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IntrodutionThis thesis deals with KAM theory for Hamiltonian partial di�erentialequations. This theory onerns the following subjet: sine the solutions ofa linear equation are periodi, quasi periodi or almost periodi (for theyare superpositions of periodi motions), the problem is to investigate whathappens when we add a (su�iently) small nonlinearity.This thesis ontains two new results: an abstrat KAM theorem for de-generate in�nite�dimensional systems, with an appliation to the nonlinearwave equation, and a KAM theorem for a ompletely resonant nonlinearShrödinger equation.
The KAM theory is born in the ontext of perturbation of integrableHamiltonian systems with �nitely many degrees of freedom in order to provethe persistene of invariant tori. The original result for analyti Hamiltoniansystems was due to Kolmogorov [Kol54℄, a new proof was given by Arnold[Arn63a℄ and then Moser [Mos62℄ extended it to di�erentiable Hamiltoniansystems.Roughly speaking (see Theorem 1.7), Kolmogorov's theorem states thatfor nearly integrable Hamiltonian systems of the form

H = H0(I) + εHP (θ, I)with (θ, I) ∈ T
n × R

n angle�ation oordinates, the most, with respet toLebesgue measure, of the invariant tori persists under su�iently small per-turbations. This result holds for non�degenerate systems, namely for systemswhose frequeny�to�ation map
I 7→ ω(I) =

∂H0(I)

∂Iis a loal di�eomorphism (Kolmogorov's non�degeneray ondition), andstates the persistene of those tori whose frequenies are strongly non�resonant in a diophantine sense, namely there exist onstants α > 0, τ > n−1suh that
|k · ω| ≥ α

|k|τ for all k ∈ Z
n \ {0}.ii



INTRODUCTION iiiThese tori that persist are only slightly deformed and still ompletely�lled with quasi-periodi motions, namely the dynamis on these tori is de-sribed by a �nite number of inommensurable frequenies. The base of thispartial foliation on the phase spae into invariant tori is no longer open, buthas the struture of a Cantor set.Another typial situation is the researh of periodi or quasi�periodisolutions near an ellipti equilibrium point (see Setion 1.3 for the de�ni-tion and Setion 1.4 for detailed explanation). In this ase we onsider theparameter�dependent Hamiltonians
H = H0 + εHPwhere the linear system

H0 =

m∑

j=1

ωj(ξ)Ij +

n∑

j=m+1

Ωj(ξ)(p
2
j + q2j )is the superposition of m unoupled harmoni osillators with frequenies ωjdepending on an m�dimensional parameter ξ ∈ R

m. The Kolmogorov's the-orem for nonlinear Hamiltonian systems an be redued to a KAM theoremfor systems of this type assuming the non�degeneray ondition on the map
ξ 7→ ω(ξ) (see [Pös01℄ and [KP03℄).In the partiular ase m = 1, we have perturbations of periodi orbitsnear the equilibrium. If 2 ≤ m ≤ n−1 we fous on the m�dimensional invari-ant torus {I = onstant, p = q = 0} for the linear system. The persistene ofthis lower dimensional torus in the omplete system is obtained assumingthe non�degeneray ondition on the frequeny map

ξ ∈ R
m 7→ ω(ξ) ∈ R

mand the Melnikov's non�resonane ondition
|k · ω + l · Ω| ≥ α

1 + |k|τfor some α, τ > 0 and for any (k, l) ∈ Z
m × Z

n−m \ {(0, 0)} with 1 ≤ |l| ≤ 2(see results by Moser [Mos67℄, Eliasson [Eli88℄ and Pöshel [Pös89℄).A natural problem onerns the extension of these results to in�nite�dimensional systems. Indeed many typial partial di�erential equations aris-ing from physial problems, for example the nonlinear wave equation
utt − uxx + V (x)u+ f(u) = 0an be written as an in�nite�dimensional Hamiltonian system near the origin

H =
∑

j≥1

ωjIj + εHP



INTRODUCTION ivwhere, in the ase of the nonlinear wave equation, ω2
j are the eigenvalues ofthe operator A = − d2

dx2 + V (x).In this diretion the �rst results are due to Kuksin [Kuk93℄ and Wayne[Way90℄ onerning perturbation of parameter�dependent linear wave andShrödinger equations. Further results are due also to Pöshel [Pös96b℄[Pös96a℄, Kuksin [Kuk98℄, Eliasson [Eli88℄, Bourgain [Bou94℄, Kuksin�Pöshel [KP96℄, Craig�Wayne [CW93℄ [CW94℄ for PDEs in one spaedimension, while for PDEs in higher dimensions we ite results by Berti�Bolle [BB10℄, Berti�Bolle�Proesi [BBP10℄, Berti�Proesi [BP℄, Bourgain[Bou95℄ for periodi solutions, and by Eliasson�Kuksin [EK10℄, Bourgain[Bou98℄ [Bou05a℄, Berti�Bolle [BB℄, Geng�Xu�You [GXY11a℄, Proesi�Xu [PX℄ for quasi�periodi solutions.These results prove the existene of �nite�dimensional tori in in�nite�dimensional systems seen as small perturbation of an unperturbed Hamil-tonian
H0 =

n∑

j=1

ωj(ξ)Ij +
∑

j≥n+1

Ωj(ξ)(p
2
j + q2j )with frequenies ω,Ω depending on an n�dimensional parameter ξ ∈ R

n andsatisfying the non�degeneray ondition as above, namely that the frequenymap
ξ ∈ R

n 7→ ω(ξ) ∈ R
nis a loal di�eomorphism, and the above Melnikov's onditions. The maindi�ulty with respet to the �nite dimensional ase is to verify in�nitelymany non�resonane onditions, in partiular the most di�ult are the se-ond order ones, namely

|k · ω +Ωi ± Ωj | ≥
α

1 + |k|τfor some α, τ > n− 1 and for any k ∈ Z
n, i, j ∈ Z with i, j ≥ n+ 1.In Chapter 3 we present in detail two abstrat KAM theorems for in�nitedimensional systems that we shall use later for the new results. The formerby Pöshel [Pös96a℄ is an improved version of the result by Kuksin [Kuk93℄.The latter is a reent result by Berti�Biaso [BB11℄.In order to apply these theorems to onrete nonlinear partial di�erentialequations, one has to verify the non�degeneray ondition on the frequenymap. In general this ould be a hard task, in partiular for systems dependingon a small number of parameters (degenerate systems).The extension of KAM Theorem to this kind of systems is an alreadyknown problem also in �nite�dimensional systems, sine, for example, itarises in the study of elestial mehanis. Arnold himself devoted of hismost important work [Arn63b℄ to this problem, see also reent results



INTRODUCTION vby Herman�Jejoz [Féj04℄ and Chierhia�Pinzari [CP℄. Sine the result ofArnold, the Kolmogorov's non�degeneray ondition has been then weakenedtill Rüssmann [Rüs01℄ and Xu�Qiu�You [XYQ97℄. These authors assumethat the range of the frequeny map in not on�ned on any hyperplane inthe frequeny spae. The range may be a urve, for example, but it has totwist in all diretions.It is then natural to extend these results to in�nite dimensional systems,in order to obtain a KAM theorem for systems with frequenies dependingonly on a few number of parameters. In Chapter 4 we prove an abstratdegenerate KAM theorem for in�nite�dimensional systems, see [BBM11℄.This theorem is an extension of the result of Rüssmann to nonlinear PDEswhose linear operator depends analytially only on one parameter. The maindi�ulty is the bound of the maximal order of the zeros of in�nitely manyanalyti funtions, a fat whih is generially impossible. We exploit theasymptoti growth of the frequenies to redue the e�etive number of fun-tions to a �nite one. This idea allows to dedue a quantitative non-resonantproperty of the kind of the Melnikov non-resonane onditions.This theorem is then applied to the nonlinear wave equation with Dirih-let boundary onditions



utt − uxx + V (x)u+ ξu+ f(x, u) = 0

u(t, 0) = u(t, π) = 0where the unique real parameter is the mass ξ varying in a ompat real set
I ⊂ R, V (x) is an analyti, 2π�periodi, even potential and the nonlinearity
f is odd, real analyti and f(x, 0) = (∂uf)(x, 0) = 0. Setion 4.1.3 is ded-iated to the study of this system proving the existene of quasi�periodisolution for a large set of masses. More preisely, we prove the followingresult.Theorem 0.1. For every hoie of indexes J := {j1 < j2 < . . . < jN},there exists r∗ > 0 suh that, for any A = (A1, . . . , AN ) ∈ R

N with |A| =:

r ≤ r∗, there is a Cantor set I∗ ⊂ I with asymptotially full measure as
r → 0, suh that, for all the masses ξ ∈ I∗, the nonlinear wave equation hasa quasi�periodi solution of the form

u(t, x) =

N∑

h=1

Ah cos(λ̃ht+ θh)φjh(x) + o(r),where o(r) is small in some analyti norm and λ̃h−λjh → 0 as r → 0, being
λjh the frequenies of the linear equation.



INTRODUCTION viThis generalizes the results in [Way90℄ where the potential is takenas an in�nite dimensional parameters, and the result in Kuksin [Kuk93℄where the potential depends on n parameters. Regarding the nonlinearity,we only require f(x, u) = O(u2), while the result in [Pös96b℄ is valid for
f(x, u) = u3+higher order terms.In the previous result, the role of the parameter ξ is to ontrol the fre-quenies in order to verify non�resonane onditions.The seond result of this thesis onerns ompletely resonant systems asthe nonlinear Shrodinger equations

iut − uxx + |u|2pu = 0, x ∈ T
d,with p ∈ N, where the frequenies of the linearized system are all integers

ωk = |k|2, hene the orbits of the linearized equation are all periodi ofperiod 2π, and obviously the Melnikov's non�resonane onditions are notveri�ed.This situation has been widely studied in �nite dimension. The persis-tene of periodi solutions near an ellipti equilibrium point for ompletelyresonant systems has been proved by Weinstein [Wei73℄, Moser [Mos76℄[Mos78℄ and Fadell�Rabinowitz [FR78℄ (we refer to [Ber07℄ for a detailedexposition).The existene of periodi solutions in in�nite�dimensional systems hasbeen proved in Gentile�Mastropietro�Proesi [GMP05℄, Berti�Bolle [BB03℄[BB04℄ [BB06b℄ [BB08℄, Gentile�Proesi [GP06℄, Baldi�Berti [BB06a℄.The problem of proving the existene of quasi�periodi solutions is evenmore ompliated, �rst beause the small divisors problem is more di�ult,and also beause the linear system does not possess any quasi�periodi so-lution, hene their bifuration is a purely nonlinear phenomenon. The maintool is the introdution of the Birkho� normal form.The Birkho� normal form is proved to be ompletely integrable for theubi NLS
iut − uxx +mu+ |u|2u+O(u5) = 0, x ∈ [0, π].by Kuksin�Poshel [KP96℄, sine it is a re�ex of the ompletely integrabilityof iut−uxx+mu+ |u|2u = 0. Then Geng�Yi [GY07℄ proved the ompletelyintegrability of the normal form for the quinti NLS. For generi p Liang[Lia08℄ onsidered the 1�dimensional nonlinear Shrödinger equation

iut − uxx + |u|2pu = 0, x ∈ T,and proved the existene of quasi�periodi solutions with only two frequen-ies. The reason for this limitation is that only in this way he ould obtain



INTRODUCTION viia normal form with onstant oe�ients (this is not true for general non-linearities for any number of frequenies), suitable for the appliation of theKAM Theorem. Reently C.Proesi-M.Proesi [PP℄ showed the onstru-tion of a reduible normal form (namely, with onstant oe�ients) for theShrödinger equation with analyti non�linearities in any dimension undera �nite number of onditions on the tangential sites.Taking in mind these results, in Chapter 5 we fous on the 1�dimensionalase with p = 3 and prove the existene of quasi�periodi solutions with anynumber of frequenies, namely we prove the following result.Theorem 0.2. For �generi� hoies of indexes J := {j1, j2, . . . , jm}there exist ρ∗ > 0 suh that for any ρ < ρ∗ there exists a Cantor set Π∗
ρ ⊂

Bρ(0) of positive Lebesgue measure suh that, for any ξ ∈ Π∗
ρ, the nonlinearShrödinger equation admits a quasi�periodi solution of the form

u(t, x) =

m∑

i=1

√
ξie

i((j2i +ω∗

i (ξ))t+θi) + o(ξ).where the map ξ 7→ ω∗(ξ) is a lipeomorphism, θ ∈ R
m are arbitrary phasesand o(ξ) is small in some analytial norm. The measure of the set Π∗

ρ isgreater than cρm, where c is a onstant independent on ρ.In proving this result, we �rst redue the system to normal form, impos-ing a �nite number of hoies on the indexes J in order to make it reduibleand developing all the omputations on the normal form and the neededonditions also in the ase of three frequenies. Then we use the obtainednormal form as the unperturbed Hamiltonian to apply the KAM Theoremas stated in [BB11℄. We expet that this result hold for any p ∈ N. Wefous on the ase p = 3 to hek in details all the assumptions of the KAMTheorem.We have ited so far results for 1�d NLS beause KAM theories in higherdimensions are very di�ult to obtain. Reently Eliasson�Kuksin [EK10℄proved a KAM theorem for nonlinear Shrödinger equation using Töplitz�Lipshitz properties of the perturbative terms to ontrol the frequenies. Werefer also to results by Geng�Xu�You [GXY11a℄ and Proesi�Xu [PX℄.



CHAPTER 1Classial bakgroundIn this hapter we reall some lassial de�nitions and results for �-nite dimensional Hamiltonian systems, taking as a referene the book ofKappeler-Pöshel [KP03℄. We �rst reall some de�nitions and properties forHamiltonian vetor �elds, then we onsider the ase of integrable systems(in the senso of Liouville) and �nally we study the behavior of systems thatare small perturbations of integrable ones.1.1. Hamiltonian formalismLet n ∈ N. Let M be a smooth (i.e. in�nitely many di�erentiable) man-ifold of �nite dimension 2n, without boundary and onneted.Definition 1. A sympleti form on M is a losed and non�degenerate2�form α on M . The pair (M,ν) is alled sympleti manifold.The sympleti form α indues an isomorphism between the tangent andthe otangent bundle of M
S : TM −→ T ∗M

X 7−→ ν ◦X = α(X, ·).Let J := S−1 : T ∗M → TM the inverse of S.Consider a smooth funtion H : M → R. This de�nes a vetor �eld
XH = JdHon M , that is the unique one satisfying

α ◦XH = dH.Definition 2. XH is alled the Hamiltonian vetor �eld assoiated tothe Hamiltonian H on the phase spae M . The Hamiltonian �ow of H isthe �ow de�ned by the vetor �eld XH and is indiated with Xt
H .The Hamiltonian H is onstant along the �ow lines of its Hamiltonianvetor �eld, namely by de�nition

d

dt
H ◦Xt

H = dH(XH) = α(XH ,XH) = 0and this is also known as the onservation of energy.1



1.1. HAMILTONIAN FORMALISM 2Definition 3. On the sympleti manifoldM de�ne the Poisson braketof two smooth funtions G,H as
{G,H} := α(XG,XH).The Poisson braket is a skew form on the linear spae of all the smoothfuntions on M . One fundamental property, that follows by the de�nition,is that
{G,H} = dG(XH)and so, for any smooth funtion G, the �ow Xt

H has the property that
Ġ = {G,H},where Ġ denotes the derivative of G with respet to the vetor �eld XH ,namely

Ġ =
d

dt
G ◦ Xt

H

∣∣
t=0

= dG(XH).The Poisson braket satis�es the Leibniz rule
{FG,H} = F{G,H}+G{F,H}and the Jaobi identity

{F, {G,H}}+ {G, {H,F}}+ {H, {F,G}} = 0.Definition 4. The Lie braket of to vetor �elds X,Y is de�ned as
[X,Y ] := Y X −XY.This is bilinear and skew�symmetri. Moreover, the Lie braket of twoHamiltonian vetor �eld is again Hamiltonian, namely
[XG,XH ] = X{G,H}for any two Hamiltonian G,H on the sympleti manifold M .Definition 5. A smooth non�onstant funtion G is alled an integralof a Hamiltonian system with Hamiltonian funtion H if

{G,H} = 0.Sine {G,H} = XHG, this means that G is onstant along the �ow linesof XH . By the skew symmetry of the Poisson braket, if G is an integral for
XH , then also H is an integral for XG, and then the two Hamiltonians G,Hare said to be in involution. Finally, G and H are in involution if and only if

[XG,XH ] = 0and we say that the two vetor �eld XG,XH ommute.To preserve the Hamiltonian nature of vetor �elds, a di�eomorphism ofa sympleti manifold has to preserve the underlying struture.



1.2. LIOUVILLE INTEGRABLE SYSTEMS 3Definition 6. A di�eomorphism Φ of the sympleti manifold M isalled sympleti or a sympletomorphism if it preserves the sympleti form,that is if Φ∗α = α.A sympletomorphism Φ is also anonial, namely it preserves also thePoisson braket:
{F,G} ◦Φ = {F ◦ Φ, G ◦ Φ}for any two funtions F,G.All the linear sympleti vetor spaes of the same dimension are sym-pletially isomorphi, but this is no longer true for nonlinear ones. Thefollowing result states that this is true loally around every point of a sym-pleti manifold.Theorem 1.1 (Darboux). A sympleti manifold (M,α) of dimension

2n is loally sympletomorphi to an open subset of (R2n, α0).This theorem states that, given any point p ∈ M , there are a neighbor-hood W of p in M and a di�eomorphism Phi : V → W of an open set V in
R
2n onto W suh that Φ∗α = α0.The oordinates provided by Φ are alled Darboux oordinates.1.2. Liouville integrable systemsIntegrable systems are partiular Hamiltonian systems that an be solvedfor any initial data by quadratures. In order to be integrable, the systemhas to admit su�iently many onserved quantities in involution. It turnsout that for a system with n degrees of freedom it is su�ient to have nindependent integrals in involution. More preisely, we give the followingde�nitions.Definition 7. A family of m funtions F1, . . . , Fm on M is alled in-dependent if their 1�forms dF1, . . . , dFm are linearly independent at everypoint in M .Definition 8. A Hamiltonian system on a sympleti manifold M ofdimension 2n is alled integrable if its Hamiltonian H admits n independentintegrals F1, . . . , Fm in involution, namely(1) {H,Fi} = 0 for any i = 1, . . . , n(2) {Fi, Fj} = 0 for any i, j = 1, . . . , n(3) dF1 ∧ . . . ∧ dFm 6= 0everywhere on M .Example. In standard ation�angle oordinates (θ, I) ∈ T

n × R
n anyHamiltonian of the form H = H(I) is integrable with integrals Fi = Ii, for

i = 1, . . . , n.



1.2. LIOUVILLE INTEGRABLE SYSTEMS 4Example. In standard artesian oordinates (q, p) ∈ R
n×R

n any Hamil-tonian of the form H = H(q21 + p21, . . . , q
2
n + p2n) is integrable with integrals

Fi = q2i + p2i , for i = 1, . . . , n.We now give a geometri desription of an integrable system. Consideran arbitrary number of smooth independent funtions F1, . . . , Fm on M andthe map F = (F1, . . . , Fm) : M → R
m. Every non�empty leaf

M c := F−1(c) = {p ∈ M : F (p) = c}is a smooth submanifold of M of odimension m. The whole manifold M isfoliated into these leaves. The following result holds.Lemma 1.2. Assume that the map F = (F1, . . . , Fm) de�nes a foliationof M with leaves M c = F−1(c). Then the following statements are equivalent:(1) the funtions F1, . . . , Fm are in involution, namely {Fi, Fj} = 0 for
i, j = 1, . . . ,m(2) the Hamiltonian vetor �elds XFi are everywhere tangent to theleaves of F , namely XFi(p) ∈ TpM

c for i = 1, . . . ,m, p ∈ M c.On a sympleti manifold of dimension 2n there are at most n indepen-dent funtions in involution.Definition 9. If the number of independent funtion in involution is nthen eah leaf is alled Lagrangian submanifold of M .Corollary 1.3. If F1, . . . , Fn are independent funtions in involutionon M , then the map F = (F1, . . . , Fm) de�nes a foliation of M into La-grangian submanifolds M c = F−1(c).Suppose that the Hamiltonian H admits F1, . . . , Fn as independent inte-grals, hene {H,Fi} = 0. It follows that the Hamiltonian vetor �eld XH istangent to the leaves M c and then these are invariant manifolds with respetto its �ow.Corollary 1.4. A Hamiltonian system is integrable if and only if itadmits a foliation of its phase spae into Lagrangian submanifolds.Assume now that the Hamiltonian H is integrable with integrals F1,. . .,
Fn in involution. Liouville showed that loally around eah point one anintrodue standard sympleti oordinates (q, p) suh that the Hamiltonianassumes the form H = H(p). Then the oordinates p1, . . . , pn beome inte-grals of the Hamiltonian. There is then a global version of this result due toArnold and Jost that leads to the following theorem.



1.2. LIOUVILLE INTEGRABLE SYSTEMS 5Theorem 1.5 (Liouville-Arnold-Jost). Let (M,α) be a sympleti man-ifold of dimension 2n and let F = (F1, . . . , Fn) be n independent funtionsin involution on M . Suppose that one of he leaves of F , say M0 = F−1(0)is ompat and onneted. Then(1) M0 in an n�dimensional embedded torus(2) there exist an open neighborhood U of M0, an open neighborhood
D of 0 in R

n and a di�eomorphism Ψ: Tn × D → U introduingation�angle variables with
Ψ ∗ α = α0, Ψ∗M0 = T

n × {0},suh that the funtions Fi ◦Ψ are independent of the angular oor-dinates.Consider now an integrable Hamiltonian H = H(I) in ation�angle o-ordinates. The equation of motion are
{
θ̇i = ωi(I)

İi = 0,where ωi(I) =
dH(I)
dIi

for i = 1, . . . , n. These equations are easily integrableand their general solution is
θ(t) = θ0 + ω(I0)t, I(t) = I0.Every solution is a straight line whih, due to the identi�ation of the angularoordinates θ modulo 2π, is winding around the underlying torus TI0 :=

T
n ×

{
I0
} with onstant frequenies ω(I0) =

(
ω1(I

0), . . . , ωn(I
0)
). Theyompletely determine the dynamis on this torus, whih onsists of paralleltranslations. These tori are alled Kroneker (or rotational) tori and theassoiated frequenies are alled the frequenies of the invariant torus. Wegive now a more general de�nition.Definition 10. Let X be a smooth vetor �eld on a manifold M ofarbitrary dimension. An invariant n�torus T of X is alled a Kronekertorus (or torus with linear �ow) if there exist a di�eomorphism Φ: Tn → Tsuh that Φ∗X is a onstant n�vetor ω on T

n alled the frequeny vetor ofthe Kroneker torus.From a geometrial point of view, an integrable Hamiltonian systemaround a ompat onneted leaf is then ompletely foliated into an n�parameter family of invariant and Lagrangian tori with linear �ow. Froman analytial point of view, all solution urves on an invariant Kronekertorus T with frequenies ω are represented as Φ(θ0 + ωt), with θ0 ∈ T
n,



1.2. LIOUVILLE INTEGRABLE SYSTEMS 6hene they are quasi�periodi funtion of t, in the sense of the followingde�nition.Definition 11. A ontinuous funtion q : R → R is alled quasi�periodiwith frequenies ω = (ω1, . . . , ωn) if there exists a ontinuous funtion
Q : Tn → Rsuh that q(t) = Q(ωt) for all t ∈ R.The �ow on a Kroneker torus is rather simple and depends on arith-metial properties of its frequeny ω. There are two ases.(1) The frequenies ω are non�resonant or rationally independent. Thismeans that

〈k, ω〉 6= 0 for all 0 6= k ∈ Z
n.Then eah orbit on this torus is dense and the �ow is ergodi.(2) The frequenies are resonant or rationally dependent. This meansthat there exist integer relations

〈k, ω〉 = 0 for some 0 6= k ∈ Z
n.The prototype is ω = (ω1, . . . , ωm, 0, . . . , 0)with n−m ≥ 1 trailingzeros and (ω1, . . . , ωm) non�resonant. Then the torus deomposesinto an n−m�parameter family of idential invariant m�tori. Eahorbit is dense on suh a lower dimensional torus but not in the entireKroneker torus. If there are n− 1 independent resonant relations,then eah frequeny ω1, . . . , ωn is an integer multiple of a �xed non�zero frequeny ω and the whole torus is �lled by periodi orbits withone and the same period 2π/ω.In an integrable system the frequenies on the tori may or may not varywith the torus, depending on the nature of the frequeny map I 7→ ω(I). Ifit is non�degenerate in the sense that

det
∂ω

∂I
= det

∂2H

∂I2
6= 0,then the frequeny map is a loal di�eomorphism.Non�resonant and resonant tori form dense subsets in the phase spae.The resonant ones sit among the non�resonant ones like rational numbersamong the irrational numbers.In Setion 1.4 we will understand through the KAM theory the behaviorof nearly integrable Hamiltonian systems, namely of those systems whih arelose to integrable ones.



1.3. BIRKHOFF NORMAL FORM THEOREM 71.3. Birkho� Normal Form theoremOn R
2n onsider a Hamiltonian H with an equilibrium point at zero (thisis always possible, eventually using Darboux oordinates).Definition 12. The equilibrium point is said to be ellipti if there existsa anonial system of oordinates (p, q) in whih the Hamiltonian takes theform(1.1) H(p, q) = H0(p, q) +HP (p, q),where

H0(p, q) =
n∑

j=1

ωj

p2j + q2j
2

, ωj ∈ Rand HP is a smooth funtion having a zero of order 3 at the origin.In the linear approximation, sineHP = O(‖(p, q)‖3), the system onsistsin n independent harmoni osillators.Theorem 1.6 (Theorem 1 in [Bam08℄). For any integer r ≥ 0, thereexists a neighborhood U(r) of the origin and a anonial transformation
τr : U(r) → R

2n whih puts the system (1.1) in Birkho� Normal Form upto order r, namely(1.2) H(r) := H ◦ τr = H0 + Z(r) +R(r),where(1) Z(r) is a polynomial of degree r + 2 whih Poisson ommutes with
H0, namely {H0, Z

(r)
}
= 0,(2) R(r) is small, namely

∣∣∣R(r)(z)
∣∣∣ ≤ Cr‖z‖r+3, ∀z ∈ U(r).Moreover,

‖z − τr(z)‖ ≤ Cr‖z‖2, ∀z ∈ U(r),and the same holds also for the inverse τ−1
r .If the frequenies ω are nonresonant up to order r + 2, namely

ω · k 6= 0 ∀k ∈ Z
n, 0 < |k| ≤ r + 2,then the funtion Z(r) depends only on the ations Ij :=

p2j+q2j
2 .The idea of the proof is to onstrut a anonial transformation ob-tained as the time�1��ow of a suitable Hamiltonian funtion, pushing thenon�normalized part of the Hamiltonian to order four, followed by a trans-formation pushing it to order �ve, and so on.



1.4. KAM THEORY 8The Birkho� theorem ensures then the existene of a anonial transfor-mation putting the Hamiltonian system in normal form up to a remainderof a given order. The dynamis of the system in normal form depends on theresonane relations ful�lled by the frequenies.
1.4. KAM theoryIntegrable systems are the exeption, but many interesting Hamiltoniansystems may be viewed as small perturbation of an integrable system, forexample the planetary system. So the goal now it to understand what hap-pens to a foliation of invariant tori with their quasi�periodi under smallperturbation of the Hamiltonian.So, onsider a Hamiltonian in ation�angle oordinates (θ, I) of the form
H = H0(I) +Hε(θ, I)where H0 is the unperturbed integrable Hamiltonian and Hε is a generalperturbation that we assume of the form εH1(θ, I), so that ε measures thesize of the perturbation.We assume the unperturbed system to be non�degenerate, namely weassume that the frequeny map
I 7→ ω(I) =

∂H0(I)

∂Iis a loal di�eomorphism (this is also alled Kolmogorov's ondition, see[Kol54℄).The �rst result due to Poinaré is of negative nature and states that theresonant tori are in general destroyed by any arbitrary small perturbationand that a generi Hamiltonian system is not integrable.But in 1954 Kolmogorov observed that the majority of tori survives. Morepreisely, he stated the persistene of those Kroneker tori whose frequeniesare not only non�resonant but strongly non�resonant, in the sense that thereexist onstants α > 0 and τ > n− 1 suh that
|〈k, ω〉| ≥ α

|k|τ for all 0 6= k ∈ Z
n.This ondition is also alled diophantine or small divisor ondition. In orderto verify the existene of these frequenies, �x α, τ and denote with ∆α theset of all ω ∈ R

n satisfying these in�nitely many onditions. Then for anybounded set Ω ⊂ R
n we have the following Lebesgue measure estimate

|Ω \∆α| = O(α).



1.4. KAM THEORY 9Moreover, we have that only those Kroneker tori with frequenies ω ∈ ∆αwith
α ≫ √

εdo survive.To state the KAM theorem we �nally onsider subsets Ωα of a boundeddomain Ω ⊂ R
n whose elements are the frequenies belonging to ∆α andthat have at least distane α to the boundary of Ω. These sets are Cantorsets and have large Lebesgue measure, |Ω \ Ωα| = O(α).We an now state the main theorem of Kolmogorov, Arnold and Moser.Theorem 1.7 (KAM Theorem). Suppose the Hamiltonian

H = H0 + εH1is real analyti on the losure of Tn×D, where D is a bounded domain in R
n.If the integrable Hamiltonian H0 is non�degenerate and its frequeny map isa di�eomorphism D → Ω, then there exists a onstant δ > 0 suh that for

|ε| < δα2all the Kroneker tori (Tn, ω) of the unperturbed system with ω ∈ Ωα persistas Lagrangian tori, being only slightly deformed. Moreover, they depend ona Lipshitz ontinuous way on ω and �ll the phase spae T
n ×D up to a setof measure O(α).KAM theorem ensures then the persistene of invariant tori of nearlyintegrable Hamiltonian systems, �lled by quasi�periodi solutions with fre-quenies satisfying strong non�resonane onditions of diophantine type.Sine its oneption this theorem has been generalized and extended inseveral ways in order to relax some of its assumptions.First, regarding the perturbation and the integrable Hamiltonian, it isproved that it is su�ient that they are of lass Cr with r > 2τ + 2 > 2n,see [Pös80℄.The seond improvements applies to the non�degeneray ondition. Wehave seen that in order to verify the non�resonane properties, KAM theoryrequires some non�degeneray ondition onerning the dependene of thefrequenies on the parameters of the system (ations, potentials, masses,...). The Kolmogorov's non�degeneray ondition is the simplest one andit is used to ompletely ontrol the frequenies, so that their diophantineestimates an be preserved under perturbation, but in onrete systems itould be not veri�ed (or it ould be very di�ult to hek it). For example,it is never satis�ed in the spatial solar system, see Arnold [Arn63b℄ and



1.4. KAM THEORY 10Herman-Féjoz [Féj04℄. This problem strongly motivated the searh of weakernon�degeneray onditions.Degenerate KAM theory has been then widely developed sine Arnold[Arn63b℄ and Pjartly [Pja69℄. In fat, it is su�ient that the intersetionof the range of the frequeny map with any hyperplane has zero measure.Then, after perturbation, one an still �nd su�iently many diophantinefrequenies even if they are not know a priori. For example, if it happensthat ∂H0
∂I is a funtion of I1 alone, and thus is ompletely degenerate, it issu�ient to require

det

(
∂jωi

∂Ij1

)

1≤i,j≤n

6= 0,as stated in the paper [XYQ97℄ by Xu-You-Qiu. We quote also other im-portant works by Bruno [Bru92℄, Cheng-Sun [CS94℄ and Sevryuk [Sev07℄.Then new ontributions were given by Rüssmann [Rüs90℄-[Rüs01℄ notonly for Lagrangian (i.e. maximal dimensional) tori but also for lower di-mensional ellipti/hyperboli tori. For reent developments we refer to .The main assumption in [Rüs01℄ is that the frequenies are analytifuntions of the parameters and satisfy a weak non�degeneray ondition inthe sense of the following de�nition.Definition 13. A real analyti funtion f : O → R
m de�ned on a do-main O ⊆ R

n is non�degenerate if, for any vetor of onstants (c1, . . . , cm) ∈
R
m \ {0}, the funtion c1f1 + . . . cmfm is not identially zero on O.The Rüssmann weak non�degeneray assumption on the frequeny isthen the following.Definition 14. A real analyti funtion (ω,Ω): O → R

m × R
p de�nedon a domain O ⊆ R

n is weakly non�degenerate if(1) ω is non�degenerate(2) l · Ω /∈ {k · ω : k ∈ Z
m} for all l ∈ Z

p with 0 < |l| ≤ 2.For maximal dimensional tori this ondition is equivalent to the fat thatthe range of the frequeny map is not ontained in any hyperplane.Rüssmann's proof goes into some steps. First, he uses properties ofthe zero set of analyti funtions to show that the qualitative weak non�degeneray assumption implies a quantitative non�degeneray property. Se-ond, he shows that, notwithstanding the fat that the frequenies hangeduring the KAM iteration proess, the set of non�resonant frequenies metat eah step has large measure. Third, he proves that the same is true forthe �nal frequenies on the limiting perturbed torus onstruted through the



1.4. KAM THEORY 11iteration. For the last two steps Rüssmann introdues the onept of �hainof frequenies�.In Chapter 4 we will see an extension of Rüssmann's result to in�nitedimensional Hamiltonian system.As seen, the lassial KAM Theorem is onerned with the persisteneof maximal dimensional tori with strongly non�resonant frequenies in anon�degenerate system.In the ase of resonant frequenies, we an meet lower dimensional in-variant tori of dimension m < n. Here a typial situation is the study ofthe system near an ellipti equilibrium point, as we have seen in Setion 1.3.This is an interesting ase, sine typial partial di�erential equation an bewritten in this form.In the ase of periodi orbits, Lyapunov showed that they persist, be-ing only slightly deformed, if at the equilibrium their frequeny is not inresonane with the other frequenies of the system.For 2 ≤ m ≤ n − 1 �rst Melnikov [Mel65℄ and then Moser [Mos67℄and Eliasson [Eli88℄ showed the existene of quasi�periodi solutions forparameter�dependent systems, namely for a nonlinear system seen as per-turbation of a parameter�dependent linear system.More preisely, onsider an Hamiltonian
H = H(I1, . . . , In) with Ij =

1

2
(q2j + p2j).We fous on the m�dimensional torus

TI0 =
{
(q, p) : q2j + p2j = 2I0j , for 1 ≤ j ≤ n

}with, without loss of generality, I01 , . . . I0m > 0 and I0m+1, . . . , I
0
n = 0.For 1 ≤ j ≤ m we introdue angle�ation oordinates (θ, I) on the �rst

m modes by
qj =

√
2(ξj + Ij) cos θj, pj =

√
2(ξj + Ij) sin θjdepending on the amplitudes ξ = (ξ1, . . . , ξm) ∈ R

m, while we keep the other
m−n artesian oordinates. With a series expansion ofH up to the �rst orderin Ij and the seond order in qj, pj , we obtain the integrable Hamiltonian

H = H0 + εHP ,where HP ontains the higher order terms and an be regarded as perturba-tion, while
H0 =

m∑

j=1

ωj(ξ)Ij +
1

2

n∑

j=m+1

Ωj(ξ)(p
2
j + q2j )



1.4. KAM THEORY 12is the superposition of unoupled harmoni osillators, eah with frequenies
ωj(ξ) =

∂H
∂Ij

(I01 , . . . , I
0
m, 0, . . . , 0) depending on the m�dimensional parameter

ξ ∈ Π ⊂ R
m.Now we want to study the behavior of this nearly integrable system onthe phase spae T

m × R
m ×R

n−m ×R
n−m.If ε = 0, the system admits for eah ξ ∈ Π the invariant m�torus T0 =

T
m × {0} × {0} × {0} and we are interested in the persistene of this torusunder small perturbations of the Hamiltonian H0, namely for ε > 0 small,for a large set of parameters. We point out that we have a large family ofHamiltonian systems, depending on the parameter ξ and we want to provethe persistene of one invariant torus.In order to do this, we need the following non�degeneray assumption.Definition 15. The parameter�dependent family of Hamiltonian H0 isnon�degenerate if the map

ξ 7→ ω(ξ),is a loal di�eomorphism on its domain, and if
ξ 7→ k · ω(ξ) + l · Ω(ξ) 6≡ 0for all (k, l) ∈ Z

m × Z
n−m \ {(0, 0)} with 1 ≤ |l| ≤ 2.The �rst ondition is the usual Kolmogorov ondition, while the seondone is also known as Melnikov's ondition, and is used to ontrol the smalldivisors arising in the perturbation theory.Under this assumption we have then the following result.Theorem 1.8. Suppose that the Hamiltonian H = H0 + εHP is realanalyti in a �xed neighborhood of T0 ×Π, with Π ⊂ R

m losed and boundedset with positive Lebesgue measure. If H0 is non�degenerate then, for ε su�-iently small, there exists a Cantor set Πε ⊂ Π suh that for eah parameter
ξ ∈ Πε the perturbed system admits an ellipti invariant torus lose to T0.Moreover, meas(Π \ Πε) → 0 as ε → 0.As we will see in Chapter 3, this will be the natural starting point in theextension to in�nite�dimensional systems.



CHAPTER 2Hamiltonian PDEsIn this hapter we reall some de�nitions and results for Hamiltonianpartial di�erential equations, as a referene see [Kuk06℄.2.1. Hilbert sales XsLet X be a Hilbert spae with salar produt 〈·, ·〉 and basis {φk : k ∈ Z}.Consider a positive sequene {θk : k ∈ Z} suh that θk → ∞ as k → ∞.Definition 16. {Xs}s is an Hilbert sale if, for any s ∈ R (or Z), Xsis the Hilbert spae with basis {φkθ
−s
k : k ∈ Z

}. Denote with ‖·‖s, 〈·, ·〉 itsnorm and salar produt. Set X0 = X, X−∞ :=
⋃

Xs, X∞ :=
⋂

Xs.A Hilbert sale Xs satis�es the following properties:(1) Xs is ompatly embedded and dense in Xr if s > r,(2) the spaes Xs,X−s are onjugated with respet to the salar prod-ut 〈·, ·〉,(3) the norm ‖·‖s satis�es the interpolation inequality.Example. Consider the sale of Sobolev funtion on the d�dimensionaltorus {Hs(Td;R) = Hs(Td)
}, where

Hs(Td) :=



u : Td → R suh that u =

∑

k∈Zd

uke
ik·s, ul = u−l ∈ C,

‖u‖s =
∑

k∈Zd

(1 + |k|)2s|uk|2 < ∞



 .Example. Consider the sale {Hs

0(0, π)}, where
Hs

0(0, π) :=

{
u ∈ Hs(0, π), u =

∞∑

k=1

uj sin kx, 2π�periodi,
‖u‖2s =

∑
|k|2s|uk|2 < ∞

}
.Definition 17. Let {Xs}, {Ys} two Hilbert sales, L : X∞ → Y−∞ alinear map and denote with ‖L‖s1,s2 ≤ ∞ its norm as a map from Xs1to Ys2 . L de�nes a linear morphism of order d of the two sales for s ∈

[s0, s1], s0 ≤ s1, if ‖L‖s,s−d < ∞ for every s ∈ [s0, s1].13



2.3. HAMILTONIAN EQUATION 14Let {Xs}, {Ys} be two sales and Os ⊂ Xs, s ∈ [a, b], be a system ofopen domains suh that
Os1 ∩Os2 = Os2 if a ≤ s1 ≤ s2 ≤ b.Let F : Oa → Y−∞ be a map suh for every s ∈ [a, b] its restrition F : Os →

Ys−d is an analyti (Ck�smooth) map. Then F is alled an analyti (Ck�smooth) morphism of order d for s ∈ [a, b].Example. Consider the Sobolev sale {Hs(Td)
} and a smooth funtion

f(u, x). Then the map F : u(x) 7→ f(u(x), x) from Xa into itself is smooth if
a > d

2 , so the order of F is 0 on Xa.Let H : Od ⊂ Xd → R be a Ck�smooth funtion, k ≥ 1. Consider itsgradient map with respet to the pairing 〈·, ·〉

∇H : Od −→ X−d

〈∇H(u), v〉 = dH(u)v ∀u ∈ Xd.The map ∇H is Ck−1�smooth.2.2. Sympleti struturesLet {Xs} a Hilbert sale and J its anti�selfadjoint automorphism oforder d for −∞ < s < +∞. De�ne J := −J−1, that is an anti�selfadjointautomorphism of order −d.De�ne the 2�form
α = Jdx ∧ dxwhere Jdx ∧ dx[ξ, η] :=

〈
Jξ, η

〉. This de�nes a ontinuous skew�symmetribilinear form on Xr ×Xr for r ≥ −d
2 .Definition 18. The pair (Xr, α) is alled sympleti Hilbert spae. Thepair ({Xs}, α) is alled sympleti Hilbert sale.Definition 19. Let (Xs, α), (Y, β) be two sympleti Hilbert sales,with α = Jdx ∧ dx and β = Γdy ∧ dy. Let F : Os → Ys−d1 be a C1�smoothmorphism od order d1 on Os ⊂ Xs, for a ≤ s ≤ b. F is a sympleti morphismif F ∗β = α. Moreover, F is a sympletomorphism if it is a di�eomorphism.2.3. Hamiltonian equationConsider a C1�smooth funtion H on a domain Od ⊂ Xd. The Hamil-tonian vetor �eld VH orresponding to H is de�ned as

α(VH (x), ξ) = −dH(x)ξ ∀ξ.



2.3. HAMILTONIAN EQUATION 15By de�nition, this implies
VH(x) = J∇H(x).If H is a C1�smooth funtion on Od×R, then VH is the non�autonomousvetor �eld VH(x, t) = J∇xH(x, t), where ∇x is the gradient in x. Theorresponding Hamiltonian equations are

ẋ = J∇xH(x, t) = VH(x, t).A partial di�erential equation is alled a Hamiltonian partial di�erentialequation (in short, HPDE) if, under a suitable hoie of a sympleti Hilbertsale ({Xs}, α), a domain Od ⊂ Xd and a Hamiltonian H, it an be writtenin the previous form, ẋ = VH(x, t).Now we give some examples of HPDEs.Example (Non linear Shrödinger equation, NLS). LetXs = Hs(Tn,C),treated as a real Hilbert spae with salar produt 〈u, v〉 = Re
∫
uv dx.Choose Ju(x) = iu(x), so that its order is 0. We hoose

H(u) =
1

2

∫

Tn

(
|∇u|2 + V (x)|u|2 + g(x, u, u)

)
dx,where V, g are smooth real funtions and u = u(t, x), x ∈ T
n. Then

∇H(u) = −∆u+ V (x)u+
∂

∂u
gand so the Hamiltonian equations are(2.1) u̇ = i

(
−∆u+ V (x)u+

∂

∂u
g(x, u, u)

)
.Example (1�dimensional NLS with Dirihlet boundary onditions). Let

Xs = Hs
0([0, π];C), Ju(x) = iu(x) and

H(u) =
1

2

∫ π

0

(
|ux|2 + V (x)|u|2 + g(x, |u|2)

)
dx,where g is smooth and 2π�periodi in x. Then, setting f = ∂
∂|u|2 g, the Hamil-tonian equation is(2.2) u̇ = i

(
−uxx + V (x)u+ f(x, |u|2)u

)with Dirihlet boundary onditions u(0) = u(π) = 0.Example (Non linear wave equation, NLW). Choose Xs = Hs(Tn) ×
Hs(Tn), α = Jdη ∧ dη, with η = (u, v) and J(u, v) = J(u, v) = (−v, u), andthe Hamiltonian funtion

H(u, v) =

∫

Tn

(
1

2
v2 +

1

2
|∇u|2 − f(x, u)

)
dx.



2.4. SOME RESULTS 16The orresponding Hamiltonian equation is(2.3) {
u̇ = −v

v̇ = −∆u− f ′
u(x, u)or also,(2.4) ü = ∆u+ f ′

u(x, u),with u = u(t, x), x ∈ T
n.Example (Korteweg�de Vries equation, KdV). Consider the sale {Xs}of the Sobolev spaes Hs(S1) of zero mean�value funtions. Choose J = ∂

∂x .We hoose the Hamiltonian
H(u) =

∫ 2π

0

(
1

8
u′(x)2 + f(u)

)
dx,where f(u) is some analyti funtion. Then the orresponding Hamiltonianequation is

u̇(t, x) =
1

4
u′′′ +

∂

∂x
f ′(u).The map VH de�nes an analyti morphism of order 3 of the sale {Xs} for

s > 1
2 . 2.4. Some resultsConsider two sympleti sales ({Xs}, α) and ({Ys}, β) with α = Jdx ∧

dx and β = Γdy ∧ dy. Assume for simpliity ord J = ordΓ = dJ ≥ 0.Let Phi : Q → O be a C1�smooth sympleti map between two domainsin Yd and Xd with d ≥ 0. If dJ then we also assume that for any |s| ≤
d the linearized maps Φ∗(y), y ∈ Y , de�ne linear maps Ys → Xs whihontinuously depend on y.The following theorem states that sympleti maps transform Hamilton-ian equation to Hamiltonian.Theorem 2.1. Let Φ: Q → O be a sympleti map as above. Considerthe Hamiltonian equatioṅ

x = J∇xH(x, t) = VH(x, t)and assume that the vetor �eld VH de�nes a C1�smooth map VH : O×R →
Xd−d1 of order d1 ≤ 2d and is tangent to the map Φ (i.e. for every y ∈ Qand for every t, the vetor VH(Φ(y), t) belongs to the range of the linearizedmap Φ∗(y)). Then Φ transforms solutions of the Hamiltonian equation ẏ =

Γ∇yK(y, t), where K = H ◦ Φ, to solution of ẋ = J∇xH(x, t).



2.5. THE BIRKHOFF NORMAL FORM THEOREM 17Corollary 2.2. If under the assumption of Theorem 2.1, {Xs} = {Ys},
H ◦ Φ = H and Φ∗α = α, then Φ preserves the lass of solution for theequation ẋ = J∇xH(x, t).In order to apply Theorem 2.1 we need some regular ways to onstrutsympleti transformations, so we enuniate the following result.Theorem 2.3. Let ({Xs}, α) be a sympleti Hilbert sale as above and
O be a domain in Xd. Let f be a C1�smooth funtion on O × R suh thatthe map Vf : O × R → Xd is Lipshitz in (x, t) and C1�smooth in x. Let
O1 be a subdomain of O. Then the �ow�maps Xτ

t : (O1, α) → (O,α) aresympletomorphism. If the map Vf is Ck�smooth or analyti, then the �ow�maps are Ck�smooth or analyti as well.This theorem is usually applied when the �ow�maps are lose to theidentity. In partiular we have the following result.Theorem 2.4. Under the assumption of Theorem 2.3, let H be a C1�smooth funtion on O. Then
d

dτ
H(Xτ

t ) = {f,H}(Xτ
t ), x ∈ O1.An immediate onsequenes of this theorem is that for an autonomousHamiltonian equation ẋ = J∇f(x), with ord J∇f = 0, a C1�smooth fun-tion H is an integral of motion (i.e. H(x(t)) is time�independent for anysolution x(t)) if and only if {f,H} = 0.2.5. The Birkho� Normal Form TheoremThe Birkho� theorem 1.6 does not trivially extend to in�nite dimensionalsystem beause of the problem of small divisors. In the �nite dimensionalase, the set of integer vetors with modulus smaller than a given γ is �-nite, while in the in�nite dimensional ase this is no more true, sine thedenominators aumulates to zero.Definition 20. Given a multi-index j = (j1, . . . , jr), let (ji1 , ji2 , . . . , jir)be a reordering of j suh that

|ji1 | ≥ |ji2 | ≥ . . . ≥ |jir |.De�ne µ(j) := |ji3 | and S(j) := µ(j) + ||ji1 | − |ji2 ||.Definition 21. Let k ≥ 3 and
Q(z) =

k∑

l=0

∑

j∈Zl

ajzj1 . . . zjl .



2.5. THE BIRKHOFF NORMAL FORM THEOREM 18We say that Q has loalized oe�ients if there exists ν ∈ [0,+∞) suh thatfor any N ≥ 1 there exists CN > 0 suh that for any hoie of the indexes
j1, . . . , jr

|aj | ≤ CN
µ(j)N+ν

S(j)N
.We need now a suitable nonresonane ondition.Definition 22. Fix a positive integer r. The frequeny vetor ω is saidto ful�ll the property (r −NR) if there exist γ > 0 and τ ∈ R suh that forany N large enough one has

∣∣∣∣∣∣

∑

j≥1

ωjKj

∣∣∣∣∣∣
≥ γ

N τ
,for any K ∈ Z

∞ with 0 6= |K| :=∑j |Kj | ≤ r + 2, ∑j>N |Kj| ≤ 2.Now we are ready to tate the Birkho� Normal Form Theorem.Theorem 2.5 (Theorem 4 in [Bam08℄). Fix r ≥ 1. Assume that thenonlinearity HP has loalized oe�ients and that the frequenies ful�ll thenonresonane ondition (r−NR). Then there exists a �nite sr > 0, a neigh-borhood Usr of the origin and a anonial transformation τ de�ned on Usrwhih puts the system in normal form up to order r + 3, namely
H(r) := H ◦ τ = H0 + Z(r) +R(r)where(1) Z(r) and R(r) have loalized oe�ients,(2) Z(r) is a polynomial of degree r + 2 whih Poisson ommutes with

Ji for all i(3) R(r) has a small vetor �eld, namely
‖XR(r)(z)‖sr ≤ C‖z‖r+2

s2
∀z ∈ Usr ,(4) one has

‖z − τ(z)‖sr ≤ C‖z‖2sr ∀z ∈ Usrand the same holds for the inverse τ−1.



CHAPTER 3KAM Theory for PDEsIn Chapter 1 we have seen the lassial KAM theorem for �nite dimen-sional system, that states that the most, with respet to the Lebesgue mea-sure, of the invariant tori of a real analyti non�degenerate integrable systempersists under su�iently small and real analyti perturbation.Starting from the Eighties of the last entury, one of the most inter-esting researh �eld for partial di�erential equations onerns its extensionto in�nite�dimensional systems in order to �nd periodi, quasi�periodi oralmost�periodi solutions. The main di�ulty arises from the fat that, whenthe number of frequenies tends to in�nity, the small divisors tends to zerovery rapidly, and so also the bound of admissible perturbation. As a onlu-sion, a simple extension of the lassial KAM Theorem does not applied toany perturbation di�erent from zero.Essentially up to now there is no general KAM Theorem to handle thee�ets of small divisors for ombinations of in�nitely many frequenies insystems arising from PDE's. But in suh systems there are also families of�nite�dimensional ellipti invariant tori �lled with quasi�periodi motions. AKAM Theorem for these tori an be formulated under the Kolmogorov andMelnikov's onditions as above, but noting that in this ase these onditionsan in�nite number of frequenies are involved.In order to prove the persistene of �nite�dimensional tori in in�nitedimensional systems, the �rst important results are due to Kuksin [Kuk93℄and Wayne [Way90℄. In this hapter we present two results due to Pöshel[Pös96a℄ and Berti�Biaso [BB11℄.
3.1. Setting and assumptionsConsider a family of integrable Hamiltonians

N = N(x, y, z, z; ξ) := ω(ξ) · y +Ω(ξ) · zzde�ned on the phase spae Pa,p := T
n
s ×C

n×ℓa,p×ℓa,p, where Tn is the usual
n�torus T

n = R
n/(2πZ)n, and ℓa,p is the Hilbert spae of omplex�valued19



3.1. SETTING AND ASSUMPTIONS 20sequenes
ℓa,p :=



z = (z1, z1, . . .) : ‖z‖2a,p :=

∑

j≥1

|zj |2j2pe2aj < +∞



with a > 0, p > 1

2 . The normal frequenies ω = (ω1, . . . , ωn) and the tangen-tial frequenies Ω = (Ωn+1,Ωn+2, . . .) depend on m parameters ξ ∈ Π ∈ R
m,

m ≤ n. The set Π is a ompat set with positive Lebesgue measure. Theassoiated sympleti struture is dx ∧ dy + idz ∧ dz.For eah ξ ∈ Π the n�torus T0 := T
n × {0} × {0} × {0} is an invariant

n�dimensional torus with frequenies ω(ξ) and with an ellipti �xed in thenormal spae zz with proper frequenies Ω(ξ). Hene this torus is linearlystable and we all it an ellipti rotational torus with frequenies ω.Consider the family of Hamiltonian
H = N + P,where P is a small analyti perturbation. In this system, the torus in generaldoes not persist due to resonanes among the modes. The aim is to provethe persistene of a large family of n�dimensional linearly stable invarianttori forming a Cantor manifold, provided the perturbation is small enough.In order to do this, we assume the following onditions.(A1) Parameter dependene: The map ω : Π → R

n, ξ 7→ ω(ξ), is Lipshitzontinuous.(A2) For all the integer vetor (k, l)× Z
n × Z

∞ with 1 ≤ |l| ≤ 2,
|{ξ ∈ Π: ω(ξ) · k +Ω(ξ) · l = 0}| = 0and

Ω(ξ) · l 6= 0 on Π.(B) Asymptoti behavior: There exist d ≥ 1 and δ < d− 1 suh that
Ωj(ξ) = Ωj +Ω∗

j(ξ) ∈ R, j ≥ 1,where Ωj = jd+. . . and Ω∗ : Π → ℓ−δ
∞ is Lipshitz ontinuous, where

ℓp∞ is the spae of all real sequenes w with �nite norm ‖w‖p :=

supj |wj |jp.(C) Regularity: The perturbation P is real analyti in the spae oordi-nates and Lipshitz in the parameters. Moreover, for any ξ ∈ Π, theHamiltonian vetor �eld XP = (Py,−Px, iPz ,−iPz) de�nes near T0a map
XP : Pa,p −→ Pa,pwith p ≥ p if d > 1 or p > p if d = 1. Moreover, we assume

p− p ≤ δ < d− 1.



3.1. SETTING AND ASSUMPTIONS 21Notations. Consider an open neighborhood of the torus T0

D(s, r) :=
{
|Imx| < s, |y| < r2, ‖z‖a,p + ‖z‖a,p < r

}with 0 < s, r < 1, where |·| is the sup�norm of omplex�vetors.De�ne the set
Rη,ν :=

{
ω ∈ R

n : |ω · k| ≥ η

1 + |k|τ , ∀k ∈ Z
n \ {0}

}
.Given an analyti funtion f de�ned on D(s, r)×Π, de�ne its sup�norm as

|f |s,r := sup
(x,y,z,z;ξ)∈D(s,r)×Π

|f(x, y, z, z; ξ)|,the Lipshitz semi�norm as
|f |lips,r := sup

ξ,ζ∈Π,ξ 6=ζ

|f(·; ξ)− f(·; ζ)|s,r
|ξ − ζ|and, for any λ ≥ 0, the Lipshitz norm

|·|λs,r := |·|s,r + λ|·|lips,r.Set w = (z, z). Any analyti funtion P an be developed in a totallyonvergent power series
P (x, y, z, z; ξ) =

∑

i,j≥0

Pij(x; ξ)y
izjzjwhere Pij(x) := Pij(x; ξ) are multilinear, symmetri and bounded maps.Identify P10(x) ∈ L(Cn,C) with the vetor P10(x) = ∂y|y=0,w=0P ∈ C

n and
P01(x) ∈ L(ℓa,p,C) with the vetor P01(x) = ∂w|y=0,w=0P ∈ ℓa,p writing

P10(x)y = P10(x) · y and P01(x)w = P01(x) · w.Identify the form P02(x) ∈ L(ℓa,p × ℓa,p,C) with the operator P02(x) ∈
L(ℓa,p, ℓa,p) writing

P02(x)w
2 = P02(x)w · w.De�ne

P≤2 := P00 + P01w + P10y + P02w · w.Given W = (X,Y,U, V ) we de�ne the weighted phase spae norm as
|W |r := |X|+ 1

r2
|Y |+ 1

r

(
‖U‖a,p + ‖V ‖a,p

)and |W |r,D(s,r) = supD(s,r) |W |r-Finally �x the following notations. Given l ∈ Z
∞ de�ne

|l| :=
∑

j≥1

|lj|, |l|p :=
∑

j≥1

jp|lj |, 〈l〉d := max


1,

∣∣∣∣∣∣

∑

j≥1

jdlj

∣∣∣∣∣∣


.



3.2. A KAM THEOREM BY PÖSCHEL 22De�ne the spae
ℓ−δ
∞ :=

{
Ω = (Ω1,Ω2, . . .) ∈ R

∞ : |Ω|−δ := sup
j≥1

j−δ |Ωj| < ∞
}and the Lipshitz norm

|Ω|λ−δ := sup
ξ∈Π

|Ω(ξ)|−δ + λ|Ω|lip−δ,where the Lipshitz semi�norm is de�ned analogously as the previous one.Finally de�ne the set
Z := {(k, l) ∈ Z

n × Z
∞ \ {(0, 0)} : |l| ≤ 2}.In the ase d = 1, de�ne κ as the largest positive number suh that

Ωi − Ωj

i− j
= 1 +O

(
j−κ
)
, for i > juniformly on Π, and assume −δ < κ without loss of generality.By assumptions (A1), (B) the Lipshitz semi�norm of the frequeniessatisfy

|ω|lip + |Ω|lip−δ ≤ M,
∣∣ω−1

∣∣lip ≤ L.for some �nite M,L > 0.3.2. A KAM Theorem by PöshelWe �rst enuniate the result by Pöshel in [Pös96a℄. This is divided intwo parts, an analyti and a geometri one. The �rst states the existeneof invariant tori under the assumption that a ertain set of diophantinefrequenies is not empty. The seond assures that this is indeed the ase.Theorem 3.1 (Theorem A in [Pös96a℄). Suppose that H = N + Psatis�es assumptions (A1), (A2), (B), (C) with ξ ∈ Π ⊂ R
n, and

ε := |XP |r,D(s,r) +
γ

M
|XP |lipr,D(s,r) ≤ αγ,where 0 < γ ≤ 1 is another parameter and α depends on n, τ, s. Then thereexist (1) a Cantor set Πγ ⊂ Π(2) a Lipshitz ontinuous family of torus embeddings Φ: Tn × Πγ →

Pa,p(3) and a Lipshitz ontinuous map ω∗ : Πγ → R
nsuh that, for eah ξ ∈ Πγ, the map Φ restrited to T

n×{ξ} is a real analytiembedding of a rotational torus with frequenies ω∗(ξ) for the Hamiltonian
H in ξ.



3.2. A KAM THEOREM BY PÖSCHEL 23Eah embedding is real analyti on |Imx| < s
2 and

|Φ− Φ0|+
γ

M
|Φ− Φ0|lip ≤ c

ε

γ

|ω∗ − ω|+ γ

M
|ω∗ − ω|lip ≤ cεuniformly, where Φ0 : T

n × Π → T
n
0 is the trivial embedding and c ≤ α−1depends on the same parameters as α.Moreover, there exist Lipshitz maps ων and Ων on Π for any ν ≥ 0satisfying ω0 = ω, Ω0 = Ω and

|ων − ω|+ γ

M
|ων − ω|lip ≤ cε

|Ων − Ω|+ γ

M
|Ων − Ω|lip−δ ≤ cεsuh that Π \ Πγ ⊂ ⋃Rν

kl(γ), where
Rν

kl(γ) :=

{
ξ ∈ Π: |ων(ξ) · k +Ων(ξ) · l| < γ

〈l〉d
|k|τ

}and the union is taken over all ν ≥ 0 and (k, l) ∈ Z suh that |k| > K02
ν−1for ν ≥ 1 with a onstant K0 ≥ 1 depending only on n, τ .The KAM Theorem is proved by a Newton�type iteration proedure,whih involves an in�nite sequene of oordinate hange, eah of whih isobtained as the time�1�map of a suitable Hamiltonian vetor �eld, in orderto make the size of the perturbation smaller and smaller. In doing this, theproblem of small divisors arises so, at eah step of the iterative proess,we have to redue the set of admissible parameters. The following theoremensures that the set of admissible parameters is not empty at eah step,providing its measure estimate.Theorem 3.2 (Theorem B in [Pös96a℄). For ν ≥ 0 let ων and Ων beLipshitz maps on Π satisfying

|ων − ω|, |Ων −Ω|−δ ≤ γ, |ων − ω|lip, |Ων − Ω|lip−δ ≤
1

2L
,and de�ne the sets Rν

kl(α) as in Theorem 3.1 hoosing τ as
τ ≥





n+ 1 +
2

d− 1
for d > 1

(n+ 3)
δ − 1

δ
for d = 1.Then there exists a �nite subset X ⊂ Z and a onstant c̃ suh that

∣∣∣∣∣∣

⋃

(k,l)/∈X
Rν

kl(α)

∣∣∣∣∣∣
≤ c̃ρn−1γµ, with µ =





1 for d > 1

κ

κ+ 1
for d = 1,



3.3. A KAM THEOREM BY BERTI�BIASCO 24for all su�iently small γ, with ρ := diamΠ. The onstant c̃ and the index set
X are monotone funtions of the domain Π: they do not inrease for losedsubsets of Π. In partiular, for δ ≤ 0, we have that the set X is ontained in
{(k, l) : 0 < |k| ≤ 16LM}.By slightly sharpening the smallness ondition, we have that the fre-queny maps of Theorem 3.1 satisfy the hypothesis of Theorem 3.2, and wean onlude that the measure of all the sets Rν

kl(γ) tends to 0. Then wehave the following orollary.Corollary 3.3 (Corollary C in [Pös96a℄). If the onstant α in Theorem3.1 is replaed by a smaller onstant α̃ ≤ α
2LM depending on the set X, then

|Π \Πγ | ≤
∣∣∣
⋃

Rν
kl(γ)

∣∣∣→ 0 as γ → 0.In partiular, if δ ≤ 0 then we an take α̃ = α
2(LM)τ+1 .In the ase of the nonlinear weave equation, sine γ appears with expo-nent µ < 1, the estimate in Theorem 3.2 is not su�ient to guarantee thatthe set of bad frequenies is smaller than the set of all frequenies, so weneed the following better estimate.Theorem 3.4 (Theorem D in [Pös96a℄). Suppose that in Theorem 3.1the unperturbed frequenies are a�ne funtions of the parameters. Then

|Π \Πγ | ≤ c̃ρn−1γµ̃, with µ̃ =





1 for d > 1

κ

κ+ 1− π̃
4

for d = 1,for all su�iently small γ, where π̃ is any number in 0 ≤ π̃ ≤ min(p− p, 1)and c̃ depends also on π̃ and p− p.3.3. A KAM Theorem by Berti�BiasoNow we enuniate a reent result by Berti�Biaso. The main di�erenesbetween this result and the previous one by Pöshel are that the KAM small-ness onditions are weaker and that the �nal Cantor set of parameters satis-fying the Melnikov non�resonane onditions for the iterative KAM proessis expliitly known in terms of the �nal frequenies only. As a onsequene,we an ompletely separate the question of the existene of admissible non�resonant frequenies from the iterative onstrution of invariant tori.Realling all the previous de�nitions and notations, we an state theresult.



3.3. A KAM THEOREM BY BERTI�BIASCO 25Theorem 3.5 (Theorem 5.1 in [BB11℄). Suppose that H = N + Psatis�es assumptions (A1), (B), (C). Let γ > 0 be a positive parameter and
Θ := max



1, |P11|λs , |P03|λs ,

∑

2i+j=4

∣∣∂i
y∂

j
wP
∣∣λ
s,r
, r
∣∣∂2

y∂wP
∣∣λ
s,r



 with λ :=

γ

Msatis�es Θ ≤
√
γ

3r . Then there exists α = α(n, τ, s) suh that, if one of thefollowing KAM�onditions holds(H1) ε1 := max
{

|P00|λs
r2γ2 ,

|P01|λs
rγ3/2 ,

|P10|λs
γ ,

|P02|λs
γ

}
≤ α ,(H2) ε2 := max

{
|P00|λs
r2γ5/4 ,

|P01|λs
rγ3/2 ,

|P10|λs
γ ,

|P02|λs
γ

}
≤ α and |P11|λs ≤ γ5/4

r ,(H3) ε3 := max
{

|P00|λs
r2γµ ,

|P01|λs
rγ ,

|P10|λs
γ ,

|P02|λs
γ

}
≤ α and |P11|λs , |P03|λs ≤ γ

r ,with µ = 1 if d > 1 and 0 < µ ≤ 1 if d = 1,then the following hold(1) there exist Lipshitz frequenies ω∞ : Π → R
n, Ω∞ : Π → ℓ−d

∞ satis-fying(3.1) |ω∞ − ω|λ, |Ω∞ − Ω|λp−p ≤ α−1γεiwith |ω∞|lip, |Ω∞|lip−δ ≤ 2M(2) there exists a Lipshitz family of analyti sympleti maps
Φ: D

(s
4
,
r

4

)
×Π∞ ∋ (x∞, y∞, w∞; ξ) 7−→ (x, y, w) ∈ D(s, r)of the form Φ = I + Ψ with Ψ ∈ Es/4, where Φ∞ will be de�nedlater, suh that

H∞(·; ξ) := H ◦Φ(·; ξ) = ω∞(ξ)y∞ +Ω∞(ξ)z∞z∞ + P∞has P∞
≤2 = 0. Moreover,





|P∞
11 − P11|s/4 ≤ α−1εi

(
|P11|s + γpa−

1
2

)

|P∞
03 − P03|s/4 ≤ α−1εi

(
|P03|s + |P11|s + γpa−

1
2

)(3) the map Ψ satis�es
|x00|λs/4, |y00|λs/4

γ1−pa

r2
, |y01|λs/4

γ1−pb

r
, |y10|λs/4,

|y02|λs/4, |w01|λs/4, |w00|λs/4
γ1−pb

r
≤ α−1εiif (Hi)i=1,2,3 holds, where

pa :=





2 if (H1)

5

4
if (H2)

1 if (H3)

and pb :=





3

2
if (H1) or (H2)

1 if (H3)
.



3.3. A KAM THEOREM BY BERTI�BIASCO 26(4) The Cantor set Π∞ is expliitly
Π∞ :=

{
Π∞ if (H1) or (H2) or (H3) with d > 1

Π∞ ∩ ω−1(Rγµ,τ ) if (H3) with d = 1where
Π∞ :=

{
ξ ∈ Π: |ω∞(ξ) · k +Ω∞(ξ) · l| ≥ 2γ

〈l〉d
1 + |k|τ ,

∀(k, l) ∈ Z
n × Z

∞ \ {0}, |l| ≤ 2
}
.Then, for every ξ ∈ Π∞, the map x∞ 7→ Φ(x∞, 0, 0; ξ) is a real analytiembedding of an ellipti, diophantine, n�dimensional torus with frequenies

ω∞(ξ) for the system with Hamiltonian H.Now we make some omparison with Theorem 3.1. First, we note thatthe KAM ondition in Theorem 3.1 is
γ−1|XP |λs,r ≤ onstant,with λ = γ

M , that implies (H3), but the other two onditions (H1), (H2) arenot enough to guarantee the onvergene of the iterative sheme in Theorem3.1. In the ase d = 1 ondition (H3) is stritly weaker than the KAM ondi-tion in Pöshel, sine µ ≤ 1. This allows to prove the result of quasi�periodisolutions for the nonlinear wave equation in [Pös96b℄ without Theorem 3.4.Moreover, as said before, the Cantor set Π∞ depends only on the �nalfrequenies (ω∞,Ω∞). We note that a priori it an be empty, and in this asethe iterative proess stops after a �nite number of steps and no invariant torisurvives. But ω∞,Ω∞ and so Π∞ are however well de�ned.Note also that we do not laim that the �nal frequenies satisfy theseond order Melnikov non�resonane ondition as in Theorem 3.1, but westate that if the parameter ξ belongs to Π∞ then the torus is preserved.We now give the measure estimate for the set Π∞.Theorem 3.6 (Theorem 5.2 in [BB11℄). Let ω : Φ → ω(Π) be a lipeo-morphism (i.e. homeomorphism whih is Lipshitz in both diretions) with
∣∣ω−1

∣∣lip ≤ L, εi ≤
α

2LM
.If(3.2) Ω(ξ) · l 6= 0 ∀|l| = 1, 2, ∀ξ ∈ Πand(3.3) |{ξ ∈ Π: ω(ξ) · k +Ω(ξ) · l = 0}| = 0for any (k, l) ∈ Z

n × Z
∞ \ {(0, 0)}, |l| ≤ 2, then |Π \Π∞| → 0 as α → 0.



3.3. A KAM THEOREM BY BERTI�BIASCO 27Moreover, if ω(ξ),Ω(ξ) are a�ne funtions of ξ then
|Π \Π∞| ≤ Cρn−1γµ with ρ := diam(Π).



CHAPTER 4Degenerate KAM theory for PDEsThis hapter deals with degenerate KAM theory for lower dimensionalellipti tori of PDEs, in partiular when the frequenies of the linearizedsystem depend on one parameter only.We extend to partial di�erential equations the results due to Rüssmann[Rüs01℄ in the ontext of �nite dimensional systems, see Setion 4.1 for thepreise statements of the main theorems, and we give an appliation to thenonlinear wave equation, see Setion 4.3.In Chapter 1 we gave an idea of the result in [Rüs01℄ and of its proof. Wereall that the main point is to dedue quantitative non�degeneray propertyfrom the qualitative weakly non�degeneray assumption, using property ofanalyti funtions.For in�nite dimensional systems, the main di�ulty in extending theapproah of Rüssmann is met at this step, beause one has to bound themaximal order of the zeros of in�nitely many analyti funtions, a fat whihis generially impossible. Here we exploit the asymptoti growth of the fre-quenies to redue the e�etive number of funtions to a �nite one. This ideaallows to dedue a quantitative non�resonant property of the kind of the se-ond order Melnikov non�resonane onditions, typial of in�nite dimensionalKAM theory, see Proposition 4.3.Conerning the other steps, we avoid the Rüssmann onstrution ofhains, making use of the reent formulation of the KAM theorem in Berti-Biaso [BB11℄. As seen in Chapter 3, an advantage of this formulation is anexpliit haraterization of the Cantor set of parameters whih satisfy theMelnikov non�resonane onditions at all the steps of the KAM iteration,in terms of the �nal frequenies only. This approah ompletely separatesthe question of the existene of admissible non�resonant frequenies fromthe iterative onstrution of the invariant tori. This proedure onsiderablysimpli�es the measure estimates (also for �nite dimensional systems), as itallows to perform them only at the �nal step and not at eah step of theiteration, see Setion 4.2.
28



4. DEGENERATE KAM THEORY FOR PDES 29We apply these abstrat results to nonlinear wave (NLW) equations withDirihlet boundary onditions
utt − uxx + V (x)u+ ξu+ f(x, u) = 0requiring only f(x, u) = O(u2). Using the mass ξ ∈ R as a parameter weprove in Theorem 4.2 the persistene of Cantor families of small amplitudeellipti invariant tori of NLW. This result generalizes the one in [Pös96b℄,valid for f(x, u) = u3+ higher order terms, to arbitrary analyti nonlineari-ties. Atually, in [Pös96b℄ the fourth order Birkho� normal form of NLW isnon�degenerate and the ation�to�frequeny map is a di�eomorphism. Forgeneral nonlinearities this property ould be hard to verify, if ever true. Theuse of degenerate KAM theory allows to avoid this omputation and then itis more versatile.Finally we reall that a KAM theorem for degenerate PDEs was al-ready proved by Xu�You�Qiu [XYQ96℄ whih extended to the in�nite di-mensional ase the method introdued in [XYQ97℄. The main di�erene isthat suh authors assume a quantitative (weak) non�degeneray assumptionwhose veri�ation is usually very hard. On the ontrary our non�degenerayassumption (whih follows Rüssmann) is quite easy to be veri�ed. In par-tiular, sine it is based on properties of analyti funtions it is enough toverify it for one value of the parameter, a task usually not very di�ult.This hapter is organized as follows: in Setion 4.1 we present the mainresults. In Setion 4.2 we prove the measure estimates. In Setion 4.3 we on-sider the appliation to the nonlinear wave equation. Finally in setion 4.4 wededue the quantitative non�resonane ondition (4.13) from the qualitativenon�resonane ondition (ND) and the analytiity and asymptoti behaviorof the linear frequenies, see assumption (A).Notations. For l ∈ Z

∞ de�ne the norms
|l| :=

∑

j

|lj|, |l|δ :=
∑

j

jδ|lj |, 〈l〉d := max



1,

∣∣∣∣∣∣

∑

j

jdlj

∣∣∣∣∣∣



.Given a, b ∈ R

M , M ≤ +∞, denote the salar produt 〈a, b〉 :=∑M
j=1 ajbj .We de�ne the set(4.1) ZN :=

{
(k, l) ∈ Z

N × Z
∞ \ (0, 0) : |l| ≤ 2

}and we split L := {l ∈ Z
∞ : |l| ≤ 2} as the union of the following four disjointsets(4.2) L0 := {l = 0}, L1 := {l = ej},

L2+ := {l = ei + ej for i 6= j}, L2− := {l = ei − ej for i 6= j},



4.1. STATEMENT OF THE MAIN RESULTS 30where ei := (0, . . . 0, 1︸︷︷︸
i−th

, 0, . . .) and i, j ≥ N + 1.Given a map Ω: I ∋ ξ 7→ Ω(ξ) ∈ R
∞ we de�ne the norm ||Ω||−δ :=

supξ∈I supj |Ωj|j−δ and the Cµ-norm, µ ∈ N, as
||Ω||Cµ

−δ :=

µ∑

ν=0

∣∣∣∣
∣∣∣∣
dν

dξν
Ω(ξ)

∣∣∣∣
∣∣∣∣
−δ

.The | |Cµ norm of a map ω : I → R
N , N < ∞, is de�ned analogously.4.1. Statement of the main resultsFix an integer N ≥ 1 and onsider the phase spae

Pa,p := T
N × R

N × ℓa,p × ℓa,p ∋ (x, y, z, z)for some a > 0, p > 1/2, where T
N is the usual N -torus and ℓa,p is theHilbert spae of omplex valued sequenes z = (z1, z2, . . .) suh that

‖z‖2a,p :=
∑

j≥1

|zj |2j2pe2aj < +∞ ,endowed with the sympleti struture∑N
j=1 dxj ∧dyj+ i∑j≥N+1 dzj ∧dzj .Consider a family of Hamiltonians(4.3) H := Z + Pdepending on one real parameter ξ varying in a ompat set I ⊂ R, where

Z is the normal form(4.4) Z :=

N∑

j=1

ωj(ξ)yj +
∑

j≥N+1

Ωj(ξ)zjzj ,with frequenies ω = (ω1, . . . , ωN ) ∈ R
N , Ω = (ΩN+1,ΩN+2, . . .) ∈ R

∞, realanalyti in ξ, and P is a small perturbation, also real analyti in ξ.The equations of motion of the unperturbed system Z are
ẋ = ω(ξ), ẏ = 0, ż = iΩ(ξ)z, ż = −iΩ(ξ)z .For eah ξ ∈ I the torus T N

0 = T
N × {0} × {0} × {0} is an invariant N�dimensional torus for Z with frequenies ω(ξ) and with an ellipti �xed pointin its normal spae, desribed by the zz-oordinates, with frequenies Ω(ξ).The aim is to prove the persistene of a large family of suh N�dimensionalellipti invariant tori in the omplete Hamiltonian system, provided the per-turbation P is su�iently small.To this end we shall use the abstrat KAM theorem in [BB11℄. Anadvantage of its formulation is an expliit haraterization of the Cantor setof parameters whih satisfy the Melnikov non�resonane onditions at all



4.1. STATEMENT OF THE MAIN RESULTS 31the steps of the KAM iteration, in terms of the �nal frequenies only, see(4.9). This approah ompletely separates the question of the existene ofadmissible non�resonant frequeny vetors from the iterative onstrution of
N�dimensional invariant tori.We now state a simpli�ed version of the KAM theorem in [BB11℄ su�-ient for the appliations of this paper.4.1.1. KAM theorem. We assume:(A) Analytiity and Asymptoti ondition: There exist d ≥ 1, δ < d−1, 0 <

η < 1 �xed, and funtions νj : I → R suh that
Ωj(ξ) = jd + νj(ξ)j

δ, j ≥ N + 1 ,where eah νj(ξ) extends to an analyti funtion on the omplex neigh-borhood of I
Iη :=

⋃

ξ∈I

{
ξ′ ∈ C :

∣∣ξ − ξ′
∣∣ < η

}
⊆ C.Also the funtion ω : I → R

N has an analyti extension on Iη. Moreoverthere exists Γ ≥ 1 suh that
sup
Iη

sup
j

|νj(ξ)| ≤ Γ , sup
Iη

|ω(ξ)| ≤ Γ .Consider the omplexi�ation of Pa,p and de�ne a omplex neighborhood
Da,p(s, r) of the torus T N

0 by(4.5) Da,p(s, r) :=
{
|Imx| < s, |y| < r2, ‖z‖a,p + ‖z‖a,p < r

}for some s, r > 0, where |·| denotes the max�norm for omplex vetors.For W = (X,Y,U, V ) ∈ C
N ×C

N × ℓa,p(C)× ℓa,p(C), de�ne the weightedphase spae norm
|||||W ||||| p,r := |X|+ r−2|Y |+ r−1‖U‖a,p + r−1‖V ‖a,p .Finally set

E := Iη ×Da,p(s, r) .(R) Regularity ondition: There exist s > 0, r > 0 suh that, for eah ξ ∈ I ,the Hamiltonian vetor �eld XP := (∂yP,−∂xP, i∂z̄P,−i∂zP ) is a realanalyti map
XP : Da,p(s, r) −→ Pa,p,




p ≥ p for d > 1

p > p for d = 1with p− p ≤ δ < d− 1, real analyti in ξ ∈ Iη and
|||||XP ||||| r,p̄,E := sup

E
|||||XP ||||| p̄,r < +∞ .



4.1. STATEMENT OF THE MAIN RESULTS 32KAM Theorem. [BB11℄ Consider the Hamiltonian system H = Z+Pon the phase spae Pa,p. Assume that the frequeny map of the normal form
Z is analyti and satis�es ondition (A). Let 9r2 < γ < 1. Suppose theperturbation P satis�es (R) and(4.6) ∑

2i+j1+j2=4

sup
E

|∂i
y∂

j1
z ∂j2

z̄ P | ≤
√
γ

3r
.Then there is ǫ∗ > 0 suh that, if the KAM�ondition(4.7) ε := γ−1 |||||XP ||||| r,p̄,E ≤ ǫ∗holds, then1. there exist C∞-maps ω∗ : I → R

N , Ω∗ : I → ℓ−d
∞ , satisfying, for any

µ ∈ N,(4.8) |ω∗ − ω|Cµ ≤ M(µ)εγ1−µ, ||Ω∗ − Ω||Cµ

−δ ≤ M(µ)εγ1−µfor some onstant M(µ) > 0,2. there exists a smooth family of real analyti torus embeddings
Φ : TN × I∗ → Pa,p̄where I∗ is the Cantor set(4.9) I∗ :=

{
ξ ∈ I : | 〈k, ω∗(ξ)〉 + 〈l,Ω∗(ξ)〉 | ≥ 2γ〈l〉d

1 + |k|τ , ∀(k, l) ∈ ZN

}
,suh that, for eah ξ ∈ I∗, the map Φ restrited to T

N × {ξ} isan embedding of a rotational torus with frequenies ω∗(ξ) for theHamiltonian system H, lose to the trivial embedding TN×I → T N
0 .Remark. The KAM Theorem 5.1 in [BB11℄ provides also expliit es-timates on the map Φ and a normal form in an open neighborhood of theperturbed torus.Remark. The above KAM theorem follows by Theorem 5.1 in [BB11℄and remark 5.1, valid for Hamiltonian analyti also in ξ. Atually (4.6), (4.7)and 9r2 < γ < 1 imply the assumptions (5.5) and (H3) of Theorem 5.1 of[BB11℄. Estimate (4.8) is (5.15) in [BB11℄.Remark. The main di�erene between the above KAM theorem andthose in Kuksin [Kuk93℄ and Pöshel [Pös96a℄, onerns, for the assump-tions, the analyti dependene of H in the parameters ξ, whih is only Lip-shitz in [Kuk93℄, [Pös96a℄. For the results, the main di�erene is the ex-pliit haraterization of the Cantor set I∗. Note that we do not only laimthat the frequenies of the preserved torus satisfy the seond order Melnikovnon-resonane onditions, fat already proved in [Pös96a℄. The above KAM



4.1. STATEMENT OF THE MAIN RESULTS 33Theorem states that also the onverse is true: if the parameter ξ belongs to
I∗, then the KAM torus with frequenies ω∗(ξ) is preserved.The main result of the next setion proves that I∗ is non�empty, undersome weak non�degeneray assumptions.4.1.2. The measure estimates. We �rst give the following de�nition.Definition 23. A funtion f = (f1, . . . , fM ) : I → R

M is said to benon�degenerate if for any vetor (c1, . . . , cM ) ∈ R
M \{0} the funtion c1f1+

. . .+ cMfM is not identially zero on I .We assume:(ND) Non�degeneray ondition: The frequeny map (ω,Ω) satis�es
i) (ω, 1): I → R

N × R is non�degenerate
ii) for any l ∈ Z

∞ with 0 < |l| ≤ 2 the map (ω, 〈l,Ω〉) : I → R
N ×R isnon�degenerate.Remark. Condition i) implies that ω : I → R

N is non�degenerate. A-tually i) means that, for any (c1, . . . , cN ) ∈ R
N \ {0}, the funtion c1ω1 +

. . .+ cNωN is not identially onstant on I .Remark. The non�degeneray of the �rst derivative of the frequenymap (ω′,Ω′), namely
i′) ω′ : I → R

N is non�degenerate
ii′) for any l ∈ Z

∞ with 0 < |l| ≤ 2 the map (ω′, 〈l,Ω′〉) : I → R
N × Ris non�degenerate,implies (ND).Theorem 4.1. (Measure estimate) Assume that the frequeny map

(ω,Ω) ful�lls assumptions (A) and (ND). Take(4.10) M(µ0)εγ
1−µ0 ≤ β/4 , M(µ0 + 1)εγ−µ0 ≤ 1 ,where µ0 ∈ N, β > 0 are de�ned in (4.13) and M(µ0) in (4.8). Then thereexist onstants τ , γ∗ > 0, µ∗ ≥ µ0, depending on d,N, µ0, β, η suh that
|I \ I∗| ≤ (1 + |I|)

( γ

γ∗

) 1
µ∗for all 0 < γ ≤ γ∗.In [Rüs01℄ the onstant β is alled the �amount of non�degeneray� and

µ0 the �index of non�degeneray�.



4.2. PROOF OF THEOREM 5.1 344.1.3. Appliation: wave equation. The previous results apply tothe nonlinear wave equation with Dirihlet boundary onditions(4.11) 


utt − uxx + V (x)u+ ξu+ f(x, u) = 0

u(t, 0) = u(t, π) = 0where V (x) ≥ 0 is an analyti, 2π-periodi, even potential V (−x) = V (x),the mass ξ is a real parameter on an interval I := [0, ξ∗], the nonlinearity
f(x, u) is real analyti, odd in the two variables, i.e. for all (x, u) ∈ R

2,
f(−x,−u) = −f(x, u) ,and(4.12) f(x, 0) = (∂uf)(x, 0) = 0 .For every hoie of the indies J := {j1 < j2 < . . . < jN} the linearizedequation utt − uxx + V (x)u+ ξu = 0 possesses the quasi�periodi solutions

u(t, x) =

N∑

h=1

Ah cos(λjht+ θh)φjh(x)where Ah, θh ∈ R, and φj , resp. λ2
j (ξ), denote the simple Dirihlet eigenve-tors, resp. eigenvalues, of −∂xx+V (x)+ξ. For V (x) ≥ 0 (that we an assumewith no loss of generality), all the Dirihlet eigenvalues of −∂xx + V (x) arestritly positive.Theorem 4.2. Under the above assumptions, for every hoie of indexes

J := {j1 < j2 < . . . < jN}, there exists r∗ > 0 suh that, for any A =

(A1, . . . , AN ) ∈ R
N with |A| =: r ≤ r∗, there is a Cantor set I∗ ⊂ I withasymptotially full measure as r → 0, suh that, for all the masses ξ ∈ I∗,the nonlinear wave equation (4.11) has a quasi�periodi solution of the form

u(t, x) =
N∑

h=1

Ah cos(λ̃ht+ θh)φjh(x) + o(r),where o(r) is small in some analyti norm and λ̃h − λjh → 0 as r → 0.4.2. Proof of Theorem 5.1The �rst step is to use the analytiity of the linear frequenies to trans-form the non�degeneray assumption (ND) into a quantitative non-resonaneproperty, extending Rüssmann's Lemma 18.2 in [Rüs01℄ to in�nite dimen-sions.



4.2. PROOF OF THEOREM 5.1 35Proposition 4.3. Let (ω,Ω) : I 7→ R
N × R

∞ satisfy assumptions (A)and (ND) on I. Then there exist µ0 ∈ N and β > 0 suh that(4.13) max
0≤µ≤µ0

∣∣∣∣
dµ

dξµ
(〈k, ω(ξ)〉+ 〈l,Ω(ξ)〉)

∣∣∣∣ ≥ β(|k|+ 1)for all ξ ∈ I, (k, l) ∈ ZN .Tehnially, this is the most di�ult part of the paper and its proof isdeveloped in Setion 4.4.As a Corollary of Proposition 4.3 and by (4.8), also the �nal frequenies
(ω∗,Ω∗) satisfy a non�resonane property similar to (4.13).Lemma 4.4. Assume M(µ0)εγ

1−µ0 ≤ β/4, where µ0 and β are de�nedin Proposition 4.3 and M(µ0) is the onstant in (4.8). Then(4.14) max
0≤µ≤µ0

∣∣∣∣
dµ

dξµ
〈k, ω∗(ξ)〉+ 〈l,Ω∗(ξ)〉

∣∣∣∣ ≥
β

2
(|k|+ 1)for all ξ ∈ I and (k, l) ∈ ZN .Proof. By (4.13) and (4.8) we get, for all 0 ≤ µ ≤ µ0,

∣∣∣∣
dµ

dξµ
〈k, ω∗(ξ)〉+ 〈l,Ω∗(ξ)〉

∣∣∣∣ ≥
∣∣∣∣
dµ

dξµ
〈k, ω(ξ)〉+ 〈l,Ω(ξ)〉

∣∣∣∣

−
∣∣∣∣
dµ

dξµ
〈k, ω∗(ξ)− ω(ξ)〉+ 〈l,Ω∗(ξ)− Ω(ξ)〉

∣∣∣∣

≥ β(|k|+ 1)− 2(|k|+ 1)M(µ0)εγ
1−µ

≥ (β/2)(|k|+ 1)sine M(µ0)εγ
1−µ0 ≤ β/4. �We now proeed with the proof of Theorem 4.1. By (4.9) we have(4.15) I \ I∗ ⊂

⋃

(k,l)∈ZN

Rkl(γ)with resonant regions
Rkl(γ) :=

{
ξ ∈ I : |〈k, ω

∗(ξ)〉+ 〈l,Ω∗(ξ)〉|
1 + |k| <

2γ

1 + |k|τ+1 〈l〉d
}
.In the following we assume 0 < γ ≤ 1/8.Lemma 4.5. There is L∗ > 1 suh that

〈l〉d ≥ max{L∗, 8Γ|k|} =⇒ Rkl(γ) = ∅ .Proof. The asymptoti assumption (A) and (4.8) imply that
〈l,Ω∗〉
〈l〉d

→ 1 as 〈l〉d → +∞ , uniformly in ξ ∈ I .



4.2. PROOF OF THEOREM 5.1 36So |〈l,Ω∗〉| ≥ 〈l〉d /2 for 〈l〉d ≥ L∗ > 1. If |k| ≤ (1/8Γ) 〈l〉d then Rkl(γ) isempty, beause, for all ξ ∈ I ,
|〈k, ω∗(ξ)〉+ 〈l,Ω∗(ξ)〉| ≥ 〈l〉d

2
− 2Γ|k| ≥ 2γ 〈l〉d ≥ 2γ 〈l〉d

1 + |k|
1 + |k|τ+1provided 0 < γ ≤ 1/8. �As a onsequene, in the following we restrit the union in (4.15) to

〈l〉d < max{L∗, 8Γ|k|}.Lemma 4.6. There exists B := B(µ0, β, ω,Ω, η) > 0 suh that, for any
(k, l) ∈ ZN satisfying 〈l〉d < max{L∗, 8Γ|k|} and for all γ with(4.16) 0 < γ <

β

8(µ0 + 1)max{L∗, 8Γ}
,then(4.17) |Rkl(γ)| ≤ B(1 + |I|)α

1
µ0 where α :=

2γ

1 + |k|τ+1 〈l〉d .Proof. We use Theorem 17.1 in [Rüs01℄. The C∞�funtion
g∗kl(ξ) :=

〈k, ω∗(ξ)〉+ 〈l,Ω∗(ξ)〉
1 + |k|satis�es, by (4.14),

min
ξ∈I

max
0≤µ≤µ0

∣∣∣∣
dµ

dξµ
g∗kl(ξ)

∣∣∣∣ ≥
β

2
.Moreover 〈l〉d < max {L∗, 8Γ|k|} and (4.16) imply

α < max {2L∗, 16Γ}γ <
β

4(µ0 + 1)
.Then the assumptions of Theorem 17.1 in [Rüs01℄ are satis�ed and so

|Rkl(γ)| ≤ B(µ, β, η)(1 + |I|)α
1
µ0 |g∗kl|µ0+1

ηwhere
|g∗kl|µ0+1

η := sup
ξ∈Iη∩R

max
0≤ν≤µ0+1

∣∣∣∣
dν

dξν
g∗kl(ξ)

∣∣∣∣ .By (4.10), (4.8) and 〈l〉d ≤ max {L∗, 8Γ|k|}, we have that the norm |g∗kl|
µ0+1
ηis ontrolled by a onstant depending on ω,Ω and this implies (4.17). �Now the measure estimate proof ontinues as in [Pös96a℄.Lemma 4.7. Assume d > 1, and(4.18) τ > µ0

(
N +

2

d− 1

)
.



4.2. PROOF OF THEOREM 5.1 37Then there is γ∗ := γ∗(N,µ0, ω,Ω, β, η, d) > 0, suh that, for any γ ∈ (0, γ∗),
∣∣∣∣∣∣

⋃

(k,l)∈ZN

Rkl(γ)

∣∣∣∣∣∣
≤ (1 + |I|)

(
γ

γ∗

) 1
µ0

.Proof. By Lemma 4.5 we have(4.19) ∣∣∣∣∣∣

⋃

(k,l)∈ZN

Rkl(γ)

∣∣∣∣∣∣
≤

∑

0≤|k|≤L∗

8Γ
〈l〉d<L∗

|Rkl(γ)|+
∑

|k|>L∗

8Γ
〈l〉d<8Γ|k|

|Rkl(γ)| .We �rst estimate the seond sum. By Lemma 4.6 and
card {l : 〈l〉d < 8Γ|k|} ≤ (8Γ|k|) 2

d−1we get
∑

|k|>L∗

8Γ
〈l〉d<8Γ|k|

|Rkl(γ)| ≤
∑

|k|>L∗

8Γ
〈l〉d<8Γ|k|

B(1 + |I|)
(

2γ

|k|τ+1 〈l〉d
) 1

µ0

≤ C1(1 + |I|)γ
1
µ0

∑

k∈ZN\{0}
(8Γ|k|) 2

d−1 |k|−
τ
µ0

≤ C2(1 + |I|)γ
1
µ0by (4.18), for some onstant C1, C2 > 0 depending on N,µ0, ω,Ω, β, η, d.Similarly the �rst sum in (4.19) is estimates by

∑

0≤|k|≤L∗

8Γ
〈l〉d<L∗

|Rkl(γ)| ≤ C3(1 + |I|)γ
1
µ0with C3 > 0, and so the thesis follows for some γ∗ > 0 small enough. �Lemma 4.8. Assume d = 1 and(4.20) τ > µ0(N + 1)

(
1− µ0

δ

)
.Then there are positive onstants γ∗ and µ∗ depending on N,µ0, ω,Ω, β, η, δsuh that ∣∣∣∣∣∣

⋃

(k,l)∈ZN

Rkl(γ)

∣∣∣∣∣∣
≤ (1 + |I|)

(
γ

γ∗

)− δ
µ0(µ0−δ)

.Proof. For (k, l) ∈ Z+
N := ZN ∩ (L0 ∪ L1 ∪ L2+), where these sets arede�ned in (4.2), we estimate, as in the ase d > 1,(4.21) ∣∣∣∣∣∣∣

⋃

(k,l)∈Z+
N

Rkl(γ)

∣∣∣∣∣∣∣
≤ C4(1 + |I|)γ

1
µ0



4.2. PROOF OF THEOREM 5.1 38for some C4 > 0.Let now (k, l) ∈ Z−
N := Z

N ×L2− and assume, without loss of generality,
i > j, then 〈l〉d = i − j. By the asymptoti behavior of Ω∗ (see assumption(A) and (4.8)) and remembering that δ < 0, there is a onstant a > 0 suhthat(4.22) ∣∣∣∣

Ω∗
i − Ω∗

j

i− j
− 1

∣∣∣∣ ≤
a

j−δ
, for all i > j .Hene 〈l,Ω∗〉 = Ω∗

i −Ω∗
j = i−j+rij , with |rij | ≤ a

j−δm and m := i−j. Thenwe have |〈k, ω∗〉+ 〈l,Ω∗〉| ≥ |〈k, ω∗〉+m| − |rij|, provided |〈k, ω∗〉+m| ≥∣∣∣ a
j−δm

∣∣∣, from whih follows that, for �xed k, l,
Rkl∩S+ ⊆ Qm

kj :=

{
ξ ∈ I : |〈k, ω

∗(ξ)〉+m|
1 + |k| <

2γ

1 + |k|τ+1m+
am

(1 + |k|)j−δ

}where we have set for simpliity Rkl := Rkl(γ), and
S+ :=

{
ξ ∈ I : |〈k, ω

∗(ξ)〉+m|
1 + |k| ≥ am

(1 + |k|)j−δ

}
.Calling S− the omplementary set of S+, we have

Rkl =
(
Rkl ∩ S−) ∪

(
Rkl ∩ S+

)
⊆ Qm

kjso we need to estimate Qm
kj . Notie �rst that Qm

kj ⊂ Qm
kj0

if j > j0, for some
j0 to be �xed later. For γ small enough the result in Lemma 4.5 applies alsothe set Qm

kj0
and so we get

∣∣∣∣∣∣∣

⋃

(k,l)∈Z−

N

Rkl

∣∣∣∣∣∣∣
≤

∑

|k|≤L∗

8Γ
m<L∗


∣∣Qm

kj0

∣∣+
∑

j<j0

|Rkl|


+

∑

|k|>L∗

8Γ
m<8Γ|k|


∣∣Qm

kj0

∣∣+
∑

j<j0

|Rkl|


We start with the sum over m < 8Γ|k|, that we denote with (S2). UsingLemma 4.6 we get

(S2) ≤ C5(1 + |I|)



(

a

|k|j−δ
0

) 1
µ0

+

(
2γ

|k|τ+1

) 1
µ0

j0




∑

m<8Γ|k|
m

1
µ0

≤ C6(1 + |I|)γ
−δ

µ0(µ0−δ) |k|1+
δτ

µ0(µ0−δ)having hosen j0 as
j0 :=

(a
2
|k|τγ−1

) 1
µ0−δ

.Summing in |k| ≥ L∗/(8Γ) and using (4.20) yields
∑

|k|≥L∗/(8Γ)
m<8Γ|k|


∣∣Qm

kj0

∣∣+
∑

j<j0

|Rkl|


 ≤ C7(1 + |I|)γ

−δ
µ0(µ0−δ) ,



4.3. PROOF OF THEOREM 5.2 39with C7 > 0. The estimate of the �rst sum follows in a similar way. Henewe have obtained the thesis for γ∗ > 0 small enough. �4.3. Proof of Theorem 5.2We write (4.11) as an in�nite dimensional Hamiltonian system introdu-ing oordinates q, p ∈ ℓa,p by
u =

∑

j≥1

qj√
λj

φj , v := ut =
∑

j≥1

pj
√

λjφj , λj(ξ) :=
√

µj + ξ ,where µj and φj , are respetively the simple Dirihlet eigenvalues and eigen-vetors of −∂xx + V (x), normalized and orthogonal in L2(0, π). Note that
µj > 0 for all j ≥ 1 beause V (x) ≥ 0. The Hamiltonian of (4.11) is

HNLW =

∫ π

0

(
v2

2
+

1

2
(u2x + V (x)u2 + ξu2) + F (x, u)

)
dx

=
1

2

∑

j≥1

λj(q
2
j + p2j) +G(q)(4.23)where ∂uF (x, u) = f(x, u) and(4.24) G(q) :=

∫ π

0
F
(
x,
∑

j≥1

qjλ
−1/2
j φj

)
dx .Note that sine f satis�es only (4.12) then G(q) ould ontain ubi terms.Now we reorder the indies in suh a way that J := {j1 < . . . < jN}orresponds to the �rst N modes. More preisely we de�ne a reordering

k → jk from N → N whih is bijetive and inreasing both from {1, . . . , N}onto J and from {N + 1, N + 2, . . .} onto N \ J .Introdue omplex oordinates
zk :=

1√
2
(pjk + iqjk) , z̄k :=

1√
2
(pjk − iqjk)and ation-angle oordinates on the �rst N -modes

zk :=
√

Ik + yke
ixk , 1 ≤ k ≤ N ,with(4.25) Ik ∈

(
r2θ

2
, r2θ

]
, θ ∈ (0, 1) .Then the Hamiltonian (4.23) assumes the form (4.3)-(4.4) with frequenies

ω(ξ) := (λj1(ξ), . . . , λjN (ξ)) , Ω(ξ) := (λjN+1
(ξ), λjN+2

(ξ), . . .) .The asymptoti assumption (A) holds with d = 1, δ = −1 and η = µ1/2.Also the regularity assumption (R) holds with p̄ = p+ 1, see Lemma 3.1 of[CY00℄.



4.3. PROOF OF THEOREM 5.2 40By onditions (4.24), (4.12) and (4.25) the perturbation satis�es
ε := γ−1 |||||XP ||||| r,p,E = O(γ−1r3θ−2) ,

∑

2i+j1+j2=4

sup
I×D(s,r)

∣∣∣∂i
y∂

j1
z ∂j2

z P
∣∣∣ = O(1) .Fixed

θ ∈ (2/3, 1) , γ := rσ , 0 < σ < (3θ − 2)/µ0 ,then, for r > 0 small enough, the KAM onditions (4.6)-(4.7) are veri�ed aswell as the smallness ondition (4.10). It remains to verify assumption (ND).Lemma 4.9. The non�degeneray ondition (ND) holds.Proof. It is su�ient to prove that, for any (c0, c1, . . . , cN , ch, ck) ∈
R
N+3\{0} with k > h > N , the funtion c0+c1λj1+. . .+cNλjN+chλjh+ckλjkis not identially zero on I = [0, ξ∗]. For simpliity of notation we denote

λl := λjl .Suppose, by ontradition, that there exists (c0, c1, . . . , cN , ch, ck) 6= 0suh that c0 + c1λ1 + . . . + cNλN + chλh + ckλk ≡ 0. Then, taking the �rst
N + 2 derivatives, we get the system





c0 + c1λ1 + . . .+ cNλN + chλh + ckλk = 0

c1
d

dξ
λ1 + . . .+ cN

d

dξ
λN + ch

d

dξ
λh + ck

d

dξ
λk = 0...

c1
dN+2

dξN+2
λ1 + . . . + cN

dN+2

dξN+2
λN + ch

dN+2

dξN+2
λh + ck

dN+2

dξN+2
λk = 0 .Sine this system admits a non�zero solution, the determinant of the asso-iated matrix is zero. On the other hand this determinant is c0 times thedeterminant of the (N + 2)× (N + 2) minor

D =




d
dξλ1(ξ) . . . d

dξλN (ξ) d
dξλh(ξ)

d
dξλk(ξ)

d2

dξ2
λ1(ξ) . . . d2

dξ2
λN (ξ) d2

dξ2
λh(ξ)

d2

dξ2
λk(ξ)... ... ... ... ...

dN+2

dξN+2λ1(ξ) . . . dN+2

dξN+2λN (ξ) dN+2

dξN+2λh(ξ)
dN+2

dξN+2λk(ξ)


whih is di�erent from 0, as we prove below. This implies c0 = 0. Moreoverthe unique solution (c1, . . . cN , ch, ck) of the system assoiated to D is zero.This is a ontradition.In order to prove that the determinant of D is di�erent from zero, we�rst observe that, by indution, for any r ≥ 1,

dr

dξr
λi(ξ) =

(2r − 3)!!

2r
(−1)r+1

(µi + ξ)r−
1
2

,



4.4. QUANTITATIVE NON�RESONANCE PROPERTY: PROOF OF PROPOSITION 5.341where, for n odd, n!! := n(n − 2)(n − 4) . . . 1 and (−1)!! := 1. Setting xi =

(µi + ξ)−1 and using the linearity of the determinant, we obtain
detD =

N+2∏

r=1

(−1)r+1 (2r − 3)!!

2r

(
N∏

i=1

(µi + ξ)−
1
2

)
(µh + ξ)−

1
2 (µk + ξ)−

1
2

· det




1 . . . 1 1 1

x1 . . . xN xh xk... ... ... ... ...
xN+1
1 . . . xN+1

N xN+1
h xN+1

k


The last is a Vandermonde determinant whih is not zero sine all the xi areall di�erent from eah other. For a similar quantitative estimate we refer to[Bam99℄. �In onlusion the KAM Theorem and Theorem ?? apply proving Theorem4.2. 4.4. Quantitative non�resonane property:Proof of Proposition 5.3Split the set L as in (4.2) and disuss the four ases separately.Case l ∈ L0. There exist µ0 ∈ N, β > 0 suh that

max
0≤µ≤µ0

∣∣∣∣
dµ

dξµ
〈k, ω(ξ)〉

∣∣∣∣ ≥ β(1 + |k|)for all ξ ∈ I, k ∈ Z
N \ {0}.Proeed by ontradition and assume that for all µ0 ∈ N and for all

β > 0 there exist ξµ0,β ∈ I , kµ0,β ∈ Z
N \ {0} suh that

max
0≤µ≤µ0

∣∣∣∣
dµ

dξµ

〈
kµ0,β

1 + |kµ0,β|
, ω(ξµ0,β)

〉∣∣∣∣ < β.In partiular, for all λ := µ0 ∈ N, β := 1/(λ+ 1), there exist ξλ ∈ I ,
kλ ∈ Z

N \ {0} suh that
max
0≤µ≤λ

∣∣∣∣
dµ

dξµ

〈
kλ

1 + |kλ|
, ω(ξλ)

〉∣∣∣∣ <
1

λ+ 1
,namely, for all µ ≥ 0, for any λ ≥ µ, we have(4.26) ∣∣∣∣

dµ

dξµ

〈
kλ

1 + |kλ|
, ω(ξλ)

〉∣∣∣∣ <
1

λ+ 1
.By ompatness there exist onverging subsequenes ξλh

→ ξ ∈ I and
kλh

1+|kλh |
→ c ∈ R

N with 1/2 ≤ |c| ≤ 1 if λh → ∞ as h → ∞. Passing
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dµ

dξµ
〈
c, ω
(
ξ
)〉

= lim
h→∞

dµ

dξµ

〈
kλh

1 + |kλh
| , ω(ξλh

)

〉
= 0 ,namely the analyti funtion 〈c, ω(ξ)〉 vanishes with all its derivatives at ξ.Then 〈c, ω(ξ)〉 ≡ 0 on I . This ontradits the assumption of non�degenerayof ω.Case l ∈ L1. There exist µ0 ∈ N, β > 0 suh that

max
0≤µ≤µ0

∣∣∣∣
dµ

dξµ
(〈k, ω(ξ)〉+Ωj(ξ))

∣∣∣∣ ≥ β(1 + |k|)for all ξ ∈ I, k ∈ Z
N , j ≥ N + 1.Arguing by ontradition as above, we assume that for all λ ∈ N thereexist ξλ ∈ I , kλ ∈ Z
N , jλ ≥ N + 1 suh that(4.27) max

0≤µ≤λ

∣∣∣∣
dµ

dξµ
(〈kλ, ω(ξλ)〉+Ωjλ(ξλ))

∣∣∣∣ <
1

λ+ 1
(1 + |kλ|).The asymptoti assumption (A) implies

jd ≥ Θ1|k|+Θ2 =⇒
∣∣∣∣
〈k, ω(ξ)〉+Ωj(ξ)

1 + |k|

∣∣∣∣ ≥
1

2
, ∀ξ ∈ I ,with Θ1 := 2Γ + 1, Θ2 := max{1, (2Γ)d}. Then, (4.27) implies that(4.28) jdλ < Θ1|kλ|+Θ2 , ∀λ ≥ 1 .By ompatness ξλh

→ ξ as h → ∞. The indexes kλ ∈ Z
N , jλ ≥ N + 1belong to non�ompat spaes and they ould onverge or not. Hene wehave to separate the various ases.Case kλ bounded. By (4.28) also the sequene jλ is bounded. So we extratonstant subsequenes kλh

≡ k, jλh
≡ . Passing to the limit in (4.27), weget, for any µ ≥ 0,

dµ

dξµ

(〈
k

1 +
∣∣k
∣∣ , ω
(
ξ
)
〉

+
Ω

(
ξ
)

1 +
∣∣k
∣∣

)
= 0 .By the analytiity of ω,Ω, the funtion 〈k, ω〉 (ξ) + Ω(ξ) is identially zeroon I . This ontradits the non�degeneray of (ω,Ωj).Case kλ unbounded. The quantity kλ

1+|kλ| onverges, up to subsequene, to
c ∈ R

N , with 1/2 ≤ |c| ≤ 1.If {jλ} is bounded, there is a subsequene {jλh
} that is onstantly equalto . Passing to the limit in (4.27), we get, for any µ ≥ 0,

dµ

dξµ
〈
c, ω
(
ξ
)〉

= lim
h→∞

dµ

dξµ

(〈
kλh

1 + |kλh
| , ω(ξλh

)

〉
+

jdλh
+ νjλh (ξλh

)jδλh

1 + |kλh
|

)
= 0.



4.4. QUANTITATIVE NON�RESONANCE PROPERTY: PROOF OF PROPOSITION 5.343By the analytiity of ω we ome to a ontradition with the non�degenerayassumption on ω.If {jλ} is unbounded there is a divergent subsequene jλh
→ ∞. Then weonsider the �rst derivative of the funtion 〈k, ω(ξ)〉+Ωj(ξ), namely, reall-ing assumption (A) on Ω, the funtion 〈k, ω′(ξ)〉 + ν ′j(ξ)j

δ . The analytiityassumption (A) and Cauhy estimates imply that(4.29) ∣∣∣∣
dµ

dξµ
νj(ξ)

∣∣∣∣ ≤
Γ

ηµ
, ∀ξ ∈ I , µ ≥ 0 .Then, using also (4.28), there is a onstant Θ̃1 > 0 suh that, for any µ ≥ 0,

dµ

dξµ
ν ′jλh

jδλh

1 + |kλ|
≤ Θ̃1

jδλh

jdλh

→ 0 as h → ∞sine δ < d− 1. Then, passing to the limit in (4.27) yields, for any µ ≥ 0,
dµ

dξµ
〈
c, ω′(ξ

)〉
= 0 .Hene 〈c, ω′(ξ)〉 and all its derivatives vanish at ξ. By analytiity, 〈c, ω′(ξ)〉is identially zero on I and then the funtion 〈c, ω(ξ)〉 is identially equal tosome onstant. This ontradits the non�degeneray assumption on (ω, 1).Case l ∈ L2+. There exist µ0 ∈ N, β > 0 suh that

max
0≤µ≤µ0

∣∣∣∣
dµ

dξµ
(〈k, ω(ξ)〉+Ωi(ξ) + Ωj(ξ))

∣∣∣∣ ≥ β(1 + |k|)for all ξ ∈ I, k ∈ Z
N , i, j ≥ N + 1.This follows by arguments similar to the ase l ∈ L1.Case l ∈ L2−. There exist µ0 ∈ N, β > 0 suh that

max
0≤µ≤µ0

∣∣∣∣
dµ

dξµ
(〈k, ω(ξ)〉+Ωi(ξ)− Ωj(ξ))

∣∣∣∣ ≥ β(1 + |k|)for all ξ ∈ I, k ∈ Z
N , i, j ≥ N + 1, i 6= j.Proeed by ontradition as above and assume that for all λ ∈ N thereexist ξλ ∈ I , kλ ∈ Z
N , iλ, jλ ≥ N + 1 suh that

max
0≤µ≤λ

∣∣∣∣
dµ

dξµ

(〈
kλ

1 + |kλ|
, ω(ξλ)

〉
+

Ωiλ(ξλ)

1 + |kλ|
− Ωjλ(ξλ)

1 + |kλ|

)∣∣∣∣ <
1

λ+ 1
.In partiular we have that for all λ ≥ µ(4.30) ∣∣∣∣

dµ

dξµ

(〈
kλ

1 + |kλ|
, ω(ξλ)

〉
+

Ωiλ(ξλ)

1 + |kλ|
− Ωjλ(ξλ)

1 + |kλ|

)∣∣∣∣ <
1

λ+ 1
.The asymptoti behavior (A) of Ω implies

|Ωi(ξ)− Ωj(ξ)| ≥ |id − jd| − |νi(ξ)iδ| − |νj(ξ)jδ |

≥ |i− j|
2

(
id−1 + jd−1

)
− Γ

(
iδ + jδ

)
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≥ 1

2

(
id−1 + jd−1

)
− Γ

(
iδ + jδ

)
.(4.31)Then, remembering that δ < d− 1, we have that

min{i, j}d−1 ≥ Θ3|k|+Θ4 =⇒ |〈k, ω(ξ)〉+Ωi(ξ)− Ωj(ξ)| ≥
1

2
(1 + |k|)

∀ξ ∈ I , with Θ3 := 1 + 2Γ and Θ4 := max{1, 4Γ(d−1)/(d−1−δ)}. Then (4.30)with µ = 0 implies that(4.32) min{iλ, jλ}d−1 < Θ3|kλ|+Θ4 , ∀λ ≥ 1 .By ompatness, ξλh
→ ξ ∈ I as h → ∞. The indexes kλ, iλ, jλ an bebounded or not, and we study the various ases separately.Case kλ bounded. If kλ is bounded then kλ = k for in�nitely many λ.Then (4.32) implies that also the sequene min{iλ, jλ} is bounded. Assuming

jλ < iλ, there exists a onstant subsequene jλh
≡ .If also iλ is bounded, we extrat a onstant subsequene iλh

≡ ı. Then,passing to the limit in (4.30), we obtain, for all µ ≥ 0,
dµ

dξµ

(〈
k

1 +
∣∣k
∣∣ , ω
(
ξ
)
〉

+
Ωı

(
ξ
)

1 +
∣∣k
∣∣ −

Ω

(
ξ
)

1 +
∣∣k
∣∣

)
= 0 .By analytiity, the funtion 〈k, ω(ξ)〉+Ωı(ξ)−Ω(ξ) is identially zero on I ,ontraditing the non�degeneray assumption on (ω, 〈l,Ω〉) with l = eı − e.If iλ is unbounded, we extrat a divergent subsequene {iλh

}. Sine kλ, jλare bounded we dedue, by the asymptoti assumption (A), that, de�nitivelyfor λ large,
1

1 + |kλ|
(
〈kλ, ω(ξλ)〉+Ωiλ(ξλ)− Ωjλ(ξλ)

)
≥ idλ

2(1 + |kλ|)
,whih tends to in�nity for λ → +∞. This ontradits (4.30) with µ = 0.Case kλ unbounded. If kλ is unbounded, we extrat a divergent sub-sequene suh that |kλh

| → ∞ as h → ∞ and kλh
1+|kλh |

→ c ∈ R
N with

1/2 ≤ |c| ≤ 1.Subase max{iλ, jλ} bounded. For all µ ≥ 0, passing to the limit in (4.30),we have
dµ

dξµ
〈
c, ω
(
ξ
)〉

= 0 .This ontradits the non�degeneray of ω.Subase max{iλ, jλ} unbounded, min{iλ, jλ} bounded. Assume, without lossof generality, iλ > jλ. In this ase
sup
ξ∈I

sup
λ

|Ωjλ(ξ)| =: M < +∞ .
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and laim that, de�nitively,(4.33) idλh

< 2
(
1 + (1 + Γ)|kλh

|+M
)
.Otherwise, de�nitively for λ large,

1

1 + |kλh
|
(
〈kλh

, ω(ξλh
)〉+Ωiλh

(ξλh
)− Ωjλh

(ξλh
)
)
≥ 1 ,whih ontradits (4.30) for µ = 0.By (4.29), (4.33), and sine jλh

are bounded, there is Θ̃2 > 0 suh that,for any µ ≥ 0,
jδλh

1 + |kλh
|
dµ

dξµ
ν ′jλh

(ξλh
) ≤ Θ̃2

1 + |kλh
| ,

iδλh

1 + |kλh
|
dµ

dξµ
ν ′jλh

≤ Θ̃2

iδλh

idλhand both tend to zero if h → ∞. Hene, passing to the limit in (4.30) (startwith the �rst derivative), we obtain, for any µ ≥ 0(4.34) dµ

dξµ
〈
c, ω′(ξ

)〉
= lim

h→∞
dµ

dξµ

〈
kλh

1 + |kλh
| , ω

′(ξλh
)

〉
.By analytiity, the funtion 〈c, ω′(ξ)〉 is identially zero on I and onse-quently the funtion 〈c, ω〉 (ξ) is identially equal to some onstant. Thisontradits the non�degeneray assumption on the funtion (ω, 1).Subase min{iλ, jλ} unbounded. Relation (4.31) implies

|Ωiλ − Ωjλ| ≥
1

4

(
id−1
λ + jd−1

λ

)if id−1
λ +jd−1

λ ≥ 4Γ
(
iδλ + jδλ

), that is always veri�ed de�nitively sine δ < d−1.We laim that
id−1
λ + jd−1

λ < 4(Γ + 1)|kλ|+ 4 .Otherwise, de�nitively for λ large,
|〈kλ, ω(ξλ)〉+Ωiλ(ξλ)− Ωjλ(ξλ)|

1 + |kλ|
≥ 1whih ontradits (4.30) for µ = 0.We extrat diverging subsequenes iλh

, jλh
suh that

id−1
λh

≤ 4(Γ + 1)|kλh
|+ 4 and jd−1

λh
≤ 4(Γ + 1)|kλh

|+ 4 .Then, using also (4.29), there is Θ̃3 > 0 suh that, for any µ ≥ 0,
iδλh

1 + |kλh
|
dµ

dξµ
ν ′iλh

≤ Θ̃3

iδλh

id−1
λh

−→ 0

jδλh

1 + |kλh
|
dµ

dξµ
ν ′jλh

≤ Θ̃3

jδλh

jd−1
λh

−→ 0
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〉 vanish andby analytiity this ontradits the non�degeneray assumption on (ω, 1).



CHAPTER 5Quasi�periodi solutions for 1�d ompletelyresonant nonlinear Shrödinger equationsThe aim of this hapter is to onstrut quasi�periodi solutions for thenonlinear Shrödinger equation on the torus T(5.1) iut − uxx + |u|6u = 0, x ∈ T.This is a ompletely resonant system, atually it an be written as anin�nite dimensional Hamiltonian dynamial system u̇ = {H,u} with Hamil-tonian
H =

∫ 2π

0
|ux|2 dx+

1

4

∫ 2π

0
|u|8 dx.Passing to the Fourier representation

u(t, x) =
∑

k∈Z
uk(t)e

ikxwe have in oordinates(5.2)
H =

∑

k∈Z
k2ukuk +

π

2

∑

k1,...,k8∈Z
k1−k2+k3−k4+k5−k6+k7−k8=0

uk1uk2uk3uk4uk5uk6uk7uk8where the sympleti struture in given by i
∑

k duk ∧ duk on the spae
ℓa,p :=

{
u = {uk}k∈Z : ‖u‖2a,p :=

∑

k∈Z
|uk|2e2a|k||k|2p < +∞

}with a > 0, p > 1
2 .The linearized system onsists of in�nitely many independent osillatorswith integer frequenies k2, and so it is ompletely resonant and all thesolutions are periodi with period 2π.We are now going to prove the existene of quasi�periodi solutions ofequation (5.1).In order to do so, we �rst perform one step of Birkho� normal form, but adiret omputation shows that this is not integrable and rather ompliated.However, the study of the normal form may be simpli�ed by an appropriatehoie of the region of the phase spae where we look for solutions, this isthe ontent of Theorem 5.2. 47



5.1. CONSTRUCTION OF THE NORMAL FORM 48One we get the normal form, we use it as the unperturbed Hamiltonianto apply the KAM Theorem 3.5 of Berti�Biaso, verifying all the smallness,regularity, non�degeneray and non�resonane assumptions.The main result is the following. Let ρ > 0 and de�ne(5.3) Aρ := Bρ(0) ∩
{
ξ ∈ R

m :
ρ

2
< ξi < ρ, i = 1, . . . ,m

}
.Theorem 5.1. For generi hoies of indexes S := {v1, v2, . . . , vm}there exist ρ∗ > 0 suh that for any ρ < ρ∗ there exists a Cantor set

Π∗
ρ ⊂ Aρ of positive Lebesgue measure suh that, for any ξ ∈ Π∗

ρ, the nonlin-ear Shrödinger equation (5.1) admits a quasi�periodi solution of the form
u(t, x) =

m∑

i=1

√
ξie

i((v2i +ω∗

i (ξ))t+θi) + o(ξ).where the map ξ 7→ ω∗(ξ) is a lipeomorphism, θ ∈ R
m are arbitrary phasesand o(ξ) is small in some analytial norm. The measure of the set Π∗

ρ isgreater than cρm where c is a onstant independent on ρ.For generi we mean that the indexes have to satisfy a �nite number ofpolynomial inequalities, see De�nition 24 for the preise statement.5.1. Constrution of the normal formThe following result states the existene of the normal form for our sys-tem.Theorem 5.2. For all generi hoies of the set S = {v1, . . . , vm} ⊂ Z
mof tangential sites there exist an open set Oρ ⊂ Aρ and an analyti andsympleti hange of variables

Φ: Oρ ×Da,p(s, r) −→ B√
ρ(0)

ξ × (y, x, z, z) 7−→ (u, u)where the set Da,p(s, r) is de�ned in (5.9), suh that the Hamiltonian (5.5)beomes
H = N(ξ, y, z, z) + P (ξ, x, y, z, z)with

N = ω(ξ) · y +
∑

k∈Sc

Ωk|zk|2.The tangential frequeny ω is a di�eomorphism and is de�ned in (5.16), whilethe normal frequenies Ωk are
Ωk = k2 + ω0 · L(k) + λk(ξ) ∀k ∈ Sc,where ω0 =

(
v21 , . . . , v

2
m

), the integer vetor L(k) ∈ Z
m and the funtions

λk(ξ) ∈ R are identially zero exept for a �nite number of k, in whih ase
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|L(k)| ≤ 6 and λk(ξ) are homogeneous funtions of degree 3 in ξ satisfying(5.4) |λk(ξ)| ≤ Cρ3, |∇ξλk(ξ)| ≤ Cρ2, ∀ξ ∈ Oρ.Assuming ρ = r2θ with θ ∈

(
1
2 ,

3
5

), the perturbation P is small with respet
N , namely

|XP |λs,r ≤ Cr10θ−2with a onstant C independent of r.The generitiity ondition on the tangential sites means that they haveto satisfy a �nite list of polynomial onstraints , hene they an't lie in anyof the varieties de�ned by ertain polynomial equations. To be more preise,we give the following de�nition.Definition 24. Given a list R = {P1(y), . . . , PN (y)} of polynomials inthe variable y ∈ R
b, we say that a list of point S = {v1, . . . , vm}, vi ∈ R, isgeneri relative to R if, for any list A = {u1, . . . , ub} suh that ui ∈ S forany i and ui 6= uj for i 6= j, the evaluation of the polynomials at yi = ui isnon�zero.The rest of this setion is dediated to the proof of this theorem.5.1.1. The normal form. Note �rst that the Hamiltonian has the mo-mentum M :=

∑
k∈Z k|uk|2 and the salar mass L :=

∑
k |uk|2 as integralsof motion.We have to perform a step of Birkho� normal form, hene we anelall the terms that do not Poisson ommute with the quadrati part K =∑

k∈Z k
2|uk|2. The Hamiltonian then beomes(5.5) H = HN +R10,with R10 is analyti of degree at least 10 in u and(5.6) HN :=

∑

k∈Z
k2|uk|2 +

π

2

∗∑
uk1uk2uk3uk4uk5uk6uk7uk8 ,where the sum ∑∗ is the sum restrited on the indexes ki ∈ Z suh that(5.7) {

k1 − k2 + k3 − k4 + k5 − k6 + k7 − k8 = 0

k21 − k22 + k23 − k24 + k25 − k26 + k27 − k28 = 0and this two onditions express the onservation of M and K.5.1.2. Ation�angle oordinates. Let us partition the set Z as theunion of two disjoint sets
Z = S ∪ Sc



5.1. CONSTRUCTION OF THE NORMAL FORM 50where S = {v1, . . . , vm} and its elements are alled tangential sites, whilethe elements in Sc are alled normal sites.The elements in S are the ones we have to hoose by imposing someonstraints in order to make the normal form of the system as simple aspossible.We now introdue ation�angle oordinates by setting(5.8) {
uk = zk for k ∈ Sc

uvi =
√

ξi + yie
ixi for i = 1, . . . ,mwhere ξi ∈ Aρ are positive parameters and |yi| < ξi. This is an analyti andsympleti hange of variable in the domain Aρ × Da,p(s, r) ⊂ R

m × T
m
s ×

×C
m × ℓa,p × ℓa,p, with(5.9) Da,p(s, r) :=

{
x, y, w = (z, z) : x ∈ T

m
s , |y| ≤ r2, ‖w‖a,p ≤ r

}where 0 < r < 1, s > 0 are auxiliary parameters and T
m
s denotes the openneighborhood of the omplex torus T

m
C

:= C
m/2πZm with |Imx| < s, x ∈

C
m. With this hange of variables, the sympleti form beomes dy ∧ dx +

i
∑

k∈Sc dzk ∧ dzk.5.1.3. Constraints 1. In order to have an integrable normal form we�rst impose the following onstraints. For ηi ∈ Z, |ηi| ≤ 4, i = 1, . . . ,m(i) η1v1 + η2v2 + · · ·+ ηmvm 6= 0 with ∑m
i=1 ηi = 0, ∑m

i=1 |ηi| ≤ 8,(ii) ∑m
i=1 ηiv

2
i − (

∑m
i=1 ηivi)

2 6= 0 with ∑m
i=1 ηi = 1, ∑m

i=1 |ηi| ≤ 7.(iii) 2
∑m

i=1 ηiv
2
i + (

∑m
i=1 ηivi)

2 6= 0 with ∑m
i=1 ηi = 0,−2, ∑m

i=1 |ηi| ≤ 65.1.4. The Hamiltonian HN . With the hange of variables (5.8), thenormal form (5.6) beomes(5.10) HN = H0 + P (≥3)where P≥3 ontains the term of degree at least 3 in y, z, z and
H0 =

3∑

i=1

ωi(ξ)yi +
∑

k∈Sc

Ω0
k(ξ)|zk|2 +

∑

h 6=k∈Sc

Ω1
hk(ξ)zhzk(5.11)

+
∑

h 6=k∈Sc

(
Ω2
hkzhzk +Ω

2
hkzhzk

)
.Here the frequenies ω(ξ) depends only on ξ while Ω0

k(ξ),Ω
1
hk,Ω

2
hk are fun-tions also of the angles x (we will give an expliit formulation of the frequen-ies later and also in the ase m = 3, see Subsetion 5.3.4).We an write the Hamiltonian H0 in a more ompat way.
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X3 :=



l :=

6∑

j=1

±eij =

m∑

i=1

liei suh that l 6= 0,−2ei ∀i



where ei is the standard i�th unitary vetor and we have that ∑m
i=1 |li| ≤ 6.De�ne then two sets X0

3 ,X
−2
3 as

X0
3 :=

{
l ∈ X3 suh that 6∑

i=1

li = 0

}
,(5.12)

X−2
3 :=

{
l ∈ X3 suh that 6∑

i=1

li = −2

}
.(5.13)See (5.28) and (5.29) for an expliit haraterization of these sets in thease m = 3.The Hamiltonian H0 ontains all the terms of degree at most 2 in z, zsatisfying onditions (5.7).The part of degree 0 in z, z is given when all the indexes ki are in S.This imply that the onservation of the momentum (the linear equationin (5.7)) must hold identially, beause by Constraints 1(i) all the otherlinear relations of the ki are not allowed. Then, realling (5.8), we have aontribution equal to A4, with

Ar(ξ1, . . . , ξm) :=
∑

∑
i ki=r

(
r

k1, . . . , km

)2∏

i

ξkii .and so the terms of degree at most 2 are a onstant part, that we ignore,and the linear term ∇ξA4(ξ) · y.The part of degree 1 in z, z is given when only one index is not in S. ByConstrains 1(ii) these terms do not our.The part of degree 2 in z, z is given when only two indexes are not in S.Fix h, k ∈ Sc, then (5.7) beomes




m∑

j=1

livi + h− k = 0

m∑

j=1

liv
2
i + h2 − k2 = 0

if l ∈ X0
3(5.14)and





m∑

j=1

livi + h+ k = 0

m∑

j=1

+liv
2
i + h2 + k2 = 0

if l ∈ X−2
3 .(5.15)



5.1. CONSTRUCTION OF THE NORMAL FORM 52It is onvenient to drop another mass term. If only two equal indexes kiare in Sc, by Constraints 1(i) we have a ontribution in Ω0
k equal to 16A3and so ∑

k

Ω0
k(ξ)|zk|2 =

∑

k

(
k2 + 16A3(ξ)

)
|zk|2.Noting that

∑

k

16A3(ξ)|zk|2 = 16A3

(
∑

k

|zk|2 +
m∑

i=1

yi

)
− 16A3

m∑

i=1

yi,we have that the term in brakets is L, hene we an drop it from theHamiltonian.In onlusion, we have that Ω0
k = k2 and that the frequeny ω is anhomogeneous polynomial in ξ of degree 3 of the form(5.16) ω = ω0 +∇ξA4(ξ)− 16A3(ξ)with ω0 :=

(
v21 , . . . , v

2
m

).The Hamiltonian H0 then beomes(5.17) H0 =

m∑

i=1

ωiyi +
∑

k/∈S
k2|zk|2 +

∑

l∈X0
3

c(l)eilx
∑

h,k/∈S : (5.14) zhzk
+
∑

l∈X−2
3

c(l)
∑

h,k/∈S : (5.15) (eilxzhzk + e−ilxzhzk

)where c(l) are some funtions of the only ξ, more preisely:(5.18) c(l) :=





16ξ
l++l−

2

∑

α∈Nm

|α+l+|=3

(
3

l+ + α

)(
3

l− + α

)
ξαi l ∈ X0

3

12ξ
l++l−

2

∑

α∈Nm

|α+l+|=2

(
4

l− + α

)(
2

l+ + α

)
ξαi l ∈ X−2

3with l+, l− are suh that l = l+ − l−.5.1.5. Constraints 2. Given l we onsider the map l 7→ h(l) that toeah l ∈ X0
3 ,X

−2
3 assoiates h(l) suh that onditions (5.14), (5.15) hold.Lemma 5.3. The map l 7→ h(l) is invertible from X0

3 ∪X−2
3 to its image.Definition 25. We de�ne the set of speial points as the set h(X0

3 ∪
X−2

3 ).We denote with L the inverse of the map l 7→ h(l) and we extend it Scby setting L(h) = 0 if h is not a speial point.



5.1. CONSTRUCTION OF THE NORMAL FORM 53Proof. First prove that given l there exist at most two ouple (h, k)suh that ondition (5.14) or (5.15) is satis�ed. If l ∈ X0
3 then we obtain theouple (h, k) with

h =

∑m
j=1 liv

2
i

2
∑m

j=1 livi
− 1

2

m∑

j=1

livi, k =

∑m
j=1 liv

2
i

2
∑m

j=1 livi
+

1

2

m∑

j=1

livi.Note that if we hange l with −l then we obtain the ouple (k, h), hene inthe ase l ∈ X0
3 we an �x just one of the two omponents, say h.If l ∈ X−2

3 then




h =
−∑m

j=1 livi ±
√

−
(∑m

j=1 livi

)2
− 2

∑m
j=1 liv

2
i

2

k =
−∑m

j=1 livi ∓
√

−
(∑m

j=1 livi

)2
− 2

∑m
j=1 liv

2
i

2
.In order to prove that we an impose a �nite number of onstrain suhthat for eah h ∈ Z there exists a unique l that satis�es ondition (5.14) or(5.15) we will argue by ontradition and prove that, under some ondition,it is not possible that(5.19) 




∑
livi + h± k = 0

∑
liv

2
i + h2 ± k2 = 0

,





∑
livi + h± k = 0

∑
liv

2
i + h2 ± k

2
= 0with l 6= l, k 6= k and the same h.So, we assume (5.19) and we �rst prove that l and l have the samesupport. Atually, the �rst system de�nes h as a funtion of some tangentialsites, say h = f(v1, . . . .va) with a ≤ m, and the seond system de�nes

h = g(v1, . . . , vb) with b ≤ m. But f = g sine h has to be the same inthe two systems. Then, if for example f does not depend on the variable vjalso g will not depend on that variable, and hene the two funtions have todepend on the same variables, and so also l and l.For the rest of the proof we study the various ases separately.
(i) Assume (5.19) with l, l ∈ X0

3 . Then




h =

∑m
i=1 liv

2
i

2
∑m

i=1 livi
− 1

2

m∑

i=1

livi

h =

∑m
i=1 liv

2
i

2
∑m

i=1 livi
− 1

2

m∑

i=1

livi
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m∑

i=1

livi




m∑

i=1

liv
2
i −

(
m∑

i=1

livi

)2

 =

m∑

i=1

livi




m∑

i=1

liv
2
i −

(
m∑

i=1

livi

)2

and this has to be an identity. So, omparing the oe�ients of theterm v3i we have

lili(1− li) = lili
(
1− li

)
.If lili 6= 0 then l = l and this is impossible. The ase li = 0, li 6= 0is exluded by the ondition that l and l have the same support.If li = li = 0 then we onsider the oe�ient of another term vj(remember that l and l an't be the zero vetor).(ii) Assume (5.19) with l ∈ X0

3 , l ∈ X−2
3 with the following ondition:impose that if li is −2 (resp. -1) then li an't be -1 (resp. -1, 1).Then





h =

∑m
i=1 liv

2
i

2
∑m

i=1 livi
− 1

2

m∑

i=1

livi

2h2 + 2h

m∑

i=1

livi +

m∑

i=1

liv
2
i +

(
m∑

i=1

livi

)2

= 0and so



m∑

i=1

liv
2
i −

(
m∑

i=1

livi

)2



2

+ 2




m∑

i=1

livi −
(

m∑

i=1

livi

)2



m∑

i=1

livi

m∑

i=1

livi

+ 2




m∑

i=1

liv
2
i +

(
m∑

i=1

livi

)2


(

m∑

i=1

livi

)2

= 0and this has to be an identity. So, omparing the oe�ients of theterm v4i we have
(
li − l2i + lili

)2
+ l2i li

(
2 + li

)
= 0and this an be an identity only if

l2i

(
2li + l

2
i

)
≤ 0namely if li = −2,−1, 0 or li = 0. Assuming li 6= 0 then also li 6= 0by the ondition that l, l have the same support. Then if li = −1then li has to be equal to −1, 1, and if li = −2 then li has to be equalto −1 but these ases are impossible by the previous assumption.If li = li = 0 we onsider the oe�ient of another term, reallingthat l, l an't be zero vetors.



5.1. CONSTRUCTION OF THE NORMAL FORM 55(iii) Assume (5.19) with l, l ∈ X−2
3 with the following ondition: imposethat if li = −1,−2 then li an't be -1,-2. Then





2h2 + 2h

m∑

i=1

livi +

m∑

i=1

liv
2
i +

(
m∑

i=1

livi

)2

= 0

2h2 + 2h

m∑

i=1

livi +

m∑

i=1

liv
2
i +

(
m∑

i=1

livi

)2

= 0and so



m∑

i=1

(
li − li

)
v2i +

(
m∑

i=1

livi

)2

−
(

m∑

i=1

livi

)2



− 2




m∑

i=1

(
li − li

)
v2i +

(
m∑

i=1

livi

)2

−
(

m∑

i=1

livi

)2



m∑

i=1

(
li − li

)
vi

m∑

i=1

livi

+ 2




m∑

i=1

liv
2
i +

(
m∑

i=1

livi

)2


[

m∑

i=1

(
li − li

)
vi

]2
= 0and this has to be an identity. So, omparing the oe�ients of theterm v4i we have

(
li − li + l2i − l

2
i −

(
li − li

)
li

)2
+
(
2li + l2i

)(
li − li

)2
= 0and this an be an identity only if

(
2li + l2i

)(
li − li

)2 ≤ 0namely if li = 0,−1,−2. If li = −2 then li has to be equal to −1,−2,and if li = −1 then li has to be equal to −1,−2, but these ases areexluded by the previous assumption. If li = 0 then also li = 0 andwe onsider the oe�ient of another term, realling that l, l an'tbe zero vetors.
�5.1.6. Redution to onstant oe�ients. Make the following sym-pleti hange of variables(5.20) {

zh = e−iL(h)z′h

zk = z′k





y = y′ +
∑

k/∈S
L(k)

∣∣z′k
∣∣2

x = x′where L(k) is the unique l determined by the hoie of k.Lemma 5.4. The transformation (5.20) is sympleti.



5.1. CONSTRUCTION OF THE NORMAL FORM 56Proof. The thesis follows by a diret alulation:
dy ∧ dx = d

(
y′ +

∑

h/∈S
L(h)

∣∣z′h
∣∣2
)

∧ dx′

= dy′ ∧ dx′ +
∑

h/∈S
L(h)d

(∣∣z′h
∣∣2
)
∧ dx′

= dy′ ∧ dx′ −
∑

h/∈S

(
L(h)dx′

)
∧
(
z′hdz

′
h + z′hdz

′
h

)
,

idz ∧ dz = i
∑

h/∈S
dzh ∧ dzh

= i
∑

h/∈S
d
(
e−iL(h)x′

z′h
)
∧ d
(
eiL(h)x

′

z′h
)

= i
∑

h/∈S

(
d
(
e−iL(h)x′

z′h + e−iL(h)x′

dz′h
))

∧

∧
(
d
(
eiL(h)x

′

z′h + eiL(h)x
′

dz′h
))

= i
∑

h/∈S

(
−iL(h)e−iL(h)x′

dx′z′h + e−iL(h)x′

dz′h
)
∧

∧
(
iL(h)eiL(h)x

′

dx′z′h + eiL(h)x
′

dz′h
)

= i
∑

h/∈S
dz′h ∧ dz′h +

∑

h/∈S
L(h)dx′ ∧

(
z′hdz

′
h + z′hdz

′
h

)
,hene dy ∧ dx+ idz ∧ dz = dy′ ∧ dx′ + idz′ ∧ dz′. �Under this hange of variables the Hamiltonian H0 (5.17) beomes

H0 = ω(ξ) · y′ +
∑

h/∈S

(
h2 + ω(ξ) · L(h)

)∣∣z′h
∣∣2

+
∑

l∈X0
3

c(l)
∑

h,k/∈S : l∈X0
3

z′hz
′
k +

∑

l∈X−2
3

c(l)
∑

h,k/∈S : l∈X−2
3

(
z′hz

′
k + z′hz

′
k

)Setting Ω′
h = h2 + ω0 · L(h), this is equal to k2 if l ∈ X0

3 and to −k2 if
l ∈ X−2

3 . Then
H0 = ω(ξ) · y′ +

∑

h/∈S
Ω′
h(ξ)

∣∣z′h
∣∣2

+
∑

l∈X0
3

c(l)
∑

h,k/∈S : l∈X0
3

z′hz
′
k +

∑

l∈X−2
3

c(l)
∑

h,k/∈S : l∈X−2
3

(
z′hz

′
k + z′hz

′
k

)

+
∑

h/∈S
(ω − ω0) · L(h)

∣∣z′h
∣∣2Set d(l) = (ω − ω0) · L(h) and denote with Q′ the last two lines.



5.1. CONSTRUCTION OF THE NORMAL FORM 57If l ∈ X0
3 then the matrix assoiated to ad(Q′) in the basis z′k, z′k is(5.21) A0 =




−Ω′
h − d(l) −c(l) 0 0

−c(l) −Ω′
h 0 0

0 0 Ω′
h + d(l) c(l)

0 0 c(l) Ω′
h


In order to study its eigenvalues, we onsider the two bloks(5.22) A0

1 =

(
−Ω′

h − d(l) −c(l)

−c(l) −Ω′
h

)
A0

2 =

(
Ω′
h + d(l) c(l)

c(l) Ω′
h

)and note that, denoting with λ(B) the eigenvalues of the matrix B,
λ
(
A0

1

)
= −λ

(
A0

2

)
= −

(
Ω′
k + λ

(
d(l) c(l)

c(l) 0.

))If l ∈ X−2
3 then the matrix assoiated to ad(Q′) in the basis z′k, z′k is(5.23) A−2 =




−Ω′
h − d(l) c(l) 0 0

−c(l) −Ω′
h 0 0

0 0 Ω′
h + d(l) −c(l)

0 0 c(l) Ω′
h


In order to study its eigenvalues, we onsider the two bloks(5.24) A−2

1 =

(
−Ω′

h − d(l) c(l)

−c(l) −Ω′
h

)
A−2

2 =

(
Ω′
h + d(l) −c(l)

c(l) Ω′
h

)and note that
λ
(
A−2

1

)
= −λ

(
A−2

2

)
= −

(
Ω′
k + λ

(
d(l) −c(l)

c(l) 0

))In onlusion we obtain as eigenvalues Ω′
h plus

2λh = d(l) +
√

d2(l)± 4c2(l) , 2λk = d(l)−
√

d2(l)± 4c2(l)where the plus sign ours if l ∈ X0
3 while the minus sign ours if l ∈ X−2

3 .The λh are the eigenvalues of the matries:(5.25) Ai(l) =

(
d(l) (1 + i)c(l)

c(l) Ω′
h

)
, l ∈ Xi

3 , i = 1,−2.The eigenvalues of these matries are expliitly alulated in Subsetion5.3.6 in the ase m = 3.Proposition 5.5. There exists an open set Oρ ⊂ Aρ suh that for any
ξ ∈ Oρ the two eigenvalues of eah of the matries A0, A−2 are real anddistint from eah other. In this set the funtions λh(ξ) are analyti funtionsand the bound (5.4) holds.



5.1. CONSTRUCTION OF THE NORMAL FORM 58Proof. For the proof see [PP℄. One shows the existene of a region in
Aρ in where d2(l) − 4c2(l) > 0 for all l ∈ X−2

3 and d2(l) + 4c2(l) > 0 forall l ∈ X−2
3 . The eigenvalues are analyti funtions of the oe�ients in theregion where they are distint. The bound follows by homogeneity and byhoosing Oρ small enough so that in its losure it is still true that all theeigenvalues are real and distint. �Lemma 5.6. The map ξ 7→ ω(ξ) is a loal di�eomorphism.Proof. Reall that ω is de�ned by

ω = ω0 +∇ξA4(ξ)− 16A3(ξ)where
Ar(ξ1, . . . , ξm) :=

∑
∑

i ki=r

(
r

k1 . . . km

)2

Πiξ
ki
i .We have to verify that the jaobian determinant of the map ξ 7→ ω(ξ) isnot identially zero. A general proof of this fat, based on algebrai (nonomputational) methods, is found in [PP℄, Corollary 4.7. To give a morediret proof we ompute the determinant at the point ξi = a for all i =

1, . . . ,m. By the struture of ω the jaobian matrix has the form πa2

2 (AI +

BU), where I is the m × m identity matrix while U is the m × m matrixwith all entries equal to one and A,B are negative integer numbers, possiblydepending on m.We ompute its inverse diretly. Using the fat that U2 = mU , we obtain
2A
πa2

(I− B
A+mBU) whih is non zero provided that A 6= −mB whih is triviallytrue sine A,B < 0. This also gives us a bound on the Lipshitz onstant ofthe inverse funtion ξ(ω) whih holds true in some neighborhood of any pointwith all equal oordinates. Note that this proof holds for any non-linearity

q.
�Finally, sine the eigenvalues are all real and the eigenvalues of the sameblok are distint, there exists a sympleti hange of oordinates suh thatthe system is put in a diagonal form, namely

H = ω(ξ) · y +
∑

k∈Sc

Ωk(ξ)|zk|2 + P (ξ, x, y, z, z),where Ωk(ξ) = k2 + ω0 · L(k) + λk(ξ) and λk(ξ) are the eigenvalues of thematries A0 or A−2.This onludes the proof of Theorem 5.2. Now we an use the new normalform we have obtained as the unperturbed Hamiltonian in order to applythe KAM Theorem to �nd quasi�periodi solutions.



5.2. APPLICATION TO KAM THEOREM 595.2. Appliation to KAM TheoremIn order to �nd quasi�periodi solution for the NLS 5.1 we apply theKAM Theorem 3.5, as stated by Berti�Biaso [BB11℄.Note that we an't apply Theorem 3.6 for two reasons. Firstly, onditions(3.2) and (3.3) are not true sine we are in the ase of periodi boundaryonditions. Seondly, the frequenies are not a�ne funtions of the parameter
ξ. We solve the �rst problem using the onservation of the momentum,see Constrain 1(iii). The proof of the KAM theorem is still valid, but theMelnikov onditions need to be veri�ed only on the subspae of funtionssatisfying momentum and mass onservation (see Proposition 5.8).We verify now the KAM assumptions.Choose d = 2, p = p, δ = 0.The normal frequenies Ωk are equal to k2 + ω0 · L(k) + λk(ξ), where
L(k) ∈ X0

3 ∪ X−2
3 , and so they have an asymptoti behavior, as stated inassumption (B). Also assumption (C) holds.Lemma 5.7. Choose

ξi ∈
(
r2θ

2
, r2θ

) with θ ∈
(
1

2
,
3

5

)
.Then assumption (H3) holds.Proof. We have that the following estimates hold.

|P00|λs < r10θ, |P01|λs < r9θ, |P11|λs < r7θ,

|P10|λs , |P02|λs < r8θ, |P03|λs < r5θ.Then, if θ > 1
2 , we have that
max

{
|P00|λs
r2γ

,
|P01|λs
rγ

,
|P10|λs
γ

,
|P02|λs
γ

}
≤ r10θ−2

γ
.Moreover, the assumption θ < 3

5 ensures that
|P11|λs , |P03|λs ≤ r5θ ≤ γ

r
.Finally, sine the frequenies ω are homogeneous polynomial of ξ of degree3, then γ ≪ r6θ, and this is possible beause r10θ−2 < r6θ for θ > 1

2 . �Assumption (A1) holds by Lemma 5.6.In order to �nd the needed measure estimate, we an't apply Theorem3.6 sine our frequenies are not homogeneous of degree 1. We �rst prove thefollowing result.



5.2. APPLICATION TO KAM THEOREM 60Proposition 5.8. The three Melnikov's onditions
|{ξ ∈ Oρ : ω(ξ) · ν +Ω(ξ) · l = 0}| = 0hold for all (ν, l) ∈ Z
m×Z

∞\{(0, 0)}, |l| ≤ 2 ompatible with the onservationof M , namely with ∑
viνi +

∑

k∈Sc

lkuk = 0,where uk = k + L(k) · v for all k ∈ Sc. (reall that ∑i Li(k) = 0,−2). Morepreisely,(5.26) ∣∣∣∣∣∣

∗⋃

ν,l

{
ξ :

∣∣∣∣ω(ξ) · ν +Ω(ξ) · l < α
γ

|ν|τ
∣∣∣∣
}∣∣∣∣∣∣

≤ αcγ
1
3 ρm.The union ⋃∗ denotes the union restrited to ν, l ompatible with the on-servation of M and L.Proof. We verify that none of the (analyti) resonane funtions ω(ξ) ·

ν + Ω(ξ) · l is identially zero. We start by omputing ω(ξ) · ν + Ω(ξ) · lat the point ξ = 0, obtaining the integer ω0 · ν + Ω′(ξ) · l (we reall that
Ω′
h = h2+L(h)·ω0). If this is non�zero then the funtion annot be identiallyzero, and one has that

|ω(ξ) · ν +Ω(ξ) · l| > 1

2
,for all ξ ∈ Oρ unless |ν| > Cρ−3 . Otherwise we are left with an algebraiexpression whih is homogeneous of degree three in ξ.Sine ω is a di�eomorphism, we have that there exists a onstant L > 0suh that ∣∣J−1ω

∣∣ ≤ L
(
r2θ
)−2 for ξ ∈ Oθ.Set λ(ξ) := λk(ξ)±λh(ξ). We have proved that we an hoose a onstant

M > 0 (eventually big) suh that
|∂ξλ| < M

(
r2θ
)2

.Sine the map ξ 7→ ω(ξ) is a di�eomorphism, we invert it and onsiderthe map ω 7→ ξ(ω). Assume ω = ν
|ν| t+ w, with w orthogonal to ν. Then

|∂ωλ(ξ(ω))| = |∂ξλ∂ωξ| ≤
∣∣J−1∇ξλ

∣∣ ≤ LM =: c̃.Then
|∂ωω · ν + ∂ωλ(ξ(ω))| > ν − c̃that is greater that |ν|

2 if |ν| > 2c̃. So in this ase the resonane funtionannot be zero and we have the quantitative bound
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∣∣∣∣
{
ω : |ω · ν +Ω(ξ(ω)) · l| < α

γ

|ν|τ
}∣∣∣∣ ≤ ρm

αγ

|ν|τand so ∣∣∣∣
{
ξ : |ω(ξ) · ν +Ω(ξ) · l| < α

γ

|ν|τ
}∣∣∣∣ ≤ ρm

αγ
1
3

|ν|τ .Now we onsider the ase ω0 · ν +Ω′(ξ) · l = 0. If |ν| > 2c̃ then we arguelike in the previous ase. Sine there are only a �nite number of possiblefuntions λ(ξ) we are left with a �nite number of ases, depending on m. Wewish to verify this ases numerially so we must eliminate the dependeneon m. Let us leave this deliate point for the moment and onlude the proofsupposing that it is true.We notie that for the �nite number of non-trivial homogeneous funtionswith |ν| < c̃ and ω0 · ν +Ω′(ξ) · l = 0 , we have the bound
∣∣∣∣
{
ξ : |ω(ξ) · ν +Ω(ξ) · l| < α

γ

|ν|τ
}∣∣∣∣ ≤ ρm

αγ
1
3

|ν|τ .trivially provided we hoose α small enough (this smallness ondition doesnot depend on ρ but only at most on m). Indeed in this ase there exists atleast one diretion along whih the derivative doesn't vanish, and we obtainthe needed estimate.Finally, we have to take the sum over ν, p = h2 ± k2. We an restrit tothe ase |p| < ω|ν|. Then we have
∣∣∣∣∣∣

⋃

ν∈Zm, p≤ω|ν|

{
ξ : |ω(ξ) · ν + p+ λ(ξ)| < α

γ

|ν|τ
}∣∣∣∣∣∣

≤
∑

ν∈Zm, p≤ω|ν|

∣∣∣∣
{
ξ : |ω(ξ) · ν + p+ λ(ξ)| < α

γ

|ν|τ
}∣∣∣∣

≤
∑

ν∈Zm, p≤ω|ν|

αγ
1
3

|ν|τ ρ
m ≤

∑

ν∈Zm

≤ αγ
1
3

|ν|τ |ω|
2|ν|2ρm

= αγ
1
3 |ω|2ρm

∑

ν∈Zm

|ν|2−τ ≤ cαγ
1
3ρmif τ > m+3, for some onstant c > 0. This onludes the measure estimatesfor the initial frequenies ω,Ω.We now onlude the proof of the seond Melnikov's ondition.Choose an index i = 1, . . . ,m and set all the ξj with j 6= i to zero. If ourfuntion is not identially zero under this restrition (namely as funtion ofthe only ξi) then it annot be identially zero as funtion of all the variables.By de�nition, the oe�ients c(l) are a �nite sum of monomials whihontain at least two di�erent √ξj so in our restrition c(l) = 0 and the



5.2. APPLICATION TO KAM THEOREM 62eigenvalues λh are either d(l) (resp. d(l̄) for λk) or zero. Then
(ω − ω0) · ν + λh − λk = (ω(ξi, 0)− ω0) · (ν + a l + b l̄) , a, b = 0,±1.A diret omputation shows that

ω(ξi, 0)i = v2i − 12ξ3i , ω(ξi, 0)j = v2j ,hene ((ω(ξi, 0)− ω0) · µ)i = −12ξ3i µi, whih in turn implies that the fun-tion is non�zero if νi + a li + b l̄i is so. Then if a li + b l̄i = 0 then also νi = 0.Sine d(l) an have at most 6 non�zero omponents, this redues us to thease where |ν| ≤ 12 and moreover the support of ν (i.e. its non zero om-ponents) are the same as those of l or l̄. Without loss of generality we ansuppose that this are the �rst (twelve) omponents and we an set ξj = 0whenever both lj and l̄j are zero. This �nally leaves us with a �nite ompu-tation (the number of funtions is large but independent of m). We verifythis Melnikov's onditions numerially by remarking that the ondition that
ω(ξ) · ν +Ω(ξ) · l is identially zero is equivalent to the ondition

det(M) = 0 , M := 〈ω − ω0, ν〉 × I4×4 +Mk × I2×2 − I2×2 ×Mhwhere Mh is ±Ai(l) (see formula 5.25) if l = L(h) ∈ Xi
3 (i = 0,−2). �Using the previous proposition, we have the following measure estimateon the �nal frequenies ω∗,Ω∗. De�ne

Π∗
ρ :=

{
ξ : |ω∗(ξ) · ν ± Ω∗

k(ξ)±Ω∗
h(ξ)| < α

γ

2|ν|τ
}for any ν ∈ Z

m, h, k ∈ Z with v · ν ± k ± h = 0Theorem 5.9. Let ω : Oρ → ω(Oρ) be a lipeomorphism with(5.27) ∣∣ω−1
∣∣lip ≤ L, ε ≤ c̃

2LM
,for some onstant L,M > 0. Then ∣∣Oρ \ Π∗

ρ

∣∣ ≤ cγρm.Proof. Sine (5.27) we an dedue a similar property also for the �nalfrequenies ω∗, namely ∣∣ω−1
∗
∣∣lip ≤ 2L.Moreover, by (3.1), we have

|ω∗ − ω|λ, |Ω∗ − Ω|λp−p ≤ α−1γε.Then we have
|ω∗(ξ) · ν +Ω∗

k(ξ)− Ω∗
h(ξ)|

≥ |ω(ξ) · ν +Ωk(ξ)− Ωh(ξ)| − |ω∗(ξ)− ω(ξ)||ν| − 2|Ω∗
k − Ωk|



5.3. EXAMPLE: CASE m = 3 63
≥ cαγ

1
3

|ν|τ − (|ν|+ 2)α−1γε ≥ cαγ
1
3

2|ν|τif |ν| < ( cα2γ−
2
3

ε

) 1
τ+1 .On the ontrary, if |ν| < (cα2γ−

2
3

ε

) 1
τ+1 , then we an always hoose ε ≤

cα2γ−
2
3

(4LM)1+τ , and so we have |ν| > 4LM and we an argue as in the previousproposition, obtaining the needed measure estimates on the set of the �nalfrequenies. �5.3. Example: ase m = 35.3.1. Constraints 1. We impose a �nite number of onstraints on theset of the normal sites S = {v1, v2, v3}. The �rst ones are
η1v1 + η2v2 + η3v3 6= 0with ηi ∈ Z, |ηi| ≤ 4, i = 1, 2, 3, and ∑3

i=1 ηi = 0, ∑3
i=1 |ηi| ≤ 8. Note thatthis is Constraints 1(i) in 5.1.3 and that this overs also (ii) and (iii).5.3.2. The sets X0

3 ,X
−2
3 . Under Constraints 1, the sets X0

3 ,X
−2
3 arethe following.

X0
3 = {(2,−2, 0), (2,−1,−1), (1,−3, 2), (3,−3, 0)(5.28) and all their permutations} ,

X−2
3 = {(1,−2,−1), (2,−2,−2), (2,−1,−3)(5.29) and all their permutations} .Then, for l ∈ X0
3 onditions (5.14) beome the following(Case 1) {

2vi − 2vj + h− k = 0

2v2i − 2v2j + h2 − k2 = 0(Case 2) {
2vi − vj − vl + h− k = 0

2v2i − v2j − v2l + h2 − k2 = 0(Case 3) {
vi − 3vj + 2vl + h− k = 0

v2i − 3v2j + 2v2l + h2 − k2 = 0(Case 4) {
3vi − 3vj + h− k = 0

3v2i − 3v2j + h2 − k2 = 0



5.3. EXAMPLE: CASE m = 3 64while, for l ∈ X−2
3 onditions (5.15) beome the following(Case 5) {

vi − 2vj − vl + h+ k = 0

v2i − 2v2j − v2l + h2 + k2 = 0(Case 6) {
2vi − 2vj − 2vl + h+ k = 0

2v2i − 2v2j − 2v2l + h2 + k2 = 0(Case 7) {
2vi − vj − 3vl + h+ k = 0

2v2i − v2j − 3v2l + h2 + k2 = 05.3.3. Constraints 2. To ensure that the funtion L(h) : h 7→ l is bi-jetive, we impose the following onstraints:
18v2i vj − 15v3i + 27v2i vl − 7viv

2
j − 22vivjvl − 16viv

2
l + 4v2j vl

+ 7vjv
2
l + v3j + 3v3l 6= 0

32vivjv
2
l − 94viv

2
j vl + 62v2i vjvl − 19v2j v

2
l + 44v3j vl + 48v3i vj − 12v3i vl

− 103v2i v
2
j − 13v2i v

2
l + 100viv

3
j − 9v4i − 36v4j + 2vjv

3
l − 2viv

3
l 6= 0

75v4i + 36v4l + 134v2i vjvl − 40viv
2
j vl − 94viv

2
l vj + 293v2i v

2
l − 2v3j vi − 164viv

3
l

+ 23v2i v
2
j − 60v3i vj + 2v3j vl + 17v2j v

2
l + 20vjv

3
l − 240v3i vl 6= 0

3v4i − viv
3
j − 15viv

3
l − vivjv

2
l + 5viv

2
j vl + 3v4l + v3j vl − 4v2j v

2
l

+ 3vjv
3
l − 14v3i vl + 2v3i vj − v2i v

2
j + 23v2i v

2
l − 4v2i vjvl 6= 0

9vi − 2vj − 7vl 6= 0

7vi − 6vj − vl 6= 0

v4j + 8v3j vl + 15v2j v
2
l + 8vjv

3
l + v4l − 66v3i vj − 66v3i vl + 45v2i v

2
j + 45v2i v

2
l

− 12viv
3
j − 12v3l vi + 33v4i − 54vivjv

2
l + 108v2i vjvl − 54viv

2
j vl 6= 0

11v2l vivj + 11vjvlv
2
i − 22v2j vlvi − 9v4j + 24v3j vl − 25v2j v

2
l + 13vjv

3
l

− 3v4l − vlv
3
i + v3i vj − 7v2i v

2
j + 12viv

3
j − 4v2l v

2
i − v3l vi 6= 0

3v2l vivj − 9vjvlv
2
i + 6v2j vlvi − 18v4j + 78v3j vl − 120v2j v

2
l + 79vjv

3
l

− 19v4l + vlv
3
i − v3i vj + 6v2i v

2
j − 6viv

3
j + 3v2l v

2
i − 3v3l vi 6= 0

3v4j + 2v3j vl − v2j v
2
l − vjv

3
l − 15v3i vj − 14viv

3
j + 23v2i v

2
j + 3v3i vl

− 4v2i v
2
l + v3l vi + 3v4i − v2i vjvl + 5vivjv

2
l − 4viv

2
j vl 6= 0

4v2j vivl + 16v2i vjvl − 20v2l vivj + 36v4j − 150v3j vl + 223v2j v
2
l − 142vjv

3
l

+ 33v4l + 6v3j vi + 10v3l vi − 11v2i v
2
j − 5v2i v

2
l − 2v3i vl + 2v3i vj 6= 0



5.3. EXAMPLE: CASE m = 3 655.3.4. The frequenies. The expliit expression of the frequenies ofthe Hamiltonian (5.11) is
ωi(ξ) = v2i +

π

2


−12ξ3i − 72

∑

j 6=i
j=1,...,3

ξiξ
2
j − 96

∑

j 6=i
j=1,...,3

ξ2i ξj

−144
∑

j 6=l 6=i,j 6=i
j,l=1,...,3

ξiξjξl


 for i = 1, . . . , 3

Ω0
k(ξ) = k2

Ω1
hk(ξ) =

π

2


48

∑

i 6=j=1,...,3Case 1 ξiξ
2
j e

i(2xi−2xj) + 72
∑

i 6=j 6=l=1,...,3Case 1 ξiξjξle
i(2xi−2xj)

+ 48
∑

i 6=j 6=l=1,...,3Case 2 ξ2i
√

ξjξle
i(2xi−xj−xl)

+ 144
∑

i 6=j 6=l=1,...,3Case 2 ξiξj
√

ξjξle
i(2xi−xj−xl)

+ 48
∑

i 6=j 6=l=1,...,3Case 3 ξiξj
√

ξjξlξiξje
i(xi−3xj+2xl)

+16
∑

i 6=j=1,...,3Case 4 ξiξj
√

ξiξje
i(3xi−3xj)




Ω2
hk(ξ) =

π

2


96

∑

i 6=j 6=l=1,...,3Case 5 ξ2j
√
ξiξle

i(xi−2xj−xl)

+ 144
∑

i 6=j 6=l=1,...,3Case 5 ξiξj
√

ξjξle
i(xi−2xj−xl)

+ 144
∑

i 6=j 6=l=1,...,3Case 5 ξjξl
√

ξiξle
i(xii−2ξj−ξl)

+ 72
∑

i 6=j 6=l=1,...,3Case 6 ξiξjξle
i(2xi−2xj−2xl)

+48
∑

i 6=j 6=l=1,...,3Case 7 ξiξl
√

ξjξle
i(2xi−xj−3xl)






5.3. EXAMPLE: CASE m = 3 665.3.5. The values of d(l), c(l),Ω′
k. We also alulate the values of

d(l), c(l),Ω′
k in the several ases:(Case 1)
Ω′
k = k2 = Ω′

h

d(l) =
π

2

[
−24ξ3i + 24ξ3j + 192ξ2j ξl + 144ξjξ

2
l + 48ξiξ

2
j

−144ξiξ
2
l − 48ξ2i ξj − 192ξ2i ξl

]

c(l) =
π

2

[
48ξiξ

2
j + 72ξiξjξl

](Case 2)
Ω′
k = k2 = Ω′

h

d(l) =
π

2

[
−24ξ3i + 12ξ3j + 12ξ3l + 168ξ2j ξl + 168ξjξ

2
l − 48ξiξ

2
j

−48ξiξ
2
l − 120ξ2i ξj − 120ξ2i ξl

]

c(l) =
π

2

[
96ξ2i

√
ξjξl + 144ξiξj

√
ξjξl

](Case 3)
Ω′
k = k2 = Ω′

h

d(l) =
π

2

[
−12ξ3i + 36ξ3j − 24ξ3l + 144ξ2j ξl + 24ξjξ

2
l + 216ξiξ

2
j

−264ξiξ
2
l + 120ξ2i ξj − 240ξ2i ξl

]

c(l) =
π

2

[
48ξiξj

√
ξjξl

](Case 4)
Ω′
k = k2 = Ω′

h

d(l) =
π

2

[
−36ξ3i + 36ξ3j + 288ξ2j ξl + 216ξjξ

2
l + 72ξiξ

2
j

−216ξiξ
2
l − 72ξ2i ξj − 288ξ2i ξl

]

c(l) =
π

2

[
16ξiξj

√
ξiξj

](Case 5)
Ω′
k = k2 = −Ω′

h

d(l) =
π

2

[
−12ξ3i + 24ξ3j + 12ξ3l + 576ξiξjξl + 264ξ2j ξl + 24ξjξ

2
l

+120ξiξ
2
j + 24ξiξ

2
l + 48ξ2i ξj − 24ξ2i ξl

]

c(l) =
π

2

[
96ξ2j

√
ξiξl + 144ξiξj

√
ξjξl + 144ξjξl

√
ξiξl

]
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Ω′
k = k2 = −Ω′

h

d(l) =
π

2

[
−24ξ3i + 24ξ3j + 24ξ3l + 576ξiξjξl + 336ξ2j ξl + 336ξjξ

2
l

+48ξiξ
2
j + 48ξiξ

2
l − 48ξ2i ξj − 48ξ2i ξl

]

c(l) =
π

2
[144ξiξjξl](Case 7)

Ω′
k = k2 = −Ω′

h

d(l) =
π

2

[
−24ξ3i + 12ξ3j + 36ξ3l + 576ξiξjξl + 312ξ2j ξl + 360ξjξ

2
l

−48ξiξ
2
j + 144ξiξ

2
l − 120ξ2i ξj + 24ξ2i ξl

]

c(l) =
π

2

[
48ξiξl

√
ξjξl

]5.3.6. The eigenvalues of the matries A0, A−2. We ompute nowthe values of the eigenvalues of the matries A0, A−2 in the several ases:(Case 1)
λk = k2 − 12ξ3i + 24ξiξ

2
j + 12ξ3j + 96ξ2j ξl + 72ξjξ

2
l − 72ξiξ

2
l − 24ξ2i ξj

− 96ξ2i ξl ± 12
√

−140ξ2i ξ
2
j ξ

2
l + 16ξ2i ξ

4
j − 48ξ3i ξ

2
j ξl + 12ξ3i ξjξ

2
l + 32ξiξ4j ξl

+12ξiξ
3
j ξ

2
l − 96ξ2j ξ

3
l ξi − 72ξjξ

4
l ξi − 96ξjξ

3
l ξ

2
i + 32ξ4i ξjξl − 10ξ3i ξ

3
j

+76ξ4i ξ
2
l + 4ξ5i ξj + 16ξ5i ξl + 4ξiξ5j + 16ξ5j ξl + 76ξ4j ξ

2
l + 96ξ3j ξ

3
l

+36ξ2j ξ
4
l + 36ξ2i ξ

4
l + 96ξ3i ξ

3
l + ξ6i + ξ6j(Case 2)

λk = k2 + 6ξ3j − 12ξ3i − 24ξiξ
2
j + 6ξ3l + 84ξ2j ξl + 84ξjξ

2
l − 24ξiξ

2
l − 60ξ2i ξj

− 60ξ2i ξl ± 6
√

456ξ4i ξjξl + 792ξ3i ξ
2
j ξl + 276ξ2i ξ

3
j ξl + ξ6j + 4ξ6i + ξ6l

−120ξ3j ξiξ
2
l + 24ξ3i ξjξ

2
l − 120ξiξ2j ξ

3
l − 112ξiξ4j ξl − 528ξ2i ξ

2
j ξ

2
l

−300ξ3l ξ
2
i ξj − 112ξjξ4l ξi + 76ξ3j ξ

3
i − 8ξ5j ξi + 394ξ3j ξ

3
l + 28ξ5j ξl

+224ξ4j ξ
2
l − 4ξ4j ξ

2
i + 116ξ4i ξ

2
j + 76ξ3i ξ

3
l + 116ξ4i ξ

2
l + 40ξ5i ξj

+40ξ5i ξl + 224ξ4l ξ
2
j + 28ξ5l ξj − 8ξ5l ξi − 4ξ4l ξ

2
i(Case 3)

λk = k2 − 6ξ3i + 18ξ3j + 72ξ2j ξl + 12ξjξ
2
l + 108ξiξ

2
j − 12ξ3l + 60ξ2i ξj

− 120ξ2i ξl − 132ξiξ
2
l ± 6

√
−400ξ4i ξjξl − 744ξ3i ξ

2
j ξl + 184ξ2i ξ

3
j ξl + 9ξ6j

+ξ6i + 4ξ6l − 60ξ3j ξiξ
2
l − 444ξ3i ξjξ

2
l − 600ξiξ2j ξ

3
l + 432ξiξ4j ξl
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−1232ξ2i ξ

2
j ξ

2
l − 120ξ3l ξ

2
i ξj − 88ξjξ4l ξi + 354ξ3j ξ

3
i + 108ξ5j ξi + 36ξ3j ξ

3
l

+72ξ5j ξl + 156ξ4j ξ
2
l + 384ξ4j ξ

2
i + 64ξ4i ξ

2
j + 884ξ3i ξ

3
l + 444ξ4i ξ

2
l

−20ξ5i ξj + 40ξ5i ξl − 44ξ4l ξ
2
j − 8ξ5l ξj + 88ξ5l ξi + 564ξ4l ξ

2
i(Case 4)

λk = k2 − 18ξ3i + 144ξ2j ξl + 108ξjξ
2
l + 36ξiξ

2
j + 18ξ3j − 36ξ2i ξj

− 144ξ2i ξl − 108ξiξ
2
l ± 2

√
2592ξ4i ξjξl − 3888ξ3i ξ

2
j ξl − 3888ξ2i ξ

3
j ξl + 81ξ6j

+81ξ6i + 972ξ3j ξiξ
2
l + 972ξ3i ξjξ

2
l + 2592ξiξ

4
j ξl − 14256ξ2i ξ

2
j ξ

2
l

−7776ξ3l ξ
2
i ξj − 5832ξjξ4l ξi − 746ξ3j ξ

3
i + 324ξ5j ξi + 7776ξ3j ξ

3
l

+1296ξ5j ξl + 6156ξ4j ξ
2
l + 7776ξ3i ξ

3
l + 6156ξ4i ξ

2
l

+324ξ5i ξj + 1296ξ5i ξl + 2916ξ4l ξ
2
j + 2916ξ4l ξ

2
i(Case 5)

λk = −k2 + 6ξ3l + 132ξ2j ξl + 12ξjξ
2
l + 60ξiξ

2
j + 24ξ2i ξj − 12ξ2i ξl + 12ξ3j

+ 12ξiξ
2
l + 288ξiξjξl − 6ξ3i ± 6

√
−768ξ3j

√
ξiξlξi

√
ξjξl + 1392ξ3j ξiξ

2
l

+552ξ2i ξ
3
j ξl − 276ξ2j ξ

3
l ξi − 1152ξiξ2j

√
ξjξlξl

√
ξiξl + 376ξ4j ξiξl

+192ξ3l ξ
2
i ξj + 104ξ4l ξiξj + 2272ξ2j ξ

2
l ξ

2
i + 300ξ2j ξlξ

3
i − 180ξjξ2l ξ

3
i

−112ξ4i ξjξl + 48ξ4l ξ
2
j + 4ξ5l ξj + 92ξ3l ξ

3
j + 4ξ5l ξi − 10ξ3l ξ

3
i + 492ξ4j ξ

2
l

+88ξ5j ξl + 116ξ2i ξ
4
j + 76ξ3i ξ

3
j + 40ξiξ5j − 4ξ4i ξ

2
j

−8ξ5i ξj + 4ξ5i ξl + ξ6l + 4ξ6j + ξ6i(Case 6)
λk = −k2 − 12ξ3i + 12ξ3j + 12ξ3l + 168ξ2j ξl + 168ξjξ

2
l + 24ξiξ

2
j + 288ξiξjξl

− 24ξ2i ξj − 24ξ2i ξl + 24ξiξ
2
l ± 12

√
732ξ3j ξiξ

2
l + 36ξ2i ξ

3
j ξl + 732ξ2j ξ

3
l ξi

+104ξ4j ξiξl + 36ξ3l ξ
2
i ξj + 104ξ4l ξiξj + 328ξ2j ξ

2
l ξ

2
i − 132ξ2j ξlξ

3
i

−132ξjξ2l ξ
3
i − 40ξ4i ξjξl + 224ξ4l ξ

2
j + 28ξ5l ξj + 394ξ3l ξ

3
j + 4ξ5l ξi

−10ξ3l ξ
3
i + 224ξ4j ξ

2
l + 28ξ5j ξl − 10ξ3i ξ

3
j + 4ξiξ

5
j + 4ξ5i ξj

+4ξ5i ξl + ξ6l + ξ6j + ξ6i(Case 7)
λk = −k2 − 12ξ3i + 6ξ3j + 18ξ3l + 156ξ2j ξl + 180ξjξ

2
l − 24ξiξ

2
j + 288ξiξjξl

− 60ξ2i ξj + 12ξ2i ξl + 72ξiξ
2
l ± 6

√
2280ξ3j ξiξ

2
l − 900ξ2i ξ

3
j ξl + 3480ξ2j ξ

3
l ξi
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−112ξ4j ξiξl + 1148ξ3l ξ

2
i ξj + 1008ξ4l ξiξj + 1712ξ2j ξ

2
l ξ

2
i − 1080ξ2j ξlξ

3
i

−168ξjξ
2
l ξ

3
i − 232ξ4i ξjξl + 1056ξ4l ξ

2
j + 180ξ5l ξj + 1566ξ3l ξ

3
j + 72ξ5l ξi

+36ξ3l ξ
3
i + 736ξ4j ξ

2
l + 52ξ5j ξl − 4ξ2i ξ

4
j + 76ξ3i ξ

3
j − 8ξiξ

5
j + 116ξ4i ξ

2
j

+40ξ5i ξj − 8ξ5i ξl + 9ξ6l + ξ6j + 4ξ6i − 44ξ4i ξ
2
l + 156ξ4l ξ

2
i5.3.7. Seond Melnikov's onditions. We have to prove that theseond Melnikov ondition holds, namely that(5.30) 〈ω, ν〉+ λk − λh 6= 0for all ν ∈ Z

3, where λk, λh are the eigenvalues of the matries A0, A−2orresponding to k = (h1, k1), h = (h2, k2) with l ∈ X0
3 ,X

−2
3 . Eah of thesematries has two eigenvalues λi = ai±

√
bi, hene with the di�erene λk−λhwe denote the four possible di�erenes of the two ouples. We an onlyonsider the ondition(5.31) 〈ω − ω0, ν〉+ λ̃k − λ̃hwhere λ̃i := λi − i2, sine the rest is the onstant part. Call Mi the 2 × 2�matrix with eigenvalues λ̃i.Reall the tensor produt between matries: given A,B 2× 2�matries,(5.32) A =

(
a11 a12

a21 a22

)
B =

(
b11 b12

b21 b22

)then the produt is 4× 4�matrix A×B with elements(5.33) A×B =




a11b11 a11b12 a12b11 a12b12

a11b21 a11b22 a12b21 a12b22

a21b11 a21b12 a22b11 a22b12

a21b21 a21b22 a22b21 a22b22


Important fat: alled a1, a2 the eigenvalues of A and b1, b2 the eigenvaluesof B, then the eigenvalues of the matrix A×I−I×B, where I is the identitymatrix, are their four di�erenes a1 − b1, a1 − b2, a2 − b1, a2 − b2.Call Mi the 2 × 2�matrix that has λ̃i as eigenvalues. Then the 4 × 4matrix

M := 〈ω − ω0, ν〉 × I4×4 +Mk × I2×2 − I2×2 ×Mhhas (5.31) as eigenvalues. In order to prove that they are not identially zero(and so the seond Melnikov ondition holds) it is su�ient to prove thatthe determinant of M is not identially zero. Call D this determinant, thatis a 12th�order polynomial. We divide the various ase of k (from l):(Cases 1-2) Case (h1, k1) suh that 2vi − 2vj + h − k = 0, (h2, k2) suh that
2vi − vj − vl + h − k = 0. In this ase D is not identially zero



5.3. EXAMPLE: CASE m = 3 70for all the hoie of the integer vetor ν ∈ Z
3. Set ν = (A,B,C). Ialulate the derivative of the determinant. For example, ∂12

∂ξ12i
D = 0if A2(A− 2)(A+ 2) = 0. Then I an hoose (A,B,C) = (0, 0, 0) or

(0, 1,−1) suh that ∂12

∂ξ12i
D = 0, ∂12

∂ξ10i ∂ξ2j
D = 0, ∂12

∂ξ10i ∂ξj∂ξl
D = 0 but

∂12

∂ξ9i ∂ξ
2
j ∂ξl

D 6= 0. For A = −2, 2 and any value of B,C we have that
∂12

∂ξ12i
D = 0, but ∂12

∂ξ10i ∂ξj∂ξl
D 6= 0.(Cases 1-3) Case (h1, k1) suh that 2vi − 2vj + h − k = 0, (h2, k2) suh that

vi − 3vj + 2vl + h − k = 0. In this ase D is not identially zerofor all the hoie of the integer vetor ν ∈ Z
3. Set ν = (A,B,C). Ialulate the derivative of the determinant. For example, ∂12

∂ξ12l
D = 0if C2(C − 2) = 0. Then I an hoose (A,B,C) = (0, 0, 0), (−2, 2, 0),

(−1,−1, 2) or (1,−2, 3) suh that ∂12

∂ξ12l
D = 0, ∂12

∂ξ2j ∂ξ
10
l
D = 0 and

∂12

∂ξi∂ξ8j ∂ξ
3
l
D = 0 but ∂12

∂ξ2i ∂ξ
3
j ∂ξ

7
l
D 6= 0.(Cases 1-4) Case (h1, k1) suh that 2vi − 2vj + h − k = 0, (h2, k2) suh that

3vi − 3vj + h− k = 0.In this ase D is not identially zero for all the hoie of theinteger vetor ν ∈ Z
3. Set ν = (A,B,C). I alulate the derivativeof the determinant. For example, ∂12

∂ξ12l
D = 0 if F 4 = 0. Then I anhoose (A,B,C) = (0, 0, 0), (1,−1, 0), (3,−3, 0) or (−2, 2, 0) suhthat ∂12

∂ξ12l
D = 0, ∂12

∂ξ4i ∂ξ
8
l
D = 0, ∂12

∂ξ4i ∂ξj∂ξ
7
l
D = 0 but ∂12

∂ξ2i ∂ξ
10
j
D 6= 0.(Cases 2-3) Case (h1, k1) suh that 2vi − vj − vl + h− k = 0, (h2, k2) suh that

vi − 3vj + 2vl + h− k = 0.In this ase D is not identially zero for all the hoie of theinteger vetor ν ∈ Z
3. Set ν = (A,B,C). I alulate the derivativeof the determinant. For example, ∂12

∂ξ12i
D = 0 if

A(A− 1)(A+ 2)(A+ 1) = 0.Then for (A,B) = (0, 0), (1,−3), (−2, 1) or (−1,−2) and any valueof C we have ∂12

∂ξ12i
D = 0, ∂12

∂ξ11i ∂ξj
D = 0 but ∂12

∂ξ2i ∂ξ
9
j ∂ξl

D 6= 0.(Cases 2-4) Case (h1, k1) suh that 2vi − vj − vl + h− k = 0, (h2, k2) suh that
3vi − 3vj + h− k = 0.In this ase D is not identially zero for all the hoie of theinteger vetor ν ∈ Z

3. Set ν = (A,B,C). I alulate the derivativeof the determinant. For example, ∂12

∂ξ12i
D = 0 if

A(A− 1)(A− 3)(A+ 2) = 0. Then for (A,B) = (0, 0), (1,−2) or (3,−3) and any value of C wehave ∂12

∂ξ12i
D = 0, ∂12

∂ξ11i ∂ξj
D = 0 but ∂12

∂ξ5i ∂ξ
7
j
D 6= 0.



5.3. EXAMPLE: CASE m = 3 71(Cases 3-4) Case (h1, k1) suh that vi− 3vj +2vl +h− k = 0, (h2, k2) suh that
3vi − 3vj + h− k = 0.In this ase D is not identially zero for all the hoie of the inte-ger vetor ν ∈ Z

3. Set ν = (A,B,C). I alulate the derivative of thedeterminant. For example, ∂12

∂ξ12l
D = 0 if C2(C + 2)2 = 0. Then I anhoose (A,B,C) = (0, 0, 0), (3,−3, 0), (2, 0,−2) or (1, 3,−2) suhthat ∂12

∂ξ12l
D = 0, ∂12

∂ξ2j ∂ξ
10
l
D = 0, ∂12

∂ξi∂ξ5j ∂ξ
6
l
D = 0 but ∂12

∂ξ4i ∂ξ
4
j ∂ξ

4
l
D 6= 0.(Cases 1-5) Case (h1, k1) suh that 2vi − 2vj + h − k = 0, (h2, k2) suh that

vi − 2vj − vl + h+ k = 0.In this ase D is not identially zero for all the hoie of theinteger vetor ν ∈ Z
3. Set ν = (A,B,C). I alulate the derivativeof the determinant. For example, ∂12

∂ξ12l
D = 0 if C2(C + 1)2 = 0.I an hoose (A,B,C) = (0, 0, 0), (−2, 0, 0), (−2, 2, 0), (0, 2, 0),

(1, 1,−1), (−1, 1,−1), (−1, 3,−1) or (1, 3,−1) suh that ∂12

∂ξ12l
D =

0, ∂12

∂ξ10l ∂ξ2j
D = 0, ∂12

∂ξ10l ∂ξ2i
D = 0 but ∂12

∂ξi∂ξ3j ∂ξ
8
l
D 6= 0.(Cases 1-6) Case (h1, k1) suh that 2vi − 2vj + h − k = 0, (h2, k2) suh that

2vi − 2vj − 2vl + h+ k = 0.In this ase D is not identially zero for all the hoie of the in-teger vetor ν ∈ Z
3. Set ν = (A,B,C). I alulate the derivative ofthe determinant. For example, ∂12

∂ξ12l
D = 0 if C2(C + 2)2 = 0. ThenI an hoose (A,B,C) = (0, 0, 0), (2, 0, 0), (−2, 0, 0), (−2, 2, 0),

(2, 2, 0), (2, 0,−2), (−2, 0,−2), (0, 0,−2),(0,−2,−2), (2,−2,−2) or
(−2,−2,−2) suh that ∂12

∂ξ12l
D = 0, ∂12

∂ξ10l ∂ξ2j
D = 0, ∂12

∂ξ12i
D = 0 but

∂12

∂ξ6i ∂ξ
4
j ∂ξ

2
l
D 6= 0.(Cases 1-7) Case (h1, k1) suh that 2vi − 2vj + h − k = 0, (h2, k2) suh that

2vi − vj − 3vl + h+ k = 0.In this ase D is not identially zero for all the hoie of the inte-ger vetor ν ∈ Z
3. Set ν = (A,B,C). I alulate the derivative of thedeterminant. For example, ∂12

∂ξ12l
D = 0 if C2(C + 3)2 = 0. Then I anhoose (A,B,C) = (0, 0, 0), (−2, 2, 0), (0, 1,−3), (2,−1,−3) suhthat ∂12

∂ξ12l
D = 0, ∂12

∂ξ2j ∂ξ
10
l
D = 0, ∂12

∂ξi∂ξ5j ∂ξ
6
l
D = 0 but ∂12

∂ξ6i ∂ξ
4
j ∂ξ

2
l
D 6= 0.(Cases 2-5) Case (h1, k1) suh that 2vi − vj − vl + h− k = 0, (h2, k2) suh that

vi − 2vj − vl + h+ k = 0.In this ase D is not identially zero for all the hoie of theinteger vetor ν ∈ Z
3. Set ν = (A,B,C). I alulate the derivativeof the determinant. For example, ∂12

∂ξ12l
D = 0 if

C2(C − 1)(C + 1) = 0.



5.3. EXAMPLE: CASE m = 3 72Then I an hoose (A,B,C) = (0, 0, 0), (−1, 1, 0), (−2, 1, 1) or
(1,−1,−1) suh that ∂12

∂ξ12l
D = 0, ∂12

∂ξ3i ∂ξ
9
l
D = 0, ∂12

∂ξ2i ∂ξj∂ξ
9
l
D = 0 but

∂12

∂ξi∂ξ3j ∂ξ
8
l
D 6= 0.(Cases 2-6) Case (h1, k1) suh that 2vi − vj − vl + h− k = 0, (h2, k2) suh that

2vi − 2vj − 2vl + h+ k = 0.In this ase D is not identially zero for all the hoie of theinteger vetor ν ∈ Z
3. Set ν = (A,B,C). I alulate the derivativeof the determinant. For example, ∂12

∂ξ12i
D = 0 if

A2(A− 2)(A + 2) = 0.Then I an hoose (A,B,C) = (0, 0, 0), (0, 0,−1), (0,−1,−1) or
(0,−1, 0), (2,−2,−2) or (−2, 1, 1) suh that ∂12

∂ξ12i
D = 0, ∂12

∂ξ8i ∂ξ
4
j
D =

0, ∂12

∂ξ10i ∂ξ2l
D = 0 but ∂12

∂ξ8i ∂ξj∂ξ
3
l
D 6= 0.(Cases 2-7) Case (h1, k1) suh that 2vi − vj − vl + h− k = 0, (h2, k2) suh that

2vi − vj − 3vl + h+ k = 0.In this ase D is not identially zero for all the hoie of theinteger vetor ν ∈ Z
3. Set ν = (A,B,C). I alulate the derivativeof the determinant. For example, ∂12

∂ξ12i
D = 0 if

A2(A− 2)(A + 2) = 0.Then I an hoose (A,B,C) = (2,−1,−3), value that anels the�rst fator, or (A,B,C) = (0, 0, 0), value that anels the seondfator, or (A,B,C) = (0, 0,−2), value that anels the third fator,or (A,B,C) = (−2, 1, 1), value that anels the fourth fator, suhthat ∂12

∂ξ12i
D = 0, ∂12

∂ξ11i ∂ξj
D = 0, ∂12

∂ξ10i ∂ξ2j
= 0 but ∂12

∂ξ10i ∂ξj∂ξl
6= 0.(Cases 3-5) Case (h1, k1) suh that vi− 3vj +2vl +h− k = 0, (h2, k2) suh that

vi − 2vj − vl + h+ k = 0.In this ase D is not identially zero for all the hoie of theinteger vetor ν ∈ Z
3. Set ν = (A,B,C). I alulate the derivativeof the determinant. For example, ∂12

∂ξ12l
D = 0 if

C(C + 3)(C + 2)(C + 1) = 0Then I an hoose (A,B,C) = (0, 1,−3), (1,−2,−1), (−1, 3,−2)or (0, 0, 0) suh that ∂12

∂ξ12l
D = 0, ∂12

∂ξi∂ξ11l
D = 0, ∂12

∂ξ2i ∂ξ
10
l
D = 0 but

∂12

∂ξi∂ξ2j ∂ξ
9
l
D 6= 0.(Cases 3-6) Case (h1, k1) suh that vi− 3vj +2vl +h− k = 0, (h2, k2) suh that

2vi − 2vj − 2vl + h+ k = 0.In this ase D is not identially zero for all the hoie of theinteger vetor ν ∈ Z
3. Set ν = (A,B,C). I alulate the derivative



5.3. EXAMPLE: CASE m = 3 73of the determinant. For example, ∂12

∂ξ12i
D = 0 if

A(A− 1)(A− 2)(A + 1) = 0.Then I an hoose (A,B,C) = (2,−2,−2), (0, 0, 0), (1, 1,−4) or
(−1, 3,−2) suh that ∂12

∂ξ12i
D = 0, ∂12

∂ξ11i ∂ξj
D = 0, ∂12

∂ξ10i ∂ξ2j
D = 0 but

∂12

∂ξ8i ∂ξ
2
j ∂ξ

2
l
D 6= 0.(Cases 3-7) Case (h1, k1) suh that vi− 3vj +2vl +h− k = 0, (h2, k2) suh that

2vi − vj − 3vl + h+ k = 0.In this ase D is not identially zero for all the hoie of theinteger vetor ν ∈ Z
3. Set ν = (A,B,C). I alulate the derivativeof the determinant. For example, ∂12

∂ξ12i
D = 0 if

A(A− 1)(A− 2)(A + 1) = 0.Then I an hoose (A,B,C) = (2,−1,−3), (0, 0, 0), (1, 2,−5) or
(A,B,C) = (−1, 3,−2)suh that ∂12

∂ξ12i
D = 0, ∂12

∂ξ11i ∂ξj
D = 0 and

∂12

∂ξ10i ∂ξ2j
D = 0 but ∂12

∂ξ8i ∂ξ
3
j ∂ξl

D 6= 0.(Cases 4-5) Case (h1, k1) suh that 3vi − 3vj + h − k = 0, (h2, k2) suh that
vi − 2vj − vl + h+ k = 0.In this ase D is not identially zero for all the hoie of theinteger vetor ν ∈ Z

3. Set ν = (A,B,C). I alulate the derivativeof the determinant. For example, ∂12

∂ξ12l
D = 0 if C2(C + 1)2 = 0. Ian hoose (A,B,C) = (1,−2,−1), (−2, 1,−1), (0, 0, 0) or (−3, 3, 0)suh that ∂12

∂ξ12l
D = 0, ∂12

∂ξ2i ∂ξ
10
l
D = 0, ∂12

∂ξ3i ∂ξ
9
l
D = 0 but ∂12

∂ξ2i ∂ξ
2
j ∂ξ

8
l
D 6=

0.(Cases 4-6) Case (h1, k1) suh that 3vi − 3vj + h − k = 0, (h2, k2) suh that
2vi − 2vj − 2vl + h+ k = 0.In this ase D is not identially zero for all the hoie of theinteger vetor ν ∈ Z

3. Set ν = (A,B,C). I alulate the derivativeof the determinant. For example, ∂12

∂ξ12i
D = 0 if

A(A− 2)(A+ 3)(A + 1) = 0Then I an hoose (A,B,C) = (−1, 1,−2), (−3, 3, 0), (2,−2,−2)or = (0, 0, 0) suh that ∂12

∂ξ12i
D = 0, ∂12

∂ξ11i ∂ξj
D = 0, ∂12

∂ξ10i ∂ξ2j
D = 0 but

∂12

∂ξ8i ∂ξ
2
j ∂ξ

2
l
6= D0.(Cases 4-7) Case (h1, k1) suh that 3vi − 3vj + h − k = 0, (h2, k2) suh that

2vi − vj − 3vl + h+ k = 0.In this ase D is not identially zero for all the hoie of theinteger vetor ν ∈ Z
3. Set ν = (A,B,C). I alulate the derivative



5.3. EXAMPLE: CASE m = 3 74of the determinant. For example, ∂12

∂ξ12i
D = 0 if

A(A− 2)(A+ 3)(A + 1) = 0Then I an hoose (A,B,C) = (−1, 2,−3), (−3, 3, 0), (2,−1,−3)or (0, 0, 0), value that anels the fourth fator, suh that ∂12

∂ξ12i
D =

0, ∂12

∂ξ11i ∂ξj
D = 0, ∂12

∂ξ10i ∂ξ2j
= 0 but ∂12

∂ξ8i ∂ξ
3
j ∂ξl

6= 0.(Cases 5-6) Case (h1, k1) suh that vi − 2vj − vl + h+ k = 0, (h2, k2) suh that
2vi − 2vj − 2vl + h+ k = 0.In this ase D is not identially zero for all the hoie of theinteger vetor ν ∈ Z

3. Set ν = (A,B,C). I alulate the derivativeof the determinant. For example, ∂12

∂ξ12l
D = 0 if

C(C − 1)(C + 2)(C + 1) = 0Then I an hoose (A,B,C) = (2,−2,−2), (0, 0, 0), (1, 0,−1) or
(−1, 2, 1) suh that ∂12

∂ξ12l
D = 0, ∂12

∂ξi∂ξ11l
D = 0, ∂12

∂ξ2i ∂ξ
10
l

= 0 but
∂12

∂ξi∂ξ2j ∂ξ
9
l
6= 0.(Cases 5-7) Case (h1, k1) suh that vi − 2vj − vl + h+ k = 0, (h2, k2) suh that

2vi − vj − 3vl + h+ k = 0.In this ase D is not identially zero for all the hoie of theinteger vetor ν ∈ Z
3. Set ν = (A,B,C). I alulate the derivativeof the determinant. For example, ∂12

∂ξ12l
D = 0 if

C(C − 1)(C + 3)(C + 2) = 0Then I an hoose (A,B,C) = (2,−1,−3), (−1, 2, 1), (1, 1,−2)or (0, 0, 0) suh that ∂12

∂ξ12l
D = 0, ∂12

∂ξi∂ξ11l
D = 0, ∂12

∂ξ2i ∂ξ
10
l

= 0 but
∂12

∂ξi∂ξ2j ∂ξ
9
l
6= 0.(Cases 6-7) Case (h1, k1) suh that 2vi − 2vj − 2vl + h + k = 0, (h2, k2) suhthat 2vi − vj − 3vl + h+ k = 0.In this ase D is not identially zero for all the hoie of theinteger vetor ν ∈ Z

3. Set ν = (A,B,C). I alulate the derivativeof the determinant. For example, ∂12

∂ξ12i
D = 0 if

C(C − 2)(C + 3)(C + 1) = 0.Then I an hoose (A,B,C) = (2,−1,−3) or (−2, 2, 2) suh that
∂12

∂ξ12i
D = 0, ∂12

∂ξ11i ∂ξl
D = 0, ∂12

∂ξ10i ∂ξ2l
= 0 but ∂12

∂ξ6i ∂ξ
4
j ∂ξ

2
l
6= 0
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