
 

 

 

European School of Molecular Medicine 

Università degli studi di Napoli Federico II 

 

PhD in Molecular Medicine XXIII Cycle 

Molecular Oncology 

 

 

 

 

CHARACTERIZATION OF PROTEINS 

INVOLVED IN INTRACELLULAR PATHWAYS 

OF COLON CANCER STEM CELLS 

 

                                            

                                    Claudia Corbo 
 

 

 

 

 

 

 
Academic years: 2008-2011 



 

 

 

European School of Molecular Medicine 

Università degli studi di Napoli Federico II 

 

PhD in Molecular Medicine XXIII Cycle 

Molecular Oncology 

 

 

 

 

CHARACTERIZATION OF PROTEINS 

INVOLVED IN INTRACELLULAR PATHWAYS 

OF COLON CANCER STEM CELLS 

 

 

 

Tutor:                                                                                                             PhD student: 

Prof. Francesco Salvatore                                                                    Dr.Claudia Corbo 

Internal Supervisor:  

Prof. Margherita Ruoppolo  

External Supervisor:  

Dr. Simona Francese     

Coordinator:  

Prof. Francesco Salvatore  



 

 

 

 

 

 

 

 

 

 

 

 

 

“Nella vita non c’è nulla da temere, solo da capire. 

Sii meno curioso della gente e più curioso delle idee” 

Marie Curie 

 

 

 

 

 

 

 

 

 



 

1 

 

1. INTRODUCTION ...................................................................................................................................... 8 

1.1 Cancer stem cells ................................................................................................................................ 8 

1.2 Colon cancer stem cells ................................................................................................................... 12 

1.3 CD133 .................................................................................................................................................... 16 

1.4 Proteomics and its impact on the life sciences ......................................................................... 18 

1.5 Proteomics analysis .......................................................................................................................... 20 

1.5.1 Expression proteomics ................................................................................................................. 22 

1.5.2 2D-DIGE ............................................................................................................................................. 24 

1.6 Mass spectrometry tools for proteomic analysis ...................................................................... 28 

1.7 Aim of the PhD thesis ....................................................................................................................... 37 

2. MATERIALS AND METHODS............................................................................................................. 38 

2.1 Cell cultures ........................................................................................................................................ 38 

2.2 Immunophenotyping and flow cytometry experiment ............................................................. 38 

2.3 Gating strategies ................................................................................................................................ 39 

2.4 Sample preparation for 2D-DIGE analysis ................................................................................... 39 

2.5 Labeling efficiency and same same same tests ........................................................................ 40 

2.6 Labeling of protein extracts ............................................................................................................ 41 

2.7 2D separation of CD133+ and CD133- protein samples ........................................................... 42 

2.8 Analysis of gel images ..................................................................................................................... 44 

2.9 Protein identification by MS ............................................................................................................ 45 

2.10 Western Blot Analysis .................................................................................................................... 47 

2.11 Bioinformatic analysis .................................................................................................................... 48 

2.12 Wnt/β catenin pathway stimulation ............................................................................................. 49 

2.13 RNAi and cell proliferation assay ................................................................................................ 49 

3 RESULTS ................................................................................................................................................. 50 

3.1 Gating and sorting of CD133+ cells by flow-cytometry ........................................................... 50 

3.2 2-DIGE analysis: labeling efficiency and same-same-same tests ........................................ 51 

3.3 Identification of differentially expressed proteins by DIGE .................................................... 53 

3.4 Biological network analysis ............................................................................................................ 67 

3.4 Validation of differentially expressed proteins .......................................................................... 65 

3.5 Effects of Wnt/β catenin pathway activation on SRp20 expression..................................... 70 

3.6 Effects of silencing of SRp20 ......................................................................................................... 71 

4 DISCUSSION ........................................................................................................................................... 72 

5. REFERENCES ....................................................................................................................................... 77 

6. APPENDIX I ............................................................................................................................................ 86 

7. APPENDIX II ......................................................................................................................................... 104 

ABSTRACT ................................................................................................................................................... 6 

ACKNOWLEDGMENTS .......................................................................................................................... 110 

FIGURES INDEX .......................................................................................................................................... 4 

LIST OF ABBREVIATIONS ........................................................................................................................ 2 

TABLES INDEX ............................................................................................................................................ 5 

 



 

2 

 

LIST OF ABBREVIATIONS  

ACN             Acetonitrile   

AMBIC            Ammonium Bicarbonate 

APC            Adenomatosis polyposis coli 

APS            Ammonium persulphate 

BVA  Biological Variation Analysis 

CHAPS             3-[(3-Cholamidopropyl)Dimethylammonio]-1-Propanesulfonate        

                             Hydrate 

CID            Collision-induced dissociation 

CRC                    Colorectal cancer 

CSCs            Cancer stem cells 

CSLCs                 Cancer stem like cells 

2DE   Bidimensional Electrophoresis 

DIA  Differential Intra-gel Analysis 

DIGE   Differential in Gel Electrophoresis 

DMEM                 Dulbecco Minimal Essential Medium 

DMSO             Dimethylsulfoxide 

DTT             Dithiothreitol 

ECL              Enhanced Chemio-Luminescence 

EDTA   Ethylenediamine-Tetraacetic Acid 

ESI   Electrospray Ionization 

FACS                   Fluorescence-activated cell sorting 

FBS   Fetal Bovine Serum 

HPLC   High Performance Liquid Chromatography 

IAA   Iodoacetamide 

IEF   Isoelectrofocusing 

IPG   Immobyline Polyacrilamide Gel 

LC   Liquid Chromatography 



 

3 

 

MALDI             Matrix Assisted Laser Desorption Ionisation 

MS   Mass Spectrometry 

NCBI   National Center for Biotechnology Information 

PAGE                   Polyacrilamide Gel Electrophoresis 

PBS   Phosphate Buffered Saline 

pI              Isoelectric point 

PMSF  Phenylmethanesulfonyl Fluoride 

Q               Quadrupole 

SC                         Stem cell 

SDS   Sodium Dodecyl Sulphate 

TOF   Time Of Flight  

 

 

 

 

 

 

 

 

 

 

 

 



 

4 

 

FIGURES INDEX 

Figure 1 Self-renewal and asymmetric division of a stem cell…………………………..8 

Figure 2 Origin of Cancer Stem Cells……………………………………………………...9 

Figure 3 General models of heterogeneity in solid cancers……………………………11 

Figure 4 Therapeutic implications of CSCs………………………………………………12 

Figure 5 Anatomy of small intestine………………………………………………………14 

Figure 6 Anatomy of colonic epithelium………………………………………………….14 

Figure 7 Effects of CD133+ cells injection in mice……………………………………...18 

Figure 8 Schematic representation of a 2D PAGE……………………………………...22 

Figure 9 Hierarchical structure for differential analysis…………………………………24 

Figure 10 Cy2, Cy3 and Cy5 chemical structures……………………………………….26 

Figure 11 2D-DIGE image analysis……………………………………………………….27 

Figure 12 Ionization occurring in a MALDI source………………………………………29 

Figure 13 Ionization occurring in a ESII source…………………………………………30 

Figure 14 Mass spectrometers commonly used………………………………………...32 

Figure 15 Ions generated by the cleavage of peptide bonds…………………………..35 

Figure 16 Cytometric sorting of CD133+ and CD133- cells…………….……………...51 

Figure 17 Labelling efficiency test………………………………………………………...52 

Figure 18 Statistical representation of the overall protein  

distribution  in individual samples, in the same same same test……………………...53 

Figure 19  An example of Decyder analysis of a protein spot…………………………55 

Figure 20 SYPRO Ruby stained preparative 2D gels…………………………………..56 

Figure 21 Representative images of analytical gels…………………………………….56 

Figure 22 MS/MS spectrum of peptide [16-23] and amino  

acid sequence of SRp20………………………………………………………………......58 

                  Figure 23 Western blot analysis of total protein lysates of  

                  CD133+ vs CD133-  CaCo-2 cells………………………………………………………..65 

                  Figure 24 Western blot analysis of total protein lysates of  

CD133+ vs CD133-  HCT-116 cells………………………………………………………66 

                  Figure 25 Western blot analysis of total protein lysates of  

CD133+ vs CD133-  HCT-116 cells………………………………………………………67 

Figure 26 Merged networks of IPA analysis of differentially  

Expressed proteins in CSLCs of CaCo-2………………………………………………..69 

Figure 27 Merged networks of IPA analysis of differentially  

Expressed proteins in CSLCs of HCT-116………………………………………………69 

Fig. 28 WB and densitometric measurements of SRp20 expression 

after Wnt pathway stimulation……………………………………………………………..70 

Fig 29 Effects of SRp20 silencing on A)cell proliferation and  

B) expression of MCC, β-catenin and γ-catenin…………………………………….…..71 

 

 

 

 

http://www.nature.com/nrc/journal/v5/n3/full/nrc1567.html#f1#f1


 

5 

 

 

TABLES INDEX 

                  Table 1 DIGE experimental design………………………………………………………42 

Table 2 Differentially expressed proteins in CaCo-2 CD133+ cells…………………..61 

Table 3 Differentially expressed proteins in HCT-116 CD133+ cells ………………..63 

Table 4 MS details of identified proteins in CaCo-2 CD133+ cells…………………...86 

Table 5 MS details of identified proteins in HCT-116 CD133+ cells……………….…95 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

6 

 

 

ABSTRACT 

Recent findings suggest that malignant neoplasms are derived from a small 

sub-population of cells that acts as the "root" of tumours. This conclusion 

comes from the observation that when neoplastic cells of  different types were 

tested for their growth potential both by in vitro and in vivo experiments, only a  

restricted minority of them displayed extensive proliferation. These cells are 

called cancer stem cells (CSCs): both anti-cancer drugs and irradiation cause 

cancer cells to die by apoptosis, however CSCs might survive and regenerate 

cancer. At present, CSCs theory represents a breakthrough in cancer 

research. The aim of this project is to characterize the protein expression 

pattern of CSCs to obtain further insights into the mechanisms of this class of 

cells. The knowledge of deregulated proteins could be the first step into the 

accomplishment of novel therapies targeted directly against CSCs. Particularly, 

we studied colon CSCs by using as experimental model two different colon 

cancer cell line systems: CaCo-2 and HCT-116. Putative CSCs were 

separated from non-CSCs by flow cytometry using CD133 as stemness 

marker. Then, total protein extract of CD133+ cells was compared to protein 

extract of CD133- cells and differentially expressed proteins were identified by 

2D DIGE coupled with tandem mass spectrometry. Forty-nine differentially 

expressed proteins in CaCo-2 CD133+ vs CD133- cells and thirty-six in HCT-

116 CD133+ vs CD133- cells were identified.  Bioinformatics analysis of the 

differentially expressed proteins by using GeneOnthology and Ingenuity 

Pathway Analysis (IPA) software showed an alteration of energy metabolism, 

furthermore the examination of this network showed that several proteins were 
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directly or indirectly connected to MCC (mutated in colorectal cancer), a 

negative regulator of Wnt pathway. Interestingly, among the identified proteins 

it has been observed a 2-fold change up-regulation of the splicing factor 

SRp20, newly identified target gene of the Wnt/β-catenin pathway and we 

demonstrated a direct cause-effect relationship between Wnt pathway 

activation and the increased level of SRp20 expression. Furthermore, the 

results of this work show that SRp20 influences cell proliferation thus 

suggesting a putative function of this protein in tumorigenicity of CD133+ cells. 

In conclusion, the activation of the Wnt pathway in CD133+ cells and the 

consequent up-regulation of SRp20, which is implicated in tumorigenesis, 

raises the possibility of a sequential series of molecular events occurring in 

connection with this process. 
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1. INTRODUCTION 

 

1.1 Cancer stem cells 

Stem cells are distinguished from other cell types by two important 

characteristics. First, they are unspecialized cells capable of renewing 

themselves through cell division, sometimes after long periods of inactivity. 

Second, under certain physiologic or experimental conditions, they can be 

induced to become tissue or organ specific cells with special functions. One 

strategy by which stem cells can accomplish these two tasks is asymmetric cell 

division (Fig.1), whereby each stem cell divides to generate one daughter with 

a stem-cell fate (self-renewal) and one daughter that differentiates.  

 

 

 

Recently, another class of stem cells have been identified: cancer stem cells 

(CSCs). Although the idea of CSCs has been proposed for a number of 

decades, demonstration of their existence has only occurred within the last ten 
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years. Advances in CSC isolation were first achieved in hematological 

malignancies, with the first CSC demonstrated in acute myeloid leukemia [1]. 

However, using similar strategies and technologies, and taking advantage of 

available surface markers, CSCs have been more recently demonstrated in a 

growing range of epithelial and other solid organ malignancies [2-4], including 

colorectal cancer [5-7] suggesting that the majority of malignancies are 

dependent on such a compartment. It is still unclear what is the origin of these 

cells: they may arise from normal stem cells, partially differentiated progenitor 

cells or fully differentiated cells (Fig.2) [8]. Certainly, normal stem cells, since 

they have a long lifespan, they have more opportunities to accumulate 

mutations leading to malignant transformation.  
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Subsequently, after the CSCs isolation, a new cancer model has been 

proposed, in addition to the old stochastic model, to explain tumour 

development: the so called CSCs model or hierarchical model (Fig.3). 

According to the stochastic model, tumour cells are biologically equivalent but 

their behaviour is influenced by intrinsic and extrinsic factors and is both 

variable and unpredictable. Therefore, tumour-initiating activity cannot be 

enriched by sorting cells based on intrinsic characteristics. Hence the 

stochastic model (Fig.3A) assumes that every tumour cell is capable of 

initiating tumour growth and if it acquires a set of somatic mutations can 

develop metastatic capacity. In this case, all cancer cells must be eliminated to 

cure the patient. Conversely, the hierarchical model (Fig.3B) postulates the 

existence of biologically distinct classes of cells with differing functional abilities 

and behaviour and proposes that only few cells, the CSCs, are able to initiate 

and sustain tumour growth and to spread throughout the body, forming new 

tumours at distant sites [9].  
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Although CSCs are similar to normal adult stem cells, they have a set of 

several features that cause physiologic disarray: angiogenesis, invasion, 

metastasis and resistance to apoptosis with their cellular division that is driven 

by internal cellular events regardless of external stimuli [10]. Moreover these 

cells have a slower rate of division and greater ability to correct DNA defects 

than other cells. Therefore, CSCs are more resilient to adjuvant therapy 

promoting the evolution of resistant clones that persist and even if the bulk of 

the tumour is destroyed by chemotherapy or radiotherapy, the tumour will 

reoccur. Conventional therapies may shrink tumours by killing mainly cells with 

limited proliferative potential. If the putative cancer stem cells are less sensitive 

to these therapies, then they will remain viable after therapy and re-establish 

the tumour. By contrast, if therapies can be targeted against cancer stem cells, 

then they might more effectively kill the CSCs, rendering the tumours unable to 
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maintain themselves or grow (Fig. 4). Thus, even if CSCs-directed therapies do 

not shrink tumours initially, they may eventually lead to cures. To target CSCs, 

it is important to identify their regulatory mechanisms and signalling pathways. 

 

 

1.2 Colon cancer stem cells 

Colorectal cancer (CRC) is the third most common form of cancer and the 

second cause of cancer related death in the Western world, leading to 655,000 

deaths worldwide per year [11]. It derives from an imbalance in proliferation 

and differentiation of the epithelium and apoptosis. When proliferation is no 

longer balanced from apoptosis, benign protrusions, called polyps, arise into 

the colon lumen. These polyps may develop into malignant cancers as CRC.  

The intestinal tract consists of the small intestine (duodenum, jejunum and 

ileum) and the large intestine or colon. The absorptive epithelium of the small 

intestine is ordered into villi and crypts of Lieberkühn. Differentiated cells 

(enterocytes, enteroendocrine cells and goblet cells) occupy the villi. A fourth 

differentiated type, the Paneth cells, functionally similar to neutrophils, resides 
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at the bottom of crypts only in the small intestine epithelium and secretes 

antimicrobial agents. The remainder of the crypts constitutes the 

stem/progenitor compartment. As shown in figure 5, putative stem cells (dark 

blue) reside immediately above the Paneth cells (yellow) near the crypt bottom, 

proliferating progenitor cells occupy the remainder of the crypt, differentiated 

cells (green) populate the villus, and include goblet cells, enterocytes and 

enter-endocrine cells [12]. As shown in figure 6, the mucosa of colon has a flat 

surface epithelium instead of villi and putative stem cells (dark blue) reside at 

the crypt bottom, proliferating progenitor cells occupy two-thirds of the crypt, 

differentiated cells (green) populate the remainder of the crypt and the flat 

surface epithelium. The terminally differentiated cells, which are found in the 

top third of the crypt, are continually extruded into the lumen. In fact, within 4-8 

days, these differentiated cells die of apoptosis [13] and are replaced by other 

differentiated cells that derive from multipotent stem cells located at the bottom 

of the crypt in a ‗niche‘ encased by intestinal subepithelial myofibroblasts 

(ISEMFs) separated only by the basal lamina. The ISEMFs form a syncytium 

within the lamina propria that extends along the length of the intestinal tract 

(Mc Donald et al., 2006; Radtke et al., 2005) [14,15]. This syncytium secretes a 

variety of cytokines that are important for wound healing and immune cell 

function. Furthermore, they control the proliferation and differentiation of the 

epithelial cells and play a role in electrolyte and water absorption. In 

pathological states, ISEMFs contribute to fibrosis, desmoplastic reactions and 

neoplasia [16].  
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During asymmetric division, the stem cells undergo self-renewal and generate 

a population of transit-amplifying cells that, upon migration upward the crypt 

proliferate and differentiate into one of the epithelial cell types of the intestinal 

wall and occupy the lower two thirds of the crypt. Although crypts are 

monoclonal, each villus receives cells from multiple crypts and is therefore 

polyclonal [17,18]. Existence of CSCs in colon cancer has been reported in 

2007 by different research groups [5-7].  

Symmetric division of colon CSCs is essential in achieving exponential 

numbers of tumour cells [19]. As mentioned above, the differentiated cells of 

colonic mucosa have a short lifespan of few days, whereas normal intestinal 

stem cells have a long lifespan and capacity to self-renew and therefore they 

have more opportunity to accumulate tumorigenic mutations [15]. These 

mutations are accompanied by phenotypic change in the mucosa. A new 

evidence suggests that the long-lived adult colonic stem cells can accumulate 

mutations for a prolonged period of time before phenotypic change becomes 
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apparent [20, 21]. The hypothesis of stem cell-driven tumourigenesis in CRC 

has received substantial support from the recent identification and phenotypic 

characterization of a subpopulation of colon cancer cells able to initiate tumour 

growth and to reproduce human colon carcinomas faithfully in mice. 

The identification, isolation, and characterization of colon stem cells (SCs) is 

very difficult. Many obstacles have interfered with the identification of intestinal 

SCs among which the complexity of the crypt structure that limits the retrieval 

of putative SCs from their niche where they are interspersed among more 

differentiated daughter cells. Several studies have attempted to identify 

intestinal SCs within colonic crypts by using indirect techniques based on 

biological features restricted to the stem cell compartment. Long term retention 

of label DNA has been exploited as surrogate marker of stemness based on 

the observation that SCs in adult tissues usually divide at a slow rate when 

compared to the progenitor population [22]. This functional difference is 

highlighted by labelling the genetic material of proliferating cells in mouse 

intestinal crypts with tritiated thymidine [23] or by the administration of the 

DNA-labelling dye bromodeoxyuridine to rats in drinking water [24]. These 

approaches have allowed the identification of low mitotic index cells that 

undergo only limited dilution of label over time and are located at the bottom of 

the crypts. Only recently new methods have arisen to aid in the identification 

and isolation of CSCs. The most important of these has been the identification 

of surface markers by immuno-histochemistry. Other methods of identification 

include morphological features such as ‗bell shaped‘ nuclei and their position at 

the base of the crypt [25]. 
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The CSC population is defined by fluorescence-activated cell sorting (FACS) of 

tumour cells according to the expression of ‗signature‘ cell surface biomarkers. 

Proposed biomarkers include CD133 [26-28], CD44 [29-31], CD34 [1,32], 

CD24  and epithelial-specific antigen (ESA) [29,30]. Injection of CSC-enriched 

populations into immunodeficient mice at low concentrations results in the 

formation of tumours with equivalent histology and phenotypic heterogeneity to 

the original neoplasm, whereas injection of non-CSCs, even at high 

concentrations, results in the growth of few or no tumours [26, 29-31]. 

Research so far suggests that the molecular ‗signature‘ which specifically 

identifies CSCs is likely to constitute a combination of cell surface proteins that 

are co-ordinately expressed or repressed. The CD44, CD166, CD133 and 

EpCAM (epithelial cells adhesion molecule) are markers of tumorigenic cell 

population of colorectal cancer.  

 

1.3 CD133  

One of the main CSC markers identified was CD133, a pentaspan 

transmembrane glycoprotein also known in humans as Prominin 1 [33]. The 

CD133+ population is enriched in cancer-initiating cells in many tissues, 

including retinoblastoma [34], brain tumor [26,35], kidney cancer [36], prostate 

tumor [27], hepatocellular [37] and colon carcinomas [6,7]. Nonetheless, use of 

CD133 as a marker for identification and isolation of colon CSCs is a subject of 

debate; despite its use in isolating cell populations with cancer-initiating ability, 

studies have shown that CD133 is expressed by stem cells (SCs) and more 

differentiated progenitor cells [38]. CD133‘s function is unclear, although it is 
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believed to have a role in asymmetric division and self-renewal. Bauer et al 

proposed that the polarized localization of CD133 indicates its role in regulating 

proliferation [39]. CD133 is concentrated in cell surface domains that 

correspond to the spindle pole region during metaphase. In telophase and 

cytokinesis, it is either equally or unequally distributed between the 2 nascent 

daughter cells. Studies have indicated a role for CD133 in tumor angiogenesis. 

CD133+ glioma cells produce proangiogenic factors that can directly modify 

endothelial cell behaviour [40]. Other data indicate that the CD133+ cell 

population can itself give rise to endothelial cells that promote vascularization 

and tumor growth, like renal progenitor cells do [41]. Within the intestine, 

CD133 would mark SCs susceptible to neoplastic transformation. These cells 

would be in fact prone to aberrantly activate Wnt signaling and such event 

would disrupt normal tissue maintenance leading to their aberrant expansion, 

resulting ultimately in neoplastic transformation of the intestinal mucosa [42]. 

The existence of colon CSCs was first reported by the research groups of John 

Dick and Ruggero De Maria [6,7] which independently described a small 

population of cancer cells capable of initiating tumor growth in immunodeficient 

mice. By implanting limiting dilutions of human colon cancer cell suspensions 

into pre-irradiated non-obese diabetic severe combined immunodeficient mice, 

O‘Brien et al demonstrated that only a small subset of colon cancer cells 

(1/5.7x104 total cells) initiated tumor growth. Using flow cytometry, Ricci- Vitiani 

et al detected a rare population of CD133-/cytokeratin CK20- cells in colon 

tumor samples (2.5% ±1.4% of total cells). CK20 is considered a colonic 

epithelial terminal differentiation marker and therefore to be absent in the SC 

compartment. Based on immunohistochemical analyses, these cells were 
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present in areas of high cell density. The tumorigenic potential of colon CD133- 

cells was next analyzed by comparing the ability of CD133+ and CD133- 

populations to engraft and give rise to subcutaneous tumors in severe 

combined immunodeficient mice (Fig. 5). Low numbers of CD133+, but not 

high numbers of CD133- engrafted and formed tumors; high numbers of 

unsorted cells gave rise to tumors but, despite the high number of CD133- 

among them, tumor formation took more time. 

 

 

1.4 Proteomics and its impact on the life sciences 

Genomics is the comprehensive analysis of the genetic content of an 

organism. It also often refers to genome wide studies of mRNA expression. 

Already during the ―genomic era‖ that ended with the sequencing of Human 

Genome in the year 2003, the scientific community realized that the 

identification of coding sequences is insufficient to understand the molecular 

mechanisms of cell activity. Therefore, the attention increasingly focused on 

the products of the genome: the proteins and enzymes that determine cellular 
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architecture and function. The Proteome is the protein complement of the 

genome. According to the current annotation, the human genome consists of 

about 25000 genes, scattered among 3 billions nucleotides of chromosome-

based DNA code [43]. This represents a huge amount of static information, 

which needs to be correlated with dynamic information coming from gene 

products and their interactions. In contrast to the genome, the proteome is 

dynamic and is constantly modulated because of a combination of factors, 

which include mRNAs differential splicing, post translational modifications 

(PTMs), temporal and functional regulation of gene expression as well as the 

formation of multi-protein complexes. More than 100 modification types are 

recorded and additional ones are yet to be discovered [44]. All modified forms 

from one protein can vary in abundance, activity or location inside a cell. 

Indeed, cellular proteins are not invariant products of genes, but are subject to 

a high degree of interdependent processing at the protein level that is a critical 

component of cellular function and regulation. In addition, protein expression is 

dynamically regulated in response to external and internal perturbations under 

developmental, physiological, pathological, pharmacological and aging 

conditions. In fact, in contrast to the static genome, where all information could 

in theory be obtained from the DNA of a single cell, the proteome is considered 

dynamic because highly dependent not only on the type of cell, but also on the 

state of the cell [45]. Proteomics provides methods for correlating the vast 

amount of genomics information that is becoming available with the equally 

vast protein information that is being produced through analysis of cells under 

normal versus altered states [46]. In the last few years proteomics has become 

a powerful tool for the investigation of complex biochemical processes and 
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protein-protein interactions [47-48]. In medical sciences, proteomics has 

manifested significant impact on various aspects of clinical research, including 

understanding of disease pathogenesis, discovery of novel biomarkers for 

early disease diagnosis as well as identification of new drug and vaccine 

targets [49–52]. The biomarkers are biomolecules that are used to aid in 

monitoring disease progression and following prognosis in response to the 

therapeutic interventions. Identification of protein biomarkers is useful for early 

detection of various fatal diseases such as cancer or autoimmune disorders 

and has significant impact on human health [53, 54]. 

 

1.5 Proteomics analysis 

The term Proteomics is associated to the set of analytical tools used to depict 

the protein compartment of a cell. It is the natural continuation of Genomics 

approach and it moves away from classical Protein Chemistry, taking 

advantages of all the heritage of knowledge and methods developed from the 

latter. The great innovation of the Proteomics analysis is in fact the idea that to 

study the cellular molecular mechanisms, in which proteins play a key role, it is 

necessary to study the entire proteome as a ―single analyte‖ this means that, 

the proteins target of the analysis are no more purified and isolated from their 

highly complexity context found in living systems. Indeed, they are analyzed all 

together in order to obtain a real snapshot of the proteome, related to a 

particular cell state. From this general definition it is possible to distinguish two 

main areas of interest: i) ―expression proteomics‖ that is focused on the 

characterization of the change in protein expression levels and eventually the 
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definition of PTMs [55], ii) ―functional proteomics‖ aimed to understand protein-

protein interactions [56], signal pathways [57] and structure function relations. 

However, the proteome analysis is hindered by several analytical problems. 

First of all is the large range of protein concentration present in the samples. 

For example, in the human serum the 50 most abundant proteins represent 

about 99% of the total amount of protein mass but only less than 0.1% in 

number [58]. Another important challenge is surely the detection of PTMs. In 

fact only a minor part of the proteins of interest are post translationally 

modified. The high sample complexity, in terms of number of analytes, is also a 

feature that has to be taken in account, in fact for about 21000 human protein 

encoding genes are estimated around 106 human proteins [59]. For these 

reasons the Proteomics analysis needs a pool of methodologies and 

technologies that are high throughput, sensitive, selective toward the proteins 

target of the analysis and with large dynamic range effectiveness. Currently, 

Proteomics may rely on many chromatographic and electrophoresis tools to 

fractionate the analytes. However, if different approaches are in relation to 

these techniques of separation, all the strategies have a common essential 

final step: the mass spectrometry (MS) analysis of peptides or proteins. In the 

following section the expression proteomics employed for the purposes of this 

PhD  programme will be covered in more detail. 
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1.5.1 Expression proteomics 

Mammalian cells contain thousands of different proteins and only a small 

number of them changes under such circumstances. The primary goal of 

expression proteomics is to detect differences in protein expression patterns 

between normal and diseased tissue. Proteome analysis bases on two 

essential components: protein separation and protein identification. Historically, 

the tool of choice for maximal separation of proteins was two-dimensional 

electrophoresis (2-DE) that relies on separating proteins based on their 

isoelectric point (pI) and molecular weight (MW) (Fig. 8). 

 

 

 

Proteins carry a negative, positive or zero net charge depending on their amino 

acid composition and covalent modification (such as phosphorylation, 

nitrosylation, sulphation and glycosylation), and the pH of the environment. The 
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pI of a protein is the pH at which the protein carries no net charge. If the 

proteins migrate in a pH-gradient, they will move until they reach a position in 

the pH-gradient where their overall net charge is zero, i.e. the pH is equal to 

the pI of the protein. The original 2DE method, described by O‘Farrell (1975) 

[60], used carrier ampholytes in tube gels to create and maintain a pH-

gradient. Carrier ampholytes are small amphoteric molecules with high 

buffering capacity near their isoelectric points and are usually employed as 

mixtures covering a set pH range. When an electric field is applied across a 

mixture of carrier ampholytes the most negatively charged proteins move 

towards the anode and the most positive ones towards the cathode. In this way 

it is possible to form a continuous pH-gradient within a gel, which is suitable for 

focusing larger amphoteric molecules such as proteins. However, this method 

had limitations in the resolving power and in the pH gradient stability. Several 

innovations significantly improved reproducibility and performance of the first 

dimension focusing step (IEF) in 2D-PAGE such as commercially available 

immobilized pH gradient strips, in which the carrier ampholytes are co-

polymerised into the gel matrix. Furthermore, the gel is cast onto a plastic 

support strip making the system much more robust and easier to handle. The 

second dimension uses the traditional SDS-PAGE technique; the IEF strip 

replaces the stacking gel. Despite being a well-established technique for 

protein analysis, traditional 2D gel electrophoresis is time-consuming and 

labour-intensive. Nevertheless, in 2-DE there are sources of variability that can 

distort the real difference in protein expression: a) analytical variations due to 

treatment of the sample, to procedures for staining or to image acquisition; b) 

biological variations due to environment in which the sample was produced, 
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processed and preserved. To minimize these variations, it is useful to work 

with multiple biological and analytical replicates thus increasing the difficulty of 

analysis (Fig.9). 

 

 

1.5.2 2D-DIGE 

The development of 2-D differential in-gel electrophoresis (2D- DIGE) in 1997 

overcame this limitation by allowing up to three distinct protein mixtures to be 

separated within a single 2D-PAGE gel [61]. In a typical 2D-DIGE experiment, 

proteins extracted from three different samples, healthy, diseased and internal 

control (a pooled sample formed from mixing equal amounts of the proteins 

extracted from the healthy and diseased samples), are covalently labeled, 

each with a cyanine fluorescent dye that has a different excitation and 

emission wavelength. The ability to multiplex different cyanine dye labelled 

samples on the same gel means that the different samples will be subject to 
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exactly the same 1st and 2nd dimension running conditions. Consequently the 

same protein labeled with any of the dyes and separated on the same gel will 

migrate to the same position on the 2D gel and overlay. This limits 

experimental variation and ensures accurate within-gel matching. The used 

cyanine dyes are: 1-(5-carboxypentyl)- 1′-propylindocarbocyanine halide N-

hydroxysuccinimidyl ester (Cy3); N 1-(5-carboxypentyl)-1′-

methylindodicarbocyanine halide N-hydroxysuccinimidyl ester (Cy5); and 3-(4-

carboxymethyl)phenylmethyl- 3′-ethyloxacarbocyanine halide N-

hydroxysuccinimidyl ester (Cy2) (Fig. 10). Equal concentrations of the 

differentially labeled proteomes and of the control sample are mixed, applied to 

a single gel plate, and separated using 2D-PAGE. The control sample serves 

as an internal standard, enabling both inter- and intra-gel matching. The control 

sample should contain every protein present across all samples in an 

experiment. This means that every protein in the experiment has a unique 

signal in the internal standard, which is used for direct quantitative 

comparisons within each gel and to normalize quantitative abundance values 

for each protein between gels. Scanning the gel at the specific excitation 

wavelengths of each dye, using a fluorescence imager, allows visualization of 

the differentially labeled proteins. The images are then merged and analyzed 

using imaging software, which enables differences between the abundance 

levels of proteins to be compared.  
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To compare protein expression across a range of experimental samples and 

gels, two distinct steps are required during the image analysis (Figure 11): a) 

intra-gel co-detection of sample and internal standard protein spots and b) 

inter-gel matching of internal standard samples across all gels within the 

experiment. In the first step three scans are made of each gel, Cy2, Cy3 and 

Cy5 scans. Scanned images of each sample and the internal standard are 

overlaid by a software. The algorithms within the software co-detect the spots 

present in each scan-image, effectively identifying the position of each spot 

within the gel (Figure 11a). In this way every protein in the sample is 

intrinsically linked to the corresponding protein spot in the internal standard 

sample. In the second step, the inter-gel comparisons of spot abundance are 

carried out. Following co-detection, each image has a spot map species. The 

internal standard image with the most detected spots is assigned as the 

'Master'. The spot map species for the internal standard assigned as the 

Master, is used as a template to which all remaining spot map species for the 

other internal standards (intrinsically linked to their co-detected sample 
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images) are matched (Figure 11b). Once the protein spots have been 

matched, the ratio of protein abundance between samples can be determined. 

 

 

Spot volume (i.e. the sum of the pixel values within a spot minus background) 

for each experimental sample is compared directly to the internal standard by 

the software. Spot volume ratios are calculated indicating the change in spot 

volume between the two images. The protein abundance for each spot in each 

sample is then expressed as a (normalized) ratio relative to the internal 

standard. Statistical tests such as the Student‘s t-Test can then be applied to 

the data-software. The statistical tests verify that any change between the 

groups is significant and give the user a level of confidence by taking into 
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account the inherent biological variation within a group compared to the 

induced difference between groups. It assigns a confidence rating as to 

whether this change is above the biological variation. Concluding, the 

introduction of 2D-DIGE contributed immensely to solving problems of 

reproducibility and quantization. The use of imagers and computers allows not 

only fast data mining, acquisition, and analysis but also spot detection, 

normalization, protein profiling, background correction, reporting and exporting 

of data. As a separation, detection and quantization technique, 2D-DIGE is an 

important tool especially for clinical laboratories involved in the determination 

of protein expression levels and disease biomarker discovery. When absolute 

biological variation between samples is the main objective, as in biomarker 

discovery, 2D-DIGE is the method of choice. 

 

1.6 Mass spectrometry tools for proteomic analysis 

-Principles and instrumentation- 

Whatever the used proteomic approach, the common essential final step of a 

proteomic experimental workflow is the mass spectrometry (MS) analysis. 

Mass spectrometers consist of three basic components: an ion source, a mass 

analyser, and an ion detector. Molecular mass measurements are carried out 

indirectly, calculating the mass charge ratio (m/z), by the analysis of kinetics 

behaviour of the ionized analytes in the gas phase and in electromagnetic 

fields. The need of a method that transfers efficiently intact molecules from 

solution or solid phase into the gas phase, was the limit that for many years 
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excluded proteins and peptides from this powerful technique. With the 

development and the commercialization of mass spectrometers based on the 

ion source technologies of ―Matrix-Assisted Laser Desorption/Ionisation‖ 

(MALDI) [62] and ―Electrospray Ionisation‖ (ESI) [63] the gas phase ionization 

of polar analytes has also become possible. Both MALDI and ESI are 

considered as soft ionisation techniques with which the generated ions 

undergo little or none fragmentation. In MALDI technique, samples are co-

crystallised with a weak aromatic acid matrix on a metal target. A pulsed laser 

is used to excite the matrix, which causes rapid thermal heating of the 

molecules and desorption of ions into the gas phase in a pulsed beam fashion. 

After the laser activation, the weak acid nature of the matrix drives to generate 

single-charged ions in the form of MH+ adduct (Fig.12). The one-one analyte-

MS signal relation in MALDI-MS makes possible to analyze also multi-

component mixtures without any interpretation difficulties caused by the peaks 

overlapping. 
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ESI creates ions by spraying an electrically generated fine mist of ions into the 

inlet of a mass spectrometer at atmospheric pressure. By creating a potential 

difference between the capillary, through which the liquid flows, and the inlet of 

the mass spectrometer, small droplets of liquid are formed. These are 

transferred into a heated device to induce efficient evaporation of solvent. 

Once the droplets have reached the Rayleigh limit, ions are desorbed from the 

droplet generating gas-phase ions in a continuous beam fashion (Fig.13). The 

ions produced by ESI sources are multiply charged adducts MHn
n+, where the 

number of protons incorporated depends on the statistical acid/basic 

equilibrium of the analytes. This situation complicates the spectra interpretation 

because each analyte may give rise to many signals in the spectrum. For this 

reason it is not possible to analyze complex mixture without a previous 

fractionation. However, because the ionization is carried on a liquid flow, ESI 

source may be simply coupled to liquid chromatography systems.  
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The most notable improvement of ESI technique has come from the reduction 

of the liquid flow rate used to create the electrospray to nano-scale level. 

Nano-sources create ions more efficiently [64] because the charge density at 

the Rayleigh limit increases significantly with decreasing droplet size. Another 

advantage of using separation techniques with nano-ESI is the increase in the 

concentration of the analyte as it elutes off the column. After ionisation, the 

analytes reach the mass analyzer, which separates ions by their mass-to-

charge (m/z) ratios. Ion motion in the mass analyser can be manipulated by 

electric or magnetic fields to direct ions to a detector, usually an electro-

multiplier, which records the numbers of ions at each individual m/z value 

converting the signals in current. In Proteomic research, four basic kinds of 

mass analysers are currently used: time-of-flight (TOF), ion trap (IT), 

quadrupole (Q), and Fourier transform ion cyclotron resonance (FTICR) 

analysers (Fig.14). All four differ considerably in sensitivity, resolution, mass 

accuracy and the possibility to fragment peptide ions. They are very different in 

design and performance, each with its own strength and weakness. These 

analysers can be stand alone or, in some cases, put together in tandem to take 

advantage of the strengths of each. 
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The quadrupole mass filter consists of a linear array of four symmetrically 

arranged rods to which radio frequency (RF) and DC voltages are supplied. 

Forces are exerted in a plane normal to the direction (z-direction) in which the 

ions drift. The RF potential gives rise to a field which alternatively reinforces 

and then dominates the DC field. Ions oscillate in the x,y-plane with 

frequencies which depend on their m/z values. If the oscillations of an ion in 

this plane are stable, the ion will continue to drift down the rod assembly and 

reach the detector. Stable oscillations are only achieved by ions of given m/z 

value for a given rod assembly, oscillation frequency, RF voltages and DC 

voltages. Commercially available instruments usually have mass/charge limits 

ranging from 0 to 4000 m/z and at best are normally set to resolve the various 

13C isotope peaks for a singly charged ion, although the resolution may be 

intentionally degraded to improve sensitivity. In ESI, multiple charging enables 

quadrupole mass measurement of molecules >100,000 Da, if the molecule can 

be charged sufficiently.  
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The ion trap consists of three electrodes, the central ring electrode and two 

end-cap electrodes of hyperbolic cross-section. In this device too, ions are 

subjected to forces applied by an RF field but the forces occur in all three, 

instead of just two, dimensions. In ion-trap analysers, ions are resonantly 

activated and ejected by electronic manipulation of this field. Ion traps are 

robust, sensitive and relatively inexpensive, and so have produced much of the 

proteomics data reported in the literature. A disadvantage of ion traps is their 

relatively low mass accuracy, due in part to the limited number of ions that can 

be accumulated at their point-like centre before space-charging effects distort 

their distribution and thus the accuracy of the mass measurement. 

Usually, in the Time-of flight (TOF) analyzers the ions are accelerated through 

a fixed potential into a drift tube. As all the ions with same charge obtain the 

same kinetic energy after acceleration, the lower m/z ions achieve higher 

velocities than higher m/z ions. Moreover, ion velocities are inversely related to 

the square root of the m/z. Thus, by measuring the time it takes to reach the 

detector, the m/z of the ion can be determined. Thanks to several strategies, 

such as delayed extraction of ions from the source, two stage sources with 

complex voltage gradients, and reflectron detectors, a commercial TOF 

instrument can typically achieve resolution of 10,000 or greater.  

A Fourier-transform ion-cyclotron resonance (FT-ICR) mass spectrometer (also 

referred to as a Fourier-transform mass spectrometer, or FTMS) uses a 

magnetic field to determine the m/z of an ion. In an FT-ICR ions have kinetic 

energies, at most, of a few tens of electron volts (eV). At low kinetic energies, 

ions are actually trapped under high vacuum in the magnetic field. For a 
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constant magnetic field, ions oscillate around the magnetic field with a 

cyclotron frequency that is inversely related to the m/z. In a very simplified view 

of FT-ICR, the cyclotron frequencies of the ions trapped in the FT-ICR are 

measured and then converted into m/z. State-of-the-art electronic equipment is 

capable of measuring frequencies with extremely high precision. This 

translates to a very high mass resolution, which is the property FT-ICR is most 

widely known for. Mass resolving power in the hundreds of thousands are fairly 

easy to obtain on instruments with large magnetic field strengths (that is, > 7 

Tesla), and resolutions in the millions have been demonstrated. Very high 

mass accuracies, down to the ppm level, can also be obtained (resolution 

>2,000,000). 

- Tandem MS - 

The power of mass spectrometry can be dramatically increased by employing 

methods of tandem mass spectrometry. Conventional MS produces ions that 

are separated by m/z and analyzed directly. If a soft ionization method is used, 

the mass spectrum will lead to calculate the molecular weight values of 

compounds present in the analyte but with little or no structural information. In 

a tandem MS (MS/MS) experiment, the first mass analyzer (MS1) is used to 

selectively pass an ion (precursor ion) into another reaction region where 

excitation and dissociation take place. The second mass analyzer (MS2) is 

used to record the m/z values of the dissociation products (daughter ions). 

Low-energy collision-induced (activated) dissociation (CID or CAD) [65] 

tandem mass spectrometry has been, by far, the most common method used 

to dissociate peptide ions for subsequent sequence analysis. Upon collisional 
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activation with a non-reactive gas, such as argon or helium, the amide bond of 

the peptide backbone will fragment to produce, ideally, a homologous series of 

b and y-type fragment ions (Fig.15). The observed fragmentation pattern 

depends on various parameters including the amino acid composition and size 

of the peptide, excitation method, time scale of the instrument, the charge state 

of the ion, etc. Peptide precursor ions dissociated under the most usual low-

energy collision conditions fragment along the backbone at the amide bonds 

forming structurally informative sequence ions and less useful non-sequence 

ions by losing small neutrals like water, ammonia, etc.  

 

 

Therefore, to achieve a multi-stage MS analysis many mass spectrometers 

equipped with hybrid combinations of analyzer have been built and are now 
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commercialized. Triple quadrupole (QqQ), quadrupole/ time of flight (QqTOF) 

and time of flight/ time of flight (TOFTOF) may perform ―space separated‖ 

tandem MS. Ion trap analyzer by itself may realize tandem MS experiments 

―time separated‖. This is accomplished by the expulsion of the ions trapped in 

MS mode, isolating the parent ion. This one is further fragmented by collision 

and the produced ions are first accumulated, then scanned and detected. This 

―time separated‖ operative mode allows to realize very sensitive MSn 

experiments with simple equipments. By using the above described MS tools, 

there are two different methods to identify proteins. The first method, usually 

obtained by MALDI-MS, is the “peptide mass fingerprinting” (PMF) [66] based 

on the idea that a protein digested by an enzyme with known specificity 

produces a peptides pool that may be used as discriminatory for its 

identification. MALDI-TOF analysis produces a unique spectrum giving the 

accurate monoisotopic mass of all the peptides produced by the protein 

digestion, producing peculiar molecular masses map for each protein. This 

map is then compared to the ones generated in silico by the virtual digestion of 

all the protein sequences present in a given interrogated database. The PMF 

method works well for isolated proteins, but the resulting protein identifications 

are not sufficiently specific for protein mixtures (e.g. for co-migrating proteins). 

The addition of sequencing capability to the MALDI method should make 

protein identifications more specific than those obtained by simple peptide-

mass mapping. In this case the second identification method ―MSMS ion 

search‖ should be implied. This method uses the MS tandem methodology and 

thanks to the peptide fragmentation, gives information about the amino acidic 
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sequence of the peptides (and so, of the proteins) in analysis. It is sufficient a 

sequence of 5-6 amminoacids to identify univocally a protein.  

 

1.7 Aim of the PhD thesis 

The aim of this study was to obtain insights into the colon cancer stem cells 

(CSCs) molecular mechanisms, in fact CSCs theory represents a breakthrough 

in the recent cancer research. As experimental model, we used a combined 

approach of flow-cytometry, differential proteomic and mass spectrometry on 

two different colon cancer cell line systems i.e. CaCo-2 and HCT-116 derived 

from tumors taken directly from patients. Flow-cytometry was employed to 

separate putative colon CSCs from non-CSCs according the expression of the 

universal recognized stem cell marker CD133. Then, a differential proteomic 

approach was used to compare total protein extracts of CD133+ cells (putative 

CSCs) to total protein extracts of CD133- cells (non-CSCs). Particularly, the 

innovative and powerful methodology of 2D-DIGE was applied to our samples. 

The protein spots differentially expressed in the two sub-population of cells 

were identified by mass spectrometry. Several selected proteins were validated 

by western blotting, the whole group of identified proteins for each cell line was 

submitted to bio-informatic analysis and finally, functional assays on selected 

proteins of interest were performed. In the following sections the results 

obtained during the four years of PhD programme will be illustrated in detail. 
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2. MATERIALS AND METHODS 

 

2.1 Cell cultures 

Three different colon adenocarcinoma-derived cell lines were used: CaCo-2, 

HCT-116 and HT-29, all available from the CEINGE Cell Bank (Naples, Italy). 

The CaCo-2 cell line was grown in Essential Minimum Eagle‘s Medium 

(EMEM, Sigma-Aldrich, Oakville, ON) supplemented with 10% Fetal Bovine 

Serum (FBS, Gibco, Carlsbad, CA), 1% ultraglutammine (Cambrex, East 

Rutherford, NJ), 1% non essential amino acids and 1% sodium pyruvate. HCT-

116 and HT-29 were propagated in McCoy‘S 5A (Sigma-Aldrich) medium 

supplemented with 10% FBS and 1% ultraglutammine. Adherent cells were 

detached using Trypsin-EDTA (Sigma-Aldrich) solution, floating cells were 

collected and Trypsin-EDTA was inactivated using complete culture medium. 

 

2.2 Immunophenotyping and flow cytometry experiment 

After detaching, cells were washed and reconstituted to a final concentration of 

10 x 106 cells/mL in 2% FBS/PBS. As preliminary step, we analyzed the 

intrinsic fluorescence of CaCo-2, HCT-116 and HT-29 by using unlabelled 

samples that act as control. Cells were subdivided in 5ml polystyrene tubes 

(Falcon, Becton Dickinson, San Jose, CA). Cell suspensions (50μL) were 

incubated with 5μL of each antibody for 30 minutes at 4°C. Cells were then 

washed with 1mL 2% FBS/PBS, re-suspended in 500μL 2% FBS/PBS and 

analyzed by flow cytometry. FACSAria cell sorter (Becton Dickinson), equipped 
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with four excitation lines (633nm, 488nm, 407nm and 375nm lasers), was 

employed for the analysis. FITC, PE, Per-CP, PE-Cy7 were analyzed on the 

488nm line while allophyco-cyanin was excited by the 633nm laser. The 

antibodies used in this study included CD133-PE and CD133-allophyco-cyanin 

(AC133 clone; Miltenyi Biotec, Auburn,CA). 

 

2.3 Gating strategies 

Cells were first gated on physical parameters (FSC and SSC) to exclude the 

majority of dead and apoptotic cells. Then, FSC-Area versus FSC-height 

profiles were used to identify single cells and to exclude doublets. CD133+ 

cells were gated in CD133 vs ―empty channel‖ dot plot and then were sorted 

and collected. The isolated cell pellets were stored at -80°C until further 

analysis. 

 

2.4 Sample preparation for 2D-DIGE analysis 

To obtain total protein extracts, cells were washed twice with cold PBS, 

centrifugated at 1000 rpm for 5 min and resuspended with a lysis buffer 

containing 7M urea, 2M thiourea, 30 mM Tris-HCl pH 8.5, 4% CHAPS (w/v), 1x 

Complete® EDTA free, containing a cocktail of protease inhibitors (Roche 

Applied Science, Indianapolis, IN, USA). Protein extracts were incubated at 

4°C for 5 min and than sonicated to disrupt the cells and to shear the DNA and 

RNA in the cell. Protein samples were cleared from cell debris by centrifugation 

at 14000 rpm at 4°C for 20 min and then purified using the 2-D Clean-up Kit 
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(GE Healthcare, Piscataway, NJ, USA) following supplier's instructions. Protein 

samples were then resuspended in lysis buffer. In order to perform the reaction 

between the N-hydroxysuccinimidyl ester reactive group of the CyDye 

fluorochrome and the epsilon amino group of lysine residues of proteins, 

protein solution pH was adjusted to the value of 8.5. Protein quantification was 

performed with the 2-D Quant Kit (GE Healthcare) by reading protein 

absorbance at 480 nm. To perform a successful CyDyes labeling using the 

Ettan DIGE Manual, protein concentrations was adjusted between 5 and 10 

mg/ml of lysis buffer. 

 

2.5 Labeling efficiency and same same same tests 

The labeling efficiency of the samples with the CyDye DIGE Fluors was tested, 

before DIGE experiment, by performing the following reactions: 

- 50 μg of total protein extract for each cell line was labeled with 400 pmol of 

Cydye Cy5.  

- 50 μg of total E. coli protein extract, used as control, was labeled with 400 

pmol of Cydye Cy5.  

E. coli  was chosen because its protein extract has already been labeled 

successfully. Herein, the procedure applied on CaCo-2 is described, but the 

same experiments were performed on HCT-116. Labeling reactions were 

carried out in the dark on ice for 30 min before quenching with 1 l of a 10 mM 

L-Lysine solution for 10 min. Serial dilutions of 25 μg, 12.5 μg and 6.25 μg of 

CaCo-2 and E.coli protein lysates were made. Proteins were then resolved on 
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a one-dimensional SDS gel with a concentration of 12.5% polyacrylamide. The 

gel was than acquired at the Cy5 wavelength using the Typhoon 9400 imager 

(GE Healthcare) and processed and analyzed with Image Quant Analysis 

software (GE Healthcare) to verify that the labeling efficiency of the protein 

sample is comparable to the control.  

The ―same same same‖ test was performed to verify that none of the three 

Cydyes labels the same test sample preferentially. 50 μg of total CaCo-2 

protein extract was labeled with 400 pmol of each Cydye. Proteins were 

resolved on a 2D polyacrylamide gel (26x20 cm) by using an Ettan DaltTwelve 

system (GE Healthcare). After electrophoretic separation, gels were scanned 

using the Typhoon 9400 imager (GE Healthcare). Fluorescence-labeled 

proteins were visualized at the appropriate wavelength for Cy3, for Cy5 and for 

Cy2. Images were acquired with Image Quant Analysis software (GE 

Healthcare). The images were processed and analyzed by DeCyder v5.02 

software (GE Healthcare). The comparison of the volume of fluorescence for 

all spots allowed us to define a threshold. All variations under this threshold 

were not considerated.  

 

2.6 Labeling of protein extracts 

Protein extracts (50μg) from 4 different biological replicates of CD133+ and 

CD133- cells were separately labeled at pH 8.5 with 400pmol of Cy3 and Cy5, 

according to manufacturer‘s protocol. We found no appreciable differences 

between spot patterns and volumes of Cy3 and Cy5 labeled proteins (data not 
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shown). However, to avoid any possible differences due to staining 

effectiveness we crossed the dyes between the pairs of analyzed samples 

(Table 1). As internal standard we used a mixture containing equal amount of 

the eight lysates in analysis labeled with Cy2. Labeling reactions were stopped 

with 1mM lysine. Each Cy3/Cy5-labeled sample pair was mixed with a Cy2-

labeled pooled standard sample. The Cy2/Cy3/Cy5-labeled samples were run 

together on the same gel (Gels 1-4 in Table 1). 

 

Table 1. 2D-DIGE experimental design  

Gel  Cy3a (50 µg)  Cy5a (50 µg)  Cy2a (50 µg)  

1  CD133+ replicate 1  CD133- replicate 2  Pool standardb 

2  CD133+ replicate 2  CD133-  replicate 1  Pool standardb 

3  CD133- replicate 3 CD133+ replicate 4  Pool standardb 

4  CD133-  replicate 4 CD133+ replicate 3  Pool standardb 

 

 

2.7 2D separation of CD133+ and CD133- protein samples 

Protein samples, mixed as described in Table 1, were separated on 24-cm IPG 

strips with a 3-10 non linear pH range (GE Healthcare). Strips were rehydrated 

before use with 450µl of DeStreak rehydration solution, 0.5% pharmalyte and 

0.5% IPG overnight at room temperature. Usually 50µg of protein lysates from 

CD133+ cells, 50µg from CD133- cells (Cy3 or Cy5 labeled) and 50µg of 
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pooled standard (Cy2 labeled) were mixed and the final volume was adjusted 

to 450μL with sample buffer containing 7M urea, 2M thiourea, 4% CHAPS, 1% 

DTT and 1% pharmalyte (GE Healthcare). The strips were then transferred to 

the Ettan IPGphor system (GE Healthcare) for IEF. Samples were loaded on 

the strips by anodic cup-loading. The IEF was carried out for 18h for a total of 

60kV/h, 50μA/strip at 20°C, using the following protocol: 

      Step 1: 300 V for 4h 

      Step 2: from 300 V to 1000 V for 6 h 

      Step 3: from 1000 V to 8000 V for 3 h 

      Step 4: 8000 V for 5 h 

Then, proteins were reduced by equilibrating IPG strips for 15min in 0.5% DTT 

(w/v), 100mM Tris pH 8.0, 6M urea, 30% glycerol (v/v), 2% SDS (w/v). Proteins 

were then alkylated for 15min using the same buffer containing 4.5% (w/v) IAA. 

After the equilibration steps, the strips were over layered onto 10% 

polyacrylamide gels (20 x 24cm) and the second dimension was carried out for 

18h at 2W per gel using an Ettan Dalt Twelve system (GE Healthcare) until the 

bromophenol blue reached the bottom of the gel. 

An independent two-dimensional preparative gel for each cell line was run with 

the same condition applied for the analytical gels, using for each gel, 0.5 mg of 

protein extract from Caco-2 and HCT-116 cells, respectively. Preparative gels 

were washed with a fixing solution of 40% methanol, 10% acetic acid, 50% 

water for 3 h before overnight staining in SYPRO Ruby (Molecular Probes, 

USA) with gently agitation, in the dark.  
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2.8 Analysis of gel images 

The gels were scanned using a fluorescence scanner (Typhoon 9400, GE 

Healthcare) at 100 μm resolution. Fluorescence-labeled proteins were 

visualized at the appropriate excitation/emission wavelengths: 532/580 nm for 

Cy3, 633/670 nm for Cy5 and 488/520 nm for Cy2. Preparative gel images 

were acquired using the Typhoon imager at excitation/emission wavelengths of 

457/610 nm. All gels were scanned by using the same parameters, selected to 

prevent pixel saturation. 

The fluorescent images of the 2D-DIGE gels were analyzed using the DeCyder 

software suite, version 5.02 (GE Healthcare). For each gel, the overlapped 

images (Cy3, Cy5, Cy2) were imported into the DeCyder DIA (Difference In-gel 

Analysis) module to detect differentially expressed protein spots in each gel. In 

fact, protein spots were detected and quantified with the DIA module. The 

maximum number of estimated spots was fixed at 5000. In addition, DIA was 

used to detect spot boundaries and calculate spot volumes, normalized versus 

the volume of the corresponding spot present in the pool standard of the same 

gel. Protein spots that matched among the four gels were obtained using the 

BVA (Biological Variation Analysis) module. The Cy2 image containing the 

highest number of spots, was assigned as ―master gel‖. The spot boundary 

maps of the master image were used as template. Matching of protein spots 

across gels was performed automatically. 

A standard abundance for each spot was thus calculated thereby allowing 

inter-gel variations. Each spot intensity was then expressed as mean of 4 

standard abundances calculated for the four gels described in Table 1. Spot 
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intensities were then compared in the two used conditions: CD133+ and 

CD133- cells. Statistical significance of differences in spot intensity was 

determined by Student‘s t-test. Only protein spots with at least 1.20-fold 

change in volume (p≤0.05) after normalization were considered significantly 

altered. We verified the validity of these changes and accuracy of spot 

matching by manual investigation. 

 

2.9 Protein identification by MS 

Protein spots on preparative gels were chosen for excision on comparison with 

the analytical gel. Spots of interest were picked using an Ettan Spot Picker (GE 

Healthcare). Gel pieces were washed in 50mM ammonium bicarbonate and 

50% ACN and subsequently rehydrated in a modified trypsin (Sigma) solution 

(10 ng/µl) in 50 mM ammonium bicarbonate pH 8.5, at 4°C for 1 h. The 

enzymatic solution was then removed. A new aliquot of buffer solution was 

added to the gel particles and incubated at 37°C overnight. The supernatant 

was collected whereas gel pieces were subjected to another extraction in ACN 

at 37°C for 15 min. The supernatant fraction and samples obtained from 

extraction steps were pooled and dried in a vacuum centrifuge. The resulting 

peptide mixtures were resuspended in TFA 0,1% and analyzed on a Voyager 

DE-STR MALDI-TOF (Applied Biosystems, Framingham, MA) in positive ion 

reflectron mode, 20kV and a pulsed nitrogen laser (337nm). Samples were co-

mixed to an equal volume of 10mg/mL CHCA (70:30 ACN:0.2% TFA), spotted 

onto a stainless steel MALDI target plate and air-dried. The mass spectra ( m/z 

600-4000) appropriately calibrated were analyzed using the Data Explorer 
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software v4.0 (Applied Biosystems). Mass values were then used for database 

searching using the MASCOT (version 2.1) PMF search program 

(http://www.matrixscience.com) selecting NCBInr sept09 database (9656715 

sequences) (http://www.ncbi.nlm.nih.gov) and Homo sapiens as taxonomic 

origin of the samples. The search was performed using trypsin as proteolytic 

enzyme, one missed cleavage, cysteine as S-carboxyamidomethylcysteine, 

unmodified N- and C-terminal ends, partial methionine oxidation, putative pyro-

Glu formation by Gln and a peptide maximum mass tolerance of 100ppm. 

Protein spots not identified during the PMF, were further analyzed by μLC-

MS/MS using the LC/MSD Trap XCT Ultra (Agilent Technologies, Palo Alto, 

CA, USA) equipped with a 1100 HPLC system and a chip cube (Agilent 

Technologies). After loading, the peptide mixture (7µl in 0.2% HCOOH ) was 

concentrated and washed at 4 µl/min in 40nl enrichment column (Agilent 

Technologies chip), with 0.1% HCOOH as the eluent. The sample was then 

fractionated on a C18 reverse phase capillary column (75µm x 43mm) at 

200nl/min with a linear gradient of eluent B (2% HCOOH in ACN) in eluent A 

(2% HCOOH) from 5% to 60% in 50min. Peptides were analyzed using data-

dependent acquisition of one MS scan (mass range 400-2000m/z) followed by 

MS/MS scans of the three most abundant ions. Dynamic exclusion was used to 

acquire a more complete range of the peptides by automatic recognition and 

temporary exclusion (2 min) of ions from which definitive mass spectral data 

had previously been acquired. Moreover a permanent exclusion list of the most 

frequent peptide contaminants (keratins and trypsin doubly and triply charged 

peptides) was used. For MS/MS data, the search was performed by using 

MASCOT with a peptide tolerance of 300 ppm and the following additional 

http://www.matrixscience.com/
http://www.ncbi.nlm.nih.gov/
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criteria: maximum fragment mass tolerance of 0.6 Da, 2+ and 3+ charged 

peptides. Identifications were accepted taking in account three issues: 

significant MASCOT Mowse scores, spectrum annotation and expected 

migration on 2D gel. A MASCOT score of 64 corresponds to p<0.05 for PMF 

experiments, while a MASCOT score of 41 corresponds to p<0.05 for MS/MS 

sequencing. These thresholds were chosen as cut-off for a significant hit. 

 

2.10 Western Blot Analysis 

CD133+ and CD133- protein extracts (25µg) from three independent cultures 

were resolved on a 10% SDS-PAGE gel and then transferred onto 

nitrocellulose membranes (GE Healthcare). The membranes were blocked in 

5% non-fat milk in PBS pH 7.5 for 2h and incubated over night at 4°C with 1% 

milk/PBS pH 7.5 and 0.05% TWEEN containing specific commercial primary 

antibodies: mouse anti-SRp20 (1:200), anti-casein Kinase II (CKII) (1:200), 

anti-cytokeratin 8 (1:200), anti-catenin γ (1:200), anti-catenin β (1:200), anti-

annexinA2 (AnxA2) (1:200), anti-lamin A/C (1:200); rabbit anti-annexinA1 

(AnxA1) (1:200) and anti-Hsp27 (1:100) (Santa Cruz Biotechnology, 

Heidelberg, Germany). A mouse anti-Gapdh (1:1000, Sigma-Aldrich) antibody 

was used as loading control. The horseradish peroxidase (HRP)-conjugated 

anti-mouse (1:5000) and anti-rabbit (1:10000) secondary antibodies (GE 

Healthcare) were employed. Immunoblots were detected using the ECL-

Advance Western Blotting Detection kit (GE Healthcare) by 

chemiluminescence. Band volumes were normalized by using Gapdh as 
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control, visualized on the same film. Densitometric measurements were made 

using the Quantity One 4.5 tool (Biorad). 

 

2.11 Bioinformatic analysis 

Data were analyzed through the use of Ingenuity Pathway Analysis (IPA) 

software 7.0 (http://www.ingenuity.com). Drawing on published, peer-reviewed 

literature, IPA constructs networks of direct and indirect interactions between 

orthologous mammalian genes, proteins and endogenous chemicals. These 

relationships include those that occur due to disease and/or environmental 

input. This system can generate a set of networks with a maximum size of 35 

genes/gene products. Each network is characterized by a score computed 

according to the fit of the user‘s set of focus genes/gene products with all the 

genes/gene products stored in the knowledge base. The score is derived from 

a p-value (equal to or smaller than 0.05, Fisher's exact test) and indicates the 

likelihood of the focus genes/gene products in a network being found together 

due to random chance. Biological functions were then assigned to each 

network. Our data set was also analyzed by the GOstat software 

(http://gostat.wehi.edu.au/cgi-bin/goStat.pl) to identify significant biological 

pathways (GO terms). Searches were performed as follows: minimal length of 

the considered GO paths was 1, the maximal p-value was 0.01, no GO 

clustering was applied and Benjamini false discovering testing was used to 

correct for multiple testing. 

 

http://www.ingenuity.com/
http://gostat.wehi.edu.au/cgi-bin/goStat.pl
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2.12 Wnt/β catenin pathway stimulation 

CaCo-2 cell line was grown as described in paragraph 2.1. CaCo-2 cells were 

cultured with 100ng/ml recombinant human Wnt3a (R&D Systems, 

Minneapolis, MN). After 48h and 72h, cells were collected and protein extracts 

were obtained as described under section 2.4. The assay was performed on 

three independent replicates. 

 

2.13 RNAi and cell proliferation assay 

The SRp20 siRNA s12732, targeting a splice junction of SRp20 exon 2 and 

exon 3, was purchased from Ambion (Applied Biosystems). RNAi was 

conducted by transfection with 20 nM siRNA in the presence of Lipofectamine 

2000. The cells with silenced SRp20 were analyzed for protein expression by 

Western blotting and for tumor induction capability by proliferation assay. 

CaCo-2 siRNA transfected cells were detached from culture flask after 24h of 

incubation and seeded in flat bottom 96 well plate (BD-Falcon) at 5000 cells 

/well in DMEM:F12 (Sigma-Aldrich) w/o Phenol Red supplemented with 10% 

FBS, 2% Ultraglutammine. Cells were incubated at 37°C and 5% CO2 until 

120h after siRNA transfection. Cellular proliferation was measured daily by the 

use of WST-1 assay and colorimetric reaction was quantitated at 450–655nm 

with the Ultramark Plate Reader (Biorad) reagent according to manufacturer‘s 

instructions. The assay was performed on three independent biological 

replicates and for each point, the measure was performed on three technical 

replicates. 
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3. RESULTS  

 

3.1 Gating and sorting of CD133+ cells by flow-cytometry 

CD133+ cells were gated in CD133 versus an ―empty channel‖ dot plot for 

each cell line. As a preliminary step, we evaluated the intrinsic fluorescence of 

each cell line. Therefore, as control we used an unlabelled sample to evaluate 

the baseline fluorescence specific for the HCT-116, CaCo-2 and HT-29 cells 

(Figs. 16 A*, B* and C*). Finally, we selected CD133- cells, i.e., cells with the 

same level of fluorescence as unlabelled cells (control cells) and CD133+ cells, 

i.e., the cells with the highest level of fluorescence. In the HCT-116 cells, 80% 

are CD133+ cells and 20% are CD133- cells, which were spontaneously 

separated. In this case our strategy was to gate the brightest CD133+ cells 

(2% of total cells) and, as negative counterpart, we gated the whole population 

lacking CD133 (15-20%) (Fig. 16A). In the CaCo-2 and HT-29 cells, in which a 

large homogeneous population of cells uniformly expressed the antigen, we 

gated 2-5% of cells with the most intense staining. As negative counterpart we 

used 15-20% of the cells with the less intense CD133 staining (Figs. 16B and 

16C). Finally, we isolated and collected the selected cells. 
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3.2 2-DIGE analysis: labeling efficiency and same-same-same tests  

Prior to the DIGE experiment the labeling efficiency of the samples with the 

Cy5 dye was tested. To this aim, the labeling efficiency of CaCo-2 and HCT-

116 protein extract were compared with that of a control which has already 

been labeled successfully. The control was constituted by E. coli total protein 

extract. As shown in Figure 17 proteins were resolved on a one-dimensional 

SDS-PAGE gel, as described in the ―Materials and methods‖ section 

(paragraph 2.5). The gel was acquired at the Cy5 wavelength using the 

Typhoon imager and the relative images were processed and analyzed with 

the Image Quant Analysis software. The labeling efficiency was calculated as 

ratio between the average volumes of fluorescence of the sample with that of 

the control.  



 

52 

 

 

 

In addition, to verify that none of the three CyDyes labels the same test sample 

preferentially, the ―same same same‖ test was performed. By DeCyder 

software, the volumes of fluorescence for all spots of the sample labeled with 

Cy2 were compared with those labeled with Cy3 and Cy5, obtaining a similarity 

of labeling of 98% (Figure 18). The threshold was then set to 1.2 fold-change. 

All variations under this threshold were not considerate. 
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3.3 Identification of differentially expressed proteins by DIGE 

To learn more about colon CSCs, we measured the differential protein 

expression pattern of CaCo-2 and HCT-116 CD133+ and CD133- cells, using 

2-D DIGE. To increase biological and statistical significance of our results, we 

considered CD133+ and CD133- cells obtained from four independent 

cultures. About 2000 protein spots were detected in the analytical 2D gels for 

both cell lines. Fluorescence-labeled proteins in the 2D analytical gels were 

acquired at different wavelengths using an imager to generate an image 

specific for each CyDye. In this way three scans were made of each gel, Cy2, 

Cy3 and Cy5 scans. In the co-detection step scanned images of each sample 

were overlaid with the internal standard by the DIA module of the DeCyder 

software. By this way every protein in the sample was linked to the 

http://www.google.it/url?q=http://science.hq.nasa.gov/kids/imagers/ems/waves3.html&ei=ZbviSsuSHJDkmwO19fn8AQ&sa=X&oi=spellmeleon_result&resnum=2&ct=result&ved=0CAwQhgIwAQ&usg=AFQjCNG7oSlPAIDnzQf13ikC35oPrXbbDQ
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corresponding protein spot in the internal standard sample. Following co-

detection step, the matching of protein spots across the gels was performed 

using the BVA module of the DeCyder software. The spot map for the internal 

standard, with the most detected spots, was used as a template to which all 

remaining spot maps, for the other internal standards (intrinsically linked to 

their co-detected sample images), were matched. The spot volume, i.e. the 

sum of the pixel values within a spot minus background, for each experimental 

sample was directly compared, by the software, to the internal standard. By 

this way changes in the expression level of individual protein spots, expressed 

as ratio of protein abundance between CD133+ and CD133- cells, normalized 

to the internal standard, were identified. Each spot intensity was then 

expressed as mean of 4 standard abundances calculated for the four gels. 

Statistical significance of differences in spot intensity was determined by 

Student‘s t-test. Only protein spots with at least 1.2 fold-changes in volume (p< 

0.05), after normalization, were considered significantly altered. DeCyder 

software displayed in a graphic the relative abundance of each protein spot in 

CD133+ and CD133- cells, and defined a fold change expression of each 

protein, above a biological variation. An example of the DeCyder analysis is 

reported in Figure 19. 
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The image analysis revealed that 61 spots in CaCo-2 CD133+ cells and 52 in 

HCT-116 CD133+ cells were differentially expressed compared to CD133- 

cells. From two Sypro Ruby-stained preparative gels we matched and picked 

52 of 61 spots in CaCo-2 cells and 44 of 52 spots in HCT-116 cells. Excised 

spots were subjected to enzymatic digestion with trypsin and the resulting 

peptide mixtures were analyzed by mass spectrometry, MALDI MS or µLC-

MS/MS, depending on spot intensity. Figures 20A and 20B show the 

differentially expressed spots identified on preparative gels: under-expressed 

spots and over-expressed spots in CD133+ vs CD133- cells are reported in red 

and green, respectively.  
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Forty-three of the picked spots were identified in CaCo-2 cells and 38 of the 

picked spots were identified in HCT-116 cells. The differentially expressed 

proteins identified on a representative DIGE gel of CaCo-2 cells and HCT-116 

cells, respectively are shown in Figs 21A and 21B.  
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Tables 2 and 3 show the proteins identified in CaCo-2 and HCT-116 cells. For 

each protein, the spot number, gene symbol, p-value, fold change, NCBI 

accession code, protein name and theoretical pI /MW are reported. The lists 

are ranked from the highest fold change value to the lowest. This range of fold 

changes (not greater than ± 2.45) seems to be congruent with the systems 

analyzed. In fact, we studied the protein expression profiles of two 

subpopulations of cells within two ―homogeneous‖ colon cancer cell lines. 

Details of the MS analysis of the proteins identified in each cell line are 

reported in Tables 4 and 5 (Appendix, section 6). Most spots were 

unambiguously identified as single proteins: 32 in the CaCo-2  2D gel (21 over-

expressed and 11 under-expressed) and 31 in the HCT-116 2D gel (11 over-

expressed and 20 under-expressed). In total, 11 spots (2625, 2532, 2791, 

2418, 2188, 3434, 1778, 1823, 1917, 1722, 1600) in CaCo-2 gel, and 7 spots 

(spots 4928, 2989, 4000, 2941, 3934, 2053, 3112) in the HCT-116 gel were 

associated to more than one protein. In these cases, the measured fold 

change could not be directly assigned to a single protein species. Thus, these 

proteins would require further validation analysis. The HCT-116 2D preparative 

gel, contained two series of spots with the same molecular weight and different 

pI. A series of 6 spots (no 1421, 1399, 1433, 1400, 1398 and 1401) of 75 kDa 

was identified as lamin A/C, and a series of 5 spots (no 1466, 1413, 1563, 

1432 and 1445) of 70 kDa was identified as ezrin. These series of spots could 

be due to alternative post-translational modifications, namely phosphorylation 

or deamidation, or to alternative splicing protein products. Similarly, we 

attribute the increase of the pI value for Hspd1 (1388) to post translational 
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modifications, while Hsp90ab1 (2988) which appears in a spot at a lower 

molecular weight than the theoretical value, may have been extensively 

fragmented. 

Among the differentially expressed proteins of CaCo-2 CD133+ cells, we 

detected SRp20 in spot 3560 at a pI of around 6.0, while the theoretical pI 

value of SRp20 is 11.64. This discrepancy may be due to phosphorylation; in 

fact, SRp20 is known to be extensively phosphorylated on the serine residues 

in the SR domain. Furthermore, the MS/MS spectrum of the peptide [12-23] of 

SRp20 at m/z=625.03 is reported (Fig. 22). 

 

 

 

AnxA2 was detected in two contiguous spots (2747 and 2791), both of which 

were over-expressed at two slightly different molecular weights.  

 



 

59 

 

Creatine kinase B was detected in 3 over-expressed spots (2626, 2667 and 

2625) at the expected molecular weight. Hspa8 was identified in two spots 

(1823 and 1826) both over-expressed  at the expected molecular weight and 

pI. Hspa1a was detected in two spots (1906 and 1893) both down-regulated at 

two slightly different pI values, thus suggesting the possibility of post-

translational modifications of this protein. Finally, Krt8 and Jup were detected 

in spots at molecular weights lower than the theoretical value which is 

suggestive of protein degradation. In conclusion, by considering only once the 

spots containing the same protein, the total number of differentially expressed 

proteins was 49 in the case of CaCo-2 CD133+ vs CD133- cells and 36 in the 

case of HCT-116 CD133+ vs CD133- cells, while the number of differentially 

expressed proteins identified as single proteins was 32 in CaCo-2 CD133+ 

cells and 22 in HCT-116 CD133+ cells. 

There were 9 common differentially expressed proteins in CaCo-2 CD133+ 

cells (Table 2) and HCT-116 CD133+ cells (Table 3): 7 of them (Hspa1a, Krt8, 

Krt18, Hspd1, Hspa8, Hsp90ab1 and Impdh2) had a similar fold change in the 

two systems and 2 (Ugdh and Lmna) had a different trend, i.e., both are up-

regulated in CaCo -2 CD133+ cells and down-regulated in HCT-116 

CD133+cells. The fold-changes of Ugdh were very close to the threshold value 

(+1.23 in CaCo-2 and -1.22 in HCT-116), consequently, we did not investigate 

its role in CaCo-2 and HCT-116 CD133+ cells.  

In the case of Lmna this is not surprising. In fact, Willis and colleagues 

reported that the expression of A-type lamins gives rise to increased tumor 

invasiveness, thus suggesting that reduced Lmna expression could be 

associated with a more favourable prognosis for CRC patients [67]. 
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Conversely, Belt and collaborators subsequently showed that Lmna low 

expression is associated with an increased disease recurrence and, as a 

consequence, with a worse prognosis [68]. In our case we analyzed CD133+ 

and CD133- cells from two different colon cancer cell lines to look for common 

points of interest while being aware that we could also find some differences. 

Furthermore, in HCT-116, Lmna was identified in different spots, while in 

CaCo-2 Lmna was identified only in one spot. As described above, the 

presence of different pI isoforms of Lmna in HCT-116 gel could be due to post-

translational modifications and to the existence of different alternative splicing 

products of the LMNA gene. Probably the CD133+ cells of CaCo-2 and HCT-

116 express different isoforms of the same protein to fulfill different functions.  
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Table 2: Differentially expressed proteins in CaCo-2 CD133+ vs Cd133-cells 
  

Spot 
No. 

Gene 
name 

p-value 
Fold 
change  

Gene ID Protein name 
Theoretical 
pI  

Theoretical 
MW 

3560 SFRS3 0.018 1.93 gi|4506901 
Splicing factor, arginine/serine-rich 3 
(SRp20) 

11.64 19329 

2635 CSNK2A1 0.04 1.92 gi|33358120 Casein kinase II subunit alpha (CKII) 7.29 45143 

3076 GNPDA1 0.024 1.77 gi|13027378    
Glucosamine-6-phosphate 
deaminase 1  

6.42 32668 

2747 ANXA2 0.043 1.76 gi|16306978 Annexin A2 7.56 38472 

2626 CKB 0.0044 1.76 gi:49457530 Creatine kinase B-type 5.35 42513 

2625 CKB 0.0013 1.73 gi:49457530 Creatine kinase B-type 5.35 42513 

2625 MRPS27 0.0013 1.73 gi|186928850   
28S ribosomal protein S27, 
mitochondrial 

5.83 47611 

2555 METAP1 0.024 1.64 gi|577315  Methionine aminopeptidase 1 6.8 43083 

3125 LACTB2 0.0031 1.61 gi|7705793   Lactamase, beta 2 6.32 32805 

2667 CKB 0.0067 1.59 gi:49457530 Creatine kinase B-type 5.35 42513 

1701 LMNA 0.021 1.55 gi|57014047 Lamin A/C 6.44 72224 

2532 TUFM  0.033 1.53  gi|704416  Elongation factor Tu (p43) 6.31 45045 

2532 PDHA1 0.011 1.53 gi:12803199 
Pyruvate dehydrogenase E1-alpha 
precursor 

6.51 40228 

3047 ESD 0.011 1.53 gi:182265  Esterase D 6.54 31462 

2945 LDHB 0.023 1.52 gi|4557032  L-lactate dehydrogenase  5.72 36507 

2791 ANXA2 0.045 1.46 gi|16306978 Annexin A2 7.56 38472 

2791 GPD2 0.045 1.46 gi:18043793 
Glycerol-3-phosphate 
dehydrogenase 

6.51 40228 

2418 ACTR3 0.039 1.4 gi|62088286  
ARP3 actin-related protein 3 
homolog variant  

5.61 47239 

2418 DDX39B 0.039 1.4 gi|4758112 Spliceosome RNA helicase BAT1 5.44 49416 

2128 CAT 0.0055 1.39 gi|4557014 Catalase 6.95 59624 

3180 PROSC 0.009 1.37 gi:6005842 
Proline synthetase co-transcribed 
homolog 

7.09 30343 

3496 PCNP 0.043 1.36 gi|9966827 
PEST proteolytic signal-containing 
nuclear protein 

6.86 18924 

2188 TUBB2C 0.041 1.34 gi|5174735  Tubulin beta-2C chain 4.79 49831 

2188 TUBA1A 0.041 1.34 gi|37492  Tubulin alpha 5.02 50810 

3434 TPT1 0.015 1.31 gi|4507669  Fortilin (p23) 4.84 19595 

3434 JUP 0.015 1.31 gi|194373749  Catenin gamma 5.7 81744 

1823 HSPA8 0.0071 1.28 gi|5729877  
Heat shock cognate 71 kDa protein 
isoform 1  

5.37 70766 

1823 HSP90AB1 0.0071 1.28 gi|306891  
Heat shock protein 90kDa alpha 
(cytosolic) 

4.96 83133 

3352 ECHS1 0.011 1.28 gi|1922287 Enoyl-CoA hydratase 5.88 28342 

1826 HSPA8 0.013 1.25 gi|5729877  
Heat shock cognate 71 kDa protein 
isoform 1  

5.37 70766 

2179 ALDH1A1     0.05 1.25 gi|114625020 Aldehyde dehydrogenase 1A1 6.29 54730 

2178 UGDH 0.05 1.23 gi|4507813 UDP-glucose-dehydrogenase 6.73 55024 
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2409 KRT18 0.017 1.23 gi|30311   Cytokeratin 18 5.34 47926 

2742 POLDIP2 0.043 1.23 gi|7661672 
DNA polymerase delta interacting 
protein 2 (p38) 

8.8 42033 

2227 ATP5A1 0.018 1.22 gi|158259937  
ATP synthase, H+ transporting, 
mitochondrial  

8.28 55209 

1808 TCP1 0.0053 -1.2 gi|36796   t-complex polypeptide 1 5.8 60343 

2130 FARSA 0.0072 -1.21 gi|119604734  Phenylalanyl-tRNA synthetase  7.46 57432 

3053 KRT8 0.036 -1.23 gi|181573  Cytokeratin 8  5.52 53573 

2487 ALDOA 0.05 -1.25 gi|28614   Aldolase A  8.39 39288 

1917 SYNCRIP 0.024 -1.27 gi|228008398 
Heterogeneous nuclear 
ribonucleoprotein Q (hnRNP Q) 
isoform3 

7.18 62656 

1917 PCK2 0.024 -1.27 gi|2661752  
Phosphoenolpyruvate 
carboxykinase (GTP) 

8.4 47563 

1778 DDX3X 0.013 -1.27 gi|2580550 Dead box, X isoform  6.73 73625 

1778 NCL 0.013 -1.27 gi|189306 Nucleolin 4.59 76355 

2647 PSMC6 0.015 -1.33 gi|195539395 
Proteasome 26S ATPase subunit 6 
(Proteasome subunit p42) 

7.25 44041 

1722 HSPD1 0.0016 -1.35 gi|306890    Chaperonin (HSP60) 5.24 57962 

1722 PDIA4 0.0016 -1.35 gi|4758304   
Protein disulfide-isomerase A4 
precursor  

4.9 70102 

2226 IMPDH2 0.033 -1.35 gi|66933016 
Inosine monophosphate 
dehydrogenase 2  

6.44 55804 

2098 TAPBP 0.041 -1.38 gi|220702506 Tapasin 6.53 45714 

2888 HS3ST3A1 0.05 -1.4 gi|52695687 
Heparan sulfate glucosamine 3-O-
sulfotransferase 3A1 

9.54 44899 

1906 HSPA1A 0.015 -1.63 gi|6729803 Heat shock 70 kDa protein 1A/1B 5.48 69921 

1600 FLNA 0.0053 -1.86 gi|18676444  Filamin A 5.7 280607 

1600 TARS 0.0053 -1.86 gi:52632425 Threonyl-tRNA synthetase 6.2 83435 

1893 HSPA1A 0.0087 -2.19 gi|194388088 Heat shock 70 kDa protein 1A/1B 5.48 69921 

1845 ANXA6 0.0074 -2.32 gi|119582091 Annexin A6 5.46 75276 
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Table 3: Differentially expressed proteins in HCT-116 CD133+ vs Cd133- cells   

Spot 
No. 

Gene name p-value 
Fold 
Change 

Gene ID Protein name 
Theoretical 
pI  

Theoretical 
MW 

4928 PRDX1 0.035 2.45 gi|4505591  Peroxiredoxin-1  8.27 22110 

4928 PEBP1 0.035 2.45 gi|913159 Neuropolypeptide h3 7.42 21027 

2988 HSP90AB1 0.014 2.13 gi|306891  
Heat shock protein 90kDa alpha 
(cytosolic) 

4.96 83133 

3826 HSPB1 0.0073 1.92 gi|662841   Heat shock protein 27  (Hsp27) 5.98 22782 

4323 CDC42 0.001 1.83 gi|4757952  Cell division control protein 42 
homolog isoform 1 

6.16 20933 

4018 PRTFDC1 0.015 1.68 gi|9910262  Phosphoribosyltransferase 
domain-containing protein 1  

5.77 25542 

2989 ANXA1 0.013 1.44 gi|4502101  Annexin A1 
6.64 38583 

2989 HNRNPH3 0.013 1.44 gi 14141157 
Heterogeneous nuclear 
ribonucleoprotein H3 isoform a 6.8 36925 

4000 PRDX4 0.034 1.41 gi|5453549 Peroxiredoxin-4 5.54 26572 

4000 PRDX6 0.034 1.41 gi|3318841 Peroxiredoxin 6 6.02 24903 

2941 CPOX 0.02 1.37 gi|840693  Coproporphyrinogen oxidase  6.32 39248 

2941 HNRNPC 0.02 1.37 gi|306875 
Heterogeneous nuclear 
ribonucleoprotein C (C1/C2) 

5.01 33538 

3934 ACTB 0.025 1.33 gi|15277503 Actin beta 5.29 41736 

3934 ENO 0.025 1.33 gi|2661039 Enolase 6.5 36628 

2903 TALDO1 0.0015 1.3 gi|5803187  Transaldolase 6.36 37540 

3578 CLIC1 0.031 1.28  gi|895845  
Chloride intracellular channel 
protein 1  

5.09 26791 

1627 HSPA8 0.01 1.26 gi|5729877  
Heat shock cognate 71 kDa 
protein isoform 1  

5.37 70766 

2684 SEPT2 (DIFF6) 0.048 1.23 gi|4758158   Septin 2  6.15 41487 

1692 SDHA 0.04 1.22 gi|119571367  

Succinate dehydrogenase 
complex, subunit A, flavoprotein 
(Fp) 6.25 68012 

2351 KRT18 0.018 1.22 gi|30311   Keratin 18  
5.34 47926 

2761 
ALDR1 0.016 1.21 gi|5174391  Alcohol dehydrogenase [NADP+] 6.35 36441 

1759 STIP1 0.031 -1.21 gi|114638255 
Hsp70/hsp90 organizing 
protein(HOP) 

6.4 62639 

2053 PHGDH 0.0067 -1.21 gi|23308577 Phosphoglycerate dehydrogenase 
6.31 56519 

2053 IMPDH2 0.0067 -1.21 gi:66933016 
Inosine monophosphate 
dehydrogenase 2  6.44 55804 

2319 FH 0.0021 -1.21 gi|19743875 Fumarate hydratase precursor  7.0 50081 

1388 HSPD1 0.024 -1.22 gi|306890    Chaperonin (HSP60) 5.24 57962 

2063 UGDH 0.043 -1.22 gi|4507813 UDP-glucose dehydrogenase 6.73 55024 

1421 LMNA - LMN1 0.013 -1.24 gi|57014047 Lamin A/C 6.44 72224 

2215 KRT8 0.049 -1.33 gi|119617057 Keratin8  5.52 53573 

1466 EZR 0.036 -1.36 gi|46249758 Ezrin 5.95 69281 

1207 KHSRP 0.0037 -1.37 gi|2055427  
KSRP /KH type-splicing regulatory 
protein (p75) 6.85 73115 

1401 LMNA-LMN1 0.0099 -1.4 gi|27436946   Lamin-A/C  6.44 72224 

3206 MDH1 0.02 -1.4 gi|5174539 Cytosolic malate dehydrogenase  6.89 36294 

1413 EZR 0.0036 -1.43 gi|46249758 Ezrin 5.95 69281 

3112 ANXA3 0.017 -1.44 gi|4826643  Annexin A3 5.63 36244 

3112 PPA1 0.017 -1.44 gi|11056044   Inorganic pyrophosphatase 5.54 32660 
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1563 EZR 0.027 -1.45  Ezrin 5.95 69281 

1432 EZR 0.012 -1.47 gi|46249758 Ezrin 5.95 69281 

1399 LMNA - LMN1 0.026 -1.5 gi|57014047 Lamin A/C 6.44 72224 

1073 EEF2 0.042 -1.51 gi|4503483  Elongation factor 2 6.42 95206 

1673 HSPA1A 0.0096 -1.53 gi|167466173 Heat shock protein 70 (Hsp70) 5.48 69921 

1433 LMNA - LMN1 0.033 -1.62 gi|57014047 Lamin A/C 6.44 72224 

1400 LMNA - LMN1 0.0098 -1.68 gi|57014047 Lamin A/C 6.44 72224 

1445 EZR 0.018 -1.78 gi|46249758 Ezrin 5.95 69281 

1398 LMNA - LMN1 0.045 -1.86 gi|57014047 Lamin A/C 6.44 72224 
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3.4 Validation of differentially expressed proteins 

We searched the literature to try to identify colon CSC markers among our 

differentially expressed proteins and to identify cellular processes deregulated 

in CD133+ cells. We included in the group of proteins selected for validation by 

western blotting, a few species closely related to our protein set. Western blot 

analyses were performed on freshly prepared protein extracts of CaCo-2 and 

HCT-116 CD133+ and CD133- cells. GAPDH was used as loading control of 

each sample. Semi-quantitative analyses of protein expression were performed 

for each validated protein. We analyzed the expression of the following 

proteins in the CaCo-2 CD133+ vs CD133- cells: SRp20, γ-catenin, β-catenin, 

CKII, lamin A/C, AnxA1 and AnxA2 (Fig. 23).  

 

 

The western blot experiments confirmed the up-regulation of SRp20, catenin γ, 

CKII, lamin A/C and AnxA2 in CD133+ cells. In addition, β-catenin and AnxA1 

were differentially expressed in the system, all of them being up-regulated. 
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Hsp27, cytokeratin 8, lamin A/C, AnxA1, AnxA2, SRp20, CKII, β-catenin and γ-

catenin were chosen for western blotting and densitometric analysis of HCT-

116 CD133+ vs CD133- cells (Fig. 24). The analysis confirmed the up-

regulation of Hsp27 and AnxA1 and the down-regulation of KRT8 and lamin 

A/C in CD133+ cells. Interestingly, as demonstrated in the CaCo-2 system, 

SRp20 and β-catenin were up-regulated in the HCT-116 CD133+ cells, 

whereas no relevant differences were detected as regards CKII, γ-catenin and 

AnxA2. 

 

 

 

Finally, to determine whether SRp20, CKII, γ-catenin and β-catenin belong to 

distinctive molecular pathways of cancer stem-like cells (CSLCs), the level of 

expression of these proteins was investigated in CD133+ vs CD133- cells 

isolated from another colorectal carcinoma cell line, namely HT-29 (Fig. 25).  
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The analysis confirmed the up-regulation of SRp20 and CKII in CD133+ cells, 

whereas no significant change was observed for γ-catenin and β-catenin. 

In conclusion, SRp20 was over-expressed in CD133+ vs CD133-cells isolated 

from all three CRC cell lines: CaCo-2, HCT-116 and HT-29. This 

overexpression amounts to about two-fold in all the three CRC cell lines. 

 

3.4 Biological network analysis 

To identify processes connected with CD133+ cells, we analyzed separately 

the groups of differentially expressed proteins listed in Table 2 and Table 3 for 

each cell line using the IPA software. The system created three high-score 

multidirectional interaction networks for CaCo-2 cells. One was related to 

―cellular movement‖ (score=51), one to ―energy production, small molecule 
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biochemistry‖ (score=33) and one to ―cell signaling‖ (score= 27). To have a 

complete graphical vision of all the proteins identified in our analysis, we 

merged the three CaCo-2 networks into a single network (Fig. 26). The 

network revealed several nodes of proteins, genes and/or molecules (NFkB, 

Caspase, MCC) directly or indirectly correlated with the proteins we identified. 

In the case of HCT-116, the IPA output generated three networks: ―cellular 

movement‖ (score= 44), ―energy production, small molecule biochemistry‖ 

(score= 24) and ―cellular growth and proliferation‖ (score=9). Figure 27 shows 

the merged image of all three HCT-116 networks.  

We also performed an ontological analysis on our data set and, in agreement 

with IPA output, the ―cellular catabolic process, energy production‖ GO term 

was statistically significant for both cell lines (GO: 0044265, CaCo-2 p-value 

3.0E-05; HCT-116, GO:0009109 p-value 7.5E-04). 
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3.5 Effects of Wnt/β catenin pathway activation on SRp20 expression 

There is evidence that SRp20 expression can be regulated by the Wnt/β-

catenin pathway [69]. To evaluate whether this occurs in our system, we 

stimulated pathway activation by adding Wnt ligand to the CaCo-2 culture 

medium and we estimated SRp20, β-catenin and CKII expression by western 

blotting (Fig. 28). Cells were withdrawn at 48 h and 72 h. Total β-catenin was 

increased in the presence of Wnt after 48 h and 72 h, which confirms activation 

of the Wnt pathway. The expression profile of SRp20 and CKII was the same 

as that of β-catenin, i.e., it increased 48 h and 72 h after treatment with Wnt 

ligand. 
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3.6 Effects of silencing of SRp20  

We next investigated the role of SRp20 on cell proliferation and found that 

CaCo-2 cells proliferation decreased after SRp20 expression was knocked 

down by a siRNA targeting SRp20 mRNA (Fig. 29 A). This result indicates that 

increased SRp20 expression is necessary for the indefinite growth of cancer 

cells. We also found that SRp20 was up-regulated in CD133+ cells, thus 

indicating that SRp20 could play a crucial role in the higher tumorigenicity of 

this subpopulation of cells. 

We also evaluated if SRp20 silencing affected the expression of MCC, β-

catenin and γ-catenin. Interestingly, immunoblotting showed that SRp20 

silencing increased MCC expression and decreased the expression of β-

catenin and γ-catenin (Fig. 29 B). 
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4. DISCUSSION 

A tumor is constituted by heterogeneous cells. The long-held view of 

tumor development, according to the stochastic model, is that each 

tumor cell is equally capable of initiating neoplastic growth. This theory 

has recently been challenged by the CSC theory, which suggests that 

only a small proportion of cells within a tumor possess cancer-initiating 

potential and that these so-called CSCs sustain tumor growth and may 

be associated with metastasis, treatment resistance and recurrence 

[70]. During this PhD program, a differential proteomic analysis on two 

human colon carcinoma cell lines, CaCo-2 and HCT-116, was 

conducted. Both cell lines were sorted according to the expression of 

the stemness marker CD133 in the attempt to identify proteins and/or 

cellular processes distinctive of colon CSCs. CD133+ cells were 

assumed to be CSLCs. By counting only once the protein spots that 

contained the same protein, the comparative experimental approach 

revealed 49 differentially expressed proteins (31 up-regulated and 18 

down-regulated) in CaCo-2 CSLCs and 36 differentially expressed 

proteins (21 up-regulated and 15 down-regulated) in HCT-116 CSLCs. 

Some of the identified species were further validated in a third colon 

carcinoma cell line, namely HT-29. The results of this PhD thesis show 

that two relevant interconnected processes are activated in the CSLCs 

subpopulation: energy metabolism and the Wnt pathway. 

Both the ontological and the IPA analyses showed that a group of 

proteins identified are involved in cellular energy metabolism. Among 
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the proteins differentially expressed in CaCo-2 CD133+ cells (Table 2), 

glucosamine-6-phosphate isomerase 1 (Gnpda1), lactate 

dehydrogenase (Ldhb), enoyl-CoA hydratase (Echs1), the well-

established CSC marker aldehyde dehydrogenase 1A1 (Aldh1a1) [71-

73]. ATP synthase subunit alpha (Atp5a1), aldolase A (Aldoa) and 

inosine monophosphate dehydrogenase 2 (Impdh2) are involved in 

energy metabolism. Collectively, these proteins account for 22% (7/32) 

of the singly identified proteins. A similar result was obtained for proteins 

differentially expressed in HCT-116 CD133+ cells (Table 3). In fact the 

species involved in energy metabolism represent 23% (5/22) of the 

singly identified proteins; these are alcohol dehydrogenase [NADP+] 

(Akr1a1), the tumor suppressor fumarate hydratase (Fh), transaldolase I 

(Taldo1), succinate dehydrogenase (Sdha) and cytosolic malate 

dehydrogenase (Mdh1). Metabolic reprogramming, called the ―Warburg 

effect‖ [74], is a hallmark of cancer cells that undergo ―aerobic 

glycolysis‖ thereby giving rise to enhanced lactate production [75]. The 

expression of most of the identified proteins suggests that metabolic 

reprogramming is activated in CaCo-2 and HCT-116 CSLCs. 

Furthermore, examination of the CaCo-2 IPA network (Fig. 26) shows 

that several differentially expressed proteins are connected with protein 

MCC (mutated in colorectal cancer), a negative regulator of Wnt/-

catenin signal transduction [76]; in this study there is evidence of Wnt/-

catenin signaling activation. 

The Wnt signaling cascade is conserved throughout the animal kingdom 

and, depending on the context, it plays various roles in stem cell 



 

74 

 

maintenance, cell proliferation, differentiation, and apoptosis [77]. Given 

its fundamental role in homeostasis in human adult tissue, it is not 

surprising that deregulation of the Wnt pathway is associated with 

various pathologic states, including various types of cancer [78, 79]. The 

differential proteomic study performed shows that some proteins 

identified are closely related to the signal transduction pathway of the 

Wnt protoncogene. SRp20 and CKII were up-regulated in CaCo-2 

CD133+ cells, whereas KSRP/KH type-splicing regulatory protein 

(Khsrp) was down-regulated in HCT-116 CD133+ cells. SRp20 is a 

serine/arginine-rich splicing factor recently characterized as a novel 

target of β-catenin/TCF4 signalling through the Wnt canonical pathway 

[69]. CKII, when over-expressed, induces neoplastic growth, thereby 

acting as an oncogene [80]. CKII was recently implicated in the 

regulation of β-catenin stability [81]. In fact, it positively regulates β-

catenin phosphorylation at the level of Thr393, and thus inhibits 

proteasome-mediated degradation of β-catenin [81]. Its kinase activity 

promotes survival by increasing residual gene expression via β-catenin-

TCF/LEF-mediated transcription [82]. Khsrp is a KH-type splicing 

regulatory protein able to negatively regulate Wnt/ β-catenin signaling at 

the level of post-transcriptional β-catenin-mRNA stability [83]. Its down-

regulation indicates the activation of specific molecular mechanisms 

aimed at stabilization of β-catenin mRNA. β-catenin was up-regulated in 

CaCo-2 and HCT-116 CD133+ cells (Figs. 23 and 24). These findings 

suggested that the Wnt pathway was activated in the CSLCs. The 

western blot analyses performed in the Caco-2, HCT-116 and HT-29 cell 
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lines sorted by CD133 confirmed this hypothesis and revealed the up-

regulation of the splicing factor SRp20 in all the three CSLC systems 

under investigation (Figs. 23, 24 and 25). Moreover, by stimulating 

CaCo-2 cells with Wnt ligand an activation of the Wnt pathway was 

reproduced and, as a consequence, an up-regulation of CKII and SRp20 

was found (Fig. 28). 

SRp20 is the smallest member of the SR protein family [84]. It 

modulates alternative splicing of CD44 cell adhesion protein in two 

colorectal cell lines (SW480, DLD-1) [69]. Its knockdown causes 

apoptosis in ovarian cancer cells whereas its expression is associated 

with malignancy of epithelial ovarian cancer [85]. SRp20 is over-

expressed in many cancer types and its increase is critical for cell 

proliferation, tumor induction and maintenance [86]. 

When SRp20 was silenced in the CaCo-2 cell line, cell proliferation 

slowed down (Fig. 29A), which suggests that SRp20 plays a role in the 

tumorigenicity of CSLCs. In addition, the results of this thesis show that 

SRp20 exerts a powerful effect on MCC protein expression (Fig. 29B). 

Fukuyama and colleagues reported that MCC expression is dramatically 

decreased in many CRC cell lines; importantly, they found that MCC 

interacts with -catenin and finally that re-expression of MCC in CRC 

cells inhibits Wnt signaling [76]. The data of this thesis demonstrate that 

when SRp20 is silenced, MCC expression is increased, while -catenin 

and -catenin expression is decreased (Fig. 29B), thereby suggesting a 

slowing-down of the Wnt pathway. These data are in accordance with 

the hypothesis that SRp20 expression is closely correlated with Wnt 
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pathway activation and also suggest that SRp20 could act as a regulator 

of the pathway by modulating MCC expression. 

In this study, a positive correlation among CD133 expression, Wnt 

pathway activation and increased SRp20 expression was found. Based 

on these findings it is possible to propose a model of putative sequential 

molecular events that characterize colon CSLCs in which the β-

catenin/TCF4 pathway would stimulate gene transcription and thus the 

production of transcript variants through alternative splicing mediated by 

SRp20.  

In summary, the results of this PhD thesis showed i) activation of 

metabolic reprogramming in CSLCs that is potentially connected to Wnt 

pathway activation ii) over-expression of SRp20 in the CSLCs of three 

different colon cancer cell lines; iii) a direct correlation between Wnt 

pathway activation and SRp20 expression; iv) the possibility that SRp20 

plays a role in the tumorigenicity of colon CSLCs and v) the possibility 

that SRp20 modulates the Wnt pathway, where also the expression of 

MCC is involved. 
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                6. APPENDIX I 

Table 4: MS details of CaCo-2 identified proteins     

Spot 
No. 

Id 
Method 

Protein name 
Mascot 
Protein 
Score 

Sequence 
coverage 
(%) 

Identified peptide sequence 
Ion 
Score 
(MS/MS) 

Precursor 
mass 
(m/z) 

Mass 
error 
(ppm) 

3560 MSMS 
Splicing factor, 
arginine/serine-rich 3 
(SRp20) 

141 10 VYVGNLGNNGNK 74 625,03 240 

     VYVGNLGNNGNKTELER 67 626,70 79 

         

2635 MS 
Casein Kinase II 
(CKII) 

159 51 VYTDVNTHRPR  1357,55 110 

     EYWDYESHVVEWGNQDDYQLVR  2830,00 84 

     GKYSEVFEAINITNNEK  1955,75 112 

     GGPNIITLADIVKDPVSR  1864,80 134 

     TPALVFEHVNNTDFK  1731,68 109 

     QLYQTLTDYDIR  1528,56 130 

     FYMYEILK  1122,44 98 

     LIDWGLAEFYHPGQEYNVR  2306,85 117 

     KEPFFHGHDNYDQLVR  2001,72 119 

     EPFFHGHDNYDQLVR  1873,64 117 

     VLGTEDLYDYIDKYNIELDPR  2544,43 71 

     FNDILGR  834,36 108 

     FVHSENQHLVSPEALDFLDK  2324,87 120 

     YDHQSR  805,28 99 

     EAMEHPYFYTVVK  1629,59 104 

         

3076 MSMS 
Glucosamine-6-
phosphate deaminase 
1  

411 30 LVDPLYSIK 47 524,20 210 

     IIQFNPGPEK 49 571,68 235 

     EVMILITGAHK 44 614,20 225 

     TLAMDTILANAR 74 653,18 253 

     TFNMDEYVGLPR 68 729,18 219 

     TVFVCDEDATLELK 72 820,17 280 

     VPTMALTVGVGTVMDAR 57 875,24 228 

         

2747 MSMS Annexin A2 365 16 TPAQYDASELK 58 612,12 65 

     TNQELQEINR 67 623,02 233 

     GLGTDEDSLIETICSR 48 889,80 90 

     SLYYYIQQDTKGDYQK 63 672,10 54 

     RAEDGSVIDYELIDQDAR 76 689,20 184 

     AYTNFDAERDALNIETAIK 53 719,31 190 

         

2626 MSMS 
Creatine Kinase B 
type 

590 33 LLIEMEQR+ Oxidation (M) 44 524,29 28 

     DLFDPIIEDR 46 616,90 146 

     VLTPELYAELR 45 652,51 222 

     LAVEALSSLDGDLAGR. 99 793,90 19 

     LEQGQAIDDLMPAQK 69 836,91 6 

     
LGFSEVELVQMVVDGVK.L + Oxidation 
(M) 

85 933,14 160 

     GTGGVDTAAVGGVFDVSNADR 55 655,80 229 

     AIEKLAVEALSSLDGDLAGR 89 676,82 172 
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     TDLNPDNLQGGDDLDPNYVLSSR 58 840,10 47 

         

2625 MSMS 
Creatine Kinase B 
type 

360 22 VLTPELYAELR 48 625,50 153 

     LAVEALSSLDGDLAGR. 102 794,04 145 

     LEQGQAIDDLMPAQK + Oxidation (M) 56 558,41 215 

     
LGFSEVELVQMVVDGVK + Oxidation 
(M)  

58 933,09 107 

     GTGGVDTAAVGGVFDVSNADR 51 655,77 183 

     RGTGGVDTAAVGGVFDVSNADR 45 707,62 89 

         

 MSMS 
28S ribosomal protein 
S27, mitochondrial 

219 11 EALDVLGAVLK 50 564,44 186 

     LVEQLDIEETEQSK 123 831,04 150 

     ALTSADGASEEQSQNDEDNQGSEK 46 837,20 159 

         

2555 MSMS 
Methionine 
aminopeptidase 1 

93 5 YRELGNIIQK 43 412,13 40 

     NGYHGDLNETR 50 771,80 18 

         

3125 MSMS Lactamase, beta 2 139 9 SINNDTTYCIK 61 665,10 195 

     EEIIGNGEQQYVYLK 78 892,16 300 

         

2667 MSMS 
Creatine Kinase B 
type 

323  LLIEMEQR 49 524,32 76 

     VLTPELYAELR 44 652,51 222 

     LAVEALSSLDGDLAGR. 93 794,06 170 

     LEQGQAIDDLMPAQK + Oxidation (M) 74 837,06 173 

     GTGGVDTAAVGGVFDVSNADR 63 983,05 81 

         

1701 MS Lamin A/C 162 33 LQEKEDLQELNDR  1629,81 0 

     SLETENAGLR  1089,52 27 

     ITESEEVVSR  1148,56 17 

     AAYEAELGDAR  1165,53 16 

     EGDLIAAQAR  1043,37 95 

     TLEGELHDLR  1182,62 8 

     QLQDEMLRR  1187,53 32 

     NIYSEELR  1023,44 68 

     LADALQELR  1028,49 77 

     NSNLVGAAHEELQQSR  1752,81 28 

     IRIDSLSAQLSQLQK  1699,91 35 

     LALDMEIHAYR.  1347,62 37 

     LSPSPTSQR  972,46 51 

     SSFSQHAR  919,39 54 

     VAVEEVDEEGKFVR  1605,77 25 

     ASASGSGAQVGGPISSGSSASSVTVTR  2365,1 25 

     SVGGSGGGSFGDNLVTR  1566,75 0 

     TQSPQNCSIM  1165,5 0 

         

2532 MSMS Elongation factor Tu 577 26 GTVVTGTLER 53 516,71 249 

     VEAQVYILSK 64 575,21 208 

     YEEIDNAPEER 58 682,66 252 

     QIGVEHVVVYVNH 65 733,83 238 
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     KYEEIDNAPEER 69 746,65 229 

     LLDAVDTYIPVPAR 51 771,90 146 

     GEETPVIVGSALCALEGR 50 929,26 234 

     TIGTGLVTNTLAMTEEEK 65 962,22 275 

     ADAVQDSEMVELVELEIR 102 1031,27 225 

         

 MSMS 
Pyruvate 
dehydrogenase E1-
alpha precursor 

240 11 EILAELTGR 56 501,15 269 

     YGMGTSVER 60 508,08 295 

     VDGMDILCVR 50 597,28 244 

     LEEGPPVTTVLTR 74 706,20 276 

         

3047 MSMS  Esterase D 169 29 DDQFLLDGQLLPDNFIAACT EK 68 842,15 126 

     GEDESWDFGTGAGFYVDATE DPWK 48 893,97 280 

     
SYPGSQLDILIDQGKDDQFL 
LDGQLLPDNFIAACTEK 

53 1380,20 240 

         

2945 MSMS 
L-lactate 
dehydrogenase B  

245 13 IVVVTAGVR 62 457,12 128 

     GLTSVINQK  51 480,20 104 

     MVVESAYEVIK 42 642,14 230 

     IVADKDYSVTANSK 90 755,63 280 

         

2791 MSMS Annexin A2 722 48 AYTNFDAER 43 543,58 300 

     DALNIETAIK 51 544,17 248 

     TPAQIDASELK 61 611,63 278 

     DIISDTSGDFR 56 613,27 16 

     TNQELQEINR 67 622,80 24 

     SYSPYDMLESIR 49 738,75 218 

     GVDEVTIVNILTNR 82 711,82 280 

     GLGTDEDSLIETICSR 63 889,81 165 

     TDLEKDIISDTSGDFR 43 604,77 220 

     AEDGSVIDYELIDQDAR 78 954,64 300 

     RAEDGSVIDYELIDQDAR 75 688,80 290 

     AYTNFDAERDALNIETAIK 54 718,89 280 

         

  
Glyceraldeide-3-
phosphate 
dehydrogenase 

121 5 VPTANVSVVDLTCR 59 765,70 260 

     VIHDNFGIVEGLMTTVHAITATQK 62 870,90 300 

         

2418 MSMS 
ARP3 actin-related 
protein 3 homolog 
variant  

328 18 LSEELSGGR 59 474,37 260 

     FMEQVIFK.Y + Oxidation (M) 48 502,36 236 

     LKLSEELSGGR 49 594,95 193 

     QYTGINAISKK 48 603,46 215 

     NIVLSGGSTMFR.D + Oxidation (M) 68 649,47 215 

     DREVGIPPEQSLETAK 56 590,43 209 

         

 MSMS 
Spliceosome RNA 
helicase BAT1 

125 6 ILVATNLFGR 54 552,30 45 

     GLAITFVSDENDAK 71 740,48 148 
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2128 MS Catalase 135 30 ADVLTTGAGNPVGDKLNVITVGPR  2363,99 126 

     GAGAFGYFEVTHDITK  1712,82 111 

     VFEHIGKK  957,54 104 

     KTPIAVR  784,50 89 

     TPIAVR  656,40 91 

     FSTVAGESGSADTVRDPR  1851,67 113 

     NLSVEDAAR  974,39 102 

     LSQEDPDYGIR  1292,47 108 

     LFAYPDTHR  1119,43 116 

     LGPNYLHIPVNCPYR  1812,74 99 

     VANYQR  750,32 120 

     FNTANDDNVTQVR  1493,54 107 

     AFYVNVLNEEQR  1481,57 114 

     NAIHTFVQSGSHLAAR  1708,70 111 

         

3180 MSMS 
Proline synthetase 
co-transcribed 
homolog 

293 32 DLPAIQPR 46 455,17 110 

     VMVQINTSGEESK 61 719,14 277 

     TFGENYVQELLEK 82 785,16 286 

     HGLPPSETIAIVEHINAK 46 642,53 233 

     LMAVPNLFMLETVDSVK 58 969,76 247 

         

3496 MSMS 
PEST proteolytic 
signal-containing 
nuclear protein 

138 15 DTPTSAGPNSFNK 43 668,58 172 

     SAEEEAADLPTKPTK 95 529,78 239 

         

2188 MSMS Tubulin beta-2C chain 218 14 LAVNMVPFPR + Oxidation (M) 68 580,45 224 

     EVDEQMLNVQNK + Oxidation (M) 58 731,85 62 

     AVLVDLEPGTMDSVR + Oxidation (M) 44 809,54 160 

     
MSMKEVDEQMLNVQNK.N + 3 
Oxidation (M) 

48 658,03 96 

         

 MSMS Alpha-tubulin 176 10 DVNAAIATIK 61 508,40 197 

     AVFVDLEPTVIDEVR 45 851,55 111 

     TIGGGDDSFNTFFSETGAGK 70 1004,56 109 

         

3434 MSMS Catenin gamma 164 5 LLNDEDPVVVTK 48 671,24 186 

     TMQNTSDLDTAR  61 684,70 143 

     ALMGSPQLVAAVVR 55 714,35 70 

         

  Fortilin (p23) 87 16 VKPFMTGAAEQIK 44 479,73 248 

     EDGVTPYMIFFK 43 731,66 260 

         

1823 MSMS 
Heat shock cognate 
71 kDa protein 
isoform 1  

265 8 FEELNADLFR 60 627,41 159 

     TTPSYVAFTDTER 90 744,49 181 

     SFYPEEVSSMVLTK  Oxidation (M) 50 817,01 141 

     
NQVAMNPTNTVFDAK.R + Oxidation 
(M) 

65 833,48 96 

         

 MSMS 
Heat shock protein 
90kDa alpha 
(cytosolic) 

138 3 YIDQEELNK 56 576,39 182 
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     GVVDSEDLPLNISR. 82 757,50 138 

         

         

         

3352 MSMS 
Enoyl-CoA hydratase, 
mitochondrial 

302 27 AFAAGADIK 44 432,51 34 

     GKNNTVGLIQLNRPK 43 551,78 248 

     ESVNAAFEMTLTEGSK 68 865,80 293 

     TFEEDPAVGAIVLTGGDK 88 916,37 291 

     AQFAQPEILIGTIPGAGGTQ R 59 1063,44 227 

         

1826 MSMS 
Heat shock cognate 
71 kDa protein 
isoform 1  

259 8 FEELNADLFR 55 627,39 159 

     TTPSYVAFTDTER 80 744,48 181 

     SFYPEEVSSMVLTK  Oxidation (M) 70 817,01 140 

     
NQVAMNPTNTVFDAK.R + Oxidation 
(M) 

54 833,46 95 

         

2179 MS 
Aldheyde 
dehydrogenase 1A1 

134 37 LADLIERDR  1100,66 45 

     TIPIDGNFFTYTR  1544,85 51 

     LIKEAAGK  829,52 12 

     RVTLELGGK  972,63 51 

     IFVEESIYDEFVR  1645,89 48 

     IFVEESIYDEFVRR  1802,04 72 

     RSVER  646,40 62 

     YILGNPLTPGVTQGPQIDKEQYDK  2674,50 48 

     ILDLIESGKK  1115,73 53 

     GYFVQPTVFSNVTDEMR  2006,09 79 

     IAKEEIFGPVQQIMK  1747,02 40 

     SLDDVIKR  945,58 42 

     ANNTFYGLSAGVFTK  1589,87 44 

     ELGEYGFHEYTEVK  1700,88 58 

         

2178 MS 
UDP glucose 
dehydrogenase 

100 26 VTVVDVNESR  1117,69 98 

     YIEACAR  882,50 102 

     VLIGGDETPEGQR  1370,82 94 

     LAANAFLAQR  1074,71 93 

     YWQQVIDMNDYQR  1774,95 90 

     IIDSLFNTVTDKK  1493,98 107 

     YLMDEGAHLHIYDPK  1818,02 93 

     EQIVVDLSHPGVSEDDQVSR  2209,29 99 

     MLKPAFIFDGR  1310,83 106 

     RIPYAPSGEIPK  1327,85 82 

     FSLQDPPNK  1045,66 120 

         

2409 MSMS Cytokeratin 18 357 16 VIDDTNITR 65 523,79 28 

     IVLQIDNAR 58 521,38 144 

     IIEDLRAQIFANTVDNAR 54 687,18 208 

     TVQSLEIDLDSMR + Oxidation (M) 60 761,94 85 

     QAQEYEALLNIK 72 710,58 282 
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     QSVENDIHGLR + Pyro-glu (N-term Q) 48 625,84 48 

         

2742 MS 
DNA polymerase 
delta interacting 
protein 2 

217 46 GVVLFPWQAR  1172,73 59 

     LYDRDVASAAPEK  1434,83 76 

     GKTHTYYQVLIDAR  1664,98 60 

     THTYYQVLIDAR  1479,85 60 

     DCPHISQR  1012,54 79 

     SQTEAVTFLANHDDSR  1790,97 78 

     FLLYDQTK  1027,62 68 

     APPFVAR  757,49 66 

     NHPWLELSDVHR  1502,85 66 

     ETTENIR  862,50 81 

     VTVIPFYMGMR  1345,78 89 

     EAQNSHVYWWR  1475,80 81 

     LENLDSDVVQLR  1400,84 71 

     ERHWR  783,46 76 

     IFSLSGTLETVR  1322,82 68 

     GRGVVGR  700,43 19 

     GVVGREPVLSK  1140,75 70 

     FERPDGSHFDVR  1461,79 68 

         

2227 MSMS 
ATP synthase, H+ 
transporting, 
mitochondrial  

177 8 VVDALGNAIDGK 82 586.61  85 

     NVQAEEMVEFSSGLK 50 843,04 136 

     GMSLNLEPDNVGVVVFGNDK 45 707,44 280 

         

1808 MSMS 
t-complex 
polypeptide 1 

90 4 EQLAIAEFAR 45 574,42 191 

     FATEAAITILR 45 603,47 199 

         

2130 MS Phenylalanyl-tRNA 
synthetase  

84 21 STKHWELTAEGEEIAR  1856,67 129 

     HWELTAEGEEIAR  1540,61 84 

     EGSHEAR  785,30 63 

     SIPPEGLAQSELMR  1527,67 72 

     LQLVR  628,37 63 

     LGEKER  731,35 68 

     THSQGGYGSQGYK  1369,50 80 

     THTTSASAR  931,38 85 

     KPFTPVK  816,43 85 

     YFSIDR  800,34 62 

     YGINNIR  849,39 82 

     LDAEPRPPPTQEAA  1491,61 87 

         

3053 MSMS Cytokeratin 8  179 9 SLDMDSIIAEVK.A + Oxidation (M) 60 668,91 112 

     TEMENEFVLIK.K + Oxidation (M) 59 684,98 175 

     R.LEGLTDEINFLR.Q 60 710,51 183 

         

2487 MSMS Aldolase A  84 14 GVVPLAGTNGETTTQGLDGL SER                                        42 1137,08 127 

     VDKGVVPLAGTNGETTTQGL DGLSER 42 872,42 220 
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1917 MSMS 

Heterogeneous 
nuclear 
ribonucleoprotein Q 
(hnRNP Q) isoform3 

229 9 LMMDPLTGLNR + 2 Oxidation (M) 49 646,94 185 

     TGYTLDVTTGQR 54 656,48 229 

     NLANTVTEEILEK 82 737,49 129 

     DLFEDELVPLFEK 44 797,52 144 

         

  
Phosphoenolpyruvate 
carboxykinase (GTP) 

124  EVLAELEALER 63 636,41 102 

     LGTPVLQALGDGDFVK 61 815,52 92 

         

1778 MSMS Dead box, X isoform  308 14 DLLDLLVEAK 50 564,90 124 

     SPILVATAVAAR 60 584,92 111 

     DSLTLVFVETK. 48 626,40 88 

     ELAVQIYEEAR 54 660,93 128 

     MLDMGFEPQIR.R + 2 Oxidation (M) 48 684,97 219 

     VGNLGLATSFFNER 48 763,01 151 

         

  Nucleolin 154 6 NDLAVVDVR 55 500,87 190 

     GFGFVDFNSEEDAK 45 781,46 147 

     GLSEDTTEETLKESFDGSVR 54 734,11 131 

         

         

2647 MS 
Proteasome 26S 
ATPase subunit 6 

139 38 DKALQDYR  1008,46 49 

     LLEHKEIDGR  1209,61 41 

     ELREQLK  915,48 43 

     YVVGCR  753,35 26 

     LKPGTR  671,40 29 

     VALDMTTLTIMR  1396,65 71 

     GCLLYGPPGTGK  1219,57 32 

     VVSSSIVDKYIGESAR  1709,81 58 

     EMFNYAR  946,37 42 

     FSEGTSADREIQR  1495,65 40 

     KIHIDLPNEQAR  1433,71 55 

     IHIDLPNEQAR  1305,65 45 

     HGEIDYEAIVK  1273,59 39 

     LSDGFNGADLR  1164,51 42 

     NVCTEAGMFAIR  1384,59 28 

     ADHDFVVQEDFMK  1596,63 44 

         

1722 MSMS Chaperonin (HSP60) 206 11 AAVEEGIVLGGGCALLR 92 843,00 53 

     ALMLQGVDLLADAVAVTMGPK 57 710,47 122 

     TALLDAAGVASLLTTAEVVVTEIPKEEK 57 957,03 170 

         

  
Protein disulfide-
isomerase A4 
precursor  

119  IDATSASVLASR 76 595,92 168 

     MDATANDVPSDR + Oxidation (M) 43 654,32 61 

         

2226 MS 
Inosine 
monophosphate 
dehydrogenase 2 

227 39 KYEQGFITDPVVLSPK  1820,97 5 

     VRDVFEAK  963,53 0 
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     HGFCGIPITDTGR  1430,7 13 

     EANEILQR  972,5 0 

     GKLPIVNEDDELVAIIAR  1965,15 25 

     LPIVNEDDELVAIIAR  1779,98 7 

     NRDYPLASK  1063,64 84 

     DKYPNLQVIGGNVVTAAQAK  2086,18 20 

     NLIDAGVDALR  1156,63 0 

     VSEYAR  724,37 13 

     RFGVPVIADGGIQNVGHIAK  2048,19 22 

     FGVPVIADGGIQNVGHIAK  1892,03 4 

     YRGMGSLDAMDK  1376,62 14 

     HLSSQNRYFSEADK  1681,85 35 

     YFSEADKIK  1100,55 0 

     IKVAQGVSGAVQDK  1399,64 107 

     SLTQVR  703,42 17 

     AMMYSGELK  1045,56 8 

     TSSAQVEGGVHSLHSYEK  1915,89 10 

         

2098 MSMS Tapasin 302 14 LAPEYEAAATR 65 596,44 226 

     DGEEAGAYDGPR 57 618,88 194 

     ELSDFISYLQR 51 685,93 116 

     DLLIAYYDVDYEK 59 810,48 105 

     SDVLELTDDNFESR 70 820,48 128 

         

2888 MS 
Heparan sulfate 
glucosamine 3-O-
sulfotransferase 3A1 

69 52 QLPQAIIIGVKK  1307,67 130 

     GGTRALLEFLR  1232,6 89 

     AVGAEPHFFDR  1245,59 8 

     DLMPRTLDGQITMEK  1763,79 4 

     TLDGQITMEKTPSYFVTR  2102,73 142 

     ISAMSKDTK  996,55 50 

     AISDYTQTLSK  1226,78 81 

     AISDYTQTLSKRPDIPTFESLTFK  2758,24 68 

     TAGLIDTSWSAIQIGIYAK  2008,44 149 

     HLEHWLRHFPIR  1640,86 18 

     QMLFVSGER  1082,17 220 

     RIITDK  745,41 67 

     HFYFNK  855,15 17 

         

1906 MSMS Heat-Shock 70kd 
Protein  

130 9 TTPSYVAFTDTER 76 744,46 141 

     NQVALNPQNTVFDAK 54 830,04 132 

         

1600 MSMS Filamin A 155 1,5 AGNNMLLVGVHGPR 91 484,43 275 

     NGQHVASSPIPVVISQSEIG DASR 64 816,87 65 

         

  
Threonyl-tRNA 
synthetase 

110 5 NELSGALTGLTR 61 616,61 120 

  
   

QLENSLNEFGEKWELNSGDG 
AFYGPK 

49 971,56 65 

         

1893 MSMS 
Heat shock 70 kDa 
protein  

282 10 TTPSYVAFTDTER 77 744,46 141 

     NQVAMNPTNTVFDAK 69 830,04 132 

     IINEPTAAAIAYGLDR 81 844,52 77 
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     DAGVIAGLNVLR 55 599,46 183 

         

1845 MSMS Annexin A6 231 9 ALIEILATR 58 500,41 190 

     SELDMLDIR + Oxidation (M) 49 554,4 235 

     DAFVAIVQSVK 70 588,92 144 

     EDAQEIADTPSGDKTSLETR 54 721,75 106 
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Table 5: MS details of HCT-116 identified proteins     

Spot 
No. 

Id 
Method 

Protein name 
Mascot 
Protein 
Score 

Sequence 
coverage 
(%) 

Identified peptide sequence 
Single 
ion Score 
(MS/MS) 

Precursor 
mass 
(m/z) 

Mass error 
(ppm) 

4928 MSMS Peroxiredoxin-1  266 37 TIAQDYGVLK 49 554,42 207 

     
QITVNDLPVGR+ Pyro-glu (N-
term Q) 

49 597,95 209 

     GLFIIDDKGILR 45 454,03 206 

     QGGLGPMNIPLVSDPK 69 820,01 97 

     TIAQDYGVLKADEGISFR 54 661,84 247 

         

  Neuropolypeptide h3 194 18 LYTLVLTDPDAPSR 54 781,02 134 

     GNDISSGTVLSDYVGSGPPK 140 975,56 87 

         

2988 MSMS 
Heat shock protein 
90kDa alpha 
(cytosolic) 

112 3 EQVANSAFVER 49 625,18 208 

     GVVDSEDLPLNISR 63 757,53 178 

         

4323 MSMS 
Cell division control 
protein 42 homolog 
isoform 1 

96 19 NVFDEAILAALEPPEPK 48 618,31 86 

     TPFLLVGTQIDLRDDPSTIEK 48 786,9 190 

         

3826 MSMS 
Heat shock protein 
27  

167 18 QLSSGVSEIR 43 538,64 83 

     LFDQAFGLPR 75 582,64 51 

     VSLDVNHFAPDELTVK 49 595,7 72 

         

4018 MSMS 
Phosphoribosyltransf
erase domain-
containing protein 1  

157 16 NVLIVEDVVGTGR 87 685,96 109 

     
NDQSMGEMQIIGGDDLSTLAG
K + 2 Oxidation (M) 

70 771,49 86 

         

2989 MSMS  Annexin A1 397 29 TPAQFDADELR 87 632,09 120 

     GTDVNVFNTILTTR 71 776,3 71 

     SEDFGVNEDLADSDAR 106 870,73 143 

     MYGISLCQAILDETK 73 879,79 250 

     
GGPGSAVSPYPTFNPSSDVA 
ALHK 

60 786,6 106 

         

  
Heterogeneous 
nuclear 
ribonucleoprotein H3  

180 10 STGEAFVQFASK 53 636,58 180 

     DGMDNQGGYGSVGR 83 715,07 220 

     ATENDIANFFSPLNPIR 44 960,17 280 

         

4000 MSMS Peroxiredoxin-4 166 9 
QITLNDLPVGR + Pyro-glu (N-
term Q) 

54 604,97 223 

     LVQAFQYTDK 56 606,9 140 

     DYGVYLEDSGHTLR 56 813,01 154 

         

  Peroxiredoxin-6 101 12 LPFPIIDDR 50 543,4 92 

     
DGDSVMVLPTIPEEEAK+ 
Oxidation (M) 

51 923,24 216 

         

2941 MSMS 
Coproporphyrinogen 
oxidase  

375 32 FGLFTPGSR 50 491,39 265 

     YFEVEEADGNK 47 650,91 184 
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     YVEFNLLYDR 54 666,44 157 

 
 

   
IESILMSLPLTAR + Oxidation 
(M) 

46 730,5 130 

     AGVSISVVHGNLSEEAAK 59 590,13 254 

     ATSLGRPEEEEDELAHR 49 646.98 51 

     GIGGIFFDDLDSPSKEEVFR 70 1114,55 44 

         

 

 

Heterogeneous 
nuclear 
ribonucleoprotein C 
(C1/C2) 

234 16 SDVEAIFSK 45 498,37 231 

     KSDVEAIFSK 43 562,4 169 

     GFAFVQYVNER 54 665,43 143 

 
 

   
MIAGQVLDINLAAEPK+ 
Oxidation (M 

92 850,07 129 

 
 

       

3934 MSMS Actin beta 111 10 GYSFTTTAER 44 566,86 105 

     SYELPDGQVITIGNER 67 859,92 33 

         

  Enolase 109 9 
VVIGMDVAASEFFR + 
Oxidation (M) 

68 779,03 180 

     DATNVGDEGGFAPNILENK 41 981,04 76 

         

2903 MSMS Transaldolase 91 6 TIVMGASFR + Oxidation (M) 45 499,32 120 

     LLGELLQDNAK 46 607,42 123 

         

3578 MSMS 
Chloride intracellular 
channel protein 1  

251 33 GVTFNVTTVDTK 101 641,43 140 

     NSNPALNDNLEK 55 664,92 143 

 
 

   
VLDNYLTSPLPEEVDETSAEDE
GVSQR 

50 998,2 63 

 
 

   
VLDNYLTSPLPEEVDETSAEDE
GVSQRK 

45 1040,9 64 

         

1627 MSMS 
Heat shock cognate 
71 kDa protein 
isoform 1  

632 27 FEELNADLFR 48 627,41 159 

     TTPSYVAFTDTER 77 744,51 208 

 
 

   
SFYPEEVSSMVLTK  Oxidation 
(M) 

74 816,98 104 

 
 

   
NQVAMNPTNTVFDAK + 
Oxidation (M) 

82 833,52 96 

     LSKEDIER 48 495,38 232 

     VQVEYKGETK 50 590,94 212 

     DAGTIAGLNVLR 52 600,46 200 

     VEIIANDQGNR 66 614,94 195 

     NSLESYAFNMK 87 660,41 166 

     STAGDTHLGGEDFDNR 48 564,71 230 

         

2684 MSMS Septin 2  206 12 TIISYIDEQFER 67 757,18 264 

     TVQIEASTVEIEER 77 802,18 287 

     ASIPFSVVGSNQLIEAK 62 880,24 270 

         

1692 MSMS 

Succinate 
dehydrogenase 
complex, subunit A, 
flavoprotein (Fp) 

109 7 GEGGILINSQGER 43 665,41 105 

     IDEYDYSKPIQGQQK 66 906,56 127 

         

2351 MSMS keratin 18  166 7 IVLQIDNAR 49 521,6 19 



 

97 

 

     QSVENDIHGLR 43 626,08 130 

     AQIFANTVDNAR 74 660,59 190 

         

2761 MSMS 
Alcohol 
dehydrogenase 
[NADP+] 

399 22 ALEALVAK 68 407,68 184 

     SPAQILLR 43 449,2 178 

     YALSVGYR 45 464,66 194 

     GLVQALGLSNFNSR 75 738,12 232 

     VFDFTFSPEEMK 58 746,61 268 

     GLEVTAYSPLGSSDR 56 776,16 241 

     DPDEPVLLEEPVVLALAEK 54 1038,19 260 

         

1759 MS 
hsp70/hsp90 
organizing 
protein(HOP) 

93 23 WVNELKEK  1045,44 120 

     LDPHNHVLYSNR  1464,57 109 

     KAAALEFLNR  1132,51 123 

     TYEEGLKHEANNPQLK  1870,83 48 

     TLLSDPTYR  1065,44 112 

     ELIEQLR  900,49 22 

     ETKPEPMEEDLPENKK  1929,85 26 

     YKDAIHFYNK  1298,55 75 

     SLAEHR  712,3 98 

     SLAEHRTPDVLK  1365,3 51 

     LAYINPDLALEEK  1488,62 111 

     HYTEAIKR  1017,48 59 

     LILEQMQK  1002,49 70 

     LMDVGLIAIR  116,55 80 

         

2053 MSMS 
Phosphoglycerate 
dehydrogenase 

286 11 VTADVINAAEK 62 566,15 35 

     ILQDGGLQVVEK 77 650,15 154 

     GTIQVITQGTSLK 85 673,4 300 

     
TQTSDPAMLPTMIGLLAEAG 
VR 

62 768,84 290 

         

  
Inosine 
monophosphate 
dehydrogenase 

128 6 NLIDAGVDALR 69 579,24 69 

     YEQGFITDPVVLSPK 59 847,17 59 

         

2319 MSMS 
Fumarate hydratase 
precursor  

329 15 EYDTFGELK  61 607,85 90 

     AIEMLGGELGSK 73 610,67 237 

     VAALTGLPFVTAPNK 51 749,85 113 

     IYELAAGGTAVGTGLNTR 84 882,5 45 

     SGLGELILPENEPGSSIMPGK 60 1070,9 126 

         

1388 MSMS Chaperonin (HSP60) 87 8 AAVEEGIVLGGGCALLR 43 843,09 160 

     
TALLDAAGVASLLTTAEVVVTE
IPKEEK 

44 957,10 254 

         

2063 MS 
UDP-glucose 
dehydrogenase 

92 29 VTVVDVNESR 
 

1117,58 0 

     EADLVFISVNTPTK  1533,71 71 

     VLIGGDETPEGQR  1370,7 8 

     LAANAFLAQR  1074,6 10 

     DVLNLVYLCEALNLPEVAR  2201,18 9 
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     IIDSLFNTVTDKK  1493,8 16 

     YLMDEGAHLHIYDPK  1817,88 27 

     EQIVVDLSHPGVSEDDQVSR  2209,13 8 

     MLKPAFIFDGR  1310,7 8 

     RIPYAPSGEIPK  1327,74 8 

     FSLQDPPNK  1045,54 0 

         

1421 MS lamin A/C isoform 3  212 44 SGAQASSTPLSPTR  1359,65 29 

     LQEKEDLQELNDR  1629,81 0 

     LAVYIDR  849,42 70 

     SLETENAGLR  1089,52 27 

     ITESEEVVSR  1148,56 17 

     AAYEAELGDAR  1165,53 16 

     TLEGELHDLR  1182,62 8 

     RVDAENR  859,4 46 

     LQTMKEELDFQK  1525,68 52 

     NIYSEELR  1023,5 9 

     LVEIDNGKQR  1171,6 17 

     LADALQELR  1028,54 29 

     AQHEDQVEQYKK  1502,67 33 

     NSNLVGAAHEELQQSR  1752,85 5 

     IRIDSLSAQLSQLQK  1699,84 17 

     LRDLEDSLAR  1187,63 8 

     
MQQQLDEYQELLDIKLALDMEI
HAYR 

 3223,2 186 

     LALDMEIHAYR  1347,63 29 

     LALDMEIHAYRK  1475,63 61 

     LLEGEEERLR  1243,67 8 

     VAVEEVDEEGKFVR  1605,79 12 

     QNGDDPLLTYR  1274,64 31 

     
ASASGSGAQVGGPISSGSSAS
SVTVTR 

 2365,14 8 

     SVGGSGGGSFGDNLVTR  1566,74 6 

         

2215 MS keratin8  237 42 SYTSGPGSR  911,41 11 

     ISSSSFSR  870,4 14 

     VGSSNFR  766,35 39 

     WSLLQQQK  1030,45 98 

     WSLLQQQKTAR  1358,57 100 

     SNMDNMFESYINNLR  1879,75 21 

     NKYEDEINK  1152,4 97 

     LEGLTDEINFLR  1419,66 63 

     QLYEEEIR  1062,4 94 

     ELQSQISDTSVVLSMDNSR  2108,93 37 

     SLDMDSIIAEVK  1336,58 20 

     AQYEDIANR  1079,42 51 

     SRAEAESMYQIK  1428,6 62 

     AEAESMYQIK  1185,46 73 

     YEELQSLAGK  1137,48 89 

     HGDDLR  712,3 87 

     TKTEISEMNR  1224,5 42 

     ASLEAAIADAEQR  1344,58 70 

     GELAIKDANAK  1129,52 74 

     EYQELMNVK  1169,46 68 

     LALDIEIATYR  1277,58 84 
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     LLEGEESR  932,4 64 

     LESGMQNMSIHTK  1507,61 53 

         

1466 MS Ezrin 127 28 PKPINVR  823,45 72 

     FYPEDVAEELIQDITQK  2038,16 70 

     
EGILSDEIYCPPETAVLLGSYAV
QAK 

 2823,66 88 

     SGYLSSER  898,37 59 

     DQWEDR  848,3 67 

     IQVWHAEHR  1175,58 80 

     IAQDLEMYGINYFEIK  1963,06 30 

     IGFPWSEIR  1104,55 29 

     KAPDFVFYAPR  1310,68 60 

     APDFVFYAPR  1182,58 43 

     RKPDTIEVQQMK  1488,8 89 

     AKEELER  874,4 90 

     SQEQLAAELAEYTAK  1651,85 32 

     QLLTLSSELSQAR  1445,77 17 

     THNDIIHNENMR  1509,72 39 

         

1207 MSMS 
KSRP /KH type-
splicing regulatory 
protein 

282 12 MMLDDIVSR 55 556,13 234 

     VPDGMVGLIIGR 48 621,72 201 

     LASQGDSISSQLGPIHPPPR 57 686,22 194 

     MILIQDGSQNTNVDKPLR 43 686,87 243 

     TSMTEEYRVPDGMVGLIIGR 79 752,52 240 

         

1401 MSMS Lamin A/C 668 23 LQEKEDLQELNDR. 44 815,51 122 

     MQQQLDEYQELLDIK 79 995,56 99 

     
ASASGSGAQVGGPISSGSSAS
SVTVTR 

81 1183,06 21 

     NSNLVGAAHEELQQSR 60 585,07 188 

     VAVEEVDEEGKFVR 57 803,51 124 

     SVGGSGGGSFGDNLVTR 87 783,99 140 

     
TALINSTGEEVAMR + 
Oxidation (M) 

68 754,47 126 

     LRDLEDSLAR 53 594,42 160 

     AAYEAELGDAR 68 583,35 120 

     LADALQELR 71 514,89 194 

         

3206 MSMS 
Cytosolic malate 
dehydrogenase  

104 8 LGVTANDVK 49 459,07 98 

     VIVVGNPANTNCLTASK 55 879,95 62 

         

1413 MS Ezrin 98 28 EVWYFGLHYVDNK  1669,69 59 

     VSAQEVR  788,32 65 

     FGDYNK  743,28 67 

     SGYLSSER  898,32 45 

     LIPQR  626,3 57 

     DQWEDR  848,31 65 

     IQVWHAEHR  1175,55 85 

     IAQDLEMYGINYFEIK  1963,06 30 

     IGFPWSEIR  1104,55 29 

     KAPDFVFYAPR  1310,68 15 

     APDFVFYAPR  1182,58 43 

     RKPDTIEVQQMK  1488,8 13 
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     ALQLEEER  987,46 23 

     AKEELER  874,4 39 

     SQEQLAAELAEYTAK  1651,85 18 

     IALLEEAR  914,5 21 

     QLLTLSSELSQAR  1445,7 25 

     THNDIIHNENMR  1509,7 41 

         

3112 MSMS Annexin A3 198 13 ALLTLADGR 50 465,29 32 

     SEIDLLDIR 56 537,3 9 

     GIGTDEFTLNR 46 611,95 237 

     SDTSGDYEITLLK 46 721,46 145 

         

  
Inoraganic 
pyrpohosphatase 

101 11 DKDFAIDIIK 54 589,45 212 

     VIAINVDDPDAANYNDINDVKR 47 815,48 90 

         

1563 MS Ezrin 99 24 PKPINVR  823,54 36 

     EVWYFGLHYVDNK  1669,84 23 

     SGYLSSER  898,47 18 

     DQWEDR  848,4 58 

     IQVWHAEHR  1175,63 17 

     IAQDLEMYGINYFEIK  1962,97 10 

     IGFPWSEIR  1104,61 27 

     KAPDFVFYAPR  1310,7 7 

     APDFVFYAPR  1182,62 25 

     RKPDTIEVQQMK  1488,8 13 

     AKEELER  874,49 34 

     SQEQLAAELAEYTAK  1651,85 18 

     IALLEEAR  914,5 21 

     QLLTLSSELSQAR  1445,82 13 

     THNDIIHNENMR  1509,74 33 

         

1432 MS Ezrin 87 18 PKPINVR  823,45 72 

     FYPEDVAEELIQDITQK  2038,16 70 

     IQVWHAEHR  1175,63 17 

     IGFPWSEIR  1104,61 27 

     KAPDFVFYAPR  1310,7 7 

     APDFVFYAPR  1182,62 25 

     RKPDTIEVQQMK  1488,8 13 

     QQLETEKK  1003,49 49 

     EKEELMLR  1063,52 28 

     QLLTLSSELSQAR  1445,82 13 

     THNDIIHNENMR  1509,74 33 

         

1399 MS Lamin A/C isoform 3  133 28 SGAQASSTPLSPTR  1359,65 29 

     LQEKEDLQELNDR  1629,81 0 

     SLETENAGLR  1089,52 27 

     EGDLIAAQAR  1043,37 95 

     TLEGELHDLR  1182,62 8 

     NIYSEELR  1023,5 9 

     LADALQELR  1028,54 29 

     NSNLVGAAHEELQQSR  1752,85 5 

     DLEDSLAR  918,4 54 

     IDSLSAQLSQLQK  1430,7 56 

     LALDMEIHAYR  1347,63 29 
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     QNGDDPLLTYR  1274,64 31 

     
ASASGSGAQVGGPISSGSSAS
SVTVTR 

 2365,14 8 

     SVGGSGGGSFGDNLVTR  1566,74 6 

         

1073 MSMS EEF2 93 3 VNFTVDQIR 43 546,39 174 

     VFSGLVSTGLK 50 554,4 135 

         

1673 MS Hsp70 171 32 AAAIGIDLGTTYSCVGVFQHGK  2265,18 22 

     VEIIANDQGNR  1228,56 81 

     TTPSYVAFTDTER  1487,68 13 

     IINEPTAAAIAYGLDR  1687,87 17 

     ATAGDTHLGGEDFDNR  1675,74 6 

     LVNHFVEEFK  1261,6 47 

     
TLSSSTQASLEIDSLFEGIDFYT
SITR 

 2981,56 33 

     ARFEELCSDLFR  1542,71 19 

     FEELCSDLFR  1315,54 18 

     LDKAQIHDLVLVGGSTR  1822 10 

     AQIHDLVLVGGSTR  1465,78 20 

     LLQDFFNGR  1109,5 63 

     
QTQIFTTYSDNQPGVLIQVYEG
ERAMTK 

 3216,37 55 

     ITITNDKGR  1017,51 59 

     LSKEEIER  1003,45 99 

     YKAEDEVQR  1137,47 61 

         

1433 MS Lamin A/C isoform 3  245 38 SGAQASSTPLSPTR  1359,65 29 

     LQEKEDLQELNDR  1629,81 0 

     SLETENAGLR  1089,52 27 

     ITESEEVVSR  1148,56 17 

     AAYEAELGDAR  1165,53 16 

     ARLQLELSK  1057,6 37 

     EAALSTALSEKR  1275,64 39 

     TLEGELHDLR  1182,62 8 

     NIYSEELR  1023,5 9 

     LVEIDNGKQR  1171,6 17 

     LADALQELR  1028,54 29 

     NSNLVGAAHEELQQSR  1752,81 28 

     IRIDSLSAQLSQLQK  1699,91 35 

     LALDMEIHAYR.  1347,62 37 

     LLEGEEERLR  1243,67 8 

     VAVEEVDEEGKFVR  1605,77 25 

     
ASASGSGAQVGGPISSGSSAS
SVTVTR 

 2365,1 25 

     SVGGSGGGSFGDNLVTR  1566,75 0 

         

1400 MS Lamin A/C isoform 3  283 49 SGAQASSTPLSPTR  1359,65 29 

     LQEKEDLQELNDR  1629,81 0 

     EDLQELNDR  1131,44 60 

     SLETENAGLR  1089,52 27 

     ITESEEVVSR  1148,56 17 

     AAYEAELGDAR  1165,53 16 

     VREEFK  807,36 99 

     EGDLIAAQA  1043,46 86 
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     TLEGELHDLR  1182,53 67 

     QLQDEMLRR  1187,53 32 

     RVDAENR  859,37 80 

     LQTMKEELDFQK  1525,68 52 

     NIYSEELR  1023,43 89 

     RHETR  698,3 100 

     AQHEDQVEQYKK  1502.77 3 

     NSNLVGAAHEELQQSR  1752,81 28 

     IRIDSLSAQLSQLQK  1699,91 35 

     MQQQLDEYQELLDIK  1909,98 31 

     LALDMEIHAYR.  1347,62 37 

     LLEGEEERLR  1243,67 8 

     ASSHSSQTQGGGSVTK  2365,07 38 

     SSFSQHAR  919,36 87 

     QNGDDPLLTYR  1274,61 7 

     
ASASGSGAQVGGPISSGSSAS
SVTVTR 

 2365,1 25 

     SVGGSGGGSFGDNLVTR  1566,75 0 

     TQSPQNCSIM  1165,5 0 

         

1445 MS Ezrin 171 33 PKPINVR    

     EVWYFGLHYVDNK  823,44 85 

     VSAQEVR  1669,84 23 

     FYPEDVAEELIQDITQK  788,32 65 

     SGYLSSER  2037,85 73 

     DQWEDR  898,47 18 

     IQVWHAEHR  848,4 58 

     IAQDLEMYGINYFEIK  1175,63 17 

     GTDLWLGVDALGLNIYEK  1962,97 10 

     IGFPWSEIR  1976,86 86 

     KAPDFVFYAPR  1104,61 27 

     APDFVFYAPR  1310,7 7 

     RKPDTIEVQQMK  1182,62 25 

     EKEELMLR  1488,8 13 

     ALQLEEER  1063,45 94 

     AKEELER  987,43 81 

     SQEQLAAELAEYTAK  874,39 80 

     QLLTLSSELSQAR  1651,85 18 

     THNDIIHNENMR  1445,82 13 

       1509,74 33 

1398 MS Lamin A/C isoform 3  238 35 SLETENAGLR    

     AAYEAELGDARK  1089,52 27 

     TLEGELHDLRGQVAK  1293,62 15 

     LQTMKEELDFQK  1665,82 42 

     NIYSEELRETK  1525,76 0 

     LADALQELR  1381,64 43 

     AQHEDQVEQYKK  1028,53 38 

     NSNLVGAAHEELQQSR  1502.77 3 

     IRIDSLSAQLSQLQK  1752,81 28 

     MQQQLDEYQELLDIK  1699,91 35 

     LALDMEIHAYR.  1909,98 31 

     SSFSQHAR  1347,62 37 

     VAVEEVDEEGKFVR  919,39 54 

     QNGDDPLLTYR  1605,77 25 
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ASASGSGAQVGGPISSGSSAS
SVTVTR 

 1274,61 7 

     SVGGSGGGSFGDNLVTR  2365,1 25 

     TQSPQNCSIM  1566,75 0 

       1165,5 0 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

104 

 

                       7. APPENDIX II  

 

Publications 

1) G. Chiappetta*, C. Corbo*, A. Palmese*, F. Galli,  M. Piroddi, G. 

Marino, A. Amoresano. «Quantitative identification of protein nitration 
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2008. 

 

4) Claudia Corbo, Luigi Del Vecchio, Rosa Di Noto, Marica Gemei, 

Esther Imperlini, Peppino Mirabelli, Stefania Orrù, Margherita Ruoppolo, 
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intracellular pathways distinctive for colon cancer stem cells».5th 
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2009. 

 

5) A. Palmese G. Chiappetta, C. Corbo, G. Marino, A. Amoresano 

«Expanding the role of iTRAQ chemistry : quantitative analysis of post-
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22-25 June 2009. 

 

6) Claudia Corbo, Luigi Del Vecchio, Rosa Di Noto, Marica Gemei, 

Esther Imperlini, Peppino Mirabelli, Stefania Orrù, Margherita Ruoppolo, 
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pathways distinctive for colon cancer stem cells» 34th FEBS Congress  

Prague, Czech Republic, 4-9 July 2009. 

 

7) Claudia Corbo, Luigi Del Vecchio, Rosa Di Noto, Marica Gemei, 

Esther Imperlini, Peppino Mirabelli, Stefania Orrù, Margherita Ruoppolo, 

Francesco Salvatore «Characterization of proteins involved in cellular 
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Capri, Italy 10-13 October, 2009 
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Del Vecchio L., Salvatore F. ―Il pattern di espressione proteica di cellule 

CD133+ di cancro del colon indica attivazione del pathway di WNT e 

probabile alterazione del meccanismo di splicing‖. Giornate Scientifiche 

Polo delle Scienze 2010, Facoltà di Medicina e Chirurgia, Napoli, Italy, 

23-26 November, 2010. 

 

10) Corbo C., Orrù S., Gemei M., Di Noto R., Mirabelli P., Ruoppolo M., 

Del Vecchio L., Salvatore F. ―The protein expression pattern of CD133+ 

colon cancer cells indicates activation of the Wnt pathway and potential 

alteration of splicing mechanisms‖. 36th FEBS Congress  Turin, Italy, 

25-30 June , 2011. 

 

11) Corbo C., Orrù S., Gemei M., Di Noto R., Mirabelli P., Ruoppolo M., 

Del Vecchio L., Salvatore F. ―The protein expression pattern of CD133+ 

colon cancer cells indicates activation of the Wnt pathway and potential 

alteration of splicing mechanisms‖. 3th EMBO Meeting  Wien, Austria, 

10-13 September , 2011 

 

12) Corbo C., Orrù S., Gemei M., Di Noto R., Mirabelli P., Ruoppolo M., 

Del Vecchio L., Salvatore F. ―The protein expression pattern of CD133+ 

colon cancer cells indicates activation of the Wnt pathway and potential 

alteration of splicing mechanisms‖. FEBS Advanced Lecture  Course on 

Translational Cancer Research, Albufeira, Portugal, September 27- 

October 4, 2011 

 

13) Corbo C., Orrù S., Gemei M., Di Noto R., Mirabelli P., Ruoppolo M., 

Del Vecchio L., Salvatore F. ―The protein expression pattern of CD133+ 
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                  Courses 

March 2010          

2D-DIGE Workshop (GE Healthcare), theoretical and practical course on 

differential proteomics at National Institute for Research and Treatment of 

Tumors ―G. Pascale‖, Naples, Italy 

 

August 2010 

Practical EMBO course titled: ―Post-translational modifications of 

proteins: from discovery to functional analysis‖. Uppsala, Sweden 

 

October 2011 

Awarded with a FEBS Youth Travel Fund (YTF) Fellowship to attend the 

FEBS Advanced Lecture Course on Translational Cancer 

Research, 27th September- 4th October 2011, Albufeira, Portugal 

 

 

Visiting appointment 

May-August 2010  

 

Short term fellowship during the PhD program under the supervision of 

Prof. M. Clench and Dr. S. Francese at the BMRC Institute (Biomedical 

Research Centre), Sheffield Hallam University, United Kingdom. 

Training on MALDI IMAGING MASS SPECTROMETRY 

 

Direct analysis of tissues of biological and clinical interest using MALDI 

MS has been shown to be successful for the study of the mid- to low 

molecular weight proteome. Because this technology analyzes intact 

tissue, avoiding homogenization and separation steps, the spatial 

distribution of molecules within the tissue is preserved. The process is 

relatively simple in that a matrix (typically a small aromatic organic 

molecule dissolved in an organic solvent) is deposited on top of a tissue 
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section followed by irradiation with a laser (e.g., nitrogen, 337 nm). 

Molecules are subsequently desorbed and ionized. 

MALDI is often coupled with TOF mass analyzers that allows a 

unlimited mass range is with analytes > 200 kDa capable of being 

measured. 

Image analysis of discrete molecules in tissue can be acquired by using 

MALDI MS to determine their spatial localization with a lateral resolution 

of 10–100 µm. A thin (10 µm) tissue section is collected on a target 

plate, and matrix is applied over the surface of the tissue by a robotic 

liquid dispensing device followed by desorption, ionization, and 

separation processes. Spectra are recorded in a systematic fashion 

over the tissue by moving the sample stage underneath a fixed laser 

beam. Thus, a spot array over the entire sample then constitutes the 

image dataset analogous to pixels in a digital photograph. Each laser-

irradiated spot (pixel) gives rise to a mass spectrum that is correlated to 

discrete a X,Y coordinate location on the tissue. Thus each spot or pixel 

contains a dataset having thousands of channels (m/z values) with each 

channel having its own brightness (intensity). The intensity of each m/z 

value can be expressed over the array of pixels as a 2D ion density 

map. Commercial or custom software can be used to generate images 

depicting the localization and relative intensities of hundreds of ions in a 

single acquisition from a tissue section. During the time spent in Dr 

Francese‘s laboratory at Sheffield Hallam University, UK, the above 

described experimental workflow was applied to coronal sections of 

mice brains. It was acquired good experience in this innovative field of 
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research. The following images show the distribution of phospholipid at 

m/z 826.4 in two different slices of a PKU brain as an example of the 

image obtained with MALDI imaging analysis followed by software 

elaboration of data. 

 

 

      

 

 

 

 

 

 

 

 

 

 

 

 

 

 

m/z 826.4 m/z 826.4 

MALDI MS image of phospholipid at m/z 826.4 in two different slices of a PKU brain 
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