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”Non se ne andrà più” gli dico.
”Non se ne andrà più?”
”Nulla se ne andrà più.”

. . . ”Perché?” egli dice ”Che accade?”

” . . . Nessuna cosa ora è sola.”

”Sarebbe ogni cosa anche tutto il resto?”

” Precisamente. E dov’è una cosa, è anche tutto il resto . . . ”

. . . Viene l’infanzia lo stesso; viene la terra intesa come fu con fiori
bianchi ch’erano di capperi e sembravano farfalle; vengono come
sono alla radio, le città del mondo, Manila e Adelaide, Capetown, S.
Francisco, di Cina, di Russia, non mai vedute, e Trieste un pò
veduta, e cos̀ı Madrid, Oviedo, e di più che vedute, principio e
infanzia di ognuna, Ninive, Samarcanda, Babilonia.

Che altro?

Certo il papà con gli occhi azzurri.
E la madre. La nonna. . . .

. . . Vengono i cavalli ch’erano da ferrare, idem gli uomini loro, i
viandanti, i vecchi barboni, i carrettieri. Le lunghe strade con la
polvere, anch’esse, e su di esse il sonno, il fieno, fossi di cicale: tutto
quello che è stato, e vuole con ognuno che si perde essere ancora.

E il cielo che fu dell’aquilone?

Il cielo che fu dell’aquilone.

da ”Uomini e No” di Elio Vittorini
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Introduction

Big data and huge or massive datasets are becoming ubiquitous. At
the same time there is a growth of applications that collect data in real
time, for example internet databases or financial data. So the general
problem nowadays is the need to work extensively with huge data. In
these cases, it is not always possible to store the data in such kinds of
databases.

In all cases, data represents value that can be exploited through the
extraction of the information contained within it for business aims. So
the challenge for Data Science is to consider new methods to extract
the information on huge datasets and to use it for the creation of value.

In this work the main focus is on high frequency data. These data
rely on phenomena that generate unequally spaced observations, with
the particular characteristics of an overwhelming number of observa-
tions over time, erroneous data, price discreteness, volatility, etc.

Recently, in literature new types of structured data have been pro-
posed, which have an internal variability: intervals, boxplots and his-
tograms. We introduce this structured data as representation in con-
crete problems and applications related to such kind of data.

In particular, the applicability of these representations to time se-
ries analysis of very long time series has been studied. In the most
recent literature there has been the application of time series repre-
sentations using the Histogram and Interval Data, these have been
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applied to real problems like the analysis of financial time series, and
there has been the analysis of time series related to other sectors like
energy, etc.

A relevant problem is the temporal interval to choose in order to
optimally define structured data. Various options are possible: hour,
day, week, month, and year. A clear answer depends on the specific
application we are interested in. So, sometimes, it may be useful to
consider structured data, by considering the hour for trading applica-
tions, and sometimes it could be useful to consider a bigger temporal
interval: for example in analyses useful for risk management. There-
fore, a specific best temporal interval does not exist. The choice can
also influence the methods used in the analysis, as we will see during
the thesis. In the thesis we propose a new structured representation,
based on special data as densities or beanplots: the density (or the
beanplot) time series. The density time series (or the beanplot time
series BTS) is particularly useful for exploratory data analysis of high
frequency data in which we can discover important information that
could otherwise be lost. This type of representation could be par-
ticularly fruitful when we have a higher number of high frequency
observations for each structured data.

In the thesis, starting from this type of visualization we consider the
need to model the data. The aim of the modelling is for both cluster-
ing and forecasting. In particular, we propose two types of approaches
and we show the advantages and disadvantages. The proposed coef-
ficients estimation and representation by descriptor points allow us
to use some specific forecasting models and to analyze in depth the
structural changes and the existence of groups of beanplots time series
with similar characteristics over time.

In forecasting, the selection of the best information set available
in the models is crucial. With regard to this there is the use of an
algorithm to select the best information available in the past, which
we use, and which can be applied to update the predictions. The the-

2
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sis is accompanied by simulation exercises as well as by applications
and examples based on real data. All methods proposed have been
implemented using algorithms written in R code (shown in the Ap-
pendices).

The thesis is organized as follows:
Part I: The State of the Art
Chapter 1. We consider the basic problems with huge data and the

evolution that they have undergone in recent years. We analyze the
responses of methods for the analysis of this database. In particular,
the analysis of data such as interval data to boxplots or histogram
is considered as a possibility to account for large databases without
the information loss due to the aggregation of the data. This chapter
reviews various methods and techniques related to the internal rep-
resentations and the symbolic data. Then, the methods for starting
from a relatively huge data base leading to operational data bases with
data that serve as internal representations are described. The final in-
ternal representation data can be modelled internally to obtain the
data models. In any case these data are characterized by the intra-
period variation.

Chapter 2. The database of the new type (as seen in Chapter 1),
with specific reference to the financial sector, is analyzed. In par-
ticular, an innovation of recent years has been that of making use
of high frequency data (High Frequency Data) that calls for specific
techniques in their econometric and statistical treatment. In the same
way, the characteristics of financial time series which require the same
use of specific techniques for data analysis are analyzed.

Chapter 3. An interval is given as the first type of internal repre-
sentation that can be considered and analyzed. In particular, these
types of representations have an algebra that is reviewed as the basis
of the techniques considered later in the thesis. The evolution of the
techniques of interval data (which are compared with the techniques
proposed later in the thesis) is then discussed. In this sense, the tech-

3
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niques for analyzing time series data interval are considered.
In Chapter 4, representations based on different data types other

than Intervals, for example boxplots, histograms and more recently
candlestick charts, are considered. Here we consider the histogram
algebra as an extension of the interval algebra. At the same time, in
the chapter the developments in time series analysis of boxplots or
histograms are considered. The final problem is the internal represen-
tation that could be used: in particular the choice of the representa-
tions in concrete problems. We propose some considerations on the
choice of the statistical data, which are extensively considered during
the second part of the work.

Chapter 5. A clear alternative to the use of data histogram are
new types of data defined as data density that produce data using the
methods of Kernel Density Estimation. In particular, such a method-
ology allows us to obtain a smoother image of the underlying data
structure, by choosing appropriate bandwidth and kernel. Using den-
sity data offer some advantages with respect to intervals or histogram
data in main precise applications: In particular, for large database
this type of data can approximate in a better way histogram represen-
tation. The Kernel Density Estimation is analysed and its character-
istics and properties evaluated. In particular, we focus on the choice
of bandwidth and kernel.

Part II: New Developments and New Methods
Chapter 6. From the Kernel Density Estimation of Chapter 5 the

data given in Beanplot density used in the thesis is introduced and
defined. In particular, we introduce the time-series data density (or
Beanplot). Then we analyze the ability to display and explore this
data in comparison with objects of different types, in particular in
different data structures. The chapter is accompanied by simulation
exercises that consider simulated high frequency data comparing dif-
ferent types of time series of complex objects.

Chapter 7. In this chapter methods for analyzing time series of

4
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Beanplot Data Models are considered. In particular, we describe two
types of approaches: the first leading to a fundamental description of
the dynamics of Beanplots over time, and the second, which separates
the structural aspect of Beanplots compared to the ”noise” (or the
error). It is assumed that the data are characterized by patterns of
Mixture Models. In this sense, the coefficients are used to capture the
evolution of these models over time. The models, therefore, can high-
light the change in inter -or intra-temporal of huge data and replace
the series of Beanplots with coefficients (which are considered in their
temporal evolution).

Chapter 8. At this point, there is the need to take into account the
time series of attributes and trajectories obtained to build appropriate
predictive models. In particular, the identification of the forecasting
model to estimate each point of the series. In this case there can be
the need to use different approaches in forecasting and combine the
forecasts obtained in the procedure. The goal is to minimize the risk
and uncertainty in the choice of a unique forecasting model in the
presence of very volatile data, structural changes or model parameter
changes (Parameter Drift). Finally, a search algorithm is applied to
identify the range of observations to be used in the optimal forecasting
model.

Chapter 9. We analyze the problems of Beanplot Clustering for
time series. In particular, starting from the time series of attributes
obtained we synthesize the beanplot time series (BTS) by using the
Time Series Factor Analysis-TSFA, which synthesize the Beanplot dy-
namics over time.

For the Cluster Analysis, various types of Correlational Distances
for Beanplot time series (BTS) have been considered, whereas suitable
distance model (as proposed by Romano, Giordano and Lauro) have
been used when the Beanplot are represented.

Chapter 10. In this chapter the performance of both internal and
external models are analysed on the basis of indices of the adequacy of

5
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the models. In particular, the evaluation and validation of models can
lead to the respecification of both the internal models and the external
models referred to in Chapters 7 (visualization and data exploration)
8 and 9 (regarding the identification and construction of the external
models).
In Chapter 10 we consider real case studies in the field of Financial
Market Monitoring, Asset Allocation, Statistical Arbitrage and Risk
Management using the methods seen in the thesis.

In the final Chapter there are conclusions and future developments.
In the Appendices there are the R codes which replicate the proce-

dures proposed and analyzed during the PhD thesis.

6
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Data: The State of The Art
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Chapter 1

The Analysis of Massive
Data Sets

”From now on, the key is knowledge. The world is not becoming labor
intensive, not material intensive, not energy intensive, but knowledge
intensive” says Peter Drucker, the authoritative manager and consul-
tant in 1992 [238]1.

At the same time it was recently stated that ”The statistics profes-
sion has reached a tipping point. The need for valid statistical tools
is greater than ever; data sets are massive, often measuring hundreds
of thousands of measurements for a single subject. The field is ready
for a revolution, one driven by clear, objective benchmarks by which
tools can be evaluated2..” (Der Laan, Hsu and Peace 2010 [672]).

In this sense, the big data are becoming a growing flow in every
area of the economy (McKinsey 2011 [499] and the Economist [655]

1Bifet Kirby 2009 [80]
2In this sense there is the birth of ”Data Science”. See Loukides (2010) [468]

for a detailed analysis about the reasons and the prospectives of the discipline.
The author explains in the Report that ”the future belongs to the companies and
people that turn data into products”
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and Science 2011 [616]3. These data are typically timeliness, and in
real time (Mason 2011 [490]) intrinsically a value4

In particular big data are datasets which grow in a way that are
difficult to be managed using on-hand database management. Diffi-
culties can be considered in a wide sense, for example in information
capture, in data storage as in Kusnetzky 2010 [438], in the information
extraction and search using adequate tools, in sharing information and
reporting, in analytical methods (Vance 2010 [674]) and in the visual-
ization of these data5 (Boyd and Crawford 2011 [107])

McKinsey 2011 [499] gives a definition of the relevance of the Big
Data concept: ”Big data refers to datasets whose size is beyond the
ability of typical database software to capture, store, manage, and
analyze”6. The definition is intentionally subjective and incorporates
a moving definition of how big a dataset needs to be in order to be
considered big data i.e. we do not define big data in terms of being
larger than a certain number of terabytes (thousands of gigabytes).

It is probable to assume that as technology advances7 over time then

3In particular the big datasets are interesting for the problems which they can
solve in business and for the capability to create value, the concept is clear in Lev
Ram (2011) [454] in which the author interviews Jim Goodnight, CEO of software
maker SAS

4Madsen 2011 [474] ”...In their data there is a competitive advantage”
5The evaluations on the problems of Big Data given, its enormous advantages

are growing; see for example: The Economist 2010 [655], [2] and [730]
6Manovich 2011 observes: ”There is little doubt that the quantities of data

now available are indeed large, but thats not the most relevant characteristic of
this new data ecosystem. Big Data is notable not because of its size, but because
of its relationality to other data. Due to efforts to mine and aggregate data, Big
Data is fundamentally networked. Its value comes from the patterns that can
be derived by making connections between pieces of data, about an individual,
about individuals in relation to others, about groups of people, or simply about
the structure of information itself..”

7See for example Miller 2010 [506]: ”Cloud computing and open source soft-
ware are fueling the data and analytics binge. The cloud allows businesses to lease

10



the size of datasets that qualify as big data will also increase8 Also
note that the definition can vary by sector, depending on what kinds
of software tools are commonly available and what sizes of datasets
are common in a particular industry. With those caveats, big data
in many sectors today will range from a dozen terabytes to multiple
petabythes (thousands of terabytes).

By considering this point it is necessary to stress the fact that the
volume of data is growing at an exponential rate (see Mckinsey 2011
[499]). There are in that sense various research works investigating
this growth over time. Lyman and Varian, as reported by the McKin-
sey Report in 2011 [499],”estimated that the size of new data stored,
doubled from 1999 to 2002 at a compound annual growth rate of 25
percent”.

In that way, in recent years huge datasets have become ubiqui-
tous because of the number of systems or applications which produce
large volumes of data (see Aggarwal 2007 [7]). In particular during
the past few years it has been very easy to collect huge amounts of
data, also defined as ”massive data-sets”. Examples [576] (see Raykar

computing power when and as they need it, rather than purchase expensive infras-
tructure. And the combination of the R Project for Statistical Computing and the
Apache Hadoop project that provides for reliable, scalable, distributed comput-
ing, enables networks of PCS to analyze volumes of data that in the past required
supercomputers. With the Hadoop platform, Visa recently mined two years of
data, over 73 billion transactions amounting to 36 terabytes. The processing time
dropped from one month to 13 minutes”

8Where the size of data sets increase they become more and more real time,
see Babcock [52] 2006: ”But databases aren’t just getting bigger. They’re also
becoming more real time. Wal-Mart Stores Inc. refreshes sales data hourly, adding
a billion rows of data a day, allowing more complex searches. EBay Inc. lets
insiders search auction data over short time periods to get deeper insight into
what affects customer behavior”. The problem is well known also for financial
data in which econometric techniques to face high frequency data use some special
techniques in real time, see: Pesaran and Timmermann 2004 [558]

11
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2007) can include as the author did, genome sequencing, astronomical
databases, internet databases, medical databases, financial records,
weather reports, audio and video data. At the same time, it is possi-
ble to consider in practice other data typologies (see Huang Kecman
Kopriva 2006 [372]).

So where modern database are diffused everywhere in industrial
companies and public administration (Diday 2008 [209]) they tend to
increase dramatically their size and the technical advances in databases
and information systems are continuous (see for example the annual
conferences organized in very large databases (Very Large Data Base
Endowment Inc (2010) [683]) and the O’Reilly Strata Conference (2011)
[541]).

At the same time the company IDC financed by the EDC has
completed some research on the ”Digital Universe” showing that the
amount of digital data exceeded the world’s data storage for the first
time (cite Gantz et al. 2008 [287] but also Gantz and Reinsel [289] and
[288]), where ”the digital universe will be 10 the size it was 5 years
before”.

This result was very important because there are no possibilities to
store the data created at all, and the rate of creation of the data gener-
ated grows to a higher level, thus exceeding the data storage capacity
(See fig.1.1 and fig.1.2), so the gap between the two is continously
growing (see McKinsey 2011 [499]). Another work cited in McKinsey
by Hilbert and Lopez 2011 [361] investigates storage capacity: global
storage capacity grew annually at an annual rate of 23 percent over
the period 1986-2007 whereas the data stored in digital form increased
to 94 percent in 2007.

At the same time there are limits in the capability of processing
this amount of data (see McKinsey 2011 [499]) when considering sen-
sory and cognitive abilities. For example it was studied that the brain
in its short-term memory can handle seven pieces of information (see
Miller 1956 [505]). So another important problem considered was in-
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formation overload9.
To solve these problems there are various possible solutions, as for

example, using more sophisticated methods or algorithms or using dif-
ferent types of data that could be used, studied extensively during this
thesis (Schweizer 1984: ”Distributions are the Numbers of the Future”
[615]).

Figure 1.1: Global Information created and available storage 2005-
2011. See The Economist 2010 [655] and Batini 2010 [65]

1.1 Complex Data Sets and Massive Data

Let a data matrix Hn,m be an n × m observation × variables, where
wn,m are scalar data, so we have:

9See also Makarenko 2011 [478]
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Figure 1.2: Computation Capacity 1986-2007 see Hilbert and Lopez
2011 [361] and McKinsey 2011 [499]

Hn,m =


m,1 m,2 · · · m,m

n1, w1,1 w1,2 . . . w1,m

n2, w2,1 w2,2 . . . w2,m
...

...
...

. . .
...

nn, wn,1 wn,2 . . . wn,m

 (1.1)

In this respect, complex data can be defined: ”Any data which can-
not be considered as a standard observation × standard variables data
table” (Diday 2011 [214]). It can be considered Complex Data: several
data tables describing different typologies of observations. Specific ex-
amples can be considered in various works (for example Diday 2011
[214]):

1. Hierarchical Data
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2. Textual Data

3. Time Series Data in each cell

4. Multisource Data Tables (Data Fusion)

Massive Data, are datasets of huge dimensions, and they come from
many sources10, and they can be generated by various devices like
sensors, cameras, microphones, pieces of software (see Huang Kecman
Kopriva 2006 [372] and Diday 2008 [209]). Another important domain,
in the enormous increase of the data, can be considered due to Data
Streams Applications (Aggarwal 2007 [7] and Balzanella Irpino Verde
2010 [56]).

A typical example of the differences of the data stream applications
with respect to the data mining procedures is given by Domingos Hul-
ten 2010 [224], data, in particular are collected, in various applications
faster than it is possible to mine (Balzanella Irpino Verde 2010 [56]).
In this respect, to avoid data losses it is necessary to pass to systems
that are able to mine continuously the high-volume, open-ended data
streams at the time they are available.

Clearly in other situations, also with huge data sets it is possible
to use the classical data mining approach. Data are everywhere so the
approach can be generalized to different fields.

A typical example of complex data are also High Frequency finan-
cial data (See Dacorogna et al. 2001) [163]. In finance the innovation
was typically due to the introduction of Tick Data (also defined High
Frequency Data) that made it possible to develop trading strategies
taking into account Intraday market movements. The empirical study
of these dynamics would be very beneficial for an understanding of the

10In particular the relevant information comes from many data sources where the
problem, today, becomes how to combine this information (Ras Tsumoto Zighed
2005 [577]
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markets and the reduction of the associated risk of the price fluctua-
tions (see Engle Russell 2009 [254]). High Frequency Data in particular
can help to forecast risk (see for example Kaminska 2008 [415]).

At the same time complex time series can be also obtained by con-
sidering some time series in large data sets (for example in Finance
or in Energy applications like Load Forecasting) where the series are
specifically characterized by lower frequency but at the same time by
”complex” characteristics (spikes, nonlinearities, high volatility etc.).
In this sense it possible to consider the approach of the time series as
complex data (Diday 2008 [209]).

It is important to stress the fact that using large datasets is a spe-
cific need (and sampling in that case does not help), because the real
data are huge and continually flowing, but at the same time it is a
specific advantage (the creation of the value).

There are cases in which using big datasets can be very useful and
this is typical for exploratory studies where in that case it is not suffi-
cient to define some statistical relationships that could be adequately
estimated or tested (see Benzecŕı 1973 [74] Lebart Morineau Piron
1995 [452] Saporta 1990 [607] Gherghi Lauro 2002 [300] and Bolasco
1999 [100]).

At the same time it is possible to consider some other cases in which
data are overwhelming and theoretical models need to adequately face
up to the existing data (see Sanchez Ubeda 1999 [606]). In these
cases big datasets can be useful to generate some hypothesis with
data (Tukey 1977 [670]).

The general case and the most classical case in using big databases
is Data Mining or Business Intelligence (Giudici 2006 [312]). In this
case large datasets can be used to extract information and to extract
the knowledge present in data. Here, the idea is that of using this
specific knowledge to obtain some relevant business indications. In
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this case the data are considered a specific richness to use11 .
The first and direct consequence of the data, in this sense is that

humans cannot handle and manage such a massive quantity of data,
which are usually collected in the numeric shape as the huge rectangu-
lar or squared data matrices (see Huan Kecman Kopriva 2006) [372].
The challenge in this sense is using specific systems that automatically
extract the information from the raw data to permit better decisions
(see Raykar 2007 [576]).

In this case it is necessary to apply some specific statistical tech-
niques in order to achieve the data management and the knowledge
extraction, that is, therefore we need to to use specific statistical tech-
niques to handle these data sets.

On the contrary, using the single valued variables (using for exam-
ple some form of data aggregation) brings information loss. In the
graph there is an example in which a large data set does not allow the
observation of the data structure of the underlying financial data (See
fig.1.3).

1.1.1 Characteristics of Complex Data Sets and
Massive Data

Massive data are characterized by an overwhelming number of obser-
vations and\or variables. Problems in these datasets are related to
(see McKinsey 2011 [499]):

1. Data Storage

2. Data Search and Extraction

11Data richness allows the improvement of data analysis to a certain extent in
order to improve the data analysis, see for example: Linoff Berry 2011 [461] and
Weiss Indurkhya 1996 [696]
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Figure 1.3: Daily Price Change of S&P Grouped By Year, data from
Yahoo Finance. Source: VisualizingEconomics.com

3. Data Sharing

4. Analytics12

Generally in these types of datasets some data strategies are nec-
essary to handle the data. These data strategies can be, for example,
partitioning the dataset or aggregating the observations where nec-
essary. Clearly these methods are continously updated and they are
under the continuous scrutiny of researchers. So there are various

12A problem related to Analytics is scalability (Berthold and Hand 2003) [76]
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techniques and algorithms that could be used in these cases13.
Diday 2011 [214] states that a solution could be possible in differen-

tiating standard scalar observations (classical data) from the symbolic
observations (data that represents an internal structured variation and
which are structured). In that sense we can have: ”Standard observa-
tions like a player, a fund, a stock... Symbolic observations: Classes: a
player subset, a subset of funds, stocks... Categories: American funds,
European funds, ... Concepts: an intent: volatile American funds, an
extent: the volatile American funds of a given data base.”

There are important cases in which it is particularly useful to use
the concepts instead of classical data, cases for example in which we
are considering data where in itself the concept could be important,
and cases in which we need to manage a data fusion of different data
tables or datasets.

In particular what are the advantages of using Internal Represen-
tations or Symbolic Data? Diday 2011 [214] states them to be these:

1. Considering the right generality level of a collective data without
information loss.

2. Reducing the data set size and so reducing the number of vari-
ables and observations (reducing computational costs of the anal-
yses).

3. Mitigating the problem of missing data.

4. Ability to ”extract simplified knowledge and decision from com-
plex data”.

5. Solving the problems related to confidentiality.

6. ”Facilitate interpretation of results”: decision trees, factorial
analysis, new graphic kinds.

13McKinsey 2001 [499]
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7. ”Extent Data Mining and Statistics to new kinds of data with
many industrial applications”.

There are some cases in which data sets are characterized by many
outliers or missing data. So it could be important to provide a data
imputation (in the case of missing data) to allow a safe use of the
aggregate representations. In fact, sometimes missing values are not
distributed at random during the dataset and they are missing follow-
ing a pattern.

In the case of missing data (that could be considered not a ran-
dom), they need to be substituted using some statistical methods14.
Various strategies could be considered for the original missing data:
see Little and Rubin 1987 [464], Allison 2001 [15] and Howell 2007
[367].

In any case, a preliminary analysis on the data to detect the outliers
and an imputation strategy (if there are missing data) is necessary. In
fact both outliers and missing data can affect the statistical analysis.

1.1.2 Statistical Methods, Strategies and Algo-
rithms for Massive Data Sets

Later we will analyse in depth statistical methods that consider data as
representations (interval, histograms etc.). Many different approaches
are considered in literature that could be used considering scalar data
in massive data sets15. It is important to note that we can aggregate
or not the entire dataset. In particular one possibility is to work on
the entire dataset without any type of aggregation.

Various strategies and methods can be considered (see Giudici 2006

14Zuccolotto 2011 [725] for an approach on symbolic data
15A review and a presentation of some approaches is in Rajaraman, A. and

Ullman D.J. (2010) [572] Gaber, Zaslavsky and Krishnaswamy (2005) [285]
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[312]), alternatively we can consider many methods together (strate-
gies) as for example in Gherghi Lauro 2002 [300] and Bolasco 1999
[100] in which we use more methods sequentially. So in these cases we
can define different strategies for the analysis in which, for example,
we reduce a dataset using a factorial method and after classify the
statistical units16.

Relevant methods used to analyze Big Data in Businesses today
are enumerated in the McKinsey 2011 [499] Report. This point needs
to remain open because the approaches and advances in literature and
in business evolve very quickly.

1.2 Analysing data using Aggregate Rep-

resentations

A different approach is related to that considering Aggregate Rep-
resentations (the entire representation expressing variation for the
data disaggregated) and working with methods like those in Symbolic
Data Analysis (see for example Diday 2008 [209] where Valova and
Noirhomme Fraiture consider explicitly the case of massive data and
Symbolic Data Analysis [673]).

In these cases we directly consider some types of new data, as for
example intervals, histograms etc. These new data are structured and
express internal variation on the single data. In particular the data
can be defined symbolic data if they contain more complex informa-
tion than scalar data (they can characterized by internal variation and
could be structured Diday 2002 [207]).

In that sense the symbolic data can summarize massive data bases

16It is possible to consider the approach of data analysis in SPAD software
for example in which we perform the statistical and data mining analysis using
”chains” or sequences of different methodologies see: Coheris 2011 [737]
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by considering their Concepts. They can be defined as first units and
be characterized by a specific set of properties defined as ”intent” and
”extent” that could be seen by the set of the units which suits these
properties. The Concept could be described by symbolic data which
can be intervals, histograms, etc.

The characteristics of the data allow us to bear in mind the internal
variation of the ”extent” by considering the different Concepts (Diday
2002 [207] and also 2008 [210]).

There are important cases in which Concepts are relevant and they
were described by Diday in 2011 [214]. Symbolic Objects can be rel-
evant in modelling the Concept as shown in Lauro and Verde 2009
[449]:

1. When there is a specific interest on the Concepts (for example
when the data analyis is based on the respect to the single units)

2. ”When the categories of the class variable to explain are consid-
ered as new units and described by explanatory symbolic vari-
ables”

3. In the case of data funsion of multisource tables

Another important preliminary analysis is the optimality of the
Concept chosen17

1.2.1 Scalar Data and their Aggregate Represen-
tation

So we can specifically define the complex data as, for example, the
Interval and the Histogram Value Data: complex data are data that
cannot be considered standard observation × variables or n×m data

17Diday 2011 [214]
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tables, interval and histogram data are typically data in which there
exists a variation inside the classes of standard observation (see also
Diday 2010 [211] ). In that case, by starting from the initial massive
data sets, each cell of the data table can contain an interval, a boxplot,
an histogram, a bar chart, a distribution etc.

So we have different real valued vectors (see Billard Diday 2006
[87] and 2003 [85] and Signoriello 2008 [630] ) in which n statistical
units are evaluated by m variables, so a data table is a n ×m. Data
on G random variables can be represented by a single point in a g-
dimensional space <g. For example a classical data value x is a single
point in a g-dimensional space x = 12. An example of classical data
is provided in Billard 2010 [82], where she considers a medical data
set(see See fig.1.4):

Figure 1.4: Classical data in a medical data set [82]

Interval data on G random variables can be g-dimensional hyper-
cubes or hyperrectangles or a Cartesian product of g distributions18.

18Billard 2006 [81]
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That is, by considering the case of the intervals [x1, x1] and also [x2, x2]
where x is the interval lower bound and x the interval upper bound,
with g = 2 where the random variables take values over the intervals.
The data value in this case is the rectangle R = [x1, x1]× [x2, x2] and
vertices of R are: (x1, x1), (x1, x2), (x2, x1) and (x2, x2).

The g = 2 dimensional hypercube is a space in the plane. Where
x1 = x1 = x2 = x2 we obtain a single point (like a hypercube of
g = 0 and a special case). In that sense, classical data are a special
case of symbolic data in which the point value is [x, x] or also [x, x].
An example of interval data is provided by Billard [82] related to a
Mushrooms data set (See fig.1.5):

Figure 1.5: Interval data in a mushrooms data set [82]

Different data can be lists {good, fair} by considering one or more
value in the list.

Classical single value data have no internal variation and usually
they are forced to be a single value in large data sets (causing loss of
information), where, interval and histogram data are characterized by
internal variation: in particular by considering a value of g as [x, x],
with x 6= x that could be considered as taking a continuum of values
in the interval.
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There are other important cases in which the use of interval and
histogram data are relevant (Signoriello 2008 [630]). It is for example
the case of more complex information in data which call for more
flexible representation. In this sense, the exact information of interest
is not a real value but can be chosen from sets, intervals, histograms,
boxplots, trees, graphs or functions. Here is an example in which the
data of interest can be considered histogram data (See fig.1.6):

Figure 1.6: Histogram data in a Cholesterol data set Gender × Age
categories: (Billard 2010 [82])

The most important difference between interval and histogram data
with respect to scalar data is that the first one shows an internal
variation.

Considering a specific data set, we can identify some regrouping
criteria (in a credit card data set for example, the specific transactions
for each person over time) and in that way can define accordingly the
data summary. Various possible summaries need to be considered.
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In each of these examples the data can be transformed into single
valued data but interval data shows a higher complexity. Billard and
Diday 2010 [88] in this sense make various examples: transactions
by dollars spent [5, 1200] or a different summary by type of purchase
(gas, clothes, food, ...) or, by type and expenditure ( gas [30, 60]),
food, [25, 105] ...). In all these examples it is necessary to consider as
well a temporal component as the summarized values over the time t,
for example transaction by dollar in various periods.

Interval and Histogram data can capture specific variation over
time t, important in their own right on any data set. Variables g can
be collected as an interval over time t (for example [88]: pulse rate
at time t ( [60, 72] ), at time t + 1 ( [62, 74] ) systolic blood pressure
at t ( [120, 130]), at t + 1 became ( [122, 132]) and diastolic blood
pressure ([85, 90]) at t and ([87, 93]) for each of n = 100 patients (or, for
n = 12 million patients). Alternatively, we can consider the evolution
over the time t of different classes of n = 31 students that could be
characterized by boxplots, histograms or distributions of their marks
for each of several variables g at time t (for example mathematics,
statistics and biology).
The information loss in aggregate data is shown by Billard 2006 in
[81]. In fact it is possible to show that, considering three realizations
of a random variable G = weight (accordingly with the considered
dataset), we have G1 = 135, G2 = [132, 138], G3 = [129, 141]. It is
possible to consider these three samples each of size n = 1. Bertrand
and Goupil 2000 [77] show that S2 is specifically the sample variance of
each variable G under the assumption of uniformly distributed values
in each interval, where: Pu = [xu, xu], u = 1...n. We have:

S2 =
1

3n

n∑
u=1

(x2
u + xu · xu + x2

u)−
1

4n2

n∑
u=1

[xu + xu]
2 (1.2)

So we obtain that the sample mean is P 1 = P 2 = P 3 where
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S2
1 = 0, S2

2 = 3, S2
3 = 12. For the basic statistics procedure in

Interval Data Analysis see also Gioia Lauro 2005 [310] and Billard
[82]. The internal variation of the interval and histogram observation
determines the difference between the three results. In this case we
can show that it is necessary to take into account the internal varia-
tion considering interval and histogram data.

It is important to note that in all these cases these types of data are
inherently rich in nature, infact in these cases data are characterized
and can be compared by not only a single value, but at the same time
by a location (say, the central value), a size (the internal variation)
and a shape (the exact form of the distribution).

It is possible to find a specific link between data collection and its
representation (for example, after a query in a database) it is possible
to find the same link between the interval data and its interpretation.
Data that show relevant internal variation (due to the data internal
heterogeneity) need to be analysed using specific statistical techniques
(interval and histogram valued data analysis techniques in particular).

Interval and Histogram value data arise in different ways. In fact
the data we have considered are natively interval and histogram (they
show an internal variation that could not be represented as a scalar
data). So the single values do not represent faithfully the data we
want to consider. If a data is natively an interval and we force the
data to be a single-valued data we are forcing the data to be scalar
and we are not considering its real nature of interval. In this sense
the use of the interval data is determined by the nature of the original
data

In other cases we can be specifically interested not in the single
value but in the specific variation, because the single value might not
be so relevant (due for example to fluctuations of the measurements).
In that sense there are real cases in which it is very difficult to mea-
sure a specific phenomenon as a single scalar or value (due to a specific
reason) and in that case single observations would not be relevant. In
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this case an interval or a symbolic data can capture in a better manner
a real phenomenon by considering the intervals of the measurements.

Fluctuations can be related specifically to errors both in the data
and in the solutions. Gioia and Lauro 2005 [310] provide some exam-
ples of these errors:

1. Measurement errors: where the measured value of a physical
quantity x may be different from the exact value of the quantity

2. Computation errors: when round errors make a distortion from
the true results due to the finite precision of the computers

3. Errors due to uncertainty in the data: the value of a specific
data cannot be measured precisely in a physical way

Billard and Diday 2010 [88] show other cases in which there are
no relevant errors in data, but actual technologies do not allow the
performance of the requested computations.

So we can have a fourth case in which the use of symbolic data is
important. By considering n observations (when n is very large with
hundred of thousands or more) with m variables (at the same time
with m hundred or more), so by taking into account a n ×m matrix
H in an inversion computation H−1 the computational burden can be
relevant.

It is important to note that also where computer capabilities ex-
pand at the same time (larger computation of H−1 at a time, the
burden assuming a growth either of n and m will be relevant) it is
important to consider the growth of the dataset size and so the size
of the n×m matrix H (Gantz et al. 2008 [287]).

The last reason for the use of symbolic data is when there are
problems with results, where there is aggregated data that does not
faithfully confirm the results obtained by disaggregated data. The re-
sult is well known for example in High Frequency Data in which there
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can be explicit differences in analyses considering different types of ag-
gregations, for example, frequencies (see Dacorogna et al. 2001 [163]).
Differences between results using aggregated and disaggregated data
are well known as well in Econometric literature (aggregation bias).
For example in the presence of outliers it can be very dangerous to
use data aggregations because the methods used may not be robust
(in a statistical sense) and results used may not faithfully represent
the ”real” data.

At the same time, aggregating data presenting outliers can lead to
the loss of the information related to the original problem. In this
sense outliers cannot be detected in the aggregated data, or they can
be masked by the data structure.

Infact, it is important to note that aggregation cannot capture the
real structure of the data but tends to force data to have a single value.
Also by considering more complex aggregation methods, for example
robust methods, we lose information. For this reason, Schweizer 1984
[615] says that ” the distributions are the number of the future!”, thus
we need to consider statistical approaches that directly use distribu-
tion data. In these cases we need to consider these data as internal
representations or symbolic data.

1.2.2 Sources for Aggregate Representations and
Symbolic Data

Symbolic data can be obtained in the process of data reduction from
a huge dataset. Any query in a database can produce descriptive
variables and categories. Diday [207] shows, for example, categories
(SPC) crossed with categories of age (Age) and regions (Reg). So it
is possible to obtain a new categorical variable of cardinality |SPC|×
|Age| × |Reg| where |X| is the cardinality of X. Another important
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way to obtain Symbolic data is by considering a clustering process
(see also Diday 1993 [203] for the steps of a Symbolic Data Analysis).
In this sense we obtain a Symbolic data naturally from the classes
obtained.

Diday [207] also states that Symbolic data can be at the same time
”native”. If for example, they become:

1. Expert Knowledge

2. Any random variable (”from the probability distribution, the
percentiles or the range of any random variable associated to
each cell of a stochastic data table”)

3. Time Series

4. Confidential Data

5. Relational Databases (merging different relations in order to
analyse a set of observations)

Describing the process from the relational databases to symbolic
data is the objective of Hebrail and Lechevallier [641]. In particular,
in this article, there is the two level paradigm where a symbolic object
could be created by considering a process of aggregation of single indi-
viduals. The authors describe the generalization process of a classical
dataset extracted from a relational database.

1.2.3 Complex Data and Tables of Aggregate Rep-
resentations

Following Diday 2008 [209] the process of setting a symbolic descrip-
tion of the set of the individuals (or statistical units) is called the
generalization process.
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Consider the concept of ”swallow”, for example, that could be char-
acterized at time t by a description vector d:

wn,m = ([”yes”] , [60, 85], [90% yes, 10% no]). (1.3)

The values evolve at time t. The generalization process is relevant
because it takes specifically into account the internal variation of the
description of the individuals (a group of companies, for example) in-
side the set of individuals. For example, a set of swallows at time t on
the island vary in size [55, 82]. In financial markets this variation in a
portfolio can be considered a risk indicator.

It is important to consider that the initial form of the complex data
sets in these types of matrices can also be reduced to aggregated data
tables by means of adequate queries. This is the simplest way to ob-
tain a data set of aggregate representations and symbolic data ( figure
1.7 and figure 1.8 represent the steps from a complex data table to a
symbolic or aggregate data table).

In the temporal context it is possible to decide different temporal
intervals to obtain the data (for example, a typical high frequency
time series could be aggregated by considering hours or days or it is
possible to aggregate different series of a portfolio).

At the same time it is usually necessary to pre-process data in
order to handle missing values and outliers accordingly (in the high
frequency context, for example, there is a problem in this sense19). Be-
sides the problem of data pre-processing, there is the need to transform
complex data tables into symbolic data tables in each specific enviorn-
ment. There is a particular exception: that is the case in which the
stream of the data arrives quickly and it is not possible to make any
intervention.

In practice, a symbolic data table can be considered a table in which
the columns are symbolic variables used to describe a set of units, de-

19Brownlees Gallo (2006) [115]
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fined as the individuals considered or the statistical units (see Tzitzikas
2004 [671]). In these data tables the rows can be symbolic descriptions
of the individuals.

At the same time, in symbolic time series data tables, in the rows
there are the realizations of the series by considering the different inter-
val temporal. In the case of the aggregate representations or symbolic
time series data tables each column can be related to a different time
series (for example to different stocks in a portfolio or different sensors
etc.). It is possible to see the differences in symbolic data tables in
Diday 2010 [211].

At this point, classical data tables are datasets with classical data,
whereas symbolic tables are tables in which for each cell there is spe-
cific symbolic data, such as an interval, a histogram etc.

Internal representations and symbolic data tables can be considered
in the same way as classical data tables but they are extensions of the
classical data tables, where they can contain both classical data and
internal representations.

A classical data table can transformed into a symbolic data table
while the contrary is not possible, because of the information loss (see
Diday 2010 [211]). In fact, when symbolic data are transformed into
classical data there is a data aggregation process, therefore the varia-
tion of the data is definitively lost (see Billard 2006 [81] and Bertrand
Goupil 2000 [77]). In analyses the internal variation of the complex
data is important, thus it is relevant to represent this variability.

It is important to note that often the internal representations in
tables show characteristics of the original data that suggest the need
to handle these data with symbolic data analysis methods. In fact,
aggregate or internal representation can show some features of the
data that allow us to extract the underlying ”signal” by extracting
the ”noise” from the original complex data. This is the case, for ex-
ample of particular nonlinear relationships in data.

An important problem is the identification of the subsets of differ-
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ent distributions in data and at the same time the outliers, in fact,
in this way there is a specific problem of overgeneralization. Diday
states that overgeneralization, for example, happens when smaller and
greater values characterize a numerical variable that generalizes the in-
terval (see Diday 2008 [209]).
In particular, in choosing the optimal internal representation or sym-
bolic data, it is important to identify if the overgeneralization phe-
nomenon is relevant in the original complex data by detecting the
outliers. At the same time, it is very important to identify mixtures
in data that could be relevant as insights in data analysis. So there
is a specific need for statistical methods that could identify such data
features as outliers and mixtures (see Atkinson Riani and Cerioli 2004
[47]).
To detect outliers it is necessary to implement some outlier tests previ-
ously in the data pre-processing, for example the Grubbs Test (Grubbs
1969 both the studies [327] and [328]).

The problem of overgeneralization is at the same time related to
the problem of choosing the optimal Concept and the optimal Sym-
bolic Data. In choosing the optimal Concept various procedures can
be used in the analysis (Diday 2011 [214]):

1. By considering the Hierarchical Data.

2. By clustering and optimizing the number of clusters considering
various criterion such as AIC Akaike Information Criterion , BIC
Bayesian Information Criterion.

3. By considering several clustering methods.

4. With the optimization of the discrimination between the Con-
cepts and by considering the informative power of the histograms
or bar charts.
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Figure 1.7: The process of transformation from complex data tables
into symbolic data or aggregate representation tables [81]
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1.2. Analysing data using Aggregate Representations

In this thesis we will consider specifically those tables in which data
are both related to different time series or in which statistical units
are considered and followed over the time.

In particular, classical tables in this sense are longitudinal or cross
sectional data. So we consider data that represent single groups of
time series (e.g. financial portfolios) because we wish to examine the
differences in cross-sectional behavior or in its evolution. An example
of these data is presented in Diday 2008. [211]

Whilst the transformation into symbolic data table is possible by
considering classical data in symbolic data, at the same time it is also
possible to consider transformations by other types of data, for ex-
ample fuzzy data, into internal representations or symbolic data (see
Diday 2008 [209]).

Multisource data tables arise specifically from the union of various
data tables in which they are unified in a specific query. In effect, data
are derived from various types of symbolic data arising from different
data queries.

The aim of the symbolic data analysis is that of analysing symbolic
data tables that describe observations with a variation in their descrip-
tion (Diday 2008 [209]). There are four types of analysis in internal
representation and symbolic data analysis that we can consider (table
1.1):

Table 1.1: Data Analysis Typologies
Method Classical Analysis Symbolic Analysis
Classical data Case I Case II
Symbolic data Case III Case IV

In particular, in Case I we refer explicitly to the classical analysis of
time series, Case II consists of the specific extraction of the symbolic
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descriptions from classical datasets, whereas in Case III symbolic data
are aggregated and transformed into Classical data, and in Case IV
it is specifically the case of Symbolic Data Analysis (see Diday 2008
[209]).

In this work we will obtain the data as symbolic data and anal-
yse these data using the internal representation and a symbolic data
analysis. In this sense, the present research has produced various sta-
tistical methods that could be used in various contexts and situations20

1.3 Aggregate Representations from Time

Series

By considering the case of the time series, various proposals have been
made: in particular Ferraris Gettler Summa Pardoux and Tong 1995
[268] Gettler Summa and Pardoux 2000 [297] and more recently Get-
tler Summa et al. 2006 [298] and Gettler Summa, Goldfarb [296] .

The specific steps in an analysis of temporal symbolic data are rep-
resented in figure 1.8 and are described in detail in Diday 2008 [209].
In particular, for the different stages of a Symbolic Data Analysis see
Diday 1993 [203]:

1. The symbolic data analysis needs to be conducted on two levels:
the first level is related to original observations during time t,
on the second level are the concepts of the considered temporal
intervals.

20For an extensive review of statistical and quantitative methods in Symbolic
Data Analysis see Diday 2008 [209] and 2011 [214], Diday and Noirhomme 2008
[218]. Actual software developments in Symbolic Data Analysis are represented
by the Sodas software [743] (see Diday and Noirhomme 2008 [218]) and the recent
Syrokko [742]. Various packages in Symbolic Data Analysis are proposed in R.
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1.3. Aggregate Representations from Time Series

2. Each symbolic description describes the concept.

3. The description needs to take into account the variation.

4. Symbolic data analysis can extend the standard analyses to the
cases in which observations are represented by symbolic data.

Figure 1.8: The process of transformation from a relational data table
into a symbolic data table[209]

In this respect to apply specifically the tools of statistics to symbolic
data, new statistical tools need to be considered those which take into
account the characteristics of the symbolic data. Typically a Symbolic
Data Analysis can be characterised by various phases (see Diday 2008
[209]).

Clearly the case here is related to a dataset H suggesting that these
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data should be handled statistically. In other cases, for example in the
data stream, we consider only the symbolic data as histogram data
because we cannot handle the single observations directly (in this case
data cannot be collected at all: Balzanella Irpino Verde 2010 [56]).
We follow this approach:

1. It is assumed to start by considering more than one time series in
a specifically built relational database. In this case the classical
data set is obtained.

2. The series are pre-processed to detect and manage outliers.

3. The series are pre-processed in order to take into account the
missing values and the imputation.

4. The specific interval is chosen (by defining a specific query).

5. Overgeneralization is checked (the appropriate symbolic data to
use and their appropriate structure are chosen).

6. The symbolic data table is obtained.

1.4 A study simulation on Big Data and

Information Loss

Here we present a simulation study21 considering big datasets and
information loss in the aggregation process. In particular, we will
simulate various time series models based on a large quantity of data,
and we aggregate these data using various aggregation functions (the
mean and/or the median) for a limited number of periods. At the same
time we compute the interval of the minimum and the maximum in

21See Koenker 1996 [429] for the design of a simulation study
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each period. The aggregation is necessary because of the difficulty
of visualizing the original time series (we will consider this point in
depth in chapter 6). The interval shows clearly the information losses
of each subperiod of i observations. An indicator of information loss
could be:

IL =
n∑
i=1

∣∣xi − xi∣∣ (1.4)

To compare the results between different periods and different ag-
gregations some t−test are used. These confirm the result expected. In
particular: the higher the aggregation interval considered, the higher
is the information loss.

1.5 Applications on Real Data

1.5.1 The Symbolic Factorial Conjoint Analysis
for the Evaluation of the Public Goods

The evaluation of the public services is related to a specified set of
different public policy alternatives: Marchitelli 2009 [486] and Drago
et al. 2009 [230].

The aim of the analysis is to compare different policy alternatives
that could be considered competitive. The data coming from evalua-
tion procedures are difficult to measure and to model, so to face the
problem of different measurement we need to use representations as
intervals.

More precisely the problem can be considered an optimization one,
where we want to choose the best alternative with respect to a specific
metric and the budget constraint. The evaluation or the choice needs
to take into account the local social development and the environment
of a specific zone or territory. The evaluation can be ex-ante if the
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(a) Interval and aggregated data

(b) The original time series

evaluation time is before the project development. Decisions are also
constrained by a public budget and by actual regulations.

Ex post there is an evaluation based on a specific comparative anal-
ysis based on results we have obtained from a specific policy. The
interest of the analysis is the ex-ante comparison of different projects
or project options. All considered elements can contribute to the final
outcome and the analysis. The analysis is related to the evaluation of
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the Italian academic system and the analysis is divided into various
steps22:

1. Delivering a questionnaire on a non random sample of 40 aca-
demic professors of Italian universities participating in a work-
shop in Naples on the evaluation of academic institutions.

2. Each ”judge” evaluates each scenario and each single component.
The different evaluations are considered as a rank.

3. Obtaining some estimates from the Conjoint Analysis to have
the utility coefficients.

4. From the utility coefficients to the symbolic data intervals by
measuring the uncertainty.

5. The different judge coefficients are considered as interval data
and interpreted through an Interval Principal Component Anal-
ysis.

The result shows that it is possible to use these data in a comparison
of different policy alternatives.

1.5.2 Analysing the Financial Risk on the Italian
Market using Interval Data

Drago and Irace in 2004 [231] 2005 [232] show the interval data to ap-
proach the financial analysis of the risk. In particular the idea is that
of departing from a classical data set of financial data by considering
their entire features to arrive at an analysis of the risk. Similar results
for the French market using Symbolic Data are found in Goupil et al.

22In particular we use the Factorial Conjoint Data Analysis: see Lauro 2004
[443]
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Figure 1.9: Judgement analysis and the interval symbolic data. Mar-
chitelli 2009 [486] and Drago et al. 2009 [230]

2000 [317].
The data are related to the closing prices on the Italian stockmarket

for a sample of listed companies. In particular the analysis is divided
into three different parts. In the first part we perform a classical time
series analysis to extract some patterns over time (in particular they
can become the basis for the symbolic data analysis and the statistical
arbitrage23). Secondly we perform some multivariate methods (Prin-
cipal Component Analysis, Statis, and Cluster Analysis), and thirdly
we consider the intervals related to a single week, in which we consider
the Interval principal component analysis and the clustering methods
in interval data.

The analysis discriminates some interesting patterns regarding the
market, and in particular stocks that tend to have higher returns with
respect to their volatility etc.

At the same time intervals can show some opportunity of arbitrage
over time (small intervals can show some profit opportunities)

23In particular see Avellaneda Lee 2010 [50]
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Figure 1.10: Interval Data Principal Component Analysis and Finan-
cial Data (Drago and Irace in 2004 [231])

Figure 1.11: Interval Data Principal Component Analysis and Finan-
cial Data (Drago and Irace in 2004 [231])
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Figure 1.12: Interval Data Principal Component Analysis and Finan-
cial Data (Drago and Irace in 2004 [231])

Summary Results: The Analysis of Massive Data Sets
Massive and Huge data sets call for different methodologies which
allows us to take into account not only the location of data but also
its size and shape.
In Huge Data aggregation there is a loss of information.
Internal Representations (Intervals, Histograms, etc.) allow a more
complete representation of the data.
Data can be genuinely considered to be Intervals or Histograms
when they are characterized by complex patterns of variation.
In all the cases of the use of Internal Representations, we can rep-
resent the single data without any type of aggregation.
Symbolic Data are Internal Representations based on relevant as-
sumptions.
These methods can be used in various fields, such as Policy Analysis
and Financial Analysis.
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Chapter 2

Complex Data in a
Temporal Framework

The methods described in the thesis, as will be made clear later, can
be applied in various data contexts, one of them being financial. So in
this section we will present the characteristics of the high frequency
financial data and at the same time the nature of these time series
that call for the use of different methods1.

We will motivate the interest in financial data2 by showing the
usefulness of the methods proposed in the thesis, by analysing some
characteristics of the financial data as a whole and proposing them as

1In particular in recent years there has been a growth of the use of different
methods for financial data: see Tsay 2005 [667], Campbell Lo and McKinlay 1996
[118], Ruppert 2010 [599] Kovalerchuk and Vitayev 2000 [431], Tam Kiang Chi
1991 [650] and Mantegna Stanley 2000 [485] on the enormous literature of the
quantitative methods in finance

2In particular, we refer to high frequency data that presents some unequal space
characteristics which presenting important challenges to operators in the field, see:
Dacorogna et al. 2001 [163], but also Zivot 2005 [722], Cont 2011 [154] and also
Bauwens Hautsch 2006 [67]
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an initial framework of our methods3 (see the discussion on internal
and external modelling and their applications). It is important to note
and underline that the methods can also be used in other frameworks
or contexts4.

We analyse data at different frequencies5 because there is no best
interval temporal in all circumstances and the generating process needs
to be analysed (In this approach we follow directly Dacorogna 2001
[163].

Here the term ”complex” can be used in two different ways. The
first one is in the sense that time series are typically original structured
data coming from different sources (in this sense, see Diday 2010 [211],
Diday Noirhomme 2008 [218], but also 2006 [208] and 2002 [207])
in which we can obtain some representations which summarize the
temporal observation by retaining the meaning.

In the second meaning the time series could be characterized by
some behaviors like irregular cycles, complex seasonal patterns, non
stationarities, waves, peaks, nonlinearities outliers etc. (see De Livera
Hyndman Snyder 2010 [190] Sewell 2008 [619] and Gao Cao Tung
Hu 2007 [290]). In this sense some representations could be useful in
detecting the underlying data structure.

In practice, in the complex time series we can assume its structure
is hidden from the noise, so it is necessary to separate the ”signal”

3It is important to note that a direct application of the method belongs to
high frequency financial data for the intrinsic reasons of these data types, see for
example Arroyo et al. 2011 [38] Drago Scepi 2010 [236], Drago Scepi 2010 [237]
and Drago Lauro Scepi 2011 [235]

4Original complex data in temporal framework can be adapted to all disciplines,
so the methods can be used in different frameworks (see for example Diday 1998
[205] on the definition of time series as complex data)

5An interesting methodology is MIDAS (Mixed Data Analysis) considering re-
gressions by merging data from different sampling frequencies: Andreou Ghysels
Kourtellos 2010 [20] and 2010 [21], Ghysels Sinko Valkanov 2007 [303] Ghysels
(2005) [301]
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from the ”noise” to use the data in an improved way. We consider
in Chapter 7 an approach to internal representations that takes into
account model data, in which we will try to separate in the data the
structural part from the noise6.

2.1 Homogeneous and Inhomogeneous Time

Series

As seen in the first chapter there was an important evolution in finan-
cial markets due to the availability of new types of data. In particular
in Financial Markets the advances in computer technology and data
storage have made the high frequency data available for researchers
(see in this sense Yan Zivot 2003 [710]). In particular, very important
was the introduction of automated electronic systems of trading that
permit the transformation into readily available of entire records con-
taining the characteristics of all the trades and quotes executed in a
regulated market (Galli 2003 [286]).

A typical example is the Trade and Quotes (TAQ) database7 that
provides a collection of relevant information like prices and quotes
for all the stocks listed on the New York Stock Exchange (NYSE),
the American Stock Exchange, the Nasdaq National Market System
(NASDAQ), and the SmallCap issues. An example of the final dataset
is shown in Galli 2003 [286], see in particular figure.2.1.

So these data refer to time stamped transaction-by-transaction or
tick-by-tick data, referred to as ultra-high-frequency data by Engle
Russell (2004) [254]. There are known problems in time scales due to
the occurrence of these new types of data (see Mantegna Stanley 2000

6A similar approach is chosen by Signoriello 2008 [630]
7See Kyle Obizhaeva Tuzun 2010 [440] for the characteristics of the database

TAQ in trading game contexts
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[485]). In specific financial contexts the number of observations in high
frequency data sets can be overwhelming and data are often recorded
with errors and there is a need for it to be cleaned and corrected prior
to direct analysis.

Transaction by transaction data on trades and quotes are, by na-
ture, irregularly spaced time series with random daily numbers of ob-
servations. High-frequency data typically exhibit periodic intra-day
and intra-week patterns in market activity. In these cases the need
for aggregation arises. In particular there is the need for techniques
to summarize, visualize, cluster and forecast high frequency financial
time series without information loss. At the same time, the need to
study the financial market as a whole using multivariate tools and
cointegrated time series where all data are high frequency data (there
is no mix of different frequencies) is essential.

2.1.1 Equispaced Homogeneous Data

A scalar time series8 yt can be represented along the notion of scalar
stochastic process9. Following Peracchi (2001) [555]: on the space
Ω×T can be defined a function Z as a scalar stochastic process, such
that a random variable is defined on the probability space (Ω, A, P )
for every t ∈ T , Z(−, t).10

Assuming a common probability space (Ω, A, P ) a scalar stochastic
process is a collection {Z(., t), t ∈ T )} of random variables, a state

8In this thesis, we consider various types of time series, for example the scalar
one (STS), but at the same time, interval time series (ITS), boxplot time series
(BoTS), histogram time series (HTS) etc. See in this sense Arroyo, González-
Rivera, Maté, San Roque (2011) [38] Arroyo González-Rivera Maté (2010) [41],
Han Hong Wang (2009) [336]

9Ross 1996 [596] and Dobb 1953 [223]. Interval stochastic processes are defined
in Han Hong Wang 2009 [336]

10Peracchi 2001 [555]
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Figure 2.1: High Frequency Data: Trades and quotes dataset (Galli
2003 [286])
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space of the process can be considered the range of Z(., t)11

The index space of a time series can be related to points in time
ti...j that are equally spaced to a given time unit (Peracchi 2001 [555]).

A time series is a way to represent a stochastic process, it can be
denoted as y = (yt : t ∈ T ) could be studied in the time domain (for
example autoregressive models as equations predicting yt from yt−1 to
yt−n) for example, we can have in the case of an AR(p) process:

yt = φ0 + φ1yt−1 + φ2yt−2 + · · ·+ φpyt−p + εt (2.1)

Assuming:

E[εt] = 0

E[ε2
t ] = σ2

Cov[εtεs] = 0 (2.2)

If ε ∼ N (µ, σ2) the process is Gaussian.

Data can be analysed by considering a specific frequency f (or
temporal interval). There is no general need to aggregate different time
series in considering different frequencies. A recent methodology that
mixes data with different mixed frequencies is the MIDAS (Ghysels
Kourtellos 2010 [20]) or mixed data sampling regression model12.
Let us assume we have for two time series yt and xt and a frequency
f :

yt = φ0 + φ1B(L1/f ; θ)x
(f)
t + ε

(f)
t (2.3)

11A time series approach in space state is in Durbin Koopman 2001 [244] and
Durbin 2004 [243]

12In another work, Ghysels Santa Clara Valkanov 2004 [302] consider the
methodology also by taking into account high frequency data
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In practice f denotes the frequency (daily, weekly, quarterly) ,B(L1/f )
is a lag distribution (for example, the Almon Lag). We start by con-
sidering the characteristics of high frequency data compared with eq-
uispaced homogeneous data.

A time series could be analysed, also, in the frequency domain
(harmonic analysis, periodogram analysis and spectral analysis: see
Battaglia 2007 [66]).

Box and Jenkins 1970 [99] show that the time-domain and the fre-
quency domain show equivalent information on the time series13.

An important distinction needs to be made, in financial data in
particular, by considering the spacing of the data points in time. Reg-
ularly spaced time series are usually defined as homogeneous whilst
irregularly spaced are defined inhomogeneous (we use here the termi-
nology in Dacorogna 2001 [163]). In the second case, we cannot apply
standard methods that are designed for regularly spaced or homoge-
neous time series data14

In relation to the homogeneous time series we consider the finite
time series xt with length T and N observations. In the case of pe-
riodic sampling, the temporal distance between two realizations is al-
ways constant (Ng 2006 [535] and Zumbach Muller 2001 [726])

In fact, by considering ti and tj as single observations we have ti−tj
relating to the distance between two different observations, we have15:

t− tj = ∆t =
1

T
∀j ∈ N (2.4)

13An interesting review is proposed in Warner (1998) [693] focusing in particular
on spectral analysis. A simple introduction to these methods is given by Brandes
et al. (1968) [108]

14See Hamilton 1994 [333], Lutkepohl 2005 [469], Battaglia 2007 [66]
15Ng 2008 [536]
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Ng 2006 [535] and in 2008 [536]16 shows that the time original ho-
mogeneous time series can be considered as a sum of trigonometric
polynomials.

yt =

N/2−1∑
o=−N/2

ao cos(2πot) + bo sin(2πot)

=

N/2−1∑
o=−N/2

co exp−i2πot/N (2.5)

In this case, the Fourier Coefficients can be computed by the Fast
Fourier Transforms (also denoted as FFT).17.

co =
1

N

N∑
t=1

xt exp−i2πot/N (2.6)

High frequency transaction data arrives in irregular time intervals,
the implementation of the common FFT cannot be done for the un-
evenly sampled data (Ng 2006 [535]).

In the case of the high frequency data we can consider the Point
Process, we will consider it later (for a complete introduction to the
Point Processes see Karr 1991 [418] and Daley Vere-Jones (1988)
[165]).

2.1.2 Inhomogeneous High Frequency Data

High Frequency financial data are typically inhomogeneous. Many
types of financial data can be obtained at high frequency, intraday

16See also Fricks 2007 [281]
17For a presentation of these methods see Percival Walden 2006 [556]
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specifically, at a market tick by tick frequency. There are cases in
which raw data are not suitable: in these cases market ticks arrive in
random times. Engle (2000) [250], Zumbach and Muller (2001) [726]
and more recently Zivot and Yang (2006) [723] deal directly with ir-
regularly spaced data.
In that sense, following Zumbach and Muller (2001) [726] xi is defined
as an inhomogeneous time series. Here the market transactions over
time can be characterized as (ti, zi). In that sense ti is the time and
zi is the scalar, representing, for example a price. So zi = z(ti) and
the point ti are the i − th element of the series. More specifically an
inhomogeneous time series is denoted as (zi)

N
i .

In practice a time series x is defined by the arrival of ticks zi at
times ti. Over time ti+1 > tt. As we know, homogeneous time series
are regularly spaced, inhomogenous time series are irregularly sampled
ti+1 − tt 6= ∆t (Muller 1996 [520]).

Various methods can be considered for obtaining homogeneous time
series from inhomogeneous (Dacorogna 2001 [163] Zumbach and Muller
(2001) [726] and also Brownlees and Gallo 2006 [115]).

By starting with an inhomogeneous series with times ti following
Dacorogna 2001 [163], we have a transformation from inhomogeneous
to homogenous time series zi = zti . In practice only the last obser-
vation in the time is chosen. The sequence of the raw series can be
related to the index i while in the case of the homogeneous we consider
them at time t. By considering a specific period ∆t we obtain a series:
t0 + i∆t regularly spaced.

The ticks xi indexed, each related to the market characteristics (see
in figure 2.1 price and volume in particular) for each index i can be
considered as the realizations of a marked point processes.

In particular, we can consider the different partitions of the TAQ
dataset as a specific high frequency dataset, here we need to consider
separately the Trades and the Quotes.

For trades tr considering i = 1...n as the number of the trades over
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time we have (tr1i, tr2i, tr3i), with tr1i as the time of the trade tr2i as
the price and tr3i as the volume.

For quotes qu, considering the number j = 1...n at the same time
we have (qu1j, qu2j, qu3j) we have: qu1j for the time qu2j as the bid
price qu3j as the ask price (see Galli 2003) [286]. So Trade Duration
data, in fig.2.2, can be finally defined:

Di = tr1i − tr1(i−1) (2.7)

Where we can define at the same time the Quote duration data
(fig.2.3):

Qj = tr1j − tr1(j−1) (2.8)

These types of data can be analyzed by considering specific econo-
metric methods, such as the ACD or Autoregressive Conditional Du-
ration models18 (see Engle and Russell, 1998 see [253] and Engle
2000 [250]). In practice we model the durations between two distinct
events19

durationi = tri − tri−1 (2.9)

2.1.3 Irregularly Spaced Data as Point Processes

High Frequency Data present the particular characteristics of being
inhomogeneous or irregularly spaced. In Statistics we define this type
of process as a Point Process. In particular, a Point Process is a
random element, whose values are in a defined set S. The outcome

18See also the interesting comparison between methods in Zhang Keasey and
Cai [718]

19Forecasting the arrival of an event is clearly relevant in various other applica-
tive contexts. See for example the forecasting methodology and its application in
Shen and Huang 2008 [625]

54



2.1. Homogeneous and Inhomogeneous Time Series

Figure 2.2: High Frequency Data: Trade durations (Galli 2003 [286])

Figure 2.3: High Frequency Data: Quote durations (Galli 2003 [286])
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of the Point Process is an inhomogeneous time series, that could be
converted to a homogeneous time series.

Following Hautsch 2007 [348] and Bauwens and Hautsch 2006 [67],
given t as the time, a point process could be defined as W as a sequence
of events w:

(twi )i∈(1...nw) w = 1 . . .W (2.10)

In this case, every event time of the pooled process becomes:

(ti)i=1 (2.11)

The inter event duration can also be:

dwi ≡ twi − twi−1 (2.12)

in a specific information set at t : Ft. So a point process can be
visualized as fig.2.3:

Figure 2.4: High Frequency Data: Point Processes (Hautsch 2007)
[348])

The time that can be from the most recent event is:
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x(t)w ≡ t− tŇw(t) (2.13)

The information set can be defined t as zt

Hazard function λ of a random variable X can be defined:

λX(xi) ≡
fx(xi)

(1− FX(xi))
(2.14)

At this point, it is necessary to observe the ways to transform in-
homogeneous time series into homogeneous ones.

2.1.4 Inhomogeneous to Homogeneous Time Se-
ries Conversions

High Frequency Data related to a single stock can be affected by out-
liers, errors and anomalous values20. The main technical reason for
these problems is unknown. A preliminary step is clearly that of man-
aging the outliers and anomalous observations which occur in the in-
homogeneous time series (and we will see this later in financial high
frequency data).

Following Dacorogna (2001) [163], Zumbach and Muller 2001 [726]
and also Zivot and Yang 2006 [723] we can follow two ways to convert
an inhomogeneous scalar time series into a homogeneous one. Denot-
ing k′ as a single tick and considering: the time t0 + i∆t we have:

k
′
= max(k|tk ≤ t0 + i∆t), tk′+1 (2.15)

tk′ ≤ t0 + i∆t < tk′+1 (2.16)

We want to interpolate between tk′ and tk′+1 using Linear interpo-
lation:

20Brownlees Gallo (2006) [115], Andersen 2000 [16]
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z(t0 + i∆t) = zk′ +
t0 + i∆t− tk′
tk′+1 − tk′

(z
′

k+1 − z
′

k) (2.17)

and the previous (the most recent) tick, interpolation:

z(t0 + i∆t) = zk′ (2.18)

where it is also possible to consider the initial (the oldest) tick
interpolation:

z(t0) = zt0 (2.19)

In practice, various other interpolation functions can be used but
the previous tick interpolation is the most used.

In this way we can obtain a homogeneous time series. The result
is a loss of information related to the intra-day dynamics. This loss
can be higher if the temporal interval chosen is higher (see Engle 1996
[250]). In particular the analysis becomes difficult for the complex
form of strong intraday seasonalities (for example Fantazzini and Rossi
2005 [261]. At the same time, interpolation, in the presence of non
synchronous trading, can introduce spurious correlations (see Engle
Russell 2004 [254]).

Another problem of the aggregated data is cited by Dacorogna 2001
[163] and is related to the fact that using aggregated data can be
dangerous because of the presence of changes of the indexes used in
the data and the impact of these changes is not predictable. At the
same time, using the high frequency data brings new problems because
the seasonality of these data can hide other data structures.
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2.2 Ultra High Frequency Data Charac-

teristics

In recent years there has been an increase of the availability of higher
frequency measurements of the economy. This fact has been very pos-
itive because it has made for the improvement of the likelihood of the
statistical analysis21. It is important to note that the limit of this
process can be reached when all the transactions have been recorded
and this could happen in different markets. In this sense, each market
can generate transactions, so data could be collected in the same time
tick by tick (or observation by observation) by considering different
products in the market locations such as supermarkets, internet, or
financial markets, see Engle 2000 [250].

So, high frequency data, as inhomogeneous time series, are increas-
ingly important in financial markets. They allow us to study the
adjustment processes of prices in the financial markets, the intraday
dynamics and the market microstructure (for the mechanisms in which
the new information impact on price see for example Cont 2011 [154]
and Engle Russell 2004 [254]22. High-frequency data are also useful
for analysing, at a lower frequency, the volatility of asset returns and
for portfolio allocation23. At the same time, just as the high frequency
data has fuelled advanced forms of algorithmic trading so has the high
frequency trading, based on these data24.
The first set of characteristics we will analyse in depth is: irregular
temporal spacing (as a characterising difference with other types of

21See for example Modugno 2011 [511]
22In particular the relationships between ”order flow, liquidity and price dynam-

ics” in Cont (2011) [154]. See also Bouchaud Mézard Potters 2002 [104] Farmer et
al. 2004 [264]

23Corsi, Dacorogna, Müller, Zumbach (2001) [159], Barucci Renó (2002) [61]
and Hautsch Kyj Malec (2011) [349]

24Ahmed M. 2009 [10] and Patterson Rogow 2009[552]
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financial data at a daily or weekly frequency), diurnal patterns, price
discretness, and very long dependence (Engle Russell 2004 [254], Da-
corogna 2001 [163]).

Another important reason is to understand how the financial mi-
crostructure can affect price dynamics25.

It is important to note that the institutional regulations that collect
the information on markets (also defined as the market microstructure)
can change data characteristics. Changes in market regulations and
technological advances modify the data characteristics and the differ-
ent data structures. For an example of this variability over the time
and the space of the data characteristics see Brownlees and Gallo 2006
[115].

2.2.1 Overwhelming number of observations

Size refers to the number of ticks in a specific trading day. The high-
frequency databases storing tick-by-tick data are very complex to ana-
lyze, for example Brownlees, Gallo 2006 [115]. The first characteristic
for the high frequency financial datasets is that they are of an over-
whelming size.

The transmission by data vendors can vary from market to market,
for example Reuters for a foreign exchange spot rate distributes more
than 75,000 prices per day (see Dacorogna 2001 [163]). In other cases,
the datasets size can be over 10 million foreign exchange price quotes
(Dacorogna Muller Pictet De Vries 2001 [164]).

Clearly the different sizes of the data sets depend on the different
markets26. Mykland and Zhang (2009) [525] cite the fact that on a

25Cont (2011) [154] Biais, Glosten, Spatt (2005) [79] and Rosu 2009 [597]
26For an example of the specific characteristics of high frequency data for ex-

change rates see Dacorogna et al. 1993 [162] and 1990 [161]. Dacorogna Muller
Pictet De Vries 2001 [164] study the exchange rates focusing on the outliers and
the heavy tail features of foreign exchange returns. The authors found at the
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single day Merck had 6,302 transactions and Microsoft had 80,982. In
general, we can conclude that the size is very relevant.
At the same time, the number of ticks, or observations, produced can
vary greatly considering the different markets and different financial
instruments. A “highly traded stock may have tens of thousands of
price events per day, quickly resulting in a storage requirement to store
Gigabytes of data per day and Terabytes of data per year for any rea-
sonable sized instrument universe”(Xenomorph 2007 [706]).

Engle and Russell confirm that these data “are characterized by
ten thousands of transactions or posted quotes in a single day time
stamped to the nearest second” [254]27.

It is important to note that if the data volume is growing exponen-
tially so at the same time the storage of the intraday or high frequency
data is becoming difficult28.

This type of characteristic neglects for example to visualize cor-
rectly the data and it is necessary to consider distinct windows for
observing all data29 (see Drago and Scepi [237]).

2.2.2 Gaps and erroneous observations in data

High Frequency datasets contain gaps and wrong observations, and
some unordered sequences30. At the same time, Brownlees and Gallo
2006 [115] report that these data can be characterized by some anoma-
lous and occasional behavior determined by specific market conditions
(opening, closing, trading halts, for example). In particular, the 2-

same time that high frequency data improve the efficiency of the tail risk cum loss
estimates

27see also Yang Zivot 2003 [711] and Falkenberry 2002 [260]
28See in the specialized journal Automatic Trader the interview of Brian Sen-

tance (2007) [732]
29Zivot 2005 [722]
30Yang Zivot 2003 [711]
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3%31 represents erroneous ticks that need to be imputed when they
can determine bad trades. There is in that sense a call for real time
filtering and data cleaning algorithms. At the same time, there is a
problem of overscrubbing data32.

It is necessary to take into account this phenomenon and to clean
the data before the analysis. In particular, classical econometric and
statistical techniques do not permit the solving of these problems.
Some techniques to handle these types of problems, in particular out-
liers, are proposed by various authors: Dunis et al. 1998 [241], Brown-
lees and Gallo 2006 [115] and Mineo and Romito 2008 [508]

There are two steps in the method, the first step is the transfor-
mation of inhomogeneous time series into a homogeneous one. The
second step is data filtering or cleaning: here it is necessary to detect
the outliers and to manage them in a suitable manner.

Various proposals in this sense are to be found in literature: Da-
corogna 2001 [163] for the Olsen & Associates algorithm and, Zhou
1996 [721]. Following the proposal of Browlees and Gallo 2006 [115]
let (zi)

N
i be a high frequency time series (an ordered tick by tick series),

in the example related to a price we have:

(
∣∣zi − ztrimmed meani(d)

∣∣ ≤ 3si(d) + ς) =

{
TRUE i is kept

FALSE i is removed

(2.20)
In that case, ztrimmed meani(d) and si(d) are the α trimmed mean

and the standard deviation of a neighborhood of d observations around
i and ς is a granularity parameter33 If the expression is true the i ob-

31Falkenberry 2002 [260]
32Falkenberry 2002 [260]: an introduction to the problems of data cleaning and

so to underscrubbing and overscrubbing data, removing the volatility structure
(Dacorogna 2001 [163])

33Mineo and Romito 2008 [508] explains: ”The granularity parameter is con-
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servation is kept, if the expression is false the i observation is declared
an outlier and it is removed.

Mineo and Romito 2008 [508] make a proposal in this sense:

(|zi − zmeani
(d)| ≤ 3s−i(d) + ς) =

{
TRUE i is kept

FALSE i is removed
(2.21)

In that case zmeani(d) and s−i(d) are the mean and the standard
deviation of a neighborhood of d observations around i without the
i−th observation and ς is the granularity parameter. A third approach
considered in Dunis (2008) is related to the median of the last three
ticks34

In this sense, the outliers are detected and removed from the data.
For a specific guide to the data analysis preparation and variable cre-
ation see Yang Zivot 2003 [711]. See in figure 2.5 and figure 2.6 some
examples of erroneous observations in high frequency data.

2.2.3 Price discreteness

There are important features in high frequency data that determine
some spurious auto-correlations in data, for example, the price dis-
creteness35. The price discreteness in the high frequency data is re-
lated to the high kurtosis manifested from data36.

Price discreteness can be considered to be the truncation of prices

sidered because the ultra high-frequency series often contains sequences of equal
prices which would lead to a zero variance; thus, it is useful to introduce a lower
positive bound on price variation in order to have always admissible solutions.

34Mineo and Romito 2008 [508] report that the Dunis method performs with
the worst performance in respect to other methods used

35Matei 2011 [495]
36Dacorogna 2001 [163] and Engle Russell 2004 [254]
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Figure 2.5: Erroneous observations in High Frequency Data: one spike
(Browne 2011 [746])

or exchange rates in a small number of digits, with respect to an in-
finite number of digits.37. Engle, and Russell, wrote: ”All economic
data is discrete. When viewed over long time horizons the variance of
the process is usually quite large relative to the magnitude of the min-
imum movement. For transaction by transaction data, however, this
is not the case and for many data sets the transaction price changes
take only a handful of values called ticks”.

At the same time the market regulations and the institutional roles
can have a role in restricting the prices to fall on a specific set of values.
Engle Russell 2004 [254] states:” price changes must fall on multiples
of the smallest allowable price change called a tick. In a market for an
actively traded stock it is generally not common for the price to move

37McGroarty, Gwilym, Thomas (2006) [497]
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Figure 2.6: Erroneous observations in High Frequency Data: bid ask
gapping (Browne 2011 [746])

a large number of ticks from one transaction to another.”
There are differences betweeen markets due to internal characteris-

tics: ”In open outcry markets the small price changes are indirectly im-
posed by discouraging the specialist from making radical price changes
from one transaction to the next and for other markets, such as the
Taiwan stock exchange these price restrictions are directly imposed in
the form of price change limits from one38”.

2.2.4 Seasonality and Diurnal patterns

Intraday financial data usually contain relevant diurnal or periodic
patterns (see Sewell 2008 [619], Engle Russell [254] 2004 and Da-
corogna 2001 [163]). As Engle Granger [254] wrote, it is possible

38Engle Granger 2004[251]
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to detect a U-shaped pattern over the day, for most stock markets,
volatility, the frequency of trades, volume, and spreads show a U-
shaped pattern.

These patterns need to be considered before beginning any statis-
tical inference on the data39. In that sense, it is important to explore
the data to detect the pattern of seasonality in data.

In any case, various different patterns can be detected in the mar-
kets40 and they can be determined by complex relations, for example
with market microstructure or the public arrival of information.

These patterns are clearly different from the patterns we are able
to extract in financial data at a lower frequency, as for example, the
well known ”January effects” 41. In these cases we can define them as
effects due to to market anomalies that challenge the idea of perfect
efficiency in the financial markets. In any case, the idea of data struc-
tures and different patterns in different types of data is confirmed by
considering different data frequencies42.

2.2.5 Long dependence over time

Following the approach of the data characteristics of Engle and Rus-
sell 2006 [254] related to the market structures, the authors refer to
various phenomena: the existence of a long dependence over time is
one of the most important.

The dependence can be considered the result of price discreteness
and the spread between the price paid by buyer and seller initiated
trades. Long dependence can be referred to as bid-ask bounce and the
large first order negative autocorrelation.

39Melvin Yin (2000) [503] Andersen and Bollerslev (1994) [17] and Dacorogna,
et.al (1993) [162]

40Kunst 2007 [439]
41Keim 1983 [420]
42Dacorogna 2001 [163]
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Traders breaking large orders up into a sequence of smaller orders
in the hope of transacting at a better price overall can lead to a depen-
dence in price changes. These buys and sells, so sequentially ordered,
can determine a sequence of transactions that change prices in the
same direction.

Hence, on long term horizons we sometimes find positive autocor-
relations. This result is confirmed in many studies of intra day data43

2.2.6 Distributional characteristics and Extreme
Risks

See Dacorogna 2001 [163]. Distributional characteristics change with
respect to the frequency, the more frequent the data the more the
data share high frequency characteristics, the more the distributions
are fat tailed. The general result for the distribution is that the data
are fat tailed [163] and also characterized by strong skewness [261].
In general, by considering the choice of little intervals of time for the
conversion to inhomogeneous time series of homogeneous ones (for
example 15 minutes) the distribution chosen is leptokurtic (see also
the nonparametric approach in Coroneo Veredas (2006) [157].

The presence of high frequency data allows for the good analysis
of fat tails. From the applicative point of view it is interesting to
analyse the tails to understand the extreme movements in the financial
markets. The Extreme Risk analysis is a growing area in the field of
Financial Econometrics (see Cont 2001 [152]).

2.2.7 Scaling Laws

At the same time scaling laws are present in financial data at different
frequencies (see in particular Dacorogna 2001 [163] and Sewell 2008

43Sun Rachev Fabozzi 2007 [646]
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[619]). Following Sewell 2011 [621] who reviews the characteristics of
the financial time series ”Scaling laws describe the absolute size of
returns as a function of the time interval at which they are measured.
Markets exhibit non-trivial scaling properties”.

At the same, Sewell in two works in 2011 [761] and [621], reviews
various different contexts in which it is possible to find scaling laws in
finance irrespective of underlying data or frequency.

So, there now exists a vast empirical verification from that of the
initial work of Muller et al. 1990 [520] which found the existence of
scaling laws in financial data like the FX rates (see Dacorogna 2001
[163]). The evidence was confirmed also by considering other markets
using different financial instruments.

2.2.8 Volume, Order Books and Market Microstruc-
ture

The dynamics of the volumes, order books, and market microstruc-
ture, seem to be relevant in understanding how markets work in real-
ity. At the same time, the market functioning, market institutions and
market processes impact on trading costs, prices, volume and trading
behaviour (see Sewell 2008 [619] but also Tsay 2005 [667]).
In particular, Tsay 2005 [667] refers to High-frequency data as a key
to understanding some characteristics useful in analysing and under-
standing some phenomena like:

1. Nonsynchronous trading

2. Bid-ask spread

3. Duration models

4. Price movements that are in multiples of tick size
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5. Bivariate models for price changes

6. Time durations between transactions associated with price changes

In general, the advantage of using high frequency data gives the
possibility of investigating the concrete elements that relate to the
determinants of the adjustment price.

High frequency data can be very relevant in the analysis of the
different trading processes in various markets related to the market
microstructure. In particular (see Tsay 2005 [667]) they can be used
to compare the efficiency of the trading systems in price discovery.
The analysis of market efficiency can be carried out by considering
high frequency data44.

The use of the high frequency data is important, here, for the results
that are new in respect to the low frequencies.

2.2.9 Volatility Clustering

Similarly to financial data at lower frequencies we can observe the
volatility clustering phenomenon at higher frequencies.

In particular, we can take into account the seasonal heteroskedas-
ticity by considering the daily and the weekly clusters of volatility (see
Dacorogna 2001 [163]).

In any case, this observation allows us to investigate if we can ob-
serve the same data characteristics in different data frequencies. Now,
considering the data at a different frequency (a lower one) we investi-
gate its specific characteristics45.

44Lillo 2010 [456] Tiozzo 2011 [659]
45Sewell 2011 [621]
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2.3 Financial Data Stylized Facts

Whereas High Frequency Data are a new data type, that promise to
enlighten various phenomena on the financial markets, the classical
way to consider financial data is a lower frequency (daily and weekly
data).

On the general characteristics of the financial data at a lower fre-
quency (days) there is a growing literature based on the so called
stylized facts (see Sewell 2008 [619], Cont 2001 [152], Tsay 2005 [667]
also in the new field of the Econophysics Mantegna and Stanley 2000
[485] ).

Here we focus on the statistical characteristics of the financial time
series. There are two types of series that are generally used: price
series pft at a given frequency f and return series rft . pft can be con-
sidered as the price of a financial item, for example an asset, and the
ln(pt) as its logarithm transformation, useful for many purposes46.
The rft , with respect to pft shows useful statistical properties, so it is
widely used, in particular we have (see Tsay 2005 [667]) the simple
gross return:

1 + rft =
pft

pft−1

(2.22)

or also

pft = pft − 1(1 + rft ). (2.23)

The simple net return is:

rft =
pft

pft−1

− 1 =
pft − p

f
t−1

pft−1

= r(t, T ) (2.24)

46See Lutkepohl Xu 2009 [471]
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Following Cont (2001) [152], and generalizing for different temporal
scales in a defined time scale ∆t, that could be considered as a second
or a month in a homogeneous time series, the log return at scale ∆t
will be:

rt,∆t = xt+∆t − xt (2.25)

By considering the returns of a portfolio q of assets l with weights
αi on the different assets, given the simple return of an asset rfl,t, we
can define the simple return of the portfolio q, at time t as:

rfq,t =
N∑
i=1

αir
f
i,t (2.26)

See Tsay (2005) [667].

2.3.1 Random Walk Models and Martingale Hy-
pothesis

A relevant hypothesis used in an important class of financial data (the
prices) is the Random Walk and the Martingale Hypothesis. By follow-
ing Tsay (2005) [667] Samuelson (1965) [605] and Mantegna Stanley
(2000) [485] and Campbell Lo MacKinlay Lo (1996) [118] in general,
the hypothesis of market efficiency is related to the pft+1 the price as

the past values pf0 , p
f
1 , . . . , p

f
t through the conditions:

E(pft+1 | p
f
t , p

f
t−1, . . . ) = pft (2.27)

E(pft−1 − p
f
t | p

f
t , p

f
t−1, ...) = 0 (2.28)

Stochastic processes like these are defined martingales. There is no
possibility for making profits. The concept is linked with the random
walk price model, given by:
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pft+1 = pft + ηt (2.29)

It is not possible to forecast the difference pt−pt−1 so the best pre-
diction for pt+s is pt (see Nakamura Small 2007 for the tests associated
with the Random Walk Hypothesis [528]). A Random Walk with drift
became:

pft = pft−1 + β + ηt (2.30)

where an upward trend appears considering β > 0.

pft = pf0 + βt+
n∑
t=1

ηt (2.31)

p0 + βt is the deterministic trend, where
∑n

t=1 ηt is the stochastic
trend. For the properties see Mantegna and Stanley 2000 [485]. In the
weak form of the market efficiency there is no simple way to use past
information in order to gain a profit. Financial data show a complex
structure because they convey a large quantity of mechanisms that
overlap in the influence of the series, the objective is to separate the
information that is possible to predict, that could be evidence that
markets are not completely efficient (see Mantegna and Stanley 2000
[485]).

One objective for the representation considered during the thesis is
to discover some useful structures, both for the high frequency data
and the classical financial data. In this sense, these market inefficien-
cies could be exploited (until the markets recover efficiency). For a list
of market inefficiencies see Sewell 2008 [619], Lo and MacKinlay 1999
[466] and for the contrary opinion see Malkiel 1973 [481]. In recent
years many financial models have used data sources as high frequency
data (see Dacorogna 2001 [163]).
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2.3.2 Distributional Properties of Returns: Fat
Tails

Cont (2001) [152], defined the joint distribution of the returns as
r(t, T ) The unconditional distribution of returns can be defined as
well as:

FT (u) = P (r(t, T ) ≤ u) (2.32)

The kurtosis can indicate the deviation from the normal distribu-
tion:

κ =
r(t, T )− (r(t, T ))4

σ(T )4
− 3 (2.33)

where σ(T )4 is the variance of the log returns r(t, T ) = x(t+ T )−
x(t). The kurtosis is defined such that κ = 0 for a Gaussian dis-
tribution, a positive value of κ indicating the fat tail, or the slow
asymptotic decay of the PDF. In this way it is possible to take into
account the risk. Cont (2001) [152] defines the Value-at-Risk (VaR)
as a ”high quantile of the loss distribution of a portfolio over a certain
time horizon”:

P (W0(r(t,∆)− 1) ≤ V aR(p, t,∆)) = p (2.34)

Where W0 is the present market value of the portfolio, r(t,∆t)
its (random) return between t and t+ ∆t . ∆t is typically taken to

be one day or ten days and p = 1% or 5%

2.3.3 Heterogeneity and Structural Changes

We follow the characterization of the financial time series proposed by
Sewell (2011) [621]. In that sense, financial returns r(t, T ) are typi-
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cally non stationary47. In fact the standard deviation of the returns
tend to be not stationary over time. Following Mantegna and Stanley
2000 [485] the same volatility on markets is time dependent.

Financial data shows frequent structural changes. This result is co-
herent with the idea that the structural changes need to be approached
in the analysis using different time windows for forecasting or mod-
elling using the data (see Pesaran and Timmermann 2004 [558]). Mar-
kets are continously changing so parameter drifts in the models can
occur frequently.
In general the ARCH (Engle 1982 [249]) and GARCH (Bollerslev [102]
1986) models for returns r(t, T ), frequently used in finance are non
stationary in variance but not in mean 48. At the same time a
structural change occurs in a given defined statistical model, for ex-
ample:

pft = β + βtf + εt, t = 1 . . . T (2.35)

with εt ∼ iidN(0, σ2) No structural change parameters α = 1.2 and
β = 1 Structural change β = 2 for t > 150

Various tests in the literature exist to detect the existence of struc-
tural change in financial data. The best known are the Chow Forecast
test (Chow 1960 [140]) and also the CUSUM and CUSUMSQ Tests
(Brown Durbin Evans 1975 [114]).

2.3.4 Non-Linearity

Various types of nonlinearity can be detected in financial stock returns
r(t, T ). Sewell in his work [621] reviews the results in literature re-
lated to the phenomenon. Financial markets show not only frequent

47Sewell (2011) [621], for a different approach Starica and Granger 2005 [640]
De Lima 1998 [181]

48Sewell 2008 [619]
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structural changes but at the same form some predictable forms of
nonlinearities (see Lim Brooks Hinich 2008 [457]).

Typically the time series models can be non linear in mean and or
in variance (as the ARCH or GARCH models)49.

2.3.5 Scaling

Scaling can be defined as a relation between time intervals t and the
average volatility measured at a power η of the absolute returns ob-
served (Sewell 2008 [619]). From the first work of Mandelbrot in 1963
[482] that found scaling, in cotton prices pt, various other works have
found scaling in financial data50. It is possible to confirm the same ob-
servations seen in paragraph 2.2.7 on scaling laws related to the high
frequency financial data. In that sense, it is possible to conclude that
a predefinite data frequency for this financial time series characteristic
does not exist.

2.3.6 Dependence and Long Memory

Following Cont 2001 [152] and Sewell 2008 [619].
If time lags are denoted as τ : the correlation between the different

lags s becomes:

corr[r(s+ τ,∆t), r(s,∆t)] (2.36)

By assuming the hypothesis of ”market efficiency” (the ”efficiency
market hypothesis” depicted in 2.3.1) then it can be hypothesized that
there is no autocorrelation of the returns r(t, T ).

In any case the ”market efficiency” hypothesis seems to be too
strong in some markets and some ”market inefficiencies” can appear

49Engle 1982 [249] and Bollerslev 1986 [102]
50Sewell 2011 [621]
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(and their use is a matter of empirical investigation51). Some exam-
ples in literature of autocorrelation of returns can be found in Sewell
2011 [619].

A different phenomenon is the Long Memory dependence of daily
stock return series. In this case, the evidence (for returns, volatil-
ity, volume etc.) is mixed by using the R/S Statistic, also known as
”rescaled range” or ”range over standard deviation” from Hurst 1951
[374]. Clearly a Hurst Exponent value (or R/S statistic) related to
the:

H(0.5 < H < 1) (2.37)

can suggest an inefficiency in the considered market52 (where we
can identify a long memory process).

Following Cont 2001 [152] given a time scale ∆ the log return of
the scale ∆ is given by rt = Xt+∆ −Xt = ln(St+∆

St
)

A stationary process Yt (with finite variance) is said to have long
range dependence if its autocorrelation function C(τ) = corr(Yt), Yt+τ
decays as a power of the lag τ 53 : C(τ) = corr(Yt, Yt+τ )τ→∞ ∼
L(τ))
τ1−2d 0 < d < 1

2

2.3.7 Volatility Clustering

The phenomenon of volatility clustering, is related to the fact that
in financial time series: ”large changes tend to be followed by large
changes, of either sign, and small changes tend to be followed by small
changes” (Mandelbrot 1963 [482]).

The phenomenon are usually considered by taking into account the
ARCH and GARCH models, in which volatility is related to the last

51Lo Mackinlay 1999 [466]
52Peters 1996 [560]
53Cont 2001 [152]
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period volatility (period of calm on markets followed by periods of
turbulence).

2.3.8 Chaos

Chaos can be defined (Sewell 2008 [619]) when it is possible to detect
in data an unpredictable long term behavior that could be generated
by some sensitive initial conditions in a deterministic dynamical sys-
tem. In practive the behavior of a chaotic time series is usually non
distinguishable from another stochastic time series (Barnett Salmon
Kirman (eds.) 1996 [60]).

Sewell in 2011 [621], reviews various works that test the existence
of chaos in data by concluding that there is little empirical evidence
in financial markets of low-dimensional chaos.

2.3.9 Cross Correlations Between Assets

To understand the correlation between assets see Cont 2001 [152] and
Tsay 2005 [667].

In particular, it is very important to consider the problems when we
deal with many assets. In various financial applications and problems
(for example portfolio asset allocation and risk management) it is very
relevant to work not only with single assets.

In this sense, the joint distribution of the returns of the assets need
to be known in order to conduct a statistical analysis of these data:
Cont 2001 [152]. An important outcome in these types of analyses is
the understanding of the contagion mechanisms of different stocks (or
markets) in the crises. These types of correlations vary over time and
space.
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Summary Results: Complex Data in a Temporal Frame-
work
Financial Data show relevant characteristics, which could be con-
sidered for Internal Representations.
High Frequency Financial Data seems to be problematic, for exam-
ple in data visualization.
There is the need for appropriate techniques to extract complex
patterns from the data.
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Chapter 3

Foundations of Intervals
Data Representations

We have seen in Chapters 1 and 2 that sometimes Internal Repre-
sentations can be useful in retaining information from overwhelming
datasets. That is, it is useful to consider the entire data structure or
the entire distribution of the data.1 In that sense, the existent litera-
ture in Data Analysis using Internal Representation of big data2 uses
mainly two classes of approaches: a first one using Interval data (anal-
ysed in this chapter) and a second one using Histogram and or Boxplot

1See in Williamson 1989 [701] ”If one looks at the development of the mea-
surement process during the past century one soon observes that with increasing
frequency the raw data are probability distribution functions or frequency func-
tions rather than real numbers This is so in the physical sciences and in the bio-
logical and social sciences it is the rule rather than the exception. One may thus
convincingly argue that distribution functions are the numbers of the future and
that one should therefore study these new numbers and their arithmetic (Berthold
Schweizer)”.

2For example the literature in Symbolic Data Analysis, see in that sense Billard
2010 [82] and Diday Noirhomme 2008 [218]
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data (analysed in Chapter 4)3. In the recent past there has been an
evolution using other instruments, based on different approaches. In
Chapter 5 we propose a new method of analysis of big data based on
Kernel Density Estimation. At the same time, it is relevant to note
that this chapter could be a mathematical foundation of the densities
as internal representation. The densities or the beanplot we will look
at in Chapter 5 use upper and lower bounds to understand relevant
phenomena. So this chapter starts with the mathematical foundations
of the internal representations (IR).

We stress that these representations can be genuine4 or can come
from previous statistical processes that transform the initial data ma-
trix into representation matrices5. At times we can obtain our original
data as intervals, histograms etc. The classical data type is used when
taking into account the imprecision6, the interval is useful to consider
a range of different values in temporal aggregations in the interval. In
this chapter the foundations of the interval analysis and its algebra,
and the interval random variables, are presented. Starting from this
it is possible to develop the interval stochastic processes and inter-
val time series (ITS). In the next chapter we symmetrically develop
the theory for the boxplots and the histogram data (another repre-
sentation). In any event it is important to start from probabilistic
arithmetic (Williamson 1989 [701]) that can be considered relevant in

3A general foundation of these approaches can be found in the imprecision and
the vagueness, some data can be measured considering uncertainty (or risk) and so
can be considered intervals, boxplots, histograms etc. to measure such uncertainty.
See for an introduction to this approach: Palumbo (2011) [544]

4In that case there can be a specific interpretation of these data that could
be found in Nature. An example is temperature with its range of minimum and
maximum-considered a genuine interval data

5For example interval data can come from database queries see for example
Diday 2002 [206]

6See for example in Gioia 2008 [309] the classification of error that could be
found in data and in their solutions
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3.1. Internal Representation Data and Algebra: intervals

order to understand the interval data (or the upper and lower bound
of the density data).

3.1 Internal Representation Data and Al-

gebra: intervals

3.1.1 Probabilistic Arithmetic

The idea in Williamson 1989 [701] is to calculate the distribution of
arithmetic functions of random variables. In some cases the results
are obtained in terms of dependency bounds (for example, in the case
of the lower and upper bounds). In practice, the probabilistic arith-
metic is a generalization of interval arithmetic that considers only the
supports of the distributions of the variables7. The problem adressed8

is given by considering Z = L(X, Y ) with X and Y as independent
random variables, where its distribution function is FX,Y . The distri-
bution FZ function of Z could be written:

FZ(z) =

∫
L(z)

d(FX(u)FY (v)), (3.1)

where: L(z) = ((u, v) | u, v ∈ <, L(u, v) < z). The author states
that to compute the expression is a necessary but not a sufficient
condition for a probabilistic arithmetic. The dependency error can
be defined as the error in computing the distribution of some func-
tion of V and W (U = V/W ) assuming V and W are independent.
For example X, Y and Z are assumed independent random variables,
but V = X + Y or W = X × Z are not necessarily independent.

7Williamson 1989 [701]
8We refer on Williamson 1989 [701]
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Williamson 1989 [701] states that is possible to obtain partial solu-
tions to these problems in terms of dependency bounds or the lower
and upper bounds on the distributions of functions of random vari-
ables when only the marginal distributions are known. So we have:
ldb and udb as lower and upper dependency bounds, where � is a
binary operation, it is possible to write the bounds:

ldb(FX , FY ,�)(z) ≤ FZ(z) ≤ udb(Fx, Fy,�)(z) (3.2)

At the same time the general approach has been studied by var-
ious authors. Springer 1979 [637]9 considers the idea of an algebra
of random variables to calculate the convolutions. Various authors
have also studied the numerical methods for calculating distributions
of functions of random variables10. In the case of interval data we are
more interested in the bounds of a distribution within an interval.

3.1.2 Interval Data and Algebra

In particular, Interval Data are the simplest and used means to repre-
sent both the intra-period and the measurement error or imprecision.

Various contributions11 have appeared from the original work of
Sunaga 1958 [647], and Moore 1962 [512] and 1966 [513]. At the same
time, interval data and interval arithmetic found a relevant application
obtaining reliable simulation mechanisms, see in this sense Batarseh

9The idea was applied in Downs Cook Rogers 1984 [226]
10Williamson 1989 [701] in particular in the Chapter 2
11Gioia 2008 [309] reviews the different approach in Interval Algebra from the

first contributors: Burkill 1924 [117], Young 1931 [712], Warmus 1956 [691] then
Sunaga 1958 [647] and Warmus 1961 [692] . At the same time, modern approaches
by Moore 1966 [513], Alefeld-Herzerberger 1983 [12], Kerarfott-Kreinovich 1996
[423], Neumaier 1990 [533], and Alefeld-Mayer 2000 [13], Hickey Ju Van Emden
2001 [360]. For the latest works in interval algebra see Kreinovich 2011 [755]
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Wang 2008 [63].
An interval can be defined: (Gioia 2006 [308] and Rokne 2001 [593]):

xI = [xi, xi] = (x ∈ R|xi ≤ xi ≤ xi) (3.3)

Following Revol 2009 [581] (See figure 3.1) the intervals of real
numbers can be considered also as connected sets of R. In this sense,
these data d can be measured with an error ±ε. So we can have
[d− ε; d+ ε]

Figure 3.1: Intervals (Revol 2009 [581])

The interval valued variable can be defined in this way: we consider
an interval-valued variable [x] (we follow here Gioia and Lauro 2005
[310]). Xi = [xi, xi] i = 1...n. Alternatively, upper and lower bounds
can be written equivalently as: xL ≤ xU . A specific example could be
related to the returns of n different stocks in a temporal interval t in
a portfolio. So we have:

([x1, x1], [x1, x2], ..., [xn, xn], ) (3.4)

Upper and the Lower bound are: Interval: [x] over the base set
(E,≤) is an ordered pair, where [x] = [xL;xU ] where xL, xU ∈ E are
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bounds such that xL ≤ xU .

Another way to consider the Upper and the Lower bounds of an
interval is this way:

Lower and Upper Bound: [X]t = [Xt,L, Xt,U ] with −∞ < Xt,L ≤
Xt,U <∞

Center and Radius: [X]t = 〈Xt,C , Xt,R〉 where Xt,C = (Xt,L +
Xt,U)/2 and Xt,R = (Xt,U −Xt,L)/2 (See figure 3.2)

Figure 3.2: A real interval and its parameters lb (lower bound), ub
(upper bound), mid (midpoint), rad (radius) and wid (width) Kulpa
2004 [435]

Considering the upper and the lower bound, an interval [x, x], can
be defined as the set of real numbers between x and x:

[x, x] = {x/x ≤ x ≤ x/x} (3.5)

Thin intervals can be considered as: [x, x] = x, or [x, x] = x. Usual
set theory applies: [x, x] ⊂

[
y, y
]
. At the same time [x;x] = [y; y] ⇔

x = y;x = y.
At the same time, it is possible to define the width of interval as in

Rokne 2001 (see Rokne 2001 [593])

w(A) = x− x (3.6)

at the same time we can have the absolute value of the interval:
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|A| = max[|x|; |x|] (3.7)

a general distance between two intervals can be defined as the Haus-
dorff distance:

q(x, x) = max[|x− y|; |x− y] (3.8)

Various contributions have been made on theoretical developments
and on applications of the interval algebra12: Billard Diday 2000 [83].

The arithmetic is considered an extension of real arithmetic. Let I
be the set of closed intervals. The set of all real intervals is denoted
by I< and is defined as a real interval space13.

Operations between intervals:
Following Gioia 2006 [308] and Rokne 2001 [593], we define arith-

metic operations on intervals as • with the symbols +,−,∆, /,.

[x, x] • [y, y] = (x • y : x ≤ x; y ≤ y) (3.9)

Except the case: [x, x]/[y, y] with 0 ∈ [y, y]
The interval arithmetic can be considered as an extension of the

real arithmetic. Let [x, x], [y, y] in I<
Sum:

[x, x] + [y, y] = [x+ y;x+ y] (3.10)

Subtraction:

[x, x]− [y, y] = [x− y;x− y] (3.11)

Multiplication:

12At the same time, for the development of the diagrammatics of the interval
algebra see the works of Kulpa in 2006 [436] and in 2001 [434]

13Kulpa 2001 [434]
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[x, x]× [y, y] = [min(xy, xy, xy, xy);max(xy, xy, xy, xy)] (3.12)

Division:
By considering 0 /∈ [y, y], we have:

[x, x]/[y, y] = [x, x] = ×[1/y, 1/x] (3.13)

Following Revol (2009) [581] we have:

[x, x]2 = [min(x2, x2),max(x2, x2)] (3.14)

by considering 0 /∈ [x, x] and [0,max(x2, x2)] in a different way.

1/[x, x] = [min(1/x, 1/x),max(1/x, 1/x)] (3.15)

if 0 /∈ [x, x]
and also: √

[x, x] = [
√
x,
√
x] (3.16)

if 0 ≤ x, and [0,
√
x] in a different way.

Following Revol (2009) [581], we can consider that some algebraic
properties are lost. For example, the subtraction cannot be considered
the inverse of the addition and at the same time division is not the
inverse of the multiplication. The process of squaring is different from
multiplying an interval by itself. The multiplication is sub-distributive
with respect to the addition.
It is possible to extend the functions. So we have (Revol 2009 [581]
an interval extension: f of a function f satisfies ∀x, f(x) ⊂ f(x) and
∀xf(x) = f(x)

In this case, at the same time as functions we have:

exp(x) = [exp(x); exp(x)] (3.17)
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log(x) = [log(x); log(x)] (3.18)

if x ≤ 0 but [− inf; log(x)] if x > 0.
It is possible to enumerate other function examples using intervals.
By considering specifically interval data, it is interesting to note

that not even the interval data comes from lower or upper bounds. In
some studies there is a different choice between values in a different
range ( 75% for example) to guarantee the absence of overgeneraliza-
tion (see Chapter 1) and in that case the absence of outliers. See for
example Arroyo et al. (2007) [37] in which there is specific mention.

3.1.3 Statistical methods for Interval Representa-
tions

Various methods were designed to analyze interval data, here we present
a short review14. So, it is possible to define interval random variables,
based on interval data (see Billard and Diday 2006 [86], Kubica Ma-
linowski 2006 [433] and Gonzáles Rivera and Arroyo 2011 [318]). A
definition of the interval random variables with an application on sim-
ulation to improve the robustness of the results is given in Betarseh
and Wang 2008 [78].

There are various proposals in interval data analysis (see also Sig-
noriello 2008 [630]).

Rodŕıguez 2000 [759] and Gioia 2001 [307]) have proposed descrip-
tive statistics for interval data, by extending the case of the single-
valued or scalar data.

Gioia and Lauro 2005 [310] and Gioia 2001 [307] make a proposal
of descriptive statistics based on interval data, such as mean and de-
viation from mean, where the author shows that the properties of the
statistics considered share the same properties as the corresponding

14An updated review is present also in Diday 2008 [209]
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statistics for single-valued data (Signoriello 2008) [630]).
The general approach for the advanced statistical methods is to con-
sider statistical methods for scalar or single-valued data and extend
them for the interval data15.

The extension of the Principal component analysis to interval data
(from the scalar data) is developed in various scientific works: start-
ing from radii or vertices (see Vertices Principal Components Analysis
(also defined as V-PCA) in Cazes et al. 1997 [124]) and a Symbolic
Objects PCA (see Lauro Palumbo 2000 [446]) to the considered mid-
points (for example the Midpoint and the Radii PCA in Palumbo 2003
[543]). Irpino 2006 [393] considers an extension of the classical Prin-
cipal Component Analysis to analyse time dependent interval data.
Finally, Lauro Verde and Irpino in 2008 [450] review the Principal
Component Analysis techniques using interval data.

Signorello 2008 [630] and Palumbo [543] report an important prob-
lem in interval algebra (related to the extension of the scalar or single-
value data to interval data): ”unfortunately, the interval algebra was
born in the field of error-theory where intervals are very small, but
this is no longer true for Statistical Interval. First of all the so-called
wrapping effect leads to wider intervals than they actually should be.
This effect induces a distinction between “interval of solutions” and
the “interval solutions” .

It is not possible here to present all the works that extend the scalar
or single-valued data statistical techniques, for an updated review see
Diday, Noirhomme (2008) [218].

15Signoriello 2008 [630]
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3.1.4 Stochastic Processes and Time Series of Interval-
Valued Representations

There is a growing literature in Interval Data and Interval Time Series
(ITS). In fact, in recent years there has been a literature that considers
more in depth the methods of forecasting using these types of represen-
tations. A first contribution is in Teles and Brito (2005) [654], a useful
paper is that of Cheung who introduces the forecasting of daily highs
and lows [133]16, at the same time Maia, De Carvalho and Ludermir in
2006 and in 2008 [477] [476] introduce various methods in forecasting
intervals, in particular hybrid methods. Different forecasting meth-
ods using interval data are considered in Arroyo, Muñoz San Roque,
Maté , and Sarab́ıa (2007) [37], in particular exponential smoothing,
Arroyo Gonzáles Rivera and Maté 2010 [41] on VAR and KNN meth-
ods applied in interval forecasting17. Maté and Garćıa Ascanio (2010)
[494] compare different forecasting methods (VAR and Neural Net-
works) using energy data whereas Arroyo Esṕınola and Maté (2010)
[36] consider financial data in the method comparison.

Another very important paper that develops methods for interval
time series (ITS) is: Han, Hong and Wang (2009) [336]. An application
on exchange rates is in Han Hong Lai Wang 2008 [337] and He Hong an
Wang 2011 [351] with an application on crude oil prices. Forecasting
combinations with interval data is the topic of the work of Salish and
Rodrigues 2010 [603]18 .

16This paper is particularly important because it introduces some useful methods
used in forecasting intervals. See also Chou who introduces CARR models for
volatility modelling (Chou 2005 [135]), Rogers and Satchell 1991 [592] Spurgin
and Schneeweis 1999 [638] and Parkinson 1980 [548]

17The distance for interval data are presented in Arroyo Maté 2006 [43]
18The author in another work in 2010 and 2011 found evidence of nonlinearity

in financial interval time series (ITS) [602] and [591]
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Summary Results: Intervals
The simplest Internal Representation.
Assume data to be a Mixture of Uniforms.
Interval Algebra as extension of the rules of Arithmetic Algebra.
Interval Algebra can be considered to be the foundation of the other
Representations.
Upper, Lower Bound, Centres and Radii can be descriptors, and
can be considered over time with Attribute Time Series.
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Chapter 4

Foundations of Boxplots and
Histograms Data
Representations

In this chapter we deal with density valued data methods and their
algebra. We have seen in the Third Chapter representation character-
ized only by two relevant measures (the upper and the lower bound,
or the centre and the radius). We have seen that this representation
could be very important if we are interested in extreme values of an
aggregate data in preserving some of the original data structure or the
initial distribution (in practice, we are assuming that data follows a
uniform distribution). In any event, we shall see in this chapter and in
Chapter 5 that this representation could be improved by considering
other types of representations like the boxplots or the histograms, and
finally in Chapter 5 the densities.

At the same time in this chapter we will make for the first time the
distinction between original data and model data to take into account
the measurement model that could be determined by various factors.
Finally in Chapter 7 we will show how to estimate the coefficients of



Foundations of Boxplots and Histograms Data
Representations

these data.

4.1 Internal Representation Data and Al-

gebra: Boxplots, Histograms and Mod-

els

4.1.1 Quantile Data and Algebra

In particular there was some debate on the interval arithmetics because
there were some relevant cases in which interval is not so useful in rep-
resenting some variables. Williamson 1989 [701] speaks of a ”number
of techniques which determine limited information about the distribu-
tion of functions of random variables”.

At the same time, following Williamson 1989 [701] the general aim
is to provide information on the distribution of the variable for the
internal representations, and in this respect it is necessary to consider
some types of generalizations of the interval algebra we have already
looked at. Various attempts have been made in this sense, Williamson
1989 [701], in practice cites two approaches: Triplex Arithmetic and
the Quantile Arithmetic.
The problem related to Ecker and Ratschek (1972) [245] as explained
in Williamson (1989) [701] is that they “have considered intervals prob-
abilistically in an attempt to understand the phenomena of subdis-
tributivity and inclusion monotonicity. They also suggested a joint
representation of distributions and intervals and studied some prop-
erties of Dempster quantile arithmetic which we examine below”. At
the same time Williamson (1989) [701] says, about the approach of
Ahmad 1975 [9]: “Ahmad is supposed by Moore 1979 [514] to have
looked at the arithmetic of probability distributions from the point
of view of interval arithmetic. However Ahmad’s paper is solely con-
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cerned with nonparametric estimators of probability densities and he
has nothing to say about probabilistic arithmetic”.
So the two different frameworks considered and presented sequentially
(See figure 4.1 and figure 4.2), here are the Triplex Arithmetic and the
Quantile Arithmetic.

Figure 4.1: Comparing Internal Representations

Triplex Arithmetic and Quantile Arithmetic

We start from the problem we have considered in Chapter 3:

I< = ([x, x] | x ≤ x, x, x ∈ <) (4.1)

Two intervals could be considered binary operations, as c for ex-
ample, ZI = XIY I that could be given by:
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Figure 4.2: Comparing Complex Internal Representations: Sampled
data from a N(50,2) summarized by symbolic variables −− González-
Rivera G. Carlos Maté (2007) [315]

ZI = [z, z] = (xy | x ∈ X, y ∈ Y ) (4.2)

Sometimes it is useful to consider some generalizations regarding
this algebra. Following Williamson 1989 [701] in particular there were
two different developments: the Triplex Arithmetics and Quantile
Arithmetics. The Triplex Arithmetics (see Cole and Morrison 1982
[149] Apostolatos et al. 1968 [24] and Nickel 1969 [538]) consider, in
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addition to the extreme values of interval, a main value or the most
probable one. In particular: a triplex number X t can be defined as an
ordered triple [a, c, b] in which a could be considered the lower bound,
the c is considered the most probable value (or the main value) and
the b is the upper bound.

[x, x̃, x] (4.3)

It is interesting to note that if we only consider x and x we can use
mainly the rules of interval arithmetics (see Williamson 1989 [701]).
The main objective of the Triplex Arithmetic is to give an answer to
the limits of the interval arithmetic by providing some information on
the underlying distribution.
Following Williamson 1989 [701] the Quantile Arithmetics results are
related to the work of Dempster (see Dempster 1974 [191] and 1980
[192] and Dempster and Papagakipapoulias 1980 [194]).

It is necessary to consider a random variable X with a density fX
and a distribution function FX . It is possible to define the quantile
number XQ, which represents X by the approximation FXQ to fX

fXQ(x) =


α if x = F−1

x (α)

1− 2α, if x = F−1
x (1

2
)

α if x = F−1
x (1− α)

0 otherwise

(4.4)

It is important to note that fX is a density where fXQ is a discrete
frequency function1. It is possible that two quantile numbers XQ and
Y Q are combined in the way that ZQ = XQ�Y Q by the rule:

1Williamson 1989 [701]
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fZq(z) =

{
fXQ(x)fY Q(y) for z = x�y

0 otherwise
(4.5)

However Williamson 1989 [701] concludes that quantile arithmetics
comes to an underevaluation of the intervals, whereas the interval
arithmetics tends to overestimate the spread.

Boxplot Data

A special case related to the boxplots is proposed by Arroyo and Maté
in 2006 [44] and it is related to Boxplot Data Analysis. In particular
in this case there is the use of interval algebra in boxplot data analyis
of the internal representations.
This method comes to a different data representation that could be
more useful in understanding the data structures. In particular:

Z(u) = mu, qu,Meu, Qu,Mu (4.6)

With:

− inf ≤ mu ≤ qu ≤Meu ≤ Qu ≤Mu ≤ inf (4.7)

In a first paper, Arroyo and Maté 2006 [44] describe the statistical
methods that could be applied to the boxplot data. In a second pa-
per, Arroyo Maté and Munoz 2006 [42] develop methods for boxplot
variables, as for example hierarchical clustering.

Boxplot Time Series (BoTS)

Arroyo Maté and Muñoz A. (2006) [42] use Boxplot Time Series (BoTS
figure figure 4.3), while the same time series are discussed in Maté,
Arroyo (2006). [493]. In a recent paper Arroyo (2010) [33] introduces
a new tool similar to the boxplot: the Candlestick time series CTS (in
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Figure 4.3: Boxplot time series (BoTS)

finance, they are the Japanese Candlesticks figure 4.4) predicted with
locally weighted learning methods (see also Arroyo Bomze 2010 [35])

4.1.2 Histogram Data and Algebra

Histograms are an alternative type of data, that offer an answer to
the same problem of the boxplot data (figure 4.5). The difference
is straightforward, by defining the optimal number of the bins the
histograms represents the bumps of the data, whereas the boxplots
typically do not.

For the Histogram algebra, see the work of Williamson 1989 [701]
and also Billard and Diday 2010 [88], about the histogram algebra see
Colombo and Jaarsma 1980 [150]. An explanation of the histogram al-
gebra is given in Gonzáles-Rı́vera and Maté 2007 [315] An interesting
application of the theoretical methods is in Arroyo et al. (2011) [38].
The authors proposed also an algorithm for the conversion between
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Figure 4.4: Candlestick time series (CTS)

histograms and quantiles.
An alternative approach to the histogram algebra is given in Car-

reras and Hermenegildo 2000 [121], where it is possible also to consider
Gupta and Santini 2000 [330], and Luo Kao Pang 2003 [473] on ”vi-
sualizing spatial distribution data sets”.

Another different approach is given in the project AIDA (A.A.V.V.
[727]) in which the analysis and the operations are performed bin by
bin. Following Signoriello (2008) [630]: there are relevant cases in
which data are collected and can be faithfully represented by using
some frequency distributions.

Assuming X as a variable numerical and continuous, we can ob-
serve various different values xi. We are specifically interested in its
variation. The values can be regrouped in a smaller number H of con-
secutive and disjoint bins Ih. These values give the internal variation
of the representation requested.

By considering the number of data nh belonging to each Ih we ob-
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Figure 4.5: Differences between Histogram and Boxplot Data. Source
SAS 9.2 Support Documentation

tain the frequency distribution of the variable X. So in this case, we
can consider the histogram as a specific internal representation of a
variable X

Histogram data offers much literature on symbolic data analysis
methods. Signoriello in 2008 [630] presents a definition of the his-
togram data as follows:

We assume X being a continuous variable defined on the finite sup-
port S = [x;x], in which x and x are the lower and upper bounds of
the domain of X.

In this case, the variable X can be considered as divided and repre-
sented on a set of adjacent intervals, that are defined as the histogram
bins I1, . . . , Ih, . . . , IH , where Ih = (xh;xh).

Given a number n of observations on the variable X, each semi-
open interval, Ih, could be associated with a random variable equal to
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φ(Ih) =
∑N

u=1 φxu(Ih) where φxu(Ih) = 1 if xu ∈ Ih and 0 otherwise.
At the same time, it is possible to associate to Ih an empirical dis-

tribution πh = φ(Ih)/N .
In that sense a histogram X (figure 4.6) can be defined as an in-

ternal representation in which each pair (Ih; πh) (for h = 1, . . . , H) is
defined both by a vertical bar, with base interval Ih along the hori-
zontal axis and the area proportional to πh.

2

Consider E as a set of n empirical distributions X(i) (i = 1, . . . , n).
It is important to note that, compared with the interval data, which

is usually representing a uniform distribution, histogram data, given
the X variable, the i-th can represent an empirical distribution defined
as a set of H ordered pairs X(i) = (Ih, πh) as:

Ihi ≡ [xhi, xhi] xhi ≤ xhi ∈ <,

⋃
h=1,...,H

Ihi = [minh=1,...,H{xhi},maxh=1,...,H{xhi}],

πh ≥ 0,

∑
h=1,...,H

πh = 1. (4.8)

The Histogram data shows (Gonzales Rivera and Maté 2007 [315]):

c(h) =

p∑
i=1

I i + I i
2

πi (4.9)

The problem with the histogram is the choice of the number of bins.
A possible solution could be the answer in Sturges 1926 [645]:

2Signoriello 2008 [630]
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Figure 4.6: Histogram Data

Figure 4.7: Back to Back Histograms

p̂ = 1 + log2n (4.10)

and also

ĥ =
max(x)−min(x)

1 + log2n
(4.11)

Following Signoriello 2008 [630] these data types show a two-dimensional
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representation, with an interval division in intervals (between the
breaks) and the densities vertically.

Histogram data can be considered a special case of the internal rep-
resentations that could be divided into intervals where each provide
information on the relative frequency.

It is possible to work with intervals of different weights given by
the respective frequency. In particular Colombo and Jaarsma (1980)
[150] proposed a histogram arithmetic as follows:

Given two histograms figure 4.7, YA = (IAh, πAh) with h = 1, . . . , n
and YB = (IBh′, πBh′) with h′ = 1, . . . ,m both representing a pair of
independent random variables A and B, and � being some arithmetic
operator in {+,−,×,÷}, C = A�B can be approximated by the
unsorted histogram YC = (ICk, πCk) with k = 1, . . . , n ·m, where

xC(h−1)m+h′ = min {xAh�xBh′, xAh�xBh′, xAh�xBh′, xAh�xBh′} ,
(4.12)

xC(h−1)m+h′ = max {xAh�xBh′, xAh�xBh′, xAh�xBh′, xAh�xBh′}
(4.13)

πC(h−1)m+h′ = πAh�πBh′ (4.14)

There are some disadvantages in using the histogram algebra (Sig-
noriello 2008 [630] and Colombo and Jaarsma [150]), in particular:

1. Some intervals, as a result of the computations, may overlap3

2. It is important to note that by performing a series of arithmetic
operations on a number of histograms the resulting histogram is

3Signoriello 2008 [630]
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expected to have a higher number of intervals than the starting
histograms.

3. It is possible to compact the unsorted histograms obtained after
each operation in order to avoid an enormous final number of
intervals.

4. The interval arithmetics is the foundation of the rules of his-
togram arithmetics. In the same way, interval arithmetics is
based on classical arithmetics4.

Figure 4.8: Histogram Time Series (HTS)

4Signoriello 2008 [630]
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Figure 4.9: Clipping Histograms (Risk Visualization)

4.2 Statistical Methods Involving Boxplots

and Histograms valued data

For every type of internal representation of the data, intervals, his-
tograms etc., there are various proposals about statistical methods.
Various reviews can be considered, for example Diday and Noirhomme
2008 [218] and Signoriello 2008 [630].

In this paragraph we will review the statistical techniques using
Internal Representations, in particular Histogram Data.

Colombo and Jaarsma 1980 [150] describe the histogram rules that
could be considered to define statistical methods for histogram data.

Works on Principal Component Analysis of Histogram Data are
from: Rodŕıguez Diday and Winsberg 2000 [587] Nagabhushan and
Pradeep Kumar 2007 [527] and Diday 2011 [213].

Approaches to Histogram data regression are in Verde and Irpino
2011 [677] Dias and Brito 2011 [197] and Wang Guan Wu 2011
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4.3. Internal Representations Models

.

4.2.1 Histogram Stochastic Processes and Histogram
Time Series (HTS)

Very recent and relevant is the growth in literature of the symbolic
forecasting methods using histogram time series (HTS figure 4.8). Ar-
royo and Maté 2009 analyse in depth interval data forecasting methods
using KNN K-Neirest Neighbour methods [44]. Gonzáles Rivera and
Arroyo 2011 [319] and [318] define the concept of the histogram ran-
dom variable and stochastic process. The stochastic process can be
defined as: A histogram-valued stochastic process is a collection of
histogram random variables that are indexed by time. A histogram
time series (HTS) is the realization of a histogram valued stochas-
tic process. A histogram valued stochastic process can be defined
as weak stationary if every interval are weakly stationary processes.
An important definition is the barycentric histogram that minimizes
the distances with other histograms and is obtained by optimization.
The authors derive the empirical autocorrelation with respect to the
barycenter (See Gonzales Rivera and Arroyo 2011 [319] and [318]). An
important way to analyse histogram time series (HTS) is to consider
quantile intervals in the histograms (figure 4.9), in particular Gonza-
les Rivera and Arroyo 2011 [318] show the usefulness of this type of
analysis.

4.3 Internal Representations Models

Until now, we have assumed that initial data are not affected by the
existing error. There are important cases in which this assumption is
untenable. In these cases, it is necessary to consider the existence of
the noise in the data, and ”model” the data accordingly. According to
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Signoriello (2008) [630], and also Drago, Lauro and Scepi 2009 [233],
sometimes it can be very useful to model the shape of the initial data
(say, a histogram or later the density data) to extract the relevant
information from our data. In this case, we are taking into account
the errors present in data in a wide sense (for example missing value,
or other phenomena)5. We define data model as specific data, in which
we have eliminated the measurement error.

It is important to note real models do not exist but any model can
be an approximation of the reality. A model is good if it is useful as
approximation. In this sense, only models that could be validated by
data can be useful.
Tukey in a work of 1977 [670] and Caussinus in 1986 [123] allow in
what sense it is possible to interpret the statistical methods (both
confirmatory and exploratory) by approximating initial data as:

Data = Structural Part+Noise (4.15)

Where D are the data, S is the structural part and N is the noise.
This idea is relevant for example in the time series analysis, in which
we want to extract the signal from the noise.

The idea proposed by Signoriello 2008 [630] and Drago, Lauro and
Scepi 2009 [233] is that of specifically transforming the histogram data
by using an approximation function to control the error (or the noise
E) deriving from empirical data figure 4.10.
In this case, if we assume the structural part as our model we can
reformulate the empirical data as:

Data = Model + Error (4.16)

Here M is the model used and E the error. In this case the data are
specifically obtained by the approximated function in the modelling

5Signoriello 2008 [630]
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process and we obtain the model coefficients and an index of goodness
of fit.
The general problem is to find some functions (the models) that opti-
mally approximate the initial data (histogram, for example) as poly-
nomial models, splines, or B-splines. Each different model can be
characterised by a goodness of fit (an evaluation index of the quality
of the representation of the initial data). Later we will express these
data as a finite mixture model in which we obtain the same result to
extract the relevant information from the original data.

So for each i-observation we obtain a specific n-function. It is pos-
sible to represent the coefficients as in the figure. It is important to
note that the original histograms or the original data are substituted
by their coefficients.

4.4 The Data Choice

Simple examples of conversion between different data types are in
Arroyo et al. 2011 [38] in which the authors propose an algorithm to
transform initial histogram data into quantiles.

4.4.1 The Optimal Data Choice

The choice of the best interval representation data is attributed to
the analyst and to the specific analysis (so they can be considered
a choice to perform a priori). Where there is not a specific a priori
preferred data type there are two fundamental factors that need to be
considered:

1. A genuine data type (in the sense there is no possibility of choice
because the data needs to be considered).
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Figure 4.10: Different types of Symbolic Data (Signoriello 2008 [630])

2. The distance from a uniform distribution for the original data.
The more similar the original data is to a uniform the better the
approximation to an interval.

3. The usefulness of prediction of some specific values (for example
in Environmetrics, typically the maxima or the minima for a
specific temporal interval).

Simulations tell us that the loss of information is related to the
distance from the uniform, and from the number of the primary indi-
viduals in the aggregation interval.

108



4.4. The Data Choice

4.4.2 Conversions between Data

It is possible to convert the data, when the internal representation
become from a summary of huge sets of data, see Diday Esposito
2003 [216]. In fact, from the database queries we can extract different
categories of descriptive variables. At the same time, a specific repre-
sentation comes from the use of a multidimensional specific technique
that perform a partitioning in the original massive data set. In all
these cases, it is possible to change the internal representation of the
data; where the data is specifically native this practice is straightfor-
ward, see for example Diday and Noirhomme 2008 [218]. There is a
unique problem to consider in the choice, that one choice or another
one could determine a specific loss of the variability of the data [212].
The problem is clear when it is necessary to transform the original
internal representation into classical data here there is a loss of in-
formation (due to the fact that the classical data does not consider
variation).

So when the data shares a strong internal variability and hetero-
geneity, they need to be represented as internal representations over
time or over space by taking into account this variability.
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Summary Results: Histograms
An Internal Representation preserving complex patterns of intra-
data variation.
Histogram Algebra can be built on Interval Algebra.
It is possible to estimate the relevant coefficients to obtain the Data
Models (Histograms can be parameterized to obtain Data Models).
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Chapter 5

Foundations of Density
Valued Data:
Representations

In general, it is possible to use other statistical methods to represent
some data. In this way, the histogram or the boxplot (both seen in
Chapter 4) are a type of the representation that could be possible to
be considered. In literature it is sometimes suggested to use kernel
density estimators instead of histograms for the smoothness and the
bin placement (see a discussion in Di Nardo Tobias 2001 [222] but also
in Gelman 2009 [293] for a discussion of the topic), in fact both are
nonparametric methods which do not impose any type of specific para-
metric form. In the histogram case1, in practice, bins can determine
the shape of the density and the discontinuities and sometimes it is
useful to explore also this aspect by removing the discontinuity2. So,

1There are at the same time proposals for different histogram types, see for
example: [195]

2The histograms by definition are not smooth. The histogram shape depends
on the bin width and the end point of the same bins. In this way in constructing
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a more reasonable choice could be directed in to exploring underlying
data structure and avoid the bin choice. Also the choice to use mod-
els (Chapter 7) and a coefficient estimation, using for example some
mixtures, could be adressed to eliminate the error and in defining the
underlying data structure.

Figure 5.1: Kernel density estimation, histogram and rugplot on sim-
ulated data

5.1 Kernel Density Estimators

The simplest non parametric density estimator is the histogram: in
fact we can approximate the density by the fraction of points that fall
in the bin. So:

histograms we have to consider the width of the bins and the end points of the
bins
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5.1. Kernel Density Estimators

f̂(x) =
1

nh

n∑
i=1

1xi (5.1)

Where xi is in the same bin as x (Racine 2008 [569]) and 1(A) is
an indicator function with value 1 if A is true, zero otherwise.

In this sense the histogram construction3, can start from an origin
x0 and a bin width h. The bins can be considered as [x0 + mh, x0 +
(m+ 1)h] both for positive and negative integers4.

It is possible to represent a histogram by smoothing their bins (fig-
ure 5.1 and figure 5.3 and obtaining a single continued function f(x).
So the kernel density estimator is5:

f̂(x) =
1

nh

n∑
i=1

K(
x− xi
h

) (5.2)

where K(z) is a Kernel, a symmetric weight function and h is a
smoothing parameter defined as a bandwidth6. The bandwidth choice
in this case is very important7. In fact from the h depends the level of
smoothness of the density. For the bandwidth selection problem see
Turlach 1993 [669], Chiu 1991 [139], Hart Vieu 1990 [342]. In general a
presentation and a review of a nonparametric approach is to be found
in Li and Racine 2005 [465].
K can be a gaussian function with mean zero and variance 1. The

Kernel is a non-negative and real-valued function K(z) satisfying:

3In particular (Milani 2008 [504]) for a review of the graphical exploratory
techniques

4Li Racine 2007 [465] and also Racine 2008 [569]
5Racine 2008 [569] and Pagan Ullah (1999) [542]
6Racine 2008 [569] states that this estimator could be defined as the Rosenblatt–

Parzen estimator: see Rosenblatt (1956) [595] and Parzen (1962) [549]. Where the
xi are time series or dependent data: see Hansen 2009 [338] Wand and Jones 2005
[687] and Harvey and Oryshchenko 2010 [345]

7Katkovnik Shimulevich 2000 [419] Silverman 1978 [633] and Raudys 1991 [578]
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∫
K(z)dz = 1,

∫
zK(z)dz = 0,

∫
z2K(z) = k2 <∞ (5.3)

with the lower and upper limits of integration being −∞ and +∞.
K(z) can be different Kernel functions figure 5.2: uniform, triangle,
epanechnikov, quartic (biweight), tricube (triweight), gaussian and
cosine. A popular kernel choice is the gaussian one8:

K(z) =
1√
2π
e−

1
2
z2

(5.4)

Another frequent choice is the Epanechnikov Kernel, optimal in a
minimum variance sense (see Epanechnikov 1969 [256]).

K(z) =
3

4
(1− z2) 1{|z|≤1} (5.5)

Another important choice could be the kernel triangular:

K(z) = (1− |z|) 1{|z|≤1} (5.6)

In any case, for the kernel triangular and others the loss of efficiency
is not relevant (see Wand Jones 1995 [687]).

5.2 Properties of the Kernel Density Es-

timators

Hansen (2009) [338]9 also shows that if K(z) is non negative it is
possible to show that f̂(x) ≥ 0. At the same time it is possible to

8See Katkovnik Shmulevich 2000 [419]
9See also Baldini Figini Giudici 2006 [55]
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Figure 5.2: Kernel density estimation: illustration of the kernels (Fran-
cois 2011 [280])

compute the numerical moments of the density f̂(x) so the mean of
the estimated density will be the sample mean of X, the set of data:∫ ∞

−∞
xf̂(x)dx =

1

n

n∑
i=1

X (5.7)

The second moment will be:∫ ∞
−∞

x2f̂(x)dx =
1

n

n∑
i=1

X2 + h2k2(k) (5.8)

So the variance for the density f̂ will be:∫ ∞
−∞

x2f̂(x)dx− (

∫ ∞
−∞

xf̂(x))2 = σ̂2 + h2k2(k) (5.9)

Where in this sense the σ̂2 is the sample variance. At the same time
the density estimation increases the sample variance by the h2k2(k)
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(see Hansen 2009 [338]).
At that point it is useful to consider the pointwise mean square

error (MSE) criterion (following Racine 2008 [569]) that is used for
analysing the properties of many kernel methods.

So it is necessary, as well, to derive the bias and the variance for
f̂(x) to have an expression for the MSE. We can obtain the approxi-
mate bias for f̂(x):

bias f̂(x) ≈ h2

2
f
′′
(x)k2 (5.10)

And at the same time the approximate variance will be:

var f̂(x) =
f(x)

nh

∫
K2(z) dz (5.11)

Pagan and Ullah (1999) [542] and Li and Racine (2007) [465] show
the detailed derivation of the results.

It is interesting to note that bandwidth h determines the bias
and the variance, with h decreasing the bias falls and the variance
is higher10.

Integrated Mean Square Error (IMSE) aggregates the MSE over
the entire density and could be considered a global error measure.

5.3 The Bandwidth choice

A more relevant choice is on the bandwidth h. It is important to
note that the parameter h is controlling the smooth of the function:
a higher smooth means a higher smooth level whereas a lower smooth
means the contrary. Various methods have been proposed in literature
in this sense. Racine 2008 [569] states that there are four categories
in bandwidth selection:

10Racine 2008 [569]
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Figure 5.3: Overlapped Kernel density estimations [793]

1. rule-of-thumb reference

2. plug-in methods

3. cross-validation methods

4. bootstrap methods

In that case, by following Racine 2008 [569] we can explore the
different groups of methods. In the first case a standard family of
distributions to obtain a value for the unknown constant

∫
f ′′(z)2dz

is hypothesized. So the Gaussian Kernel is used and the result will
be: 1.06σn1/5 as a rule-of-thumb. The sample standard deviation σ̂ is
used (Racine 2008 [569]).

Another known method family is the Sheather Jones method (1991),
as defined in the Plug-in methods class (see Sheather Jones 1991 [624]).

The method of the Least Squares Cross-Validation is based on the
idea that the bandwidth selected needs to minimize the IMSE of the

117



Foundations of Density Valued Data: Representations

estimate.
In the methods of Likelihood Cross-Validation it is necessary to

choose h to maximize the log likelihood.
Faraway and Jhun (1990) [262] have proposed a different approach

based on bootstrap, in which the selection of the h is in estimating
the IMSE and minimizing them over all bandwidths.

In addition, we consider data-driven methods, that are not a guar-
antee of good results everytime11.

In the data visualization part (Chapter 6) we will use the Sheather-
Jones criteria that defines the optimal h in a data-driven choice (see
Kampstra 2008 [416]).

5.4 Density Algebra using Functional Data

Analysis

By using Functional Data Analysis it is possible to transform the den-
sity into a functional data. The density could be considered a func-
tion and so in that sense specifically used for some operations. So it
is possible to consider the beanplots and transform the densities into
functional data12

An important result in this topic is provided by Zhang 2007 [717]
Zhang and Muller 2010 [720] and by Kneip Utikal 2001 [426] and Jones
1992 [412]. Ramsay and Silverman [574] perform a principal compo-
nents analysis of the log densities.

11Racine 2008 for an explanation. [569]
12See for example Delaigle and Hall [188] who consider the approach of densities

as functional data. Another approach in this sense is provided by Delicado (2010)
[189] in the approach of dimensionality reduction of densities as functional data.
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5.5 Density Algebra using Histogram Al-

gebra

Density Algebra is a way to obtain for example the density mean
between a group of densities by using the histogram algebra. In this
sense we transform the original density data into Histograms, with
regards to the method for the construction of the optimal histogram
see: Scott 1979 [617], Sheather Jones (1991) [624] and Wand (1995)
[686]. The number of bins needs to be chosen for the histograms to use
in the analysis. So if the histograms have the same number of bins they
can be computed, if not it is necessary to compute an average. After
the operation of transformations we can consider the related algebrical
operations between histogram data (see Colombo and Jaarsma 1980
[150]). An explanation in terms of histogram data is given by Gonzáles
Rivera and Maté 2007 [315]

5.6 Density Trace and Data Heterogene-

ity

Sometimes a relevant assumption on data is that they represent some
patterns of heterogeneity. Mixtures are useful to understand interest-
ing patterns in data that could be detected and exploited over time t.
In particular (see Ingrassia Greselin Morlini 2008 [392]) we assume a
set of data Ξ that could be constituted by g different subgroups at a
specific time t, so we have Ξ = Ξ1∪ ....∪Ξg every time t. The elements
for each t are mixed proportionally α1, ...αg. They can be, for example,
prices of houses in a set of data Ξ in different zones. In that case there
is a homogeneous quantity X intra groups and a heterogeneous one
between. The random variable X can have a probability distribution
different for each group, and we assume that the distribution of prob-
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Data: A set of kernel density estimations
Result: The sum in a form of histogram
begin

for i ∈ I do
Transform the density in histograms i
Define the optimal number of bins k

end
Is it possible to compute the objects?
if the objects cannot be computed then

change the number of bins structure considering an
average of the bin

end

Compute the sum of the histograms

end
Algorithm 1: Sum of Kernel Densities by Histograms
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5.7. Conversions between Density Data and other types of data

ability intra–group are among the same parametric family f(x,Θ), in
which the parameter θ ∈ Θ is different between the groups.

Groups can be indicized by a discrete variable S to values into
1, ..., g. The probability to choose the group S = j with j ∈ (1...g) is
indicated with l(j) and is equal to αj(j = 1...g). The joint probability
density p(x, j) is:

p(x, j) = p(x|j)l(j) = f(x|θj)l(j) (5.12)

Where in each mixture model we observe only the random variable
X. The marginal density of X is:

p(x; Ψ) =

g∑
j=1

p(x, j) = α1f(x|θ1) + ...αgf(x|θg) (5.13)

Where in Ψ is a vector with all the parameters of the model. In that
sense in a specific temporal interval t we can have elements belonging
to different groups g, for example due to some effects. So for each time
t we can consider different mixture models. These types of models can
be important in financial data where mixture models seem to be very
useful for returns.

5.7 Conversions between Density Data and

other types of data

At the same time, it is possible to transform the density data into
other types of data or representations like histograms (Algorithm 1.)
or intervals etc. In particular following Wand Jones 1995 [687] and
Sheather and Jones 1991 [624], we can obtain the binned approxima-
tion to the kernel estimate of the density functional [687]. So we can
translate a specific beanplot or density data into a specific histogram.
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It is important to note that in the case of the interval we are specifi-
cally losing information (and we are assuming the density is uniform).
At the same time it is possible to consider the plug-in methodology to
decide a bin width of the histogram and the bandwidth of the density,
so it is possible to consider both techniques (histogram and density).
See in this sense Scott (1979) [618], Sheather and Jones (1991) [624]
and also Wand (1995) [686].

5.8 Simulation Study: effects of the ker-

nel and the bandwidth choice

We simulate in this case various datasets to compare the different
results by considering different kernels and bandwidth choices. The
result of the simulation study is that there is no particular difference
in choosing the various kernels in the analysis whereas it is crucial to
choose a bandwidth that could be considered nearest to the optimum
(figure 5.4, figure 5.5, figure 5.6, figure 5.7, figure 5.8)

Figure 5.4: Effect of the kernel and the bandwidth choice
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5.9. Application on Real Data: Analysing Risk Profiles on Financial
Data

Figure 5.5: Effect of the kernel and the bandwidth choice

Figure 5.6: Effect of the kernel and the bandwidth choice (2)

5.9 Application on Real Data: Analysing

Risk Profiles on Financial Data

We compute the histogram for the log returns of the Dow Jones Mar-
ket, so we have:
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Figure 5.7: Effect of the kernel and the bandwidth choice (3)

Figure 5.8: Effect of the kernel and the bandwidth choice (4)

5.9.1 Analysis of the Dow Jones Index

LR = log(r)− Log(r(t− 1)) (5.14)

At this point, for the period considered we compute the kernel
density estimation to observe and to compare the different subperiods.
The results are coherent with the financial theory, see in this sense Di
Fonso Lisi 2005 [184] and Carmona 2004 [120]
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Data

5.9.2 Analysis of the financial crisis in the US
2008-2011

The Data comes from 2 January 2007 to 12 August 2011. The data
are related to the close price for each market (see the the table of
symbols and markets on page 140). In particular, for each market the
difference is computed.

DCP = CP (t)− CP (t− 1) (5.15)

Where the differenced logarithms are computed for the most rele-
vant countries. The density data are computed and visualized (figure
5.9,figure 5.10, figure 5.11, figure 5.12, figure 5.13, figure 5.14) whereas
in the tables the quantiles for the differenced close prices are computed.
As a preprocessing phase the different missing data for each market
are imputated. The observations from 1 January and 13 August are
considered for 2011. The analysis follows these phases:

1. Quantile Analysis for various world markets (Table 5.1)

2. Analysis of the Density Data 2007-2011 and the Profile Risk
Indicator (The 5% quantile of the difference between two con-
secutive values or the daily variation by year) for various world
markets

3. Comparison between the Density Bandwidth (in figure 5.16) and
an Index of Market Uncertainty as the VIX Index 1990-2011 in
figure 5.17 (see in this sense Bloom 2009 [89])

4. Comparing the result with the Radius of the Interval Data 1990-
2011 (figure 5.15)

In practice we can observe the different evolution of the Dow Jones
market related to other markets. The differenced value presents some
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interesting features related to the volatility that could be effectively
captured by the density data. For each year we can note that there
are some economic situations (US, Italy, France, Germany, Brazil for
example) that in different situations are behaving differently and can
have different market responses to the shocks (see Bloom 2009 [89]).
In particular it seems possible to observe, considering the bandwidth
sequence extracted year by year from the US data, that they are ca-
pable of identifying well the most relevant financial shocks on the
market (see in this sense [90]). It is at the same time confirmed that
the methods considered here allow one to observe phenomena like the
implied volatility over the time and perhaps anticipate them by using
some forecasting methods over time. The use of density permits one
to observe the entire data structure, as will be seen in the following
chapters.
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Data

Summary Results: Densities (Kernel Density Estimation)
An Internal Representation preserving complex patterns of intra-
data variation (like Histograms)
More flexible than Histograms
More interpretable than Histograms
Preserve continuity of the data (without representing it bin by bin).
Need to carefully decide the bandwidth.

Figure 5.9: Density Estimation and Profile Risk Indicator computed
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Figure 5.10: Density Estimation and Profile Risk Indicator year: 2007
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5.9. Application on Real Data: Analysing Risk Profiles on Financial
Data

Figure 5.11: Density Estimation and Profile Risk Indicator computed
year: 2008
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Figure 5.12: Density Estimation and Profile Risk Indicator year: 2009

130



5.9. Application on Real Data: Analysing Risk Profiles on Financial
Data

Figure 5.13: Density Estimation and Profile Risk Indicator computed
year: 2010
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Figure 5.14: Density Estimation and Profile Risk Indicator computed
year: 2011

Figure 5.15: Radius of the Interval time series (ITS) DJI 1990-2011
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Table 5.1: Risk profiles: quantiles computed 2007-2009

0% 25% 50% 75% 100%
TA100 -81.13 -8.27 0.03 8.83 57.57

EGX30.CA -1162.36 -47.40 0.00 60.66 2140.74
GSPTSE -864.41 -73.20 12.09 93.03 890.50

MXX -1957.74 -202.18 29.02 226.13 2190.62
MERV -329.20 -16.56 2.34 22.14 154.74

STI -294.44 -19.79 0.35 22.06 191.67
KS11 -126.50 -11.66 1.98 14.70 115.75
NSEI -496.50 -41.97 2.55 46.33 651.50
NZ50 -139.95 -14.92 0.61 14.86 166.58
KLSE -227.66 -4.85 0.88 6.31 235.67
JKSE -200.45 -16.40 4.06 22.91 182.66

BSESN -1408.35 -145.24 11.80 155.10 2110.79
AORD -408.90 -34.78 1.80 37.37 280.50

RUA -60.26 -4.73 0.63 5.13 59.78
RUT -63.67 -6.88 0.78 6.94 48.41
RUI -57.35 -4.48 0.58 4.65 57.81

SPSUPX -23.66 -2.22 0.18 2.17 23.30
SML -33.06 -3.45 0.37 3.54 23.86
MID -69.71 -6.28 1.02 7.04 57.60

GSPC -106.85 -8.05 1.08 8.33 104.13
NDX -175.89 -12.84 2.15 15.36 159.74
IXIC -199.61 -16.59 2.65 19.26 194.74
NIN -270.21 -39.49 8.38 58.42 266.53

NYA -686.36 -54.60 6.85 60.54 696.83
DJU -31.14 -2.47 0.36 3.00 46.01
DJT -399.19 -45.01 4.20 45.76 298.05
DJA -274.42 -25.13 2.88 27.22 319.16

FTSE -391.10 -40.20 1.00 42.80 431.30
SSMI -451.60 -46.65 0.00 47.70 609.10

OMXSPI -17.63 -2.61 0.07 2.60 20.42
OSEAX -32.14 -4.12 0.50 4.43 33.13

OMXC20.CO -38.88 -3.40 0.13 3.08 27.96
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0% 25% 50% 75% 100%
BFX -224.64 -24.38 0.06 21.31 268.92
ATX -241.38 -32.65 0.17 30.85 331.51
AEX -31.46 -2.77 -0.02 2.83 30.17

X000001.SS -354.69 -27.10 3.27 36.00 351.40
N225 -1089.02 -105.53 3.60 107.22 1171.14
IETP -79.19 -6.69 -0.28 5.94 64.25
IBEX -1029.60 -106.30 2.50 93.80 1305.80

FTSEMIB.MI -2135.00 -244.49 2.00 223.00 2333.00
GDAXI -523.98 -46.90 3.53 48.01 518.14

FCHI -368.77 -35.95 -0.35 34.80 367.01
DJI -777.68 -62.40 6.26 69.33 936.42

BVSP -4755.00 -519.00 77.00 605.00 5219.00

Figure 5.16: Bandwidth for the US Densities computed over the years
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Table 5.2: International Stockmarket Symbols

Symbol Country
1 TA100 Israel
2 EGX30.CA Egypt
3 GSPTSE Canada
4 MXX Mexico
5 MERV Argentina
6 STI Singapore
7 KS11 South Korea
8 NSEI India
9 NZ50 New Zealand

10 KLSE Malaysia
11 JKSE Thailand
12 BSESN India
13 AORD Australia
14 RUA USA
15 RUT USA
16 RUI USA
17 SPSUPX USA
18 SML USA
19 MID USA
20 GSPC USA
21 NDX USA
22 IXIC USA
23 NIN USA
24 NYA USA
25 DJU USA
26 DJT USA
27 DJA USA
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Symbol Country
28 FTSE United Kingdom
29 SSMI Switzerland
30 OMXSPI Stockholm
31 OSEAX Norway
32 OMXC20.CO Denmark
33 BFX Belgium
34 ATX Austria
35 AEX Netherlands
36 X000001.SS China
37 N225 Japan
38 IETP Ireland
39 IBEX Spain
40 FTSEMIB.MI Italy
41 GDAXI Germany
42 FCHI France
43 DJI USA
44 BVSP Brazil
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Figure 5.17: Implied Volatility for the US Market (VIX Index Index
of volatility expectations (Bloom 2009 [89])
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Figure 5.18: Beanplot Time series (BTS) DJI 1990-2001
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Part II

New Developments and New
Methods
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Chapter 6

Visualization and
Exploratory Analysis of
Beanplot Data

In this chapter we propose a new approach for the aggregation, the
visualization and the analysis of the complex time series1 seen in Chap-
ter 2. In particular, this approach is based entirely on a representation
like the density data2 or the beanplot data (Kampstra (2008) [416]).

Thus we are in the framework of Chapters 3, 4 and 5 where we tried
to summarize our data by considering classical intra-period statistical
representations. These types of new aggregated time series (Beanplot
time series BTS) can be successfully used when there is an overwhelm-

1By now we adopt the definition of complex time series in Diday 2002 [214]
who defines the complex time series and the adequate description of the subpe-
riod: ”representing each time series by the histogram of its values or in describing
intervals of time”. In this respect we consider the intra-period representations as
genuine representations of the phenomena

2Clearly the density data comes from the kernel density estimation seen in
Chapter 5
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ing number of observations, for example in High Frequency financial
data (in particular we refer to the specific characteristics of these data
as presented in Chapter 2, see also Dacorogna et al. 2001 [163]). In
these cases, it is not possible to visualize the data adequately and so
it is necessary to maximize the information obtained by considering
another intra-period representation3.
A second reason to use these types of aggregate representations is
that they allow the ”uncertainty visualization” (Griethe Schumann
2006 [326] Johnson 2004 [408] and Potter 2006 [564]) where in the
original data there are present: ”error, imprecision, lineage, subjectiv-
ity, noise, etc”.4 It is possible to visualize the uncertainty adequately
by considering some alternative representations which have been pro-
posed in literature in recent years.
As we showed in Chapter 2, there are important cases in complex data
(for example, the financial time series) in which there is uncertainty,
due to the structure of the data for example5 (errors, missing value,
etc.)

A third reason can be considered to be the capacity of aggregate
representations to detect patterns in data. So, they can be useful for
analyzing the complex behaviour of the markets where we can dis-
cover important patterns in the long time6. For example, these meth-
ods can capture complex patterns of dependency over the time, where
it is known that financial markets show the example phenomena of
long time autocorrelation (see Cont [153], Muchnik, Bunde, & Havlin
(2009) [519] and Henry Zaffaroni 2003 [358]). A similar result is ob-
tained using the Histogram Data of Gonzáles-Rivera and Arroyo 2011

3See Tufte 1983 [668]
4Boller Braun Miles and Laidlaw 2010 [101]; for a different and opposing opinion

about the uncertainty visualization see Boukhelifa Duke 2009 [105]
5See Brownlees and Gallo 2006 [115] but also Dacorogna et al. 2001 [161]
6In particular, one of the reasons to use these types of representations is the

capability to analyse the long run dynamics of the complex time series
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[318] which find some correlations between low values of the market
index over time. In general the Econophysics approach analyses the
complex behavior of the markets in the data7.

These types of complex dependencies on data could be analysed by
considering the minima and the maxima of the beanplot time series
BTS8. The beanplot time series BTS naturally represents the inter-
nal variation and the uncertainty, whereas the stripchart (the internal
observation) reduces the information.9. It is important to note that
the use of the beanplot enhances the possibility to compare a higher
quantity of data, and so could be useful in the analysis of the risk over
time10

We present in this chapter a represention based on the beanplot
time series BTS, of high frequency data, while in the next we propose
a particular coefficient estimation (see Chapter 7) and we will use it
for the forecasting and clustering aims later in the work (Chapter 8
and 9). In particular, we will show the usefulness of this approach
in analysing the long run dynamics of the markets and the business
cycle.

This chapter is organized as follows: in the first part we approach
the economic problem and how it is possible to obtain density data
types of data by starting from a different type of scalar data. In the
third part we present the beanplot or density data and we describe

7In recent years there has been the growth of many works that try to understand
the financial markets as complex systems, see Mantegna and Stanley 2000 a first
approach into Econophysics [485] and for a view of the Financial Markets as real
world complex system see Johnson Jeffries Ming Hui 2003 [409]. On the criticism
of the main classical economic models and for the search of a new paradigm see
Mandelbrot Hudson 2006 [483]

8For example, it is interesting to analyse the complex characteristics in a finan-
cial time series: see Cont 2001 [152] and Sewell 2008 [619]

9There are important reasons to choose the interval data in the analysis
10For example in the analysis of Risk and Financial Risk it could be very im-

portant (see Resti Sironi 2007 [580]
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their features. In the fourth part we introduce the beanplot time se-
ries (BTS) and the possibility to gain new information with these types
of data from the characteristics of the scalar time series. In the fifth
and the sixth parts we introduce the internal and the external mod-
elling process, whilst in the Ninth Chapter we introduce the mixture
analysis as a tool in the diagnostic internal modelling.

6.1 The Data Aggregation problem

In particular an (ordinal) scalar time series takes the form {yt}, t =
1...T with yt ∈ < and can have a single value in <.

By considering more than one statistical unit {yt,i}, t = 1...T, i =
1...I we can consider longitudinal data (time series cross sectional
data)11. Usually cross sectional time series are different from the panel
data because here I is fixed and T tends to be large whereas in the
panel data case I is large and T is fixed.

There are real cases, in particular, in which scalar time series yt
does not allow one to correctly approach a phenomena, in particular
when the dataset contains a huge quantity of observations and their
visualization is not possible (see figure 6.1 ). Another important case
could happen when we are interested not in a single value but in a spe-
cific distribution of a variable K in a given temporal interval T (for
example, Arroyo and Matè (2006) [43] refer to the variable as out-
comes of the daily time-varying demand of energy). In other works,
Arroyo et al. (2011) [38] try to predict the histogram data over time
12.

11Beck 2004 [69] shows a high quantity of examples of longitudinal data, all these
examples are characterised by a higher quantity of information than ”normal”
datasets

12In all these approaches, authors directly consider the Symbolic Data Analysis
approach as considered in Diday 2002 [206]
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6.1. The Data Aggregation problem

Figure 6.1: Intra-day price data for Microsoft stock (Zivot 2005 [722])

In all these cases we are trying to forecast distributions at T whereas
in a different (in scalar time series analysis) way we would force them
to be a single value, for example by aggregating the values. The case is
typical in high frequency financial datasets in which data are collected
at a given high frequency (for example, minutes), but sometimes they
need to be analyzed at a lower frequency (daily): in this case it is nec-
essary to aggregate the data using a statistical method and minimize
the information loss due to the aggregation13. In other cases the data

13Goodfriend 1992 [316] shows that ”aggregation in the presence of data process-
ing lags distorts the information related to the data”. In this case the aggregation
became really problematic. At the same time, Dacorogna et. al. 2001 reports
that empirical results in financial data can change, by considering different types
of data [163] (pag.143). The problem of the effects of the aggregation data and
the information loss associated with it is highly debated in literature starting from
Orcutt Watts Edwards 1968 [540]. An interesting conclusion is also in McKee
and Miljkovic 2007 [498] ”aggregate series are appropriate for long-term decision
analysis, but some information loss occurs when conducting short-term decision
analysis”
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are aggregated by considering simply the last value (see Dacorogna et
al. 2001 [163]). The aggregation process does not faithfully represent
the intra-day dynamics where data are observed only at some equi-
librium levels and it is neglected when these equilibrium values are
reached (Engle and Russel (2004)[253]). In fact the aggregation does
not represent correctly the underlying phenomenon and a time series
of distributions can be more useful than the other forms of aggregated
time series (Arroyo, Gonzales Rivera and Matè (2009) [40].

The problem is increasingly important considering the growing size
of the modern datasets. In particular Schweitzer says that: “Distri-
butions are the number of the future!” (Schweizer (1984) [615]), so
there is the possibility, followed in literature, to cope directly with the
distributions but not with the original data.

Various approaches in this sense were followed in literature to ob-
tain appropriate data representations. Different methods can be either
parametric or nonparametric one. Arroyo, Gonzales Rivera and Matè
(2009) [40], propose Histograms as nonparametric method. This ap-
proach can be related directly to the Symbolic Data Analysis (for other
approaches considering complex time series see Diday and Noirhomme
(2008) [218] Billard and Diday (2003) [86]). In this respect Symbolic
Data Analysis proposes an alternative way to manage huge datasets:
transforming the original data into symbolic data as Intervals, His-
tograms, Lists, etc., by retaining the key knowledge14. In these sym-
bolic datasets, items are described by symbolic variables (Arroyo Gon-
zales and Rivera and Maté (2009) [40]) and the cells can contain entire
distributions (Diday (2006)

14See for example Billard and Diday 2010 [88]
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Figure 6.2: Financial data types with the typical sizes and frequency
(Dacorogna et al. 2001) [163]

6.1.1 High Frequency Data and Intra-Period Vari-
ability

Here we deal in depth with the problem of visualizing and exploring
specific beanplot time series (BTS) deriving from high-frequency finan-
cial data (see in figure 6.2 and in figure 6.3 for its characteristics as
frequency and its typical use in Finance and Economics). These data
present unique features, absent in low frequency time series, which in-
volve the necessity of searching and analysing an aggregate behaviour.
Infact these data are typically overwhelming and they tend to neglect
for example the data visualization (see also Drago, Scepi 2009 [236]).
Therefore, we obtain from the original data a particular aggregated
time series called a beanplot time series (BTS). We show the advan-
tages of using these instead of scalar time series when the data shows a
complex structure. Furthermore, we underline the interpretative pro-
prieties of beanplot time series (BTS) by comparing different types of
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aggregated time series. In particular, with simulated and real exam-
ples, we will illustrate the different statistical performances of beanplot
time series (BTS) in respect to boxplot time series (BoTS).

High-frequency financial data (Engle Russell 1998 [253]) are obser-
vations on financial variables collected daily or at a finer time scale
(such as time stamped transaction-by-transaction, tick-by-tick data,
etc.). This type of data have been widely used to study various mar-
ket microstructure related issues, including price discovery, compe-
tition among related markets, strategic behaviour of market partici-
pants, and modelling of real-time market dynamics. Moreover, high-
frequency data are also useful for studying the statistical properties,
volatility in particular, of asset returns at lower frequencies. The anal-
ysis of these data is complicated for different reasons. We deal with
a huge number of observations (”the average daily number of quotes
in the USD/EUR spot market could easily exceed 20,000” see Engle
Russell 2009 [255]), often spaced irregularly over time, with diurnal
patterns, price discreteness, and with a complex structure of depen-
dence. The characteristics of these data do not allow the visualization
and exploration by the means of classical scalar time series. Further-
more, it becomes very difficult to forecast data without defining an
aggregate behaviour.

In this chapter we will introduce beanplot time series (BTS) with
the aim of synthesizing and visualizing high-frequency financial data
or, more in general, complex types of temporal data. In particular, we
will discuss their properties by proposing critical comparisons among
different possible aggregated time series. After that, we will carry
out several simulated examples (in section 6.7), starting from differ-
ent models, different numbers of observations and different intervals of
aggregation to show how beanplot time series (BTS) tend to perform
better than boxplot time series (BoTS). Some interpretative rules are
given in subsection 6.7.1. We have enriched our analysis by an ap-
plication on real high frequency financial data where we show how
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beanplot time series (BTS) easily detect real intra-day patterns (in
section 6.9).

Figure 6.3: Financial data models with the data typical sizes and
frequency (Dacorogna et al. 2001) [163]

6.1.2 Representations, Aggregation and Informa-
tion Loss

It is a known fact that time series databases in various fields are
very large (see for example Lin Keogh and Lonardi 2007 [422] Nguyen
Duong 2007 [537]). In that sense, the data extraction could be very
difficult and visualization inefficient. So it is necessary to represent the
data in a way that adequately manages these problems. In particular,
we consider that in literature there exist two types of transformations
based on dimensionality15 and numerosity reduction techniques16. In

15See Gunopulos 2011 [329]and Lin Keogh and Lonardi 2007 [422] and Wang
Megalooikonomou 2008 [768]

16See Pekalska, Duin et al. 2006 [554] Wilson and Martinez 1997 [772]
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this sense, the literature is very rich and symbolic representations17

are in this sense linked to two different approaches (Lin Keogh and
Lonardi 2007 [422]):

1. Data Adaptive

(a) Sorted Coefficients

(b) Piecewise Polynomial

(c) Singular Value Decomposition

(d) Symbolic

(e) Trees

2. Non Data Adaptive

(a) Wavelets

(b) Random Mappings

(c) Spectral

(d) Piecewise Aggregate Approximation

In that sense, as we have already seen, there is another approach
which considers the problem of finding an adequate internal represen-
tation of the variability.

In particular the same data, for each observation, can be considered
as characterized by internal variability as well (complex time series and
high frequency data for example). In that case, data are not scalars

17Lin Keogh Lonardi Chiu (2003) [459]
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but are Intervals, Histograms, Boxplots etc.
So, there are also cases where these internal representations are

interesting on their own (for example where there is the interest in
modelling the intra-period variability). In those cases we want to ex-
plicitly analyse this variability.

More in general with the aim of summarizing and visualizing high
frequency time series, different types of statistical tools and aggregated
time series can be considered18.

In particular, we can consider with respect to the problem of data
aggregation in complex time series these solutions:

1. Intervals

2. Boxplots

3. Histograms

4. Candlesticks

5. Beanplots

We define these as Complex Objects where in some cases they can
be defined as Temporal Symbolic Data (usually Symbolic Representa-
tions are defined as the representation of time series using some other
types of the methods seen above).

In practice we are trying to represent and to visualize the statisti-
cal uncertainty by considering different Complex Objects (see Potter
2006 [564]). In massive data sets the Data Analysis process can be
conducted in two different ways: considering the original data using
the classical temporal data mining techniques19 or the aggregate rep-
resentations (or the Complex Objects).

18In all these cases we can use stripcharts, boxplots, histograms and so on
19See for some overviews on the topic Laxman, Srivatsan, and P S Sastry. 2006

[441], Antunes and Oliveira 2001 [23] and Mitsa 2010 [510]
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More generally identifying the data structure can be very relevant
to understand the phenomenon from a statistical point of view20. The
mean, the median, or the total of the single values represent weak ag-
gregations because important information is neglected (see Marvasti
2011 [489].

Initially, we used a stripchart time series (that could be related
to the Interval Time Series (ITS): see Arroyo and Maté 2006 [43]).
This type of time series correctly shows the original trend as well as
the minimum and the maximum of each interval (a day, for example).
However in such graphics, one dot is plotted for each observation in
the single time interval and, consequently, it is a useful tool only when
there are very few points.

Therefore, it might be difficult to apply them in the high frequency
data framework. A recent proposal (see Arroyo and Maté 2009 [44]
and Arroyo et al.[37]), in the context of symbolic data, consists of sub-
stituting time series of observations with histogram time series HTS
(see Arroyo et al. 2011 [38]). These representations are very useful
for temporal and spatial aggregations for many reasons: they are sim-
ple with flexible structure, and they have the capacity to describe the
essential features of the data with reasonable accuracy and with close-
ness to the data, without imposing any distribution. Nevertheless, the
multiple histograms are difficult to compare when there are many of
them plotted on a graph, because the space becomes cluttered21.

Tukey’s boxplot (see Tukey 1977 [670]) is commonly used for com-

20Jackson 2008 [401] wrote ”The casual use of hypothesis tests based on arbitrary
thresholds is frequently criticized (Gelman and Stern 2006 [294]), particularly in
medical research (Sterne et al. 2001 [642])”

21Another difficulty in using histograms is given by Elgammal et al. 2002 [246]:
”The major drawback with color histograms is the lack of convergence to the right
density function if the data set is small. . . Unlike histograms, even with a small
number of samples, kernel density estimation leads to a smooth, continuous, and
differentiable density estimate”.
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paring distributions between groups. For time series data, the boxplot
seems to show several features of the temporal aggregation: center,
spread, asymmetry and outliers. Furthermore, Box Plot time series
detect main structural changes well (Maté Arroyo 2006 [493]). How-
ever the number of outliers detected will increase if the number of ob-
servations grows and the information about the density is neglected.
This information can be very important in the aggregation of high
frequency financial data where different volatility clusters can arise.

A way to visualize the data uncertainty related to the presence of
different bumps by enhancing the initial boxplots is given by Hynd-
man with the HDR boxplots (Hyndman 1996 [378]). Using these tools
we are able to identify the regions of highest density and so bumps
can occur in the density as well.

In order to retain this information, it is possible to use at the same
time the Violin Plot (see fig. 6.4) time series. This tool (Benjamini
1988 [73]) combines the advantages of boxplots with the visualization
of the density and it provides a better indication of the shape of the
distribution. However, in a Violin Plot22 the underlying distribution is
visible but the individual points, besides the minimum and maximum,
are not visible and no indication of the number of observations in each
group is given.

Other proposals related to the uncertainty in representations are
contained in Jackson (2008) [401] and Cleveland (1993) [146]. In par-
ticular the first author makes a proposal related to the density strip,
in which data are represented as a thin horizontal rectangle which is
darkest at the point of highest probability density, white at points of
zero density, and shaded with darkness proportional to the density23.
In this case the relevant dimension is given by the shade of the image.

22There was in literature another proposal in this sense from Messing 2010 [815]
that considers a single weight for each observation

23Jackson 2008 [401]
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At the same time in violin plots there is not a specific visualization
of the single observations (so it is not possible to clearly identify the
outliers in data). Another proposal in literature is the Summary Plot
by Potter Kniss Riesenfeld 2007 [565] in which we observe the density,
the moments and the cumulant information

Other alternatives that use shading in visualizations to show densi-
ties are in Cohen Cohen 2006 [148] using the Sectioned density plots.

Our proposal consists of using Beanplot time series -BTS (Kamp-
stra 2008 [416]) in particular in the context of high frequency financial
data. Indeed, in each single beanplot all the individual observations
are visible as small lines in a one-dimensional scatter plot, as in a
stripchart24. In the Beanplot time series (BTS), both the average
for each time interval (represented by the beanline) and the overall
average is drawn; this allows for an easy comparison among tempo-
ral aggregations. The estimated density of the distribution is visible
and this shows the existence of clusters in the data and highlights the
peaks, valleys and bumps. Furthermore, anomalies in the data, such
as bimodal distributions, are easily identified.

This is very interesting information in the context of high frequency
financial time series where the intra-period variability represents the
main characteristics of the data. The number of bumps can be consid-
ered as a signal of different market phases in the daily market struc-
ture. We can also observe that the beanplot becomes longer in the
presence of price anomalies such as peculiar market behaviours (spec-
ulative bubbles). See figures 6.4 and 6.5 for the different comparative
object that could be used to represent the intra-period dynamics of
scalar complex time series. At the same time, in the following table we
summarize all the different complex objects that could be considered

24 Eklund 2010 [780] proposes a different tool like the beeswarm that can be con-
sidered an improved stripchart where it is possible to visualize all the observation
(experimentally on a limit of 1000-2000 observations)
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in literature to be useful to represent intra-period variations in tempo-
ral data analyses (the complex objects). In the following table, there
is also a review of the complex objects that could be considered in
literature and their linkages with Symbolic Data Analysis as symbolic
data25.

Complex Object Reference Data
Stripchart Dalgaard 2002 [166] Interval
Beewarms Eklund 2010 [780] Interval
Standard Boxplot Tukey 1977 [670] Boxplot
HDR Boxplot Hyndman 2006 [378] Boxplot
Box Percentile Plot Esty Banfield 2003 [257] Boxplot
Histogram Pearson 1895 [553] Histogram
Summary Plot Potter Kniss Riesenfeld 2007 [565] Density
Sectioned Density Plot Cohen Cohen 2006 [148] Density
Violin Plot Adler 2005 [6] Density
Weighted Violin Plot Messing 2010 [815] Density
Beanplot Kampstra 2008 [779] Beanplot

The different complex objects in literature

6.2 From Scalar Data to Beanplot Data

We start from a classical time series {yt}, t = 1...T with yt ∈ < and
a single value in <. This time series can generate a symbolic one
(or a time series of aggregate representations) by contemporaneous or
temporal aggregation from the original scalar time series yt part of a
set S.

In the contemporaneous aggregation we have a sample of n time
series denoted as yit, where i is related to a different statistical unit,

25Piccolo 2000 offers an interesting review of the graphical exploratory methods
in Statistics [562]
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Figure 6.4: The evolution from the boxplot (Harrell et al. 2011 [340])

Figure 6.5: Uncertainty in Representations

so we aggregate the data either by units i, or time t.
In the temporal aggregation (see Arroyo 2009 [32]) we aggregate a

specific time series yt part of S only by considering the time t. For
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example, we can obtain as a symbolic time series a portfolio of stocks
relying on a specific criteria or sector (contemporaneous aggregation)
or a financial high frequency time series considered at a lower frequency
(temporal aggregation).

Definition 1. A primary data is an element xi in the set S. A
secondary data is a representation of the set S and they can be rep-
resented as complex data (Billard and Diday 2006 [86]).

The statistical analysis can be conducted in two parallel ways: on
primary data (classical time series) and on the secondary data (the
time series representing portfolios, for example).

6.3 Beanplot Data

Following Arroyo, Gonzáles-Rivera and Maté (2006), by taking into
account a variable X (for example the closing price of a stock) we
consider as primary, single observations part of a set S. For every
element xi ∈ S we observe a secondary datum as a density.

Definition 2. A density data at time t is a representation of the
xi single elements in the set S, such as from Chapter 5:

f̂h,t =
1

nh

n∑
i=1

K(
x− xi
h

) (6.1)

where K is a Kernel and a h is a smoothing parameter defined as a
bandwidth. K can be a gaussian function with mean zero and variance
1. The Kernel as we know is a non-negative and real-valued function
K(z) satisfying:

∫
K(z)dz = 1,

∫
zK(z)dz = 0,

∫
z2K(z) = k2 < ∞

with the lower and upper limits of integration being −∞ and +∞.
It is possible to use various Kernel functions (Ke): uniform, triangle,
epanechnikov, quartic (biweight), tricube (triweight), gaussian and
cosine. The variance can be controlled through the parameter h:
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K(
x− xi
h

) =
1√
2π
e−

x−x2
i

2h2 (6.2)

Various methods have been proposed in literature to choose the
bandwidth h. Jones, Marron and Sheather (1996) proposed for exam-
ple a bandwidth choice, based on the standard deviation:

hSNR = 1.06Sn−1/5 (6.3)

In the data visualization we use the Sheather-Jones criteria that
defines the optimal h in a data-driven choice (Kampstra 2008).

Definition 3. A Beanplot data {bYt} is a combination of a 1-d
scatterplot26 and a density trace (Kampstra 2008 [416]).

The beanplot can be considered as a particular case of interval-
valued modal variable at the same time as boxplots and histograms
(see Arroyo and Maté (2006)). In a beanplot we take into account
both the interval between the minimum aLt , the maximum aUt and
the density as the kernel nonparametric estimator (the density trace,
see Kampstra (2008)). Every single observation xit is represented on
the 1-dimensional scatterplot. This feature is useful to visually detect
observations distant from the others in the set S. The beanline at
time t is a central measure of the beanplot (and a measure of location
of the object) and is defined as:

aMt =

∑n
i=1(xit)

n
(t = 1...T ) (6.4)

An alternative centre measure aMt is the median, where the quan-
tiles can be considered in measuring the beanplots (in particular the
size of the object).

In the beanplot, the variability or size is mainly represented by the

26Dalgaard 2002 [166]
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interval related to the minima aLt and the maxima aUt of X. The min-
ima and the maxima localize as well the turning points in the original
time series (in figure 6.6). The beanplot size can be represented in
its data interval by [at] over the base set (E,≤) is the ordered pair
[at] = [aLt , aUt ] where aLt , aUt ∈ E are the interval bounds such as
aLt ≤ aUt . Inside the interval [aLt , aUt ] represent the single primary
observations (represented as a 1-dimensional scatterplot or stripchart)
so we are able to understand the location of the single observations in
the set S. The measure of size in the beanplot {bYt} is:

aSt = aUt − aLt (t = 1...T ) (6.5)

Where aUt is the upper bound and aLt is the lower bound.
At the same time, it is possible to consider the interval composed by

the two consecutive sub-intervals (or half-point) through the beanline
(the radii of the beanplot {bYt}): [a] = 〈aCt , aRt

〉 with:

aCt =
(aUt + aLt)

2
, aRt =

(aUt − aLt)

2
(t = 1...T ) (6.6)

The interval arithmetic (Moore 1966 [513]) can be applied to bean-
plot data.

So, why do we deal with beanplots? At this point we can give an
answer to this question: first of all beanplots permit the handling of
large datasets, without deciding the number of the data features to
impose on data (in particular, bins).

At the same time beanplots can be used in two distinct ways, firstly
in an exploratory way to describe the underlying data structure (Drago
Scepi 2009 [236]), in particular beanplots tend to contain the informa-
tion of the interval-value data, and the boxplot-value data. Secondly,
beanplots can be used for the contained density trace which can be a
useful tool in the analysis. It is possible in this sense to analyse and
to forecast the intra-day dynamics without imposing a strong a-priori
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hypothesis on the number of bins. At the same time the possibil-
ity to visualize the observations can allow the quick identification of
the outliers (a mechanism that is not permitted by using different data
typologies). Finally beanplots allow us to understand either the struc-
tural changes due to breaks in the original time series or the changes
due to events to the series that create a change in the beanplot shape.

The kernel density estimators can be compared with other non
parametric methods of density estimation (see for example Fryer 1977
[284]). Empirical results can show that, for example, the splines (see
Ahlberg Nilson Walsh 1967 [8]) smooth out the original data. This
implied the loss of some relevant data features. Therefore, kernel den-
sity estimators seem very useful in explorative contexts while spline
smoothers retain the very relevant data features, not taking into ac-
count some irregularities which arise however, in this case of complex
data such as high frequency data.

The densities present characteristics which define well the structure
of the data. In particular this structure can represent well at the same
time either the long run dynamics (the location of the data) or the
intra-temporal variation (the size) that could be related in some spe-
cific phenomena to the risk at time t. In general these types of data
represent the single observation in a symbolic data table, where the
same symbolic data table can contain different types of data.

It is very important to observe the points of maxima density over
time t, in fact, these points represent the ”equilibrium” levels for each
temporal observation at t. These equilibrium points represent valu-
able information that is unknown or latent, related for example to the
occurrence of short term cycles and seasonalities.
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6.4 Beanplot Time Series (BTS)

Definition 4. A Time Series Beanplot {bYt} t = 1...T is an ordered
sequence of beanplots or densities over the time.

Beanplots can be viewed as time series where they are realizations
of a X beanplot variable over the time t.

So at each time t we have different realizations of the interval-value
data in the beanplot with the upper bound aUt and the lower bound
aLt the beanline aCt and etc. So we obtain for each t the beanplot
realized stylized features for the location and the size:

[aU1 ; aC1 ; aL1 ] , [aU2 ; aC2 ; aL2 ] .... [aUt ; aCt ; aLt ] (6.7)

At the same time we obtain the descriptors for the beanlines over
time. The beanlines represent the location of the complex object. So
we have:

[aM1 ] , [aM2 ] . . . [aMt ] (6.8)

At the same time, similarly to an interval we can obtain the radii
and the center for the beanplot. In that sense we obtain the description
of the dynamic of the size over time.

[aC1 ; aR1 ] , [aC2 ; aR2 ] . . . [aCt ; aRt ] (6.9)

A very important piece of information that needs to be provided is
the information on the first and the last observations in the temporal
interval. When the closing value is lower than the opening value it
means that the original series is falling over time. We account also for
these descriptors over time.

[aOP1 ; aCL1 ] , [aOP2 ; aCL2 ] . . . [aOPt ; aCLt ] (6.10)
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Figure 6.6: Simulated beanplot time series (BTS) and turning point
identification

By observing the descriptors over time, it is possible to observe the
turning points of the series over time. In particular we are interested
in the local minima and the local maxima. Identification of the turn-
ing points for the three attribute time series can be very important to
understand the general dynamics over the time of the beanplot time
series (BTS).
It is necessary, as well, to test the attribute time series using the Turn-
ing Point test, the Difference-Sign test and the Rank test27.

It is possible to define a turning point test for the attribute time
series of the beanplots: given a time series of attributes a1 . . . aT or
descriptors of the beanplots d1 . . . dt we have for the generic attribute
time series at:

27See for example Brockwell and Davis 2002 [113] and Di Fonzo Lisi 2005 [221]
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at−1 < at and at > at+1 (6.11)

We obtain superior turning point, where the inferior one is:

at−1 > at and at < at+1 (6.12)

So there is a turning point if:

(at − at−1)(at+1 − at) < 0 (6.13)

The turning point test verifies if the observed series behave as ran-
dom28. In that sense it is possible to show that:

tpn =
p̂n − 2(n− 2)/3)√

16n− 29/90
(6.14)

Where p̂n are the observed turning points. It is possible to show
that this value for n ≤ 25 tends to distribute as a standardized nor-
mal. For the Difference Sign Test we check the different attribute time
series:

Given d̂n as the number of differences (at−at−1). In the case E(Dn)
on the hypothesis of random converge to:

tdn =
d̂n − (n+ 1)/2√

(n+ 1/12)
(6.15)

Another relevant test in that sense is the Rank Test29.
It is possible also to consider the methods of analysis of the struc-

tural changes in the attribute time series at considered. It is interesting
to note that structural change in the original time series corresponds
to the structural change in one of these measures (or all together) as

28Brockwell and Davis 2002 [113] and Di Fonso Lisi 2005 [184]
29Hallin and Puri 1992 [332] for a survey of the topic
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minima, maxima and centre.
Here we present the algorithm 2 for the classical analysis of the

beanplot time series (BTS) and the algorithm 3 for the analysis of the
structural change (see Zeileis et al. 2003 [713]).

In this sense, we can hypothesize to build different symbolic data
tables using different intervals in which we compute densities over
time to discover these equilibrium points over the time (that could be
useful, for example in finance for trading purposes). A specific density
oriented type of data is the beanplot data [416], that considers jointly
some aspects of the underlying data (the value of the single data),
as a specific stripchart diagram and the density in a form of density
trace. A very interesting visualization is the data from the Dow Jones
index computed for the period of the financial crisis, in figure 6.7 using
beanplots data:

The stripchart diagram is very useful to detect the different intra
period patterns in data. These different patterns can be due to sea-
sonalities or intra-period cycles.
In this sense the choice of the length of the single temporal interval t
(day, month, year) is very important and depends on the specific data
features (the length of the cycles) and on the objectives the analyst
wants to study (Drago and Scepi 2009).

Another important point to consider in the beanplot time series
(BTS) is the possibility of taking into account the first and the last
observation of the beanplots to observe the intra-temporal dynamics
(increasing values over time or not).

In figure 6.7 is the beanplot time series (BTS) for the Dow Jones
Market for the period 1996-2010, whilst in figure 6.8, figure 6.9 and
figure 7.0 there are the enhanced beanplot time series (BTS) consider-
ing the first and the last observation for simulated and real data (Dow
Jones Market and FTSEMIB Italian Market).
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Data: A scalar time series Yt and the associated beanplot time
series (BTS) {bYt} t = 1...T . Each beanplot is denoted b,
the entire set of beanplots is B

Result: A beanplot time series (BTS) and a classical analysis
of the attributes minima, maxima and centers

begin
Choice of the interval considered I
Choice of the kernel Ke
for b ∈ B do

Computing the optimal bandwidth (Sheather-Jones
method) of the object b

end
for b ∈ B do

Computing the mi descriptors of the object b (minima)
end
for b ∈ B do

Computing the ma descriptors of the object b (maxima)
end
for a ∈ A attributes do

Computing the trend for the a attribute of the object b
Computing model selection statistics as the R2 adjusted
Is the trend the best approximation?
if the trend is not the best approximation then

compute another order of the polynomial
end

end

end
Algorithm 2: Classical Analysis of a beanplot time series
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Data: A scalar time series Yt and the associated beanplot time
series (BTS) {bYt} t = 1...T . Each beanplot is denoted b,
the entire set of beanplots is B

Result: A list of the structural change for the d beanplot time
series (BTS) descriptors minima, maxima and centers

begin
Choice of the interval considered I
Choice of the kernel Ke
for b ∈ B do

Computing the optimal bandwidth h (Sheather-Jones
method) of the object b

end
for b ∈ B do

Computing the mi descriptors of the object b (minima)
end
for b ∈ B do

Computing the ma descriptors of the object b (maxima)
end
for b ∈ B descriptors do

Compute the structural change
Test the structural change

end

end
Algorithm 3: Structural Change in beanplot time series (BTS)
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Figure 6.7: Dow Jones Index Beanplot Time Series (BTS) considered
for the period 1996-2010
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Figure 6.8: Enhanced density data with first and last observation (in
red and blue respectively)

6.4.1 Beanplot Time Series (BTS): Kernel and
the Bandwidth Choice

An important problem needs to be considered in the beanplot time
series (BTS), those of the Kernel and the Bandwidth for each beanplot
data or for the entire time series.

As we have seen the Beanplot time series (BTS) {bYt} t = 1...T
is an ordered sequence of beanplots or densities over time. The time
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Figure 6.9: Enhanced density data with first and last observation: DJI
1990-2011 (in red and blue respectively)

series values can be viewed as realizations of an X beanplot variable in
the temporal space T , where t represents the single time interval. The
choice of the length of the single time interval t (day, month, year)
depends on the specific data features and objectives which the analyst
wants to study.

A beanplot realization at time t is a combination between a 1-d
scatterplot and a density trace.

It is possible to use various Kernel functions: uniform, triangle,
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Figure 6.10: Enhanced density data with first and last observation:
FTSEMIB.MI 2003-2011 (in red and blue respectively)

epanechnikov, quartic (biweight), tricube (triweight), gaussian and
cosine. The choice of the kernel in the beanplot time series (BTS) is
not particularly relevant because our simulations show that the dif-
ferent kernels tend to fit similarly the underlying phenomena. Some
differences reveal themselves in the presence of outliers. In these cases
a better kernel seems to be the Gaussian kernel which is more robust.
So by considering the data characteristics, we have chosen this kernel
for the different applications.
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The choice of the h value is much more important than the choice of
K (see Silverman 1986) [633]. A large literature exists on bandwidth
selection30. With small values of h, the estimate looks ”wiggly” and
spurious features are shown. On the contrary, high values of h give
a too smooth or too biased estimate and it may not reveal structural
features, as for example the bimodality of the underlying density. In
any case it is difficult to give a clear indication of which bandwidth
selection method is the best.

With a visualization aim, we use the Sheather-Jones criteria (Sheather
Jones 1991 [624]) that defines the optimal h in a data-driven approach
in our application.

Here it is important to complete the part related to the beanplot
time series (BTS) by focusing on the h choice of the same time series31.
In fact it is important to note that where it is necessary to consider a
beanplot time series (BTS) both for clustering or forecasting purposes
it is necessary to fix one bandwidth for all beanplots (or for all the
beanplot time series BTS).

For visualization and strict data explorary purposes we can use
a general bandwidth selection (the Sheather Jones method) for each
beanplot data, but for other purposes it could be necessary to use an-
other approach.

So we start from the original beanplot and we obtain the bandwidth
with the usual methods. The sequence of the values of the single band-
width represents the level of variation of the beanplot. The value that
could be chosen could be rationally chosen near the median by run-
ning the algorithm 4 that visualizes the different beanplot time series

30In the multivariate case the research is less developed, see for example Zhang
King Hyndman 2004 [719] (see as surveys Marron 1987 [487]; Chiu 1991 [139];
Jones, Marron and Sheather 1996 [413])

31This aspect is clearly not existent in the literature of interval time series (ITS),
where it needs to be explored more in relation to the choice of the bins in the
literature of histogram time series (HTS)
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(BTS) associated with the same algorithm.
In any case the bandwidth of the different beanplot visualized over

time represents a useful indicator of the original data.

6.4.2 Trends, Cycles and Seasonalities

Definition 5. Beanplot Time Series (BTS) primary attributes are
realizations of a single beanplot {bYt} t = 1...T features over the time.

Primary attributes are related to the location and size of a beanplot.
So we assume the aU1 , aC1 , aL1 to be composed of the components:

at = Trt + Cyt + Set + Act + Ut (6.16)

Where Tr is a trend component, Cy is a cycle, Se is a seasonality,
andAc is an accidental component due to shocks, where U is a residual.

In this case we are assuming the mode:

at = f(t) + et (6.17)

for each attribute time series. Later we will consider also for time
series, beanplot descriptors dt (or coefficients estimation).

Infact, by considering separately the aCt , aLt , aUt , we can compute
the trend for each attribute time series, for example assuming the
function f(t) as a polynomial (Di Fonzo Lisi 2005):

f(t) = δ0 + δ1t+ ...+ δqt
q (6.18)

So we can estimate for each attribute time series aU1 , aC1 , aL1 as yt:

at = δ0 + δ1t+ ...+ δqt
q + εt t = 1 . . . T ) (6.19)

We can express the 6.19 in this form:
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Data: A scalar time series Yt and the associated beanplot time
series (BTS) {bYt} t = 1...T . Each beanplot is denoted
bt, the entire set of beanplots is B

Result: a sequence of bandwidths h ∈ H related to the
beanplot Bt over time

begin
Choice of the interval considered I
Choice of the kernel K
for b ∈ B do

Computing the optimal bandwidth (Sheather-Jones
method) of the object b

end
Is it possible to use a criteria?
if a criteria could be identified then

compute the bandwidth h for the beanplot time series
(BTS)

end

Obtain a range of candidates of best bandwidth h
(considering eventually the median)
for h ∈ H bandwidths do

Visualize the bandwidth for each beanplot b
Visualize the sequence of bandwidths

end

end
Algorithm 4: Choosing the optimal bandwidth
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at = Dδ + ε (6.20)

Where D is a matrix
With:


a1

a2
...
...
an

 =


1 t11 t21 . . . tm1

1 t12 t22 . . . tm2

1
...

... . . .
...

1
...

... . . .
...

1 t1n t2n . . . tmn




δ1

δ2
...
...
δn

+


ε1
ε2
...
...
εn

 (6.21)

y =


a1

a2

...
an

 , α =


δ0

δ1

...
δn

 , ε =


ε1
ε2
...
εn

 (6.22)

So by the Ordinary Least Squares we can obtain the estimates for
the parameters δ0, δ1...δq:

δ̂ = (D
′
D)−1D

′
y (6.23)

General rules of the scalar time series can be applied to select the
model for the trend (in particular the maximization of the R2) for each
attribute time series. A case of trend inadequacy is represented in the
figure 6.11. In the case represented in the figure it is necessary to use
another strategy in the trend estimation.

Before to consider the analysis of the cycle, it is interesting to note
that the beanplot time series (BTS) is a good tool for the analysis of
the business cycle32, in fact they show the variability comparing the

32In particular they seem useful to be added to the classical tools of the Business
Cycle Analysis see Cipolletta (1992) [143]
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Figure 6.11: Enhanced Beanplot Trend for the centre: DAX 1990-2011
(in red and blue, green respectively open, close, centre)

economic performances period by period. We identify in figure 6.13
the critical period in the US Total Capacity Utilization for all indus-
try in 1975, 1983, 2009 related to the big recessions33. At the same
time in figure 6.12 we can observe the enhanced beanplot time series
(BTS) and the business cycle analysis for the US unemployment rates
1948-2011. It is important to note that the visualization of the phe-
nomena was simplified by the number of observations. In fact in using
the beanplot data we are obliged to use a higher quantity of data.

Finally we can estimate the cycle of the series and also the season-
ality. To estimate the seasonality for each attribute time series we can

33Data are from Federal Reserve of Saint Louis FRED [750]
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Figure 6.12: Enhanced Beanplots and Business Cycle Analysis: 3-
Year US Unemployment Rates 1948-2011 (in red and blue, first and
last observation)

use a set of dummy variables and estimate jointly the trend and the
seasonality:

at = Dα + V γ + εt (6.24)

Where V is a matrix of dummy variables related to the seasonality
and the γ is a vector of coefficients that measure the impact of the
seasonality. Finally O can be considered as some external shocks im-
posed to the time series that can be obtained by adding some specific
dummy variables in the estimation. So we have:

at = Dα + V γ +Oζ + εt (6.25)
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Figure 6.13: Enhanced Beanplot and Business Cycle Analysis: 3-Year
US Capacity Utilization: Total Industry (TCU) 1967-2011 (in red and
blue, first and last observation)

The beanplot time series (BTS) shows the complex structure of
the underlying phenomena by representing jointly the data location
(the beanline) the size (the interval minimum and maximum) and the
shape (the density trace) over the time. See figure 1, for an example of
the beanplot time series (BTS). In particular the bumps represent the
value of maximum density, and they can show important equilibrium
values reached in a single temporal interval (and they can be used, for
example, for trading purposes). Bumps can also show the intra-period
patterns over the time, and in general the shape of the beanplot shows
the intra-period dynamics.
The beanlines allow the computation of the trend for the Beanplot
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time series (BTS). By choosing a suitable temporal interval it is pos-
sible to visualize, as well, intra period seasonality patterns. More in
general, the beanplots seem to preserve the structure of the time se-
ries, but show additional relevant patterns in data, for example by
showing bumps (or equilibrium levels over the time). Another impor-
tant reason in using the beanplot is that these types of data can show
long-run structures where they can summarize a high quantity of data
over the time.

With respect to other complex objects or symbolic used in litera-
ture, beanplots data are free to show the empirical structure for each
temporal interval. At the same time we obtain a smoothed visualiza-
tion of the underlying phenomena. Histograms and beanplots seem
complementary: where histograms can be usefully compared, bean-
plots tend to show the data structure, and they can show for example
observation that could be considered as outliers in a time series. Box-
plot can be useful to detect and to identify outliers. In applications:
histograms can be useful in setting trading systems whereas beanplots
seem to be very useful in risk management to analyze the occurrences
of financial crashes. In each case, it is easy to provide a transformation
of the beanplot into other symbolic data. For example, it is very sim-
ple to transform a beanplot time series (BTS) into an interval-valued
time series (ITS).

6.5 Exploratory Data Analysis of Bean-

plot Time Series (BTS)

Following Shumway and Stoffer 2011 [629], by considering the beanplot
extrema we are interested in exploring the data structure. We are
interested, in analysing, without any particular structural imposition
the dynamics over time of the beanplot structures, where they can
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show us the long run dynamics of both location, size and shape of the
complex objects considered.

A moving average smoother mt can be useful for understanding and
for dividing the structure from the noise:

mt =
k∑

j=−k

αjat−j (6.26)

Where: αj = α−j ≥ 0 and
∑k

j=−k αj = 1
In general it is used:

mt =
k∑

j=−k

at−j
2k + 1

(6.27)

Where wj =
1

(2k + 1)
In particular it is possible to average the observations using the

Kernel smoothing as a moving average smoother with a weight func-
tion, or kernel. In particular we have:

f̂t =
n∑
i=1

wi(t)ai (6.28)

Where it is possible to consider:

wi(t) = K

(
t−i
b

)∑n
j=1K

(
t−j
b

)
)

(6.29)

In which wi are specifically the weights, and K() is a kernel func-
tion. It is possible to use the normal kernel:

K(z) =
1√

2πexp(−z2/2)
(6.30)
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The Higher the bandwidth b the smoother is the result. References
are Nadaraya (1964) [526] Watson (1964) [694]

Figure 6.14: Simulated Beanplot Time Series (BTS) and Kernel
Smoothers

At the same time another useful approach is the use of the Smooth-
ing splines, in which we have

n∑
t=1

[at − ft]2 + λ

∫ (
f
′′

t

)2

dt (6.31)

The degree of smoothness is given by λ > 0. ft is a cubic spline
with a knot in each t (see Shumway and Stoffer 2011 [629])

See for more details Chambers and Hastie 1992 [129] Green Silver-
man 1994 [325] and Hastie Tibshirani 1990 [347]
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Figure 6.15: Simulated Beanplot Time Series (BTS) and Smoothing
Splines

These can be particularly useful in analysing financial time series to
explore useful patterns (for example, for trading purposes), see in this
sense Lo Mamaysky Wang 2000 [467]. Examples of the use of these
techniques are in figure 6.14 (simulated beanplot time series BTS and
kernel smoothers) and figure 6.15 (simulated beanplot time series BTS
and smoothing splines). The complete algorithm is algorithm 5.

6.6 Rolling Beanplot Analysis

We have considered and analysed Beanplot Time Series (BTS) by
starting from the original scalar time series. In all these cases the win-
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dow considered was specifically related to a specific temporal interval
defined by the original data (as an aggregated data). In particular
original data could be daily, weekly, monthly, yearly etc. The act
of considering a lower frequency can be useful for many important
reasons specifically linked to the analysis to be carried out. For ex-
ample the risk analysis in financial data can be conducted on lower
frequencies by taking into account a higher quantity of information,
by considering a higher number of data available (in that case, the
way to model risk is better).

Here, we consider Beanplot in a priori defined windows, where the
windows change over time by adding new data, in real time34. We
define this type of analysis Beanplot Rolling Analysis. In this sense
the window considered changes over time, where the window length is
fixed. From the original Beanplot definition, we have (also Kampstra
2008 [416]):

f̂h,t =
1

nh

w∑
i=1

K(
x− xi
h

) (6.32)

where xi i = 1...w is the single observation in each t, K is a Kernel
and a h is a smoothing parameter defined as a bandwidth. The window
i = 1 . . . varies over time by adding a new observation.

There are in this sense three approaches in the Beanplot Rolling
Analysis which could be differently considered:

1. An overlapping approach (the data adjust observation by obser-
vation)

2. A non overlapping approach (the windows are completely sepa-
rated)

34These techniques are particularly relevant in a context where the financial data
are particularly volatile and the relationships can change over time (see Pesaran
Timmermann 2004 [558])
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3. A partially overlapping approach (the data adjust by groups of
observations)

Rolling Beanplot analysis is particularly useful in detecting the
change in data structure over time. A clearly important point here
is to detect a way to optimally consider the best temporal window.
As will be seen later, the optimal strategy is to define the optimal
window, using a number of observations of more than 30, to compute
the density trace and to consider the cycle and choose the window in
such a way as to not hide the cycle of the original series.

6.7 Beanplot Time Series (BTS) and Data

Visualization: a Simulation Study

In order to study the performance of beanplot time series (BTS) in
visualizing and exploring high frequency financial data we conduct sev-
eral experiments on different models (Algorithm 6). The experiments
are designed to replicate different volatility processes (with increasing
complexity). In this respect we study the capability of different aggre-
gated time series (boxplot time series BoTS and beanplot time series
BTS) to capture the main features of the original data.

18 types of models (GARCH/APARCH characterized by the most
simple to the most complex different volatility structures). 10 repli-
cations for each model. Each model contains characteristics of the
financial time series such as volatility clusters, structural change, etc.
200,000–700,000 observations aggregated in each beanplot temporal
observation. Comparing performances of different objects: Clustering
(Hierarchical and PVclust) on the results, only with the descriptive
aim of comparing groups of objects

The Simulation Study Design algorithm: second stage
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Data: A scalar time series {yt} t = 1...T . Each beanplot is
denoted b, the entire set of beanplots is B.

Result: A list of trajectories obtained by the Kernel Ke
begin

Choice of the interval considered I
Choice of the kernel Ke
for b ∈ B do

Computing the optimal bandwidth (Sheather-Jones
method) of the object k

end
for b ∈ B do

Computing the mi descriptors of the object k (minima)
end
for b ∈ B do

Computing the ma descriptors of the object k (maxima)
end
for d ∈ D descriptors do

Compute the kernel smoothing of the trajectories
Find the optima bandwidth of the kernel smoothing

end

end
for d ∈ D descriptors do

Compute the smoothing splines of the trajectories
Find the optimal λ parameter

end

Algorithm 5: Exploratory data analysis and beanplot time series (BTS)
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Data: A set of scalar time series yt} t = 1...T each one
representing a different model i in a set of experimented
objects K. For each time series generated there is
associated one specific numerical seed

Result: A set of visualization of time series of objects K, a set
of clusters p1 and p2 for each time series of objects K

begin
Choice of the interval considered I
Choice of the number of observations n to consider
Is it possible to compute the objects?
if the objects cannot be computed then

change the data structure
end

for k ∈ K do
Computing the time series of the object k
Visualize the time series of the objects k = 1...n

end
Is it the second stage of the experiment?
if the second stage of the experiment then

experiment only the best objects considered
end

for k ∈ K do
Computing the time series of the object k
Visualizing the time series of the objects k = 1...n
Parameterizing the time series of the objects k = 1...n
Clustering the temporal objects using hierarchical
clustering
Defining p1 clusters (1)
Clustering the temporal objects using PVclust
Defining p2 clusters (2)
Compare the clusters obtained in (1) and (2)

end

end
Algorithm 6: Simulation Design
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Choosing the two best objects in the first stage and replicating
the experiments by focusing on the two best objects. Replicating the
analysis on the two best objects considering the multivariate case.

A Quick Experiment: It is possible to explore the differences be-
tween the different tools using a rolling analysis over the time of the
different tools, by considering a simulated time series.

Computational Experiments: First Stage Results

• The Scalar time series tend not to visualize correctly the ob-
servation in the case of high frequency data.

• Stripchart useful only for few values (n ≤ 30).

• If the number of observations grows the number of the outliers tend
to grow in the same way.

• Single observations are not visible at all in Stripchart except in the
case of the outliers.

• It is very important to define the optimal interval in the temporal
aggregation, because some features can remain hidden. See figure
figure 6.16 and table 2

Characteristics Stripchart Boxplot Beanplot BoxPercplot ViolinPlot
General Features No Yes Yes Yes Yes
Trend Yes Yes Yes Yes Yes
Cycles Yes Yes Yes Yes Yes
Seasonality Yes Yes Yes Yes Yes
Structural Changes Yes Yes Yes Yes Yes
Outliers Yes Yes Yes No No
Intra-day Variability No No Yes Yes Yes

Computational Experiments: Second Stage Results

186



6.7. Beanplot Time Series (BTS) and Data Visualization: a
Simulation Study

Figure 6.16: Comparing different objects: an example on a single
simulated time series: Drago and Scepi 2009

• The boxplot shows four main features of the temporal aggre-
gation: center, spread, asymmetry and outliers but too
many observations tend to increase the complexity of the model
and increase the number of outliers (figure 6.17)

• The beanplot highlights the peaks, valleys and bumps in the dis-
tribution. Bumps are intraday price equilibrium levels. The
number of bumps represents different market phases in the daily
market structure. For asset returns, the beanplot shows volatil-
ity clusters and they can be used for the risk analysis (the size
of beanplot actually represents a proxy of the risk).

• Beanplot becomes longer and shows price anomalies when there
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are peculiar market behaviours (speculations).

• Differences between boxplots and beanplot data increase, in-
creasing the number of observations.

• Increasing observations and increasing number of outliers box-
plots seem to be similar. On the contrary, beanplot shows better
the different intraday phases (figure 6.18)

Figure 6.17: Comparing Boxplot (BoTS) and Beanplot Time Series
(BTS) (Drago Scepi 2009)[237]

Optimal temporal window: Windows need to be directly linked
to the information we are interested in, from the general trend to
peculiar characteristics. Windows, in particular, need to be chosen
to represent cycles exactly (if there are not other needs). Infact by
choosing a higher window there could be the possibility to hide the
cycle. In practice the usefulness of the beanplot is to represent complex
data by removing the noise (unnecessary data characteristics) without
hiding the relevant data structures, for example, the cycles. A useful
type of analysis in choosing the relevant window for the beanplot data
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could be the Spectral Analysis of a time series to define the length of
the cycles (see Battaglia 2007 [66] and Hamilton 1994 [333]).

Figure 6.18: Comparing different interval temporal periods Drago
Scepi 2009 [237]

For our simulations we developed several algorithms in R. We gen-
erated 18 types of models, where each model represents a different
univariate GARCH/APARCH time series model

In order to analyse the effect of the different number of observations
on our results, we varied, for each model, the number of observations
from 200,000 to 700,000. In this way, we simulated different types
of financial markets. Initially, we decided to aggregate our data in
ten different groups on ten different days. Then we tested different
time aggregations (by reducing or increasing the number of groups).
Therefore in each day we had from 20,000 to 70,000 observations.
Finally, to test our results we made 100 replications for each model.

The outcome for each computational experiment performed is the
visualization of the different aggregated time series over the time. For
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each experiment we registered the statistical features drawn from the
beanplot time series (BTS) compared to the original scalar time series
and the boxplot time series (BoTS).

The results of our simulations show in the first place that the bean-
plots tend to visualize a higher amount of information on the daily
data, and in particular the intra-day patterns in the behaviour of the
series, whereas the boxplots tend to return a smoothed view of the
financial time series.

We report here, by way of example, the results with an underlying
model (model 1) of the type GARCH(1,1) and those obtained with a
model (model 2) of the type AR(1,5-GARCH(1,1) both with 200,000
observations.

By increasing the complexity of the time series we observe more
clearly the differences between boxplot and beanplot time series (BTS).
With beanplots, we are able to understand the structural changes and
the different forms of the objects more clearly. When the complexity
reaches a very high level there is an increase of the outliers. Boxplot
time series (BoTS) seem to suffer this higher volatility of the mar-
kets. It is also interesting to note that by increasing the number of
observations beanplots alone may give us clearer understanding and
are therefore more useful than the boxplot time series (BoTS). In fact,
the number of outliers tends to increase and the boxplots become sim-
ilar to each other (in Fig. 6.17 we report an example of the model
with 700,000 observations).

At the same time our simulations show that there is a specific num-
ber of observations that could be retained by choosing one interval or
another. So the choice of the interval seems to be linked to the interests
of the researcher. In Fig. 6.18 we show the differences between bean-
plot time series (BTS) with different temporal aggregations: a higher
number of observations considered in the interval shows a higher num-
ber of bumps (and, of structural changes). The risk could be the loss
of the information related to the cycles, where a lower number shows
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the structure of the series, but it is expensive in terms of space used
(and there is the risk of not visualizing patterns).

6.7.1 Some Empirical Rules of Interpretation

The aim of the analyst using the simulation is also to obtain some
empirical rules of interpretation. The most important characteristic
of the beanplot time series (BTS) is the capability to capture three
relevant aspects in the dynamics of the complex data: the location,
the size, the shape. Therefore beanplot time series (BTS) should be
interpreted simultaneously considering this information.

The location shows the average or median price, and thus repre-
sents a useful benchmark for comparing different units. This descrip-
tor point gives the possibility to visualize a time series trend. This
feature is not possible with other smoothers or other nonparametric
techniques, while in the beanplot time series (BTS) we can explicitly
consider a center for each time aggregation.

The size represents the general level of volatility, while the shape
specifically represents the internal structure and the intra-day pat-
terns. Therefore, by observing these descriptor points, we can easily
identify speculative bubbles, structural changes, market crashes, etc.
Furthermore, beanplot bumps can be seen as equilibrium values for
the operators and they can be very important in trading strategies.
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(a) Interval Time Series - ITS (Week)

(b) Scalar Time Series (STS)

(c) Boxplot Time Series (BoTS)192



6.8. Visualization: comparing the Beanplot time series (BTS) to
other approaches

6.8 Visualization: comparing the Bean-

plot time series (BTS) to other ap-

proaches

An interesting experiment is now related to the use of real data (and
the associated problems of the choice of the interval temporal). In
particular we look at the Dow Jones scalar time series in which we
consider the period related to the financial crisis 2008-2011. We con-
sider comparatively the scalar time series (STS), the interval time se-
ries (ITS), the boxplot time series (BoTS), the histogram (HTS) one
and the beanplot time series (BTS) (figure 6.18.2 and figure 6.18.3).

A first observation can be done in the choice of the week as a
natural temporal interval for the intervals. The first impact on the vi-
sualization shows that the different objects tend to visualize correctly
the most important features such as the cycles (the long run cycles
in particular) and the trend. It is chosen by considering the length
of the cycle (so as to not eliminate its structure) by considering some
information a priori. The interval time series (ITS) show the structure
of the data, but in this case the problem of the number of the data can
persist. Choosing a lower temporal interval means we cannot observe
the intra-period variation.

The boxplot can consider the interval (weekly), a higher temporal
interval, but the problem is that it tends to smooth the original data
and so not show the intra-period structural changes. At the same time
the relevant information is preserved.

The original scalar data normally show the structure of the data,
but we are unable to observe all the observations in a good way, due
to the high number of data.

Using beanplot data we are able to observe the data, and in par-
ticular we are able to observe the intra-period structural changes (the
bumps).
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(d) Beanplot Time Series (BTS)

(e) Interval Time Series - ITS (2 months)

(f) Histogram Time Series (HTS)194



6.9. Applications on Real Data

At the same time, by considering the intervals, a lower interval
can be important because in that case we are able to understand the
intra-temporal structural change.

6.9 Applications on Real Data

6.9.1 Analysing High Frequency Data: the Zivot
dataset

The data used in this application are contained in the Zivot dataset
(see Yan Zivot 2003) [710]. These data are specifically related to the
official TAQ (Trades and Quotes) database containing ”tick by tick”
data for all the stocks on NYSE from 1993. The Zivot dataset refers
to 1997 and contains quotes and the trades for Microsoft (figure 6.19).
Here we consider the transaction prices for the period 1 May-15 May
for a total of 11 days (except periods where the market is closed).
Finally, we take into account 98,705 observations (instead of 98,724).
In this case we do not consider the prices> 150, which allows us to
avoid the data visualization. This exclusion does not modify the data
structure.

The conclusions for the analysis of the real time series of high fre-
quency data are similar to the simulated one. Each beanplot repre-
sents, as in the simulated data, a day of market transactions.

Each beanplot can be seen to be the ideal ”image” of the market
at a specific time. In particular we can observe that the objects seem
to be characterized by a response to the shocks, as the level (or the
average) of the boxplots and the beanplots tends to change day by
day. This phenomenon is due to the response of the time series to
news that impose a different size, shape and location conditionally to
the relevance of the shock. Changes in boxplot and beanplot levels
seem to be directly influenced by daily news, whereas the number of

195



Visualization and Exploratory Analysis of Beanplot
Data

Figure 6.19: High Frequency Microsoft Data 1-15 May 2001 (see Drago
and Scepi 2009)

bumps in the beanplot time series (BTS) is directly linked to intra-day
news. At the same time it is interesting also to note that volatility
levels seem to be higher after a single shock and tend to decrease over
the time, and disappear after a few days. Finally it is important to
note that the structure of the time series appears highly irregular in
the beanplot case. At the same time the boxplots tend to smooth the
information contained in data, whereas the beanplots tend to reflect
the complex behavior of the markets and the intra-daily patterns.

6.9.2 Application on the US Real Estate Market
in 1890-2010

From the Shiller data sets (see Shiller 2005 [626]) (figure 6.20 and figure
6.21) we consider the Real Home Price Index for a long run period
1890-2010, by using the Rolling Beanplot we are able to visualize if
this type of data allows the observation of the growth of the speculative
bubble. So we consider various different windows (useful to compute
the kernel density estimations for various subperiods) with the specific
aim of observing the anomalies on prices over time. We do not find
any anomaly until 2008 in which we can observe that the beanplot
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tends to show a strong change from the original series. Some values
can be considered outliers, which mean that there was the growth of a
speculative bubble in the period (2007-2008). The result is confirmed
by the fact that applying the rolling scalar time series, the Dickey
Fuller Test, we found that the series start to be non stationary in the
subperiod 210-240. At the same time an analysis on the structural
breaks of the period show that there is a significant structural break
in the the second quarter of the year 2000.

Figure 6.20: Rolling Beanplots Real Home Price Index 1890-2011 using
different windows

6.9.3 Comparing Instability and Long Run Dy-
namics of the Financial Markets

We performed an analysis on some of the most relevant markets around
the world. The period considered are the years 1990-2011, where 2011
is related to the period 1 January- 14 August. The missing data are
not considered. The analysis is divided into two phases:
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Figure 6.21: Rolling Boxplots Real Home Price Index 1890-2011 using
different windows

1. Extracting the bandwidth for each beanplot time series (BTS)
to measure the instability (table 6.1 and table 6.2)

2. Computing the trend to measure the long run growth of the
beanplot time series (BTS) (table 6.3−6.6)

6.10 Visualizing Beanplot Time Series (BTS):

Usefulness in Financial Applications

Various financial operations can be improved through considering the
visualization of the beanplots. First of all, the beanplot is a useful
tool for the monitoring of the market and in discovering speculative
bubbles. In particular, it helps to monitor both short and long run
dynamics. At the same time, the beanplot leads to the consideration
of deviations from long run equilibrium values and quickly detect any
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changes. These changes can be caused by structural factors (for ex-
ample policies) which could change the beanplot structure. So, the
beanplot can be useful to monitor more than one stock at a time.
Thus, it is useful in a asset allocation context, where it is necessary
to consider the performances of different stocks. In this sense, it is
possible to mix elements of the fundamental analysis and other finan-
cial techniques to relate the outcomes from these techniques to the
location, the size, and the shape of the beanplots. In this way it is
possible to anticipate the impacts of financial events on the beanplots.
The capability of the tool to summarize a large quantity of information
could be very useful in the monitoring of a large number of stocks. Vi-
sualization is useful also in risk management techniques. In fact, it is
possible with the beanplot data to monitor the evolution of the identi-
fied risks (also through using other techniques such as control charts).
Here, the beanplot is useful also in the phase of scenario analysis as
it is possible to consider and to use simulation methods to predict the
impact over time of different decisions and their outcomes. Beanplots
allow the visualization of the outcomes of many different economic
policies in comparative scenarios.

Possible applications: Market Monitoring and discovering specula-
tive bubbles, discovering financial market patterns (Statistical Arbi-
trage), Asset Allocation, Risk Management, Scenario Analysis.
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Summary Results: Visualization
Beanplots represent a useful Internal Representation which uses
Kernel Density Estimation.
Beanplot Time Series (BTS) allow the representation of High Fre-
quency Data.
Beanplot Time Series (BTS) retain the information of the very long
underlying time series.
In the Visualization process, an optimal bandwidth can be obtained
by the Sheather Jones Method.
A simulation study allows the observation of the informative con-
tent of the Beanplot Time Series (BTS), with respect to other types
of Internal Representations.
Real data allows the best interpretation of Beanplot Time Series
(BTS) in real contexts. In particular, we can observe the volatil-
ity levels by each day, the equilibrium levels (useful in structural
changes), the intra-period seasonalities, etc.

Table 6.1: Bandwidth for various beanplot time series (BTS) 2005-
2011

X000001.SS N225 IETP IBEX FTSEMIB.MI
2005 22.81 196.97 11.07 113.39 339.04
2006 46.19 217.08 19.49 185.15 335.54
2007 175.91 219.05 23.63 145.35 419.83
2008 196.83 306.78 34.38 321.28 867.18
2009 113.43 216.13 13.87 240.02 557.85
2010 48.00 161.00 7.65 179.00 262.95
2011 42.50 104.35 2.38 147.93 319.63

200



6.10. Visualizing Beanplot Time Series (BTS): Usefulness in
Financial Applications

Table 6.2: Bandwidth for various beanplot time series (BTS) 2005-
2011

GDAXI FCHI DJI BVSP
2005 59.20 51.91 55.43 564.32
2006 100.72 77.15 102.33 627.24
2007 86.23 50.08 115.79 1346.42
2008 141.92 119.48 239.58 2166.38
2009 132.05 73.23 223.78 1888.33
2010 60.24 64.26 148.34 931.94
2011 51.52 37.87 132.86 1279.58

Table 6.3: BVSP

Estimate Std. Error t value Pr(>|t|)
(Intercept) 32230.1869 3275.0033 9.84 0.0000

poly(tt2, 3)1 52414.0124 14275.4086 3.67 0.0023
poly(tt2, 3)2 43927.9664 14275.4086 3.08 0.0077
poly(tt2, 3)3 12556.3558 14275.4086 0.88 0.3930

Table 6.4: DJI

Estimate Std. Error t value Pr(>|t|)
(Intercept) 8209.2913 262.4511 31.28 0.0000

poly(tt2, 3)1 13723.9417 1231.0050 11.15 0.0000
poly(tt2, 3)2 -4676.9175 1231.0050 -3.80 0.0013
poly(tt2, 3)3 -938.0513 1231.0050 -0.76 0.4559
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Table 6.5: GDAXI

Estimate Std. Error t value Pr(>|t|)
(Intercept) 4275.2110 244.3792 17.49 0.0000

poly(tt2, 3)1 7518.4447 1146.2402 6.56 0.0000
poly(tt2, 3)2 -1434.3096 1146.2402 -1.25 0.2268
poly(tt2, 3)3 584.6972 1146.2402 0.51 0.6162

Table 6.6: FTSEMIB.MI

Estimate Std. Error t value Pr(>|t|)
(Intercept) 27303.5908 1279.8885 21.33 0.0000

poly(tt2, 3)1 -4151.3575 3839.6654 -1.08 0.3290
poly(tt2, 3)2 -19541.1928 3839.6654 -5.09 0.0038
poly(tt2, 3)3 12011.9352 3839.6654 3.13 0.0260
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Chapter 7

Beanplots Modelling

In this chapter we propose a new approach for modelling time series
as complex data1, in particular financial data. For the new approach,
in the same way as the works proposed by Arroyo 2009 [32] and Maté
(2009) [491], the data is not scalar but is a representation of the intra-
period variation as an interval, a histogram: in this case it is a density
that presents interesting properties (Chapter 5). This type of data,
can be clustered (Chapter 9) and forecasted (Chapter 8). The aim,
in the present chapter, is that of modelling the variability of intra-
period, that which relates to the temporal intervals. We define these
types of models as ”internal models” (see also Signoriello 2009 [630])
and ”external models”, which are related to temporal dynamics.

In practice the idea is to reduce the errors related to the measure-
ment error (see Rabinovich 1995 [568]), by considering a mathematical
model of the aggregated data2. Original data are infact characterized
by two distinct parts: the first, is structural and the second, is the

1Here we use the Diday definition of time series as complex data: see Diday
2006 [208]

2In particular we model the original data as a density. See for mathematical
modelling in this context Gershenfeld 1999 [295]
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noise, which is influenced by many factors such as data incomplete-
ness, errors, measurement errors, etc.3. Signoriello (2009) [630] also
proposes this approach for histogram data4. In particular, the mod-
elling approach (the internal model) is based, here, on the beanplot
data (Kampstra (2008) [416]) as already presented in Chapters 5 and
6. These types of new aggregated time series can be fruitfully used
when there is an overwhelming number of observations, for example,
in High Frequency financial data (this is different from other types of
aggregated data that do not faithfully represent the data structure).

The initial beanplot is explicitly modelled to permit the extrac-
tion of the real data structure. At the same time we have seen in
Chapters 1 and 2 that there are cases in which data are overwhelming
and that using some aggregation can lead to a direct loss of informa-
tion, for example in financial time series. These cases also determine
measurement error, where original scalar data present errors (see how
high frequency financial data contains errors in Dacorogna et al. 2001
[163] and also Brownlees and Gallo 2006 [115]). In particular, high
frequency financial data shows some relevant characteristics (they are
inequally spaced and contain errors), which suggest the use of some
alternative methods like internal representations5 and the modelling
presented here. In this sense we have considered the use of the bean-
plot, or density data (Kampstra 2008 [416]) in Drago Scepi 2009 [236]
that summarizes the initial data through returning the relevant data

3See in this sense the introduction to the workshop Knemo in 2006 in Naples
that shows the idea of this chapter very well [1]

4”According to the classical theory of measure, the data generated by the ”cor-
rect model” are more ”real” than the empirical one, because they are purified from
error sampling and from error of measurement. We should never forget that there
are no ”real” models, but rather models that approximate the reality in a more or
less accurate manner..” Signoriello 2009 [630]

5Here we use the same term used by Lin Keogh Li and Lonardi 2007 [422] where
the methods used are different because we represent the initial data as a density
(whereas in the literature intervals, histograms etc. are used)
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features. It is important to note that the beanplot time series (BTS)
presented in Chapter 6, considers not only the extreme values of the
interval period but examines above all the intra-day dynamics6. In
this case it could be relevant to take into account the structural part
of the model and the noise related to the different density traces (as
seen in Chapter 6).

In practice we propose a transformation of the original time series
into a density time series in order to analyse the variability intra-day
over time where it is necessary to extract the structural part from the
noise. The advantage of the approach can be seen by the fact that
it retains all the relevant information of the initial data in the den-
sity plots and yet avoids the errors contained in the original data7.
The coefficients estimation and the descriptor points will substitute
the original data, and the original beanplots as well. This approach
allows us to take into account not only the aggregated values of the
data, but also8, the entire intra-day variation. The visualization of
the beanplot time series (BTS) gives us the opportunity to retain all
the relevant information9.

6See for different methodological approaches and examples Maté 2009 [491] and
Arroyo, Esṕınola, Maté 2011 [36] Maia, De Carvalho, Ludermir 2008 [476] Arroyo
et al. 2010 [39]

7It is important to stress that where the financial data are an excellent example
of data that present a noise (see in that sense Sewell 2008 [619]), at the same time
other data types contain errors

8In high frequency data the last observation could also be considered: see
Dacorogna et al. 2001 [163]

9The information can be related to the location, size and shape of the aggre-
gated data (see Drago Scepi 2010 [236] and Drago Scepi 2010 [237]
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7.1 Beanplot Coefficients Estimation

We have seen in Chapter 6 that a beanplot time series is an ordered
sequence of beanplots over the time. Each temporal interval can be
considered as a domain of values that is related to the chosen temporal
interval (daily, weekly and monthly). The problem introduced at this
point of the thesis is this:

Data = Model +Noise (7.1)

In this sense modelling is a relevant operation in the knowledge
extraction process from models or by modelling10. At the same time
modelling can be considered to be either based on structural distribu-
tional hypothesis or not (soft modelling)11. Here, the term ”Model”
is equivalent to ”Knowledge”.

The noise is different from error in Statistics. An exploratory phase
and careful pre-processing is necessary so that data can be character-
ized, as in the case of the high frequency data and complex data in
general (figure 7.1), by structural errors, measurement errors, missing
values, outliers, or in general, inconsistent values. However data are
not correctly aggregated so they show some problems of aggregation
loss. Last but not least, they can be structurally incomplete and they
need to be integrated from a different source.

The choice of the temporal interval, also at the modelling phase, is
an a priori choice and depends on the specific data features the an-
alyst wants to study, but can also hide some important information
of the data (Drago and Scepi 2009 [237]). For example, in financial
analysis on the risks associated to portfolios it is usual to consider

10In the same spirit as the workshop Knemo 2006 on the Knowledge Extraction
and Modeling [1] organised in September, 4th-6th 2006 at Villa Orlandi Island of
Capri, Italy

11More in general it could be intended as a model learned from data in the sense
of Friedman Hastie Tibshirani 2009 [282]
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higher rather than lower temporal horizons. So, it could be consid-
ered usual to take into account higher temporal horizons (say, yearly)
when looking at bad situations or crises12. At the same time, choosing
an interval or alternative temporal can change the allocation between
structural part and noise and so can hide some relevant information
of the models.

As we know, the beanplot can be considered a particular case of
an interval-valued modal variable, like boxplots and histograms (see
Arroyo and Maté (2006)). In a beanplot variable we take into con-
sideration the intervals of minimum and maximum and the density in
the form of a kernel nonparametric estimator (the density trace: see
Kampstra (2008)).

The density trace is combined with a 1-d scatterplot where every
single dot can be represented for each observation. The beanline can
be considered to be a measure of the centre and could be represented
by the mean, or the median. So the same beanplot can be considered
a density trace with an interval composed of the two consecutive sub-
intervals through the beanline (the radii of the beanplot).

The density trace in particular characterizes the beanplot (or the
density data) and could be decomposed by the structural part and the
noise.

In the modelling process (Algorithm 7), more than in the simple
data analysis, the choice of the h parameter is fundamental.

In fact the error term N can create irregularities that could be elim-
inated by a lower h. Also a lower h can hide some relevant features of
our data.

In fact the higher the h parameter (the bandwidth of the density)
the more irregular the curve. Therefore we need to choose carefully
the parameter for the bandwidth.

12For the problems in risk management, real world examples and analyses using
scalar data see Jorion 2006 [414] Resti Sironi 2007 [580] and Saita 2007 [601]
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Figure 7.1: US Dow Jones differenced time series 1990-2011

This parameter is obtained by the Sheather-Jones method (see
Kampstra (2008) [416]).

7.1.1 Beanplots Model Data: the modelling pro-
cess

We start from a time series {yt} with t = 1 . . . T an overwhelming
number of observations. Our aim is to summarize the initial data by
retaining the main characteristics of the original time series. A first
exploratory data analysis is necessary to detect the noise in the data
in accordance with the subsequent definition we have given.
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Data: A scalar time series yt
Result: A coefficient estimation for each beanplot Bt in the

beanplot time series (BTS)
begin

Preprocessing of the original time series yt
Visualization of the beanplot time series (BTS)
for B ∈ T do

Computing the h bandwidth using the Sheather Jones
criteria

end
Choice of the I interval temporal unique t = 1 . . . T
Choice of the Ke kernel
Choice of the h bandwidth to use
Transforming yt in a beanplot time series (BTS)
{BYt} t = 1 . . . T
Is the variability represented?
if the variability is not adequately represented then

change the interval temporal I, the number of
coefficients n or the bandwidth h

end

for t ∈ T do
Coefficient estimation of the beanplot Bt

end
Is the internal model not fitting data adequately?
if the internal model is not adequately fitted then

change the interval temporal I number of coefficients n
or the bandwidth h

end

The model coefficients substitute the beanplots

end
Algorithm 7: The internal modelling process
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We identify the outliers13 in the series {yt}, by using statistical
procedures and adequate tests like the Dixon test for example.

In particular in high frequency time series the cleaning process of
the time series is not needed. We perform, as well, the eventual trans-
formations of the time series.

We substitute the initial data with the different subperiods rep-
resented as Beanplots Ybt with t = 1...T . Subsequently we visualize
these subperiods of the series by means of a beanplot time series
(BTS) considering a unique bandwidth for the BY t (Drago and Scepi
2008).

By choosing a different interval it is possible to obtain a different
beanplot structure, but the general features of the initial time
series (trends, cycles, structural changes etc.) tend to be preserved.
In general it is important to visualize adequately the original data in
the form of beanplot time series (BTS) and compute the bandwidth by
means of the Sheather Jones method14. Secondly we can use this in-
formation to compute a unique bandwidth for the entire series, (using
the median of the bandwidths). Therefore we decide to define a proper
t temporal interval (say, daily, monthly etc.) so as to aggregate our
observations. We substitute the initial data with the aggregated time
series st with t = 1...T . Subsequently we visualize this aggregated
time series by means of a beanplot time series (BTS) Bt (Drago Scepi
2010 [237]). This allows us to represent the location (or the centre),
the size and in particular the intra-period variability, which is not so
manifest in the original time series.

By choosing a suitable temporal interval it is possible to visualize,
as well, intra period seasonality patterns. In general, the beanplots

13 The identification of the outliers is relevant because they can have an impact
on the results of the analysis based on scalar data: see Chalabi and Würtz (2009)
[128]

14That represent a curve rougher (an h higher) than another smoother one (with
a lower h). See in this sense Wand and Jones 1995 [687]
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seem to preserve the structure of the time series, but show additional
relevant patterns in data, for example by showing bumps (or equilib-
rium levels over the time). Beanplots using long time series can show
long-run structures as they can summarize a high quantity of data over
the time (and associated structural changes). Therefore we decide
to define a proper t temporal interval (daily, monthly etc.) when
considering our observations. The temporal interval must be coherent
with the problem to be solved figure 7.2.

Figure 7.2: Beanplot Time Series (BTS) using different Temporal In-
tervals on an ARIMA(1,1,0) with a structural change

The second step is the choice of the adequate kernel and the band-
width. It is important to note that the choice in the first part of the
thesis was needed for each beanplot data to original observations, in-
stead here we are choosing a specific kernel and a specific bandwidth
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for all the observations.
For the choice of the unique bandwidth for the entire series, vari-

ous methods can be used in order to define the best one in advance:
Jones, Marron and Sheather (1996) [413] or also the Sheather-Jones
criteria that defines the optimal h in a data-driven choice (Kampstra
2008 [416]). The mean, or the median from the different bandwidth,
could be considered the bandwidth for the entire series.

By using the adequate bandwidth for the entire series we can dis-
cover the ”real” data structure. Contrary to other complex objects
used in literature, beanplots data leaves data free to show the em-
pirical structure for each temporal interval, and we obtain a smooth
visualization of the underlying phenomena.

Histograms and beanplots seem complementary: whereas histograms
can be usefully compared, beanplots tend to show the data structure,
and they can show observations that could be considered as outliers
in a time series. Boxplots can be useful in detecting and identifying
outliers. As well, in beanplot it is possible to detect outliers, in fact,
every single observation is represented. This feature is useful to detect
visually observations which are distant from the others. The beanline
at time t is a location measure of the beanplot.

In applications: histograms can be useful in setting trading sys-
tems, whilst beanplots seem to be very useful in risk management for
the analysis of the occurrences of financial crashes. In each case it is
simple to provide a transformation from a data like the beanplot to
other symbolic data. For example, it is easy to transform beanplots
into an interval-valued time series (see in this sense the Chapter 5).

The next step is the coefficients estimation: here two different
strategies are used to identify if the data calls for a different approach,
where common to both is the diagnostics, then eventually a respecifi-
cation of the models if required.

The beanplot time series (BTS), free from the Noise part, shows
the complex structure of the underlying phenomena by representing
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jointly the data location (the beanline) the size (the interval minimum
and maximum) and the shape (the density trace) over the time. See
figure 1, for a beanplot time series (BTS). In particular the bumps rep-
resent, in this case, the value of maximum density, and they can show
important equilibrium values reached in a single temporal interval (for
example, trading purposes). Bumps can also show the intra-period
patterns over the time and more in general the beanplot shape shows
the intra-period dynamics. When the beanplot increases, (hence, an
increase in the difference between minimum and maximum) this can
be interpreted through the presence of a structural change on the un-
derlying time series (figure 7.1). The beanlines allow us, as we have
seen, to compute the trend for the mean Beanplot time series (BTS).
This is an important aspect because we can detect a general growth
of the original time series. Also, the growth of the trends linked to
minima and maxima shows an increase in volatility and uncertainty
over time.

The chosen temporal interval allows us to represent the location
(or the centre), the size and in particular the intra-period vari-
ability over time t, not so manifest in the original time series, so the
growth over time of the beanplot models seems to indicate an increase
of the uncertainty over time (Table 7.1.

7.2 Coefficients Estimation: The Mixture

Models Approach

As defined in equation 1, we can see that each beanplot is related to
a fixed kernel and a chosen bandwidth. The coefficient estimation is
necessary for the aim of forecasting the beanplot time series (BTS).
So we fix both K and h and we derive the density model time series
as a mixture of different distributions. We retain the coefficients pj
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Table 7.1: Internal Representations and Descriptor Points
Data Descriptor Points
Interval Upper/lower bound, center/radius
Boxplot quantiles
Quantile quantiles
Histogram midpoints (upper/lower bounds), counts
and densities
Histogram: structural part coefficients obtained by the B-splines
Beanplot standard coordinates
Beanplot: structural part coefficients obtained by the Mixtures

Figure 7.3: The Data Analysis Cycle

214



7.2. Coefficients Estimation: The Mixture Models Approach

Figure 7.4: Internal and external modelling

representing the different components of the distributions occurring in
the mixture. Then we decide to build t vectors of k coefficients, At,
and substitute the beanplot time series (BTS) with it. Therefore At
is defined as:

At = [p1,t, pj,t, . . . , pk,t]
′

(7.2)

We also consider a measure of the goodness of fit It (i.e. the
Bayesian Information Criteria) representing the quality of the repre-
sentation. We take into account the coefficients sequences that could
be statistically tested to check the structural changes over time t.

The modelling approach (figure 7.3) is necessary to reduce the mea-
surement error from the data. The idea is to trasform the beanplot
data into models to control the error deriving from empirical data
(Signoriello 2009, Drago Lauro and Scepi 2009).

In particular we assume that the Beanplot represents the intra-day
variability plus a measurement error.
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Beanplot Data = Model + Error (7.3)

By considering the visualization of the beanplot time series (BTS)
we choose a kernel and a bandwidth. With the aim of modelling and
forecasting beanplot time series (BTS), a coefficients estimation
becomes necessary.

We can assume each initial intra-day observation characterized in
this sense:

g(x) = p1f1(x) + · · ·+ pkfk(x) (7.4)

With 0 ≤ pi ≤ 1 and i = 1 . . . k and also p1 + p2 + · · · + pk = 1.
So we have g() as a finite mixture density function. The coefficients
p1 . . . pk will be the model coefficients where the f1(.) . . . fk(.) are the
component densities of the mixture. So we have: fj(x) = f(x|θj)
where θj defines the coefficients in fj(x).

By fixing the initial number of component densities of the mixture
N we have for the beanplot data:

g(x|Ψ) =
k∑
j=1

pjf(x|θj) + η (7.5)

where η is a specific associated error and Ψ = (p1 . . . pk, θ1, . . . , θk)
′

are the complete list of coefficients of the mixture model.
We fix both K and h and we derive the density model time series

as a mixture of different distributions.
We retain the coefficients pj representing the different components

of the distributions occurring in the mixture.
In particular, the estimation method used is the maximum likeli-

hood method, where it is necessary to consider some starting points
(obtained by the beanplot analysis). A complete overview of the
method used is in Du 2002 [239].
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So we can build t vectors of k coefficients, At, and substitute the
beanplot time series (BTS) with them.

Therefore At is defined as:

At = [p1,t, pj,t, . . . , pk,t]
′
. (7.6)

We also consider a measure of the goodness of fit It (the Chi-
squared statistic) representing the quality of the representation
(diagnostic phase).

We start from a simulated time series at time t in which we com-
pute the beanplot observation bt. We estimate the coefficients of the
observation (table 7.2 and Algorithm 8). So we obtain:

Table 7.2: Coefficients estimation example

pi mu sigma
1 0.50 2.94 2.02
2 0.50 5.00 1.02

And in particular, the coefficients are:

At = [0.5, 0.5]
′
. (7.7)

We take into account the parameter sequences that could be sta-
tistically tested for checking the structural changes over time t. In
particular for each coefficient for the associated time series we can con-
sider a Chow test. We consider each coefficient in At, p1,t, pj,t, . . . , pk,t.

We estimate each model of the coefficient time series in the sense:

pj,t = β0 +

Q∑
q=1

βqηq + ωj (7.8)
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where ηq is a dummy variable (0, 1) that represents a specific period
or an interval period of time, in which the null hypothesis of no struc-
tural change is tested. In the presence of structural change βq 6= 0. At
the same time ωj is a residual. We return the dates of the structural
changes for all the coefficients in At

Data: A Beanplot time series (BTS) {bYt} t = 1...T
Result: A vector At with the p as the proportions of the

mixture components, given the bandwidth h
begin

Choice of the I temporal interval
Choice of the n points
Choice of the h bandwidth to use
for t ∈ T do

Estimating the coefficients of the mixture model for the
Beanplot Bt

end
Are the internal models not fitting data adequately?
if the internal model is not adequately fitted then

change the number of coefficients p or the interval
temporal I

end

end
Algorithm 8: Beanplot internal modelling: coefficients estimation

7.2.1 Choosing the optimal interval temporal

It is necessary to consider as the optimal, the temporal interval related
to the lowest error. In practice we compare different specifications over
the time and we decide on the best one by considering the index of
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goodness of fit over the time. We decide this by combining the different
goodness of fit (using for example, a mean of the different goodness
of fit) and we choose the interval temporal that minimizes this index.
The algorithm is shown in algorithm 8 (page 220).

7.3 Beanplot Representations by their De-

scriptor Points

Here we can obtain and specifically represent the beanplot shape. In
particular we assume that the original beanplot shape is constituted
by two parts: a structured one (defined as a ”model”) plus a residual
(in this sense we follow the approach to histogram approximation in
Signoriello (2008)):

Bt = Mt + Et(t = 1...T ) (7.9)

where B are the real data (the beanplot representations in the case)
at temporal interval t, M represents the model, and E is the residual
part. We need to represent the structured part Mt and minimize the
residual part Et.

We know that for every probability density function φ(x), for any
probability density function the area is represented by:∫ ∞

−∞
φ(x)dx = 1 (7.10)

Or also:

f̂h,t =
1

nh

i=1∑
n

K(
x− xi
h

) =

∫ ∞
−∞

φ(x)dx = 1 (7.11)
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In that sense we can estimate, in the case of no autocorrelation be-
tween the observations, the probability that a specific random variable
Z lies between z1 and z2 figure 7.5. So we have:

Figure 7.5: Kernel Density Estimation: computing the area between
z1 and z2

Following Hyndman 1996 [378] and Samworth Wand 2010 [604] we
can define the regions of highest density15:

Definition (Hyndman 1996) [378] Assume the density function
f(x) of a random variable X. The 100(1 − α)% HDR is the subset
R(fα) of the sample space of X such that:

R(fα) = (x : f(x) ≥ fa) (7.12)

fa is the largest constant, such that

15see also Fadallah 2011 [263] for a short review
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Pr(X ∈ R(fα)) ≥ 1− α (7.13)

It is possible to compute with the algorithm by Hyndman 1996
the regions of highest density (figure 7.6, table 7.3 and 7.4). In the
calculation of the highest density, of great importance is the way in
which the quantiles are computed (for the methods and the algorithm
used see Hyndman 1996 [378]). At the same time, it is very important
to compute the confidence intervals. Computing the quantiles for the
density data could give a measurement of the risk, for example in
financial data.

Figure 7.6: Highest Density Regions: BVSP Market (differenced se-
ries) year 2010

mode computed: 10.83034
As we know, an important difference between boxplot data and the

density data is its abiliy to capture the multi-modality. So we can
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Table 7.3: highest density regions (hdr)

hdr.1 hdr.2
99% -2311.09 2322.03
95% -1698.08 1712.01
50% -472.93 490.10

Table 7.4: falpha

falpha
1% 0.00
5% 0.00

50% 0.00

compute also the HDR boxplots to observe the multimodality over
time.

It is necessary to generalize the quantile computation from the orig-
inal density data. In this sense we can have a specific quantification
of the data over time. (see for example Sheather Marron 1990 [623]).

Definition 6. The Beanplot Time Series (BTS) descriptor at-
tributes are realizations of the single features of the beanplot {bYt} t =
1...T as coordinatesXC and Y C . We refer to them as descriptor points,
in which we measure the beanplot structure. Each beanplot can be
represented by considering either the coordinates of n points for the
XC describing the location and the size (the support of the density)
or the Y C describing the shape (or the density trace).

So we obtain from the XC :
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XC = [x1,t, xj,t, . . . , xk,t]
′

(7.14)

And from the Y C :

Y C = [y1,t, yj,t, . . . , xk,t]
′

(7.15)

To specifically represent the beanplot we choose firstly the number
n of descriptor points to represent the initial density and then we ob-
tain numerically the coordinates XC and Y C (Algorithm 9). The XC

represents the values in which the density Y C is calculated.

In particular the Y C value represents an estimate of the probabil-
ity density at the point represented by XC value. If we consider a
higher number of points n in the procedure we obtain a more precise
approximation of the original beanplot. In practice the choice of the
number of points to describe the density corresponds to the choice of
the number of bins in a histogram. However when we use a kernel
estimation procedure we have higher flexibility than in the histogram
case to separate the structure and to decide the optimal number of
points. The choice of the descriptors n is a problem of finding the
exact representation of the underlying phenomenon: are we interested
only in a stylized image of the beanplot or do we need to represent
all the features of the beanplots? In general are we correctly repre-
senting the underlying data? The different choices of the bandwidth
and the kernel can improve the representation of the data, so when we
obtain a satisfying data representation we can proceed to forecasting
the process (algorithm 1).

The choice of h can be constrained to a number of descriptor points
n to compute. A higher h (computed by the Sheather-Jones Method)
can be an indicator of structural change in the internal model, there-
fore a coherent choice of the h needs to be made. By choosing a higher
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Data: A Beanplot time series (BTS) {bYt} t = 1...T
Result: A vector with n elements of XC and Y C coordinates

given the bandwidth h
begin

Choice of the n points to represent
Choice of the h bandwidth to use
for t ∈ T do

Estimating the XC

Estimating the Y C

end
Is the internal model not fitting data adequately?
if the internal model is not adequately fitted then

change the number of descriptor points n or the
bandwidth h

end

end
Algorithm 9: Beanplot internal modelling: representation by de-
scriptor points

224



7.3. Beanplot Representations by their Descriptor Points

h and a higher n we can specifically take into account the complexity
of the beanplot model.

7.3.1 Descriptor point interpretation: Some Ex-
periments on Simulated and real datasets

By experimenting the representation on the coordinates, the important
point we can note is that, differently from the first type of modelliza-
tion, here we try to give an accurate description of the initial beanplot
time series (BTS) (figure 7.7 and figure 7.8).

The representation on the XC describes the location and dynamic
size characteristics of the beanplot time series - BTS (the dynamic
intra-period variability).

Figure 7.7: Bovespa Beanplot Time Series -BTS Y C attribute time
series of the descriptor points 1993-2011 (n = 20)
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The Y C represents the changes in the shape over time, so it is pos-
sible to detect structural changes. So we can observe a high volatility
of the descriptor points due to changes in the density traces.

Figure 7.8: Bovespa Beanplot Time Series (BTS) XC attribute time
series of the descriptor points 1993-2011 (n = 20)

In practice by comparing the two representations it is possible to
detect structural changes. It is interesting to note that by using the
XC representation it is possible to see the characteristics of the original
time series.

Finally it is possible to compare the different representations by
their descriptors in the figure 7.9:

Initial time series can be represented as intervals (ITS), boxplots
(BoTS), histograms (HTS) descriptors or beanplots (BTS) by esti-
mating the coefficients At or considering the coordinate descriptors
XC and Y C . The interval time series (ITS) is represented by its upper

226



7.3. Beanplot Representations by their Descriptor Points

Figure 7.9: Comparing descriptors amongst all the Representation
Time Series (ITS, BoTS, HTS, BTS and models)

and lower bounds. The boxplots time series (BoTS) are represented by
the quantiles, etc. The estimation by coefficients in the beanplot case
tend to extract the relevant information where the information is the
most synthetic amongst the other representations. Intervals consider
for the interval period only the upper and the lower bound.
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7.4 Data Tables considering Density rep-

resentations

It is possible, now, to define what the coefficients and the descriptor
points contribute in the generation of a specific data matrix that could
be statistically analyzed.

In this respect, by starting from the classical time series we obtain
the symbolic time series and the symbolic time series data table ([211]
and figure 7.10). It is important to note that handling different out-
liers can be very important because we can obtain different results by
taking into account different symbolic data. In this specific case the
symbolic data analysis came directly from the data. Through choosing
the best statistical descriptor we analyse these series using symbolic
data analysis. See also Gettler-Summa M. Frédérick V. (2010) [299].
The objective of this thesis is to handle symbolic data which can be
densities.

Following Signoriello 2008 [630], the function considered (or the
statistical model in the wide sense) is substituted by the estimated
coefficients and the descriptor points, so we obtain a final data table
which is useful for the statistical analysis of the intra-variation be-
tween different models using the appropriate techniques.

In the data matrix of the estimated coefficients the data can be
considered as units× variables× number of coefficients.

Each different function or model needs to be accompanied by the
goodness of fit, or its ability to fit the original data. So in each cell we
need to have k coefficients and an index (I) of goodness of fit. From
the models and their goodness of fit it is possible to obtain a summary
of the intra-period variation and the presence of models that are not
well approximated
.
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Figure 7.10: Table of the parameters of the data models (Signoriello
2008 [630]

7.5 From Internal to External Modelling

Forecasting symbolic data is a growing field related to real problems
fundamental to modern financial systems. We have proposed a method
related not to scalar time series but to a new type of complex data
such as density or beanplot data. Various families of questions are al-
ready open: the parameterization through densities by using different
methods like the B-Spline, the forecasting by using alternative meth-
ods such as K-Nearest Neighbour by Arroyo, Gonzáles-Rivera, Maté,
Munoz San Roque (2010) [39] and the construction of dynamic factors
related not to with scalar time series series but to beanplots (in order
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to improve forecasting by using different beanplot time series BTS).
We need at this point to compute a way to tell if the forecasts ob-

tained by the different models are good or not. So we build indices
to study the level of the adequacy of the forecasts obtained by the
different models.

7.5.1 Detecting Internal Models as Outliers

It is possible to use a clustering procedure to identify the outliers. In
practice we use a distance (for example, the euclidean distance on the
coordinates and the model distance on the coefficients of the mixture)
to identify the different models that could be considered outliers.

In this sense we can conclude that the elimination of the noise is not
successful and that we need to eliminate these extreme observations.

So we can proceed by either not considering the extreme observa-
tions, or by imputating them. In fact, we need to analyze the external
models and either consider or not these extreme values (identified here
as outliers).

A second strategy starts from the estimated coefficients and the
descriptor points so as to identify from the trajectories the outliers
(using a method that identifies outliers from the time series16). In this
respect we identify outliers directly from external models.

7.6 Internal Models Simulation

From the Internal Models we can simulate the same internal models.
This is useful for various reasons. In general we start from the primary
data and we try to simulate n times the data generating process of
the complex data through obtaining the data characteristics than can

16For example see Chang, Tiao and Chen (1988) [130] and Riani 2004 [582]
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mimic the initial data. If the difference is small that means that the
Noise part is not relevant. The structural part in this sense could be
detected as a representation in the internal model as a density data.
The aim of the simulation exercise is to simulate different scenarios
and understand if the most important and relevant features of the
data are captured by the models.

In particular the important question is: are the models good for
identifying important data features of the reality, can we understand
the structural part of the initial data and separate it from the noise?
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Summary Results: internal modelling

Two approaches are used in the Internal Modelling phase.

The first approach assumes the data to be a mixture, and so the co-
efficients representing the components are taken into consideration.
In this way, we extract the structural information by the Beanplots.

A TSFA model is used to synthesize the trajectories and so ob-
tain the latent factor related to the shocks changing the Beanplot
structures over time.

The second approach represent Beanplots as a whole and uses co-
ordinates to represent simultaneously the Beanplot attributes.

The attribute time series or the trajectories of the descriptor points
for the second representation are considered.

In both cases, coefficients and descriptor points substitute the orig-
inal data.
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Chapter 8

Beanplots Time Series
Forecasting

Scalar Time Series (STS) Analysis and Forecasting1 is the analysis of
the characteristics of a time series and the application of a statistical
model to forecast its future values.

Very relevant research developments have occurred in this field and
important results have been obtained since the 1970’s (De Gooijer and
Hyndman (2006) [180]). Forecasting of time series data2 is a difficult
task when the data are very numerous, with complex structure3 for
example, when there are high volatility and structural changes (for the

1Hamilton 1994 [333] Lutkepohl 2005 [469], Battaglia 2007 [66], Durbin Koop-
man (2001) [244] and Elliott and Timmermann (2008) [247]. An important review
work on Forecasting is De Gooijer Hyndman (2006) [180]

2Box Jenkins 1976 [99] Wallis 1989 [767]
3The financial markets for example are considered a complex system (in this

sense: Marschinski and Matassini 2001 [488], Mauboussin 2002 [496], Sornette
2004 [636] and Tjung, Kwon, Tseng, Bradley-Geist (2010) [661]. Of relevance
is the difference between signal and noise provided by the same operators that
impacts on price, see for example the experiment in Cipriani and Guarino 2005
[144]
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problems and the approaches in forecasting financial data see Deistler
Zinner 2007 [187]). This is the case of high frequency data or, in
general, of financial data, where we cannot clearly visualize the single
data4 and where the necessity of an aggregation arises (see Chapter 1
and Chapter 2). A first proposal is that of using in addition to classical
scalar time series some ”density based” time series (see Chapter 5
for the characteristics of the density data) and in particular beanplot
time series (BTS). In this chapter we deal with the specific problem of
forecasting the beanplot time series (BTS). So we propose an approach
based firstly on internal models (as we have seen in Chapter 7) of the
beanplot time series (BTS) and successively on the choice of the best
forecasting method with respect to our data. In particular we propose
a strategy to use combination forecast methods5 in order to improve
the statistical performance of our forecasts.

8.1 Density Forecasting and Density Data

There are important differences between density forecasting6 and the
forecasting of density data. Density forecasting can be defined as ”a
density forecast of the realization of a random variable at some future
time is an estimate of the probability distribution of the possible future
values of that variable” (see Tay Wallis 2000 [653]). In the analysis of
the density data we consider the densities for each temporal interval
as data, and we build external models on them.

In the analysis of complex time series, such as high frequency data

4Zivot (2005) [722]
5See for a discussion of these methods Timmermann 2006 [658], Clemen (1989)

[145] Armstrong 2001 [29] who review the method. For a formal explanation on
why forecast combinations of single forecasts tend to outperform sophisticated
models see Smith and Wallis 2009 [635]

6Timmermann 2000 [657] Bao Lee and Saltoğlu 2007 [59] Diebold Gunther 1997
[220]
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or financial data with a particular data structure, it is not always
possible to have an effective visualization and reliable forecasting. In
forecasting, the problem of the visualization and the choice of the
model to use are specifically linked, in fact, in identifying the ade-
quate one it can be important to detect outliers. The problem of the
visualization of complex time series has been particularly explored in a
paper proposed by Drago and Scepi in 2009 [237] where we underlined
the necessity of searching and analysing an aggregate behaviour for
complex data and we have explored aggregated beanplot time series
(BTS) to observe their characteristics. In particular we have shown
the proprieties of beanplot time series (BTS) by comparing different
types of aggregated time series and by illustrating their statistical per-
formances in financial data interpretation. In this chapter we propose
an approach for forecasting beanplot time series (BTS). In particular,
after a short introduction on the definition and the main characteris-
tics of beanplot time series (BTS), we deal with the problem of finding
an appropriate internal model to define an external model with the aim
of forecasting beanplot time series (BTS). We propose our forecasting
approach in Sections 9.3 and 9.4 in a summarized form while we il-
lustrate it in greater detail in the applicative section. We show that
the advantage of our approach is to forecast not only the average or
the location of the data but at the same time to predict the size and
the shape of the data (the entire structure). In the specific case of
financial and high frequency data we are trying to genuinely predict
the associated risk or the volatility that can occur over time. Size and
shape can represent the internal variation over the interval temporal,
so, in this sense there is a specific link between the data collection
and quantitative methods used: we try to forecast the market insta-
bility or the internal variation in the data. For density forecasting see
Hyndman and Fan (2008) [387]. Tay Wallis (2000) [653]
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8.2 From Internal Modelling to Forecast-

ing

The Beanplot time series (BTS) {bYt} t = 1...T is an ordered sequence
of beanplots or densities over time (see Drago Scepi 2009 [237]). The
time series values can be viewed as realizations of an X beanplot
variable in the temporal space T , where t represents the single time
interval. For forecasting purposes the choice of the length of the single
time interval t (day, month, year) depends on the specific data features
and objectives the analyst wants to study. In practice, detecting the
adequate model means finding the outliers in the series before mov-
ing on to the analysis, there is also the need to consider structural
changes in the model. For this reason it is very important to consider
visualization and clustering methods (in particular with the objective
to detect outliers7 before proceeding to the analysis).

Various approaches could be considered:

1. Considering trajectories from the coefficients of the mixtures
(Chapter 8.3)

2. Considering the trajectories from the beanplot descriptions or
attribute time series (Chapter 8.4)

3. K-Neirest Neighbour (Chapter 8.5)

4. Forecast Combinations (Chapter 8.6)

5. Hybrid approaches (Chapter 8.6)

6. Uses of GA (Chapter 8.6)

7. Forecasting using the Search Algorithm (Chapter 8.7)

7In scalar data: see for example Cherednichenko 2005 [132]
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8.3 External Modelling (I): TSFA from

model coefficient approach

We start from an internal model described, like the coefficients of the
extracted mixtures, in Chapter 4. In this sense we are considering the
sequence of the coefficients over the time. The beanplots are entirely
substituted by these coefficients sequences.

We can forecast the next beanplot at t + 1 by considering a time
series forecasting method. Starting from the Time Series Factor Anal-
ysis (in particular Meijer Gilbert 2005 [500]), in practice, we can define
each vector of coefficients as a combination of time factors:

pt = α + V ξt + εt (8.1)

with α as a vector of intercepts, V as a J ×M matrix of factor
loadings and εt as a vector of random errors. So, by considering K
observed pj,t with j = 1..J and t = 1..T , in which we are searching the
M factors as unobserved processes ξm,t with m = 1..M and t = 1..T .
Therefore, for each time series we can obtain a number q ≤ k number
of factors. The loadings L are estimated by FA estimators (such as
ML), by using the sample covariance of the error (Wansbeek Meijer
2005 [689])

To measure the factor, we use:

ξt = (V tΨt
−1V )−1V tΨ−1V t(pt − αt) (8.2)

In which ψt = Cov(εt). In particular the loadings, in the FA esti-
mators (say, ML), can be estimated by using the sample covariance of
the error.

The usual assumption made in TSFA is that αt = 0, so the Bartlett
predictor becomes:

ξt = (V tΨt
−1V )−1V tΨ−1V t(pt). (8.3)
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In this way, it is possible to compute the factor time series for
the factors related to the location and the size and another factor
representing the shock response or the short run dynamics. We can use
different forecasting methods for forecasting the different time factors
(starting from an ARMA model). In particular, for forecasting factor
time series using the TSFA see Muñoz , Corchero and Javier Heredia
(2009) [523]:

ξ̂t = c+ wt +
r∑
s=1

ϕsξt−s +

q∑
s=1

θswt−s. (8.4)

Starting from the prediction of the factors, from eq. (4) we can
compute the initial coefficients by giving the value of the ξ̂t. So we
have:

p̂t = α + V ξ̂t + εt (8.5)

From the predictions of the initial coefficients we can fit the pre-
dicted beanplots. Assuming the number of initial groups of mixtures
Nj=1...k we have for the beanplot:

B̂t =
k∑
j=1

p̂j,tNj,t + ηt (8.6)

Where ηt is a specific associated error.

From the predictions of the coefficients we can fit the observed
beanplots B̂t. Poor results in in-sample forecasting can occur in a
revision of the initial parameters considered (the kernel K used and
the bandwidth h for example). At the same time, poor forecasting
results can be useful in order to identify structural changes, outliers
or abnormal influent observations.
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We use the combination of the forecasts to improve the forecasts in
the presence of model parameter drifts and uncertainty in the identi-
fication procedure

FCM
t = γ1(t)f 1

t + γ2(t)f 2
t + · · ·+ γm(t)fmt (8.7)

In the combination of the forecasts we use f1 . . . fm forecasting tech-
niques (i.e Exponential Smoothing8, Splinef9, Theta methods10). Var-
ious strategies of the weight estimation of the combination model
γ1 . . . γm are used. By considering explicitly f 1, f 2 . . . fm as differ-
ent forecasts from competing external models we have as external
model the forecast combination Ft. In this case γ1 . . . γn are differ-
ent weights. In particular the weighted combination11 of the models
allows one to improve forecasting in a context of parameter drift and
structural change.

Poor results in in-sample forecasting can occur in a revision of the
initial parameters considered (the kernel K used and the bandwidth
h for example), in order to identify outliers or abnormal influent ob-
servations. A search algorithm is used in the validation phases to
improve the predictions by selecting the best relevant information as
forecasting interval.

8Hyndman, Koehler, Snyder and Grose (2002)[384] Hyndman, Koehler, Ord
and Snyder (2008) [385] Hyndman, Akram, and Archibald (2008) [380]

9 Hyndman, King, Pitrun and Billah (2005) [388]
10 Assimakopoulos and Nikolopoulos (2000) [45], Hyndman and Billah (2003)

[381], Makridakis Wheelwright Hyndman (2008) [480]
11Winkler Makridakis 1983 [703] Bates Granger 1969 [64] Newbold Granger 1974

[534]
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8.3.1 Detecting Structural Changes

Coefficient sequences could be statistically tested for checking the
structural changes over time t. We use a different Chow test12

in every associated time series for each coefficient.
We consider each coefficient in At, p1,t, pj,t, . . . , pk,t. We estimate

each model of estimated coefficients time series in this sense:

pj,t = β0 +

Q∑
q=1

βqδq + ωj (8.8)

where δq is a dummy variable (0, 1) that is representing a specific
period or an interval period of time, in which the null hypothesis of
no structural change is tested. In the presence of structural change
βq 6= 0. At the same time ωj is a residual.

We return the dates of the structural changes for all the coefficients
to At

8.3.2 Examples on real data: Forecasting World
Market Indices

This application has twofold objectives. The application is divided
into two parts: We consider firstly the time series of the Dow Jones
Index for the period 1990-2010 and we compare three different ap-
proaches in forecasting: scalar data, beanplots and interval valued
time series. Secondly, we study the mechanisms of the financial con-
tagion between the financial systems in the crisis by trying to forecast
other world indexes.

We consider the case of various markets and the beanplot time se-
ries (BTS) related to the closing price. In practice, we examine various
market indexes in which we consider the high, low, close, and open

12Chow 1960 [140] Harvey 1990 [343] Chu Stinchcombe White 1996 [142]
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price for various periods (depending on the data availability of each
single market in Yahoo). For each dataset we consider the closing price
and we obtain the beanplot time series (BTS) for the single market as
well.

Then we model the beanplot by considering the beanplot as a mix-
ture, and we obtain the sequence of the estimated coefficients over
time. At this point we can consider a factorial strategy (Time Series
Factor Analysis or TSFA) so as to obtain the factor time series repre-
senting the single market.

Then we can use a forecasting method, for example an ARIMA,
to predict the market dynamics over time as represented in the factor
considered (figure 8.1, figure 7.1, figure 7.1, figure 8.4, figure 8.5, figure
8.6)

It is interesting to compare the results with interval data for the
case of the Dow Jones Index (DJI):

1. The scalar data does not allow us to forecast the internal vari-
ation in the year (useful for risk management purposes).

2. Interval time series (ITS) does not permit us to observe in the
period the intra period structural changes. The beanplot
bumps allow us to observe the internal variation also in this
sense.

3. The intra period seasonality aspect is not represented by
aggregating the time series (using a mean) or in interval time
series (ITS). The different mixtures can be interpreted in some
cases as structures related to intra period seasonality.
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Figure 8.1: DJI - Dow Jones Index

Figure 8.2: DJI - Dow Jones Index
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Figure 8.3: GDAXI - German Dax Index

Figure 8.4: MMX - Major Market Index Mexico
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Figure 8.5: SSEC - China Stock Market Index

Figure 8.6: N225 - Nikkei Index Japan
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Coordinates

8.4 External Modelling (II): Attribute Time

Series Approach from Coordinates

The second forecasting method is related to the approach of the co-
ordinates. We need to define an internal model before forecasting.
The idea is to represent each beanplot by using specific attributes of
each beanplot and by considering their realization over the time. So
we define a Beanplot Attribute Time Series as a realization of a sin-
gle beanplot {bYt} t = 1...T descriptor over the time. To represent
the beanplot time series (BTS) it is possible to consider the coordi-
nates XC and Y C as descriptors of the beanplot. We refer to them
as descriptor points because they measure the beanplot structure. In
particular, the XC time series clearly show the location and the size
of the beanplot over the time while the Y C represents well the shape
over the time. To specifically represent the beanplot we choose firstly
the number n of descriptor points and then we obtain numerically the
coordinates XC and Y C . If we consider a high number of points n in
the procedure we obtain a more precise approximation of the beanplot,
here it is necessary to note that to have a density we have to consider
at least 4 points (but not in every situation: we could be interested in
forecasting the entire density trace).

The choice of the descriptors n is a problem of the exact modeliza-
tion of the underlying phenomenon: are we interested only in a stylized
image of the beanplot or do we need to represent all the features of
the beanplots?

In our approach we consider the values of XC and Y C correspond-
ing to the 25th, 50th and 75th percentile. The procedure is coherent
with existent literature (Arroyo 2009 [32]) in which, from the initial
interval data, the author obtains the attribute time series for the up-
per and the lower bound. By this type of descriptor points we are able
to detect the evolution over the time of the beanplots, for the location,
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the size (both the XC) and the shape (mainly the Y C).

8.4.1 Analysis of the Attribute Time Series Ap-
proaches

Our approach can be synthetized in the following steps. The first step
is the analysis of the structure of the sequence of the attributes. In
this sense we have to test the structure of each attribute time series.
As we know, they represent the beanplot dynamics over the time, so
we can use a specific method to forecast the attribute time series to
obtain the prediction at time t + 1, t + 2 and so on. Initially we can
detect the underlying structure of the data by decomposing the at-
tribute time series. This decomposition can be very useful both to
understand the general dynamics of the series over time (represented
for example by the trend) and to exploit some interesting patterns.

Successively we must decide which model has to be used for the
forecasting approach. We can use univariate or multivariate meth-
ods. In the first case we are assuming there is no specific relationship
between the attribute time series, in the second case we are assum-
ing that a relationship exists (in practice we analyze attribute time
series using time series analysis). So, it is firstly important to test
the stationarity of the attribute time series and successively to de-
fine the possible cointegration between the series. Another important
point is to verify the autocorrelation of the attribute time series and
the possible structural changes. Only at the end of this first complex
analysis can we decide which model should be used for forecasting
our attribute time series. After the identification of the forecasting
models, it is necessary to estimate the different models for obtaining
the forecasts and, finally, to evaluate the reliability of our forecasts.
The diagnostic procedure is very important because we can critically
evaluate and respecify the models. At the same time it is very useful

246



8.4. External Modelling (II): Attribute Time Series Approach from
Coordinates

to consider the performances of the different forecasting models by
considering some evaluation indexes. Using more than one forecast
may be necessary to obtain better predictions (see Timmermann 2006
[658]).

So in general, an approach of forecast combinations may be neces-
sary for many reasons. First of all there can be some structural changes
and it may be necessary to take into account more than one forecast-
ing model. In this sense, the use of different models can reduce the
risk associated to choosing one single model. Secondly, there can be
some uncertainty in the model to use, so it is very important to define
a combination of forecast strategies to define the best model. Various
approaches can be followed in setting the combination method. One
strategy is to consider many different forecasts from several models
and to use an average of them. Here, a relevant problem is the choice
of the different weights to apply on the different forecasting methods.
Assigning higher weights to methods that permit the improvement of
the accuracy of the forecasts (by minimizing errors) can be a solution.
Finally, a relevant point could be the choice of the optimal interval for
the forecasting process.

8.4.2 Attribute Time Series Forecasting Models

Here we start to test the attribute time series. In particular we per-
form the usual tests on nonstationarity for either the Y C and the XC

attribute time series on different subperiods. At the same time we
decompose the attribute time series to find some patterns that could
be useful in the modelling phase. It is very interesting to note that
the beanplots quickly change their features over the time, in partic-
ular the shape, represented in the Y C attribute time series. So, for
the modelling purposes of the attribute time series we consider the
longest interval, and we test nonstationarity. We obtain the result
that both the XC and the Y C attribute time series are nonstationary.

247



Beanplots Time Series Forecasting

Furthermore we perform the Cointegration Analysis, considering the
attribute time series on the XC and those on the Y C . The final aim of
this part is to investigate if in the case of the XC or in the Y C we can
use a Vector Error Correction Model in forecasting (see also Arroyo
2009 [32] for an approach based on interval time series - ITS). To take
in to specific account the structure of the single attribute time series,
we identify various different models as starting forecasting models. At
this point we estimate the different models also by considering the
different subperiods for robustness checking. The different forecasting
models are evaluated in terms of different indexes of Forecasts Accu-
racy13(see Hyndman Koehler 2006 [386]). At the same time if we can
predict the density data at the end we need to check if the integral of
the area under the prediction is equal to 1. In this case the prediction
of a density could be considered.

8.4.3 Identification and External Modelling Strat-
egy

So we can summarize in this way the entire forecasting procedure
using the coordinate descriptor points in this way (Algorithm 10 and
Algorithm 11):

1. Start to consider the n attribute time series of the descriptors
(i.e.x1,t, x2,t, x3,t, y1,t, y2,t, y3,t) of the beanplot time series (BTS)
bYt for t = 1, ..., T

2. The attribute time series represent the external models (the dy-
namics over the time t = 1, ..., T ) where each beanplot can be
considered as the internal model at time t

13See also Armstrong 2006 [28]
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Data: A set of a attribute time series for the beanplot time
series (BTS) {bYt} t = 1...T each one representing a
different feature related to XC or Y C , a set of r
forecasting methods in R, a set of combination schemes
cs in CS

Result: A set of Forecasts fk with k = 1...n
begin

for a ∈ A do
Stationarity and Nonstationarity tests on a
Statistical decomposition of the time series a
Is it possible to forecast a using the causal forces?
if it is possible then

forecast f1

end

Autocorrelation tests on a
Is it possible to forecast using the autocorrelation
structure?
if it is possible then

forecast the series and obtain f2

end

Analyzing the relationships between the attributes
for r ∈ R do

Forecasting using different methods rn with
n = 1 . . . k
Obtaining different fn with n = 1 . . . k forecasts
Compute the adequacy of the single forecasts f

end

end

end
Algorithm 10: Identification, External Modelling and Combination
(1)
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Data: A set of a attribute time series for the beanplot time
series (BTS) {bYt} t = 1...T each one representing a
different feature related to XC or XY , a set of r
forecasting methods in R, a set of combination schemes
cs in CS

Result: A set of Forecasts fk with k = 1...n
begin

Is it possible to improve the forecasts using combination
schemes cs?
if it is possible then

Use a combination scheme cs
end

Is it possible to improve the forecasts using weights?
if it is possible then

Use combination weights F2

end

if it is possible then
Seek weights w
Use combination weights

end

Is it possible to improve the forecasts using a search
algorithm?
if it is possible then

Search and apply the best set in the forecasting
end

end
Algorithm 11: Identification, External Modelling and Combination
(2)
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3. Start to consider the n attribute time series of the descriptors
of the beanplot. They represent the beanplot dynamics over the
time

4. Checking for the stationarity and the autocorrelation. Detect-
ing the features of the dynamics (trends, cycles, seasonality).
Analyzing the relationships between the attributes

5. Forecasting using different methods

6. Beanplot Forecasts combinations schemes

7. Search Algorithm to improve forecasts

8. Considering as Beanplot description the forecasts obtained from
the Forecasting Method.

9. Checking if the area of the predicted descriptor points can be a
density (the integral is equal to 1).

8.4.4 Examples on real data: Forecasting the Bean-
plot Time Series (BTS) related to the Dow
Jones Market

The application is related on the Dow Jones market dataset from the
year 1928 to the 2010, and the purpose is to forecast the beanplot
time series (BTS) for the specific period 2009-2010. In particular we
consider in the models the data from 1998 to the 2008. The entire
period in the database (1928-2010) is considered only for exploratory
purposes. The specific aim in the forecasting process is to predict the
instability in the market over the time. Methods used in the forecast-
ing models are Smoothing Splines14 and Automatic Arima15 primarily,

14 Hyndman, King, Pitrun and Billah (2005) [388]
15Hyndman and Khandakar 2008 [382]
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and also VAR16 (Vector Autoregressive Models) and VECM17 (Vector
Error Correction Models) in the case of the Y C attribute time series
in some specific periods to analyse the robustness of the models (we
work on different sub-periods to analyse the existence of structural
changes in the period). In a second forecasting model we use a combi-
nation approach, by combining different forecasts obtained by different
methods. Lastly, we compare all the results, using as a benchmark:
the Naive model (that is, representing the prediction obtained by con-
sidering the last observation).

So as a first step in the procedure we visualize the entire beanplot
time series (BTS) by considering the yearly temporal interval (where
this interval is the most appropriate in the data exploration). We can
clearly visualize the existence of the two crises, in particular the crisis
in 2008, where we can observe the very peculiar shape of the beanplot,
in that it is strongly stretched out. The rise and the fall of the New
Economy in 2001 is visible as well in the data. At the same time it is
possible to detect the trends and the cycles of the beanplot time series
(BTS) where we can also understand the structural change occurring
over the time (for example in 2008).

We compute the set of XC attribute time series (year 1996-2010),
starting from the representation by coordinates. Here we can consider
a different interval temporal from the interval used in the data visual-
ization (that for considering the statistical features of the beanplots).
At the end of the internal modelling process we obtain 6 attribute
time series (3 for the XC and 3 for the Y C) and around 60 observa-
tions (years 1996-2010 approximately).

The three XC attribute time series are related to the 25th, 50th
and the 75th percentile where each Y C is associated to the XC . We
call these intervals ”extreme risk intervals”, with minima or lower risk,

16 Luẗkepohl H. (2005) [469] and Hamilton (1994) [333]
17Luẗkepohl H. (2005) [469]
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median risk and maxima or upper risk. These intervals are directly
related to the beanplot structure. The attribute time series for the XC

show the long run dynamics of the beanplots and also the impact of
the financial crisis. By considering the Y C attribute time series (year
1996-2010), we need to remember that we are examining a different
interval temporal (not the yearly interval temporal) but two months
(around 40 observations in a beanplot data). In this representation we
can observe the complexity of the initial series, observed in particular
in the changes time by time of the beanplot shapes (represented by
the Y C). These behaviors are related to the short run dynamics of
the series. Now we can begin to test the stationarity for the attribute
time series.

8.5 The K-Neirest Neighbour method

Here we can consider a method based on the K-Neirest Neighbour
algorithm. In particular we depart from a data matrix of the single
estimated coefficients or the descriptor points, and we forecast the
different beanplots in order to maximize the similarity of the periods
over time and consider a median of the values in time.
Following Arroyo 2008 [32] and Arroyo, González-Rivera, Maté (2010)
[41] it is possible to use the K-Neirest Neighbour to predict the minima
and the maxima of the descriptor points of the beanplot. In practice
we follow two separate steps:

1. We search for the n interval sequences that could be defined as
closest to the current one.

2. The sequence extracted is necessary to consider this sequence as
characterized by the last d intervals (the previous one).
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3. Clearly it is necessary to consider a distance to measure the dis-
similarity of interval sequences regarding appropriate distances
(see Arroyo 2008 [32])

4. We consider the mean of the subsequent interval of the n closest
sequences to obtain the forecast.

5. Arroyo 2008 [32] proposes the use in the mean computation of
the interval arithmetic (see in that sense Moore 1966 [513], Gioia
and Lauro 2005 [310] and Gioia 2001 [307])

6. Different weighting schemes can be applied

At the same time it is possible to consider the forecasts obtained
as a first forecast in a more complex combination of forecasts. So it
is possible to consider the predictions obtained using the K-Neirest
Neighbour as one of the weighted components in the forecast combi-
nations (see in the context of interval data Salish and Rodrigues 2010
[603]).

At the same time it is possible to use an approach on the entire
beanplot considering each different attribute time series separately
(see Yakowitz 1987 [709] for the approach of K-Neirest Neighbour in
time series analysis).

8.6 The Forecasts Combination Approach

Furthermore we use a different approach based on the Forecasting
Combinations. In particular, we use combinations for two reasons: we
can take into account precisely the uncertainty in choosing a specific
model (in fact sometimes the choice of a specification in a single fore-
casting model can be very hard) and we can also take into account
the specific structural changes that could be captured (or we try to
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capture) by considering combinations of forecasts. So we consider pre-
dictions obtained by using various methods: Smoothing Splines, Auto
Arima, the mean of the period, the Theta method and the Exponen-
tial Smoothing. See table 1 to compare the different MAPE for the
XC .

We do not use any special weighting structure but we consider
only the average between results obtained from the different methods.
Regarding the results, the forecasting performances outperform other
single models based on the single forecasting model chosen. Here we
are considering an interval of prediction of 5 periods ahead (for this
reason we do not apply this method to the Y C).

The forecast combinations are considered only on the XC forecast-
ing because it was identified that their use allows us to obtain the
best specific predictions. The methods used in the combination pro-
cedure are: Smoothing Splines, Auto Arima, the mean of the period,
the Theta method and the Exponential Smoothing. In this way these
different methods return forecasts, and the combined forecasts can be
considered as the average of the models. As a prediction interval we
use an interval of 5 periods. It is interesting to note that the com-
bination approach does not produce better results in every case in
comparison with one method (the best one). At the same time as the
predictions from the forecasts in the XC and Y C attribute time series
we can expect to capture the evolutionary features of the beanplots.
It is clear that the predictions can have relevant consequences also for
the associated risk analysis (an increasing difference between beanplot
extremes that can indicate a higher risk).

8.6.1 Combination Schemes

Various schemes of combination in forecasting can be used:
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1. Equal weighting (average) on the different methods SETAR18,
KNN19, Regime Switching20, etc.

2. Different weighting proportional to the quality of the forecasts21

3. Different weighting considering a regression approach (a Granger
Ramanathan Approach: see Granger Ramanathan 1984 [322] ).
In this case it could be useful to consider different regressions like
the Nonlinear Least Squares NLS22 or the genetic algorithms23

4. Hybrid approaches to determine optimal decomposition of the
series and use them in a combination24

5. Ranking of the different forecasts25.

Following Timmermann 2006 [658] and Andrawis Atiya El-Shishiny
2010 [18] let f be a forecast of a single so in all cases we have a set of
n forecast f at an interval t so we can combine.
f is a forecast of a single model:

FCM
t = w1(t)f 1

1 + w2(t)f 2
2 + w3f

3
3 + · · ·+ wmf

m
t (8.9)

With: w1+w2+w3+...+wn = 1 and w(1) ≥ 0, w(2) ≥ 0...w(n) ≥ 0
for all the weights w.

1. Base scenario: w1 = w2 = ....wn = 0 considering all forecasts

18Tong 1990 [665] Tong 1983 [664] Tong Lim 1980 [663]
19Yakowitz 1987 [709]
20Hamilton 2005 [334]
21Timmermann 2006 [658] Andrawis Atiya El-Shishiny 2010 [18]
22Fox 2002 [272]
23Rousseeuw and van Driessen (2006) [598]
24Zhang 2003 [717] and Maia, De Carvalho and Lurdermir 2006 [477]
25Kisimbay 2010 [425]
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2. Alternative: w1...wn = 0 discarding some forecasts f1...fn, using
the trimmed mean

3. Alternative: ft+h =
√
f 1
t+h + f 2

t+h + ...fnt+h, using the geometric

mean. See Andrawis Atiya Shishiny (2010) [18] and Timmer-
mann (2006) [658].

4. Alternative: using the harmonic mean: ft+h =
nf1

t+hf
2
t+h...f

n
t+h

f1
t+h+f2

t+h+fn
t+h

5. Weight determination: w1...wn ≥ 0, with: w1+w2+w3+...+wn =
1

8.6.2 Optimal weight determination

At the same time the weights of the combination can be differently
defined26:

1. w1 = w2 = ....wn = 0 as simple criteria has the advantage of
simplicity, but clearly different alternatives could be chosen. A
second approach can be related to the variance (we report here
the case of two weights as an example):

2. ft+h = [f 1
t+h]

w1 + [f 1
t+h]

w2 + ... + [fnt+h]
1−w1+w2 optimal schemes

using a search algorithm using the geometric mean

3. Let two variances σ1
2 and σ2

2 σ12 represent the covariance between
the two forecasts. In this case, assuming the weight sum is 1

each weight can be obtained by: w1 =
σ2

2−σ12

σ21+σ22−2σ12
and also

w2 = 1− w1

26Timmermann 2006 [658] Andrawis Atiya El-Shishiny 2010 [18] Kang (1986)
[417] Deutsch Granger Terasvirta 1994 [196]
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4. or also weighting by MSE (Stock Watson 2004 [644] ), so we

obtain: wh1 =
∑k

j=−k MSE2
h+j∑k

j=−k MSE1
h+j+

∑k
j=−k MSE2

h+j

and also

wh2 =
∑k

j=−k MSE1
h+j∑k

j=−k MSE2
h+j+

∑k
j=−k MSE1

h+j

8.6.3 Weight determination by regression

Another possibility is to directly estimate the weights by regression,
having the different forecasts as independent variables and the true
values as dependent.

In this case it is also possible to define various options at the same
time:

1. Linear weight parameterization: Granger and Ramanathan Com-
bination27 estimate omitting the intercept: yt = β0f1 + β1f2 +
...+ βnfn + εt

2. Nonlinear weights parameterization

3. Changing weights over the time28

8.6.4 Identification of the components to model

At the same time it is important to identify the eventual components
of the models.

1. Assumption that the series is composed of parts: for example
yt = Lt + Nt where Lt is a linear autocorrelation structure and
Nt is a non-linear component.

27Granger Ramanathan (1984) [322]
28Deutsch, Granger, Terasvirta 1994 [196]
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2. Number of components to decompose the series29

3. Identification of the structured parts to decompose the series30.

8.6.5 Identification and implementation of the Hy-
brid modelling strategy

At the same time it is possible to differently identify and implement
the models by considering a hybrid modelling strategy:

1. Methods choice, for example ARIMA, as in the case of Maia,
De Carvalho, Ludermir (2006) [477] to estimate Lt then obtain
εt = yt− L̂t and use other methods, for example neural networks
to capture the nonlinear structures of the yt. In particular εt =
φ(εt−1, εt−2...εt−3) + kt. The single forecast fn from the model is:
ŷt = L̂t + N̂t

2. Diagnostics

3. Combination Strategy. Combine f1,f2 etc.

Combinations using different assumptions

1. Different Hybrid Methods f1,f2 can be used, based on different
assumptions or hypotheses (interval data)

2. Combination strategy. Combine f1,f2 and so on.

29Hendry Hubrich 2006 [355] and Hendry Hubrich (2010) [356]
30Hendry Hubrich 2006 [355] and Hendry Hubrich (2010) [356]
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8.6.6 Using Neural Networks and Genetic Algo-
rithm in the modelling process

Neural Networks31, were used in literature to improve the forecast-
ing process of interval data (in particular see Muñoz, Maté, Arroyo,
Sarabia (2007) [522] Garćıa Ascanioand Maté 2010 [291] and Maté
and Garćıa Ascanio 2010 [494]). At the same time there are many
studies that use neural networks in stock forecasting (see for example
Lawrence 1997 [451] and Weckman et al 2008 [695])

So an option can be to use this approach in the forecasting of the
attribute time series. In this work, in particular as a learning scheme,
the Multilayer Perceptron was used to forecast some attribute time
series (mainly the Y C) that present a sinusoidal trajectory. The pro-
cedure was useful in analysing attribute time series which show these
characteristics.

The genetic algorithm can be used in two different contexts in order
to optimize predictions both as single forecast, or in forecast combi-
nation schemes.

First of all we can use the genetic algorithm to explore the best
models we can define where it could be particularly difficult to model
the data (for example in the case of the Y C coordinates of the bean-
plot data). In that sense the Genetic Algorithm can help to identify
the model using a Symbolic Regression (for the entire procedure see
Schmidt Lipson in various works, for example: [608] , [610], [612] and
[614]). However it should be stressed that this process is very useful
in conditions of attribute time series characterized by relevant noise.

Secondly we can use the genetic algorithms to optimize the models
in the case of forecasts combinations. We can consider the genetic
algorithms in the regression to estimate the parameters of the combi-

31The literature in this area is enormous. An introduction can be found in
Witten Frank 1999 [704] and Fabbri Orsini (1993) [258]
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nation model, avoiding the effects due to outliers or a strange value.
In this respect the results obtained can be more robust, whilst the

robustification of the procedure can improve the final forecasts (see
Wildi 2007 [700]).

8.7 The Search Algorithm

There is a growing literature on finding the adequate estimation win-
dow: see Pesaran Timmermann 2007 [559] and Pesaran Pick 2010
[557]. The search algorithm is useful in detecting the best informa-
tion set for the prediction. So the forecast processes are repeated to
consider all the possible sets of information, where the model min-
imizing some statistical criteria is selected (for example we use the
MAPE see: Hyndman 2006 [379]). In this way we obtain the best
forecasting interval for the considered model. So the computational
tool to improve the forecasts is considered to be the algorithim for
the selection of the best observations (or the best information set) in
the forecasting models. See Hendry (2006) [354], and Castle et all
(2007) [122], and Fawcett and Hendry (2007) [266], at the same time
a methodology that could be applied to forecasting in real time is in
Pesaran Timmermann (2004) [558].

8.8 Crossvalidating Forecasting Models

It is important to note that the initial data are divided into two dis-
tinct sub-periods. A first one is considered as a training set, in which
the different models are estimated for each attribute time series (both
XC and Y C). A second sub-period is used to compare the results ob-
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tained for different models (validation set). Various schemes32 can also
be considered by taking into account relevant different periods of the
series (the financial crisis for example, or other relevant situations).

This approach has the specific aim of improving the forecasts in the
forecasting process, and it could be considered as a cross-validation
approach for the model selection (for a review in this sense see Arlot
Celisse 2010 [26]).

At the same time when a specific model is chosen it could be im-
portant to optimize the prediction by considering the optimal set of
information to use.

In this case we cross-validate the different models chosen in the first
phase by using the search algorithm.

8.9 Extremes and Risk Forecasting

A useful application of the beanplot forecasting over time could be to
forecast the VaR, or the Value at Risk33, as an important measure of
Financial Risk, by considering both the lowest coefficient in the mix-
ture or the lowest coordinate as descriptor.

This operation of using the prediction of Histogram Data (as a
symbolic data or as aggregate representation for predicting the VaR)
is proposed by Arroyo et al. 2011 [34] and Arroyo, Gonzáles-Rivera,
Maté, Muñoz San Roque [39] in 2010.

In that sense, the VaR forecasting corresponds to predicting the
lowest values of the beanplot data over time in the specific temporal
interval. As expected, the temporal interval needs to be the same for
the VaR computations.

Various approaches can be considered as well in literature.

32Friedman Hastie, Tibshirani 2009 [282] Giudici 2006 [312] and Refaeilzadeh,
Tang and Liu 2009 [570]

33Jorion 2006 [414], Holton 2003 [363]
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An approach is related to the VaR modelling in Engle and Man-
ganelli 2004 [252] using the quantile regression (see in this respect
Koenker and Basset 1978 [430]). An interesting comparative analysis
by considering different approaches is the analysis performed by Andre
Nogales and Ruiz 2009 [19]. Another possibility is using the Copulas
(for an approach to Copula Theory see Nelsen 1999 [532]).

Another important task in measuring the risks, by considering the
financial risk, is to predict the extremes. A first approach is that
of directly using Extreme Value Theory in a context of regression or
modelling, this can be found in Toulemonde et al. 2009 [666].

8.10 Beanplot Forecasting: Usefulness in

Financial Applications

Beanplot forecasting can be useful in many different contexts, for ex-
ample in statistical arbitrage and trading. Various different contexts
can be considered in that sense. For example, pair trading can be
explicitly done by considering beanplot data. In fact, by identifying
a couple of similar stocks it is possible to predict the dynamics in the
long run and to profit from the differences. At the same time various
other strategies can be considered, for example identifying some pat-
terns in data as seasonalities which could be exploited by considering
some seasonal trading strategies. Other clear relevant applications of
the beanplot forecasting are in the field of Risk Management, in fact
by considering the dynamics of the stocks using the maxima informa-
tion available it is possible to predict the outcome of different events
in a more consistent way. Study events in this sense can be used to
detect possible outcomes related to the single financial event.

Possible applications: short term forecasting: trading and statis-
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tical arbitrage, long term forecasting: macroeconomic and financial
analysis, quantitative Models for forecasting economic and financial
variables, Tactical Asset Allocation, Risk Management, Scenario Anal-
ysis and Stress Testing.

264



8.10. Beanplot Forecasting: Usefulness in Financial Applications

Summary Results: Forecasting
In forecasting we consider the forecasts of the TSFA model in the
model-based coefficient estimation. In the second type of approach
we forecast the attribute time series.
Various different approaches can be considered in the forecasting
process, all the approaches need to be based on an identification of
the external model to adopt.
A combination of external models could be very useful if it is possi-
ble to find a group of forecasting models which perform well. In this
case, with the combination we reduce the uncertainty of choosing
a unique model and we consider eventual parameter drift.
In the forecasting procedures, we can use the search algorithm to
improve the forecasts by choosing the optimal set of information to
include in the model.
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Chapter 9

Beanplots Time Series
Clustering

A clustering problem is finding similar subgroups of specific items in a
specific set by assuming absence of other information (Jain 2010 [402]
and Jain Murty Flynn 1999 [403] Xu Wunsch and others 2005 [708]).
In particular the single observations which are the most different be-
tween the subgroups and the most similar between each other need to
be considered. There are relevant cases in which the interest is not only
in analysing one series but groups of series, for example in the case of
the study of the markets or portfolios(Pattarini Paterlini Minerva 2004
[551]). In practice, in these cases, some time series tend to respond to
asymmetric shocks similarly (Basalto and De Carlo 2006 [62]). So it
is interesting to discriminate the different behaviors over time. There
are other cases in which the clustering process is not straightforward
but the series need to be preprocessed. This is the case of complex
time series related to phenomena like the financial markets (see Sewell
2008 [619] for a review of the characteristics of these series). In this
part we deal with complex time series, represented as beanplot time
series (BTS).
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We start from a complex financial time series to obtain the associ-
ated beanplot time series (BTS). In particular we start from a series
{yt}, t = 1...T with yt ∈ < and we can have a single value in <. In
the case of the high frequency data we have a huge quantity of ob-
servations that need to be aggregated to handle them adequately. At
the same time high frequency data present irregularities due to the
specific nature of the data (Engle Russell 1998 [253]. In this case we
are dealing only with the mean and so we face a loss of information.

Various proposals exist to take into account the internal represen-
tations which consider the entire data structure and also the data
centers. There are various proposals in the literature: those dealing
with intervals, histograms (in Arroyo et al. 2011 [38] and 2010 [39])
and those dealing with distributions.

All these proposals are related to the field of Symbolic Data Anal-
ysis where interval and histograms are particular cases of symbolic
data (see Diday Noirhomme 2008 [218] and Billard and Diday 2003
[85]). In Clustering it is very important to retain the relevant data
information, for this reason we consider the beanplot because it al-
lows the retention of the information on the data structures (Drago
Lauro and Scepi [235] and Drago Scepi 2010 [237]. The density trace
in particular gives the chance to take into account structural changes
that can occur. In practice, Beanplot time series (BTS) can represent
the features of the initial time series (the beanline corresponds to the
aggregated time series). In particular, beanplot can represent at the
same time trend, cycle and even structural changes of the original time
series. Various clustering approaches for beanplots can be defined:

1. Model approach: Single beanplot or entire time series (Romano
Lauro Giordano distance1) see Chapter 9.1

2. Time Series of Attributes (minima, maxima) (Correlation, Cep-

1Romano Giordano Lauro 2006 [594]
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stral, Time Warping Distance) Chapter 9.2-9.3

3. Time Series factors of trajectories (Correlation) see Chapter 9.2-
9.3

4. Model Based Clustering (Model Based) see Chapter 9.4-9.5

5. Clustering Beanplots Data with Contiguity Constraints Chapter
9.6

6. Single Beanplot (Wesserstein ad Euclidean distance) see Chapter
Chapter 9.7

7. Building Beanplot Prototypes (BPP) using Clustering Beanplot
Time Series (BTS) Chapter 9.9

8. Ensemble Clustering see Chapter 9.10

The first method is analyzed in Chapter 9.1 and the others in Chap-
ter 9.2-9.10. The different methods reflect the differences in the ap-
proaches seen in the internal modelling of the beanplot time series
(BTS).

9.1 Clustering Multiple Beanplot Time

Series (BTS): the Model Distance Ap-

proach

Internal Models in this case are sequences of mixture coefficients. In
order to cluster multiple time series of beanplot Byt with t = 1 . . . T we
start from a synthesis of such multiple time series obtained by a mul-
tiple factor time series approach ξv,t. In particular we use a suitable
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distance between models, combining a convex function of the differ-
ences in model coefficients with corresponding fitting indexes (Romano
Giordano Lauro 2006 [594]).

In order to cluster multiple time series of beanplot Byt with t =
1 . . . T starting from the model synthesis, the final aim is to recognize
similar factor time series with similar dynamics. Thus we obtain the
factorial time series ξv,t and we compute the dissimilarity matrix. So
we use an adequate distance, as for example, the distance from mod-
els in Romano, Giordano Lauro (2006) [594] where we are trying to
consider the dynamics of the different factors.

In order to cluster a set of beanplot time series (BTS) Byt with
t = 1 . . . T , we use a suitable distance between models that combine
a convex function of the differences in model coefficients with corre-
sponding fitting indexes (Romano Giordano Lauro 2006 [594]).
Following Signoriello 2008 [630] the two pieces of information are com-
bined to define the following measure:

IM(pj, pj′|λ) = λIMP + (1− λ)IMR (9.1)

with λ ∈ [0, 1]. The IM measure is a convex combination of two
quantities IMP and IMR, where IMP is the L2-norm between the
estimated coefficients:

IMP =

[∑K−1

k=1

(
wjk − wj

′
k

)2
] 1

2

(j 6= j′) (9.2)

and IMR is the L1-norm between the chi square:

IMR =
∣∣∣wjK − wj′K∣∣∣ (j 6= j′). (9.3)

In the clustering process of beanplot time series (BTS) (
The two pieces of information are combined to define the following

measure:
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IMT (pjt , p
j′
t . . . p

j
T , p

j′
T |λt . . . λT ) =

T∑
t=1

λIMP t + (1− λt)IMRt (9.4)

with λ ∈ [0, 1]. The IMT measure is a convex combination of two
quantities IMP t and IMRt, where IMP t is the L2-norm between the
estimated coefficients:

IMP t =

[∑Kt−1

kt=1

(
wjkt − wj

′
kt

)2
] 1

2

(j 6= j′) (9.5)

and IMRt is the L1-norm between the chi square:

IMRt =
∣∣∣wjKt − wj

′
Kt

∣∣∣ (j 6= j′). (9.6)

Figure 9.1: Amazon (AMZN)
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Figure 9.2: Apple (AAPL)

Figure 9.3: Goldman Sachs (GS)
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Figure 9.4: Microsoft (MSFT)

Figure 9.5: Deutsche Bank (DB)
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Figure 9.6: Morgan Stanley (MS)

Figure 9.7: Bank of America (BAC)
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Figure 9.8: Citigroup (C)

9.1.1 An application on real data: Clustering stocks
in the US Market

Now we begin to consider a portfolio of stocks, in which we study its
behavior as Beanplot Time Series (BTS) (figure 9.1, figure 9.2, figure
9.3, figure 9.4, figure 9.5, figure 9.6, figure 9.7, figure 9.8). All the
stocks are related to the DJI Market. We firstly visualize the series,
then we represent the stocks by considering them in four different sub-
periods. We estimate the coefficient p and we use the model distance
to obtain the dendrogram. We consider comparatively four different
subperiods and the entire period, using the appropriate distance. It is
interesting to note that the method discriminates the different profiles
of the different stocks. In practice we consider and compare the risk
profiles for four periods. In doing so we see that one company per-
forms as an outlier (Amazon) because they are not so affected by the
crisis (which is first diffused by means of financial linkages). In that
sense we can observe that financial companies tend to present a very
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similar risk profile and to be clustered in the same group (in particular
Morgan Stanley MS and Bank of America BAC). The dendrograms
are presented in figures figure 9.9, figure 9.10, figure 9.11, figure 9.12,
figure 9.13 .

Figure 9.9: Dow Jones Market

Clustering the Beanplot Time Series (BTS): DJI Market subperiod
2007-2008

Clustering the Beanplot Time Series (BTS): DJI Market subperiod
2008-2009

Clustering the Beanplot Time Series (BTS): DJI Market subperiod
2009-2010

Clustering the Beanplot Time Series (BTS): DJI Market subperiod
2010-2011
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Figure 9.10: Dow Jones Market 2007−2008

Figure 9.11: Dow Jones Market 2008−2009
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Figure 9.12: Dow Jones Market 2009−2010

Figure 9.13: Dow Jones Market 2010−2011
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9.2 Internal Modelling and Clustering: the

Attribute Time Series Approach

In the internal modelling phase it is relevant to choose the bandwidth
h for the beanplot time series (BTS) and the number of descriptor
points or features considered n. We need to select the h parameter
for the entire beanplot series (in order to visualize the series there
is no need to choose the h parameter selected by the Sheather-Jones
method). The choice is related to the structure of the data in each
temporal interval t. The feature n represents both the data structure
of the interval temporal and the beanplot evolutive dynamics over time
by its attribute time series. In particular, we have to characterize the
beanplot by considering either the XC and the XC as coordinates. In
that way we obtain the internal model of the single beanplot at the
interval t. As output of the internal modelling process we obtain the
attributes time series for the XC and the Y C of the beanplot time se-
ries (BTS). By deciding the number of features n to take into account
(for example for XC the 25, 50 and 75th quantile and the related Y C

coordinates (Drago Lauro Scepi 2009 [233]) we have a higher number
of attribute time series). We choose these coordinates without consid-
ering the extreme values that could be affected by outliers. The crucial
point in the internal modelling process is the choice of the bandwidth
h and the choice of the number of the n features, considering them in
relation to the data structure. It is important to validate the inter-
nal model (the n choice of the features and the chosen bandwidth h)
and its adequacy to represent initial data. In general it is necessary
to take into account a lower bandwidth h in the series with a higher
number of features n if there is a higher level of observations: thus, we
can capture a higher number of features. In particular, we consider
that the higher the complexity of the original time series the higher
the complexity requested and the number of features to be taken into
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account. Therefore, it is necessary for most of the cases to reproduce
the structure of the beanplot by considering at least three descriptors
for the XC and three descriptors for the Y C .

9.3 Classical Approaches in Clustering Bean-

plot Features

A first approach, if we are interested in one or more specific attribute
time series (for example the attribute of the minima to compare the
behavior in crisis), is that of directly clustering the attribute series
of the different beanplot time series (BTS) (Algorithm 12). In this
sense classical distances can be used, like the Correlation distance,
the Cepstral distance, and the Time Warp: see Liao 2005 [455].

At the same time if we need to cluster the entire beanplot time series
(BTS) we need to synthesyze and to model (the external model) all
the attribute time series. In particular we use the time series factor
analysis (TSFA) depicted in Meijer Gilbert 2005 [500] and Gilbert
Meijer 2006 [306] to estimate the attribute time series both for the XC

and for Y C . We start from the n observed processes ai,t with i = 1..n
and t = 1..T , where we search from the k unobserved processes (the
factors) ξi,t with t = 1..T and i = 1..k and we obtain the measurement
model:

at = α + V ξt + εt (9.7)

Where α is a vector of intercepts, V is an n, k matrix of factor
loadings and ε is an n vector of random errors. Each factor score rep-
resents a measurement model of a latent variable that is the underlying
phenomena of interest. At the end of the procedure we obtain a set
of Factors for each attribute time series. For the measurement of the
factor score predictor we use the Bartlett predictor, following Meijer
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Gilbert 2005 [500], Wansbeek and Meijer. (2000) [690] and Wansbeek
Meijer (2005) [689].

ξt = (V tΨ−1
t V )−1V tΨ−1V t(zt − αt) (9.8)

Where: ψt = Cov(εt). The loadings can be estimated by FA es-
timators (ML in particular) using the sample covariance of the error
(Meijer Gilbert 2005 [500]). We compute one factor time series either
for the XC or for the Y C using the attribute time series. Either one of
the two factorial time series represents the XC and Y C , where the first
one represents the general dynamics of the beanplot (in particular the
location and the size) and the second one represents the response of
the shock or the short run dynamics (the shape).

The final aim of the clustering process (Algorithm 13) is to rec-
ognize groups of time series with a synchronous dynamic (related to
the location of the beanplot or the XC) and a similar response to the
shocks (related to the Y C). Having obtained for each beanplot the
factorial time series both for the XC and the Y C , we compute the dis-
similarity matrix. In particular we use three versions of the distance
known in literature as correlational distances (see for example Dose
and Cincotti 2005 [225]), where we try to specifically recognize the
correlation between the dynamics of the different synthesizing factors
over time. So we have:

d(Y,X) = 1− (cξbYt ,ξbXt
) (9.9)

Where: Y = (ξbY1 , ξbY2 , . . . , ξbYt) and X = (ξbX1 , ξbX2 , . . . , ξbXt),
and cξbYt ,ξbXt

is the correlation coefficient between the two factorial

time series related to XC and Y C . We use as well2 other correlational
distances to compare the results:

2See Glynn (2005) [751]
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d(Y,X) =
1− (cξbYt ,ξbXt

))

2
(9.10)

Considering the absolute values:

d(Y,X) = 1−
∣∣(cξbYt ,ξbXt

)
∣∣ (9.11)

and finally:

d(Y,X) = 2

√
1− (cξbYt ,ξbXt

)2 (9.12)

We obtain the dissimilarity matrices related and we use different
clustering methods to compare the different results. We use the hi-
erarchical clustering and the non hierarchical clustering by applying
different methods. At this point we can apply different methods to
observe the robustness of the results.

9.3.1 Application: classifying the synchronous dy-
namics of the world indices beanplot time
series (BTS)

The methods depicted in the previous chapters are transformed in R
programs and experimented both on simulated data to test the char-
acteristics of the methods, and also on real data. In the application
on real data we consider various time series related to the index of
the major stockmarkets around the world. In particular we consider
14 markets related to different continents. The interval period consid-
ered, for the collected data, is the period 2001-2008. As a first step we
compute the beanplot time series (BTS) from the original time series,
and we use the information of the bandwidths to explore the volatility
(represented over time). Secondly, we identify the bandwidth and we
compute the attribute time series for all the beanplots both for the
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Data: n Beanplot time series (BTS) {bYt} t = 1...T
Result: A vector with n elements assigning each time series of

attributes for XC and Y C descriptors to each k group
begin

Choice of the I interval temporal to use
Choice of the n points to represent
Choice of the h bandwidth to use
for t ∈ T do

Estimating the XC

Estimating the Y C

Clustering the attributes time series for XC and Y C for
each beanplot time series (BTS) {bYt} t = 1...T

end
Are the clusters fitting the data adequately?
if the clustering method is not adequately fitting then

change the number of descriptor points n or the
bandwidth h

end

end
Algorithm 12: Beanplot clustering: attributes
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Data: n Beanplot time series (BTS) {bYt} t = 1...T
Result: A vector with n elements assigning each factor time

series of attributes for XC and Y C descriptors to each
k group

begin
Choice of the I interval temporal to use
Choice of the n points to represent
Choice of the h bandwidth to use
for t ∈ T do

Estimating the XC

Estimating the Y C

Estimating the factor time series (BFT) for each
beanplot time series (BTS) {bYt} t = 1...T
Clustering the factor time series for XC and Y C for each
beanplot time series (BTS) {bYt} t = 1...T

end
Are the clusters fitting the data adequately?
if the clustering method is not adequately fitting then

change the number of descriptor points n or the
bandwidth h

end

end
Algorithm 13: Beanplot Clustering: factor time series (BFT)
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Data: n Beanplot time series (BTS) {bYt} t = 1...T
Result: A vector with n elements assigning each time series of

attributes for p1 . . . n
begin

Choice of the I temporal interval to use
Choice of the n mixtures to represent
Choice of the h bandwidth to use
for t ∈ T do

Estimating coefficients p
Clustering the Beanplot time series (BTS) using the
model distance

end
Is the model fit adequate?
if the model fit is not adequate then

change the temporal interval I, number of mixtures n or
the bandwidth h

end

Are the clusters fitting the data adequately?
if the clustering method is not adequately fitting then

change the number of parameters n or the bandwidth h
end

end
Algorithm 14: Beanplot clustering: mixtures
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XC and the Y C . We consider three specific time series both for the
XC and for the Y C . At this point we consider both the true differ-
ent groups of time series and we synthesize the time series regarding
only one factor for the XC and one factor for the Y C . We obtain the
factor time series. It is interesting to note the strong impact of the
financial crisis on all the world stockmarkets jointly, where there are
various different responses due to the different economic policies. At
this point we classify the beanplot time series (BTS) and analyse the
synchronous behavior to compute the dissimilarity matrix, by using
different distances. Finally, using different methods we compare the
results obtained from the hierarchical and non hierarchical clustering
process. We retain a factor 1, that could be interpreted according
to size and data location, which determines classification due to the
different development characteristics of the different markets. Where
Brazil and Mexico represent the ”developing markets”, other markets
can be considered ”developed” such as the US market. Moreover the
developing markets show a better response to the crisis (and they fin-
ish in the same cluster with these characteristics) as we can observe
from the factorial time series. More in particular, for the developing
markets, there is higher growth and instability in the long term but
a better response to the financial crisis in the short term. It is in-
teresting to note a quick reaction to the crisis by the US and Japan
due to the expansionary economic policy and general policies adopted.
Hong Kong reacts as a specific market (in particular through its ties to
China) and Sweden represents an isolated market. The second factor
Y C represents the dynamics of the beanplot shape, and we observe
from the different clusters that there are similarities in the shock re-
sponses (representing also the beanplot shape). Markets that are near
through their close proximity, in that sense, show similarities in be-
haviour due to the financial connection. We expect that markets close
in proximity tend to behave similarly, and infact we observe that the
clusters present regroupments related to the European markets, the
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Asian markets and ”signal markets” such as Japan and the US. In
particular the data seems to show that in the short run the geograph-
ical factor seems to be fundamental for defining groups for Y C . The
short run dynamics is strongly related to the shocks and the conta-
gion mechanisms. The geographical spread of the shocks occurs if
we consider financial ties between different markets. For France and
Swizerland, in particular, we observe a strong reaction to the shocks
and synchronous movement of the markets whereas for the European
countries we observe various levels of synchronous movements of the
markets due to their common economic policies and economic shocks.
Finally, for the Asian and Latin American countries we find a general
instability (Brazil Mexico), and a connection between shocks in Asian
countries (Indonesia, Hong Kong, Singapore etc.). The instability of
the Latin American countries tends to have an impact also on the
Spanish market. Finally, Japan and the US are markets that repre-
sent ”signals” (which means they tend to behave differently compared
to other markets).

9.4 Model Based Clustering and Modern

Framework

In the first part of the work we have considered classical clustering
methods based on specific heuristics. Finite Mixture model structures
can be used as well in the clustering process, where, in particular,
each single component distribution can be considered a cluster. For a
review of these methods in the context of clustering see in particular
Melnykov Maitra (2010) [502]. Finite Mixture Models provide the ba-
sic foundation for a different approach: the Model Based Clustering
(Wolfe 1963 [705]). In this new framework, Bock 1996 [94], Fraley
Raftery (2002) [277] and Bock 1998 [92] has proposed a clustering ap-
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proach based on probability models. Clusters, in this approach, can be
considered a component probability distribution (Fraley Raftery 2002
[277]) where the foundation is a formal statistical approach (Fraley
Raftery 2007 [279]). Heuristic approaches can be used as approximate
estimation methods for some probability models (Fraley Raftery 2002
[277]). This second clustering strategy is necessary because of the
data complexity of the behaviours of the original data. In the first
approach, that is considering the TSFA analysis, we synthesized the
information, here we want to obtain clusters considering the different
behaviors of the different XC and Y C (at a lower or a higher level). In
this sense we are taking into account the data complexity and we con-
sider the different features of the beanplot behavior over time in the
clustering process. In particular we consider n time series of beanplots
characterized by different features XC − Y C . Each feature XC − Y C

can be seen as a single representation and could be differently mod-
elled considering the different time series. Another important idea
underlying this approach is that by considering subperiods over time
we observe the change over time of the data structure and the mod-
els. So we are considering data-analysis not as a photograph of the
situation but as the specific dynamics of change over time (following
an approach in a different context like Riani 2004 [582]).

9.5 Feature Model Based Clustering for

Beanplot Time Series (BTS)

The procedure can be defined in some sequential steps: in a common
way with respect to the TSFA methodology of beanplot clustering,
we had to define the set of the attribute time series. We obtain, for
example (the higher the level of definition we choose the higher the
number of descriptor points) six descriptor points of three XC and
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three Y C for each time. Having obtained the attribute time series
we consider each couple of XC − Y C attributes. Optionally we can
choose an aggregation subperiod in which we can obtain a specific
value XC−Y C for the beanplot time series (BTS) for the entire period
(or for a subperiod). We perform the model based clustering procedure
for each couple of characteristics considered (Algorithm 15) in the
subperiod and we obtain the clustering model and the classification
for each feature. It is important to note that the expectation is that
the beanplot time series (BTS) will be different in their features and
characteristics over time.

In fact, some attribute series tend to perform differently over time
t (for example, different minima and maxima) and beanplot features
can capture these differences. As already stated in the first part of the
work, in the Y C features we are considering the variability or the short
run movements, in the XC attribute time series we are considering the
mean effect over time, or the long run dynamics. Here, following Fraley
Raftery 2002 [277], we perform a model based cluster analysis for the
different beanplot XC − Y C features, each considered as a temporal
observation. Following Fraley and Raftery 2007 [279], we are making
the important assumption that in a specific set of data, the observation
z (related to the a feature XC−Y C) is generated by a mixture density:

f(z) =
G∑
p=1

τpfp(z) (9.13)

where τp with (τp ∈ (0, 1) and
∑G

p τp = 1) and fp as a probability
density function of the observations belong in the group p. The mean
µp and the covariance matrix

∑
p of the component distributions have

the probability density function:

φ(zi;µp,Σp) =
exp

{
−1

2
(zi − µp)TΣ−1

p (zi − µp)
}√

det(2πΣp)
(9.14)
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The likelihood for the considered data is:

n∏
i=1

G∑
p=1

τpφ(xi;µp; Σp) (9.15)

Here, the parameters (τp, µpΣp) are estimated by using the EM al-
gorithm. The mean, µp and the covariance matrix Σp characterize the
different components. In particular, Covariances Σp fix the geometric
features of the clusters, especially the shape, the volume and the ori-
entation. In this sense, the authors, Celeux Govaert (1995) [125], Fra-
ley Raftery (1998) [275] and Fraley Raftery (2002) [277] proposed to
specifically parametrize the group covariance matrices through eigen-
value decomposition of the Gaussian Mixture Model:

Σp = λpDpApD
T
p (9.16)

Where in particular: Dp is the orthogonal matrix consisting of the
eigenvectors, Ap is a diagonal matrix with entries proportional to the
eigenvalues of Σp, and λp is an associated scalar constant to the el-
lipsoid volume (Fraley 1996 [274]). The geometric characteristics of
the components are discovered when the parameters are found (Fraley
Raftery 2007 [279] and Raftery Fraley 2007 [571]) in particular Dp

the orientation of the specific component p of the mixture, Ap rep-
resents the shape, whilst λp represents the volume. It is important
to note that we obtain different models over time. So we repeat the
model-based clustering for each subperiod but also for each couple of
features XC − Y C . The general estimation method of the parameters
is the EM algorithm that shows the different shape of the mixtures as
well (for an adequate categorization of the different models see Fra-
ley Raftery 2002 [277]). In general the EM algorithm is a statistical
tool in mixture estimation problems or also those involving missing
data (Borman 2009 [103]). The EM algorithm can be considered as
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a procedure structured in two distinct parts. In the ”E” part, the
conditional expectation of the complete data log-likelihood is com-
puted cosidering the data, with parameter estimates (following Fraley
Raftery 2002 [277]). In the ”M” part, the parameters maximizing
the expected log-likelihood (from the antecedent ”E” part) are com-
puted. It is necessary in our context to repeat the analysis for the
different beanplot features (or attributes) considered. The algorithm
tends to converge if the increases of the likelihood in the sequential it-
erations increase (for each feature considered) Borman 2009 [103] and
also Fraley Raftery 2002 [277]. At the end of the procedure we obtain
the parametrizations of the different models (see also Fraley Raftery
1999 [276]). By obtaining the parameters it is possible to show the
structure of the components (Fraley Raftery 1998 [275]), the differ-
ent parameterizations of the covariance matrix are shown in (Fraley
Raftery 2006 [278]). Moreover, where each cluster corresponds to a
different statistical model (Fraley Raftery 2002 [277]), a typical model
selection, the problem is to choose the number of partitions or clusters
in the model based clustering process. For the model selection, various
methods can be used (see Fraley Raftery 2002 [277]), one of the most
known in literature is the BIC (see Fraley Raftery 1999 [276]). So we
choose the model that maximizes the BIC index for every beanplot
feature, because a penalty term is added to the number of parameters
of the log-likelihood considered. As the authors state (Fraley Raftery
2002 [277]) there is a specific trade-off in selecting a simple model or a
complex one. The second calls, usually, for a lower number of clusters.

9.5.1 The choice of the temporal windows

The choice of the temporal interval to be used in the dynamic part
of the procedure is a decision linked to the objectives of the analysis.
In particular, it can be interesting to compare the model based clus-
tering process in two (or more) different subperiods, alternatively it
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Data: n Beanplot time series (BTS) {bYt} t = 1...T
Result: A vector with n elements assigning each time series of

attributes for p1 . . . n
begin

Choice of the I temporal interval to use
Choice of the n points to represent
Choice of the h bandwidth to use
for t ∈ T do

Representing the n descriptor points obtaining XC and
Y C

Model Based Clustering using XC and Y C

Is the model fit adequate?
if the model fit is not adequate then

change the temporal interval I, number of
parameters n or the bandwidth h

end

Are the clusters fitting the data adequately?
if the clustering method is not adequately fitting then

change the number of descriptor points n or the
bandwidth h

end

Is the data structure changing?
if the data structure is changing then

consider at time t a structural change
end

end

end
Algorithm 15: Beanplot Time Series (BTS) Model Based Cluster-
ing
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can be interesting to find a structural break in a point in the time. In
particular a relevant choice is the specific interval, which determines
the change of the different mixture models over time for each beanplot
coefficient. In fact, each different interval can return different results
in XC − Y C . It is necessary to run and compare all the different
temporal intervals by considering the different results over the time.
It is possible to compare, as well, the outcomes by defining different
subperiods. At the same time different attribute time series can pro-
duce some outliers. So it is useful to detect them and to handle them
using some specific strategies (Lipkovich Smith 2010 [463]). In this
way some methods of Forward Search (Riani 2004 [582]) can be ap-
plied to the attribute time series. At the end of the dynamic analysis
we obtain not only a single evaluation by a dendrogram of a ”stable”
situation over the time, but a specific moving image of the models
and the clusters of the beanplots by considering their specific features
(minima and maxima for example)3.

9.5.2 Application: classifying the synchronous dy-
namics of the european indices beanplot time
series (BTS)

Symmetrically to the first part, also in this case the methods are trans-
formed into R programs, by considering all the different phases of the
process. The objective is to experiment the methods either by using
simulated or real data. It is important to stress the differences be-
tween the two approaches: the classical one (Chapter 9.2-9.3) and the
modern (9.4-9.5). In the classical approach we synthesize the original
attribute of the beanplot and we tend to use in the analysis a higher
number of series. In the modern approach we tend to select the ob-
servations by using all the features jointly to take into account the

3Atkinson Riani Cerioli 2004 [48]
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Figure 9.14: Beanplot Time Series (BTS) Model Based Clustering (1)

outliers.
In particular, we use here a set of data related to European Markets

in which we consider the period 2003-2010. In practice we follow all
the steps in the analysis described (internal and external modelling)
for all the different beanplot time series (BTS). As we know, the dif-
ference we want to exploit here are related to the XC and Y C char-
acteristics of the beanplots, those related to their features. Different
beanplot time series (BTS) show different features in relation to the
XC − Y C . We want to exploit directly these differences. In particular
we consider three couples of descriptor points related to higher values,
central values and lower values. It is important to note that there are
relevant differences in the attribute time series, related to the complex
functioning of the financial markets, single models and single charac-
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Figure 9.15: Beanplot Time Series (BTS) Model Based Clustering (2)

teristics of market similarities, so we obtain different models for each
feature of the beanplots. These different beanplot features can repre-
sent the complexity of the models we are considering. In particular we
expect some similarities in the behavior for each period (the behavior
of the influential financial areas) but at the same time some relevant
differences due to the complex behavior of the series each time. This
characteristic emerges in the course of the financial crisis and cannot
be observed with the first method. The results are visualized in the dif-
ferent pictures computed running the algorithms sequentially over the
time. In particular we obtain a first model based clustering analysis
by taking into account the entire period (39 observations). This first
analysis represents the general equilibrium of the period. It is related
to the entire period, computing sequentially the results for either the
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Figure 9.16: Beanplot Time Series (BTS) Model Based Clustering (3)

higher, the central or the minimum value. The results are depicted
in figure 5 and figure 6. We decided to work with minima because
the BIC seems to approximate better the models. By considering the
data interpretation, we can observe that there are two different clus-
ters with different characteristics in which the same results are evident.
According to the previous method, the observations tend to position
themselves with similar economic characteristics near to each other.
In particular, we can observe the monetary areas and markets char-
acterized by geographical regions and influential areas. In the second
part of the analysis we consider different subperiods and moving win-
dows to identify the structural changes over time. In particular the
period 1-21 is relatively stable over time. In particular observation 31
and 32 show a relevant structural change due to the financial crisis.
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Figure 9.17: Beanplot Time Series (BTS) Model Based Clustering (4)

As it is possible to observe that the contagion and the dynamics are
strongly related to the different local ”models” so it is also possible
to observe different situations between the various observations. In
practice we are able to observe the way in which the different markets
tend to react differently to the financial crisis. Each market seems to
be strongly related to the countries in the same system (figure 9.14 to
figure 9.19), however different systems react differently. The interpre-
tations of the identified phenomenon are various: financial linkages,
domino effects or contagion mechanisms. For a similar interpretation
of the contagion mechanisms and the different influential zones during
the financial crisis of 2008 see Pillar et al. (2008) [563].
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Figure 9.18: Beanplot Time Series (BTS) Model Based Clustering (5)

9.6 Clustering Beanplots Data Temporally

with Contiguity Constraints

It is possible to consider the clustering of a series of beanplot symbolic
data through the time with constraints of time contiguity4. This type
of analysis could be useful, for example, in identifying similar behav-
iors of the beanplot time series (BTS) over time, as well as structural
changes, change point, cycles and seasonalities in the intra-day dy-
namics. In financial analysis, for example, it could be very useful in
understanding some interesting patterns in the discovered data.

In this case we are specifically considering the different groups of

4Murtagh 1985 [524] Gordon 1999 [320]
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Figure 9.19: Beanplot Time Series (BTS) Model Based Clustering (6)

a beanplot time series (BTS) over time. So, with beanplots we tend
to classify the subsection of the series over time to discover similar
periods as internal characteristics. Contiguity constraints mean that
Beanplots must be clustered in a sequential way and groups of obser-
vations need to be contiguous. At the same time this type of analysis
could help to identify some outliers that need to be considered in ad-
vance before building forecasting models. In this sense, the cluster
analysis can be very useful in model identification in order to identify
the relevant information sets in forecasting models. The relevant sets
can be the value for building forecasting models in a rolling scheme
or can be used to improve the performances using a Search Algorithm
(see the Forecasting Chapter).
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9.7 Clustering using the Wesserstein Dis-

tance

Following Irpino and Verde 2008 ([398]), the authors propose the
Wesserstein distance to cluster histograms. The same distance can
be used to cluster the density data. In particular the Wesserstein L2
metric is proposed in Gibbs and Su (2002) [305].

Where the quantile functions of the two distributions are F−1
i and

F−1
j so we use this distance:

dW (Byi
, Byj

) =

√∫ 1

0

F−1
i (t)− F−1

j (t) dt (9.17)

At the same time Irpino and Romano (2007) [395] have proved that
the distance can be decomposed as:

d2
W = (µi − µj)2 + (σi − σj)2 + σiσj(1− ρQQ(Fi, Fj)) (9.18)

Where ρQQ(Fi, Fj) can be considered the correlation of the quantiles
of the two distributions Fi and Fj that could be considered in the
classical QQ plot. In particular by using this distance we can classify
the single density data, where we compute the dissimilarity matrix
(Algorithm 16. So in that sense, we consider various different methods
to classify the different beanplots over time.
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Data: n Beanplot time series -BTS {bYt} t = 1...T
Result: A vector with n elements assigning each Beanplot bYt

for p1 . . . n
begin

Choice of the I temporal interval to use
Choice of the n descriptor points to represent
Choice of the h bandwidth to use
for t ∈ T do

Estimating the coefficients p
Clustering the Beanplots bYt using the Wesserstein
Distance

end
Does the model fit adequately?
if the model fit is not adequate then

change the temporal interval I, number of descriptor
points n or the bandwidth h

end

Are the clusters fitting the data adequately?
if the clustering method is not adequately fitting then

change the number of descriptor points n or the
bandwidth h

end

end
Algorithm 16: Beanplot clustering using the Wesserstein Distance
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9.8 Comparative Approaches: Clustering

beanplots from Attribute Time Se-

ries

The different methods seen are related to different objectives and be-
long to different approaches. In the case of the coefficients estimation
based on mixtures the objective is to cluster specifically the models
(internal models) so the appropriate distance is the distance of Ro-
mano Lauro Giordano 1996 [594]. In general this type of coefficients
estimation is related to the differences between different beanplots
over time, and can be compared by considering different subperiods in
the beanplot time series (BTS) where the objective is to cluster each
model, separately considered, in the series of the beanplots. In that
sense we are clustering the structural part of the beanplots. Here we
use the coefficients estimation related to the mixtures

A completely different approach is that related to considering the
trajectories of the beanplot and its synthesis. Here the representation
considered is related to the coordinates. In that sense we can consider
the factor time series of the beanplot time series (BTS) and we use
the appropriate distance to cluster the different time series. In this
case we are considering the different temporal evolution of the differ-
ent series. We define this method as the ”classical” one.

A modern approach is Model based clustering. In this case we are
considering both the XC the Y C for each beanplot time series (BTS).
Clearly also in this case we consider the representation by coordinates.
In this case we consider also for each time the specific representation.

Finally, if the interest is to cluster each beanplot data in a beanplot
time series (BTS) we can consider the different beanplot and cluster
the beanplots using other types of distances such as Euclidean or the
Wesserstein distance.
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9.9 Building Beanplot Prototypes (BPP)

using Clustering Beanplot Time Se-

ries (BTS)

A relevant Clustering application is to build prototypes (or indica-
tors) from the original Beanplot Time Series (BTS)(Algorithm 17,
Algorithm 18 and figure 9.20). In particular we start from the origi-
nal Beanplot time series (BTS) which we parameterize following the
two different approaches (coefficients estimation At and coordinates
XC and Y C). So we obtain the Factor Time Series (defined BFT)
by the Time series factor analysis methodology. In this sense we are
synthesizing the information in the beanplots and we are considering
the latent factors which impact on the beanplot dynamics. Then we
can use a clustering technique to obtain clusters of time series and
his prototypes. These prototypes are very useful to build indicators
for the initial beanplot time series (BTS) related to specific groups
with similar dynamics (for example starting from the Beanplot time
series (BTS) related to different stocks it is possible to build indica-
tors related to stocks with similar behaviors). At the same time the
prototypes are useful in the Forecasting processes where it is possi-
ble to identify different Beanplot time series (BTS) which could be
modelled to take into account the specific inter-relationships between
them. Beanplot Time Series (BTS) which act as outliers can be well
detected in this way.

9.10 Sensitivity and Robustness of the Clus-

tering Methods

The outlier identification is a relevant but not simple task (see Huber
1981 [373]). So a first possible outcome in the cluster analysis is that
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Data: n Beanplot time series (BTS) {bYt} t = 1...T
Result: n Beanplot protypes (BPP) one for each k group
begin

Choice of the I interval temporal to use
Choice of the n points to represent
Choice of the h bandwidth to use
The parameters are Beanplot model coefficients ?
if the parameters are Beanplot model coefficients then

for t ∈ T do
Estimating coefficients p
Clustering the factor time series using the model
distance
Deriving the Beanplot Prototypes (BPP) from the
clusters

end

end

Are the clusters fitting the data adequately?
if the clustering method is not adequately fitting then

change the number of descriptor points n or the
bandwidth h

end

end
Algorithm 17: Building Beanplot Prototypes (BPP) using Bean-
plot clustering (Model coefficients approach)
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Data: n Beanplot time series (BTS) {bYt} t = 1...T
Result: n Beanplot prototypes (BPP) one for each k group
begin

Choice of the I interval temporal to use
Choice of the n points to represent
Choice of the h bandwidth to use
if the parameters are Beanplot descriptors then

for t ∈ T do
Estimating the XC

Estimating the Y C

Estimating the factor time series (BFT) for each
beanplot time series (BTS) {bYt} t = 1...T
Clustering the factor time series for XC and Y C for
each beanplot time series (BTS) {bYt} t = 1...T
Deriving the Beanplot Prototypes (BPP) from the
clusters

end

end

Are the clusters fitting the data adequately?
if the clustering method is not adequately fitting then

change the number of descriptor points n or the
bandwidth h

end

end
Algorithm 18: Building Beanplot Prototypes (BPP) using Bean-
plot clustering (Descriptor points approach)
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Figure 9.20: Building Beanplot Prototypes (BPP) from the Beanplot
Time Series (BTS)

of identifying the different outliers that could be specifically found in
the considered data. In our case, outliers can be internal models or
single beanplots, or the initial beanplot time series (BTS).
At the same time, the clustering methods are inherently based on
homogeneous data with heterogeneous clusters that do not present
outliers (Fritz Garćıa Escudero Iscar 2011 [283]). So a strategy that
could be performed by considering the clustering methods seen before
is that of starting with the complete number of observations and firstly
identifying some relevant outliers. Then, there is the repetition of the
clustering to identify the relevant groups.

The different clustering methods are inherently different among
themselves and that need to be considered for different purposes. At
the same time, the different methods exhibit different levels of ro-
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bustness they need to be considered both with or without the outliers
found previously in the analysis of identifying the data structures.

An alternative is the use of a robust method in clustering along
one of the approaches followed in literature (see Hardin Rocke 2004
[339] Garćıa-Escudero, Gordaliza, and Matrán, C. (2003) [292] and for
different approaches Henning 2009 [357] and Riani 2004 [582])

9.10.1 Ensemble Strategies in Clustering Bean-
plots

Another possible approach to improve the quality and the robustness
of the cluster solutions in the clustering process is to adopt an ensem-
ble strategy (see Day 1986 [171], Hornik 2005 [366], Strehl and Ghosh
2002 [643]). In practice it is possible to use different clustering meth-
ods and reconcile the information obtained by the different methods
(Consensus Clustering).

In particular in the beanplot time series (BTS) it is possible to clus-
ter by considering different methods (both clustering the time series
of beanplots, or the single internal data) so we can use the ensemble
methods to assess the stability of the clusters obtained.

In this sense, we can consider as input type in the ensamble clus-
tering the following: the different internal modelling approaches, the
different distances and the different methods explored above during
the chapter, with the aim of comparing the results between them.

9.11 Clustering: Usefulness in Financial

Applications

Clustering Beanplots time series can be useful in different contexts.
For example, it is possible to monitor the behavior of different stocks
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to determine the subset of the stocks determining the weight of each
stock in the portfolio (for asset allocation purposes). So in this sense
the characteristic of the beanplot time series (BTS) is that of using
a high quantity of available information to cover different possible
events in order to choose the different subset of stocks under different
temporal contexts. At the same time it is possible to apply cluster-
ing techniques to evaluate the differences between stocks. It is also
possible to identify the different market phases by considering a clus-
tering technique with contiguity constraint. We obtain a contiguous
series of the most similar beanplots by segmenting the initial beanplot
time series (BTS) to indicate different market phases. Therefore it is
possible to detect the different market phases and to determine which
type of events is causing the stock behavior. The beanplot can take
into account volatility and so this can be a tool for financial risk man-
agement. At the same time, the beanplot can be useful in statistical
arbitrage in order to identify very similar pairs of different stocks (see
Chapter 11).

Possible applications: Market Monitoring, Macroeconomic and Fi-
nancial Analysis, Mining Financial Data, Statistical Arbitrage, Asset
Allocation, Quantitative Trading−event identification, Event Studies,
identifying patterns related to specific financial events in a tempo-
ral window, Tactical Asset Allocation−pattern identification and ex-
ploitation (using financial market inefficiencies), Risk Management−identification
of the market phases.
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Summary Results: Clustering
Three Clustering approaches are considered: the first one is to clus-
ter the data model over the time using the appropriate distance.
In the second one the Beanplot Time Series (BTS) are clustered
considering classical distances. By time series factorial techniques
we obtain a representation of the initial Beanplot Time Series -BTS
(a synthesis)
A third modern approach is based on Model Based Clustering and
considers jointly all the characteristics of the Beanplot time Series
(BTS).
Cluster Analysis can be used to detect outliers in the Beanplot time
series (BTS) or Change Points.
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Chapter 10

Beanplots Model Evaluation

In this chapter we compare the different methodologies of evaluations
in clustering and forecasting beanplots as external models, and at the
same time internal modelling.

We have seen in Chapters 7, 8 and 9 internal and the external mod-
elling methods, here we will be studying the measures of evaluation of
these models. At the same time, it is possible to hypothesize that there
will be impacts of internal modelling on external modelling. So these
methods can be considered fundamental for the correct representation
of the data models or the single beanplots as internal representations.
For example problems can exist in internal models as outliers, in struc-
tural changes or in specific data structures. So we need to analyse in
this chapter the relations between the accuracy of the external models
with respect to the Internal Modelling. At the same time there are
cases in which Internal Models do not accurately represent initial data
either because of the charateristics of the complex time series or be-
cause they are influenced explicitly by outliers (for the phenomenon of
the overgeneralization see Chapter 1). In these cases there is a general
loss of accuracy in the models. There are in this sense various strate-
gies to consider when facing these types of problems. It is possible to
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weight these observations differently or not to even consider them, or
use a statistical imputation strategy etc.

A more general solution could be that of respecifying the internal
models, and so attempt in this way to improve the results of the ex-
ternal models. Another important problem is how to identify observa-
tion in the specification phase (using some strategies like the Forward
Search: in Atkinson Riani and Cerioli 2004 [47]). Different evaluations
of the models can take different decisions on various data aspects, for
example the interval temporal (see Chapter 6). An ineffective exter-
nal or internal modelling can lead to the choice of a different data
representation (as seen in Chapter 4).

10.1 Internal Modelling: Accuracy Mea-

sures

In this case, for each internal model, we need a specific strategy to
evaluate the goodness of fit. In the case of the mixture models it is
possible to use the chisquare as an index to measure the adequacy of
the data to the model (see Du 2002 [239], and Titterington Smith and
Makov 1985 [660]).

As already observed in the internal modelling part of the work we
can observe that the adequacy is computed for each step of the itera-
tive model selection in the internal modelling phase, where the goal is
that of reaching the maxima data approximation of the model. The
different approaches in Internal modelling evaluation are summarized
in table 10.1

It is important to note that the coordinate approach for the density
trace representation is related to a description of the original density
data with respect to a specific modellization.
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Table 10.1: Internal modelling evaluation

Approach Evaluation Method
Mixture models Chi square statistics

Coordinates -

10.2 Mixture Models and Diagnostics

Mixture analysis can be used in the analysis of the internal method
of the period considered (figure Algorithm 19). In particular we esti-
mate the parameters (in particular mean, standard deviation and the
proportion of the observations in the group) of two or more univari-
ate normal distributions. The number of the distribution is given by
a-priori theoretical considerations or by simple preliminary data ex-
ploration (which usually delivers some initial starting points for the
algorithms). A first relevant diagnostic tool is the chi square statistic
to observe the adequacy of the internal model to data (see Du [239]).
The ANOVA test usually follows for each beanplot considered over
time.

In particular, given a specific period of time defined by a Beanplot
we can carry out a mixture analysis to study the differences between
groups of observations in the defined temporal interval. To compute
the mixtures it is possible to use the EM algorithm (Dempster et al.
1977 [193]), whilst in choosing the number of groups one can apply
the AIC Akaike Information Criterion (Akaike 1974 [11]) with a small-
sample correction (we have used also the software PAST).

AICc = 2k − 2ln(L) +
2k(k + 1

n− k − 1
(10.1)

313



Beanplots Model Evaluation

Here k is the number of the parameters, n is the number of data
and L is the likelihood of the model. The lower the AIC, the better
the number of mixtures that avoid the overfitting and produce the
best fit 1. This procedure compares the number of groups considered
with the analysis and choosing of the optimal. So we need to compare
the mean and the standard deviation for each group and minimize the
AIC in the parameterization.

Each observation can be assigned to each group considering the
maximum likelihood approach (see Hammer 2011 [335]). Various meth-
ods can be used in this respect as a non-hierarchical clustering method.
The usefulness of the method in the diagnostic of the models is that
data with poor performance with respect to one group or another one
usually calls for a different coefficients estimation or descriptor points
representation.

10.2.1 Application on real data: Evaluating In-
ternal Models: the case of the Mixtures

We consider the Beanplot time series (BTS) for the Dow Jones market
1990-2010 (figure 10.1). We estimate the coefficients of the model
using the mixture approach, so we obtain the coefficients π1, π2, and
π3. At this point we can obtain at the same time the mean of the
mixtures µ1, µ2 and µ3 that represents another important indicator in
the adequacy of the internal models. We obtain for the first 20 periods
(see table 10.2):

1 In the computation the software Past is used: see the Past documentation
[758] and Hammer 2011 [335]
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Data: A Beanplot internal model {bXt} t = 1...T in a temporal
interval k

Result: n groups and an assignment of the i observations to
the n groups

begin
Choice of the n groups
Assignment of the i observations to the n groups
for t ∈ T do

Choice of the n groups
Assignment of the i observations to the n groups
Is the mean for the interval statistically significant?
if the mean is different then

Use this information for the statistical arbitrage k
end

Kernel Estimation of the internal model using a different
interval k

end
Is the internal model not fitting data adequately?
if the internal model is not adequately fitted then

change the interval temporal k
end

Kernel Estimation of the internal model using the interval k
end

Algorithm 19: Mixture analysis as evaluation of the internal model
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10.3 Forecasting Evaluation Methods

It is possible to evaluate the methods used in forecasting2. Here, we
analyse the performances of the forecasting methods by introducing
some measures of adequacy of the performances obtained for the time
series of attributes. In this sense, we apply these indices of adequacy
for each point computed.

Definition 9. Local Forecast error Et is the difference between the
actual value of an attribute time series yt and the predicted value of the
attribute time series Ft . Here we denote for the following equations:
Et as the prediction error, Ft the value to forecast and n typically the
number of the observations.

Et = yt − Ft (10.2)

Definition 10. The forecast error for the Beanplot Time Series
(BTS) of attribute (BMAE) bXt at t = 1...T is:

BMAEa,t =
n∑
a=1

(∑n
t=1 |Et|
n

)
(10.3)

Where a is a single attribute of the beanplot. The index is com-
puted as the sum of the Local Forecast error Et considering all at-
tributes.

At the same time it is possible to compute the Beanplot Mean
Absolute Percentage Error (BMAPE), so we have:

BMAPEa,t =
n∑
a=1


∑n

t=1

∣∣∣∣EtFt
∣∣∣∣

n

 (10.4)

2West 2006 [697] Hyndman 2006 [379] Hyndman Koehler (2006) [386]
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In both cases the objective of using a forecast temporal interval
t = 1...T is to minimize the index. The indexes of adequacy are
not the unique indicators of goodness of fit of an external forecast
model, in fact, also a poor approximation of the internal models on a
specified benchmark can be a signal of bad approximation of a forecast.
Therefore, it is necessary to weight differently the beanplots that are
not fitting well in the real data: an indicator of goodness of fit in the
internal model, given an optimal bandwidth h obtained the Beanplot
Internal Model Error for each beanplot b:

BIMEb,t =
n∑
t=1

h∗t − ht (10.5)

If it is the case that the BIME index is performing in a poor way
it means it is necessary to respecify the external model.

10.3.1 Forecasting evaluation procedure

After having considered the single forecast, the forecast error is the
difference between the real value at time t and the forecast value for
the correspondent period.

A Measure of error (at time t) is:

FE = forecasting error = 100%× |yactual − yforecasting|
yactual

(10.6)

for the measures of aggregate error (for more than one period) each
of them has different performances due to the different ways to handle
outliers and observation outside some range. So we use a battery
of indexes to evaluate the forecasting models. Here Et is denoting
the error, yt denotes the series to predict and N is the number of
observations. So we have:
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Mean Absolute Error:

MAE =
1

n

n∑
t=1

|yt − Ft| =
∑n

t=1 |Et|
n

(10.7)

Mean Absolute Percentage Error:

MAPE =

∑n
t=1 |

Et

yt
|

n
(10.8)

Symmetric MAPE (see Hyndman 2006 [379]):

sMAPE = mean

(
200

|ytFt|
(yt + Ft)

)
(10.9)

Percent Mean Absolute Deviation:

PMAD =

∑n
t=1 |Et|∑n
t=1 |yt|

(10.10)

Forecast Skill (related to the MSE)

MSE =

∑n
t=1E

2
t

n
(10.11)

SS = 1− MSE forecast

MSE ref

(10.12)

10.3.2 Discrepancy Measures

Giudici 2006 [312] shows various methods that could be used in this
case. An important class of methods are related to the Discrepancy
measures, for example, distances on intervals that could be used to
evaluate the prediction of the size of the beanplot.
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10.3.3 Applications on Real data: Evaluating the
Mixture coefficients estimation and Fore-
casting

We consider the data for the Dow Jones Index for the period 1990-
2011. We describe here the forecasting procedure:

1. Defining an adequate temporal interval (for example a year)

2. Estimating coefficients of each beanplot in the time series (the
π model coefficients)

3. Obtaining the factorial time series

4. Forecasting the factorial time series (individual forecasts, com-
binations, or hybrid models)

5. Diagnostics of the internal and external model

We obtain the forecasting models and we can perform the diagnostic
for each model.

Individual forecasting model on the factorial time series (Auto-
ARIMA algorithm)

Forecast combination strategy with model selection. Weight-
ing proportional to the forecasting performance of the models: VAR,
Setar, Exponential Smoothing, Auto-Arima, Theta, Splinef. Best
methods: Auto-Arima and Splinef with weights 0.35 and 0.65

10.3.4 Applications on Real data: Evaluating Fore-
casting the Dow Jones Index

Dataset 1: Dow Jones dataset 1928-2010. We consider an example
related to forecasting the index for the Dow Jones (for the year 2010).
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We consider for exploratory purposes the Dow Jones data (1928-10-
01–2010-7-30): in total 20,549 observations. Not all the observations
are used to build the models but are considered only in the visualiza-
tion of the entire beanplot time series (BTS). We consider as Forecast-
ing model period (1998-08-03–2008-08-03) so we define a first set of
relevant observations in Forecasting. The objective is the Forecasting
of the year 2009 and for the interval 2009–2010. Forecasting methods
used: VAR, Auto-Arima, Exponential Smoothing, Smoothing Splines.
At the same time as considering Forecasting combinations (Mean, Ex-
ponential Smoothing, Auto-Arima) we compare the forecasts obtained
with whose obtained by the naive model. At that point we consider
different diagnostic measures for the models considered. The results
in the table appear to be good and seem to suggest the use of forecast
combinations in order to improve the results (see table 10.3 and table
10.4).

10.4 Clustering Evaluation Methods

At the same time as evaluating the Internal Models it is also possible
to evaluate the External Models as Clustering and Forecasting meth-
ods. Typically the internal models can be evaluted by observing the
adequacy of the beanplot model data. Here we start with the analysis
of the Clustering Methods for the evaluation of the Clusters obtained.
For a review of the clustering evaluation methods see Wagner and
Wagner 2006 [685] and Meila M. 2003 [501].

10.4.1 Internal Criteria of cluster quality

An internal criterion can be based on the idea that a cluster that
minimizes the distance within different clusters is better than one that
maximizes the distance. It is an internal criteria, one based on the
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Figure 10.1: Beanplot Dow Jones Data 1996-2010 (see Drago and
Scepi) 2010
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results of a specific dataset and not on external information. In that
sense we can consider some indices of adequacy like the Davies Bouldin
and the Dunn Index . The best known are the work by Davies Bouldin
1979 [168] defined the Davies Bouldin Index (DBI):

DBI =
1

n

n∑
i=1

max
i 6=k

(
µi + µk
d(cei, cek)

)
(10.13)

In this respect n is the number of clusters obtained by the proce-
dure, cx is the centroid of cluster obtained x where µx is the average
distance of all elements in cluster x to the centroid cex and d(cei, cek)
is the distance between the centroids.

And at the same time, the Dunn Index, by Dunn 1974 [242] can be
defined:

DI = min
1≤i≤n

{
min

1≤k≤n,i 6=k

{
d(i, k)

max1≤j≤n d(j)

}}
(10.14)

where d(i, k) is actually measuring the distance between two generic
clusters i and k. The intra-cluster distance in the cluster j, between
any pair of elements is represented by d(j), by using for example the
maximal distance.

The inter-cluster distance d(i, k) between two clusters can be rep-
resented also by any type of distance, for example a distance between
the centroids of the clusters can be used.

Both these indexes aim to show the adequacy of the cluster analy-
sis performed. It is clearly desirable that procedures perform with the
lowest Davies Bouldin Index and the maximum Dunn Index possible.
This result is expected for the reason that it is better that a clustering
process generates clusters with high intra-cluster similarity between
the components of each groups and low inter-cluster similarity.
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10.4.2 External Criteria of cluster quality

In this case we consider external evaluation criteria (for example, ex-
pert evaluations), so the clustering process is evaluated by considering
these criteria as the benchmark. Some examples of these indexes are
the Rand and the Jaccard Index. The Rand Index, Rand 1971 [575]:

RI =
TPV + TNG

TPV + FPV + FNN + TNG
(10.15)

In this case TPV and TNG represent the true answers: respectively
positives and negatives. In the denominator, the sum of the total of
cases where FPV is the number of false answer positives and the
FNN is the number of false answer negatives.

The Jaccard Index, Jaccard 1901 [400] can be defined as the number
of unique elements common to both sets (S1 and S2) also defined as
the size of the intersection of the sets divided by the total number of
unique elements in both sets (or the union). So we have:

J(S1, S2) =
|S1 ∩ S2|
|S1 ∪ S2|

(10.16)

At the same time the Fowlkes Mallows Index, by Fowlkes Mallows
1983 [273]

Fa,b =
N1,1√

(N1,1 +N0,1)(N1,1 +N1,0)
(10.17)

Where in the numerator appear the elements in the same cluster
a and b set, and in the denominator the sum between the same cases
and the others.
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10.4.3 Computational Criteria

A criteria to evaluate the cluster quality is also proposed by Suzuki
and Shimodaira 2004 [649], Shimodaira 2004 [628] and Shimodaira
2002 [627] which proposes an algorithm to assess the uncertainty in
hierarchical cluster analysis.

In practice the P-Values of each partition are computed by boot-
strap so every cluster can be evaluated. In our sense we can evaluate
every cluster as an external model.

10.5 Forward Search Approaches in Model

Evaluation

The Forward Search (see Atkinson Riani Cerioli 2004 [47], Atkinson
Riani 2004 [46] and Riani 2004 [582] ) Approach can be used to analyse
the presence of outliers in the internal models but also in the external
models.

In particular in the external models, the methods are applied di-
rectly on to the trajectories related to the coefficients estimation and
the descriptor points

In this approach, the observations as outliers are detected, but also
structural changes over time are detected so it is possible to operate
to a respecification of the models.

Rolling approaches can be useful in detecting the different data
structures that could be found in data, so detecting structural changes
over time.
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10.6 The Internal and the External Model

Respecification

If the model is not adequate, then it can be respecified either by con-
sidering the outliers found or the different periods shown in the data
(for example different structural changes).

Various respecification strategies can be adopted. The outliers can
be imputed, respecified or not considered in a comparative approach
with the initial data. A different approach is that of considering dif-
ferent specifications for the internal models, such as different temporal
intervals, different bandwidths or different Kernels.

At the same time different respecifications can be adopted for the
external models, like different periods for building external models (or
the forecasting models), different methods for forecasting the attribute
time series or the trajectories generated by the coefficient estimations
and the descriptor points.

The process ends when there can be some satisfaction in the mod-
elling and in the clustering or forecasting process. By citing Box and
Draper’s work: ”essentially, all models are wrong, but some are useful”
(Box and Draper 1987 [98]).

10.6.1 Application on real data: Model Diagnos-
tics and Respecification

We start by using as a univariate forecasting model the Smoothing
Splines for the three XC attribute time series. Results are compared
with the real value, where the previous observations represent the
naive forecasting model. We outperform the naive model. In particu-
lar we perform an error of 5-6 with respect to the real value (MAPE
5-6). The result seems to be good. In the case of the lower part of
the beanplots (the lower risk interval) this could be considered more
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difficult to predict in conditions of high volatility and market crisis.
So we expect in these cases a lower performance in the prediction
models. By considering an alternative and competitive forecasting
univariate model (by Automatic Arima: see Hyndman 2008 [382]) we
outperform the naive forecasting model but we also outperform the
smoothing splines approach. In particular the Automatic Arima algo-
rithm selects the best Arima model by minimizing the AIC (Akaike
Information Criteria index). So in this case the best models tend to
outperform the previous ones we have considered. Here we consider
the Y C attribute time series associated to the XC attribute time se-
ries in the stationary framework as an example of the VAR forecasting
model. Here as well, we outperform the naive model, but the results
are not as good as in the X case. In fact the Y contains all the com-
plexity in our data and so the predictions are therefore necessarily less
accurate (MAPE around 20). Here for predicting the Y attribute time
series we use the Smoothing Splines approach in which we are specif-
ically trying to denoise the dynamics of the shape. Two times out
of three the model outperforms the naive method. The performances
of the methods for the Y are not as good as the X case (and that
could be expected given the nature of the attribute time series). The
Smoothing Splines approach seems for the Y case the best approach
in the forecasting of the Y attribute time series. Here we use the
smoothing splines of the previous example while considering another
relevant element: an original algorithm that optimizes the forecasting
model by selecting the relevant temporal information (by minimizing
the MAPE in the validation period of the model). So the procedure
is divided into two distinct parts: running the algorithm to minimize
the MAPE in the validation period and using the interval temporal for
the forecasting. In that way we are explicitly selecting all the relevant
set of information (without structural breaks) in our data. The results
seem to be good (at least in respect to the other models used as bench-
mark). The decision to deal with a selection algorithm of the optimal
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interval for the Y attribute time series can be explained by saying that
we are dealing with a very volatile attribute time series (the Y ) and
with dynamics with frequently occurring structural changes. So we
need to consider the relevant information in order to try to minimize
the noise that could lead us to not correctly understand their dynam-
ics.

See table 1 to compare the different MAPE for the Y as different
attribute time series. The final conclusion of the application is that it
is necessary to take into account the Search algorithm to find the best
model before attempting a respecification of the models (for example
by considering a different bandwidth).
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Summary Results: Model Evaluation
All the models, both internal and external, need to be evaluated.
The evaluation needs to be conducted before considering the inter-
nal models, and the model that does not faithfully represent the
initial data needs to be discarded.
Outliers need to be identified and eventually imputed or discarded.
At the same time, the clustering and the forecasting procedures
need to be evaluated in order to improve their performances.
Bad model performances lead to model re-specification, in order to
obtain better performances.

Figure 10.2: Attribute Time Series

328



10.6. The Internal and the External Model Respecification

Table 10.2: Internal modelling diagnostics

Model π1 π2 π3 µ1 µ2 µ3 chisq
1 0.35 0.32 0.33 247.07 274.69 282.18 0.00
2 0.00 0.49 0.51 305.60 320.73 321.72 28.31
3 0.33 0.33 0.34 194.60 243.21 272.96 0.00
4 0.32 0.32 0.36 101.39 140.45 174.19 0.00
5 0.34 0.36 0.30 52.38 64.32 76.48 0.00
6 0.34 0.33 0.33 61.09 95.30 97.25 0.00
7 0.44 0.20 0.36 94.02 95.81 104.03 0.00
8 0.32 0.36 0.32 103.38 119.83 139.63 0.00
9 0.23 0.48 0.29 152.08 158.47 176.96 0.00

10 0.28 0.40 0.31 132.62 178.01 189.61 0.00
11 0.46 0.16 0.38 120.50 127.89 147.53 0.00
12 0.36 0.29 0.35 136.04 140.59 150.76 0.00
13 0.08 0.68 0.24 123.72 131.90 147.30 0.00
14 0.33 0.34 0.33 119.78 123.19 123.19 29.59
15 0.00 0.70 0.30 104.33 104.92 112.52 10.83
16 0.11 0.52 0.38 124.12 134.32 139.72 0.00
17 0.36 0.16 0.48 137.56 144.99 147.53 0.00
18 0.33 0.35 0.33 157.09 165.68 186.34 0.00
19 0.35 0.30 0.34 171.54 200.25 204.34 0.00
20 0.32 0.33 0.35 176.28 176.28 180.04 7.65
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Table 10.3: External modelling diagnostics

z1
ME -0.34

RMSE 0.58
MAE 0.36
MPE 15.17

MAPE 16.98

z2
ME -0.18

RMSE 0.18
MAE 0.18
MPE 12.48

MAPE 12.48
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Table 10.4: Accuracy of the Forecasting Models on the Attribute Time
Series
Attribute
time series

method 1 2 3

X Smoothing
Splines

6.79 7 3.28

X Auto
Arima

7.23 0.87 4.22

X Combination
Forecasts

2.18 2.72 2.12

Y Smoothing
Splines
with
Search

24.11 34.92 24.54

a The considered accuracy measure in the table is the MAPE.
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Chapter 11

Case Studies: Market
Monitoring, Asset
Allocation, Statistical
Arbitrage and Risk
Management

The aim of this final chapter is to show the methods seen in the pre-
vious chapters in real contexts of Finance application: Market Moni-
toring, Asset Allocation, Statistical Arbitrage and Risk Management.
Here, an application on real time data is presented.

A second aim of this part is to show the way in which the proposed
methods could improve both the classical methods based on aggre-
gate representation (say, intervals, boxplots or histograms) and scalar
data. An important characteristic of these data is that they are in real
time, so the data are collected until 26/9/2011, but the models can be
updated because these data are coming from different world markets,
day by day. They are Indexes so they represent the compared behavior
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of the world markets over time. We present some applications of the
methods presented in the thesis based on real data.

11.1 Market Monitoring

Here the objective is to consider, in real time, the market changes for
many different stocks by considering the beanplot time series (BTS)
compared to the other types of representation. In this respect, visual-
ization techniques are very useful and important in order to identify
rapid market phases and effects caused by market shocks such as finan-
cial market news, new regulations, etc. From the visualization of the
beanplots it is possible to consider clustering methods or forecasting
methods to make better decisions on market operations (for example,
related to risk profiles).

The original dataset of scalar data can be represented as follows.
The dates are from 1/1/1990 to 26/9/2011 (figure 11.1) and they come
from Yahoo Finance, in which we select the time series related to the
closing prices of the most important world stockmarket indexes (Dow
Jones or DJI, Dax, Cac 40 etc.). In all these cases the interesting
point is that we do not observe the different time series due to the
different scales and the data quantity. We need to consider some al-
ternative representations (for example: intervals, boxplots, histograms
or beanplots) for a better data visualization and exploration.

The visualization of the time series is in figure 11.2 and figure 11.3.
By considering the original time series we can observe the different
scales. It is clear in this case that visualization is very difficult and
we cannot observe the details by considering each time series. At the
same time we could be interested in considering some specific intervals
(temporal intervals) to analyse the intra-period variation. This type of
analysis could be very interesting in comparing the risk profiles of the
time series. By considering the Scalar time series we can observe the
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Figure 11.1: Scalar dataset

intra-temporal variations by considering short periods or short intra-
temporal intervals. The best interval temporal in this case could be
considered that of the year as we are interested in an analysis of the
risk. So we need to consider a higher temporal interval (more or equal
to a year).

At this point we can visualize the beanplot data, where some com-
plete information on the dynamic of the original time series can be
obtained (figure 11.4 to (figure 11.6)). In particular, the information
related to the long run dynamics of the series (trend and cycles) is
kept, in which we can check the different intra-period variability. In
this case, the analysis is very useful in understanding the long run
behavior of the markets and the rise of eventual speculative bubbles.
In fact we find an exponential growth of the original time series (vi-
sualized by the growth of the beanlines of the different beanplots for
the DJI markets), further we need to investigate the foundation of the
growth to understand better if there are some speculative bubbles.
The structure of the single beanplot is useful in a long run analysis
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Figure 11.2: Visualization of the time series Dow Jones 1990-2011

Figure 11.3: Visualization of the time series Bovespa (Brazil) BVSP
1990-2011

to analyze the risk profiles, where the size is higher than expected;
this higher volatility is probably due to an increase in the amount
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of news in the market and in structural changes due to policies, new
regulations etc. The shape for each year could be considered, in order
to understand over time the possible losses for the single markets, in
fact by considering the time-horizon of one year we can hypothesize
the possible losses year by year (before the computation of some risk
measures). This could be useful to understand the financial crisis in
2008. A growth of the American economy was fuelled by various reg-
ulations and policies (as well as the growth of the dividends) and this
encouraged risky behavior by some managers.

That could be visualized by considering the growth of the bean-
plots, as when the upper bound was reached the beanplot collapsed
by creating double bumps (in 2008). Clearly the structure of the pos-
sible losses is represented by the long-run structure of the beanplot
over time.

Figure 11.4: Beanplot time series (BTS) for the Dow Jones DJI 2001-
2011

In the histogram time series (HTS) we can have similar information
with respect to the beanplot time series (BTS), in which the informa-
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Figure 11.5: Beanplot Time Series (BTS) Cac 40 (France) FCHI 1990-
2011

Figure 11.6: Beanplot Time Series (BTS) Bovespa (Brazil) BVSP
1990-2011
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tion is more dependent on the number of bins chosen and this usually
constraints the original data (figure 11.7). Various possible interpre-
tations of the beanplots can be repeated also for the histogram time
series (HTS).

Figure 11.7: Histogram Time Series (HTS) Dow Jones DJI 1990-2011

The Interval time series (ITS) shows the upper and the lower bound
and the entity of the possible losses over the time. The problem for
the intervals could be that we are not able to understand the difference
between eventual outliers in our data. Intervals can show, as in the
case of the beanplots, the risk profiles (the possible losses) in which
an extreme event is represented, for example a market crash. Clearly
the usefulness of the interval time series (ITS) is in the fact that it
is possible to define the lower and the upper bounds in the temporal
intervals. In that sense it could be useful to consider lower and upper
bound in the temporal intervals, by taking into account the lower and
the upper interval of variations over the time (figure 11.10).

The Boxplot time series (BoTS) tend to show a smoothed image of
the intra-temporal variation over the time (figure 11.13). It is possible
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Figure 11.8: Histogram Time Series (HTS) Cac 40 FCHI (France)
1990-2011

Figure 11.9: Histogram Time Series (HTS) Bovespa (Brazil) BVSP
1990-2011
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Figure 11.10: Interval Time Series (ITS) Dow Jones DJI 1990-2011

Figure 11.11: Interval Time Series (ITS) Cac 40 (France) FCHI 1990-
2011

to compare the different variations over the time (and could be very
useful in the analysis of the risk over the time). In any case we cannot
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Figure 11.12: Interval Time Series (ITS) Bovespa (Brazil) BVSP 1990-
2011

have specific information about the specific intra-temporal variation
(represented by the single observations) and the different bumps.

11.2 Asset Allocation

The Asset Allocation strategies on the market can be helpful by consid-
ering both visualization techniques and also clustering. In this sense,
we can identify groups of stocks with the same characteristics over
time (for example, related to the intra-period variation). The quan-
tity of data handled by the beanplot allows us to consider different
market phases and the impact of various events on the time series.
So, it is simpler to identify groups of similar (or dissimilar) stock for
the portfolio selection.

In order to obtain the internal representations, boxplots or intervals
could be used more generally than beanplots. This is due to the fact
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Figure 11.13: Boxplot Time Series (BoTS) Dow Jones DJI 2001-2011

Figure 11.14: Boxplot Time Series (BoTS) Cac 40 (France) FCHI

that the densities to be computed need a specific number of observa-
tions (in the application, beanplots had no less than 36 observations
per single data).
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Figure 11.15: Boxplot Time Series (BoTS) Bovespa (Brazil) BVSP
2001-2011

Results seem similar for the three methods but the representations
are very different. In the case of the scalars there is a problem of out-
liers and missing data, whereas in the aggregate representation there
is the problem of the outliers (if the minimum and the maximum are
considered), but not the problem of missing data. The interval tends
to approximate to scalars if the temporal interval is short, then the
values are similar (or the same). In this case there is no enormous dif-
ference in the trend computed for interval data and scalar data. The
financial results seem good in the case of the three methods consid-
ered. The usefulness of the method of the beanplot is that we do not
lose the information (as in the case of interval) when considering the
same interval. The results are coherent with other types of represen-
tation. The contribution of the beanplot data is that of retaining the
information of the data where there are many observations in the tem-
poral interval. So by using these types of data we can have a twofold
meaning from initial data: the relevant information of the dynamics
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over the time and the structure of the intra-temporal variation.
The same observation for the intervals could not be true, infact the

intervals constraints the results to the upper and the lower bound so
they are useful with few observations (in short applications usually),
so the results tend to be very close to those of the scalar data. Inter-
vals do not represent correctly the intra-period variability.

The financial time series seems to be very complex so it could be
necessary to take this variability into consideration in the aggregate
representation (this is not possible in the intervals).

The dendrograms will be analysed and interpreted sequentially one
by one: we start with figure 11.16, in which we can observe the princi-
pal influence zone at financial levels. Infact when we consider a specific
shock we can observe that there are specific impacts on the financial
area by its financial inter-linkages (for example, credit markets etc.).
This type of analysis wants to measure the level of synchronization
and interconnection between different markets and clarify the mecha-
nisms of the diffusion of financial shocks. For example we can observe
that the US market (DJI) presents characteristics similar to European
markets even though maintaining its independent position. Infact we
can assume that shocks on the US markets can propagate quickly on
the European markets (due to the interconnections) with lags. More
similar are the UK and Germany (so the markets tend to behave sim-
ilarly) and France and the Netherlands or Spain and Switzerland. It
is interesting to note that Japan behaves in the same way as the US:
this could be considered a ”signal” market that propagates the shocks
that are internalized by the other markets. On the other side of the
dendrogram we can observe some countries that behave differently
and are clearly influenced by other shocks (for example Indonesia and
Mexico). The problem of using, for example, the scalar in that case
is the data imputation requested on the initial data, which could be
difficult when there is more than one observation missing. Also the
outliers (as in the case of the intervals) can be dangerous.
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By considering the intervals in a short period the results do not
appear to change using the center. So results seem to be consistent
with the case of the scalars in which we avoid the problem of missing
data, and the problem of outliers (in this case we need to use some
different intervals that exclude outliers, for example trimmed means,
etc.). In the case of the year temporal interval the results seem to be
consistent with previous results, in which we can observe some short
differences on the dendrograms.

By considering the Beanplot time series (BTS) and repeating the
analysis above, it is interesting to note that we observe similar infor-
mation for the factor F1, obtained as the synthesis of the attribute
time series related to the size and the location of the beanplot time
series (BTS). The F1 (see figure 11.18 and the associated dissimilar-
ity matrix obtained in figure 11.17) shows similar information with
respect to the scalar and the interval case. In this case the defini-
tion of the influence areas seems more precise. In fact there are some
differences, for example Spain and Switzerland tend to behave differ-
ently with respect to the shocks. Other situations seem to be clearer:
Hong Kong is very similar to Singapore, and the Japan and the US
market seem to behave as ”signal markets” with respect to other mar-
kets. Austria is clearly an outlier, probably due to the market size
and its microstructural characteristics. Considering the second factor
(figure 11.23), which is more related to the shape characteristics of the
beanplot time series (BTS), we can have more information on the fi-
nancial interconnections and the exact direction of the shocks on time.
In particular, Mexico and Indonesia tend to have some very peculiar
responses to the shocks (in fact they are particular markets charac-
terised by very peculiar macroeconomic contexts). In the other part
of the dendrograms we can observe the specific short run impacts of
the shocks (that are related to the shapes of the beanplot time series
BTS).

The other dendrograms are considered for robustness checks and
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they confirm our initial interpretations (figure figure 11.18 − figure
11.22). In this case the results seem robust.

By considering the dendrograms with respect to the data models of
the beanplot time series BTS (figure 11.27) we have some additional
information, due to the latent structure of the beanplots (considered
in the entire temporal interval). It is important to stress that in this
case we are considering similarities between models, so the informa-
tion provided is related jointly to the long run impact of the markets
and the short run of markets. For example, Singapore and Hong Kong
tend to be very similar over time.

Countries considered (Clustering of the models):

1. GDAXI

2. FTSE

3. FCHI

4. JKSE

5. HSI

6. BVSP

7. STI

8. N225

9. IBEX

10. DJI

In conclusion, it seems there are no large differences considering
different interval temporal periods, but there are big differences in dif-
ferentiated interval time series (ITS).
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It is possible to observe that the clustering shows series with similar
data structures. But the real question is: In what way is it possible
to anticipate crises?

By clustering, using the model distance, we cluster the different
models, in which we take into account the latent and the structural
information (for each temporal interval). So we can obtain some ex-
pected results (as in the case of Hong Kong and Singapore) but also
interesting results.

Figure 11.16: Clustering original time series (2000-2011)

11.3 Statistical Arbitrage

For Statistical Arbitrage, strategies identifying pairs (or groups) of
stocks showing very similar characteristics over time are fundamental.
By identifying some strong correlation between different stocks over
time it is possible to operate and make profits on the divergences in
the trajectories. Thus, the Beanplot, and the related techniques seen
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Figure 11.17: Clustering using coordinates correlation distance dis-
similarity matrix

Figure 11.18: Clustering using coordinates correlation distance aver-
age method
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Figure 11.19: Clustering using coordinates correlation distance single
method

Figure 11.20: Clustering using coordinates correlation distance Mc-
Quitty method
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Figure 11.21: Clustering using coordinates correlation distance Com-
plete method

Figure 11.22: Clustering using correlation distance - Centroid method

in the thesis, helps operators in different ways, for example clustering
allows the identification of some groups of stocks that can be consid-

351



Case Studies: Market Monitoring, Asset Allocation,
Statistical Arbitrage and Risk Management

Figure 11.23: Factor 2: correlation distance: (average)

Figure 11.24: Factor 2: correlation distance: (single)

ered very similar. A subsequent statistical analysis (co-integration)
can be used to build the statistical model for the arbitrage.

So we can obtain a strategy of statistical arbitrage starting from
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Figure 11.25: Clustering Interval Time Series (ITS) on centers: long
period of interval

Figure 11.26: Clustering Interval Time Series (ITS) on centers: short
period of interval
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Figure 11.27: Clustering Beanplot time series (BTS) using the model
distance (method average)

the clustering. From the beanplot clustering we identify the stocks
that can be used in the statistical arbitrage process. We use a known
statistical arbitrage model called Pair Trading or Correlation Trading.
The statistical procedure is based on the Cointegration procedure in
two stages of Engle-Granger1. So we choose from the previous analysis
a group of different stocks that can be related. Then we apply a coin-
tegration analysis for the stocks together, by considering a long run
model. This model represents the long run relationship between the
stocks, but can be affected by a spurious regression. So we estimate:

log(FR)t = β + β0log(GE)t+β1log(US)t + β3log(SP )t+

β4UKt + εt
(11.1)

Where FR, GE, SP and UK are the stock prices in levels for the
period 01/01/2010 to 30/07/2010. We use the information collected

1See Engle Granger 1987 [251] and Enders 1995[248]
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in the beanplot time series (BTS) clustering.
This model is defined as the ”static” or the ”long run” model be-

cause it represents the long run dynamics of the series (if the time
series are cointegrated).

Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.4974 0.3911 -1.27 0.2056

dat$ge 0.1292 0.0391 3.30 0.0012
dat$sp 0.4015 0.0238 16.85 0.0000
dat$uk 0.5999 0.0859 6.99 0.0000
dat$us -0.1367 0.0985 -1.39 0.1674

Then we consider the differenced time series and we estimate a
second model (the Error Correction Model).

Figure 11.28: Differenced time series from the Beanplot Clustering
process

So we need to consider another model in the short run having tested

355



Case Studies: Market Monitoring, Asset Allocation,
Statistical Arbitrage and Risk Management

the cointegration in the model. Thus we can model the differences and
the residual of the long run model.

∆log(FR)t = β+β0∆log(GE)t + β1∆log(US)t+

β3∆log(SP )t + β4∆UKt+zt−1 + εt
(11.2)

Where the time series are differenced together and the zt−1 is the
residual from the static model. In this sense we can model the de-
viations from the long run equilibrium (the static model). These de-
viations can be used for the statistical arbitrage using appropriate
strategies.

Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.0000 0.0006 -0.04 0.9649

dat3$ge 0.1115 0.0470 2.37 0.0191
dat3$sp 0.6334 0.0314 20.15 0.0000
dat3$uk 0.0729 0.0617 1.18 0.2398
dat3$us -0.0950 0.0627 -1.51 0.1321

res -0.1641 0.0471 -3.48 0.0007

11.4 Risk Management

Risk Management can benefit in various ways from these techniques.
The visualization allows one to understand and compare the different
risk profiles between stocks, whereas clustering helps in the identifi-
cation of similar stocks in some risk profiles. The visualization and
the prototypes can be used to identify early warnings for potential
crises or financial problems. Using the Beanplot time series (BTS) it
is possible to forecast the future levels of risk and losses over time.
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Forecasting Beanplots means to predict the entire intra-period varia-
tion for the period considered (1 year, 1 month)- so these tools can be
very useful in Risk Management Analyses.

For the scalar forecasting we consider a short period related to the
first part. So we consider the period from 1/1/1990 to 26/9/2011. It
is important to note that we consider the US market in the forecasting
because in the previous part we observed that this market acts as a
”signal” for others. So forecasting this market allows us to understand
the future dynamics of the other markets. In that sense we consider
various forecasting models in the period.

Auto-Arima ETS Splinef Combination
ME -412.80 -428.64 -235.06 -358.83

RMSE 491.57 506.36 358.82 448.58
MAE 412.80 428.64 298.24 358.83
MPE -3.79 -3.93 -2.18 -3.30

MAPE 3.79 3.93 2.74 3.30

Secondly we choose the splinef as performance and so obtain the
forecasts and its confidence intervals.

Point.Forecast Lo.80 Hi.80 Lo.95 Hi.95
26 11308.67 11005.12 11612.22 10844.43 11772.91
27 11311.47 11005.18 11617.76 10843.05 11779.90
28 11314.27 11005.06 11623.49 10841.37 11787.17
29 11317.07 11004.75 11629.40 10839.42 11794.73
30 11319.87 11004.26 11635.49 10837.19 11802.56
31 11322.67 11003.60 11641.75 10834.69 11810.66

Now we will look at the interval time series (ITS). Firstly we obtain
the descriptor point of the series.
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Figure 11.29: Interval attribute time series DJI (first 100 observations)

Figure 11.30: Boxplot attribute time series DJI 1900-2011

First of all we consider the series of the DJI and in particular the
closing prices. We consider the beanplot time series (BTS) for the
entire period. Data are related to the period 1900 to 2011 (September
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2011). The first representation we choose uses coordinates. As usual
we choose a bandwidth for the entire time series and we forecast the
attribute time series for the beanplot time series (BTS) as well. We
forecast both for the XC and for the Y C . The procedure is divided
into three steps:

1. Forecasting the attribute time series using competitive methods

2. Forecasting the attribute time series using forecasts combina-
tions (by an appropriate weighting scheme)

3. Detecting the best set of information using the Search Algorithm
(for the Y C)

On the XC Forecasting we use the methods Auto-Arima and Ets
(h=3). The result is particularly good for forecasting on the short
time. If we obtain a general MAPE on 1-5 means then it signifies we
can predict well the locations and the size of the beanplot over time.

On the XC Forecasting using combinations (h=5) it is interesting
to note that by using combinations we can use a higher horizon for
the forecasting process. The MAPE in that sense is higher than in
the case of the single forecasts (MAPE 7-8) but the horizon chosen is
higher.

Using a Search Algorithm (on minima), the forecasting model achieves
a MAPE of 1.43 as accuracy.

The aim of the Search algorithm is the identification of the best
information set. In practice the analysis is divided into two steps:
first, we consider the temporal intervals that minimize the error in the
forecasting (for example by minimizing the MAPE), then we use this
set of information in the forecasting process.

We consider the search on the Y C , because of its volatility. The
forecasting process is on h=1, in fact it is necessary to maximize the
information and the data. In any case the search algorithm is not
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strictly necessary for the XC forecasting due to the different stability
level of the attribute time series, but it is necessary for the Y C . The
Mape for the Minima (MAPE 1.43) is good after the procedure of the
search algorithm.

A second step could be to Forecast using Mixtures, as we want to
forecast the structural part of our beanplots over time.

The Automatic-ARIMA algorithm (and the associated ARIMA model)
is the forecasting model we have chosen. By using this model we ob-
tain a satisfying diagnostic and the forecasts obtained are (MAPE=5).
So we conclude that the model can be used both for the prediction
and the simulation.

The factor is well predicted by using only one method. When one
method is better than others the combination is not so efficient. Us-
ing other methods it is abstractly possible to improve the results if the
results of the methods are not able to discriminate the optimal one.
The capability of forecasting depends on the quality of the group used
in the combination.

We compare the results with the forecasting of the scalars, the box-
plot, and the interval time series (ITS). The results are strictly related
to the descriptors used and the data considered, so the results can vary.
In any case it is important to observe that the focus of each method is
very different: the scalars are a way of forecasting in the short period,
so we predict observation by observation (and so we have not a feel
about intra-period variability). In the case of boxplot and interval
we predict using some relevant descriptors (upper and lower bound,
quantiles etc.) where it is important to know that the external model
adequacy depends on the general structure of the model chosen, on the
complex data and its representation, and that different complex data
deliver different information. In that sense the beanplot time series
(BTS) are related usually to information on intra-temporal variation,
that is, on more observations than in the case of interval and boxplot.
So they are very useful when we need to compare long run dynamics
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and wish to take into account a large quantity of information.

Figure 11.31: Forecasting Beanplot time series (BTS) using the mix-
ture: coefficients estimation

Table 11.1: Forecasting results
Forecasting Horizon MAPE Descriptor Points

Auto-Arima algorithm\ETS 3 [1-5] XC

Forecasts combinations 5 [7-8] XC

Splinef with Search algorithm 1 [1-34] YC
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Figure 11.32: Forecasting beanplot time series (BTS) using the mix-
tures: factor time series

Summary Results: Case Studies
The algorithms presented in the work allow the replication of the
methods in concrete applicative contexts, such as Statistical Ar-
bitrage, Asset Allocation and Risk Management, for the taking of
optimal decisions.
In Statistical Arbitrage (Pair Trading) it is crucial to identify stocks
to use in operations such as indexes with similar characteristics. In
this sense, Beanplot time series (BTS) could allow for the analysis
of the long run dynamics and the selection of the most similar stocks
(by beanplot clustering). Then, it could be possible to decide the
trading strategy also through considering the beanplot forecasting.
In Asset Allocation strategies it is possible to decide stocks using
visualization and beanplot clustering strategies
Risk Management problems can be usefully analysed by considering
the beanplot visualization (which allow us to observe dynamically
the risks over time due to the beanplot size and shape) and the
forecasting by considering its coefficients and descriptor points.
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Conclusions and Extensions
for Future Research

The world of data is changing. The terms Analytics, Data Products,
Data Science are frequent in the business world today. At the same
time, the problem is associated with the ubiquity of huge datasets (big
data) and the continuous flow of information that can add value to the
business. In modern finance, developments are related to the existence
of new types of data like High Frequency Data that can be considered
the original data type with respect to its aggregate version, and this
leads to a loss of information. In all these contexts the problem is to
represent and to use adequately the information in the data.

In that sense, it is a question of using the data according to a model
to gain an economic advantage on the continuous flow of information
that the new technologies allow.

So the challenge for the new statisticians or the new profession, the
data scientist, is not only to analyse this flow of data, but at the same
time to gain knowledge and a business value from this information.
In this respect, of great relevance is a sequence of well-defined phases:
data collection (or data storage), data cleaning, data visualization, and
finally, data analysis (or analytics) for a specific purpose: forecasting
and collecting information for making better decisions. However, the
main focus of the thesis is on special types of time series, defined as
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high frequency data. The data are considered to be unequally spaced,
to possess an overwhelming number of observations, errors (that call
for special filters), missing observations, price discreteness, seasonali-
ties and volatility clustering. These data require specific econometric
methods in their analysis and the data aggregation seems not to be
appropriate, due to the fact that information loss occurs.

In this thesis, we innovate this scheme by proposing a new type of
data. Scalar data are used extensively in the Data Science world, and
in the Financial sector. We have shown that these data sometimes
represent, for example in the context of huge datasets, a difficult piece
of information to use because of the difficulties in visualization (and
so, in data exploration). The most frequent solution to that of using
Scalar Data is that of using some types of aggregation which however
result in information loss. In any case, the problem in High Frequency
Data and in general in Huge Data Sets is not a loss information in
itself but the representation of the underlying information. In fact the
single scalar is sometimes not an adequate way to represent the data in
which we want to explore some patterns of intra-data variation. This
type of information could be very useful in a very important series of
business or financial contexts.

We consider the changing intra-period variability or the data as
genuine representations as intervals, histograms, densities or bean-
plots. The intra-period variability (modelled as internal model) of the
representation is important because we need to consider the pattern of
variation in the time as the relevant phenomenon. If we consider the
dynamics of the phenomenon over time we consider the inter-period
variability. We model the intra-period variability using external mod-
els. The optimal compromise between the two models and the two
representations needs to be optimized in the cycle, described in the
thesis as visualization, exploration, internal modelling, clustering or
forecasting (external modelling) and model evaluation. Non-optimal
models can be re-specified. The actual literature does not consider
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the approach to model differently from the intra-period and the inter-
period variation, but this seems an important aspect of the present
work because we capture the structural aspects of the data. This idea
is an innovation of the present work. In particular, we are explicitly
taking into account the capability of the data to capture the intra-
period variability of the phenomenon (which could be used to extract
value from data). At the same time the techniques required for the
objectives need to be considered in real time, so throughout the the-
sis we consider different tools that use the changing information in a
real time ideal context that both identify the relevant information and
achieve the updating of the important statistical results over time.

A relevant problem running through the entire thesis is the choice
of the appropriate temporal interval (for example, the choices between
hour, day, week, month and year). There is no specific answer as to
what is the best temporal interval in every situation. In general, the
temporal interval depends on the specific application. So, in some
cases it could be useful to decide a temporal interval related to short
periods, for example in trading applications, whereas in risk manage-
ment it is more important to consider a higher temporal interval (say,
a year) to cover all the possible economic phenomena in a temporal
range.

The choice of the best representation is strongly related to the
choice of the best temporal interval. In particular, by choosing the
temporal interval it is possible to select the best representation. There-
fore, in each concrete application it is very important to define before-
hand a useful temporal interval (day, month, year, etc.) then to choose
the most useful internal representation in order to extract the knowl-
edge from the data with the objective of decision making.

So for a specific reason we have worked extensively on original (very
long) time series that could be considered in real time, because all our
applications follow the evolution of the financial markets. We consider
as well the steps of data analysis: not only considering the original time
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series of the scalar data but also its aggregate representation, this max-
imizes the information on variability much more than the interval and
the histogram. Data in this respect are obtained by a Kernel Density
Estimation, in which in the final data (the beanplot data) the com-
plete information of the location, the size (the intra-period variability)
and the shape (the entire data structure) are represented.

These types of data can be particularly advantageous in the context
of high frequency data. When considering an overwhelming number of
observations the advantage in using the Kernel Density Estimates are
clear. In other cases, we may be more interested in other phenomena,
so other types of structured data can be chosen.

The visualization of these new types of data as density data or
beanplot data can be considered an exploitation of all the original in-
formation available on data, because they show the initial anomalous
observations of the data (the outliers), and retain the relevant infor-
mation in the original data as trends, cycles and seasonalities. This
information obtains new parameters (each related to a different aspect
as the trend).

In the visualization part we consider for the first time the differ-
ent structural changes that occur in the beanplot time series (BTS):
both considering the intra-period variation (the bumps) and the inter-
period variation (the change points that indicate a change in the long
run dynamics). The first types of phenomena could be associated, in
financial time series for example, to the arrival of specific news dur-
ing the day (not so relevant), whereas the second types of phenomena
could indicate a more structural variation due, for example, to the
impact of new technologies and /or products on markets.

Clearly the relevant problem is in deciding which is the temporal
interval to choose in the data; that is, the best type of Kernel but
at the same time the bandwidth, because a different bandwidth can
provide a different level of smoothness for the single beanplot data. In
this respect our conclusions are that the temporal interval is crucial
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because there can be relevant effects on the visualization of the cy-
cles, and the seasonalities. The optimal beanplot data over time keep
the information relevant on trend (using the beanline or the centre),
the cycles and the seasonality. The beanplot visualization is the first
step of an analysis and the identification of adequate models. The
approach we followed is a Model Approach in which we consider the
information related to the beanplot (its description over time) but we
assume the beanplot to be a sum of a structural part and a residual.

In this respect it is necessary to model the beanplots in order to
obtain the coefficients representing the proportions of the mixture ex-
tracted from the original data (that could be considered a sum of
mixtures). The data are based on a sum of different mixtures, that is,
representing the latent relevant information in data. It is important to
stress the fact that in reality we consider in the data errors all incon-
sistencies such as missing values, errors in registrations, etc. At the
same time we obtain from the beanplot another type of representation
that corresponds to the fundamental description of the beanplot use-
ful for analytical purposes. Sequentially, we have developed tools for
the Clustering and Forecasting of the Beanplot Time Series (BTS).
In all these cases we start from the modellization of the beanplot by
using the two different strategies. The results can be different because
we focus, in the Model Data of the Density, on a different temporal
interval and on information which is deeper than the original data.
In any case, the results of the Clustering are in line with the original
data. Forecasting takes into consideration the specific identification of
the models based on the Visualization, and then there is the Explo-
ration of the structures of the descriptor point sequences (also defined
as Attribute Time Series) over time.

In this sense, it is crucial to obtain a model of the factorial time
series for the Data Models (representing the evolution of the structural
information over time), thus allowing a forecast of the series, and also
a modelling of the attribute time series for the Beanplot Data, for all
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the descriptors, characteristics or attributes over time. The approach
we consider is that of combining different models because of the uncer-
tainty (and complexity) of the initial data structures. It is an observed
fact that the combination of different models allows for the reduction of
the uncertainty by optimizing the predictions. The results seem good
when considering the fact that we are trying to capture very volatile
information over time (as represented by the Beanplot shape). In this
respect, as well as the use of these techniques on real data we have de-
veloped an algorithm that seeks the best set of information in the data
and exploits it to obtain the best predictions over time (with respect to
the occurring structural changes). The final external modelling phase
is related to the Model Validation or the Model Evaluation. In this
respect we compare the Clustering results with some external or inter-
nal benchmark, and more importantly we compare the results of the
Forecasting with the real result in a Cross-Validation process of the
Model Selection. Where we have found the best Forecasting models
we can use them on real data and on real cases (for example, on a real
time scenario as seen in the application to real data problems).

A clear point is related to the data analysis cycle presented during
the thesis. An important element of the analysis of the internal and
external models is their capability to represent correctly the original
data, and its usefulness on real operations (clustering and forecast-
ing can be considered a step for making better decisions). A relevant
question to be asked by the analyst is the number of points to be
considered in the internal representations. Another one could be the
usefulness to consider one unique internal model, when there can be
structural changes. So in that sense, change points need to be care-
fully considered over time. At the same time there can be cases in
which data are characterised by relevant cycles or trends, so we need
to consider new descriptors as the beanplot centre or its upper or lower
bounds. Clearly the problem is open and solutions need to be found
in the evaluation of the models and in their re-specification to obtain
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even better models.
A final word about the existence of other alternatives in aggregate

representations, such as Interval, Boxplots, or Histograms, might be
of use. In most cases we obtain coherent information (Interval time
series) for example in Clustering with Scalar time series. At the same
time it is difficult to interpret the bins of the histogram.

The Beanplots allow the identification of both the Short Run and
the Long Run effects on the initial data. In fact, the shape in this
sense is related to the identification of the different effects over time
on the groups of Beanplot Time Series (BTS). In the Forecasting the
differences are structural ones. We are attempting to predict different
complex objects, we are attempting to predict Interval Time Series
(ITS), Boxplot Time Series (BoTS) or Histogram Time Series (HTS)
and Beanplot Time Series (BTS). Each complex object can have dif-
ferent descriptions, but different objectives.

For example, in Interval Time Series Forecasting we are interested
only in Forecasting the range between the upper and the lower bound
and optionally the radii and the centre of the interval. The results can
vary greatly in terms of accuracy depending on the data structure,
so the methodology of the Forecasting process and its underlying as-
sumptions are crucial in Forecasting Complex Objects.

At the same time, the Beanplots present a clear advantage in their
ability to use all the information available and to reproduce the vari-
ation (or its Data Model) over time. The detection of data patterns
in complex time series, for example, in financial data, which is char-
acterized by irregular cycles, outliers, and frequent structural change,
could clearly be a great advantage. The final remark is related to the
results that could be obtained by using and considering this type of
data or Aggregate Representations. By their nature and construction
they work very well with both big data and very long time series, so
they can perform well through the extraction of information from these
data. For example, Risk Analysis in financial data could be improved
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by the use of the data, taking into account the different structural
changes that occur. So a last word is related to the use of these tools
in Business Analytics and in the new field of Data Science. Those ag-
gregate Representations that do consider an aggregation in the original
data (whatever obtained) can represent a significant improvement in
the process because they represent a new way to consider the Data
Products, these could be not scalars but such aggregate Representa-
tions as the Beanplot (in fact, real data can be characterised by the
complex volatility we are interested in representing).

The code in R (and other languages) allows us to start using these
methods on real scenarios. The most relevant findings and elements
of innovation in this work are in the area of visualization, internal
modelling and modelling of the intra-period variation, clustering and
the forecasting of these new data (the external models). What are the
most relevant innovations of the present work?

The Data can be assumed to be a Mixture of Distributions. In this
way we take into account the intra-temporal variation. At the same
time data can be assumed to be a sum of a structural part and a noise.
Data models can separate the structural part from the noise.

An Internal Representation needs to preserve complex patterns of
variation intra-data. The typical intra-data representation proposed
are density data (obtained using Kernel Density Estimates).

The densities show higher flexibility than histograms, in particu-
lar they tend to preserve continuity of the data (without representing
them bin by bin). In obtaining these data, bandwidth is very relevant
to the shape, whilst the Kernel is less used. The structural aspect and
the representation of the intra-period variability by means of density
data is relevant to obtain good external models (modelling the inter-
period variability).

In the Visualization process, an optimal bandwidth can be obtained
by the Sheather Jones method. A simulation study allows the study
of the informative content of the Beanplot Time Series (BTS), with
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respect to other types of Internal Representations (IR). Real Data
allow a better interpretation of the Beanplot Time Series (BTS) in
real contexts. In particular, we can observe the volatility levels by
each day, the equilibrium levels (useful in structural changes) and the
intra-period seasonalities, etc.

Two approaches are used in the Internal Modelling phase. The
first, assumes the data to be a mixture and so the coefficients repre-
senting the components are considered. In this way we extract the
structural information by the Beanplots. A TSFA model is used to
synthesize the trajectories and so we obtain the latent factor related
to the shocks changing the Beanplot structures over time. The second
represents Beanplots as a whole and it uses coordinates to represent
them simultaneously. In both cases, coefficients and descriptor points
substitute the original data. This separation between internal mod-
elling (to capture the internal variation) and the external modelling is
relevant to obtain more information from the data, and is an impor-
tant contribution of this work.

In forecasting we consider the forecasts of the TSFA model in the
model-based coefficient estimation. In the second type of the approach
(using the descriptor points) we forecast the attribute time series.

Various different approaches can be considered in the forecasting
process but all the approaches need to be based on an identification of
the external model to adopt. A combination of external models could
be very useful if it is possible to find a group of forecasting models
which performs well. In this case we reduce the uncertainty of choos-
ing a unique model and we consider eventual parameter drift.

In the forecasting procedures we can use the search algorithm to
improve the forecasts by choosing the optimal set of information to
be included in the model. In particular, by finding the best set of in-
formation over time it is possible to obtain the best predictions, then
is possible to use the optimal set of information to build forecasting
models. In a second phase it is possible to apply a rolling scheme.
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Various clustering approaches are considered: the first one related
to the classical clustering time series. In clustering Beanplot Time
Series (BTS) we have firstly considered classical distances.

Using time series factorial techniques a representation of the initial
Beanplot Time Series BTS (a synthesis) is obtained. A second modern
approach is based on Model Based Clustering and considers jointly all
the characteristics of the Beanplot time Series (BTS). Cluster Analy-
sis can be used to detect outliers in the Beanplot time series (BTS) or
Change Points.

All the models, both internal and external, need to be evaluated.
The evaluation needs to be conducted before considering the internal
models, and eventually there is the discarding of the model that does
not faithfully represent the initial data. At the same time, Outliers
need to be identified and eventually imputed or discarded. At the
same time, this aspect appears to be relevant in obtaining better pre-
diction models. At the same time, the clustering and the forecasting
procedures need to be evaluated to improve their performances. Bad
model performances need to lead to model re-specification. The data
cycles interrupt when the results are satisfactory both for the internal
and the external modelling.

The algorithms presented in the work allow the replication of the
methods in concrete applicative contexts, such as Statistical Arbitrage,
Asset Allocation and Risk Management, for the taking of optimal de-
cisions. In Statistical Arbitrage (Pair Trading) it could be crucial
to identify couples or groups of stock indexes with similar character-
istics. In this sense, Beanplot time series (BTS) could allow us to
analyse the long run dynamics and to select the most similar stocks
(by beanplot clustering). Then it could be possible to decide the trad-
ing strategy also by considering the beanplot forecasting. In Asset
Allocation strategies it is possible to decide stocks using visualization
and beanplot clustering strategies at the same time. Risk Manage-
ment problems can be usefully analysed by considering the bean plot
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visualization (which allows the dynamic observation of the risks over
time due to the beanplot size and shape) and the forecasting through
the consideration of its coefficients or descriptor points.

On Applications: These methods can help to identify the mecha-
nisms of contagion between different international markets

Detection of countries that could represent a signal can be very rel-
evant in determining an impact on other economies and in forecasting
extreme values over time. It is very important that the methods pro-
posed in the thesis are developed using R. This fact allows the use of
the methods in different applicative contexts. However, for future re-
search and possible extensions, there are cases in which it is necessary
to consider more than one beanplot time series (BTS) in a modelling
process. We have already considered the case of multiple time series
in the case of clustering. A possible extension of the research, that of
the multivariate problem related to the group of beanplot time series
(BTS), is considered. In particular, it is possible to explore various
topics related to the representation of the co-integration between two
time series using the beanplot as a graphical tool, the time series fac-
tor analysis on the beanplot time series (BTS), the regression, and
simultaneous equation modelling using recursive systems.

We can have two or more time series and test them to observe the
co-integration, then we can represent the co-integration vector as a
beanplot. In particular, we can consider here two or a number of scalar
time series. We can consider the Engle Granger test and represent the
co-integration vector as a specific beanplot over time. However, the
research on this point is open, in fact it could be very important for
market monitoring (or for handling very numerous data) to consider
more than one beanplot time series (BTS). At the same time, it is pos-
sible to consider different co-integration procedures. The importance
of this point cannot be underestimated because it is very important
to model groups of beanplot time series (BTS) as well.

By starting from a group of different time series we need to model
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the ”market evolution”. At the same time we need to represent the
general dynamics of a market by considering a large number of bean-
plot time series (BTS). For example, we can use for each attribute
time series for the descriptor points the TSFA methodology to syn-
thesize the series as a whole. In practice, the analysis follows two
distinct steps: a first step is related to the representation of the bean-
plot time series (BTS) using the coordinates, obtaining specifically
the attribute time series; in a second step, we use the TSFA Time
Series Factor Analysis or the DFA Dynamic Factor Analysis for each
sequence of values and so we obtain the synthesis of the market. In
all these cases various approaches could be considered, for example
working on the Beanplot coefficients or descriptor points and obtain-
ing from these the dynamics of the entire market.

A multiple time series is a different time series observed simulta-
neously in various contexts. Multivariate time series are time series
related to a synthesis of a phenomena. There are cases in which fore-
casting using only one single series is not useful and it is better to
predict one indicator. In general, multivariate time series could be
useful for various aims: for example to measure latent phenomena
and robustify the analyses.

It is possible to consider Regression Models in the Beanplot Con-
text. Useful models in this way can be generalized from Intervals and
Histogram data to Beanplots. In this sense, we can explicitly consider
distances used in literature. In particular, for each method considered
we can explore the use of different distances.

With the aim of analysing the dynamics of more than one Beanplot
time series (BTS), we can consider a simultaneous systems of equations
(SEM) of density data. The models to be implemented by considering
the beanplot time series (BTS) can be predictive, in the sense it can
predict the future evolution of the beanplot structure over time. So
these models can allow both the prediction of the future paths of the
series and the prediction of the risk dynamics (as represented by the
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shape and the size in the beanplots).
So, these simultaneous models of beanplot time series (BTS) need

to be focused on the forecasting and the simulation of the phenom-
ena, just as the scalar simultaneous equation models do. For example,
the simultaneous equation models in econometrics used for business
cycle analysis, the forecasting of the main economic variables, and the
simulation of economic policy are all useful models that represent all
the phases of building a macroeconometric model for forecasting. So
they can become relevant tools in risk analysis. At the same time it
is possible to consider approaches to the PLS (Partial Least Squares)
using Beanplots.

In all these approaches the emphasis is that of working on the
forecasting by considering models with more factors determining the
dynamics of the time series. In these cases we need to model not only
one specific Beanplot time series (BTS) at a time but we need to model
groups of time series together. Attention must be paid to modelling
the beanplot time series (BTS) in order to understand the dynamics
of the internal variation of an entire system, for example an economy.

These models can be very rich in their possible interpretations.
Considering the internal variations for more than one time series, we
can model both the aspects related to the mean (i.e. predict the ef-
fects of the shocks) as well as the effects of the shocks on the internal
variability of the series (considered together). So the future challenge
is that of extracting from the original huge data predictions for the
future by considering entire models of more than one Beanplot time
series (BTS). These models can be used in a very wide number of
ways: for example, in Risk Analysis related systems, for the simula-
tion of the analysis of different scenarios and lastly, they can be used
in a general sense for the taking of better decisions.

Extensions for the future could be the application of the thesis
methods in fields and operations of Finance. In particular, possible
developments could be made in Risk Management, Statistical Arbi-
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trage, Asset Allocation and Market Monitoring.
Another useful application for Economic and Financial analysis are

the Control Charts. In practice, control charts are particularly helpful
in the detection of processes that could be defined as out of statisti-
cal control and therefore in need of very attentive monitoring. So in
this case, the control charts are a very useful tool for the monitoring
of markets and of financial processes with the aim of Early Warning
Systems.
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Routines in R Language

The computer code in R used throughout the thesis is available
upon request.
My contacts are:
Carlo Drago:

e.mail (personal): c.drago@mclink.it
e.mail (at University of Naples): carlo.drago@unina.it
website: http://web.mclink.it/MD3687/
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Appendix B

Symbols and Acronyms used
in the Thesis

B.0.1 Symbols

xi Scalar data
yt, xt Scalar time series (Homogeneous time series)

yft , xft Scalar time series at frequency f (Homogeneous time series)

(xi)
N
i , (zi)

N
i High Frequency Time Series (Inhomogeneous time series)

durationi Duration between two events

(tr1i, tr2i, tr3i) time of the trade, as the price, volume.

(qu1j, qu2j, qu3j): qu1j time, bid price, ask price of the trade

Hn,m Data matrix or Data table

[xi, xi] Interval data with lower and upper bound
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[x2i, xi]t Interval time series, with lower and upper bound

pft time series of prices at a frequency f

rft time series of returns at a frequency f

rfq,t time series of portfolio q returns at a frequency f

[xi, x̃i, xi] triplex data

[mu, qu,Meu, Qu,Mu] boxplot data

(Ii,h, πi,h) with h = 1, . . . , n histogram data

Bt beanplot time series

bYt beanplot data derived by the time series Yt

K() Kernel density estimation: kernel

h Kernel density estimation: bandwidth

[at] beanplot attribute time series

[aLt , aUt ] beanplot lower and upper bound

[aMt ] beanplot beanline attribute time series

[aCt ] beanplot center attribute time series

[aRt ] beanplot radius attribute time series

[aOPt ] beanplot first observation time series

[aCLt ] beanplot last observation time series
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At = [p1,t, pj,t, . . . , pk,t]
′

Internal model coefficients

It a measure of goodness of fit for the internal model

XC beanplot description: coordinates (related to the x)

Y C beanplot description: coordinates (related to the y)

Ft forecast at time t

f 1, f 2 . . . fm forecasts obtained in a combination scheme

FCM
t forecasts combination

B.0.2 Acronyms and Abbreviations

SDA Symbolic Data Analysis
TAQ Trade and Quotes Database

MIDAS Mixed Data Sampling Regression Models

IR Internal (or Intra-Period) Representations

STS Scalar Time Series

ITS Interval Time Series

BoTS Boxplot Time Series

CTS Candlestick Time Series

HTS Histogram Time Series
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BTS Beanplot Time Series

BFT Beanplot Factorial Time Series

DFA Dynamic Factor Analysis

TSFA Time Series Factor Analysis

BPP Beanplot Prototypes

FFT Fast Fourier Transform

AIC Akaike Information Criterion

BIC Bayesian Information Criterion

DBI Davies Bouldin Index

RI Rand Index

splinef Cubic Smoothing Splines method

auto-arima Automatic Arima method

ETS Exponential Smoothing

MSE Mean square error

GA Genetic algorithm

KNN K-Nearest Neighbor

VAR Vector Autoregressive Models

VECM Vector Error Correction Models
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SETAR Self-Exciting Threshold AutoRegressive models

MAPE Mean absolute percentage error

sMAPE Symmetric mean absolute percentage error

MSE Mean Square Error

RMSE Root Mean Square Error

MPE Mean Percentage Error
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[292] Garćıa-Escudero, L. A., Gordaliza, A., and Matrán, C. (2003).
Trimming tools in exploratory data analysis. Journal of Compu-
tational and Graphical Statistics, 12(2), 434–449

[293] Gelman A. (2009) What’s wrong with a kernel density? Blog:
Statistical Modeling, Causal Inference, and Social Science,
November 25 2009

[294] Gelman, A., and Stern, H. (2006), The Difference Between Sig-
nificant and Not Significant is not Itself Statistically Significant,
The American Statistician, 60, 328331.

[295] Gershenfeld N.A. (1999) The nature of mathematical modeling
Cambridge Univ Press

[296] Gettler Summa M. Goldfarb B. About some crucial issues in
temporal data analysis Working Paper, Communications Cere-
made.

[297] Gettler-Summa, M., Pardoux, C. (2000) in Noirhomme-Fraiture,
Rouard M. (2000) ”Symbolic Approaches for Three-way Data”
(Chapter 12), In Bock, H. H. Diday, E. (Eds.): Analysis of Sym-
bolic Data. Exploratory methods for extracting statistical infor-
mation from complex data, Series: Studies in Classification, Data
Analysis, and Knowledge Organisation, Vol. 15, Springer-Verlag:
Berlin, pp. 342-354

[298] Gettler Summa M. et al. (2006) Multiple Time Series: New Ap-
proaches and New Tools in Data Mining Applications to Cancer
Epidemiology. Revue Modulad n.34
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[586] Rodŕıguez O. (2004) The Knowledge Mining Suite (KMS).
Working Paper
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