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Introduction

This thesis deals with KAM theory for Hamiltonian partial differential
equations. This theory concerns the following subject: since the solutions of
a linear equation are periodic, quasi periodic or almost periodic (for they
are superpositions of periodic motions), the problem is to investigate what
happens when we add a (sufficiently) small nonlinearity.

This thesis contains two new results: an abstract KAM theorem for de-
generate infinite—dimensional systems, with an application to the nonlinear
wave equation, and a KAM theorem for a completely resonant nonlinear
Schrodinger equation.

The KAM theory is born in the context of perturbation of integrable
Hamiltonian systems with finitely many degrees of freedom in order to prove
the persistence of invariant tori. The original result for analytic Hamiltonian
systems was due to Kolmogorov [Kol54]|, a new proof was given by Arnold
[Arn63a] and then Moser [Mos62]| extended it to differentiable Hamiltonian
systems.

Roughly speaking (see Theorem 1.7), Kolmogorov’s theorem states that

for nearly integrable Hamiltonian systems of the form
H =Hy(I)+eHp(0,1)

with (0,I) € T™ x R™ angle-action coordinates, the most, with respect to
Lebesgue measure, of the invariant tori persists under sufficiently small per-
turbations. This result holds for non—-degenerate systems, namely for systems

whose frequency—to—action map

I s w(l) = Mgf )

is a local diffeomorphism (Kolmogorov’s non-degeneracy condition), and

states the persistence of those tori whose frequencies are strongly non—
resonant in a diophantine sense, namely there exist constants o > 0,7 > n—1
such that

Ik w| > — for all k € Z™\ {0}.

kI
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INTRODUCTION iii

These tori that persist are only slightly deformed and still completely
filled with quasi-periodic motions, namely the dynamics on these tori is de-
scribed by a finite number of incommensurable frequencies. The base of this
partial foliation on the phase space into invariant tori is no longer open, but
has the structure of a Cantor set.

Another typical situation is the research of periodic or quasi—periodic
solutions near an elliptic equilibrium point (see Section 1.3 for the defini-
tion and Section 1.4 for detailed explanation). In this case we consider the
parameter—dependent Hamiltonians

H=Hy+cHp

where the linear system

m n
Ho=Y wi(©Li+ Y. 940 +4)
=1 j=m+1

is the superposition of m uncoupled harmonic oscillators with frequencies w;
depending on an m-dimensional parameter £ € R™. The Kolmogorov’s the-
orem for nonlinear Hamiltonian systems can be reduced to a KAM theorem
for systems of this type assuming the non-degeneracy condition on the map
€ — w(&) (see [P6s01] and [KPO03]).

In the particular case m = 1, we have perturbations of periodic orbits
near the equilibrium. If 2 < m < n—1 we focus on the m—dimensional invari-
ant torus {/ = constant,p = ¢ = 0} for the linear system. The persistence of
this lower dimensional torus in the complete system is obtained assuming

the non—degeneracy condition on the frequency map
EeR" —w() e R™

and the Melnikov’s non-resonance condition
o
L+ [k
for some «, 7 > 0 and for any (k,l) € Z™ x Z"™\ {(0,0)} with 1 < [I] <2
(see results by Moser [Mos67]|, Eliasson [Eli88| and Péschel [P6s89)).
A natural problem concerns the extension of these results to infinite—

k-w+1-Q] >

dimensional systems. Indeed many typical partial differential equations aris-
ing from physical problems, for example the nonlinear wave equation

U — Ugz + V(x)u + f(u) =0
can be written as an infinite-dimensional Hamiltonian system near the origin

HZZWjIj'i‘EHP

Jj=1
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where, in the case of the nonlinear wave equation, w? are the eigenvalues of

J
the operator A = —% + V(x).

In this direction the first results are due to Kuksin [Kuk93| and Wayne
[Way90| concerning perturbation of parameter—-dependent linear wave and
Schriodinger equations. Further results are due also to Poschel [P6s96b|
[P6s96al, Kuksin [Kuk98|, Eliasson |Eli&8], Bourgain [Bou94|, Kuksin—
Poschel [KP96], Craig-Wayne [CW93| [CW94] for PDEs in one space
dimension, while for PDEs in higher dimensions we cite results by Berti—
Bolle [BB10|, Berti-Bolle-Procesi [BBP10], Berti-Procesi [BP], Bourgain
[Bou95| for periodic solutions, and by Eliasson—-Kuksin [EK10|, Bourgain
[Bou98| [Bou05a], Berti-Bolle [BB]|, Geng—Xu—You [GXY11a|, Procesi—
Xu |PX] for quasi—periodic solutions.

These results prove the existence of finite-dimensional tori in infinite—
dimensional systems seen as small perturbation of an unperturbed Hamil-
tonian N

Ho=> wi L+ Y Q)@ +d)
Jj=1 j>n+l
with frequencies w, {2 depending on an n—dimensional parameter ¢ € R” and
satisfying the non-degeneracy condition as above, namely that the frequency
map

£ €R™ s w(€) €R™

is a local diffeomorphism, and the above Melnikov’s conditions. The main
difficulty with respect to the finite dimensional case is to verify infinitely
many non-resonance conditions, in particular the most difficult are the sec-
ond order ones, namely
o
k-w+Q £Q4] > T
for some o, 7 >n — 1 and for any k € Z", i,j € Z with i, > n+ 1.

In Chapter 3 we present in detail two abstract KAM theorems for infinite
dimensional systems that we shall use later for the new results. The former
by Poschel [P6s96a] is an improved version of the result by Kuksin [Kuk93].
The latter is a recent result by Berti-Biasco [BB11].

In order to apply these theorems to concrete nonlinear partial differential
equations, one has to verify the non—degeneracy condition on the frequency
map. In general this could be a hard task, in particular for systems depending
on a small number of parameters (degenerate systems).

The extension of KAM Theorem to this kind of systems is an already
known problem also in finite-dimensional systems, since, for example, it
arises in the study of celestial mechanics. Arnold himself devoted of his

most important work [Arn63b| to this problem, see also recent results
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by Herman-Jejoz [Féj04] and Chierchia—Pinzari [CP]. Since the result of
Arnold, the Kolmogorov’s non—degeneracy condition has been then weakened
till Riissmann [Riis01] and Xu-Qiu—You [XYQ97]. These authors assume
that the range of the frequency map in not confined on any hyperplane in
the frequency space. The range may be a curve, for example, but it has to
twist in all directions.

It is then natural to extend these results to infinite dimensional systems,
in order to obtain a KAM theorem for systems with frequencies depending
only on a few number of parameters. In Chapter 4 we prove an abstract
degenerate KAM theorem for infinite-dimensional systems, see [BBM11|.
This theorem is an extension of the result of Riissmann to nonlinear PDEs
whose linear operator depends analytically only on one parameter. The main
difficulty is the bound of the maximal order of the zeros of infinitely many
analytic functions, a fact which is generically impossible. We exploit the
asymptotic growth of the frequencies to reduce the effective number of func-
tions to a finite one. This idea allows to deduce a quantitative non-resonant
property of the kind of the Melnikov non-resonance conditions.

This theorem is then applied to the nonlinear wave equation with Dirich-

let boundary conditions

Ut — Ugy + V(2)u +Eu+ f(x,u) =0
u(t,0) = u(t,m) =0

where the unique real parameter is the mass £ varying in a compact real set
7 C R, V(x) is an analytic, 2r—periodic, even potential and the nonlinearity
f is odd, real analytic and f(z,0) = (Quf)(x,0) = 0. Section 4.1.3 is ded-
icated to the study of this system proving the existence of quasi—periodic
solution for a large set of masses. More precisely, we prove the following

result.

THEOREM 0.1. For every choice of indexes J := {j1 < jo < ... < jn},
there exists r. > 0 such that, for any A = (Ay,..., An) € RY with |A] =:
r < ry, there s a Cantor set " C T with asymptotically full measure as
r — 0, such that, for all the masses & € T*, the nonlinear wave equation has
a quasi—periodic solution of the form

N

u(t,z) =Y Apcos(Apt + 01) ¢, (z) + o(r),
h=1

where o(r) is small in some analytic norm and Xh —Aj, =+ 0asr — 0, being

Aj, the frequencies of the linear equation.



INTRODUCTION vi

This generalizes the results in [Way90| where the potential is taken
as an infinite dimensional parameters, and the result in Kuksin [Kuk93|
where the potential depends on n parameters. Regarding the nonlinearity,
we only require f(x,u) = O(u?), while the result in [P8s96b] is valid for
f(z,u) = ud+higher order terms.

In the previous result, the role of the parameter £ is to control the fre-
quencies in order to verify non-resonance conditions.

The second result of this thesis concerns completely resonant systems as

the nonlinear Schrodinger equations
iy — Ugy + |ul*Pu =0, zeTY,

with p € N, where the frequencies of the linearized system are all integers
Wy = \k\Z, hence the orbits of the linearized equation are all periodic of
period 27, and obviously the Melnikov’s non-resonance conditions are not
verified.

This situation has been widely studied in finite dimension. The persis-
tence of periodic solutions near an elliptic equilibrium point for completely
resonant systems has been proved by Weinstein [Wei73], Moser [Mos76|
[Mos78] and Fadell-Rabinowitz [FR78] (we refer to [Ber07| for a detailed
exposition).

The existence of periodic solutions in infinite-dimensional systems has
been proved in Gentile-Mastropietro-Procesi [GMPO05], Berti-Bolle [BB03]|
[BB04| [BB06b| [BB08|, Gentile-Procesi [GP06|, Baldi-Berti [BB06al].

The problem of proving the existence of quasi—periodic solutions is even
more complicated, first because the small divisors problem is more difficult,
and also because the linear system does not possess any quasi—periodic so-
lution, hence their bifurcation is a purely nonlinear phenomenon. The main
tool is the introduction of the Birkhoff normal form.

The Birkhoff normal form is proved to be completely integrable for the
cubic NLS

ity — Upy + mu + \u|2u +0w’) =0, ze€l0,x].

by Kuksin—Poschel [KP96], since it is a reflex of the completely integrability
of ity — tge +mu+ |ul*u = 0. Then Geng-Yi [GY07] proved the completely
integrability of the normal form for the quintic NLS. For generic p Liang
[Lia08] considered the 1-dimensional nonlinear Schrédinger equation

iug — gy + \u|2pu =0, zeT,

and proved the existence of quasi—periodic solutions with only two frequen-
cies. The reason for this limitation is that only in this way he could obtain
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a normal form with constant coefficients (this is not true for general non-
linearities for any number of frequencies), suitable for the application of the
KAM Theorem. Recently C.Procesi-M.Procesi [PP] showed the construc-
tion of a reducible normal form (namely, with constant coefficients) for the
Schrodinger equation with analytic non-linearities in any dimension under
a finite number of conditions on the tangential sites.

Taking in mind these results, in Chapter 5 we focus on the 1-dimensional
case with p = 3 and prove the existence of quasi—periodic solutions with any

number of frequencies, namely we prove the following result.

THEOREM 0.2. For “generic” choices of indexes J := {ji,72,---,Jm}
there exist p, > 0 such that for any p < p. there exists a Cantor set 11} C
B,(0) of positive Lebesque measure such that, for any § € 117, the nonlinear

Schrodinger equation admits o quasi—periodic solution of the form
m
u(t,r) = 3 a0 | o(e),
i=1

where the map § — w*(&) is a lipeomorphism, 6 € R™ are arbitrary phases
and o(&) is small in some analytical norm. The measure of the set 17 s

greater than cp™, where ¢ is a constant independent on p.

In proving this result, we first reduce the system to normal form, impos-
ing a finite number of choices on the indexes J in order to make it reducible
and developing all the computations on the normal form and the needed
conditions also in the case of three frequencies. Then we use the obtained
normal form as the unperturbed Hamiltonian to apply the KAM Theorem
as stated in [BB11]. We expect that this result hold for any p € N. We
focus on the case p = 3 to check in details all the assumptions of the KAM
Theorem.

We have cited so far results for 1-d NLS because KAM theories in higher
dimensions are very difficult to obtain. Recently Eliasson-Kuksin [EK10|
proved a KAM theorem for nonlinear Schrédinger equation using T6plitz—
Lipschitz properties of the perturbative terms to control the frequencies. We
refer also to results by Geng-Xu-You [GXY11a] and Procesi-Xu [PX].



CHAPTER 1

Classical background

In this chapter we recall some classical definitions and results for fi-
nite dimensional Hamiltonian systems, taking as a reference the book of
Kappeler-Poschel [KP03]. We first recall some definitions and properties for
Hamiltonian vector fields, then we consider the case of integrable systems
(in the senso of Liouville) and finally we study the behavior of systems that

are small perturbations of integrable ones.

1.1. Hamiltonian formalism

Let n € N. Let M be a smooth (i.e. infinitely many differentiable) man-
ifold of finite dimension 2n, without boundary and connected.

DEFINITION 1. A symplectic form on M is a closed and non—degenerate
2—form « on M. The pair (M, v) is called symplectic manifold.

The symplectic form a induces an isomorphism between the tangent and
the cotangent bundle of M

S:TM — T*M
Xr—voX=0aoalX,").
Let J := S~': T*M — TM the inverse of S.
Consider a smooth function H: M — R. This defines a vector field
Xg=JdH
on M, that is the unique one satisfying
ao Xy =dH.

DEFINITION 2. Xp is called the Hamiltonian vector field associated to
the Hamiltonian H on the phase space M. The Hamiltonian flow of H is
the flow defined by the vector field Xy and is indicated with X%,.

The Hamiltonian H is constant along the flow lines of its Hamiltonian

vector field, namely by definition
d
EHO XY =dH(Xy) =a(Xg,Xg) =0

and this is also known as the conservation of energy.

1



1.1. HAMILTONIAN FORMALISM 2

DEFINITION 3. On the symplectic manifold M define the Poisson bracket
of two smooth functions G, H as

{G,H} = a(Xg, Xn).

The Poisson bracket is a skew form on the linear space of all the smooth
functions on M. One fundamental property, that follows by the definition,
is that

{G,H} =dG(Xg)

and so, for any smooth function G, the flow X%, has the property that
G={G,H},

where G denotes the derivative of G with respect to the vector field X,

namely

. d
G = EG o Xir|,_o = dG(Xn).

The Poisson bracket satisfies the Leibniz rule
{FG,H} = F{G,H} + G{F,H}
and the Jacobi identity
{F,{G,H}}+{G,{H,F}}+{H,{F,G}} =0.
DEFINITION 4. The Lie bracket of to vector fields X, Y is defined as
[X,Y] =YX - XY.

This is bilinear and skew—symmetric. Moreover, the Lie bracket of two

Hamiltonian vector field is again Hamiltonian, namely
(X, Xu] = X(a,m
for any two Hamiltonian G, H on the symplectic manifold M.

DEFINITION 5. A smooth non—constant function G is called an integral
of a Hamiltonian system with Hamiltonian function H if

(G, HY = 0.

Since {G, H} = XpyG, this means that G is constant along the flow lines
of Xp. By the skew symmetry of the Poisson bracket, if G is an integral for
X, then also H is an integral for X, and then the two Hamiltonians G, H

are said to be in involution. Finally, G and H are in involution if and only if
(Xc, Xg]=0

and we say that the two vector field Xq, X commute.
To preserve the Hamiltonian nature of vector fields, a diffeomorphism of

a symplectic manifold has to preserve the underlying structure.



1.2. LIOUVILLE INTEGRABLE SYSTEMS 3

DEFINITION 6. A diffeomorphism & of the symplectic manifold M is
called symplectic or a symplectomorphism if it preserves the symplectic form,
that is if ®*a = a.

A symplectomorphism ® is also canonical, namely it preserves also the
Poisson bracket:
{F,G}o® ={Fo®,Go ®}
for any two functions F,G.
All the linear symplectic vector spaces of the same dimension are sym-
plectically isomorphic, but this is no longer true for nonlinear ones. The
following result states that this is true locally around every point of a sym-

plectic manifold.

THEOREM 1.1 (Darboux). A symplectic manifold (M, «) of dimension

2n is locally symplectomorphic to an open subset of (R*™, o).

This theorem states that, given any point p € M, there are a neighbor-
hood W of p in M and a diffeomorphism Phi: V — W of an open set V in
R?” onto W such that ®*a = «y.

The coordinates provided by ® are called Darbouz coordinates.

1.2. Liouville integrable systems

Integrable systems are particular Hamiltonian systems that can be solved
for any initial data by quadratures. In order to be integrable, the system
has to admit sufficiently many conserved quantities in involution. It turns
out that for a system with n degrees of freedom it is sufficient to have n
independent integrals in involution. More precisely, we give the following
definitions.

DEFINITION 7. A family of m functions Fi,..., F,, on M is called in-
dependent if their 1-forms dFi,...,dF,, are linearly independent at every
point in M.

DEFINITION 8. A Hamiltonian system on a symplectic manifold M of
dimension 2n is called integrable if its Hamiltonian H admits n independent
integrals F1,..., Fy, in involution, namely

(1) {H,F;} =0foranyi=1,...,n
(2) {F,Fj} =0foranyi,j=1,...,n
(3) dFy N ...NdF,,, #0
everywhere on M.
ExaMPLE. In standard action—angle coordinates (6,1) € T" x R™ any

Hamiltonian of the form H = H(I) is integrable with integrals F; = I;, for
1=1,...,n.
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ExAMPLE. In standard cartesian coordinates (¢, p) € R”xR"™ any Hamil-
tonian of the form H = H(q} + p?,...,q2 + p2) is integrable with integrals
F,=q¢ +p? fori=1,...,n

We now give a geometric description of an integrable system. Consider
an arbitrary number of smooth independent functions Fi, ..., F;,, on M and
the map F' = (F1,..., Fy,): M — R™. Every non-empty leaf

M¢:=FYec)={pe M: F(p) =c}

is a smooth submanifold of M of codimension m. The whole manifold M is

foliated into these leaves. The following result holds.

LEMMA 1.2. Assume that the map F = (Fy,..., F,,) defines a foliation
of M with leaves M¢ = F~'(c). Then the following statements are equivalent:

(1) the functions Fi, ..., Fy, are in involution, namely {F;, Fj} =0 for
,j=1,...,m

(2) the Hamiltonian vector fields X, are everywhere tangent to the
leaves of F', namely Xp,(p) € T,M¢ fori=1,...,m, p e M°.

On a symplectic manifold of dimension 2n there are at most n indepen-

dent functions in involution.

DEFINITION 9. If the number of independent function in involution is n

then each leaf is called Lagrangian submanifold of M.

COROLLARY 1.3. If Fy,..., F, are independent functions in involution
on M, then the map F = (Fi,...,Fy,) defines a foliation of M into La-
grangian submanifolds M¢ = F~(c).

Suppose that the Hamiltonian H admits F, ..., F,, as independent inte-
grals, hence {H, F;} = 0. It follows that the Hamiltonian vector field X is
tangent to the leaves M ¢ and then these are invariant manifolds with respect

to its flow.

COROLLARY 1.4. A Hamiltonian system is integrable if and only if it

admits a foliation of its phase space into Lagrangian submanifolds.

Assume now that the Hamiltonian H is integrable with integrals F,.. .,
F,, in involution. Liouville showed that locally around each point one can
introduce standard symplectic coordinates (g, p) such that the Hamiltonian
assumes the form H = H(p). Then the coordinates pi,...,p, become inte-
grals of the Hamiltonian. There is then a global version of this result due to
Arnold and Jost that leads to the following theorem.
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THEOREM 1.5 (Liouville-Arnold-Jost). Let (M,«a) be a symplectic man-
ifold of dimension 2n and let F' = (F1,...,F,) be n independent functions
in involution on M. Suppose that one of he leaves of F, say M° = F~1(0)
18 compact and connected. Then

(1) M° in an n-dimensional embedded torus
(2) there exist an open neighborhood U of M°, an open neighborhood
D of 0 in R™ and a diffeomorphism ¥: T" x D — U introducing

action—angle variables with
W o = a, MO =T x {0},

such that the functions F; o W are independent of the angular coor-

dinates.

Consider now an integrable Hamiltonian H = H(I) in action—angle co-

ordinates. The equation of motion are
I; =0,

dljl(f) for ¢ = 1,...,n. These equations are easily integrable

and their general solution is

where w;(I) =

0(t) =00+ w(I%t,  I(t)=1I"

Every solution is a straight line which, due to the identification of the angular
coordinates € modulo 2w, is winding around the underlying torus T :=
T™ x {I°} with constant frequencies w(I1%) = (wi(I°),...,w,(I°)). They
completely determine the dynamics on this torus, which consists of parallel
translations. These tori are called Kronecker (or rotational) tori and the
associated frequencies are called the frequencies of the invariant torus. We

give now a more general definition.

DEFINITION 10. Let X be a smooth vector field on a manifold M of
arbitrary dimension. An invariant n—torus T of X is called a Kronecker
torus (or torus with linear flow) if there exist a diffeomorphism ®: T" — T
such that ®*X is a constant n—vector w on T" called the frequency vector of

the Kronecker torus.

From a geometrical point of view, an integrable Hamiltonian system
around a compact connected leaf is then completely foliated into an n-—
parameter family of invariant and Lagrangian tori with linear flow. From
an analytical point of view, all solution curves on an invariant Kronecker

torus T with frequencies w are represented as ®(#° + wt), with #° € T",
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hence they are quasi—periodic function of ¢, in the sense of the following
definition.

DEFINITION 11. A continuous function ¢g: R — R is called quasi—periodic

with frequencies w = (w1, ...,wy,) if there exists a continuous function
Q:T"—-R

such that ¢(t) = Q(wt) for all t € R.

The flow on a Kronecker torus is rather simple and depends on arith-

metical properties of its frequency w. There are two cases.

(1) The frequencies w are non—resonant or rationally independent. This

means that
(k,w) #0 for all 0 # k € Z".

Then each orbit on this torus is dense and the flow is ergodic.
(2) The frequencies are resonant or rationally dependent. This means
that there exist integer relations

(k,w)=0 for some 0 # k € Z".

The prototype is w = (w1, ..., wmn,0,...,0)with n —m > 1 trailing
zeros and (wi,...,wy,) non-resonant. Then the torus decomposes
into an n — m—parameter family of identical invariant m—tori. Each
orbit is dense on such a lower dimensional torus but not in the entire
Kronecker torus. If there are n — 1 independent resonant relations,
then each frequency wy, ... ,w, is an integer multiple of a fixed non—
zero frequency w and the whole torus is filled by periodic orbits with

one and the same period 27 /w@.

In an integrable system the frequencies on the tori may or may not vary
with the torus, depending on the nature of the frequency map I — w(I). If
it is non—degenerate in the sense that

’H
detg—c}} :det%? #0,
then the frequency map is a local diffeomorphism.

Non-resonant and resonant tori form dense subsets in the phase space.
The resonant ones sit among the non-resonant ones like rational numbers
among the irrational numbers.

In Section 1.4 we will understand through the KAM theory the behavior
of nearly integrable Hamiltonian systems, namely of those systems which are

close to integrable ones.
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1.3. Birkhoff Normal Form theorem

On R?" consider a Hamiltonian H with an equilibrium point at zero (this

is always possible, eventually using Darboux coordinates).

DEFINITION 12. The equilibrium point is said to be elliptic if there exists
a canonical system of coordinates (p,q) in which the Hamiltonian takes the

form

where . ) )
p7 + 5
Ho(p.q) =) jwj~——,  w€R
j=1

and Hp is a smooth function having a zero of order 3 at the origin.

In the linear approximation, since Hp = O(||(p, ¢)||*), the system consists
in n independent harmonic oscillators.

THEOREM 1.6 (Theorem 1 in [BamO8|). For any integer v > 0, there
exists a meighborhood U(r) of the origin and a canonical transformation
T2 U(r) — R* which puts the system (1.1) in Birkhoff Normal Form up

to order v, namely
(1.2) H" .= Hor, = Hy+ 2" + R,
where

(1) Z) s a polynomial of degree r + 2 which Poisson commutes with
Hy, namely {HO,Z(T)} =0,
(2) R is small, namely

[ROG)| <Gl vz eu).

Moreover,
Iz =72 < Crllzl)?, Yz eU(r),

and the same holds also for the inverse 7,7 L.

If the frequencies w are monresonant up to order r + 2, namely

w-k#0 VEeZ",0< k| <r+2,

2442
then the function AR, depends only on the actions I; := pj;rqj .

The idea of the proof is to construct a canonical transformation ob-
tained as the time—1-flow of a suitable Hamiltonian function, pushing the
non—normalized part of the Hamiltonian to order four, followed by a trans-
formation pushing it to order five, and so on.



1.4. KAM THEORY 8

The Birkhoff theorem ensures then the existence of a canonical transfor-
mation putting the Hamiltonian system in normal form up to a remainder
of a given order. The dynamics of the system in normal form depends on the
resonance relations fulfilled by the frequencies.

1.4. KAM theory

Integrable systems are the exception, but many interesting Hamiltonian
systems may be viewed as small perturbation of an integrable system, for
example the planetary system. So the goal now it to understand what hap-
pens to a foliation of invariant tori with their quasi—periodic under small
perturbation of the Hamiltonian.

So, consider a Hamiltonian in action-angle coordinates (0, I) of the form
H=Hy)+H:(6,1)

where Hj is the unperturbed integrable Hamiltonian and H. is a general
perturbation that we assume of the form ¢H;(6,I), so that ¢ measures the
size of the perturbation.

We assume the unperturbed system to be non—degenerate, namely we

assume that the frequency map

OHy (1)
I IHy=———7"=
— w(I) o7
is a local diffeomorphism (this is also called Kolmogorov’s condition, see

[Kol54]).

The first result due to Poincaré is of negative nature and states that the
resonant tori are in general destroyed by any arbitrary small perturbation
and that a generic Hamiltonian system is not integrable.

But in 1954 Kolmogorov observed that the majority of tori survives. More
precisely, he stated the persistence of those Kronecker tori whose frequencies
are not only non-resonant but strongly non-resonant, in the sense that there
exist constants a > 0 and 7 > n — 1 such that

o
i

This condition is also called diophantine or small divisor condition. In order

|(k,w)| > for all 0 # k € Z".

to verify the existence of these frequencies, fix a, 7 and denote with A, the
set of all w € R™ satisfying these infinitely many conditions. Then for any

bounded set {2 C R™ we have the following Lebesgue measure estimate

2\ Aol = O(a).
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Moreover, we have that only those Kronecker tori with frequencies w € A,
with

a>> /e
do survive.

To state the KAM theorem we finally consider subsets €2, of a bounded
domain 2 C R" whose elements are the frequencies belonging to A, and
that have at least distance a to the boundary of 2. These sets are Cantor
sets and have large Lebesgue measure, |2\ Q,] = O(«).

We can now state the main theorem of Kolmogorov, Arnold and Moser.

THEOREM 1.7 (KAM Theorem). Suppose the Hamiltonian
H=Hy+¢eH;

1s real analytic on the closure of T" X D, where D is a bounded domain in R™,
If the integrable Hamiltonian Hy is non—degenerate and its frequency map 1s
a diffeomorphism D — €, then there exists a constant § > 0 such that for

le| < da

all the Kronecker tori (T™,w) of the unperturbed system with w € Q, persist
as Lagrangian tori, being only slightly deformed. Moreover, they depend on
a Lipschitz continuous way on w and fill the phase space T™ X D up to a set

of measure O(a).

KAM theorem ensures then the persistence of invariant tori of nearly
integrable Hamiltonian systems, filled by quasi—periodic solutions with fre-
quencies satisfying strong non-resonance conditions of diophantine type.

Since its conception this theorem has been generalized and extended in
several ways in order to relax some of its assumptions.

First, regarding the perturbation and the integrable Hamiltonian, it is
proved that it is sufficient that they are of class C" with r > 27 4+ 2 > 2n,
see [P6s80].

The second improvements applies to the non—degeneracy condition. We
have seen that in order to verify the non-resonance properties, KAM theory
requires some non—degeneracy condition concerning the dependence of the
frequencies on the parameters of the system (actions, potentials, masses,
...). The Kolmogorov’s non-degeneracy condition is the simplest one and
it is used to completely control the frequencies, so that their diophantine
estimates can be preserved under perturbation, but in concrete systems it
could be not verified (or it could be very difficult to check it). For example,
it is never satisfied in the spatial solar system, see Arnold [Arn63b| and
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Herman-Féjoz [Féj04|. This problem strongly motivated the search of weaker
non—-degeneracy conditions.

Degenerate KAM theory has been then widely developed since Arnold
[Arn63b| and Pjartly [Pja69]. In fact, it is sufficient that the intersection
of the range of the frequency map with any hyperplane has zero measure.
Then, after perturbation, one can still find sufficiently many diophantine
frequencies even if they are not know a priori. For example, if it happens
that % is a function of I; alone, and thus is completely degenerate, it is

J -
det (8 Ojl> £ 0,
811 1<i,j<n

as stated in the paper [XYQ97] by Xu-You-Qiu. We quote also other im-
portant works by Bruno [Bru92|, Cheng-Sun [CS94] and Sevryuk [Sev07].

Then new contributions were given by Riissmann [Riis90|-[Riis01] not

sufficient to require

only for Lagrangian (i.e. maximal dimensional) tori but also for lower di-
mensional elliptic/hyperbolic tori. For recent developments we refer to .

The main assumption in [Riis01] is that the frequencies are analytic
functions of the parameters and satisfy a weak non—-degeneracy condition in
the sense of the following definition.

DEFINITION 13. A real analytic function f: O — R™ defined on a do-
main O C R" is non—degenerate if, for any vector of constants (cy,...,cp) €
R™\ {0}, the function ¢; f1 + ... ¢ fm is not identically zero on O.

The Riissmann weak non-degeneracy assumption on the frequency is
then the following.

DEFINITION 14. A real analytic function (w,): O — R™ x RP defined

on a domain O C R" is weakly non-degenerate if

(1) w is non—degenerate
(2)1- Q¢ {k-w: keZm} forall | € ZP with 0 < || <2.

For maximal dimensional tori this condition is equivalent to the fact that
the range of the frequency map is not contained in any hyperplane.

Riissmann’s proof goes into some steps. First, he uses properties of
the zero set of analytic functions to show that the qualitative weak non-—
degeneracy assumption implies a quantitative non—degeneracy property. Sec-
ond, he shows that, notwithstanding the fact that the frequencies change
during the KAM iteration process, the set of non—resonant frequencies met
at each step has large measure. Third, he proves that the same is true for

the final frequencies on the limiting perturbed torus constructed through the
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iteration. For the last two steps Riissmann introduces the concept of “chain
of frequencies”.

In Chapter 4 we will see an extension of Riissmann’s result to infinite
dimensional Hamiltonian system.

As seen, the classical KAM Theorem is concerned with the persistence
of maximal dimensional tori with strongly non-resonant frequencies in a
non—-degenerate system.

In the case of resonant frequencies, we can meet lower dimensional in-
variant tori of dimension m < n. Here a typical situation is the study of
the system near an elliptic equilibrium point, as we have seen in Section 1.3.
This is an interesting case, since typical partial differential equation can be
written in this form.

In the case of periodic orbits, Lyapunov showed that they persist, be-
ing only slightly deformed, if at the equilibrium their frequency is not in
resonance with the other frequencies of the system.

For 2 < m < n — 1 first Melnikov [Mel65| and then Moser [Mos67|
and Eliasson [Eli88] showed the existence of quasi—periodic solutions for
parameter—dependent systems, namely for a nonlinear system seen as per-
turbation of a parameter—dependent linear system.

More precisely, consider an Hamiltonian

- Lo 9
H=H(L,...,I,) with I; = 5(% + pj)-
We focus on the m—dimensional torus

Tro = {(q,p): ¢2 +p? =217, for 1 < j <n}

with, without loss of generality, I{,... 19, > 0 and IS, ,..., I3 = 0.

For 1 < j < m we introduce angle-action coordinates (6, ) on the first

qj = \/2(6]' + Ij)COS 93', pj = \/2(53' +Ij)sin(9j

depending on the amplitudes £ = (£1,...,&y,) € R™, while we keep the other

m modes by

m—mn cartesian coordinates. With a series expansion of H up to the first order

in I; and the second order in ¢;,p;, we obtain the integrable Hamiltonian
H=Hy+¢eHp,

where Hp contains the higher order terms and can be regarded as perturba-

tion, while

Hy=Y wi@L+5 S @0 +a)
j=1

j=m+1



1.4. KAM THEORY 12

is the superposition of uncoupled harmonic oscillators, each with frequencies
w;(€) = g—g([?, ...,1%,0,...,0) depending on the m-dimensional parameter
Eell cR™.

Now we want to study the behavior of this nearly integrable system on
the phase space T™ x R™ x R*"~" x R*™™,

If e = 0, the system admits for each £ € II the invariant m—torus Ty =
T™ x {0} x {0} x {0} and we are interested in the persistence of this torus
under small perturbations of the Hamiltonian Hg, namely for € > 0 small,
for a large set of parameters. We point out that we have a large family of
Hamiltonian systems, depending on the parameter £ and we want to prove
the persistence of one invariant torus.

In order to do this, we need the following non-degeneracy assumption.

DEFINITION 15. The parameter—dependent family of Hamiltonian Hy is

non—degenerate if the map
£ = w(f),

is a local diffeomorphism on its domain, and if

Ek-w(@+1-QE)#0
for all (k,1) € Z™ x Z"~™\ {(0,0)} with 1 < |I] < 2.

The first condition is the usual Kolmogorov condition, while the second
one is also known as Melnikov’s condition, and is used to control the small
divisors arising in the perturbation theory.

Under this assumption we have then the following result.

THEOREM 1.8. Suppose that the Hamiltonian H = Hy + ¢Hp is real
analytic in a fized neighborhood of Ty x 11, with II C R™ closed and bounded
set with positive Lebesque measure. If Hy is non—degenerate then, for € suffi-
ciently small, there exists a Cantor set I, C 11 such that for each parameter
¢ € 11, the perturbed system admits an elliptic invariant torus close to Ty.
Moreover, meas(IT\ II.) — 0 as ¢ — 0.

As we will see in Chapter 3, this will be the natural starting point in the

extension to infinite—dimensional systems.



CHAPTER 2

Hamiltonian PDEs

In this chapter we recall some definitions and results for Hamiltonian

partial differential equations, as a reference see [Kuk06|.

2.1. Hilbert scales X

Let X be a Hilbert space with scalar product (-, -) and basis {¢y: k € Z}.
Consider a positive sequence {fy: k € Z} such that 6 — co as k — oo.

DEFINITION 16. {X,}, is an Hilbert scale if, for any s € R (or Z), X
is the Hilbert space with basis {¢y0; °: k € Z}. Denote with [|-[|, (-, -) its
norm and scalar product. Set Xg = X, X_ = JXs, Xoo : = Xs.

A Hilbert scale X satisfies the following properties:
(1) X is compactly embedded and dense in X, if s > 7,
(2) the spaces X, X_g are conjugated with respect to the scalar prod-
uct (-, ),
(3) the norm |||, satisfies the interpolation inequality.

ExAMPLE. Consider the scale of Sobolev function on the d—dimensional
torus { H*(T%R) = H*(T?)}, where

Hs(’]I‘d) = { u: T — R such that u = Z upe®s, w =u_; € C,
kezd

2 2
lully = > (1 [k)*|ugl* < 00
kezd

ExXAMPLE. Consider the scale {H{(0,7)}, where

o0
Hj(0,7) := {u € H°(0,7),u = Zuj sin kx, 2m—periodic,
k=1

a2 = 7 k> il < o0}
DEFINITION 17. Let {X},{Y,} two Hilbert scales, L: Xoo — Y_ a

linear map and denote with ||L|| < oo its norm as a map from X,

51,52
to Ys,. L defines a linear morphism of order d of the two scales for s &

[0, 51], 50 < s1, if [|L|[ ;g < 00 for every s € [so, s1].

13
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Let {Xs},{Ys} be two scales and Oy C X, s € [a,b], be a system of

open domains such that
Os, N O, = Og, ifa<s; <s9<0.

Let F': O, — Y_o be a map such for every s € [a, b] its restriction F': Oy —
Y,_q is an analytic (C*-smooth) map. Then F is called an analytic (C*-

smooth) morphism of order d for s € [a,b].

ExaMPLE. Consider the Sobolev scale { H*(T%)} and a smooth function
f(u,z). Then the map F': u(z) — f(u(z),x) from X, into itself is smooth if
a > %, so the order of F'is 0 on X,.

Let H: Oy C X4 — R be a C*—smooth function, & > 1. Consider its
gradient map with respect to the pairing (-,-)
VH: Od — X,d
(VH(u),v) = dH(u)v Yu € Xg.

The map VH is C*1-smooth.

2.2. Symplectic structures

Let {X } a Hilbert scale and J its anti-selfadjoint automorphism of
order d for —0co < s < 400. Define J := —J~!, that is an anti-selfadjoint

automorphism of order —d.
Define the 2—form
a = Jdx Adx

where Jdz A dz[¢,n] = <7§ ,17>. This defines a continuous skew—symmetric
bilinear form on X, x X, for r > —%.

DEFINITION 18. The pair (X, «) is called symplectic Hilbert space. The
pair ({Xs}, «) is called symplectic Hilbert scale.

DEFINITION 19. Let (X5, ), (Y,5) be two symplectic Hilbert scales,
with @ = Jdx A dx and 8 = T'dy A dy. Let F: Os — Y,_4, be a Cl-smooth
morphism od order d; on Os C X5, for a < s < b. F'is a symplectic morphism

if F*8 = a. Moreover, F' is a symplectomorphism if it is a diffeomorphism.

2.3. Hamiltonian equation

Consider a C'-smooth function H on a domain O; C X,. The Hamil-
tonian vector field Vi corresponding to H is defined as

a(Vi(x),§) = —dH(z)§ V&,
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By definition, this implies
Vi (x) = JVH(x).

If H is a C'-smooth function on Oy x R, then Vi is the non-autonomous
vector field Vg (z,t) = JV.H(x,t), where V, is the gradient in x. The

corresponding Hamiltonian equations are
& =JVyH(x,t) = Vi (z,t).

A partial differential equation is called a Hamiltonian partial differential
equation (in short, HPDE) if, under a suitable choice of a symplectic Hilbert
scale ({Xs},a), a domain Oy C X4 and a Hamiltonian H, it can be written
in the previous form, & = Vg (z,t).

Now we give some examples of HPDEs.

EXAMPLE (Non linear Schrodinger equation, NLS). Let X; = H*(T", C),
treated as a real Hilbert space with scalar product (u,v) = Re [uvdz.
Choose Ju(z) = iu(z), so that its order is 0. We choose

1

Hw) = /T (1Vul® + V@)l + g(e,u.m)) dr.

where V, g are smooth real functions and u = u(t,x), © € T™. Then

0
VH(u) =—-Au+V(z)u+ 777

and so the Hamiltonian equations are
0

(2.1) U= i(—Au + V(z)u+ §g(az, u,ﬂ))
u

EXAMPLE (1-dimensional NLS with Dirichlet boundary conditions). Let
X5 = H§([0,7];C), Ju(z) = iu(zr) and

1) =5 [ (jual + V@ll? + gl ) e

where g is smooth and 27—periodic in x. Then, setting f = ﬁg, the Hamil-

tonian equation is
(2.2) U= i(—um + V(x)u+ f(x, \u|2)u)

with Dirichlet boundary conditions u(0) = u(w) = 0.

EXAMPLE (Non linear wave equation, NLW). Choose Xg = H*(T") x
H*(T™), a = Jdn A dn, with n = (u,v) and J(u,v) = J(u,v) = (—v,u), and
the Hamiltonian function

1 1
H(u,v) = /n (502 + §|Vu|2 - f(x,u)) dx.
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The corresponding Hamiltonian equation is

U= —v
(2.3) { |

b= —Au— fi(x,u)
or also,
(2.4) i = Au+ fl(z,u),

with u = u(t, x), x € T™.

EXAMPLE (Korteweg-de Vries equation, KdV). Consider the scale { X}
of the Sobolev spaces H*(S!) of zero mean-value functions. Choose .J = a%'

We choose the Hamiltonian
2 1 / 2
Hw = [ (/@ + f(w)) da,
0

where f(u) is some analytic function. Then the corresponding Hamiltonian
equation is
u(t,zr) = 1um + 2f/(u)
4 ox
The map Vj defines an analytic morphism of order 3 of the scale {X,} for

1
8>§.

2.4. Some results

Consider two symplectic scales ({X;},a) and ({Ys}, 8) with a = Jdz A
dr and B = T'dy A dy. Assume for simplicity ord J = ordI' = d; > 0.
Let Phi: Q — O be a C'-smooth symplectic map between two domains
in Yy and Xy with d > 0. If d; then we also assume that for any |s| <
d the linearized maps ®.(y), y € Y, define linear maps Ys; — X which
continuously depend on y.

The following theorem states that symplectic maps transform Hamilton-

ian equation to Hamiltonian.

THEOREM 2.1. Let ®: Q — O be a symplectic map as above. Consider
the Hamiltonian equation

& =JVH(x,t) = Vi(z,t)

and assume that the vector field Vi defines a C'-smooth map Viz: O x R —
Xg—gq, of order di < 2d and is tangent to the map ® (i.e. for every y € Q
and for every t, the vector Vi (®(y),t) belongs to the range of the linearized
map ®.(y)). Then ® transforms solutions of the Hamiltonian equation § =
I'V,K(y,t), where K = H o ®, to solution of ©¢ = JV H(z,t).
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COROLLARY 2.2. If under the assumption of Theorem 2.1, {X} = {Y},
Ho® = H and ®*a = «, then ® preserves the class of solution for the
equation & = JV  H(x,t).

In order to apply Theorem 2.1 we need some regular ways to construct

symplectic transformations, so we enunciate the following result.

THEOREM 2.3. Let ({Xs}, ) be a symplectic Hilbert scale as above and
O be a domain in Xg4. Let f be a C'-smooth function on O x R such that
the map Vi: O x R — Xy is Lipschitz in (x,t) and C'-smooth in z. Let
O1 be a subdomain of O. Then the flow-maps X{: (O1,a) — (O,«) are
symplectomorphism. If the map Vy is C*-smooth or analytic, then the flow—

maps are C*—smooth or analytic as well.

This theorem is usually applied when the flow—maps are close to the

identity. In particular we have the following result.

THEOREM 2.4. Under the assumption of Theorem 2.3, let H be a C'-

smooth function on O. Then
d

An immediate consequences of this theorem is that for an autonomous
Hamiltonian equation © = JV f(z), with ord JVf = 0, a C'-smooth func-
tion H is an integral of motion (i.e. H(x(t)) is time—independent for any
solution z(t)) if and only if {f, H} = 0.

2.5. The Birkhoff Normal Form Theorem

The Birkhoff theorem 1.6 does not trivially extend to infinite dimensional
system because of the problem of small divisors. In the finite dimensional
case, the set of integer vectors with modulus smaller than a given v is fi-
nite, while in the infinite dimensional case this is no more true, since the

denominators accumulates to zero.

DEFINITION 20. Given a multi-index j = (j1,...,4r), let (Ji,, Jin, - - -5 i)
be a reordering of j such that
Define p(j) = |jis| and S(5) = p(4) + |7is | = |din]-

DEFINITION 21. Let £ > 3 and
k

Q) =YD a2, ...z,

=0 jez!
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We say that @ has localized coefficients if there exists v € [0, 4+00) such that
for any N > 1 there exists Cy > 0 such that for any choice of the indexes

Iy Jr AN
u(g)N

SN

We need now a suitable nonresonance condition.

laj| < Cn

DEFINITION 22. Fix a positive integer r. The frequency vector w is said
to fulfill the property (r — NR) if there exist v > 0 and 7 € R such that for
any N large enough one has

,
> wil| = 5
Jj>1

for any K € Z* with 0 # [K| =}, |[K;| <7 +2, >, v K] <2
Now we are ready to tate the Birkhoff Normal Form Theorem.

THEOREM 2.5 (Theorem 4 in [BamO08|). Fiz r > 1. Assume that the
nonlinearity Hp has localized coefficients and that the frequencies fulfill the
nonresonance condition (r — NR). Then there ezists a finite s, > 0, a neigh-
borhood U, of the origin and a canonical transformation T defined on Us,

which puts the system in normal form up to order r + 3, namely
H" .= Hor=Hy+ 2" 4+ R"

where

(1) Z™) and R™) have localized coefficients,

(2) Z") is a polynomial of degree r + 2 which Poisson commutes with
J;i for all

(3) R has a small vector field, namely

IXpo (2, < Clizll? ¥z els,,
(4) one has

Iz = 7(2)

<Clz|? Vel

s,

and the same holds for the inverse T771.



CHAPTER 3

KAM Theory for PDEs

In Chapter 1 we have seen the classical KAM theorem for finite dimen-
sional system, that states that the most, with respect to the Lebesgue mea-
sure, of the invariant tori of a real analytic non—degenerate integrable system
persists under sufficiently small and real analytic perturbation.

Starting from the Eighties of the last century, one of the most inter-
esting research field for partial differential equations concerns its extension
to infinite-dimensional systems in order to find periodic, quasi—periodic or
almost—periodic solutions. The main difficulty arises from the fact that, when
the number of frequencies tends to infinity, the small divisors tends to zero
very rapidly, and so also the bound of admissible perturbation. As a conclu-
sion, a simple extension of the classical KAM Theorem does not applied to
any perturbation different from zero.

Essentially up to now there is no general KAM Theorem to handle the
effects of small divisors for combinations of infinitely many frequencies in
systems arising from PDE’s. But in such systems there are also families of
finite-dimensional elliptic invariant tori filled with quasi—periodic motions. A
KAM Theorem for these tori can be formulated under the Kolmogorov and
Melnikov’s conditions as above, but noting that in this case these conditions
an infinite number of frequencies are involved.

In order to prove the persistence of finite-dimensional tori in infinite
dimensional systems, the first important results are due to Kuksin [Kuk93|
and Wayne [Way90|. In this chapter we present two results due to Poschel
[P6s96a] and Berti-Biasco [BB11].

3.1. Setting and assumptions
Consider a family of integrable Hamiltonians

defined on the phase space P*P := T? x C" x %P x {*P where T" is the usual
n—torus T" = R"/(27Z)", and ¢*P is the Hilbert space of complex—valued

19
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sequences
2 2. i
0P = ¢z = (z1,21,...): ||z||a7p = Z |ZJ| j2p€2aﬂ < 400
j=1
with a > 0,p > % The normal frequencies w = (w1, ...,w,) and the tangen-

tial frequencies Q = (Qp41, 12, . ..) depend on m parameters £ € I € R™,
m < n. The set II is a compact set with positive Lebesgue measure. The
associated symplectic structure is dz A dy + idz A dz.

For each ¢ € II the n—torus T := T™ x {0} x {0} x {0} is an invariant
n-dimensional torus with frequencies w(§) and with an elliptic fixed in the
normal space zZ with proper frequencies ©(§). Hence this torus is linearly
stable and we call it an elliptic rotational torus with frequencies w.

Consider the family of Hamiltonian
H=N+P,

where P is a small analytic perturbation. In this system, the torus in general

does not persist due to resonances among the modes. The aim is to prove

the persistence of a large family of n—dimensional linearly stable invariant

tori forming a Cantor manifold, provided the perturbation is small enough.
In order to do this, we assume the following conditions.

(A1) Parameter dependence: The map w: IT — R"™, £ — w(§), is Lipschitz
continuous.
(A2) For all the integer vector (k,l) x Z" x Z*>° with 1 < || < 2,

{Eell: w() - k+ Q) -1=0} =0

and
Q&) -1#0 on II.

(B) Asymptotic behavior: There exist d > 1 and 6 < d — 1 such that
) =Y+ R, =1,

where ﬁj =%+ . and Q*: 11 — &;‘S is Lipschitz continuous, where
/5, is the space of all real sequences w with finite norm [wl, =
sup; [w; |57

(C) Regularity: The perturbation P is real analytic in the space coordi-
nates and Lipschitz in the parameters. Moreover, for any £ € II, the
Hamiltonian vector field Xp = (P, —P,,iPz, —iP,) defines near Ty
a map

Xp: PéP —s ’Pa’z_j

with p > pifd > 1orp > pif d = 1. Moreover, we assume
p—p<d<d—1
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Notations. Consider an open neighborhood of the torus Tg
Ds,r) i= {[Imal < s, Iyl < 7% 2lly, + [Elloy <7}

with 0 < s,7 < 1, where || is the sup—norm of complex—vectors.
Define the set

n
Ry = R": |w-k| > —-—=,VkeZ"\ {0} ;.
Given an analytic function f defined on D(s,r) x II, define its sup-norm as
s = sup |f(2,y,2,Z )],
(z,9,2,2;,6)€D(s,r) x11

the Lipschitz semi—norm as

IFIPP = sup £(58) = 16Ol
T ECEILEAC € =<
and, for any A > 0, the Lipschitz norm

13
s,T

i
= o + Ao

Set w = (z,Z). Any analytic function P can be developed in a totally

convergent power series
P(z,y,2,%¢) = Y Pyl &)y'2'7
i,j>0
where Pjj(z) := Pjj(z;§) are multilinear, symmetric and bounded maps.
Identify Pio(x) € L(C",C) with the vector Pig(7) = 0y)y—0w—oP € C" and
Poi(z) € L(£*P,C) with the vector Po1(z) = Oyjy—0,u—ol” € £¥P writing

Pip(x)y = Pip(x) -y and Py (z)w = Pyi(x) - w.

Identify the form Pyo(x) € L({*P x (*P C) with the operator Py (z) €
L(4%P f%P) writing
Py (z)w? = Pya(z)w - w.
Define
PSQ = P()o + P01w + Ploy + P(]Qw - Ww.
Given W = (X,Y,U, V) we define the weighted phase space norm as
1 1
W, = 1X1+ 51T+~ (101 + V)

and ‘W‘T‘,D(S,’l") = SUPp(s,r) |W|r'
Finally fix the following notations. Given [ € Z* define

1= 111, 1], ="> 4Pl (Iyg == max | 1,|> " j%;

j=1 j=1 Jj=1
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Define the space
33 = {Q = (Q1,Q,...) ER™®: |Q|_5:=supj Q| < oo}
j>1

and the Lipschitz norm

li
0125 := sup 12(8)]_s + AQIZ,

where the Lipschitz semi—norm is defined analogously as the previous one.
Finally define the set

Z = {(k,1) € Z" x 2\ {(0,0)}: |I| < 2}.

In the case d = 1, define k as the largest positive number such that
O — Q.
———2=14+0(7"), for i > j

1=

uniformly on II, and assume —J < x without loss of generality.

By assumptions (Al), (B) the Lipschitz semi—norm of the frequencies
satisfy
WP+ QM <, e P <L

for some finite M, L > 0.

3.2. A KAM Theorem by Pd&schel

We first enunciate the result by Poschel in [P6s96a]. This is divided in
two parts, an analytic and a geometric one. The first states the existence
of invariant tori under the assumption that a certain set of diophantine
frequencies is not empty. The second assures that this is indeed the case.

THEOREM 3.1 (Theorem A in [P6s96al). Suppose that H = N + P
satisfies assumptions (A1), (A2), (B), (C) with & € I1 C R™, and

g li
€= ‘XP|7',D(s,r) + M|XP‘TI’I’)D(57T) < ary,
where 0 < v < 1 s another parameter and o depends on n,T,s. Then there

exist

(1) a Cantor set IL, C 1T

(2) a Lipschitz continuous family of torus embeddings ®: T" x II, —
pap

(3) and a Lipschitz continuous map w: IL, — R"

such that, for each & € 11, the map ® restricted to T™ x {{} is a real analytic

embedding of a rotational torus with frequencies wy(§) for the Hamiltonian
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Each embedding is real analytic on |Im x| < 5 and
g li €
d—-9 —|® — Pg|"P < c—
| ol + 571 of " < =

lws — w| + %\w* —w|"P < ce

uniformly, where ®q: T" x II — T{ s the trivial embedding and ¢ < a !

depends on the same parameters as .
Moreover, there exist Lipschitz maps w” and QY on Il for any v > 0

satisfying w® = w, Q¥ = Q and

|w” — w| + %W” —w|" < ce
0V — Q| + %m” — Q" < ce

such that T\ 1L, C |JRY,(7), where

() = {6 e I [w(€) -k +Q7(€) - 1] < vf]ijd}

and the union is taken over all v > 0 and (k,l) € Z such that |k| > K¢2" !
for v > 1 with a constant Ko > 1 depending only on n, .

The KAM Theorem is proved by a Newton—type iteration procedure,
which involves an infinite sequence of coordinate change, each of which is
obtained as the time—1-map of a suitable Hamiltonian vector field, in order
to make the size of the perturbation smaller and smaller. In doing this, the
problem of small divisors arises so, at each step of the iterative process,
we have to reduce the set of admissible parameters. The following theorem
ensures that the set of admissible parameters is not empty at each step,

providing its measure estimate.
THEOREM 3.2 (Theorem B in [P6s96al). For v > 0 let w” and Q¥ be
Lipschitz maps on 11 satisfying
. . 1
W w0 Qs <y w0 - <

and define the sets Rj;,(c) as in Theorem 3.1 choosing T as

2
n+1l4+—-—= ford>1

> (5d__11
(n+3)T ford=1.
Then there exists a finite subset X C Z and a constant ¢ such that
1 ford>1
U Riy(e)| <cp"'y*,  with p= K ford=1,

(kD) gX k+1
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for all sufficiently small~, with p := diam II. The constant ¢ and the index set
X are monotone functions of the domain I1: they do not increase for closed
subsets of I1. In particular, for 6 <0, we have that the set X is contained in
{(k,1): 0 < |k| <16LM}.

By slightly sharpening the smallness condition, we have that the fre-
quency maps of Theorem 3.1 satisfy the hypothesis of Theorem 3.2, and we
can conclude that the measure of all the sets R},(y) tends to 0. Then we

have the following corollary.

COROLLARY 3.3 (Corollary C in [P6s96al). If the constant o in Theorem
3.1 is replaced by a smaller constant o < 5757 depending on the set X, then

ML < RG] =0 asy =0,

In particular, if § <0 then we can take & = W

In the case of the nonlinear weave equation, since v appears with expo-
nent p < 1, the estimate in Theorem 3.2 is not sufficient to guarantee that
the set of bad frequencies is smaller than the set of all frequencies, so we
need the following better estimate.

THEOREM 3.4 (Theorem D in [P6s96a|). Suppose that in Theorem 3.1

the unperturbed frequencies are affine functions of the parameters. Then

1 ford>1

T\ IL, | < " 'F, with i = F grd=1
k+1—7% ’

for all sufficiently small v, where ™ is any number in 0 <7 < min(p — p, 1)

and ¢ depends also on T and D — p.

3.3. A KAM Theorem by Berti—Biasco

Now we enunciate a recent result by Berti-Biasco. The main differences
between this result and the previous one by Poschel are that the KAM small-
ness conditions are weaker and that the final Cantor set of parameters satis-
fying the Melnikov non—resonance conditions for the iterative KAM process
is explicitly known in terms of the final frequencies only. As a consequence,
we can completely separate the question of the existence of admissible non—
resonant frequencies from the iterative construction of invariant tori.

Recalling all the previous definitions and notations, we can state the

result.
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THEOREM 3.5 (Theorem 5.1 in [BB11]). Suppose that H = N + P
satisfies assumptions (A1), (B), (C). Let v > 0 be a positive parameter and

oA A .
© := max { 1,|P1[2, | Pos2, Z \6;8&P|s7r,r\6§8wP|s’r with \ := %
2i-tj=4

satisfies © < g Then there exists « = a(n,T,s) such that, if one of the
following KAM-conditions holds

._ |Pool2  [Porl2 [Pl [Po2l}
(HZ) &1 = max{ 7,2,\/2g> 7,,‘(3/26> ~ ga 5 . S « ,

— [Poold  [Po1l2 [Prold [Po2ld A 4
(H2) &3 := maX{,_%mZ, s s e p Sacand [Puly < 5,

rRyE Ty 0y 0y
withp=14d>1and0<pu<1lifd=1,

then the following hold

Pool> |Poil> |Pwol? |Po2|?
(H3) &5 = max{‘ voly [Pouly [Pl | ‘} < a and | Py}, |Posl? < 2,

(1) there exist Lipschitz frequencies woo: 11 — R™, Qoo: T — (3% satis-
fying

(3.1) lwso — W], [Qo0 — Q|£7p < o ygy

with |weo|™, \Qoo\li% <2M
(2) there exists a Lipschitz family of analytic symplectic maps
s r

:D(5,5) % Moo 3 (oo, Yoo, oo €) — (2, w) € D, 7)

of the form ® = I+ WV with V € E, ), where ®oo will be defined
later, such that

has P25 = 0. Moreover,
1
AT = Pl < 0‘_1&'(an|5 + Vp“‘i)
- 1
P68 — Posly/s < 1<€Z‘(|Po3|s + [P, + 9P 2)

(8) the map VU satisfies

1=pa 1=ps
A A X A
[zools/as  [yoolsya—z— Ivotl/a o oSy
1-py
A A P _
|Z/02|s/4a |w01‘s/47 |w00‘s/4 <alg

if (Hi)i=1,2,3 holds, where

2 if (H1) ;
— 4f (H1) or (H2
Pg 1= Z if (H2) and pp =1 2 f(H1) or (H2) .
: 1 if (H3)
1 if (H3)
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(4) The Cantor set Il is explicitly

MM if (H1) or (H2) or (H3) with d > 1
Il =

Moo Nw Y (Ryn ) if (H3) with d =1

where

Moo = {5 € IT: Jwoo(§) - k + Quo(€) - 1] > 2y OF,

1+ ‘k|7—7
(k1) € Z" x Z°°\ {0}, |I] < 2}.

Then, for every & € I, the map oo — P(rx,0,0;§) is a real analytic
embedding of an elliptic, diophantine, n—dimensional torus with frequencies

Woo(&) for the system with Hamiltonian H.

Now we make some comparison with Theorem 3.1. First, we note that
the KAM condition in Theorem 3.1 is

'y_l | Xp |ir < constant,

with A = 37, that implies (H3), but the other two conditions (H1), (H2) are
not enough to guarantee the convergence of the iterative scheme in Theorem
3.1. In the case d = 1 condition (H3) is strictly weaker than the KAM condi-
tion in Poschel, since p < 1. This allows to prove the result of quasi—periodic
solutions for the nonlinear wave equation in [P6s96b| without Theorem 3.4.

Moreover, as said before, the Cantor set Il,, depends only on the final
frequencies (woo, oo ). We note that a priori it can be empty, and in this case
the iterative process stops after a finite number of steps and no invariant tori
survives. But wag, s and so Il are however well defined.

Note also that we do not claim that the final frequencies satisfy the
second order Melnikov non-resonance condition as in Theorem 3.1, but we
state that if the parameter £ belongs to Il then the torus is preserved.

We now give the measure estimate for the set I1.

THEOREM 3.6 (Theorem 5.2 in [BB11|). Let w: ® — w(Il) be a lipeo-
morphism (i.e. homeomorphism which is Lipschitz in both directions) with

WP <L e < g
If
(3.2) Q) -140 VI =1,2, V¢ el
and
(33) {E € TE: wl(©) + () -1 =0} =0

for any (k,1) € Z"" x Z*°\ {(0,0)}, || <2, then |II\ II| — 0 as a — 0.
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Moreover, if w(€), (&) are affine functions of £ then

[T\ | < Cp™ 1yt with p := diam(II).

27



CHAPTER 4

Degenerate KAM theory for PDEs

This chapter deals with degenerate KAM theory for lower dimensional
elliptic tori of PDEs, in particular when the frequencies of the linearized
system depend on one parameter only.

We extend to partial differential equations the results due to Riissmann
[Riis01] in the context of finite dimensional systems, see Section 4.1 for the
precise statements of the main theorems, and we give an application to the
nonlinear wave equation, see Section 4.3.

In Chapter 1 we gave an idea of the result in [Riis01] and of its proof. We
recall that the main point is to deduce quantitative non—degeneracy property
from the qualitative weakly non—degeneracy assumption, using property of
analytic functions.

For infinite dimensional systems, the main difficulty in extending the
approach of Riissmann is met at this step, because one has to bound the
maximal order of the zeros of infinitely many analytic functions, a fact which
is generically impossible. Here we exploit the asymptotic growth of the fre-
quencies to reduce the effective number of functions to a finite one. This idea
allows to deduce a quantitative non—-resonant property of the kind of the sec-
ond order Melnikov non-resonance conditions, typical of infinite dimensional
KAM theory, see Proposition 4.3.

Concerning the other steps, we avoid the Riissmann construction of
chains, making use of the recent formulation of the KAM theorem in Berti-
Biasco [BB11]. As seen in Chapter 3, an advantage of this formulation is an
explicit characterization of the Cantor set of parameters which satisfy the
Melnikov non-resonance conditions at all the steps of the KAM iteration,
in terms of the final frequencies only. This approach completely separates
the question of the existence of admissible non-resonant frequencies from
the iterative construction of the invariant tori. This procedure considerably
simplifies the measure estimates (also for finite dimensional systems), as it
allows to perform them only at the final step and not at each step of the

iteration, see Section 4.2.

28
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We apply these abstract results to nonlinear wave (NLW) equations with
Dirichlet boundary conditions

U — Uz + V(2)u + Eu+ f(z,u) =0

requiring only f(z,u) = O(u?). Using the mass £ € R as a parameter we
prove in Theorem 4.2 the persistence of Cantor families of small amplitude
elliptic invariant tori of NLW. This result generalizes the one in [P6s96b],
valid for f(x,u) = u3+ higher order terms, to arbitrary analytic nonlineari-
ties. Actually, in [P6s96b| the fourth order Birkhoff normal form of NLW is
non—degenerate and the action—to—frequency map is a diffeomorphism. For
general nonlinearities this property could be hard to verify, if ever true. The
use of degenerate KAM theory allows to avoid this computation and then it
is more versatile.

Finally we recall that a KAM theorem for degenerate PDEs was al-
ready proved by Xu-You—-Qiu [XYQ96]| which extended to the infinite di-
mensional case the method introduced in [XYQ97|. The main difference is
that such authors assume a quantitative (weak) non—degeneracy assumption
whose verification is usually very hard. On the contrary our non—degeneracy
assumption (which follows Riissmann) is quite easy to be verified. In par-
ticular, since it is based on properties of analytic functions it is enough to
verify it for one value of the parameter, a task usually not very difficult.

This chapter is organized as follows: in Section 4.1 we present the main
results. In Section 4.2 we prove the measure estimates. In Section 4.3 we con-
sider the application to the nonlinear wave equation. Finally in section 4.4 we
deduce the quantitative non-resonance condition (4.13) from the qualitative
non-resonance condition (ND) and the analyticity and asymptotic behavior
of the linear frequencies, see assumption (A).

Notations. For [ € Z*° define the norms

1= 151 s =D 3°l1, (g =maxq 1,|> %,
J J J

Given a,b € RM | M < 400, denote the scalar product (a,b) := Z]]Vil a;b;.
We define the set

(4.1) Zy = {(k,1) € ZV x 2\ (0,0): |I| < 2}

and we split £ := {l € Z*°: |I| < 2} as the union of the following four disjoint
sets

Lo:={l=0}, Ly:={l=c¢e},

4.2
(4.2) Loy :={l=¢e;+e;fori#j}, Lo :={l=e —ejfori#j},
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where ¢; := (0,...0, 1 ,0,...)and 4,5 > N + 1.
i—th
Given a map Q:Z 3> £ — Q(§) € R*™ we define the norm |Q|_; :=

SUPge7 SUP; |Qj\j*5 and the C*-norm, pu € N, as

I

1% ="

v=0

dv
d—g,,Q(é)

—6

The | |“" norm of a map w: Z — RN, N < oo, is defined analogously.

4.1. Statement of the main results
Fix an integer N > 1 and consider the phase space
PP = TN x RN x 2P x (%P 5 (z,y,2,%)

for some @ > 0, p > 1/2, where TV is the usual N-torus and ¢*? is the
Hilbert space of complex valued sequences z = (21, 22, . ..) such that
2 2 :2p_2aj
212, == D 12 [25%e* < +oo,
jz1
endowed with the symplectic structure Zjvzl dz; Ndy; —l—iZjZNJrl dz; Ndz;.
Consider a family of Hamiltonians

(4.3) H=Z+P

depending on one real parameter ¢ varying in a compact set Z C R, where
Z is the normal form

N
(4.4) Z:= wil®yi+ > &)z,

j=1 i>N+1
with frequencies w = (wy,...,wy) € RV, Q = (Qni1, Qni2,...) € R, real
analytic in &, and P is a small perturbation, also real analytic in &.

The equations of motion of the unperturbed system Z are

For each & € T the torus 7" = TV x {0} x {0} x {0} is an invariant N—
dimensional torus for Z with frequencies w(§) and with an elliptic fixed point
in its normal space, described by the zZ-coordinates, with frequencies Q(§).
The aim is to prove the persistence of a large family of such N-dimensional
elliptic invariant tori in the complete Hamiltonian system, provided the per-

turbation P is sufficiently small.

To this end we shall use the abstract KAM theorem in [BB11]. An
advantage of its formulation is an explicit characterization of the Cantor set

of parameters which satisfy the Melnikov non-resonance conditions at all
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the steps of the KAM iteration, in terms of the final frequencies only, see
(4.9). This approach completely separates the question of the existence of
admissible non-resonant frequency vectors from the iterative construction of
N—dimensional invariant tori.

We now state a simplified version of the KAM theorem in [BB11]| suffi-
cient for the applications of this paper.

4.1.1. KAM theorem. We assume:
(A) Analyticity and Asymptotic condition: There exist d > 1, § <d—1, 0 <
n < 1 fixed, and functions v; : Z — R such that

Q6 = +v;(95°, j=N+1,

where each v;(€) extends to an analytic function on the complex neigh-
borhood of 7

7, := U {¢eC:|¢-¢|<n}cC.
£el
Also the function w: Z — R has an analytic extension on 1,. Moreover

there exists I' > 1 such that

supsup |v;(§)| <T',  suplw(§)| <T.

n J 7
Consider the complexification of P*P and define a complex neighborhood
D,p(s,7) of the torus TN by

(45)  Dapls,r)i={mal <s,ly <2 2l + 170y <7}

for some s, > 0, where |-| denotes the max—norm for complex vectors.
For W = (X,Y,U,V) € CN x CN x ¢»P(C) x £¥P(C), define the weighted
phase space norm

W1, = X+ r 2 Y[+ U + 77V g, -
Finally set
E =T, X Dgp(s,r).

(R) Regularity condition: There exist s > 0,7 > 0 such that, for each £ € Z,
the Hamiltonian vector field Xp := (9, P, —0,P,i0:P, —i0,P) is a real
analytic map

_ D > ford>1
Xp: Dyp(s,r) — PP, b=p
p>p ford=1

with p —p < < d — 1, real analytic in { € Z,, and

| XPl, 56 = sgp 1Xpl;, <+oo.
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KAM THEOREM. [BB11| Consider the Hamiltonian system H = Z+ P
on the phase space P*P. Assume that the frequency map of the normal form
Z is analytic and satisfies condition (A). Let 9r®> < v < 1. Suppose the
perturbation P satisfies (R) and

' 1 el

(4.6) | Z sup 10,0002 P| < 2.
2i+j1+7j2=4

Then there is €, > 0 such that, if the KAM-condition

(4.7) g:=~"t | XPl, ;6 < e
holds, then
1. there exist C®-maps w*: T — RN, Q*: T — (3% satisfying, for any
peN,
* C — * C —
(48) W —w|? < M(wey' T, 10— QT < M(p)ey!'H

for some constant M (u) > 0,

2. there exists a smooth family of real analytic torus embeddings
O TN x % — P»P

where Z* is the Cantor set

L , * * 2y(0)
(49) T ={eeT: [(kw'(©) + L) > T YD €2y},

such that, for each & € I*, the map ® restricted to TN x {£} is

an embedding of a rotational torus with frequencies w*(§) for the
Hamiltonian system H, close to the trivial embedding TN xZ — 7BN.

REMARK. The KAM Theorem 5.1 in [BB11]| provides also explicit es-
timates on the map ® and a normal form in an open neighborhood of the

perturbed torus.

REMARK. The above KAM theorem follows by Theorem 5.1 in [BB11]
and remark 5.1, valid for Hamiltonian analytic also in £. Actually (4.6), (4.7)
and 972 < 4 < 1 imply the assumptions (5.5) and (H3) of Theorem 5.1 of
IBB11]. Estimate (4.8) is (5.15) in [BB11].

REMARK. The main difference between the above KAM theorem and
those in Kuksin [Kuk93| and Pdschel [P6s96a], concerns, for the assump-
tions, the analytic dependence of H in the parameters &, which is only Lip-
schitz in |[Kuk93|, [P6s96a]. For the results, the main difference is the ex-
plicit characterization of the Cantor set Z*. Note that we do not only claim
that the frequencies of the preserved torus satisfy the second order Melnikov

non-resonance conditions, fact already proved in [P6s96a]. The above KAM
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Theorem states that also the converse is true: if the parameter £ belongs to
Z*, then the KAM torus with frequencies w*(§) is preserved.

The main result of the next section proves that Z* is non—empty, under

some weak non-degeneracy assumptions.

4.1.2. The measure estimates. We first give the following definition.

DEFINITION 23. A function f = (f1,...,fu): T — RM is said to be
non-degenerate if for any vector (ci,...,cp) € RM\ {0} the function c; f1 +
...+ caprfar is not identically zero on Z.

We assume:

(ND) Non—degeneracy condition: The frequency map (w, () satisfies
i) (w,1): T — RN x R is non-degenerate
ii) for any [ € Z* with 0 < |I| < 2 the map (w, (I,Q)): Z — RY xR is
non—degenerate.

REMARK. Condition i) implies that w: Z — R" is non-degenerate. Ac-
tually i) means that, for any (c1,...,cn) € RV \ {0}, the function cjw; +
...+ cywp is not identically constant on Z.

REMARK. The non-degeneracy of the first derivative of the frequency
map (', Q), namely
i") w': T — RY is non-degenerate
ii') for any [ € Z*> with 0 < |I| < 2 the map (o', (I,Q)): T — RV xR
is non—degenerate,

implies (ND).

THEOREM 4.1. (Measure estimate) Assume that the frequency map
(w, Q) fulfills assumptions (A) and (ND). Take

(4.10) M(po)ey' ™0 < /4, M(uo+ 1)ey ™ <1,

where po € N, B > 0 are defined in (4.13) and M (po) in (4.8). Then there
exist constants T, v« > 0, us > o, depending on d, N, ug, B,n such that

1

T\l ()”

for all 0 < v < 4.

In [Riis01] the constant § is called the “amount of non-degeneracy” and

uo the “index of non—degeneracy”.
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4.1.3. Application: wave equation. The previous results apply to
the nonlinear wave equation with Dirichlet boundary conditions

U — Uz + V(z)u + Eu+ f(z,u) =0

@1 u(t,0) = u(t,m) =0

where V() > 0 is an analytic, 2w-periodic, even potential V(—z) = V(x),
the mass ¢ is a real parameter on an interval Z := [0,&,], the nonlinearity

f(x,u) is real analytic, odd in the two variables, i.e. for all (z,u) € R?,

f(_x? _u) = —f(ﬂf,u),

and

(4.12) f(z,0) = (0uf)(z,0) = 0.

For every choice of the indices J := {ji < j2 < ... < jn} the linearized
equation uy — uz, + V(z)u + £u = 0 possesses the quasi-—periodic solutions

N
u(t, ) =Y Apcos(Xj,t+ 6h) ¢, (2)
h=1
where Ay, 0, € R, and ¢;, resp. )\g (&), denote the simple Dirichlet eigenvec-
tors, resp. eigenvalues, of —0,,+V (z)+£. For V(x) > 0 (that we can assume
with no loss of generality), all the Dirichlet eigenvalues of —0,, + V (z) are
strictly positive.

THEOREM 4.2. Under the above assumptions, for every choice of indexes
J = {51 < j2 < ... < jn}, there exists r. > 0 such that, for any A =
(Ay,...,AN) € RY with |A| =: r < 1, there is a Cantor set T* C T with
asymptotically full measure as r — 0, such that, for all the masses £ € I,

the nonlinear wave equation (4.11) has a quasi—periodic solution of the form

N
u(t,z) =Y Apcos(Apt + 01) ¢, (z) + o(r),
h=1

where o(r) is small in some analytic norm and Xh— Aj, — 0 asr— 0.

4.2. Proof of Theorem 5.1

The first step is to use the analyticity of the linear frequencies to trans-
form the non-degeneracy assumption (ND) into a quantitative non-resonance
property, extending Riissmann’s Lemma 18.2 in [Riis01] to infinite dimen-

sions.
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PROPOSITION 4.3. Let (w,Q) : T — RN x R® satisfy assumptions (A)
and (ND) on Z. Then there exist 1o € N and 8 > 0 such that

@13 max | (hw(©) + (LR(ED| 2 Bk + 1)

forallé €T, (k1) € Zn.

Technically, this is the most difficult part of the paper and its proof is
developed in Section 4.4.
As a Corollary of Proposition 4.3 and by (4.8), also the final frequencies

(w*, 2*) satisfy a non-resonance property similar to (4.13).

LEMMA 4.4. Assume M (pg)ey'H0 < /4, where pg and B are defined

in Proposition 4.3 and M (pg) is the constant in (4.8). Then

(4.14) max |2 (k,w™(§)) + (1, 2%(§))| = B(Vfl +1)
. X - —
0<p<po |dEF ’ ~ 2

for all € € T and (k1) € 2Zx.

PRrOOF. By (4.13) and (4.8) we get, for all 0 < u < py,

dt dr

@gwhw%®»+m9%oﬂ z'agxhw@»+aAu@ﬁ
— |4 (€~ wlO) + .29 - 206)
> Bk + 1) — 2(1k] + 1)M(ji0)er "
> (B/2)(K + 1)

since M (jio)ey! ™0 < B/4. O

We now proceed with the proof of Theorem 4.1. By (4.9) we have
(4.15) I\ c |J Ru()
(kvl)GZN

with resonant regions

Ruty = {g ez B @LLOQ) 1y}

1+ k] AP
In the following we assume 0 < v < 1/8.
LEMMA 4.5. There is L, > 1 such that
(l); > max{L,,8[k|]} = Ruy)=0.
PROOF. The asymptotic assumption (A) and (4.8) imply that

{, )
OF

—1 as (l); = 400, uniformlyineZ.
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So [(I,¥*)| > (I),;/2 for (I); > L. > 1. If |k| < (1/8I") (I), then Ry (y) is
empty, because, for all £ € 7,

(k") + 0,07 = 22— 2018|223 (), 2 270, %

provided 0 < v < 1/8. O

As a consequence, in the following we restrict the union in (4.15) to
() g < max{L,,8|k|}.

LEMMA 4.6. There ezists B := B(ug, 8,w,,n) > 0 such that, for any
(k,1) € ZN satisfying (I),; < max{L,,8T|k|} and for all v with

g

4.16 0<y<
(4.16) 7 8(uo + 1) max{Ls, 8T}’
then
1 27y
(4.17) |Rii(v)| < B(1+ |Z|)aro where a=———-">=(),-

- 1+ ‘k‘|7—+1

PrOOF. We use Theorem 17.1 in [Riis01|. The C*°~function
{k, w(€)) + {1, 27(£))

gu(§) == T
satisfies, by (4.14),
i LN
I?é?o%%io dfugkl(f) Z 5

Moreover (l), < max {L,,8|k|} and (4.16) imply

_Bs
Ao +1)

Then the assumptions of Theorem 17.1 in [Riis01] are satisfied and so

a < max {2L,,16I'}y <

1
IRt ()| < B(u, B,n) (1 + |Z])arro |ggy [0t

where
14

El©).
By (4.10), (4.8) and (I); < max {L.,8T|k|}, we have that the norm |g},[h°™"
is controlled by a constant depending on w, {2 and this implies (4.17). O

it = sup  max
¢eZ,NR 0<v<po+l1

Now the measure estimate proof continues as in [P6s96a).

LEMMA 4.7. Assume d > 1, and

2
4.1 N+ ——.
(1.18) ro (N4 2)
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Then there is vx := v« (N, o, w, Q, 8,n,d) > 0, such that, for any v € (0,7),

1

U Ruly 1+\I\)<%>"°.

(k)EZN

PRrROOF. By Lemma 4.5 we have

(4.19) U RuO|< Do Ru+ D Ru()l.
(kDeZN 0<|k| <z k| > L
(1) g<Lx (1) 4<8T|K|

We first estimate the second sum. By Lemma 4.6 and

card {1: (I); < 8T|k|} < (8T|k|)T

we get
1
2y o
> Rt Y B0+ ) 0)
|k|> & |k|> £
(1) 4<8T k| (1) 4<8T k|
1 2 _ T
SC(1+|Z)yra D (BUIk)TT[k] o

keZN\{0}
1
< Oy (1 + [Z])ymo

by (4.18), for some constant Cy,Cy > 0 depending on N, pg,w, 2, 3,n,d.
Similarly the first sum in (4.19) is estimates by

1

> Ru()] < Ca(1 + [Z])y7
0< k| <&
(B g<Lx

with C3 > 0, and so the thesis follows for some 7, > 0 small enough. (]

LEMMA 4.8. Assume d =1 and

(4.20) 7> po(N + 1)(1 - %)

Then there are positive constants v, and p, depending on N, ug,w,Q, 5,n,9
such that

—ﬂo(fo_(;)
U Riu(y)| <A+ IZ)| — 5 :

(k)EZN

ProoF. For (k,1) € Z3;, := Zy N (Lo U L1 U L24), where these sets are
defined in (4.2), we estimate, as in the case d > 1,

1
(4.21) U Ru()| < Cal+ |Z))yio
(khez
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for some Cy > 0.

Let now (k,1) € Zy := ZN x L5_ and assume, without loss of generality,
i > j, then (l); =i — j. By the asymptotic behavior of Q* (see assumption
(A) and (4.8)) and remembering that 6 < 0, there is a constant a > 0 such
that

O — O
(4.22) ‘7

- .j -1 S%, for all7 > j.

t=7 ]

Hence (I, Q") = Q7 — Q) = i—j+rj, with [ri;| < J%m and m :=i—j. Then
we have |(k,w*) + (I,2%)| > |(k,w*) + m| — |r;;|, provided |(k,w*) +m| >

‘#m‘, from which follows that, for fixed k, I,

@ oml 21 em )
N A (N T

'RklﬁSJr - QZ} = {f el:

where we have set for simplicity Ry := Ryi(7y), and

._ |k, w*(£)) +m| am
St .= {561’. T A > (1+|k\)j5}'

Calling S~ the complementary set of ST, we have

Rit= (RuNST)U(RuNST) C O

so we need to estimate QZ}. Notice first that QZ} C QZ}O if 5 > jo, for some
jo to be fixed later. For ~ small enough the result in Lemma 4.5 applies also
the set QZ}O and so we get

U Ru|< D0 190+ D Rul |+ D 195+ [Rul

(kDeZy || < £ j<jo || > & J<jo

m<Lx m<8T|k|

We start with the sum over m < 8I'|k|, that we denote with (S2). Using
Lemma 4.6 we get

L 1
a Ko 2y \ o | 1
Cs5(1+|T —_ —
(i (wﬁ) +<Ik\7“> jo) D mi

m<8L|k|

(S2)

IN

-4 1+ ST
< Co(1+ |Z])ymotko=9) |k| " moluo—9)
having chosen jg as
1
. a _ P
Jo = (§\k|77 1) .
Summing in |k| > L,/(8T") and using (4.20) yields
s
Z | Q5| + Z [Rit| | < Cr(1+ |Z])yrolo-2,

|k|> L /(8L J<jo
m<8I|k|
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with C7 > 0. The estimate of the first sum follows in a similar way. Hence
we have obtained the thesis for v, > 0 small enough. O

4.3. Proof of Theorem 5.2

We write (4.11) as an infinite dimensional Hamiltonian system introduc-
ing coordinates ¢, p € %P by
= \%\—%w vi=u =Y pi/Ajbis A(€) =i+,
j>1 J Jj=1
where ;1 and ¢;, are respectively the simple Dirichlet eigenvalues and eigen-
vectors of —0,, + V(z), normalized and orthogonal in L?(0, 7). Note that
pj > 0 for all j > 1 because V(z) > 0. The Hamiltonian of (4.11) is

™ 2 1
v = 15+ 5024 Ve +ad) 4 Flaw) do
0

(4.23) = % > Ni(d} +p5) +Gla)
j=>1

where 0, F(z,u) = f(z,u) and
(4.24) G(q) ::/ F(x,ijxj‘l%j) da .
0 j>1

Note that since f satisfies only (4.12) then G(q) could contain cubic terms.
Now we reorder the indices in such a way that J := {j; < ... < jn}
corresponds to the first N modes. More precisely we define a reordering
k — ji from N — N which is bijective and increasing both from {1,..., N}
onto J and from {N + 1, N +2,...} onto N\ 7.
Introduce complex coordinates
1 1

2 1= %(pjk +ig5,), 2k = %(pjk —igj,)

and action-angle coordinates on the first N-modes

2= I +ype™, 1<k<N,

with
(4.25) I, € 5 T , 0€(0,1).

Then the Hamiltonian (4.23) assumes the form (4.3)-(4.4) with frequencies

w(f) = ()\jl (6)7 cee 7)\jN (6)) s Q(f) = ()\J'N+1(§)7 )\jN+2 (6)7 . ) .

The asymptotic assumption (A) holds with d = 1, 6 = —1 and n = uq/2.
Also the regularity assumption (R) holds with p = p + 1, see Lemma 3.1 of
[CYO00].
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By conditions (4.24), (4.12) and (4.25) the perturbation satisfies

=71 |Xp|7,7@5 = 0(771T3972) , Z sup
2i+j1+j2:4IXD(s’r)

a;aglagp( —0(1).

Fixed
0e(2/3,1), ~v:=r7, 0<o0<(30—-2)/n0,
then, for > 0 small enough, the KAM conditions (4.6)-(4.7) are verified as

well as the smallness condition (4.10). It remains to verify assumption (ND).
LEMMA 4.9. The non-degeneracy condition (ND) holds.

PROOF. It is sufficient to prove that, for any (cg,c1,...,cN,cCh,ck) €
RVF3\{0} with k > h > N, the function co+c1Aj, +. . .+cnAjy ), +CrAj,
is not identically zero on Z = [0,&,]. For simplicity of notation we denote
A=A

Suppose, by contradiction, that there exists (cp,c1,...,cn,cn,cx) # 0
such that cg + c1 A1 + ... + eNAN + AR + A = 0. Then, taking the first
N + 2 derivatives, we get the system

(co+c1 A+ ... +FeNAN Fepdy A =0

d d d d
qd_f)\l + ... +CNd_§)\N + Chd_f)\h +ckd_§)\k =0

dN+2 dN+2 dN+2 N+2

)\1++CNW)\N+C]Z )\h+0k

A =0.

€1 di+2 di+2 di+2

Since this system admits a non—zero solution, the determinant of the asso-
ciated matrix is zero. On the other hand this determinant is ¢y times the
determinant of the (N + 2) x (N + 2) minor

MO FNO FMO ()
I MG SNGIE G210
pra=t (IR =y V(IR == W (IR =P (3

which is different from 0, as we prove below. This implies ¢y = 0. Moreover
the unique solution (¢, ...cn,cp, c) of the system associated to D is zero.
This is a contradiction.
In order to prove that the determinant of D is different from zero, we
first observe that, by induction, for any r > 1,
dr (2r =311 (=1)"*!
e Ai(§) = or - —1
(W +¢) 2

)
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where, for n odd, n!! := n(n —2)(n —4)...1 and (—1)!! := 1. Setting x; =
(i + 5)71 and using the linearity of the determinant, we obtain

e L@2r =3 1 L _
det D = H (—1)TJr T (H (i + &) 2) (un +&) 2 (e +8)
r=1

D=

i=1
1 1 1 1
1 ... TN T T
- det
N41 N4+1 _N+1 _N+1
] STy ), T,

The last is a Vandermonde determinant which is not zero since all the z; are
all different from each other. For a similar quantitative estimate we refer to
[Bam99]. O

In conclusion the KAM Theorem and Theorem ?7 apply proving Theorem
4.2.

4.4. Quantitative non—resonance property:
Proof of Proposition 5.3

Split the set £ as in (4.2) and discuss the four cases separately.
Case | € Lg. There exist ug € N, 8 > 0 such that

dM

= <k,w<s>>' > B(1+ [K])

max
0<p<uo
forall ¢ €T, k € ZN \ {0}.
Proceed by contradiction and assume that for all ug € N and for all

B > 0 there exist &, 5 € Z, ky, 5 € Z™ \ {0} such that

ar Fuo,8 >
dgr <1 + |kuo,6‘ 7w<§ﬂoﬁ)
In particular, for all A := pg € N, 8 := 1/(A+1), there exist {x € Z,
ky € ZN \ {0} such that

< B.

max
0<pu=<po

max
0<p<A

dH k 1
e ()| < v

namely, for all g > 0, for any A > u, we have

(4.26) ‘% <#|A]€A|7w(£x)>

By compactness there exist converging subsequences ), — £ € T and

1+k‘;h | — ¢ € RN with 1/2 < |g| < 1if \y — oo as h — oo. Passing
Ah

_ 1
A+17
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to the limit in (4.26), for any u > 0, we get

dar — dar k
Yz — qim —0
ggn (G@(8)) = lim oo <1 + \kxh\’“@h)> ’
namely the analytic function (¢, w(¢)) vanishes with all its derivatives at €.
Then (¢,w(&)) = 0 on Z. This contradicts the assumption of non—-degeneracy

of w.
Case | € L. There exist pg € N, g > 0 such that
¥
Q. > B(1
x| (. w(©)) + (€)= 81+ k)

forallé €T, keZN, j > N +1.
Arguing by contradiction as above, we assume that for all A € N there
exist £y € Z, ky € ZV, jx > N + 1 such that

dr 1
2n) x|l wl€) + B (60)] < (L )
The asymptotic assumption (A) implies
, kw(@) + 28] 1
‘s ( G
J* > 01|k + 602 = ' T+ ] >3 VéeT,

with ©1 := 2I' + 1, ©5 := max{1, (2I')?}. Then, (4.27) implies that
(4.28) J¥ < O1)ka| + 02, VA>1.

By compactness &, — € as h — oo. The indexes ky € ZV, jy > N + 1
belong to non—compact spaces and they could converge or not. Hence we
have to separate the various cases.

Case ky bounded. By (4.28) also the sequence jy is bounded. So we extract
constant subsequences ky, = k, j\, = 7. Passing to the limit in (4.27), we
get, for any p > 0,

w((mm0) 1) -

By the analyticity of w, 2, the function <E,w> (&) + Q5(&) is identically zero
on Z. This contradicts the non-degeneracy of (w, ;).

Case ky unbounded. The quantity % converges, up to subsequence, to
¢ € RN with 1/2 <¢| < 1.

If {jx} is bounded, there is a subsequence {j, } that is constantly equal
to J. Passing to the limit in (4.27), we get, for any pu > 0,

d 5
- _adm kx SR Z I (SYOV

_ — 1 R h h h h — 0
den (&w(f)) = lim dr <<71 n ‘kAh‘,w(@\h)> T ]
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By the analyticity of w we come to a contradiction with the non—degeneracy
assumption on w.

If {j»} is unbounded there is a divergent subsequence jy, — co. Then we
consider the first derivative of the function (k,w(§)) + £2;(§), namely, recall-
ing assumption (A) on ©, the function (k,w'(§)) + v} (€)7°. The analyticity
assumption (A) and Cauchy estimates imply that
o=

(4.29) T < e, uzo.

Then, using also (4.28), there is a constant ©1 > 0 such that, for any > 0,

-5 -0
dar J ~ ]
— ! SGl_-?zh —0 as h— o
agr T+ [l = g

since § < d — 1. Then, passing to the limit in (4.27) yields, for any u > 0,

a =

dén (&,w'(€)) =0.
Hence (¢,w’(€)) and all its derivatives vanish at £&. By analyticity, (¢,w’(£))
is identically zero on Z and then the function (¢,w(&)) is identically equal to
some constant. This contradicts the non—-degeneracy assumption on (w,1).

Case | € Loi. There exist ug € N, g > 0 such that
¥
S (50 + 0+ 956D 2 51+ 181

forallé €T, keZN,i,j > N+1.
This follows by arguments similar to the case [ € L.

Case | € Lo_. There exist ug € N, 8> 0 such that
d:u
—4wwmwumo—%@wzﬁu+mw

max
0<pu<po | dEX

forallé €T, keZN,i,j>N+1,i#j.
Proceed by contradiction as above and assume that for all A € N there
exist £y € Z, ky € ZV, iy, jx > N + 1 such that

s kx QiA (fk) QjA (f)\) 1
0y | den <<1+|/Q|"’J(@)>+ T+l Ttk S a1

In particular we have that for all A > u

dr ky Qi, (60 25,(60) 1
(4.30) @<<71+ |k,A|,w(§A)> +iL ] 11\@\) RPEEY

The asymptotic behavior (A) of Q implies
[93(6) = () = | = 5% = [wi(©)i°] — v;(§)5°|

> \z;a\(idlﬂdl) _F(ia_w-&)

max
0<pu<po
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Liaon | a1 5, .6
(4.31) 2§<z +37 )—F(z —l—j).
Then, remembering that § < d — 1, we have that

min{i, j}! > Os[k| + O1 = [(k,w()) + Qu(€) - Q(&)] > %(1 + [K[)

V¢ € T, with ©3 := 1 + 2T and ©4 := max{1,40(@=D/(d=1-9)} Then (4.30)
with g = 0 implies that

(4.32) min{iy, jx}4! < Oslky| + O4, VA > 1.

By compactness, §, — £ € T as h — oo. The indexes ky,iy,jy can be
bounded or not, and we study the various cases separately.

Case ky bounded. If ky is bounded then ky = k for infinitely many .
Then (4.32) implies that also the sequence min{iy, )} is bounded. Assuming
Jx < iy, there exists a constant subsequence jy, =7.

If also 7y is bounded, we extract a constant subsequence i), = 7. Then,
passing to the limit in (4.30), we obtain, for all u > 0,

dr k — Qs (€ Q;(¢

P @) 22O

dgr \ \ 1+ k| 1+ k| 1+ k]
By analyticity, the function <E, w(§)> +05(&) — Q5(€) is identically zero on Z,
contradicting the non-degeneracy assumption on (w, (l,€)) with [ = e; — e;.

If iy is unbounded, we extract a divergent subsequence {iy, }. Since ky, jx
are bounded we deduce, by the asymptotic assumption (A), that, definitively
for A large,

1 ig
kx, QU (60) — ) >
1 + |k)\| (( A W(g)\)> + Z)\(é.)\) JA(&)\) - 2(1 + |k)\|)
which tends to infinity for A — +o00. This contradicts (4.30) with p = 0.
Case k) unbounded. If k) is unbounded, we extract a divergent sub-

— ¢ € RY with

sequence such that |ky,| — oo as h — oo and

1/2 < |e| < 1.

k,\h
1+|kkh‘

Subcase max{iy, jr} bounded. For all ;1 > 0, passing to the limit in (4.30),
we have

a
dg—“ <c,w(§)> =0.
This contradicts the non-degeneracy of w.
Subcase max{iy, jr} unbounded, min{iy,jr} bounded. Assume, without loss
of generality, 7y > jx. In this case

supsup [, (§)| =: M < 4o00.
ceT A
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We extract a divergent subsequence iy, and claim that, definitively,
(4.33) il <2(1+(1+r)\1%\ +M>.

Otherwise, definitively for A large,

1
T (B 6)) + iy, (60) = 0, (63)) 2 1,
which contradicts (4.30) for u = 0.
By (4.29), (4.33), and since j, are bounded, there is 0y > 0 such that,

for any p > 0,

d ® 7 dH ~ 1
J#—V],' (€x,) < 2, Mo <Oyt
1+|/€)\h|d§/‘ Ah 1—|—‘]€>\h| 1+V€)\h|d§/‘ Ah iy,

and both tend to zero if h — oco. Hence, passing to the limit in (4.30) (start
with the first derivative), we obtain, for any pu > 0

dar — dar k
4.34 E e (@) = lim — (e
(4.34) dén (' (€)) = Jim dén <1 + [k

‘ )
h

SE))

By analyticity, the function (¢,w’(£)) is identically zero on Z and conse-
quently the function (¢,w) (§) is identically equal to some constant. This
contradicts the non—degeneracy assumption on the function (w,1).

Subcase min{iy, jx} unbounded. Relation (4.31) implies
/g d—
€0, — ] 2 Z(“ N 1)
if iifl—k jﬁfl > 4T (z‘; + jf\), that is always verified definitively since § < d—1.
We claim that
i 9T < AT+ 1) [k + 4.

Otherwise, definitively for A large,

[{kx, w(€0)) + i, (60) = 5, (O]
1+ [kl -

which contradicts (4.30) for u = 0.

We extract diverging subsequences iy, , jx, such that

B SAC T Dk +4 and T <AC k|44,

Then, using also (4.29), there is O3 > 0 such that, for any p > 0,

) )

ty, dt o, ~ 1)
S R A - Pyes Sp—y )
L [, [ g™ = 724

-0 -0

I ", ~ Jx
N YA - Py BN
T [y, | dgi T = 85T
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for h — oo.
We deduce as in (4.34) that all the derivatives of (¢,w’(£)) vanish and
by analyticity this contradicts the non-degeneracy assumption on (w,1).



CHAPTER 5

Quasi—periodic solutions for 1-d completely

resonant nonlinear Schrodinger equations

The aim of this chapter is to construct quasi—periodic solutions for the
nonlinear Schrédinger equation on the torus T

(5.1) Uy — Ugy + \u\6u =0, reT.

This is a completely resonant system, actually it can be written as an
infinite dimensional Hamiltonian dynamical system @ = {H, v} with Hamil-

21 1 21
H= / |2 dir + = / luf® da.
0 4 0

Passing to the Fourier representation

u(t,x) = Z ug (t)elF”

tonian

keZ
we have in coordinates
(5.2)
2 i — — — —
H = Z kE upay, + E Z Uy ko Ukg Uy U5 Uk Uk7 Ukg
keZ k1,...,ks€Z

k1—ko+k3z—ka+ks—ke+k7r—ks=0

where the symplectic structure in given by i), duy A duy, on the space

7= {u = {whpez: lully, =D MR < +OO}
keZ
with a > 0,p > %

The linearized system consists of infinitely many independent oscillators
with integer frequencies k2, and so it is completely resonant and all the
solutions are periodic with period 2.

We are now going to prove the existence of quasi—periodic solutions of
equation (5.1).

In order to do so, we first perform one step of Birkhoff normal form, but a
direct computation shows that this is not integrable and rather complicated.
However, the study of the normal form may be simplified by an appropriate
choice of the region of the phase space where we look for solutions, this is
the content of Theorem 5.2.

47
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Once we get the normal form, we use it as the unperturbed Hamiltonian
to apply the KAM Theorem 3.5 of Berti—Biasco, verifying all the smallness,
regularity, non—-degeneracy and non-resonance assumptions.

The main result is the following. Let p > 0 and define

(5.3) AP:ZBP(O)Q{feRm:g<§i<p,i:1,...,m}.
THEOREM 5.1. For generic choices of indexes S := {vi,v2,...,0m}

there exist p, > 0 such that for any p < ps there exists a Cantor set
117 C A, of positive Lebesgue measure such that, for any & € 1T, the nonlin-

ear Schrodinger equation (5.1) admits a quasi—periodic solution of the form
u(t, ) = Z VEA W @)00) 1 o(g),
=1

where the map § — w*(&) is a lipeomorphism, 6 € R™ are arbitrary phases
and o(&) is small in some analytical norm. The measure of the set 117 is

greater than cp™ where c is a constant independent on p.

For generic we mean that the indexes have to satisfy a finite number of
polynomial inequalities, see Definition 24 for the precise statement.

5.1. Construction of the normal form

The following result states the existence of the normal form for our sys-

tem.

THEOREM 5.2. For all generic choices of the set S = {v1,..., v} CZ™
of tangential sites there exist an open set O, C A, and an analytic and

symplectic change of variables
®: Op X Dap(s,r) — B ;5(0)
Ex (y,2,2,%) — (u,7)
where the set Dy p(s,r) is defined in (5.9), such that the Hamiltonian (5.5)
becomes
H=N(y,27%)+ P 2,y,27)

with

N=w@) - y+ > ulzl

keSe
The tangential frequency w is a diffeomorphism and is defined in (5.16), while

the normal frequencies Q) are

Qp =k* +wo- L(k) + (&) VEke€SC,

where wy = (v%,... v2 ), the integer vector L(k) € Z™ and the functions

rrm

M (&) € R are identically zero except for a finite number of k, in which case
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|L(k)| <6 and A\ (&) are homogeneous functions of degree 3 in & satisfying
(5.4) (€ < Cp°, [Ved(€)l < Cp?, VE€ O,

Assuming p = r* with € (%, %), the perturbation P is small with respect
N, namely
ol < 0

with a constant C' independent of r.

The generiticity condition on the tangential sites means that they have
to satisfy a finite list of polynomial constraints , hence they can’t lie in any
of the varieties defined by certain polynomial equations. To be more precise,

we give the following definition.

DEFINITION 24. Given a list R = {Pi(y),..., Pn(y)} of polynomials in
the variable y € R®, we say that a list of point S = {vy,..., v}, v; € R, is
generic relative to R if, for any list A = {uy,...,up} such that u; € S for
any ¢ and wu; # u; for @ # j, the evaluation of the polynomials at y; = u; is

non—zero.

The rest of this section is dedicated to the proof of this theorem.

5.1.1. The normal form. Note first that the Hamiltonian has the mo-
mentum M := Zkezk\uk\Z and the scalar mass L := ) lu|? as integrals
of motion.

We have to perform a step of Birkhoff normal form, hence we cancel
all the terms that do not Poisson commute with the quadratic part K =

Y okez k2|ug|?. The Hamiltonian then becomes

(5.5) H=Hy+R",
with R!Y is analytic of degree at least 10 in u and
T o _ _ _ _
(56) HN = Z kQ‘uk‘Q + § Zukluk2uk3uk4uk5uk6uk7uk8,
keZ

where the sum " is the sum restricted on the indexes k; € Z such that
ki — ko + ks —ks+ks —ke+kr—ksg=0

(51) {ﬁ—@+@—ﬁ+%—%+@—@:o

and this two conditions express the conservation of M and K.

5.1.2. Action—angle coordinates. Let us partition the set Z as the

union of two disjoint sets

Z=SUS°
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where S = {v1,...,v,} and its elements are called tangential sites, while
the elements in 5S¢ are called normal sites.

The elements in S are the ones we have to choose by imposing some
constraints in order to make the normal form of the system as simple as
possible.

We now introduce action—angle coordinates by setting

{uk:zk for k € S¢

Uy, = V& +ye® fori=1,....,m

where & € A, are positive parameters and |y;| < &. This is an analytic and

(5.8)

symplectic change of variable in the domain A, X Dg,(s,7) C R™ x T x
XC™ x %P x {P with

(5.9 Dapls,r)i={oy,0=(22): 2 € T2, |yl <72 ull,, <7}

where 0 < r < 1, s > 0 are auxiliary parameters and T, denotes the open
neighborhood of the complex torus T¢ := C™/27Z™ with |Imz| < s, z €
C™. With this change of variables, the symplectic form becomes dy A dz +

iZkESC de AN dzk

5.1.3. Constraints 1. In order to have an integrable normal form we

first impose the following constraints. For n; € Z, |n;| < 4,i=1,...,m

(1) mo1 + nave + -+ + NUm # 0 with 7 n; =0, D07 |ni| <8,
(i) Yoy mv? — (o mivi)” # 0 with 27 =1, 27 | < 7.
(iii) 207" miv? + (20 myvs)” # 0 with 7 g = 0, -2, S50 |ns| < 6

5.1.4. The Hamiltonian Hy. With the change of variables (5.8), the

normal form (5.6) becomes
(5.10) Hy = Hy + P

where P23 contains the term of degree at least 3 in y, z,%Z and

3

(5.11) Ho=)Y wi®ui+ Y RO+ > U@z

i=1 keSe h#kese

+ Z (Q%kzhzk + ﬁikzhgk) .

h#keSe

Here the frequencies w(€) depends only on & while Q9(¢),Q},,Q3, are func-
tions also of the angles = (we will give an explicit formulation of the frequen-
cies later and also in the case m = 3, see Subsection 5.3.4).

We can write the Hamiltonian Hy in a more compact way.
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Define the set

6 m

X3 :=<1:= Z +e;; = Zliei such that [ # 0, —2e¢; Vi
j=1 i=1

where e; is the standard i-th unitary vector and we have that » ;" |l;| < 6.

Define then two sets X9, X572 as

6
(5.12) X3 = {l € Xy such that ) [; = 0},
=1

6
(5.13) Xg_2 = {l € X3 such that Zli = —2}.

i=1

See (5.28) and (5.29) for an explicit characterization of these sets in the
case m = 3.

The Hamiltonian Hy contains all the terms of degree at most 2 in z,Z
satisfying conditions (5.7).

The part of degree 0 in z,Z is given when all the indexes k; are in S.
This imply that the conservation of the momentum (the linear equation
in (5.7)) must hold identically, because by Constraints 1(i) all the other
linear relations of the k; are not allowed. Then, recalling (5.8), we have a

contribution equal to Ay, with

2

2o ki=r
and so the terms of degree at most 2 are a constant part, that we ignore,
and the linear term V¢A4(§) - y.
The part of degree 1 in z,Z is given when only one index is not in S. By
Constrains 1(ii) these terms do not occur.

The part of degree 2 in 2,7 is given when only two indexes are not in S.
Fix h, k € S, then (5.7) becomes

m
Y lwi+h—k=0
(5.14) = if | € X0
I+ 0=k =0
j=1

and

Zlivi+h+k‘:0

j=1

(5.15) if 1 € X572

S vl +hP k=0
j=1
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It is convenient to drop another mass term. If only two equal indexes k;

are in S¢ by Constraints 1(i) we have a contribution in QY equal to 1643

ZQO Jzl? = (K + 1645(9)) |2

k

and so

Noting that

216143 ‘Zk| = 16A3 <Z |Zk‘ + Zyz) - 1614323/2’

we have that the term in brackets is L, hence we can drop it from the
Hamiltonian.
In conclusion, we have that Qg = k2 and that the frequency w is an

homogeneous polynomial in & of degree 3 of the form
(5.16) w = wo + VeAq(§) — 1643(8)

with wo := (v, ..., v2).

rrm

The Hamiltonian Hy then becomes

Hy = szyz + Zk2|zk‘ + Z 1lx Z 22k

k¢S lexy h,kgS: (5.14)

+ Z c(l) Z (eilxzhzk + eiilehEk)

lex;? h,k¢S: (5.15)

(5.17)

where ¢(l) are some functions of the only &, more precisely:

3 3 N
2 <l+—|—a> <l—+a>£i LeX3

aeN™
o1t |=3

4 2 N _
2 <l+a><l++a>§i le Xy

aeN™
|o¢+l+ |:2

(5.18) ¢(I):

with {T,]™ are such that [ =T — ™.

5.1.5. Constraints 2. Given [ we consider the map [ — h(l) that to
each | € X9, X; 2 associates h(l) such that conditions (5.14), (5.15) hold.

LEMMA 5.3. The map | — h(l) is invertible from X:?UX:.:2 to its image.

DEFINITION 25. We define the set of special points as the set h(X5 U
X;%).

We denote with L the inverse of the map ! — h(l) and we extend it S¢
by setting L(h) = 0 if h is not a special point.
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PROOF. First prove that given [ there exist at most two couple (h, k)
such that condition (5.14) or (5.15) is satisfied. If | € XJ then we obtain the
couple (h, k) with

7'77,_ l?_/2 1 m m l U
}lziz:J,r_anZ ——Zl,ﬂji, k= Zm Zl’l)z
2 Zj:l li'Uz‘ 2 = 2 Z l 3 Us =
Note that if we change | with —[ then we obtain the couple (k, h), hence in

the case [ € XJ we can fix just one of the two components, say h.
If I € X572 then

h:—zﬁllmi\/—(z;l ) =230 L}
kk:_zgl1li”i:F\/_(Z;1 ) 229 1!

In order to prove that we can impose a finite number of constrain such
that for each h € Z there exists a unique [ that satisfies condition (5.14) or
(5.15) we will argue by contradiction and prove that, under some condition,
it is not possible that
Zlm+hikz:0 Zfivﬁ—hiﬁzo
SNl 42k =0 Yl R R =0
with [ # [, k # k and the same h.

So, we assume (5.19) and we first prove that [ and [ have the same

(5.19)

support. Actually, the first system defines h as a function of some tangential
sites, say h = f(v1,....v,) with a < m, and the second system defines
h = g(v1,...,vp) with b < m. But f = g since h has to be the same in
the two systems. Then, if for example f does not depend on the variable v;
also ¢ will not depend on that variable, and hence the two functions have to
depend on the same variables, and so also [ and .

For the rest of the proof we study the various cases separately.

(i) Assume (5.19) with [,/ € XJ. Then
h— Z;ﬂll vi 1

230 L 24

Z;nll U 1

221 ll Ui 2

i
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and so
2

m m m m m 2
ZZ"UZ‘ ZZZ’UE — <Z lwi) Zliw ZZZU? — < ZZ’UZ>
i=1 i=1 i=1 i=1 1=1

7

s

and this has to be an identity. So, comparing the coefficients of the

term v? we have

If 1;1; # 0 then ! = [ and this is impossible. The case I; = 0,1; # 0
is excluded by the condition that { and [ have the same support.
If ; = I; = 0 then we consider the coefficient of another term vj
(remember that I and [ can’t be the zero vector).

(i) Assume (5.19) with I € X§,7 € X;? with the following condition:
impose that if I; is —2 (resp. -1) then [; can’t be -1 (resp. -1, 1).
Then

i=1 =1 =1
and so
m m 2 2 m m 2 m m _
Z lzvf — <Z livi) + 2 Z liv; — <Z livi) ZlZ’UZ levz
=1 =1 =1 =1 =1 =1

m m 2 m 2
+2 ZZZUZQ + <Z ZZ’UZ) (Z li“i) =0
=1 =1

i=1
and this has to be an identity. So, comparing the coefficients of the

term v} we have
=2+ L)+ 2L(2+1) =0
and this can be an identity only if
2 (2@ +Z§) <0

namely if [; = —2,—1,0 or [; = 0. Assuming I; # 0 then also [; # 0
by the condition that [,I have the same support. Then if [; = —1
then /; has to be equal to —1, 1, and if {; = —2 then [; has to be equal
to —1 but these cases are impossible by the previous assumption.
If [; = I; = 0 we consider the coefficient of another term, recalling

that 1,1 can’t be zero vectors.
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(ili) Assume (5.19) with 1,7 € X5 2 with the following condition: impose
that if [; = —1, —2 then [; can’t be -1,-2. Then

m m m 2
2h% + 2h Z Liv; + Z li’U? + (Z livi> =0
=1 =1 =1

m m m 2
2h? + 2h Zilvl + ZZZUZZ + <Z ZZUZ) =0
=1 =1 =1
and so
m m 2 m 2
Z (ll — ll)vf + (Z lﬂ)l'> ( Zﬂ)l>
=1 =1 =1
[ m m 2 m 2l m m
-9 Z (lZ — lz)v? + (Z lzvz> — (Z szz> Z (lZ — lZ)vZ Z livi
=1 =1 =1 =1 =1

[ m 2 m 2
+ 2 i lﬂ/? + <Z lﬂ/i) [Z (li — ZZ)UZ] =0
=1 =1

i=1
and this has to be an identity. So, comparing the coefficients of the

term v} we have
(=Tt 2T = (=10 + 2+ 2) (1~ 1) =0
and this can be an identity only if
2L +12) (1L -1)* <0

namely if [; = 0, —1, —2. If [; = —2 then [; has to be equal to —1, —2,
and if I; = —1 then [; has to be equal to —1, —2, but these cases are
excluded by the previous assumption. If I; = 0 then also I; = 0 and
we consider the coefficient of another term, recalling that [,] can’t

be zero vectors.

O

5.1.6. Reduction to constant coeflicients. Make the following sym-
plectic change of variables

{ o = e L)1 y=y + > Lk)|z|”

(5.20) k¢S

/
2 =2 /
k= %k T=x

where L(k) is the unique [ determined by the choice of k.

LEMMA 5.4. The transformation (5.20) is symplectic.
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PRrOOF. The thesis follows by a direct calculation:

dy A da = d(y’ + ZL(h)\qu) A da!

hes
= dy Nda' + Y L0 (|54]*) A da!
h¢s
=dy Nda' =) (L(h)da') A (24,dZ), + Z),dz},),
h¢s
idz NdZ =1 dzp AdZ
h¢sS
=i d e—iL(h)a:’Zl Ad 6iL(h)g;’E/
>0 (05
5 (4 )
h¢S

A ( d( eiL(h)x/z;L 1 i)’ dz), ))
= iz (—iL(h)e_iL(h)‘”/da:’z;L + e_iL(h)’”,dz,'l)/\
h¢S
A (iL(h)eiL(h)x/dx’Eﬁl + eiL(h)w’dz;L)
=iy dzj, Adzy, + Y L(h)da' A (24,dZ), + Zd2,),
h¢S h¢Ss
hence dy A dx +idz AN dz = dy’ N\ dx’ +id2’ A dZ'. O

Under this change of variables the Hamiltonian Hy (5.17) becomes
Ho=w(€) -y + Y (h* +w(€) - L(h)|zh

hS

+> ey D Azt Y.l DY (zher +ERE)

lexy hk¢S: 1eXY lex;? hk¢S: lex;?

Setting ), = h? + wp - L(h), this is equal to k? if [ € XJ and to —k? if
l € X; 2. Then

Hy=w() -y + > (6)]2h]”

hé¢s
o) D Am Y ) Y (hE T EE)
lexy? hkgS: 1€X lex;? hkgS: leX3?
+3° (W= wo) - L(h)| |

heS
Set d(l) = (w — wp) - L(h) and denote with Q" the last two lines.
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If [ € X{ then the matrix associated to ad(Q’) in the basis 2}, 7z}, is

—QL —d(l) —c(l) 0 0

(5.21) 40 — —c(l) -, 0 0
0 0 Q+dl) <)

0 0 c(l) Q)

In order to study its eigenvalues, we consider the two blocks

(= —d) —c) () )
(5.22) Ag—( _hc(l) —Q;Z) Ag_( hc(l) Q;1>

and note that, denoting with A(B) the eigenvalues of the matrix B,

A(AY) = ~A(AQ) = (sz; I\ (iég cél)>>

If I € X;? then the matrix associated to ad(Q’) in the basis z}, 7 is

~Q,—d(l) ) 0 0

a_| e % 00
(5.23) A2 = 0 0 QO +d(l) ()
0 0 c(l) O,

In order to study its eigenvalues, we consider the two blocks
Q. _ o _
oy ar (A Q) (%) )
—c(1) - e(l) 973

and note that

R (i)

In conclusion we obtain as eigenvalues €} plus

0y = d(l) + V2(1) £42(1), 22 = d(l) — V(1) £ 4c2(0)

where the plus sign occurs if [ € X§ while the minus sign occurs if [ € X3 2,

The \p are the eigenvalues of the matrices:

d(il) (1+1d)e(l)

(5.25) Ai(l) = <c(z) o

), le X, i=1,-2.

The eigenvalues of these matrices are explicitly calculated in Subsection
5.3.6 in the case m = 3.

PROPOSITION 5.5. There ewists an open set O, C A, such that for any
§ € O, the two eigenvalues of each of the matrices A% A= are real and

distinct from each other. In this set the functions A\, (§) are analytic functions
and the bound (5.4) holds.
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PRrOOF. For the proof see [PP]. One shows the existence of a region in
A, in where d?(1) — 4c¢*(1) > 0 for all I € X532 and d*(1) + 4c*(1) > 0 for
all I € X5 2 The eigenvalues are analytic functions of the coefficients in the
region where they are distinct. The bound follows by homogeneity and by
choosing O, small enough so that in its closure it is still true that all the

eigenvalues are real and distinct. U
LEMMA 5.6. The map & — w(§) is a local diffeomorphism.

PRrOOF. Recall that w is defined by
w = wo + VeAs(§) — 16A45()

where )
A€o bn) = Y (k L ) I,
Sy \BLEm

We have to verify that the jacobian determinant of the map & — w(§) is
not identically zero. A general proof of this fact, based on algebraic (non
computational) methods, is found in [PP], Corollary 4.7. To give a more
direct proof we compute the determinant at the point & = a for all i =
1,...,m. By the structure of w the jacobian matrix has the form ”Ta2(AI +
BU), where I is the m x m identity matrix while U is the m X m matrix
with all entries equal to one and A, B are negative integer numbers, possibly
depending on m.

We compute its inverse directly. Using the fact that U? = mU, we obtain

2A B
il Ol wwry

true since A, B < 0. This also gives us a bound on the Lipschitz constant of

U) which is non zero provided that A # —mB which is trivially

the inverse function &(w) which holds true in some neighborhood of any point
with all equal coordinates. Note that this proof holds for any non-linearity

q.
U

Finally, since the eigenvalues are all real and the eigenvalues of the same
block are distinct, there exists a symplectic change of coordinates such that

the system is put in a diagonal form, namely

H=wE) y+ ) W@l + P z,y,27),
keS¢
where Qi (&) = k% + wo - L(k) + \e(€) and M\ (€) are the eigenvalues of the
matrices A? or A2,
This concludes the proof of Theorem 5.2. Now we can use the new normal
form we have obtained as the unperturbed Hamiltonian in order to apply
the KAM Theorem to find quasi—periodic solutions.
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5.2. Application to KAM Theorem

In order to find quasi—periodic solution for the NLS 5.1 we apply the
KAM Theorem 3.5, as stated by Berti-Biasco [BB11].

Note that we can’t apply Theorem 3.6 for two reasons. Firstly, conditions
(3.2) and (3.3) are not true since we are in the case of periodic boundary
conditions. Secondly, the frequencies are not affine functions of the parameter
€.

We solve the first problem using the conservation of the momentum,
see Constrain 1(iii). The proof of the KAM theorem is still valid, but the
Melnikov conditions need to be verified only on the subspace of functions
satisfying momentum and mass conservation (see Proposition 5.8).

We verify now the KAM assumptions.

Choose d =2,p =7p,d = 0.

The normal frequencies €2, are equal to k% 4 wg - L(k) + A (€), where
L(k) € XJU X3_2, and so they have an asymptotic behavior, as stated in
assumption (B). Also assumption (C) holds.

LEMMA 5.7. Choose

2 )\ 13
&6 (7,7" >wzth9€ (5,5)

Then assumption (H3) holds.

PRrROOF. We have that the following estimates hold.
|Pool) < 7' [Pul) <%, |Pul) <"
|Prolds [Poals < v, | Pogl3 <™.

Then, if 6§ > %, we have that

A A A A 0—
- {|Poo\s Poul2 [Pl |P02|s}<7”10 >

2 Y ) )
iy oy oy g gl

Moreover, the assumption 6 < % ensures that

Pul, [Pl < 7 < L.

Finally, since the frequencies w are homogeneous polynomial of £ of degree
3, then v < % and this is possible because r199=2 < 769 for § > % (]

Assumption (A1) holds by Lemma 5.6.
In order to find the needed measure estimate, we can’t apply Theorem
3.6 since our frequencies are not homogeneous of degree 1. We first prove the

following result.
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PROPOSITION 5.8. The three Melnikov’s conditions

{E € Op:w(§) - v+Q(§)-1=0}[=0
hold for all (v,1) € Z™ xZ>*\{(0,0)}, |I| < 2 compatible with the conservation

of M, namely with
Zvil/i + Z lpug = 0,
keS¢

where uy, =k + L(k) -v for all k € S¢. (recall that ", L;(k) = 0,—2). More

precisely,

} < acvépm.
|

(5.26) U{g: ‘w(f)-u—l—Q(ﬁ)-l <ai7
vl

The union |J* denotes the union restricted to v,l compatible with the con-
servation of M and L.

PROOF. We verify that none of the (analytic) resonance functions w(§) -
v+ Q&) - 1 is identically zero. We start by computing w(§) - v + (&) - {
at the point & = 0, obtaining the integer wq - v + Q/'(§) - | (we recall that
Q) = h?>+L(h)-wp). If this is non-zero then the function cannot be identically
zero, and one has that

wl€) v+ 06) 11> 5,

for all £ € O, unless |[v| > Cp~3 . Otherwise we are left with an algebraic
expression which is homogeneous of degree three in &.

Since w is a diffeomorphism, we have that there exists a constant L > 0
such that

-1 20 2
‘J w!ﬁL(r ) for £ € Og.

Set A(§) := Ak (&) £ AL (§). We have proved that we can choose a constant

M > 0 (eventually big) such that

19| < M(TQG)Q.

Since the map £ — w(&) is a diffeomorphism, we invert it and consider

the map w — &(w). Assume w = ‘—Z|t + w, with w orthogonal to v. Then
0 AE(W))] = |0eAIt| < [T T'VeA| < LM =:C.

Then
|Oww - v + 0 (E(w))| > v —¢

that is greater that |—12" if |v| > 2¢. So in this case the resonance function

cannot be zero and we have the quantitative bound
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{or lov ) i <ae | < m

v
and so )
a3
™

Now we consider the case wy - v+ Q' (§) -1 = 0. If |v| > 2¢ then we argue

{e 10 vra@ <ol <

||

like in the previous case. Since there are only a finite number of possible
functions A(§) we are left with a finite number of cases, depending on m. We
wish to verify this cases numerically so we must eliminate the dependence
on m. Let us leave this delicate point for the moment and conclude the proof
supposing that it is true.

We notice that for the finite number of non-trivial homogeneous functions
with |v| < ¢and wy-v+ Q' (§) -1 =0, we have the bound

{elw@ v +00 <o} <0

vl

trivially provided we choose « small enough (this smallness condition does
not depend on p but only at most on m). Indeed in this case there exists at
least one direction along which the derivative doesn’t vanish, and we obtain
the needed estimate.

Finally, we have to take the sum over v,p = h? £ k?. We can restrict to
the case |p| < w|v|. Then we have

U {5: w(€)-v+p+AE)| <a 77}

vezZ™, p<w ‘V|
S y DS ‘I/‘
< Z

{5: (&) v +p+ ME)| < alT}‘

emm 4
p<wly|
1 1
3 3
< Y T Y < TP
V] V]
veZ™, p<w|v| vezrm™
= ayslwp™ 3 T < cayspn
veZ™

if 7 > m+ 3, for some constant ¢ > 0. This concludes the measure estimates
for the initial frequencies w, (2.

We now conclude the proof of the second Melnikov’s condition.

Choose an index ¢ = 1,...,m and set all the &; with j # i to zero. If our
function is not identically zero under this restriction (namely as function of
the only &;) then it cannot be identically zero as function of all the variables.

By definition, the coefficients ¢(l) are a finite sum of monomials which

contain at least two different /&; so in our restriction ¢(l) = 0 and the
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eigenvalues )y, are either d(l) (resp. d(l) for A\;) or zero. Then

(W—w) v+ A — A= (w(&,0) —wg) - (v+al+0bl), a,b=0,=+1.
A direct computation shows that
w(&,0)i =} — 126}, w(&:,0); =15,

hence ((w(&;,0) —wo) - p); = —12&3;, which in turn implies that the func-
tion is non-zero if v; +al; + bl; is so. Then if al; +bl; = 0 then also v; = 0.
Since d(l) can have at most 6 non—zero components, this reduces us to the
case where |v| < 12 and moreover the support of v (i.e. its non zero com-
ponents) are the same as those of [ or I. Without loss of generality we can
suppose that this are the first (twelve) components and we can set & = 0
whenever both [; and l} are zero. This finally leaves us with a finite compu-
tation (the number of functions is large but independent of m). We verify
this Melnikov’s conditions numerically by remarking that the condition that

w(&) - v+ Q) - 1 is identically zero is equivalent to the condition
det(M) =0, M = (w—wo,v) X Iyxa + My X Ioxo — Ioxa X My,

where M, is £A%(I) (see formula 5.25) if I = L(h) € X} (i = 0,-2). O

Using the previous proposition, we have the following measure estimate
on the final frequencies wy, €. Define
~y
11 = {6 hon(€) v £ 040 £ 950 < ay |
forany v € Z™ h,k € Z withv-v+k+h=0

THEOREM 5.9. Let w: O, — w(O,) be a lipeomorphism with

2 B R P
(5.21) WP <, es

for some constant L, M > 0. Then !Op \ H;! < ecyp™.

PROOF. Since (5.27) we can deduce a similar property also for the final
frequencies w,, namely
jwi [P < 2L,
Moreover, by (3.1), we have
lwe — w|, [ — Q|%‘_p < a e

Then we have

|wi(€) - v + Qi (€) = (6]
> |w(&) - v+ (&) = Qn(§)] = [wi(§) = w(E)[v] = 2/, —
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1

1
_2
3

On the contrary, if |v| < (CO‘QV

T+
6 ) , then we can always choose € <

ca’y" 3
(ALM)FT?
proposition, obtaining the needed measure estimates on the set of the final

and so we have |v| > 4LM and we can argue as in the previous
frequencies. O

5.3. Example: case m =3

5.3.1. Constraints 1. We impose a finite number of constraints on the
set of the normal sites S = {v1, v, v3}. The first ones are
v + m2v2 + n3vs # 0
with n; € Z, |n;] < 4,4i=1,2,3, and 23:1 n; =0, 23:1 |ni| < 8. Note that

this is Constraints 1(i) in 5.1.3 and that this covers also (ii) and (iii).

5.3.2. The sets X??,Xg_2. Under Constraints 1, the sets X??,Xg_2 are
the following.

(5.28) X§ ={(2,-2,0),(2,-1,-1),(1,-3,2),(3,-3,0)
and all their permutations} ,
(5.29) X;2={(1,-2,-1),(2,-2,-2),(2,—1,-3)
and all their permutations} .

Then, for I € X{ conditions (5.14) become the following

(Case 1)
27)1—27)]'-{—}1—]{3:0
7 — 207 +h* — k> =0
(Case 2)
2v;—vj—v+h—k=0
2vi2—v]2-—1)12+h2—k220
(Case 3)
vi—30j+2vl+h—k:0
v?—3vj2-—|—2vl2+h2—k2:0
(Case 4)

37)1—37)]'-{—}1—]{3:0
3v; —3vj +h* —k* =0
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while, for I € X;* conditions (5.15) become the following

(Case 5)
Ui—QUj—Ul-i‘h-i‘k:O
v?—Qv?—v?-i—hQ-i-kQ:O
(Case 6)
27)i—21}j—27)1+h+]€:0
207 — 207 — 207 + h* + k> =0
(Case T7)

20 —vj =3 +h+k=0
2vi2—v]2-—31)12+h2+k:2:0

5.3.3. Constraints 2. To ensure that the function L(h): h + [ is bi-
jective, we impose the following constraints:

181/2-21)]' — 151)? + 271/2-2211 — 7112-1132- — 22vvv — 16viv12 + 41)]2»211
+ Tvjvf + v? + 30 #0
32vvjvF — 941)1-1)?1)1 + 6202 vv; — 191132-1112 + 441);’1)1 + 48v3v; — 1203y,
— 103v7v7 — 13v7 07 + 100005 — v} — 36v] + 20;v7 — 200} # 0
750} + 360; + 134vivju; — 40vivj2»vl — 94v;vPv; + 2930707 — 21}5’% — 164v;v}
+ 23@2-21132- — 60viv; + 21}5-’211 + 171)]2»11[2 + 20v;v — 240030, # 0
3} — viv? — 150,07 — vvvF + 5viv]2-vl + 3u} + v?vl - 41)]2-1112
+ 3vjv8 — 14wl + 203, — 1)31132- + 23020} — dvPvju # 0
v —2v; — Ty # 0
Tv; —6v; — v # 0
U;-l + 81)3»’211 + 151)]2»1)12 + 8Uj’Ul3 + v} — 66@?213- — 6603, + 451)3@32- + 45030}
— 12%1}? — 121)?1% + 33UZ4 — 54ijv12 + 1082}321]-1)1 — 54112-1)]2-@1 #0
1vviv; + oot — 221)]2»1”7)2- - 91)? + 241);’1)1 - 25v]2-vl2 + 13v,0}
— 31)14 — Uﬂ]? + U?Uj — 71)3@]2- + 12%1}?’ — 4@12112-2 — vl?’w #0
3vivvj — Juju? + Gvalvi - 1811;-l + 781}?1}1 - 120U32'Ul2 + T9v,v}
— 190} + v} — Vv, + 61)3%2- - 6viv§’ + 3vfv? — 3viv; #0
31);-1 + 21}?1}1 — UJQ-’UZQ — vjvf — 15v§vj — 14viv? + 231}?11]2- + 3vy
— dwv? + vpv; + 3uf — vPvju 4 Svujuf — 4viv32-vl #0
41)]2»112-@1 + 16vz~2vjvl — 20vl2vivj + 3611;-1 — 1502}5-’211 + 2231)]2»1)12 — 142113-1)13

+ 330} + 611?1)1- + 100 v; — 111}1211]2- — 500 — vl + 2030 # 0
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5.3.4. The frequencies. The explicit expression of the frequencies of
the Hamiltonian (5.11) is

s
wil€) = v+ 5 |12 -T2 Y LT -96 D €
JF g
]:17"'73 ]:1,,3

—144 ) L44 fori=1,...,3

AL
jvl:L"'73

Q&) = K

T . oo
Q}Zk(f):§ 48 Z 52‘532-62(2$1 2z5) 4 79 Z ii6e (22;—2x;)

i#j=1,...,3 =
et Case 1
+ 48 Z Nl
i£jAl1=1,....3
Case 2
i#jFA1=1,....3
Case 2
48 Z N T )
i£j£l=1,...,3
Case 3
+16 Y &g /e
i#£j=1,...,3
Case 4

T o
B =2 (96 > Va2
i A=1,.03
Case 5
+ 144 Z £65/E el @2 =)
i#£j#l=1,...,3
Case 5
+ud Y g6 /a8
i#Aj#l=1,...,3
Case b
+72Y GGG

1#j#l=1,...,3
Case 6

+48 Z &6 mei@xiijfi‘)xl)

Case 7
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5.3.5. The values of d(l),c(l),),. We also calculate the values of
d(1),c(l),Q}, in the several cases:

(Case 1)
Q) =k*=Q,
d(l) = g [—24€7 + 2483 + 192678, + 144¢,&7 + 485
—1446:€] — 4867¢; — 19267¢)]
o(l) = 5 [486:&] + 726661
(Case 2)
Q) =k*=9Q,

d(l) = g (2467 +12¢3 + 126} 4 16863¢, + 168¢,67 — 48,3
—48&€7 — 12067¢; — 12067¢)]

() = T [9662 VG + 1446, V]

(Case 3)
Q) =k =,

d(l) = g (1263 + 3663 — 24€) + 144626, + 246,67 + 216663
—264&;€7 + 12067¢; — 24067¢]

c(l) = g [48&@- \/@}

(Case 4)

0, =k =9,

d(l) = g [—36&) + 36¢7 + 28867¢, + 216¢,&7 + T26¢

—2166;€] — T267¢; — 288¢7¢)]

() = = [1668, /&

(Case 5)
O, =k =-Q
d(l) = g [—128) + 24€7 + 127 + BT6,€;& + 264E7¢, + 24¢,67

H1206,67 + 2468 + 48¢7¢; — 2467¢)]
l) = 7 [96E3V/E& + 1446, 658 + 144,61/EiE
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(Case 6)
P =k =0,
d(l) = g [—24€) + 2483 + 24€} + BT6¢,€;& + 336£3&, + 336847
HA8EE] + 4867 — 48ETE; — 48676
e(l) = g [144&;€,8]
(Case 7)
0 = k* = -,
d(l) = g (2463 +12€3 + 36} + 5T66:€;€, + 31262¢; + 360667
—48&,E5 + 14467 — 12067¢; + 24674
() = 2 [486:61V/558]

5.3.6. The eigenvalues of the matrices A, A=2. We compute now

the values of the eigenvalues of the matrices A%, A=2 in the several cases:

(Case 1)
Ap = k% — 128 + 246,65 + 126 + 9685 + T28,&7 — T26,67 — 24€7¢;
— 96876 + 12\/ —14067€267 + 1667¢1 — 486367, + 1263¢;67 + 326;€7¢)
F126,6367 — 9667676 — T26;€1¢; — 96,6767 + 32¢]¢,;6 — 1067¢?
HT6E1E2 + AE0E; + 16606 + 45,0 + 16£0¢, + T6E1E7 + 96€387
+3667¢) + 367¢) +9687¢) + &7 + €7
(Case 2)

N = k2 4 667 — 126) — 246€7 + 66 + 84E7€, + 84¢;€7 — 24,7 — 6OETE;
— 60676 + 6\/ AB6ERE;E + TI2E3E2€, + 276¢263¢, + €8 + 468 4 ¢
—12063¢,67 + 2483567 — 1206;€3¢} — 1126;€16 — 528676767
—30067€2¢; — 126,61 + T6E3E3 — 8E2¢; 4 394€3¢} + 28¢5¢
2246867 — 4167 + 11661€2 + T6EPEP + 1166167 + 4067¢;

HA0E2€; + 2246162 + 2BEE; — BEPE; — AEHE?
(Case 3)

Ap = k% — 68) + 1887 + 2826 + 12,7 4 1086,&7 — 1287 + 60£7¢;
— 12062 — 132,67 % 6/ —400€1¢;6, — TAEIIE + 184€2€36 + 9€8
+E) + AE) — 60E36:€7 — 444E7€;€7 — 60088267 + 4326,€7¢
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—123262€3¢7 — 1206767€; — 88€;€/1€; + 354762 + 10863¢; + 366767
FT2606, + 1566767 + 384€7E7 4 6461€7 + 884€2E7 + 4448 ¢p
—20678; + 40626 — 44€1€7 — BEPE; + BBEPE; + HOALE?

(Case 4)

Ae = k% — 1867 + 144€7¢, + 108¢;€7 + 3667 + 1867 — 36€7¢;

— L4426 — 10867+ 2/2592¢1 €6, — 3888EI€26) — 3888E2€3¢, + 81¢7
+81E0 + 97265667 + 9T2E3¢,67 + 25926,€16; — 1425667 €7¢7
—77765135?53- — 58325]-514&- — 74655?5;3 + 32455?& + 777655?513
+129662¢; + 61566767 + TTT6EIED + 61568 ¢]
+324§?£j + 129652-5& + 2916@45]2- + 2916514@2

(Case 5)

Ao = —k% + 660 + 13267¢, + 126;€7 + 6067 + 2467¢; — 12626, + 1263
+ 126,67 + 288¢;£,&, — 663 + 6\/ —T6883/&i61€i1/5€ + 1392636,€7
+55262¢3¢) — 2768263 — 11526,62\/§66\/ &6 + BT6E264
+19260€2¢; + 104616;€; + 2272626262 + 300£26,67 — 180,623
—112616;6 + 4881 €2 4 4606, + 926163 + 48€; — 1067€) + 492¢7 ¢}
+8862¢ + 11662¢7 + T6EIET + 406,62 — 4€}E?
—8E2E; + 4606 + & + 45 + £F

(Case 6)

Ap = —k% — 128 + 1265 + 128 + 16867¢, + 168, + 24&,E7 + 2886,€,¢;
— 248765 — 24876 + 248,67 £ 12¢ 3263667 + 3667E3¢ + 73267 67¢,
+104€16,€ + 366325 + 104¢1¢,¢; + 328626762 — 132624,E)
—1326;€767 — 4061€;€; + 22461 €2 4 2860¢; + 394EP€3 + 4£P¢;
—106P€3 + 224€7€7 + 28656, — 106363 + 46;€0 + 4€7¢;
HAEPG + &+ )+ &)
(Case 7)

Ao = —k% — 126 + 665 + 18] + 15667, + 180&;&7 — 24&;€7 + 288,£,

— 60E7¢; + 12626 + 726,67 + 6\/ 228067€;€7 — 900£7€3¢; + 3480626 ¢;
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—112656,€ + 1148672, + 100861 €,€5 + 1712636267 — 1080€3¢,E7
—168¢;6767 — 23261€;6; + 10566/ €2 4 18067¢; 4 15667 €7 + 726,
+3665¢3 + 7366767 + 52608 — A€ZET + T6EED — 86D + 1166 1¢2
+A0E0€E; — 8E2& + &P + €9 + 480 — 44glep + 15687

5.3.7. Second Melnikov’s conditions. We have to prove that the

second Melnikov condition holds, namely that
(5.30) (W, V) + A — A #0

for all v € Z3, where M\, \;, are the eigenvalues of the matrices A°, A2
corresponding to k = (h1, k1), h = (hg, ko) with [ € X9, X572, Each of these
matrices has two eigenvalues \; = a; = /b;, hence with the difference A\, — A,
we denote the four possible differences of the two couples. We can only
consider the condition

(5.31) (W= wo, ) + Al — An

where XZ = \; — 42, since the rest is the constant part. Call M; the 2 x 2
matrix with eigenvalues ;.

Recall the tensor product between matrices: given A, B 2 X 2-matrices,

b1 b
(5.32) A (@1 0 g [t 0
az1 922 b21 b22

then the product is 4 x 4—matrix A x B with elements

a11bir  aibiz  aiebin  aizbiz
(5.33) Ax B - ajrbar  airbay  ai2ber  aizbeo
a1b11  az1bi2  agebin  asbiz
az1ba1  azibay  agbor  asabeo
Important fact: called ai,as the eigenvalues of A and b1, by the eigenvalues
of B, then the eigenvalues of the matrix A x I —1I x B, where [ is the identity
matrix, are their four differences a; — b1, a1 — bo, as — by, as — bs.
Call M; the 2 x 2-matrix that has \; as eigenvalues. Then the 4 x 4
matrix

M = (w —wp, V) X Iyxq + My X Ioxo — Ioyo X Mp

has (5.31) as eigenvalues. In order to prove that they are not identically zero
(and so the second Melnikov condition holds) it is sufficient to prove that
the determinant of M is not identically zero. Call D this determinant, that
2th7

is a 12""—order polynomial. We divide the various case of k (from [):

(Cases 1-2) Case (hi, k1) such that 2v; — 2v; + h — k = 0, (hg, k2) such that
2v; —v; — v +h —k = 0. In this case D is not identically zero



(Cases 1-3)

(Cases 1-4)

(Cases 2-3)

(Cases 2-4)
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for all the choice of the integer vector v € Z3. Set v = (A, B,C). I
calculate the derivative of the determinant. For example, 595—1_122D =0
if A2(A—2)(A+2)= O Then I can choose (4, B,C) = (0,0,0) or

— — — 7812 g
(0,1,—1) such that 8512 =0, 8510652 =0, aggoagjang 0 but

W;%D # 0. For A = —2,2 and any value of B, we have that

gg; =0, but %D £ 0.
Case (hi, k1) such that 2v; —2v; + h — k = 0, (ha, k) such that
v; — 3v; + 2vy; + h — k = 0. In this case D is not identically zero
for all the choice of the integer vector v € Z3. Set v = (A4, B,C). 1
 EmD =0
if C?(C' —2) = 0. Then I can choose (4, B,C) = (0,0,0), (-=2,2,0),

(—=1,—1,2) or (1,—2,3) such that géfQD =0, 65;3;;109 = 0 and
o =0 but

FE DSOS 1 WD 7 0.
Case (hi, k1) such that 2v; —2v; + h — k = 0, (ha, k) such that
3v; —3v; +h—k=0.

In this case D is not identically zero for all the choice of the
integer vector v € Z3. Set v = (4, B C’). I calculate the derivative
, 8512 =0 if F* =0. Then I can
choose (A B,C) = (0,0,0), (1,—1 0) (3,-3,0) or (—2,2,0) such
that 12D =0, 8211;5?1) =0, 85?‘3720&71) — 0 but #;%OD £0.
Case (hl, k1) such that 2v; —v; — v+ h —k =0, (hg, k2) such that
v; —3v; +2v +h—k=0.

In this case D is not identically zero for all the choice of the
integer vector v € Z3. Set v = (4, B C’). I calculate the derivative
=0 if

calculate the derivative of the determinant. For example

of the determinant. For example

of the determinant. For example, -2 8512

A(A—1)(A+2)(A+1)=0.

Then for (A4, B) = (0,0), (1,-3), (=2,1) or (— 1 —2) and any value
of €' we have Sz D = 0, 5D = 0 bus 5265985 D #0.
Case (h1, k1) such that 2v; —v; —v +h—k = 0 (ha, ko) such that
3vi—3vj+h—k:0.

In this case D is not identically zero for all the choice of the
integer vector v € Z3. Set v = (A, B C). I calculate the derivative
=0 if

of the determinant. For example, 2 8512

AA-1)(A-3)(A+2) =0

. Then for (A, B) = (0,0), (1,—2) or (3, —3) and any value of C' we

=D =0,-2°—D=0but ~2-D +# 0.

12
have Fer > BEITIE; FET0ET



(Cases 3-4)

(Cases 1-5)

(Cases 1-6)

(Cases 1-7)

(Cases 2-5)

5.3. EXAMPLE: CASE m =3 71

Case (h1, k1) such that v; —3v; +2v;+h—k =0, (ha, k2) such that
3v; —3v; +h—k=0.

In this case D is not identically zero for all the choice of the inte-
ger vector v € Z3. Set v = (A B C). I calculate the derivative of the
, 8512 = 0if C?(C' +2)? = 0. Then I can
choose (A, B,C) = (0,0,0), (3 3 0), (2 0,-2) o (1 3,—2) such
that S D = 0, gt D = 0, 5 fevzen D = 0 but gealrser D £ 0.
Case (hy,k1) such that 2v; — 2v; + h — k = 0, (hg, k2) such that
v —2v; —v+h+k=0.

In this case D is not identically zero for all the choice of the
integer vector v € Z3. Set v = (A, B C’) I calculate the derivative
, 85121) =0if C2(C+1)* = 0.
I can choose (A,B,C) = (0,0,0), ( 2,0,0), (—2,2,0), (0,2,0),
(1,1,-1), (=1,1,-1), (~=1,3,—1) or (1,3,—1) such that gngD =
0, %D = 0, gervgez D = 0 but WD £ 0.

Case (hi, k1) such that 2v; —2v; + h — k = 0, (hg, k) such that
20; — 205 — 20+ h + k = 0.

In this case D is not identically zero for all the choice of the in-
teger vector v € Z3. Set v = (A, B C). I calculate the derivative of
: 8512 =0if C*(C 42)* = 0. Then
I can choose (A,B,C) = (0,0, O) (2,0,0), (-2,0,0), (—2,2,0),
(2,2,0), (2,0,-2), (=2,0,—2), (0,0,—2),(0, =2, —2), (2,2, —2) or

determinant. For example, 2

of the determinant. For example

the determinant. For example

(=2, —2,—2) such that 6512D =0, 36?512952 =0, gélfQD = 0 but
12
85?35?%21) 7 0.

Case (hi, k1) such that 2v; —2v; + h — k = 0, (ha, k) such that
2v; —vj =3 +h+k=0.

In this case D is not identically zero for all the choice of the inte-
ger vector v € Z3. Set v = (A, B, C). I calculate the derivative of the
determinant. For example, 59512 D =0if C?(C +3)? = 0. Then I can
choose (A, B,C) = (0,0,0), (-2, 2 ,0), (0,1, -3), (2,—1,-3) such
that gg—;p =0, 85285101) =0, W = 0 but WD £ 0.
Case (hi, k1) such that 2v; —vj — v +h—Fk =0, (ha, k2) such that
v —2v; —v+h+k=0.

In this case D is not identically zero for all the choice of the
integer vector v € Z3. Set v = (4, B C’). I calculate the derivative

of the determinant. For example =0 if

9 8512
c*Cc-1)(C+1)=0.



(Cases 2-6)

(Cases 2-7)

(Cases 3-5)

(Cases 3-6)
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Then I can choose (4, B C) = (0,0,0), (—1,1,0), (—2,1,1) or

(912 812 o (912
0 <D #0.

9€:0¢708}
Case (h1, k1) such that 2v; —v; —v; +h —k =0, (hg, k2) such that
2vi—2vj—2vl+h+k20.

In this case D is not identically zero for all the choice of the
integer vector v € Z3. Set v = (A, B C). I calculate the derivative
=0if

of the determinant. For example, 2 8512

A%2(A—-2)(A+2)=0.
Then I can choose (4, B,C) = (0,0,0), (0,0,—1), (0,—1,—1) or

(0,—1,0), (2,—2,—2) or (—2,1,1) such that ‘ZIQD =0, 8588§4D =
012
0, geiver D = 0 but 5esbesex D #0.

Case (h1, k1) such that 2v; —v; —v; +h —k =0, (hg, k2) such that
2v; —vj =3 +h+k=0.

In this case D is not identically zero for all the choice of the
integer vector v € Z3. Set v = (A, B C). I calculate the derivative
=0if

of the determinant. For example, -2 8512

A?2(A—-2)(A+2)=0.

Then I can choose (A, B,C) = (2,—1,—3), value that cancels the
first factor, or (A4, B,C) = (0,0,0), value that cancels the second
factor, or (A, B,C) = (0,0, —2), value that cancels the third factor,
or (A,B,C) = (— 2, 1,1), value that cancels the fourth factor, such
that S D = 0, gebse D = 0, gltrggs = 0 but gerdpe e # 0.
Case (h1, k1) such that v; —3v; + 21}1 +h—k =0, (hg, ka) such that
v, —2v; —v+h+k=0.
In this case D is not identically zero for all the choice of the
integer vector v € Z3. Set v = (A, B C). I calculate the derivative
=0if

of the determinant. For example, 2 8512

C(C+3)(C+2)(C+1)=0

Then I can choose (A, B,C) = (0,1,-3), (1,-2,-1), (—1,3,-2)

or (0,0,0) such that (,;’ZIQD =0, 65?{;;111) = o,ag—;lwp = 0 but
07D #0.

9€:0¢70€]
Case (h1, k1) such that v; —3v; +2v;+h—k =0, (ha, k2) such that
2vi—2vj—2vl+h+k20.

In this case D is not identically zero for all the choice of the
integer vector v € Z3. Set v = (A, B, C). I calculate the derivative



(Cases 3-7)

(Cases 4-5)

(Cases 4-6)

(Cases 4-7)

5.3. EXAMPLE: CASE m =3 73

of the determinant. For example, 2 8512 =0 if

A(A-1)(A-2)(A+1)=0.

Then I can choose (4, B,C) = (2,—2,-2), (0,0,0), (1,1,—4) or

12 12 12
(—1,3, —2) such that 59512D = 0, 85?1—85]1) = 0, #@D = 0 but
0> D #0.

Case (h1, k1) such that v; —3v; 4+ 2v; +h —k = 0, (h, k2) such that
2v; —vj =3y +h+k=0.

In this case D is not identically zero for all the choice of the
integer vector v € Z3. Set v = (A, B C). I calculate the derivative
=0 if

of the determinant. For example, 2 8512

A(A-1)(A-2)(A+1) =0.

Then I can choose (4, B,C) = (2,—1,-3), (0,0,0), (1,2,-5) or

(A,B,C) = (-1,3, —2)Such that 2D = 0, 65{?1125]0 = 0 and
seger D = 0 but gelemse D # 0.

Case (hl,k:l) such that 3v; —3v; + h—k =0, (hg, k2) such that
v —2v;—v+h+k=0.

In this case D is not identically zero for all the choice of the
integer vector v € Z3. Set v = (4, B C’). I calculate the derivative

of the determinant. For example =0ifC3(C+1)*=0.1

) 8512
can choose (A, B,C) = (1,-2,-1), (— 2,1, 1), (0,0,0) o ( 3,3,0)
812 o (912 o 812 o
such that @D =0, —agfaglloD =0, 85?651 =0 but 852852651 D #
0.

Case (hi, k1) such that 3v; —3v; + h — k = 0, (h, k) such that
20, —2v; = 2u+h+k=0.

In this case D is not identically zero for all the choice of the
integer vector v € Z3. Set v = (4, B C’). I calculate the derivative
=0if

of the determinant. For example, -2 8512

AA=2)(A+3)(A+1)=0

Then I can choose (A4, B,C) = (— 1,1,—2) (3,3, 0), (2, —2,-2)
or = (0,0,0) such that (%—;D =0, 851185 D=0 =0 but
812
sessemer 7 DO.
Case (h1, k1) such that 3v; — 3v; + h — k = 0, (hg, k2) such that
QUi—Uj—?)Ul—I—h—i-k‘:O.
In this case D is not identically zero for all the choice of the
integer vector v € Z3. Set v = (A, B, C). I calculate the derivative

) 8510852



(Cases 5-6)

(Cases 5-7)

(Cases 6-7)
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of the determinant. For example, 2 8512 =0 if

AA=-2)(A+3)(A+1)=0

Then I can choose (4, B,C) = (-1,2,-3), (-3,3,0), (2,—-1,-3)
or (0,0,0), value that cancels the fourth factor, such that 07 D=

8512
0, geireD =0, %?Tlgg = 0 but %gggaé £ 0.
Case (h1, k1) such that v; —2v; —v; +h +k =0, (hg, k2) such that
20, —2v; —2u+h+k=0.

In this case D is not identically zero for all the choice of the
integer vector v € Z3. Set v = (A, B C). I calculate the derivative
=0if

of the determinant. For example, -2 8512

CC-1)(C+2)(C+1)=0
Then I can choose (4, B,C) = (2,-2,-2), (0,0,0), (1,0,—1) or

012 o 912 . H12 B
(_2122 1) such that 512D 07 65285111-D = O’W = 0 but
0.
FE0E0E] 7

Case (h1, k1) such that v; — 2v; —v+h+k =0, (hg, k2) such that
2v; —vj =3y +h+k=0.

In this case D is not identically zero for all the choice of the
integer vector v € Z3. Set v = (4, B C’). I calculate the derivative
=0if

of the determinant. For example, -2 8512

C(C—1)(C+3)(C+2)=0

Then I can choose (A B ,C) = (2, 1 ,—3), (-1, 2 1) (1,1,-2)
r (0,0,0) such that D =0 D=0 = 0 but

12
5 352359 # 0.
Case (hi1,k1) such that 2v; — 2v; — 2y + h + k = 0, (hg, k2) such
that 2v; —v; —3vu +h+k =0.

In this case D is not identically zero for all the choice of the
integer vector v € Z3. Set v = (A, B, C). I calculate the derivative

=0if

(9512 9 (95 (9511 9 (9528510

of the determinant. For example, 851122

C(C —2)(C +3)(C+1) =0.

Then I can choose (A, B,C) = (2,—1,—-3) or (—2,2,2) such that

812 o 812 o 812 . 812
@D = 0, mD - 0, W =0 but 856854852 75 0
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