in terms of the carte-

sian components (x, y, z) are provided for an airfoil, a wing, an engine nacelle and a

wing-nacelle pylon.

3.1.3.2 Airfoil representation

An airfoil can be represented as a curve, hence the surface parameter ψ is assumed

as the x-coordinate along the chord line divided by the chord length L while the η
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Figure 3.1: NACA-type airfoil, N1=0.5,

N2=1.0

Figure 3.2: Elliptic airfoil, N1=0.5,

N2=0.5

Figure 3.3: Biconvex airfoil, N1=1.0,

N2=1.0

Figure 3.4: Duct shape, N1=0.001,

N2=0.001

parameter is not defined. The general class function representing an airfoil-like shape

is

CN1
N2 (ψ) = ψN1(1− ψ)N2 (3.2)

In (42), it is shown that different combination of N1 and N2 mathematically defines a

variety of basis shapes. Figures 3.1, 3.2, 3.3, 3.4, 3.5 amd 3.6 shows some examples of

general classes which can be obtain by tuning the two exponent of equation 3.2.

The class function defining round leading edge/pointed trailing edge airfoil shape

is obtained with N1 = 0.5 and N2 = 1.0

C0.5
1.0 (ψ) =

√
ψ(1− ψ) (3.3)

The shape in figure 3.1 has been obtained by simply plotting the function in equation

3.3. By comparing it to the general expression given by the CST method in equation 3.1,

we can observe that a unit shape function S(ψ) = 1 already provides an airfoil shape.

However, the unit shape function can be further decomposed into component airfoils:

for example, S(ψ) = 1 could be represented as the sum of S1(ψ) = ψ and S2(ψ) = 1−ψ.

By multiplying S1 and S2 by the class function, two airfoils are obtained and plotted

in figure 3.7(a) and 3.7(b): one with a round nose and zero boat-tail angle, the other

Figure 3.5: Low-drag projectile,

N1=0.75, N2=0.25

Figure 3.6: Wedge airfoil, N1=1.0,

N2=0.001
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Figure 3.7: Decomposition of the shape function in two component airfoils

one with zero nose radius and a finite boat tail-angle. This is a direct result of the

“partition of unity” property, which states that the sum of component terms is equal

to one over the ψ interval [0,1]. Bernstein polynomials intrinsically satisfy this property

in a scalable manner. Indeed, the Bernstein polynomial of any order can represent the

unit shape function and, therefore, the individual terms in the polynomial can be

properly scaled to represent a large variety of shapes. From a mathematical point of

view, the unit shape function can be expressed as a Bernstein polynomial of order n

(n+ 1 terms)

S(ψ) =
n∑
i=0

Si,n(ψ) =
n∑
i=0

Ki,nψ
i(1− ψ)n−i = 1 (3.4)

where Ki,n are binomial coefficients

Ki,n =

(
n

i

)
=

n!

i!(n− i)!

Figures 3.8(a), 3.8(b), 3.8(c) and 3.8(d) show some examples of Bernstein polynomial

of various orders. The airfoil shape function is a smooth continuous and analytic

function with finite derivatives of any order over the entire airfoil. Therefore, the

Weierstrass theorem on continuous real-valued functions over compact intervals can be

applied to derive interesting and desirable features of the proposed parameterization.

In particular, for a given smooth shape, the CST method can represent it with any

desired level of accuracy by increasing the order of Bernstein polynomials. Hence, the

technique is able to catch the entire design space of smooth airfoils and every smooth

airfoil is derivable from the unit shape airfoil or from any other smooth shape. The

last property allows to not define a baseline airfoil in a shape optimization process as

other common parameterization methods require.

In (42) it is also shown that key features like leading edge radius, trailing edge

thickness and boat tail angle are directly related to the bounding values of the shape
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Figure 3.8: Bernstein component shapes
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function. In particular, the value of the shape function at ψ = x/L = 0 is a function

of the leading edge radius RLE in the form S(0) =
√

2RLE/L. The value of the shape

function at ψ = 1 can be expressed in terms of boat tail angle β and trailing edge

thickness ∆zTE as S(1) = tanβ + ∆zTE/L. Hence, when using the shape function

transformation, controlling the endpoints of the shape function provides an easy and

direct way to modify the airfoil nose and aft part. Once defined the general form of

the shape function, it is easy to translate this information to the representation of the

upper and lower surfaces of a cambered airfoil. Indeed, once selected the order n of the

Bernstein polynomials, an arbitrary shape modification is obtained by properly scaling

the component shapes through some coefficients that have to be determined depending

on the objective of the study. In other words, the overall shape function equation for

the upper and lower surfaces are

Su(ψ) =
n∑
i=0

AuiKi,nψ
i(1− ψ)n−i (3.5)

Sl(ψ) =
n∑
i=0

AliKi,nψ
i(1− ψ)n−i (3.6)

The coefficients Aui and Ali can be either defined a-priori in a design optimization

process or a parametric shape variation or computed with a least-squares fit to match

a specified geometry. Finally, an airfoil shape with rounded nose and finite trailing

edge thickness can be expressed in cartesian component (x, z) as:

x

L
= ψ (3.7)

zu
L

= C0.5
1.0 (ψ)Su(ψ) + ψ

∆zTE
2L

(3.8)

zl
L

= C0.5
1.0 (ψ)Sl(ψ)− ψ∆zTE

2L
(3.9)

where c is the airfoil chord length and ∆zTE is the trailing edge thickness. If it is zero,

the pointed aft end shape is obtained.

In order to test the CST approach and its convergence behaviour in representing

specified shapes, two airfoils have been considered: the RAE2822 and the ONERA D

airfoils. The shapes and the corresponding shape functions are depicted in figures 3.9(a)
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Figure 3.9: Test shapes

and 3.9(b). A scalable least-square problem has been set up in order to reconstruct

the given shapes with different orders of the Bernstein polynomials. The RAE2822 and

ONERA D airfoils are defined respectively by 129 and 143 (x, z) coordinates. In order

to perform fair comparisons between the “exact” and reconstructed shape, the ψ vector

is based on the x/L coordinates of the given shape, so that only the z/L function will

be compared. Given z the “exact”, specified coordinates vector of length m and z′ the

least-square minimizing one, assuming L = 1, the maximum residual norm RM and

the residual sum of squares RSS will be used for comparisons:

RM = max
j
|z(j)− z′(j)| (3.10)

RSS =
1

m

m∑
j=1

[z(j)− z′(j)]2

Figures 3.10 and 3.11 report the obtained results as functions of the design variables

number, which can be varied according to the order of the Bernstein polynomials. In or-

der to assess the present parameterization efficiency to a well-established methodology,

the same results obtained with a B-spline parameterization using the same number of
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Figure 3.10: Maximum residual error RM as a function of design variables number
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Figure 3.11: Residual error sum of squares RSS as a function of design variables number

design parameters are shown. While on the RAE2822 airfoil, which has a more classical

shape, the two methods show similar performances, with a strong drop of residuals with

increasing design definition, the CST approach outperforms the B-spline approximation

on the ONERA D airfoil.

Indeed, this airfoil was designed with a circular arc around the leading edge which

is then joined to a classical airfoil in the remaining part. Hence, CST appears reliable

and consistent when treating difficult shapes. This is also confirmed by the curvature

analysis reported in figure 3.12. The curvature function reconstruction is compared only

on the lower surface of the RAE2822 airfoil because the presence of the rear loading
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Figure 3.12: Airfoil curvature analysis
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Figure 3.13: Pressure coefficient analysis

makes it more difficult to catch than the upper one (a zero curvature point is present).

The figure shows that 14 design variables are needed to accurately catch the RAE2822

curvature, while 20 are needed for the ONERA D airfoil. However, this last figure is

affected by the original shape of the airfoil, which is not really smooth enough and

presents some curvature oscillations in the rear part. In a design optimization process,

the number of design variables could probably be much less, because we are interested in

designing smooth shapes from the beginning and not in accurately reconstructing poor

geometry data. Despite of this, the obtained approximation is completely satisfying

also in the reconstructed cases.
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Figure 3.14: Skin friction analysis

The last comparison can be done by using the most sensible tool for highlighting

geometry defects: aerodynamics. An Euler-based viscid-inviscid interaction code is

used to the purpose. The flow around the RAE2822 original and reconstructed shapes is

computed at Mach number 0.73, Reynolds number 6.5e+06 and at an angle of attack of

2.8◦. The flow around the ONERA D original and reconstructed shapes is computed at

Mach number 0.75, Reynolds number 10.5e+06 and at an angle of attack of 1.0◦. All the

computations have been performed with free transition, which means that no boundary

layer transition to turbulence is fixed a-priori, but it is computed by the solver through

a stability analysis. Indeed, a defect in the geometry can trigger the transition at a

completely different location, altering the whole prediction of the flow field around the

shape. The obtained results in terms of pressure coefficient distribution and skin friction

coefficient are shown in figures 3.13 and 3.14. It is clearly evident the refinement process

which takes place by enriching the airfoil definition with the increase of Bernstein

polynomials order. In particular, the flow characteristics on the reconstructed airfoils

converge to the “exact” ones for both cases. A 7th order polynomial is enough to

perfectly catch the RAE2822 aerodynamics, while a higher order (17th) is needed to

obtain the same level of accuracy on the ONERA D airfoil.

In conclusion, the CST parameterization method shows interesting properties not

only from a mere mathematical point of view, but especially in being a universal and

powerful technique to define well-behaved aerodynamic shapes.
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3.1.3.3 Wing representation

A wing shape can be obtained by distributing the airfoil shape function along another

surface parameter η, representing the wing span, with the desired law. Once selected

Nx, the order of the Bernstein polynomial which represents the wing airfoils, the com-

plete wing shape can be obtained by transforming the coefficients of the Bernstein

polynomial into a distribution along the spanwise direction using any appropriate nu-

merical technique. In this way, the entire wing surface is defined through the same basic

component airfoils of the root airfoil, but the magnitude of each of them varies across

the wing span according to the expansion technique. For example, using the Bernstein

polynomial as expansion technique, the spanwise variation of each coefficients Aui in

equation 3.5 can be stated in the form

Aui ≡ Aui(η) =

Ny∑
j=0

Bui,jSj,Ny(η) (3.11)

where

Sj,Ny(η) = Kj,Nyη
j(1− η)Ny−j

Ny is the order of the expansion Bernstein polynomial and Kj,Ny is the usual binomial

coefficient.

By inserting equation 3.11 into equation 3.5 and adopting the same technique for

the lower surface, the bi-variate Bernstein polynomial shape function for the entire

wing is derived

Su(ψ, η) =

Nx∑
i=0

Aui(η)Si,Nx(ψ) = (3.12)

Nx∑
i=0

Ny∑
j=0

[
Bui,jKj,Nyη

j(1− η)Ny−j
]
Ki,Nxψ

i(1− ψ)Ny−i

Sl(ψ, η) =

Nx∑
i=0

Ali(η)Si,Nx(ψ) = (3.13)

Nx∑
i=0

Ny∑
j=0

[
Bli,jKj,Nyη

j(1− η)Ny−j
]
Ki,Nxψ

i(1− ψ)Ny−i
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The graphical representation of basis functions Si,Nx(ψ)Sj,Ny(η) is shown in figures

3.15(a), 3.15(b), 3.15(c) and 3.15(d) for Nx = 7 and Ny = 3. The wing shape will

be then represented by 2 × (Nx + 1) × (Ny + 1) design parameters, namely Bui,j and

Bli,j , i = 0, . . . , Nx, j = 0, . . . , Ny. However, to assure continuity of curvature from the

upper surface around the leading edge to the lower surface, the additional requirement

Buo,j = Blo,j is introduced, so that the actual number of parameters becomes 2× (Nx+

1) × (Ny + 1) − Ny. By multiplying the wing shape function by the airfoil-like class

function, the overall shape of the wing can be computed. However, a wing is generally

and naturally conceived with spanwise distributions for twist angle, dihedral angle,

sweep angle and taper ratio: this additional parameters have to be introduced in the

CST model in order to cover realistic wing concepts. The actual wing surface cartesian

coordinates can be obtained from the equations

x = ψL(η) + xLEroot +

∫ η

0
[sin Λ(η)]dη (3.14)

y =
b

2
η (3.15)

zu,l = L(η)C0.5
1.0 (ψ)Su,l(ψ, η) + L(η)ψ[∆zTE(η)− tanαT (η)] + (3.16)

L(η)

∫ η

0
[sin δ(η)]dη

where the following spanwise distributions have been introduced: L(η) chord length,

Λ(η) sweep angle, ∆zTE(η) trailing edge thickness, αT (η) twist angle, δ(η) dihedral

angle. b is the wing span length and xLEroot is the x-position of the leading edge of the

root airfoil. Several laws can be defined for spanwise distributions, but the standard

approach which assures the manufacturing feasibility of the wing shape is to assume

constant (e.g. sweep angle), piecewise constant (e.g. dihedral angle), linear (e.g. twist

angle) or piecewise linear (e.g. chord length/tapering) variations.

3.1.3.4 The integration within SALOME GEOM tool

In order to provide a usable and interchangeable format for geometry definition, the

CST wing parameterization has been coupled with a CAD system (GEOM) embedded

within the open-source SALOME platform. Given a CST definition of a wing sur-

face, the aim is to come out with a geometry file, typically in IGES or STEP format,

which can be easily handled by common domain modeller/meshing tools, like ANSYS
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ψ

η

(a) Si,Nx(ψ)Sj,Ny (η), i = 0, . . . , 7, j = 0

ψ

η

(b) Si,Nx(ψ)Sj,Ny (η), i = 0, . . . , 7, j = 1

ψ

η

(c) Si,Nx(ψ)Sj,Ny (η), i = 0, . . . , 7, j = 2

ψ

η

(d) Si,Nx(ψ)Sj,Ny (η), i = 0, . . . , 7, j = 3

Figure 3.15: Bi-variate Bernstein polynomials
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ICEM CFD, and usable within an automatic design process. The interface has been

programmed by using the Unix Bash shell and Python scripting capabilities enclosed

within the SALOME package. Given a set of design parameters, a scalable number

of wing section shapes are derived from equations 3.14,3.15 and 3.16 as a scalable set

of coordinate points. This means that the wing shape can be virtually represented

with an arbitrary number of sections, each described by an arbitrary set of points.

The file of coordinates, together with information about the number of sections and

the number of points per section, are read by SALOME GEOM and transformed into

physical points. Then, each wing section is interpolated by means of a B-spline curve:

in this process, the final curve has good properties of accuracy and smoothing thanks

to the way the points have been defined, i.e. through the well-behaved, analytic CST

geometric definition. The set of curves is then exploited to build two B-spline surfaces

through a filling method, which means that the each surface will pass through the defin-

ing curves. One surface is built on the inboard wing (from the root airfoil to the crank

position), the other one on the outboard part (from the crank to the tip). Zero-th and

first order continuity between two surfaces is assured by means of a sewing tool avail-

able in SALOME. Figure 3.16 shows a wing geometry generated with the CST method

and shaped within SALOME GEOM tool together with a modified geometry obtained

by using the automatic parametric variation of the wing shape: the new surfaces have

been obtained by using the same process but setting a larger span length, a higher wing

sweep angle and a lower taper ratio at kink and tip position. Figure 3.17 shows the

smooth transition from root (thicker airfoils) to tip wing sections that can be obtained

with CST representation: here, the bi-variate Bernstein polynomial is generated with

8th and 2th order to describe respectively the airfoil shape variation and its distribution

along the span. In this case, the design variables have been assigned randomly, hence

the given shapes are not so “aerodynamic”: however, the geometric modeller is able

to define a smooth and continuous representation even for this case, proving to be a

suitable approach for a fully explorative design process.

3.1.4 Aerodynamic analysis

Once the master surfaces have been produced, they can be passed to a software tool for

generating the computational grid. This task is conceptually the same for all kinds of

grid generation. Different grid generators and solvers for CFD can be ideally selected.
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Figure 3.16: Wing shaping within SALOME

Figure 3.17: Smooth transition of randomly assigned wing sections along the span
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In the case of multi-block, structured grid generation for aerodynamic evaluation, four

sets of input data are needed (44, 45): the topology of the domain (i.e. how blocks are

connected to each other), the geometry (i.e. the shape of surfaces which the boundary

of the external blocks will lay on), the grid dimensions (how many cells have to be

generated in each block) and the grid parameters (how cells have to be sized and

clustered). Only the geometry of blocks, among those data, must change when design

parameters are modified. A specific routine for automatic geometry generation has to

be designed for each new type of configuration, when a different topology is required.

It must be robust, so that hundreds of different geometries can be processed without

failure, and the inspection of the configuration shape for debug purposes must be easy.

The geometry generator reads in the master surfaces and writes out the geometry of

multi-block domain in the proper format to be read by the grid generator. The geometry

files produced by one routine are always associated with the specific topology file for

which that routine has been designed. Routines to generate geometry files for airfoil,

wing-alone and wing-body configurations are currently available.

Drag computation is very sensible to grid density, particularly when meshes are

not very fine. Because of that, one of the issues in grid generation is the capability to

produce grids with the same characteristics in terms of number of cells and density.

The procedure helps to maintain a “standard” grid quality during the re-meshing of

new configurations in the optimization loop.

Flow analysis is performed with a Navier-Stokes flow solver. Usually one solver

run per design point is executed. Output files containing aerodynamic coefficients are

processed for computing the objective and constraint functions.

3.1.4.1 Governing equations

In this section, the fundamental mathematical model of Fluid Dynamics and the nu-

merical solution model are introduced. The Navier-Stokes equations set is the most

accurate mathematical model to describe the fluid flow motion. In the present context,

they describe the motion of a perfect gas, i.e. the air, in absence of secondary phases

and chemical reactions. The perfect gas obeys to two thermodynamic state equations:

the first is the ideal gas law

p = ρRT (3.17)
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which relates the gas pressure (p), density (ρ) and temperature (T ) through a gas

constant R = 287 m2

s2K
. The second state equation expresses the dependency of the

specific internal energy e on temperature only:

e = CvT =
R

γ − 1
T (3.18)

where Cv is the specific heat capacity at constant volume and γ is the ratio between

the specific heat capacity at constant pressure and at constant volume.

The Navier-Stokes equations express the conservation/balance laws for mass, mo-

mentum and energy. Let u = (u, v, w) be the flow velocity vector and E = e+ |u|2
2 the

specific total energy. Under the hypothesis of continuum medium, no gas dissociation,

no real gas effects, thermodynamic equilibrium, negligibility of body forces and heat

sources, the Navier Stokes equations can be cast in a cartesian coordinate system as

follows:

∂U

∂t
+
∂F c1
∂x

+
∂F c2
∂y

+
∂F c3
∂z

=
∂F ν1
∂x

+
∂F ν2
∂y

+
∂F ν3
∂z

(3.19)

where

U =


ρ
ρu
ρv
ρw
ρE

 (3.20)

is the vector of the unknown flow variables,

F c1 =


ρu

ρu2 + p
ρuv
ρuw

(ρE + p)u

 F c2 =


ρv
ρvu

ρv2 + p
ρvw

(ρE + p)v

 F c3 =


ρw
ρwu
ρwv

ρw2 + p
(ρE + p)w

 (3.21)
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are the convective fluxes and

F ν1 =


0
t11

t12

t13

ut11 + vt12 + wt13 − q1



F ν2 =


0
t21

t22

t23

ut21 + vt22 + wt23 − q2



F ν3 =


0
t31

t32

t33

ut31 + vt32 + wt33 − q3

 (3.22)

the diffusive fluxes. The stress tensor tij is related to the strain tensor through the

molecular viscosity µ

tij = µ
(∂ui
∂xj

+
∂uj
∂xi
− 2

3

∂uk
∂xk

δij

)
(3.23)

with i = 1, . . . , 3, j = 1, . . . , 3 and the convention repeated indices summation is used.

The heat flux qj is defined by the Fourier law as

qj = −λ ∂T
∂xj

(3.24)

By defining a set of reference quantities for length, density, temperature, velocity, vis-

cosity and thermal conductivity scales (Lr, ρr, Tr, Ur, µr, λr), the dimension-less form of

equations 3.19 can be derived, where the fundamental dimension-less Mach, Reynolds,

Prandtl numbers define the relative importance of compressible, viscous and thermal

effects

Ma =
Ur√
γRTr

(3.25)

Re =
ρrUrLr
µr

Pr =
µrcp
λr
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In the laminar flow regime, the equations (3.19), once provided the initial and

boundary conditions, form a closed system with the thermodynamic state equations

and the additional relations µ = µ(p, T ), λ = λ(p, T ) between the molecular viscosity

µ and thermal conductivity λ and the thermodynamic properties of the gas.

In the turbulent regime, the scenario is different. The flow exhibits scales with large

variations in space and time. The direct resolution of all the motion scales can be pro-

hibitively expensive and depends on the Reynolds number. Following the Kolmogorov

hypotheses, the statistics of the smallest scales of motion are uniquely determined by

the molecular viscosity ν and by the dissipation rate of the turbulent kinetic energy ε.

The length, velocity and time Kolmogorov scales are built on the basis of dimensional

analysis as

η = (ν3/ε)1/4 uη = (νε)1/4 τη = (νε)1/2 (3.26)

with ε ≈ u3/L. The spatial resolution must to be of order of magnitude η and the size

of the computational domain has to be proportional to the most energetic scale of the

flow L. The number of points required to resolve the Kolmogorov scales in the three

computational directions is

N = N1 ∗N2 ∗N3 =
(L
η

)3
=©(Re9/4) (3.27)

The equations have to be resolved in time with a time step ∆t ≈ τη (without taking

into account numerical stability requirements) for a number of time steps

NT =
T

∆t
≈ L

uτη
=©(Re1/2) (3.28)

The cost of a simulation is proportional to N ∗NT =©(Re11/4) rapidly growing with

the Reynolds number.

The direct numerical simulation (DNS) of all the motion scales of a turbulent flow

is limited to flows at Re = ©(103,4). For practical and industrial applications, an

averaging of the Navier Stokes equations is performed in order to make affordable the

numerical simulation of flows at higher Reynolds number.

3.1.4.2 Reynolds Averaging of the Navier-Stokes Equations

A time averaging process of the (3.19) is performed. Instantaneous flow variables are

considered as the sum of a mean and a fluctuating value :

f(x, t) = f(x, t) + f
′
(x, t) (3.29)
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The mean value is computed by averaging the variable over a time interval ∆T much

larger than the period of the fluctuating part but smaller than the time interval asso-

ciated with the unsteady flow :

f(x, t) =
1

∆T

∫ ∆T

0
f(x, t)dt (3.30)

Therefore :

f ′(x, t) = 0 , f(x, t) = f(x, t) (3.31)

but

f ′(x, t)g′(x, t) 6= 0 (3.32)

The time averaging of (3.19), performed by applying the (3.29 - 3.30) taking into

account the (3.31 - 3.32), leads to a system of equations for the mean value of the

unknown flow variables (3.20). These equations, named Reynolds Averaged Navier

Stokes (RANS), are formally identical to (3.21-3.22) with the exception of a new un-

known term that comes from the convective fluxes. This term, the Reynolds stress

tensor, is constituted by the double corrrelation of the turbulent velocity fluctuations :

τij = −ρu′iu
′
j (3.33)

A set of transport equations to directly compute the components of (3.33) can be

derived by multiplying the Navier Stokes equations by the velocity fluctuations and then

time-averaging. The resulting Reynolds stress equations read, for an incompressible

flow, as:

∂τij
∂t

+ uk
∂τij
∂xk

= −τik
∂uj
∂xk
− τjk

∂ui
∂xk

+ 2µ
∂u
′
i

∂xk

∂u
′
j

∂xk
+ p′

(∂u′i
∂xj

+
∂u
′
j

∂xi

)
+

+
∂

∂xk

[
ν
∂τij
∂xk

+ ρu
′
iu
′
ju
′
k + p′u

′
iδjk + p′u

′
jδik

]
(3.34)

New unknows have been generated. Although equations for these terms could be ob-

tained, the non linearity of the Navier Stokes equations would generate additional

unknown terms. The usual approach is to relate the Reynolds tensor to the resolved

mean flow variables through a turbulence model.

The Reynolds tensor, in analogy to (3.23), is made proportional to the mean flow

strain tensor through the eddy viscosity :

τij = µt

(∂ui
∂xj

+
∂uj
∂xi
− 2

3

∂uk
∂xk

δij

)
− 2

3
ρκδij (3.35)
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where κ is the turbulent kinetic energy. The task on any turbulence model is to close

the RANS equations by computing the eddy viscosity µt that is assumed to depend on

the velocity and length scale of the turbulent eddies

µt ∝ κ1/2lα (3.36)

Several turbulence models, ranging from algebraic to Reynolds stress models, have

been developed and can be found in literature. In the algebraic models (46), the eddy

viscosity is completely determined in terms of local flow variables. These models are

cheap and robust, but are not able to take into account important effects of the flow

history.

3.1.4.3 The ZEN flow solver

The ZEN flow solver adopted for the RANS simulations is a multi-block well assessed

tool for the analysis of complex configurations in the subsonic, transonic, and supersonic

regimes (46, 47). The equations are discretized by means of a standard cell-centered fi-

nite volume scheme with blended self adaptive second and fourth order artificial dissipa-

tion. The pseudo time-marching advancement is performed by using the Runge-Kutta

algorithm with convergence accelerators such as the multi-grid and residual smoothing

techniques.

The turbulence equations are weakly coupled with the RANS equations and solved

only on the finest grid level of a multi-grid cycle. Algebraic, one-equation, two-

equations, and non linear eddy viscosity turbulence models are available.

Numerical model The Navier-Stokes equations (3.19), after applying the Gauss

theorem, are written for each cell (i, j, k) of a computational domain as

d

dt

∫
Vijk

UijkdVijk +

∫
∂Vijk

(F c − F v)dSijk =

∫
Vijk

QdVijk (3.37)

where U is the vector of the unknown variabls, F c is the convective flux, F v the viscous

(physical and artificial) flux, and Q stands for the source term (if any). The volume of

the computational cell is Vijk.

The (3.37), by means of a cell centered finite volume approach, reduce to

Vijk
dUijk
dt

+Rcijk −Rvijk − VijkQijk = 0 (3.38)
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with Rc and Rv the total net fluxes ( convective and viscous respectively ) positive if

outgoing from the volume Vijk.

The residual Rcijk is obtained as the sum of the fluxes across the six faces of the cell

(i, j, k)

Rcijk = fi+1/2 − fi−1/2 + fj+1/2 − fj−1/2 + fk+1/2 − fk−1/2 (3.39)

At the interface i+ 1/2 of the cell (i, j, k), the flux fi+1/2, positive if outgoing from the

volume Vijk, is evaluated as

fi+1/2 =


qi+1/2ρi+1/2

qi+1/2(ρu)i+1/2 + pi+1/2Ai+1/2

qi+1/2Hi+1/2

(3.40)

where ρi+1/2 is the density, pi+1/2 the termodynamic pressure, (ρu)i+1/2 the momentum,

and Hi+1/2 the enthalpy evaluated at the cell face by averaging between the values at

the centers of the cells (i, j, k) and (i+ 1, j, k). The volume flux qi+1/2 is computed as :

qi+1/2 =
(ρu)i+1/2 ·Ai+1/2

ρi+1/2
(3.41)

where Ai+1/2 is the area vector of the face (i + 1/2, j, k) pointing in the positive i

direction.

The residual Rvijk is obtained as the sum of the fluxes across the six faces of the cell

(i, j, k)

Rvijk = gi+1/2 − gi−1/2 + gj+1/2 − gj−1/2 + gk+1/2 − gk−1/2 (3.42)

The generic flux gi+1/2 requires, for the momentum equation, the evaluation of the

velocities derivatives and of the heat flux for the energy equation.

The derivatives of the velocities are computed by integrating over a cell volume

and applying the Gauss theorem. The gradient of the generic velocity component u is

obtained as

(∇u)i,j,k =
1

Vi,j,k

6∑
f=1

ufAf (3.43)

where uf is the value of u at the face center, and Af is the area vector of the face.
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Thus the derivative of u in the xi direction results to be

∂u

∂xi
=

1

Vi,j,k

(
(ui+1,j,k + ui,j,k)

2
Axii+1/2,j,k −

(ui,j,k + ui−1,j,k)

2
Axii−1/2,j,k

+
(ui,j+1,k + ui,j,k)

2
Axii,j+1/2,k −

(ui,j,k + ui,j−1,k)

2
Axii,j−1/2,k (3.44)

+
(ui,j,k+1 + ui,j,k)

2
Axii,j,k+1/2 −

(ui,j,k + ui,j,k−1)

2
Axii,j,k−1/2

)

with Axii+1/2,j,k the xi-component of the area vector of the face (i+ 1/2, j, k)

Axii+1/2,j,k = Ai+1/2,j,kn
xi
i+1/2,j,k (3.45)

where ni+1/2,j,k is the normal versor of the face.

The heat flux is computed as (λtot)i+1/2(∇iT )i+1/2 where

(λtot)i+1/2 =
Cp µi+1/2

Pr
+
Cp(µt)i+1/2

Prt
(3.46)

is the total heat conduction coefficient with µ the molecular and µt the turbulent

viscosity and Pr and Prt the Prandtl and the turbulent Prandtl number respectively.

The molecular and turbulent viscosity are computed by averaging between the cells

sharing the considered interface

µi+1/2 =
µi,j,k + µi+1,j,k

2
(3.47)

(µt)i+1/2 =
(µt)i,j,k + (µt)i+1,j,k

2
(3.48)

The i component of the gradient of the temperature T is evaluated as

(∇iT )i+1/2 =
Ti+1 − Ti
4Li+1/2

(3.49)

where

4Li+1/2 =
Vi,j,k + Vi+1,j,k

2|Ai+1/2|
(3.50)

with |Ai+1/2| the area of the face (i + 1/2, j, k), and Vi+1,j,k the volume of the cell

(i+ 1, j, k).
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The equation (3.38) is advanced in time by using a Runge Kutta (RK) algorithm.

The m - stage formula, assuming that n is the known time level, is

U
(0)
i,j,k = U

(n)
i,j,k (3.51)

(U
(k)
i,j,k − U

(0)
i,j,k) = αk4ti,j,k

[
− 1

Vi,j,k
(Rci,j,k +Rvi,j,k) +Qi,j,k

]
(3.52)

U
(n+1)
i,j,k = U

(m−1)
i,j,k (3.53)

where αk is the RK coefficient and 4ti,j,k is the time step which is evaluated for each

grid cell separately. The convective residuals Rci,j,k are computed at each stage of the

procedure, while the terms Rvi,j,k and Qi,j,k are calculated only at the first stage and

then are frozen.

The use of a local time step does not influence the steady-state solution, and allows

to have, where possible, larger time steps and thus to expel disturbances faster.

3.1.5 Genetic algorithm - The ADGLIB library

In this section, the evolutionary computing method is presented as developed in the

in-house optimization library ADGLIB. Genetic algorithms (GAs) belong to the class

of evolutionary strategies, which common feature is the attempt to emulate the mecha-

nisms typical of biological evolution. In biological evolution, genetic information stored

in chromosomal strings evolves over generations to adapt favourably to a static or

changing environment. In an analogous fashion, GAs are originally characterised by

bit string representations of possible solutions to the problem at hand, and by mech-

anisms for the transformation and subsequent improvement of these coded solutions.

Three basic components necessary for the implementation of a GA can be identified.

The first one is a scheme that allows for a coded representation of possible solutions;

as stated above, a bit string representation is usually adopted, by representing each de-

sign variable through a fixed length binary number, and linking together all the coded

variables in a single string (chromosome); hence, each chromosome uniquely defines one

solution (individual). Then, there must be a criterion for the evaluation of the fitness of

each solution, allowing for a ranking of the individuals of the population; this criteria is

of course problem dependent. The last component of the procedure is the most signif-

icant; it consists in those transformation functions that mimic the biological evolution

process, when applied to a population of chromosomal representation of solutions to
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the problem. A criterion for the selection of the pairs of individuals that are going

to reproduce must be chosen, such that selection probability is higher for individuals

characterised by higher fitness. Typical selection mechanisms are roulette-wheel and

random-walk (48, 49); the differences between selection operators consist essentially in

the level of selection pressure they realise, i.e. how much the selection probability is

biased towards the best fit individuals. The two parents chosen are then mated through

a crossover operator, which allows the recombination of their chromosomes; finally, the

two strings obtained can undergo a mutation, consisting in a random variation of a

little portion of the information coded in them. A number of different crossover and

mutation operators can be used; the choice of these operators may have strong influence

on the performances of the procedure, for a given optimisation problem (40). Thus, the

fundamental steps that characterise a genetic algorithm can be summarised as follows:

1. a starting population of chromosome strings is first generated, usually in a random

fashion or through a design of experiment technique or as a restart of a previous

run;

2. each element of the population is evaluated by computing its fitness value;

3. the individuals to reproduce are selected, with bias allocated to the best fit ones;

4. new chromosome strings are generated by applying the crossover and mutation

operators to the selected individuals, and a new generation is filled;

5. the evaluation, selection and reproduction phases are iterated and new popula-

tions are generated until a suitable solution is found.

As already stated, a peculiar feature offered by GAs is their capability to face multi-

objective optimisation. When several design goals need to be achieved in an optimi-

sation problem, these are usually combined together so that a single scalar objective

function is obtained; this is generally achieved through a weighted linear combination of

the different objectives, or on the basis of a demand-level vector. In this way, the prob-

lem becomes amenable to all classical optimisation algorithms. The drawback of this

approach is that the solution of the problem is strongly dependent on the (arbitrary)

choice of the relative weights assigned to the objectives; moreover, if the objectives to

be minimised are of different nature, as happens for example when multi-disciplinary
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optimisation problems are faced, it is difficult to understand how to interrelate them

properly.

A different and well-established approach consists in classifying all potential solu-

tions to the multi-objective optimisation problem into dominated and non dominated

(Pareto optimal) solutions. The notion of domination can be defined as follows: let

F = (f1, . . . , fn) the vector of a minimization problem with n objectives, and F a, F b

be two candidates; we say that F a dominates F b if:

∀i ∈ {1, . . . , n} fai ≤ f bi

and

∃i | fai < f bi

The Pareto Front is the set of all the non dominated solutions; it follows from the

definition that, if a solution belongs to the Pareto Front, it is not possible to improve

one of the objectives without deteriorating some of the others.

By virtue of their structure, GAs are capable of facing multiobjective design prob-

lems in a more direct way; in fact, by selecting individuals according to the domination

criteria instead of on the basis of a single fitness value, the set of Pareto optimal so-

lutions can be discovered. In this way, a number of possible alternative solutions are

obtained, each one meeting the requirements of the problem at different levels of com-

promise. Hence, the characterising feature of a multi-objective GA is the introduction

of the Pareto criteria in the method used for individuals selection. In our system, this

is accomplished through a random-walk operator: the current population is distributed

over a toroidal landscape, a starting point is chosen at random, and the parents are

selected as the locally non dominated individuals met in two subsequent walks, of a

given number of steps, from that starting point; if more non dominated individuals are

met, the first one encountered is selected.

The highlighted characteristics make GAs very attractive optimization tools, and

explain the considerable growth of interest which has been devoted to them in recent

years for applications of engineering interest. The major weakness of GAs lies in their

relatively poor computational efficiency, as they generally require a very high number

of evaluations of the objective function. For this reason, the use of GAs may become
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un-practical when this evaluation is “expensive”, as happens for aerodynamic optimiza-

tion applications where the solution of complex partial differential equation systems is

necessary. This is the main reason why alternative techniques, like hybridization with

gradients and use of surrogate and reduced order models, have been proposed to speed

up the evolutionary optimization process.

3.2 A state of the art optimization study

The challenging problem of wing design for small business aircraft configurations is here

explored using evolutionary computing and the whole optimization process described in

the present chapter. The study focuses on the aerodynamic analysis and optimization

of a laminar wing in cruise and high lift conditions (50, 51). The main issue is the

application of natural laminar flow technology which in turn implies pressure gradient

optimization. As already mentioned above, evolutionary techniques, when applied to

problems that require a substantial amount of computational effort for fitness evalu-

ation, can be very expensive and prohibitive. Complementary techniques should be

implemented to overcome these shortcomings. Nevertheless, even the most advanced

and efficient approaches to design optimization through Evolutionary Computing still

have some difficulties to be widely accepted and used in the day-by-day design practice

of aerospace industry. Here, we want to show how an extremely challenging aero-

dynamic shape design problem can be effectively faced using quite simple single and

multi-objective evolutionary optimization techniques in conjunction with a smart and

well planned optimization strategy. Thus, a difficult three-dimensional aerodynamic

shape design problem is split in two phases. In the first one a multi-objective design

problem is solved on a simplified two-dimensional aerodynamic problem. This prob-

lem, as will result clearly in the following sections, is aimed to find a sub-optimal, but

robust, configuration that can be safely used as a baseline for the subsequent three-

dimensional single-objective optimization step. The multi-objective approach in this

first step is essential, as the approximation errors deriving from the simplification of

the computational model and the uncertainties in the real working conditions of the

object to be designed, require a solution that does not decrease significantly the quality

of its behaviour when working in conditions that are remarkably different from those

for which it was designed. One of the techniques available to achieve this behaviour is
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the resolution of a multi-objective problem in which the objectives are representative

of an interval of working conditions. After this preliminary step, the designer will chose

a particular solution from the Pareto front (possibly using some further discrimination

criterion) to build the baseline configuration that will be used in the computationally

intensive three-dimensional design phase. This last phase will therefore be much more

devoted to refinement and exploitation rather than to the exploration of the design

space. The work has been performed within the CESAR (Cost Efficient Small Aircraft

Research) project (50), funded by the European Community within the 6th Framework

Program.

3.2.1 Problem Definition

Design points and constraints have been agreed and defined following the industrial

guidelines and the data provided during the CESAR project. The aircraft operating

points are summarized in Table 3.1. For the design purpose it was decided to focus on

‘Cruise Priority 1’ and ‘Low speed priority 4’, and, hence, the design task was conceived

as a two-point problem where ‘Cruise 1’ is the main design point and the other one is

treated as an additional one.

Table 3.1: Clean aircraft operating points

Priorities
Pressure True Reynolds Mach

altitude Airspeed number number

- [ft] [KTAS/ms−1] Ref. to Cr/Ct -

Cruise 1 35, 000 400/205.8 12.3 106/4.6 106 0.694

Cruise 2 31, 000 420/216.1 14.6 106/5.4 106 0.716

Cruise 3 41, 000 350/180.0 8.2 106/3.1 106 0.610

Low sp. 4 0 90/46.3 7.2 106/2.7 106 0.136

A synoptic view of the aircraft design problem definition is given in Table 3.2.

Constraints and objectives definition are cast in the presented form in order to give sense

to the aerodynamic design problem. The maximum lift attainable at design point 2 is

considered here as a constraint to satisfy. Hence, a “reference” value (=1.4, according

to the specifications) is fundamental to impose because the optimizer has to search

the best solution in the design space subject to a minimum production of lift at low
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speed: indeed, an incontrovertible evidence and experience exists about the conflicting

nature of transonic laminar flow enhancement and low speed performances. The key

parameter is the leading edge airfoil shape: a small leading edge radius is desirable for

laminar flow but at the same time it strongly deteriorates the stall characteristics.

3.2.2 Optimization strategy

The design optimization of such a transonic wing under laminar flow conditions requires

several design variables to control wing shape and twist angle distribution. In addition,

the presence of the engine nacelle and the simulation of the inlet mass flow makes

the geometry and the corresponding flow pattern complex to analyze. Another key

issue is the estimation of the maximum lift coefficient at low speed by means of CFD

methods which would enormously increase the computational cost for the aerodynamic

evaluation. Thus, these features would imply a huge number of very long computer

Table 3.2: Optimization problem definition

Design variables Wing section twist 3 sect., 3 des. var.

Wing section shape 3 sect., 60 des. var.

Design point 1 Mach 0.694

(Cruise Priority 1) Reynolds 9.0E+06

Lref [m] 1.786

Altitude [m] 35000

Design point 2 Mach 0.136

(Low speed priority 4) Reynolds 5.27e+06

Constraints Wing CL @ DP1 [0.20 : 0.30]

Wing CM @ DP1 > −0.1

Fuel Tank Volume > 0.6205m3

Maximum CL @ DP2 ≥ 1.40

Objectives L/D @ DP1 To be maximized

Laminar extenta@ DP1 To be maximized

a The laminar extent is computed as X̃ = 2
b

∫ b/2
0 Xtr (y) dy, where

Xtr(y) is the locus of transition locations along the wing span

and b is the wing span length. It represents the ratio between

the laminar flow area and the total wing area.
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simulations in order to explore the design space. To reduce the overall computational

cost, past researches and experience suggest to first design optimal wing section shape

with reduced order methods. This approach is feasible because the problem under

investigation deals with the low transonic Mach number aerodynamic flow around a

low sweep angle wing; besides, industrial experience show that the wing aerodynamic

behaviour in take-off and landing strongly depends on a properly designed airfoil shape.

From this perspective, multi-point approach coupled to quasi-3D methods has proved to

be one of the best compromise in laminar wing design: indeed, reliable 3D performances

prediction, wide design space search and computational speed are matched at the same

time. Hence, the optimization task has been split in two separate stages: a preliminary

stage consisting in wing airfoil optimization and a final stage in which the wing shape

is optimized by taking into account the fully three-dimensional flow around the wing,

the fuselage body and the engine nacelle in working conditions.

3.2.3 Wing section optimization with a 2.5D approach

The main objective of this preliminary design phase is to optimize selected wing section

shape at and around ideal span load conditions. The idea is to get airfoil shapes which

might maintain an optimal performance throughout a range of design points: this ranges

are chosen to reproduce the ideal flow conditions onto the actual 3D wing. The aero-

dynamic method is based on a quasi three-dimensional or two-and-a-half-dimensional

viscous/inviscid interaction approach able to solve coupled Euler + boundary layer

equations (52, 53). The methodology is referred to as “2.5D” because it is basically

two-dimensional, but it takes into account some aspect of three-dimensional wing flow

such as sweep angle effect and boundary layer cross-flow.

In order to design efficient airfoils for a wing whose geometric and aerodynamic

data are known, it is needed to compute the desired lift distribution as a function

of the spanwise axis. Given the wing planform (and hence the wing area S and the

chord distribution c(y) along the wing span) and the global lift CL that the wing

must generate, it is straightforward to get the corresponding ideal load distribution

by simply searching for an elliptic function f(y) = c(y)Cl(y) = K0

√
b2/4− y2 that

satisfies the equation CL = 2
S

∫ b/2
0 f(y)dy = 2

S

∫ b/2
0 K0

√
b2/4− y2dy. Solving for K0

gives K0 = 8CL/πAR, where AR is the wing aspect ratio. The distribution of sectional

lift coefficient Cl(y) is then computed. Figure 3.18(a) shows the actual CESAR wing
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Figure 3.18: Sectional distributions along the wing span

planform chord distribution (black curve), the elliptic spanwise loading at CL = 0.25

(red curve) and the corresponding sectional lift distribution (blue curve). Three span

sections (2y/b = 0.15, 0.50, 0.90) are selected to define the wing shape, representing

respectively the inboard, mid and outboard part of the wing. However, the para-

metric shape change is applied only to a single representative airfoil, which is then

scaled to the thickness and flow conditions corresponding to the three selected sections.

Hence, the global airfoil shape (i.e., thickness and camber distribution) will be the

same throughout the wing. For each wing section, the curves plotted in figure 3.18(a)

give the corresponding values for chord (and, hence, Reynolds number) and design lift

coefficient. It is evident that one airfoil shape cannot be representative of wide span

portions because chord and lift distribution vary quite rapidly along the wing. For this

reason and, moreover, to allow extended optimal aerodynamic performances at inci-

dence angles surrounding the cruise point (i.e., to cover slight off-design conditions and

to take into account the effect of downwash on the effective sectional angle of attack),

a multi-point approach is followed: two additional design points are defined for each

wing section by simply scaling the lift coefficient by a factor 1.5 and 0.8. The obtained

sectional lift distribution ranges are reported in Figure 3.18(b). A further design point

is added to consider the airfoil low speed performances in clean conditions. The goal

of this optimization stage is twofold:
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• to minimize the wing section viscous drag by reducing the form drag and enhanc-

ing the laminar flow as much as possible;

• to keep the airfoil maximum lift coefficient higher than a minimum allowed level

(the Clmax is treated as a constraint function).

Basically, the problem definition of the 2.5D design mirrors the contents of Table 3.2.

Two set of GA-based optimization run have been performed, each sharing the same

design variables and design points but with a different setting up of the optimization

strategy.

The first one, here referred to as MOGA (Multi-Objective Genetic Algorithm), is

a bi-objective optimization: the contributions of cruise (Obj 1) and low speed (Obj 2)

design points have been split in two separated cost functions each one in competition

with the other and defined as follows:

Obj1 =
3∑
i=1

tip∑
j=root

[
aCd+ b

(
X̃up −Xup

)2
+ c

(
X̃ lo −X lo

)2
]
ij

Obj2 =

tip∑
k=root

[
d
(
Clmax − Clmax

)2]
k

Here, the double summation is introduced to count the contributions of the three

sections which define the position along the wing span (inboard, mid, outboard air-

foil) through index “j” and the three design points at and around the cruise conditions

through index “i” (1 is for the cruise point, 2 and 3 are for the additional cases at

higher and lower lift levels). The quadratic penalty functions are active only when

the constraint is not satisfied, i.e. when the performance index (X̃up, X̃ lo, Clmax) is

below the threshold (denoted by bar quantities); otherwise, their value is assumed as

zero. The coefficients a, b, c, d are scaling factors used to adjust the order of magni-

tude, and, hence, the relative importance, of the objective function components. The

MOGA optimization might be considered as an exploratory descent into the design

space with the aim of uncovering trade-offs and compromise trends between cruise and

low speed performances through the optimal Pareto front concept. A population of

twenty-four individuals is evolved through five-hundred generations (a total number of

twelve thousands cases were analyzed). The probability of crossover activation is eighty

percent, while the rate of the mutation operator is 0.7 percent. The elitism strategy is
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Figure 3.19: 2.5D optimization convergence histories

activated on the cruise related objective (Obj 1): this means that each newly generated

population will include the individual which is the best fit with respect only to Obj 1.

The main advantage of this approach is to assure that the bi-objective run would not

produce a worse fit element, with respect to Obj 1, than a single objective run on Obj

1. Figure 3.19(a) reports the convergence history of MOGA run in the objective plane.

Together with the fitness of the individuals along generations (red points), the plot also

highlights the baseline fitness (yellow point), the Pareto front obtained at the end of

the first generation (black line points) and the final Pareto front (blue line points). The

push towards the “utopia” point (i.e., the ideal point where both the objective function

values are zero) is clearly evident, although the obtained front cannot be considered

converged to the true non dominated one.

The second step of 2.5D airfoil optimization is here referred to as SOGA (Single-

Objective Genetic Algorithm), as only one objective function is minimized within the

same problem definition by letting evolve a sub-optimal population. Indeed, the in-

dividuals composing the initial population are selected among the Pareto solutions of

the previous MOGA run. Hence, the SOGA exploration can be considered as a fur-

ther refinement stage. The objective function is here defined as a combination of high

speed (cruise drag and transition location) and low speed performances (maximum lift)

through weights and penalties. Its rather complicated expression now has the form:
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Obj =

tip∑
k=root

 a′Cd1 + b′
(
X̃up −Xup

)2
+ c′

(
X̃ lo −X lo

)2
+

d′
(
Clmax − Clmax

)2
+ e

(
Cd2 − Cd2

)2
+ f

(
Cd3 − Cd3

)2

k

In particular, the drag coefficients for cruise points 2 and 3 (Cd2, Cd3) are now treated

as quadratic constraints whose threshold values (Cd2, Cd3) are based on the best-fit

elements of MOGA optimization. The coefficients a′, b′, c′, d′, e, f are scaling factors, as

previously mentioned.

A population of thirty-two individuals evolved through three-hundred generations.

The adopted genetic algorithm uses binary encoding with Gray code (54), and each

design variable is coded using a 31-bit binary substring. The probability of crossover

activation is eighty percent, while the rate of the bit-mutation operator is 0.5 percent.

The GA parameters were chosen following the experience gathered in previous design

problems similar in nature. Figure 3.19(b) shows the convergence history for the SOGA

run: the objective function is reported on the y-abscissa and normalized with respect

to the best fit individual of the initial population. Hence, a global improvement of

50% (in terms of the defined objective function) is obtained at the end of the SOGA

optimization. Figure 3.20 shows the high speed polar curves for the optimized wing

sections: the plot highlights the effectiveness of the optimization process as the minimal
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Figure 3.21: Transition prediction as a function of Cl

values of drag coefficients are reached onto a well defined branch of the aerodynamic

polar. Figure 3.21(a) and 3.21(b) report the transition location on the upper and lower

airfoil side as a function of the lift coefficient: the stability of the boundary layer is

reached and maintained over the specified design points. The optimized wing airfoil

geometry is reported in Figure 3.22(a). The pressure coefficient curves are shown in

Figure 3.22(b) (inboard section), Figure 3.22(c) (mid-wing section) and Figure 3.22(d)

(outboard section). It can be noticed that, while the inboard and mid-wing airfoil

maintain almost the same shape of the pressure distribution at different lift levels, the

outboard airfoil presents some peaks on the lower side at lower lift cases. This is mainly

due to the reduced airfoil thickness and to the particular shape of the leading edge.

Figure 3.22(e) shows the comparison of the lift curve and maximum lift prediction

between a RANS fully turbulent approach and the ESDU semi-empirical procedure

(55) on the optimized mid-wing airfoil: the agreement is remarkable especially about

the estimation of the maximum lift and of the lift curve slope decreasing. Figure 3.22(f)

shows the low speed polars of the inboard, mid and outboard wing sections under the

respective operating conditions: basically, the three curves differ for the wing airfoil

maximum thickness and the Reynolds number, as the global airfoil shape is the same

along the wing. A general decrease of the airfoil maximum lift is observable towards

the wing tip due to reduced thickness and Reynolds number: a proper adjustment of
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wing twist will help to recover this feature in the three-dimensional optimization phase.

3.2.4 Automatic 3D mesh generation

Before setting up the meshing strategy, a suitable and simpler CAD description of the

geometry surfaces was obtained from the initial CAD draw provided by Piaggio (see

figure 3.23(a)). This “cleaning” activity was needed due to the presence of many small

surfaces (377 surfaces to describe the wing-body-fairing-nacelle-pylon configuration),

bad connections and “leakage flows” between adjacent surfaces and trimmed surfaces.

The CAD repairing was made through reconstruction, simplification and joining op-

erations on each surface; connections between surfaces were restored through border

curves sharing. The result of CAD repairing is shown in Figure 3.23(b) where the whole

configuration was described with just 25 surfaces without any hole or overlap.

As the geometry is quite complex due to the presence of the nacelle body, particular

attention has been given to the domain modelling and mesh generation phase in order

to build a suitable structured block topology able to be easily applied to a wing shape

optimization process. The software ICEM CFD has been used to generate structured

volume grids around the wing-body-rear mounted nacelle configuration, and a batch

script, having the form of a ICEM replay file, has been set up to automatically perform

the re-meshing of a new configuration. The resulting grid size (about 10 million cells)

is computationally very expensive to be used in an optimization run, so that a coarser

grid level (about 1.2 million cells) is instead used which anyway is conceived to satisfy

the requirement of unit order y+ (dimensionless wall distance) by controlling the height

of the first cell off the wall. The fine mesh size will be used to validate the optimization

results. Figure 3.24 shows the coarse surface mesh on the whole configuration: blue

lines highlight interfaces between computational blocks.

3.2.5 Wing-body-nacelle optimization

The final optimization stage has been conceived to include the engine mass flow in

the simulation process and to take into account its effects on the wing laminar flow.

Indeed, the fully three-dimensional flow around the wing, fuselage and rear-mounted

nacelle is solved: the ZEN RANS flow solver is used in fully turbulent mode to estimate
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(a) Optimized geometry (b) Pressure coefficient, inboard airfoil

(c) Pressure coefficient, mid-wing airfoil (d) Pressure coefficient, outboard airfoil
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Figure 3.22: Airfoil optimization results
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(a) Initial CAD definition (b) “Cleaned” CAD drawing

Figure 3.23: The aircraft configuration

Figure 3.24: RANS skin mesh with block structure highlight
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the pressure distribution which will feed the finite difference boundary layer solver and

the aerodynamic coefficients to be introduced within the objective function expression.

3.2.5.1 Baseline analysis

The baseline geometry is defined by mounting the optimal airfoil, designed as described

in section 3.2.3, onto the wing planform: results of the aerodynamic analysis of the new

baseline have been obtained both on the fine mesh and on the coarser one. The adopted

turbulence model is the k − ω TNT model with a free-stream turbulence intensity

level of 0.50% and a viscosity ratio µT /µ of 0.10. CFD computation is performed at

0◦ angle of attack, which gives, on the fine mesh, a global lift coefficient of 0.24 and

a drag coefficient of 220 drag counts. Pressure distribution comparisons are reported

in Figure 3.25(a), Figure 3.25(b), Figure 3.25(c) and Figure 3.25(d), where red and

black lines indicate respectively coarse and fine solution: the discrepancies can be

considered acceptable. Figure 3.25(e) and Figure 3.25(f) compare the non-dimensional

wall distance y+ at two wing sections (20% and 75% of span length) as computed

with the coarse and fine mesh: even if the numbers are rather different, the unit order

magnitude is preserved on the coarse mesh, as expected. Globally, the comparison

between the solutions obtained with the two grid levels shows no remarkable differences.

This confirms that, from the perspective of natural laminar flow design, the coarse grid

level is a suitable choice to speed up the design process.

It has to be pointed out here that the baseline design is found to be already a

sub-optimal candidate thanks to the careful airfoil design activity. The wing spanwise

loading is compared to the elliptical distribution in Figure 3.26(a): the overall agree-

ment is already acceptable and just a slight twist adjustment is needed on the very

outboard wing to improve the low speed stall path characteristics in such a region.

Figure 3.26(b) shows the predicted laminar to turbulent transition locations (the curves

in black on pressure coefficient contour map) as computed on the baseline wing suction

and pressure side: the laminar regions (the areas between the leading edge lines and

the black curves) are very extended as the transition lines lie where the aft recompres-

sion starts, except in the inboard wing where the three-dimensional cross-flow effects

are stronger and trigger an early transition to turbulence. Moreover, as expected, a

negligible influence of engine mass flow is found on the outer wing aerodynamics due

to its installation position. This analysis gives sense to the chosen parametrization
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Figure 3.25: Baseline wing analysis
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Figure 3.26: Baseline wing analysis

approach: globally, the baseline wing shape can be considered as an optimal candidate,

but further shape modifications are needed to improve the span loading near the wing

tip (twist modification) and, possibly, the laminar extent near the wing root (inboard

sectional airfoil modification).

3.2.5.2 Discussion of optimization results

As highlighted in the previous section, thanks to the intensive 2.5D optimization strat-

egy, the baseline wing, obtained by shaping the wing with the optimized airfoils, is

already a good optimal or sub-optimal candidate. However, some slight improvements

should be still achieved in order to correct three-dimensional effects. In particular, a

reduced parameterization can be used to focus the shape modification only in the in-

board wing (60 modification function variables) and the twist angle tuning on the whole

wing (3 design variables, one for each shape section) to compensate the span loading.

Hence, a total number of 63 design variables is used. The aircraft angle of attack is

kept fixed at 0◦ throughout the optimization process and two significant features arise

according to the problem definition stated in table 3.2:

• in the objective function the aerodynamic efficiency, not the drag coefficient,

explicitly appears to take into account both drag minimization and lift maxi-

mization;
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• the lift coefficient is quadratically penalized two times in order to express both

the upper and lower bound constraints.

The resulting optimization setup for the final 3D phase is reported in table 3.3. As

already mentioned, even if apparently the objectives to maximize are more than one, a

single objective approach is chosen by condensating the aerodynamic efficiency (com-

puted by the CFD solver) and the laminar extent (computed by the stability analysis)

functions and selecting suitable scaling factors. Indeed, the cost function is expressed

as

Obj = −a′′ CL
CD
− b′′X̃up − c′′X̃ lo + d′′(CL − CL)2 +

e′′(CL − CL)2 + f ′′(CM − CM )2

where the aerodynamic efficiency CL
CD

, the upper X̃up and lower X̃ lo laminar extent

are taken with the minus sign in order to set a minimization problem, CL and CL are

the lower and upper bound of the CL range (0.20 and 0.30 respectively, according to

table 3.2) and CM is the threshold value for pitching moment coefficient (= −0.1).

a′′, b′′, c′′, d′′, e′′, f ′′ are scaling factors.

A genetic algorithm optimization is launched with a bit-mutation rate of 0.7% and

a crossover rate of 80%. The need of computational effort reduction leads to a choice

Table 3.3: 3D Optimization problem definition

Design variables Wing twist 3 section, 3 des. var.

Inboard wing sect. shape 1 sect., 60 des. var.

Design point 1 Mach 0.694

(Cruise Priority 1) Reynolds 9.0E+06

Lref [m] 1.786

Angle of attack [◦] 0.0

Altitude [m] 35000

Constraints Wing CL @ DP1 [0.20 : 0.30]

Wing CM @ DP1 > −0.1

Objectives CL
CD

@ DP1 To be maximized

Suction side laminar extent X̃up @ DP1 To be maximized

Pressure side laminar extent X̃ lo @ DP1 To be maximized
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Figure 3.27: GA convergence history

for population size of only 16 elements. Based on previous experience, this is the

minimum acceptable size for the used algorithm and the given optimization problem.

Figure 3.27 reports the convergence history of the genetic optimization process during

14 generations. After that, the process has been stopped for two main reasons: on

one hand, the best candidate performances fully satisfy the requirements; on the other

hand, looking at the convergence history, it seems that a flat region, a sort of plateau

has been already found where the solution does not improve significantly anymore. Of

course, the last sentence is just a trend extrapolated from available data and, hence,

it should be confirmed by further investigations. The low speed design point is not

considered here as limited deviations are expected in span loading with respect to

the baseline wing. Moreover, as the baseline wing is already a well-designed starting

point, the designer is not interested in modifying very much the wing shape, so that

the design variables range in a narrow interval and, consequently, due to the adopted

reduced parameterization, they will generate very “similar” shapes.

Globally, the optimization run has achieved an improvement of the objective func-

tion of about 17% with respect to the baseline. CFD computation at 0◦ angle of attack

(i.e., the design point) gives, on the fine mesh, a global lift coefficient of 0.26 and a

drag coefficient of 225 drag counts. Figure 3.28(a) shows the comparison between the

minimum induced drag and optimized wing span loading. The comparison with Figure

3.26(a) clarifies some of the effects of the optimization process: due to the twist angle
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Figure 3.28: Optimal wing analysis

increase in the inboard wing and decrease in the mid-outboard part, the lift distribution

is much more shifted near the wing root and this is a highly desirable feature both for

low speed stall path improvement and structural bending moment reduction. The low

speed lift polar curve is reported in Figure 3.28(b) where the results from two different

methods are compared: one is the classical ESDU procedure, the other one (XAVL)

is based on a vortex lattice method corrected with a strongly-coupled viscous-inviscid

interaction technique. Both methods agree on maximum lift and stall angle prediction,

even if they differ in the linearity region. This is surely due to the fact that the ESDU

procedure was traditionally coded to give fast and quite accurate predictions in high

lift conditions, while the linear lift curve slope and the zero-lift angle are roughly com-

puted from geometry input data. However, the prediction from both methods confirm

that the optimized wing satisfies the constraint on maximum lift CLmax > 1.4. Figure

3.29(a), Figure 3.29(b) and Figure 3.29(c) show the pressure coefficient distribution

extracted respectively from 25% (inboard), 50% (mid-wing) and 75% (outboard) span

sections. The results from computations at various angle of attacks (0◦, 0.5◦, 1◦ and

2◦) have been superimposed on each graph. It can be observed that, on the suction

side approximately up to 70% chord, the pressure gradient is constantly negative and

gradually decreasing in modulus: this trend is not observed at AOA=2◦, where the

mid-wing and outboard airfoils show an early leading edge pressure peak and a pos-

itive cp slope downstream. This is due to the fact that, for an angle of attack of 2◦,
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Figure 3.29: Optimal wing pressure distribution
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the global lift coefficient is about 0.50, which is very far from the lift design range

(0.20−0.30): hence, the AOA=2◦ case is a deep off-design point. On the pressure side,

the pressure gradient becomes positive around the 40% chord to allow the airfoil load-

ing increase in the aft region. This is a direct consequence of designing a wing to be the

more laminar possible once a given thickness distribution and a required total lift have

been assigned. The main result of the design activity is highlighted in Figure 3.30(a)

and Figure 3.30(b), where the transition lines are respectively depicted on upper and

lower pressure contour map for cases AOA=0◦, 0.5◦, 1◦ and 2◦. The 0◦ case is the

upper left one on both figures: the remaining cases follow in clockwise order with AOA

increasing. Transition is computed here with the database method and for a critical

N factor of 15. The pictures show that a satisfying laminar performance is maintained

at least until AOA=1◦ which correspond to CL = 0.38, that is much higher than the

upper limit of the lift design range (0.30). The AOA=2◦ case exhibits a significant

loss in laminar performance as it represents a flow condition very far from the design

point, as also highlighted above. These results are confirmed and better quantified in

Figure 3.31(a) and Figure 3.31(b), where the percentage of laminar surface is plotted

against the lift coefficient respectively on suction and pressure side. In other words,

the plotted variable represents the ratio between the laminar wetted area and the wing

planform area. The pictures show that a satisfying laminar performance is maintained

at least until AOA=1◦ which correspond to CL = 0.38, that is much higher than the

upper limit of the lift design range (0.30). The AOA=2◦ case exhibits a significant

loss in laminar performance as it represents a flow condition very far from the design

point. Computations are reported for baseline and optimal wing (solid lines) while

the circles represent the results obtained by using the fine mesh flow solution on the

optimized wing. The curves give a trend of the laminar extent behavior with the wing

lift level: clearly, the peak is found around CL = 0.26 which is the computed design

point. However, the noticeable result is that, unlike the baseline, the optimized wing

respects very well the initial requirements on laminar flow: indeed, the laminar extent

is kept well higher than 60% on the suction side and 40% on the pressure side across

the entire range of target lift coefficient and more. This gives further confidence in

the successfulness of the chosen approach to the design process. Figure 3.32(a) and

Figure 3.32(b) report the lift-drag aerodynamic polar and the aerodynamic efficiency

curve as a function of AOA. The comparison allows to quantify a difference of about
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(a) Suction side

(b) Pressure side

Figure 3.30: Transition lines on pressure contours at various AOAs

20 drag counts between the coarse and fine mesh predictions on the optimized wing.

Moreover, looking at Figure 3.32(a), it might seem that the baseline wing exhibits a

lower drag coefficient than the optimized one: however, it must be pointed out that, as

the design process has been performed by fixing the AOA, and not the lift coefficient,

the fair comparison is the one in Figure 3.32(b), where actually the optimized wing

shows slightly better performances than the baseline. Indeed, near the design point

and taking the same angle of attack, the optimized wing produces more lift and drag

than the baseline, but the relative difference in lift overcomes the relative difference in

drag, thus resulting in a higher aerodynamic efficiency. This is the reason why in the

optimization process the target was put on maximizing the lift to drag ratio rather than

minimizing the pure drag and the desired lift level was controlled through additional

constraints.
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3.2.6 Concluding remarks

A state of the art optimization study has been proposed to set a baseline point for

further research and to illustrate the need for speeding up the optimization process.

The design of a natural laminar flow wing for a VLJ wing-body-nacelle configuration

has been performed with a peculiar optimization strategy, given the complex and time-

consuming problem: suitable and specific airfoils have been designed first with quasi

three-dimensional aerodynamic characteristics to match wing flow conditions, the real

3D flow and the presence of fuselage and rear-mounted engine in working conditions

have been simulated after to “correct” the shape of the optimal wing airfoils and its

performances. Both optimization stages have shown interesting characteristics and

successful results: at the end of the design process, a wing geometry has been generated

with optimal aerodynamic characteristics. In particular, the objective to design a

natural laminar flow wing has been completely achieved in a wide range of working

conditions.

The proposed optimization example shows that a difficult and industrially challeng-

ing problem can be effectively solved using standard and well consolidated Evolutionary

Computing tools. The required computational effort, although significant, is well within

the limits that can be considered acceptable in an industrial development environment.

Nevertheless, that particular case (low-sweep wing at low transonic Mach numbers)

allowed us to adopt a peculiar strategy to avoid a prohibitive computational load on

the full three-dimensional configuration: a different study case could not be treatable

in that way, forcing the designer to find a more general way to reach the target in a

reasonable time and with limited resources. In this context, the search of more efficient

optimization techniques is still very desirable. Higher efficiency generally means:

• using lower-fidelity or lower-dimensional analysis tools (e.g., Euler instead of

Navier Stokes flow model, two-dimensional approximation instead of three-dimensional

as shown above), possibly combined with the high-fidelity tool in a multi-fidelity

environment;

• improving the search algorithm through hybridization (e.g., gradient methods

combined with genetic optimization);
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• using highly-accurate, physics-based surrogate models to avoid to turn to or to

limit the expensive CFD computation during the iterative process.

The following chapters will be devoted to the study and development of a methodology

belonging to the third class with particular focus on transonic aerodynamics and shock

wave treatment in shape optimization problems.
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4

The Proper Orthogonal

Decomposition

In this chapter a review of the mathematical theory of proper orthogonal decomposition

is presented. As already described in previous sections, the proper orthogonal decom-

position is a mathematical procedure that allows to perform a modal decomposition

of large set of multi-dimensional data so as to derive a dimensionality reduction and

describe the original system with much less number of unknowns. The mathematical

development of POD for fluid flow applications, in particular, is described in some de-

tail in (21). Here, the main aspects related to the construction of a reduced order model

through singular value decomposition are presented and the use of this technique for

steady state problems is mainly addressed. It must be underlined that, even if the POD

is mostly applied to non-linear problems because their solution is usually expensive, it

remains a linear procedure as the subspaces generated by POD modes are linear spaces.

Note that although the POD methodology is almost exclusively applied to non-

linear problems, it is important that one recognizes that it is a linear procedure, and

the nested sequence of subspaces are linear spaces, even if the data that generates it

are non-linear.

4.1 Reduced order models

Physics-based approximation concepts require a deep understanding of the governing

equations and the numerical methods employed for their solution. One of the notable
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advantage of most physics-based approaches is that they are quite insensible to the

curse of dimensionality, hence they do not show any limitations when the number of

design variables notably increases. This is one of the most important advantages of

such approximations with respect, for example, to Kriging.

By using reduced basis methods it is possible to build models with fewer unknowns

than the original high-fidelity model. To illustrate reduced basis methods consider the

discrete mathematical model (e.g., RANS equations) of a physical system written in

the form

R(w,x(w)) = 0 (4.1)

where w ∈ <p is the vector of design variables and x ∈ <q the discretized vector of state

(or field) variables (velocity, energy, density). Note that x is an implicit function of the

design variables. Classical interpolation/approximation methods (e.g., Kriging, RBF)

do not work on equation 4.1 and the relation between state and design variables, but

they look just to local or integral values of the state variables. The power of reduced

order methods, instead, lies in the fact that they give an approximation of the state

vector in the form

x̂ = c1φ1 + . . .+ cMφM = Φc (4.2)

where Φ = {φ1, . . . , φM} ∈ <q×M is a matrix of known basis vectors and

c = {c1, . . . , cM} ∈ <M

is a vector of unknown coefficients. This kind of approximation supposes that any

response vector belongs to the subspace spanned by the chosen basis vectors. This in

general depends on how the basis vectors have been computed. Hence, the original

problem with q unknowns can be recast into a problem with M unknowns and so if

M << q then it is possible to approximate x very efficiently. Different methods exist

to estimate the approximation coefficients, generally classified in two classes: those

using the governing equations and minimizing some residual norm and those employing

accurate data-fitting techniques starting from a set of known coefficients.

A good set of basis vectors is a set of vectors which is easy to compute as well

as guaranteed to be linearly independent. The general, widely used choice to select

the basis vectors is to use state solutions of the discrete governing equations which
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correspond to M different values of the parameters w and compute Φ as a basis of the

subspace:

Φ = span{x(w1),x(w2), . . . ,x(wM )} ∈ <q×M (4.3)

For example, these solutions are obtained by solving the RANS equations, which give

the state vector x, on M different configurations generated by applying the employed

parameterization method on M design vectors wi. The definition of the M design

sites where to compute the solutions is not a trivial issue: generally speaking, standard

design of experiments techiques are used to sample the design space with good coverage

properties, but, as we will discuss in next chapters, this approach may lead to erroneous

results when we face highly multi-modal, highly non-linear problems. Indeed, the

quality of the approximation strongly depends on the location of training data in the

design space. A small point of concern with the solution subspace is the possibility

that some of the basis vectors could be linearly dependent but this can be overcome

for example by employing the SVD scheme.

It is possible to apply linear reduced basis methods to non-linear problems provided

a suitably rich set of basis vectors is available. In this thesis, an approach that uses

the proper orthogonal decomposition method to derive the basis vectors is considered.

This methodology has already been introduced in chapter 1 and a further detailed

mathematical description is presented in the next section.

4.2 POD theory

Let {uj(z)} be an ensemble of real vector fields on the domain z ∈ Ω. Here, it is

assumed that the ensemble consists of a set of instantaneous snapshots of a numerical

simulation solution field. In seeking good representations of members of {uj(z)}, it

is required to project each u onto candidate basis functions and so it is assumed that

the u s belong to an inner product space: the linear, infinite-dimensionale Hilber space

H(Ω) of square integrable functions with inner product

(f ,g) =

∫
Ω
f(z)g(z)dz (4.4)

The POD basis is a set of functions {φj(z)} that is optimal in describing the en-

semble of observations. Indeed, they are found by maximizing the averaged projection

of the ensemble {uj} onto φ :
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max
φ∈H(Ω)

〈(u, φ)2〉
(φ, φ)

(4.5)

The averaging operator 〈〉 used in equation 4.5 could be an ensemble average over

many numerical or experimental realizations, or it could be a time-average taken from

different samples of a single experiment. The main assumption regarding the averaging

operator is that it commutes with the inner product. This assumption is true for the

scalar case defined on the Hilbert space L2 under certain conditions on u.

Since the basis is linear, a flow-field u ∈ span{φj} can be represented as a linear

combination of the POD modes

u(z, w) =
∑
i

αi(w)φi(z) (4.6)

where the dependency on the design site w has been introduced to underline the em-

pirical character of the ensemble. If we assume that (φ, φ) = 1, i.e. the basis vectors

are normalized, the constrained optimization problem 4.6 reduces to the eigenvalue

problem

Rφ = λφ (4.7)

where

R = 〈uj(uj, φ)〉 (4.8)

The operator R is self-adjoint and non-negative definite; by also assuming that it

is a compact operator, then there exists a countable set of non-negative eigenvalues

λi with associated eigenfunctions φi. The eigenfunctions, once normalized, form an

orthonormal subspace of H, i.e. (φi, φj) = δij . For more details about the compactness

of R and the required assumptions, refer to Lumley et. al ().

The POD modes are the eigenfunctions φi associated with non-zero λi . Taking the

inner product of equation 4.7 with φ, it is straightforward to show that 〈(uj , φi)2〉 = λi

.In other words, the magnitude of the eigenvalue is equivalent to the average energy of

the projection of the ensemble onto the associated eigenfunction, where the square of

the inner product is interpreted as an energy measure. It is important to remark that in

incompressible fluid mechanics with velocity measurements, this energy is related to the

fluids kinetic energy. The POD modes may be ordered according to the magnitude of
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their eigenvalue, with λ1/φ1 equal to the eigenvalue/eigenfunction pair with the largest

eigenvalue, λM equal to the smallest non-zero eigenvalue, and λ1 ≥ λ2 . . . ≥ λM .

In building reduced order models one is interested in truncating the POD basis and

retaining only the most energetic modes. It can be shown that the sequence of truncated

POD bases form an optimal set, in the sense that a POD basis comprised of K modes

describes more energy (on average) of the ensemble than any other linear basis of the

same dimension K. This compression of the ensemble energy into a minimum number

of modes makes the POD basis attractive for reduced order modelling. The span of the

POD basis is not complete in H(Ω) , but it is complete in the sense that, on average,

any snapshot used to construct it can be represented, i.e.

〈‖uj −
∑
i

(uj , φi)φi‖〉 = 0 (4.9)

Conversely, each POD mode can be obtained as a linear combination of the observations

used to construct the basis.

In practice, the uj are vectors of state variables at discrete grid point locations,

each containing a single solution from the numerical simulation. They will have length

v × q, where q is the total number of grid points and v is the number of dependent

variables describing the flow state. Thus, the discretized version of eqn. 4.7 will be an

eigenvalue problem of order v × q. For q � M , where M is the number of flow field

snapshots used, this procedure is costly and inefficient.

Sirovich () showed how the eigenvalue problem 4.7 can be reduced to order M ,

resulting in a much more efficient procedure for q �M . Equation 4.7 can be rewritten

by introducing the modal decomposition of the ensemble and supposing the averaging

operator as an ensemble average

1

M

M∑
j=1

uj(uj , φi) =
1

M

M∑
j=1

ujα
(j)
i = λiφi (4.10)

where the i− th modal coefficient of the m− th snapshot, generated at design site wm,

is defined as

αi(wm) = (um, φi) =

v×q∑
k=1

u(zk, wm)φi(zk) (4.11)
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From equation 4.10, each component φi(zk) of the basis vectors can be written as

φi(zk) =
1

λi

1

M

M∑
j=1

u(zk, wj)αi(wj) (4.12)

Substituting this expression back into equation 4.11 and changing the order of summa-

tion gives
M∑
j=1

1

M

v×q∑
k=1

u(zk, wm)u(zk, wj)αi(wj) = λiαi(wm) (4.13)

In a more compact form, equation 4.13 reads as

M∑
j=1

Cmjαi(wj) = λiαi(wm) (4.14)

This has to be solved for all the modes, so the resulting system is made of M equations

for the eigenvalues λi and coefficients αi(wj). It is now clear why the method of snap-

shots allows to easily find the empirical eigenfunctions when q �M . The POD modes

can be recovered by using equation 4.10, which states that the spatial eigenfunctions

are weighted sums of the original set of realizations or snapshots {uj}.

4.3 POD solution

In this section, the POD is described for steady-state problems in terms of the sin-

gular value decomposition (SVD). This approach is normally preferred as it is more

straightforward and easy to be implemented.

4.3.1 Snapshots collection

For each design site w, a CFD solution is computed with the flow solver and the flow

variables are stored to form a vector S ∈ <N called snapshot:

S = [Sgrid, Sflow]T

Sgrid = [x1, . . . , xq, y1, . . . , yq, z1, . . . , zq]

Sflow = [ρ1, . . . , ρq, ρu1, . . . , ρuq, ρv1, . . . , ρvq, ρw1, . . . , ρwq, p1, . . . , pq]

where q is the number of mesh nodes involved in the POD computation, (x, y, z) are the

nodes coordinates, ρ is the flow density, (u, v, w) are the three velocity components and
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4.3 POD solution

p is the static pressure. The global size of the snapshot is N = 8 × q. Each snapshot

is constructed by placing in order the solution at each grid point for the whole grid.

This order can be determined arbitrarily, but is subject to the constraint that it must

be consistent throughout the whole set of snapshots. Moreover, the POD modes are

sensitive to the scaling of the flow variables and, as the dataset is made of heterogeneous

variables as these are in different units and have significantly varying magnitudes, this

can represent a big issue. Consequently, appropriate scaling factors have to be applied

for each fluctuating flow variable in order to get an almost uniform snapshot. A set of

snapshots Sj , j = 1, . . . ,M computed at design sites wj is called an ensemble, where

usually M << N . The set of design sites is usually obtained by means of a Design of

Experiments technique which samples the design space.

4.3.2 SVD solution

Starting from the vectors S1, S2, . . . , SM obtained by the CFD expensive computations

for a representative set of design sites w1, w2, . . . , wM , finding a Proper Orthogonal

Decomposition means to compute a linear basis of vectors to express any other Sj ∈ <N

with the condition that this basis is optimal in some sense. To compute the optimal

basis, we first define the snapshot deviation matrix

P = [S1 − S̄, S2 − S̄, . . . , SM − S̄] ∈ <N×M

where the ensemble mean vector is computed as

S̄ =
1

M

M∑
j=1

Sj ∈ <N

Then, we search for a set of orthonormal vectors φ1, φ2, . . . , φM such that

Sj = S̄ +

M∑
i=1

αjiφi = S̄ +
M̂∑
i=1

αjiφi + εj
M̂

= S̄ +

M̂∑
i=1

(STj , φi)φi + εj
M̂

with M̂ ≤M and the error ε is the smallest possible. Indeed, for any set of orthonormal

vectors ψ1, ψ2, . . . , ψM the optimality condition is expressed as:

εM̂ =

M∑
j=1

|Sj − S̄ −
M̂∑
i=1

(STj , φi)φi| ≤
M∑
j=1

|Sj − S̄ −
M̂∑
i=1

(STj , ψi)ψi|
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Therefore, we take the singular value decomposition (SVD) of P

P = UΣV T = U


σ1 · · · 0
...

. . .
...

0 · · · σM
0 · · · 0

V T (4.15)

with U ∈ RN×N , V ∈ RM×M ,Σ ∈ RN×M and the singular values σ1 ≥ σ2 ≥ . . . ≥
σM ≥ 0. The POD basis vectors, also called POD modes, are the first M column

vectors of the matrix U , while the POD coefficients αji are obtained by projecting the

snapshots onto the POD modes:

αji = ((Sj − S̄)T , φi) (4.16)

If a problem is represented by a suitable number of snapshots from which a suitably

rich set of basis vectors is available, the singular values become small rapidly and a small

number of basis vectors are adequate to reconstruct and approximate the snapshots as

they preserve the most significant ensemble energy contribution. In this way, POD

provides an efficient means of capturing the dominant features of a multi-degree of

freedom system and representing it to the desired precision by using the relevant set of

modes, thus reducing the order of the system. In other words, the reduced- order model

is derived by projecting the CFD model onto a reduced space spanned by only some of

the proper orthogonal modes or POD eigenfunctions. The following approximation is

done

Sj ' S̄ +

M̂∑
i=1

αjiφi (4.17)

where

M̂ ≤M =⇒
∑M̂

i=1 σ
2
i∑M

i=1 σ
2
i

≥ ε (4.18)

and ε is a pre-defined energy 1 level. In fact, the truncated singular values fulfills the

relation
M∑

i=M̂+1

σ2
i = εM̂

If the energy threshold is high say over 99% of the total energy, then M̂ modes are

adequate to capture the principal features and approximately reconstruct the dataset.

Thus, a reduced subspace is formed which is only spanned by M̂ modes.
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4.3 POD solution

4.3.3 Pseudo-continuous global representation

The use of reduced-order models based upon the proper orthogonal decomposition for

prediction requires the transformation of the projection coefficients αji from the discrete

sample space for which they have been computed to a continuous space. Equation 4.17

allows to get a POD approximation of any snapshot Sj belonging to the ensemble

set computed at DOE design sites Wj . Indeed, the model does not provide a POD

solution in a design site which is not included in the original training ensemble. In

other words, the POD model by itself does not have a global predictive feature over the

full design space. To this aim, it is needed to establish a functional relation between

the αi coefficients, which represent the projection of a generic CFD field onto the set

of POD basis vectors, and the design variables. While regression techniques work well

for fitting experimental data, where noise due to random errors is smoothed out from

the data, they are less appropriate when dealing with the results from deterministic

numerical simulations or when working with complex data sets. Of particular concern

in the context of the present work are two problems; firstly that the response surface

constructed using regression analysis may not exactly fit the sample data from which

it has been constructed and secondly that the method smooths local variations in

the data. In order to overcome these well-known problems, we adopt a Radial Basis

Function (RBF) network over the POD coefficients to determine their values at a generic

design site which is not included in the original ensemble (12). In particular, M̂ RBF

interpolations are built on the correspondence

(w1, w2, . . . , wM ) ∈ <M →


(α1

1, α
2
1, . . . , α

M
1 ) ∈ <M

(α1
2, α

2
2, . . . , α

M
2 ) ∈ <M

· · ·
(α1

M̂
, α2

M̂
, . . . , αM

M̂
) ∈ <M

(4.19)

A Radial Basis Function is a real-valued function whose value depends on the Euclidean

distance from a point called centre. A RBF network uses a linear combination of radial

functions. Given the correspondence in 4.19, a RBF model can be expressed as

α(w) =
M∑
i=1

fir(|w − wi|, θi) (4.20)

where the approximating function is represented by a sum of M RBFs r, each associated

with a different center wi, weighted by a real-valued weight fi and characterized by a
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4. THE PROPER ORTHOGONAL DECOMPOSITION

width parameter θi. Hence, an RBF network can be defined as a weighted sum of

translations of radially symmetric basis function. Typical RBFs r are:

– Gaussian r(d, θ) = e−
d2

2θ2

– Multi-quadric r(d, θ) =
√

1 + d2

θ2

– Inverse quadratic r(d, θ) = 1

1+ d2

θ2

Once fixed the types of RBF to be used and the “optimal” width parameters, the

RBF network is defined only by the weights fi. They are found by imposing the

interpolation condition on the training set for any modal coefficient i ≤ M̂
αi(w1) = α1

i

αi(w2) = α2
i

· · ·
αi(wM ) = αMi

(4.21)

which in turn results in solving M̂ linear systems
r(0, θ1) . . . r(|w1 − wM |, θM )

r(|w2 − w1|, θ1) . . . r(|w2 − wM |, θM )
...

...
...

r(|wM − w1|, θ1) . . . r(0, θM )



f1

f2
...
fM

 =


α1
i

α2
i
...
αMi

 (4.22)

The width parameters have a big influence both on the accuracy of the RBF model and

on the conditioning of the solution matrix. In particular, it has been found (12, 56)

that interpolation errors become high for very small and very large values of θ, while

the condition number of the coefficient matrix increases with increasing values of θ.

Therefore, they have to be “optimal” in the sense that a tuning of the width parameters

is needed to find the right trade-off between interpolation errors and solution stability

(see (56) for a discussion about how to properly select the best set of parameters).

The pseudo-continuous prediction of the flow field at a generic design site w is then

expressed as:

S(w) = S̄ +

M̂∑
i=1

αi(w)φi (4.23)

This provides a useful surrogate model which combines design of experiments for sam-

pling, CFD for training, POD for model reduction and RBF network for global ap-

proximation. In conclusion, the model has been derived going through the following

steps:
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4.3 POD solution

– compute a series of CFD simulations in parallel with the full order CFD model

(FOM) for a representative set of design sites (w1, w2, . . . , wM ) in order to produce

M snapshots S1, S2, . . . , SM ;

– evaluate the set of POD modes φ1, φ2, . . . , φM and POD coefficients as described

in section 4.3.2 and according to equations 4.15 and 4.16;

– store M̂ modes according to equations 4.17 and 4.18;

– train M̂ RBF models for M̂ POD coefficients onM data set according to equations

4.20,4.21 and 4.22;

– assemble the CFD field response S for an arbitrary design site as in equation 4.23.
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5

POD-based Reduced Order

Modelling for transonic shape

optimization

In this chapter the model described in the previous one is used to assess POD-based re-

duced order models (POD/ROM) for transonic aerodynamic problems. This is demon-

strated by considering a viscous steady flow about a scaled RAE2822 airfoil. This case

was selected as it is a standard geometry used to validate CFD numerical modelling

(57). The POD snapshots are obtained by perturbing the RAE2822 airfoil by means

of the parameterization described in chapter 3. A mixed POD/CFD approach (zonal

POD) and adaptive sampling techniques are proposed to reach standard high-fidelity

accuracy levels in shape optimization problems with limited computational cost.

5.1 Design space definition

The proposed methodology is aimed at providing a fast and accurate model to be used

as surrogate in advanced aircraft shape design. As a consequence, one of the most

important issue is to show its suitability and applicability to the shape optimization

problem. Indeed, the definition of the design space through shape modification pa-

rameters typically involves a more complex, often highly non linear relation between

the flow field and the design variables. Moreover, the global shape modification of an

aircraft component, like a wing airfoil, requires several parameters, thus enlarging the

105



5. POD-BASED REDUCED ORDER MODELLING FOR TRANSONIC
SHAPE OPTIMIZATION

dimensions of the design space. It is straightforward, then, that the complexity of the

problem under analysis increases and approaches a real-world application level. Here,

a 16-dimensional design space is explored by introducing 8 design variables controlling

the upper airfoil surface and 8 controlling the lower surface. Shape modifications are

carried out by using the CST approach already described in chapter 3. In the present

context, 7th-order Bernstein polynomials are considered, hence each airfoil side (upper

and lower) is described by 8 design variables. A scaled 14% thickness ratio RAE 2822

airfoil is selected as baseline airfoil. The original RAE 2822 airfoil presents a 12% thick-

ness ratio, but here it has been scaled to enforce stronger local transonic conditions

on the airfoil surfaces. The airfoil geometry is shown in figure 5.1. The corresponding

design weights, which define the RAE 2822 profile according to equations 3.8,3.9 and

3.9, are reported in table 5.1.

Figure 5.1: Baseline geometry, RAE 2822 airfoil

Design weights
√

2Rle

c A1 A2 A3 A4 A5 A6 tan (β)

Upper side 0.1293 0.1282 0.1771 0.1219 0.2393 0.1662 0.1976 0.2110

Lower side -0.1280 -0.1483 -0.1080 -0.2580 -0.0918 -0.1079 -0.0561 0.0638

Table 5.1: RAE 2822, 7th-order Bernstein polynomials design weights

The design space is defined as follows: the values of the baseline weights on the

upper (respectively lower) side are taken as lower (respectively upper) boundary of

the allowable variation ranges of the design weights. The global width of the range of

variation is 0.1. This means, for example, that the first design weight on the upper

airfoil side is allowed to vary from 0.1293 to 0.2293, while the first design weight on the

lower side is allowed to vary from -0.2280 to -0.1280. In the following, every combination

of the 16 design weights will be called a design site and referred to as w.
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5.2 POD/ROM with varying geometry and grid

As the POD snapshots are generated on different geometries and, hence, they include

different computational meshes, a first issue to be discussed is how to treat this discrep-

ancy. When the physical domain between snapshots is different, that is there exists

a geometrical change between snapshots, the modes derived from the snapshots will

no longer remain at fixed places within the computational domain and consequently

an error is introduced in this modelling technique being a space-index transformation.

One approach to this problem is to use a common domain for every snapshot and ap-

ply transpiration boundary conditions to account for the changes in the boundary (58).

Another approach was suggested and adopted by LeGresley and Alonso (), consisting in

including the cell volume into the scalar product expression in order to take into account

the mesh change. Here, quite a different approach is used. In section 4.3.1 the snapshot

S structure has been presented as a combination of mesh coordinates (Sgrid) and flow

field variables (Sflow). This represents an innovative choice, because POD fields are

usually provided and predicted on fixed meshes. Indeed, as the presented methodology

is mainly aimed at shape design and optimization, this assumption is hardly satisfied,

except for introducing complex interpolations to reduce the changing CFD fields to a

fixed underlying grid. The idea proposed here is to provide the snapshot with both

the flow fields variables and the mesh coordinates in order to let the POD basis catch

the coupling effects between them. Hence, once the surrogate model is built, not only

a flow field can be computed, but also an approximation of the volume mesh. This

approach will provide a surrogate model which is already able to take into account,

although in a model reduction form, the cross effects of surface geometry modification

and aerodynamic flow change.

5.3 Design of Experiments

In the description of the surrogate/ROM modelling techniques approached so far, it

has been assumed that a set of observational data was generated by some technique

and is already available. In the development of any surrogate model, the location of

sample points within the parametric space has an important influence on both the cost

of constructing the model and on the accuracy of model predictions. In this section, the

problem of generating training data that leads to approximation models that generalize
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well is examined. Design-of-Experiment theory (DoE) (59) is a branch of statistics

which provides the statistician with methods for selecting the independent variable

values for a limited number of experiments, while achieving a good representation

over the parametric space of interest. The various experimental design methods create

certain combinations of analyses in which the independent variables are prescribed at

specific values or levels. The results of these planned experiments are then used to

study and investigate the response and sensitivity of some dependent quantity to the

independent variables. Classical DoE techniques include full- and fractional-factorial

designs. A common feature of these techniques is that the sample points are placed at

the extremes of the parameter space to alleviate the effects of noise and so these are

appropriate if the data is contaminated by noise, which make it necessary to employ

regression techniques to filter noise. In contrast to physical experiments, observations

made using computer experiments are not subject to random errors and so to extract

the maximum information about the input-output relationship, the sample points are

chosen to fill the design space in an optimal sense. In this work we have adopted the

classical Latin Hypercube sampling (LHS) technique to select initial points for building

surrogate/ROM models.

5.3.1 Latin Hypercube sampling

The Latin Hypercube sampling (LHC) technique was first proposed by McKay et al.

() as an alternative to Monte Carlo techniques for the design of computer experiments.

In LHS, each parameter range is divided into m intervals or bins of equal probability.

If p is the number of design variables, this leads to a total of m × p bins in the whole

space. Subsequently, m samples are generated such that for each parameter, when a

one-dimensional projection is taken, there will be only one sample in each bin. The

LHS algorithm produces samples as follows:

w
(i)
j =

π
(i)
j + κ

(i)
j

m
, ∀ i, j, i = 1, . . . ,m, j = 1, . . . , p (5.1)

where m is the number of samples, κ ∈ [0, 1] is a random number and π is an indepen-

dent random number permutation. The subscript denotes the parameter number and

the superscript in brackets denotes the sample number. From each parameter, one of

the points on the interval is selected randomly and the response is evaluated. This is

108



5.4 Zonal POD

done until all points are used up. This method is useful because there is no correla-

tion between parameters and the samples are chosen randomly. Figure 5.2 shows an

example of LHS distribution over a two variables design space.

Figure 5.2: Standard LHS distribution of points

5.4 Zonal POD

The POD surrogate model is designed and intended to use as a reduced order model

(ROM) within a shape optimization process where typically the geometry and, hence,

the volume mesh around it may vary with the design site. Moreover, the application is

focused on transonic aerodynamics with potential flow separations and shock waves. In

other words, the target applications are close or beyond the typical aeronautical design

conditions, covering almost the whole flight envelope. Care must be taken about the

spatial domain where the snapshots are defined and how integral quantities of interest

(e.g., aerodynamic force coefficients) or surface distributions have be computed. Indeed,

due to the intrinsic linear character of POD model, the presence of shock waves and flow

separations in the initial ensemble could cause severe issues in the correct reconstruction

of flow fields at unknown design sites. A zonal POD approach, similar to a domain

decomposition method, is presented to get rid of the problems arising from the inclusion

of flow discontinuities and intense variability sources in the POD ensemble. The basic
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idea, proposed in (60), is to use a mixed full order (FOM)/reduced order (ROM) model

by splitting the solution domain into two sub-domains:

1. the FOM (i.e. the CFD RANS model) is used just around the airfoil to accurately

solve the near wall boundary layer, non-linearities (e.g., shock waves) and flow

separations where they occur;

2. the ROM (i.e. the POD surrogate model) is exploited to reconstruct the flow

field far from the solid wall, where a smoother and weakly varying solution is

expected.

Figure 5.3 shows a sketch of the domain decomposition. The POD based surrogate

model is built on the snapshot set defined in the light grey region, hence the size

N of each snapshot, as described in chapter 3, is eight times the number of mesh

points in this zone. Once trained the POD model, the surrogate response on the

FOM/ROM boundary interface (blue curves in the figure) is extracted and used as

boundary conditions to iterate the full order CFD solver in the inner domain (orange

domain).

Figure 5.3: Zonal approach, FOM/ROM domains

In order to properly impose a specific boundary condition, the ZEN flow solver

adopts the ghost-cell method that consists in defining an artificial layer of additional

cells across the boundary surface and assigning to the ghost layer variables specific
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Figure 5.4: Boundary condition setting

values which satisfy the required condition on the boundary faces. This is needed to

calculate the right flow fluxes at a boundary cell face. Hence, a peculiar boundary

condition type is selected for the ZEN flow solver. With reference to figure 5.4, which

represents a zoom of figure 5.3 around a generic computational cell across the domain

interface, the solution vector at the interface is derived from the POD surrogate ap-

proximation on each common point i which is shared by the cells of the two domains.

Therefore, the solution vector in the fictitious external ghost-cell adjacent to the FOM

internal cell (i, 1), is computed as follows

SFOM(i,0) = SROM(i,1/2) + SROM(i+1,1/2) − S
FOM
(i,1) (5.2)

In this way, depending on the actual value SFOMi,1 computed by the CFD code in the

first FOM domain cell during the iterations, the solution SFOM(i,0) in the ghost-cell is

adjusted to satisfy the boundary condition imposed on the face (i, 1/2) and derived

from the surrogate model. This guarantees to always find the POD solution on the

interface boundary.

The application of the zonal approach to the surrogate model, hence, requires some

further steps in addition to those described in the previous section. Given a design site,

it is needed to
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– apply equation 4.23 to predict the CFD flow field in the external ROM domain;

– extract the predicted flow field on the interface between FOM/ROM domains;

– compute the full order, iterative CFD solution in the internal FOM domain by

imposing the extracted boundary condition on the boundary of the inner domain.

With such an approach, computing any aerodynamic coefficient or surface distribu-

tion of interest (e.g., pressure or skin friction distributions) is a mere post-processing

operation, as they can be directly drawn out by the CFD solver output.

5.5 Error analysis

In order to compare the performance of the POD surrogate model with respect to

the full order CFD model, a validation sampling is defined and a set of statistics are

computed. Each surrogate model, in fact, has to be assessed not in the same design

sites used to train it. Indeed, the goal is to evaluate the potential of the model to

globally approximate the design space. A new DOE sampling of size M̄ is performed

on the 16-dimensional design space and the new design sites are evaluated by means of

both the surrogate and the full order model. Then, the aerodynamic efficiency Cl
Cd

is

computed and used to assess the following error statistics:

• the percentage error PE(i), i = 1, . . . , M̄

PE(i) = |
CL
CD
− ĈL

ĈD
CL
CD

| × 100 (5.3)

• the mean percentage error

MPE =
1

M̄

M̄∑
i=1

PE(i) (5.4)

• the standard deviation of the percentage error

SDPE =
1

M̄ − 1

M̄∑
i=1

[PE(i)−MPE]2 (5.5)
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• the R−squared metric

R2 = 1−

M̄∑
i=1

(
CL
CD
− ĈL

ĈD

)2

M̄∑
i=1

(
CL
CD
− 1

M̄

M̄∑
i=1

CL
CD

)2 (5.6)

where index i denotes the ith sample of the validation DOE plan, the hat quantities refer

to the surrogate predictions while the hat-less to the full order ones. These statistics,

however, give an outlook of the propagation of the POD model prediction error on the

airfoil surface in an integral form, because only aerodynamic force coefficients appear.

Even if such a kind of error analysis is very useful to understand the suitability of the

surrogate model to approximate the fitness function in an aerodynamic optimization

process, which usually requires the evaluation of aero-coefficients, it does not provide a

definitive measure of the model accuracy. To this end, the point-to-point relative error

between the exact CFD computations of the validation plan and the predicted values

of the POD model is introduced at snapshot level:

Er(i) =
1

N

N∑
j=1

|Si(j)− Ŝi(j)
Si(j)

| × 100 (5.7)

where N is the snapshot size, Si(j) is the j-th element of the snapshot built on the

exact CFD solution at the i-th validation design site and Ŝi(j) is the predicted solution

of the i-th validation design site.

5.6 Validation of POD/ROMs in transonic flow

An initial DOE Latin Hypercube sampling is performed on the 16-dimensional design

space as defined in section 5.1. The size M of the initial sampling is 180 to cover each

design variable with a sufficient number of samples. The obtained design sites wi are

then translated into profile geometry thanks to the equation set 3.8,3.9 and 3.9. 180

volume mesh generations and CFD computations are launched in parallel at fixed flow

conditions to compute the flow fields around the airfoil shapes. As mentioned above,

the baseline geometry is a modified RAE 2822 airfoil, scaled to 14% thickness ratio

to enhance transonic flow effects. Figure 5.5 shows the whole set of obtained airfoil

shapes compared to the baseline airfoil (black dots). The corresponding pressure and
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skin friction distributions are reported in figures 5.6(a) and 5.6(b): it is clearly evident

that the range of shock wave locations on the suction side and the regions of separated

flows are very different and distributed within the dataset.
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Figure 5.5: 180-sized snapshot airfoils

The flow conditions are summarized in Table 5.2. Fully turbulent flow is assumed.

For each airfoil shape, a single-block structured volume mesh made of 25186 points

(12288 cells) is computed through an automatic hyperbolic grid generator tool. The

first cell at the wall is placed so as to always have a unit y+ at the specified flow

conditions. Figure 5.7 shows a sketch of the standard quality volume mesh around the

baseline airfoil.

The FOM/ROM domains are then defined to assess the POD surrogate model. With

reference to figure 5.8, the d parameter is introduced as the distance of the FOM/ROM
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Figure 5.6: 180-sized snapshots ensemble
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Mach number Reynolds number Angle of attack [◦]

0.729 6.5e+06 2.0

Table 5.2: Design point

Figure 5.7: Volume mesh around the airfoil

interface from the airfoil leading edge; indeed, different POD-based reduced order mod-

els can be defined by varying this distance and, hence, reducing or increasing not only

the size but also the intrinsic variability of the snapshot set. It is straightforward that

the farther the ROM domain will be placed from the airfoil, the smaller the mean

variation of the CFD field. At this aim, as eight heterogeneous variables (spatial coor-

dinates, density, pressure, etc..) are condensed in the same snapshot and each of them

has its own range of variation, a set of scaling factor for each of the eight variables

is defined and applied prior to feed the POD model in order to avoid mistakes in the

correlation process. In fact, it could happen that the POD reduction would give more

relative importance to the snapshot variables which exhibit the biggest absolute values

or the widest range of variation. To avoid this, the scaling factors are designed so

as to approximately bring the range of variation of each variable to the interval [0,1].

Of course, in the present investigation the scaling factors are defined once and kept
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constant, even when varying the ROM domains and the snapshot sizes.

Figure 5.8: FOM/ROM domains with varying interface

Several surrogate models (here referred to as “SM”) are then trained on the com-

puted and scaled CFD set:

• SM1 is a POD surrogate model with d = 0, i.e. no FOM domain is defined,

the ROM domain coincides with the full domain and no boundary condition is

exchanged. The snapshot size N is 201488;

• SM2 is a POD surrogate model with d = 0.35, i.e. the FOM domain is the blue

one in figure 5.8. The snapshot size N is 91792

• SM3 is a POD surrogate model with d = 1.25, i.e. the FOM domain is the orange

one in figure 5.8. The snapshot size N is 75232;

• SM4 is a Kriging interpolation response surface on CL/CD, i.e. a standard meta-

model directly trained on a selected objective function;

• SM5 is a quadratic polynomial regression response surface on CL/CD. Given p

the number of design variables, at least (p+ 1)× (p+ 2)/2 design sites should be

evaluated to train this type of model. In the present case, (p+1)×(p+2)/2 = 153,

hence the size of the a-priori sampling is sufficient.
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SM1, SM2 and SM3 are POD-based reduced order models, while SM4 and SM5

are introduced on purpose to compare the presented methodology with standard meta-

models. The ensemble energy content threshold ε is reported in figure 5.9(a) as a

function of the number of POD modes for each of the POD-based approximations. It is

clearly evident that the heaviest model (SM1) requires a big number of modes even to

reproduce a relatively low energy level (95%), while SM3 performs considerably better

(97%) with just 4 modes preserved. It must be underlined that SM2 requires more

modes with respect to SM3 probably because the corresponding domain embeds part

of the supersonic region on the airfoils suction side: figure 5.9(b) clarify this issue as it

reports the FOM/ROM domains (as in figure 5.8) superimposed with the local Mach

number contours. The solution is here computed around an airfoil selected within the

ensemble database. While SM3 ROM domain is quite far off the supersonic region, the

SM2 FOM/ROM interface lies across it, thus introducing a stronger source of variability

(and of slight discontinuity due to the shock wave) into the ensemble. However, in order

to make a fair comparison, hereinafter the minimum number of modes which assures

at least a 95% threshold of the ensemble energy will be preserved for each model, i.e.

10 modes for SM1 (95%), 7 modes for SM2 (96.4%) and 4 modes for SM3 (97%). In

other words, the models will be compared not on a pre-determined number of modes

basis, but on a preserved energy basis.

A validation plan is generated with a new LHS sampling of size 50. The goodness-

of-fit for each of the 5 models is estimated by means of the statistics described in

section 5.5 and involving the aerodynamic efficiency as target function. Once more, it is

stressed here that, while models SM1, SM2 and SM3 are POD-based and hence physics-

based, SM4 and SM5 are meta-models of the aerodynamic efficiency function, trained

on the high-fidelity results computed on the a-priori DOE sampling and interpolated

on the design sites of the validation plan. Table 5.3 summarizes the results. A clear

information can be drawn about an ideal ranking of the tested models: SM3 exhibits

superior performances for each estimation parameter, while the quadratic polynomial

fitting is completely unfit to approximate the objective function. It must be noted

that SM3 performs very well even on the SDPE estimate (eqn. 5.5) which gives an

idea of how big is the variation of the percentage prediction error along the validation

sampling: the very low value found means that the prediction error at any design site

is approximately the same and close to the mean value. This is a very desirable feature
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(a) Energy content vs number of POD modes

(b) FOM/ROM interface cutting and embedding the expansion

lobe

Figure 5.9: Effect of zonal interface on the energy amount captured by POD
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for a surrogate model designed for an optimization framework. On the other hand,

SM5 shows very poor performances because such a polynomial regression is unable to

approximate a multi-modal, rapidly changing objective function.

Surrogate R-squared MPE SDPE Ranking

SM1 0.5876 10.33 48.14 4

SM2 0.8899 4.55 12.85 2

SM3 0.9791 2.30 1.61 1

SM4 0.8657 4.56 26.61 3

SM5 0.06074 15.62 171.62 5

Table 5.3: Surrogate goodness-of-fit estimation

An interesting point comes out by comparing SM2 and SM4, which exhibit very

similar error indices: as Kriging is a standard meta-model used in aerodynamic data

reconstruction, it can be stated that the POD surrogate model accuracy increases by

moving the FOM/ROM interface away from the airfoil surface and there exists a pecu-

liar value of the distance d for which its predictive power is very close to standard and

efficient interpolation techniques. To give a graphic idea of the figures reported in table

5.3, figure 5.10(a) shows a bar plot representing the full order CFD and the surrogate

models predictions of aerodynamic efficiency as a function of the validation set index

(ranging from 1 to 50). The plot confirms that SM2 and SM3 follow almost exactly

the trends of the exact CFD data, so preserving the monotonicity of the sampling set.

Moreover, SM1, SM2 and SM3 are able to capture the airfoil shapes with both the best

(ID 12) and the worst (ID 22) aerodynamic efficiency in the validation dataset. Figure

5.10(b) reports the correlation plot between the models prediction and “true” CFD

data. Again, SM2, SM3 and SM4 are globally closer to the linear trend, resulting in a

better fit. The correlation plot highlights another significant feature of SM3 model, as

it generally underestimates the aerodynamic efficiency. For further comparisons, table

5.4 summarizes the validation set indices where each model predicts the highest and

lowest efficiency, the corresponding values of aerodynamic efficiency and the percentage

error with respect to the CFD datum. This is useful to evaluate the capability of the

model to identify the global extrema of the objective function. It is observed that only

SM4 leads to a wrong estimation of the position of the “optimal” airfoil while SM5

tends to overestimate the worst profile.
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(a) Bar plot

(b) Correlation plot

Figure 5.10: Surrogate models predictions of CL/CD on the validation plan
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Surrogate ID of max ID of min max min ∆max (%) ∆min (%)

CFD 12 22 46.43 20.61 0 0

SM1 12 22 52.19 22.84 12.40 10.81

SM2 12 22 48.27 20.45 3.95 -0.77

SM3 12 22 46.40 20.12 -0.07 -2.39

SM4 26 22 47.40 19.86 2.08 -3.65

SM5 12 39 54.62 16.78 17.63 -18.59

Table 5.4: Surrogate estimations of aerodynamic efficiency for best and worst validation

airfoils

The last two properties, i.e. the capability to preserve the monotonicity of the

dataset and to correctly identify the best/worst candidates, are crucial aspects in

surrogate-based optimization (SBO), so that models SM2 and SM3 seem to be more

suitable for this purposes. A qualitative comparison is also proposed at airfoil surface

distribution level. Figure 5.11(a) and 5.11(b) show the pressure coefficient distribu-

tion as obtained from CFD computation and surrogate models SM1, SM2 and SM3

respectively on the most (airfoil ID 12) and the least (airfoil ID 22) efficient airfoil.

Skin friction distributions are also compared in figure 5.12(a) and 5.12(b). Airfoil ID

12 is featured with a double shock structure on the upper surface which is not really

captured by SM1, partially captured by SM2 and fully captured by SM3. On the

other hand, a strong shock wave and a shock-induced separation characterize quite a

complex aerodynamics for airfoil ID 22, but all the models rather show a pretty good

prediction for this case. This outwardly strange behaviour is probably motivated by the

fact that the training database contains more than one CFD solutions which present

aerodynamic features similar to ID 22, so that even less accurate models provide a sat-

isfying prediction. On the contrary, airfoil ID 12 represents a quite unique sample. Two

more solutions (ID 20 and 35) have been selected from the validation plan and shown

for comparison in figure 5.11(c) and 5.11(d) (pressure distributions) as well as figures

5.12(c) and 5.12(d) (skin friction). The smearing out and dislocation of pressure jumps

across the shock wave can be identified as clear features and peculiar characteristics of

SM1. POD models accuracy is finally evaluated and compared in terms of the point-to-

point snapshot percentage prediction error given by equation 5.7. Figure 5.13 shows

the results for each snapshot belonging to the validation plan (again ranging from 1 to
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50). The error index is plotted in logarithmic scale because SM1 exhibits 1-2 order of

magnitude larger errors than the others. As the snapshot prediction error takes into

account the reconstruction error as a whole, this is probably the most complete and

global comparison possible: as a result, it comes out that, in strong transonic condi-

tions, training a POD model on the full CFD domain (SM1) would lead to misleading

results in the prediction phase, as the model would not be able to catch the highly non

linear trends which characterize this kind of flows. Indeed, the high number of POD

modes required and the low goodness-of-fit performance suggest that further modelling

is needed to adapt the computation of the basis vectors and modal coefficients to tran-

sonic aerodynamics. In the next sections, we will introduce some adaptive sampling

concepts to globally improve the reduced order models predictions.

The final comparison is made in terms of POD model accuracy versus computational

time and cells saving. In particular, the R-squared prediction error is taken as a measure

of the model accuracy, while the time saving index (TS) and the cells saved index (CS)

are defined as

TS =
TFULL − TSM

TFULL
(5.8)

CS =
NSM

NFULL
(5.9)

where T and N are respectively the computational time for 1000 CFD iterations and

the number of solved computational cells. The subscripts FULL and SM refer to the

full grid CFD computation and the CFD computation on the smaller FOM domain.

In figure 5.14 the three indices are plotted against the distance d of the FOM/ROM

interface from the airfoil leading edge. It shows that a clear trade-off exists between

accuracy and time/cells saving and provides useful guidelines to tailor the choice of the

best POD model to the basic requirements of the target application. For instance, if

the target is to do a pre-screening of the objective space, one could use a faster and

less accurate POD model which however guarantees the preservation of the physics.

5.7 Adaptive sampling

In previous sections, it was shown that, provided an initial ensemble of flow solutions,

feeding the POD model with the full flow fields leads to an inaccurate prediction on the

validation sampling, i.e. on design sites which do not belong to the initial ensemble. As
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(a) Airfoil ID 12 (best) (b) Airfoil ID 22 (worst)

(c) Airfoil ID 20 (d) Airfoil ID 35

Figure 5.11: Pressure coefficient comparison
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(a) Airfoil ID 12 (best) (b) Airfoil ID 22 (worst)

(c) Airfoil ID 20 (d) Airfoil ID 35

Figure 5.12: Skin friction coefficient comparison
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Figure 5.13: Snapshot error prediction

the need to compute the fitness of new design candidates in the design space is usually

encountered during an explorative search process, some improvements are needed to

recover this issue. In the proposed example, we selected a 180-sized a-priori ensemble

to sample the 16-dimensional design space, but which is in principle the correct choice

of the sample to properly feed the reduced order model? Actually, we do not have an

answer. Indeed, we do not know neither the right size nor the right locations of the

sample points. Intuitively, we would like to have a sampling strategy which would fill

the space in an efficient manner and would allocate more points in the regions of the

design space where the simulation response is strongly non-linear. Further questions

are

- For a given computational budget, can I improve the quality of the POD surrogate

(full or zonal) by “intelligently” choosing the training samples?

- For a given POD model quality, can I get the same accuracy level with less high-

fidelity computations?

Adaptive sampling strategies can be properly designed to account for these require-

ments by fulfilling so-called “in-fill” criteria. While a-priori sampling techniques do
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Figure 5.14: Trade-off accuracy vs resource saving

not use any information about the model prediction, adaptive techniques incremen-

tally select new sampling points by exploiting the input/output relation observed at

the previous stage. However, they should be tailored to the particular model which

has to be improved in order to exploit its own predictions and characteristics. Hence,

we will propose some adaptive DoE strategies for POD-based reduced order models.

We will refer to the joint work with Goblet et. al (61), developed within the Clean

Sky JTI-GRA ROM&O Project, funded by the EU Seventh Framework Programme,

Proposal Number 255779, and answering the call for proposal JTI-CS-2009-1-GRA-05-

004. Generally speaking and with reference to the nomenclature used in chapter 4, the

quality of the POD/ROM models basically depends on: (1) the quality of the modal

basis {φ1, . . . , φM̂}; (2) the quality of the modal coefficient RBF models {α1, . . . , αM̂}.
Indeed, they both depend on the choice of the snapshot dataset. In the following, two

methods are proposed to properly balance the improvement of the POD model and the

space-filling properties. Both methods are based on the leave-one-out cross-validation

technique.

5.7.1 Improvement of the modal basis

The first method is aimed at improving the modal basis, which represents the core

of the POD modelling. Indeed, given a POD model built on a snapshot ensemble

{S1(w1), . . . , SM (wM ), we want to find a new point wnew in the design space to be
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included in the previous sampling set so that the new POD model basis, built on the

new set {S1(w1), . . . , SM (wM ), S(wnew)}, will result in improved predictions and better

exploration of the design space at the same time. First, the relative influence of the jth

snapshot on the modal basis is computed as

InflRel
Basis(wj) =

InflBasis(wj)∑n
k=1 InflBasis(wk)

(5.10)

where

InflBasis(wj) =
M̂∑
i=1

σi

(
1

|(φTi , φ
−j
i )
− 1

)
(5.11)

is the influence of the jth snapshot on the modal basis and φ−ji is the ith column vector

of U−j and U−jΣ−jV −j
T

is a thin SVD of the matrix(
S1 − S̄ . . . Sj−1 − S̄ 0 Sj+1 − S̄ . . . Sn − S̄

)
The scalar product (φTi , φ

−j
i ), as usual, gives the projection of one of the two vectors on

the other, hence if they are almost orthogonal, the quantity will be zero and the influ-

ence term will go to infinity, while if they are almost parallel, the influence contribution

will be almost zero. The relative influence is normalized with the sum of the influence

of the whole set of snapshots and weighted with the singular values as they reflect the

importance of each mode with respect to the whole basis. A priori the computation

of these quantities would require the computation of M thin SVD of N ×M matrices

where N = v × q (number of flow variables × number of mesh points) can be huge as

it is related to the dimension of the data set. As detailed in (61), it is possible to get

a cheaper evaluation by computing M thin SVD on M ×M matrices. Once known

the relative influence of each snapshot on each modal basis vector, we need to decide

where and how to choose the new sampling point. From a theoretical point of view, we

would need to sample “near” the design site where the relative influence is the highest.

But two questions arise: what does it mean “near” exactly? And, if sampling near a

known design site, what about exploring new undiscovered regions? To answer the first

questions, the design space is heavily sampled with LHS technique, e.g. 100 times the

dimension p of the design space. Then, the Euclidean distance of each new sampled

point yi, i = 1, . . . , t = 100p from each of the snapshot sites wk, k = 1, . . . ,M is com-

puted and, for each yi, the distance from the nearest snapshot wk̄ is stored as d(wk̄, yi).
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The second question is more subtle as it concerns the trade-off between locally accu-

racy and design space global exploration. Knowing the relative distances between new

sampling points and snapshot sites, we would also like to sample far away from the

known points in order to potentially enrich the global prediction of the POD model.

The final choice is to weight the distance d(wk̄, yi) with the relative influence of the k̄th

snapshot on the modal basis and compute a potential of enrichment Vφ for each new

candidate yi

Vφ(yi) = d(wk̄, yi) InflRel
Basis(wk̄) (5.12)

Finally, the first adaptive strategy is to choose wnew = argmaxyi Vφ(yi).

5.7.2 Improvement of the coefficients models

As already described in chapter 4, the POD modal coefficients are provided with a

global approximation character through radial basis functions. The second adaptive

method is then conceived to improve the quality of these RBF models. Given a POD

model built on a snapshot ensemble {S1(w1), . . . , SM (wM ), we want to find a new point

wnew in the design space to be included in the previous sampling set so that the new

modal coefficients models, built on the new set {S1(w1), . . . , SM (wM ), S(wnew)}, will

result in improved predictions and explore the design space at the same time. Two

secondary strategies are proposed: the first aims at improve the prediction when the

quality of the coefficient models are not comparable, the second is designed to work

well when the coefficient models show similar levels of accuracy.

5.7.2.1 First strategy

This strategy is applied when one of the coefficient model α1(w), . . . , αM̂ (w) exhibits low
quality with respect to the others. For the sake of clarity, according to the nomenclature

used in chapter 4, we will denote as αi(w) the ith coefficient model and with α
(j)
i the

ith coefficient corresponding to the jth snapshot in the ensemble database. First of all,
we need to evaluate the quality of the coefficient model, possibly taking into account
the relative importance of the mode itself. This is done by computing the correlation
coefficient of the model αi(w) as

Corr(αi) =
M
∑M
j=1 α

(j)
i α−ji (wj) −

∑M
j=1 α

(j)
i

∑M
j=1 α

−j
i (wj)√

M
∑M
j=1

(
α
(j)
i

)2
−
(∑M

j=1 α
(j)
i

)2√
M
∑M
j=1 α

−j
i (wj)2 −

(∑M
j=1 α

−j
i (wj)

)2 (5.13)
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where α−ji (w) is the model built on the left-jth-out correspondence

{w1, . . . , wj−1, wj+1, . . . , wM} →
{
α

(1)
i , . . . , α

(j−1)
i , α

(j+1)
i , . . . , α

(M)
i

}
(5.14)

i.e. subtracting one by one the jth design site and coefficient from the ensemble and

recomputing the RBF model. The correlation coefficient (5.13) provides a statistical

index which measure the accuracy of each model. To further take into account the

energy contribution of the ith mode, we define a “weighted” quality of the model αi(w)

as WQ(αi) = (σi/
∑M̂

j=1 σj) Corr(αi). As already mentioned, the coefficient model with

the lowest weighted quality is selected and denoted with index αii(w). The relative

influence of the jth snapshot on the iith modal coefficient is defined as Inflαii(wj) =

|α(j)
ii − α

−j
ii (wj)|, by leaving out the jth candidate and using it to estimate the model

error. From now on, the procedure is the same as for the modal basis improvement:

the design space is heavily sampled with LHS technique, e.g. 100 times the dimension

p of the design space. Then, the Euclidean distance of each new sampled point yi, i =

1, . . . , t = 100p from each of the snapshot sites wk, k = 1, . . . ,M is computed and, for

each yi, the distance from the nearest snapshot wk̄ is stored as d(wk̄, yi). By weighting

the distance d(wk̄, yi) with the relative influence of the k̄th snapshot on the iith modal

coefficient, a potential of enrichment Vαii for each new candidate yi with respect to the

worst model can be computed as

Vαii(yi) = d(wk̄, yi) Inflαii(wk̄) (5.15)

Finally the new sampling point is selected at wnew = argmaxyi Vαii(yi).

The leave-one-out procedure allows to determine the quantities α−ji (w), but its cost

is generally high as it would apparently require the building of M̂ ×M new approxi-

mations. However, when using RBF network interpolators for POD coefficient models,

the leave-one-out procedure can be performed at low-cost by using the efficient for-

mula provided by Rippa (62). Indeed, the author showed that, in order to compute

|α(j)
ii − α−jii (wj)|, all the needed information are available without any extra cost as

the required model parameters have been already computed during the construction of

αii(w).
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5.7.2.2 Second strategy

This strategy is used when the quality of the coefficient models are comparable and it

is very similar to the improvement of the modal basis. The relative influence of the jth

snapshot on the coefficient models is computed as

InflRel
Coeff(wj) =

InflCoeff(wj)∑n
k=1 InflCoeff(wk)

(5.16)

where

InflCoeff(wj) =
M̂∑
i=1

σiInflαi(wj) =
M̂∑
i=1

σi|α(j)
i − α

−j
i (wj)| (5.17)

is the influence of the jth snapshot on the coefficient models weighted with the cor-

responding singular values. It must be noted that now we do not need to compute

the worst αi model as we are supposing to improve them all together. Therefore,

the design space is heavily sampled with LHS technique, e.g. 100 times the dimen-

sion p of the design space. Then, the Euclidean distance of each new sampled point

yi, i = 1, . . . , t = 100p from each of the snapshot sites wk, k = 1, . . . ,M is computed

and, for each yi, the distance from the nearest snapshot wk̄ is stored as d(wk̄, yi). By

weighting the distance d(wk̄, yi) with the relative influence InflRel
Coeff(wj) , a potential of

enrichment Vα for each new candidate yi with respect to the POD coefficient models

can be computed as

Vα(yi) = d(wk̄, yi) InflRel
Coeff(wk̄) (5.18)

Finally the new sampling point is selected at wnew = argmaxyi Vα(yi).

5.8 Concluding remarks

Three POD/ROM models have been trained and compared: the first one consisted in

feeding the POD ensemble with the full field, hence without any domain decomposition;

in the second and third one, the zonal approach was applied by defining two different

values of the distance of the interface from the airfoil leading edge. Results showed

that the model accuracy is strongly dependent on the distance parameter, mainly be-

cause of the presence of the supersonic expansion lobe and the pressure jump across the

shock wave on the airfoil suction side. In fact, the model named SM3 showed superior
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performances with respect to both the other POD models and standard interpolation

techniques like Kriging and regression methods like quadratic polynomial fitting. It also

allows to get very accurate reconstruction of airfoil surface distributions and, hence,

of aerodynamic coefficients, which are very often the actual target of aerodynamic de-

sign. Another important conclusion of the work is that it seems completely misleading

to base the POD ensemble on the full flow field when transonic conditions and shape

modifications act together. Indeed, as the POD reconstruction is a linear combina-

tion of POD modes, capturing the combined non-linear effects of boundary layer and

compressibility is hardly possible when the position and intensity of the shock wave

and its interaction with the boundary layer vary too much. Globally, the proposed

POD surrogate model showed to have many characteristics which make it suitable to

aerodynamic design. However, a trade-off was found between POD model accuracy

and resource saving as a function of the distance parameter: the smaller the full order

domain, the shorter the computational time required but also the less accurate the re-

construction. In order to get rid of these issues, a set of strategies have been proposed

to update and enhance the surrogate/POD model through adaptive DOE techniques.

Indeed, the selection of the design sites to be included in the POD ensemble, instead of

being fully derived from an a-priori sampling strategy, can be tailored to match specific

POD-related improvement requirements. In the next chapter, the benefits of the adap-

tive DoE will be assessed in an real-time updating process. Moreover, the inclusion

of the POD surrogate model within an optimization framework will be presented to

come up with a complete, self-updating surrogate/reduced order optimization method

and the resulting coupling strategy will be studied to fully explore the potential of the

presented methodology towards complex aerodynamic design cases.
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6

POD-based Evolutionary

Optimization in Transonic flow

In this chapter, the POD/ROMs and the adaptive sampling techniques described in

the previous chapters are combined within an evolutionary optimization loop and used

to validate the developed methodology in transonic flow. Several approaches will be

proposed, differing between each other in the key ingredients of the methodology: the

construction of the POD model (full/zonal approach), the strategy chosen to compute

the training sample (a-priori, auto-adaptive) and the strategy to exploit the optimiza-

tion results (one-shot optimization, real-time updating). The goal of the different

surrogate-based optimizations is to improve the performances of the scaled RAE2822

airfoil.

6.1 The surrogate-based shape optimization framework

The workflow of the Surrogate-based Shape Optimization (SBSO) is depicted in figure

6.1. Basically, it consists of an a priori design of experiment module (a Latin Hyper-

cube sampler), the CST parameterization module, an automatic in-house developed

hyperbolic mesh generator, the ZEN CFD flow solver, the POD/ROM module, which

encloses also the adaptive sampling techniques, and the ADGLIB optimization library.

All these modules have been detailed in previous chapters. The integrating platform

is an in-house developed software called GAPOD, which controls the various modules

through internal or external calls. For example, the geometric modeller, the mesh gen-
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erator and the flow solver can be easily replaced as they appear in the text input files

and they are invoked through system calls. On the other hand, the POD module and

the optimizer are software library modules directly linked with the launcher. More-

over, the POD module can be activated with two modes: a “standalone” mode and a

“coupled/zonal” mode (63). The first one is switched on when the surrogate prediction

directly provides the objective/constraint functions, e.g. without any further call of

the high-fidelity code. This is, for example, the case when the POD model is trained

on the whole flow field . However, as the surrogate model only provides a prediction

of the mesh and field variables, a properly designed “condensation” procedure is ap-

plied to retrieve the integral coefficients like Cl, Cd, Cm. In particular, given the general

definition of the aerodynamic coefficients as in equation 6.1

Cl,d,m =
1

S

∫
S
Fl,d,mdS '

1

S

NS∑
i=0

F il,d,m∆Si (6.1)

where S is the integration surface, a slight modification of the snapshot definition

is made as the discrete integrand function (F il,d,m∆Si) is added to it. The function

Fl,d,m represent the pressure and shear stresses distribution on the wall times the scalar

product of the unit vector normal to the wall and the unit vector of the axis along which

we are projecting the aerodynamic force. F il,d,m and ∆Si are the discretized components

of Fl,d,m and S. Hence, once a design site has been evaluated through the surrogate,

a simple sum is needed on the corresponding snapshot elements to get the integral

coefficients. The “coupled/zonal” mode is designed to apply the zonal CFD/POD

approach. Once computed 1) a POD model and 2) an airfoil geometry from a selected

design site, the POD model is evaluated to provide a predicted snapshot. Then, the full

volume mesh is calculated and the FOM (inner) flow domain is computed and written

in the ZEN code file format. A specifically designed interface detects the FOM/ROM

interface in the snapshot definition and writes a boundary condition file suitable for

the ZEN solver. Finally, the flow solver is launched in the FOM inner domain with the

surrogate-derived boundary condition.

6.2 Problem definition

The geometry parameterization has already been described in the previous chapter. The

design point is summarized in table 5.2. Here, we define the airfoil shape optimization

134



6.2 Problem definition

Figure 6.1: Workflow of CFD/POD-based genetic optimization

problem in terms of objective/constraint functions specification

minimize
w∈DW⊂R16

− Cl
Cd

subject to

(
t

c

)
max

= 0.14

Cl ≥ 0.5

Cm ≥ −0.05

Cm ≤ 0.05

In other words, the goal is to maximize the aerodynamic efficiency Cl
Cd

while keeping

a minimum level of lift generation (Cl ≥ 0.5) and of pitching moment controllability

(|Cm| ≤ 0.05). Moreover, a geometric constraint is added in order to set the air-

foil maximum thickness at 14%: this constraint is automatically satisfied through the

parameterization approach, hence it will not appear explicitly. The constraint func-

tions are actually treated as quadratic penalties, hence the constrained optimization is

transformed into the following unconstrained problem:
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minimize
W∈Z⊂R16

− Cl
Cd

+K[min(Cl − 0.5, 0)]2 +K[min(Cm + 0.05, 0)]2+

+K[min(−Cm + 0.05, 0)]2
(6.2)

where K is a constant weight (equal to 104) which amplifies the relative importance

of possible constraint violations. For instance, a unit penalty will be applied to the

objective function in the case of an airfoil having a pitching moment of ±0.06.

6.3 Optimization strategies and set up

Several optimization approaches have been set up and tested in order to possibly cover

all the issues concerning surrogate/ROM training and prediction. Table 6.1 summarizes

the characteristics of each optimization in terms of: fitness evaluator, optimization

algorithm, POD energy threshold (when using POD as surrogate), the high-fidelity

computational budget, i.e. the total number of calls to the ZEN RANS solver during the

optimization, the number Mapr of a-priori LHS samples, the number Madp of adaptively

added samples through the strategy defined in the previous chapter and the number

Mopt of surrogate-based optima which are iteratively added to the ensemble database.

It must be noted that not all the optimization strategies use POD as surrogate: in

particular, optimization KGA and EGO have been performed by respectively using

a Kriging method as fitness evaluator and the EGO (Efficient Global Optimization)

algorithm, based on Kriging and Expected Improvement evaluation, to compute new

optimal samples. The EGO algorithm has been described in detail in the literature

review as one of the modern standard methods in global optimization.

In the following with the term “truth” or “true” we will indicate the results coming

from the high-fidelity CFD solver. Each optimization method is here described in

details:

– DGA: a plain, brute-force genetic optimization with the full high-fidelity solver

ZEN called as fitness evaluator;

– FPGA1: a surrogate-based optimization where the aerodynamic analysis is car-

ried out through a POD model built on the complete flow field of a set of 180

initial samples. This case corresponds to the POD-driven “standalone” mode

and the surrogate POD evaluator is the one presented as SM1 in chapter 5. No
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Opt Tag Fitness evaluator Optimizer POD energy Budget hi-fi Mapr Madp Mopt

DGA ZEN ADGLIB - 9600 0 0 0

FPGA1 standalone POD ADGLIB 85% 180 180 0 0

FPGA2 standalone POD ADGLIB 95% 180 180 0 0

FPGA3 standalone POD ADGLIB 99% 180 180 0 0

MPGA1 zonal POD ADGLIB 95% 180 180 0 0

MPGA2 zonal POD ADGLIB 99% 180 180 0 0

KGA Kriging Dakota SOGA - 180 180 0 0

EGO Kriging Dakota EGO - 553 153 400 -

AFPGA1 standalone POD ADGLIB 99% 96 32 16 48

AFPGA2 standalone POD ADGLIB 99% 96 16 32 48

AFPGA3 standalone POD ADGLIB 99% 96 4 44 48

AMPGA1 zonal POD ADGLIB 99% 112 8 56 48

AMPGA2 zonal POD ADGLIB 99% 96 8 40 48

Table 6.1: Optimization approaches

zonal approach is used. The POD energy content is 85%. The snapshot size N

is 201488;

– FPGA2,FPGA3: same as FPGA1, but the POD models are defined by sweep-

ing the energy content (95% and 99%, respectively);

– MPGA1: a surrogate-based optimization where the zonal CFD/POD model de-

scribed in chapter 5 is trained on the same initial design space sampling (180

snapshots) and adopted as objective function evaluator throughout the optimiza-

tion cycle. The FOM domain is defined as the orange one in figure 5.8 at a

distance d = 1.25 chord length from the airfoil leading edge. The POD model

used here has been already validated as SM3 in chapter 5. The POD energy

threshold is set at 95%. The snapshot size is 75232;

– MPGA2: same as MPGA1, but the POD energy content is increased up to

99%;

– KGA: a surrogate-based optimization where a kriging meta-model, built on the

objective function, is coupled to the genetic optimization. Here, the DAKOTA

package (64) is used both for optimization process control and algorithm capabil-

ities. The JEGA library (65) was used for optimization purposes. In particular,
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the Single-Objective Genetic Algorithm (SOGA) was used to perform optimiza-

tion on a single objective function with general constraints. The basic notion

that underpins kriging is that the sample response values exhibit spatial correla-

tion, with response values modelled via a Gaussian process around each sample

location (i.e., samples taken close together are likely to have highly correlated

response values, whereas samples taken far apart are unlikely to have highly cor-

related response values). A Kriging technique has been chosen here because they

have been widely used due to their ability to accommodate irregularly spaced

data, their ability to model general surfaces that have many peaks and valleys,

and their exact interpolation of the given sample response values. The Kriging is

initially trained on the usual 180-sized dataset. Then, a surrogate-based iterative

optimization scheme is performed consisting in the following steps:

1. adding points to the sample set used to create the surrogate;

2. rebuilding the surrogate;

3. performing a global optimization on the new surrogate;

4. finding of minimizers of the surrogate model;

5. passing a selected optimal subset (in the present case, just the optimum

candidate) to the next iteration;

6. re-evaluation of the surrogate points with the “truth” (CFD) model;

7. adding to the set of points upon which the next surrogate is constructed and

return back to 1.

This procedure offers a more accurate surrogate to the minimizer at each subse-

quent iteration, presumably driving to optimality quickly. In the present opti-

mization, 10 SBO iterations are performed.

– EGO: a stochastic response surface approximation for the objective function is

developed based on some sample points from the “true” CFD simulation. The

particular response surface used is a Gaussian process (GP). The GP allows one

to calculate the prediction at a new input location as well as the uncertainty

associated with that prediction. The key idea in EGO is to maximize the Expected

Improvement Function (EIF). The EIF is used to select the location at which a
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new training point should be added to the Gaussian process model by maximizing

the amount of improvement in the objective function that can be expected by

adding that point. A point could be expected to produce an improvement in the

objective function if its predicted value is better than the current best solution,

or if the uncertainty in its prediction is such that the probability of it producing a

better solution is high. Because the uncertainty is higher in regions of the design

space with few observations, this provides a balance between exploiting areas of

the design space that predict good solutions, and exploring areas where more

information is needed. The general procedure used here is:

– build an initial Gaussian process model of the objective function on a initial

dataset. For the 16 variable case, 153 design sites are automatically gener-

ated by the algorithm, hence we do not use the usual dataset made of 180

samples.

– find the point that maximizes the EIF. If the EIF value at this point is

suffciently small, stop.

– evaluate the objective function at the point where the EIF is maximized.

Update the Gaussian process model using this new point. Return to the

previous step.

The EGO optimization represents the most interesting algorithm to compare

with the newly developed POD-based approaches, as it embeds the concept of

adaptivity and trade-off between design space exploration and surrogate model

exploitation.

– AFPGA1,AFPGA2, AFPGA3: the surrogate model employed is the same as

FPGA3, but the training method is different and an adaptive sampling strategy

is added. In particular, we decided to follow a different approach: we want to

check if, with a limited computational budget, we get better results by adaptively

training the POD model. Hence, we split the surrogate training phase in three

contributions: an a-priori contribution, sampling the design space with the LHS

techique and producing Mapr samples; an iterative, adaptive sampling aimed at

improving the modal basis and enriching the ensemble dataset with Madp samples;

a series of Mopt genetic optimizations, each producing an optimal candidate to
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update the ensemble and recompute the surrogate. The last phase will be also

called real-time updating. The three strategies differ for the relative amount

of these three contributions as highlighted in table 6.1, keeping fixed the total

computational budget. The POD energy content is 99%. The snapshot size N is

201488;

– AMPGA1: the surrogate model employed is the SM2 model already studied in

chapter 5. The FOM/ROM interface is defined at d = 0.35 chord length from the

airfoil leading edge and the FOM domain is depicted with blue colors in figure

5.8. However, the training method is different as it embeds a-priori, auto-adaptive

and optimal samples as described earlier. The POD energy content is 99%. The

snapshot size N is 91792;

– AMPGA2: the surrogate model employed is the SM3 model already studied

in chapter 5 and used for MPGA1,MPGA2 optimizations. The FOM/ROM

interface is defined at d = 1.25 chord length from the airfoil leading edge and the

FOM domain is depicted with orange colors in figure 5.8. However, the training

method is different as it embeds a-priori, auto-adaptive and optimal samples as

described earlier. The POD energy content is 99%. The snapshot size N is 75232;

The optimization set up is the same for all the approaches, except for the last two.

A population of 64 individuals is let evolve for 150 generations with a 80% crossover

rate and a 2% mutation rate every time a new optimal sample has to be added to the

ensemble. Hence, a total number of 9600 evaluations are required for each optimization

process. The set up of AMPGA1 and AMPGA2 slightly differ as the adopted surrogate

models are slightly more expensive, as reported in figure 5.14. In order to increase the

frequency of model updating stages, a population of 48 individuals is let evolve for just

10 generations and the process is repeated 48 times to iteratively provide new optimal

samples. The new feature is that each optimization step is a restart of the previous

one with re-evaluation of the population candidates as the surrogate model has been

updated meanwhile. In other words, the idea is to update the surrogate model more

frequently (after just 10 GA generations instead of 150) even if with smaller amounts

of improvement (10 generations are not enough to converge the GA).

By looking at the details of the SBO approaches described so far, it seems quite natu-

ral to divide them in two main classes: the non-adaptive (FPGAx,MPGAx), i.e. those
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without any adaptation/real-time updating, and the adaptive optimizations (KGA,

EGO, AFPGAx, AMPGAx). Consequently, the presentation of the obtained results

will follow this logical sequence.

6.4 Non-adaptive optimization results

Figure 6.2-(a,b) shows the convergence history of the three FPGA optimizations com-

pared to the plain DGA (black circles) on the left (full GA history) and the two MPGA

optimization history on the right. In the latter figure, only the convergence history of

the best candidates for each generation are reported instead of the whole optimization

history. Another important point is that, while the DGA predictions (black circles and

black line) are obtained with the CFD solver, the POD-based predictions (green, red

and blue circles, blue and red lines) are the surrogate ones. For example, the red circles

do not indicate that FPGA1 reached objective levels significantly better than DGA,

but simply that the predicted values of the airfoil performances have been strongly

overestimated. The plot clearly highlights that, whatever the energy content, the full-

POD approximation is not able to match the “true” data during the search process.

Moreover, the general FPGA trend is to strongly underestimate the CFD prediction in

terms of objective function evaluation. On the other hand, the MPGA model agree-

ment with the CFD progress is very satisfying, both in terms of trends and accuracy.

Figure 6.2-(c,d), 6.2-(e,f) and 6.2-(g,h) confirm these results as they show the conver-

gence history of some design variables (leading edge radius, upper A4 and lower A1) as

a function of the progressing generations. Again, MPGAs behave quite well. The plots

in figure 6.2 propose an interesting feature: the FPGA optimizations push the lower

A1 variable towards the lower bound (-0.1), while the “truth” and MPGA converge

towards the variable upper boundary at 0.

6.5 Adaptive optimization results

Figure 6.3 shows the convergence history of the iterative SBSO KGA run. After about

6-7 SBO iterations, the Kriging model has been improved enough to predict very closely

to the CFD solver, as reported in the right-hand figure: it shows the Kriging prediction

compared to the true one for the optimal candidate that is sequentially added to the
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Figure 6.2: Non-adaptive POD-driven optimization history
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original database after each surrogate-based optimization. The convergence history on

the left-hand figure corresponds to the final SBO iteration, once the Kriging model has

been optimized. The 9th iteration candidate will be considered as the KGA optimum,

as it shows the lowest truth objective function among the SBO minimizers.
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Figure 6.3: Kriging-based optimization history

Figure 6.4 reports the convergence history of the EGO optimization. Grey circles

depict the initial DOE sampling (153 candidates), while red circles denote the candidate

with minimum expected improvement found at each iteration. The graph also reports

the expected improvement values in blue white-filled circles and logarithmic scale (right

axis). It is clearly evident how the progressive decrease of the EIF produces a better

quality of the Kriging model which in turn results in a minimization of the “true”

objective function. The convergence history of the AFPGA1, AFPGA2 and AFPGA3

optimizations are reported in figure 6.5 together with the objective function computed

on the training points. In the proposed plot, each point represents a single high-fidelity

evaluation. The points connected with solid lines represents the sequence of optima

computed by (1) updating the surrogate model and (2) running the GA optimzation

Mopt times. It is fairly evident how the adaptive sampling, which is triggered respec-

tively after 32, 16 and 4 a-priori sampling, helps to find interesting design candidates

even before the optimization stage. The best candidate of AFPGA1 is even found dur-

ing the off-line adaptive DoE and not during the real-time optimization enrichment.

This is due to the fact that, as the weight of the a-priori DoE is much bigger than

the other cases (67% of the total off-line sampling compared to 33.3% for AFPGA2 up

to 8.3% for AFPGA3), the ensemble is slightly enriched with an “intelligent” method
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Figure 6.4: EGO optimization convergence history

and it is unable to accurately explore the design space in the following phases. On the

other hand, the auto-adaptive method works well for the same reason, i.e. because the

margin of improvement is very high. Hence, the ratio
Mapr

Madp
should be kept low. How-

ever, another important feature is related to the AFPGA3 method: indeed, it shows

that, by lowering the ratio
Mapr

Madp
too much (up to 0.09), the performance of the method

deteriorates. These considerations give an helpful hint about the right combination of

a-priori and adaptive sampling: the ratio
Mapr

Madp
should be kept between 0.1 and 0.5.

This information is exploited in tuning the parameters for AMPGA1 and AMPGA2

optimizations. Figure 6.6 shows the “true” objective functions of the training samples

and of the sequence of optima candidates. Even if the AMPGA1 performs quite well,

it exhibits similar characteristics of the AFPGAx optimization. On the other hand,

the AMPGA2 optimization reaches superior levels of performance as the computed

optimum gets very close to the “truth” optimum, i.e. the DGA optimum. The fol-

lowing section will give details about the optima computed with each of the presented

methodology.
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Figure 6.5: AFPGA optimizations convergence history
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6.6 Optima analysis

In the following, ten optimal candidates will be considered to assess the optimization

results, namely the optima from run DGA, FPGA3, MPGA1, KGA, EGO, AFPGA1,

AFPGA2, AFPGA3, AMPGA1 and AMPGA2. FPGA3 and MPGA1 have been se-

lected among FPGAx and MPGAx optima because they are the closest to the high-

fidelity DGA optimum. The objective function breakdown for each optimal candidate

is summarized in table 6.2. The table reports both the “true” data, obtained by re-

computing each design with the CFD solver, and the predicted objective function as

calculated by the surrogate model. Each optimum does not satisfy the pitching mo-

Opt. run ID Truth Obj Predicted Obj Penalty Cl Cd Cm

DGA -51.18 -51.18 1.025 0.619 0.0118 -0.0602

MPGA1 -48.70 -50.86 1.13 0.578 0.0116 -0.0606

FPGA3 -38.33 -73.45 0.608 0.553 0.0142 -0.0578

KGA -47.65 -51.94 0.585 0.612 0.0127 -0.0576

EGO -49.71 -49.71 0.530 0.618 0.0123 -0.0573

AFPGA1 -49.24 -47.14 1.12 0.635 0.0126 -0.0606

AFPGA2 -49.20 -52.61 0.551 0.631 0.0127 -0.0574

AFPGA3 -48.13 -47.88 1.29 0.583 0.0118 -0.0614

AMPGA1 -48.58 -44.61 0.567 0.576 0.0117 -0.0575

AMPGA2 -51.13 -50.31 0.947 0.612 0.0117 -0.0597

Table 6.2: Optimal candidates, obj. function breakdown

ment constraint because the quadratic penalty function and its weight, chosen in the

problem definition, purposely do dot enforce this constraint strictly to have a less stiff

optimization problem. Indeed, getting precisely into the constraint boundaries would

have probably penalized too much the aerodynamic efficiency, i.e. the actual objec-

tive function, while applying small penalties near a constraint boundary gives more

flexibility to the search of the optimal design.

6.6.1 Non-adaptive optima

Among the non-adaptive methods (KGA is here considered as non-adaptive to set a

comparison), optimal design coming from MPGA1 and KGA are closer to the plain one

in terms of global performance. MPGA1 optimum catches almost perfectly the DGA
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constraint violation, while KGA design performs even better on pitching moment but

at the cost of a slightly lower aerodynamic efficiency. FPGA3 design, although using

75 POD modes, does not belong to an optimal subset but exhibits a small penalty.

A more interesting comparison is proposed in figure 6.7 where the optimal airfoils

shape (left-hand) and pressure coefficient (right-hand) are depicted. It should be noted

that the high-fidelity DGA optimization (black curves) is able to find a shock-less

configuration by properly designing the upper airfoil side. The best surrogate solution
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Figure 6.7: Non-adaptive optimal candidates comparison

(a) x-velocity component (b) z-velocity component

Figure 6.8: MPGA1 optimum, velocity contour comparison (POD - dashed lines; CFD -

solid lines)

is the MPGA1, where a weak shock appears on the suction side but at a lower lift level.

The plots provide to give an insight explanation of why the FPGA3 candidate shows

poor aerodynamic performances: the optimal leading edge radius, as also depicted in
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figure 6.2-(c,d), is almost twice the DGA value and this feature causes an over-expansion

on the suction side which in turn makes the shock wave occur more upstream and

stronger (green curve). Another significant design feature is observable on the Kriging-

based best candidate (blue curve), with reduced rear loading to limit nose-down pitching

moment and trim drag associated with the rear location of the center of pressure. This

beneficial feature is counterbalanced by the lift production increase in the fore airfoil

part and, consequently, by a more pronounced pressure jump across the shock wave.

In figure 6.8 the velocity components contour are compared for MPGA1 optimum as

obtained from full CFD (solid grey lines) and zonal CFD/POD (dashed black lines)

computations. A general agreement can be noticed, even if some slight discrepancies

on the CFD/POD boundary interface still exist which may deteriorate the high-fidelity

prediction.

6.6.2 Adaptive optima

In order to highlight the path of improvements that has been followed, we report in

figure 6.9 a correlation plot, representing both the non-adaptive and adaptive optima in

the plane whose x-axis is the surrogate prediction, differing in nature from one optimum

to another as different surrogates were used, and the y-axis is the “true” prediction,

i.e. obtained with the ZEN CFD solver. Two different zooming levels are set, as they

reflect the non-adaptive and adaptive process: indeed, the FPGA1, FPGA2 and FPGA3

optima show very large discrepancies between the two predictions, hence they will be

located very far from the line of perfect fit. However, a trend is observable as, increasing

the POD energy content (passing from FPGA1 to FPGA3), the best candidate gets

closer to the true optimum. By looking at the top part of the figure, a clustering

of the remaining optima is observable, so that a closer look is offered in the bottom

figure for better understanding. Among the adaptive optima, the AMPGA2 and EGO

method produce the best results and demonstrates the benefits of opportunely coupling

the zonal approach and an “intelligent” design space sampling. Indeed, these optimal

candidates are the closest to the target point in the sense of the Euclidean distance in

the representation plane. The following figures 6.10, 6.11, 6.12, 6.13, 6.14 and 6.15 show

some aerodynamic details of each candidate. Field Mach number contour maps and

surface pressure/skin friction coefficients are reported to compare both compressible

and boundary layer characteristics. In particular, it is clearly evident how the AMPGA2
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individual presents a shock-less behaviour as the true optimum, moreover with a more

flat pressure profile and a less pronounced recompression on the suction side. This is a

quite unique feature among the observed optimal airfoils.
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Figure 6.9: Computed optima in the surrogate vs truth objective plane
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(a) DGA (b) FPGA

(c) MPGA (d) KGA

(e) EGO (f) AFPGA1

Figure 6.10: Optimal candidates, Mach number contour
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(a) AFPGA2 (b) AFPGA3

(c) AMPGA1 (d) AMPGA2

Figure 6.11: Optimal candidates, Mach number contour
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Figure 6.12: Optimal candidates, pressure coefficient distributions
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Figure 6.13: Optimal candidates, pressure coefficient distributions
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Figure 6.14: Optimal candidates, skin friction distributions
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Figure 6.15: Optimal candidates, skin friction distributions

156



7

Conclusions

The aim of the present research work was to investigate and study ad-hoc computational

techniques to ease the solution of complex aerodynamic shape optimization problems

such those commonly encountered in aerospace design at industrial level. Among the

various approaches that are subject of research investigation, we chose to focus on ad-

hoc surrogate methods. In particular, we demonstrated that the well-known Proper

Orthogonal Decomposition approach is not adequate to provide reliable predictions

in peculiar aerodynamic conditions like transonic flow and when the boundary of the

computational domain changes like in shape optimization. We proposed a zonal ap-

proach to de-couple the strong non-linearities occurring near the body-wall from the

POD approximation. This zonal approach proved to give reliable results at a reduced

computational cost compared to the full CFD simulation. Furthermore, we showed

that the zonal approach can give an accurate approximation of the true optimum when

trained with specifically designed adaptive sampling techniques. The latter have been

purposely conceived to improve the POD model machinery, namely the basis vectors

and coefficients. By using such an “intelligent” design of experiment method, the high-

fidelity computational budget can be further reduced and the overall performance of the

design loop is increased. The beneficial effects of this approach has been illustrated by

comparing several surrogate-based optimization processes on the shape design of a two-

dimensional airfoil. The extension of the methodology to complex three-dimensional

problems is straightforward and under way. Indeed, one of the main advantages of

the proposed methodology is its relative insensitivity to the curse of dimensionality of

the design parameter space. On the other hand, the larger snapshot size required by
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three-dimensional CFD flow fields, where millions of unknowns may be handled, does

not represent a big issue with current linear algebra numerical solver technology. An-

other significant advantage of the zonal approach with respect to other surrogates lies

in its favourable scaling property when the third dimension is introduced because the

ratio between CFD-solved and POD predicted points decreases. Furthermore, zonal

POD allows to solve the high-fidelity flow field locally, i.e. only where it is required by

geometry-driven considerations. This represents a tremendous benefit when the com-

plexity of the design case grows. As an example, if the goal is to optimally fit a nacelle

body in a already optimal wing, the high-fidelity computation zone can be restricted

to catch only the wing-nacelle interaction phenomena, leaving to the POD model the

prediction of the outside field. To further bridge the gap with real-world applications

and needs, future works will be focused on validating the proposed methodology in a

large-scale, multi-point aerodynamic problems involving huge design parameter spaces

and aiming at predicting the aerodynamic characteristics in deep transonic flow.
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