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Abstract 
 

A number of numerical and experimental studies, performed in the field of technical 
flow duct acoustics, are presented in this thesis. The analyses have been implemented on the 
automotive mufflers, and the fluid-dynamic aspects have been taken into account too. 

The noise attenuation characteristics of a three pass perforated muffler with final end 
resonator have been investigated. Acoustic performances have been quantified by the 
Transmission Loss (TL) parameter, and different numerical methods have been adopted. 
Firstly, a non-linear one-dimensional (1D) time domain approach is utilized to predict the TL 
profile in a low frequency range. Secondly, a linear three dimensional (3D) boundary element 
method (BEM), in the frequency domain, has been utilized to obtain more accurate results at 
higher frequencies. The effects on muffler performance of different mean flow velocities and 
gas temperatures have been investigated too. 

Advantages and disadvantages of the above mentioned numerical approaches have been 
highlighted by analyzing a two-tube cross-flow commercial muffler. Besides the obvious 
differences due to the non linear/linear and 1D/3D formulations, the 1D method has been 
successfully used  in simulations where a mean flow was present. On the other hand,  after 
importing the results of a previously modal analysis, a complex BEM fluid-structure 
interaction analysis has been performed. Interesting results about the structure excitation, at 
certain frequencies, have been carried out. Moreover, the radiated noise has been assessed, 
once imposed a certain excitation at inlet. 

An experimental campaign has been carried out in the acoustic laboratory of Tallinn 
University of Technologies (TTU), Estonia, aimed to validate the above numerical results. 
Testes  have put in evidence the strong effects, on muffler performances,  of the constructive 
features related to the manufacturing process, such as the coupling of adjacent surfaces and 
the actual shape of  components. Hence, although numerical analyses are usually performed 
on ideal geometries (perfectly matched and shaped), when the behaviour of a real muffler 
must be simulated, a more detailed schematization must be used. To this aim, a number of 
tricks are suggested.  

A brand new acoustic optimization procedure, based on a 1D non-linear solver coupled to 
a genetic algorithm through a number of external routines, has been developed, aimed to 
maximize the acoustical attenuation or to find the best tradeoff between acoustical and fluid-
dynamic performances. The proposed approach constitutes a valid instrument to improve the 
muffler design process, providing a consistent enhancement of TL and a contemporary 
reduction of back pressure for the examined case.  

 
Keywords: IC-engine, muffler, silencer, acoustics, exhaust system, flow duct, one-
dimensional simulation, non linear simulations, boundary element method, finite element 
method, fluid-structure analysis, radiated noise, two-port source, two-microphone approach, 
optimization, genetic algorithm.  
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This doctoral thesis consists of an introduction, 5 chapters and the final 

conclusions.  

- In the first chapter, a global overview on mufflers is given. 

- In the second one, 1D methods for linear and non linear acoustic simulations are 

summarized. 

- In the third one, 3D methods for linear acoustics are described. 

- In the fourth one, main experimental techniques for muffler acoustic analyses are 

explained. 

- In the fifth one, a number of results, carried out in the doctoral studies, are presented. 
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Introduction  

 
 
 

The studies carried out in these three years doctorate have been driven by the will to 

understand the principles founding the duct acoustics applied to the silencers for ICE. A 

gradual approach, based on the use of numerical simulations, to the study of more 

complicated problems has revealed its effectiveness. In fact, after performing the first 

analyses, aimed to prove well known results from the literature, the attention has been 

addressed to less explored areas, e.g. the sound radiation due to the interaction of the muffler 

structure with the surrounding fluid, the tuning of numerical 1D and 3D models of a 

commercial muffler through experimental tests, the description of the effects of the 

manufacturing quality on the acoustic silencer performance, and the development of an 

optimization procedure.  

The target has been, on one hand, a better description of the silencers behavior, including 

usually neglected aspects. On the other hand, the improving of the muffler design process, by 

means of suggestions aimed to enhance the numerical simulations, and by means of a tool, 

represented by the above optimization procedure, focused on the obtaining of the best trade-

off between acoustic and fluid-dynamic performances. 

 
 
FUNDAMENTALS OF MUFFLERS – A GLOBAL OVERVIEW  
 

Mufflers play an important role on the environmental impact associated with the sound 

emission of internal combustion engines (ICE). They are designed to reduce the exhaust noise 

originated from the pressure pulses occurring in the periodic charging and discharging 

processes. A good design of a muffler must also account the requirement of minimizing the 

back pressure, i.e. the extra static pressure exerted by the muffler on the engine. This second 

necessity is needed to avoid consistent reductions of the volumetric efficiency, consequent 

increasing of the brake specific fuel consumption, and decreasing of mechanical power 

output. Usually these requirements are contradictory so the right trade off must be chosen at 

design phase [1-3]. 

Eventually, mufflers are also designed and tuned to give a positive contribution to the 

vehicle sound quality, which is an important point of emphasis in NVH work: interior sound 
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quality can be used to differentiate vehicles or brands as well as to give an overall impression 

of the vehicle quality. This aspect puts an increased emphasis on the importance of 

understanding exhaust noise and its frequency content [4]. 

 A variety of muffler typologies and models can be found in literature and on the market. 

They are usually constituted by a certain number of tubes and chambers, divided each other 

by baffles. Tube and baffles can also present perforated areas, and chambers can include a 

certain quantity of absorptive material. Fundamentals of mufflers, including a summary of the 

different typologies, a resume of their performances and guide line about the main 

geometrical parameters, are given in the Chapter 1 of this work. 

Regarding the acoustic analyses, a very powerful and widely used simplification for IC-

engine intake or exhaust ducts is to assume small perturbations and perform a linearization of 

the governing equations, i.e., a set of coupled non-linear equations for conservation of mass, 

momentum and energy. This simplification allows to neglect the energy equation (linear 

acoustics). When  a homogeneous and isentropic mean flow is  present, the final result will be 

the convective wave equation and then 3D effects can also be addressed without too much 

difficulty.  

Another possible simplification is to consider one-dimensional (1D) fields only. This 

assumption implies that the variables of pressure, density, velocity and temperature are treated 

as being constant over the cross-section of the duct under consideration. Consequently, the 

solution of the coupled nonlinear equations will be greatly simplified [2]. If only small 

perturbations are considered, the wave equation will be reduced to a 1D linear wave problem, 

which can be efficiently analyzed via so called two-port (or four-pole) methods [6]. On the 

contrary, when the excitation overwhelms certain limits, the linear assumption does not stand 

anymore, and a non-linear approach is required to solve the acoustic problem. 

Historically, the hypotheses of plane linear waves have been extensively utilized in 

silencer analyses, allowing to study a variety of configurations, in an analytical way. In 

particular, many studies have been focussed on devices including one or more expansion 

chambers, which act as low frequency resonators, and a certain number of perforated tubes, 

often used as high-frequency resonators.  

Roughly following a chronological order, aero-acoustic analysis of perforated elements, 

in the form of a series expansion for the straight through silencer  elements, was first 

presented by Sullivan and Crocker [7].  A segmentation method was developed by Sullivan 

[8-9],  lumping the effect of perforations into a number of discrete planes with solid pipes 

present in between. This was followed up by Jayaraman and Yam [10] who developed a 
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decoupling method to obtain a closed form analytical solution. In fact in these studies the 

complete analysis of mufflers including perforate tubes involves the elimination of velocity 

variables from the basic governing equations  to obtain the coupled ordinary differential 

equations in terms of acoustic pressure variables. Thawani and Jayaraman demonstrated the 

use of this decoupling method [11] by analyzing straight-through resonators in the absence of 

flow. Rao and Munjal [12] extended the analysis of Jayaraman and Yam by allowing the 

Mach numbers in the inner perforated duct and the outer casing to be different. Later, Peat 

[13] presented another numerical decoupling approach removing the numerical instability 

problems associated with other methods described thus far.  

All of these studies, were limited to concentric tube resonators, plug mufflers, or two-

pass mufflers (two perforated ducts plus an expansion chamber). As many of the 

commercially available mufflers implement three passes (three perforated ducts plus an 

expansion chamber), such configurations have been of more recent interest.  

Munjal presented a frequency domain analysis of a three pass muffler via a decoupling 

method [14], which was also refined to include the extended-tube three-pass perforated 

element muffler [15]. This decoupling approach was shown by Peat [13] to lead to numerical 

instability problems, especially near transmission loss peaks. Selamet et al, developed a 

quasi-one-dimensional theoretical model for the analysis of a three-pass perforated duct 

muffler based on the transfer matrix method and the numerical decoupling of Peat. The 

method was then generalized to include the analysis of three-pass mufflers where the ducts 

extend into the end cavities [16]. 

Further attempts have been made to analyze similar acoustical elements for different 

configurations and flow conditions. In a recent development, Munjal [17] analyzed an 

axisymmetric pod silencer and Kar et al. [18] developed an algebraic algorithm for modelling 

a configuration with any number of  interacting tubes or parallel ducts. This latter provided a 

clarity of thought for completeness, and hence a generality, in a way, to preclude tedious 

algebraic manipulations. 

Since the 1D plane wave regime is suitable only for low frequencies, a multi dimensional 

approach was needed for accurate predictions in wide frequency range of interest. During the 

past decades several analytical studies, discussing the effects of higher order modes on the 

performance of expansion chamber mufflers, have been published. In [19] Ih et al. presented 

the results in the four-pole form for a circular expansion chamber and a circular reversing 

chamber. Abom derived the four-pole parameters, with higher order mode effects, for an 
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expansion chamber muffler with extended inlet and outlet [20], by utilizing the analytical 

mode matching method [21].  

 

 

NUMERICAL METHODS  

 

In the Chapters 2 and 3 the main techniques based on 1D and 3D numerical approaches 

are explained. 

As previously shown, giving a look to the duct acoustic literature of last 2-3 decades, a 

number of fundamental studies, based on one-, two- or three-dimensional approaches can be 

found. They are basically analytical approaches, in which the algebra involved, particularly 

for asymmetric chambers, has been found to be relatively complex. Moreover, in case of 

multi-dimensional approaches, analytical solutions to the acoustic problem can be found only 

for easy cases (rectangular and circular, elliptic and parabolic cylindrical cross-sections). 

For these reasons numerical models, based on various approximations, are often 

necessary, sometimes compulsory.  

A variety of modeling procedures have been proposed in by the experts, and are currently 

applied to predict the propagation of pressure waves in the gas flowing along intake and 

exhaust systems. Also in these cases, the procedures can be divided into linear acoustic 

models and non-linear fluid dynamic models, according to the assumptions they are based on.  

As above mentioned, the acoustic linear models are widely used when there are small 

acoustic excitations, and they include linear 1D, finite element method (FEM) and boundary 

element method (BEM). These methods are usually based on frequency domain approaches, 

solving the so called linear Helmholtz’s equation [5] (derived from linear wave equation) or 

its 1D form in case of 1D linear codes. 

1D linear methods are very fast and require low computational costs. The quality of the 

predictions is often improved by introducing some length corrections to the 1-D model, in a 

way that the complex wave reflections at discontinuities (sudden expansion and contractions 

in duct cross-section) are taken into account [22]. Even though the 1D linear theory is a useful 

approach to the acoustics of muffler [1] and a variety of excellent results are present in the 

literature, nowadays the computing research is focused on the development of numerical 1D 

non-linear tools. These latter, described afterwards, preserve a quite low computational cost 

and contemporary are able to deal with more complex problems.  
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Back to the linear theory, the 3D approaches (FEM and BEM) are preferred when the 

analysis regards the acoustic performance of some components in which non-planar higher 

modes are excited. 3D effects, in fact, appear when the transverse dimensions of the system 

are comparable to the wavelength of the excitation, and in proximity of the cross section 

discontinuities.  

The first attempt to study the acoustic behaviour of a muffler by using the finite element 

method, was made by Ross [23] on a three pass perforated system, but he only demonstrated 

the results for the case where the middle pipe was just pass through (not perforated). 

A major challenge for using FEM for Helmholtz’s equation is that a specific resolution 

requirement for minimal wavelength must be respected for control of the approximation error 

[24]. Dispersion analysis demonstrates that it is generally more difficult to meet the resolution 

requirements for higher frequencies [25]. Several finite element methods have been developed 

to ease resolution requirements which are seemingly an open problem. In practice, finite 

element simulation requires high computational and memory resources, particularly at higher 

frequencies and, due to restrictions in computational resources, most of the past published 

applications of FEM for time-harmonic wave propagation had been limited to two-

dimensional domains. This, obviously, has changed in recent years, and more examples of 

three-dimensional applications for the mufflers performance prediction can be found in the 

literature [26-27]. 

 Also the boundary element method has been widely utilized for the solution of the 

Helmholtz’s equation in a variety of problems. They include mufflers with perforated tubes 

and irregular geometries (such as edges or corners), effects of porosity of perforation and 

flow-resistivity of sound absorbing material [28-30]. Predicted transmission loss curves are 

generally in good agreement with those from experimental measurements. 

The major advantage of the BEM is that only the boundary surface needs to be 

discretized. This saves considerable modeling effort when compared to domain discretization 

methods such as the finite element method (FEM). In order to deal with certain classes of 

acoustic problems where very complicated geometries are involved (for example acoustic 

mufflers with thin obstacles or projecting surfaces within the cavity volume) in [29]  a 

multidomain BE solution is proposed, in which the cavities of the muffler are divided into 

several subdomains so that the boundary surface of each subdomain is well defined and the 

conventional BEM can be applied to each one of them. The BEM equations for different 

subdomains are coupled to each other by enforcing the continuity conditions of pressure and 

normal velocity at the interface between two neighboring subdomains.   
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Owing to the high requirements of development time and computational cost, such 

investigations focus only on particular components of intake/exhaust system, without 

providing a description of their interaction with the engine.  

As previously mentioned, nowadays the non-linear numerical methods are of great 

interest: since in engine intake and exhaust systems, the pressure fluctuations are 

characterized by much larger amplitude than that assumed in the linear approach, these 

approaches are often mandatory. In fact they furnish quite realistic predictions, taking into 

account of the distortion of high amplitude waveform, during the propagation in ducts, and 

the interaction between the engine and the ducts system. Non-linear fluid dynamic models are 

mainly used to predict the intake and exhaust system performance in terms of pressure, 

velocity crank angle histories, and are based on lumped parameter (0-D), one-dimensional (1-

D) or three-dimensional (3-D) schemes. 0-D schemes are usually adopted coupled with 1-D 

models, the former one in the investigation of cylinder behavior and of flow across intake and 

exhaust valves, the latter one to describe the intake/exhaust system [31-34]. Recently, some 1-

D models have been proposed to analyze complex geometries, such as mufflers, in which 

perforations and adsorptive materials are included [35].  

More refined 1D based approaches, like the one proposed by Montenegro et al. [36] 

utilize quasi-3D elements to model chambers or after-treatment devices, which are 

specifically designed to account for conservation of momentum in three dimensions, even 

though the code is otherwise nominally one-dimensional. They are composed by a 0D 

element at the center of the volume, where the continuity and energy equations are integrated, 

and a number of volume openings (ports) where the momentum equation is integrated. 

The computed results allow the evaluation of the noise radiation from the tailpipe, by 

assuming that the open end acts as a monopole source (see, for example, reference [33]). 

Anyway, also in this case, when transverse dimensions of the analyzed components are 

not small compared with the perturbation wavelength and there is the necessity of a detailed 

flow investigation including non linear effects, a 3-D approach must be utilized: in this case a 

3D non linear approach [38-39]. However, due to the large computing requirements, the 

complete engine system cannot be modeled, and the 3-D investigation must be focused only 

on the analysis of some components, such as junction, fuel injector, intake and exhaust valve 

regions. 

For the prediction of performance of a silencer in a non linear regime, the non linear gas 

dynamic models in time-space domain are usually preferred [39-40]. In fact, the time space 

domain method is more useful for understanding the non linear acoustic field and its physics, 
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since this method is similar to actual experiments. Tam et al. [41] computed the reflection of 

the silt resonator by using a high-order finite-difference-method (FDM) in the time–space 

domain; his findings agreed well with experimental results. Dickey et al. [42] investigated the 

acoustic behavior of a perforated tube silencer at a high level of sound. Hwang et al. [44] 

calculated the insertion loss (a characteristic parameter) of an exponential pipe silencer for an 

N-wave of a single frequency. Cho et al. [69] predicted nonlinear acoustic propagation in a 

lined duct for single frequency sinusoidal and saw-tooth waves. These works demonstrate that 

time–space domain methods are more attractive than traditional frequency-domain approaches 

for analyzing non linear acoustic performance and understanding the related physics. 

However, due to physical and numerical issues [45], it is challenging for engineers, who 

work in related industrial fields, to apply the time–space domain computational aero-acoustic 

techniques for the assessment of the acoustic performance of silencers. In fact, acoustic waves 

are intrinsically unsteady, their amplitudes are several orders smaller than the mean flow and 

their frequencies are generally very high. Thus, to ensure that the computed solution is 

uniformly accurate over the entire computational domain, the numerical scheme must be free 

of numerical dispersion, dissipation and anisotropy [45]. 

More recently, in order to overcome the limitations of linear acoustic and non-linear fluid 

dynamic methods, some hybrid approaches, retaining the features of both models, have been 

developed. In the hybrid methods, the non-linear time-domain analysis is performed to 

compute the evolution of the thermodynamic condition of the cylinder and associated valve 

gas flow, while acoustic frequency-domain theory is applied to the intake/exhaust system. 

Due to the cyclic characteristics of engine operations, the Fourier transformations are used to 

pass from one domain to the other one. In this way, the information between the simulations 

carried out in time domain and the frequency domain are inter-changed [46-47].  

A recent example of the first group is the work by Shaw et al. [48], where fluctuating 

velocities predicted from 1D gas dynamics simulations were used as input to linear boundary 

element simulations, but without taking into account the frequency-dependence of the 

boundary impedance at the coupling section.  

  An example of how nonlinear effects can be included in a one-port source model was 

suggested by Rämmal and Bodén [49]. The method of coupling acoustic 1D nonlinear 

simulations to 3D nonlinear CFD is provided as a built in function in some commercial 

software packages but is still not very useful for acoustic optimization due to extremely long 

computational times.  
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 EXPERIMENTAL METHODS  

 

In the Chapter 4 the main experimental techniques for the description of the acoustical 

behaviour of a ICE muffler are explained. This chapter also includes a detailed description of 

the acoustic laboratory of Tallinn University of Technologies (TTU), Tallinn, Estonia, where 

a period of studies has been spent in order to perform several experiments on mufflers. These 

latter were aimed on the improving, extension and validation of numerical results described in 

the Chapter 5.   

One of the most utilized parameter to describe the attenuation performance of a muffler is 

probably the transmission loss (TL), which constitute the difference in the sound power level 

between the incident wave entering and the transmitted wave exiting the muffler when the 

muffler termination is anechoic; the 

TL is a property of the muffler only. The muffler TL may be calculated from models but 

is difficult to measure. The TL can be measured by using the decomposition method [50]. 

This method is based on decomposition theory, which was originally used to measure acoustic 

properties in ducts (such as the absorption coefficient and surface impedance of absorbing 

materials). If a two microphone random-excitation technique is used, the sound pressure may 

be decomposed into its incident and reflected waves. After the wave is decomposed, the 

sound power of the input wave may be calculated. 

The major drawback of the decomposition method is that an anechoic termination is 

required for measuring TL in order to carry out the sound power of the output wave. In 

practice, an anechoic termination could be constructed using a long exhaust tube, high 

absorbing materials, horn shaped pipes or an active sound anechoic termination. However, a 

“fully” anechoic termination is difficult to build, particularly one that is effective at low 

frequencies.  

An acoustical element, like a muffler, can also be modeled via its so-called four-pole 

parameters [1]. Assuming plane wave propagation at the inlet and outlet, the four-pole method 

is a mean to relate the pressure and velocity (particle, volume, or mass) at the inlet to that at 

the outlet. Using the four-pole parameters, the transmission loss of a muffler can also be 

readily calculated. Furthermore, if the source impedance is known, the four-pole parameters 

of the muffler can be used to predict the insertion loss of the muffler system [1]. 

The experimental determination of the four poles has been investigated by many 

researchers. The most accepted approach today is the approach developed by Munjal and 

Doige [51] who proposed a two-source method for measuring the four-pole parameters of an 
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acoustic element or combination of elements. The method can also be used in the presence of 

a mean flow. 

 

 

 RESULTS OF DOCTORAL STUDIES 

 

In the Chapter 5, all the results obtained and published in the three years of Ph.D., are 

shown and commented. In the work presented at the section 5.1 [52] , the noise attenuation 

curve, expressed in terms of transmission loss (TL) versus frequency,  of a three pass 

perforated muffler with end Helmholtz resonator is carried out. Different numerical analyses 

are employed. At first, a non-linear one-dimensional (1D) time domain approach is used to 

predict the TL profile in a low frequency range. 1D simulations, in fact, may be only applied 

under the hypothesis of a planar wave propagation. A linear 3D BEM in the frequency 

domain, specifically designed for acoustic applications, is utilized too. Obviously, such 

analysis allows to obtain more accurate results at high frequencies, depending on the mesh 

size. Different flow velocities and gas temperatures are investigated through the numerical 

models. The predicted TL profiles are compared and discussed in order to assess the 

potentiality and limitations of the employed numerical approaches. 

The purpose of the works shown in the paragraph 5.2 [53-54] is to put evidence on 

advantages and disadvantages of the above mentioned 1D and 3D BE approaches in 

evaluating the acoustic performance of a commercial cross flow muffler, under different 

conditions. The studied silencer under is composed by three chambers and two perforated 

tubes. A 1D non linear acoustic approach in time domain and a 3D BEM acoustic linear 

approach in frequency domain have been utilized also in this work. Many information about 

this two different way to model the acoustic phenomenon have already been given, but here 

further practical applications and differences are highlighted. The 1D approach obviously 

assumes rigid wall hypothesis, while the BEM can take into account the surface vibrations is 

when a preliminary FEM modal analysis of the structure is realized. The computed structure 

natural frequencies can be imported in the BEM model in order to carry out the complex 

fluid-structure interaction. The effects of this last condition on TL calculation have been 

assessed and discussed. In addition, both flow and temperature effects have been included in 

the modeling and discussed with the previous analyses. Agreement among these numerical 

evaluations and related limitations have been put into evidence for different configurations. 
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In the work described in section 5.3 [55-56], the previous 1D-3D acoustical analysis of a 

commercial muffler, has been improved and experimentally validated. Features related to the 

manufacturing process, like the coupling of adjacent surfaces and the actual shape of  

components, have been noticed to heavily affect the muffler behaviour. Hence, although 

numerical analyses are usually performed on ideal geometries (perfectly matched and 

shaped), schematizations utilized for acoustic simulations of real mufflers are being suggested 

to do not neglect these important aspects. On the other hand, for a given initial muffler design, 

the manufacturing process is assessed to be a critical aspect also for its remarkable effects on 

the acoustics. The results have been carried out under different muffler operating conditions 

related to different mean flow velocities and presence or not of internal insulating material. 

1D approach has also been utilized to evaluate the fluid dynamic behaviour of the studied 

muffler in terms of pressure drop when a mean flow is imposed.  Also in this case, the 3D 

results are obtained in absence of mean flow. Finally, during the experimental tests, the 

muffler has been treated as an acoustic two-port element.  

In the section 5.4 [57], acoustic and fluid-dynamic optimizations of the previously 

studied commercial muffler have been carried out. To this aim, an external optimizer, based 

on a genetic algorithm, has been coupled with the 1D solver in two different optimizations: 

the first one has been addressed on the improving of the muffler TL,  in absence of mean 

flow, and in 100-800Hz frequency range. The second one has been focused on the best trade- 

off between acoustic and fluid-dynamic muffler performances, in terms of TL and ∆p in 100-

400Hz frequency range.  The 3D BEM approach has not been used in the optimization 

process since it is much more time consuming, it is suitable and it has been validated only in 

absence of mean flow. Moreover, the investigated frequency range, which correspond to the 

range where most critical frequencies occur in typical operating conditions, is widely covered 

by the 1D approach. 
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Chapter 1  

Fundamentals of silencers  
 

 
 
 
1.1 INTRODUCTION  

 

The intake/exhaust system design process is a demanding task for engineers, since it 

involves the study of a number of interacting elements (air box, turbocharger, engine, 

catalytic converter,  silencer) whose functioning and operating conditions are mutually 

influenced. Moreover, the above  systems are often deputed to accomplish contradictory 

functions, in a way that compromise choices must be taken. In particular, the purpose of an 

exhaust system is to efficiently evacuate the  exhaust gasses. Obviously, a secondary task of 

noise reduction is compulsory, as well as a consistent pollutant reduction. The above 

mentioned word “efficiently” means without exerting high pressure losses which can affect 

the engine performances in terms of fuel consumption and output power. In fact, the air 

treatment and noise reduction performed by these devices, is always associated with pressure 

losses, in a way that the best trade-off between minimizing noise emission and maximizing 

engine output and fuel efficiency must be achieved [1]. 

The choice of the correct trade-off is usually guided by the requirements of quality 

vehicle, which can be used to differentiate the brands or the models (cheapness, high comfort, 

sport attitude) [2]. This optimization process is completely defined by including geometrical 

constraints, i.e. the available space for setting up the systems. For example, in passenger cars 

the silencer is often located behind the rear axle, adjacent to the spare tire, which inevitably 

limits the total volume and imply a specific outer form and layout. Other constraints of the 

problem are the unit cost, the reliability, the durability and the complexity of the designed 

system [3]. 

In the past decades the design procedure was usually based on the empirical experience 

and background of designers, implying time consuming and expensive “build and test” 

procedures. Nowadays, the design phase has been strongly improved thanks the aiding of 

numerical simulation models. They  permit  the  development of integrated design   strategies,  
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where conflicting requirements are simultaneously accounted during the development loop 

[4].  

An integrated design process usually starts from the evaluation of the pressure waves 

generated by the periodic charging and discharging process occurring in the engine. In fact, 

aerodynamic processes associated with the cyclic flow through the valves, separation and 

vortex generation at junction and expansion sections, constitute the source of intake and 

exhaust noise. These processes involve a transfer of flow energy to wave energy generating 

noise, which is radiated at open terminations. Consequently the intake and exhaust acoustic 

emissions can be controlled either by reducing the energy transfer from sources or by 

silencing the noise propagating in the duct system [1]. 

Concretely, the spectral characteristics of exhaust pulses are dominated by a sequence of 

discrete tones related to the engine firing frequency. The fundamental frequency of an ncyl 

cylinders engine is F0: 

 

ε600

rpm
nF cyl=

                                                                 
(1.1) 

 

were rpm are the engine revolutions per minute, and ε equal to 1 or 2 for a 2 stroke or a 4 

stroke engine respectively. For a four stroke 4 cylinder engine, it corresponds to the second 

engine order frequency, where the -k engine order frequency is defined as 

 

600

rpm
kF =

                                                                
(1.2) 

 

This frequency and its entire multiplies detect the most critical acoustic conditions due to 

the discharging process. Consider, for example a 4-cylinder, 4-stroke automobile engine 

driven at 3000 rpm. The fundamental tone in the exhaust noise corresponds to gas scavenging 

of cylinders, twice per revolution, giving a frequency of 100 Hz. Additionally, a number of 

overtones are typically obtained as well, i.e. tones at 200 Hz, 300 Hz. Because of high 

velocity of the gas through valve orifices and the exhaust manifold (at temperature around 

900-1200 °C), broad banded sound is also generated, with maximal strength somewhere 

between a half and a few kHz. The sound generated because of the coupling between the 

turbulent average flow field and the acoustic field is said to be self-excited [3]. 
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Object of this study are the silencers utilized in the exhaust system of in internal 

combustion engines (ICE).  In the present chapter they will be described and classified, as 

well as the main functioning parameters will be introduced. The resonant systems constituting 

silencers will be presented, as well as and the classical transfer-matrix approach for the study 

of these components. Also the dissipative silencers are described, aimed to attenuate 

broadband noise with minimum pressure drop. A number of attenuation curves of different 

typologies of silencers are included in this chapter: the numerical 1D results shown in this 

chapter are performed with the package software GTPowerTM based on non-linear time-

domain approach. 

 

 

1.2 SILENCERS CLASSIFICATION  

 

The silencers are passive noise control devices, also known as mufflers (amer.), whose 

performance is a function of the geometric and sound-absorbing properties of their 

component. Other kind of devices for noise control in duct systems are the active noise 

control silencers, whose cancellation features are controlled by various electromechanical 

feed-forward and feedback techniques [5]. These latter are not object of the present study.  

The operations of noise cancelling performed by the silencers can be regarded as based 

on two different principles: reflection of sound waves and dissipation of acoustic energy. 

Silencers based on the first principle are said to be reactive, and are used to abate sound 

consisting of discrete tones, especially in low frequency region. Silencers based on the latter 

principle are called resistive, and are those best suited to addressing high frequency broad-

band noise. In practice, most silencers are a synthesis of the two types. 

Wave reflections happen every time a wave encounters a physical discontinuity, such as a 

cross section variation (expansion or restriction) and a temperature gradient. Simply reflective 

components exhibit  attenuation minima at each time an acoustically significant length 

corresponds to an integer multiple of half the acoustic wavelength of the excitation, which is 

obviously undesired. With stationary piston engines this correspondence can be avoided by 

designing mufflers including a multiplicity of simply elements (such as chambers or tubes) 

which have different characteristic lengths. In this way, the attenuation minimum at a certain 

frequency of one of the constituting muffler element, is compensated by the maximum 

attenuation exerted by another element. Anyway, the introduction of reactive elements, such 
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as flow reversal, perforations on tubes and baffles, and fibrous packing, is often needed in 

order to damp acoustic resonances [1]. 

 

 

1.3 MODELS OF SOURCE, SILENCER AND TERMINATION  

 

1.3.1 ONE-PORT MODEL OF THE SOURCE 

 

Fundamentals of acoustic theory will be given in the chapters 2, 3 and 4, where the wave 

equation will be introduced and numerically integrated, as well as the travelling waves in 

ducts will be experimentally measured thorough the use of a proper microphone setup.   

What is of interest in this section is that, in the duct system, connecting a muffler to an 

ICE (exhaust pipe) and in the one connecting the muffler to the external environment (tail 

pipe), the assumption of plane wave propagation is realistic. Plane wave propagation means 

uniformity of the physical properties (pressure, particle velocity, temperature), on the points 

belonging to the generic cross section, at a time t. This hypothesis stands whenever the 

transverse dimensions of the duct are a small fraction of the significant wavelengths. 

Moreover, when the fluctuating pressure amplitude remains a small fraction of the ambient 

pressure, the waves propagate without change of shape, and one can adopt the acoustic 

approximation of describing the wave motion by linear acoustic models in the frequency 

domain [1].  

In the chapter 4 will be shown that, a generic spectral component of a plane wave, with 

wavenumber k=2πf/c or ω/c, can always be seen as a sum of a progressive and a regressive 

plane wave, travelling in the two opposite directions of the duct.  Therefore, with plane 

acoustic waves, at each frequency the spectral component amplitudes of pressure and particle 

velocity are respectively  expressed by  

 

−+ += ppp ˆˆˆ                                                                      (1.3) 

 

and 

 

c

pp
uuu

0

ˆˆ
ˆˆˆ

ρ
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−+
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                                                             (1.4) 
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where +p̂ and −p̂  are the amplitudes of the progressive and regressive free plane waves, ρ0 

and c0 are, respectively, the local ambient density and sound speed.  

Acoustic one-port source models can be used to calculate the acoustic field generated in 

duct systems by fluid machines, e.g.,, pumps, fans, IC-engines. They can also be used for the 

design of mufflers and silencers, and to gain a better understanding for the sound generating 

mechanisms in the machines. The source has to behave as a linear time invariant system for 

the one-port model to be valid. For machines such as IC engines and compressors, which 

generate high sound levels in the connected pipes, the condition of linearity might be violated. 

There is therefore a need for experimental methods to check if the conditions of linearity and 

time invariance are fulfilled [6,7]. If a linear time-invariant model is applicable for the 

machine it can be described as an acoustic one-port source.  

The behaviour in the frequency domain of the one-port (see Fig. 1.1) can be described by: 

 

S
S ppRp +−+ += ˆˆˆ                                                          (1.5) 

 

where RS is the source reflection coefficient at cross section at x=0, and Sp+ˆ   is the source 

strength. The source strength  can be interpreted as the pressure generated by the source-side 

when the system is reflection free. 

In the literature the source model for one-ports is often expressed in terms of source 

strength  and normalized source impedance ZS :  

 

qZZpp SS ˆˆˆ 0−=                                                           (1.6) 

 

where Sp̂  is the source pressure, p̂  and q̂ are acoustic pressure and volume velocity 

respectively   ( uSq ˆˆ =  where S is the tube cross section area and û  is the particle velocity), 

and Z0 is the characteristic impedance of the fluid (Z0=ρc/S, where ρ is the air density and c is 

the sound velocity). The source impedance Zs represents the acoustic impedance seen from 

the reference cross section towards the source.  

The Figure 1.2 shows the equivalent acoustic circuit for a linear and time invariant 

source. In this figure p̂  and Z denote the acoustic load data (the load pressure and the load 

impedance), while Sp̂ , Sq̂  and ZS denote the source data respectively. Theoretically the two 
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representations a) and b) of the source shown in the  Figure 1.2 are equivalent, and it is 

possible to go from one representation to the other by using the relationship SSS Zpq /ˆˆ = . 

 

 

Figure 1.1  – An in-duct source modelled as an acoustic one-port. 

 

 

Figure 1.2  – Equivalent acoustic circuits for linear time invariant source. (a) 
Pressure source, (b) volume velocity source. 

 

The Figure 1.3 illustrates source impedance from a practical standpoint. The sound waves 

generated by the source propagate along the duct. While a portion of the energy propagates 

through the attenuating element, some of the energy is reflected by the attenuating element 

back to the source. The reflected sound waves, though partially absorbed by the source, are 

also reflected back from the source. The amount of sound energy reflected or absorbed by the 

source is a function of the source impedance [8]. 

+p̂Sp +ˆ

−p̂

Lp̂ Lp̂Sq̂Sp̂

a) b) 
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Figure 1.3  – Schematic of a realistic source. 

 

1.3.2 TWO-PORT MODEL OF THE SILENCER 

 

An efficient way to analyze the sound transmission, when linear theory is valid, is 

acoustical two-port theory (see chapter 4) [9]: the relation between the input and output states 

of a time-invariant and passive two-port can be written, in the frequency domain, as 

 

Hxy =                                                               (1.7) 

 

where x and y are the state vectors at the inlet and outlet, H is a [2 x 2] matrix which is 

independent of x and y.  

 

Figure 1.4  – Schematic of a two-port source for transfer matrix determination. 

 

In particular, considering state vector composed by pressure and volume velocities (i.e. the 

product cross section area S times particle velocity u) with, x=[pa,qa]
T and y=[pb,qb]

T, (the 

subscript a and b indicate the inlet and outlet respectively), after the inversion of H matrix, 

one obtains: 

Tyx =                                                                  (1.8) 

that is: 
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is called transfer matrix and it is widely utilized to describe the behaviour of mufflers and its 

acoustical parameters. It can be seen, from the equation (1.9), that  
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In this way it is possible to give a physical interpretation to each of the 4 terms belonging to 

the T matrix. For example: T11 represents the ration of the upstream pressure and downstream 

pressure for the hypothetical case of the downstream end being rigidly fixed (ZL=∞); T12 is 

the ration of the upstream pressure to the velocity at the downstream end for the hypothetical 

case of the downstream end being totally free or unconstrained (ZL=0) [10]. 

One advantage of using the transfer-matrix formalism is that a cascade-coupled chain of n 

elements easily can be combined to yield a representation of a complete system. 

Mathematically this corresponds to a series of matrix multiplications as  

 

nTTTT 11 ...⋅⋅=
                                                         

(1.12) 

 

Here, it has been assumed that there is continuity of  p and  q at the element interfaces. 

This is strictly valid only for interconnections in a straight duct where only entirely plane 

waves exist. If the element interface has to be located at a sudden expansion, a special 

coupling two-port matrix has to be introduced to handle the discontinuity [10]. 
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1.3.3 SOURCE-SILENCER-TERMINATION MODEL 

 

Once the acoustic source has been schematized through a one-port model and the silencer 

through a two-port model, the entire system composed by the noise source, the silencer, and 

obviously the connecting pipes and the surrounding medium can be analyzed (see Figure 

1.5a) . 

The exhaust pipe connecting the source to the silencer can be seen as a part of the source. 

In the  Figure 1.5b the electrical system analogue to the acoustical one is shown. Also in this 

model the pressure p̂  is used instead of the voltage and the volume velocity q̂ instead of 

current. Sp̂  is the source pressure and ZS is its internal impedance. T and D are respectively 

the muffler and the pipe segment transfer matrices. ZL is the impedance of the termination.  

 

Figure 1.5  – a)Schematic of a source-silencer-termination system; b) Equivalent 
acoustic circuit. 

 

Let ip̂  and iq̂ , i =1,2,3, designate the acoustical pressure and volume velocity at the 

interfaces of the acoustical components of the source–silencer–load system. These quantities 

may be obtained by solving the system of equation describing the response of the components 

shown in Figure 1.5b: 

 

qZZpp ss ˆˆˆ 03 −=
                                                          

(1.13) 

 

11 ˆ,ˆ qp22 ˆ,ˆ qp33 ˆ,ˆ qp

Sp̂

a) 

b) 
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101 ˆˆ qZZp T=                                                                    (1.16) 

 

The calculated quantities ip̂ , iq̂ , i= 1,2,3, can be then utilized for the evaluation of the 

selected silencer performance criterion. 

 

 

1.4 SILENCER PERFORMANCE CRITERIA  

 

The performance of an acoustic filter is measures in terms of one of the following parameters 

[10]: 

 

- Insertion loss (IL) 

- Transmission loss (TL) 

- Level difference (LD), or noise reduction (NR) 

 

All these parameters are based on sound power difference as a performance indicator. 

Consequently they do not require any explicit knowledge of the source strength ps of equation 

(1.13). 

The IL is defined as the difference between the sound pressure levels (Lb and La) 

measured in a certain relative position, with respect the exhaust outlet, before and after the 

installation of the silencer (see Figure 1.6). In this two configuration, the exhaust pipe l1 and 

the tail pipe l2 can have different lengths. 
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 Figure 1.6  – Scheme for insertion loss determination. 

 

Symbolically: 

 

(dB)IL ab LL −=                                                      (1.17) 

 

or, in terms of acoustic pressure pb and pa: 

 

      (dB)
ˆ

ˆ
Log20IL

a

b

p

p=                                                   (1.18) 

 

The IL can be expressed in terms of transfer matrix elements: 

 

STST

STST

ZDZZDZD

ZTZZTTZT

221211
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 Log20IL

++
+++=                                  (1.19) 

 

where ijT is the combined transfer matrix element of the silencer and its tail pipe ( TDT = ), 

and D’ ij are the transfer matrix elements of the replaced exhaust pipe. In case of l1=l 2=0, then 

both D and D’ are identity matrices and equation (1.19) reduces to: 

 

STST
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ZTZZTTZT

221211

22211211
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 Log20IL

++
+++=                                    (1.20) 
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The noise reduction is the difference between the sound pressure levels measure at 

upstream and downstream the silencer (pressures p1 and p2 in Figure 1.7): 

 

Figure 1.7  – Scheme for noise reduction determination. 

 

Mathematically : 

 

(dB)
ˆ

ˆ
Log20NR

1

2
12 p

p
LL =−=                                           (1.21) 

 

 If D is the transfer matrix of the tail pipe and T  is the transfer matrix of the muffler, the 

NR can be written as: 

 

(dB)Log20NR
1211

1211

DZD

TZT

T

T

+
+=                                           (1.22) 

 

The transmission loss describes the performance of the “proper silencer”, it is 

independent of the source and presumes an anechoic termination at downstream the silencer. 

TL is defined as the difference between the acoustical power incident on the silencer (LWi) 

and that transmitted downstream into the anechoic termination (LWt) , see Figure 1.8.  

Symbolically: 

 

(dB)TL ti LWLW −=                                                    (1.23) 
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 Figure 1.8  – Scheme for transmission loss determination. 

 

As previously mentioned, in the duct the wave can be considered plane and, 

consequently, the acoustic power W can be expressed as a product of the acoustic pressure, 

the particle velocity and the duct cross section areas. In particular, in order to evaluate the 

incident and the transmitted acoustic power, not the entire acoustic pressure and velocity must 

be considered, but only the progressive components, at inlet and at outlet. Consequently, 

according to the wave decomposition theory expressed by equations (1.3) and (1.4), the 

utilized pressure and velocity contributions will inin up ++ ˆandˆ  at inlet, and outout up ++ ˆandˆ  at 

outlet. As a result: 
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where Sin and Sout are the cross section areas at inlet and outlet muffler, and Z0=ρc/S is the 

acoustic impedance of the medium. In conclusion:  
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Also the TL can be expressed in terms of Tij elements: 
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In the next section will be clarified the importance of the TL parameter, which will be 

extensively utilized in the results shown in the Chapter 5. For this reason another 

consideration must be done regarding TL in presence of mean flow. In this case, in fact, the 

(1.26) cannot be utilized, since the presence of a mean flow alters the expressions of the 

pressure and particle velocity [11]. 

It can be shown that the TL assumes the following expression: 
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where Min and Mout are respectively the Mach number of the flow at inlet and outlet. 

Moreover, the  equation (1.27) also contemplates the possibility to have different impedances 

at inlet and outlet,  Zin =ρincin /Sin and Zout=  ρoutcout /Sout  respectively. 

The various performance parameters have relative advantages and disadvantages: the IL 

is, for the user, the only criterion for the performance of a given filter, since it truly represents 

the performance of the acoustic filter. Anyway, it requires prior knowledge or measurement of 

the internal impedance of the source. 

The TL does not involve the source impedance and the radiation impedance, since it 

represents the difference between incident acoustic energy and transmitted into an anechoic 

termination. Being made independent of the terminations, the TL finds favour of researcher 

who are sometimes interested in finding the acoustic transmission behaviour of an element or 

set of elements in isolation of the terminations. But measurements of the incident wave in a 

standing wave acoustic might be quite laborious (see chapter 4).  

The NR does not require knowledge of source impedance and, like IL, it does not need 

anechoic termination. It is therefore the easiest to measure and calculate and has come to be 

used widely for experimental corroboration of the calculated transmission behaviour of a 

muffler [10].  
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1.5  REACTIVE SILENCERS  

 

1.5.1 SILENCER EXEMPLIFICATION 

 

As previously mentioned, the acoustic behaviour of a reactive silencer is mainly driven 

by reflection phenomena which occur inside the component and reflect the acoustic waves 

back to the source. A wave reflection happens every time a wave encounters a physical and, 

consequently, an impedance discontinuity. In case of reactive silencers such discontinuities 

are due to sudden cross area changes (e.g. expansion chambers), wall property changes (e.g. 

perforations along pipes), and combination of these ones [5].  

The reactive silencers are made up by internal elements such as orifices, axial side-

branches, flow reversal, duct segments connecting adjacent chambers, etc. The inner 

geometry of these components can be definitely complex. Anyway, imagining the path of a 

travelling progressive plane wave inside the muffler, the internal complex shape can be 

decomposed in a number of elementary elements, mainly straight tubes and expansion 

chambers (see Figure 1.9). The behaviour of each one of these elements is simpler to describe 

in terms of transfer matrix. As a result, the transfer matrix of the entire silencer can be easily 

obtained by utilizing the equation (1.12). For the silencer in Figure 1.9 one can write: 

 

9...TTTT 11 ⋅⋅=                                                              (1.28) 

 

A number of basic elements are here briefly analyzed and the corresponding transfer 

matrices are carried out. The common hypotheses are: plane wave behavior in presence of 

superimposed mean flow, acoustic linear approach and absence of thermal gradients. 

Moreover, the acoustical energy dissipation, that may result from friction between the gas and 

the rigid walls and from turbulence phenomena, is neglected. 
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Figure 1.9  – Decomposition of a silencer into basic elements. 

 

 

1.5.2 BASIC SILENCER ELEMENTS: STRAIGHT TUBE 

 

In the Chapter 4 it will be shown that, when a plane wave travels, with a certain 

frequency f=ω/2π, in a straight duct and in absence of mean flow, the acoustical pressure p 

and the particle velocity u at a certain point x along the duct are given by: 
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where the bold print means that the variable concerned is complex and 1−=i . The 

subscript + and – respectively represent the progressive and regressive free plane wave 

constituting the plane wave, and k=2πf/c is the wavelength (c is the speed of sound).  

When a mean flow velocity V is imposed, the (1.29) and (1.30) must be changed in to: 
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where k+ =k/(1+M) and k-=k/(1-M), being the number of Mach M=V/c. Instead of the particle 

velocity u, the volume velocity q=Su (where S is the cross section area) can be utilized:  

 

)(

0

)(

0

ˆˆ
),( xktixkti e

Y

p
e

Y

p
tx −+ +−−+ ⋅−⋅= ωω

ρρ
q

                                
(1.33) 

 

where Y=c/S. Equations (1.31) and (1.33) can be evaluated at x=0 (beginning of the duct) and 

x=l  (end of the duct) in order to obtain the corresponding fields 2p̂ , 2q̂ , 1p̂ , 1q̂ , respectively. 

One can obtain: 
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where the transmission matrix T is given by: 
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1.5.3 BASIC SILENCER ELEMENTS: CROSS SECTIONAL DISCONTINUITIES 

 

In the Table 1.I typical cross sectional discontinuities are represented. Terms C1 and C2 

are utilized to satisfy the following compatibility relation between the cross sectional areas S1, 

S2, S3: 

 

032211 =++ SSCSC                                                         (1.36) 

 

For each configuration, the Table 1.I also shows the pressure loss coefficient K related to 

the partial conversion of mean flow energy and acoustical energy into heat [5]. 
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CROSS SECTIONAL DISCONTINUITY C1 C2 K 
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Table 1.I – Transition element parameters 

 

Transfer matrices for cross discontinuities in presence of mean flow assume an 

exemplified expression when M<<1  and the terms 1+Mn (with n≥2) are set to unity, which is 

a correct assumption in most silencer design. In this case one can obtain: 
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where Z2=-i(c/S2)cot(kl2), Y1=c/S1 and Y3=c/S3.    

In the case of sudden expansion or sudden contraction l2=0. In this case one can obtain: 
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Other important silencer elements are represented by the expansion chambers and the 

side-branch resonators. The second ones include quarter wave, Helmholtz and perforated tube 

resonators. All of these silencer components will be treated in the following sections [5].  

 

 

1.6 ACOUSTIC BEHAVIOUR OF EXPANSION CHAMBERS  

 

1.6.1 SIMPLE EXPANSION CHAMBERS 

 

An expansion chamber is the simplest type of silencer, consisting of a cross section 

expansion, a straight chamber and a cross section contraction . 

Obviously its behaviour can be described considering the above formulas related to cross 

section discontinuities and to the straight tubes. It can be shown that the transmission loss of a 

generic expansion chamber is equal to: 
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(1.40) 

 

From this expression, maximal attenuation is obtained when: 
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(1.41) 

 

where n=1,3,5,... The above expressions means that the attenuation maxima happens when the 

length of the chamber
 
coincides with an odd multiple of a quarter of wavelength. In fact, the 

wave reflected at area change at the chamber outlet contains a phase factor exp(iπ) when it 

interferes with the field at inlet, which generate a destructive interference. The maximal 

attenuation increases with increasing magnitude of the area discontinuity [3].  

 

 

Figure 1.10  – Expansion chamber transmission loss: 1D, 3D numerical and experimental 
results. 

The equation (1.44) and (1.45) are obtained in hypothesis of plane waves. The acoustic 

problem represented by the wave equation can be resolved utilizing a modal approach [3]. 

The result is that an infinite number of modes can be detected in a certain duct. The lowest 

mode is planar, and the cut-on-frequencies of the first higher order mode can be calculated, 

depending on the shape of the duct. For a circular duct, such as an expansion chamber, this 

frequency is: 

3D approach 
Experimental results 

1D approach 
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(1.42) 

 

The Figure 1.10 shows the TL of an expansion chamber with centrally located inlet and 

outlet, obtained with a planar and a 3D approach. The latter one is alable to take into account 

the higher order modes. 

It can be noted that the 1D analysis is nevertheless not valid all the way up to the first 

“cut-on”. This is because the attenuation of higher modes is so low just beneath cut-on that a 

significant near field develops at the inlet and outlet.  It is also evident a drastic reduction of 

the TL as more as higher modes propagates. When the inlet and outlet tube are perfectly 

centred on the axis chamber, a symmetrical problem arises and only radial varying modes are 

excited. Contrariwise, when the inlet and outlet tubes are eccentrically placed, the 

circumferentially varying higher modes are well driven, and the lowest cut-on frequency 

occurs at lower frequencies, clearly influencing the silencer behaviour [3].  

 

 

1.6.2 EXTENDED OUTLET EXPANSION CHAMBERS 

 

Expansion chambers provided of extended outlet pipe, represents a first successful 

attempt of improving the acoustic attenuation of a simple expansion chamber. In this case, the 

length of the extended outlet constitutes another tuning parameter, added to the length of the 

expansion chamber and the ratio S1/S2 of cross sections.  

The extended outlet and the external chamber surface form a side branch element, in a 

way that this type of silencer can be decomposed into three basic components, as shown in 

Figure 1.11. The transfer matrix of the entire silencer can be obtained by multiplying the 

transfer matrices of the sudden cross section variation,  the straight tube and the extended 

inlet, given by the equations (1.39) , (1.34), (1.38) respectively.  

It is noticeable that, for certain frequencies, the impedance Z1 of the extended-outlet 

element approaches to zero, and the branch element generates a pressure release condition. In 

this situation the incident wave appears to interact with a closed-end-cavity, and no acoustical 

power is transmitted downstream. This condition occurs when cot(kL1)=0, corresponding to 

kL1/π=(2n-1)/2. Consequently, a dominant peak in the source spectrum can be significantly 

reduced by proper selection of the tube length extended into the chamber. 
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Figure 1.11  – Basic elements of an extended outlet expansion chamber. 

 

 

1.6.3 DOUBLE TUNED EXPANSION CHAMBERS 

 

A further enhancement of an extended outlet expansion chamber is the extended inlet-

extended outlet configuration. In this case the silencer is also called double-tuned expansion 

chamber, since another tuning parameter is added, that is the length L2. The additional 

parameter can be used to enhance the silencer behaviour filling up the attenuation troughs of 

the extended outlet configuration, in a way to improve the TL over a broader frequency. L1 

and L2 should be chosen so as to neutralize different sets of troughs [5]. 

Now the silencer can be decomposed into three basic elements, as shown in Figure 1.12: 

an extended inlet, a pipe element and an extended outlet, whose TL matrices are expressed by 

the equations (1.38), (1.34) and again (1.38) respectively. It is easy to show that, in order to 

better the attenuation performance, the conditions L1=L/2 and L2=L/4 is particularly 

favourable [5]. In fact the extended inlet element includes a term proportional to cot(kL2), 

which produces stop bands at kL=2(2n-1)π , filling up the troughs at kL/π=2,6,10...  Similarly, 

since the extended outlet includes terms proportional to cot(kL1), it  produces stop bands at 

kL=(2n-1)π, filling up the troughs at kL/π=1,3,5... In conclusion the only troughs will remain 

at kL/π=4n, n being an integer. Accordingly this design offer a better solution for broadband  

performance than any previous configurations
. 

 

L 

L1 
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Figure 1.12  – Basic elements of an double tuned extended expansion chamber 

 

 

1.7 ACOUSTIC BEHAVIOUR OF SIDE BRANCH RESONATORS  

 

1.7.1 FUNDAMENTALS ON SIDE BRANCH RESONATORS 

 

The side branch resonators are reactive element often utilized in silencers. The Table 1.2 

shows the most common types and their characteristic dimensions. These elements usually 

consist of a resonant cavity connected to a pipe through a single hole, or a multiplicity of 

holes, and a throat whose length can be equal or greater than the wall thickness of the pipe 

[3], [5].  

For the generic side branch, under the hypothesis of plane wave behavior, and assuming that 

the dimensions of the branch inlet are considerably smaller than the wavelength, i.e. kr<<1, 

the following condition exist between the sound field upstream and that downstream of the 

branch (see Figure1.13): 

 

211 ˆˆˆˆ pppp s ==+ −+
                                                         (1.43) 

and 

 

+−+ +=+ 2,1,1, ˆˆˆˆ xssxx uSSuuu                                                    (1.44) 

 

L 

L1 L2 
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where the cross sectional area of the duct is the same upstream and downstream of the side 

branch.  

 

 

Figure 1.13  – Plane waves  in a generic side branch resonator. 

 

The index s is used to refer to quantities pertaining to the side branch.  

It is easy to show that: 
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where sss upZ ˆˆˆ = . The (1.42) implies that the maximum TL is obtained when sẐ =0, that is 

0ˆ =p , which occurs at resonance frequencies [3]. 

The transfer matrix of a resonator in a stationary medium is given by: 
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(1.46) 

 

where Zr=Zth+Zch+Zth . In this sum, Zth is the impedance of the throat connecting the pipe to 

the cavity, Zc is the impedance of the cavity. It is possible to show that: 
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a) Concentric hole-cavity resonator 

        

            

 
 

b) Quarter wave resonator 

  

   

 

c) Helmholtz resonator 

 

 
 

 
 
 

           
d) Helmholtz resonator 

  

Table 1.II  –  Side branch resonators. 
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where the subscript qw, ch and gv refer to the quarter wave resonator, concentric-hole-cavity, 

and general-volume cavities. The lengths lu, ld, and lc , the cross section Sc and the volume Vc 

cl

tl

tr2

SS

2
tc rS π=

dl

0r
cr

( )2
0

2 rrS cc −= π

ul

cl cV

tl



                                                          Chapter 1 – Acoustic behaviour of side branch resonators 

49 
 

are shown in Table 1.II. It can be shown that at low frequencies both Ztt and Zcc are reduced to 

the expression of Zgv [5]. 

The impedance of the throat,  Zt , has different expression in case of absence and presence 

of grazing flow. For M=0,  
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(1.48) 

 

where l t is the length of the connecting throat, r0 the orifice radius, S0 the area of single 

orifice, and nh the total number of perforated holes. 

The presence of grazing flow (M≠0) in the duct has strong effect on the impedance Zt of 

the resonator throat. Measurements conducted using single and multi hole throats lead to the 

empirical expression: 
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                         (1.49) 

 

where the parameters l t and r0 are in meters and σ is the porosity (i.e. the ratio between the 

perforated area and the total area) [5]. 

 

 

1.7.2 QUARTER WAVE AND HELMHOLTZ RESONATORS 

 

The quarter wave resonator and the Helmholtz resonator are two common types of side 

branch resonators, widely employed to improve the attenuation performance of a silencer at a 

certain (usually low) frequency. In fact a quarter wave resonator (see Table 1.II) consists of a 

duct with a constant cross sectional area, terminated by hard wall. The resonance frequency of 

this element is: 
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where n=1,3,5,... and lc is the column length. 
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Another common type of a side branch resonator is the Helmholtz resonator depicted in 

Table 1.II, which is the acoustic equivalent of the mechanical mass-spring system. It consists 

of a closed volume that communicates with the duct system through a small duct-neck, with 

area SS and length L. The acoustical system, in which pressure and particle velocity vary 

continuously in the space, can be approximated by a system consisting of parts in which either 

the pressure or the particle velocity is constant, obtaining a particle system or a lumped 

system. The lumped approximation  implies that, for wavelengths much larger than the 

diameter of the resonator volume, the pressure is uniform throughout, and therefore only a 

function of time. The reduction of the time and space dependent variables to merely time-

dependent ones, implies that the wave propagation within the resonator cannot be taken into 

account. Obviously this means that the lumped analysis always neglect the effects of higher 

order modes. An exemplified analysis of this type of resonator, also assumes that the acoustic 

compression of the gas mass V in the resonator volume Vc=Sslc takes place without heat 

transfer. Under these hypothesis it is easy to show that the eigenfrequency of the Helmholtz 

resonator is: 

 

 ct
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Hr Vl
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f
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(1.51) 

 

In the Figure 1-14 the effects of volume Vc and throat radius r t variations of an Helmholtz 

resonator are eloquently highlighted:  the larger the volume, the higher the resonance 

frequency and the lower the TL. The larger the neck radius, the higher the resonance 

frequency and the lower the TL. 

 

 

Figure 1.14  – Behaviour of an Helmohltz resonator. 

Helmholtz resonator (l t=0.01m, rt=0.02m) Helmholtz resonator (l t=0.01m, Vc=0.001m3) 

Vc=0.0001 m3 
Vc=0.001 m3 
Vc=0.01 m3 

 

rt=0.03 m 
rt=0.02 m 
rt=0.01 m 
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Losses have not been included in the analyses of quarter wave and Helmholtz resonators, 

but they can be decisive for the effectiveness of the resonator. Such losses as frictions or 

radiation damping can be included in the preceding models by incorporating a force 

proportional to velocity of the air column in the resonator neck, that is: 

 

sr uRp ˆˆ −=
                                                                    

(1.52) 

 

In this case the impedance of the resonators will include the term R, and for this reason it can 

no longer be identically zero. This means that the maximum effectiveness of the resonator is 

reduced, but with the compensating advantage of a more broad-banded attenuation behaviour 

[3]. 

 

 

1.7.3 CONCENTRIC HOLE-CAVITY RESONATOR AND PERFORATE TUBES 

 

An example of this typology of resonator is shown in Table 1.II. It consist of an anular 

tube cavity communicating with the centre tube (propagating tube) through a number of holes 

on its periphery. Such as extended tube and Helmoholtz resonators, the concentric cavity 

resonators can also be represented by a mass spring system. The impedance is different, as 

shown by the equations (1.47), and this is mainly due to the fact that the annular cavity is 

acoustically long (klu and  kld are not <<1). It is made of two quarter wave resonators in 

parallel and the neck is equal to the thickness of the communicating holes.  

The tuning frequency, in this case, is equal to: 
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Where nh is the number of holes. Since it appears in the numerator of fch and in the 

denominator of the throat impedance Zt,  see equation (1.48), the fch of nh holes is nh times that 

of a single hole, and the Zt of nh holes is 1/nh times that of a single hole. This feature leads to 

considerable flexibility to the design of concentric hole-cavity resonator [3]. 
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The Figure 1.15 shows the influence the number of  holes and the length lu/ld ratio : the 

larger the number of  holes, the  higher the  resonance frequency, and the larger the ratio lu/ld, 

the larger the resonance frequency. 

An extension of the concentric hole-cavity resonator is represented by the perforated tube 

elements: many muffler, in fact, include one or more expansion chambers, which act as low 

frequency resonators, and a certain number of perforated tubes surrounded by a chamber, 

which can be tuned as high-frequency resonators. Aero-acoustic analysis of perforated 

elements in the form of a series expansion for the straight through silencer  elements was first 

presented by Sullivan and Crocker [12]. A segmentation method was then developed by 

Sullivan [13,14], then followed by the decoupled approach techniques of Jayaraman et al. to 

obtain closed-form solutions. 

  

Figure 1.15  – Behaviour of a concentric tube resonator. 

 
 

In the segmentation approach, the basic element  is  to be considered is two parallel flow 

ducts, which are joined together by a perforated section of length l and specific acoustic 

impedance Zw (see Figure 1.16)  The impedance can vary along the perforate. The main idea 

of the segmentation approach is to divide the perforated section into a number of segments 

along the length of the ducts. Each segment consists of two parts. The first part is composed 

by two parallel hard ducts, where convective plane wave motion is assumed. The second part 

is a discrete impedance, which can be seen as an open branch representing a parallel coupling 

of all the holes in the segment. 

 

The parameters characterizing a perforated tube are: 

- dh: diameter of perforated holes 

Concentric tube resonator  
(lu= l d=0.1m, rh=0.002m, tw=0.002m) 

Concentric tube resonator  
(n=80, rh=0.002m, tw=0.002m) 

nh=80 
nh=40 
nh=20 

 

lu= 0.1m, ld=0.1m  
lu= 0.1m, ld=0.05m  
lu= 0.1m, ld=0.01m  
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- C: center-to-center distance between consecutive holes 

- tw: wall thickness of perforated tube 

- porosity
2

2

4C

dhπσ =
                                                                                                                 

(1.54) 

A number of studies, focussed on the acoustic characterization of perforated-tube silencers, 

prove that the performance of these devices is quite insensitive to the hole diameter dh and the 

wall thickness tw. Contrariwise the above mentioned parameter, and in particular dh, strongly 

affect the fluid-dynamic behaviour of the muffler. In fact, in presence of a mean flow, the 

friction due to the passage of a gas flow thoruogh the holes increase at the decreasing of dh, 

which negatively affect the silencer overall pressure drop. 

The presence of a mean flow produces a general increase of TL at increasing of velocity 

but, obviously, this parameter is not totally the under the designer’s control.  

The behaviour of a silencer composed by an external chamber and one or more 

interacting straight perforated tubes, also provided of flow deflectors, tends to became similar 

to that of a simple expansion chamber for sufficiently high values of the porosity, but it is 

considerably better for low values of this parameter. On the other hand, as previously 

mentioned, a reduced porosity raises the back pressure, except for the concentic tube 

resonator (a single perforated tube), where the back pressure is nearly indipendent of porosity. 

Consequently the porosity provides another parameter that can be used to trade off between 

acoustical and mechanical performance [5].  

 

 

1.8 END EFFECTS AT DISCONTINUITIES   

 

The analyses above exposed, regarding reactive silencer elements, are based on the 

common hypothesis of plane wave propagation, which cannot take into account of the three-

dimensional waves arising at the typical flow discontinuities (sudden cross area variations, 

open ends, neck of resonators). Generally, and end correction lc must be added to the length of 

the duct entering the discontinuity, in order to obtain a proper representation of wave 

reflection and transmission at boundaries. lc is usually a function of the geometry and 

frequency of the propagating waves. The introduction of these corrections is necessary to 

locate the plane of wave reflection, whose position is shifted by the end correction away from 

the geometrical discontinuity plane. Different end correction formulae can be found in 

literature, based on theoretical and experimental investigations [4]. 
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Figure 1.16  – End effects at discontinuities [4]. 

 

The importance of the end corrections can be easily shown considering an example of a 

simple Helmholtz resonator: for a circular duct, when an orifice is placed in a wall that is very 

large with respect to the sound wavelength, the following approximate expression are 

obtained: 
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For a Helmholtz resonator with a cubic volume with dimensions 0.2x0.2x0.2 m3, a neck 

length of 0.01m and a diameter of 0.10 m, the ratio between the corrected frequency 

(including end correction length) and the frequency obtained without accounting the end 

effect is: 
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Which means that the corrected frequency is twice the non-corrected one [3]. 

 

 

1.9  DISSIPATIVE SILENCERS  

 

The acoustic behaviour of most exhaust system elements is essentially reactive but 

separated flow or flow reversal, perforations, fibrous packing and baffles may all enhance the 

resistive contribution to their performance [5]. 

Dissipative silencers are widely utilized devices, which allow good attenuation 

performances on the broadband, with low backpressure. They are utilized not only in 
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automotive field, but very frequently also in the intake and exhaust systems of gas turbines, 

air conditioning and ventilation ducts connected to industrial fans. 

In contrast to reactive silencers, which prevent the noise by reflecting the incident sound 

wave toward the source, dissipative silencers attenuate the sound by converting the acoustic 

energy of the waves into heat. This conversion is due to the frictions between the oscillating 

gas particles and the fibrous or porous sound-absorbing material, when the waves propagate 

into the voids.  

In order to accomplish that, the walls of the duct are covered by porous absorbents 

typically consisting of mineral wool or glass fibres. 

Since the damping is mainly obtained from the viscous forces, resistive silencers should 

be designed to maximize the particle velocities in the porous material. For this reason, it is 

often good to locate absorbent at a small distance away from the walls, since the normal 

velocity at the wall is zero. 

In industrial application a widely utilized typology of resistive silencer is the so called 

baffle silencer, since the typically large dimensions of the ducts permit such a silencer. 

The global insertion loss of a resistive muffler is a summation of three contributions [5]: 

 

EXlENT LLLIL ∆+∆+∆≈                                                    (1.57) 

 

where the flow noise has been neglected, and ∆LENT , ∆Ll, ∆LEX are, respectively, the 

entrance loss, the silencer attenuation and the exit loss. The first term is small if the incident 

sound energy is in the form of a plane wave normally incident on the silencer entrance (for 

example in straight ducts at low frequencies). For this reason ∆LENT can be considered as a 

safety factor in the design of such a silencer. Anyway, when the cross dimensions of the duct 

are higher than the wavelenght, the incident sound field contains a number of higher order 

modes, and the conversion of the semidiffuse sound field in the entrance duct into a plane 

wave field in the narrow passages typically results in an entrance loss of 3-6 dB. 

The silencer attenuation ∆Ll is proportional to its length and to the lined perimeter of the 

passage and inversely proportional to the cross area of the passage. It also depends in a 

complex manner on the geometry of the passage, acoustical characteristics of the porous 

material, frequency, temperature and flow velocity 

At last, exit losses ∆LEX are generated when the silencer is located at the open end of a 

duct and the typical cross dimensions of the opening are small compared with wavelength. In 

this case the exit losses are dominated by the end reflection. 
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Obviously the importance of the entrance and exit losses diminishes as the silencer length 

increases, since both quantities are independent  of the length [5]. 

It must be noticed that, because of the non-reflecting character of resistive silencers, the 

coupling effects due to other system elements are not as strong as for reactive silencers. In 

contrast to the resonator, the performance of resistive silencer is consequently not as sensitive 

to the silencer’s location in the system. This fact, together with its undrammatic frequency 

dependence, has made the resistive silencer widely used. 

 

 

1.10 POROUS ABSORBENTS 

 

Porous absorbents utilized in silencers consist usually of thin mineral, metal or glass 

wool fibres (with a diameter of 2-30µm), arranged in layers and with random fibre 

orientations in planes parallel to the material surface. When the sound propagates, the air is 

forced to pass thorough the small voids included in the material, which generates frictions 

converting the acoustic energy into heat. Since the fibres usually conduct the heat better than 

the air, the consequent heat transfer induces other energy losses. Another phenomenon which 

occurs is the fluid structure interaction between the vibrating particles and the material fibre 

which implies kinetic energy losses of the particles. Anyway, this latter process is usually 

neglect able for porous materials, except at low frequencies (under 300 Hz) [3]. 

The fibrous materials are usually modelled by assimilating the absorbent bulk to an 

equivalent fluid. With this approach the absorbent material is replaced by a homogeneous 

fluid with viscous damping. That viscous damping can be incorporated as an extra term into 

the equation of motion: 
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                                                        (1.58) 

where the harmonic signal is written in complex form, and ɸ refers to the flow resistance 

[Rayl=Pa s/m2]. The physical meaning of the flow resistance can be easily explained: if a 

constant differential pressure is imposed across a layer of bulk porous material of open cell 

structure, a steady flow of gas will be induced through the material. ɸ is the ratio of 

differential pressure ∆P [Pa] to normal fluid velocity U [m/s] when a transversal steady flow 

is imposed over a slab of absorbent material: 
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Here h is the thickness of the slab. It is generally assumed that the gas is air but a flow 

resistance may be determined for any gas.  

The concepts of flow resistivity and impedance are different: the first one relates to a 

steady flow of air through a porous material when subject to a constant pressure gradient. The 

second one relates to the resistance offered by a porous absorber to an oscillating pressure 

gradient. Obviously in air they are equal and represented by a real number. In porous material 

the impedance is a complex number. 

Experimental investigations confirm the correctness of the (1.58) under certain limits, 

showing that, for a wide range of materials, the differential pressure and the induced normal 

velocity are linearly related, provided that the normal velocity is small.  

Diagrams representing the flow resistivity σ  (i.e. flow resistance divided by sample 

thickness) as a function of  material bulk density and fibre diameter, can be found in literature 

[5]. 

The most common way to use a porous absorbent is to place it in front of a hard wall, for 

the purpose of reducing the wall reflections.  It is possible to determine how to chose the flow 

resistance and absorbent thickness, in order to obtain the best possible sound absorption. 

Usually the most utilized model, in case of absorbent material, is the semi-empirical 

equivalent fluid model developed by Delany and Bazley [16] which is able to directly 

estimate the characteristic impedance and the wavenumber, k, of the material. The 

wavenumber is a frequently utilized parameter that describes how a wave travels through a 

medium. It is the angular reciprocal of the wavelength. It represents what angle of rotation (in 

radiants) the wave makes in the space of one meter. In the air it is obviously a real number. 

Contrariwise, for the sound travelling in a porous absorber, the wavenumber is a complex 

number. 

Delany and Bazley derived the following equations that scale the impedance and 

wavenumber of air to derive the corresponding values for a porous absorber: 
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where X is a dimensionless quantity : 
σ

ρ f
X 0=  (σ is the flow resistivity). 

The real part produced by these equations is known as resistance and relates to energy 

loss. The imaginary part is known as reactance, and relates to extra “virtual” mass the 

absorbers appears to have due to the resistance created be the viscous air/fiber boundary 

layers.  

The Delany and Bazley formulae are accurate within the following boundaries: 

- The flow resistivity values used to derive the dimensionless term X must fall within the 

range 1,000<σ<50,000 

- The dimensionless term X must be within the range 0.001<X<1.0 

- The porosity of the material must be close to 1. 

Most porous absorbers utilized in mufflers respect these limits. 

It can be shown, that the Delany and Bazley model furnishes that the optimal absorption 

properties can be obtained when the flow resistance is chosen in a way to satisfy the following 

equivalence: 
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                                                                 (1.61) 

 

(where h is the absorbent thickness). The vicinity of the optimum is, nevertheless, quite flat, 

so that any value in the interval 1-3 would be almost good. It can be proved that this means 

that optimal absorbent can be expected to provide good absorption if its thickness is about a 

quarter wavelength [3].  

Moreover, it can be shown that, at high frequencies, the reflection factor of the porous 

material approaches zero and the sound wave passes directly into the absorbent, without 

reflection. Consequently a major fraction of acoustical energy converts into thermal energy as 

it propagates, and the porous material attenuates much more. 

 

1.11 TYPICAL SILENCER CONFIGURATIONS   

 

In this section, a number of typical silencer configurations is shown and commented (see 

Figure 1.17). Reactive spectral behaviour is cyclic, exhibiting attenuation minima each time 

an acoustically significant length corresponds to an integer multiple of half the acoustic 

wavelength of the excitation. Since several lengths are involved simultaneously, a simple 
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parametric description of their overall acoustic performance is not normally possible. 

However, their general ranking in terms of relative attenuation per unit volume and relative 

pressure loss or back pressure has been established from experience [1].   

The packed silencers depicted in Figure 1.17a, has a relative efficiency which is roughly 

proportional to the packing density, the flow resistance of the pack and the other acoustic 

properties of the fibrous material. Their attenuation performance tends to rise significantly 

with increasing frequency, in correspondence with the acoustic properties of the pack, while 

they normally exhibit low back pressure. Their relative volumetric efficiency can be high, but 

tends to deteriorate in service due to fouling and disintegration of the pack. They are also 

relatively heavy and may cause suspension problems or may excite mechanical vibration of 

the vehicle structure. 

The relative acoustic efficiency of the snubber and cross flow silencers shown in Figure 

1.17b and c, is closely related to the back pressure or flow losses they generate, which often 

tend to be high. Their behaviour remains significantly reactive so that high acoustic efficiency 

is often restricted to specific sections of the frequency spectrum. Cross flow silencers are 

obviously more compact that the other type, and so can have relatively better low frequency 

attenuation performance for the same overall dimensions.  The acoustic influence of 

perforated pipes diminishes as the porosity increases while observation suggests it becomes 

negligible with grazing flow at Mach numbers less than 0.2 when the porosity rises above 

15%.  On the other hand, low porosity implies high through flow losses, so a formulation of 

the most effective practical configuration may be difficult. Finally, these silencer types can be 

significant sources of flow noise, particularly at higher frequencies. 

The tri-flow mufflers are popular, relatively compact and have a high relative acoustic 

efficiency. Their behaviour also tends to be strongly reactive at low frequencies so regions of 

poor attenuation performance are often improved by adding resonators to the flow reversal 

chamber, as indicated in the example in depicted in Figure 1.17d.  Back pressure losses are 

directly related to the changes in flow momentum at flow reversal and vary as the square of 

the engine speed;  thus they can lead to undesirable reductions in peak engine performance. 

Vortex shedding at the flow reversals may also introduce significant flow noise. The 

observations concerning the acoustic behaviour of perforated pipes also apply to these units. 

Expansion chambers which include side branch resonators forming the bottom group in 

Figure1.16g generally exhibit the lowest back pressure. The acoustic performance at low 

frequencies can be enhanced by adding a folded side branch, which acts in a similar manner to 

the resonator included in the tri-flow muffler example [1]. 
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a)  b)       

c)  d)     

e)  f)  

Figure 1.17  – Typical silencer configurations. 
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Chapter 2  

Numerical 1D methodologies    
 

 

 

 

5.2 INTRODUCTION  

 

The gas dynamics of IC-engines and their components can be essentially described by a 

set of coupled non-linear equations for conservation of mass, momentum and energy. [1] 

A very powerful and often used simplification for IC-engine intake or exhaust ducts is to 

assume small perturbations and perform a linearization of the governing equations (linear 

acoustics), which allows to neglect the energy equation. When  a homogeneous and isentropic 

mean flow is  present, the final result will be the convective wave equation and then also the 

3D effects can be addressed without too much difficulty [2].  

Another possible simplification is to consider one-dimensional (1D) fields only. This 

assumption implies that the variables of pressure, density, velocity and temperature are treated 

as being constant over the cross-section of the duct under consideration. From this the 

solution of the coupled nonlinear equations will be greatly simplified. [3].  

A further simplification can be done when only small perturbations are considered in  1D 

fields: in this case the wave equation will be reduced to a 1D linear wave problem. On the 

contrary, when the excitation overwhelms certain limits, the linear assumption does not stand 

anymore, and a non-linear approach is required to solve the acoustic problem [4]. Practical 

experience demonstrates that, with plane waves and for terrestrial reference conditions, the 

limit of the amplitude of the pressure fluctuation, for linear acoustic validity, lies somewhere 

in the range 0·01 to 0·001 bar, the value of the limit falling as the frequency rises. [5] 

One-dimensional linear acoustic models are widely adopted for the evaluation of intake 

and exhaust systems noise performance, due to their simplicity and low computational 

requirements in the description of complex geometries. The system is considered as a 

combination of  elements,  connected  in  series or  in  parallel;  each  one  can  be  efficiently 
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 analyzed via so called two-port methods by means of either a transfer matrix [6] or  a 

scattering matrix [7] . 

In order to analyze the acoustic performance of some components in which non-planar 

higher modes are excited, due to the transverse dimensions that are not much smaller than the 

wavelength of the excitation and/or to the area discontinuities, some three-dimensional linear 

studies have been performed by imposing, as excitation source, a single frequency 

perturbation [8]. Owing to the high requirements of development time and computational 

cost, such investigations focus only on particular components of intake/exhaust system, 

without providing a description of their interaction with the engine. [9] 

Linear acoustic models are convenient for predicting the behaviour of the muffler proper; 

the utilized noise prediction tools, based upon linear theory, use a quite simplified 

representation of the engine as a time-invariant linear source [10]. However, since in engine 

intake and exhaust systems, the pressure fluctuations are characterized by much larger 

amplitude than that assumed in the linear approach, non-linear models are required to obtain 

realistic predictions. In fact these latter approaches are able to account the distortion of high 

amplitude waveform during the propagation, the corresponding redistribution of the spectral 

component energies towards higher frequencies, and the interaction between the engine and 

the ducts system. Moreover, when the position and shape of the duct boundaries vary 

systematically or cyclically with time, spectral descriptions of wave propagation normally 

cease to be appropriate.  Then any realistic description of the wave action must be formulated 

in time, even when the wave motion is periodic [11]. This is mainly because of any issues, 

related with cylinder discharge and back reactions of the exhaust line on the engine, are 

immediately taken into account.  

Non-linear fluid dynamic models are mainly used to predict the intake and exhaust 

system performance in terms of pressure, velocity crank angle histories, and are based on 

lumped parameter (0-D), one-dimensional (1-D) or three-dimensional (3-D) schemes. 0-D 

schemes are usually adopted coupled with 1-D models, the former one in the investigation of 

cylinder behaviour and of flow across intake and exhaust valves, the latter one to describe the 

intake/exhaust system [12]. Recently, some 1-D models have been proposed to analyze 

complex geometries, such as mufflers, in which perforations and adsorptive materials are 

included [13]. The computed results allow the evaluation of the noise radiation from the 

tailpipe, by assuming that the open end acts as a monopole source. 

The quality of the 1D predictions is usually improved by introducing some length 

corrections to 1-D modelling, as shown in the Chapter 1. In this way the complex wave 
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reflection at discontinuities (sudden expansion and contractions in duct cross-section) is taken 

into account [3]. 

More refined 1D based approaches, like the one proposed by Montenegro et al. [14] 

utilize quasi-3D elements to model chambers or after-treatment devices, which are 

specifically designed to account for conservation of momentum in three dimensions, even 

though the code is otherwise nominally one-dimensional. They are composed by a 0D 

element at the centre of the volume, where the continuity and energy equations are integrated, 

and a number of volume openings (ports) where also the momentum equation is integrated.  

In this chapter, a general overview on the main methodologies utilized to solve non linear 

one dimensional gas flow equations is presented, including the founding theoretical concepts. 

Pros and cons related to the usage of different 1D techniques in silencer simulations are 

highlighted and an introduction to the quasi 3D model is given.  

 

 

5.3 GOVERNING EQUATIONS  

 

The governing equations describing the one-dimensional flow of a compressible fluid in a 

pipe with area variation F, wall friction f, heat transfer q, are [3]:  

- The continuity equation: 
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- The momentum equation: 
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- The energy equation: 
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In these equations ρ is the fluid density, u is the flow velocity, p is the pressure, D is the 

duct diameter, e0=e+u2/2 is the stagnation internal energy, e is the internal energy, h0=h+u2/2 

is the and the stagnation enthalpy and q is the heat transfer term. 

The above equations can by written in symbolic vector form: 
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and  
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is the friction term. In case of no pipe area variation, wall friction and heat transfer, the 

equations reduce to: 
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which are known as the one-dimensional Euler equations. They constitute a non-

homogeneous hyperbolic system. 

The form expressed by equation (2.1)-(2.4) is called conservation form, since the 

equations can be obtained directly from the integral conservation equations of mass, 

momentum and energy applied to a fixed infinitely small control volume [3]. 

The three above equations  contain the four unknowns, ρ, u, p and e. A further 

relationship is required to close the problem. The properties of the gas must be related by a 

state equation which, for the gases in engine manifolds and cylinder, can be represented by 

the ideal gas state equation: 
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RT
p =
ρ                                                               

 (2.8) 

 

2.3 L INEARIZED EQUATIONS AND LINEARIZED WAVES  

 

In case of homentropic fluid1 and no cross area variations, the continuity equation becomes 

[3]: 
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And the momentum equation becomes: 
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If perturbations ∆p, ∆ρ and ∆u are applied to a static fluid, with undisturbed pressure p0, 

density ρ0 and velocity u0, the local values of these properties can be written as: 

 

ppp ∆+= 0                                                             (2.11) 

ρρρ ∆+= 0                                                             (2.12) 

uuuu ∆=∆+= 0                                                         (2.13) 

 

Substituting these relationship into equations (2.9) and (2.10) gives the following linearized 

equations for waves of small magnitude with ∆ρ«ρ0, ∆p«p0, ∆u«a: 
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1A homentropic flow has uniform and constant entropy. It distinguishes itself from an isentropic or particle 
isentropic flow because, in the latter, the entropy level of each fluid particle does not change with time, but may 
vary from particle to particle. 
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For isoentropic changes of state ds=0 and change in pressure can be related to changes in 

density by 

 

ρdadp 2=                                                           (2.16) 

 

Where a is the speed of sound. It is, then, easy to obtain the acoustic wave equation: 
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which can be expressed in terms of the velocity or density: 
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These equations have simple analytical solutions, represented by a sum of a progressive and 

regressive term: 
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Where the functions at the second terms are arbitrary wave forms [3]. 

Further discussions regarding the linearized waves for will be done in the Chapter 4, 

where  the progressive and regressive waves components will be utilized in the description of 

the two-port systems. The main aspect to be highlighted here are that: the pressure at any 

section is simply the sum of the excess pressure in the individual wave components, which 



                                                              Chapter 2 – Linearized equations and linearized waves 

68 
 

gives the name linear waves. All parts of the waves move with the same propagation speed, 

given by 

 

RTa γ=0                                                               (2.23) 

 

where R is the specific gas constant and T the absolute temperature. Moreover, the waveform 

does not distort. By retaining their original identity, the waves can be tracked from one end of 

a pipe to another simply by noting the time delay involved in the propagation. 

 

 

2.4 METHOD OF CHARACTERISTICS  

 

In most numerical models, the traditional mesh-Method of Characteristics (MOC) has 

been applied up to the mid 1980’s . Despite being first order accurate and not being able to 

capture shock waves, the method of characteristics is able to retain system nonlinearity, as 

well as accurately implementing the different boundary conditions, especially duct branching 

and anechoic termination. For this reason, it is still a valid method for muffler analysis. 

Moreover, the perforations model implemented by Onorati [15] (see paragraph 2.13) can be 

implemented with only slight modifications. In [16] a non-linear simulation of single pass 

perforated tube silencers, based on the method of characteristics, has been proficiently 

performed. 

The equations (2.1)-(2.3) can be rearranged into another form, called method of 

characteristic form which gives the possibility to transform the partial equations, with respect 

to space and time, of the system (2.4) into ordinary differential equations in time. In fact, once 

considered the line in the space-time plane defined by [3]: 
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the mass and momentum equations will give the following expression: 
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which represents the first compatibility relationship. Similarly, once defined the line in time- 

space plane defined as 

 

u
dt
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(2.26) 

 

the energy equation will give the following expression: 
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which represents the second compatibility relationship. The ∆1, ∆2, ∆3, terms represent 

respectively, the heat transfer, the change of cross sectional area along the pipe and the pipe 

wall friction: 
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aGρ=∆3                                                                  (2.30) 

 

The (2.25) relates the pressure and velocity of the gas along the characteristic lines 

defined by the equation (2.24), and the (2.27) relates the pressure and density of the gas along 

the characteristic line defined by the (2.26). The characteristic speeds given by equations 

(2.24) and (2.26) represent the speed of propagation of signals, or disturbances, through the 

fluid medium. In the case of equation (2.24), the disturbance is propagated at the local speed 

of sound relative to the fluid, u±a. This disturbance is often called wave characteristic, or 

Mach wave, and causes changes in the fluid pressure, density, temperature and velocity. The 

equation (2.26) represents a disturbance propagating with the local fluid velocity, u, which 

transports, by advection, the bulk gas temperature (energy) level and composition, and is 

called path line characteristic [3]. 
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The compatibility equation (2.25), in case of finite amplitude wave, travelling in the 

positive x-direction in absence of pipe wall friction, heat transfer and area variation 

(homentropic flow) reduces to: 

 

0d =± uadp ρ                                                           (2.31) 

 

This equation relates the changes of pressure and velocity along the path of the wave as the 

wave form changes on propagation. The corresponding characteristic equation is given by the 

(2.24). If the fluid is a perfect gas and only isoentropic changes of state are considered, then 

from the compatibility equation, one obtains: 
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where the upper signs relates to wave travelling from left to right in the duct, called λ 

characteristics, and the lower signs relates to waves going from right to left, called β 

characteristics. In this case the number of variables in the compatibility equation has been 

reduced from four to two, and the changes in pressure are represented by changes in speed of 

sound a. The equation (2.32) relates the change of speed of sound a to the velocity u along the 

paths of the waves given by equation (2.23), which treat waves travelling in both directions 

[3]. For an homentropic flow it can be shown that the parameter defined as: 
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is constant along a rightward propagating wave, so that: 
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Similarly, for a leftward propagating wave, the parameter defined as 

 

ua
2

1−−= γβ
                                                       

(2.35) 

 



                                                                                         Chapter 2 – Method of Characteristics 

71 
 

is constant, giving: 

 

21 ββ =                                                              (2.36) 

 

The equations (2.41) and (2.43) constrain the relationship between a and u to be constant 

along the path wave. The parameters λ and β are often referred as Riemann invariants in 

homentropic flow or Riemann variables. 

In order to appreciate the physical meaning of these results, the Figure 2.1 can be helpful: 

it shows a distance-time plane and a ∆t x 2∆x interval [3].  

 

 

Figure 2.1 – Characteristic lines in the x-t diagram [3]. 

 

The rightward propagating wave, travelling at the speed u+a, sets off from the point L at 

time level n, and arrives at point i at time level n+1. Similarly, the leftward travelling wave 

originates from the point R at time level n and arrives at point i at time level n+1. If the gas 

velocity, u, is not zero then L and R are not at the same distance from the mesh point i. The 

(2.41) and (2.42) then give: 

 

n
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n
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n
R

n
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Equations (2.46) and (2.47) are simultaneous equations which define the values of the 

two quantities a and u at mesh point [i∆x] and the new time level [(n+1)∆t] in terms of their 

values at the points L and R. These two equations can be used at every point in a pipe which 
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is surrounded by two other points. At boundaries, the values of the gas properties in the pipe 

are available on only one side of the mesh point under consideration, and a modified 

procedure must be adopted. The values at points L and R are usually obtained by linear 

interpolation of the values at [(i-1)∆x, n∆t], [i∆x, n∆t] and [(i+1)∆x, n∆t], therefore producing 

first-order special accuracy. 

In case of non homentropic flow, also the variations in the entropy must be taken into 

account, which involves the solution of the energy equation along the path line characteristics 

(above defined). Consequently, in the generic case of non homentropic flow and cross 

sectional area variations, the first characteristic equations (2.25) must be considered along the 

wave characteristics (2.24), and the second characteristic equation (2.27) along the path line 

(2.26). As a result, the Reimann variables are modified into:  
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where 
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The change in entropy along the wave characteristics is obtained by using information 

available from the path line characteristic, starting from the point S of Figure 2.1 [3]. 

 

 

2.5 THE COURANT-FRIEDERICHS -LEWY (CFL)  STABILITY CRITERION  

 

The mesh size, ∆x, utilized for the spatial discretization of the ducts is chosen on the basis 

of a compromise between accuracy and computational speed. In many cases the upper limit 

for the mesh length is the length of the smallest pipe element in the system [3]. 

On the other hand, the value of the time step, ∆t, is subject to the constraints defined by 

the stability considerations coming from the so called CFL criterion. According to this, the 

waves cannot travel more than one mesh length in one calculation time increment, i.e.: 
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where 

 

10 ≤< v                                                                 (2.44) 

 

and cn
max represents the largest wave speed present in the entire solution domain at time level 

n. The parameter v is called CFL number, and the time marching procedure will be most 

efficient when the value of this parameter is close to 1. 

 

 

2.6 FINITE VOLUME METHODS  

 

The Method of Characteristics is based on the governing equations in non-conservation 

low form, that is the (2.17) and (2.18). These equations are not able to conserve properties 

well (for example the mass flow), and for this reason they are not capable of dealing with 

discontinuities, e.g. shock waves. As previously mentioned the MOC is still utilized in 

muffler simulations, but it is widely used also in the resolution of boundary conditions, owing 

to the comprehensive and well-documented work existing on the treatment of every kind of 

flow boundary [17], [18]. 

Anyway, in order to take into account the presence of the shock waves, in last decades 

the new generation of 1-D fluid dynamic models has adopted finite volume symmetric or 

upwind shock-capturing numerical methods in order to solve the hyperbolic problem of 

conservation equations. The origin of these two important families of schemes, is represented 

by the numerical technique developed in the form of first-order methods by Courant et al. [19] 

and Lax [20]. On one hand, symmetric schemes  apply a discretization which is independent 

from inviscid flow characteristics. On the other hand, upwind schemes apply directional space 

discretizations according to the physical behaviour of inviscid flows. 

The second-order symmetric scheme proposed by Lax & Wendroff [21] is one of the 

most representative symmetric schemes and a description of this method will be given in the 

following section. [17] 



                                                                                             

 

A subgroup of upwind schemes is based on 

mesh interval, the local 1

second subgroup of upwind schemes is the 

and Warming [17],[23], [24]

 

 

2.6.1 DEFINITION OF FINITE V

 

The integral form of the governing equations can be written as

 

which gives: 

 

 

where W and F respectively represent the average of dependent variables for the cell shown 

in Figure 2.2 and the average flux across the boundary of this cell:

Figure 2.2 –

 

In other words: 
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A subgroup of upwind schemes is based on Godunov’s method [2

mesh interval, the local 1-D Euler equations for discontinuous neighbouring states. The 

second subgroup of upwind schemes is the flux vector splitting methods

, [24].  

FINITION OF FINITE VOLUME SCHEME 

The integral form of the governing equations can be written as [3]:  
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and the average flux across the boundary of this cell:  

– Computational cell for conservation equations [3].

Finite Volume Methods 

[22] to solve, over each 

Euler equations for discontinuous neighbouring states. The 

flux vector splitting methods, proposed by Steger 
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omputational cell for conservation equations [3]. 
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In absence of the source term C, the (2.46) gives: 

 

( )n
i

n
i

n
i

n
i x

t
2/12/1

1
−+

+ −
∆
∆−= FFWW

                                        
(2.49)

 

 

The left-hand side of the (2.49) represents the solution at the time level n+1 and the first term 

on the right-hand side represents the solution at time level n. Summing the equation with 

respect to the spatial index i in the (2.49), one obtains: 
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If there are no cross area variations, the fluxes are null. The (2.50) guarantees the 

conservation of the integral property of the governing equations, ensuring for example the 

conservation of mass.. The finite difference methods based on the equations (2.46)-(2.48) are 

called conservative  finite volume schemes. 

 

 

2.6.2 LAX-WENDROFF SPACE-CENTRED SCHEMES 

 

The Lax-Wendroff method [21] is based on the Taylor series for the state vector [3]: 
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In case of source term C set to zero, it can be shown that, by utilizing the (2.51), the (2.4) 

becomes: 
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where A is a 3 by 3 Jacobian matrix defined as: 
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The spatial differences can be approximated by central differences, ( )211
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the series is truncated at second-order terms, giving: 
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(2.54) 

 

The combination of centred temporal and spatial discretization results in second-order 

accuracy in both time and space on a three point computational stencil. The scheme can be 

graphically represented as in Figure 2.2, and it is the unique second-order central explicit 

scheme for the linear equation on three point support [3]. 

 

 

2.6.3 TWO STEPS LAX-WENDROFF SCHEMES 

 

The main disadvantage of this method is the Jacobian matrix evaluation. To prevent the 

calculation from this difficulty, Richtmyer and Morton [24] suggested a two-step variant of 

the Lax & Wendroff method, leading to a whole family of variants when applied to non-linear 

systems [3].  

This method retain the second order accuracy. The first step, utilized to solve the 

equations, is based on space-centred differences about the point (i∆x,n∆t), while the second 

step is a mid-point leapfrog calculation, with the time difference centred on the point 

[i∆x,(n+1)∆t]. The values of  W can be then written as:  
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and 
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where the values of F in the second step are obtained using the values of W from the first 

step. This approach is called Richtmyer method, and it can be applied over half-mesh 

intervals, by using space differences centred about the points [(i+1/2)∆x,n∆t] and [(1-

1/2)∆x,n∆t], while the time differences are centred about the point [i∆x, (n+1/2)∆t]. In this 

way the following equations can be written: 
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When the source term C is not neglect able, the full system of equations is represented by the 

equation (2.4) and it can be discretized, in accordance with the two step Lax-Wendroff 

method, in this way: 
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and 
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Two-step variant of the Lax & Wendroff method leads to a whole family of variants 

when applied to non-linear systems, represented by the MacCormack method [25]. 

 

 

 



                                             Chapter 2 – Improvements of the second order difference schemes 

78 
 

2.7 IMPROVEMENT OF THE SECOND ORDER DIFFERENCE SCHEMES  

 

The Lax-Wendroff and the two step Lax-Wendroff methods are classical shock capturing 

schemes which can be proficiently used in engine simulations when used in conjunction with 

appropriate flux limiting techniques. The need of such a conjunction is due to the fact that 

finite difference schemes, with greater than first-order accuracy and constant coefficients, 

produce local instabilities in the presence of shock waves and contact surfaces as a 

consequence of Godunov’s theorem [22]. These oscillations are nonphysical and are known as 

Gibb’s phenomenon [22]. 

This difficulty is intrinsic in all linear second-order difference schemes, that is second 

order accuracy schemes with constant coefficients, such as that defined by the equations 

(2.57)-(2.59). 

 

 

2.7.2 TVD FLUX LIMITERS 

 

The issue of the non-physical overshoots produced by simple second-order schemes can 

be sorted out by using non-linear difference schemes, where the coefficients of the schemes 

depend on the value of the solution itself at each mesh point [3]. The goal is to use a higher 

order approach, but increasing locally the amount of numerical dissipation in the region where 

a discontinuity is revealed. For a generic linear advection equation, such as 
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the one step Lax-Wendroff scheme can be written in the form: 
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where  

second order scheme 

first order scheme additional term 
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As shown, the equation (2.63) represents a second order scheme, and it is composed by 

two terms: a first order scheme, and an additional term. Since the first one is first order 

accurate, and therefore diffusive and not susceptible to give spurious oscillations at 

discontinuities, the additional term will represent the anti-diffusive flux which will give rise to 

instabilities in solution. 

In order to circumvent the problem of spurious oscillations and contemporarily retain the 

second order accuracy, a solution is given limiting selectively the order of accuracy, or better 

the magnitude of the anti-diffusive flux, in the regions with steep gradients, and applying the 

full anti-diffusive term in the other regions. 

In order to do that, a gradient monitor is required, which must be able to locally change 

the coefficients of the scheme. From this point of view, the resulting scheme will be non-

linear. In fact the (2.64) will be transformed into: 
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where ɸ is a form of limiter function , called flux limiter. This latter must be a function of the 

solution, meaning that, if the data adjacent to wi is smooth, then ɸi should be close to 1 in 

order to maintain the second-order accuracy. Contrariwise, in the proximity of a discontinuity, 

ɸi should be close to 0 in order to reduce the accuracy of the scheme to first order and to 

introduce a sufficient dissipation to reduce oscillations of the solution [3]. 

The smoothness of the data can be measures in many ways. One widely accepted 

possibility was proposed by van Leer and consist of a function of the ratio of consecutive 

gradients of the solution, which change sign at points of extreme (maxima and minima): 
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The most common used criterion for the function ɸ is based on the total variation diminishing 

(TVD) concept. The total variation of the solution at time n∆t is defined by: 
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When a spurious oscillation is generated a new extreme is introduced in the solution or a 

maximum point increases or a minimum point decreases. In this case the total variation 

increases. If the total variation of the solution does not increase from one time step to another 

one, then 

 

( ) ( )nn wTVwTV ≤+1                                                   (2.69) 

 

and the data is said to be total variation diminishing. In this case no spurious oscillations are 

generated at discontinuities. 

As a consequence of this concept, a post-processing routine which converts the results 

obtained with the Lax-Wendroff scheme into TVD form has been developed by Davies [26], 

[3].  

 

 

2.7.3 FLUX CORRECTED TRANSPORT 

 

These techniques were developed by Boris and Book [27] in order to avoid non-physical 

overshoots produced by simple second-order schemes. As Niessner and Bulaty described later 

[28] these techniques consist of three different steps. 

The first step, named transport, obtains the preliminary solution at the next time step by 

means of a simple second-order accuracy scheme like Lax-Wandroff. Next, at the diffusion 

step, these results are post-processed applying an artificial smoothing operation to eliminate 

the gas property discontinuities. The last step, named anti-diffusion recovers the second-order 

accuracy, where diffusion is not needed, to eliminate non-physical overshoots, and the 

original solution is smooth. 

Applying these techniques directly to vector W would lead, if source terms are present, to 

a violation in the conservation laws. For this reason, conservative parameters such as mass 
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flow rate, stagnation enthalpy and stagnation pressure, given in equation. (2.62), should be 

used in the smoothing process instead of the components of vector W: 
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Under homentropic flow with constant section, it is not necessary to change the vector W to 

conservative parameters and this technique is applied directly to the solution vector. 

 

 

2.8 CONSERVATION ELEMENT – SOLUTION ELEMENT  

 

This scheme was proposed by Chang and To [29] for the homentropic problem and later 

adapted by Briz and Giannattasio [30] in order to allow consideration of source terms. In this 

case, the numerical overshoot, typical in simple second-order schemes, is removed by 

replacing the simple averaging formula, initially used, with a weighted averaging formula. 

The space–time plane is divided into rhombic non-overlapping regions, referred to as solution 

elements (SEs), centred at a mesh point, in which the solution is approximated by first-order 

Taylor series as: 
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Additionally, the space–time plane is also divided into rectangular regions that fill the 

space–time domain without overlap, called conservation elements (CEs), in which the 

conservation laws are satisfied. In order to advance a half-time step, the coefficients of all 

Taylor series of the next SEs must be calculated. 

 

2.9 BOUNDARY CONDITIONS  

An important aspect of the calculation is represented by the boundary conditions: every 

pipe has two ends associated with it, and hence has two boundaries. There are various types of 

boundary and these must be simulated in a satisfactory manner. 

Winterbone [3] indicates that the best solution is to try to use the same boundary 

conditions as for the method of characteristics by means of the generation, from the results of 
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the finite-differences calculation, of auxiliary characteristic lines at the boundaries. This 

solution has the advantage that physical insight into the flow at the boundaries is preserved. 

The reason is that the only way to get to the end of the pipe, in a logical manner, is to go 

along a wave. A full derivation of boundary characteristics is given in [1] where typical 

boundaries for which methods exist are given: open ends, closed ends, inflow boundaries, 

valve boundaries, junctions (both with and without pressure losses), pulse converter, orifices 

or valves in pipes, throttle bodies, turbines, compressors, intercoolers, and anechoic 

terminations for acoustical purposes. These all have one feature in common: they are all 

treated as if the flow is quasi-steady, which means that the characteristics of the boundary is 

not a function of the frequency of the incident waveform. Such an assumption is more 

appropriate to a simple boundary, such as a closed end, then one with relatively large volume, 

such as a turbine. 

 

 

2.10 COMPARISON OF NUMERICAL SCHEMES IN SILENCER ANALYSES  

 

In the work [31], Broatch et al. compared the performance of different schemes, used to solve 

one-dimensional gas flow equations, when applied to the computation of the frequency 

response of exhaust mufflers. Simple geometries with well-known acoustic behaviour, and 

sufficiently representative of attenuation mechanisms present in real mufflers, were chosen, 

such as the expansion chamber and the Herschel-Quincke tube in Figure 2.3. 

 

Figure 2.3 – Utilized silencers for the numerical tests carried out in [31]. 

 

The numerical schemes tested were:   

- two centred schemes (two-step Lax–Wendroff and MacCormack predictor–corrector; 
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- four high-resolution schemes: the FCT method (based on the Lax–Wendroff scheme), 

two TVD schemes (one using Sweby’s flux limiting techniques and the other using 

Harten’s correction techniques) and  

- the innovative space–time conservation element and solution element scheme.  

 

With this choice a representative set of currently used numerical schemes is available that 

should provide a rather complete picture of the problem. 

The study was focused on the quality of the results obtained, taking into account the 

sensitivity to the mesh spacing used and the computational cost. Also the theoretical 

computational cost, required to achieve a certain accuracy, has been analysed. In this sense, it 

has been shown that good results may be obtained from any method if the mesh spacing is 

sufficiently small.  

However, when considering global engine simulations, aiming at exhaust noise 

prediction, such small meshes may imply an excessive computation time. This represents a 

serious penalty for high resolution schemes, which are considerably slower than simple 

centred schemes. In addition, these differences in computational time are higher if a certain 

accuracy is required, since high-resolution schemes need more points per wavelenght (PPW). 

 In the Figure 2.4 a comparison of computational times is depicted, once an arbitrary time 

unit, the time required to simulate the entire engine-plus-muffler system with the conservation 

element–solution element method, has been chosen. In this picture the following 

abbreviations are utilized: 

 

- CE–SE: conservation element–solution element  

- FCT: flow corrected transport   

- LW: two-step Lax–Wendroff  

- TVDC: total variation diminishing with flux correction  

- TVDL: total variation diminishing with flux limitation  

 

The sensitivity of the different methods to the mesh spacing was then investigated, with 

the main conclusion that both the two-step Lax–Wendroff method and the CE–SE method do 

not exhibit an important influence of the mesh spacing, and thus relatively high values may be 

used without any loss of information.  
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Figure 2.4 – Comparison of computation time for different schemes and equal mesh 
spacing [31]. 

 
In that work, also the theoretical computational effort, required by the different 

methodologies, has been compared. This effort has been obtained by multiplying the CPU 

steps times the PPW required to achieve a certain accuracy in reproducing the resonance 

frequency of a Herschel-Quincke tube. Considering a phase error lower than 0.2%, the points 

per wavelength needed to reach that accuracy are obtained from the results with different 

mesh sizes. Also in this case, the Lax–Wendroff scheme presents the lowest computational 

effort and CE–SE is the fact that the Lax–Wendroff method (and, in general, simple schemes) 

is considerably faster suggests that it is a better option. 

The other high-resolution schemes (FCT and TVD) exhibit a considerable influence of 

the mesh spacing on the frequency results. Therefore, they should not be considered as a valid 

option for exhaust noise prediction with global engine simulations. On the contrary, the CE–

SE method is comparably robust when sharp discontinuities are present in the flow and, being 

less sensitive to mesh spacing, it provides a better compromise between the useful frequency 

range and the computation time required [31]. 

 

 

2.11 MODELLING SIMPLE REACTIVE SILENCERS  

 

Reactive silencers have been introduced in the Chapter 1. Simple reactive silencers 

include expansion chambers, quarter wave and Helmholtz resonators. 

The gas dynamic modelling of these components is relatively simple, and can be based on 

the existing boundary conditions developed in [3]. The sudden area change of the expansion 

chamber can be treated by the sudden enlargement-contraction model devised by Benson [32], 
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as can the abrupt area change of the Helmholtz resonator and the interface between the neck 

and the volume. [3]  

The cavity of the Helmholtz resonator has to be represented by an equivalent cylindrical 

duct with the appropriate volume and geometrical length to avoid the limitations of a lumped 

parameter approach and to enable all the resonant frequencies of the system to be captured.  

The closed end boundary condition  [3] is used for end wall of both the cavity and the column 

resonator. The “T” junction, arising in both of the resonators at the interface with the tube can 

be satisfactory described by the constant pressure model of Benson [32]. The proper end 

correction must be used at each geometrical discontinuity to take into account the side effects 

(see Chapter 1). 

Since the mean flow in the side resonators is zero, the pressure losses in the junction are 

not significant, but taking them into account may provide a more accurate prediction of the 

resonator attenuation [3]. 

 

 

2.12 White noise perturbation 

 

When the attenuation curve of a silencer must be carried out, two different numerical non 

linear strategies can be followed. The first one, in the frequency domain, uses an upstream 

excitation characterized by an harmonic pressure perturbation. This procedure must be 

repeated many times, imposing every time a different harmonic law,  in order to obtain the 

transfer function of the silencer over the frequency band. An advantage of this approach is the 

high precision, but the main disadvantage is represented by the high time computational 

requirements. For this reason it becomes unattractive when complex silencers must be 

analyzed [3]. 

An alternative approach is based on a different upstream excitation source, represented by 

a white noise, in which the pressure signal has a spectral content which is uniformly 

distributed over the frequency band, so that it is possible to evaluate the gas dynamic response 

of the muffle to all the concurrent excitation frequencies at once. When a steady pattern of 

standing waves has been reached, the pressure and velocity oscillations in the system are 

characterized by a significant amplitude of the spectral components for each frequency of the 

white noise introduced in the silencer. Fourier analysis of the signals enables the transfer 

function, that is the attenuation curve, to be predicted. This white noise approach is very rapid 
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compared to using acoustic excitation by means of large set of single harmonic pressure 

oscillations. 

The numerical generation of a white noise periodic pressure signal may be carried out as 

the sum of N sinusoidal pressure oscillations with a fixed amplitude, ∆p, and frequency 

multiple of the fundamental frequency  f: 
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where p0 is a constant value which represents the mean ambient pressure upstream of the 

duct-system, It is essential to make a suitable choice of the phase φn. The generation of N 

random numbers kn in the range 0-1, via a dedicated numerical routine, enables a random 

phase,  φn=2πkn, to be determined for each sinusoidal component of the sum. This choice 

yields a pressure signal p(t) with a random character, which falls in the band of prescribed 

pressure values [3]. 

 

 

2.13 PERFORATED TUBE SILENCERS  

 

Perforated ducts are quite common elements in silencers and many different numerical 

approaches have been developed in order to obtain an accurate model. Selamet et al. [33] 

proposed a non-linear time domain approach to describe the perforate sections, based on the 

approach of Sullivan [34] for the treatment of the flow through the holes. The appropriate 

momentum equation in the radial direction at the perforate boundary has been considered, 

obtaining a branch point model of the system which involves a sequence of three way 

branches to account for the coupling of the perforated tube and the cavity. 

Onorati proposed a different approach [35]: a boundary condition of equal total enthalpy 

(constant pressure) was imposed to branches of several ducts in order to represent the flows in 

every single hole. Let’s consider a perforated tube of diameter d, length l , characterized by m 

groups of n holes distributed on a circle, each group separated from the adjacent by a distance 

p. In this case the silencer is schematized by mean of  m contiguous axial elements, 

representing the tube, connected to other m contiguous axial elements, schematizing the 

surrounding camera, by mean of m+1 groups of n short ducts, schematizing the holes [3]. The 
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diameter and the length of these short ducts are equal to the tube thickness and hole diameter. 

The axial elements have a length equal to the hole spacing p and an equivalent diameter 

which is function of the tube and chamber diameters.  

 

 

2.14 QUASI 3D APPROACHES 

 

Montenegro et al. recently proposed a quasi 3D approach, named 3Dcell, for modelling 

silencers and catalytic converters [36]. A similar approach is implemented in a variety of 

software packages, such as GTPowerTM [37] utilized in this thesis (see Chapter 5).  

The 3Dcell approach consists in reproducing a 3D geometry as a network of 0D elements, 

such as volumes, to which characteristic length in the space are assigned [36]. As shown in 

Figure 2.5, the 3Dcell framework is defined by means of two fundamental elements, namely 

cell and connector. The cell element is defined by its volume and by a list of connectors 

linked to it. The connector element stores information about the connectivity between 

neighbouring cells, and geometrical parameters such as the distance from the adjacent cell 

centres, the flow area and the direction, with respect to an absolute orientation system, given 

by the normal to the surface it represents. The 3Dcell method is based on the formulation of 

the conservation equations of mass, momentum and energy for unsteady flows in which the 

gas viscosity, both in the intake and exhaust system, has been neglected. Since its value is 

very low, this approximation is acceptable and allows to considerably simplify the solution 

procedure. This system of equations is then closed by the perfect gas equation of state. 

The 3Dcell model is based on a pseudo-staggered grid approach, meaning that intensive 

properties such as pressure, temperature, density, internal energy and other derived quantities 

are defined over the cell element, while velocity and momentum are defined on the connectors 

[36].  
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Figure 2.5 – Quasi 3D element: cell and connectors [36]. 
 

The continuity and energy conservation equations are solved with respect to the cell 

element, taking into account the net flux of the conserved variables through all the connectors 

linked to the cell. According to this type of discretization, the continuity equation can be 

integrated over the volume and over the time.  

To allow the construction of the connector momentum equation, the velocity has been 

defined also in the centroid of the cell element. The cell velocity is oriented in the space and 

consequently has three components. Hence, when the solution of the connector momentum is 

addressed, the projection of the velocity along the connector normal direction is considered. 

This reduces a 3D problem to a 1D problem arbitrarily oriented in space [36]. 

 

 

2.15 DISSIPATIVE SILENCERS MODELLING  

 

Dissipative silencers are widely utilized devices, as explained in the Chapter 1. They are 

able to provide good attenuation performances over the broad band, especially if dissipative 

and reflective behaviour are combined together.  

In order to model the dissipative action of these silencers, a typical approach consists of 

introducing high distributed and concentrated pressure losses in some regions of the system, 

rendered via acoustically equivalent schemes [3]. First, a very high friction coefficient (f=0.1 

compared with the typical f=0.004-0.005) can be adopted for all the ducts adjoining the sound 

absorptive material. Second, adiabatic pressure losses can be introduced in the middle of all 

the ducts representing the cavity, by means of the adiabatic pressure loss boundary conditions 

described in [3], with a value of the resistance coefficient K equal to 50. Both the losses 

enable the dissipation of the incident acoustic energy to be accounted for as heat in the 
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absorption lining. Obviously the sound absorptive features of the silencer, which depend on 

the lining thickness and properties, may be simulated approximately by a suitable 

combination of distributed and concentrated losses [3]. 
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Chapter 3  

3D linear numerical methods in acoustics   
 

 

 

3.1 INTRODUCTION  

 

When the sound excitation is limited to small amplitude perturbations, the most accurate 

approach to the acoustic problem is represented by the three-dimensional (3D) linear methods. 

In the specific case of silencers, a 3D description of the acoustic field is mandatory when the 

frequencies of interest exceed the plane wave region. In this case, the one dimensional (1D) 

frequency-domain acoustics, as well as the 1D time-domain finite wave theory, fail. The 3D  

approach is needed especially when the muffler internal shape is complicate, for example 

when flow reversing chambers are included in the silencer. Finite Element Method (FEM) and 

Boundary Element Method (BEM) are 3D numerical techniques which have been successfully 

utilized for more than 30 years. Both methodologies were initially developed, in the late ‘60s, 

for structural analyses, and the first commercial software focussed on acoustical problems, 

D.E. SysnoiseTM (1988), included and FEM and BEM acoustics [1]-[2]. 

These methods approximate the solution of the acoustical problem in a piecewise form. 

The difference is that the FEM solves the unknown quantities in the acoustical domain (air), 

which needs to be entirely discretizied, whereas the BEM solves it on the boundary of the 

domain itself. These latter is the only part to be discretized, and the solution within the 

domain is then carried out by utilizing the solution on the boundary. 

A positive aspect of the BEM is that it requires fewer degrees of freedom than the FEM, 

due to the type of discretization. On the other hand, the BE formulations typically give rise to 

fully populated matrices, which means that the storage requirements and computational time 

will tend to grow according to the square of the problem size. Contrariwise, the FE matrices 

are typically banded (elements are only locally connected) and the storage requirements for 

the system matrices typically grow quite linearly with the problem size [3]. 

The BEM is often preferred in case of homogeneous and uncoupled problems, especially 

in large domains. In these cases it is definitely faster than the FEM, certainly when a fast 

multipole procedure is implemented [4]. It is widely utilized in predictions of transmission 
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loss of complicated exhaust components, in the simulations of the sound radiated from 

engines and compressors, and in studies on passenger compartment noise. Also a number of 

results shown in this thesis (see Chapter 5) have been carried out by utilizing this 

methodology [4]. 

The strength of FE models lies in their general robustness, their ability to treat 

inhomogeneous media and to take advantage of the sparse nature of structural discrete models 

in coupled acoustical-structural computations. A coupled acoustical-structural investigation 

on a commercial silencer will be presented in this thesis (see Chapter 5), where the FEM has 

been utilized to perform a modal analysis [1] and the BEM to carry out the acoustic 

simulation.  

In this chapter the essential features of the two methodologies  will be presented, and a 

number of  typical FEM-BEM applications are reviewed. 

 

 

3.2 ACOUSTIC WAVE EQUATION AND BOUNDARY CONDITIONS  

 

As previously mentioned, since the acoustic pressure, density, and particle velocity 

fluctuations associated with sound waves in air are usually relatively small, the equations 

governing mass and momentum conservation in a fluid continuum can be considerably 

simplified, in order to relate these acoustical variables to one another. The general 

conservation equations can be then linearized, and the terms proportional to the product of the 

acoustical variables can be discarded from the equations.  

In these hypotheses the equation of mass conservation in a homogeneous three-

dimensional medium at rest reduces to [1]: 

 

00 =⋅∇+
∂
∂

uρρ
t                                                         

(3.1) 

 

where ρ(x) is the local density, ρ0(x) is the average density of the medium, and u(x) is the 

particle velocity vector. 

Similarly, for an inviscid medium, the linearized equations of momentum conservation in 

these three coordinate directions is: 
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00 =∇+
∂
∂

p
t

uρ                                                           (3.2) 

 

where p(x) is the local pressure value. Using the relation  

 

ρ2
0cp =                                                                (3.3) 

 

which relates the local pressure, p(x), and the local density, ρ(x), through the speed of sound 

in air, c0, in case of small (isoentropic) fluctuations, one obtains: 

 

0
1

2

2

2
0

2 =
∂
∂−∇

t

p

c
p                                                      (3.4) 

 

which is the equation governing the behaviour of acoustic pressure fluctuations in three 

dimensions. In the case of time harmonic disturbances of pulsation ω,  

 

( ) ( ) tietptp ω,ˆ, xx =                                                       (3.5) 

 

the equation (3.4) transforms into the Helmholtz’s equation: 

 

0ˆˆ 22 =+∇ pkp                                                             (3.6) 

 

where k = ω/c0 is the angular wave number.   

In this chapter, time-domain quantities are denoted by lower-case variables p, u,. . . and 

corresponding frequency-domain quantities by an upper symbol on the lower case variables 

,...ˆ,ˆ up  

When the considered fluid is inhomogeneous (ρ0c0 is not constant) and there is a 

distributed acoustic source w(x,t) (i.e. a monopole, dipole, etc.), the (3.6) assumes the most 

generic form: 

 

wpkp ˆˆˆ
1 2

0
0 =+








∇∇

ρ
ρ                                                    (3.6b) 
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On a generic boundary surface a fluid particle velocity fû and a surface velocity sû  can 

be defined. In fact, if a lining material is present on the surface, fû and sû can be different due 

to the internal damping of the absorber. A relative velocity rû is then defined as: 

 

spr uuu ˆˆˆ −=
                                                               

 (3.7) 

 

On the same boundary surface, the wall impedance is defined as the complex ratio  

 

( ) ( )
( )ω
ωω

nru

p
Z

,ˆ

ˆ
=

                                                               
(3.8) 

 

where nu ⋅= rnru ˆˆ ,  is the normal component of the relative velocity (n is the outward normal). 

nru ,ˆ   is obviously also equal to the difference of the normal component of the fluid particle 

velocity, nu ⋅= fnfu ˆ, , and the normal component of the surface particle velocity, nu ⋅= snsu ˆ,  

at the same point: 

 

nsnpnr uuu ,,, ˆˆˆ −=
                                                         

 (3.9) 

 

Moreover, the normal fluid particle velocity is related to the normal derivative of the sound 

pressure p by means of the following relation in frequency domain: 

 

n⋅∇= p
i

u nr ˆ
1

ˆ
0

, ωρ
                                                      (3.10) 

 

Any solution of the wave equation has to comply with the acoustical properties of the 

boundary. All the boundary conditions are usually (in FEM and BEM),  expressed as a 

condition on the pressure normal derivative itself. 

The most common boundary conditions include the Neumann, the Dirichlet,  the Robin and 

the prescribed normal displacement boundary conditions [5]. All of them are here reviewed 

together with the important Sommerfeld radiation condition:  
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THE VELOCITY TANGENCY (NEUMANN BC): this BC is useful to impose a known velocity 

on a structural surface with no lining material, which means 0ˆ , =nru , that is nsnf uu ,, ˆˆ = . It 

consists of the following relationship: 

nsuip ,0 ˆˆ ωρ−=⋅∇ n                                                        (3.11) 

 

RIGID IMPERVIOUS BOUNDARY (DIRICHLET BC): the normal component of the velocity is 

imposed to be null on the considered boundary:  

 

0ˆ =⋅∇ np                                                               (3.12) 

 

LOCALLY REACTING BOUNDARY (ROBIN BC – IN FREQUENCY DOMAIN): by combining the 

(3.8), (3.9) and (3.10), the above condition implies that:  

 

( )nrns uuip ,, ˆˆˆ −−=⋅∇ ρωn                                                (3.13) 

 

that is: 

 

( )Apuip ns ˆˆˆ ,0 −−=⋅∇ ωρn                                               (3.14) 

 

where ( ) ( )ωρω ZcA 00=   is the dimensionless admittance. A rigid impervious boundary can 

be seen as a particular case of this condition, where a zero admittance is imposed.  

 

LOCALLY REACTING BOUNDARY (ROBIN BC – IN TIME DOMAIN): the same condition of 

above, is more difficult to define in time domain. An inverse Fourier transform can be applied 

leading to the following convolutional integral (see Appendix of Chapter 4):  

 

( ) ( ) ( )∫
+∞

∞−
−= ττ dtutztp n                                               (3.15) 

 

Where z(t) is the inverse Fourier transform of Z(ω). This form of boundary condition is not 

easy to implement, since it requires the time history of un. Also z(t) can be difficult to obtain, 

starting from the impedance models empirically defined in the frequency domain. A time-
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domain expression of the (3.15) has been proposed by Van den Nieuwenhof and Coyette, see 

[1], which gives stable and accurate solutions. 

 

PRESCRIBED NORMAL DISPLACEMENT: normal displacements are imposed on a boundary 

surface by imposing a local normal acceleration, i.e.,  

 

siporsp ˆˆ 0
2

0 ρωρ −=⋅∇=⋅∇ nn &&                                     (3.16) 

 

where ( ) ( ) tiests ωxx ˆ, =  is the normal displacement into the acoustic domain [1]. 

 

SOMMERFELD RADIATION CONDITION: it is the simplest non reflecting condition in acoustics 

and it describes the field produced by an elementary point source (monopole) at a distance R 

from the source itself. The non reflecting conditions are specific BCs that are applied in order 

to ensure that, at given boundary surface, the acoustic flow leaves the field without that any 

portion of the energy is transmitted back in the field itself. The Sommerfeld condition applies 

for field produced by simple monopolar sources when the distance R from the source is great. 

It is represented by the following expression: 

 

( )α−=+
∂
∂

ROpik
r

p
ˆ

ˆ
                                                   (3.17)

 

 

Where α=1/2 or α=1 in case of 2D or 3D respectively. The Sommerfeld condition can be 

approximated on a distant but finite cylinder (2D) or sphere (3D) by specifying a ρc 

impedance [1]. 

 

 

3.3 FEM:  ACOUSTIC MODEL  

 

As previously mentioned, the FEM is based on a complete discretization (mesh) of the 

entire investigated acoustic domain, as shown in Figure 3.1. To this aim, a finite number of 

small, but finite and non overlapping sub-regions, called elements, are created and connected 

to each other through a certain number of punctual parts, called nodes. These latter are placed 

on the vertices, edges, surfaces of the elements or at interior points, defining the topology of 

the single element. Moreover, they represent the points of information exchange between 



                                                 

 

adjacent elements. Although the unknown nodal pressures constitute the degrees of freedom 

of the discrete model, the  solution is obtained not only at each node 

domain. In fact a polynomial interpolation of the nodal pressures is carried out, 

depends on the typology of the utilized elements and on the number of nodes per each side 

element. The polynomial interpolation is then related to the notion of 

a founding concept of the FEM, and which will be shown af

 

Figure 3.1

 

The quality of the approximate FE solution depends on the mesh characteristics, 

including the size element and the node spacing. In particular, for acoustical problems, a key 

aspect for the obtainment of a sufficiently refined mesh is represented by the number of 

per wavelength in the investigated frequency range.

A definitely positive aspect of the FEM is the possibility to use 

that is irregular meshes where

advantage point of FE compared to low

grid points must be aligned in rows and plans. As a consequence the pre

packages must deal with a 

simplified. 

 

 

3.4 FEM:  GENERAL FORMULATION F

 

Consider the acoustical problem of a cylindrical expansion chamber with a certain 

excitation at inlet, a lining l

domain bounded by a surface 
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elements. Although the unknown nodal pressures constitute the degrees of freedom 

of the discrete model, the  solution is obtained not only at each node 

domain. In fact a polynomial interpolation of the nodal pressures is carried out, 

depends on the typology of the utilized elements and on the number of nodes per each side 

element. The polynomial interpolation is then related to the notion of shape function

a founding concept of the FEM, and which will be shown afterwards.  

Figure 3.1 – Meshed domain of an automotive silencer

approximate FE solution depends on the mesh characteristics, 

including the size element and the node spacing. In particular, for acoustical problems, a key 

r the obtainment of a sufficiently refined mesh is represented by the number of 

in the investigated frequency range. 

A definitely positive aspect of the FEM is the possibility to use 

that is irregular meshes where the element size can vary almost arbitrarily. This aspect is an 

advantage point of FE compared to low-dispersion finite difference schemes, in which the 

grid points must be aligned in rows and plans. As a consequence the pre

ust deal with a less difficult problem, and the meshing procedure itself is 

ENERAL FORMULATION F OR INTERIOR PROBLEMS

Consider the acoustical problem of a cylindrical expansion chamber with a certain 

excitation at inlet, a lining lateral surface and closed outlet (see Figure 3.2). Let 

domain bounded by a surface Γ. This surface can be divided in: Γst

– FEM acoustic model 

elements. Although the unknown nodal pressures constitute the degrees of freedom 

of the discrete model, the  solution is obtained not only at each node pj, but in the whole 

domain. In fact a polynomial interpolation of the nodal pressures is carried out, whose nature 

depends on the typology of the utilized elements and on the number of nodes per each side 

shape function, which is 

  

Meshed domain of an automotive silencer. 

approximate FE solution depends on the mesh characteristics, 

including the size element and the node spacing. In particular, for acoustical problems, a key 

r the obtainment of a sufficiently refined mesh is represented by the number of nodes 

A definitely positive aspect of the FEM is the possibility to use un-structured meshes, 

arbitrarily. This aspect is an 

dispersion finite difference schemes, in which the 

grid points must be aligned in rows and plans. As a consequence the pre-processing software 

problem, and the meshing procedure itself is 

OR INTERIOR PROBLEMS  

Consider the acoustical problem of a cylindrical expansion chamber with a certain 

ateral surface and closed outlet (see Figure 3.2). Let Ω the acoustic 

st , which is the inlet 

node j 
 
 
     element pj 
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(structural) boundary on where a certain displacement, s, is imposed; Γh , composed by the 

rigid (hard) surfaces, including the outlet; and ΓZ, the locally reacting surfaces (Z impedance). 

The domain Ω is properly discretized, and in Figure 3.2 a little part of the entire mesh, in 

proximity of the outlet, has been depicted. 

 

 

                    
 

Figure 3.2 – The FE model: geometry, mesh, and boundary conditions. 
 

 

The acoustic pressure p(x,t) is approximated by a trial function ( )tp ,x′  of the form: 

( ) ( ) ( )∑
=

=′
n

j
jj Ntptp

1

, xx                                           (3.18) 

 

which, in frequency domain, becomes: 

 

( ) ( ) ( )∑
=

=′
n

j
jj Npp

1

ˆ,ˆ xx ωω                                         (3.19) 

 

pj and jp̂  represent the nodal values of pressure and pressure amplitude at node j , n is the 

total number of nodes. The generic function Nj(x) is called shape function and it is equal to 1 

at node j and 0 at all other nodes (see Figure 3.3). These functions interpolate the nodal 

quantities all over the domain, although they are defined locally within the single element, as 

polynomial in physical or spatial coordinates. For this reason the trial solution, expressed by 

the (3.18) and (3.19), is a summation of these functions weighted by the nodal values of 

pressure (see Figure 3.4). The shape functions depend on the type of elements and number of 

nodes: for a simple triangular element with nodes on the corners, they are formed from the 

basis { }yx,,1  and in each triangles they have the form yaxaa 321 ++  where a1, a2, a3, are 

proper constant values chosen in a way that the shape functions take the correct values on the 

stΓ

hΓ

hΓ

hΓ

hΓ

hΓ

ZΓ

ZΓ

y

x

s
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nodes. This means that the number of polynomial terms in the basis set must be the same as 

the number of nodes in the element topology (three in the considered case). 

 

 

 

Figure 3.3 – The FE model: global shape function Nj(xj). 

 

 

 

Figure 3.4 – The FE model: trial solution. 
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3.4.1 WEAK VARIATIONAL FORMULATION  

 

Weak formulations are an important tool for the analysis of mathematical equations, 

which permit the transfer of concepts of linear algebra to solve problems in other fields, such 

as partial differential equations [6]. In a weak formulation, an equation is no longer required 

to hold absolutely and it has, instead, has weak solutions only with respect to certain “test 

vectors” or “test functions”.  

Let ( )xχ  a continuous and differentiable test function. By multiplying the (3.6b) by the 

( )xχ  and integrating over Ω, one can write: 

 

( ) 0ˆˆˆ
1 2

0
0 =








−+








∇∇∫

Ω

wpkp
ρ

ρχ x                                      (3.20) 

 

Applying the divergence theorem and imposing that the normal derivatives of pressure on the 

boundaries Γh, Γst, ΓZ respectively satisfy the conditions (3.11), (3.12), (3.16), it is possible to 

obtain: 

 

( )
0dˆ

1
ddd

1

0

2

000

2

0 22

=Ω+Γ+Γ′+Ω






 ′−′∇⋅∇∫ ∫∫∫
Ω ΩΓΓ

wsp
c

A
ip

c
p n χ

ρ
χωχ

ρ
ωωχωχ

ρ    (3.21) 

 

It is also possible to notice that, if the admittance A is equal to zero, the integral over ΓZ 

reduces to zero, so that if, on a certain boundary surface, there is no specified condition, it 

naturally acts as a hard surface, by default. 

When the trial function of (3.18) is substituted in the (3.21), a linear equation is obtained, 

in the n unknowns pj. By using a set of n test functions jχ (with j=1,...n), n linear equations in 

n unknowns are generated. The best choice for the jχ is represented by the shape functions Nj 

(with j=1,...n) previously defined: by setting ( ) ( )xx jj N=χ , with j=1,...n, one obtains the 

following symmetric system of linear equations: 

[ ]{ } { } { }Wsti ffpMCK ˆˆˆ2 +=−+ ωω                                       (3.22) 
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where  M , K  and C are the acoustic mass, stiffness and damping matrices, stf̂  and Wf̂  are the 

forcing terms due to the structural excitation (at inlet, in case of figure 3.2) and to the acoustic 

sources. They can be expressed as: 

( )

{ } { } ,d
1

,d

,d

,d,d

0

2

00

0
2
00

∫∫

∫

∫∫

ΩΓ

Γ

ΩΩ

Γ=Γ=

Γ=

Ω
∇⋅∇

=Ω=

wNfsNf

NN
c

A
c

NN
K

c

NN
M

jjWnjjst

kjjk

kj
jk

kj
jk

s

Z

ρ
ω

ρ
ω

ρρ

                     

 
(3.23) 

 

The above integrals are evaluated for each element and then assembled, through a proper 

procedure [7], in to the global matrices M , K  , C and the forcing vectors fst and fW. Numerical 

integration is generally used within each element. 

 

 

3.5 FEM:  TYPES OF ANALYSES 

 

3.5.1 FREQUENCY RESPONSE ANALYSIS 

 

This kind of problem is represented by the equation (3.22) and solved as above explained. 

FE methodologies are obviously able to deal with problems with inhomogeneous domains, 

since it is possible to enforce the value of the normal particle velocity at any discontinuity of 

material properties in the discretized domain. In this way it is possible to model 

inhomogeneous fluids by assigning different fluid properties (c0 and ρ0) at each homogeneous 

constituting part. 

Consequently, it is also possible to model components provided of absorbing material, 

e.g. silencers, just imposing a proper complex speed of sound and density in the domain 

occupied by this material.  

In particular, rigid porous material can be modeled, by utilizing semi-empirical 

formulations where the required complex speed of sound and density are obtained as a 

function of the frequency, density and type of material (Delany and Bazely approach, see  

Appendix of Chapter 1) [8]. 
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Finally, by adding an additional FE equation to model the displacement of the elastic 

frames, also elastic porous bulk materials can be treated [8]. 

 

 

3.5.2 NORMAL MODE ANALYSIS 

 

This kind of problem is described by the equation (3.22), when the forcing terms are null 

and there is no absorption present. In this case the (damped) acoustic modes of the fluid are 

described by the equation: 

[ ]{ } 0ˆ2 =−+ pMK ωωCi  (3.24) 

The obtained eigenmodes are useful to analyze the behaviour of the system, but also to 

resolve the frequency response problem represented by the entire (3.22). 

 

 

3.5.3 ACUSTO-STRUCTURAL COUPLING 

 

Up to now, structural velocities at boundaries have always been considered fixed, known 

and not influenced by the acoustic field. In several situation this hypothesis is not adequate. 

Consider, for example, a metallic box, with thin surfaces and in which a strong acoustic 

source is inserted. In this case the generated acoustic filed can enforce some structural 

vibrations, and these ones can themselves generate an acoustic field inside the box. The 

problem, therefore, is truly coupled and it can be solved with a coupled approach [8]. 

Fluid-structure interactions can be modeled by means of a FE analysis. In this case the 

equation (3.22), involving the fluid, must be combined with another, but similar equation, 

involving the structural displacement on the boundaries Γst. Consequently it is possible to 

model the effects of the acoustic pressure on the nodal structural motions and the other way 

round. The expression of the trial solution of the structural problem is similar to the one 

described by the equation (3.19), with the exception that the degrees of freedoms are not the 

nodal pressure values, but the nodal displacements sj (j=1, …, nst). 

The resulting system is: 
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           (3.25) 

 

where K st, Cst, and M st are stiffness, damping, and mass matrices for the structure, and A is a 

coupling matrix that contains integral products of the acoustical and structural shape functions 

over Γst. The vector fext contains external nodal forces and moments applied to the structure. 

The mass and stiffness matrices, now, are no more symmetric. If this involves a great 

computational effort, the equation (3.25) can be previously symmetryzed. 

 

 

3.5.4 TRANSIENT RESPONSE 

 

Once assumed that the damping matrix is frequency independent, an inverse Fourier 

Transform can be applied to the (3.22), yielding to an equation which can be integrated in 

time by using a numerical time-stepping scheme, such as the Newmark-β scheme [10], [1]. 

When the damping matrix is frequency dependent the problem in time-domain formulation is 

much more complicated, and usually a suitable transient impedance boundary condition must 

be incorporated in to the discrete problem [11]. 

 

 

3.6 FEM:  EXTERNAL PROBLEMS  

 

Unbounded problems with FEM approach have not been dealt in this thesis, and only a 

general overview on them will be given in this section. When an unbounded problem must be 

resolved by utilizing a FEM methodologies, two main difficulties must be tackled:  

- The construction of an artificial outer boundary to the FE domain, transparent to any 

outgoing waves. 

- The reconstruction of a far field solution which lies beyond the computational domain. 

These two issues are not present in case of BE approach. Regarding the FE, many methods 

have been used to terminate the computational domain of exterior models. They can be 

divided in nonlocal an local approaches. The first ones include a mode matching in which the 

FE domain is matched to a BE model at the truncation boundary. Local methods, usually 



                                                                                          Chapter 3 – FEM: External problems 

106 
 

preferred for larger problems, include infinite element schemes (IE) and perfectly matched 

layers (PML) [11], [16].  

The IE approach is based on the use of a single layer of infinite elements of variable 

order, which is matched onto a conventional finite element mesh. The infinite element is 

based on a infinite geometry mapping, extending the element to infinity, and special shape 

functions [14].  

In order to accommodate different shapes of radiating bodies efficiently, different types 

of coordinate system are available. Usually the best performance is achieved when radiating 

body is circumscribed by its closest-fitting coordinate surface. Ideally the base surface of the 

infinite elements should be smooth, without sharp angles or small radii. The implementation 

of the infinite wave envelope elements in ellipsoidal coordinates meets this aim, providing a 

close-fitting surface for a wide range of radiating models.  

The development of the shape functions used within the infinite wave envelope elements 

stems from the observation that, e.g. in spherical coordinates (a particularization of the 

ellipsoidal coordinates), a three dimensional radiation function p(r), for the exterior region 

outside a sphere |r-r 0|, can be written in the form of an infinite series: 
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(3.26) 

 

where ( )k,,φθ  are spherical coordinates relative to the origin. The functions ( )kfn ,,φθ  

represent the radiation functions corresponding to acoustic multi-poles of increasing order. It 

is observed that, in order to model the acoustic pressure field in an unbounded domain using a 

single layer of variable-order infinite wave envelope elements, sufficient degrees of freedom 

in the radial (infinite) direction are needed to model the amplitude decay of the outgoing 

propagating waves. This can be achieved by specifying an appropriate order for the infinite 

wave envelope element, as this directly defines the number of terms in the (1/r) expansion. In 

addition, satisfactory angular discretization is required to model the angular radiation patterns. 

[15] 
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Figure 3.5 – Infinite element schematization. [15] 

 

When IE are utilized, all the degrees of freedom of an element are coupled to all the 

degrees of freedom of each neighboring elements, as can be seen in Figure 3.5, resulting in 

large bandwidth of the matrix, especially when high order polynomials are utilized. Moreover, 

as mentioned, not all kind of radiating geometries can be modeled. This issues have been 

recently overwhelmed by utilizing the perfectly matched layer approaches, which involve 

a buffer domain around the computational domain where the outgoing sounds waves are 

damped, without reflections [16]. 

 

 

3.7 FEM:  ACOUSTICS IN PRESENCE OF MEAN FLOW 

 

When a mean flow is present, the propagation of the acoustic waves is influenced by 

convection. When the mean flow inside the acoustic domain is irrotational2 the acoustic 

problem can be formulated in terms of acoustic velocity potential and a convected form of 

Hemholtz equation can be easily solved [1]. 

When the mean flow is rotational, the acoustical disturbance is coupled to vortical, and 

entropy waves and the linearized Euler equations must be integrated. In this case the preferred 

methods are based on structured, higher-order, finite difference schemes [17], but also FE 

time-domain schemes based on the discontinuous  Galterkin method have been proved to be 

effective. Anyway, many uncertainties remain about the treatment of shear instabilities and 

time-domain impedance boundary conditions in rotational flows [18].  

                                                 
2 velocity vector field is conservative, i.e. neglect able turbulence and boundary layer. 
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3.8 BEM:  GENERAL FORMULATION – DIRECT AND INDIRECT APPROACHES  

 

The Boundary Element Method is a numerical implementation of the Helmholtz analysis 

method discussed in the previous section extensively utilized in this thesis (see Chapter 5). 

This method, as its name implies, only involves discretizing the boundary of an enclosed 

space or the boundary of a noise radiating structure. The method can be used to analyze 

acoustic problems such as the noise inside an enclosed volume, the noise radiated from a 

vibrating structure, and the acoustic field generated by the scattering of noise by objects in a 

free-field. There are two different boundary element methods that can be used to evaluate an 

acoustic field generated by a defined forcing function: the direct method and the indirect 

method [19]. Both will be discussed in this section. 

 

 

3.8.1 DIRECT METHOD 

 

For direct or collocation approach, the acoustic problem is defined within a volume Ω 

bordered  by an enclosed surface Γ, and the primary variables are the sound pressure and 

normal velocity on the side of the boundary that is in contact with the fluid. These variables 

are related by the (3.10). As known, the propagation of acoustic waves of constant frequency 

in homogeneous media is described by the (3.6). By using the Green’s second theorem, it can 

be formulated as an integral equation over the closed surface Γ, see Figure 3.6. In fact, the 

acoustic pressure, at point x  within Ω is given by [20]:  
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(3.27) 

 

 

 

 

 

 

 

Figure 3.6 – Schematic of direct BEM. 
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where the acoustic pressure varies with location x in the field, x0 is the location of a point on 

the surface, n is a unit outward normal of the surface Γ, and ( )
r

e
G

ikr

π
ω

4
,,

−

=0xx  is the 

fundamental solution of the Helmholtz equation, called Green’s function ( r=|x-x0| ). C(x) is a 

constant depending on the location of the point x. C(x) = 1 when the point x is within the 

acoustic domain and C(x0) =1/2 when the point x is on the surface (i.e. x = x0). From a 

mathematical point of view C(x) =0 when x not within the acoustic domain or surface Γ, but 

this condition is rarely used.  

It can be noticed that the Green’s function represent substantially a monopolar source of 

unitary intensity placed in the point x0, that satisfy the Helmholtz equation. Similarly the 

derivative of the Green’s function is equivalent to a bipolar source of unitary intensity. As a 

physical interpretation of the equation (3.27) one can say that the pressure, at a generic point x 

(observer), can be seen as the effect of distribution on Γ of monopolar sources, whose 

intensity is equal to the pressure normal derivative, and a distribution of bipolar sources, 

whose intensity is equal to the pressure itself.  

The classic formulation given in Equation (3.27), termed the Helmholtz Integral 

Equation, is the starting point for the direct BEM analysis. [21]. If the enclosing surface 

vibrates punctually with a velocity u(ω,x0), according to the (3.11), equation (3.27) becomes: 
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 (3.28) 

 

When using the direct BEM, there is a distinction between an interior and exterior 

problem, as shown in Figure 3.6. This distinction is related to the definitions of  C(x) and it is 

related to the formulation of the direct BEM, which always requires that the normal vector on 

Γ points away from the acoustic domain. Hence for an interior acoustic problem, the normal 

vector of the surface must point outwards, away from the acoustic volume. For the analysis of 

an exterior acoustic field, the normal vectors point away from the acoustic domain, that is, 

inwards towards the enclosed surface.  

If both interior and exterior acoustic domains are of interest, then the indirect BEM must 

be used which is described in the following section. For this problem two surfaces are used: 

the surface that is in contact with the interior acoustic domain has surface normal vectors 

pointing outwards towards the exterior acoustic domain, and the surface that is in contact with 

the exterior acoustic domain has surface normal vectors that point inwards towards the 

interior acoustic domain. [21] 
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3.8.2 INDIRECT METHOD 

 

When an indirect BEM approach is utilized, both sides of the boundary are considered 

simultaneously: as shown in Figure 3.7 , the boundary consists of the inside (Γ1) and outside 

surfaces (Γ2), and both are analyzed at the same time. 

 

 

 

 

 

 

 

 

 

Figure 3.6 – Schematic of indirect BEM. 

 

The indirect method can be used to calculate both interior and exterior acoustic fields as a 

result of a vibrating surface or acoustic sources, and can include openings that connect an 

enclosed region to a free field region, or where free edges occur on a surface such as a 

stiffening rib attached perpendicular to a panel. The matrices resulting from this indirect 

method are fully populated and symmetric, which can result in faster solution times compared 

to solving un symmetric matrices such as those associated with the direct method. [20] 

In short, boundary integral equations like Eq. (3.28) can be written on both sides of the 

boundary and then summed resulting in an indirect boundary integral formulation that can be 

expressed as: 
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The left hand side of the expression is the gradient of the pressure at any point x in the 

acoustic domain in the direction xi ; ux,i is the component of acoustic particle velocity in the 

direction xi ; the right-hand side is an integral expression over the boundary surface. The term 
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( ) ( ) ( )
21 000 ˆˆˆ ΓΓ −= xxx pppδ                                          (3.30) 

 

is the difference in pressure across the surface of the boundary element model and is called 

pressure jump or double layer potential, [20]. On the other hand, the term 
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is called single layer potential, [20], and it is the difference in gradient of the pressure normal 

to the surface of the boundary element model at points xΓ1  and xΓ2 on opposite sides of the 

boundary surface [1]. 

 

 

3.8.3 PROBLEM FORMULATION  

 

Consider now the direct approach, but for the indirect approach the same considerations 

apply. As already said, the equation (3.27) permit to compute the pressure at any point inside 

the volume, once that pressure p̂  and normal pressure derivative np ∂∂ˆ  are known on the 

surface Γ. But p̂and np ∂∂ˆ  are actually unknowns. The problem can be seen from another 

point of view: p̂and np ∂∂ˆ on Γ can be expressed as: 
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In this way the ( )xp̂  at the right hand of the equation (3.27) can be seen, when x approaches 

to x0, as a value of p̂on the boundary Γ, and the equation (3.27) becomes a relation between 

the pressure p̂at one point on the surface Γ with the values of p̂and np ∂∂ˆ  assumed by all 

the N nodes of the discretized Γ. In other words: 
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which is a system on N equation in 2N unknowns (f1, f2,…, fN, g1, g2,…, gN). By considering 

equation (3.27) and relation (3.34) it can be noticed that all the functions in (3.34) are linear in 

p̂and np ∂∂ˆ , [21]. 

Moreover, the boundary conditions on Γ can be expressed in function of np ∂∂ˆ , as seen 

in section 3.1. Consequently N boundary conditions (one per each point on Γ) will be inserted 

directly in the equation (3.27) by eliminating the unknown associated to np ∂∂ˆ . In case of 

velocity BCs, the (3.27) reduces to equation (3.28). In conclusions there are N equations and 

N unknowns. 

One can show that, when x approaches to x0, and after a certain number of manipulations, 

the (3.27) becomes: 
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where  
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Here θ is the angle between n and r . K1 K2 K3 are called Kernel functions.  

If the discretization of Γ is composed by P panels (i.e. elements), each one of the above 

integrals reduces to a summation of P integrals executed over the respective panels: 
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(3.37) 

 

In order to evaluate the integral over the Γj surface, the value of p̂ , np ∂∂ˆ , K1, K2 and K3 are 

needed over it. To this aim the typical shape functions utilized in FEM can be adopted. In case 

of a quadrangular element, where a local coordinate system is defined ( )ηξ , , it implies : 
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Considering that, over the generic panel j, the local coordinates ( )ηξ ,  vary in the interval      

[-1,1] by [-1,1], the  (3.37) in the i th nodes give the following value of the pressure: 
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Where 4 is the number of nodes on the j th panel, but can be also another number (e.g. 3, 6,...) 

depending on the panel typology. Njk is the shape function of the node k of the panel j, and the 
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function J( )ηξ ,  is the Jacobian that relates the transformation of the surface element dΓ to the 

surface element ηξdd . It easy to show that, after few transformations, one can obtain the 

following expression in form of matrices: 
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Where 
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3.9 BEM:  STRUCTURAL COUPLING  

 

In section 3.5.3 the fluid-structural problem has been handled by utilizing an approach 

based exclusively on FEM. In acoustic problems when the BE approach is preferred and a 

fluid-structure study must be carried out, the BE simulation can be efficiently coupled to a 

modal FE analysis giving a FE/BE coupled approach. 

In this case, a modal method can be utilized, and the problem, represented by equation 

(3.24), is decomposed in two parts. The FEM is deputed to solve the normal mode analysis, 

expressed by: 

[ ]{ } 0ˆ2 =−+ sMCK sss ωωi                                       (3.47) 

where M s, Ks and Cs are the mass, stiffness and damping matrices of the structure. The result 

of this analysis is represented by a number m of mode shapes constituting a shape matrix L: 

[ ] { } { } { }[ ]m21 l,...,l,lL = whose generic column, l i, represents the i th modal shape column, [22]. 

After that, the BEM is deputed to solve the coupled problem. To this aim one can 

consider that the frequency response of the structure is expressed by the following equation of 

motion: 
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[ ]{ } { }ssss fsMCK ˆˆ2 =−+ ωωi                                           (3.48) 

where ŝ is the nodal displacements vector, and sf̂ is the generalized external forces vector. 

Moreover, it is known that the modal analysis relies on the assumption  

 

qLs ˆˆ =                                                                 (3.49) 

 

where q̂  is called vector of modal amplitudes, and it is unknown. By substituting this 

expression of ŝ in (3.48) and pre-multiplying by LT one obtains: 

[ ]{ } { }mstm fqMCK ˆˆ2 =−+ mi ωω                                         (3.50) 

Where [ ] [ ] [ ][ ]LMLM m s
Τ= , [ ] [ ] [ ][ ]LKLK m s

Τ= , [ ] [ ] [ ][ ]LCLCm s
Τ=   and { } [ ] { }sm fLf ˆˆ T=  are 

respectively the modal mass matrix. the modal stiffness matrix (both diagonal)  and the modal 

forces vector [22]3.  

In order to solve the system, an expression for the generalized mode force mf̂  is required. 

It is composed by a contribution due to the effect of point structural forces (given by the 

component of the structural point force in the direction of the mode shape) and a contribution 

due to the acoustic pressure (given by the component of the pressure forces fp in the direction 

of the mode shape). Consequently it can be expressed as: 

 

{ } { }LfLff psm ⋅−⋅= ˆˆˆ
                                                 

(3.51) 

 

                                                 

3 [M m]=is a m by m diagonal matrix,  whose generic element is the modal mass of the ith mode, 
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where Ai is a scaling constant for the ith mode and ωi is the damped natural frequency of the ith mode. 

[K m]=is a m by m diagonal matrix,  whose generic element is the modal stiffness of the ith mode, 
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ωσ 22 += where σi is the damping coefficient of the ith mode. 

[Cm]=is a m by m diagonal matrix,  whose generic element is the modal damping of the ith mode, 
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Anyway this equation is not sufficient to fully describe the structural coupling. In fact, with 

the equations (3.51) only the effect of the acoustic field on the structure is described, missing 

the inverse effect. Therefore, in order to complete the analysis, the displacement of the 

structural nodes due to the acoustic pressure must be taken into account: for a mode with a 

complex amplitude q̂ , the surface displacement is given by the (3.49), qLsq ˆˆ =  , and then the 

related surface velocity will be: 

 

qLuq ˆˆ ωi−=
                                                        

(3.52) 

 

This velocity surface has therefore to be taken into account in the definition of the boundary 

conditions for Helmholtz equation. Considering the case in which the surface where the mode 

is defined has also an acoustic impedance, the velocity BC, expressed by equation (3.14), 

becomes: 

 

( )nqns uApuip ,,0 ˆˆˆˆ −−−=⋅∇ ωρn
                                        

(3.53) 

 

where nqu ,ˆ is the component of qû along the normal n.  

As a result, for an analysis with n nodes and m computed modes, the acoustic system, 

expressed by the n equations in n unknowns contained in (3.44), can be then combined with 

the m BCs contained in equation (3.53), since the (3.44) contains the pressure derivatives at 

the second term. Moreover, the m equations in m unknowns expressed by (3.50) can be 

combined with the m boundary conditions contained in equation (3.51), since the (3.50) 

contains the forces fm . The coupled problem, is then completely defined. 

 

 

3.10 BEM:  THE NON UNIQUENESS PROBLEM 

 

With the direct BEM, the exterior boundary integral equation does not have a unique 

solution at certain frequencies. These frequencies correspond to the resonance frequencies of 

the air space interior to the boundary (with Dirichlet boundary conditions). Though the direct 

BEM results will be accurate at most frequencies, the sound pressure results will be incorrect 

at these characteristic frequencies. 
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The most common approach to overcome the non-uniqueness difficulty is to use the 

combined Helmholtz integral equation formulation, or CHIEF, method,[23]. A few 

overdetermination or CHIEF points are placed inside the boundary, and CHIEF equations are 

written that force the sound pressure to be equal to zero at each of these points. Several 

CHIEF points should be identified inside the boundary because a CHIEF point that falls on or 

near the interior nodal surface of a particular eigenfrequency will not provide a strong 

constraint, since the pressure on that interior nodal surface is also zero for the interior 

problem. As the frequency increases, the problem is compounded by the fact that the 

eigenfrequencies and the nodal surfaces become more closely spaced. Therefore, analysts 

normally add CHIEF points liberally if higher frequencies are considered. Although the 

CHIEF method is very effective at low and intermediate frequencies, a more theoretically 

robust way to overcome the non-uniqueness difficulty is the Burton and Miller method, [24] 

Similarly, for an indirect BEM analysis, there is a nonexistence difficulty associated with 

exterior radiation problems. Since there is no distinction between the interior and exterior 

analysis, the primary variables of the indirect BEM solution capture information on both sides 

of the boundary. At the resonance frequencies for the interior, the solution for points on the 

exterior is contaminated by large differences in pressure between the exterior and interior 

surfaces of the boundary. The nonexistence difficulty can be solved by adding absorptive 

planes inside or by specifying an impedance boundary condition on the interior surface of the 

boundary, [25]. In the end, exterior radiation problems should be approached carefully, even 

though excellent acoustical predictions can be made using the BEM, provided appropriate 

precautions are taken. 

 
 

3.12 BEM:  FAST MULTIPOLE FOR LARGE PROBLEMS  

 

Fast multipole BEM is utilized in  acoustic problems related to structures with very large 

dimensions (i.g. airplanes, cars, etc.). It has not been utilized in this thesis, and just general 

notes are given here, remanding to [26 ] for more information. This method, pioneered by 

Rokhlin and Greengard in the mid of 1980's, is employed to dramatically accelerate the 

solution of a BEM system of equations Ax=b, in which matrix A is in general dense and non-

symmetrical. The main idea of the fast multipole BEM is to employ iterative solvers (such as 

GMRES) to solve the BEM system of equations and employ the FMM to accelerate the 

matrix-vector multiplication (Ax) in each iteration step, without ever forming the matrix A 
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explicitly. In the fast multipole BEM, the node-to-node interactions in the conventional BEM 

are replaced by cell-to-cell interactions using a hierarchical tree structure of cells containing 

groups of elements. This is possible by introducing the multipole and local expansions of the 

kernels and employing certain translations. 

 

 

3.11 FURTHER COMPUTATIONAL ASPECTS IN 3D ACOUSTIC SIMULATIONS  

 

3.11.1 TYPES OF ELEMENTS IN FEM 

 

A complete description of the elements utilized in FEM and related shape functions can 

be found in [12]. In general, the most utilized elements are triangular or quadrangular 

elements for 2D simulations, tetrahedral and hexahedral elements for 3D analyses. These 

elements have usually two or three nodes per side, i.e. two nodes on the extreme points and, 

in case, the third node at the mid edge. The polynomial shape functions are obtained in terms 

of mapped coordinates or Cartesian coordinates on a basis set, whose rank is equal to the 

number of nodes per element.  

Moreover, the trial solution within each element varies linearly with the other variables 

for elements with two nodes per edge, and quadratically for those with 3 nodes per edge. 

Consequently the polynomial order of these elements is p=1 and p=2 respectively. In practice, 

elements with a polynomial order greater than 2 are rarely utilized, even though they have the 

positive aspect to radically reduce the pollution error in acoustics [12]. 

 

 

3.11.2 NUMERICAL ERRORS: APPROXIMABILITY  

 

The approximability is an amplitude error, i.e. an error obtained when a physically 

continuous time harmonic disturbance is represented by mean of a continuous polynomial 

approximation based on a domain discretization. This error is proportional to (hk)p, where h is 

the node spacing, k is the wavenumber and p is the polynomial order of the shape functions. 

The approximability error decreases as (λ/h)-p where λ is the wavelength and λ/h can be then 

interpreted as number of nodes per wavelength. The higher polynomial order, the faster 

reduction of error. It can be proved that the absolute lower limit is λ/h=2, which correspond to 

a sawtooth pattern description of the disturbance. Obviously it is always needed a better 
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representation of the phenomenon. To this aim a widely recognized thumb rule is to have 10 

nodes per wavelength. These rule gives satisfactory results at lower frequencies but it must be 

prudently utilized at high frequencies because of pollution errors which might occur [1]. 

 

 

3.11.3 NUMERICAL ERRORS: POLLUTION 

 

The pollution error is proportional to L(hk)p where L is a characteristic length of the 

investigated acoustic domain, and h, k and p have been above introduced. In other words, this 

error becomes evident when the wavelength of the disturbance is small compared to the 

dimensions of the computational domain. This error is associated to the numerical dispersion 

problem, since small differences in phase between the simulated and the calculated solution 

may not give any significant error over a single wavelength, but accumulate over many 

wavelengths giving a large global error. Consequently, the pollution error can be considered a 

phase error. Its effects are complicated be the element orientations with respect to the wave 

propagation in multi-D problems. 

The global error constituted by approximability and pollution error can be reduced by 

refining the mesh and reducing the h, for a certain value of p (h refinement), or by increasing 

the value of p keeping unaltered the h (p refinement), or acting on both parameters. The most 

common practice in acoustic applications consists of a h refinement, even though the use of 

second-order elements instead of the first-order elements is widely recognized to be a valid 

option [13]. 
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Chapter 4  

Experimental techniques   
 

 

 

 
Experimental analyses of mufflers constitute an integrant part of this thesis. In fact, a 

number of tests, focused on the acoustic and fluid dynamic characterization of a commercial 

silencer, have been included in the last chapter of this work, aimed to improve, extend and 

validate the numerical results. 

All of these tests have been carried out during a study period spent abroad, at Tallinn 

University of Technology (TUT), in Estonia. At that time, also the theory founding 

experimental techniques, such as two port models and decomposition method, have been 

studied.  Finally, a two-port method has been utilized in TTU acoustic laboratory in order to  

describe the behavior of the investigated muffler. 

The above mentioned methodologies are based on the common hypotheses of plane wave 

propagation, in the duct sections where the physical properties are measured. In fact, the 

active or passive acoustical systems involved in duct acoustics (such as turbo-chargers, fans, 

mufflers, bends, T-junctions, etc.), are often coupled to a pipe system, which can be generally 

described as a set of  uniform (and quite narrow) straight ducts (1, usually 2, or even more). In 

these ducts, the hypothesis of plane wave propagation is quite realistic.  

The two-microphone random excitation method, also known as the Chung and Blaser 

method [1], uses cross-spectrum between two pressure signals to find reflection coefficient 

and impedance of an acoustic termination. A variety of two-microphone methods, earlier 

developed by Seybert and Ross [2], uses auto-spectral and cross-spectral densities of two 

pressure signals. One method can be developed from the other, but all of them require the use 

of an anechoic termination downstream the muffler. In practice, such a termination could be 

constructed by using a long exhaust tube, high absorbing materials, horn shaped pipes or an 

active sound anechoic termination. However, a “fully” anechoic termination is difficult to 

build, particularly one that is effective at low frequencies.  
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Two-port methods are more recent and efficient techniques, since they do not requires 

anechoic terminations and can provide a complete characterization of various acoustic 

elements: not only passive elements, such as mufflers, but also passive/active elements such 

as pumps, fans [4] or, more recently, turbochargers [5]. To and Doige [6, 7] introduced this 

kind of approach to describe the acoustic behavior of uniform tubes, flare tubes and expansion 

chambers, but the proposed technique did not give stable results.  The most accepted 

approaches today are mainly two: (I) the method developed by Munjal and Doige [8], based 

on the so called transfer matrix, aimed to measure the attenuation curve of a single element or 

combination of elements. (II) The method proposed by Abom [3], and based on the so called 

scattering matrix, which is able to easily extract all the acoustic parameters of a generic 

element, by utilizing a “two-source” or a “two-load” approach.  

 

The goal of this chapter is to give an overview on the above mentioned measurement 

methods. In particular, the two-microphone random excitation technique, based on the 

Seybert approach, and the two-port methods, based on the Abom approach, are explained. 

Moreover, the test facilities of TTU acoustic laboratory, for two-port sources characterization, 

are described too [9-10] . In the Appendix, the basic concepts of “applied signal analysis”, 

utilized in this chapter, are summarized. 

 
 
 
4.1 TWO-MICROPHONE RANDOM -EXCITATION TECHNIQUE  

 

4.1.1 PHYSICS OF WAVE DECOMPOSITION  

 

As mentioned in Chapter 2, in a straight duct oriented along an x direction, where plane 

waves travel, the linear wave equation applies: 

 

0
1

2

2

22

2

=
∂
∂−

∂
∂

t

p

cx

p
                                                                 (4.1) 

 

where p(x,t)  is the acoustic pressure as function of time and position, and c is the speed of 

sound. The general solution has the following form:  
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Where the ɸ+, depending on (t-x/c), is a  wave function  propagating in the positive 

direction along the x axis, with speed c (named progressive wave), and ɸ-, depending on 

(t+x/c), is a wave function propagating in the negative direction af the x axis with speed c 

(named regressive wave). That assumed solution is known as d’Alambert’s solution. Since the 

wave equation is a linear differential equation, then the sum of any two solutions is also 

solutions. Moreover, also ɸ+ and ɸ-, separately, are  solutions of the wave equation. 

From Fourier analysis, it is known that every periodic process can be constructed by the 

summation of harmonic, sinusoidal processes with different frequencies, the set of which is 

called Fourier series. If each individual harmonic process is a solution to the wave equation, 

then their sum is also a solution. Only harmonic waves, therefore will be treated in the 

following development. In computations, each individual frequency can be treated 

independently, and the total sound pressure field can therefore be obtained by summation over 

all frequency components. 

The generic harmonic solution for with frequency f and  angular frequency ω=2πf , has 

the form: 
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where p+ and p- are the amplitudes of the progressive and regressive waves and the arguments  

ω(t-x/c)=ωt-kx and ω(t+x/c)=ωt+kx are the respective phases. k=ω/c is the wavenumber. 

Equation (4.3) can be then written as: 

 

( ) ( )kxtpkxtptxp ++−= −+ ωω coscos),(
                                  

(4.4) 

 

Since it is significantly more convenient, from the mathematical perspective, to deal with 

exponential functions rather than trigonometric ones, the development to follow will make 

extensive use of the complex notation 

 

)()(),( kxtikxti epeptx +
−

−
+ += ωωp                                         (4.5) 
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in which bold prints means that the variable is complex. The first term on the right hand side 

refers to propagation in positive x direction. For precision, the real part of (4.5) is needed; i.e.  

 

( ) ( ) ( )kxtpkxtpepeptxp kxtikxti ++−=+= −+
+

−
−

+ ωωωω coscosRe),( )()(

           (4.6) 

 

The equation of motion (4.7) 
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                                                (4.7) 

 

relates the particle velocity to the sound pressure; rearranged, it gives: 
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Next, substituting  (4.8) into (4.7) gives the particle velocity 

 








 +−−= +
−

−
+

)()(

0

1
),( kxtikxti

x ep
i

ik
ep

i

ik
tx ωω

ωωρ
u

   
                     (4.9) 

 

Since k/ω=1/c, the particle velocity can be expressed as: 
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The two terms in this expression refer to wave propagation in the positive and negative x 

directions, respectively. The ratio of pressure to particle velocity is called specific impedance 

xu

p
Z =   For the plane wave case, cZ 00 ρ=+

 and cZ 00 ρ−=−
 for propagation in the positive 

and negative directions, respectively. The quantity ρ0c is called wave impedance [11].  
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4.1.2 SEYBERT AND ROSS TECHNIQUE  

 

The Figure 4.1 shows the typical setup utilized for this kind of experiments. There is a 

rigid tube upstream the muffler, excited by a noise source produced by a loudspeaker. This 

tube is provided of two microphones at the position x1 and x2 from the inlet located at x=0. 

Downstream the muffler there is an anechoic termination and a third microphone. Mean flow 

is included, let v the velocity of the fluid. The acoustic vibration is assumed to be stationary 

with time.  

 

 

 

Figure 5.1  – Setup of 2-microphone random-excitation method. 

 

In a narrow bandwidth Be, centered at frequency f, random motion of loudspeaker 

membrane can be regarded as harmonic motion of frequency f with a randomly varying 

amplitude. For plane-wave propagation the incident and reflected waves, according to the 

equations (4.5)  are given by: 

 

( ) ( ) ( )kxtietptx −
++ ⋅= ωφ ,                                                     (4.11) 

                                                   ( ) ( ) ( )kxtietptx +
−− ⋅= ωφ ,                                                     (4.12) 

 

where: ω=2πf, k=ω/c0 is the acoustic wave number, c0 is the speed of sound, p+(t) and p-(t) 

are stationary random variables. The random amplitudes p+(t) and p-(t) are not functions of 

distance x, since the system is non dispersive. Therefore, the wave shape does not change 

during propagation. The influence of flow can be included by noting that: 

- c0=c+v for wave motion with flow, 
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- c0= c-v for wave motion against flow, 

where c is the speed of propagation with zero flow. For flow in the +x direction, the incident 

and reflected wave numbers are given by: 
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where M=v/c is the Mach number. Consequently, the incident and reflected waves are 

 

( ) ( ) ( )xktietptx +−
++ ⋅= ωφ ,                                              (4.14) 

 

( ) ( ) ( )xktietptx −+
−− ⋅= ωφ ,                                               (4.15) 

 

The total pressure at two points x1 and x2 in the tube is: 
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The auto- and cross-spectral densities of these two pressures are estimated by [2]: 
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(4.18) 

where: E denotes the ensemble average operator (average over a number of consecutive data 

records – see Appendix); the asterisk indicates complex conjugate; S11(f) and S22(f) are 

estimated of the auto-spectral densities of the pressure at points 1 and 2;  S12(f) is an estimate 

of the cross-spectral density between the pressures at points 1 and 2; C12(f) and Q12(f) are the 
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real and imaginary components of the cross-spectral density; the quantities ( )Tfp ,ˆ1  and 

( )Tfp ,ˆ 2 are the finite Fourier transforms of the pressure time series at points 1 and 2, 

respectively. If spectral densities are of interest then the above definitions must be multiplied 

with an appropriate constant [12]. 

( )Tfp ,ˆ1 and ( )Tfp ,ˆ 2 can be written as: 
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where +p̂  and −p̂  are the finite Fourier transforms of p+(x1,t) and p-(x2,t) respectively. 

By combining the (4.30) with (4.31), the following relationships are developed [2]: 
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(4.20) 

 

where ( )fS pp ++ ˆˆ =E[ *ˆˆ ++ pp ]  and ( )fS pp −− ˆˆ =E[ *ˆˆ −− pp ] are the auto-spectral densities of the 

incident and reflected waves, respectively. ( )fC pp −+ ˆˆ and ( )fQ pp −+ ˆˆ are the real and imaginary 

components of the cross-spectral density ( )fS pp −+ ˆˆ between the incident and the reflected 

waves:  ( ) ( )fiQfCfS pppppp −+−+−+
+= ˆˆˆˆˆˆ )(  

If the quantities S11, S22, C12, and Q12 are estimated from measured time records, the 

above equations can be solved for the unknowns ( )fS pp ++ ˆˆ , ( )fS pp −− ˆˆ , ( )fC pp −+ ˆˆ , and ( )fQ pp −+ ˆˆ

. 
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For the case with no mean flow equations (4.20) reduce to 
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If a third microphone is located downstream of the system under study, the spectral density of 

the transmitted wave, ( )fS
outoutpp  can be measured directly, if an anechoic termination is used: 

( ) ( ) ( ){ }TfpTfp
T

fS outoutpp outout
,ˆ,ˆ

1 *=
                                                

(4.22) 

 

where ( )Tfpout ,ˆ  is the finite Fourier transform of the downstream microphone signal. It can 

be easily shown that the quantities ( )fS pp ++ ˆˆ  represent the mean square value of the incident 

and reflected pressures in a narrow frequency band. As well ( )fS
outoutpp  is equal to the mean 

square value of the progressive wave at outlet: 

 

( ) ( )[ ] ++ ==
++

ppsmrfS pp
2

ˆˆ ...                                                  (4.23) 

 

( ) ( )[ ] outout
pp ppsmrfS

outout ++ == 2
...                                               (4.24) 

 

The transmission loss (TL) is then given by: 
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where Ain and Aout are the areas of the inlet and outlet section respectively.  

A common error is to attempt to apply decomposition method to downstream of the 

muffler using a pair of microphones if the termination is not anechoic. This will not work as 

p+
out  will change due to the wave reflections caused by the environment and by the silencer 

itself [2]. 

The two upstream microphones must be sampled simultaneously for computation of the 

cross-spectral density S12(f), but the downstream microphone can be sampled independently. 

Consequently, one of the upstream microphones can be used downstream and only two 

microphone systems are needed. The location of the upstream microphones is not critical, 

within certain limitations. The microphones should be located as close to the unknown system 

as possible (compatibly with the investigated frequency range),  so that dissipative losses in 

the tube are minimized. The microphone spacing should be as small as possible for the same 

reason. However, each microphone is assumed to measure the sound pressure at a point in the 

tube, so that for very close microphone spacing the effective spacing (x2-x1) is difficult to 

estimate, particularly for large-diameter microphones. Therefore, the microphone spacing 

should be much larger than the diameter of the microphones used so that the effective 

microphone spacing can be assumed to be the distance between the microphone center lines. 

Since the sound field varies randomly with time, the estimates of the microphone auto- 

and cross-spectra also will be random variables. It should be mentioned that the spectral-

estimate, eq. (4.18), are inconsistent and some form of smoothing must be done to reduce the 

random error to an acceptable level. One method of reducing the random error of a spectrum 

is to divide the total time record T into n segments of equal length Ts, and average individual 

estimates of the spectrum for each of these segments. Smoothing in this manner reduces the 

random error to 1/n1/2 (e.g., for n = 400 the random error would be 5'%), and the spectral 

bandwidth is 1/ Ts. One is tempted to make Ts, as small as possible so that n is very large for a 

given length of total time T, thereby reducing the random error to a very small value. 

However, this leads to a biasing of the spectrum in which spectral peaks are not resolved 

because the bandwidth is too wide. Consequently, the bandwidth  (and therefore Ts,) should 

be determined from a knowledge of the frequency resolution needed for the particular 

quantity being analyzed [2]. 
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4.2 TWO PORT MODEL – TWO LOAD /TWO SOURCE TECHNIQUES  

 

4.2.1 LINEAR SYSTEMS 

 

For mechanical systems where the interest is in determining the response or output 

signal, a certain excitation or input signal is applied. The relationship between the input 

and output signal is, for a linear time invariant system, described mathematically by a 

linear differential equation with constant coefficients. A linear time invariant system has 

got a number of important properties. The principle of superposition implies that if the 

input signal a(t) gives the output signal b(t), and the input signal c(t) gives the output 

signal d(t) the combined input signal a(t)+c(1) gives the output signal b(t)+d(t). The 

principle of homogeneity implies that if the input signal a(t) is multiplied by a constant k 

the output signal will be kb(t). A linear system also preserves frequency which means that 

the only those frequency components present in the input signal can exist in the output 

signal. 

In general a linear time invariant system does not necessarily have just one input and 

one output. This type of system is called a single input / single output (SL SO) system. 

Also multi input / multi output (MI/MO) systems are possible, as well as single 

input/multi output (SI/MO) systems, and multi input / single output (MI/SO) systems. 

These are described by a system of coupled linear differential equations with constant 

coefficients. 

Regarding the linear systems in the time domain, if the input to the system is a unit 

Dirac pulse with the properties 

 

∫
+∞

∞−
=≠== 1)(,0for 0)(),()( dttttttX δδδ                 (4.26) 

 

the output from the system y(t)=h(t) is called the impulse response which is the time 

domain function describing the linear system properties.  

An arbitrary input x(t) can be built up from a summation or, considering continuous 

time functions, from an integral over an infinite number of Dirac functions, located at 

t=τ, each with the amplitude x(τ): 
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( ) ( )∫
+∞

∞−
−= ττδτ dtxtx )(                                                (4.27) 

 

This also follows directly from the properties of the Dirac delta function. Each one of 

the Dirac pulses in (4.26) will give the output h(t-τ) so the total output will be given by a 

summation (integration) of these multiplied by the amplitudes x(τ) 

 

( ) ( )∫
+∞

∞−
−= τττ dthxty )(                                               (4.28) 

 

which is called convolution integral. 

The linear system may thus be characterized by the impulse response h(t) or by the 

Fourier transform of h(t), which we call the Frequency Response Function, FRF, H(f). In 

fact, in order to study the frequency domain representation of linear time invariant 

system, one can use the Fourier transform. When it is applied to (4.28) it gives: 
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(4.29) 

 

Y(f), H(f) and X(f) are the Fourier transforms of x(t), h(t) and y(t). The frequency 

response function (FRF) H(f) is obtained from (4.25) as 

 

( ) ( )
( )fX

fY
fH =                                                        (4.30) 

 

The FRF is very frequently used in analysis of mechanical and electrical systems. 

The simplicity of (4.29) for prediction of the output signal and (4.30) for system 

identification, compared to the time domain expression in (4.28) makes it a powerful 

tool. The FRF can, according to (4.30), in principle be determined by measuring the input 

and output signals and calculating their Fourier transforms and dividing the two. 

Techniques for estimation of FRF:s using sine excitation and transient excitation and 

using random input signals will be discussed in the Appendix of this chapter. 
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4.2.2 TWO PORT SOURCES 
 
  

A two-port can be defined as a linear, physical system with an input and an output. The 

state at the input or output can be completely described by using two state variables, i.e. two 

independent physical quantities. The relation between the input and output states of a time-

invariant and active two-port can, in the frequency domain, be written  as [3]: 

 

'yHxy +=                                                          (4.31) 

 

where x and y are the state vectors at the input and output, H is a [2 x 2]-matrix which is 

independent of x, and y’ is the source strength vector. Every time the active properties of the 

system are neglected (as usually happen with mufflers), the (4.31) becomes: 

 

Hxy =                                                         (4.32) 

 

In extended notation the (4.32) can be written as: 
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In order to experimentally obtain the four unknown constituting the terms if the H matrix, the 

two port must be tested utilizing two independent input states, i’  and i’’ .  

Any pair of state variables, i.e. a state vector, belonging to a two-port defines a linear 2D 

state-space. Let a and b denote two cross-sections in a duct system, the choice of x=[pa,qa]
T 

and y=[pb,qb]
T as the state vectors, gives the two-port in the so-called transfer-matrix form. 

This form is particularly useful for duct systems where the elements are coupled in cascade, 

e.g. exhaust systems for automobiles. If, instead,  x= [pa, pb]
T and y= [qa,qb]

T are the state 

vectors, the so-called mobility-matrix form is obtained. This form is useful for elements which 

are coupled in parallel. Another choice of state variables is to use the travelling wave 

amplitudes p+  and p-  at two different duct cross-sections. This gives the two-port in the so-

called scattering-matrix form. This latter can be very efficient for the analysis of complex 

ducts systems with many branches. The concept of scattering matrix can probably be regarded 

as the most basic description of a wave interaction problem. In view of this it seems to be a 
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good idea that a measurement method for characterization of acoustical two-ports, should be 

based on the scattering-matrix description. Of course, when one form of the two-port is 

known, all other forms can be obtained from linear transformations. From this point of view 

the choice of description is not so important [3].  

The scattering-matrix S of an acoustical two-port can be defined by  
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where a and b are two different duct cross-sections and the positive directions are defined. 

Equation (4.33) is valid when the fluid to duct wall coupling in region I and III (see Fig. 5.2) 

is negligible or can be represented by a locally reacting wall. As discussed in the introduction 

if one matrix description of a two-port is known all other descriptions can be obtained by 

linear transformations [3].  

z
b

P
b
-

P
b
+

 

Figure 5.2  – Definition of an acoustical two-port. Uniform straight ducts: I, III; linear 
time-invariant and passive acoustical system: II 

 

In many duct acoustic applications the so-called transfer-matrix description is of interest. 

The transformation from the scattering-matrix to the transfer-matrix of an acoustical two-port 

is therefore described afterwards. 
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The starting point to explain the measurement procedure for the determination of the 

scattering matrix is the assumption that a perfect reference signal is available. This reference 

signal is by definition linearly related to the acoustic signal in the duct and completely 

uncorrelated with any disturbing noise in the system. With flow present in the duct the 

disturbing noise is normally dominated by flow noise, i.e., turbulent pressure fluctuations. To 

determine the scattering-matrix, the two-port must be tested using two different input states. If 

the input and output state vectors for these test cases are measured, the following matrix 

equation is obtained. 
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When the two input states [p’a+,p’b-]
T and [p’’ a+,p’’ b-]

 T are linearly independent, S can be 

solved from equation (4.35). This latter can be regarded as the basis for the measurement 

procedure. In order to reduce the influence of disturbing noise when the state vectors are 

measured, the reference signal can be used, forming the transfer function between the 

reference signal and each state vector component.  When the transfer function approach is 

used, to suppress disturbing noise, equation (4.35) can be rewritten as: 

 

xy SHH =
 
                                                          (4.36) 

 

where 
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Here the symbol Hrx is used to denote a transfer function from a reference signal (r) to a state 

vector component (x). When the inverse of the matrix Hx exists the scattering-matrix is given 

by 

 

1
xyHHS −=

                                                           
(4.38) 

 

When equation (4.50) is evaluated, the following results are obtained for the elements of S: 
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 (4.39) 

 

where det(Hx)=(H' ra++H" rb--H" ra+H'rb-). To use (4.51), in practice, the transfer functions must 

be measured from measurable field quantities in the ducts. 

In many duct acoustic applications the field quantity which is easiest to measure is the 

fluctuating pressure. In the plane wave region of a uniform straight duct the travelling wave 

amplitudes p+ and p-, can be obtained from pressure measurements at two duct cross-sections. 

The theory for this plane wave decomposition has been previously explained, and the  

following relationships can be obtained for the case of a hard-walled duct with a uniform 

mean flow: 

[ ]

[ ]21
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−
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 (4.40) 

where  

[ ] 1−− +− −= siksik eeF                                                      (4.41) 

 

and p1, p2 are acoustic pressures at two different duct cross-sections, see Fig. 3. The complex 

wavenumbers k+ and k- have been defined in (4.13).  

With flow present in the duct we can only measure the total fluctuating pressure, i.e., the 

sum of both the acoustic and turbulent pressure fluctuations. To suppress the influence from 

turbulent pressure fluctuations one can, as discussed above, use a reference signal. Regarding 

the choice of reference signal two cases will be treated in detail below. These cases will be 

referred to as the two-load and the two-source case.  
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Figure 5.3  –  Measurement configuration for plane wave decomposition. 

 

 

4.2.3 THE TWO-LOAD CASE 

 

Here the two different states of the two-port are obtained by using a fixed acoustic source 

and two different acoustic loads, see Figure 5.4.  

 

Figure 5.4  –  Setup of two-load method. 

 

A possible choice for the reference signal is the incident wave amplitude on the source-

side of the unknown two-port. Assume that the source-side corresponds to duct I in Fig. 5.2, 

then pa+ is the reference signal. This choice of reference signal is good if the acoustic pressure 
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fluctuations in duct I are much stronger than the turbulent pressure fluctuations. For low 

speed flows (M < 0.1) there is no problem to generate a broad-band acoustic signal which 

fulfils this condition. For higher Math numbers other choices of reference signal are 

necessary. If the acoustic source is a loudspeaker the electric signal to the loudspeaker can be 

used as reference signal. This type of approach is normally referred to as source-correlation. 

For very difficult measurement conditions source-correlation using a pure harmonic signal 

should be used. With pa+ as reference equation (4.39), which gives the scattering-matrix 

elements, can be written 
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     (4.42) 

 

where det (Hx)=(H"a+b--H'a+b-). To obtain equation (4.42) it must be recognized that 

H’a+a+=H’’ a+a+= 1. The most common way to estimate a transfer function is to use measured 

cross- and auto-spectra. This type of estimate can be used for all stationary signal types. In 

our case the reference signal is assumed to be noise free, the best choice of estimate for the 

transfer function is then given by  

 

xx

xy
xy G

G
H =

                                                                   
(4.43)

 

 

where the cross- and auto-spectrum Gxy  and Gxx are estimated with digital Fourier analyzers 

by use of the Discrete Fourier Transform (DFT) [3]. From this point of view we can simply 

define, for two stationary signals x and y, the cross- and auto-spectrum as Gxy = E[XY*] and 

Gxx= E[XX*]. Here E[] denotes average over a number of consecutive data records (ensemble 

average) and X , Y should be interpreted as DFTs of x, y. These DFTs must be calculated 

from simultaneously sampled values. Of course if spectral densities are of interest then the 

above definitions must be multiplied with an appropriate constant [12]. 

By using equation (4.40) the wave amplitudes p+ and p- in a duct can be expressed in 

terms of the acoustic pressure at two points: 
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where  

 

[ ] 1−− +− −= aaaa siksik
a eeF                                                   (4.45) 

            [ ] 1−− +− −= bbbb siksik
b eeF                                                   (4.46) 

 

The acoustic pressures p1, p2 are associated with duct I and p3, p4 with duct III, see Fig. 5.2. 

It can also be noted that p1 is the pressure at a and p3 at b in Fig. 5.2. From equation (4.45) 

and (4.46)  and the definition of cross- and auto-spectrum given above, the following results 

can be derived: 
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where Gmn= E[Pm
* Pn] , m = 1, 2 and n = 1.2, 3, 4. By using equations (4.43) and (4.47) we 

can express the transfer functions in equation (4.43) in terms of measurable quantities [3]. 

 

 

4.2.4 THE TWO-SOURCE CASE 

 

Here the two different states of the two-port are obtained by changing the source location, 

with the rest of the system kept unchanged, see Figure 5.5.  
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Figure 5.5  –  Setup of two-source method. 

 

Just as in section 4.2.3, also here the incident wave amplitude on the source-side is 

chosen as reference signal. Assume that the source-side for the first test state is duct I and for 

the second is duct III, see Fig. 5.2. Then p’a+ and p’’ b- are the reference signals. Keeping this 

in mind equation (4.39) gives:  

 

( ) ( )
( ) ( )
( ) ( )
( ) ( )x

x

x

x

H

H

H

H

det/''''

det/''''

det/''''

det/''''

''
22

''
21

''
12

''
11

+−+++−

−++−++

+−−+−−

−+−−−+

−=

−=

−=

−=

abbabb

babbba

abaaab

baabaa

HHHS

HHHS

HHHS

HHHS

                                       

(4.48)

 

 

where det (Hx)=(1-H"b-a++H'a+b-). Equation (4-60) contains six different transfer functions, 

three of these Ha+a-, Ha+b- and Ha+b+  can be found in section 4.2.3, see equations (4.43) and 

(4.47). The remaining three are 
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By using the same approach as in section 4.2.3, the auto-spectrum and the cross-spectra in 

equation (4.49) can be expressed in measurable quantities: 
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where Gmn=E[P*
mPn], m=3,4 and n=1,2,3,4. [3] 

 

 

4.2.4. INFLUENCE OF ERRORS 

 

The resulting errors in a scattering-matrix, obtained by using the procedure above, 

depend on three things: (I) the errors in the measured input data; (II) the error sensitivity of 

the plane wave decomposition, equation (8); (III) the error sensitivity of the matrix equation 

for S, equation (4.35).  

Point (I) and (II) have been discussed by Bodén and Abom [13, 14]. A main conclusion is 

that, to obtain good measurement results, the plane wave decomposition must be restricted to 

the frequency range 

 

( ) ( )22 18.011.0 MksM −<<− ππ                                           (4.51) 

 

Regarding point (III) it will mainly depend on the inversion of the matrix X. When this 

matrix is singular; or almost singular, large errors can be expected. To avoid this the two test 

states for the two-port must be significantly different. Doige and Munjal, in  [15] , proved that 

this is much easier to achieve for the two source case than for the two-load case. 

Finally, it can be noted that to use this measurement procedure a number of transfer 

functions must be estimated. To estimate these transfer functions equation (4.43) should be 

used. For signals of stationary random type the cross- and auto-spectrum in this equation must 

be obtained from simultaneously measured data. Otherwise large random errors can occur. 

This means that for random data a four-channel Fourier analyzer is needed to obtain good 
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estimates of the transfer functions in equations (4.42) and (4.48). For periodic data, e.g., 

pseudo-random, this type of problem does not exist. Then good estimates of these transfer 

functions can be obtained by using a two-channel analyzer. 

 

 
4.2.5 CALCULATION OF THE TRANSFER-MATRIX FROM A GIVEN SCATTERING-

MATRIX 
 

The scattering-matrix of an acoustical two-port is defined in equation (4.34). The transfer 

matrix T of the same two-port can be defined as 
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where a and b are two different duct cross-sections and the positive directions are defined as 

in Fig. 5.2. The key to find the required relationship is a study of state vector transformations. 

First, we express the state vectors [pa,qa]
T and [pb,qb]

T in terms of wave amplitudes at a and b: 
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where 
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Then,  by using equation (4.34), one can express [pa+,pa-]
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where 
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From equations (4.53) and (4.54) we obtain 
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From equations (4.56) one can derive the required relationship 
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4.3 TEST RIG  OF  TTU  LABORATORY  

 

A number of experimental analyses have been included in the last chapter of this thesis. 

As mentioned, all of these tests have been carried in acoustic laboratory of Tallinn University 

of Technology (TUT). This is provided of a dedicated experimental facility  which  was built 

in order to determine the sound transmission data of the silencers in high flow velocity and 

high temperature conditions. The classical two-microphone approach is used to obtain 

complex pressure amplitudes of the traveling acoustic waves at the inlet and outlet cross-

sections of the silencer. A photo and a sketch of the installation used to carry out the 

experimental work are shown in Figs. 5.6 and 5.7.  

 

 

 

 

Figure 5.6  –  Photo of TTU facilities for acoustic  measurements on two port sources [10]. 

 

The acoustic measurements have been performed in a test section made of steel pipe with 

inner diameter of 42mm. The wall thickness of the pipe is 1.5mm.  

As the acoustical test section equipped with dynamic pressure and temperature sensors is 

mounted more than 50 pipe diameters downstream of the stagnation chamber, a fully 

developed turbulent mean flow is expected during the experiments.  

A pressure transducer separation s=70mm has been chosen. It has been proved that, in 

order to avoid a large sensitivity to errors in the input data, the two microphone method 

should be restricted to the frequency range 0.1π (1− M 2 )< ks < 0.8π (1−M 2 ) ,where k is 
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wave number and M is Mach number. Accordingly, the frequency region covered during the 

measurements ranged from 245Hz…1.9kHz (for room temperature air at 20°C) to 

305Hz…2.4kHz (heated air at 180°C).  

 

 

 

Figure 5.7  –  Sketch of the  system for acoustic analyses in TTU laboratory [9]. 

 

Two piezo-resistive pressure transducers (Kistler 4045A), equipped with water-cooling 

mounts, are used in the test pipe to simultaneously record the acoustic pressure signals. The 

transducers are located at the opposite pipe walls in order to suppress uncorrelated flow 

disturbances around the wall surfaces. Two transducers are installed at the inlet section and 

two at the outlet section respectively. The pressure signals are conditioned and amplified by 

piezo-resistive amplifiers (Kistler 4603).  
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A random acoustic excitation is provided by professional series electro-dynamic driver 

(DAS ND-8) placed into a side-branch upstream and downstream of the test section. The 

driver is equipped with a titanium diaphragm which is an appropriate choice for 

measurements in high temperature conditions. The electro-dynamic driver is driven by a 

software-based signal generator through a power amplifier (Velleman VPA2100MN).  

In order to enhance the acoustic excitation level from the drivers the power has been 

concentrated only at the frequency range of interest by using numerical filtration technique in 

LabView. The signal acquisition has been performed by a four-channel dynamic signal 

analyzer (National Instruments NI PCI-4474). The analyzer is controlled by a purpose built 

PC based virtual instrument (LabView).  

The flow velocity is determined by a portable anemometer (Delta Ohm) using a Pitot tube 

mounted to the inlet of the measurement section. In order to achieve desired flow velocities in 

the test section a two-stage high pressure blower (Kongskilde 300TRV, 0.3Pa) is 

implemented.  

An electric heater (22.5kW) is incorporated into the stagnation chamber, with a volume 

of 0.15m3. Both sides of the acoustic test section are terminated with additional silencers in 

order to minimize the standing waves in the pipeline and thus to improve the quality of the 

results. The temperature values at the inlet and outlet of the measurement sections have been 

obtained by using a dual K-type thermometer (TES-1312).  

The measured temperature readings has been used to determine the density and the speed 

of sound values in the inlet and outlet pipes as important parameters to calculate the 

transmission loss data. The test-rig is capable to deliver flow velocities in excess of 100 m/s 

while maintaining a temperature approximately 200 ºC.. 

To be precise it must be highlighted that, in the experiments performed in TTU 

laboratory, the reduction of flow noise in microphone signals is achieved by using transfer 

functions taken between the microphone signals and the loudspeaker driving signal, e 

(reference signal). This is referred to as source-correlation, and it has been preferred to the 

one shown in the section 4.2.3, where the incident wave amplitude on the source-side of the 

unknown two-port, pa+  is considered as the reference signal. The source-correlation, in fact, is 

preferred whenever the flow velocities can determine high flow noise disturbances. Since the 

TTU facilities are equipped to perform tests with high mean flow velocities, the auto-source 

correlation is appropriate.  

 



                                                                                                                   
 

 

APPENDIX 

 
A.1 CORRELATION  

 

When the signal studied is random, a measured time record will give incomplete 

information to fully analyze the signal. To fully understand the data and the physical 

phenomenon causing it one must consider all possible realizations of the signal, which  

could have occurred, see F

Figure A.1 – Ensemble of time histories for a random process [1

 

The collection of time histories 

describing the physical phenomenon.

calculated at a given time by averaging over the ensemble. The mean value at a time 

given by, 

Similarly the higher order statistical moments can be calculated. For stationary signals all 

statistical moments are independent of time. For most stationary data the en

average calculated according to (
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When the signal studied is random, a measured time record will give incomplete 

analyze the signal. To fully understand the data and the physical 

phenomenon causing it one must consider all possible realizations of the signal, which  

Figure A.1. 

Ensemble of time histories for a random process [1

The collection of time histories xi(t) defines the ensemble for the random process 

describing the physical phenomenon. The average properties of the process can be 

calculated at a given time by averaging over the ensemble. The mean value at a time 
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Similarly the higher order statistical moments can be calculated. For stationary signals all 

statistical moments are independent of time. For most stationary data the en

average calculated according to (A.1) is equal to the time average computed from one 
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When the signal studied is random, a measured time record will give incomplete 

analyze the signal. To fully understand the data and the physical 

phenomenon causing it one must consider all possible realizations of the signal, which  

 

Ensemble of time histories for a random process [11]. 

defines the ensemble for the random process 

The average properties of the process can be 

calculated at a given time by averaging over the ensemble. The mean value at a time t is 

                                              (A.1) 

 

Similarly the higher order statistical moments can be calculated. For stationary signals all 

statistical moments are independent of time. For most stationary data the ensemble 

) is equal to the time average computed from one 
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time record, 
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The same applies for the higher order statistical moments. This type of data is called 

ergodic. 

 

A.2 ENSEMBLE AVERAGE  

 

If the probability density function p(x) for a stochastic variable x is known the 

different statistical moments can be calculated using the expected value or ensemble 

average, or E-operator: 
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The first order moment gives, 
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which is the mean value of x(t). The second order moment gives, 
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which is the mean square value of x(t). 

For higher order moments it is often useful to calculate moments about the mean. The 

second order about the mean is given by 
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which is the variance of x(t). The root mean square of σ2 is the standard deviation. For 

stationary, ergodic signals the different statistical moments can be calculated from 

single time histories. 
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A.3 AUTO-CORRELATION  

 

The auto-correlation function is defined as, 
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It is as a measure of how well future values can be predicted using past observations. 

The definitions in (A.7) is actually only valid for so-called power signals that is signals 

with infinite energy content. For an energy signal with finite energy content the auto-

correlation definition according to (A.7) would give a result equal to zero. Instead the 

following definition is used for energy signals, 
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If the signal is a discrete time series we instead get the following definitions of the 

auto-correlation function, for a power signal, 
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and for a energy signal, 
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The auto-correlation for a sine wave is a cosine wave with the same period as the 

original sine wave and with amplitude equal to the mean square value of the sine wave. 

The auto-correlation for a cosine wave is also a cosine wave with the same period as the 

original cosine wave and with amplitude equal to the mean square value of the cosine 

wave. For a general periodic signal with the Fourier series,  
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the auto-correlation function is 
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The auto-correlation function is always an even function in τ and therefore symmetrical 

around z= 0. The maximum possible value for the auto correlation is Rxx(0), 
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where equality can occur only for periodic signals. Auto-correlation is a measure of how 

similar a signal is to a time delayed copy of itself. It is therefore natural that for zero time 

delay the signal is completely identical and therefore correlated with its copy. For 

periodic signals the situation will be the same after a time delay corresponding to one 

period. For a power signal inserting τ=0 into (A.8) gives 
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which is the mean square value of the signal. 

The auto-correlation function for an ideal white noise signal is a Dirac pulse at τ=0 

and zero at all other time delays. The interpretation of this is that in a white noise signal 

the data at any given time is completely independent (uncorrelated) to the data at 

previous times. The signal therefore only exhibits some similarity (correlation) for zero 

time delay where it is an identical copy of itself. 

For a signal of band limited white noise we get an auto-correlation function which is 

“smoother” than a Dirac pulse. 

If a signal consist of a combination of two independent (un-correlated) signals such 

as a sine wave plus random noise, the auto-correlation will be a combination of the auto-

correlations of the two original signals. 
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A.4 CROSS-CORRELATION  

 

The cross-correlation function between two time records x(t) and y(t) for power signals, 

is 
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for signals with infinite time duration and consequently infinite energy.  

The cross-correlation function reveals the similarity of two signals as a function of 

the time delay between them. It can for instance be used to analyze propagation problems 

like convection with fluid flow or sound propagation. For energy signals with finite 

energy content the cross-correlation definition according to (A.15) would give a result 

equal to zero. Instead the following definition is used for energy signals, 
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If the signals are discrete time series we instead get the following definitions of the 

cross-correlation function, for a power signal, 
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and for energy signal, 
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The cross-correlation function is not in general an even function in τ. The maximum 

possible value for the cross-correlation can occur at any τ. The cross-correlation 

function contains information about the relative phase between the signals. 

Since cross-correlation provides a measure of the similarity of two signals for 

different relative time delays, it will only produce a non-zero result if the two signals are 
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related in some way. They could for instance be generated by the same source but have 

propagated different distances or be sine or cosine waves of the same frequency.  Sine or 

cosine waves of different frequency are orthogonal or un-correlated and would give zero 

correlation. Other examples of signals, which would give zero correlation, are a sine 

wave and a random noise, and two random noise signals of different origin. 

 

 

A.5 DETECTION OF SIGNAL IN NOISE  

 

An important application of correlation techniques is detection of signals in noise. 

The basic idea is that the correlation function of a periodic signal is also periodic while 

the correlation for a random signal decays at large time delays. By evaluating the 

correlation for large time delays the result of the periodic signal can be separated from 

random noise.  

A major use also of cross-correlation is the detection of signals buried in noise. 

Typical applications include radar, sonar, ultrasound imaging, and other reflective 

ranging techniques. The wave shape of the signal is generally known and the problem is 

to detect the presence and location of the return echo even though it is not visible inside 

the noise envelope. 

 

 

A.6 POWER SPECTRAL DENSITY  

 

The Power Spectral Density (PSD) is used to describe the distribution of power over 

frequency for random signals it is defined as the Fourier transform S(f) of the 

autocorrelation function.  
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In general, the Fourier transform is a complex-valued function of frequency. In this case, 

however, R(τ) is an even function of τ and then the Fourier transform will be real. 

Furthermore, it may be shown that the Power Spectral Density, PSD, is positive (or zero) 

for all frequencies. It is also an even function of frequency. 
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The PSD gives us information about the distribution of the signal power as a function 

of frequency. The unit of the PSD from equation (A.19) is unit of measured quantity/Hz.  

Let’s consider the relation between R(τ) and S(f) for the simple case of a Single-Degree-

of-Freedom (SDOF) mechanical system excited with a random force. The response of the 

SDOF is measured as displacement. If this system has a certain resonance frequency 

covered by the random excitation, the response of the system is concentrated around this 

frequency and the PSD will have a peak there. The autocorrelation value for time delay 

zero equals the r.m.s. value squared. The “typical frequency” of the displacement signal 

can also be seen clearly in the autocorrelation function. The PSD then peaks around the 

resonance frequency, showing a concentration of signal power around that frequency. 

The inverse of Fourier transform can be used to calculate the autocorrelation function 

from the PSD: 
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Setting τ=0 in equation (4.20), it gives 
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That is: the integral of the PSD equals the r.m.s. value squared. This is an alternative 

definition of the Power Spectral Density. 

The integral in (A.33) is taken over both positive and negative frequencies. It is quite 

common to show the PSD for positive frequencies only (remember that it looks the same 

for negative frequencies). We talk about double-sided or single-sided PSD. Call the 

single-sided PSD G(f), the correspondence is obtained to: 
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It is good practice to be very clear about single-sided or double-sided PSD when 

presenting i result. Considering limits in the integral (A.22) as a frequency interval f1  to 

f2: 
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f

f∫= 2
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where now the r.m.s. is referred to the signal in the frequency band from f1, to f2. This is 

the physical meaning of the PSD, it tell how the r.m.s. value squared is distributed in  

frequency. As the r.m.s. value squared is the mean square, a better name for PSD would 

be Mean Square Spectral Density, as the mean square seldom has the direct physical 

interpretation of power. 

 

 

A.7 CROSS POWER SPECTRAL DENSITY, CROSS SPECTRUM 

 

The Cross Power Spectral Density (or Cross Spectrum for short) is the Fourier 

transform Syx of the cross correlation function between two signals x(t) and y(t) 
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The cross spectrum tells where, in frequenc,y the two signals “have something in 

common”. The cross spectrum is a complex function of frequency in contrast to the PSD, 

is real. It means that the cross spectrum also contains information about the phase 

between the two signals. The PSD is an even function of frequency, while the following 

is valid for the cross spectrum 
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where the * means complex conjugation. It is also important to notice that if we change 

the between x and y in the correlation function, the corresponding cross spectrum will be 

complex conjugated. Just as for the PSD, it is common to use only positive frequencies: 
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To distinguish between Power Spectral Density and Cross Spectral Density functions it is 

common to use the notation Gx (or Gxx ) and  Gy (or Gyy) for the PSD of x(t) and y(t) 

respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



                                                                                                                 Chapter 4 – References 

156 
 

REFERENCES  

 
[1]  J.Y.  Chung, D.A. Blaser, Transfer function method of measuring in-duct acoustic 

properties, Journal of Acoustic Society of America, Vol. 68, No.3, Sept.1980.   

[2]   A.F. Seybert, D.F. Ross, Experimental determination of acoustic properties using a two-
microphone random-excitation technique, Journal of Acoustic Society of America, Vol. 
61, No.5, Sept.1977.  

[3]  M. Abom, Measurement of the scattering matrix of acoustical two-ports, Mechanical 
Systems and Signal Processing (1991) 5(2), 89-104. 

[4]  J. Lavrentiev, M. Abom, H. Bodén, A measurement method for determining the data 
source of acoustic two-port sources, Journal of Sound and Vibration (1995), 183(3), 517-
531. 

[5]   H. Rammal, M. Abom, Acoustic of turbochargers, SAE International, SAE paper 2007-
01-2205 (2007). 

[6]   C.W.S. To, A.G. Doige, A Transient Testing Technique for The Determination of Matrix 
Parameters of Acoustic Systems, 1: Theory and Principles, Journal of Sound and 
Vibration, 62, 207-222 (1979). 

 [7]  C.W.S. To, A.G. Doige, A Transient Testing Technique for the Determination of Matrix 
Parameters of Acoustic Systems, 2: Experimental Procedures and Results,” Journal of 
Sound and Vibration, 62, 223- 233 (1979). 

[8] Munjal, M.L. and Doige A.G., “Theory of a Two Source-location Method for Direct 
Experimental Evaluation of the Four-pole Parameters of an Aeroacoustic Element,” 
Journal of Sound and Vibration, 141(2), 323-333 (1990). 

[9]  R. Kabral, H. Rämmal, J. Lavrentjev, F. Auriemma, Acoustic Studies on Small Engine 
Silencer Elements,  SAE 2011-32-0514, 2012.  

[10] J. Lavrentiev, H. Rammal, On experimental techniques to determine acoustic 
performance of small exhaust silencers, SAE International, SAE paper 2009-32-0015 
(2009). 

[11]H.P. Wallin, U. Carlsson, M. Abom, H. Boden, Sound and vibration, KTH MWL, ISBN 
978-91-7415-553-2. 

[12] J. S. Bendat, A.G, Piersol, Random Data   –  Analysis and Measurement Procedures, 2nd 
Edition. New York: Wiley-Interscience, 1986.  

[12]H. Bodén, M. Abom, Influence of errors on the two-microphone method for measuring 
acoustic properties in ducts, Journal of the Acoustical Society of America 79, 541-549, 
1986. 

[13] H. Bodén, M. Abom, Error analysis of two-microphone measurements in ducts with 
flow, Journal of the Acoustical Society of America 83, 2429-2438, 1988.  

[14] A.G. Doige, M.L. MUNJAL, H.S. ALVES, An improved experimental method for 
determining transfer matrices or pipeline elements with flow, Proceedings of Noise-Con 
88, 481-485, 1988. 

[15] H. Boden, K. Ahlin, U. Carlsson, Applied signal analysis 2010, KTH.

 



             Chapter 5 – 1D and 3D BEM analysis of a reactive three pass perforated tube muffler 

157 
 

Chapter 5  

Results  
 

 

 

 

5.1 1D AND 3D BEM  ANALYSIS OF A REACTIVE THREE PASS PERFORATED TUBE 

MUFFLER  

 

The content of this paragraph widely refers to the paper: 

 

D.Siano, F.Auriemma, F.Bozza,  A correlation study of computational techniques of a three 
pass perforated tube muffler including FEM and 1D methods, SEEP 2009. 
 

In this work, the noise attenuation characteristics of a typical perforated muffler for 

automotive applications are investigated. Acoustic performances are quantified by the 

Transmission Loss (TL) parameter, which only depends on the geometrical characteristics of 

the device.  

Different numerical analyses are employed. At first, a non-linear one-dimensional (1D) 

time domain approach is used to predict the TL profile in a low frequency range. 1D 

simulations, in fact, may be only applied under the hypothesis of a planar wave propagation. 

A linear 3D BEM in the frequency domain, specifically designed for acoustic 

applications, is utilized too. Obviously, such analysis allows to obtain more accurate results at 

high frequency, depending on the mesh size.  

Different flow velocities and gas temperatures are investigated in both 1D and 3D 

models. The predicted TL profiles are compared and discussed in order to assess the 

potentiality and limitations of the employed numerical approaches. 
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5.1.1 MUFFLER CONFIGURATION  

 

The geometrical data of the studied muffler are reported in Figure 5.1.1. The porosity of 

perforates is 0.45, the hole diameter is 3.0 mm, and the wall thickness is 1 mm.  

 

 
Figure 5.1.1 – Geometrical data of the investigated three-pass perforated tube muffler. 

 

 

5.1.2 1D SIMULATIONS  

 

The 1D analysis of the muffler has been performed with the commercial software GT-

PowerTM. It is a widely employed tool for the analyses of internal combustion engines and it 

solves the 1D non- linear flow equations in each component constituting the whole engine (air 

box, intake, exhaust system, muffler, etc.). This software is also provided of a preprocessor 

tool, named GT-MufflerTM, very useful to describe the complex muffler geometry [1]. In this 

environment the outer shape of the model can be imported from a CAD file or built in a 

dedicated drawing area. Moreover, a set of tubes, ducts, baffles, shells, straight pipes, curved 

pipes and perforated pipes are available to set up the muffler model. In Figure 5.1.2, a 3D 

rendered model, obtained using the GT-MufflerTM, is depicted [2]. 
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Figure 5.1.2 –  Three dimensional muffler model obtained with GT-MufflerTM 

rendering.  

 

The result of the pre-processing procedure is represented by an ASCII file (file.dat) 

including the schematization of the geometry. This latter is constituted by 1D elements for  

pipes modeling, but also by zero-dimensional (0D) and quasi three dimensional (quasi 3D) 

elements to respectively schematize the orifices and the chambers inside the muffler. 

“Pipe”  objects model flow through tubes, with either constant or tapered diameter, 

according the above mentioned 1D equations.  

“Orifice”  elements are used to join together  different physical components. These 

connections are planes at which the only momentum equation is solved to compute the mass 

flow and velocity. An orifice can be used to specify a flow restriction by setting the orifice 

diameter to be smaller than the diameter of the two mating components.  

“Quasi 3D” elements are specifically designed to account for conservation of momentum 

in three dimensions, even though the code is otherwise nominally one-dimensional. They are 

composed by a 0D element at the center of the volume, where the continuity and energy 

equations are integrated, and a number of volume openings (ports) where the momentum 

equation is integrated. [2] 

In the specific case of a muffler, the chambers are schematized by sets of quasi-3D 

elements whose ports are oriented along the three spatial directions. In this way the radial 

interactions between the perforated tubes and the chambers are accounted. 

Straight tubes are obviously schematized by 1D elements. Perforated tubes are 

represented by a set of quasi 3D elements connected each other along the direction of the tube 

and linked, through a proper number of orifices, to the quasi 3D elements constituting the 

chambers. 

 

Expansion chambers  

End-resonator 

Transition chamber 
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Figure 5.1.3 – Two-microphone random-excitation technique implemented for TL analysis 

in 1D simulations. 

 

The two-microphone random-excitation technique proposed by Seybert and Ross [3] is 

used to calculate the transmission loss of the muffler. To this aim the muffler sub-assembly, a 

single object linked to the complex muffler schematization, is coupled to other components 

(see Figure 5.1.3). Two short additional pipes are connected to the component. Two pressure 

sensors are located in the above pipes to measure the incident and reflected pressure wave 

components upstream and downstream the silencer. A loudspeaker element generates a white 

noise signal in a certain frequency range and, finally, an anechoic termination is employed to 

avoid wave reflections from the outer environment. An appropriate tool computes the TL 

basing on the measured pressures. The final numerical results are then stored in a file and 

post-processed in a dedicated environment (GT-PostTM).  

 

 

5.1.2 3D-BEM SIMULATIONS  

 

An alternative methodology for the numerical evaluation of the TL parameter has been 

utilized in this work. It is based on a linear 3D-BEM, implemented by using the commercial 

software STS VNoiseTM [4]. The latter constitute a powerful tool for more accurate 

performance prediction, since it is able to account the wave higher order mode effects. 

Obviously it requires more computational and memory resources than the 1D approach. Only 

a surface mesh is required in BEM, which has been constructed utilizing the commercial 

software FEMAP 9.0TM. The mesh is shown in Figure 5.1.4, and the model consists of 16393 

nodes and 14289 shell elements. 
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Figure 5.1.4 –  Meshed muffler model. 

 

TL has already been defined in the Chapter 1. Briefly, it is the difference between the 

sound power entering the system and the transmitted sound power, which is related to the 

ratio between the amplitude pressure (in dB) of the right travelling wave at the inlet (p1
+

 ) and 

the amplitude pressure (in dB) of the right travelling wave at the outlet (p2
+), supposing to 

have plane waves at inlet and outlet sections [5]. 

The procedure utilized by BEM solver for the TL characterization is based on the two-

port source model, i.e. on the evaluation of the four pole parameters that characterize the 

component (here named A,B,C,D). The BEM analysis executes two sets of calculations, the 

first with a zero velocity at the outlet section, the second one with a zero pressure signal in the 

same section. The inlet velocity is set equal to the unity in both the cases. The four parameters 

(complex numbers depending on the frequency) can then be computed as: 
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where p1, p2, v1 and v2 are respectively the pressure at inlet and outlet, and the velocity at 

same locations. 

Using equations (5.1.1) and (5.1.2) and the above definitions of four poles it is possible to 

obtain an expression for the TL, which states: 
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A critical issue for an accurate TL evaluation is represented by the correct application of

the boundary conditions (BC

of boundary conditions can be seen. As mentioned before, in the inlet section, a constant 

velocity must be applied while in the other nodes of the duct a zero velocity boundary 

condition is imposed. For this re

node P (Figure 5.1.5) in two nodes

one of them is connected to the panel of the inlet

panel of the duct. 

                                         

Figure 

 

In this case, the system under investigation has been divided in different groups where

different BC have been then ap
 

 

 

 

 

 

 

 

 

Figure 

Inlet 

1D and 3D BEM analysis of a reactive three pass perforated 

162 

                                                


















+++

=
2

log20

DcC
c

B
A

TL

ρ
ρ

                                

A critical issue for an accurate TL evaluation is represented by the correct application of

(BCs) with particular attention to the region where a possible change 

can be seen. As mentioned before, in the inlet section, a constant 

must be applied while in the other nodes of the duct a zero velocity boundary 

imposed. For this reason, a correct usage of the software 

) in two nodes P1 and P2, having the same geometrical coordinates but 

onnected to the panel of the inlet section and the other one is 

Figure 5.1.5 – Generic Boundary Condition application

In this case, the system under investigation has been divided in different groups where

different BC have been then applied as visible from Figure 5.1.6. 

 

Figure 5.1.6 – Boundary conditions application

Perforates 
 

s perforated tube muffler 

                                     (5.1.3) 

A critical issue for an accurate TL evaluation is represented by the correct application of 

the region where a possible change 

can be seen. As mentioned before, in the inlet section, a constant 

must be applied while in the other nodes of the duct a zero velocity boundary 

a correct usage of the software suggests to split the 

, having the same geometrical coordinates but 

one is connected to the 

 

Generic Boundary Condition application.  

In this case, the system under investigation has been divided in different groups where 

pplication. 

Outlet 
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The different colors reported in the Figure 5.1.6 represent disconnected regions where 

different types of  boundary conditions have been applied in terms of porosity, particle 

velocity and pressure. 

Porosity has been imposed utilizing the classical Sullivan and Crocker approach [6], 

which stands in absence of mean flow and absorbing material in contact with holes. For this 

reason, as more deeply explained in section 5.2, the BEM analyses have been performed only 

in absence of mean flow. 

In this work the TL has been computed in the frequency range 10-1600 Hz, with a step of 

10 Hz. For the chosen mesh size, a maximum frequency of 4000 Hz could be analyzed, still 

preserving a good accuracy of the results. Moreover, this considered cut-off frequency of 

1600 Hz is much higher than the maximum working frequency of the tested system, since the 

harmonic components of the engine excitation lie below 1000 Hz.  

 

 

5.1.3 RESULTS AND DISCUSSION 

 

In this paragraph results obtained by using these two different numerical approaches are 

presented and compared.  

 

Figure 5.1.7 – Transmission loss comparison of the muffler.  

 

The Figure 5.1.7 shows the TL (dB) versus frequency (Hz) diagrams, and it is noticeable 

that the two utilized methods give results which almost perfectly agree up to 500 Hz. In 
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particular, this is confirmed by a further analysis reported in the Figure 5.1.8 and limited to 

10-500 Hz frequency range, with a restricted frequency step of 2 Hz. While the 1D analysis is 

completed within few minutes, this kind of 3D detailed numerical simulation requires a 

computational time of about 1 day (depending on computer performances). The transmission 

loss profile reveals two peaks in the low frequency range. In particular, it is possible to 

associate the peak at 70 Hz to the resonant frequency of the Helmholtz end-resonator included 

in the muffler [7]. Its geometrical data and the related resonant frequency at ambient 

temperature, are reported in the Table 5.2.I. The presence of a peak around 70 Hz is 

highlighted.  

 

Helmholtz Resonator data: 
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Table 5.1.I – Geometrical data of the end-resonator and related resonant frequency at 

ambient temperature. 

 

The presence of a smoother trend at the frequencies 500Hz and 950Hz is mainly due to 

the expansion in the left end and central chambers (see Figure 5.1.2). The differences between 

one and three dimensional methods, visible from 500 Hz, depend on the acoustic wave 

direction, since the sound propagation in the chambers is no more planar, and starts to be 

radial. In fact, beyond the first higher mode frequency, (about 500 Hz for the investigated 

geometry), the acoustic wave presents a multi-dimensional shape, and a greater disagreement 

appears between the two utilized dimensional approaches. 

Vr 

Dn 
Ln 
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Figure 5.1.8 – Transmission Loss comparison of the muffler  (frequency range 10-500 

Hz). 

 

The previous considerations are confirmed by the results presented in the Figures 5.1.9 

and 5.1.10, where a number of contour plot of the pressure distribution, post-processed from 

VNOISE calculation, are displayed at different frequencies. The acoustic waves presents a 

mainly axial propagation at low frequencies. The sound pressure distribution within the 

muffler is quite totally constant in each muffler cross section. The above behavior can be well 

reproduced by the one dimensional model, which hence is able to give accurate results up to 

the above frequency. 

 

 

 

Figure 5.1.9 – Plane pressure distribution at low frequencies. 
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At higher frequencies, instead, the situation appears to be quite different (see Figure 

5.1.10). The pressure level distribution is no more planar and the 1D model is no more able to 

correctly reproduce the wave propagation phenomena. This is the main reason of the 1D 

model inaccuracy at high frequencies. 

 

 

Figure 5.1.10 – Plane pressure distribution at high frequencies. 

 

5.1.4 EFFECTS OF THE GAS TEMPERATURE AND FLOW VELOCITY  

 

In this paragraph the effects exerted by the gas flow velocity and temperature on the 

transmission loss are investigated. The main results obtained at the temperature of 700°K 

employing one dimensional and BEM analysis, are depicted in the Figure 5.1.11. 

 

Figure 5.1.11 – Transmission Loss at 700 K. 
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First of all, it must be pointed out that, in order to implement the TL evaluation at higher 

temperature in the VNOISE software, the values of sound velocity, c, and air density, ρ, have 

been changed. The temperature is in fact not directly fixed in VNOISE, who, besides, is able 

to manage c and ρ. For this reason, in order to consider the effects of the temperature, the 

following relations have been used: 

 

                                                                kRT=c                                                            (5.1.4)                                                                                

                                                               
RT

p=ρ                                                                (5.1.5) 

where  

                                                                k = cp/cv                                                             (5.1.6) 

 

where cp and cv are the specific heats at constant pressure and volume (for the air at 20°C, 

k=1.4), R is the gas constant (for the air at 20°C, R= 287 J/Kg K) and T is the absolute gas 

temperature. 

The increasing of the temperature affects the sound speed and shifts the above peak at 

about 100 Hz, as expected. The same occurs for the other resonant frequencies and explains 

the extended 1D-3D agreement up to about 700 Hz in Figure 5.1.11. 
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Figure 5.1.12 – TL factor comparison between high and low temperature (BEM 

calculation). 

 

Looking at the Figure 5.1.12, it can be noticed that an increasing of temperature 

determines a shift of the TL profile towards higher frequencies. In fact the first TL peak, at 

about 70 Hz, is now found at about 100 Hz.  
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Figure 5.1.13 – GT-Power analysis of transmission loss at different temperatures and flow 

velocities. 

 

The 1D approach is finally utilized to also perform a TL calculation under the presence of 

a positive mean flow velocity at the inlet. The presence of a positive mean flow velocity 

surely affects the wave propagation speed inside the component determining a different fluid-

dynamical interaction with the internal structure of the muffler. 

The 1D approach, directly solving the wave propagation equation, is able to account for 

the above mentioned effect. Secondary effects, related, as an example, to the presence of 

internal sound-generating vortices, may be only considered with more complex 

Computational Fluid Dynamic (3D-CFD) analyses [8]. 

The presence of a relevant flow velocity of 40 m/s (Figure 5.1.13, dashed profile), 

determines the increasing of the transmission loss in all the investigated frequency range. In 

particular, the first TL peak is improved of about 7dB and occurs at a slight lower frequency. 

The combined effects of increased temperature and mean flow velocities can be appreciated in 

the same Figure 5.1.14 (dash-dot profile). The overall behavior in this last case of course 

comes from the superimposition of the previously discussed variations (high frequency shift 

and higher attenuation levels). 
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5.1.5 CONCLUSIONS 

 

In this study two different numerical approaches, one-dimensional and three-dimensional, 

are employed in order to predict the acoustic behavior of a three-pass perforated tube muffler 

with an end resonator. In particular, the transmission loss in the frequency domain is 

estimated with both methods, under the hypothesis of a perfectly rigid wall structure.  

Besides, the effects of the temperature and gas flow velocity on the transmission loss are 

investigated.  

The 1D and 3D methods appear to well agree up to about 400 Hz at ambient temperature 

and confirm the results reported in [9]. Beyond this frequency the acoustic wave indeed 

presents a multidimensional shape, and a greater disagreement appears between the two 

approaches. Obviously, in this case the 3D model is expected to better reproduce the 

experimental TL trend.  

The above agreement is extended to higher frequencies (about 700 Hz) for a typical 

exhaust gas temperature of 700 K. The temperature increase influences the sound speed and 

shifts the TL profile versus higher frequencies. The presence of a mean flow within in the 1D 

muffler model was found to produce an improved overall attenuation, too. 

The presented results indicate the possibility to carry out very fast 1D analysis in a low 

frequency range, also depending on the operating conditions of the muffler, when coupled to 

the real engine. If the device is to be optimized for the high frequency range, the time-

consuming 3D approach is to be applied. 

Next studies will concern the inclusion of the absorptive material in numerical models, 

and the implementation of the modal participation, in order to take into account the fluid–

structure interactions. This of course is not allowed in the 1D approach. 

 

 

 

 

 

 



                                 Chapter 5 – 1D and 3D BEM analysis of a commercial cross flow muffler  

170 
 

5.2 1D AND 3D BEM  ANALYSIS OF A COMMERCIAL CROSS FLOW MUFFLER , 

INCLUDING FLUID -STRUCTURE INTERACTIONS AND RADIATED NOISE  

 

The content of this paragraph widely refers to the papers: 

 

D.Siano, F.Auriemma, F.Bozza,  “Pros and Cons of Using Different Numerical Techniques 
for Transmission Loss Evaluation of a Small Engine Muffler” , SAE Paper 2010-32-0028, 
Linz, 2010. 

 
D. Siano, F. Auriemma, F. Bozza, “Svantaggi e Vantaggi Legati all’Utilizzo di Diversi 
Metodi Numerici per la Caratterizzazione Acustica di un Silenziatore per Applicazioni 
Automobilistiche”, ATI Cagliari, 2010.  

 
The purpose of these works is to put evidence on advantages and disadvantages of 

different numerical approaches in evaluating the acoustic performance in terms of attenuation 

versus frequency (Transmission Loss) of a commercial cross flow muffler, under different 

conditions. The studied silencer under is composed by three chambers and two perforated 

tubes. 

A 1D non linear acoustic approach in time domain and a 3D BEM acoustic linear 

approach in frequency domain have been utilized also in this work. Many information about 

this two different way to model the acoustic phenomenon have already been given, but here 

further practical applications and differences are highlighted. 

The 1D approach obviously assumes rigid wall hypothesis, while the BEM can take into 

account the surface vibrations is when a preliminary FEM modal analysis of the structure is 

realized. The computed structure natural frequencies can be imported in the BEM model in 

order to carry out the complex fluid-structure interaction. The effects of this last condition on 

TL calculation have been assessed and discussed. In addition, both flow and temperature 

effects have been included in the modeling and discussed with the previous analyses. 

Agreement among these numerical evaluations and related limitations have been put into 

evidence for different configurations. 
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5.2.1 MUFFLER DESCRIPTION AND CAD MODEL  

The system under investigation is a two perforated tube muffler (see Figure 5.2.1) with 

two expansion chambers and a transition chamber. It equips small engine cars with 0.9-1 liter 

displacement. 

 

 

Figure 5.2.1 – The studied commercial muffler. 

 

Each expansion chamber includes a blister containing 50 g of glass wool. The two blisters 

burn when the muffler reaches a sufficiently high temperature, leaving the wool depositing on 

the lower walls. In the present work, however, the presence of the insulating material has been 

neglected. 

The muffler is entirely made of aluminized carbon steel P04. The two tubes lie in 

different horizontal planes and, for this reason, the structure is not symmetrical. Each 

geometrical length of the muffler has been accurately measured (Figure 5.2.2a) and a CAD 

model has been obtained, (see Figure 5.2.2b). 

In particular, muffler length is about 310 mm plus the length of external portions of the 

two tubes (100 mm). Axial cross section is not perfectly elliptical with the maximum and 

minimum length of 216 mm and 133 mm respectively. The two expansion chambers have a 

length of 110 mm, while the transition chamber of 90 mm. The two tubes have inner diameter 

of  35mm. External walls thickness is 1.2 mm and tubes and inner diaphragms thickness is 1.5 

mm. Diaphragms are only welded to the tubes, with 2 or 3 spot welds, and are free to vibrate 

with respect to the external walls. Each tube is provided of an ending restriction, highlighted 

in Figure 2b. Each tube has two perforated portions provided with a variable number of 3 mm 

diameter holes (from 52 to 77 holes per portion). 
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a)   

b)  

Figure 5.2.2 – a) Nominal dimensions of the system; b) CAD model of the muffler. 

 

 

5.2.2 1D AND 3D  MODELS 

 

The 1D and 3D BEM analyses of the previously described muffler have been performed 

with the commercial software packages GT-PowerTM and VNOISETM [2], [4]. These latter, 

and the integrated equations, have been already widely described in the paragraph 5.1 [10]. 

Here, in Figure 5.2.3, a 3D rendered model, obtained using the GTMufflerTM tool, is depicted. 

 

 

Figure 5.2.3 – 3D rendered model of the muffler derived from GTMufflerTM tool. 
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As previously mentioned, the major advantage related to the use of BEM is that only 

boundary surfaces must be discretized. Since the geometry under investigation is relatively 

complicated and includes several thin obstacles within the cavity volume (i.e. baffles), a multi 

domain approach has been found to be suitable. In this case, the mesh surface, show

Figure 5.2.4, consists of 17091 nodes and 32800 shell elements

meshing the CAD surfaces 

cavity has been divided into a number of sub

the conventional BEM is applied to each sub

The BEM equations for different sub

continuity conditions of pressure and normal velocity at the inte

neighbouring sub-domains (physical continuity BCs). In this case the word ‘interface’ 

indicates an imaginary surface where the acoustic pressure and normal velocity are imposed 

to be continuous, or where conditions of porosity are imposed

applied on the other internal and external surfaces [11]. Figure 5.2.6a shows the groups with 

velocity BCs, while in Figure 5.2.6b the groups with interface BCs are depicted. 

a)

Figure 5.2.6 – a) Groups with Velocity B
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As previously mentioned, the major advantage related to the use of BEM is that only 

s must be discretized. Since the geometry under investigation is relatively 

complicated and includes several thin obstacles within the cavity volume (i.e. baffles), a multi 

domain approach has been found to be suitable. In this case, the mesh surface, show

17091 nodes and 32800 shell elements. It has been obtained by 

meshing the CAD surfaces with the commercial software FEMAP 9.0TM

cavity has been divided into a number of sub-domains, subdivided imaginary sur

the conventional BEM is applied to each sub-domain. 

Figure 5.2.5 – Surface mesh model. 

 

The BEM equations for different sub-domains are coupled to each other by enforcing the 

continuity conditions of pressure and normal velocity at the inte

domains (physical continuity BCs). In this case the word ‘interface’ 

indicates an imaginary surface where the acoustic pressure and normal velocity are imposed 

to be continuous, or where conditions of porosity are imposed. Furthermore, velocity BCs are 

applied on the other internal and external surfaces [11]. Figure 5.2.6a shows the groups with 

velocity BCs, while in Figure 5.2.6b the groups with interface BCs are depicted. 

 b) 

a) Groups with Velocity BCs; b) – Groups with Interfaces BCs.

 

commercial cross flow muffler  

As previously mentioned, the major advantage related to the use of BEM is that only 

s must be discretized. Since the geometry under investigation is relatively 

complicated and includes several thin obstacles within the cavity volume (i.e. baffles), a multi 

domain approach has been found to be suitable. In this case, the mesh surface, shown in 

. It has been obtained by 

TM. Thus, the muffler 

domains, subdivided imaginary surfaces. Hence, 

 

domains are coupled to each other by enforcing the 

continuity conditions of pressure and normal velocity at the interface between two 

domains (physical continuity BCs). In this case the word ‘interface’ 

indicates an imaginary surface where the acoustic pressure and normal velocity are imposed 

. Furthermore, velocity BCs are 

applied on the other internal and external surfaces [11]. Figure 5.2.6a shows the groups with 

velocity BCs, while in Figure 5.2.6b the groups with interface BCs are depicted.  

Groups with Interfaces BCs. 
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The 3D acoustic analysis requires the specification of the acoustic impedance of perforations. 

To this aim, the following semi-empirical expression developed by Sullivan and Crocker [6] 

has been employed: 

                               

( )[ ]
ϕ

ζ h
p

dtjk 75.0006.0 ++=
                                                    

(5.2.1)
 

where t is the perforated tube wall thickness, dh is the holes diameter, and φ the porosity of 

the perforation. Through the (6), the holes are not geometrically modeled, and each perforated 

surface can be described as a simple surface. On the other side, the main disadvantage is that 

it’s based on a semi-empirical relation which, in some situations, could not ensure an accurate 

simulation of the physical phenomenon.  

As known, eq. (6) is only valid at zero mean flow and with no contact of adsorbent 

material with the holes. However, since 3D analyses have been performed in absence of mean 

flow, the application of eq. (5.2.1) can be accepted. 

 

5.2.3 TL  RESULTS AND DISCUSSION 

HYPOTHESIS OF RIGID WALLS, 294K TEMPERATURE, ZERO MEAN FLOW 

The first analysis has been led under the hypothesis of infinitely rigid structure of the 

silencer, containing air at rest at 294K. 

The real geometry of the muffler presents a complex restriction, accurately described in 

the mesh model and in BEM analysis. Of course this is not possible in the 1D analysis. For 

this reason two different simulations have been considered. In the first one (Figure 5.2.3) the 

restriction is substituted by a small convergent pipe, while in the second one (Figure 5.2.7) a 

simple orifice ending tube has been considered. 

In Figure 5.2.8 a comparison of TL curves obtained with 1D and 3D models is carried 

out. In particular for the 1D analysis two TL profiles are shown, arising from the previously 

described ending tubes schematizations. 
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Figure 5.2.7 – Orifice tube ending geometry. 

 

First of all, a good agreement between the three profiles is found up to 450 Hz. From 450 

to 800 Hz, and above 1100 Hz, 1D results considerably differ from the BEM ones. Looking at 

the two 1D sets of calculations, it can be clearly noticed that the orifice ending tube better 

reproduces the TL peak at 1100 Hz. This behavior can be explained considering the presence 

of energy loss in the orifice, which is the main cause of TL increasing. This loss is indeed 

absent in the convergent tube, where an isentropic expansion and kinetic energy production 

occurs. 
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Figure 5.2.8 – 1D-3D TL comparison (T=294K). 
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In terms of computing time, while the 1D analysis is completed within few minutes, the 

BEM one requires a computational time of about 1 day on a common PC. Of course, 

computing time is strictly dependent on computer performances. 

The 1D – 3D disagreement is mainly due to a non planar wave propagation occurring at 

high frequencies [12]. This phenomenon, in the simple case of en expansion chamber, is 

described in detail in the Appendix.  

The presence of a non planar wave propagation is confirmed by the results presented in 

Figure 5.2.9, where a number of contour plots, post-processed from VNOISE calculations, are 

displayed at different frequencies. The figure reports the amplitude (in dB) of the pressure on 

the muffler surfaces imposing, at inlet section, an unit value of dp/dn. 

At 400Hz, waves propagation appears to be mainly axial and pressure distribution is quite 

constant in each muffler cross section. The above behavior can be well reproduced by the one 

dimensional analysis. 

 

 

Figure 5.2.9 – Pressure amplitude in muffler chamber at 400, and 710 Hz by imposing 

unit value of dp/dn at inlet. 

 

At medium frequency (710 Hz) pressure gradients appear in the radial direction, too, and 

the sound propagation in the two expansion chambers begins to be no more exclusively 
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planar. At higher frequencies acoustic waves present a complex multi-dimensional shape, and 

a greater disagreement appears between the two employed dimensional approaches. 

 

HYPOTHESIS OF RIGID WALLS, 950K TEMPERATURE, ZERO MEAN FLOW 

In this section, the effects exerted by the gas temperature on the transmission loss factor 

have been investigated. In particular, air at 950K is now considered in both 1D and BEM 

analyses. The related results, under the hypotheses of rigid walls and zero mean flow, are 

displayed in Figure 5.2.10. 
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Figure 5.2. 10 – 1D and 3D TL comparison at 950K. 

 

The figure shows a very good agreement between the two approaches up to a greater 

frequency (about 700 Hz), while a satisfactory matching is still observable up to 900Hz. In 

Figure 5.2.11 the TL factor comparison at high and low temperatures, both computed with 

VnoiseTM code, is indeed reported. 
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Figure 5.2.11 – BEM TL results at 294 and 950K. 

 

It can be noted that the higher temperature determines a shift of the TL profile towards 

higher frequencies. In fact, the first TL peak, at about 97 Hz, is now found at about 160 Hz; 

the second is translated from 274 to 448 Hz and the third from 580 to 938 Hz. 

As known, temperature affects the air density δ and the sound velocity, which changes 

from cl=344 to ch=600 at 294K and 950K respectively, according to the relation: 

 

kRT=c                                                                 (5.2.2)  

 

where k = c�/c� is the ratio between the specific heats at constant pressure and volume 

respectively, R is the gas constant, and T is the absolute gas temperature.  

The ratio ch/cl defines a sort of abscissa stretching factor, relating the high and low 

temperature profiles. In this case, in fact, the ratio: 

 

7.1
344

600

c

c

l

h ≈=                                                         (5.2.3)	 

 

approximately equals the ratio between the above mentioned shifting peaks. In the following, 

it will be shown that this simple rule can’t be totally applied in the case of flexible structure. 
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HYPOTHESIS OF FLEXIBILITY, 294K TEMPERATURE, ZERO MEAN FLOW 

When an elastic structure, especially a thin-walled assembly, is surrounded or contains a 

fluid, structure vibrations are induced by the fluid. Similarly, if a fluid is contained within a 

vibrating thin-walled structure, such as the air within a muffler, there may be significant 

coupling between the structural vibration and the sound field. The whole system must be 

hence analyzed as a coupled structural acoustic problem [13]. 

In a coupled, physically heterogeneous system, mechanical components interact 

dynamically. The interaction is multi-way, in the sense that the response has to be obtained 

simultaneously solving the coupled equations which describe the system behavior [14]. 

For fluid-structure interaction problems, analytical solutions are available for very few 

simple geometries. For an arbitrarily shaped structure, a numerical solution technique must be 

used.  

In typical situations, to perform a coupled acoustic-structural analysis, two different 

models should be treated: one for the acoustic analysis, and the other one for the structural 

FEM analysis. Obviously 1-D analysis cannot account for these issues. 

In the examined case, a normal modal analysis of the mesh model shown in Figure 5.2.5, 

has been performed with the FEM solver MSC Nastran 2005TM. Results are post-processed 

with FEMAP 9.0TM. The structure has been considered unconstrained.  

In the range 0-3000 Hz, 119 modes have been computed. First six modes are rigid body 

motions due to the absence of constraints. This very high number of modes in a quite narrow 

frequency range is due to the peculiarity of the geometry: as previously mentioned, the two 

diaphragms, delimitating the three chambers inside the muffler, are not welded to the external 

muffler walls. Therefore, these structural components show a high flexibility and this 

behavior influences the whole computational results. Anyway, modes related to these 

components don’t give an appreciable contribution to the acoustic behavior of the muffler. 

Only modes involving the walls and the tubes can sensibly influence the TL. Typical “wall 

modes” are reported in Figure 5.2.12a and 12b at 582Hz and 2723Hz, respectively. 
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a)

b)

Figure 12 – a) modal shapes at 580 Hz; b) modal shapes at 2723 Hz.

Table 5.2.I – Structural modes at 249K (underlined values represent fluid

 
Table 5.2.I reports the eigenvalues of the structural modes substantially influencing the 

acoustic muffler behavior at 294K.

In order to perform a coupled fluid

require the simultaneous presence of both a modal FE model and an acoustic BE model. 

During the calculations the structural modes are projected on the acoustic mesh. VNoise
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a) modal shapes at 580 Hz; b) modal shapes at 2723 Hz.

 

mode Eigenvalue 
(Hz) 

7 256 
… … 
15 565 
16 582 
17 592 
18 605 
19 608 
20 698 
21 762 
… … 
27 978 
28 1050 
29 1059 
30 1073 
31 1100 
32 1148 
33 1150 
34 1266 
35 1271 
… … 

uctural modes at 249K (underlined values represent fluid

resonances). 

reports the eigenvalues of the structural modes substantially influencing the 

acoustic muffler behavior at 294K.  

In order to perform a coupled fluid-structure analysis, many commercial BEM codes 

require the simultaneous presence of both a modal FE model and an acoustic BE model. 

During the calculations the structural modes are projected on the acoustic mesh. VNoise

commercial cross flow muffler  

 

 

a) modal shapes at 580 Hz; b) modal shapes at 2723 Hz. 

uctural modes at 249K (underlined values represent fluid-structure 

reports the eigenvalues of the structural modes substantially influencing the 

lysis, many commercial BEM codes 

require the simultaneous presence of both a modal FE model and an acoustic BE model. 

During the calculations the structural modes are projected on the acoustic mesh. VNoiseTM, 
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instead, use a different approach. In fact the structural modes are projected on the acoustic 

mesh during the import phase, and therefore, once the import of the structural modes is 

terminated, the user has to deal with a single model (the acoustic one), which will also contain 

the structural modes. 

In Figure 5.2.13, TL results of vibrating muffler structure are compared with the one 

obtained neglecting the structure flexibility. 
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Figure 5.2.13 – TL results from flexible and rigid structure analyses (T=294K). 

 

In correspondence of structural and fluid modes, Figure 5.2.13 reveals fluid-structure 

resonances inducing a TL variation. TL is almost everywhere unchanged, except around few 

frequencies, underlined in Table 1, that correspond to some of the structural modes. In 

particular, the structural modes around 1050, 1073 and 1100Hz generate a localized 

attenuation reduction. Oscillations induced by the other modes are indeed much more 

reduced.  

In this analysis, the effects of the external fluid motion on the structural modes have been 

neglected, and the modes are only coupled with the internal fluid. Typically this assumption 

can be considered reasonable, even if, it is possible to extend the analysis to the more realistic 

case of fully internal-external coupling, where both the internal and the surrounding fluids are 

coupled with the muffler structure. Since VNoise is based on a Direct BEM solver, the above 

mentioned problem can be faced with a fully coupled mixed domain approach or with a fully 

coupled multi domain approach [4]. 
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HYPOTHESIS OF FLEXIBILITY, 950K TEMPERATURE, ZERO MEAN FLOW  

The above coupled analysis, was also performed considering high temperature 

conditions: in particular both the flexible muffler structure and the inner air are considered at 

950K.  

In order to perform this kind of analysis, a new modal FE computation is required. 

Temperature, in fact, also affects the modal behavior of the structure, depending on the 

density (δs) and the Young Modulus (Ms) of the constituting material. The above mentioned 

characteristics vary with the temperature as shown: 

δs
294K = 7850 Kg/m3   

δs
950K =7662 Kg/m3  

Ms
294K= 210 GPa 

Ms
950K =180 GPa 

 

Table 5.2.II reports the structural modes at 950K obtained from the high temperature 

modal FE analysis.  

 
mode Eigenvalue 

(Hz) 

7 217 
… … 
17 506 
18 517 
19 520 
… … 
27 837 
28 898 
29 906 
30 918 
31 941 
32 982 

Table 5.2.II – Structural modes at 950K temperature. 

 

In Figure 5.2.14, coupled analysis results at 950K are plotted and compared with the 

previously obtained ones. Resonance frequencies of the coupled system are still underlined in 

Table 5.2.II. 



                                 Chapter 5 – 1D and 3D BEM analysis of a commercial cross flow muffler  

183 
 

Also in this case the deformability effect is localized around few frequencies where 

structural and fluid modes are in resonance. Because of the Young Modulus reduction at high 

temperature, resonance phenomena now occur at a reduced frequency.  
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Figure 5.2.14 – Coupled analysis comparison at high and low temperature. 

For this reason, the above mentioned simple stretching criterion relating high and low 

temperature attenuation curves (Figure 5.2.11, eq. 5.2.2), cannot be applied to this case. In 

fact, while at high temperature the TL profile stretches toward high frequencies, the position 

of the structure resonances shifts toward lower frequencies. Consequently, when the muffler 

structural behavior is involved in the analysis, the stretching criterion does not effectively 

reproduce the TL trend around the resonance frequencies.  

 

 

HYPOTHESIS OF RIGID WALLS, 294 AND 950K TEMPERATURE, 20m/s MEAN 

FLOW  

 

Finally, the combined effects due to the presence of a steady mean flow (20 m/s) and high 

temperature have been investigated.  

Unfortunately BEM solver shows its own limitations in this kind of analysis, because this 

method is based on conditions imposed on surfaces, and many problems occur when a 

velocity field must be described in a volume. Even if VNoiseTM solver is able to take into 
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account the presence of an imposed mean flow in each single domain, obviously, it is not able 

to compute the local values of the velocity field. This problem becomes relevant considering 

that this field is spatially variable inside the complex internal muffler geometry.  

A three dimensional TL analysis in presence of mean flow would hence require a FEM 

analysis. Moreover, secondary effects, related to the presence of internal sound-generating 

vortices (flow noise), may be considered with more complex Computational Fluid Dynamic 

(CFD) analyses. Detailed CFD results can be imported in a BEM solver, like VNoise, in order 

to also account for unsteady flow induced noise [8]. 

A simple 1D approach, directly solving the wave propagation equations, is really able to 

consider the effects of a steady mean flow on the TL. Due to the previously discussed high 

frequency limitations, the 1D analysis was limited to 900 Hz, as shown in Figure 5.2.15. 
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Figure 5.2.15 – GTPowerTM analysis at different temperatures and flow velocities. 

 

The presence of a mean flow determines a generally smoother trend with an increased 

and reduced attenuation below and upon 350Hz. The combined effects of increased 

temperature and mean flow presence come from the superimposition of the previously 

discussed variations (high frequency shift and smoother trend). 
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5.2.4 RADIATED SOUND PRESSURE LEVEL 

 

A linear Indirect BEM has also been utilized to evaluate the radiated sound pressure level 

(SPL) in the frequency range 0-1800Hz. It has been calculated at 1 meter distance from the 

outlet, once a harmonic particle velocity, with 1m/s amplitude, is imposed at inlet. 

A 1 meter diameter spherical microphone array has been simulated, whose center is 

coincident with the muffler center. Performed simulations have been carried out in the 

hypotheses of absence of reflecting objects surrounding the silencer, and they are focused on 

the evaluation of different contribution to the overall SPL: 

- Contribution due to the acoustic excitation exerted by the outlet. 

- Contribution due to the reflections of the rigid external muffler surfaces (shell). 

- Contribution due to the shell vibrations and caused by fluid-structure interations. 

To this aim, three different analyses have been carried out, i.e.: 

- Acoustic analysis of the simple muffler outlet section (see Figure 5.2.15). In this way 

only the first one of the above mentioned contribution is evaluated. 

- Acoustic analysis of the whole silencer, in the hypotheses of rigid surfaces. In this case, 

the first two contributions are carried out. 

- Complete acoustic analysis of the flexible structure, based on the interaction between the 

muffler surfaces and the internal/external air. In this simulations, all the above mentioned 

contributions are taken into account. 

 

Figure 5.2.15 –  BEM model constituted by the outlet and the microphone array.  
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The analyses 2) and 3) obviously include the presence of the muffler (even though under 

different hypotheses on the surfaces), which is depicted in the Figure 5.2.16, where two 

virtual microphone (A and F) are highlighted . 

In order to perform the first two analyses, a preliminary studied has been carried out by 

imposing an “aperture” boundary condition at outlet. The obtained results, in terms of 

pressure and gradient dp/dn, have been imported on a new model: in case of the analysis 1), 

this model is made up by the outlet itself, which acts as a source radiating outside the muffler; 

in case of the analysis 2), all the infinitely rigid panels of the silencer are involved. 

In the first case, the pressure distribution on the microphone array is almost uniform, since the 

outlet is close to the center of the spherical array, and the problem can be traced back to the 

wave propagation of punctual source. 

 

 

Figure 5.2.16 – BEM model constituted by the muffler and the microphone array (analyses 

2 and 3). Two microphone locations are highlighted (A and F). 

 

The results, in terms of sound pressure levels (in dB) calculated at the position A in the 

investigated frequency range, are plotted in Figure 5.2.17. 

As expected, very small reflecting phenomena are present at low frequencies, since they 

occur when the wavelengths are lower than the characteristic dimensions of the object. This 

condition, for the considered geometry, is satisfied since 1000-1100 Hz, and in the frequency 

range 1150-1390 Hz the difference between the calculated SPLs in A in the two analyses is 

almost 10 dB. In the range 1070-1520 Hz the SPL calculated in A in absence of reflecting 

phenomena is higher than the one in presence of them. This is due to the disruptive 

interferences between direct and reflected waves,  related to the different paths covered by 

this two kind of waves, which generate disruptive interferences. 
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Figure 5.2.17 – Analyses 1) and 2): SPL carried out at the microphone location A. 

 

A fully coupled multi domain approach has been utilized in order to perform the third 

analysis: this kind of approach is able to take into account the interaction of the structure with 

both internal and external fluid domain surrounding the muffler. A modal FEM analysis of the 

unconstrained structure is required to evaluate the eigenvalues and the eigenvectors of the 

unconstrained structure. An outer air domain has been defined and physically connected to the 

inner one through a condition of physical continuity at outlet. [4]. 

A benchmarking between the SPL curves calculated in the microphone position A 

through the analyses 2) and 3) is shown in Figure 5.2.18. As expected, the levels obtained 

when the fluid-structure interaction is accounted, are almost always higher than the other 

ones, since, in this case, the structure itself radiates noise. Around 590Hz, a consistent 

difference between the calculated SPL in the two analyses is noticeable, and confirmed by the 

presence of the mode at 582 Hz (see Table 5.2.I) and by the sharp TL trend, at the same 

frequency, in the Figure 5.2.13 (coupled TL analysis). Similarly at 700, 980, 1050, 1100, 

1150, 1340m 1450, 1490 Hz. 

 

SPL at the microphone location A 
 

Analysis 2): results including shell reflections 
Analysis 1): results without shell reflections 
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Figure 5.2.18 – SPL calculated in the position A through the analyses 2) and 3). 

 

In the Figure 5.2.19 the SPLs, calculated in the position F and A through the analysis 3), 

are plotted. In F, the levels calculated in the range 600-1260 Hz are higher than the ones 

simulated in A. In fact, the microphones A and F are, respectively, in front of the outlet and 

aside the muffler. For this reason, the first one is more exposed to the noise radiated by the 

outlet, and the second one to the noise coming from the muffler vibrating surfaces. Obviously 

in corresponding of the resonance frequencies, the second one is higher than the first one. 

 

 

5.2.5 CONCLUSIONS 

Pros and cons of using 1D acoustic non linear in time domain and 3D acoustic linear 

BEM in frequency domain for TL evaluation of a two tubes perforated muffler have been 

analyzed in terms of accuracy, computing time and problem formulation. 
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 Figure 5.2. 19 – SPLs calculated in the positions A and F through the analysis 3). 

 

Each methodology present its own peculiarities and limitations which vary with the 

frequency range, and on the assumed physical hypothesis and operating muffler conditions.  

In the hypothesis of a infinitely rigid muffler structure, a good agreement between the 1D 

and BEM computed TL has been found below 450 Hz, when the air temperature is fixed at 

294K. As frequency is increased, the 1D results deviate from BEM predictions because of the 

non planar wave propagation. Due to the very reduced computational effort required, the 1D 

model is the preferred approach when the low frequencies muffler behavior is under 

investigation. On the other hand, when a wider frequency range is of interest, a 3D analysis is 

mandatory. 

The TL curve obtained considering 950K air temperature present the same peaks of the 

previous profile, but stretched toward higher frequencies in accordance with the ratio between 

the sound velocity at the 950 and 294 K. In this case the matching between the 1D and 3D 

results is extended up to 900 Hz. 

In order to take into account the effect of the muffler structure flexibility, a direct modal 

FEM analysis has been realized, too. Flexibility effects are localized in proximity of the 

frequencies where air and structure modes are in resonance. In this case, a different high 

temperature behavior has been found, depending on different temperature effects on speed of 

sound and material characteristics.  
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The effects induced by the presence of a mean flow have been finally investigated with 

the 1D method. In this latter case, a generally smoother trend has been obtained both at low 

and medium frequency. 

In the last performed investigation, the SPL at 1 meter distance from the center of the 

muffler, has been evaluated, once a white noise with a certain magnitude is imposed at inlet. 

Contribution due to the acoustic power radiated at outlet has been separated by the ones due 

to the wave reflections on the external surfaces (considered infinitely rigid) and to the surface 

vibrations. Contributions related to the reflections are quite small, and the SPL values rise 

aside the muffler when air-structure resonance phenomena are taken into account. 

The presence Experimental analyses are obviously needed in order to validate the 

presented results. 
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5.3 VALIDATION OF THE 1D AND 3D BEM  ANALYSES FOR THE PREDICTION OF 

PERFORMANCES OF A COMMERCIAL CROSS FLOW MUFFLER  

 

The content of this paragraph widely refers to the paper: 

 

D. Siano, F. Auriemma, F. Bozza, H. Rammal, “Validation of 1D and 3D analyses for the 
prediction of performances of an automotive silencer” , SAE Paper 2011-24-0217. 
 

 

In this work, the previous 1D-3D acoustical analysis of a commercial muffler, has been 

improved and experimentally validated. Features related to the manufacturing process, like 

the coupling of adjacent surfaces and the actual shape of  components, have been noticed to 

heavily affect the muffler behaviour. Hence, although numerical analyses are usually 

performed on ideal geometries (perfectly matched and shaped), schematizations utilized for 

acoustic simulations of real mufflers are being suggested to do not neglect these important 

aspects. On the other hand, for a given initial muffler design, the manufacturing process is 

assessed to be a critical aspect also for its remarkable effects on the acoustics. 

The results have been carried out under different muffler operating conditions related to 

different mean flow velocities and presence or not of internal insulating material. 1D analyses 

have been performed by implementing a commercial software, solving the nonlinear flow 

equations which characterize the wave propagation phenomena. 1D approach has also been 

utilized to evaluate the fluid dynamic behaviour of the studied muffler in terms of pressure 

drop when a mean flow is imposed.  

3D results are obtained in absence of mean flow by using a commercial software based 

on Boundary Element approach and solving the three dimensional Helmholtz’s equation.  

Finally, during the experimental tests, the muffler has been treated as an acoustic two-

port element.  

 

 

5.3.1 PECULIARITIES OF THE MUFFLER STUDIED  

The system under investigation is a two perforated tube muffler (see Figure 5.2.1) with 

two expansion chambers and a transition chamber. An accurate description of the nominal 

geometry is given in the paragraph 5.2 [15-16] and it is briefly summarized here: 
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• Total length 303mm. 

• Quasi-elliptical cross section with diameters 133mm and 216mm. 

• 3 chambers with different lengths (110mm, 90mm, 103mm). The first one and the last 

one are filled with 150g glass wool.   

• 2 perforated tubes, with 37mm diameter, lying in different horizontal planes (not 

symmetrical structure) 

• Material: aluminized carbon steel P04 

• Surface thickness: 1.2 mm (external shell) and 1.5 (tubes and baffles) 

• Diameter holes: 3mm 

• Porosity: 4.5%  

 

As shown in Figure 5.3.1, the absorptive material is included in two blisters which melt 

up when the muffler reaches a sufficiently high temperature, leaving the wool depositing on 

the lower walls.  

In this work the manufacturing features of the muffler have been deeply studied. In fact, 

the muffler under observation presents many peculiarities, due to the construction model, 

which make more difficult the modelling process needed for numerical simulations. In Figure 

5.3.2a the geometry of tubes end orifice is shown. Also some welding points between one of 

the two tubes and one internal baffles can be observed.  

 

 

 

Figure 5.3.1 – A photo of the tested muffler. The muffler has been opened to exhibit its 

internal design. 
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Since this kind of junction is punctual and not circumferential, same leakages really exist 

between the two chambers separated by the baffle. In Figure 2b the whole internal muffler 

configuration can be seen. The two internal baffles are welded only to the tubes, and coupled 

to the external shell by a punctual strength coupling, which involves other leakages between 

the chambers separated by this kind of baffles. In figure 2c the technological irregularities of 

the holes shape due to the punching process are shown.  

a)  

 

b)  

 

c)  

Figure 2 – a (left): tube end orifice; b (center): core muffler; c (right): perforates. 
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All the above peculiarities have been taken into account in numerical modeling processes 

in order to obtain good correlation with the experimental data, as shown in results section. 

 

 

5.3.2 NUMERICAL SIMULATIONS  

 

The utilized 1D and 3D models have been widely presented in the paragraph 5.1 and 5.2. 

In this sections the previous analyses has been extended in order to include the presence of the 

absorptive material within the simulations. In case of 1D this implies the choice of a proper 

friction coefficient for the quasi 3D elements schematizing the chambers. In case of the 3D 

BEM approach, proper “wool domains” must be defined. In fact, as previously explained, a 

multi domain approach has been utilized in the BEM approach, and in Figure 5.3.3 the 

surfaces with interface BC defining the wool domains are depicted.  

Also in this case the acoustic analysis requires the specification of the acoustic impedance 

of perforations, and the Sullivan and Crocker [6] (see Formula 5.2.1) has been utilized. As 

previously mentioned, this expression is valid in absence of flow, but also the requirement of 

no contact of absorptive material with the holes must be satisfied. Since 3D analyses have 

been performed in absence of mean flow, and the wool is not compressed and does not 

completely fill the first and third chamber (see Figure 5.3.3), the application of the 5.2.1 can 

be accepted.  

 

Figure 5.3.3 – Groups with interface BCs defining the wool domains. 
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In BEM analysis, in addition to the use of multi-domain approach, the absorbing 

materials can be modelled also through other techniques, like the ‘surface-impedance’. This 

one is mainly used with thin absorbing surfaces, and requires the knowledge of the material’s 

impedance. To achieve this, experimental tests on absorbing material samples must be carried 

out, using an impedance tube. In several situations the ‘surface-impedance’ approach could, in 

principle, be the preferred solution (for its modelling simplicity), but it can be hardly applied, 

due to the need of experimentally performed impedance tests. 

In this work, the ‘multi-domain’ approach has been preferred. In fact, even though, in this 

case, the modelling phase is  more complex, the evaluation of the proper acoustical 

parameters could be easily obtained from the flow resistivity data of the considered material. 

The flow resistivity is mainly related to the packing density of the material and to the fibre 

diameter [17].  

Actually, a third approach is also available in VNoise code: it consists of a double step 

procedure. Firstly, an impedance tube is virtually simulated with a multi-domain approach, 

permitting to evaluate the impedance (or, better, the admittance) of the desired material 

sample. Thereafter, the numerically evaluated admittance is applied to the full model with a 

surface impedance BC.   

 

 

5.3.2 EXPERIMENTAL DATA  

Numerical results obtained by the previously described 1D and 3D simulations have been 

validated with experimental data. The experimental work has been carried out in the acoustics 

laboratory at Tallinn  University of Technology, employing a dedicated test facility designed 

for acoustic characterization of two-port flow duct elements in hot flow conditions. Complete 

description of  test rig and of the utilized experimental technique can be found in the Chapter 

4 [18]. Resuming for ease of reading, the silencer has been treated as a two port source in 

order to describe its acoustic behavior through a transfer matrix (see Figure 5.3.4). A two-

source method is employed to set up the two required and independent test states. The 

classical two-microphone approach has been used to obtain complex pressure amplitudes of 

the travelling acoustic waves at the inlet and outlet silencer cross-sections. A centrifugal 

blower and an electrical heater can be utilized to simulate the presence of a hot flow (not 

considered, however, in this work). Additionally, the pressure drop over the muffler has been 
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determined for different flow velocities, by using two static pressure sensors positioned across 

the muffler  [18].  

 

Figure 5.3.4 – A sketch of the test rig utilized for TL evaluation. 

 

The effect of shell vibrations on the propagation of sound has been experimentally taken 

into account. In fact, the first target of the experimental campaign has been the validation of 

the numerical results obtained in the hypotheses of rigid surfaces, and the real silencer has 

been evidently suspected to provide lower attenuation of sound due to vibrating surfaces. This 

obviously leads to a deviation from the 1D and 3D non-coupled simulation results. In order to 

avoid unwanted shell noise and uncontrolled TL an additional feature was designed to the rig. 

A wooden box was set up around the muffler and filled with sand for effective damping of the 

shell vibrations. A photo of the measurement section with the sand box is presented in Fig. 

5.3.5: 

 

Figure 5.3.5 – A sandbox used to eliminate the shell noise and shell vibrations. 

Table 5.3.I summarizes the experimentally tested operating conditions and 1D or 3D 

analyses carried out to predict the measured TL. 
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NO WOOL TESTS 
Temperature, K Flow velocity, m/s Model 

293 no mean flow 1D and 3D 
298 20 1D 
318 40 1D 

WITH WOOL TESTS 
Temperature, K Flow velocity, m/s Model 

293 no mean flow 1D and 3D 
300 20 1D 
326 40 1D 

Table I – Experimental operating conditions and performed numerical analyses 
 

5.3.3 RESULTS AND DISCUSSION 

NO WOOL RESULTS 

In this section, 1D and 3D BEM results, under the common hypothesis of absence of 

inner insulating material and infinitely rigid muffler surfaces, are compared to the ones 

experimentally obtained under the same conditions. For sake of truth, the sand box utilized 

during the test to avoid surface vibrations cannot actually prevent baffles vibrations since 

these latter, as previously mentioned, are not welded on the external shell.  

In Figures 5.3.6 and 5.3.7, experimental results are compared to the ones obtained with 

1D and BEM approaches. The actual constitutive peculiarities, including leakages between 

chambers and cross area variations at inlet and outlet tubes, have been taken into account in 

“Refined schematization” results. Furthermore, results coming from the analyses explained in 

paragraph 5.2 [15] are shown, too. They refer to the ideal muffler geometry and are indicated 

as “Initial schematization results”. 

The “Refined” 1D and 3D schematizations include eight holes with 3mm diameter added 

to each baffle, in order to obtain a global area which is reasonably similar to the observed 

leakage areas (see Figure 5.3.8). Moreover, they take into account small cross section 

variations measured on the actual muffler. The 3D “Refined” mesh also incorporates a more 

detailed schematization of the ending tube section. 

The frequency range investigated extends up to 1600Hz in case of experiments and 3D 

simulations, while for 1D simulations it is stopped at 1200Hz, due to the well-known 

limitations of the 1D approach. A very good agreement between experimental data and 

“Refined” 1D results is evident at low frequencies. This is the frequency range where the 

wave propagation can be considered planar and therefore the pressure distribution across each 

muffler cross-section can be considered constant. The two curves fit well up to around 850 



                                                                      Chapter 5 – Validation of the 1D and 3D analyses   

198 
 

Hz, while at higher frequencies, the higher order modes start to appear in the muffler 

chambers, and the 1D model loses its accuracy.  

“Refined” 3D analysis gives results quite comparable to previous ones at low frequency 

but, as expected, it is able to reproduce, with remarkable success, the multi-dimensional shape 

of acoustic waves at high frequencies, too. However, it must be underlined that the latter 

approach is substantially more time consuming compared to the 1D (more than 1 day versus 

less than 1 hour). 

The comparison between “Initial” and “Refined schematization” results in Figures 5.3.6 

and 5.3.7 also demonstrates that the included refinements largely affect the accuracy of TL 

prediction. In particular, the leakages between the chambers determine an increased TL at 

very low frequency: in fact they constitute an acoustic connection between the three cavities, 

which tends to virtually increase the chamber volumes. However, they also introduce a 

substantial decrease of the two attenuation peaks at 700 Hz and 1200 Hz.  

Basing on the above considerations, it comes evident that the manufacturing process 

should be critically assessed by the muffler makers, since it seems to play a remarkable effect 

on the acoustic behaviour. The latter is very different from the one conceived during the 

design phase on the ‘ideal’ geometry. Contemporary, an accurate acoustic simulation of a 

‘commercial’ muffler requires a detailed description of all the apparently minor geometrical 

elements of the device. Current literature is, in fact, full of well-matched numerical and 

experimental data even if, usually, they do not refer to a commercial low-cost device, whose 

simulation, as demonstrated, is much more complicated. 

 

Figure 5.3.6 – 1D and experimental TL data. No wool and no mean flow. 
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Figure 5.3.7 –   3D-BEM and experimental TL data. No wool and no mean flow.  

 

 

Figure 5.3.8 – Quasi 3-D and 0-D elements utilized for refined 1D schematization. 

 

Of course, the detailed knowledge of the pressure wave distribution within the muffler is 

of fundamental importance for improving its acoustical behaviour at the design phase. As an 

example, the 3D pressure distribution, due to the contribution of the higher order modes in the 

cavities, is clearly noticeable in Figure 5.3.9, at a frequency of 1390 Hz.  
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Figure 5.3.9 – 3D analysis. Pressure amplitude distribution at 1390 Hz. 

 

Another important parameter affecting the muffler behaviour is the presence of a mean 

flow crossing the device. In fact, it determines a partial levelling of the TL peaks and troughs, 

which can be particularly useful at low frequency, where main engine orders occur [19]. The 

above effect is clearly depicted in Figures 5.3.10 and 5.3.11, showing the results of imposed 

mean flows of 20 and 40m/s. Due to limitations of the employed 3D code, only 1D results are 

discussed in the following. At 20 m/s, a good matching between experimental and numerical 

results is noticeable up to 850Hz (see Figure 5.3.10). Once again, the “Refined” results better 

reproduce the overall trend and particularly the attenuation peak around 700 Hz. In presence 

of a higher mean flow (40 m/s, Figure 5.3.11) a slightly lower accuracy is found, even if the 

TL trend is still fairly well reproduced in the whole investigated frequency range. Obviously, 

1D approach cannot take into account the presence of secondary effects related to the 

presence of internal sound-generating vortices (flow noise), which extends on the broad band, 

definitely producing a source of discrepancies with experimental results. 

Actually, mean flow should yield a higher TL, by making it pass through perforated 

pipes, whereby a large aero-acoustic resistance is induced [19]. Looking at numerical results 

(which are less scattered and extended at lower frequencies than the experimental ones), the 

above trend is confirmed only up to 450 Hz. Beyond this frequency range, the presence of a 

mean flow has been found to exert a negative effect on TL: as an example, the TL around 800 

Hz worsens of about 12-15 dB when increasing the mean flow from 20 to 40 m/s. 
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Figure 5.3.10 –  1D and experimental TL curve. No wool and 20m/s mean flow. 

 

 

Figure 5.3.11 – 1D and experimental TL curve. No wool and 40 m/s mean flow.  

 

Calculations with imposed mean flow also allow to estimate the fluid-dynamical 

behaviour of the muffler, in terms of realized pressure losses. Table 5.3.II summarizes the 

measured and predicted pressure drop (∆p) through the muffler at different mean flow 

velocities. The good agreement found implies that correct global values of discharge and loss 

coefficients have been imposed on the holes, the tubes and the orifices utilized to simulate the 

leakages between the chambers. This also means that 1D analyses can be successfully 

employed to contemporary characterize both acoustical and fluid-dynamical aspects, allowing 

to perform an overall optimization of the device. 
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Mean flow velocity, m/s Measured ∆p, mbar Simulated ∆p, mbar 
20 22 22 
40 82 84 

Table 5.3.II – Measured and Predicted Pressure Losses – No wool. 

 

WOOL EFFECTS  

In the present study, numerical calculations have been carried out also considering the 

presence of inner insulating material. Main wool characteristics are: fibre material density of 

2700 kg/m3, fibre diameter of about 30µm and packing density4 approximately equal to 79 

kg/m3. This information has been deduced by using an electronic microscope of accurate scale 

(Kern). Figure 5.3.12 shows the structure of the glass wool fibres magnified at the 

microscope. 

 
 

Figure 5.3.12 – A magnified photo of the glass wool fibers used in the muffler. 

 

A slice of absorbing material of thickness s, exposed to a ‘small’ steady mean flow 

velocity U, realizes a pressure drop, ∆p, which is usually quantified by its ‘flow resistivity’, σ 

(rayl/m), defined as [17]: 

                                                                      Us

p∆=σ
                                                          (5.3.1) 

 

The latter parameter can be estimated basing on several formulations available in current 

literature [17]. Most of them are empirical or semi-empirical relationships, dealing with 

different fibre materials and diameters. For randomly oriented glass fibres, with a relatively 

large ‘constant’ diameter d (greater than 15µm), the following equation can be used: 
                                                 
4 Packing density (or bulk density) is obtained by dividing the weight of a wool bag per bag volume (assessed to be around the 79% of the 
chamber volume). 
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where µ is the dynamic viscosity of the air (1.84 × 10–5 Pa s), ρf  the material density and ρm 

the packing density5.  

For randomly oriented fibres, characterized by a diameter distribution around a mean 

value (dav), the following formula is indeed more appropriate: 
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As far as 3D analyses are concerned, properties of wool-included domains have been 

automatically generated, as a function of material type (fibre glass) and flow resistivity. 

Equations (5.3.2) and (5.3.3), with reference to the above mentioned wool data, respectively 

provide σ = 2199 rayl/m and σ = 1810 rayl/m. An intermediate value (2000 rayl/m) has been 

hence used in 3D simulations.  

Concerning 1D analyses, indeed, a “flow resistance coefficient”, CD, must be specified [2]:  
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                                                   (5.3.4) 

 

With reference to the previously estimated values of wool parameters and flow resistivity, 

eq. (5.3.4) furnishes a flow resistance coefficient equal to 0.1. In this way, both 1D and 3D 

calculations employ exactly the same characterization of the insulating material. 

Results obtained in absence of mean flow are depicted in Figure 5.3.13. Comparing it 

with no wool results (Figure 5.3.6 and 5.3.7), an expected improvement of acoustical 

performance can be noticed. The TL enhancement is extended on the broad band frequencies: 

the maximum peak is increased of about 12dB, but the most useful performance enhancement 

is related to the levelling of the troughs at low (250 and 450 Hz) and medium frequencies 

(900-1000Hz). An increase of about 20dB has been found in the latter frequency range. Both 

1D and 3D results correctly reproduce the experimental trend, with a slightly better accuracy 

                                                 
5 It is easy to show that (1-ε) is the material porosity [16]. 
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of 1D analysis at low frequency and a better 3D forecast at medium-high frequency (600-

1600Hz).  

 

Figure 5.3.13 –  1D, 3D and experimental data. Presence of wool, and no mean 

flow. 

 

 

Figure 5.3.14 – 1D and experimental TL curve. Presence of wool and 20m/s mean 

flow. 

 

Finally, 1D calculations have been carried out to estimate the effects of contemporary 

presence of insulating material and mean flow (Figures 5.3.14 and 5.3.15). Once again, a 

satisfactory agreement between numerical and experimental data is shown. If compared to the 

analogue results without wool (Figures 5.3.10 and 5.3.11), it comes evident that the 

contemporary presence of wool and mean flow determines the almost complete disappearing 

of the trough at about 900 Hz. Also in this case, 1D analyses provide the estimated pressure 
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losses, compared to experimental findings in Table 5.3.III. As expected, higher values are 

obtained, due to additional losses exerted by wool presence. Moreover, the shown agreement 

is a confirmation that a good estimate of flow resistivity and wool parameter have been 

realized. 

 

Figure 5.3.15 –  1D and experimental TL curve. Presence of wool and 40m/s mean 

flow.  

 

Mean flow velocity, m/s Measured ∆p, mbar Simulated ∆p, mbar 
20 35 33 
40 129  118 

Table 5.3.III – Measured and Predicted Pressure Losses – with wool. 

 

 

5.3.4 FURTHER EXPERIMENTAL STUDIES  

As explained in the paragraph 5.3.2, the experimental tests performed to validate the 1D 

and 3D analyses have been made in a way to reduce the shell vibrations.  

Anyway, in this section, a comparison of the measured TL for the real silencer in case of 

free outer surfaces and in damped conditions, is presented. In Figure 5.3.16, the results have 

been obtained after eliminating the inner wool. In Figure 5.3.17 the wool is accounted. 

As can be seen in Figure 5.3.16, the TL curve of the dampened structure, loses most of 

the high frequency peaks believably related to the eigenmodes of the vibrating shells.  

The difference between TL results of the silencer without the wool and extra damping 

added is more distinct. The difference of the TL curves is more dominant in the absence of 
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wool due to the more resonant behaviour of the silencer, lacking the absorptive effect of the 

wool. 

 

Figure 5.3.16 – Comparison between the  measured TL of the muffler without wool, 

with free and with dampened outer shells. 

 

 

Figure 5.3.16 – Comparison between the  measured TL of the muffler with wool, with 

free and with dampened outer shells. 
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BEM analysis is required for the “Refined configuration”, and it is still in progress. Anyway, 

in the Table 5.3.III, a list of resonance modes and eigenvalues of the initial muffler 

configuration is extracted from the Table 5.2.I (Initial configuration, without wool). It is 

noticeable how several resonance frequencies, indicated in the table with a star, can also be 

detected in the Figure 5.3.15, where they are indicated with an arrow.  

For sake of truth, in the experimental tests, the use of the box filled with sand, does not 

dampen the vibrations of the inner surfaces, which are almost free to vibrate. Consequently 

the effects of the vibrations of these surfaces cannot be highlighted. Contrariwise, the 

numerical fluid-structure analysis presented in the paragraph 5.2, takes into account the 

vibrations of all the muffler surfaces. For this reason, probably, the number of the resonance 

frequency founded is higher than the one highlighted in Figure 5.3.16. Consequently, also the 

modal analysis on the initial muffler schematization results to be quite promising. 

mode Eigenvalue 
(Hz) 

16 582 
19 608 
20 698* 
21 762* 
28 1050 
30 1073 
31 1100* 
33 1150* 
34 1266 
… … 

Table 5.3.III – Fluid-structure resonances of the “initial muffler configuration”.  

 

5.3.5 CONCLUSIONS 

1D and 3D BEM models, utilized in a previous work for simulating the acoustical 

behaviour of a commercial silencer, have been improved and extended. The analyses, in terms 

of transmission loss and pressure drop, have been carried out at different mean flow velocities 

and with or without the presence of absorbing material within the device. Both TL and 

pressure losses have been experimentally verified in each of the above operating conditions. 

Main results of the paper are listed below: 

• Accurate acoustic simulations of a commercial low-cost device require a detailed 

description of all the apparently minor geometrical elements of the device, mainly 

determined by the manufacturing process. 
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• In particular, its quality (i.e. welding and strength surfaces coupling), may determine 

the presence of leakages between the chambers, which has been found to remarkably 

affect the acoustical behavior. Leakages, in fact, constitute an acoustic connection 

between the muffler cavities, tending to virtually increase the chamber volumes, thus 

increasing the TL at low frequencies and worsening it at medium frequencies.  

• For this reason, muffler makers are advised to deal with the above consideration. The 

quality of the manufacturing process should also be taken into account by the 

simulations, at design phase. 

• 1D results for the considered silencer are proved to be accurate up to 850 Hz, since 

this approach, as known, is only suitable in the frequency range where a plane wave 

behaviour establishes. BEM technique has been used only in absence of mean flow: it 

is much more time consuming, but it is able to provide good results in the whole 

investigated frequency range (0-1600 Hz).  

• 1D calculations carried out with the presence of an imposed mean flow allow to 

contemporary estimate acoustical and fluid-dynamic behaviour of the muffler, giving 

the possibility to provide information for the overall muffler optimization.  

• As expected, the presence of an insulating material is found to produce a smoother TL 

profile across a broad band frequency range, while, however, determining a non-

negligible increase of pressure losses. 

 

Overall results demonstrate that the combined employment of 1D and 3D models, 

coupled to an accurate geometrical description and schematization of the device, is able to 

characterize the effects of most influencing parameters controlling the acoustic and fluid-

dynamic behaviour of a commercial automotive silencer.  

In addition, experimental analysis the vibro-acoustic effects of the silencer outer shells 

have been studied and it was found that the lack of stiffness in the muffler structures can 

significantly reduce the silencing effect, in particular in the absence of absorptive materials 

and at the higher frequencies. The presented results are in agreement with the modal analysis 

of the “not refined” muffler schematization presented in the paragraph 5.3. 

Further studies are oriented to the development of fluid-structure analysis of the “refined 

schematization” presented in this paragraph.  
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5.4 ACOUSTIC AND FLUID -DYNAMIC OPTIMIZATION OF AN AUTOMOTIVE 

COMMERCIAL CROSS FLOW MUFFLER  
 

The content of this paragraph widely refers to the papers: 

 

F. Auriemma, “Acoustic and Fluid-dynamic Optimization of an Automotive Muffler”, in 
submission.  
 

In this section, acoustic and fluid-dynamic optimizations of the previously studied 

commercial muffler have been carried out. To this aim, an external optimizer, based on a 

genetic algorithm, has been coupled with the 1D solver in two different optimizations: the 

first one has been addressed on the improving of the muffler TL,  in absence of mean flow, 

and in 100-800Hz frequency range. The second one has been focussed on the best trade off 

between acoustic and fluid-dynamic muffler performances, in terms of TL and ∆p in 100-

400Hz frequency range.  

The 3D BEM approach has not been used in the optimization process since it is much 

more time consuming, it is suitable and it has been validated only in absence of mean flow. 

Moreover, the investigated frequency range, which correspond to the range where most 

critical frequencies occur in typical operating conditions, is widely covered by the 1D 

approach. 

The optimization study of a muffler has recently been object of study of several scientific 

works, usually based on a a numerical decoupling technique to evaluate the muffler 

performances, and on a genetic algorithm (GA) as optimizer. Even though a variety of 

interesting results have been carried out with this approach, three remarkable aspects are 

frequently neglected:  

 

- The effect of the wool, often included in these devices.  

- The requirement of minimizing the back pressure exerted when the exhausted gases 

flow thorough the muffler. 

- The presence of leakages between the three chambers (due to the manufacturing 

process or to baffle holes). 

In this work, all these aspect are taken into account. 
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5.4.1 1D TL  AND PRESSURE DROP DATA  

Since the 1D muffler analyses, performed on the “refined schematization” and shown in 

the paragraph 5.3, have been experimentally validated, all the muffler schematizations utilized 

in the two optimization processes are obtained by conveniently modifying the geometrical 

data of this refined model. At each simulation the TL is calculated and averaged in a certain 

frequency range. The first optimization is focused only on the acoustical muffler 

performances, and the TL is calculated and averaged in the 100-800 Hz frequency range, i.e. 

the plane wave region for the considered geometry. In this way, the objective function is 

defined as: 

                                                        
∫−

= f

i

dffTL
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if

AV

ω

ω
)(
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 (5.4.1)

 

where ff , fi and TL(ω) are respectively the frequencies of 100Hz, 800Hz, and the function 

transmission loss. 

In the second optimization, also fluid-dynamic behavior is accounted: the TLAV, when 

ff=400 Hz and fi=100 Hz, and the pressure drop across the muffler when a 29 m/s mean flow 

is imposed at inlet. 

 

 

5.4.2 MUFFLER OPERATING CONDITIONS  

The above mentioned values of the imposed mean flow velocity and of the investigated 

frequency range in the second optimization process, can be easily explained considering the 

coupling of the muffler with an ICE. The muffler under investigation, in fact, is designed to 

equip small car engines, and one of the two optimization procedures shown in the next 

paragraph has been carried out considering the following engine characteristics and operating 

conditions: 

STROKES  4 
NUMBER OF CYLINDER 4 

DISPLACEMENT (V) 1 LITRE 
LOAD WIDE OPEN THROTTLE 

REGIME 3500 RPM 
VOLUMETRIC EFFICIENCY (λ) 0.75 

MEAN GAS TEMPERATURE IN THE MUFFLER 473 K 

Table 5.4.I – Engine characteristics and operating conditions 

 

The fundamental frequency of an ncyl cylinders engine is F0: 
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ε600

rpm
nF cyl=

                                                                
(5.4.2) 

were rpm are the engine revolutions per minute, and ε equal to 1 or 2 for a 2 stroke or a 4 

stroke engine respectively. For a four stroke 4 cylinder engine, it corresponds to the second 

engine order frequency, where the -k engine order frequency is defined as 

600

rpm
kF =

                                                                   
(5.4.3) 

 

This frequency and its entire multiplies detect the most critical acoustic conditions due to 

the discharging process. For the engine in Table 5.4.I, F0=117Hz . Moreover, the mass flow 

rate discharged by a 4 stroke 4 cylinder engine is: 

 

60
λ⋅⋅=

• rpmV
m

                                                              
(5.4.4) 

 

For the investigated case, 
•
m = 0.002188 m3/s. Considering a 31mm diameter inlet muffler 

cross section, a 29m/s mean flow velocity is obtained.  

For these reasons, in order to optimize the acoustic and fluid-dynamic behaviour of the 

muffler when coupled with the above engine, a 29m/s mean flow velocity at 473K  

temperature is imposed at inlet. In these conditions, the pressure drop is calculated, and the 

TL is carried out in 100-400Hz frequency range. This latter has been selected in order to take 

into account the 2nd, 4th, and 6th engine order frequencies at 3500rpm (117, 233 and 350 Hz 

respectively), which are usually the most critical ones for these kind of problems.  

 

 

5.4.3 OPTIMIZATION PROCEDURE  

In this work, the two mentioned optimization procedures have been implemented through 

the use of an external optimizer (ModeFRONTIERTM) coupled with the 1D solver 

GTPowerTM and two MatlabTM routines.  
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The BEM 3D approach can be also utilized to optimize the muffler geometry, when an 

automatic mesh generator is coupled to the solver in the optimization process. Anyway, the 

3D calculations are much more time consuming than the 1D ones. Moreover the BE solver 

utilized in the previous works, does not take into account the presence of flow and it is not 

suitable to evaluate the pressure drop. For this reason, in optimization procedure presented in 

this work, the 1D approach has been preferred. 

In both procedures, the optimized parameters are the same, and listed in table 5.4.II 

together with their initial value and their range of variability. Briefly, ten independent degrees 

of freedom have been considered, including the lengths of the three inner chambers, the tube 

diameters and the tube ending section diameters, the number and the diameter of the holes on 

perforate tubes, and the extension of the perforated area on tubes. In Figure 5.4.1 a sketch of 

the initial configuration including small orifices on baffles, tube perforations and final end 

tube constriction, are depicted in order to clarify the meaning of the above mentioned 

parameters. a, b, and c parameters obviously constitute two degrees of freedom, since their 

sum must be equal to the total muffler length. Orifice diameters on the baffles, wool quantity 

and characteristics are not “parameterized” since they respectively depend on the 

manufacturing process and on initial design choices.  

 

Parameter name Meaning Initial value Range of variability 
a Length of the 1st chamber 110mm 60mm;110mm;155mm 
b Length of the 2nd  

chamber 
90mm 50mm;95mm;140mm;190mm 

c Length of the 3rd 
chamber 

103mm Depending on a, b and total 
muffler length 

Dtube Tubes diameter 37mm [29mm:45mm] step 2mm 
Dend Tubes ending section 

diameter 
15mm [10mm:20mm] step 2mm 

Dpor Holes diameter of 
perforates 

3mm [2.4mm:3.6mm] step 0.15mm 

DSholes Number of holes per 
10mm perforated tube 

10.28 [2.8:19.7] step 0.92 

L1  
 

Non-perforated lengths 
on tube 

10mm [0mm:75mm] step 5mm 
L2 20 [0mm:95] step 5mm 
L3 40 [0mm:70mm] step 5mm 
L4 10 [0mm:75mm] step 5mm 

Table 5.4.II – List of the  parameters to optimize, including their initial values and  the 
variability range. 
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Figure 5.4.1  – Sketch of the initial configuration including parameters to optimize. 

 
 

The logical development of the two above mentioned optimization problems within the 

ModeFRONTIER™ environment are explained in Figure 5.4.2a and 2b respectively.  

a) 

 

b) 

 Figure 5.4.2  – Workflows of the optimization problems developed in ModeFRONTIER 

environment. a) single objective,  b) double objective problem. 
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In order to couple the 1D software with the external optimizer, two MatlabTM routines 

have been implemented: once a set of values of the considered parameters has been chosen by 

the optimizer, the first routine checks the congruence of a, b, c, L3 and L4 in order to avoid 

unrealistic conditions. These latter might occur when the total chamber length (a+b+c) or total 

tube lengths (due to L3 and L4 dimensions) are higher than the muffler length (303mm). In 

this case, a proper flag kills the simulation and a succeeding set of dimensions is provided by 

the optimizer.  

The first routine has also been programmed to automatically vary the 1D muffler 

discretization according to the data sets provided by the optimizer. In fact, GTPower is able to 

parameterize the hole diameters and the physical attributes of 1D and 0D elements, whereas 

the number, the geometrical position and the type of the elements are fixed for a given 

schematization. Hence, once a selected set of values satisfies the congruence check, the 

optimizer can directly act on the Dtube, Dend, Dholes, Dpor, DSholes, but it cannot act on the baffles 

position nor on the extension of the perforated areas. In order to overcome this issue a 

discretization of a generic muffler with entirely perforated tubes and with baffles at each 

discrete value of a, b and c, is utilized. This discretization is represented in Figure 8. Since the 

perforates are discretized by a certain number of 0D/1D elements (representing the portions of 

tube) connected to a certain number of 0D elements (constituting the holes), the MatlabTM 

routine simply deactivates, if needed, a certain number of holes. This number, obviously, 

depends on dimensions of L1, L2, L5, L6. Contrariwise, the Dpor value is imposed to the hole 

diameters wherever the perforations are simulated. 

 

  

 

Figure 5.4.3  – Sketch of the generic muffler configuration including baffles at each 

position and entirely perforated tubes. 

 

Similarly, according to the imposed values of a, b and c, the routine deactivate not 

required baffles by simply imposing a continuity condition across themselves.  

60mm        50mm       45mm     45mm        50mm         53mm 
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After the 1D analysis has been performed on the obtained model, a second MatlabTM 

routine is utilized to evaluate the TLAV and the ∆p starting for the data provided by 

GTPowerTM. 

To solve the above problem, the MOGA-II algorithm is utilized in both optimizations, 

belonging to the category of genetic algorithms [20]. In a genetic algorithm, a population of 

strings (called chromosomes or the genotype of the genome), which encode candidate 

solutions (called individuals, creatures, or phenotypes) to an optimization problem, evolves 

toward better solutions. Traditionally, solutions are represented in binary as strings of 0s and 

1s, but other encodings are also possible.  

The main property that makes these genetic representations convenient is that their parts 

are easily aligned due to their fixed size, which facilitates simple crossover operations. 

The evolution usually starts from a population of randomly generated individuals and 

happens in generations. In each generation, the fitness of every individual in the population is 

evaluated, multiple individuals are stochastically selected from the current population (based 

on their fitness), and modified (recombined and possibly randomly mutated) to form a new 

population. The new population is then used in the next iteration of the algorithm. Commonly, 

the algorithm terminates when either a maximum number of generations has been produced, 

or a satisfactory fitness level has been reached for the population.  

 

 

5.4.4 RESULTS 

 

In Figure 5.4.4, an history chart of the first optimization process is plotted. The initial 

configuration has been chosen as first individual of the first considered generation. The 

calculated TLAV of the initial configuration is about 35dB. 

The optimization process converges towards TLAV values of about 40 dB after about 700 

generated designs. In Table 5.4.III the geometrical data and the TLAV of the initial and 

optimal muffler configurations are summarized. 
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Figure 5.4.4  – History chart of the optimization process. 

 

 

In Figure 5.4.5a the best muffler configuration is plotted and in Figure 5.4.5b the TL of 

the initial and the best configurations are displayed and overlapped. It is clearly noticeable 

that up to 400 Hz there is no improvement in terms of TL. This is mainly due to the total 

volume of the muffler, which has been imposed to be constant, and to the absence of mean 

flow, which can positively affect the TL at low frequencies. Indeed from 400 up to 800 Hz the 

silencer behavior improves even more than 10 dB. As above mentioned, since at frequencies 

higher than 800Hz the utilized approach for the considered geometry is not reliable, the 

analysis has been limited up to 800Hz and the worsening of the TL curve above this 

frequency has no physical meanings. 

 

 
Table 5.4.III – List of the muffler parameters and TLAV for the initial and optimal 

configurations. 
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             a) 

                                                                                                  

                      b)     

Figure 5.4.5 – a) Optimized shape configuration. – b) TL curve of initial and optimized 

geometry. 

 

A parallel coordinates diagram including the objective function (TLAV) and the possible 

values of the considered design parameters, is reported in Figure 10. Since the TLAV range has 

been limited to a short range of best values (40.0-40.4 dB), a set of best parameter 

combinations is selected. It is clearly noticeable that all the best solutions are characterized by 

a=60mm and b=140mm, by the smallest possible tube diameter (29mm), by small values of 

hole diameters on perforates (2.4-2.9mm),  of L1 and L4, and a fixed value of L2 (40mm). 

Values 1,2,3 of a parameter in the diagrams respectively mean 60, 110, 155mm. Values 1,2,3 

and 4 of b parameter state respectively 50, 95, 140, 190mm when a=60mm, and 45, 90, 

140mm when a=110mm or a=155mm (see Figure 8).   
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Figure 5.4.6  – Parallel coordinates diagram with TL

 

As previously said, also a mu

aiming to maximize the muffler TL and minimizing the exerted pressure loss. For this type of 

problems, a multiplicity of solutions is expected, belonging to the so

[21]. 

TLAV and ∆p of the performed simulations are depicted in the scatter diagram of Figure 

5.4.7, where also the Pareto frontier is highlighted. For a selected value of 

configuration detected by the design point located on this curve and with abscis

characterized by having the highest TL

muffler configuration which provides the lowest 

Pareto curve. 

 
 
 
 

 
TL AV     a          
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Parallel coordinates diagram with TLAV values limited at 40.0

range. 

As previously said, also a multi-objective optimization procedure has been implemented 

aiming to maximize the muffler TL and minimizing the exerted pressure loss. For this type of 

problems, a multiplicity of solutions is expected, belonging to the so-

p of the performed simulations are depicted in the scatter diagram of Figure 

, where also the Pareto frontier is highlighted. For a selected value of 

configuration detected by the design point located on this curve and with abscis

characterized by having the highest TLAV possible. Conversely, for a chosen TL

muffler configuration which provides the lowest ∆p possible, can be easily detected on the 

          b       Dtube      Dend       Dpor     DSholes       L1        L2       L3  

Dynamic Optimization   

 

values limited at 40.0-40.4 dB 

objective optimization procedure has been implemented 

aiming to maximize the muffler TL and minimizing the exerted pressure loss. For this type of 

-called Pareto frontier 

p of the performed simulations are depicted in the scatter diagram of Figure 

, where also the Pareto frontier is highlighted. For a selected value of ∆p, the muffler 

configuration detected by the design point located on this curve and with abscissa ∆p, is 

possible. Conversely, for a chosen TLAV, the 

p possible, can be easily detected on the 

L3         L4 
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Figure 5.4.7  – Scatter diagram of the optimization process. 

 

Together with the initial configuration results, which provides TLAV=24 dB and ∆p=50 

mbar, other designs (solutions) are highlighted in the same figure. 

Solution 2045 has the same TLAV of the initial configuration, but the lowest ∆p possible 

(21 mbar), whereas Solution 1956 has the same ∆p of the initial muffler but the highest TLAV 

possible (32 dB), whereas. Solution 826 represents a trade-off between a high TL and a low 

pressure drop: TLAV=32 dB and ∆p=34 mbar. The TL curves due to the initial configuration 

and the above solutions is plotted in Figure 5.4.8. The main geometrical data and 

acoustic/fluid-dynamic performances are listed in Table 5.4.IV. 

It is clearly noticeable that all the selected solutions are characterized by having the 

central inner muffler chamber smaller and the third chamber bigger than the ones. The 

increasing of this volume produces definitely a TL improvement at low frequencies (where 

the optimization is focused on). Moreover, in all the selected solutions, the perforated areas 

have the almost always the maximum extension (which means small L1, L2, L3) and medium 

diameters (around 3mm). This implies an increasing of the transfer area between the tubes and 

the chambers (and the other way round). Anyway, the hole diameters are chosen large enough 

to do not affect too much the discharge coefficient of the crossing flow. Both things 

contribute to decrease the pressure drop. Consequently these kinds of configurations have 

definitely to be preferred since they positively affect the muffler behavior in both terms of 

acoustic and fluid-dynamic performances. 
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Figure 5.4.8  – TL diagram of the initial configuration, of solutions 2045, 1956 and 826. 

 

Table 5.4.IV – List of the muffler geometrical data and performances for initial 
configuration and examined solutions. 

 

 
5.4.5 CONCLUSIONS 

 

In this paragraph two optimization procedures are presented. They are based on a genetic 

algorithm, aimed to improve acoustic and fluid-dynamic performances of a two tube-three 

chamber perforated commercial muffler.  

The first procedure is single-objective, and focused on the maximization of the TL, 

averaged in 100-800 Hz frequency range. The second one is double-objective, aiming to 

maximize the TL and minimize the back pressure exerted when the exhausted gases flow 

thorough the muffler. In the latter case, the imposed mean flow is equal to 29m/s, and the TL 

is averaged in 100-400 Hz and. The velocity has been calculated by considering the operating 
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condition of the engine the muffler is coupled to, and the selected frequency range has been 

chosen to take into account the frequencies of the 2nd, 3rd, 4th engine orders in the same 

operating conditions. 

The presence of the insulating inner wool has been considered too, together with a certain 

number of perforations on the baffles, which acoustically connect the volumes of the inner 

chambers.  

TL and pressure drop analyses of the investigated muffler have been performed by using 

a 1D solver, and experimentally validated in certain conditions (zero, 20 and a 40m/s mean 

flow, at 293, 383 and 378K respectively). 

Even though, in this optimization procedure, only the validated 1D approach has been 

utilized,  TL analyses of the investigated muffler have been performed, in absence of mean 

flow, also by using a 3D BEM solver.  This latter, in fact, can be also utilized to optimize the 

muffler geometry, when an automatic mesh generator is coupled to the solver in the 

optimization process. Anyway, the 3D calculations are much more time consuming than the 

1D ones. Moreover the utilized BE solver does not take into account the presence of flow and 

it is not suitable to evaluate the pressure drop. For this reason, in this work the 1D approach 

has been preferred. 

The obtained results demonstrate that, in order to maximize the TL in absence of mean 

flow, the best solutions are obtained by choosing the length of the central chamber bigger than 

the original one, the smallest possible tube diameter, small values of hole diameters on 

perforates,  of L1 and L4, and a fixed value of L2. In the best solution there is no 

improvement, in terms of TL, up to 400 Hz. Indeed from 400 up to 800 Hz the silencer 

behavior improves even more than 10 dB. 

Three different solutions have been selected on the Pareto curve carried out by the double 

objective optimization. The first one has the same TL average of the initial configuration, but 

the lowest ∆p possible. The second one has the same ∆p of the initial muffler but the highest 

TLAV possible. Eventually the third one represents a trade-off between a high TL and a low 

pressure drop.. All of these three cases solutions are characterized by having the central inner 

muffler chamber smaller and the third chamber bigger than the ones of the initial design.  The 

increasing of a volume produces definitely a TL improvement at low frequencies (where the 

optimization is focused on). Moreover, in all the selected solutions, the perforated areas have 

the almost always the maximum extension (which means small L1, L2, L3) and medium 

diameters (around 3mm). Both things contribute to decrease the pressure drop by increasing 
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the transfer area between the tubes and the chambers, and by imposing perforation diameters 

large enough to do not worsen the discharge coefficient of the crossing flow. 
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Conclusions and future research 
 
 
 
 

Numerical simulations of acoustic and fluid-dynamic performances of automotive 

silencers have been carried out and included in this thesis. The results, obtained by using 

different methodologies, have been experimentally validated  and an optimization procedure 

has been proposed to improve the silencer design. The main contributions of the thesis have 

been published in 5 papers, and summarized below: 

Paper 1: The noise attenuation characteristics of a merely reactive three pass perforated 

muffler with final end resonator have been investigated, in terms of transmission loss, using a 

non-linear one-dimensional (1D) time domain approach and a linear three dimensional (3D) 

boundary element method (BEM). As expected, the obtained results agree in plane wave 

region, i.e. at low frequency, whereas at higher frequency the multi dimensional approach 

better reproduce the TL trend. Increasing the flow temperature, the TL curve stretches 

towards the high frequency and the reliability of 1D results is extended. Moreover, the 1D 

approach has also given reliable results when a mean flow is imposed. 

Paper 2 and 3: Pros and cons of using the above methods have been analyzed, in terms 

of accuracy, computing time and problem formulation by simulating the behavior of a merely 

reactive two tubes cross-flow muffler. In particular the 1D approach has been proved to 

efficiently reproduce the presence of a mean flow, through very fast simulations. On the 

contrary, the BEM simulations are much more time consuming and are limited to the no mean 

flow case. On the other hand, with a combined 3D FEM/BEM approach it is possible to 

account the effects of the structure flexibility. In this way, several resonance frequencies have 

been highlighted, where fluid-structure iterations give important contributions to the 

attenuation curve. Moreover, the BEM is able to decompose the noise radiated by the outlet 

muffler into the wave contributions directly coming from the outlet, coming from external 

reflections, and coming from the surface vibrations. 

Paper 4: 1D and 3D BEM models, utilized in the previous work for simulating the 

acoustical behaviour of a commercial silencer, have been improved validated, and extended 

by including wool effects. The analyses, in terms of transmission loss and pressure drop, have 

been carried out at different mean flow velocities, with and without the presence of inner 
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absorbing material. It has been noticed that, accurate acoustic simulations of a commercial 

low-cost device, require a detailed description of all the apparently minor geometrical 

elements.  In fact, weldings and strength surfaces coupling, mainly due to the manufacturing 

process, may determine the presence of leakages between the chambers. They have been 

found to remarkably affect the acoustical behaviour, constituting an acoustic connection 

between the muffler cavities. 1D calculations, carried out with the presence of an imposed 

mean flow, have allowed to obtain very accurate information about the back pressure exerted 

by the muffler when a mean flow is imposed. The presence of an insulating material has been 

found to produce a smoother TL profile across a broad band frequency range, while, however, 

determining a non-negligible increase of pressure losses. 

Paper 5: A new optimization procedure, based on a genetic algorithm coupled to a 1D 

solver by means of a number of matching routines, has been developed and discussed. Two 

optimized designs have been carried out: the first one gives a muffler configuration with 

maximized TL. The second one constitutes the best tradeoff  between high TL and  low back 

pressure when the presence of  exhausted gas flow is accounted. In the former case the 

maximum TL increasing is more than 20 dB around 550 Hz. In the latter case, the average TL 

improves of 25%  and the pressure losses decrease of 32%. 

 

In the last three decades, acoustics of internal combustion engine mufflers has been 

object of a number of interesting studies. In fact, despite their apparent simplicity, the physics 

involved in the functioning of these devices is extremely complex. The description of their 

acoustic behavior has always been a challenging task for  acousticians, and nowadays 

mufflers constitute a demanding test bench for many numerical simulation methodologies. 

Quasi 3D methods are giving promising results in this field, since they are more efficient, in 

expansion chamber simulations, than merely 1D approaches, preserving the advantage of 

being faster than the 3D methods. Anyway, the geometrical constraints due to the available 

space on car compartment for setting up the mufflers, implies very complex external shapes. 

In this case, the approach cannot be 1D nor quasi 3D, and further improvements of 3D 

simulations are desirable. In fact, 3D BEM acoustic solvers are often unable to take into 

account the presence of a mean flow, and the semi-empirical models utilized to simulate 

perforate tubes can be definitely improved. FEM simulations are able to account the presence 

of a mean flow but the problem is still largely unresolved with perforates. 
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Nowadays, despite of the difficulties in describing or simulating complex mufflers, the 

achieved levels of attenuations are remarkable. In author’s opinion modern targets are the 

design optimizations, aimed not only to achieve good attenuation characteristics , but also to 

preserve very low back pressure levels, in order to reduce the engine consumption and to 

increase the output power. Moreover, especially in motorbike applications, the target is often 

an enjoyable exhaust noise. In order to accomplish these requirements, more efficient 

optimization procedures must be developed. In fact, the overall analysis would require 

efficient interaction among an external optimizer,  an engine simulator (e.g. based on a 1D 

approach), a complete acoustic model, and an automatic shape modeler. Especially for 

industrial application, this is probably the most interesting and attractive goal. 

 

 

 


