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To the memory of my father 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 
Quello che ci tocca e così facendo ci 

indirizza è ciò che ha una 

applicazione. Sento incombere 

l’arrivo di un’ondata di grande 

pulizia, un’imminente precisione che 

già schiuma a tutti gli angoli del 

significato. Sento l’odore del 

cambiamento, di un sollievo pagato a 

caro prezzo, come l’odore di muffa 

che preannuncia la pioggia estiva. 

Una nuova era e una nuova 

concezione della bellezza come vasta 

gamma, non come luogo preciso. 

Basta con i concetti unioggettivi, le 

contemplazioni, il caldo respiro di 

trifoglio, i petti ansimanti, la storia 

come simbolo, i colossi; basta con 

l’uomo - pugno alla fronte o palmo al 

décollté - inteso come palpitante, 

scalpitante, surriscaldata Natura, 

essa stessa a sua volta immaginata 

come colorata, dotata di forma, 

carica di odore, attributrice di 

significato grazie alle sue qualità. 

Basta con le qualità. Basta con le 

metafore. Numeri di Gödel, 

grammatica svincolata dal contesto, 

automi finiti, funzioni e spettri di 

correlazione. Non si tratterà più di 

essere sensibilmente qui, ma 

casualmente, efficacemente qui. Qui 

nella maniera più intima possibile... 
 

“Da una parte e dall’altra” 

 

David Foster Wallace  

21/2/1962 – 12/9/2008 
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Introduction 
 

I.1 Research Aims and Objectives 
 

In recent years the development of the applications in the field of 

telecommunications, data processing, control, renewable energy 

generation, consumer and automotive electronics determined the need 

for increasingly complex systems, also in shorter time to meet the 

growing market demand. 

The increasing complexity is mainly due to the mixed nature of 

these systems that must be developed to accommodate the new 

functionalities and to satisfy the more stringent performance 

requirements of the emerging applications. This means a more 

complex design and verification process. 

The key to managing the increased design complexity is a 

structured and integrated design methodology which allows the 

sharing of different circuit implementations that can be at 

transistor-level and/or at a higher level. This latter complies with the 

possibility of using hardware description languages (HDL) such as 

Verilog and VHDL for the digital blocks, VerilogA (the analog 

language patterned after Verilog) for the analog part and Verilog-AMS 

that combines Verilog and Verilog-A into an Mixed Signal-HDL that 

is a super-set of both seed languages. 

In order to expedite the mixed systems design process it is 

necessary to provide: an integrated design methodology; a suitable 

supporting tool able to manage the entire design process and design 

complexity and its successive verification. It is essential that the 

different system blocks (power, analog, digital), described at different 

level of abstraction, can be co-simulated in the same design context. 

This capability is referred to as mixed-level simulation and permits to 

establish that the blocks function as designed in the overall system 

allowing to verify their effect on the overall performance. Hence, the 

use of mixed-level simulation dramatically improves the designer 

ability to verify complex circuits and also reduces the time-to-market. 

One of the objectives of this research is to design a mixed system 

application referred to the control of a coupled step-up dc-dc 

converter. In this case it is very important that the different system 



blocks are developed in an integrated design context. This latter 

consists of a power stage designed at transistor-level, also including 

accurate power device models, and the analog controller implemented 

using VerilogA modules. Since digital controllers are becoming very 

attractive in dc-dc converters for their inherently lower sensitivity to 

process and parameter variations, programmability, ability to 

implement sophisticated control schemes, and ease of integration with 

other digital systems, a digital controller has been also implemented 

using VerilogA-VerilogAMS modules. In fact, in the current literature, 

the research focus has moved to more sophisticated control 

approaches, where the design of custom integrated digital controllers 

is presented like a viable solution for the next generation of high 

performance power supplies. 

Thus, in this dissertation it will be presented a detailed design of a 

Flash Analog-to-Digital Converter (ADC). Generally, an ADC plays a 

crucial role in mixed system because of its ability to link analog with 

digital world. The designed ADC provides medium-high resolution 

associated to high-speed performance. This makes it useful not only 

for the control application aforementioned but also for applications 

with huge requirements in terms of speed and signal bandwidth. 

The entire design flow of the overall system has been conducted in 

the Cadence Design Environment that also provides the ability to 

mixed-level simulations. Furthermore, the technology process used for 

the ADC design is the IHP BiCMOS 0.25 µm by using 50 GHz NPN 

HBT devices. 

This dissertation is a study into integrated circuit design, mixed 

signal architecture, power electronics design, and control strategy 

implementation. The study is an attempt to address the ever evolving 

challenges of integration that affects the mixed-systems design and 

verification. 

 

I.2  Thesis Organization 
 

This thesis is organized into four chapters. 

 Subsequent to the Introduction, Chapter 1 presents an overview of 

the analog-to-digital conversion process. Then, the most relevant ADC 

performance metrics are reported; their accurate knowledge is 

fundamental in order to evaluate and to compare the ADCs 



                                                                                                                 

performance. Next, a brief description of the most popular ADC 

topologies is reported, with their advantages and disadvantages. 

Additionally, the fundamental theoretical limitations to ADC’s 

performances are detailed. Finally, a comparison of different ADC 

topologies, with an extensive survey of the state-of-the-art, is 

presented.  

 Chapter 2 looks at the gateway between analog and digital 

domain, the ADC. The detailed design of the ADC’s basic circuits, 

and their main specifications, in order to better understand their 

impact on the overall performances, are presented. Two different 

architectures of the track-and-hold amplifier are described and 

designed by using two classical switch topologies: diode-bridge and 

switched-emitter-follower. Then, an improved bipolar implementation 

of a clocked comparator is presented. Next, it is described a novel 

high-speed resistor ladder architecture whose improved performances, 

in terms of increased speed and reduced non-linearity, when compared 

to the conventional topology are highlighted. Finally, four ADCs 

using the Flash topology, and also the Folding/Interpolating, are 

designed and appropriately tested by using not only the proposed 

resistor ladder but also the conventional and the one proposed by 

Kobayashi (i.e. the state-of-the-art for bipolar implementation). 

Numerical simulation results highlight the effectiveness of the 

proposed solution in increasing the effective resolution bandwidth 

(ERB) of the different ADC circuits that have been designed. 

 Chapter 3 discusses the design of a coupled-inductors step-up 

dc-dc converter and its benefits with respect to a conventional 

topology in terms of both voltage gain and efficiency. Then, an 

efficiency analysis of the converter is presented, providing a detailed 

analytical model of the power losses. Numerical results are in good 

agreement with the proposed analytical model showing that the 

proposed approach is promising for the analytical optimization of 

converter design.  

 Chapter 4 presents the implementation and verification of a 

suitable control strategy for dc-dc converters. The sliding mode 

control technique, derived from the variable structure systems theory, 

offers an alternative way to implement a control action which exploits 

the inherent variable structure nature of dc-dc converters. This chapter 

also presents the various aspects concerning the sliding mode 

controller, which includes the choice of state space variables and 



sliding surface, the existence properties and the selection of the 

control parameters.  

 Moreover, a constrained optimization problem is formulated in 

order to derive from a single algorithm the characteristic parameters of 

both coupled-inductor converter and sliding surface for guaranteeing 

the stability requirements, even in presence of large load variations. 

 Furthermore, the implementation of both analog and digital 

controllers in high-level modules, using hardware description 

language, is described. Finally, the full system derived from a single 

design flow, including power, analog, digital circuits is verified 

through mixed-level simulations, in order to confirm the validity of 

the proposed converter analysis and design methodology. Numerical 

simulation results confirm the good performance of the analog and 

digital controller and makes promising the use of IC ADC developed 

in this work. 

 Finally, the conclusions of this work are drawn, and the possibility 

of future work ensuing this dissertation is discussed. 

  



Chapter 1 
 

Analog to Digital Converter (ADC) 
 

Analog-to-digital converters (ADCs) provide the gateway between 

analog domain and digital world [1]. ADCs translate analog 

quantities, which are characteristic of most phenomena in the “real 

world,” to digital language, used in information processing, 

computing, data transmission, and control systems [2]. The 

relationships between inputs and outputs ADC’s are shown in Fig. 1.1. 

 

 
Fig. 1.1. Analog-to-Digital Converter input and output definitions. 

 

A data converter performs a transformation of signals: from 

continuous-time and continuous-amplitude to discrete-time and 

quantized-amplitude [3]. Hence, a basic operation of the ADC is 

described by the four elementary blocks in Fig. 1.2. The analog input 

is firstly filtered to avoid aliasing, then the filter output is sampled, 

producing a discrete-time signal. The amplitude of this last signal is 

quantized with a level selected from a set of fixed references, thus 

generating a quantized-amplitude signal. Next, a digital representation 

of that level is available to the output. 

 

 
Fig. 1.2. Block diagram of the basic functions of an ADC. 

 

Hence, an ADC produces a digital output as a function of the 

analog input. The input can assume an infinite number of values, 
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while the output is selected from only a finite set of codes depending 

on the converter’s output word length (the ADC’s resolution). 

 

1.1 Sampling 

 

A sampler transforms a continuous-time signal into its sampled-data 

equivalent. An ideal sampler yields a sequence of delta functions 

whose amplitude equals the signal at the sampling times. For ideal 

uniform sampling with period Ts the output of a sampler is 

 ( ) ( ) ( ) ( )

n

s s s s

n

x t x nT x t t nT





     (1.1) 

 Eq.(1.1) is the mathematical description of the sampled  signal and 

outlines the inherent non-linearity of the sampling process (the input is 

multiplied by an impulse train). So, as shown in Fig. 1.3, sampling a 

signal is equivalent to the mixing of the signal with a train of deltas 

[3].  

 

 
Fig. 1.3. Ideal sampler and its non-linear equivalent processing. 

 

The pulses represent the input only at the exact sampling times 

(nTs) as shown in Fig. 1.4. 
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Fig. 1.4. Continuous time signal (left) and its sampled data representation (right). 

 

Moreover, using the description of the sampling signal in the 

frequency domain, the time sequence of samples xs(t) of the 

continuous function x(t) is described in the frequency domain as Xs(f):  

 
1 1

( ) ( ) ( )

k k

s s

s s sk k

k
X f X f X f kf

T T T

 

 

      (1.2) 

A band-limited (fB is referred as signal bandwidth, BW) input 

signal is connected to only one spectrum band in the frequency 

domain X(f) as shown in Fig. 1.5.a. By sampling this signal with a 

sequence of Dirac-pulses with a repetition rate (fs = 1/Ts) a number of 

replica of the original spectral band X(f) are created on either side of 

each multiple of the sampling rate fs (Fig. 1.5.b). Note that from one 

input spectrum a set of infinite spectra is created so disclosing once 

more the non-linearity of the sampling operation. 

 

 
Fig. 1.5. a) Analog signal and b), c) its sampled version in the frequency domain. 

 

A significant target is the possibility to recovery the original 

continuous-time input signal from his sampled version without loss of 

information. 

Assume that the spectrum of the input signal is the one of Fig. 

1.5.a, while the sampled spectrum is shown in Fig. 1.5.b. 
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 Half the sampling frequency, fs/2=1/2Ts, is often named the 

Nyquist frequency. The frequency interval [0, fs/2] is referred to as the 

Nyquist band (or band-base) while frequency intervals, [fs/2, fs], [fs, 

3fs/2], are named the second and third Nyquist zones, and so forth. 

Since the spectrum in all Nyquist zones is the same it is sufficient to 

focus only on the band-base, [0, fs/2]. When bilateral spectra are 

considered the frequency range of interest at becomes [-fs/2, fs/2]. 

If the sampling frequency is at least twice the signal bandwidth, 

fs>2fB, then the scaled replicas of X(f) shifted by the multiples of fs 

will not overlap (Fig. 1.5.b), so assuring an accurate representation of 

the original analog signal through a low-pass filtering action. 

If the sampling frequency is lower than twice the signal 

bandwidth, then the replicas of X(f) will partially overlap and modify 

the resulting spectrum, as shown in Fig. 1.5.c. This is the well-known 

phenomenon called “aliasing”. A bandwidth larger than half of the 

sample rate will cause the alias-band to mix up with the base band, so 

it is no more possible to reconstruct uniquely the original signal. 

The limitation on the value of the sampling frequency is known as 

the “Nyquist criterion”:  

“If a function contains no frequencies higher than BW cycles per 

second, it is completely determined by giving its ordinates at a series 

of points spaced 1/2 BW seconds apart” [4]. 

As beforehand, the mathematical relation between signal 

bandwidth fB and sampling rate fs resulting from the “Nyquist 

criterion” is: 

 2s Bf f  (1.3) 

 

Eq. (1.3) outlines that the signal bandwidth is limited by the 

sample rate. Furthermore, it is possible to consider a sampled signal 

band that is entirely located in a higher Nyquist zone (see Fig. 1.6). If 

this sampled signal band is bounded inside one of the Nyquist zones, 

the various spectrum replicas do not overlap one another. 

Thus, the sampled signal frequencies may lie in any unique 

Nyquist zone, and the image falling into the first Nyquist zone is still 

an accurate representation of the original signal (with the exception of 

the frequency reversal that occurs when the signals are located in even 

Nyquist zones).  
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Fig. 1.6. Frequency translation between Nyquist zones. 

 

The property that also a frequency range above the sample rate is 

properly sampled and generates copies around all multiples of the 

sample rate, is in some communication systems used to down-

modulate or down-sample signals. This technique is normally used to 

bring high-frequency spectra into the band-base and this method is 

also known as under-sampling, harmonic sampling, IF sampling. 

Finally, it can be stated a new version of the “Nyquist criterion”: 

“A signal must be sampled at a rate equal to or greater than twice 

its bandwidth in order to preserve all the information content.” 

It is worth to highlight that there is no constraint on the absolute 

location of the band of sampled signal within the frequency spectrum 

relative to the sampling frequency. The only constraint is that the band 

of sampled signal be restrict to a single Nyquist zone, so avoiding the 

replicas overlap.  

 In conclusion, the extended “Nyquist criterion” only forces the 

input signal to be band-limited and strictly enclosed in a single 

Nyquist zone. Therefore, an ADC is preceded by a band-limiting 

filter: the anti-aliasing filter. This filter prevents the components 

outside the desired frequency range to be sampled and to mix up with 

the signals. This condition must be verified not only for the signal, but 

also for noise and interferences. Noise has an unpredictable spectrum 

and can have components at any frequency. The same is true for 

interferences. Therefore, it is necessary to remove out of band 

interferences whose folding would corrupt the signal band. A filter 
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action effected before the sample action achieves this result. The 

frequency response of the filter should not modify the signal band and 

reject the out-of-band interferences.  

An implicit assumption for the Nyquist criterion is that the 

bandwidth of interest is filled with relevant information. 

 

1.2 Quantization 

 

A quantizer converts a sampled data signal from continuous level to 

discrete level.  In particular, the quantizer converts a continuous range 

of input amplitude levels into a finite set of discrete digital code 

words. Thus, the ADC must approximate each input level with one of 

these codes. Firstly, it is generated a finite set of reference levels 

corresponding to each code, then the input signal is compared with 

each reference, next it is selected the reference (and the corresponding 

code) closest to the input level. 

Fig. 1.7.a depicts the ideal 3-bits ADC input/output characteristic. 

The transfer characteristic therefore consists of eight horizontal steps.  

The quantizing process means that a straight line representing the 

relationship between the input and the output of a linear analog system 

is replaced by a transfer characteristic that is staircase-like. 

 The dynamic range of the quantizer is divided into a number of 

equal quantization intervals (uniform quantization), each of which is 

represented by a given analog amplitude. The quantizer modifies the 

input amplitude into a value that represents which quantization 

interval it resides in. Often the value representing a quantization 

interval is the mid-point of the interval. In this case, the output is 

assigned to a discrete value selected from a finite set of representation 

levels aligned with the treads of the staircase. In Fig. 1.7.a is shown 

the transfer characteristic of uniform quantizer for mid-tread type.  
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Fig. 1.7. a) Ideal input-output characteristics for a 3-bit quantizer. b) Quantization 

error for a 3-bit quantizer. 

 

The range of the quantizer is XFS=Xmax – Xmin, the analog full-scale. 

Assuming M as the number of representation levels, it can be defined 

the quantization step Δ= XFS/M. This last is the separation between the 

decision thresholds (separation between the representation levels). 

Usually, the number of levels is a power of the base number “2”. 

The power N is the resolution of a conversion, and defines the number 

of levels to which an amplitude continuous signal can be rounded as 

2
N
. 

The step Δ= XFS/2
N
 is the Least Significant Bit (LSB). It means 

that the LSB of the digital output code changes when the analog input 

changes by XFS/2
N
.  

The ideal ADC transitions take place at 1/2 LSB above zero (Fig. 

1.7.a), and thereafter every LSB, until 1/2 LSB below analog full-

scale. Since the analog input to an ADC can take any value, but the 

digital output is quantized, there may be a difference of up to 1/2 LSB 

between the actual analog input and the exact value of the digital 

output. This difference is called “quantization error” and is denoted 

here as εQ. The quantization error spans from –Δ/2 to +Δ/2 (Fig. 

1.7.b), while outside the input dynamic range the output of the 

quantizer saturates to the two bounds and the quantization error 
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increases linearly in the positive or negative direction. Moreover, this 

error decreases as the resolution increases and its effect can be studied 

as an additive noise viewed at the output assuming that εQ is a random 

variable uniformly distributed between –Δ/2 and +Δ/2 (eq. (1.4)), and 

not correlated to the analog input [1]-[3]. 

 
1 ( 2, 2)

( )
0

Q

Q

if
p

otherwise

    
  


 (1.4) 

According to the above statement, even an ideal analog to digital 

conversion introduces a noise due to the quantization process. The 

power associated with this quantization noise is a fundamental limit to 

the quality of the process of analog-to-digital conversion. The impact 

of this error on the conversion can be stated by calculating the 

quantization noise power 

 

2 2 2
2

2

( )
12

Q

Q Q Q Q QP p d d



 

 
      

   (1.5) 

since  Δ= XFS/2
N
, it can be written 

 
2

212 2

FS
Q N

X
P 


 (1.6) 

The power of the quantization noise decreases when the number of 

bits increases. Ideally, the quantization error goes to zero when the 

number of bits goes up to infinite. 

 

1.3 ADC performance metrics 

 

The design of an ADC requires an accurate knowledge of its 

specifications since a large set of parameters describe the features of 

the static and dynamic operation of an ADC.  

 Therefore, in the following it will be defined a number of the 

fundamental metrics most frequently used for testing the ADCs. 
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1.3.1 Static Specifications 
 
The input- output characteristic represents the static behavior of an 

ADC, and in the ideal case, as shown in Fig. 1.7, is a staircase with 

steps uniformly distributed over the input dynamic range of the 

converter. An actual transfer characteristic (Fig. 1.8) shows deviations 

from the ideal transfer characteristic resulting in a distorted response. 

 

 
Fig. 1.8. Static ADC’s metrics. 

 

The following definitions describe the static behavior of ADC. 

 Offset: the offset is a shift for zero input or rather a shift from 

zero of the actual transfer characteristic with respect the ideal 

one. The offset can be measured in LSB, absolute value (volts 

or amperes) or as % of full-scale. 

 Gain: the gain error is the amount by which the slope of the 

straight line through the transfer characteristic deviates from 

the ideal value equal to 1. 

 Linearity error refers to the deviation of the actual threshold levels 

from their ideal values after offset and gain errors have been removed. 

 Differential Non-Linearity (DNL): the DNL error is the 

deviation of the actual step size from the ideal one (LSB size). 

Assuming that Xk is the transition point between successive 

codes k −1 and k, then the width of the bin k is Δr(k) = (Xk+1 − 

Xk); the differential non-linearity is 

 
( )

( ) r k
DNL k

 



 (1.7) 
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The maximum value of DNL characterizes the differential non-

linearity error of the ADC. This error is the maximum 

deviation, on the analog input axis, in the difference between 

two consecutive code transitions and the ideal width of 1 LSB. 

 Integral Non-Linearity (INL): the INL error is the measure of 

the deviation of the actual ADC’s transfer characteristic from a 

straight line passing through its end points (endpoint-fit line). 

It can be write [3]: 

 
1

( ) (1 ) ( )

k

i

INL k G DNL i



    (1.8) 

where G is the gain error. 

The overall plot is called INL profile. The maximum value of INL 

curve characterizes the integral non-linearity error of the ADC. When 

the INL is less than ±0.5LSB, the converter behavior is monotonic. 

This last condition guarantees that no missing codes will be present in 

the conversion process [5]. Both the INL and the DNL can be 

measured in LSB, absolute value (volts or amperes) or as % of full-

scale. 

 

1.3.2 Dynamic Specifications 
 

Dynamic converter parameters provide information regarding noise, 

distortion, dynamic linearity, etc. These  parameters depend on both 

signal frequency and amplitude, thus they are usually obtained with a 

full-scale input signal. The following metrics are the principal terms 

used to determine the dynamic behavior of the converter. 

 Signal-to-Noise Ratio (SNR): the SNR is the ratio of the signal 

power to the noise power (noise produced by the quantization 

error and the noise of circuit). It can be expressed in decibel 

(dB) as 

 1010log ( )
signal

dB

noise

P
SNR

P
  (1.9) 

Usually the SNR is measured for a sinusoidal input. Assuming 

that the maximum signal amplitude is equal to half the full-

scale (XFS/2) over the entire analog range (XFS): 
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FS FS
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s

X X
P f t dt

T

 
     (1.10) 

If the noise source is the inherent quantization noise, recalling 

eq.(1.6), (1.10), eq.(1.9) can be easily rewritten in the 

theoretical formula  

 (6.02 1.76)dBSNR N dB   (1.11) 

This last represents a fundamental relation between the 

maximum reachable SNR and the number of bits of the 

quantizer. In other words, the maximum SNR represented by a 

digital word of N bits is (6.02∙N+1.76)dB.  

It’s clear that for every added bit (corresponding to a 

doubling of the number of quantization levels), the SNR 

increases of 6.02dB while the quantization noise power 

decrease of a factor 4. 

 Total Harmonic Distortion (THD): the n-th component HDn is 

equal to the ratio between the component at frequency n∙f and 

the fundamental at frequency f. Thus, it can be defined the 

THD as 

 2

n

n

THD HD   (1.12) 

the total harmonic distortion describes the degradation of the 

signal-to-distortion ratio caused by the harmonic distortion. It 

is usually expressed in dB. 

 Signal-to-Noise and Distortion Ratio (SNDR): the SNDR is the 

ratio of the signal power to the total error power including all 

spurs and harmonics. It is usually expressed in dB. 

 Spurious Free Dynamic Range (SFDR): the SFDR is the ratio 

between the signal fundamental component power and the 

largest spurious component power, within a certain frequency 

band. It takes into account an information similar to the THD, 

but with attention to the worst tone. 

 Effective Number Of Bits (ENOB): the ENOB can be easily 

obtained by reversing eq. (1.11) in which the SNR is replaced 

with the SNDR: 

 
1.76

6.02

dBSNDR
ENOB


  (1.13) 
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The ENOB allows an easy comparison of the real performance 

of the converters. 

 Effective Resolution Bandwidth (ERB): the ERB is the 

maximum analog input bandwidth at which the SNDR 

degrades of 3 dB, or equivalently at which the ENOB degrades 

of 0.5 LSB, with respect to its low frequency value. As a 

consequence, the ERB is a measure of the maximum analog 

input bandwidth that the converter can handle without a 

significant degradation of its performances. 

 Figure of Merit (FoM): the FoM was introduced to take into 

account the power dissipation, the resolution and the sampling 

frequency of a converter. In other words, it would be a 

parameter useful to measure the “power efficiency” of an 

ADC. A formulation was suggested in [6]  

 
2ENOB

s

D

f
F

P
  (1.14) 

where Walden introduces the ENOB instead of the stated 

number of bits as before (PD is the power dissipation).  

Walden's figure of merit correctly includes the performance 

limitation of signal-to-noise-and-distortion ratio (SNDR), but 

in most applications, A/D converters are expected to faithfully 

convert all input-signal frequencies below the Nyquist 

frequency (one half of the sampling rate fs), but many ADCs 

exhibit severe degradation of SNDR at frequencies well below 

the Nyquist frequency. For this reason, the literature has 

recently started using the ERB instead of the sampling rate in 

the equation for the figure of merit [7], [8]. This new figure of 

merit is 

 
2 2

D

ENOB

P
FoM

ERB
  (1.15) 

which represents energy for conversion step and it is usually 

expressed in pJ/conv-step. Generally, effective solution shows 

a FoM below 1 pJ/conv-step. 
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1.4 ADC’s architectures 

 

There are several well-known ADC architectures with different 

properties making them more or less suitable for a certain application. 

To choose the proper architecture, in the following only a brief 

description of the most popular topologies will be reported. 

 

1.4.1 Flash ADC 
 

The flash circuit topology is conceptually the simplest one. In fact, an 

analog-to-digital converter must identify the quantization interval that 

contains the input signal and a direct way to achieve this operation is 

to compare the input signal with all the transition points between 

adjacent quantization intervals. 

 The circuit (for a generic N bits converter) consists of 2
N
-1 

comparators, a resistor ladder of 2
N
 segments, and an encoder (see Fig. 

1.9). For a given input voltage, all the comparators below a certain 

point will have their input voltage larger than their reference voltage 

and a “1” logic output, and all the comparators above that point will 

have a reference voltage larger than the input voltage and a “0” logic 

output. The 2
N
-1 comparator outputs therefore behave in a way 

analogous to a mercury thermometer, and the output code is 

sometimes called a thermometer code. 

 

 
Fig. 1.9. Basic block diagram of N-bits Flash ADC. 
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The input signal is applied to all the comparators at once, so the 

thermometer output is delayed by only one comparator delay from the 

input. This last consideration emphasizes the parallel nature and the 

one-step operation of the flash converter, whose name comes from the 

fact that the output is available in just one clock cycle, like a “flash”. 

 It follows from the above discussion that a full-flash architecture 

has the advantage of inherently good high frequency behavior.  

The main drawback is the increase of complexity with the 

resolution. In fact, the number of comparators increases exponentially 

with resolution, and as a consequence increasing power dissipation 

and area occupation. Other drawbacks such as large non linear input 

capacitance, dc and ac deviation of the reference voltages generated 

by the ladder, etc can occur due to the extreme parallelism. 

 

1.4.2 Two-step and sub-ranging ADC 
 

The two-step and sub-ranging (Fig. 1.10) circuits (see also [9], [10]) 

provide a more relaxed trade-off between power, area, input 

capacitance with respect to a flash configuration, because they use a 

smaller number of comparators. Thus, multi-step topologies can be 

useful to achieve higher resolution. 

 

 
Fig. 1.10. Block diagram of two-step ADC. 

 

Fig. 1.10 shows the block scheme of a sub-ranging or a two-step 

architecture. It uses a sample-and-hold at the input to drive an M1 bits 

flash ADC which estimates the MSBs (coarse conversion). The DAC 

then converts the M1 bits back to an analog signal which is subtracted 

from the held input to give the coarse quantization error (also called 

the residue). Next, the residue is converted into digital code by a 

second M2 bits flash ADC which yields the LSB (fine conversion). 

The digital logic combines coarse and fine results to obtain the N= 

M1+M2 bits output. The difference between the two systems is that in 
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sub-ranging fashion no gain stage (gain equal to 1) is used between 

first and second converter. 

It could be noted that in two-step and sub-ranging converters the 

number of comparators is much smaller than a flash converter. In fact, 

if we consider M1= M2, then the number of comparators is          

2(2
M1

-1)<< 2
N
-1. 

 The drawback of these topologies is the need of more than one 

step (one clock cycle) to complete the conversion, so determining a 

reduced speed. 

 

1.4.3 Pipelined ADC 
 

A variant of multi-stage ADC is the one that uses a pipeline technique 

[1]. In Fig. 1.11 a block diagram of general pipeline architecture is 

presented. Each stage includes an ADC and an arithmetic unit called 

the multiplying digital-to-analog converter (MDAC) that performs a 

sample-and-hold (S/H) operation, coarse D/A conversion, subtraction, 

and amplification. 

 

 
Fig. 1.11. Block diagram of pipelined ADC. 

 

Usually, each stage performs a 1-bit conversion. Thus, a pipeline 

converter can be seen as the extreme form of sub-ranging, where the 

number of bits per subrange is reduced to just one. Thus, typically, a 

pipeline N bits converter has N stages. However, the number of bits at 

each stage can differ from one depending on design trade-offs. In fact, 

the pipeline can also generate multiple bits per stage [12], and the total 
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resolution of the pipeline architecture is given by the sum of the bits at 

each stage. 

From the above discussion, it is clear that the main advantage of 

pipeline configuration is the possible increase of resolution paid with a 

greater latency (associated with the output data). 

 

1.4.4 Folding/Interpolating ADC 
 

Better performances than full-flash topology can be achieved by using 

folding/interpolating technique [13]-[22]. This technique alleviates the 

problems of flash configuration (large area, high power dissipation), 

while maintaining the one-step nature of flash converter.  

 Fig. 1.12 shows a standard block diagram of a folding ADC. It 

consists of a parallel operating coarse flash converter and a fine flash 

converter. The coarse flash converter directly quantizes the input 

signal, whereas the fine flash converter is preceded by the analog 

folding preprocessing (folder circuit). 

 

 
Fig. 1.12. Block diagram of Folding ADC. 

 

The folding architecture can be considered as an evolution of flash 

and two-step architectures. In a two-step the signal conversion is split 

into two or more clock cycles, while in a folding converter, the signal 

conversion consists of a coarse and a fine conversion stage, but these 

conversions are conducted in parallel. This gives a folding ADC the 

same maximum clock frequency that can be achieved with full-flash 

ADC. 

The total resolution of the folding ADC is N = NMSB + NLSB , 

where NMSB and NLSB are the numbers of bits resolved in coarse and 

fine quantizers, respectively. This partitioning reduces the total 
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number of comparators. An ADC that employs the folding technique 

only requires 2
N
/FF comparators where FF is the number of folds in 

each folding signal (folding factor) or rather the number of zero-

crossing for each folder.  

The basic function performed by the folder is the conversion of the 

input signal into a number of sinusoid-like output signals. Each 

folding amplifier generates a number FF of zero-crossings, 

equidistantly spaced over the input range. The polarity of the output 

signal changes each time the input voltage reaches a reference voltage 

value. In this way, the input signal is “folded” at each reference 

voltage. Thus, only the signs of the folding signals are used to 

determine the value of the least significant bits. To ensure that the 

ADC achieves the required resolution, accurate zero-crossing points 

must be generated by the folding circuits.  

It is obvious that if the input signal goes from zero to full-scale, 

the output goes from minimum to maximum FF times. Thus, the 

output frequency of the folder is FF times the input frequency. 

Consequently, a high folding factor results in a reduced number of 

comparators, but it lowers the maximum input frequency of the 

converter. Thus, the choice of the degree of folding is a tradeoff 

between the reduction in the number of comparators and the increased 

speed of the folding signals. 

The folding amplifier is frequently built with differential pair in an 

wired-OR configuration [1] and higher performance are achieved in 

fully-differential structure. 

In order to reduce the amount of input circuitry, interpolation can 

be performed between the folding signals. The reduction in the input 

circuitry is equal to the interpolation factor (I), or the number of 

interpolations. 

Interpolation is employed to generate large quantity of folding 

waveforms. Folding A/D converters utilizing interpolation are called 

folding/interpolating ADC (Fig. 1.13). 

The interpolation technique can be used in a folding architecture 

by allowing multiple interpolators to take the place of the fine flash 

converter. The most common and simpler interpolation technique is 

based on resistive voltage division. 
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Fig. 1.13. Block diagram of Folding/Interpolating ADC. 

 

It is important that the shape of the sinusoid-like folded 

waveforms must exhibit high linearity around the zero-crossing points 

because linear interpolation between two adjacent folding signals is 

necessary. In fact, the linear portion of two interpolating folding 

waveforms must extend to the zero crossing point of each other to 

avoid error in the interpolated folding waveforms. The interpolatable 

region is half of the linear region of folding waveforms. 

It is important to have the zero crossings midway between the two 

zero crossings of the generating signals. 

The interpolation can be implemented using a resistive string 

because of its simplicity and power efficiency. Moreover, differential 

interpolation, applying the differential outputs of the folding 

amplifiers to a differential resistive strings, improves the accuracy of 

the converter. 

The advantage of interpolation in a folding converter is the 

reduced number of folding signals because deriving the needed further 

folding signals by interpolation itself. 

As an example, assume an N-bits converter. Suppose that it has 

chosen to obtain the K MSB and the residue (N-K) LSB by employing 

a coarse flash ADC and a folding/interpolating circuit, respectively. 

Then, a number of folders NF=2
K
/I is necessary. It is clear that the 

number of folders is reduced by a factor I with respect to a 

conventional folding technique. Each folder has a number of reference 

voltages equal to FF=2
N
/(I∙NF) and distant from each other VFS 

I∙NF/2
N
. 
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In conclusions, by using folding technique an ADC can be 

designed in which each comparator detects the zero transitions of the 

input signal through a number of quantization levels, thus reducing the 

total number of comparators required for a given resolution.  

The number of comparators is reduced by the number of times 

(FF) that the input signal is folded by the folding stages. However, 

each comparator requires its own folding signal, and each folding 

signal requires as many folding stages as the number of times the 

signal has been folded. The more efficient use of comparators is 

therefore offset by an increasing number of folders in a standard 

folding system. The number of folding stages can be reduced by 

interpolating between the outputs of folding stages to generate 

additional folding signals without the need for more folding stages. 

The interpolation stage in this way reduces the number of folding 

stages by the interpolation factor [23]. Thus, the folding/interpolating 

architecture results in a more compact low-power system than flash 

configuration.  

 

1.4.5 Time-interleaved ADC 
 

Time-interleaved techniques increase the conversion rate of an ADC 

by using a number of converters working in parallel for a 

simultaneous quantization of input samples [1], [3], [24]-[29]. A 

suitable combination of the results makes the operation equivalent to a 

single converter whose speed has been increased by a factor equal to 

the number of parallel elements. 

Fig. 1.14 shows a general block diagram of a time-interleaved 

architecture. It consists of N ADCs of K bits in parallel, an analog 

demultiplexer at the input side, and a digital multiplexer at the output. 

Thus, the overall sampling frequency is fs while each channel (sub-

ADC) operates at a frequency equal to fs/N. 

 During operation, the analog demultiplexer selects each channel in 

turn to process the analog input signal. The corresponding digital 

multiplexer selects the digital output of the selected channel and forms 

an effectively high-speed ADC.  
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Fig. 1.14. Block diagram of Time-interleaved ADC. 

   

An advantage of this structure is that the overall sampling rate 

increases by a factor of N. 

The main drawback is that the performance of time-interleaved 

ADCs is sensitive to mismatches (offset, gain) among the channels. 

 

1.5 Limitations to ADC’s performances 

 

In addition to the quantization noise, the fundamental theoretical 

limitations to ADC performances are: 

• Sampling time jitter 

• Thermal noise 

• Comparator ambiguity 

• Heisenberg uncertainty principle 

 

1.5.1 Sampling time jitter 
 

In Section 1.1 it has been assumed that the sampling process was 

ideal. As a consequence, the sampled-data signal reproduces the input 

at the exact sampling-times. In real operation, sampling is affected by 

uncertainty in the clock. Also, the delay between the logic that 

generates the sampling phase and the effective sampling is in some 
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extent unpredictable. The combination of the two effects determines 

jitter in the actual sampling instants (see Fig. 1.15). 

 

 
Fig. 1.15. Sampling time jitter error. 

 

This phenomenon is known as “aperture jitter”, “aperture 

uncertainty” or “sampling jitter”, which is, in other words, the sample-

to-sample variation in the instant the switch opens [1], [5], [31]-[34]. 

This error affects the value of the sampled signal by an error that 

depends on both the jitter, and the rate-of-change of the input signal. 

For any given value of aperture jitter, the corresponding error 

increases as the input slew-rate increases. The effects of phase jitter on 

the external sampling clock (or the analog input for that matter) 

produce exactly the same type of error. 

Assuming a sinusoidal input ( ) sin( ) sin(2 )in in inx t A t A f t     where 

A is amplitude from zero to peak (half the full-scale). 

The error is  

 
( )

( ) ( ) cos( ) ( )

s

in
in s s in in s s

t nT

dx t
x nT nT A nT nT

dt 

        (1.16) 

which is a sampled-data quantity σ(nTs) amplified by A and modulated 

by a cosine at the input frequency [3]. The maximum error occurs 

when the input slope is maximum or rather at the zero crossing (cosine 

is equal to 1).  

 For a given rms jitter σt, the rms error is [30] 
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 2in
t t in

rms

dx
f A

dt
     (1.17) 

and the SNR purely due to the jitter is 

 1020log ( 2 )dB t inSNR f     (1.18) 

while the corresponding ENOB is 

 1020log ( 2 ) 1.76

6.02

t inf
ENOB

   
  (1.19) 

From eq. (1.19), it can be seen that “aperture jitter” places a 

fundamental limit on achievable resolution. In fact, fixing a jitter 

value, relation (1.19) states the maximum ENOB reachable at a certain 

input frequency. The worst case for the input frequency is equal to fs/2 

for base-band sampling, while is equal to fmax=fIF + fs/2 for IF 

sampling. Thus, eq. (1.19) can be rewritten as 

 10 max20log ( 2 ) 1.76

6.02

t f
ENOB

   
  (1.20) 

This relationship, plotted in Fig. 1.16 for two different values of jitter 

(1 ps, blue line; 100 fs, red line), shows that to achieve ENOB about 7 

the rms jitter must be keep lower than 1 ps. 

 

 
Fig. 1.16. ENOB versus fmax and jitter limitations. Blue line: jitter equal to 1 ps; red 

line: jitter equal to 100 fs. 

  

 It is worth highlighting that for low-frequency applications the 

effect of jitter is not relevant. If the input frequency increases, also the 
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noise referred to the jitter increases and the effect of jitter is no more 

negligible. 

 It should be noted that increasing fmax, ENOB decreases about 

1bit/octave (more than 3 bits/decade). Furthermore, a jitter equal to 

100 fs (red line in Fig. 1.16) imposes that in the GHz range of 

frequencies the maximum achievable resolution is lower than 10 bits. 

 Moreover, the three most important ADC architectures (flash, 

folded, pipeline) are labeled in Fig. 1.16. The ADC’s data reported in 

the IEEE Custom Integrated Circuits Conference (CICC), 

International Solid-State Circuits Conference (ISSCC), Journal of 

Solid-Sate Circuits (JSSC), Transactions on Circuits and Systems 

(TCAS), BiCMOS Circuits and Technology Meeting (BCTM), and 

Symposium on VLSI Circuits during the last decade, and where 

available, are plotted in Fig. 1.16 at the aim of comparison between 

different converter topologies. 

  

1.5.2 Thermal noise 
 

Thermal noise is another unavoidable limit to the ADC’s 

performances. 

In order to simplify the analysis, the sampling circuit presented in 

Fig. 1.17.a can be considered, an input voltage Vin charges a capacitor 

through a switch. At the sampling time the switch opens and the input 

voltage is held across the capacitor. 

 

 
Fig. 1.17. a) Basic model of a sampler, and b) noise circuit. 

 

In Fig. 1.17.b is shown the circuit including noise generator [3], 

[35]. The resistance R includes the on-resistance of the switch and the 

output resistance of the signal generator. The spectrum of the thermal 

noise due to R is white, 2

, 4n Rv kTR  (where k is the Boltzmann’s 

constant and T is the Kelvin temperature). The RC series provides a 

low-pass filter, thus the noise spectrum across the capacitor is colored 
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, 2

4
( )

1 ( )
n C

kTR
v

RC
 

 
 (1.21) 

Note that for a correct operation the time constant τ=RC must be 

much smaller than the sampling time Ts. As a consequence, when the 

switch is open, the capacitor holds not only the input voltage but also 

the noise. Thus, being the noise spectrum across C not band-limited, 

the aliasing phenomenon folds noise components from the higher 

Nyquist zones into base-band. As previously discussed, the cut-off 

frequency of the low-pass filter must be much larger than fs/2 and 

many spectrum components of relevant power are superimposed 

giving rise to an almost white resulting spectrum. Therefore, the total 

noise power stored on C when the switch goes off is 

 , 2

0

4
1 (2 )

n C

df kT
P kTR

fRC C



 
   (1.22) 

Observe that Pn,C does not depend on R. Increasing R raises the white 

noise floor but also improves the low-pass filtering action. The two 

effects compensate each other thus canceling the R dependency [3]. 

Taking into account the equation related to the capacitor charge, it 

can be easily derived the circuit settling time 

 /

2

t LSBV
e

V

  


 (1.23) 

where VLSB is the LSB expressed in volts and ΔV in the worst case can 

be considered equal to the full-scale input voltage VFS, thus eq. (1.23) 

can be rewritten as 

 / 2
( 1) ln 2

2 2
sett

ENOB
t LSB FS

sett

FS FS

V V
e t ENOB RC

V V

 
      (1.24) 

The settling time to guarantee the correct sampler operation must 

be at most equal to half the sampling time 

 
1

( 1) ln 2
2 s

ENOB RC
f

   (1.25) 

Substituting eq. (1.25) in (1.22) the noise power is 

  , 2 1 ln2n C sP kT R f ENOB       (1.26) 

Thus, equating the thermal noise power (1.26) to the quantization 

noise power (1.6) it can be obtained a relationship between ENOB and 

sampling frequency fs 



                                                                                                              29 

 
2

2 1
( 1) 2

12 2 ln 2

ENOB FS

s

V
ENOB
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  
 (1.27) 

 

1.5.3 Comparator ambiguity 
 

The comparator is a key element in the A/D conversion process. A 

comparator is essentially a pre-amplifier followed by a latch (see Fig. 

1.18). During the first phase the comparator amplifies the differential 

input voltage while during the latch phase the comparator multiplies 

the amplified input voltage by a growing exponential until the 

amplifier saturation, or until the end of the latch phase. 

 

 
Fig. 1.18. Typical comparator topology for A/D Converters. 

 

A metastability error occurs when the comparator output is 

ambiguous. It means that if the differential input is small, making the 

comparator takes a long time to produce a well-defined logic level,  

the output, at the end of the regenerative phase, cannot be interpreted 

unambiguously by the following digital circuit, thus determining an 

error in the output code. 

The equivalent gain of a regenerative comparator can be assumed 

to be 

 /

0
latcht

eqA A e


   (1.28) 

where t is the time duration of the latch phase while τlatch is the 

regenerative time constant. Neglecting the parasitic effects, the 

regenerative time constant can be approximated by 
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p

latch

m T

C

g f
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
 (1.29) 

where Cp is the capacitance at the regenerative node, and gm is the 

transconductance of the latch, while fT is the maximum obtainable 

unity gain bandwidth of the transconductance amplifier . Typically the 

latch period at most equals half of the sampling frequency 

 2st f  (1.30) 

thus producing a metastable error if the latch does not provide a well-

defined output in the required time. 

In the case of an uniform input over the voltage range of the 

comparator, the metastability error probability can be approximated 

by [31] 

 
0

/ 2
2

T

s

fENOB
FS eq fENOB

i

FS

V A
p e

V A




    (1.31) 

and the corresponding metastability error power (whatever output in 

metastable state) can be easily obtained as 

 
2

2 12
12

ENOBLSB
m i

V
P p     (1.32) 

 Thus, considering A0=1 and equating Pm to the quantization noise 

power (eq. (1.6)), it can be obtained a relationship, due to the 

comparator ambiguity, between the ENOB and the sampling 

frequency  

 2log ( ) 1

3

T sf f
e

ENOB



  (1.33) 

  

Thus, the metastable behavior of the comparator poses another 

fundamental limit on achievable resolution. It can be noted that when 

sampling frequency increases the ENOB reduces. 

 

1.5.4 Heisenberg uncertainty principle 
 

Heisenberg uncertainty principle is the ultimate limit dictated by 

physical laws, leaving a relevant and attractive margin to improve the 

conversion implementations [6]. 

The mathematical expression of Heisenberg uncertainty principle 

is 
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2

E t  


 (1.34) 

This relation states that the product of the uncertainties in position and 

momentum is always equal to or greater than one half of the reduced 

Planck constant (ħ = h/2π=1.054e-34 Js). The minimum energy that 

we want to resolve, in a time period of half the sampling period Ts/2, 

is referred to a signal with amplitude equal to half LSB. Thus, the 

corresponding energy can easily obtained 

 
2

2 2 1
2

2

ENOBFS

s

V
E

R f

      (1.35) 

 Substituting (1.35) in (1.34) it can be derived the following 

relation: 

 
2

2

2
2

4

ENOB FS

s

V

R f



 (1.36) 

that is another trade-off between maximum allowable resolution and 

the sampling frequency. It is worth to highlight that the Heisenberg 

limit is well beyond the current state-of-art. 

 

1.5.5 Comparison of converter topologies 
 

As discussed in the previous sections, thermal noise, comparator 

ambiguity, and Heisenberg uncertainty principle establish three 

fundamental upper limits to the converter performances. These limits, 

as seen, dictate a trade-off between the resolution, in terms of the 

effective number of bits (ENOB), and sample rate (fs). 

 In Fig. 1.19 are depicted the relations (1.27), (1.33), (1.36) for a 

full-scale voltage VFS=1, and, as in section 1.5.1, are also labeled the 

ADCs. Moreover, in Fig. 1.19 are also depicted the limitations 

imposed by the thermal noise (1.27) for R=50 Ω (green line) and 

R=1 kΩ (blue line), the comparator ambiguity (1.33) for fT=50 GHz 

(orange dashed line) and fT=250 GHz (purple dashed line), and the 

Heisenberg principle (1.36) (brown dashed line). 



32                                             Chapter 1 - Analog to Digital Converter 

 
Fig. 1.19. ENOB versus sampling frequency, and limitations imposed by thermal 

noise (solid lines), comparator ambiguity (orange and purple dashed lines), and 

Heisenberg principle (brown dashed line). 

  

 It can be note that for sample rates in the range of gigahertz 

frequencies, the maximum resolution is below 8 bits and the most 

popular topology is the flash one. It is even more visible in Fig. 1.20 

that shows the BiCMOS circuits only. 

 

 
Fig. 1.20. ENOB versus sampling frequency for BiCMOS circuits only. 
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 Thus, the choice of the flash topology is justified by the possibility 

to provide high resolution and high speed with high frequency input 

signal. Moreover, the flash circuit is a basic block in other converter 

implementations, such as folding&interpolating, that can improve the 

overall ADC’s performances. 

 Additionally, it must be considered that the technology process 

used for this work is the IHP 0.25 µm BiCMOS Si/SiGe, with a unity 

gain frequency of 50 GHz and supply voltage of 3.3-3.6 V. 

 

References 
 

[1] B. Razavi, “Principles of Data Conversion System Design”, IEEE 

Press, 1995. 

[2] W. Kester (Analog Devices), “Data Conversion Handbook”, 

Elsevier, 2005. 

[3] F. Maloberti, “Data converters”, Springer, 2007. 

[4] M.J.M Pelgrom, “Analog-to-Digital Conversion”, Springer, 2010. 

[5] R. van de Plassche, “CMOS Analog-to-Digital and Digital-to-

Analog Converters”, Kluwer, 2003. 

[6] R.H. Walden, “Analog-to-Digital Converter Survey and Analysis”, 

IEEE Journal on Selected Areas in Communications, vol. 17, no. 4, 

April 1999. 

[7] P. Scholtens, M. Vertregt, “A 6b 1.6GSample/s Flash ADC in 

0.18μm CMOS using Averaging Termination”, IEEE International 

Solid State Circuits Conference, Digest of Technical Papers, pp. 168-

169, February 2002. 

[8] G. Geelen, “A 6b 1.1GSample/s CMOS A/D Converter”, IEEE 

International Solid State Circuits Conference, Digest of Technical 

Papers, pp. 128-129, February 2001. 

[9] P. M. Figueiredo, et al., “A 90nm CMOS 1.2v 6b 1GS/s two-step 

subranging ADC”, IEEE ISSCC, Digest of Technical Papers, pp. 

2320-2329, February 2006. 

[10] D. J. Huber, et al., “A 10b 160MS/s 84mW 1V Subranging 

ADC in 90nm CMOS”, IEEE ISSCC, Digest of Technical Papers, pp. 

454-615, February 2007. 



34                                             Chapter 1 - Analog to Digital Converter 

[11] S. H. Lewis, et al, “A 10-b 20-Msample/s Analog-to-Digital 

Converter”,  IEEE Journal of Solid State Circuits (JSSC), vol. 27, no. 

3, March 1992. 

[12] A. M. A. Ali, et al., “A 14-bit 125 MS/s IF/RF Sampling 

Pipelined ADC With 100 dB SFDR and 50 fs Jitter”, IEEE JSSC, vol. 

41, no. 8, August 2006. 

[13] R.E.J. van de Grift, I.W.J.M. Rutten, M. van de Veen, “An 8 

bit video ADC incorporating folding and interpolation techniques”, 

IEEE JSSC, vol.SC-22, pp.944–953, Dec.1987. 

[14] M.P. Flynn, B. Sheahan, “A 400-Msample/s, 6-b CMOS 

folding and interpolating ADC”, IEEE JSSC, vol.33, no.12, 

pp.1932-1938, December 1998. 

[15] H. Pan, A. A. Abidi, “Signal Folding in A/D Converters”, 

IEEE Trans. on Circuits And Systems I: Regular Papers, vol.51, pp.3 

14, January 2004. 

[16] M. P. Flynn, D. J. Allstot, “CMOS folding A/D converters with 

current-mode interpolation”, IEEE JSSC, vol.31, no.9, pp.1248-1257, 

September 1996. 

[17] P. Vorenkamp, R. Roovers, “A 12 b, 60 MSample/s Cascaded 

Folding and Interpolating ADC”, IEEE JSSC, vol.32, no.12, pp.1876 

1886, December 1997. 

[18] F. Vessal, C.A.T. Salama, “An 8 Bit 2 Gsample/s Folding 

Interpolating Analog-to-Digital converter in SiGe Technology”, IEEE 

JSSC, vol.39, no.1, pp.238 241, January 2004. 

[19] H. Kobayashi et al., “Design Consideration for 

Folding/Interpolation ADC with SiGe HBT”, IEEE Instrum. and 

Meas. Tech. Conf., pp.1142 1147, May 1997. 

[20] H. Kobayashi et al., “A High Speed 6 Bit ADC Using SiGe 

HBT”, IEICE Trans. Fundamentals, vol.E81-A, no.3, pp.389 397, 

March 1998. 

[21] H. Kobayashi et al., “AC Performance Improvement of  

Folding/Interpolation ADC with SiGe HBT”, IEEE Instrumentation 

and Measurement Technology Conference (IMTC), pp.1385 1390, 

May 1998. 

[22] B. Nauta, G. W. Venes, “A 70-MS/s 110-mW 8-b CMOS 

Folding and Interpolating A/D Converter”, IEEE JSSC, vol.30, no.12, 

December 1995. 



                                                                                                              35 

[23] R. J. Van De Plassche, P. Baltus, “An 8-bit 100-MHz Full-

Nyquist Analog-to-Digita1 Converter”, IEEE JSSC, vol. 23, no. 6, 

December 1988.  

[24] S. M. Jamal, D. Fu, et al., “A 10-b 120-Msample/s Time-

Interleaved Analog-to-Digital Converter With Digital Background 

Calibration”, IEEE JSSC, vol. 37, no. 12, December 2002. 

[25] K. C. Dyer, et al., “An Analog Background Calibration 

Technique for Time-Interleaved Analog-to-Digital Converters”, IEEE 

JSSC, vol. 33, no. 12, December 1998. 

[26] S.  K. Gupta, et al., “A 1-GS/s 11-bit ADC With 55-dB SNDR, 

250-mW Power Realized by a High Bandwidth Scalable Time-

Interleaved Architecture”, IEEE JSSC, vol. 41, no. 12, December 

2006. 

[27] B. Yu, W. C. Black, Jr, “A 900MS/s 6b Interleaved CMOS 

Flash ADC”, IEEE Custom Integrated Circuits Conference (CICC), 

pp. 149-152, 2008. 

[28] Zwei-Mei Lee, et al., “A CMOS 15-Bit 125-MS/s Time-

Interleaved ADC with Digital Background Calibration”,  IEEE CICC, 

pp. 209-212, 2006.  

[29] K. El-Sankary, M. Sawan, “10-b 100-MS/s Two-Channel 

Time-Interleaved Pipelined ADC”, IEEE CICC, pp. 217-220, 2006. 

[30] M. Shinagawa, et al., “Jitter Analysis of High-speed Sampling 

Systems”, IEEE JSSC, vol. 25, no. 1, February 1990. 

[31] L. E. Larson, “High-speed Analog-to-Digital Conversion With 

GaAs Technology: Prospects, Trends and Obstacles”, IEEE 

International Symposium on Circuits And Systems (ISCAS), pp.2871-

2878, 1988. 

[32] H. Kobayashi, et al., “Aperture Jitter Effects in Wideband 

Sampling Systems”, IEEE IMTC, pp.880-885, 1999. 

[33] A. Zanchi, C. Samori, “Analysis and Characterization of the 

Effects of Clock Jitter in A/D Converters for Subsampling”, IEEE 

Transactions On Circuits And Systems-I (TCAS-I): Regular Papers, 

vol. 55, no. 2, March 2008. 

[34] A. Zanchi, F. Tsay, “A 16-bit 65-MS/s 3.3-V Pipeline ADC 

Core in SiGe BiCMOS With 78-dB SNR and 180-fs Jitter”, IEEE 

JSSC, vol. 40, no. 6, June 2005. 

[35] P. R. Gray, P. J. Hurst, S. H. Lewis, R. G. Meyer, “Analysis 

and Design of Analog Integrated Circuits”, Wiley & Sons, 2001. 



Chapter 2 
 

Flash ADC Design 
 

A generic block diagram of an 8-bits flash converter is shown in Fig. 

2.1. 

 

 
Fig. 2.1. Block diagram of an 8-bits Flash ADC. 

  

 It comprises a sample-and-hold amplifier (SHA, or S&H), the 

resistive ladder generating the suitable reference voltages, the 

comparators array and the logical circuits providing the digital output. 

 In the following sections, it will be described in details each one of 

the ADC’s basic circuits and their main specifications in order to 

better understand their impact on the overall performances. 

 

2.1 Sample-and-Hold and Track-and-Hold 

Amplifier 
 

Sample-and-hold amplifier plays a crucial role in the design of data 

acquisition interfaces, particularly analog-to-digital converters [1]-[3]. 

The design of SHAs is not simple because they must operate in the 

extreme conditions of performance envelope, thus achieving 
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simultaneously high linearity, high speed, large voltage swings, high 

drive capability, and low power dissipation. Moreover, in low-voltage 

design the analog sampling becomes more challenging because the 

limited headroom tightens the trade-offs between the performance 

metrics. 

A sample-and-hold (SHA) or track-and-hold (THA, or T&H) 

amplifier is a circuit frequently required in the ADC front-end to 

capture rapidly varying input signals. The function of the SHA is to 

sample the analog input signal and to hold that value while subsequent 

circuitry digitizes it. Although a SHA refers to a device which spends 

an infinitesimal time acquiring signals and a THA refers to a device 

which spends a finite time in this mode, common practice will be 

followed and the two terms will be used interchangeably throughout 

this discussion as well the terms sample and track. 

The main difference between SHA and THA is that the first holds 

the signal over a full period of sampling, while the THA holds the 

input signal only over a part of the sampling period (usually half the 

period) as shown in Fig. 2.2. 

 

 
Fig. 2.2. Different behavior of SHA and THA. 

 

The basic circuit diagram of a THA is shown in Fig. 2.3. It 

consists of an input amplifier, a switch, an hold capacitor, and an 

output buffer. 
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Fig. 2.3. Basic block diagram of THA. 

 

The track-and-hold function is realized through two different 

phases: the first phase is for the signal acquisition, the voltage on the 

capacitor follows the input signal (track phase), in the second phase 

the signal value remains fixed at its value at the moment of opening 

the switch and the capacitor retains the voltage present before it was 

disconnected from the input buffer (hold phase).  

The input buffer is useful to reduce the input load, so avoiding that 

the capacitance charge/discharge current could give rise to input 

disturbance. 

The output buffer decouples the following circuit from the hold 

capacitor Ch that retains dynamically the acquired voltage. 

Furthermore, it offers a high impedance to the hold capacitor to keep 

the held voltage from discharging prematurely. 

Several error sources are linked to the THA operation, depending 

on both static and dynamic behavior. The specifications, useful to 

understand the THA performances, are referred to its different 

operation modes (see Fig. 2.4). Harmonic distortion, hold mode feed-

through, and settling time essentially depend on the switch and input 

buffer performances. On the other hand, the output buffer 

performances impact on the droop-rate and the static non-linearity, 

besides on the circuit hold-time. 
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Fig. 2.4. THA terminologies. 

These specifications will be treated in more details in the 

following. 

Next sections are devoted to the study, analysis and design of two 

main THA circuit solutions that use the bipolar technology: diode-

bridge (DB) and switched emitter follower (SEF). 

 

2.2 Diode-Bridge (DB) 
 

A schematic diagram of the diode-bridge circuit in the single-ended 

configuration is presented in Fig. 2.5.  

 From now on we consider a peak-to-peak input voltage equal to 

1 V (±0.5 V), which means a full-scale input voltage VFS=1 

corresponding to a VLSB=974µV for a 10-bits converter. The 

considered signal input frequency is 1 GHz. 

The switch design uses an improved high-speed Schottky diode-

bridge to disconnect the output from the input and a hold capacitor to 

maintain that voltage [1], [3] (see Fig. 2.5). 

The bridge consists of four Schottky diodes (labeled as #1 in Fig. 

2.5). Furthermore, between nodes X and Y are present two other 

Schottky diodes (labeled as #2 in Fig. 2.5). These last two diodes are 
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Fig. 2.5. Schematic diagram of the diode-bridge with emitter-follower input buffer. 

 

off during the track phase, while during the hold phase are forward-

biased so assuring a “clamping” action on the X and Y nodes. This 

action improves the circuit behavior in terms of hold feed-through, as 

it will be explained in details in the following sub-sections. 

In the track mode 

 
12

1 1

 is on
1

 is off

X inDB D

Y inDB D

V V VQ
clk

Q V V V

 
   

  
 (2.1) 

where VinDB=VE is the voltage at the bridge input and VD1 is the 

voltage drop on the bridge’s diodes. In order to guarantee that clamp 

diodes are reverse-biased during the track mode, the following 

constraints must be verified 
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V V V

V V V

 


 
 (2.2) 

where 0.1 V represents a suitable margin obtaining the desired goal.  

 Substitution of eq. (2.1) in (2.2) gives 
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  


  
 (2.3) 

 From eq. (2.3), it results 

    1 10.1 0.1B D inDB B DV V V V V V V       (2.4) 

while from eq. (2.4) it can be seen that the maximum input swing is 

  max 12 0.1swi DV V V   (2.5) 
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 Assuming that the voltage drop on the Schottky diodes is equal to 

0.4 V, and substituting in eq. (2.5),  the maximum input swing 

becomes Vswi max=1 V. 

In the hold mode 

 
2 2

1 2

 is off
0

 is on

X B D

Y B D

Q V V V
clk

Q V V V

  
   

  
 (2.6) 

where VD2 is the voltage drop on the clamp diodes. In order to 

guarantee that the bridge’s diodes are reverse-biased during the hold 

mode, the following constraints must be verified 
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V V V
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 
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 (2.7) 

where 0.1 V represents a suitable margin obtaining the desired goal. 

 Substituting eq. (2.6) in (2.7) 
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 (2.8) 

and so results  

    2 20.1 0.1B D inDB B DV V V V V V V       (2.9) 

 From eq. (2.9) it can be seen that the maximum input swing is 

  max 22 0.1swi DV V V   (2.10) 

 Assuming that the voltage drop on the Schottky diodes is equal to 

0.4 V, and substituting in eq. (2.10), the maximum input swing 

becomes Vswi max=1 V.  

Half the input full swing is equal to the input dc level, thus from 

eqs. (2.4), (2.9) it can be stated that the input dc level is VinDBDC=VB. 

During the track phase (clock is high), the transistor Q1 is off, 

while the transistor Q2 is on. In order to assure a proper circuit 

operation, avoiding the saturation of Q2 the following condition is 

imposed 

 0.3clkH YV V V   (2.11) 

where 0.3 V is the base-collector voltage drop and VclkH is the high 

voltage of the clock signal.  Recalling eq. (2.1), eq. (2.11) becomes 

 1 0.3clkH inDB DV V V V    (2.12) 

 The worst case is when the input is at its minimum value VinDB= 

VinDBDC - Vswi /2= VB - Vswi /2, thus substituting this value eq. (2.12) 

can be rewritten as 
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1 0.3

2

swi
clkH B D

V
V V V V     (2.13) 

During the hold phase (clock is low), the transistor Q1 is on, while 

the transistor Q2 is off. In order to assure a proper circuit operation, 

avoiding the saturation of Q1, the following condition is imposed 

 0.3clkH XV V V   (2.14) 

recalling eq. (2.1), eq. (2.14) becomes 

 2 0.3clkH B DV V V V    (2.15) 

The relations (2.13), (2.15) establish a constraint on the maximum 

value of the clock signal assuring the non-saturation of the transistors 

Q1, Q2 during the hold and track phase, respectively. Furthermore, the 

constraint, expressed by (2.13), is dominant, thus the value of VclkH 

must be obtained from eq. (2.13). 

Now it can be analyze the input dc range by referring to Fig. 2.5. 

Thus, we have 

 inDC BE EDC inDBDCV V V V    (2.16) 

where VBE is the base-emitter voltage of the input buffer, and  

VinDBDC=VEDC is the dc voltage of the bridge input. 

During track mode, it can be at most 

 
max 1

min 1

inDB X D

inDB Y D

V V V

V V V

 
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 (2.17) 

where VX=VCC-Vm , VY=Vm+VCE2 , VCE2 is the voltage drop across the 

collector-emitter junction of Q2 , and Vm is the minimum voltage drop 

on the current mirror here replaced by ideal current source. By 

substituting, eq. (2.17) becomes 
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inDB m CE D

V V V V

V V V V

  

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 (2.18) 

Considering that we can written 

 
max max
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
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 (2.19) 

and substituting in eq. (2.18), it follows 
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 Assuming VinDBDC max= VinDBDC min= VinDBDC and substituting in 

eq. (2.20), Vm can be expressed by 

 1 22

2

CC swi D CE
m

V V V V
V

  
  (2.21) 

 Assuming VD1=0.4 V, VCE2=0.8 V and VCC equal to the minimum 

supply voltage (3.3 V) and considering that Vswi max=1 V, thus 

Vswi=0.5 V in a differential configuration, the value of Vm , complying 

with the constraint due to eq. (2.17), is given by 

 0.6mV V  (2.22) 

Substituting (2.22) in (2.20) the dc level at the bridge input is 

 2.05inDBDCV V  (2.23) 

 So recalling eq. (2.16), and considering VBE=0.85 V (as resulting 

from simulation), the dc input is 

 2.9inDCV V  (2.24) 

Now it is possible to estimate the high clock value by referring to 

the condition (2.13) and by keeping in mind that VCE2=0.8 V. Thus, if 

we consider VBE2=0.8 V, the base-collector voltage VBC2=0 V. This 

last means that in eq. (2.13) it must not consider the voltage drop of 

0.3 V, and so (2.13) becomes 

 1.4clkHV V  (2.25) 

 Finally, it can be assumed that  VclkH=1.4 V, while the low voltage 

level of the clock signal is VclkL=1.0 V. Thus, the clock signal swing is 

400 mV corresponding to 800 mV for the differential configuration. 

 

2.2.1 DB Track Mode Performance: Distortion Analysis 
 

Since a THA in the track mode is simply an amplifier, both the static 

and dynamic specifications in this mode are similar to those of any 

amplifier. The principle track mode specifications are offset, gain, 

nonlinearity, bandwidth, settling time, distortion, and noise. 

 A distortion analysis introduced by the THA is useful to determine 

its dependence on the circuit bias currents, the amplitude and 

frequency of the input signal, the hold capacitance, and to define some 

crucial design choices. The main contribution is dynamic and is due to 

the current flowing through Ch (see Fig. 2.6). 
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Fig. 2.6. Diode-bridge: equivalent circuit for distortion analysis. 

 

 The current ICh can be expressed as follows 

  2 sin 2in
Ch h in h in

dV
I C f C A f t

dt
      (2.26) 

 Recalling the analysis reported in the Appendix A, the harmonic 

distortion introduced by the diode-bridge, neglecting the higher order 

contributions, is 
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 (2.27) 

where iC max=2πfinChA. 

 It can be noted that the distortion depends on the input signal 

amplitude and frequency, the bias currents I1, Iref and the hold 

capacitance. 

 The diode-bridge in a differential fashion can be obtained by using 

two identical single-ended circuits, as shown in Fig. 2.7, to process a 

differential input signal. This configuration has the advantage 

avoiding distortion of even harmonics (HD2≈0) [4] and the single 

input and output signals (in+, in-, out+, out-) have a swing equal to the 

half the swing of the differential signal. 
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Fig. 2.7. Block diagram of diode-bridge in differential configuration. 

 

 These advantages are lost in a single-ended configuration, while it 

is important that the THA introduces very little distortion, since the 

distortion incurred in the analog part of ADC is difficult to remove by 

the subsequent circuits. 

 Another very important issue is the bandwidth. In fact, the THA 

must have a bandwidth greater than that of the maximum expected 

input signal and it must settle to the specified accuracy in a short 

amount of time, usually much less than half a clock cycle.  

As the distortion, the bandwidth also depends on the input stage 

bias current (Iref) and the diodes bias current (I1), the amplitude and 

frequency of the input signal (fin), the hold capacitance (Ch). It is 

possible to establish the optimal trade-off based on the required 

performance in terms of maximum input frequency and resolution. 

  

2.2.2 DB Track Mode Performance: Noise Analysis 
 

The noise is an important figure of merit to evaluate the circuit 

behavior, since it imposes a lower limit on the signal that can be 

processed by the circuit avoiding degradation of the output signal 

quality. For this reason, the circuit noise performance is usually 

expressed by an equivalent input noise signal which provides the same 

output noise of the considered circuit [5].  

 An exact noise analysis is complex due to the large number of 

error sources. Thus, considering only the input buffer (the emitter-
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follower), whose noise performance depending on the transistor, it can 

be shown (see [5]) that the noise on the hold capacitor is 

 2

,

1

2h

b
n C

h

rkT
V

C r
        (2.28) 

 It can be noted that, in a first approximation, the noise (SNR) only 

depends on the hold capacitor. Furthermore, some numerical 

simulations have confirmed that the previous approximation also 

occurs for the DB. 

 

2.2.3 Diode-Bridge Track Mode Performance: Design 
 

At the aim of a correct sizing of Ch, Iref, I1, the relationships with the 

SNR and THD (reported in the previous sub-sections) must be taken 

into account. 

 The SNR depends on the capacitance of Ch, which should be sized 

to get a good margin on the SNR according to the design constraints. 

A parametric analysis has been performed, by varying the Ch value, 

obtaining the SNR, and the related ENOB, as function of Ch (see Fig. 

2.8). 

 

 
Fig. 2.8. SNR (below) and the related ENOB (above) versus Ch. 

 

The choice of Ch is made for obtaining an ENOB beyond 9. In this 

case of a differential DB with ideal current sources, it has chosen a 

capacitance value (100 fF) corresponding to an ENOB equal to 9.2. 
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The THD depends on Ch, Iref, I1, thus fixing Ch=100 fF and 

considering in the worst case the maximum input frequency 

(fin=1 GHz), a parametric analysis has been performed by varying the 

Iref  value for obtaining the behavior of the THD at the input of the DB 

as function of the current itself (see Fig. 2.9). 

 

 
Fig. 2.9. THD at the input of diode-bridge as function of the bias current Iref. 

 

In order to meet the design constraints, the THDin value to be 

considered is equal to 60 dB corresponding to a current Iref=1 mA. 

Once fixed the value of harmonic distortion at the DB input, the 

value at the output is consequently fixed by the distortion introduced 

by the DB. This last depends on the DB bias current I1 that can be set 

through parametric analysis in order to obtain the desired value of 

58 dB corresponding to a bias current I1=1.4 mA (see Fig. 2.10). 

 

 
Fig. 2.10. THD at the output of diode-bridge as function of the bias current I1. 

 

2.2.4 DB Hold Mode Performance: Hold Feedthrough 
 

The hold-mode feedthrough is the percentage of the input signal on 

the output signal during the hold phase. This effect is due to the 

inevitable parasitic coupling between input and output during hold 
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mode. The consequence is a perturbation of the voltage held on the 

capacitor due to imperfect insulation between the input and the output 

during the hold phase. This effect can be reduced in the DB by 

increasing the current I2. The latter claim can be verified by analyzing 

the circuit during the hold phase, as shown in Fig. 2.11. In the circuit 

is also present a bootstrap buffer (whose usefulness in terms of 

pedestal will be discussed later) to take into account his effect in the 

estimation of hold feedthrough. 

The bridge diodes (#1 in Fig. 2.11) are reverse biased, thus acting 

as capacitances (diode junction capacitance). On the other hand, the 

clamping diodes (#2 in Fig. 2.11) are forward biased, resulting in 

equivalent on-resistance. From this considerations it can be obtained 

the simplified equivalent circuit in Fig. 2.12, where the junction 

capacitance of the bridge diodes is modeled with Cj, and the on-

resistance of the clamping diodes with rd. 

 

 
Fig. 2.11. Diode-bridge in the hold mode. 

  

 The buffer output resistance is also modeled with rout. Now, it can 

be easily calculated the transfer characteristic in the hypothesis 

Cj<<Ch 

 
 

 

2 2

1 2 2

j d out jout

in h d out jhold

C r r C sV

V C r r C s



 

  (2.29) 

 Eq. (2.29) is an high pass filter response with gain equal to Cj/Ch 

and time constant equal to 2(rd+2rout)Cj. Thus, reducing the signal 

feedthrough means that Cj is much smaller than Ch and the filter cut-
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off frequency is shifted to higher frequencies. This latter can be 

obtained reducing the resistance value rd, rout, so allowing 

1/2π2(rd+2rout)Cj to be much larger than the maximum input 

frequency. 

 

 
Fig. 2.12. Simplified diode-bridge circuit for estimating the hold feedthrough. 

 

 Furthermore, if we not consider the buffer (rout=0) the signal 

feedthrough only depends on rd (the capacitance Cj is related to the 

diode area size, and so fixed by the previous choice of the bias current 

I1). 

 Finally, the hold feedthrough can be reduced by decreasing rd or 

rather increasing the extra current I2. Thus, it has been performed a 

parametric analysis, shown in Fig. 2.13, by varying the current I2 in 

order to get a reasonable feedthrough. This means that the current 

value cannot be too high, so avoiding an increase of the size of the 

transistor Q2 (see Fig. 2.11) leading to an increase of its capacitance. 

This latter is undesirable because introduces more distortion and 

forces the clock driving a larger capacitive load. 

 

 
Fig. 2.13. Hold-mode feedthrough effect by varying the current I2. 
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 It is worth highlighting that the numerical simulation result, 

reported in Fig. 2.13, has been obtained in the hold mode operation 

(clk=0). Thus, it is necessary fixing the initial condition on the hold 

capacitor. In this case, the differential outputs have been considered 

equal to the maximum and minimum values corresponding to 

VinDBDC+Vswi/2 and VinDBDC-Vswi/2, respectively. 

 Observing  Fig. 2.13, by varying the current I2 from 1 mA to 2 mA, 

the hold feedthrough decreases by 2 dB. Basing on the above 

discussion, a good trade-off is I2=1.5 mA corresponding to a 

feedthrough of -54.7 dB. 

 

2.2.5 DB Track-to-Hold Performance: Pedestal Error 
 

A main phenomenon is the error introduced on the THA output during 

the transition track-to-hold. This error is called “pedestal error 

voltage” or simply “pedestal” [1], [6], [7]. It is due to a charge 

injection on the hold capacitor, during the transition track-to-hold, so 

determining a perturbation of the voltage held on Ch, after the hold 

command (see Fig. 2.14). 

 
Fig. 2.14. Pedestal error during track-to-hold transition. 

 

 This phenomenon can be explained simply considering that during 

the track phase the bridge diodes are forward biased and so store a 
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charge that is later expelled while are reverse biased during the hold 

phase. 

  

 
Fig. 2.15. Diode-bridge after the transition track-to-hold. 

 From the analysis of Fig. 2.15, it can be observed that the reverse 

biasing voltage on the bridge diodes is dependent on the output 

voltage as well the charge stored in the bridge diodes, and so also the 

charge injected onto the hold capacitor depends in non linear manner 

on the output voltage. 

 As a consequence, the pedestal determines gain error and, since 

the diode capacitances are highly non-linear, significant distortion of 

the signal voltage would also occur [8]. 

 Both of these errors may be eliminated if in the hold mode the 

node B follows the voltage on the hold capacitor by the bootstrap 

buffer as shown in Fig. 2.16. 
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Fig. 2.16. Diode-bridge with bootstrap buffer. 

 

The bootstrapping ensures that the voltage changes on the two 

diodes connected to the hold capacitor are equal and opposite during 

the track-to-hold transition and not dependent on the output voltage. 

Thus the pedestal is cancelled, and the gain and linearity of the THA 

is increased. 

The main performances required to the bootstrap buffer can be 

summarized as follow: 

 it must transfer the output voltage Vout to the node B (see Fig. 

2.16) without a voltage shift, thus the emitter-follower is a no 

good solution. 

 it must drawn a small current during the transient time 

avoiding to impact on the pedestal error. 

 it must provide a small output resistance, because, as discussed 

in sub-section 2.2.4, the rout can worsening the signal 

feedthrough. 

 it must drawn a small dc current at the aim to reduce the 

droop-rate in the hold mode. The droop-rate is the rate of 

discharge of the hold capacitor during the hold mode [1]. This 

phenomenon is due to the leakage currents drawn by parasitic 

dc paths from output node to other nodes, and the value of Ch. 

 it must provide a large bandwidth allowing fast track-to-hold 

transition. 
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 In Fig. 2.17 are depicted three different buffer topologies whose 

performances have been compared to make the optimal choice with 

respect to the specifications aforementioned. 

 

 
Fig. 2.17. Different unity-gain buffer topologies. 

 

 The circuit in Fig. 2.17.a is a simple unity-gain buffer, while in 

Fig. 2.17.b e Fig. 2.17.c is presented a two-stages voltage follower 

with PNP and NPN input, respectively. 

 The performance of the buffer of Fig. 2.17.a is reported in Table 

2.I. 

 
Table 2.I 

Parameters Value 

Iref 100 µA 1 mA 

rout 1.1 kΩ (DC) 180 Ω (DC) 

Iin DC 210 nA 2.8 µA 

 

 It can be noted that increasing the bias current decreases the rout 

and worses the input dc current. 

 The performances of the circuits in Fig. 2.17.b and Fig. 2.17.c are 

reported in Table 2.II. 
Table 2.II 

Parameters Fig. 2.17.b Fig. 2.17.c 

Iref1 100 µA 100 µA 

Iref2 1 mA 1 mA 

BW 15.7 GHz 15.8 GHz 

Gain 0.999 0.999 

Offset 18 mV 3.5 mV 

rout 24 Ω (DC) 4.3 Ω (DC) 

Iin DC 840 nA 230 nA 
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Choosing Iref1< Iref2, allows to obtain a smaller rout and Iin DC, but in 

the case of Fig. 2.17.b Iin DC is not small enough due to the β not too 

high of the PNP transistor. Thus, the best trade-off is obtained with the 

circuit of Fig. 2.17.c, which is the topology used in the following. 

During the transition track-to-hold the pedestal is not the only 

error source, in fact other sources are the aperture and the clock jitter 

as will explain in the following sub-sections. 

As a consequence, it must be defined a suitable simulation set-up 

at the aim of observing only the pedestal error effect (see Fig. 2.18). 

 

 
Fig. 2.18. Suitable simulation set-up for the analysis of pedestal. 

 

 The other two error sources can be cancelled by using a constant 

input during the transition track-to-hold. In Fig. 2.18, the VerilogA 

module applies a set of constant inputs, in each clock period, to the 

THA, then takes the output of THA after the transition to hold mode, 

next each pair input-output is stored in a data file, that is later 

processed in Matlab extracting INL and gain error. 

 The numerical simulation results for a DB without or with 

bootstrap buffer in single-ended and differential configuration for an 

8-bits ADC are depicted in Fig. 2.19 and Fig. 2.20, respectively. 

 



                                                                                                            55 

 
Fig. 2.19. INL and gain error for single-ended DB a) without or b) with bootstrap 

buffer. 

 

 
Fig. 2.20. INL and gain error for differential DB a) without or b) with bootstrap 

buffer. 

 

The performances are summarized in Table 2.III. 

 
Table 2.III 

DB-THA Single-ended Differential 

Buffer no yes no yes 

INLmax 
104 µV 

(0.05 LSB) 

22 µV 

(0.01 LSB) 

83 µV 

(0.02 LSB) 

1.5 µV 

(0.00 LSB) 

Gain 0.80 0.997 0.80 0.997 

 

 It is worth to highlight that both in single-ended and differential 

configuration the gain error is practically cancelled by using the 

bootstrap buffer, while the INLmax is always better in the differential 

case, and almost negligible with the bootstrap buffer. 
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 Thus, the DB improved differential circuit with bootstrap buffer 

has the better performance reducing the pedestal error. 

 

2.2.6 DB Track-to-Hold Performance: Aperture Error 
 

The most essential dynamic property of a SHA is its ability to quickly 

disconnect the hold capacitor from the input buffer amplifier. The 

short, but non-zero time interval over which the THA disconnects 

from the input signal, after the hold command, defines the aperture 

time or simply aperture (tA) [6]. This time can be also defined as the 

time interval between the start of the hold phase and the instant when 

the bias current of the diode-bridge goes to zero. 

In addition to the switching speed of the diode-bridge, the aperture 

time also sets the maximum rate allowed for the input signal, since if 

the aperture time is larger than a small fraction of a single period of 

the input signal, this latter cannot be resolved by the THA. 

In other words, the aperture time establishes the highest allowable 

input frequency imposing an upper limit of approximately l/ tA on the 

THA bandwidth. 

The aperture time is not constant but is modulated (aperture 

modulation) by the input signal because it depends on the 

instantaneous slope of the input signal, so slight variations in the 

aperture can distort the held output signal. 

Thus, the actual value of the voltage that is held at the end of 

aperture time interval is a function of both the input signal and the 

errors introduced by the switching operation itself. The value that 

finally gets held is a delayed version of the input signal, averaged over 

the aperture time of the switch. The finite time required for the switch 

to open (tA) is equivalent to introducing a small delay in the sampling 

clock driving the THA. 

To better understand this phenomenon, it can be considered the 

bridge response to a variable input signal (vin(t)=Acos(2πfint)). During 

the track phase the forward biased bridge diodes will make the output 

(vout(t)) follows the input. During the transition track-to-hold the 

diode-bridge switches, leading the current flowing through it to zero 

in a finite time. In the presence of a variable input, the bridge aperture 

persists from the start of the track-to-hold transition until the bridge 
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current equals the instantaneous current flowing into the hold 

capacitor (Chdvin(t)/dt) as shown in Fig. 2.21.  

Consequently, the aperture depends on the rate-of-change of the 

input signal. This implies that the input signal is sampled with 

different aperture, based on its instantaneous derivative, thus resulting 

in a non-uniform sampling and introducing distortion of the output 

signal. 

 

 
Fig. 2.21. Diode-bridge: aperture error  

 

 Now, it can be analyzed the perturbation introduced by the 

aperture, considering the equivalent circuit in Fig. 2.21, in the 

hypothesis that the bridge bias current decreases linearly as shown in 

Fig. 2.21. 

 The bridge diodes are turned-off and the voltage is held on the 

hold capacitor when the current entering the hold capacitor ICh equals 

the bridge bias current I1 and it can be written 

 sin(2 )in
Ch h Ch max in

dv
I C I f t

dt
    (2.30) 

where ICh max=2πfinChA. 

 The sampling time instant ts changes deterministically as function 

of the input signal (see Fig. 2.21), and it follows 

 
 

1

' 1
Ch s

s A

I t
t t t

I

 
    

 
 (2.31) 

this relation defines implicitly the sampling time instant. 

 For sake of simplicity, ICh is supposed constant over the 

modulation time interval, it can be written 
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and the output voltage can be derived as 

    ( ) cos 2 cos 2 sin(2 )out s in s in inv t A f t A f f         (2.33) 

where τ=t
’
+tA takes into account time delay and distortion, in fact the 

non uniform sampling in the time variable t becomes uniform in τ, but 

with a different function (see eq. (2.33)), in which the sine function 

modules the cosine, resulting in output distortion. Thus, the aperture 

modulation is analogous to phase modulation and can be analyzed 

identically. From eq. (2.33), we have 
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2h in
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
   (2.34) 

it can be represented as a Fourier series, whose coefficients do not 

have a closed-form expression, but, as Bessel functions, they are well-

known, and after some calculations for a differential diode-bridge it 

can be written 
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 (2.35) 

where  J2(β) is the Bessel coefficient. 

 In the following Table 2.IV  are reported the parameters design 

values. 

 
Table 2.IV 

Parameters Value 

A 0.25 V 

Ch 100 fF 

fin 1 GHz 

I1 1.4 mA 

tA 50 ps 

  

 It is worth to highlight that a simulation of the diode-bridge with a 

clock rise (fall) time of 100 fs results in aperture time about ten ps. 

Thus, the aperture distortion can be properly evaluated only if the 

aperture time is comparable with the clock rise time. For this reason, 

the diode-bridge was tested under dynamic conditions with a clock 

rise time value equal to 50 ps since in this case, the aperture time is 
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about 50 ps, and it is possible to observe the phenomenon of the 

aperture distortion as follows 

 3 76HD dB  (2.36) 

 Recalling that the harmonic distortion introduced by the diode-

bridge during the track phase (I1=1.4 mA) is equal to 58 dB, the 

distortion introduced by the aperture error (eq. (2.36)) can be 

considered negligible with respect to that in the track mode. 

 At the aim to evaluate the effect of bandwidth limitation and 

distortion in track mode, pedestal and aperture error, hold-mode 

feedthrough and droop-rate on the THA performance, a transient 

simulation without noise (excluding other phenomena like jitter) has 

been performed. The suitable simulation set-up is described in Fig. 

2.22. 

 

 
Fig. 2.22. Simulation set-up: diode-bridge overall performance without noise. 

 

 The samples provided by the sample-and-hold are the inputs of the 

VerilogA module that stores the samples in a data file for the 

subsequent processing in the Matlab tool. It is worth recalling that the 

test in down-sampling entails, according to the design constraints, an 

analog input signal at the frequency fin=1 GHz with a sample rate 

fs=200 MHz corresponding to a sampling (clock) period Ts=5 ns. In 

this case, it has been fixed a clock period equal to Tclk=5 ns+1 ns/Npt 

where Npt=256 is the number of simulation points. This implies that 

Tclk=5.004 ns corresponding to a sample rate fs=199.8 MHz assuring 

that after Npt=256 cycles it is obtained exactly a period of the input 

signal. The resulting frequency of the digital output is equal to 

fout=781 kHz= fs/256. 

 The simulation results are reported in Fig. 2.23. 
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Fig. 2.23. Down-sampling test of the diode-bridge.  

  

 The resulting total harmonic distortion is 58 dB corresponding to 

an ENOB=9.34. 

 

2.2.7 DB Track-to-Hold Performance: Clock Jitter 
 

As discussed in the previous sub-section the fall-time of the clock 

signal impacts on the aperture time or rather if the clock fall-time is 

comparable with the aperture time, the aperture distortion becomes 

detectable, but, as seen, not significant. 

 From the Fig. 2.24 can be defined the clock fall-time as 

 sw
fall

clk

V
t

dv dt
  (2.37) 

 

 
Fig. 2.24. Fall-time of the clock signal. 

 

 It can be noted that an increase of dvclk/dt reducing the fall-time. 

The output noise σVclk determines a sampling time jitter 
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 clkv

t
clkdv

dt


   (2.38) 

worsening the SNR, so, once again, it is desirable to have dvclk/dt as 

high as possible. 

 The clock jitter depends on the clock driver circuit. The clock 

driver designed and used in this work is an ECL circuit with a cross-

coupled current biasing [9], as shown in Fig. 2.25. 

 

 
Fig. 2.25. Clock driver circuit 

 

 The input stage is an emitter-coupled pair whose input signals 

(clkin+, clkin-) assume the values VclkH=1.4 V  and VclkL=1.0 V for 

their high and low voltage, respectively. This latter according to the 

design constraints, discussed in the section 2.2, assuring the correct 

circuit operation. 

 The outputs of this stage are the inputs of the subsequent stage, or 

rather are the inputs of two bipolar transistors in common collector 

fashion, on the emitters of which are taken the signals driving the 

THA. 

 Considering a capacitive load Cclk=Cclkout+= Cclkout-=170 fF, the 

transient response of the circuit is depicted in Fig. 2.26. The resulting 

fall-time is equal to 42 ps, the output noise σVclk=1.159 mVrms, while 

the signal slope is dvclk/dt=17.3 V/ns, so determining the following 

rms jitter 

 67clkv

t
clk

fs
dv

dt


    (2.39) 

 The clock jitter translates in white noise at the THA output, 

worsening the overall SNR. 
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Fig. 2.26. Transient response (red line) of the clock driver to a differential input 

(green line).  

 

 This effect can be taken into account considering the SNR purely 

due to the jitter, as discussed in sub-section 1.5.1. Recalling eq. 1.18, 

reported below 

 1020log ( 2 )dB t inSNR f     (2.40) 

substituting eq. (2.39) in (2.40) it follows 

 (@1 ) 67.5SNR GHz dB  (2.41) 

corresponding to an ENOB=10.9. 

 It is clear that this value for the time jitter is not relevant in terms 

of the overall converter performance. 

 

2.2.8 Diode-Bridge Performance: Simulation Results 
 

In this section are reported the simulation results related to the diode-

bridge behavior taking into account the error sources whose effects 

have already been evaluated in sub-section 2.2.6, including also the 

sampling time jitter and the noise generated by the THA. 

 For this purpose, a transient simulation with generated noise has 

been performed, and its set-up is shown in Fig. 2.27. 

 The samples provided by the sample-and-hold are the inputs of the 

VerilogA module that stores the samples in a data file for the 

subsequent processing in the Matlab tool. It is worth recalling that the 

test in down-sampling entails, according to the design constraints, an 

analog input signal at the frequency fin=1 GHz with a sample rate 

fs=200 MHz corresponding to a sampling (clock) period Ts=5 ns. In 
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this case, it has been fixed a clock period equal to Tclk=5 ns+5 ns/Npt 

where Npt=256 is the number of simulation points. This implies that 

Tclk=5.019 ns corresponding to a sample rate fs=199.22 MHz. The 

resulting frequency of the digital output is equal to 

fout=3.89 MHz=5fs/256. 

 
Fig. 2.27. Simulation set-up: diode-bridge overall performance. 

 

 The simulation results are reported in Fig. 2.28 and in Table 2.V. 

It can be noted that the value of the harmonic distortion is similar to 

that evaluated without clock driver and noise generator, confirming its 

not relevant impact on the THA overall performance. 

 
Fig. 2.28. Diode-bridge dynamic response in the frequency domain. 

 
Table 2.V 

Diode-Bridge 

THD 57.2 dB (9.21 bits) 

SNR 55.0 dB (8.84 bits) 

SNDR 53.0 dB (8.50 bits) 
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It worth highlighting that all the numerical simulation results 

presented previously have been obtained considering ideal current 

sources as biasing elements of THA circuit. 

At the aim to evaluate the actual performance of the diode-bridge 

the ideal current sources have been replaced by suitable current 

mirrors made with active devices. A great attention has been devoted 

to minimize as much as possible the impact of the current mirrors on 

the THA performances. 

In the following the results will include the effect of the current 

mirrors. 

It will be shown the characteristic time intervals of the THA 

operation (see Fig. 2.29): 

 Settling track time (acquisition time) is the non-zero time 

interval required, after the track command, for the THA 

output to recover tracking the input ensuring that the 

subsequent hold mode output will be within a specified 

error band of the input level that existed at the instant of 

the sample-and-hold conversion within a specified error 

band. 

 Settling hold time is the non-zero time interval required, 

after the hold command, for the THA to settle within a 

specified error band around its final value. 

These characteristic time intervals fix, in the worst case, an upper 

limit to the sampling frequency as follows 
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Fig. 2.29. Settling track and hold time of diode-bridge. 

 

 In this case we have 

 max . .

430
1 2 1 2 1.2

100

settling
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t ps
f t t GHz
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
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
 (2.43) 

 

 The diode-bridge frequency response, depicted in Fig. 2.30, 

highlights a bandwidth equal to 3.87 GHz. 

 

 
Fig. 2.30. Frequency response of the diode-bridge. 

 

 Now, the final results of the diode-bridge in both the differential 

and single-ended configurations can be reported and compared. 
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 The behavior of the effective number of bits as function of the 

input frequency in both differential and single-ended configurations is 

shown in Fig. 2.31 and Fig. 2.32, respectively. 

 

 

 
Fig. 2.31. ENOB versus fin (diode-bridge differential mode). 

 

 

 
Fig. 2.32. ENOB versus fin (diode-bridge single-ended mode). 

 

 

 The final performances are reported in Table 2.VI. It can be noted 

that the differential circuit configuration shows better performances 

with respect to the single-ended solution. 



                                                                                                            67 

Table 2.VI 

Diode-Bridge Differential Single-Ended 

Supply voltage 3.6 V 3.6 V 

THD(@1 GHz) 53.7 dB (8.63 bits) 42.0 dB  (6.68 bits) 

THD(@500 MHz) 66.6 dB (10.77 bits) 51.6 dB  (8.28 bits) 

SNR 52.3 dB (8.40 bits) 46.4 dB (7.42 bits) 

SNDR(@1 GHz) 50.0 dB (8.01 bits) 40.6 dB (6.46 bits) 

SNDR(@500 MHz) 52.7 dB  (8.46 bits) 45.6 dB  (7.28 bits) 

hmf(@1 GHz) -51.0 dB  -51.0 dB 

hmf(@500 MHz) -57.7 dB -57.7 dB 

Droop-rate 70 µV/ns 56 µV/ns 

Bandwidth 3.87 GHz 3.86 GHz 

Power Dissipation 47 mW 47 mW 

 

2.3 Switched Emitter Follower (SEF) 
 

This section is devoted to the analysis and design of a THA circuit 

using as switch a switched emitter follower (SEF) structure. This latter 

is a proven technique for high-speed analog switches using SiGe 

heterojunction bipolar transistor (HBT) technology [10]-[14]. 

Furthermore, with the use of SiGe HBT devices, SEF architecture 

takes advantage of the high linearity, cut-off frequency and superior 

mismatch performance shown by SiGe HBT devices [15]. 

 A popular input stage implementation is the emitter degenerated 

differential pair with logarithmic loads [10], [16]. This solution suffers 

the bias voltage required across the diode connected bipolar loads, so 

limiting the use of low power supply. To overcome this limitation the 

SEF circuit designed in this work presents an input stage obtained 

with a differential pair with split emitter currents, while the collector 

series diodes have been omitted (see Fig. 2.33). 
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Fig. 2.33. Simplified schematic of the SEF circuit. 

 

 The first advantage of the SEF with respect to the diode-bridge is 

the differential configuration of the input stage that provides a 

common-mode rejection useful to obtain good performance also in the 

single-ended mode. 

 Fig. 2.34 shows the track mode configuration (clk=1). It can be 

noted that in this phase the circuit is essentially a differential pair 

followed by an emitter follower. The maximum output (out1, out ) 

signal swing is 

 1swout c refV R I  (2.44) 

 

 

 
Fig. 2.34. SEF during track phase. 

 

 Fig. 2.35 shows the hold mode configuration (clk=0). During this 

phase the voltage of the nodes out1 drops by an amount equal to 

 

 2out c refV R I   (2.45) 

 

The value of ∆Vout should assure that the emitter-follower transistors 

are off during this phase. 
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Fig. 2.35. SEF circuit in the hold mode. 

 

 From the above discussion, the correct operation of the circuit 

requires to fix some constraints on the different voltage levels present 

in the circuit itself (see Fig. 2.36). 

 

 
Fig. 2.36. SEF voltage levels relationships. 

 

  The two main constraints derive from the need that the input 

differential pair is never off and the output emitter follower are off 

during hold mode. In order to assure these constraints, the following 

relations must be satisfied 

 

 swout swinV V  (2.46) 

 

 out swinV V   (2.47) 
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 The constraint established by eq. (2.46) is useful to guarantee that 

the voltage drop on the base-collector junction of the transistors of the 

input differential pair is such as to ensure non saturation of the input 

transistors. 

 The constraint established by eq. (2.47) is useful to guarantee that 

the base-collector junction of the emitter follower (see Fig. 2.35) is 

reverse biased during the hold mode. Thus, considering that the base 

voltage decreases by ∆Vout with respect to the value in the track mode, 

when the emitter voltage (out) is tracking the input voltage, ∆Vout must 

be larger than the full swing of the input signal. 

 

2.3.1 SEF Track Mode Performance: Gain and 

Distortion Analysis 
 

The analysis of the non linear behavior of the SEF circuit can start 

from the non linearity analysis of its input stage (Fig. 2.37). Thus, 

from a small signal point of view the gain Av of the input differential 

pair can be easily expressed as 

 
1 1

1 2

2Rc

2Re
v

m m

A
g g 


 

 (2.48) 

where gm=Ic/VT (Ic, collector current; VT, thermal voltage) is the BJT 

transconductance. 

 

 
Fig. 2.37. SEF: input stage. 

 

 Eq. (2.48) suggests that the gain varies as function of the 

differential input voltage because Ic1, Ic2 vary. It must be also noted 

that the gain is temperature dependent through the thermal voltage. 
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Hence, the non linearity expressed by (2.48) arises because the 

denominator is in part a current-dependent impedance. 

 The gain Av becomes less input and temperature dependent as 2Re 

becomes much greater than gm1
-1

+ gm2
-1

. 

 For a temperature analysis, considering vin+= vin- it can be written 

 ref 1

ref 1

R cI

2 ReI
v

T

A
V




 (2.49) 

suggesting that a reduced dependence on the temperature can be 

obtained if results 

 
ref 1

Rc
ReI 2 2

Re
T swout TV V V   (2.50) 

the gain can be rewritten as  

 
Rc

Re
vA   (2.51) 

determining a unity gain if 

 
Rc

1 1
Re

vA    (2.52) 

 The static linearity of the differential pair in the track mode can be 

analyze using the small-signal gain in (2.48) and considering that the 

bias current Iref1 is equally split into the two branches of the 

differential pair if the differential input voltage is zero, otherwise it 

can be written 

 

1

1

1

2

/ 2

/ 2

ref

m

T

ref

m

T

I I
g

V

I I
g

V

 





  



 (2.53) 

Hence, eq. (2.48) becomes 
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/ 2 / 2
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ref

T T

ref ref

A
V V

I I I I

I

V V

I I

I I

 

 
   



 
 
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 (2.54) 
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 Considering that ∆I/Iref1<<1 and remembering that the Taylor 

series, stopped at the second order, of the function 1/(1+x) for x<<1 is 
21 (1 ) 1x x x   , eq. (2.54) can be easily rewritten as 

 
1

2

1

1

Rc

2 2 Re

ref

v

T T ref

ref

I
A

I
V V I

I

 
   

 

  (2.55) 

 Considering that Re 2 TV , the linearity can be improved 

reducing the dependence on ∆I, hence obtaining the following 

constraint 

 

2

1

1

2 ReT ref

ref

I
V I

I

 
 
 
 

  (2.56) 

and taking into account the maximum value of ∆I 

 
max

2swinV
I

Rc
   (2.57) 

substituting (2.57) in (2.56) and recalling eq. (2.44), it follows 

 3 2 Rc
2

Re
swout T swinV V V  (2.58) 

 Eq. (2.58) tightens up the constraint on the output voltage swing 

discussed previously and reported in eq. (2.50). 

 In the hypothesis of unity gain of the differential input buffer 

(Rc/Re=1, see eq. (2.52)) the static non-linearity SEF behavior as 

function of the output voltage swing is depicted in Fig. 2.38. It can be 

noted that reducing the output voltage swing decreases the maximum 

circuit non-linearity. 

 

 
Fig. 2.38. Static non-linearity versus output voltage swing. 
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A rigorous study of the dynamic non-linearity of the differential 

stage in the track mode requires an huge analysis using complex 

mathematical approach. In this case, unlike what happens in the diode 

bridge, the THD does not depend on the hold capacitor Ch. In fact, the 

SEF performance in terms of harmonic distortion is limited by the 

input differential stage and the main contribution is due to the current 

flowing through Cµ (Fig. 2.39). 

 

 
Fig. 2.39. Scheme of the input stage for dynamic distortion analysis. 

 

 The non-linearity arises because the dependence of Cµ on the 

collector-base voltage drop of the differential pair transistors. For sake 

of clarity it can be considered the simplified model of Fig. 2.40. 

 
Fig. 2.40. Small-signal equivalent circuit for dynamic distortion analysis. 

 

 The current flowing through Cµ is 

 
C CB

d
i C V

dt
 

     (2.59) 
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while the capacitance Cµ can be easily expressed as 

 0

0

( )

1

j

CB

CB

j

C
C V

V

V

 



 (2.60) 

where CB out inV V V    and assuming that the small-signal component 

of the input signal is equal to that of the output signal or rather 

out inv v  , it can be written 

 2CB in swin outV V V V    (2.61) 

 The behavior of Cµ by varying VCB is depicted in Fig. 2.41. If 

∆Vout increases the linearity improves. 

 

 
Fig. 2.41. Dynamic linearity behavior 

 

 Furthermore, the numerical simulation results (see Fig. 2.42) 

confirm that the harmonic distortion THD improves as ∆Vout increases. 

 

 
Fig. 2.42. SEF harmonic distortion as function of ∆Vout (fin=1 GHz; Rc/Re=1). 
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 From the above discussion it is now possible to establish a trade-

off between static and dynamic linearity of the SEF circuit. 

 Firstly, it is important to recall the constraints imposed by eqs. 

(2.46), (2.47) and reported below for clarity  

 

 swout swinV V  (2.62) 

 

 out swinV V   (2.63) 

then, the other constraints establishing the non-saturation of the circuit 

devices must be taken into account. Fig. 2.43 shows the SEF 

schematic circuit in which are also labeled the bias voltage values 

avoiding the device saturation. 

 

 
Fig. 2.43. SEF circuit 

 

 In order to assure a proper circuit operation, avoiding the 

saturation of Q1, Q2 the following condition is imposed 

 

 max min min0.35 0.45in out CE BE BCV V V V V V V       (2.64) 

where the maximum input voltage and the minimum output voltage 

can be expressed as 

 
max max

min

2

2 2

swin

in inDC

swout swin

out CC out

V
V V

V V
V V V

 

    

 (2.65) 

 Recalling eq. (2.63) ∆Vout can be obtained as follows 

 0.1out swinV V V    (2.66) 

where 0.1 V represents a suitable margin to achieve the desired goal. 

 Recalling (2.64), (2.65), it follows 
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max 0.35

2

swout

inDC CC swin out

V
V V V V V      (2.67) 

 Now as shown in Fig. 2.43, considering Vm the minimum voltage 

drop across the current mirror, here replaced with an ideal current 

source, the following constraint on the emitter voltage (of Q2) must be 

imposed 

 
min min 0.8

2

swin

E m inDC m

V
V V V V V      (2.68) 

From (2.67), (2.68) can be obtained the input dc range as 

 
max min 0.45 3

2 2

swout swin

inDC inDC CC m out

V V
V V V V V V        (2.69) 

 Now, imposing that the dc input range is greater or equal to zero 

and min 0.45m CEV V V  , (2.69) becomes 

 0.9 3 0
2 2

swout swin

CC out

V V
V V V      (2.70) 

 Relation (2.70) highlights a trade-off between “static” (Vsw out) and 

“dynamic” (∆Vout) linearity, thus increasing ∆Vout to achieve better 

dynamic performance means reducing Vsw out, so worsening static 

performance. 

 Recalling the simulation results presented in Fig. 2.38 and Fig. 

2.42, a compromise choice can be 

 
0.9

1.5

out

swout

V V

V V

 


 (2.71) 

corresponding to a THD, at the input frequency of 1 GHz, equal to 

64.6 dB (10.44 bits) and a maximum static non-linearity of 233 µV. 

Furthermore, this choice assures the correct operation of the 

transistors Q3, Q4, Q5 (see Fig. 2.43) and their counterpart on the left 

side of the circuit. 

 After the design of the SEF based on the sizing choices 

aforementioned, the output frequency spectrum of the SEF is reported 

in Fig. 2.44 and Fig. 2.45 (differential and single-ended configuration, 

respectively). 
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Fig. 2.44. SEF differential mode: output spectrum.  

 

 
Fig. 2.45. SEF single-ended mode: output spectrum.  

 

 The resulting THD is equal to 64.6 dB (10.44 bits) in the 

differential mode and 60.4 dB (9.74 bits) in the single-ended mode. In 

both cases, under the same operating conditions, the switched emitter 

follower shows better performance than the diode-bridge (see sub-

section 2.2.3). 

 

2.3.2 SEF Track Mode Performance: Noise Analysis 
 

As already discussed for the diode-bridge in sub-section 2.2.2, a 

rigorous noise analysis is very complex due to the large number of 

error sources. Thus, also for the switched emitter follower, 

considering only the emitter-follower, whose noise performance 

depending on the transistor, it can be shown (see [5]) that the noise on 

the hold capacitor is 

 2

,

1

2h

b
n C

h

rkT
V

C r
        (2.72) 
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 It can be noted that, in a first approximation, the noise (SNR) only 

depends on the hold capacitor. Furthermore, some numerical 

simulations have confirmed that this approximation also occurs for the 

SEF circuit. 

 At the aim of a correct sizing of Ch the relationship with the SNR 

must be taken into account. 

 The SNR depends on the capacitance of Ch, which should be sized 

to get a good margin on the SNR according to the design constraints. 

A parametric analysis has been performed, by varying the Ch value, 

obtaining the SNR as function of Ch (see Fig. 2.46). 

 

 
Fig. 2.46. SNR versus Ch. 

 

 The choice of Ch is made for obtaining an ENOB beyond 9. In this 

case of a differential SEF with ideal current sources, it has chosen a 

capacitance value (200 fF) corresponding to a SNR=57.4 dB, hence an 

ENOB equal to 9.2 (as in sub-section 2.2.3 for the DB). 

 

2.3.3 SEF Track Mode Performance: Bandwidth 
 

As discussed in sub-section 2.2.1, the THA must have a bandwidth 

greater than that of the maximum expected input signal and it must 

settle to the specified accuracy in a short amount of time, usually 

much less than half a clock cycle. 

 Unlike the diode-bridge, the SEF bandwidth depends only on the 

bias currents. In fact, once fixed the value of the hold capacitance too 

high as in this case (Ch=200 fF), the bandwidth is limited by the 

output circuit (i.e. emitter-follower) as shown in Fig. 2.47. 
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Fig. 2.47. SEF output circuit for bandwidth analysis. 

 

 From the analysis of the circuit in  Fig. 2.47, it can be derived the 

bandwidth as 
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where 
2 1

; Rc
swoutT

ref ref

VV
r

I I
    and considering that 

1

2

swoutref

ref out

VI

I V



, rπ can 

be rewritten as follows 
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
  (2.74) 

 It is immediately apparent that the bandwidth depends on Iref1, 

once fixed Ch, and increasing Iref1 improves the bandwidth. Thus, a 

parametric analysis has been performed, by varying the Iref1 value, 

obtaining the corresponding bandwidth as function of Iref1 (see Fig. 

2.48). Therefore, a bias current Iref1=4.5 mA has been chosen 

corresponding to a bandwidth of 5.5 GHz. 
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Fig. 2.48. Bandwidth behavior as function of Iref1. 

 

2.3.4 SEF Hold Mode Performance: Hold Feedthrough 
 

The hold-mode feedthrough phenomenon has been treated in sub-

section 2.2.4. Thus, I don’t report here the entire discussion. This 

section reports the possible solution that alleviates hold-mode 

feedthrough phenomenon for the SEF circuit. 

 Firstly, it is important to consider the SEF circuit in the hold mode 

(see Fig. 2.49). 

 

 
Fig. 2.49. SEF output circuit in hold mode. 

  

 When the circuit is in the hold mode, the sampling switch 

(transistor Q5) presents finite impedance in its off state and so the 

parasitic capacitance CBE causes feedthrough of the input voltage into 

the hold capacitor. 
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 For sake of clarity, it can be considered the simplified equivalent 

circuit in Fig. 2.50. 

 
Fig. 2.50. SEF equivalent circuit for the feedthrough analysis. 

 

 Now, it can be easily calculated the transfer characteristic as low 

pass filter response 

 
1

1 Rc

out BE

BE hin BE hhold

BE h

v C

C Cv C C
s

C C





 


 


 (2.75) 

 In order to minimize the feedthrough, Ch should be increased, but 

the value of Ch previously chosen to have the desired performance in 

terms of noise is already quite high. A further increase of Ch could 

worsening the bandwidth. 

 Considering the SEF circuit by using the design parameters as 

defined previously, it can be obtained a feedthrough effect as reported 

in Fig. 2.51. It can be noted a feedthrough at dc equal to 24 dB. 

 

 
Fig. 2.51. Hold-mode feedthrough. 

 

  A more effective way to reduce the hold-mode feedthrough is 

accomplished by adding the cross-coupled feedforward capacitors CC 

to the THA circuit [10], as shown in Fig. 2.52. 
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Fig. 2.52. SEF with hold-mode feedthrough compensation. 

 

 The compensation technique exploits the circuit property of 

symmetry for which vout1+≈ vout1-. The charge dump of the capacitor 

CC is of opposite sign to the charge dump of the base-emitter 

capacitance of the switch transistor. The simplified equivalent circuit 

is depicted in Fig. 2.53. 

 

 
Fig. 2.53. SEF equivalent circuit with feedthrough compensation. 

 

 Now, in the hypothesis that CBE≈CC, the circuit response is given 

by 
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out BE cBE

BE hin BE h BEhold
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C Cv C C C
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  

    


 (2.76) 

 It can be noted that a complete cancellation of the feedthrough is 

not possible as CBE varies with the operating point of the transistor. 

However, it can be strongly reduced by assuming CBE to be constant 

and choosing CC to be equal to CBE. 
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 The compensation capacitor CC is realized a series-parallel 

connection of four diodes [10], as shown in Fig. 2.54. 

 

 
Fig. 2.54. Hold-mode feedthrough capacitor. 

 

 The condition CBE≈CC can be achieved unless the dependence of 

the BJT junction capacitance on the biasing voltage. The simulation 

result of Fig. 2.55 highlights the usefulness of the compensated circuit 

in reducing the hold-mode feedthrough. 

  

 
Fig. 2.55. Hold-mode feedthrough with compensation technique. 

 

 It is evident the better performance than the previous result of Fig. 

2.51. Now, the hold-mode feedthrough at dc is -51.8 dB. It is more 

than double the value obtained with the circuit without compensation. 

 

2.3.5 SEF Track-to-Hold Performance: Pedestal Error 
 

The phenomenon called “pedestal error voltage” or simply “pedestal”, 

previously discussed in sub-section 2.2.5, affects a THA during the 

transition track-to-hold. It is due to a charge injection on the hold 

capacitor, during the transition track-to-hold, so determining a 

perturbation of the voltage held on Ch, after the hold command. In the 

SEF circuit the transition track-to-hold causes the distortion of the 
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holding voltage through the non-linear base-collector capacitance CBC 

[17], as shown in Fig. 2.56. 

 

 
Fig. 2.56. SEF circuit for pedestal analysis. 

 

 The simulation set-up for observing the pedestal error is the same 

used for the diode-bridge (sub-section 2.2.5 - Fig. 2.18), obviously 

with the correct initial conditions (appropriate input dc voltage levels). 

 The numerical simulation results for a SEF in single-ended and 

differential configuration for an 8-bits ADC are depicted in Fig. 2.57 

and Fig. 2.58, respectively. 

 

 

 
Fig. 2.57. INL and gain error for single-ended SEF. 
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Fig. 2.58. INL and gain error for differential SEF. 

 

 The performances are summarized in Table 2.VII. 

 
Table 2.VII 

SEF-THA Single-ended Differential 

INLmax 
107 µV 

(0.09 LSB) 

328 µV 

(0.08 LSB) 

Gain 1 1 

 

 It is worth to highlight that both in single-ended and differential 

configuration the gain error is practically cancelled and the maximum 

non-linearity is good. 

 

2.3.6 SEF Track-to-Hold Performance: Aperture Error 
 

The opening discussion of sub-section 2.2.6 can be here wholly 

recovered. However, it must be analyzed the aperture phenomenon as 

occurs in the SEF circuit. To better understand this phenomenon, it 

can be considered the SEF response to a variable input signal 

(vin(t)=Acos(2πfint)). During the track phase the switched emitter-

follower is on and will make the output (vout(t)) follows the input. 

During the transition track-to-hold the switched emitter-follower 

switches, leading the current flowing through it to zero in a finite time. 

In the presence of a variable input, the SEF aperture persists from the 
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start of the track-to-hold transition until the SEF emitter current equals 

the sum of instantaneous current flowing into the hold capacitor 

(Chdvin(t)/dt) and I2, as shown in Fig. 2.59. 

Consequently, the aperture depends on the rate-of-change of the 

input signal. This implies that the input signal is sampled with 

different aperture, based on its instantaneous derivative, thus resulting 

in a non-uniform sampling and introducing distortion of the output 

signal. 

 

 
Fig. 2.59. SEF: simplified equivalent circuit for aperture analysis. 

 

 The perturbation introduced by the aperture can be analyzed, 

considering that the current decreases linearly as shown in Fig. 2.59.  

 The sampling condition is 

 2 2( ) ( ) 0 ( ) ( )E Ch ChI I t I t I t I t      (2.77) 

The switch occurs when the current I2 equals the current ICh. 

 The current ICh can be obtained through the superposition of the 

effect of vin+ and I1(t) (see Fig. 2.60, Fig. 2.61),and it can be written 

 Ch Ch ChI I I    (2.78) 

 

 
Fig. 2.60. Aperture error: effect of current I1. 



                                                                                                            87 

and ,Ch ChI I  can be written as 
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 (2.79) 

 Now, it can be rewritten the sampling condition expressed by 

(2.77) as follows 

 2 2( ) (1 ) ( ) ( )s
s ref Ch s Ch s Ch

A

t t
I t I I t I t I

t


       (2.80) 

 
Fig. 2.61. SEF: aperture modulation. 

 

 As in the case of the diode-bridge, for sake of simplicity it can be 

assumed 

 ( ) ( )Ch s Ch AI t I t t   (2.81) 

and the sampling instant can be derived from eq. (2.80) as follows 

  Rc sin 2 ( )s A h in At t t C f t t        (2.82) 

 where 
2h in

A

ref2

AC f
t

I


  . 

 A particular condition (see Fig. 2.61) is 

 Chmin ref2 sI I t t    (2.83) 

in this case there is no modulation and the sampling is instantaneous 

(i.e. at the instant t', the current IE is already smaller than zero). 

 Assuming that Chmin ChI I  , eq. (2.83) can be rewritten as 
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ref
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    (2.84) 

 Eq. (2.84) establishes an upper limit for the aperture time tA 

avoiding the aperture modulation. 

 If the aperture time is larger than ChRC, a modulation effect arises 

due to the aperture error and, as in the case of the diode-bridge, the 

aperture modulation is analogous to phase modulation and can be 

analyzed identically. Eq. (2.34) can be rewritten for the switched 

emitter-follower circuit as 
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and following the same mathematical procedure used for the diode-

bridge also for the differential SEF, the harmonic distortion is 
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 (2.86) 

This result agrees formally with that of the diode bridge (2.35) by only 

replacing the bridge current I1 with Iref2. The designed SEF circuit 

shows an aperture time tA=40 ps while the product ChRC=71 ps, 

whereby tA< ChRC. The effect of the aperture error should be strongly 

reduced. 

   

 
Fig. 2.62. Down-sampling test of  differential SEF circuit. 

 

 At the aim to evaluate the effect of bandwidth limitation and 

distortion in track mode, pedestal and aperture error, hold-mode 

feedthrough and droop-rate on the THA performance, a transient 

simulation without noise (excluding other phenomena like jitter) has 
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been performed. The suitable simulation set-up is the same described 

in sub-section 2.2.6 (see Fig. 2.22). The simulation results are reported 

in Fig. 2.62. The resulting total harmonic distortion is 64 dB 

corresponding to an ENOB=10.34. This THD value is very closely to 

that obtained in the track mode (see Fig. 2.44), confirming that the 

aperture error is not very relevant. 

 

2.3.7 SEF Track-to-Hold Performance: Clock Jitter 
 

The opening discussion of the sub-section 2.2.7 can be here reported, 

because the clock driver used for the switched emitter-follower is the 

same used for the diode-bridge. 

 The transient response of the clock driver loaded with the SEF 

circuit is depicted in Fig. 2.63. 

 

 
Fig. 2.63. Transient response of the clock driver to a differential input. 

 

 The resulting fall-time is equal to 40 ps, the output noise 

σVclk=1.176 mVrms, while the signal slope is dvclk/dt=18 V/ns, 

determining the following rms jitter 

 66clkv

t
clk

fs
dv

dt


    (2.87) 

 Recalling eq. (2.39), it is immediately verified that the SEF 

performance in terms of clock jitter are comparable with that of the 

DB. 

 

2.3.8 SEF Performance: Simulation Results 
 

This section reports the simulation results related to the switched 

emitter-follower behavior taking into account the error sources whose 
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effects have already been evaluated in sub-section 2.3.6, including 

also the sampling time jitter and the noise generated by the THA. 

 For this purpose, a transient simulation with generated noise has 

been performed, and its set-up is shown in Fig. 2.64. 

 The samples provided by the sample-and-hold are the inputs of the 

VerilogA module that stores the samples in a data file for the 

subsequent processing in the Matlab tool. It is worth recalling that the 

test in down-sampling entails, according to the design constraints, an 

analog input signal at the frequency fin=1 GHz with a sample rate 

fs=200 MHz corresponding to a sampling (clock) period Ts=5 ns. In 

this case, it has been fixed a clock period equal to Tclk=5 ns+5 ns/Npt 

where Npt=256 is the number of simulation points. This implies that 

Tclk=5.019 ns corresponding to a sample rate fs=199.22 MHz. The 

resulting frequency of the digital output is equal to 

fout=3.89 MHz=5fs/256. 

 

 
Fig. 2.64. Simulation set-up: switched emitter-follower overall performance. 

 

 The simulation results are reported in Fig. 2.65 and summarized in 

Table 2.VIII . It can be noted that the value of the SNR (57.3 dB) is 

very closely to that obtained in track mode (57.4 dB), confirming that 

the clock jitter does not have a significant impact on the THA noise 

performance. Furthermore, the value of the harmonic distortion is 

similar to that evaluated without clock driver and noise generator, 

confirming that these phenomena don’t have a relevant impact on the 

THA overall performance. 

It is worth highlighting that all the numerical simulation results 

presented previously have been obtained considering ideal current 

sources as biasing elements of THA circuit. 

At the aim to evaluate the actual performance of the switched 

emitter-follower the ideal current sources have been replaced by 

suitable current mirrors made with active devices. A great attention 
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has been devoted to minimize as much as possible the impact of the 

current mirrors on the THA performances. 

 

 
Fig. 2.65. SEF dynamic response in the frequency domain. 

 

 
Table 2.VIII 

Switched Emitter-Follower 

THD 63.4 dB (10.23 bits) 

SNR 57.3 dB (9.18 bits) 

SNDR 56.1 dB (9.03 bits) 

 

 

In the following the results will include the effect of the current 

mirrors. 

The characteristic time intervals (settling and hold time as defined 

in sub-section 2.2.8) of the THA operation are depicted in Fig. 2.66. 

These characteristic time intervals fix, in the worst case, an upper 

limit to the sampling frequency as follows 

 max

. .

1

2
s

w c

f
t

  (2.88) 
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Fig. 2.66. Settling track and hold time of switched emitter-follower. 

 

 In this case we have 

 

 max . .

245
1 2 1 2 2

50

settling

s w c settling

hold

t ps
f t t GHz

t ps


   


 (2.89) 

 

 The switched emitter-follower frequency response, depicted in 

Fig. 2.67, highlights a bandwidth equal to 6.1 GHz. 

 

 
Fig. 2.67. Frequency response of the switched emitter-follower. 

  

 Now, the final results of the switched emitter-follower in the 

differential configuration can be reported. 
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 The behavior of the effective number of bits as function of the 

input frequency is shown in Fig. 2.68. 

 

 
Fig. 2.68. ENOB versus fin (SEF differential mode). 

 

 The final performances are summarized in Table 2.IX. It can be 

noted that the differential circuit configuration shows better 

performances with respect to the single-ended solution. 

 
Table 2.IX 

SEF Differential Single-Ended 

Supply voltage 3.6 V 3.6 V 

THD(@1 GHz) 65.1 dB (10.52 bits) 40.4 dB  (6.42 bits) 

THD(@500 MHz) 68.4 dB  (11.07 bits) 39.9 dB  (6.34 bits) 

SNR 56.1 dB (9.03 bits) 50.0 dB (8.04 bits) 

SNDR(@1 GHz) 55.6 dB (8.94 bits) 40.0 dB (6.35 bits) 

SNDR(@500 MHz) 55.6 dB  (8.94 bits) 39.5 dB  (6.27 bits) 

hmf(@1 GHz) -53.9 dB  -53.9 dB 

hmf(@500 MHz) -53.8 dB -53.8 dB 

Droop-rate 8.4 nV/ns 3.32 nV/ns 

Bandwidth 6.1 GHz 6.1 GHz 

Power Dissipation 45 mW 47 mW 

 

 At the aim of comparison between the diode-bridge and the 

switched emitter-follower, the data in Table 2.VI referred to the 
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differential diode-bridge are recalled and reported in Table 2.X. In 

fact, in both cases the differential configuration exhibits the better 

performance than the single-ended solution. 

 
Table 2.X 

Differential SEF Diode-Bridge 

Supply voltage 3.6 V 3.6 V 

THD(@1 GHz) 65.1 dB (10.52 bits) 53.7 dB (8.63 bits) 

THD(@500 MHz) 68.4 dB  (11.07 bits) 66.6 dB  (10.77 bits) 

SNR 56.1 dB (9.03 bits) 52.3 dB (8.40 bits) 

SNDR(@1 GHz) 55.6 dB (8.94 bits) 50.0 dB (8.01 bits) 

SNDR(@500 MHz) 55.6 dB  (8.94 bits) 52.7 dB  (8.46 bits) 

hmf(@1 GHz) -53.9 dB  -51.0 dB  

hmf(@500 MHz) -53.8 dB -57.7 dB 

Droop-rate 8.4 nV/ns 70 mV/ns 

Bandwidth 6.1 GHz 3.87 GHz 

Settling time 245 ps    430 ps    

fs max 2 GHz 1.2 GHz 

Power Dissipation 45 mW 47 mW 

 

 It is clearly visible that the THA SEF circuit provides better 

performance than the diode-bridge not only in terms of SNDR, but 

also in terms of bandwidth and maximum sampling frequency. 

 Thus, the switched emitter-follower circuit will be used in the final 

design of the complete ADC. 

 

2.4 Comparator 
 

Every analog-to-digital converter contains at least one comparator. 

There are as many comparator circuits as there are analog-to-digital 

converter designers. Many aspects need consideration when designing 

a comparator. These aspects may vary for every different application, 

for specific class of signals, a technology, etc. No universal “one 

design fits all converters” comparator exists [18]. 

 The performance of a flash ADC strongly depends on that of its 

constituent comparators. For an N-bits flash ADC, 2
N
-1 comparators 
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are needed, requiring great attention to the constraints imposed on the 

overall system by the large number of comparators [1]. They are true 

mixed signal devices, and play a very important part in the design of 

high speed data converters. Thus, the design and the implementation 

of the comparator and its subsequent performance is crucial to the 

overall successful implementation of the data converter system. 

The ideal comparator transfer function is as shown below 

 

 
(logic 1)

(logic 0)

in ref

out

in ref

high if V V
V

low if V V


 



 (2.90) 

 

Comparison is in effect a binary phenomenon that produces a logic 

output of one or zero depending on the polarity of a given input. 

Comparators can be classified into two types depending on 

architecture. Static comparators are those which perform threshold 

detection based on the input and reference without clocking 

mechanism. Dynamic comparators (also called latched comparators) 

on the other hand, make use of the clocking mechanism to perform the 

switching action. The typical comparator is analog-to-digital 

conversion device with two analog inputs and a single digital output. 

The dynamic comparator in essence is a clocked difference detection 

circuit with pre-amplification and output latching [19]. Often latched 

comparators employ strong positive feedback for a regeneration phase 

when the clock is high, and have a reset phase when the clock is low. 

 

2.4.1 Comparator: Typical Bipolar Design 
 

Typical comparator architecture consists of a pre-amplifier followed 

by a latch and has two modes of operation, namely, tracking and 

latching. A traditional bipolar implementation of this architecture is 

depicted in Fig. 2.69. 

 The pre-amplifier consists of the differential pair Q1-Q2 and the 

resistors RC, while the latch comprises Q3-Q4 and shares the same 

resistors. Two clock signal clk (track) and its negated (latch) control 

the differential pair and the latch through Q5 and Q6, respectively. 
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Fig. 2.69. Typical bipolar comparator implementation. 

 

 When clk is high, Q5 is on and the differential pair tracks the input 

while Q6 is off and the latch is disabled. On the other hand, when the 

clk is low, Q5 turns off, disabling the input pair, while Q6 turns on and 

the latch establishes a positive feedback loop and amplifies the 

difference between Vout- and Vout+. 

 An important figure of merit of the comparator performance is the 

resolution or rather the minimum input difference that can be resolved 

by the comparator itself. This minimum input is 1 LSB. The resolution 

is limited by the input-referred offset and noise of both the pre-

amplifier and latch. The following sub-sections will be devoted to 

analyze these phenomena and how they impact on the overall 

comparator performance. Furthermore, some other considerations will 

be provided referring to the characteristic time intervals, and input 

currents and capacitances of the comparator. 

 

2.4.2 Comparator: Offset Analysis  
 

The comparator offset can be divided into two contributions, the pre-

amplifier and latch offset. The input offset voltage arises from the 

mismatch between nominally identical devices Q1-Q2, Q3-Q4, and the 

two resistors RC. In the case of the latch another source of offset error 

is the mismatch between the circuit capacitances due to phenomena of 
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charge redistribution. Since mismatch contributions of Q3-Q4, and the 

two resistors RC appear at the output, they are divided by the voltage 

gain of the differential pair when referred to the input. Thus, the 

overall offset can be obtained as follows 

 
1

os os pre os latch

pre

V V V
G

    (2.91) 

where Vos pre is the pre-amplifier offset, while Vos latch is the lacth 

offset. This latter is the latch input voltage that leads the latch to the 

instable point, after the high to low clock transition. 

 Moreover, Gpre is the pre-amplifier voltage gain and can be written 

as 

 12 CRpre mG g  (2.92) 

where gm12 is the transconductance of Q1 and Q2. 

 Generally, Gpre is much greater than one, so eq. (2.91) can be 

rewritten as 

 os os preV V  (2.93) 

 As discussed above the offset is due to the devices and resistors 

mismatch. In particular, it arises from the area mismatch of the active 

devices and resistors value mismatch. Considering the analysis 

reported in [5], it can be obtained 

 12

12

Rc

Rc
os pre T T

A
V V V

A

 
  (2.94) 

that is an approximate expression for the input offset voltage, which is 

the linear superposition of the effects of the different components. 

 Eq. (2.94) relates the offset voltage to mismatches in the resistors 

(∆RC) and in the structural parameters (∆A12) of the transistors. 

Mismatch factors ∆A12/A12 and ∆RC/RC are actually random 

parameters that take on a different value for each circuit fabricated, 

and the distribution of the observed values is described by a 

probability distribution. 

 A parameter of more interest to the circuit designer than the offset 

of one sample is the standard deviation of the total offset voltage. 

 Since the offset is the sum of two uncorrelated random parameters, 

the standard deviation of the sum is equal to the square root of the sum 

of the squares of the standard deviation of the two mismatch 

contributions, or 
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 12

2 2

Rc

12 Rc

A

Vos TV
A

 


   
   
  

  (2.95) 

 

Since comparator offset is added to the differential input it 

modifies the threshold transition. Therefore, in a flash architecture the 

offset of the j-th comparator alters the j-th threshold of the ADC (see 

Fig. 2.70). 

 

 
Fig. 2.70. Comparator offset. 

 

 A constant displacement of each threshold causes an offset error of 

the ADC. Neglecting the offset error, it is interesting to analyze the 

offset variation between the comparators within die. 

 Neglecting the offset and gain offset due to the comparators, in the 

worst case it is possible to write 

 1j os j j os j os jINL V DNL V V    (2.96) 

As Vos j and Vos k tend to be quite independent, the offset of the 

comparator appears to be a white noise component at the output of the 

ADC (worsening the SNR) rather than a distortion component 

(worsening the THD). 

In order to ensure no missing codes or monotonicity the following 

constraint must be verified 

 2LSB os LSBDNL V V V    (2.97) 

that is for a given yield the maximum value of the offset must be 

lower than ½ LSB divided by the number of sigma required to obtain 

that yield. Generally, from a statistical point of view it is imposed that 

(2.97) is verified ensuring a 99.9% yield. Thus, considering Vos 



                                                                                                            99 

distribution as a Gaussian distribution, the following constraint must 

be verified 

 3.30
2 6.60

LSB LSB
Vos Vos

V V
     (2.98) 

 Now, some design trade-offs can be taking into account. Eq. (2.95) 

shows that an offset reduction can be obtained by increasing the area 

of Q1-Q2 or the width of the resistors RC. Increasing the area of the 

active devices increases the comparator input capacitances (increases 

the load effect of the comparator) and the capacitances on the output 

nodes. These latter capacitances can also increase increasing the width 

of the resistors RC. The effect is a worsening of the characteristic 

times of the comparator. 

 Substituting in eq. (2.92) the BJT expression of gm12 it can be 

written 

 
Rc1 1

2 2

ee sw
pre

T T

I V
G

V V
   (2.99) 

 If an high voltage gain is desired, the output voltage swing Vsw 

must be much greater than the thermal voltage VT. This can be 

obtained by increasing the bias current Iee worsening the input 

capacitance, or increasing RC and, as already stated, worsening the 

comparator characteristic times. 

 

2.4.3 Comparator: Noise Analysis 
 

The comparator input-referred noise (when the clock is high) is added 

to the other noise sources of the ADC. 

 The comparator input-referred noise consists primarily of the 

thermal and shot noise of the transistors of the differential pair and the 

thermal noise of the resistors RC. By using the noise analysis reported 

in [5], it can be obtained the noise spectral density of the comparator 

as 

 
2

12 2

12

1 Rc
8

2

n
b

m pre

v
KT r

f g G

 
  

   

  (2.100) 

where rb12 is the base resistance of Q1 and Q2 (a physical resistor in 

series with the input), while 1/2gm12 is the effect of collector current 

shot noise and RC/G
2

pre is the effect of thermal noise due to the 

collector resistors, both referred back to the input. In most cases the 
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noise component RC/G
2

pre can be neglected. Furthermore, all the noise 

components are assumed to be uncorrelated. 

 The total input-referred noise can be written as 

 
2

2 n
n BW

v
V N

f



 (2.101) 

where NBW is the equivalent noise bandwidth and, in the case the pre-

amplifier can be considered a single pole circuit, it is 

 
3

2
BW dBN f


  (2.102) 

where f3dB is the -3 dB bandwidth and eq. (2.101) can be rewritten as 

 2

12 3

12

4 1

2
n b dB

m

KT
V r f

g

 
  

 
 (2.103) 

 The noise can be reduced by reducing 1/2gm12 that is increasing Iee. 

As a consequence, f3dB increases and at the same time input 

capacitance increases. However, increasing the bias current Iee a noise 

reduction is expected. 

 

2.4.4 Comparator: Times Analysis 
 

The settling and recovery time of the comparator are defined in Fig. 

2.71. 

 
Fig. 2.71. Comparator characteristic times. 
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 The time intervals in Fig. 2.71 are referred to the worst case 

transition of the comparator input. 

 The settling time depends on the dynamic behavior of the pre-

amplifier. Assuming that the pre-amplifier is single pole system and 

considering the comparator differential output Vout= Vout+- Vout-, it can 

be written 

   ( ) 1 t

out pre LSB swV t G V V e     (2.104) 

 

then, if t=tsettling and assuming Vout(tsettling)=Vsw, eq. (2.104) becomes 

 

     settlingt

sw pre LSB sw pre LSB swV G V V G V V e


     (2.105) 

 

after some calculations it can be obtained 

 ln 1 sw
settling

pre LSB

V
t

G V


 
  

 
 

 (2.106) 

where the time constant τ=RCCout(clk=1) and Cout(clk=1) is the output 

capacitance when the clock is high. By substituting in eq. (2.106) and 

recalling (2.99), it follows 

 ( 1)Rc ln 1
2

T
settling out clk

LSB

V
t C

V


 
  

 
 (2.107) 

 On the other hand, the recovery time depends on the dynamic 

behavior of the latch. During the regeneration phase (clk=0), it is [1] 

 

 /
( ) (0) latcht

out outV t V e


   (2.108) 

 

where the time τlatch is close to the transit time of the latch transistors  

Q3-Q4. This expression of the output voltage presumes the system 

linearity, thus it is verified until the latch reaches Vsw or rather when 

one of the transistors Q3-Q4 goes off. 

 Eq. (2.108) describes the latch behavior as that of two back to 

back connected identical single-pole inverting amplifiers each with a 

small-signal gain Glatch and a characteristic time constant equal to 

RCCout(clk=0). Thus, it can be written 

 
( 0) ( 0)

34

Rc out clk out clk

latch

latch m

C C

G g


 
   (2.109) 
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where gm34=Glatch/RC is the transconductance of the transistors Q3 and 

Q4. This expression highlights that τlatch could be reduced by 

increasing Iee. 

 Assuming Vout(trecovery)=Vsw, eq. (2.108) becomes 

 

 covre ery latcht

sw pre LSBV G V e


  (2.110) 

and after rearranging the terms, it follows 

 ln sw
recovery latch

pre LSB

V
t

G V


 
  

 
 

 (2.111) 

then recalling eqs. (2.99), (2.109), it can be written 

 ( 0)

34

1
ln

2

T
recovery out clk

m LSB

V
t C

g V


 
  

 
 (2.112) 

 Referring to eqs. (2.107), (2.112), some useful design trade-offs 

can be derived. Thus, considering the same Vsw, both RC and 1/gm34 

depend on 1/Iee. This latter means that both settling and recovery time 

have the same trade-offs, so they can be improved (i.e. reduced) by 

increasing the bias current Iee and decreasing Cout (with the difference 

that Cout(clk=0) includes also the diffusion capacitances of Q3-Q4 which 

increase when Iee increases). 

 Moreover, it is worth noting that both the settling and recovery 

time increase as VLSB becomes smaller than VT, and although the time 

dependence on VLSB is logarithmic, VLSB depends exponentially on the 

number of bits. 

 

2.4.5 Comparator: Input Currents and Capacitances 
 

The behavior of the comparator input currents is depicted in Fig. 2.72. 

 

 
Fig. 2.72. Comparator input currents. 
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 The maximum dc input current depends on the bias current Iee as  

 ee
DCmax

I
I


  (2.113) 

 

and as we will see in the following, these currents have a relevant 

impact on the performance of the resistor ladder. 

 The comparator (see Fig. 2.69) exhibits a non-linear input 

capacitance as a function of the differential input [1]. Thus, we have 

three different cases: 

 in in TV V V   , this means that Q1 is off and the input 

capacitance is 

 1 1IN diff je IN sended jcC C C C    (2.114) 

 0in inV V   , this implies that Q1 turns on introducing a base-

emitter diffusion capacitance CDE, thus the input capacitance is 

 
 

12

1

2

de pre jc

IN diff de m F

C G C
C C g 

 
  (2.115) 

where τF is the base transit time. 

 in in TV V V   , this implies Q2 turns on and Q1 operates as an 

emitter-follower, the input capacitance is 

 10IN diff IN sended jcC C C    (2.116) 

 It can be noted that when the differential input is about zero the 

capacitances on the nodes in+ and in- are symmetric, thus there is no 

difference between themselves. In the last case, when the differential 

input voltage is much greater than the thermal voltage, we consider 

only the capacitances on node in+. In fact, the capacitances on node in- 

are the same of node in+ by symmetry provided that we change the 

sign of differential input or rather we consider the node in- as node in+ 

when differential input is much smaller than -VT. 

 Next, it is worth noting that the input capacitances are larger when 

Vin+ approaches Vin-, but in a flash ADC, for a given input voltage, 

most of the comparators operate with a differential input voltage away 

from zero. Thus, the comparator input capacitance arises primarily 

from the junction capacitances of the transistors. 

 Another important issue is that the comparator input capacitances 

impact on the speed of the resistor ladder, so worsening the maximum 

sampling frequency. From the converter point of view, the comparator 

input capacitance CIN depends mainly on the devices area, hence there 
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is a trade-off between input capacitance and offset (see eq. (2.95)), 

while there is not a relevant dependence on the current Iee (weak trade-

off between input capacitance and characteristic times). 

 In conclusion, both comparator offset and input capacitance 

depend on the devices area. A better accuracy requires smaller offset, 

hence larger devices area, so increasing the input capacitance. As a 

consequence, the larger capacitance impacts on the overall 

performance by worsening the resistor ladder speed. 

 Furthermore, settling and recovery time, and input dc currents 

depend on the bias current Iee. Smaller time requires higher bias 

current, thus increasing the input dc currents. 

 

2.4.6 Comparator: Kickback noise 
 

The kickback noise is a another phenomenon that affects the 

comparator behavior (see Fig. 2.73). This phenomenon can be 

detected at the input during the latch mode due to Q1-Q2 being 

suddenly shut-off. In fact, during the transition from latch to track, 

clock goes high and Q5 turns on drawing current from Q1 and Q2 

which are initially off, hence this current first flows through their 

base-emitter junction giving rise to a large current spike at the inputs.   

 

 
Fig. 2.73. Comparator kickback noise. 

 

The magnitude of this spike is approximately half the Iee, before 

Q1 and Q2 turn on and provide current gain [1], [20]. The kickback, 
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due to the back-injection of stored base-emitter charge into the base, 

can significantly distort the incoming signal and limit the performance 

of higher resolution converters. Moreover, this phenomenon can 

lengthen the switching time of the resistor ladder. 

 

2.4.7 Comparator: Improved Architecture 
 

In this sub-section, the comparator improved implementation 

employed in this work (see Fig. 2.74) will be presented, also 

highlighting the advantages with respect to the typical architecture 

discussed previously [1], [14]. In particular, the pre-amplifier can be 

preceded with another differential input stage to suppress the kickback 

noise and provide more gain, while the latch can use emitter-followers 

to enhance the regeneration speed. 

 

 
Fig. 2.74. Improved comparator architecture. 

 

 The differential input stage reduces the kickback noise to 

acceptable amount. Then, it increases the pre-amplifier gain (Gpre), 

thereby decreasing the latch offset, and improving the metastable 

behavior. 

 The emitter-followers between the first and second stage provide 

an ECL circuit allowing a larger voltage swing, hence increasing the 

voltage gain of the first stage. Another advantage is the capacitive 

decoupling of the second stage from the first stage, allowing the 

second stage bias current (Iee2) to be increased without extending the 

propagation delay of the first stage. 
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 Also the emitter-followers used in the latch section allow larger 

voltage swing, improving the voltage gain of the second stage. 

Moreover, they reduce the effect of the parasitic capacitances of the 

latch pair on the nodes X and Y, thus enhancing the regeneration 

speed.  

 Next, they provide a capacitive decoupling of the output 

capacitances from the nodes X, Y, thereby assuring that the 

comparator performance does not depend on the output load and 

additionally, during the latch phase, the capacitances of the latch 

transistors are not directly driven. As a consequence the bias current 

Iee2 can be increased without an increase of the capacitances driven by 

the latch pair transistors. 

 

2.4.8 Comparator: Circuit Design and Simulation 

Results 
 

The discussions presented in the previous sub-sections highlight the 

existence of a set of trade-offs between the different circuit 

parameters, their sizing is not easy. Taking into account these 

considerations, the design choices were made at the aim to achieve the 

desired comparator performance. The design parameters and their 

values are summarized in the following Table 2.XI. 

 
Table 2.XI 

Comparator 

Parameters Value 

Vsw1 300 mV 

Vsw2 500 mV 

Iee1 200 µA 

Iee2 400 µA 

Iee followers 200 µA 

 

 The bias current of the first stage (Iee1) is small at the aim to avoid 

the increase of the input currents. Thereby, Vsw1 cannot be too high 

(i.e. RC higher) otherwise worsening the settling time. 

 The emitter-followers between the first and second stage allow to 

increase the Iee2, thus reducing the recovery time and enlarging the 

voltage swing Vsw2, improving the pre-amplifier gain. On the other 
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hand, the settling time is limited by the RC value that cannot be so 

much reduced. Simulation results confirm this latter as shown in Fig. 

2. 75. The settling and recovery time are 
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t ps
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
 (2.117) 

 

and, as expected, the settling time represents the worst case allowing a 

maximum sampling frequency equal to 3.2 GHz. 

 
Fig. 2. 75. Comparator: settling and recovery time. 

 

 In Fig. 2.76 is depicted a dc Montecarlo simulation of the 

comparator offset. In particular this simulation takes into account only 

the pre-amplifier offset. Other simulation results have highlighted that 

the latch offset provides a negligible effect. The offset could be easily 

reduced by further increasing the size of the input devices, but 

worsening the input capacitances which heavily depend on the 

transistors area. 

 

 
Fig. 2.76. Montecarlo simulation of comparator offset. 
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 The resulting offset standard deviation is σVos=684 µV 

corresponding to an ENOB=8.72 bits. 

 In Fig. 2.77 is depicted the input capacitance behavior as function 

of the differential input voltage. The resulting value of the input 

capacitance is 
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 (2.118) 

 

 
Fig. 2.77. Comparator input capacitance versus differential input voltage. 

  

 In a practical way, it can be considered 

 10 26INfF C fF   (2.119) 

Moreover, the maximum dc input current is 

 max 896DCI nA  (2.120) 

that is a quite small value. 

 

2.5 Resistor Ladder 
 

The resistor ladder is one of the key elements in the development of 

high speed ADCs. In Flash ADC [1], [3], [21], [22], the resistor ladder 

is employed to generate the reference voltages which represent the 

ideal quantization thresholds of the converter. 

 Performances higher than Flash converters could be obtained by 

using Folding and Interpolating architectures [13], [14], [23]-[30]. The 

resistor ladder is still one of the basic elements of these converters, 
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where it generates the set of reference voltages required by the folders. 

Although in Folding and Interpolating ADCs the array length is 

reduced, the resistor ladder remains one of the main performance 

bottlenecks [30]. 

 In a N-bits flash ADC, the resistor ladder provides NR-1 

thresholds, where NR=2
N
 is the number of resistors. 

 Basically it can be distinguished between two ladder topologies: 

single-ended and differential. In single-ended ladders, generally 

employed in CMOS converters [14], [21]-[24], the input voltage is 

compared with a set of  NR-1 voltages generated by a resistor divider. 

 In bipolar implementations this solution is generally not preferred 

since the INL of the converter becomes proportional to NR
2
, because of 

DC bowing effect [1]. Apparently the resistor divider voltages are 

static. However, due to capacitive feedthrough, the input signal 

switching excites a transient of the resistor divider voltages [1], [24]. 

 This phenomenon (known as AC bowing effect) causes a settling 

behavior, so that the ADC speed becomes dependent on NR
2
. AC 

bowing effect can be alleviated by inserting decoupling capacitances 

or buffers, with an heavy price paid in terms of silicon area. 

 Differential ladders are generally the preferred choice in bipolar 

ADCs [13], [26]-[30]. In these circuits the differential input voltage 

propagates through two NR resistors arrays, and the threshold voltages 

correspond to the zero crossing points of the differential voltages 

across the two arrays. 

 In addition to well known advantages of differential against 

single-ended topologies, like the rejection of common mode noise, the 

main advantage of differential resistor ladder is the reduced INL [31]. 

 In fact, as it will be also seen in the following, in differential 

ladders the DC bowing effect, completely or partially, appears as a 

common mode and is therefore, in large part, cancelled by the 

differential nature of the circuit. The main drawback of differential 

ladders is the speed. In fact the maximum sampling frequency of the 

converter is limited by the settling time of the arrays, which is 

proportional to NR
2
. 

 Two techniques can be used to speed up bipolar ADCs: distributed 

sample & hold (SHA) [30], and high speed ladders [26], [27]. As an 

example the differential ladder proposed in [26], [27] can achieve up 

to a fourfold reduction of the array settling time, with respect to a 
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conventional differential array. However, as shown in the following, 

this improvement is paid with a worsening of the converter INL. 

 In this work a novel differential resistor ladder is proposed. The 

novel array achieves, in a first-order approximation, up to a sixteen- 

fold reduction of the settling time with respect to the conventional 

differential ladder. In addition, the novel array results also in a 

noticeable reduction of INL with respect to conventional differential 

ladder. 

 

2.5.1 Resistor Ladder: Conventional Single-Ended 

Topology 
 

A simplified schematic diagram of the conventional single-ended 

resistor ladder (for NR=256, N=8) is depicted in Fig. 2.78. 

 

 
Fig. 2.78. Schematic diagram of conventional single-ended ladder. 

 

 The resistor ladder must provide the threshold voltages of the 

ADC, thus the single-ended configuration would appear an easy 

solution. Actually, some design drawbacks must be taken into 

account. The difference Vref+-Vref- must equal the required full-scale 

reference voltage (Vref=VFS), and the center tap voltage of the array 

(Vref++Vref-)/2  must equal the common-mode output level of the SHA 
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circuit. At the aim to achieve these design goals, a complex reference-

voltage generator must be employed [32]. 

 The simplified schematic circuit of the voltage-reference generator 

is shown in Fig. 2.79. It consists of SHA replica circuit that generates 

a signal equal to the common-mode level of the SHA output. From 

Vcm, the voltage Vref+ is derived by means of the amplifier A2 and 

resistor equal to half (128R) the total resistance of the ladder (256R), 

so assuring the correct value required at the top of the resistor ladder 

(i.e. Vref+=Vcm+VFS/2). 

 

 
Fig. 2.79. Simplified block diagram of voltage-reference generator circuit. 

 

Simultaneously, a current sink equal to Iref is attached to the 

bottom of the ladder. This ensures that voltage across the ladder has 

the correct value. The current Iref is derived from VFS using a V-I 

converter made up of A1 and resistor equal to 256R, ensuring 

IrefR=VLSB. 

The current output from this circuit is fed into a current mirror that 

generates the current sources and sinks that are required by the other 

parts of the reference generator. 

From the above discussion, it is clear that the design of the resistor 

ladder in single-ended fashion in not easy, because of its complex 

reference generator circuit. 



112                                                         Chapter 2 – Flash ADC Design 

As aforementioned, the resistor ladder must provide the threshold 

voltages of the ADC. By neglecting the currents Ij, the voltages Vrj 

correspond to the ideal quantization thresholds of an N-bits ADC (see 

Fig. 2.78) 

 
2

ref R
j DC

R

V N
Vr j V

N

 
   

 
 (2.121) 

depending on the dc voltage VDC. 

 
Fig. 2.80. Resistor ladder with all currents equal to IDC. 

 

Furthermore, the presence of currents Ij may substantially modify 

the ladder thresholds Vrj. Also in the simplest case in which the 

currents Ij are all equal to a given value (IDC) (see Fig. 2.80), the 

resistive load seen by each current is different, therefore a non linear 

effect is introduced in the ladder thresholds (DC Bowing). The 

resulting INL can be easily computed (see [1]): 

  
1

2
j R DCINL j N j RI   (2.122) 

 Eq. (2.122) is symmetric with respect to j=NR/2, where it reaches 

its maximum value 

 21

8
max R DCINL N R I  (2.123) 

 Now, it is worth highlighting that the current depends on the 

comparator input stage. In this work, the comparator input stage is 

composed by a differential pair (see Fig. 2.74), depicted (with single-

ended array) in Fig. 2.81. 
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 In this case we cannot assume I1=I2=...=I255, since Ij currents 

depend on input voltage of the comparators. Eq. (2.122), therefore, 

cannot be applied. 

 
Fig. 2.81. Comparator input stage. 

  

 Furthermore, the property of symmetry around j=NR/2 is no longer 

verified when the comparator of Fig. 2.74 is employed. In particular 

the non linearity is higher for low input voltages. In fact, for 

increasing input voltages, the Ij current shown in Fig. 2.81 decreases 

and becomes zero for Vin>Vrj+4VT. However, as discussed in section 

2.4, comparators designed according to Fig. 2.74 give the advantage 

of providing a low input offset voltage and a reduced recovery time. 

 

2.5.2 Resistor Ladder: Conventional Differential 

Topology 
 

The conventional resistor ladder architecture is depicted in Fig. 2.82. 

Firstly, it can be noted the advantages of this solution with respect to 

the single-ended implementation. In fact, in this case we have a 

differential input, thus avoiding the need of balance the common-

mode output level of the SHA circuit. This latter means that the 

voltage-reference generator circuit is much simpler than that of the 

single-ended resistor ladder [13]. 

 In this case, the full-scale quantization range is controlled by the 

replica bias circuit shown in Fig. 2.83. The high-gain op-amp A1 in a 

positive feedback loop forces a current to a replica ladder with an 

externally applied voltage (VDC). Unlike the single-ended 

configuration, the current Iref is derived ensuring IrefR=VLSB/2. 
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Fig. 2.82. Conventional differential resistor ladder. 

 

 

 

 
Fig. 2.83. Simplified block diagram of voltage-reference generator circuit for 

differential ladder. 
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 Considering the circuit in Fig. 2.82, it can be defined the 

differential output voltage of the ladder (for a generic node j) as 

 

 d j j jV V V    (2.124) 

 In this case the ladder threshold voltages Vrj (see Fig. 2.78) 

correspond to the differential input voltages for which Vdj=0. A simple 

analysis of the circuit reveals that, in the hypothesis Ij+=Ij-=0, the 

threshold voltages are 

 
2

ref R
j

R

V N
Vr j

N

 
  

 
 (2.125) 

if the following polarization current Iref is imposed 

 
1

2

ref

ref

R

V
I

N R
  (2.126) 

 This equation can be easily verified by compensating process and 

temperature variation with the simple feedback circuit in Fig. 2.83. 

 An advantage of differential ladder is that threshold voltages are 

intrinsically independent from input dc voltage. This is not true for the 

single ended ladder (see eq. (2.121)), where a complicated feedback 

circuitry (see Fig. 2.79) is needed to adapt the dc value of Vin to the dc 

voltage of the ladder (VDC in Fig. 2.78). 

 It is also interesting to observe that if the currents Ij+, Ij- are not 

equal, as in the case of the comparator designed in this work (see Fig. 

2.74), the non linearity of each array is no longer symmetric. In this 

case, the non linearity of each single array, in the differential circuit, is 

not perfectly cancelled by the differential topology and a DC bowing 

effect arises. 

 A main drawback of the differential ladder is the long propagation 

delay (tp) of the input signals through the two resistor arrays. In fact, 

the input signal goes through an RC delay line, where R is the unit 

resistor of the resistor ladder and C is the input capacitance of the 

comparator. 

  

 
Fig. 2.84. Elmore delay model of the resistor ladder. 
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 Consider the simplified equivalent circuit of the resistor ladder 

loaded with the comparators shown in Fig. 2.84. Next, by using the 

Elmore model for the delay calculation, in a first order approximation 

the propagation delay can be written as follows 

  
2 2

2 2

R R
p e p

N N
t R r C t RC     (2.127) 

where C is the load capacitance of each output node Vj+ or Vj- , and re 

is the output resistance of the two BJTs in Fig. 2.82 (re=VT /Iref+Re). 

 To overcome the speed limit of the conventional differential 

resistor ladder, it could be taken into account the circuit solution 

proposed by Kobayashi et al. [26], [27]. In Fig. 2.85 is depicted a 

simplified schematic of this high-speed ladder for NR=256. 

 

 
Fig. 2.85. Differential ladder proposed in [26], [27]. 

 

 In this case, the resistor ladder is driven from both sides. 

Therefore, the propagation delay to reach the middle of the resistor 

ladder, where the signal is most delayed, in a first order approximation 

is given by 
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  
2( / 2)

2

R
p out

N
t R r C   (2.128) 

where rout is the buffer output resistance. 

 By comparing eq. (2.128), (2.127) it highlights that the circuit in 

Fig. 2.85 can, theoretically, achieve a four-fold reduction of the 

propagation delay with respect to the conventional differential circuit. 

 Furthermore, this circuit suffers from an increasing INL, because 

the maximum differential INL is related to that of each single array 

and at least is proportional to its square length (NR
2
). This latter is 

confirmed by simulation results as shown in the following. 

 

2.5.3 Proposed Differential Resistor Ladder 
 

In this sub-section, a novel high-speed differential resistor ladder is 

proposed [33]. The schematic of the proposed differential resistor 

ladder is shown in Fig. 2.86 for the case NR=256 (8-bits ADC). 

 In this circuit we observe that the input signal Vin+ is applied to a 

first array composed by only two resistors. This first array generates 

three voltages Va+, Vb+ and Vc+. These three voltages drive, through 

three emitter followers, a second array, composed by NR resistors. 

This second array is split by Va+, Vb+ and Vc+ in two sub arrays. The 

upper sub array is biased with a voltage given by Va+- Vb+=Vref/4 (if 

eq. (2.126) is assumed). The lower sub array is biased with a voltage 

Vb+-Vc+ which is also equal to Vref/4. 

 The same reasoning can be applied to the two resistor arrays 

driven by Vin-, on the right side of Fig. 2.86. 

 If the currents Ij+, Ij- are neglected, by comparing the circuit in Fig. 

2.86 with the conventional differential ladder shown in Fig. 2.82, it 

can be observed that the voltage drop on each sub array (of NR/2 

resistors) is exactly the same between the two circuits. 

 Since the arrays in the two circuits are biased with the same 

voltages, we can conclude that also the circuit of Fig. 2.86 gives the 

threshold voltages given by (2.125). 

 Moreover, it is worth noting that the dashed current sources shown 

in Fig. 2.86 are useful to reduce the dc output currents of the upper 

and lower emitter followers, reducing in this way the gain error of the 

circuit. 
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Fig. 2.86. Proposed differential ladder for NR=256. 

 

 With reference to the linearity of the ladder, we can distinguish 

three contribution. 

 The contribution of the first arrays, which generates Va+, Vb+, Vc+, 

Va-, Vb- and Vc-, is almost negligible since these arrays are composed 

by only two resistors and, in addition, they are loaded with almost 

constant currents. 

 The second contribution is due to the load currents of the six 

buffers. The design experience shows that this contribution can be 

easily made negligible with a careful choice of the buffers biasing 

current. Additionally, the offset voltages of the buffers may also 

impact the ladder INL. This effect, however, tends to be cancelled by 

the CMRR (Common Mode Rejection Ratio) of the ladder load, and, 

therefore, becomes again ascribable to a load effect. 

 The final contribution, due to the four sub-arrays of NR/2 resistors 

each, is the real linearity bottleneck. In fact, when the currents Ij+, Ij- 

are not equal (assuming the comparator topology used in this work, 
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Fig. 2.74), the INL of each sub-array is no longer symmetric, thus 

asymmetries arise which result in a non-linear behavior. 

 In conclusion the proposed circuit presents a non-linear behavior 

similar to the conventional differential topology of Fig. 2.82. The non-

linearity of the proposed circuit, for NR>32, is, in general, lower than 

the conventional differential topology since each sub array is 

composed by NR/2 resistors (as opposed as the NR resistors of 

conventional topology) and the contribution due to the buffer is nearly 

negligible. Thus, the maximum INL will be proportional to (NR/2)
2
. 

The main advantage of the proposed circuit against the 

conventional topology, is the speed. In fact, the most relevant 

contribution to the signal propagation delay in the proposed topology 

of Fig. 2.86 is due to the four sub-arrays. In this case, the slowest 

signals are the four midpoints of each array.  

Therefore, neglecting the delays of the first arrays, it follows 

 
 

 
 

2 2
/ 4 / 4

2
2 2

R R

p out p

N N
t R r C t RC     (2.129) 

where rout is the output resistance of the buffers driven by Vb+ and Vb-. 

Eq. (2.129) corresponds to a sixteen-fold reduction of the propagation 

delay, with respect to the conventional topology (see eq. (2.127)), in 

the ideal case re=rout=0. Furthermore, recalling eq. (2.128) the 

proposed topology results in a four-fold reduction of the propagation 

delay with respect to the high-speed ladder in [26],[27]. 

 

2.5.4 Resistor Ladders Performances 
 

The proposed resistor ladder has been designed for a BiCMOS 

0.25µm technology by using 50 GHz NPN HBT devices. For 

comparison also the conventional differential ladder and the 

high-speed ladder proposed in [26],[27] have been designed in the 

same technology. 

 In the following we will consider two NR values: 64, 256. The 

ladder with NR=64 uses R=4 Ω, while the ladder with NR=256 uses 

R=1 Ω.  

 All arrays have been loaded with the comparator topology 

presented in section 2.4, which, as observed before, represents both 

the most critical and the most common case. 
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A suitable simulation set-up at the aim to observe the INL is defined 

as in Fig. 2.87. 

 

 
Fig. 2.87. Ladder INL simulation set-up. 

 

 A transient simulation has been performed by varying the input 

voltage Vin very slowly (10 s) from -VFS/2 to +VFS/2. The VerilogA 

module detects the zero-crossings of the differential outputs of the 

comparators. The input voltage corresponding to the output 

zero‒crossing is stored in a data file, that is later processed in Matlab 

extracting INL, gain and offset error. 

 The Fig. 2.88 shows the obtained INL of the different ladders. It is 

interesting to observe the high-speed ladder [26],[27] shows an higher 

non-linearity with respect to conventional ladder both for NR=64 and 

NR=256. For NR=64 the proposed ladder exhibits a maximum INL 

comparable to the conventional ladder. For NR=256, where the 

contribution of buffer non-linearity becomes quite negligible, 

proposed circuit shows a sensible lower non-linearity with respect to 

conventional ladder. For sake of completeness the values of the 

maximum INL are reported in Table 2.XII. 

 
Table 2.XII 

Stated 

bits 

Ladder 

topology 
INLmax 

6 

conventional 0.011 

Kobayashi et al. 0.018 

proposed 0.009 

8 

conventional 0.217 

Kobayashi et al. 0.314 

proposed 0.137 

 

 

 



                                                                                                            121 

 
Fig. 2.88. Simulated ladders INL, a) NR=64 (R=4 Ω); b) NR=256 (R=1 Ω).  

 

 Fig. 2.89 compares a transient simulation of the proposed ladder 

with the simulations of the conventional and high-speed ladder of 

[26],[27], for NR=256. 

 
Fig. 2.89. Transient simulation of the three ladders (NR=256, R=1 Ω). 
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 This simulation considers a full swing switch of the ladder input 

voltage. In these conditions the proposed ladder is clearly faster with 

respect to the other circuits, with a propagation delay as low as 0.6 ns. 

 It is worth to highlight that the propagation delay may vary 

considerably as a function of considered ladder output or input voltage 

switch. A real measure of the ladder speed can only be obtained by 

inserting the ladder in the ADC and by measuring the total harmonic 

distortion (THD) of the converter as a function of sampling rate. This 

analysis is presented in the next section. 

 

2.6 ADCs Performances 
 

At this point, all the circuitry required to implement the 8-bits Flash 

ADC have been designed and appropriately tested. The final circuit 

consists of more than 2500 transistors. In order to have a real 

indication of the overall performances and, in particular of the 

effectiveness of the proposed ladder circuit, several ADCs have been 

designed using the Flash topology. 

 Furthermore, starting from the designed Flash ADC, at the aim of 

comparison, different ADCs have also been implemented using the 

Folding/Interpolating topology. 

 In the case of Flash converters, two circuits have been considered: 

a 6-bits converter (NR=64) and a 8-bits converter (NR=256). Both 

circuits employ the comparator described in section 2.4. 

 The Fig. 2.90 shows the ENOB extracted from the THD and the 

signal to noise and distortion ratio (SNDR) obtained by simulating the 

8-bits Flash converter using the proposed ladder. 

 At low sampling frequencies the converter exhibits a THD of 9 

bits, limited by the ladder INL. The resulting SNDR (which includes 

also quantization noise) is slightly lower than 8 bits. By increasing the 

sampling frequency, due to limited ladder speed, a dynamic non-linear 

behavior is introduced, which worsens the THD. 

 For fs630 MHz, the SNDR reduces to 7.5 bits (3 dB below the 

ideal value). From the Shannon theorem we can conclude that the 

effective resolution bandwidth (ERB) of this converter is 

630/2 = 315 MHz. 
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Fig. 2.90. Simulated ENOB extracted from the THD and the SNDR for the 8-bits 

Flash converter using proposed ladder. 

 

 The Table 2.XIII reports the ERB obtained by simulating Flash 

ADCs designed by using the proposed, the conventional and the 

high−speed [26], [27] ladder topologies. 

 
Table 2.XIII 

 
 

 For 8-bits converters the proposed solution results in about a 4.8 

times higher ERB. A bandwidth larger than previous high-speed 

ladder is also highlighted in the case of 6-bits converters. 

 The simulated Folding/Interpolating converters employ the 

topology described in [26]-[28]. Two converters have been considered 

with a resolution of 8 bit and 9 bit, respectively. The 8-bits converter 
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uses a ladder with NR=42, while the 9-bits converter employs a ladder 

with NR=82.  

 The Table 2.XIII reports the obtained ERB. The proposed 

topology is effective also in increasing the effective bandwidth of 

Folding/Interpolating converters. 

 The Table 2.XIII includes also Power Dissipation data and Figure 

of Merit performance, computed according to the specification in 

(1.15). 

 By looking to the power dissipation data reported in Table 2.XIII 

it can be observed that proposed ladder requires a substantial higher 

power with respect to other ladders. 

 As an example, in Flash 8 bit case, the proposed ladder results in 

an about 2.5 times larger power with respect to conventional ladder. 

However, in Flash and in Folding & Interpolating converters, the 

power is dominated by the comparators and by the folders. As a 

consequence the higher power of proposed ladder results only in a 

marginal power dissipation increase if we look at the whole converter. 

As an example, in the 8-bits Flash converter, the power dissipation 

increases only of the 4.3% by using the proposed solution with respect 

to the conventional ladder.  

 Similar conclusions can be drawn by analyzing the Figure of Merit 

of the ladders and the whole ADCs. 

 Finally, the designed ADCs can be added to Fig. 1.19, reported 

below (Fig. 2.91). 

 The designed flash ADCs are plotted considering the maximum 

achievable sampling frequency (two times the ERB). The 

corresponding ENOB, extracted from SNDR, is also labeled. 

 As an example the designed 6-bits Flash ADC (green circle with 

ENOB=5.5) shows a resolution similar to the other flash ADCs in the 

same range of sampling frequency. 

 On the other hand, the designed 8-bits Flash ADC (green circle 

with ENOB=7.5) shows better resolution than the other flash ADCs. 

However, this advantage is paid in terms of reduced maximum 

sampling frequency. 
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Fig. 2.91. ENOB versus sampling frequency, and limitations imposed by thermal 

noise (solid lines), comparator ambiguity (orange and purple dashed lines), and 

Heisenberg principle (brown dashed line). 

 

 The designed Folding/Interpolating ADCs (green square in Fig. 

2.91) show better performances than the other Folding/Interpolating 

ADCs. However, it is worth highlighting that the layout 

implementation of the designed ADCs can worse their performances, 

although they currently show a good margin with respect to the other 

converters plotted in Fig. 2.91. 
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Chapter 3 
 

Step-Up DC-DC Converter 
 

Dc-dc converters play a fundamental role in applications as traction, 

drive systems of electric vehicles, high performance drive, small-scale 

energy storage, renewable energy generation, novel electric 

distribution and smart grids systems.  

 The dc-dc converters, used in these applications, are required to 

step-up a low voltage level to much higher voltage level (usually more 

than two times the input voltage), both in normal and heavy operating 

conditions. 

 It can be also noted that in all these applications, the high-step-up 

dc-dc converters can be nonisolated but they should operate at high 

efficiency while taking high currents from low-voltage dc sources at 

their inputs. As well known, conventional boost converters, due to 

limitations on the maximum duty cycle, are not able to meet high 

step–up ratio. 

 Instead, the aforementioned applications require high-voltage step-

up and high-efficiency power conversion. Under such conditions, it is 

a major challenge to operate the boost converters at high efficiency 

[1]. This is because, with the high-output voltage, the switch power 

device (i.e. power VD-MOS) has to block a large voltage and hence 

the on-state resistance will be very high. Furthermore, the low-level 

input voltages cause large input currents to flow through the switches.  

 The extreme duty-cycle operation drives short-pulsed currents 

with high amplitude to flow through the output diodes and the 

capacitors; which cause severe diode reverse recovery problem and 

increases in the conduction losses. The high on-resistance of the 

switches, the increased conduction losses, and the severe reverse-

recovery problem will degrade the efficiency and limit the power level 

of the conventional boost converters [1], [2]. 

 Moreover, the parasitic ringing, present in the practical circuits, 

induces additional voltage stresses and necessitates the use of switches 

with higher blocking voltage ratings, which will lead to more losses 

[3]. 
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 From the above discussion, it is immediately apparent that the 

choice of the most suitable topology is a continuous challenge, 

requiring to focus on various technical aspects that demand for the 

optimization of both the circuit and devices. 

 There are several suitable topologies to boost the input voltage to 

required voltage output; these topologies differ in terms of both step-

up gain and performances. 

As well known it might be very useful to employ coupled-inductor 

configurations for obtaining high efficiency and high voltage gain [3]-

[8].  In fact, the turns ratio of the magnetically coupled inductors can 

be effectively used to reduce the duty ratio and the voltage stress of 

the switch [9], [10]. Therefore, for high-voltage step-up applications, 

the coupled inductor boost converter can be more efficient than the 

conventional boost converter. 

 

3.1 Conventional and Coupled Inductors 

Converters 
 

The conventional boost converter topology is preferred in 

medium-high power stepping up voltage applications due to the 

simple and reliable design. The considered boost converter topology 

shown in Fig. 3.1.a) includes a resistor R that accounts for inductor 

resistive losses, a power MOS switch, a fast-recovery power PiN 

diode, while the load is modeled with a dc current source Iout. 

The input voltage in series with the inductor acts as a current 

source. The energy stored in the inductor builds up when the switch is 

closed. When the switch is opened, the inductor discharges current to 

the load with the input voltage source still connected. This results in 

an output voltage across the capacitor larger than the input voltage. 

The load consists of a dc current source in parallel with a filter 

capacitor. The capacitor voltage is larger than the input voltage. The 

capacitor must be large enough to keep a constant output voltage, and 

acts to reduce the ripple in the output voltage. Under steady-state, by 

considering the volt-second balance condition to the inductor L, the 

output voltage gain for step-up is 
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where D is the duty cycle. 

 Increased voltage gain can be obtained with a coupled boost 

converter, whose scheme is shown in Fig. 3.1.b). In this case there are 

two resistors that account for the inductors copper losses: R1 is 

referred to the primary inductor L1, while R2 to the secondary inductor 

L2. Neglecting the power losses, the voltage gain for the circuit in Fig. 

3.1.b) is 
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where Nw=Nw2/Nw1 is the winding ratio of the magnetically coupled 

inductors, while Nw1 and Nw2 are the winding turns of the primary and 

secondary inductors. The coupling coefficient, k, is considered ideal 

(k=1). 

 By comparing eq. (3.1) and (3.2), it can be noted that the voltage 

step-up ratio of the coupled inductors configuration depends not only 

on the duty-cycle but also on the winding ratio. 

 

 

 
Fig. 3.1. Boost converter a) Conventional; b) Coupled-inductor. 
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3.2 Converter Comparison 
 

Since most of the efficiency is due to device behavior, a great 

attention has been devoted to proper modeling of the power MOS and 

the PiN diode shown in Fig. 3.1. In the test circuit, the employed 

diode model is the one described in [11]-[13] and fitted to the 

parameters of a commercial fast recovery power PiN diode with a 

maximum forward current IF=60 A and breakdown voltage VR=400 V 

(IR 60EPU04PbF).  

The power MOS model fits to the parameters of a commercial 

MOS (IXYS IXTQ52N30P) with a maximum drain-source voltage 

VDS=300 V and current IDS=52 A. 

The input voltage is Vin=50 V. The desired output power is 300 W 

with dc load Iout=2 A, while the output voltage is Vout=150 V, 

corresponding to a step-up ratio of 3. Steady state duty cycle is 

obtained from (3.2). 

Once given the output voltage ripple (ΔVout=0.02Vout) and the 

steady state switching frequency fsw (45 kHz) for the circuit of Fig. 

3.1.a) the filter capacitance (C=10 µF) can be derived as follows 

 out

out sw

I D
C

V f



 (3.3) 

Furthermore, in a boost converter continuous conduction mode 

(CCM) is the preferred mode of operation for high-power applications 

when compared to the discontinuous conduction mode (DCM), 

because CCM has lower conduction loss and smaller current stress on 

the semiconductor devices [14], [15]. The CCM operation occurs 

when the current through the inductor in the converter circuit is 

continuous, with the inductor current always greater than zero. 

At the aim of guarantee the CCM operation, the total inductance (L 

in Fig. 3.1.a) and L1+L2+2M with M=k(L1L2)
1/2 

in Fig. 3.1.b) must 

verify the following constraint on its minimum value 
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In order to fairly compare the converters of Fig. 3.1, it has been 

assumed that the same devices and the same components are used in 

both topologies. In particular, with reference to the inductors, it is 
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assumed that the same total windings are used in both Fig. 3.1.a) and 

Fig. 3.1.b). 

 As a consequence, if L0 is the inductance of a single winding, the 

inductance L of Fig. 3.1.a) is 

  
2

1 2 0w wL N N L   (3.5) 

and the following equation is obtained for 
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 The total inductance of the coupled inductors of Fig. 3.1.b) is 

equal to the inductance of Fig. 3.1.a). 

Hence, the total inductors copper resistance R is the same but is 

split into two contributions as 

 

1

2

1

1

w

w

w

R
R

N

N
R R

N


 


 
 

 (3.7) 

 The inductance value has been fixed at L=5mH assuring the CCM 

operation for all the considered Nw values. 

 

 
Fig. 3.2. Voltage gain versus duty-cycle and Nw values. 
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 Fig. 3.2 reports voltage gain versus duty cycle for different 

winding ratio values (Nw=[0,..,5]). Increasing the winding ratio Nw 

and fixing the duty cycle, higher step up ratio is observed. 

 On the other hand, the duty-cycle of the conventional boost 

converter (Nw=0) increases with the increase of the voltage step-up 

ratio, while the coupled-inductors reduces the necessary duty-cycle for 

a given ste-up gain. 

 Fig. 3.2 also reports the gain obtained from the numerical 

Spice/VerilogA simulations for a fixed MOS switching duty cycle. The 

numerical simulation are in close agreement with the theoretical value 

of eq. (3.2) for duty cycle lower than 0.7. For high duty cycle values, 

converter losses start dominating and the gain drops. 

It is evident from the above discussion that the turns ratio Nw is a 

key design parameter of a coupled inductors converter. Thus, it would 

be useful a power losses model to determine what is the optimal value 

of the winding ratio that minimizes losses, while maximizes the 

efficiency. 

In the next section an efficiency analysis of the converter will be 

presented. 

 

3.3 Power Losses Model 
 

A power losses model for the boost converters of Fig. 3.1 has been 

developed that includes passive as well as the active circuit 

components [16]. 

Power loss contributions depend on the winding ratio Nw helping 

the designer to choose the Nw value that maximizes converter 

efficiency. The inductors copper losses are 
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where Ton=DT, Toff=(1-D)T and T= Ton+Toff is the switching time 

period, while L1 current, I1, during Ton and Toff is 

    1 1 2

1

1 1

w out
on out off

N I
I T I I T I

D D


  

 
 (3.9) 

I2 is the current in inductor L2. Recalling eq. (3.2) and (3.7), eq. (3.8) 

can be rewritten as 
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 (3.10) 

 

As for the loss contribution of the primary winding, the power 

dissipation on the resistor R2 can be obtained as 
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 Fig. 3.3 shows the comparison between eq. (3.10), (3.11) and 

numerical simulation data. It can be noted a very good agreement 

between the model and numerical simulation data.  

 

 
Fig. 3.3. Inductors copper losses versus winding ratio. 

 

MOS power losses are divided into static MOS dissipation and 

switching losses. Static losses are 
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where RDS is the MOS on-resistance, IDS is equal to I1 (eq. (3.9)) 

during Ton and is zero during Toff. Hence, eq. (3.12) becomes 
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MOS switching losses can be expressed as [1] 
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where the off drain-source voltage VDSoff can be expressed as 
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while the conduction current is equal to I1 during Ton (eq. (3.9)) 
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and fsw is the switching frequency. The MOS turn-on characteristic 

time tcon is the sum of rise and fall time of drain current and drain-

source voltage, respectively (see Fig. 3.4). 

 

 
Fig. 3.4. MOS turn-on characteristic times. 

 

 Instead, tcoff is defined in a complementary way. Furthermore, 

according to the simulation results the worst-case for the total time 

tc=tcon+ tcoff 175 ns has been chosen. 

 Finally, eq. (3.14) can be rewritten as follows 
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 In Fig. 3.5 the MOS dissipation power behavior is depicted. 

 

 
Fig. 3.5. MOS power losses versus winding ratio. 

 

 It is worth noting that the gate-charge contribution to the MOS 

power losses, according to simulation results, is negligible with 

respect to the other contributions, thus, in a first order approximation, 

it will be not included in the model. 

 The last contributions, concerning the diode conduction and 

switching power dissipation, are shown in Fig. 3.7. The conduction 

loss is 

 
1

ondiode F F

T

P V I dt
T

   (3.18) 

where VF is the forward voltage drop on the diode, and according to 

the simulation results is VF=1 V, while IF is the forward current 

(eq. (3.9)), hence it follows 

 
ondiode F outP V I  (3.19) 

 Diode switching losses are [1] 
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Irr is the reverse recovery peak current and can be evaluated according 

to the simulation results as 

 

  2rr F pk pkI I I   (3.21) 

 

with α=1.8, where ∆Ipk-pk is the forward current peak to peak ripple 

(see Fig. 3.6). 

 

 
Fig. 3.6. PiN diode turn-off. 

 

 

 The reverse voltage drop is VR=NwVin+Vout, while tb is part of the 

total reverse recovery time and, in this case, about 35 ns. 

 Substituting in eq. (3.20) gives 
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Fig. 3.7. Diode power losses versus winding ratio. 

 

3.4 Simulation Results 
 

The total power losses can be obtained as function of Nw, from eq. 

(3.10), (3.11), (3.13), (3.17), (3.19), (3.22), and is depicted with the 

resulting efficiency in Fig. 3.8. 

 

 
Fig. 3.8. Power losses and converter efficiency as function of Nw. 
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Considered N values range from 0 to 5. The case N=0 corresponds 

to the conventional step-up converter of Fig. 3.1.a). 

Numerical results are in good agreement with the proposed 

analytical model showing that the proposed approach is promising for 

the analytical optimization of converter design. 

Converter efficiency shows a maximum value for N2. A 

significant improvement is obtained passing from N=0 to N=1. The 

curve is quite flat for N>1 and hence also N=1 is a feasible design 

choice. 

Further results regarding converter efficiency are shown in Fig. 

3.9. 

 

 
Fig. 3.9. Converter efficiency as function of the winding ratio. Green line: ideal 

switch and diode models; red line: accurate switch and diode models. 

 

 Two cases are considered. The first case (green line) includes 

inductor resistive losses but uses ideal switch and diode components. 

The second case (red line) includes the effect of accurate switch and 

diode models, as reported in section 3.2, showing that around 1% 

efficiency loss is dependent on device behavior demonstrating the 

need of accurate device models. 

 In conclusions, it can be noted that for a given voltage step-up 

ratio, the coupled-inductors circuit is more efficient than the 

conventional circuit. An analytical model of the power losses has been 
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developed, whose usefulness is clearly showed in deriving the optimal 

value of the winding ratio. However, also Spice numerical simulations 

have been performed for better understanding the incidence of 

parasitic phenomena which could compromise converter efficiency 

and reliability. 

 Next chapter will be devoted to developed a suitable control 

strategy improving the dynamic characteristics of the coupled-

inductors converter. 
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Chapter 4 
 

Control Strategy 
 

A control technique suitable for dc-dc converters must comply with 

their inherent non-linearity. In fact, control should ensure system 

stability in any operating condition and good static and dynamic 

performances. In other words, these characteristics should be 

guaranteed in spite of wide input voltage and load variations, while 

maintaining a good dynamic behavior [1]. 

The dc-dc converters are natural nonlinear and time variant 

systems, and do not lend themselves to the application of linear 

control theory. As a consequence, the classical control approaches 

could be not adequate to dc-dc converters. On the other hand, the 

sliding mode control technique for VSS (Variable Structure Systems) 

offers an alternative way to implement a control action which exploits 

the inherent variable structure nature of dc-dc converters. In fact, VSS 

are defined as systems where the circuit topology is intentionally 

changed, following certain rules, to improve the system behavior in 

terms of speed of response, stability, and robustness [2]. 

The sliding mode control offers these advantages with a relatively 

simple implementation. Some drawbacks derive from theoretical 

complexity, which can make selection of control parameters difficult, 

and necessity, in theory, of sensing of all state variables and 

generation of suitable references for each of them. In practice, 

converter control can be done effectively by sensing only one inductor 

current in addition to the output voltage [1]. 

From the above discussion is clear that it is appropriate to use 

sliding mode controllers for the control of dc-dc converters [3]. 

In this chapter, it is presented the various aspects concerning the 

sliding mode controller, which includes the choice of state space 

variables and sliding surface, the existence properties and the selection 

of the control parameters. 

Moreover, a constrained optimization problem is formulated in 

order to derive from a single algorithm the characteristic parameters of 
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both coupled-inductor converter and sliding surface for guaranteeing 

the stability requirements, even in presence of large load variations. 

At this purpose a control law, obtained in presence of small errors 

with respect to reference quantities, is proven to be feasible also for 

large disturbances, by employing a filtering action of the reference 

quantities. In other words, these last ones are varied, depending on the 

load change, according to a slower dynamics, so assuring the 

existence of the sliding mode. The slow sequence of operating 

conditions allows to justify the assumption of negligible state-space 

errors. 

Furthermore, analog and digital controllers have been 

implemented in high-level modules by using a suitable hardware 

description language. In particular, the VerilogA and VerilogAMS for 

the analog and digital controller, respectively [4]. Instead, the dc-dc 

converter circuit has been designed at transistor-level by using also 

accurate Spice models for the power semiconductor devices as already 

described in section 3.1. The full system derives from a single design 

flow and includes power, analog, digital circuits that work together. 

The Cadence Design Environment has been adopted for the circuit 

verification through mixed-level simulations, in order to confirm the 

validity of the proposed converter analysis and design methodology. 

 

4.1 Sliding Mode Control 
 

The sliding mode approach proposed in [5] has been performed for the 

coupled inductor converter in Fig. 4.1. The first step for modeling the 

proposed topology of dc-dc converter is the choice of state space 

variables. As suggested in [3], the current of both inductor windings is 

discontinuous, thus unsuitable as state variable, while the magnetic 

flux in the coupled-inductor core is continuous. 

 Since the magnetic flux is not directly measurable, the current im , 

defined as follows, will be employed 
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Fig. 4.1. Coupled-inductors step-up converter. 
 

where, Ton=DT, Toff=(1-D)T and T= Ton+Toff  is the switching time 

period, Nw is the turns ratio, and i1 is the primary winding current. 

Additionally the output voltage vout has been chosen as state variable. 

By referring to (4.1) and Fig. 4.1, the following relationships can 

be stated 
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where u ϵ {0, 1}. More specifically, u=1 when the MOS is ON; u=0 

when the MOS is OFF. It must be note that these state-space equations 

include the coupled-inductors copper and core losses through the 

resistors R1 and R2 in (4.2). 

By keeping in mind the approach proposed in [7], [8], if the vector 

x of state-variables error is defined as 

  1 2, ,
T ref ref

m m out outx x i I v V     x  (4.3) 

the following standard modeling can be deduced 

 u


   x Ax B Az F  (4.4) 

where the vector of references is ,
T

ref ref

m outI V   z and 
1

1

ref ref

m out

N
I I

D





. 

Matrix A, B, F are defined as 
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 The reference value of duty ratio is estimated as 
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 (4.5) 

According to the variable structure system theory, a sliding surface 

has to be chosen, within the state variables space, where control 

functions are discontinuous. 

The following sliding surface is chosen 

   1 1 2 2β βS x x   T
x β x  (4.6) 

where β
T
=[β1, β2] and the surface is a linear combination of the state-

variables errors. 

 The existence condition of the sliding mode requires that all state 

trajectories near the surface are directed towards it, [2]. In 

mathematical terms the necessary and sufficient condition is expressed 

by 
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 (4.7) 

In order to ensure that the system state remains near the sliding 

surface, a proper operation of the switch is required designing a 

discontinuous control law to force the system to move on the sliding 

mode surface in a finite time 
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Recalling (4.4), (4.6), (4.8) the existence conditions (4.7) can be 

rewritten as follows 

 1

2

( ) 0 ( ) 0

( ) 0 ( ) 0

S
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T T

T T T

x β Ax β G x

x β Ax β B β G x
 (4.9) 

where G = Az + F. 

If the inequalities (4.9) are satisfied for a region that contains the 

sliding surface S(x)=0, then the trajectories starting from any point on 

this region will converge to the surface (hitting condition) and once 

they reach it, they will stay on it [9]. 

 On the assumption that the error variables are conveniently 

smaller than the corresponding references, the following inequalities 

can be derived from (4.9) for guaranteeing the sliding mode existence 
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T T

x β G x

x β B β G x
 (4.10) 

The equations λ1(x)=0, λ2(x)=0 define two lines in the phase plane 

Fig. 4.2. If both the intersection of line λ1(x)=0 with the x2 axes and of 

λ2(x)=0 with the x1 axes are positive, then the existence region 

includes the origin (which represents the steady-state point) [2]. Thus, 

assuring that the state trajectory of the system under sliding mode 

operation will always reach a stable equilibrium point. 

 

 
Fig. 4.2. State variable plane. The dashed area is the region in which sliding surface 

exists. 

 

 In the ideal case of sliding mode operating at infinite switching 

frequency, state trajectories are directed toward the sliding surface and 
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move exactly along it. Instead, in the actual case of finite switching 

frequency, it must be employed a circuit features a practical relay, 

thus a suitable hysteresis band has to be foreseen and, hence, the 

control law (see Fig. 4.3) becomes 
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u

if S
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x

x
 (4.11) 

 

 
Fig. 4.3. Control law with hysteresis. When u=1 switch is ON. When u=0 switch is 

OFF. 

 

where Δ is an arbitrarily small positive quantity, while 2Δ is the 

amount of hysteresis in the sliding surface. 

The hysteresis band defines the boundary conditions S=+Δ and 

S=-Δ. So, the hysteresis modulation does not allow to switch the 

control on the surface S(x)=0, but on the lines S=+Δ and S=-Δ 

resulting in oscillations of width 2Δ around sliding surface as shown 

in the following Fig. 4.4. 

 

 
Fig. 4.4. Example of variation of the S function versus time. 

 

 The time intervals Δt1 and Δt2 represent the on and off state of the 

switch respectively. So we can write [7] 
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where 
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while the duty cycle can be expressed as 

 1

1 2

t
D
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

  

 (4.14) 

Since system behavior depends on both circuit and control 

parameters, it is worth to highlight the importance of a simultaneous 

design in order to comply with the working constraints of the 

switching converter. 

 

4.2 Optimization Procedure for Parameters 

Extraction  
 

Aim of this section is determining an optimization procedure able 

to derive the parameters of the coupled-inductor converter and the 

sliding mode controller. 

Target of the design is the satisfaction of the design constraints 

(output voltage ripple and value, switching frequency) while 

guaranteeing the stability of the control even in presence of large load 

variations. 

 The assigned quantities, indicated in the following with the 

symbol θ, in the design problem are the hysteresis band, the output 

capacitance, the input voltage, the load current. So, θ can be expressed 

as a vector 

  , , ,
T

in outC v i θ  (4.15) 

The copper and core losses of the coupled inductor have been 

considered in conservative way globally equal to 1% of the input 

power. 

Table I provides the assigned input parameters. 
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Table 4.I 

Parameters Value 

Δ 1 

C 50 µF 

vin=Vin 50 V 

iout=Iout 2 A 

 

 The vector of variables is 

    1 2 3 4 5 1 2, , , , , , , ,
T T

wy y y y y N L D  y  (4.16) 

 It is trivial to remark that these ones are each other dependent, 

both from the point of view of the physical mechanism and the control 

strategy. 

 The input power Pin=f(y) is a function of the vector of variables 

and can be expressed as follows 

 3 5
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The goal function (y), provides the overall power losses by using 

the analytical model reported in section 3.3. Target of the optimization 

is the minimization of (y) that is here written as a function of the 

vector of variables of the optimization problem. 
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 (4.18) 

where R = 0.01Vin/Iout(1+y3 y5)/(1- y5). 

Eq. (4.18) must be minimized while satisfying the equality constraint 

of (4.14) that as a function of the vector of variables becomes 



                                                                                                            151 

 1 11 1 1 12 2 2 21 1 1 11 2 21
5

1 11 2 21

y A x y A x y A x y G y G
y

y B y B

   
 


 (4.19) 

where matrix A, B, G have been defined in section 4. 

The inequality constraints are (4.9) and the ones for guaranteeing 

that the existence region includes the origin. 

For sake of completeness they are rewritten as 
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 Furthermore it is necessary to satisfy the constraints on CCM 

converter operation. Recalling eq. (3.4), reported below for clarity 
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and then rewritten as a function of the vector of variables 
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 Moreover, considering the constraint to obtain the desired output 

voltage ripple (eq. (3.3)), it can be rewritten as 
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 Then, it has been imposed the constraint on the minimum winding 

ratio and the maximum switching frequency expressed as follows 
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 Finally, the optimization procedure can be summarized in the 

compact form 
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where the vector functions e(y,θ) and h(y, θ) represent the equality 

and inequality constraints respectively. 

The optimization procedure has been conducted using the 

sequential quadratic programming algorithm available in the Matlab 

optimization toolbox. 

Table 4.II provides the variables vector values obtained by 

performing the proposed procedure on the assumption of negligible 

state-space errors. The latter means that we can consider (4.3) x≈0 or 

rather 

 
ref

m m

ref

out out
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 (4.27) 

 

 
Table 4.II 

Parameters Value 

β1 1.72 

β2 4.069 

N 2.2 

L 4 mH 

D 0.387 

 

 As previously discussed, from Table 4.I and Table 4.II the total 

resistance that models copper and core losses can be derived as  

 82.9R m   (4.28) 

 

4.3 Converter Performances 
 

A 50 V to 150 V step-up coupled inductor converter with nominal 

output power rating of 300 W has been designed considering the key 

circuit parameters listed in Table 4.I and Table 4.II and using the 

electronic device models presented in section 3.1. 

A set of simulations has been conducted to validate the proposed 

design procedure. The scheme of the controller is presented in Fig. 

4.5. 
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Fig. 4.5. The scheme of the analog controller. 

 

 The full system consists of the power stage designed at transistor-

level, also including the accurate device models presented in section 

3.1, and the analog controller implemented using VerilogA modules. 

 Now, it can be described the principle of operation. The status of 

the switch u (see Fig. 4.5) is controlled by the hysteresis block which 

maintains S(x) near zero. 

A filtering action of the reference quantities is useful to satisfy the 

assumption of state variables error smaller than references. These 

latter are varied according to a slower dynamics, so assuring the 

existence of the sliding mode from every starting point. In fact when 

the drive system is away from the set point, the system presents a 

large output error, while slow sequence of operating conditions allows 

to enforce the state variable to track the desired reference. 

 The numerical results for voltage and current tracking errors are 

depicted in Fig. 4.6 and Fig. 4.7 respectively. It is worth highlighting 

that in Fig. 4.6 and Fig. 4.7 are reported the state-variables tracking 

errors both in the cases of filtered references (red line) and no filtered 

references (dashed blue line). It can be noted that in the case of 
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filtered references the system, after a transient time, reaches a stable 

operating condition or rather the error goes to about zero. 

 
Fig. 4.6. Voltage tracking error. Red line: filtered references; dashed blue line: no 

filtered references. 

 

 
Fig. 4.7. Current tracking error. Red line: filtered references; dashed blue line: no 

filtered references. 

 

 On the other hand, when the reference quantities are not filtered 

the error is still large and doesn’t converge to zero as desired. 
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 Fig. 4.8 highlights the output voltage of the coupled inductor 

converter under sliding mode operation and full-load condition. 

 

 
Fig. 4.8. Transient response on Vout using proposed sliding mode control. 

 

The control shows a stable behavior allowing fast and safe settling 

of the output voltage. The steady-state operation is reached in less 

than 11 ms. 

 

 
Fig. 4.9. Output voltage for load variation, under proposed sliding mode control. 
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The output voltage manifests oscillations around the desired 

steady-state value due to the hysteresis modulation, however in the 

range of the desired output voltage ripple as imposed by eq. (4.24). 

The estimated efficiency of the converter is 95.2%. 

The second set of simulations investigates the robustness of the 

sliding mode control against load variations (Fig. 4.9).  

If a 100% load variation is assumed to occur in a time interval 

equal to 100 ms, the controller shows a fast and consistent dynamical 

response demonstrating a suitable performance over a wide range of 

operating conditions. 

Furthermore, digital controllers are becoming very attractive in dc-

dc converters because of the inherently lower sensitivity to process 

and parameter variations, programmability, ability to implement 

sophisticated control schemes, and ease of integration with other 

digital systems [10]-[12]. 

Another very important advantage is the flexibility inherent in any 

digital controller, which allows the designer to modify the control 

strategy, or even to totally reprogram it, without the need for 

significant hardware modifications [13]. 

Thus, the controller has also been implemented in a digital way by 

using an analog-to-digital conversion of the state-variables. The ADC 

and the other parts of the digital control section have been 

implemented in VerilogA-Verilog-AMS modules, in order to explore 

the possibility of integrating an ADC in the control loop without 

performance loss with respect to the analog implementation. 

Moreover, it is also useful verify the effectiveness of the proposed 

control technique and of the optimization procedure by using a digital 

controller. 

 The schematic diagram of the digital controller is reported in Fig. 

4.10. In this case the control section includes a VerilogA model of an 

8-bits ADC providing the digital representation of the state-variables. 

 The entire system has been designed considering the same circuit 

parameters and detailed device models of the system of Fig. 4.5. 

 The simulation has been effected using Cadence 

Spectre/VerilogA–AMS tool. Fig. 4.11 depicts the converter output 

voltage for both analog and digital control. 
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Fig. 4.10. The scheme of the digital controller. 

 

 
Fig. 4.11. Transient response on Vout using proposed sliding mode technique both for 

analog (red line) and digital (blue line) control. 

 

 It is worth highlighting the inherent quantization noise due to the 

analog-to-digital conversion process worsening the steady-state 

performance but also the good dynamic behavior practically similar to 
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the analog counterpart. This latter issue confirms the good 

performance of the digital controller and makes promising the use of 

IC ADCs. 
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Conclusions 
 

This thesis presented the design of a power/analog/digital system. It 

consisted of a power stage designed at transistor-level, also including 

accurate power device models, and a control section implemented by 

using HDL modules. Furthermore, the controller is implemented both 

in analog and digital way. This last complies with the growing 

requirements of more sophisticated control approaches, where the 

design of custom integrated digital controllers is presented like a 

viable solution for the next generation of high performance power 

supplies.  

This dissertation made an effort to address these requirements by 

designing an high-performance ADC useful not only for the control 

application aforementioned but also for applications with huge 

requirements in terms of speed and signal bandwidth. 

In fact, among the most important devices in mixed systems is 

certainly the ADC that is required providing high performance in 

terms of both speed (maximum sample rate) and resolution (effective 

number of bits). The ADC designed in this work is derived from the 

Flash architecture, chosen for its inherent ability to provide the desired 

output in one clock cycle. 

Downstream of study, analysis and design of the main circuits 

comprising in the Flash topology (track and hold amplifier, 

comparators, resistor arrays) and their extensive simulation, the 

resistor ladder resulted the speed bottleneck of ADC. It was, therefore, 

proposed a novel high-speed differential resistor ladder.  

This configuration allowed to obtain, in a first order 

approximation, a sixteen-fold reduction of the propagation delay, with 

respect to the conventional topology and a four-fold reduction of the 

propagation delay with respect to the high-speed ladder proposed by 

Kobayashi which represented the state-of-the-art for this circuit in 

bipolar technology.  

Moreover, the proposed circuit presented a non-linear behavior 

better than the other topologies. Numerical simulation results also 

highlighted the effectiveness of the proposed solution in increasing the 

effective resolution bandwidth of the designed ADCs, with only a 

little increase of power dissipation. Thus, the designed ADC could be 



                                                                                                               

a viable solution for the integrated digital control of the coupled 

inductors step-up dc-dc converter presented in this work. 

 The coupled-inductor configuration showed to be effective for 

obtaining high efficiency and high voltage gain.  In fact, the turns ratio 

of the magnetically coupled inductors was effectively used to reduce 

the duty ratio and the voltage stress of the switch. Therefore, for high 

voltage step-up applications, the coupled inductor boost converter 

resulted more efficient than the conventional boost converter. 

 Furthermore, an analytical model of the converter power losses 

was proposed whose main advantages were prediction of efficiency 

and usefulness in deriving the optimal value of the winding ratio. The 

proposed model was in good agreement with the numerical simulation 

results showing that the proposed approach was promising for the 

analytical optimization of converter design. In fact, this model has 

been used as goal function in a constrained optimization problem, 

formulated in order to derive from a single algorithm the characteristic 

parameters of both coupled-inductor converter and controller. The 

control strategy proposed in this work was the sliding mode technique 

that showed its well-known properties of robustness against 

disturbances and uncertainties. 

 The analog controller has been implemented in VerilogA module, 

while, using the analog to digital conversion, the same control 

technique has also been implemented in a digital section by using 

VeriloA-VerilogAMS modules. A set of numerical simulations have 

confirmed the validity of the proposed technique, showing a stable 

control behavior allowing fast and safe settling of the output voltage. 

Hence, the overall system, including power, analog, digital circuits 

was verified through mixed-level simulations, in order to confirm the 

validity of the proposed analysis and design methodology. 

 The research presented in this work was an attempt to address the 

problems related to the design and verification of complex 

power/analog/digital mixed-systems and to reduce the distance 

between the tools and the design methodology of power electronics, 

analog and digital designers. 

 



Appendix A 
 

A.1 Distortion Analysis of the Emitter-Follower 
 

An analysis of distortion introduced by the THA and its dependence 

on the bias current, amplitude and frequency of the input signal, and 

hold capacitance is a key step in the design of the circuit itself. 

By referring to the emitter-follower shown in Fig. A.1, it can be 

written 

 exp  S BE
E

F T

I V
I

V

 
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 
 (A.1) 

From (A.1) it can be obtained 

 - ln - ln F
E B T E T
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V V V I V
I


  (A.2) 

 

 

 
Fig. A.1. Emitter follower. 

 

In dc bias condition, it can be obtained 

 0   Ch E BIASI I I    (A.3) 

 

 

and eq. (A.2) can be written as 
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 0 0 - ln - ln F
E B T BIAS T

S

V V V I V
I

 
  

 
 (A.4) 

When a small signal vin is applied (see Fig. A.1), it follows 

 0E E outV V v   (A.5) 

 0B B inV V v   (A.6) 

Recalling eq. (A.2), (A.3), substitution of (A.5), (A.6) into (A.2) 

gives 

  0 0 - ln - ln F
E out B in T BIAS Ch T

S

V v V v V I I V
I

 
     

 
 (A.7) 

By substituting (A.4) in (A.7), after some calculations we have 

 ln 1 Ch
out in T
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I
v v V

I

  
    

   

 (A.8) 

The current flowing through Ch, using the approximation vinvout, 

is 

 in
Ch h

dv
I C

dt
  (A.9) 

Assuming a sinusoidal input voltage vin(t)=Asin(2πfint), (A.9) 

becomes 

  2 cos 2Ch h inI C f A f t   (A.10) 

Considering ICh<<IBIAS and keeping in mind the Taylor series 

    
2 3

4ln 1  when  1
2 3

x x
x x x x      

and neglecting the terms higher than the third, it can be obtained 
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 (A.11) 

Use of (A.10) in (A.11) gives 
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 (A.12) 
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After some calculations, it can be derived 
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 (A.13) 

Now, assuming iC max=2πfinChA, (A.13) becomes 
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 (A.14) 

 

In (A.14) the term 
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  and can be 

neglected, so obtaining 
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 (A.15) 
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Finally, the harmonic components are: 

 

• fundamental frequency  1H A   

• second  order                  

2

max
2

1

4

c
T

BIAS

i
H V

I

 
   

 
 

• third order                       

3

max
3

1

12

c
T

BIAS

i
H V

I

 
   

 
 

 Recalling the specification in sub-section 1.3.2, the n-th harmonic 

distortion HDn can be obtained as 
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 (A.16) 

It can be noted that the harmonic distortion is proportional to 

iCmax/IBIAS. As a consequence an increase of the input signal frequency 

increases distortion, while reducing the hold capacitance decreases 

distortion. 

Furthermore, an increase of the bias current IBIAS decreases the 

distortion. It is worth noting that HD2 is proportional to A, while HD3 

to A
2
, if the input signal amplitude is small enough. 

The total harmonic distortion is given by 

 2 2

2 3THD HD HD   (A.17) 

neglecting the higher order components. Moreover, in this case HD3 is 

negligible with respect to HD2, thus obtaining 

 2THD HD  (A.18) 

 

A.2 Distortion Analysis of the Diode-Bridge 
 

The distortion analysis of the diode-bridge can start from the analysis 

of a single diode as depicted in Fig. A.2. The diode current can be 

expressed as 

 D TV V

D SI I e  (A.19) 
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Fig. A.2. Diode for distortion analysis. 

 

  From the eq. (A.19) it follows 

 ln lnD T D T SV V I V I   (A.20) 

so it can be written 

 1 1ln lnD T D T SV V I V I   (A.21) 

 2 2ln lnD T D T SV V I V I   (A.22) 

 By subtracting (A.22) from (A.21), it gives 

 1
1 2

2

ln D
D D D T

D

I
v V V V

I
    (A.23) 

Considering the diode-bridge in dc bias condition, and in the 

hypothesis of symmetry, the current IB is equally distributed in both 

sides of the bridge as shown in Fig. A.3. 

 

 
Fig. A.3. Diode-bridge in dc bias condition. 
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Now, considering the diode-bridge in conduction and in the 

hypothesis of symmetry, the current iC is also present as shown in Fig. 

A.4. 

 
Fig. A.4. Diode bridge in conduction mode. 

 

By taking into account the difference between the two different 

bridge conditions depicted in Fig. A.3 and Fig. A.4, it can be derived 
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 (A.24) 

The voltage drop across the bridge is 

 1 2

1
ln ln
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 (A.25) 

 By analyzing the circuit depicted in Fig. A.5, it can be written 
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 (A.26) 

 Assuming that iC/IB << 1, and recalling the Taylor series stopped 

at the third order ln((1+x)/(1-x))2x+2/3x
3
 when x<<1, eq. (A.26) 

becomes 

 

3

2
ln 2

3

C C
out in T

B B

i i
v v V

I I

  
    
   

  (A.27) 

while iC is 
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 out in
C h h

dv dv
i C C

dt dt
   (A.28) 

  

 
Fig. A.5. Diode bridge circuit for distortion analysis. 

 

 Assuming a sinusoidal input voltage vin(t)=Asin(2πfint), (A.28) 

becomes 

  2 cos 2C h in ini C A f f t   (A.29) 

 Substitution into eq.  (A.27) gives 
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 (A.30) 

where  iC max=2πfinChA. 

 Finally, the harmonic components are: 

 

• fundamental frequency 1H A   

• third  order                   
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and the harmonic distortion is 
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It can be noted that in this case can be assumed the same 

considerations already stated in section A.1. Moreover, it is worth 

highlighting the presence of only the third harmonic component, thus 

the total harmonic distortion is 

 3THD HD  (A.32) 

  

A.3 Distortion Analysis of Diode-Bridge with 

Emitter-Follower 
 

Now, it can be derived the total harmonic distortion introduced by the 

emitter-follower followed by the diode-bridge as shown in Fig. A.6. 

 

 
Fig. A.6. Distortion analysis of diode-bridge with emitter-follower. 

 

 The output voltage is 

 out in EF Bv v v v    (A.33) 

 The same current iC flows through the emitter-follower and the 

diode-bridge, thus it can be written 
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 (A.34) 

and recalling (A.16), (A.31), the resulting harmonic distortion is 
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 (A.35) 

   Eq. (A.35) shows that the second order component is due to the 

emitter-follower, while the third order component is equal to that of 

the emitter-follower (A.16) and a term due to the diode-bridge (A.31). 


