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Chapter 1

Introduction: Topological
Insulators

Beauty is the first test:
there is no permanent place
in the world for ugly mathematics.

G. H. Hardy

1.1 Topological aspects of energy bands
The possible existence of topologically non trivial phases relies on the topo-
logical structure of the first Brillouin zone (FBZ). The identification of points
of the reciprocal lattice connected by a lattice vector leads to the identifica-
tion of opposite edges in the first Brillouin zone, giving a non trivial structure
to it. Take for example a two-dimensional square lattice, the first Brillouin
zone then is a square whose opposite edges are identified as shown in fig.
1.1, i.e. an ordinary torus T 2. In the three-dimensional case the topological
structure of the Brillouin zone is a little more complicated and could be built
from the two-dimensional case giving to the torus a finite thickness and iden-
tifying the internal and the external surface so obtained. The band structure,
then, could be seen as an application from the FBZ to the space of periodic
Hamiltonians H(k) having eigenvalues En(k). Quantum Hamiltonians H(k)
could be classified in equivalence classes, where the equivalence relation is
defined so that two Hamiltonians are equivalent if their band structures are
topologically equivalent. Two manifolds1 M and N are topologically equiv-

1In general the manifold structure is not needed to talk about topological equivalence.
Topological spaces are the most general structures that could be classified using topological
equivalence. Here we are interested in manifolds.

4



CHAPTER 1. INTRODUCTION: TOPOLOGICAL INSULATORS 5

alent if an application f : M → N exists such that it is continuous and it
admits a continuous inverse too. Such an application is said to be an home-
omorphism, and it is an equivalence relation since it’s symmetric, reflexive
and transitive. Thus, two band structures {En(k)} and {E ′n(k)} are topo-
logically equivalent if an homeomorphism exists mapping each band En(k)
to one E ′n(k). It is clear that only band structures with the same number of
bands could be topologically equivalent, and that the mapping must connect
bands with the same band index n. That’s why it is usually said that two
band structures are equivalent if their bands could be deformed continuously
one in the other without closing any gap. This relation of equivalence is too
restrictive for physical purposes, since it’s not possible put all the ordinary
insulators in one class, and the topological ones in another one. However,
it’s possible to apply a coarser classification criterion having a deep physical
root. Core bands do not contribute to physical observables, and thus they
can be ignored somehow. Thus, insulators with different numbers of core
bands could be seen as equivalent even if they have a different number of
bands. In this this minimal model for an insulator, only the conduction and
the valence bands will be considered. In the next sections it will be shown a
well established example of non trivial insulator, the Quantum Hall system,
and then topological insulators will be analyzed.

Figure 1.1: First Brillouin zone for the square lattice

1.2 Quantum Hall Effect
Quantum Hall states are the main example of non trivial insulators. Since
the topological root of Integer Quantum Hall Effect (IQHE) has been pointed
out [129] the concepts of differential geometry have gained a great importance
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in the investigation of the states of matter. The conductivity tensor for the
Hall system could be written using the Kubo formula, and the result could
be interpreted using the notion of Chern numbers. The topological meaning
of the Hall conductance makes clear the stability of the result to small per-
turbations. Given the Bloch function Ψ = ei

~k·~ru(~r), the Hamiltonian for the
periodic function u(~r) is

H =
~2

2m
(−i∂x + k1)2 +

~2

2m

(
−i∂x + k2 −

eBx

~

)2

+ eEx (1.2.1)

The sample averaged Hall conductivity from the Kubo formula is

σH = −e
2

A

∑
mn

f(εn)

[
(vµ)nm(xν)mn
εm − εn + iη

+
(xν)nm(vµ)mn
εm − εn − iη

]
(1.2.2)

The matrix element of the operator (xµ)mn could be related to (vµ)mn, consid-
ering that the position and velocity operators are linked through the Heisen-
berg equation

vµ =
dxµ
dt

=
1

i~
[xµ, H] (1.2.3)

Projecting equation (1.2.3) on states m and n then

(vµ)mn =
1

i~
(εn − εm)(xµ)mn (1.2.4)

Equation (1.2.2) could be written, therefore, using only matrix elements of
the velocity operator

σH =
ie2~
A

∑
mn

f(εn)

[
(vµ)nm(vν)mn

(εm − εn)(εm − εn + iη)
− (vν)nm(vµ)mn

(εm − εn)(εm − εn − iη)

]
(1.2.5)

In the limit η → 0+ there will be a δ-like contribution and a second contri-
bution coming from the principle value

lim
η→0+

1

εm − εn ± iη
= P 1

εm − εn
∓ iδ(εm − εn) (1.2.6)

the conductivity has two contributions. The total on shell contribution com-
ing from the two parts of equation(1.2.2)

σ̃H = −πe
2~
A

∑
m6=n

vnmvmn

[
f(εm)− f(εn)

εm − εn

]
δ(εm − εn) (1.2.7)
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At T = 0 the main contribution to σ̃ comes from the Fermi level. If the
Fermi level lies in a gap between two Landau levels then σ̃H = 0, since the
matrix elements of the velocity operators between localized states are null.
Only the principal value contribution then remains in (1.2.2)

σH =
ie2~
A

∑
mn

f(εn)

[
(vµ)nm(vν)mn

(εm − εn)2
− (vν)nm(vµ)mn

(εm − εn)2

]
(1.2.8)

The velocity operator could be written as a derivative of the Hamiltonian
with respect to the momentum components

vµ =
1

~
∂H

∂kµ
. (1.2.9)

Using this relation the contribution to the conductivity (1.2.8) coming from
the nth level is

σH,n =
2πi

A

e2

h

∑
m 6=n

1

(εm − εn)2

[〈
∂H

∂kµ

〉
nm

〈
∂H

∂kν

〉
mn

−
〈
∂H

∂kν

〉
nm

〈
∂H

∂kµ

〉
mn

]
.

(1.2.10)
The derivatives of the Hamiltonian with respect to the momentum are related
to derivatives of the wave functions〈

∂H

∂kµ

〉
nm

〈
∂H

∂kν

〉
mn

= (εm − εn)2

〈
∂un
∂kµ

∣∣∣∣ ∂un∂kν

〉
(1.2.11)

With this result the conductivity (1.2.8) finally reads

σH,n =
2πi

A

e2

h

∑
m 6=n

[〈
∂un
∂kµ

∣∣∣∣ ∂un∂kν

〉
−
〈
∂un
∂kν

∣∣∣∣ ∂un∂kµ

〉]
=

=
i

2π

e2

h

∫
d2k

∫
d2r

[
∂u∗n
∂kµ

∂un
∂kν
− ∂u∗n
∂kν

∂un
∂kµ

]
=

=
1

2πi

e2

h

∫
d2k ~∇× ~A · ẑ

(1.2.12)

Here the vector potential
~A =

〈
un

∣∣∣~∇un〉 (1.2.13)

has been introduced, and the integral in k space runs on the whole FBZ. The
integral in reals space covers the unit cell of the lattice. By virtue of the
Stoke’s theorem the conductivity finally becomes

σH,n =
1

2πi

e2

h

∫
∂FBZ

d~k · ~A (1.2.14)
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since ~A is nothing but the gradient of the phase of the wave function un then
the integral is a integer ν, since the wave function is always single valued and
the absence of degeneracy is supposed

σH,n =
e2

h
ν (1.2.15)

As pointed out at the beginning of the chapter, the FBZ is a torus T 2 and
the absence of its boundary would imply Hall conductivity to be always null.
This is true only if the gauge potential ~A is uniquely defined inside the FBZ,
i.e. only if the wave function is uniquely defined on T 2. Due to the non
trivial topological structure of the FBZ it is possible to have a non- unique
definition of the wave functions un [73]. These topological aspects will be
analyzed in the following subsection.

1.2.1 Topological Aspects of QHE

A remarkable property of wave functions in a magnetic field is that its number
of zeros is determined by the magnetic flux threatening the unit cell. Given
a rational magnetic flux φ = p/q per unit cell, the boundary conditions for
the periodic function u~k(x, y) in the unit cell of edges a and b are

u~k(x+ qa, y) = e−iπp
y
b u~k(x, y)

u~k(x, y + b) = eiπp
x
qau~k(x, y)

(1.2.16)

Thus the phase change around the boundary is 2πp, and it’s a topological
invariant i.e. invariant respect to gauge trasformation. This phase change is
related to the number of zeros of the wave function. Indeed, in general the
total phase accumulated in the transport around the boundary of the unit
cell is

1

i

∫
d~l · ~∇θ~k(x, y) =

1

i

∫
d~l · ~∇ log

u~k(x, y)

|u~k(x, y)|
=

=
1

i

[
log

u~k(x, y)

|u~k(x, y)|

∣∣∣∣
2π

− log
u~k(x, y)

|u~k(x, y)|

∣∣∣∣
0

] (1.2.17)

In the next it will be supposed that the wave function has just one zero in
the unit cell. The result of the above integral could be different from zero if
the logarithm has some branch cut. If the wave function has a zero in the
interior of the unit cell then its the phase is not defined in that point and it
appears as a branch point for the logarithm. The circle integral (1.2.17) then
is equal to 2π if and only if the wave function has a zero in the interior of the
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unit cell. Note that the number of zeros is bounded by the flux for each u~k,
but since the vector ~k is a continuous index the subset of zeros of the wave
function for all the vectors in the FBZ is dense in the unit cell. This implies
that fixing a point in the unit cell (x0, y0) the wave function u~k(x0, y0) has
zeros for some vectors ~k in the FBZ, a remarkable result from which QHE
originates. Indeed, as in real space, in those points the phase of the wave
function is not defined, and this reflects on the transition functions defined
in the atlas on the FBZ. In general the atlas on T 2 is made up of 4 charts
Hi, containing each one the four regions

H ′1 = {(k1, k2) : 0 < k1 < π/qa, 0 < k2 < π/b}
H ′2 = {(k1, k2) : π/qa < k1 < 2π/qa, 0 < k2 < π/b}
H ′1 = {(k1, k2) : π/qa < k1 < 2π/qa, π/b < k2 < 2π/b}
H ′1 = {(k1, k2) : 0 < k1 < π/qa, π/b < k2 < 2π/b}

(1.2.18)

In the overlap between two regions Hi and Hj a transition function is defined

Φij = exp i [θi(k1, k2)− θj(k1, k2)] = exp ifij(k1, k2) (1.2.19)

These functions could be defined considering the existence of zeros of the
wave function. Indeed, supposing that u~k(x0, y0) admits a single zero in the
chart Hi, then in all the other charts Hj the phase of u~k could be fixed im-
posing that the value of the wave function in the point (x0, y0) is real. In
the chart Hi, a different convention must be applied, since it’s not possible
to define smoothly the phase of u~k(x0, y0) everywhere in Hi due to the pres-
ence of the zero. However, another component u~k(x1, y1) could be used to
define the phase there, thus defining the argument of the transition func-
tion f(k1, k2). In this way, the principal bundle P (T 2, U(1)) for a spinless
particle in a magnetic field is defined. Now it’s possible to unveil the real
nature of what has been called vector potential in the previous paragraph.
The quantity ~A =

〈
un

∣∣∣~∇un〉 is a connection one form defined in the princi-
pal bundle P (T 2, U(1)), locally defined in each chart and whose property of
transformation in the overlap between two charts is

Aj = e−ifij(k1,k2)Aieifij(k1,k2) + e−ifij(k1,k2)∇~ke
ifij(k1,k2) =

= Ai + i∇~kfi,j(k1, k2)
(1.2.20)

This connection one form has also a deep physical meaning, as analyzed
in the paragraph 1.5 in a simple one dimensional case. The quantum Hall
conductivity in (1.2.12) then involves the integral of the curvature F = dA+
A ∧A associated with this connection

F =
∂Ai
∂kj

dki ∧ dkj =
∂u∗n,k
∂ki

∂un,k
∂kj

dki ∧ dkj. (1.2.21)
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The integral of the curvature over the base space is an integer, the first
Chern number c1, and it is an invariant, since it only depends on the base
space of the principal bundle but not on the gauge. A non zero quantum
Hall conductivity originates from non triviality of the transition functions
fij(k1, k2). Indeed, considering a wave function with a single zero, Stoke’
s theorem in (1.2.14) could be properly applied considering the boundary
between the chart Hi and the others

σH,n =
1

2πi

e2

h

∫
d2k ~∇× ~A · ẑ =

=
1

2πi

e2

h

[∫
HI

d2k ~∇× ~AI · ẑ +

∫
HII

d2k ~∇× ~AII · ẑ
]

=

=
1

2πi

e2

h

∫
∂HI

d~k · [AI(~k)−AII(~k)] =
1

2π

e2

h

∫
∂HI

d~k∇~kf(~k)

(1.2.22)

Here the region Hi has been recalled HI while HII =
⋃
j 6=iHj. The integral

above is an integer, since the wave function has to be uniquely defined. Note
that the absence of zeros would imply a trivially defined wave function, and
thus a null quantum Hall conductance.

1.3 Connections on Principal Bundles
There are many ways to introduce connections on fiber bundles. Here it
will shown the Ehersmann connection, defined trough the separation of the
tangent space of a principal bundle in its horizontal and vertical subspaces.
Let P (M,G) be a principal bundle over the manifoldM with structure group
G. Given a point u ∈ P (M,G) so that πu = p and TuP , the space of vectors
tangent to the fiber bundle in the point u . The vertical subspace VuP ⊂ TuP
is defined as the space of vectors tangent to the fiber Gp in u. Let A be an
element of the Lie algebra of the structure group, then though the right
action of the gruop G the element define a curve in P

RetAu = uetA,

note that the projection of each point of this curve is π(uetA) = p, i.e. the
curve defined above is completely contained into the fiber Gp. Thus a vector
that is tangent to this curve is tangent to the fiber. Explicitly, given a
function f : P → R, the tangent vector to the curve A# is

A#(f(u)) =
duetA

dt

∣∣∣
t=0
.
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In this way, given A then in each point of the principal bundle P is has
been built a vector contained into the vertical subspace. The vectorial field
A# is defined as the fundamental vector field generated from A, and the
map A → A# results to be an isomorphism between the Lie algebra of the
structure group and VuP . Note that π∗A# = 0 and that the operation #
preserves the Lie algebra structure, i.e. [A#, B#] = [A,B]#. The horizontal
subspace is then defined as the complement of the vertical subspace. A
connection on the bundle P is then defined as the separation of the tangent
space in u in its vertical and horizontal subspace so that

• TuP = HuP ⊕ VuP

• a smooth vectorial field on P can be written as the sum of its vertical
and horizontal components

X = XV +XH , con XV ∈ VuP e XH ∈ HuP

• HugP = Rg∗HuP

In order to make concrete this abstract definition it is necessary to find a
systematic way to decompose a vector field in its vertical and horizontal
subspace. The mathematical tool projecting a generic vectorial field on its
vertical component must be a 1-form, since it has to act on vectorial fields,
and its values must be into the Lie algebra. The properties of the connection
1-form ω, so defined, are

• ω(A#) = A,

• R∗gω = Adg−1ω

The horizontal subspace is defined as the kernel of ω, i.e. the set of vectors
X ∈ TuP such that ω(X) = 0. The local expression of this 1-form is obtained
considering the codifferential of a section on the principal bundle

Ai = σ∗i ω ∈ g⊗ Ω1(Ui)

in order to have a 1-form uniquely defined on the fuber bundle, the local
connection must satisfy some compatibility conditions. Let X be a vector
in TpM , with p ∈ Ui ∩ Uj and σi e σj the sections on the bundle defined
respectively in Ui e Uj, then the vectors σi∗X and σj∗ are connected through
the transition function tij

σj∗X = Rtij∗(σi∗X) + (t−1
ij dtij)

# (1.3.23)
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Indeed, defining γ : [0, 1] → M , so that γ(t) ∈ Ui ∩ Uj, ∀t and γ̇(0) = X,
then

σj∗X =
d

dt
σj(γ(t))

∣∣∣
t=0

=
d

dt
σi(t)tij(t)

∣∣∣
t=0

=

=
d

dt
σi(t)tij(p) + σi(p)

d

dt
tij(t)

∣∣∣
t=0

In the following we are interested in the case of G being a group of matrices.
The first term is the result of the transport of the vector X from M to P , to
which it is applied the by right action the element tij

d

dt
σi(t)

∣∣∣
t=0
tij(p) =

∂σi(γ(t))

∂γµ(t)

∂γµ(t)

dt

∣∣∣
t=0
tij(p) = (σi∗X)tij(p) = Rtij∗(σi∗X)

The second term is

σi(p)
d

dt
tij(t)

∣∣∣
t=0

= σj(p)t
−1
ij (p)

d

dt
tij(t)

∣∣∣
t=0

In the limit t→ 0 it follows that t−1
ij (p)tij(t) ∈ TeG. The term above is then

a fundamental vector in σj(p). Applying ω to both sides of (1.3.23) it follows
that

σ∗jω(X) = t−1
ij ω(σi∗X)tij + t−1

ij dtij(X)⇒ Aj = t−1
ij Aitij + t−1

ij dtij. (1.3.24)

The curvature 2-form is defined as the covariant derivative of the connection
1-form

Ω = Dω ∈ Ω2(P )⊗ g

The derivative D acts on Lie algebra valued 1-forms β = βα⊗eα, where {eα}
is a basis in g and βα ∈ Ωr(m), then using the decomposition of a vector in
its horizontal and vertical components

Dβ(X, Y ) = (dPβα)⊗ eα(XH , YH)

This definition could be generalized to the case of r-forms acting on a generic
vector space. The connection ω is said to be flat if Ω = 0 and it satisfies the
Cartan structure equation

Ω(X, Y ) = dPω(X, Y ) + [ω(X), ω(Y )] (1.3.25)

The dimostration of this equation clarifies its meaning and proceeds step by
step considering three different cases
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• X and Y are both horizontal. By definition ω(X) = ω(Y ) = 0, so the
structure equation reduces to the definition of curvature,

• X is horizontal and Y is vertical. SinceYH = 0, then Ω(X, Y ) = 0 and
ω(X) = 0. Only dPω(X, Y ) = 0 is left to be demostrated

dPω(X, Y ) = X(ω(Y ))− Y (ω(X))− [ω(X), ω(Y )] =

= X(ω(Y ))− [ω(X), ω(Y )]
(1.3.26)

Since ω(Y ) ∈ g is constrant then the first term is null. The Lie parente-
sis of two vectorial fields is an horizontal field and then dPω(X, Y ) = 0

• X and Y are both vertical. In this case Ω(X, Y ) = 0. the external
derivative of ω is dPω(X, Y ) = −[ω(x), ω(Y )], making null the second
term of the structure equation.

These three cases demostrate the structure equation in general. The curva-
ture induces a 2-form on M

F = σ∗i Ω ∈ g⊗ Ω2(Ui)

1.4 Caracteristic classes
A k-multilinear map f : g× g× · · · × g︸ ︷︷ ︸

k times

→ R is said to be Ad G invariant if

f(Ad g V1, . . . , Ad g Vk) = f(V1, . . . , Vk) ∀g ∈ G, V1, . . . , Vk ∈ g

If all the arguments are taken equal, the function above is called an invariant
polynomial of grade k. The Chern-Weil theorem establish some important
properties of Ad G invariant function. Let P (M,G) a principal bundle, ω a
connection defined on it and Ω its curvature. A differential form of degree
2k could be defined composing f and Ω

f(Ω)(V1, . . . , V2k) =
1

2k!

∑
P

σ(P ) f(Ω(VP (1), VP (2)), . . . ,Ω(VP (2k−1), VP (2k)))

where V1, . . . , V2k ∈ TpP and the sum goes on all the possible permutations
P . There is a unique closed differential form f ∈ Ω1(M) such that

f = π∗f.

The map f → f between the algebra I(G) of the invariant polynomials on the
Lie group G and H∗(M) is an homomorphism called Weyl Homomorphism.
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The exactness of the differential form result lies on the Bianchi identityDΩ =
0 and on the linearity of the polynomial. The demonstration of df(Ω) =
Df(Ω) = 0 is done in full details in Nakahara. The cohomology class of f(Ω)
is independent of the connection ω. This class, called characteristic class
χP (f), depends only on the principal bundle and on f , thus different choices
of f give rise to different classes. In the following one type of class, the Chern
class, will be of particular interest. Let E →M a fiber bundle with fiber Ck,
with structure group GL(k,C), A and F are respectively the local form of
the connection and of the curvature. The total Chern class is the invariant
polynomial

c(F) = det

(
I +

iF
2π

)
The determinant above could be expressed as the sum of even degrees forms

c(F) = 1 + c1(F) + c2(F) + . . .

where cj(F) ∈ Ω2j(M) is the j-th Chern class. Trivially, if 2j > m with
m = dim M then cj = 0. Above all, the maximum degree of the Chern
classes is k such that

ck(F) = det

(
iF
2π

)
.

Note that all the matrix operations are intended to act on the Lie group struc-
ture. For example, take a fiber bundle (E, π,M,C2, SU(2)), with dimM = 4.
The curvature F of a certain connection ω

F =
i

2
Fασα, with Fα =

1

2
Fαµνdxµ ∧ dxν

The total Chern class is

c(F) = det

(
1 + 1

4π
F3 1

4π
(F1 − iF2)

1
4π

(F1 + iF2) 1− 1
4π
F3

)
=

= 1−
(

1

4π

)2

(F1 ∧ F1 + F2 ∧ F2 + F3 ∧ F3)

The single Chern classes explicitly are

c0(F) = 1

c1(F) = 0

c2(F) =

(
i

2π

)2∑ Fα ∧ Fα

4
= det

(
iF
2π

)
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In general it is not so easy to calculate the determinant above. Chern classes
could be calculated in general using the trace of the curvature form

c0(F) = 1

c1(F) =
i

2π
trF

c2(F) =
i

2π
[(trF)2 − trF2]

...

1.4.1 Bott-Chern connection

An interesting case of connection is the Bott-Chern connection, wich is es-
sentially the Berry phase. Let H(R) an Hamiltonian depending on some
parameter R = (R1, R2, . . . , Rn). In Berry phase the parameter is adia-
batically changing in time, here will be considered constant at least for the
moment. The parameter R will identify a point on a differential manifold M.
Since the phase of a state |n,R〉 is undetermined, we can consider the ray
represented by this state as a fiber. Indeed a ”point” is identified by a couple
of data made up of a point in the base space parameter space, R, and the
phase of the wave function that is an element of U(1). Thus, we are facing
a principal bundle P (M,U(1)). A section is determined by fixing the phase
of the wave function, and the projection is simply π(eiφ |n,R〉) = R. The
canonical local trivialization is

φ−1(|n,R〉) = (R, e)

All the other elements in a fiber could be obtained using the right action of
the group. The Berry connection is defined as

A = AµdRµ = 〈R|(d|R〉)

This is effectively the local form of a connection on the principal bundle,
since it satisfies the equation (1.3.24). Indeed, given two charts on M, Ui and
Uj, and the sections σi(R) = |R〉i and σj(R) = |R〉j are linked by transition
function tij

|R〉j = |R〉i tij
Applying this relation to the definition of connection we obtain

Aj = j 〈R|(d|R〉j) = t−1
ij (R) i 〈R|[d|R〉i tij(R) + |R〉i dtij(R)] =

= Ai + t−1
ij (R)dtij(R)
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The local form of the curvature is

F = dA = (d 〈R|) ∧ (d |R〉) =

(
∂ 〈R|
∂Rµ

)(
∂ |R〉
∂Rν

)
dRµ ∧ dRν

The curvature enables us to interpret the result of Kubo formula for the
Integer Hall Effect. Some important implications of Bott Chern connection
are found in the theory of topological insulator and in IQHE.

1.5 Charge Polarization
The connection (1.2.13) plays an important role in the description of electrons
in solids. Indeed, solids have been pointed out as systems naturally exhibiting
Berry phase [145]. Here the space of parameters is the Brillouin zone, having
a non trivial topological structure as pointed out previously. In the case of
1-dimensional solids this is particularly simple to be viewed, since a closed
path in the first Brillouin zone is obtained making the wave vector k varying
in the whole FBZ, i.e. from −π/a to π/a. This could be achieved through
a time dependent perturbation to be included into the Shrödinger equation
through the gauge potential A(t)[

1

2m

(
p− e

c
A
)2

+ V (x)

]
Ψ = i~∂tΨ (1.5.27)

where the potential V (x) is the periodic crystal field, i.e. V (x + a) = V (x).
Here I consider a linear chain with number of cell Nc, with one atom per cell
whose position is specified by the vector R. The Bloch functions are defined
as usual

|Ψn,k〉 =
1√
Nc

eikx |un,k〉 . (1.5.28)

The periodic functions |un,k〉 satisfy the normalization

〈un,k|un,k〉 =
1

Nc

∫
u∗n,kun,k dx = 1. (1.5.29)

If the frequencies of the external perturbation are small compared with
the interlevel spacing then it’s possible to write the wave function for the
n-th level as

Ψn(t, x) = exp

[
i

(
kx− 1

~

∫ t

0

dt′ εn(t′)

)]
uk(t)(x) (1.5.30)

where it is assumed that k in the exponential is time independent, while the
periodic function uk(t)(x) depends on k(t) = k − e/c A(t) and so the energy
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eigenvalues ε(t) = ε(k(t)). A solution of the type (1.5.30) exists if the phase
γn(t) is added

Ψn(t, x) = exp

[
i

(
γn(t) + kx− 1

~

∫ t

0

dt′ εn(t′)

)]
uk(t)(x). (1.5.31)

Following [145] the normalization of the periodic function unk(x) is

2π

a

∫ a

0

|unk(x)|2dx = 1. (1.5.32)

The explicit expression for the adiabatic phase, linking it to derivatives of
the periodic function |unk〉, is found introducing the wave function (1.5.31)
in the Schrödinger equation (1.5.27)

γ̇n(t) =
2π

a

∫ a

0

〈
unk(t)

∣∣ i∂t ∣∣unk(t)

〉
dx⇒ γn =

2π

a

∫ π/a

−π/a
〈unk| i∂k |unk〉 dk

(1.5.33)
where it has been assumed that the potential makes k varying over the whole
Brillouin zone. This nothing but the connection (1.2.13), and this shows its
connection with the Berry phase for electrons in solids under a time depen-
dent perturbation. Introducing the Wannier functions

an(x−ma) =
( a

2π

)−1/2 1√
Nc

∫
e−ik(x−ma) |un,k〉 dk (1.5.34)

the origin of the name charge polarization is clear2

Pρ,n =
2π

a

∫ π/a

−π/a
〈unk| i∂k |unk〉 dk =

2π

a

∫ ∞
−∞

x|an(x)|2dx (1.5.35)

where an(x) is the Wannier function for the n-th level. The total charge
polarization is obtained trivially summing on all the occupied bands

Pρ,n =
1

2π

∑
n

∫ π

−π
〈unk| i∂k |unk〉 dk (1.5.36)

The charge polarization (1.5.35) is not gauge independent. Indeed, consider-
ing a gauge transformation un,k(x)→ eif(k)unk(x), then the charge polariza-
tion takes a term dependent of the gauge function f(k)

Pρ,n → Pρ,n +
2π

a
[f(π)− f(−π)] (1.5.37)

2The symmetry properties of the Wannier functions have been used to derive the fol-
lowing equation. In particular the translation invariance by lattice vectors gives Nc equal
contributions. This is the reason why only the contribution at m = 0 appears.
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the last term must be an integer, since the wave function must be uniquely
defined everywhere. This expresses the fact that charge polarization is de-
fined up to multiple integers of the lattice constant and, thus, that it is not a
physically meaningful quantity in itself. On the contrary variations of the po-
larization are gauge independent, and thus well defined quantities as it will
be analyzed below. On a general ground (1.5.35) could acquire every real
value. The symmetry of the system, if present, makes it discrete. Indeed, if
the system has inversion symmetry the value of the Berry phase could be 0 or
π. This happens because the Wannier functions can have definite symmetry
properties around 0 (i.e. a(x) = ±a(−x)) or a/2, giving the two possible
values of the polarization.

1.6 Topological Insulators
It has been shown in the previous section that magnetic field is necessary in
order to have a non null Chern number, i.e. a non trivial insulator. This also
implies that a time reversal invariant Hamiltonian H(~k), i.e. an Hamiltonian
respecting the identity

H(−k) = ΘH(k)Θ−1 (1.6.38)

(where Θ = eiπ
Sy
~ K is the time reversal operator) is always characterized by

a null Chern number. Indeed, considering the definition of the first Chern
number and (1.2.21)

c1 =
1

2π

∫
FBZ

d~k F(~k) (1.6.39)

it follows that F(−~k) = −F(~k) in the case of a time reversal invariant
Hamiltonian. At a first glance this would imply that all insulating systems
respecting (1.6.38) must be topologically trivial. However a deeper analysis
of topological invariants of the principle bundle P (T 2, U(1)) describing elec-
trons in solids shows that this is not true, since the Chern numbers are only
a subset of all the possible invariants characterizing the manifold. As it will
be show in the following, a different kind of invariant, relying on Kramers
degeneracy, exists that characterizes a different class of insulators, the topo-
logical insulators. In the next subsection the 1D case will be analyzed and
the expression for this invariant will be worked out. Then, it will be shown
how this kind of invariant could be defined for higher dimensional system,
and how it could be calculated in the 3D case starting from the knowledge
of some characteristics of the bulk bands in a symmetric case.
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1.6.1 1D Topological Insulators

In this subsection it will be analyzed in full details the existence of non trivial
1D insulators. In this case, the FBZ is a circle, and the two points k = 0, π
are such that H(−k) = H(k) and thus are called time reversal invariant
points (TRIPs). In these points Kramers theorem ensures that energy bands
must have a double degeneracy while, if there are not other symmetries, they
are non-degenerate outside the TRIPs as shown in fig. 1.2. The 2N energy

Figure 1.2: Sketcth of the energy bands of a linear chain with time reversal
symmetry. Bands are organized in couples, with degeneracy at the TRIPs.

bands of the linear chain are grouped in N pairs of bands that are degenerate
in k = 0, π and whose wave functions are connected by time reversal∣∣uI−k,α〉 = −eiχkαΘ

∣∣uIIk,α〉∣∣uII−k,α〉 = eiχ−kαΘ
∣∣uIk,α〉 (1.6.40)

For each element of this pair a connection (1.2.13) can be defined

Ai(k) = i
∑
α

〈
uikα
∣∣∇k

∣∣uikα〉 . (1.6.41)

The sum of the connection of every band having the same label Ior II makes
us the partial polarizations

P i =
1

2π

∫ π

−π
dk Ai(k) =

1

2π

∫ π

0

dk [Ai(k) +Ai(−k)]. (1.6.42)

The sum of the two partial polarizations in nothing but the total charge
polarization (1.5.36) Pρ = P I +P II and it vanishes when time reversal sym-
metry holds, as discussed previously. However, starting from P I and P II
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another polarization could be defined, the time reversal polarization, that is
the difference of the two partial polarization

Pθ = P I − P II . (1.6.43)

The physical meaning of this quantity could be analyzed introducing Wannier
functions, as done for Pρ in the previous section. As the charge polarization
expresses the mean position of the electron in the unit cell, Pθ then expresses
the difference between the mean value of the position of electrons in the two
bands related by time reversal. In the following subsection a tight binding
model having a non trivial topological phase will be analyzed, and the mean-
ing of Pθ described here will be seen. All these definitions seem to depend
on the choice of the label I and II, but it’s possible to cast the time reversal
polarization in a way that it is manifestly U(2N) invariant. The term Ai(−k)
in (1.6.42) could be written as

AI(−k) = −i
∑
α

〈
uI−kα

∣∣∇k

∣∣uI−kα〉 =

= −i
∑
α

〈
uIIk,α

∣∣Θe−iχkα∇ke
iχkαΘ

∣∣uIIk,α〉 =

= −
∑
α

∇kχkα − i
∑
α

〈
uIIk,α

∣∣Θ∇kΘ
∣∣uIIk,α〉 =

= AII(k)−
∑
α

∇kχkα

(1.6.44)

and the same relation could be written for AII(−k). The partial polarization
then is

PI =
1

2π

[∫ π

0

dk A(k) + i log
Pf(w(π))

Pf(w(0))

]
(1.6.45)

The matrix wαβ is
wαβ = 〈u−kα|Θ |ukβ〉 (1.6.46)

written explicitly the matrix wαβ is block-diagonal

w =


. . . 0 0 0 · · ·
· · · wα 0 0 · · ·
· · · 0 wβ 0 · · ·
· · · 0 0 wγ · · ·
· · · 0 0 0

. . .

 (1.6.47)

where each one of the blocks wα us built using the relations (1.6.40)

wα =

(
0 eiχkα

−eiχ−kα 0

)
(1.6.48)
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The important feature of the matrix w relies on its symmetry properties,
the matrix being antisymmetric in the TRIPs and thus it makes sense the
Pfaffian in (1.6.45). The time reversal polarization could be conveniently re-
expressed using the charge polarization

Pθ = P I − P II = 2P I − Pρ. (1.6.49)

written explicitly this definition is

Pθ =
1

2π

[
2

∫ π

0

dk A(k) + 2i log
Pf[w(π)]

Pf[w(0)]
−
∫ π

−π
dk A(k)

]
=

=
1

2π

[∫ π

0

dk A(k)−
∫ 0

−π
dk A(k) + 2i log

Pf[w(π)]

Pf[w(0)]

] (1.6.50)

As done in (1.6.44), the second term of the previous equation could be ex-
pressed using the phase χkα∫ 0

−π
dk A(k) =

∫ π

0

A(−k) =

∫ π

0

A(k)−
∑
α

∫ π

0

dk(∇kχkα +∇χ−kα)

(1.6.51)
Thus the time reversal polarization is

Pθ =
1

2π

[∑
α

∫ π

0

dk(∇kχkα +∇kχ−kα) + 2i log
Pf[w(π)]

Pf[w(0)]

]
(1.6.52)

By virtue of (1.6.48) the quantity w†∇kw is

w†∇kw =

(
0 −e−iχ−kα

e−iχkα 0

)(
0 i∇kχk,αe

iχkα

−i∇kχ−kαe
iχ−kα 0

)
=

=

(
i∇kχkα 0

0 i∇kχ−kα

)
(1.6.53)

Thus the time reversal polarization is

Pθ =
1

2πi

[∑
α

∫ π

0

dk tr(w†∇kw)− 2 log
Pf[w(π)]

Pf[w(0)]

]
(1.6.54)

Moreover the determinant of w is

det w = ei
P
α χkα+χ−kα (1.6.55)
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thus trw†∇kw = ∇k log detw(k). With this last consideration the time re-
versal polarization is expressed as the product of the ratios of the Pfaffian
and the square root of the determinant of the matrix w in the TRIPs

Pθ =
1

iπ
log

√
detw(π)

Pf[w(π)]

Pf[w(0)]√
detw(0)

(1.6.56)

This makes clear that Pθ is an integer, since for definition detw = Pf[w]2,
and that it is defined only modulus 2 due to the ambiguity of the logarithm.
The brach of

√
detw could be defined in the whole FBZ, since there is not a

topological obstruction in defining continuously the wave function everywhere
in the sense specified in the previous section. An odd value of Pθ arises from
the Pfaffian being not in the same brach of

√
detw in 0 or π. Using these

properties it is possible to express time reversal polarization in an alternative
way, commonly found in literature [37]

(−1)Pθ =

√
detw(π)

Pf[w(π)]

√
detw(0)

Pf[w(0)]
(1.6.57)

From equations (1.6.56) and (1.6.57) it is clear that Pθ is U(2N) invariant.
Indeed, since Pf[XAXT ] = det[X]Pf[A], the ratio between the Pfaffian and
the square root of a matrix is invariant under a unitary transformation up
to a sign. The product of two of such ratios is then totally invariant. The
transformation matrix is supposed to be functions of k, and thus a change of
the sign of the determinant is possible in principle. Since the transformation
is supposed to be smooth as a function of k, this change is not possible since
SU(2N) is disconnected from its complement.
However time reversal polarization is still gauge dependent, since the sign of
the Pfaffian can be changed in one of the TRIPs. Indeed, the Pf[w(Γi)] is
the product of the phases included in the definition of time reversal, due to
the simple structure of (1.6.47)

Pf[w(Γi)] = eiχΓi,αeiχΓi,βeiχΓi,γ . . . (1.6.58)

A change in the sign of the Pfaffian can then arise if one (or any odd number)
of the phases is shifted by π due to a phase choice

|uα,k〉 → eifα(k) |uα,k〉 (1.6.59)

If the function fα(k) is such that fα(Γi) = π then the charge polarization
change sign. Thus, as in the case of charge polarization, only changes of
Pθ are well defined. Even and odd values of the time reversal polarization
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are topologically distinct in the sense that a smooth perturbation in the
Hamiltonian preserving time reversal symmetry cannot change the value of
Pθ. However, a perturbation having only a numerable set of points where
time reversal symmetry holds, and not in between, can make Pθ change its
value. The perturbation is taken periodic, with period T i.e. such that
H(t, k) = H(t + T, k). Time reversal symmetry (1.6.38) with the additional
dependence of the Hamiltonian the a parameter t becomes

H(−t,−k) = ΘH(t, k)Θ−1. (1.6.60)

The space of parameters (t, k) is again a torus depicted in fig.1.3. As found
for the dependence on k, two values of the parameter exists t = 0 and t = T/2
such that the Hamiltonian is time reversal invariant, doubling the number
of TRIPs. The important feature of topological insulators is the existence of
boundary states protected by time reversal symmetry. In both normal and
topological insulators midgap states corresponding to wave functions located
at the boundary could be present. The difference between a trivial insulator
and a topological insulator could be seen in fig. 1.4. At the TRIPs Kramers

Figure 1.3: Space of parameters (t,k), for the Hamiltonian H(k, t). Due
to periodic boundary conditions the edges are identified, giving a torus as in
the two dimensional case.

theorem ensures a double degeneracy, and this feature is common to both
trivial and topological insulators. The difference between these two classes
of materials comes in the behavior of midgap states when passing from one
TRIP to another. In an ordinary insulars the wave functions making a pair in
the TRIP Λa make again a pair in Λb. In a topological insulator, instead, the
partners in Λa switch in Λb. This could be equivalently stated saying that in
a normal insulator the midgap states cross the fermi level an even number of
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times, while in a topological insulators they cross it an odd number of times.
Note that in a normal insulator the midgap states could be continuously
deformed pushing them in the conduction or valence band. In the case of
a topological insulator this cannot be done, making the states topologically
protected. In the next section a one dimensional model will be studied using
tight binding method. This simple model contains all the important features
highlighted in this section such as the switching of partners between TRIPs.

Figure 1.4: Behavior of boundary states in (a) a topological insulator and
(b) a normal insulator.

1.6.1.1 An example of 1D topological insulator.

Here a model proposed in [37] is analyzed. The system is made up of a linear
chain, in which in addition to the hopping term H0

H0 = t0
∑
i,α

c†i,αci+1,α + c†i+1,αci,α (1.6.61)

a staggered magnetic field Vh and a dimerization term Vt is considered

Vh = hst
∑
i,αβ

(−1)iσzαβc
†
i,αciβ

Vt = ∆tst
∑
i,α

(−1)i(c†i,αci+1,α + c†i+1,αci,α)
(1.6.62)

These two terms are necessary in order to obtain a topologically non trivial
insulator. Indeed, it is possible to obtain an periodic Hamiltonian satisfying
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the time reversal constraint (1.6.38) with a suitable choice of the dependence
of the parameters hst and ∆tst

(∆tst, hst) =

(
∆t0st cos 2π

t

T
, h0

st sin 2π
t

T

)
(1.6.63)

Spin orbit is added in order to analyze what happens when spin degeneracy
is lifted

Vso =
∑
i,α

~e · ~σαβ(c†i,αci+1,α − c†i+1,αci,α) (1.6.64)

The Hamiltonian is then periodic with period T and it is time reversal in-
variant at t = T/2 and t = T . In these two values of the adiabatic parameter
t the staggered magnetic field is not present, and only the dimerization term
survives. Kramer’s theorem ensures the existence of a double degeneracy in
these two TRIPs as seen in 1.5(a). In contrast, at t = T/4 and 3T/4 only
magnetic field survives, putting the system in an ordered Neel-like state. The
dimerization term is responsible for the sliding effect represented in the left
panel of fig.1.3. In 1.5(b) the spin orbit term has been suppressed, and the
spin degeneracy arising in this way makes the bands linked through time
reversal overlap for each value of t. Thus it is clear by comparison of 1.5(a)
and 1.5(b) that spin-orbit interaction thus not lift the degeneracy at the
TRIPs as any other interaction preserving time reversal. As it can be seen,

(a) (b)

Figure 1.5: Levels’ dependence on the parameter t: a) with dimerization,
magnetic field and spin orbit, b) the same without spin orbit. The system
represented is made up of a linear chain with 12 sites, and the parameters
are chosen as in [37] with ∆t0st/tst = 0.4, h0

st/tst = 0.8 and ~e/tst = 0.1ŷ.

at t = T/2 there are 4 levels crossing in the middle of the gap. These levels
correspond to boundary states, i.e. states localized at the end of the chain
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if open boundary conditions are applied. Since the gap closes, the system
at t = T is different from the one at t = 0, i.e. it will be in an excited
state. It has been shown in [37] that the state of the system at t = 2T will
be in the same state as in t = 0. This is a consequence of the Z2 nature of
the topological invariant associated to the non trivial structure of the energy
levels.

Figure 1.6: Centers of the Wannier functions for the 1D system depicted
for different values of the parameter t. In a non trivial insulator the state of
the system at t = 0 is different for the one at t = T , accumulating electrons
at the end of the chain.

1.6.2 2D Topological Insulators

In this section it will be considered the case of a 2D solid, respecting time
reversal symmetry i.e. H(−kx,−ky) = ΘH(kx, ky)Θ

−1 in a similar way as
(1.6.60). It follows that all the consideration done in the end of section 1.6.1
apply to this case too. The four TRIPs defined in the FBZ as shown in figure
1.3 are identified through the vectors Γn1n2

Γn1n2 =
1

2
(n1b1 + n2b2) (1.6.65)

where ba are the two vectors making a base in the reciprocal lattice. Given
an edge of the FBZ orthogonal to a reciprocal lattice vectorG, the four Γn1n2

are organized in two couples Λa with a = 1, 2. The two Γ’s in a couple Λa

are the ones satisfying Γa1 − Γa2 = G/2 in direction perpendicular to G. In
each TRIP the matrix (1.6.47) is antisymmetric and then the ratio δi is then
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defined

δi =

√
det(Γi)

Pf[Γi]
(1.6.66)

As discussed before, Pθ in (1.6.57) depends on the gauge but the product of
all the four δi it is independent on the gauge and thus physically significative

(−1)ν0 =
∏
ni=0,1

δn1n2 (1.6.67)

The integer ν0 then distinguish the two topologically inequivalent 2D insula-
tors. Commonly 2D topological insulators are known as Quantum Spin Hall
Insulators (QSHI), in the following subsection the boundary states and the
experimental realization of this kind of systems is briefly reviewed.

1.6.3 Quantum Spin Hall Effect

The QSHI exhibits an odd number of spin polarized edge states, and thus it
is of central importance in the development of spintronics. The first candi-
date to be an intrinsic QSHI was graphene. Spin-orbit is, indeed, a possible
interaction term compatible with all the symmetries of the system and ca-
pable to open a gap at the Dirac points. Unfortunately this gap is of the
order of 10−3meV, and thus experimentally useless. After graphene, quan-
tum wells based on type III semiconductors have been proposed as QSHI
and experimentally realized. In particular HgTe-CdTe wells have a quan-
tum transition as a function of the thickness d of the well material HgTe.
When d is bigger than a threshold value dc the bands of the material in-
vert their order, and surface states bands arise in the gap of the material.
Indeed, the barrier material Cd-Te has a normal ordering of the bands, hav-
ing the s-type band Γ6 above the p-type band Γ8, as shown in fig. 1.7.
The description of the well in the kṗ scheme then involves the 6 bands
(|Γ6, 1/2〉 , |Γ6,−1/2〉 , |Γ8, 3/2〉 , |Γ8, 1/2〉 , |Γ8,−1/2〉 , |Γ8,−3/2〉). These bands
combine to make the spin up and spin down states of three subbands for the
quantum well named E1, H1 and L1. The last one is separated from the
others, and thus can be neglected leading to a 4 subbands model. At the
Γ point the |Γ6,±1/2〉 and |Γ8,±1/2〉 mix to make the E1 bands, while
the |Γ8,±3/2〉 make the H1 bands. Away from the Γ point time reversal
and inversion symmetry determine the Hamiltonian, in the spirit of the k · p
approximation and an additional constraint comes from the two subbands
having opposite parities thus leading a paring done through an odd function
of k. The effective Hamiltonian in the 4 subbands model at the lowest order
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Figure 1.7: Band structure at the Γ point of CdTe (on the right) and HgTe
(on the left)

finally can be written as

Heff (~k) =

(
H(~k) 0

0 H∗(−~k)

)
(1.6.68)

where each 2× 2 block is

H(~k) = ε(~k)I + di(~k)σi (1.6.69)

Due to the symmetry consideration made above the functions ε(~k) and d3(~k)
are even function of k, and thus at the lowest order are

ε(~k) = C −D(k2
x + k2

y), d3(~k) = M −B(k2
x + k2

y) (1.6.70)

while the functions d1(~k) and d2(~k) are odd functions of k, approximated to
the linear order for the long wavelength limit

d1 + id2 = A(kx + iky). (1.6.71)

In all the formulas above the parameters A,B,C,D,M are expansion coef-
ficients that can be determined through experimental data or first principle
calculations. The mass termM plays the role of order parameter in the quan-
tum transition from the trivial insulator and a topological insulator having



CHAPTER 1. INTRODUCTION: TOPOLOGICAL INSULATORS 29

inverted gap. When the thickness of the well is below the critical value dc
the subbands are in the same order of CdTe, and thus the gap is positive
M > 0. When d > dc, on the other hand, the subbands invert their order
following the band structure of the well material HgTe, and the gap becomes
negative M < 0. The threshold value is dc ≈ 64 Å, as shown in fig. 1.8

Figure 1.8: Energy of the subbands E1 and H1 as a function of the well-
thickness d.

1.6.4 3D Topological Insulators

As shown in the previous sections, in 2D systems the existence of 4 TRIPs
leads to the definition of a unique topological invariant characterizing non
trivial phase of an insulator. In a 3D material there are 8 TRIPs Γi, analogous
of (1.6.65)

Γi=(n1,n2,n3) =
1

2
(n1b1 + n2b2 + n3b3), (1.6.72)

where bi are basis vectors of the reciprocal lattice. In a 3D material 4 Z2

topological invariants (ν0; ν1, ν2, ν3) can be defined. The invariant ν0 is the
product of all the 8 δi in (1.6.66)

(−1)ν0 =
8∏
i=1

δi. (1.6.73)

The other three invariants are the products of the δi of TRIPs living in the
same plane

(−1)νk =
∏

nk=1,nj 6=k=0

δi=(n1,n2,n3) (1.6.74)
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Figure 1.9: Fermi circles in the surface Brillouin zone for a) a weak topolog-
ical insulator and b) a strong topological insulator. c) In the simplest strong
topological insulator the Fermi circle encloses a single Dirac point.

The invariant ν0 distinguishes material having an odd or an even number of
Dirac points where δi is negative. Materials having an even number of Dirac
points The physical interpretation of these quantities can be given in terms
of bulk-boundary correspondence. The surface Brillouin zone has 4 TRIPs,
and the topological invariants describe the way in which these points are
connected through surface states. A non-null topological invariant means
that the TRIPs are connected in a non trivial way, i.e. the Fermi surface
intersects a line connecting two given Γa and Γb intersects an odd number of
times. In the case of weakly coupled 2D QSHI stacked around the y direction,
two possibilities can occur as depicted in fig. 1.9:

• the Fermi surface contains an even number of TRIPs as in fig. 1.9
a). The invariant ν0 is null and surface states can be localized through
disorder. This state is called weak topological insulators,

• the Fermi surface contains an odd number of them (1 being the simplest
case) as in fig. 1.9 b). The material in this case is called strong TI, since
surface states are topologically protected by time-reversal symmetry,
avoiding localizations phenomena.

1.6.5 Effective Theory for boundary states in 3D Topo-
logical Insulators

The prototype of 3D TI with single Dirac point is Bi2Se3: this material was
predicted to be have Dirac-like surface states [146], and it has been confirmed
experimentally [141]. Crystal structure of this material is represented in fig.



CHAPTER 1. INTRODUCTION: TOPOLOGICAL INSULATORS 31

1.10. The material consists of 5 atom layers that are strongly coupled, mak-
ing the so called quintuple layer. The coupling between two quintuple layers
is much wakes, predominantly of the Van der Waals type. In fig. 1.11 a

Figure 1.10: Unit cell of Bi2Se3.

scheme of the evolution of the atomic orbitals into electronic bands of Bi2Se3

is reported. Regions labeled with I, II and III corresponds to the introduction
of the chemical bonding, crystal field and spin orbit interaction (SO) respec-
tively. In the last stage it is seen that SO inverts the bands coming from pz
orbitals of Se and Bi (having opposite parity) at the Γ point. This produces
the non trivial behavior of the material, with the birth of surface states. The
effective Hamiltonian for these states can be calculated in k · p approxima-
tion, using the crystal symmetries. From this brief exposition, the minimal
model that can be used is a 4 bands model, considering the spin and the layer
degree of freedom, and thus the basis ΨT = (|p1z ↑〉 , |p2z ↑〉 , |p1z ↓〉 , |p2z ↓〉)
will be used in the following. The symmetries of the crystal are

• time reversal symmetry T

T = iσy ⊗ IK (1.6.75)

where K is the complex conjugation and σi are the Pauli matrices in
the spin space. In the following the matrices acting in the orbital space
will be denoted with τi.

• Inversion symmetry
I = I⊗ τ3 (1.6.76)
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• 3-fold rotational symmetry around the z-axis

C3 = exp
(
i
π

3
σz ⊗ I

)
(1.6.77)

The general shape of the Hamiltonian H(k) is

H(k) =

(
H11(k) H12(k)
H21(k) H22(k)

)
(1.6.78)

where each block Hij(k) is a 2 × 2 block such that Hii(k) = H†ii(k) and
Hij(k) = Hji(k)† (i, j = 1, 2) to ensure hermicity. The commutation of the
Hamiltonian with time reversal symmetry T H(k)T = H(−k) implies that

H11(−k) = H∗22(k)

H12(−k) = −H∗21(k)
(1.6.79)

Imposing the invariance of the Hamiltonian for the inversion operation IH(k)I† =
H(−k) implies that for each block τ3Hij(k)τ3 = Hij(−k), thus quadratic
functions of the components ki of the wave vector are multiply the identity
matrix or σ3, while linear functions of ki will multiply σx and σy. The last
symmetry to be imposed is the rotational symmetry C3H(k)C†3 = H(C3k)
that imposes the following relations between the blocks of the Hamiltonian
H(k)

Hii(k) = Hii(C3k)

ei
2π
3 Hij(k) = Hij(C3k).

(1.6.80)

In order to have an Hamiltonian invariant for the symmetry C3 the diagonal
blocks have to contain only functions that are invariant for rotations around
the z-axis, i.e. kz and quadratic functions of the type k2

x+k2
y and k2

z , while the
off-diagonal blocks must be of the type σiki = σxkx + σyky. Considering the
relations (1.6.79) the final form of the most general Hamiltonian respecting
the symmetries is

H(k) = ε(k)I4×4 +


M(k) A1kz 0 k−
A1kz −M(k) k− 0

0 k+ M(k) −A1kz
k+ 0 −A1kz −M(k)

 (1.6.81)

where ε(k) = C +D1k
2
z +D2(k2

x + k2
y) and M(k) = M −B1k

2
z −B2(k2

x + k2
y).

A simplified version of this model will be considered in the following: the
sum of the diagonal quadratic terms

ε(k)I4×4 +M(k)I2×2 ⊗ σz
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will be approximated withM = M + C1k
2
z + C2

(
k2
x + k2

y

)
.

H0(k) =


M(k) A1kz 0 k−
A1kz −M(k) k− 0

0 k+ M(k) −A1kz
k+ 0 −A1kz −M(k)

 (1.6.82)

In addition it will be considered the case C2 = 0, in order to have a analyt-
ically solvable model. In Chapter 2 the choice M,C1 = 0, in order to have
a non-trivial phase, while in Chapter 3 an additional simplification will be
introduced: the dependence of the diagonal terms on k will be neglected,
and M ≡ ∆ i.e. the bulk gap of the material. This last simplification al-
lows the analytical treatment done in Chapter 3 of curved boundaries, the
results exposed are consistent with calculations done later results citazione
dei giapponesi.

Figure 1.11: Schematic diagram of the evolution of the orbitals of Bi and
Se into the conduction and valence band of Bi2Se3 at the Γ point.



Chapter 2

Topological defects in graphene
and 3D Topological Insulators

Our hopes and expectations,
black holes and revelations.

Muse, "Starlight"

In the previous chapter it has been shown that the surface states of a 3D
topological insulator obey Dirac equation in 2+1 dimensions. Similarly, elec-
trons in graphene satisfy the same relativistic equation. This is strictly true
if the surface is clean, i.e. perfectly flat. It is clear that experimental sample
will show local deformations of the boundary, and in the case of graphene the
presence of a substrate or of flexural phonons will have the same effect. The
problem of describing relativistic particles of arbitrary spin on curved space
time has been solved during the 30’s of the last century by Weyl [139] with
the introduction of the tetrads formalism. In the next section this theory will
be reviewed following the treatment done by Weinberg. Thus, after showing
the procedure needed to write Dirac equation on a curved space time, a type
of solution for this equation will be illustrated following Stodolsky. In con-
clusion of the chapter, Green function theory will be rewieved in flat space
time since it will be used in later developments.

2.1 Dirac Spinors on curved Space Time
Given a N-dimensional space-time with general coordinates xµ endowed with
metric gµν(xη), the equivalence principle guarantees the existence at each
point xµ of a system of coordinates yα(xµ) in which the metric is the Minkowski

34
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metric ηαβ = diag(−1, 1, 1, . . .). The coefficients of the Jacobian matrix char-
acterizing the change of coordinates from the general xµ to the yα, are called
tetrads or vierbeins eαµ

eαµ =
∂yα

∂xµ
. (2.1.1)

Since the local frame yα is an inertial system the metric could be written
using transformation rules for second rank tensors

gµν(x) = ηαβe
α
µe
β
ν (2.1.2)

Tetrads have a definite tensorial character that can be identified following
their definition. A change from the general coordinates xµ to another system
xµ leads the tetrads eαµ to a new set eαµ

eαµ =
∂yα

∂xµ
=
∂xν

∂xµ
∂yα

∂xν
=
∂xν

∂xµ
eαν (2.1.3)

These quantities, thus, form four covariant vector fields by definition. Tetrads
have a definite property for change in the local frame yα. The principle of
equivalence, indeed, ensures the existence of a local inertial frame but does
not say that it is unique. Local Lorentz transformation Λβ

α(x) The local
inertial frame yα is arbitrary chosen, and the tetrads transform like vectors
under this transformation

eβµ → Λα
βe

β
µ (2.1.4)

Given a contravariant tensor field Aµ(x) it can be contracted with the tetrads
given four scalars Aα defined in the local inertial frame yα

Aα = eαµA
µ (2.1.5)

To refer the components of a covariant tensor field Aµ to the inertial frame
it’s necessary the quantities eµα, obtained lowering the α index of tetrads using
the Minkowski metric ηαβ and raising their µ index through the inverse metric
gµν . The e µ

α satisfy both completeness and orthogonality relations, i.e. they
are the inverse of the eαµ

eαµe
ν
α = δ ν

µ

eαµe
µ
β = δαβ

(2.1.6)

Similarly, the components of a tensor field defined in the inertial frame yα
could be referred to the general coordinates xµ through the tetrads and their
inverse. Tetrads show to be useful for the introduction of a covariant deriva-
tive for spinorial fields, since using these fields it is possible to define a co-
variant derivative for physical fields with half integer spin. The absence of
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spinorial representation of GL(4), indeed, implies that it is not possible to
define a connection making the derivative behaving like a tensor for general
changes of coordinates. However, the introduction of the local inertial co-
ordinates yα implies that the physical action for an half integer field must
be covariant for Lorentz transformations dependent on position. Contract-
ing the gradient with the inverse of the tetrads e µ

a ∂µ gives a scalar under
general transformation rules, but this quantity has not simple rules for local
transformations in the inertial frame Λ(xµ)

e µ
α ∂µΨ (x) −→ Λ β

α (x) e µ
β ∂µ {D (Λ (x)) Ψ (x)} =

= Λ β
α (x) e µ

β {D (Λ (x)) ∂µΨ (x) + [∂µD (Λ (x))] Ψ (x)}
(2.1.7)

where D(Λ) is the representation of Lorentz transformations followed by the
field Ψ. A covariant derivative ∇µ must be introduced, then, so that its rule
of transformation is

∇µΨ (x) −→ Λ α
µ (x)D (Λ (x)) e µ

α ∇µΨ (x) (2.1.8)

where for definition are introduced the connection coefficients Γµ

∇µ = ∂µ + Γµ (2.1.9)

Transformation rule (2.1.8) implies that the connection coefficients must
transform in a non-tensorial way

Γµ (x) −→ D (Λ (x)) Γµ (x)D−1 (Λ (x))−
[
∂

∂xµ
D (Λ (x))

]
D−1 (Λ (x)) .

(2.1.10)
The explicit shape of the connection Γµ is determined starting from an in-
finitesimal Lorentz transformation

Λα
β (x) = δαβ + ωαβ (x) (2.1.11)

where the quantities ωαβ (x) are antisymmetric

ωαβ (x) = −ωβα (x) (2.1.12)

In general the representation D (Λ (x)) for such an infinitesimal Lorentz
transformation is

D (1 + ω (x)) = I +
1

2
ωαβ (x) Σαβ (2.1.13)

here the matrices Σαβ are the generators of the spinorial representation of
the Lorentz group, that can be written as commutators of the γα matrices

Σαβ =
i

4
[γα, γβ]. (2.1.14)
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These generators satisfy the well known algebra

[Σαβ,Σγδ] = ηγβΣαδ − ηγαΣβδ + ηδβΣγα − ηδαΣγβ. (2.1.15)

With D(Λ) given in (2.1.13) the transformation rule (2.1.10) becomes

Γµ(x) −→ Γµ(x) +
1

2
ωαβ(x)[Σαβ,Γµ(x)]− 1

2
Σαβ

∂

∂xµ
ωαβ(x) (2.1.16)

Considering that the tetrads transform like vectors for Lorentz transforma-
tion

eα µ(x) −→ eα µ + ωαβe
β
µ. (2.1.17)

and using the relation δµ ν = e µ
α eα ν then it follow that

eα ν∇µe
βν −→eα ν∇µe

βν + ωαγ(x)eγ ν∇µe
βν

+ ωβ γe
α
ν∇µe

γν +∇µω
αβ(x)

(2.1.18)

multiplying the above equation with −1
2
Σαβ and considering (2.1.15) and

(2.1.16) finally the explicit form of the connection Γµ is obtained

Γµ(x) =
i

2
Σαβe

α
ν∇µe

βν =
i

2
Γα β

µ Σαβ. (2.1.19)

Now it is possible to write the action for a tensorial field

S =

∫
dn+1xdet e

{
1

2
i
[
Ψγαe µ

α ∇µΨ− e µ
α ∇µΨγαΨ

]
−mΨΨ

}
=

∫
dn+1xdet e

{
1

2
i
[
Ψγ̃µ∇µΨ−∇µΨγ̃µΨ

]
−mΨΨ

} (2.1.20)

the matrices γ̃µ = γβe µ
β have been defined and they satisfy the algebra{

γ̃µ, γ̃ν
}

= gµν . (2.1.21)

Finally, Dirac equation on curved space time is obtained by a variation of
(2.1.20) with respect to Ψ

− iγµ(∂µ + Γµ)Ψ +mΨ = 0 (2.1.22)
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2.1.1 Stodolski phase

In the following chapters equation (2.1.22) will be solved in some cases where
the spin connection Γµ is either null or can be readsorbed on the wave function
through a suitable exponential, leaving as only effect of non trivial structure
of space time the rotation of Dirac matrices

γαe µ
α ∂µΨ = 0 (2.1.23)

This is in general a system of non linear partial differential equations of
the fourth degree. Thus the solution of (2.1.23) is non trivial, and it could
be usually achieved using perturbative methods i.e. in the limit of small
curvature. This kind of procedure could be performed if the curvature tensor
is a smooth tensorial field but in some cases, like topological defects, this
assumption fails. A non perturbative approach to the solution of (2.1.23)
was proposed by Stodolski [123] and it really based on the nature of tetrads.
Let’s start from a spinless particle on flat space time, whose wave functions
will be a plane wave eikαxα . This could be interpreted as the exponential of
the line integral ∫

dxαpα (2.1.24)

where in the above integral the components of the 4-momentum pα are con-
stant. It follows that (4.3.29) is the integral of an exact differential form,
and thus it is not necessary to specify the path of integration. Following the
spirit that has has led to the introduction of spic connection, on curved space
time it could be assumed that (4.3.29) holds in the local inertial frame, and
its translation to the generalized coordinates xµ is achieved through tetrads∫

dxµeαµpα (2.1.25)

here, in contrast to (4.3.29) the coefficients of the differential form pµ de-
pends on position, and in general they will not make an exact differential
form. Thus, the path of integration should be defined when (2.1.25) is in-
troduced. The most intuitive choice of the path is a gedesics arc, i. e. the
classical path followed by the particle on curved space time. This is clearly
an approximation, as it could be understood from the very basics of quantum
mechanics. This is the limit of the method introduced by Stodolski. How-
ever, there are cases such as the topological defects, in which the differential
form pµ is exact, and then all these difficulties disapper giving a clean solu-
tion to relativistic equations on curved space time. In the case of a spinor
the general solution of (2.1.23) is

Ψ = Ψ0 exp

∫
dxµeαµpα (2.1.26)
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where Ψ0 is a constant spinor, that is a solution of Dirac equation on flat
space time in k space.

2.2 Topological Defects and their Geometrical
Description

In the following chapters topological defects will be analyzed in both topo-
logical insulators and and graphene. Topological line defects are created
through the Volterra process: given a three dimensional solid a wedge is cut
with amplitude Ω, and the free edges are glued together as shown in figure
2.1(a). If the edges match perfectly the crystal structure is locally recon-
structed, and this happens if the Ω is a multiple of the angle characterizing
the symmetry of the crystal. For example, in the case of a square lattice
Ω is a multiple of π/2 as shown in fig. 2.1(b) where they are depicted the
defects for Ω = π/2, obtained removing a wedge of amplitude π/2 and the
one with Ω = −π/2 where the wedge with the same is introduced into the
lattice. The crystal structure is altered only along the singular line L in fig.

(a)

(b)

Figure 2.1: a)Volterra process creating a topological line defect. b) Discli-
nations for the square lattice with Ω = π/2 and Ω = −π/2.
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2.1(a), in general defined as the line passing through the vertex of the wedge
along which the rotation of the material is done in order to glue the free sur-
faces. This defect is called wedge disclination and can be characterized with
the Frank vector, defined as the vector of modulus Ω and directed along the
line L. The creation of a disclination implies the failure of local rotational
symmetry of the lattice along the line L and another kind of defect exists,
affecting the other typical symmetry of solid i.e. the translational invariance.
These defects, the edge dislocations are obtained through a Volterra-like pro-
cess as shown in fig. 2.2(a): a wedge of amplitude Ω is cutted but it is not
totally removed, instead it is re-introduced into the material but shifted of
a vector ~b, called the Burgers vector. As for the Frank vector in the case of

(a)

(b)

Figure 2.2: Edge dislocations from Volterra process.

disclinations, the vector ~b is important in the mathematical descriptions of
dislocations. A closed path in the crystal before the creation of the disloca-
tion, as the one shown in the left of fig. 2.2(b), could be mapped into a path
in the crystal after the creation of the dislocation. Calling xn the original
positions of the atoms, the positions of the atoms when the dislocation is
introduced are xn + un where un is the displacement field created by the
defect. Then the closed path shown on the left of fig. 2.2(b) is mapped into
the path on the right of the same figure step by step. The resulting path is
not closed and the failure of closure is mathematical expressed by the Burger
vector ~b =

∑
n ∆un, where ∆un is the amount of displacement introduce by
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the defect in each step.
From a mathematical point of view Volterra process can be interpreted as
a change of coordinates from the perfect lattice coordinates xµ to the per-
turbed lattice coordinates x′µ. This simple consideration is at the base of
the geometric formulation of the physics of topological defects, i.e. the ef-
fects of geometry of disclinations and dislocations on transport properties.
In the continuum approximation a medium is modeled by Minkowski space-
time, and a regular (i.e. invertible and differentiable) change of coordinates
cannot create neither curvature nor torsion. Indeed, the curvature tensor in
term of the tetrads (2.1.1) is

R κ
µνλ = eaκ(∂µ∂ν − ∂ν∂µ)eaλ. (2.2.27)

Due to Riemann theorem the curvature tensor is null if the tetrads are reg-
ular, i.e. if xµ(xa) are only change of coordinates of the flat space. As a
consequence, the coordinates x′µ of a topological defects must be singular,
otherwise no new phenomena would be introduced with the defects in con-
trast to physical evidence[72]. In addition to curvature, a defect can also
introduce torsion, i.e. the connection coefficients Γ λ

µν are not symmetric in
the lower indexes so that the torsion tensor T λ

µν is different from zero

T λ
µν =

1

2
(Γ λ

µν − Γ λ
νµ ) =

1

2
e λ
a (∂µe

a
ν − ∂νeaµ) (2.2.28)

Torsion and curvature are linked through Cartan’s structure equations [100]

dθ̂α + ωαβ ∧ θ̂β = Tα

dωαβ + ωαγ ∧ ω
γ
β = Rα

β

(2.2.29)

hold for the torsion two-form Tα = 1
2
Tαβγ θ̂

β ∧ θ̂γ ( θ̂α is the dual basis of the
tetrads basis) and for the curvature two-form Rα

δ = 1
2
Rα

δβγ θ̂
β ∧ θ̂γ. In the

following sections the effect of the torsion introduced by the edge disclinations
and the curvature introduced by a wedge dislocation in a graphene monolayer
will be studied using Boltzmann theory.

2.3 The edge dislocation
The Volterra process used to produce an edge dislocation that has been
described above can be equivalently understood as cutting or inserting an
half line of atoms in the perfect lattice. In the case of an hexagonal lattice
a "line" of atoms can be identified with a zigzag-like arrangement of atoms,
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(a)

5

Figure 2. Structure of the glide (left) and shuffle (right) dislocations in the planar
graphene lattice.

(‘glide’ dislocations) if the singularity is placed between two atoms that form any non-vertical
side of a given hexagon. If the singularity is placed in any other location different from a lattice
point, the core of the singularity forms a ‘shuffle’ dislocation: an octagon having one atom with
a dangling bond, as shown in figure 2.

If we use the elastic field of an edge dislocation dipole as initial and boundary conditions,
there are again different stable configurations depending on how we place the dislocation
cores. An edge dislocation dipole is formed by two edge dislocations with Burgers vectors
in opposite directions. Let E(x, y) be the displacement vector corresponding to the edge
dislocation. If U= E(x − x0, y− y0 − l/2) −E(x − x0, y− y0) (l = a/

√
3 is the hexagon side

in terms of the lattice constant a), the stable stationary configuration is that of a vacancy.
If U= E(x − x0, y− y0 − l) −E(x − x0, y− y0), a dynamically stable divacancy (formed by
one octagon and two adjacent pentagons) results. An initial configuration corresponding to a
SW defect, E(x − x0 − a, y− y0) −E(x − x0, y− y0), is dynamically unstable: at zero applied
stress, the two component edge dislocations glide toward each other and annihilate. If a shear
stress is applied in the glide direction of the two edge dislocations comprising the SW defect,
these defects either continue destroying themselves or, for large enough applied stress, are split
in their two component heptagon–pentagon defects that move in opposite directions [26].

Instead of a dislocation dipole, our initial configuration may be a dislocation loop, in which
two edge dislocations with opposite Burgers vectors are displaced vertically by one hexagon
side: E(x − x0 − a, y− y0) −E(x − x0, y− y0 − l) (l = a/

√
3 is the length of the hexagon

side). In principle, the dislocation loop could evolve to an inverse SW defect (7-5-5-7). Instead,
this initial configuration evolves toward a single octagon. If we displace the edge dislocations
vertically by l/2,E(x − x0 − a, y− y0) −E(x − x0, y− y0 − l/2), the resulting dislocation loop
evolves toward a single heptagon defect [26].

3. Electronic properties

The electronic structure of the solids and most of their low energy properties are dictated by the
position of the Fermi surface, its shape and the amount of electrons available at energies close
to it. In the independent electron approximation, valid when the kinetic energy of the electrons
is much larger than their mutual interactions, electronics is well described by the band theory.
The latter gives two main outputs: geometry of the Fermi surface and density of states (DOS) at
the Fermi level [34].
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(b)

Figure 2.3: Edge dislocation appearing as a pentagon-eptagon pair in the
perfect lattice of a graphene monolayer.

as shown in fig. 2.3(a). In fig. 2.3(b) the edge dislocation then appears as a
pentagon-eptagon pair, the rest of the lattice is still made by hexagons whose
distortion is significant close to the defect. In the following the case of an
edge disclocation oriented along the negative x axis will be considered In the
continuum limit the perfect lattice coordinates xa (in the following indicated
using overlined indexes, in order to avoid confusion) is expressed through a
multivalued change of coordinates as a function of the perturbed coordinates
xµ

x1 = x1, x2 = x2 − b

2π
arctan

y

x
(2.3.30)

where the branch of arctan(y/x) is defined so to that the function has a 2π
along the negative x semi-axis, and b is the modulus of the Burger vector.
The tetrads are easily found considering that dxa = ea µdx

µ obtaining

ea µ =

(
1 0

b
2π

y
x2+y2 1− b

2π
x

x2+y2

)
(2.3.31)

The inverse of these quantities are

e µ
a =

(
1 0

− b
2π

y
x2+y2

1
1− b

2π
x

x2+y2

1
1− b

2π
x

x2+y2

)
(2.3.32)

The tetrads are regular functions, thus (2.3.31) give a null Riemann tensor
following (2.2.27). On the contrary the torsion is delta-like

T 1
12 = −bδ(~r), T 2

12 = 0 (2.3.33)

Indeed, in the case of an edge dislocation, since the Riemann tensor is null,
the second equation in (2.2.29) is trivially satisfied if ω = 0, while the first
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equation gives a δ-like torsion due to the non holonomy of the θ coordinate
in the origin

d(dθ) = δ(~r)dr ∧ dθ.
As a consequence of the geometrical features of an edge dislocation, the spin
connection can be put to zero and the perturbation arising from only the
rotation of Dirac matrices γµ = e µ

a γ
a is left

γ1 = σx

γ2 = α(x, y)(−β(x, y)σx + σy)
(2.3.34)

where the functions α(x, y) and β(x, y)

α(x, y) =
1

1− b
2π

x
x2+y2

β(x, y) =
b

2π

y

x2 + y2

(2.3.35)

The stationary part of the Dirac equation then becomes

− i [σx∂x + α(x, y)(−β(x, y)σx + σy)∂y] Ψ = EΨ (2.3.36)

As discussed in subsection 2.1.1 a solution of this equation is given in terms
of a solution of Dirac equation in flat space-time Ψ0 using was Stodolsky
phase

Ψ(~r;~r0) = Ψ0 exp i

∫ ~r

~r0

p(r)dr− iEt ≡ Ψ0 exp i

∫ ~r

~r0

pµ(x)dxµ (2.3.37)

where the differential form p(r) whose component I call pµ(r) is nothing but
the expression of the momentum pa, defined in the local inertial frame, in
the frame xµ of the manifold

ea µpa = pµ (2.3.38)

From the tetrads (2.3.31) it follows that the components of (2.3.38) are

p1(x, y) = p1 +
b

2π

y

x2 + y2
p2

p2(x, y) =

(
1− b

2π

x

x2 + y2

)
p2 .

(2.3.39)

This differential form is curl-free, therefore it is the differential of the follow-
ing potential V (~r)

V (~r) = ~p · ~r − p2 b

2π
arctan

y

x
. (2.3.40)
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Thus, in the case of an edge dislocation it is possible to write Stodolsky phase
avoiding any ambiguity on the integration path defining it. The first part
of (2.3.40) is the flat contribution. The second part is the contribution of
the defect, which is discontinuous on the branch cut line. The spinor solving
(2.3.36) is

Ψ~p,s(~r) =
1√
2

(
1

s eiθp

)
e−i(~p+

~K)· ~b
2π
θrei~p·~r . (2.3.41)

Here s = +(-) identifies particles (holes), θr is the angle of the position vector
in the (x, y) plane, ~p is the wave vector of the electron making an angle θp
with the positive x-axis and ~K is the position in the first Brillouin zone of the
Dirac cone. This shows that the circulation around the defect increases the
quantum phase by an amount ~p ·~b. The edge dislocation thus reproduces the
effects of a vortex singularity in a solid, where the flux of the vortex is fixed
by the Burgers vector and the valley wave vector ~K. This last contribution
to the total phase accumulated by the particle comes from the holonomy
generated by the edge dislocation in the lattice [92]. In the following section
the scattering of a particle on an edge dislocation will be studied, and its
contribution to resistivity will be calculated.

2.3.1 Scattering: phase shifts and cross section

Even if the dislocation is classified as a line defect, the edge dislocation acts
on the electrons like an effective Ahronov-Bohm flux located in the brach
point of the defect. The component with angular momentum m of the exact
wave function (2.3.41) is

Ψm,s(~r) =
im√

2

(
Jm+f (pr)

isJm+1+f (pr)e
iθr

)
e−i(~p+

~K)· ~b
2π
θreimθr (2.3.42)

where f is the effective flux generated by the edge dislocation and θr. In
the following only those values of the angular momentum m will be taken
such that m + f and m + f + 1 are positive. This because Bessel functions
with negative index would give normalization problem [49; 50]. The outgoing
wave function from the scattering center is in general the sum of the incoming
unperturbed part and a scattered part with amplitude f(θ)

ψout (~r) ∼
(

1
seiθk

) [
ei
~k·~r + f(θ)

eikr√
r

]
. (2.3.43)
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The scattering amplitude is related to the sum of the phase shifts of each m
component of the incoming wave function

f(θ) =

√
1

2πk

∞∑
m=−∞

(−1)m
[
e2iδm − 1

]
eimθ (2.3.44)

The phase shifts δm of the process are identified matching the incoming and
the outgoing wave function[49; 50]

δm(~p) = −π
2

(∣∣∣∣∣m+ (~p+ ~K) ·
~b

2π

∣∣∣∣∣− |m|
)

(2.3.45)

The t−matrix element describing the probability amplitude that an outgoing
circular wave, of incoming wavevector ~k at the Fermi circle, is scattered into
a plane wave of wavevector ~p ( with |~p| = k ) is

〈p|t(~k)|k〉 =
1

πR2

∫
rdr

∫
dφ f(φ)

(1 se−iθp)
(

1
seiθk

)
e−i~p·~r

eikr√
r

=

=
[
1 + e−i(θp−θk)

] 1

πR2

∫ R

0

rdr
eikr√
r
× (2.3.46)

×
∑
m

(−1)m[e2iδm − 1]×
∫ 2π

0

dφ eimφ e−ipr cos [φ−(θp−θk)] .

The factor 1/πR2 in front of the above integral comes from normalization of
wave functions, since both waves are normalized to the square root of the area
πR2. The factor

[
1 + e−i(θp−θk)

]
arises from chiral nature of wave function and

provides the cancellation of the backward scattering. The integration over φ
gives a Bessel function Jm and the integration on r can be approximated as :

1

R
eim(θp−θk)

∫ R

0

rdr
eikr√
r

2πim Jm(kr) ≈
√

2π

k
eim(θp−θk)ei

π
4 (−1)m

1

R

∫ R

0

dr .

Finally:

〈p|t(~k)|k〉 =
[
1 + e−i(θp−θk)

] √ 2

πkR2
eiπ/4

∑
m

[e2iδm − 1] eim(θp−θk) .(2.3.47)

Now the sum can be performed. Defining α as the non-integer part of the
flux: (~p+ ~K) ·~b/2π = N + α, with α < 1, we obtain ( Θ ≡ (θp − θk)):

〈p|t(~k)|k〉 =
[
1 + e−iΘ

] √ 2

πkR
eiπ/4×

×
[
−2πδ (Θ) (1− cosπα) + sinπα

e−i(N+1/2)Θ

sin Θ/2

] (2.3.48)
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Now the relaxation time of Eq.(3.3.26) can be estimated. The prefactor of
Eq.(3.3.26),

(
1− k̂ · k̂′

)
≡ 1 − cos Θ makes the first term in Eq.(2.3.48)

disappear, which is likely to be spurious anyway[49]. It also compensates the
divergency at Θ = 0 of the second term. The final result is:

1

τ
(
~kF

) = vF
4 sin2 πα

πkFR2

∫ 2π

0

dθp (1− cos Θ)
(1 + cos Θ)

sin2 Θ/2
= vF

16 sin2 πα

πkFR2
.

(2.3.49)
Hence, according to Eq.(3.3.25), the resistivity due to the elastic scattering
on the edge dislocation is:

ρ
(
~kF

)
= 32

π~
e2

sin2 πα

(kFR)2 = 32
π~
e2

sin2 π/3

(kFR)2 (2.3.50)

Prior to the averaging, this depends on the incoming direction due to the
orientation of the Burgers vector, but is independent of the modulus of k
close to the neutrality point. When multiplying this result by the number
of dislocations and after averaging over their random distribution, the full
resistivity would be proportional to the density of the defects and inversely
proportional to the density of carriers n ∝ k2

F . It is remarkable that close
to the charge neutrality point kF → 0 the calculated resistivity tends to the
finite limit e2ρ/~ ∼ 8π2b2/R2. Lattice relaxation, around the branch point,
provided it is not too strong, would contribute to the resistivity with a term
that is an higher positive power of kF [44] and would not change this result
qualitatively. The total cross section with f(φ) given by Eq. (2.3.44) is

σtot =

∫
dφ |f(φ)|2 =

4

k

∞∑
m=−∞

sin2 δm (2.3.51)

2.4 Cross Section and resistivity from
stress of an edge dislocation

A general elastic deformation ~u in solids is analyzed through the strain tensor

uij =
1

2
(∂iuj + ∂jui)

In graphene a gauge field can be built using uij, describing the interaction of
electrons with stress [7; 124; 20]

Vx =
3

4
βκ(uxx − uyy)

Vy =
3

4
βκuxy

(2.4.52)
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where κ is the bending rigidity of the graphene membrane and β is a pa-
rameter that takes into account the variation on the hopping parameter due
to the strain induced by the deformation. The deformation vector generated
from an edge dislocation can be calculated from (2.3.30)

u1 = 0

u2 =
b

2π
arctan

y

x

(2.4.53)

The potential (2.4.52) with this deformation vector is

Vx = −4βtbD
x2y

(x2 + y2)2
= −2βtbD

cos θ sin 2θ

r

Vy = −2βtbD
x(x2 − y2)

(x2 + y2)2
= −2βtbD

cos θ cos 2θ

r
,

(2.4.54)

giving a perturbation to the Hamiltonian of pristine graphene of the type

V = σiVi =
A

r

(
0 −i cos θe2iθ

i cos θe−2iθ 0

)
. (2.4.55)

This potential will be used in the following to evaluate the scattering cross
section of electrons on stress generated by the edge dislocation. To do this,
the scattered part will be evaluated as

Ψsc =

∫
d~r ′G(~r, ~r ′, ω)V (~r ′)Ψin(~r ′). (2.4.56)

In the above formula Ψin is the m-component of an unperturbed plane wave,
V is the potential (2.4.55), and G(~r, ~r ′, ω) is the Green function for the
equation (2.3.36). In the next subsection this Green function will be evalu-
ated using spectral decomposition, and in the following subsection the cross
section for the scattering on V is derived.
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2.4.1 Green function for an edge dislocation.

The Green function of an edge dislocation analyzed in term of angular mo-
mentum eigenfunctions is

G (~r, ~r ′, ω) = i

∫
pdp

∑
m,s

eim(θr−θr′ )

ω − sp
×

× 1

2

(
Jm+f (pr) J

∗
m(pr′) −is Jm+f (pr) J

∗
m+1(pr′) e−iθr′

−is Jm+1+f (pr)J
∗
m(pr′) eiθr −Jm+1+f (pr) J

∗
m+1(pr′) ei(θr−θr′ )

)
=

=
i

2π~2v2
F

∑
m

∫ ∞
−∞

EdE
eim(θr−θr′ )

ω − E
×

× 1

2

(
Jm+f (x) J∗m(x′) −is Jm+f (x) J∗m+1(x′) e−iθr′

−is Jm+1+f (x)J∗m(x′) eiθr −Jm+1+f (x) J∗m+1(x′) ei(θr−θr′ )

)
(2.4.57)

where the dimensionless variables x = |E|r/~vF and x′ = |E|r′/~vF have
been introduced. The integration path can be closed through a circumfer-
ence at infinity, whose contribution can be neglected as in the free case (see
Appendix C). In addition, some care should be done close to the origin:
Bessel functions of arbitrary index have a branch cut along the negative real
axis. Counting the power of E of the integrand function, it can been seen
that the branch point in the origin does not contribute. Indeed, Bessel func-
tions Jν(z) when expanded close to z = 0 go like zν and the integral defining
the Green function close to the origin can be evaluated as∫

dEE2m+f E→0−−−−−→ 0 (2.4.58)

Using Cauchy theorem the integral then evaluates as

G (~r, ~r ′, ω) = πρ(ω)
∑
m

eim(θr−θr′ )×

×
(

Jm+f (x) J∗m(x′) −is Jm+f (x) J∗m+1(x′) e−iθr′

−is Jm+1+f (x)J∗m(x′) eiθr −Jm+1+f (x) J∗m+1(x′) ei(θr−θr′ )

)
(2.4.59)

where in the formula above x = |ω|r/~vF and x′ = |ω|r′/~vF and the density
of states for a linearly dispersive band, ρ(ω) = ω/2π~vF , has been introduced.
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2.4.2 Cross section and resistivity

Using only the contribution of the pole Eq.(2.4.59),and the zero order wave-
function Eq.(2.3.42), the integral giving the scattered part of the wave func-
tion is

Ψsc =

∫
d~r′G (~r, ~r ′, ω)V (~r ′)Ψ(~r′) = (−i)fAk(S1 + S2) (2.4.60)

where the two contributions to the integral above explicitly are

S1 =
∑
m

(
sJm+f (kr)

−iJm+1+f (kr)e
iθr

)
eimθr×

×
∫
dr′dθr′Jm(kr′)Jn+1(kr′) cos θr′e

3iθr′ei(n−m)θr′

S2 =
∑
m

(
sJm+f (kr)

−iJm+1+f (kr)e
iθr

)
eimθr×

×
∫
dr′dθr′Jn(kr′)Jm+1(kr′) cos θr′e

−3iθr′ei(n−m)θr′

(2.4.61)

Let’ s analyze the two contribution to the integral above. The first part gives

S1 =
∑
m

(
sJm+f (kr)

−iJm+1+f (kr)e
iθr

)
eimθr

∫
dr′dθr′Jm(kr′)Jn+1(kr′) cos θr′e

3iθr′ei(n−m)θr′

=

(
sJn+4+f (kr)

−iJn+5+f (kr)e
iθr

)
ei(n+4)θr

∫
dr′Jn+4(kr′)Jn+1(kr′)+

+

(
sJn+2+f (kr)

−iJn+3+f (kr)e
iθr

)
ei(n+2)θr

∫
dr′Jn+2(kr′)Jn+1(kr′)

(2.4.62)

These integrals are special cases of the critical case of the Weber-Schafheitlin
integral [136]

∫ ∞
0

dtJα+p(at)Jα−p−1(bt) =


bα−p−1Γ(α)
aα−pΓ(α−p)p! 2F1

(
α,−p;α− p; b2

a2

)
if b < a

(−1)p

2a
if b = a

0 if b > a

(2.4.63)
In this case (α, p) = (n+3, 1) and (n+2, 0) respectively, thus the first integral
is equal to −1/2k while the other is 1/2k

S1 = − 1

2k

(
sJn+4+f (kr)

−iJn+5+f (kr)e
iθr

)
ei(n+4)θr +

+
1

2k

(
sJn+2+f (kr)

−iJn+3+f (kr)e
iθr

)
ei(n+2)θr

(2.4.64)
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Similarly the S2 in (2.4.61) evaluates as

S2 =
∑
m

(
sJm+f (kr)

−iJm+1+f (kr)e
iθr

)
eimθr

∫
dr′dθr′Jn(kr′)Jm+1(kr′) cos θr′e

−3iθr′ei(n−m)θr′

=

(
sJn−4+f (kr)

−iJn−3+f (kr)e
iθr

)
ei(n−4)θr

∫
dr′Jn−4(kr′)Jn+1(kr′)

+

(
sJn−2+f (kr)

−iJn−1+f (kr) e
iθr

)
ei(n−2)θr

∫
dr′Jn−2(kr′)Jn+1(kr′) (2.4.65)

This integral is evaluated using again results in eq. (2.4.63) with (α, p) =
(n− 1,−3) and (n,−2) so that the first integral is equal to −1/2k while the
other is 1/2k, as for S1, giving the final result

Ψsc = (−i)fA
2
einθr

{
−
(

Jn+4+f (kr)
iJn+5+f (kr)e

iθr

)
ei4θr +

(
Jn+2+f (kr)

iJn+3+f (kr)e
iθr

)
ei2θr

−
(

Jn−4+f (kr)
iJn−3+f (kr)e

iθr

)
e−i4θr +

(
Jn−2+f (kr)

iJn−1+f (kr)e
iθr

)
e−i2θr

}
(2.4.66)

The dominant scattering amplitudes fmn, to keep the order of the Bessel
functions the lowest possible, are 〈Ψ0|GVΨ±4〉 or 〈Ψ0|GVΨ±2〉. Apart from
the consideration that they imply incoming waves of relatively high order
(i.e. |n| = 2, 4) , all of them lead to integrals of the kind

lim
k→0

1

`2

∫ ∞
0

rdr J0(kr) Jf (kr) ≈

≈ 1

k2`2Γ(1 + 1/3)

∫ k`

0

tdt

(
1

2
t

)1/3

J0(t) ∼ (k`)1/3

(2.4.67)

Cross section should go as

σtot =
∑
mn

|fmn|2 ∼ (k`)2/3 (2.4.68)

2.5 The wedge disclination
A wedge disclination is made by the Volterra process, i.e. cutting a wedge of
angle amplitude α and pasting the edges. As in the case of an edge dislocation
we define the angular variable θ = arctan y

x
with a branch cut on the negative

x axis. It follows that the tangent vectors are rotated, depending on the
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azimuthal angle, even far from the defect. However, there is no rotation at
the positive x axis. All of this is encoded in the tetrad set

e1
1 = cos

θ

n

e1
2 = − sin

θ

n

e2
1 = sin

θ

n

e2
2 = cos

θ

n
.

(2.5.69)

Their inverses are

e 1
1 = cos

θ

n

e 2
1 = − sin

θ

n

e 1
2 = sin

θ

n

e 2
2 = cos

θ

n

(2.5.70)

In the case of the formation of a pentagon defect, α = π/3. As the tangent
vectors at the edge are rotated by π/6 above the branch cut and by π/6
below it, n ≡ 2π/α = 6. The overline on the labels has been introduced in
order to distinguish the flat coordinates from the coordinates in the distorted
lattice, i.e. xa ≡ xa. The metric gµν = ηabe

a
µe
b
ν geerated by these tetrads

is just the identity matrix. The connection coefficients Γ λ
µν = e λ

a ∂µe
a
ν are:

Γ 1
11 = 0

Γ 1
12 = − 1

n
∂xθ

Γ 1
21 = 0

Γ 1
22 = − 1

n
∂yθ

Γ 2
11 =

1

n
∂xθ

Γ 2
12 = 0

Γ 2
21 =

1

n
∂yθ

Γ 2
22 = 0

(2.5.71)
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The torsion S λ
µν = 1

2
(Γ λ

µν − Γ λ
νµ ) is

S 1
12 = − 1

2n
∂xθ = − 1

2n

sin θ

r

S 2
12 = − 1

2n
∂yθ = − 1

2n

cos θ

r

(2.5.72)

The components of this tensor are singular at the origin. The only indepen-
dent component of the curvature tensor is a Dirac delta, as shown by Kleinert
in his book:

R 1
121 = −αδ(~r) (2.5.73)

2.5.1 Dirac equation on a wedge disclination

The spin connection

Γµ =
1

4
Γα β

µ Σαβ (2.5.74)

is zero since the tetrads are regular functions. Thus, the wedge disclination
affects Dirac equation only through the rotation of Dirac matrices

γ1 = γae 1
a = σx cos

θ

n
+ σy sin

θ

n
=

(
0 e−i

θ
n

ei
θ
n 0

)

γ2 = γae 2
a = −σx sin

θ

n
+ σy cos

θ

n
=

(
0 −ie−i θn
iei

θ
n 0

) (2.5.75)

Then the Dirac equation for a wedge dislocation is

− i

[(
0 e−i

θ
n

ei
θ
n 0

)
∂x +

(
0 −ie−i θn
iei

θ
n 0

)
∂y

]
Ψ = εΨ (2.5.76)

To solve this equation is helpful to introduce the unitary transformation

U =

(
ei

θ
2n 0

0 e−i
θ

2n

)
. (2.5.77)

Applying this transformation to the Dirac equation

− i U [γ1∂x + γ2∂y]U
†UΨ = ε UΨ . (2.5.78)

By defining Φ = UΨ we have

− i
[
−→σ ·
−→
∂ +

σ · r̂
2nr

]
Φ = εΦ (2.5.79)
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Writing the free Dirac operator in cylindrical polar coordinates this equation
becomes

− i

[
σ · r̂

(
∂r +

1

2nr

)
+
σ · θ̂
r
∂θ

]
Φ = εΦ (2.5.80)

In (2.5.80), similarly to what happens in [41], the electrons encircling the
defect feel the flux of an effective gauge field. For the K ′ valley the Dirac
matrices on flat space time are

γ1 = σx

γ2 = −σy
(2.5.81)

So Dirac equation becomes

[σx∂x − σy∂y]Ψ = iεΨ (2.5.82)

The above equation for the K ′ valley could be obtained from teh one for the
K valley making a complex conjugation, but you have also to change the
sign of energy to map the equations, i.e. you have to change particles with
antiparticles. Let’s pass to the case of the edge dislocation. The rotated
Dirac matrices are

γ1 =

(
0 ei

θ
n

e−i
θ
n 0

)

γ2 =

(
0 iei

θ
n

−ie−i θn 0

) (2.5.83)

Note that these matrices are the complex conjugate of the one for the K
valley. Then Dirac equation for the wedge dislocation for the K ′ valley is[(

0 ei
θ
n

e−i
θ
n 0

)
∂x +

(
0 iei

θ
n

−ie−i θn 0

)
∂y

]
Ψ = iεΨ (2.5.84)

A unitary transformation could be introduced so that the equation reduces
to the flat one with a non abelian potential

U ′ =

(
e−i

θ
2n 0

0 ei
θ

2n

)
. (2.5.85)

Note that U ′ = U †. Applying this unitary transformation than Dirac equa-
tion becomes [

σ · r̂∗∂r +
σ · θ̂∗

r

(
∂θ +

iσz
2n

)]
Φ = iεΦ (2.5.86)
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In the above equation the matrices σ · r̂∗ and σ · θ̂∗ are the complex conjugate
of the corrispondent one in the case of theK valley. it should be stressed that
the vector potential appears with the opposite sign. So, the Dirac equation
in the 4× 4 formalism is[

α · r̂∂r +
α · θ̂
r

(
∂θ −

iσz
2n

τz

)]
Φ = iεΦ (2.5.87)

where the following representation of the spinor has been used

Φ =


ΦAK

ΦBK

ΦAK′

ΦBK′

 (2.5.88)

and the Dirac matrices in the 4× 4 formalism are

αr =

(
σ · r̂ 0

0 σ · r̂∗
)

= σ1 ⊗ I, αθ =

(
σ · θ̂ 0

0 σ · θ̂∗

)
= σ2 ⊗ τ 3 (2.5.89)

In addition to this field another gauge field should be added in order to
consider the non trivial boundary condition involving both the valleys. This
gauge field is another SU(2) gauge field

Aθ =
1

4
τ2 ⊗ I2×2 (2.5.90)

The gauge field coming from a wedge disclination seems to give an intrinsic
Aharonov-Bohm effect, but in general SU(2) could not give such an effect
since it’ s a simply connected group.

2.6 Screw dislocations in topological insulators
In a 3D material another kind of dislocation can be created: the material
is cut along an half plane and the two free surfaces so created are glued
back after a relative displacement along the direction of the plane, i.e. the
right side is displaced upward and the left side is displaced downward as
shown in fig. 2.4. In the case of the screw dislocation the Burger vector is
oriented along the the defect line, differing from the edge dislocation in which
the Burgers vector is orthogonal to the defect. The change of coordinates
describing a screw dislocation is very similar to the edge dislocation one

x1 = x1

x2 = x2

x3 = x3 − b

2π
arctan

x2

x1

(2.6.91)
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Figure 2.4: Volterra process for the screw dislocation

In this way, when circling around the vertical axis the x3 coordinates jumps
of b. Thus the tetrads are

ea µ =

 1 0 0
0 1 0

b
2π

y
x2+y2 − b

2π
x

x2+y2 1

 (2.6.92)

The inverse tetrads are

e µ
a =

 1 0 0
0 1 0

− b
2π

y
(x2+y2)

b
2π

x
(x2+y2)

1

 (2.6.93)

The coordinates with overlined indexes make up the local inertial set of co-
ordinates needed to use the tetrads machinery. In the case of the screw dis-
location, and for topological defects in general, they have a straightforward
interpretation trough the Volterra process, since the xa can be interpreted
as the coordinates before the Volterra process takes place. This could be
understood considering how a x3 = const plane (existing before defect’s cre-
ation) changes after the creation of the defect. The Volterra process consists
in cutting the plane along the x1 > 0 half-axis and pushing one side upward
and the other downward. The surface created from the considered plane in
this way is x3 = x3 + b

2π
θ, i.e. the third relation of (2.6.91). The torsion

expressed in function of the tetrads is

S µ
ab = −1

2
(∂ae

µ
b − ∂be

µ
a ) (2.6.94)

The only non vanishing component of the torsion for the screw dislocation
is S 3

12 = −bδ(~r), while the curvature is vanishing as in the case of the edge



CHAPTER 2. TOPOLOGICAL DEFECTS 56

dislocation. The rotation of Dirac matrices gives

HS(~k) = H0 − i
b

2π

~γ · θ̂
r
∂z (2.6.95)

Later I will analyze the possible existence of spin connection. The Dirac
equation could be solved using the Stodolsky phase, if the line integral defin-
ing it is path independent. In the following ~r = (x, y) is the position vector
in a plane orthogonal to the z-axis and ~R = (x, y, z) is the whole position
vector, ~K = (k1, k2, k3) = (~k, k3) is the wave vector for bulk states. The
Stodolsky phase explicitly is∫

kµdx
µ =

∫
kae

a
µdx

µ = ~K · ~R− k3

b

2π
θ ≡ ~K · ~R +

~K ·~b
2π

θ (2.6.96)

This is the same result as in the case of the edge dislocation in graphene
(2.3.40), where the phase accumulated by a particle moving around the screw
dislocation is

Ω = −k3b

2π
=
~K ·~b
2π

(2.6.97)

since the Burgers vector in the case of the screw dislocation is ~b = (0, 0,−b).
Inserting a wave function of the type

Ψ(r, θ, z) = Φ(r, θ)eik3z (2.6.98)

in (2.6.95) the Dirac equation reduces to the one in flat space time with a
magnetic flux given by −Ω{

−i

[
~γ · r̂∂r +

~γ · θ̂
r

(
∂θ + i

k3b

2π

)]
+ ~γ · ẑk3 + ∆γ0

}
Φ(r, θ) = EΦ(r, θ)

(2.6.99)
This is Dirac equation in cylindrical coordinates with a flux give by −Ω and
its solution is

Ψ(r, θ, z) =


(E + ∆)Jm−Ω(kr)

k3Jm−Ω(kr)
0

−ikJm−Ω+1(kr)eiθ

 eimθeik3z (2.6.100)

with the usual boundary condition

Ψ(r, θ, z) = Ψ(r, θ + 2π, z). (2.6.101)
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2.6.1 Possible bound states for the screw dislocation

In ref. [115] it has been shown that given the vector K, that identifies the
position of the Dirac cone in the FBZ, a screw dislocation with Burgers vector
b hosts a Dirac-like mode if

K · b = ±π mod 2π. (2.6.102)

In this section it will be shown how these states arise starting from Hamil-
tonian (2.6.95)

HS = H0 +
~γ · θ̂
r

b · k
2π

(2.6.103)

where the unperturbed Hamiltonian H0 is in (1.6.81)

H0(k) = ε(k)I4×4 +

M(k) A1kz 0 k−
A1kz −M(k) k− 0
k+ 0 −A1kz −M(k)

 (2.6.104)

where ε(k) = C +D1k
2
z +D2(k2

x + k2
y) and M(k) = M −B1k

2
z −B2(k2

x + k2
y).

A simplified version of this model will be considered in the following: the
sum of the diagonal quadratic terms

ε(k)I4×4 +M(k)I2×2 ⊗ σz

will be approximated withM = M + C1k
2
z + C2

(
k2
x + k2

y

)
.

H0(k) =


M(k) A1kz 0 k−
A1kz −M(k) k− 0

0 k+ M(k) −A1kz
k+ 0 −A1kz −M(k)

 (2.6.105)

In addition it will be considered the case C2 = 0, in order to have a analyti-
cally solvable model, andM,C1, C2 > 0, in order to have a non-trivial phase.
In the spirit of k · p the wave function of an electron whose wave vector lies
close to K is eiK·rΨ(r), where Ψ(r) is a slowly varying function over the
unit cell. The Hamiltonian (2.6.95) will be then written as

HS = H0 +
~γ · θ̂
r

b ·K
2π

= H0 +
~γ · θ̂
2r

(2.6.106)

where in the last equality (2.6.102) is supposed to hold. As the added flux
is π ( i.e. hc/2e ) Time Reversal is not broken. Hence an odd gapless Dirac
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cone of chiral states exists. In cylindrical coordinates (2.6.106) explicitly is

(E −∆)
1

vF
ΨA(~r) = i

∂

∂z
ΨB(~r) + i eiθ

[
∂

∂r
+
i

r

∂

∂θ
+

1

2r

]
ΨD(~r)

(E + ∆)
1

vF
ΨB(~r) = i

∂

∂z
ΨA(~r) + i eiθ

[
∂

∂r
+
i

r

∂

∂θ
+

1

2r

]
ΨC(~r)

(E −∆)
1

vF
ΨC(~r) = i e−iθ

[
∂

∂r
− i

r

∂

∂θ
− 1

2r

]
ΨB(~r)− i ∂

∂z
ΨD(~r)

(E + ∆)
1

vF
ΨD(~r) = i e−iθ

[
∂

∂r
− i

r

∂

∂θ
− 1

2r

]
ΨA(~r)− i ∂

∂z
ΨC(~r) (2.6.107)

A possible solution of the system above with angular momentum n− 1 is

|E; b〉 =
1

N


(E + ∆)Kn−1/2(κr)

k Kn−1/2(κr)
0

−iκ Kn+1/2(κr) e−iθ

 e−i(n−1)θ e−ikz. (2.6.108)

By direct substitution it can be seen that wave function with n = 0 is a
legitimate solution of (2.6.107)

|E; 1〉 =
1

N


(E + ∆)K−1/2(κr)

k K−1/2(κr)
0

−iκ K1/2(κr) e−iθ

 eiθ e−ikz =

=
1

N


(E + ∆)

k
0

−i∆ e−iθ

 K−1/2(κr) eiθ e−ikz,

(2.6.109)

with the eigenvalue: E2 −∆2 = k2 − κ2. This yelds:

E2 = (M − Ck2)2 + k2 − κ2 (2.6.110)

We can choose κ = |M − Ck2| = ∆ and we have the Dirac cone dispersion
in the z−direction. Note that in the case of the trivial insulator would
be κ = |M + Ck2|. This is unphysical because, increasing k, the energy
increases and we expect that the state becomes less localized. Therefore κ
should decrease. To fix this physics correctly, k should go imaginary at the
boundary with a trivial insulator, so that the propagating states are confined
to the non trivial insulator only. With a π−flux , time reversal (TR) is still
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a good symmetry, and thus a second state resolving the equations (2.6.107)
by applying time reversal symmetry to (2.6.109)

|E; Θ1〉 ≡ |E; 2〉 =
1

N


0

i∆ eiθ

−(E + ∆)
−k

 K1/2(κr) e−iθ eikz. (2.6.111)

The couple of states found localized at the defect is consistent with the
results of the Altland and Zirnbauer [6], who propose a generalization of the
analysis made by Dyson [28; 29; 30] of condensed matter systems in term
of the symmetries of the system. The symmetries that are useful to the
classification are [127]

• Time Reversal Symmetry

Θ = eiπSyC (2.6.112)

where Sy is the y component of the spin operator and C is the complex
conjugation. As discussed in previous chapters time reversal symmetry
implies H(k) = ΘH(−k)Θ−1.

• Particle-Hole symmetry Ξ, an antiunitary symmetry such that H(k) =
ΞH(−k)Ξ−1. In the case of 3DTI the explicit form of Particle-Hole
Symmetry is

Ξ =


0 0 0 −1
0 0 1 0
0 −1 0 0
1 0 0 0

 C
• Chiral Symmetry Π, a unitary transformation that change the sign of

the Hamiltonian without reversing the sign of k H(k) = −ΠH(k)Π−1,
whose explicit form is

Π = i ·ΘΞ = i ·


0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0


Hamiltonian (2.6.95), in presence of a non zero chemical potential µ has
niegther the Particle Hole symmetry Ξ nor the Chiral Symmetry Γ, Indeed
ΞTH(µ)Ξ = −H(−µ) and Π†H(µ)Π = H(−µ). As analyzed in [127] it
belongs to the class AII, in 3D the Hamiltonian has a corresponding Z2
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invariant and the protected gapless modes are chiral Dirac Fermions. From
states (2.6.109) and (2.6.111) it’s possible to obtain two chiral states. The
projectors L and R on the left chiral and right chiral states, respectively, are

L =
1− iΠ

2

R =
1 + iΠ

2

(2.6.113)

and their action on the states is

L |1〉 = L |2〉 =
1

2
(|1〉+ |2〉)

R |1〉 = R |2〉 =
1

2
(|1〉 − |2〉)

(2.6.114)

Thus, the sum |1〉 + |2〉 is a left chiral state, while |1〉 − |2〉 has right-wise
chirality. The two states so built are one the time reversal of the other.



Chapter 3

Spin connection and Boundary
states in 3D Topological
Insulators

It has been in the previous Chapter Dirac equation in curved space time has
been used to describe topological defects in graphene. In this Chapter it
will be shown that the boundary states for a 3D TI obey the same equation,
starting from the study of symmetric cases like a spherical and a cylindrical
TI by using the k · p Hamiltonian (1.6.82). The more realistic case of a
bump on the top of the surface will be then treated, and starting from Dirac
equation and scattering theory the contribution to resistivity due to this
defect is calculated.

3.1 Introduction.
As described in chapter 1, strong Topological Insulators (TI ’s) are a new
class of materials with a bulk gap but surface states defined on surfaces of
all orientations[36; 35; 97; 58], making the boundaries gapless. The num-
ber of surface states at a flat surface with a given orientation is odd, and
each of them shows a conical singularity, described by the two dimensional
Dirac equation[58]. Localized states also exist at other lattice defects, such
as screw dislocations[115; 126; 127]. The transport features of electrons at
the surfaces of TI ’s is being intensively studied. The wavefunctions have
an internal spinorial structure made up of two slowly varying components
related by time reversal invariance. Backscattering due to smooth pertur-
bations which preserve the time reversal symmetry is forbidden, making the
transport properties of these compounds similar to those of graphene in the

61
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absence of intervalley scattering[20]. Surfaces with a finite curvature allow
for scattering processes due to the existence of a non trivial metric, which
has been studied in the classical limit[24], when wavepackets are well approx-
imated by point particles following classical trajectories. An analysis of the
electronic properties of curved surfaces of TI ’s requires information about
the way a non trivial metric changes the effective Dirac equation. It is well
known that the Dirac equation could be written on a curved space time intro-
ducing the spin connection and the rotation of Dirac matrices[100]. The exis-
tence of the spin connection has been postulated in topological insulators[81].
The emergence of the spin connection from the combination of the three di-
mensional electronic structure of a TI and the two dimensional metric of a
boundary with intrinsic curvature has not been studied so far. In the next
section, we analyze the surface states for the simplest curved boundary with
a non trivial metric, the sphere. The conservation of the angular momen-
tum in this geometry allows us to calculate the entire spectrum of surface
states, and to show that the spin connection term is induced in the effective
surface hamiltonian. We use this information to analyze the effect of the cur-
vature in the scattering by a bump in a flat surface, a process considered in
the classical limit in[24]. Related processes can be defined in graphene with
topological defects[22]. Technical details of the calculations are discussed in
the appendices, including an analytical study of the boundary states in a
cylinder, calculated numerically in[32]. The boundary of a cylinder can be
considered a surface without intrinsic curvature and spin connection.

3.2 Model of a spherical topological insulator.
The surface states of model single particle hamiltonians for a TI have been
studied particularly for a flat boundary [119] and for an infinite cylinder
boundary surface [32]. A minimal model reproducing the band structure of a
TI requires four orbitals, related in pairs by the time reversal symmetry[146].
A further simplification includes just the linear in-momentum contributions
to the hamiltonian of Ref. [146]:

H = γ̂0∆ + ~vF γ̂iki (3.2.1)

where vF is the Fermi velocity and the matrices γ̂a are given in terms of Pauli
matrices by γ̂0 = τ0⊗τz, γ̂1 = σx⊗τx, γ̂2 = −σy⊗τx γ̂3 = σz⊗τx. Here σa and
τb denote matrices in the spin and even-odd orbital parity spaces, respectively.
This hamiltonian satisfies time reversal symmetry T = K iσy⊗I2×2 (here I2×2

the 2× 2 identity and K the complex conjugation). Bulk eigenfunctions in
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cartesian coordinates are:

|Ψ1,±〉 =
1

N ±


ε±(~k) + ∆

~vFkz
0

~vFk−

 ei
~k·~r, |Ψ2,±〉 =

1

N ±


0

~vFk+

ε±(~k) + ∆
−~vFkz

 ei
~k·~r (3.2.2)

(k± = kx ± iky), where the band energies are

ε±(~k) ≡ ±
√

∆2 + ~2v2
F

(
k2
x + k2

y + k2
z

)
and N± is the norm of the states. Surface states appear in this model if the
gap parameter, ∆, changes its sign at the boundary, so that, e.g., ∆ > 0 in
the inside, and ∆ < 0 in the vacuum. The model allows also for the analytical
computation of the surface bands of a cylinder[32], as shown in section 3.2.2.
Later we will include also quadratic corrections to the hamiltonian in Eq.4.1.1
and we will show that boundary conditions need to be chosen in a different
way in that case.

3.2.1 Spherical Topological Insulator

In order to obtain the solution of the hamiltonian 4.1.1 onto a sphere we
rephrase its eigenvalue equations into spherical coordinates. The eigenvector
of energy E, Ψ ≡ (ΨA,ΨB,ΨC ,ΨD), satisfies the equations:

(E −∆)ΨA = i

[
cos(θ)∂r −

sin(θ)

r
∂θ

]
ΨB − ie−iφ

[
sin(θ)∂r +

cos(θ)

r
∂θ − i

1

r sin(θ)
∂φ

]
ΨD ,

(E + ∆)ΨB = i

[
cos(θ)∂r −

sin(θ)

r
∂θ

]
ΨA − ie−iφ

[
sin(θ)∂r +

cos(θ)

r
∂θ − i

1

r sin(θ)
∂φ

]
ΨC ,

(E −∆)ΨC = −ieiφ
[
sin(θ)∂r +

cos(θ)

r
∂θ + i

1

r sin(θ)
∂φ

]
ΨB − i

[
cos(θ)∂r −

sin(θ)

r
∂θ

]
ΨD ,

(E + ∆)ΨD = −ieiφ
[
sin(θ)∂r +

cos(θ)

r
∂θ + i

1

r sin(θ)
∂φ

]
ΨA − i

[
cos(θ)∂r −

sin(θ)

r
∂θ

]
ΨC ,

(3.2.3)

(here ~ = vF = 1), with the boundary conditions

∆(r, θ, φ) =

{
∆in r < R
∆out r > R

(3.2.4)

We choose ∆in = −∆out = ∆ for simplicity, so that the exponential decay of
the boundary states into the bulk near a flat surface is defined by the length
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Figure 3.1: Dependence of the surface energy levels on angular momentum,
J , and radius, R. The deviation from the result for the two dimensional Dirac
equation on a sphere, see eq. 3.2.5 is plotted. Top: Dependence on R. From
top to bottom, J = 1, 2, 3. Bottom: Dependence on J . From top to bottom,
R = 8, 10, 12. In all cases, vF = 1 and ∆ = 1 .

scale Λ = ~vF/∆. The angular momentum is conserved and is quantized in
half integer units (see, for instance Ref. [42]). Its eigenfunctions allow us
to reduce the set of Eq.s(3.2.3) to two coupled differential equations for the
radial coordinates, as discussed in subsection 3.2.1.2. It can be shown that the
energy spectrum converges exponentially to the one of the two-dimensional
Dirac equation onto a sphere:

EJ = ±~vF (J + 1/2)

R
×
[
1 +O

(
e−R/Λ

)]
,

J =
1

2
,
3

2
· · · Jmax . (3.2.5)

where Jmax ∼ R/Λ. The multiplicity of each level is 2J + 1. The exponential
convergence of the energy levels to the asymptotic value in eq. 3.2.5 is shown
in Fig. 3.1. This type of convergence implies that the effective hamiltonian
describing the surface modes does not admit an expansion on higher order
derivatives, of the type ∆(Λ∂i)

n. The study of the hamiltonian in eq. 4.1.1
can be extended in a straightforward way to the case when ∆out 6= ∆in,
although it becomes cumbersome to obtain analytical expansions in the limit
R→∞. The numerical solution, shows an agreement with the spectrum in
Eq. 3.2.5 of the same accuracy as those reported in Fig. 3.1.

As quadratic terms do not break the spherical symmetry, they can be
safely added to Eq. 4.1.1, by the simple substitution ∆→ ∆+α(k2

x+k2
y+k2

z),
where α is a constant. Hence the angular part of the wavefunctions remains
unchanged while its radial part satisfies second order coupled equations, in
place of those in Eq. 3.2.3. For each value of the energy, E, we find evanescent
waves with two different decay lengths, Λ1(E) and Λ2(E), which are given by
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Figure 3.2: (Color online). Energy levels of a spherical topological insulator
of radius R = 30 with a quadratic dispersion relation, obtained by the re-
placement ∆→ ∆+α(k2

x+k2
y +k2

z) in eq. 4.1.1. Other parameters are ∆ = 1
and vF = 1. The boundary conditions are ΨA(R) = ΨB(R) = ΨC(R) =
ΨD(R) = 0.

the roots of a fourth order polynomial. The boundary conditions need to be
replaced. The simplest boundary condition compatible with the new second
order equations is ΨA(R) = ΨB(R) = ΨC(R) = ΨD(R) = 0[119]. By solving
numerically these boundary conditions, we find again an agreement with
eq. 3.2.5 similar to that shown in Fig. 3.1. Results are shown in Fig. 3.2.
We conclude that the boundary states on a spherical TI satisfy the Dirac
equation on the surface of the sphere. The spin connection, related to the
intrinsic curvature of the metric, clearly emerges at the boundaries of a TI.
More generally, the boundary states satisfy the Dirac equation on a curved
space-time.

3.2.1.1 Angular momentum eigenstates

Generalized angular momentum operators J can be defined as usual as the
sum of spin and orbital angular momentum. It can be shown that the Hamil-
tonian in eq. 3.2.3 commutes with J2, Jz therefore its eigenstates can be la-
beled by |j,m〉 with ~J2|j,m〉 = j(j + 1)|J, Jz〉 and Jz|j,m〉 = m|J, Jz〉. In
order to obtain single valued eigenfunctions, the values of J and Jz must be
half integers. As usual by using J+|j; j〉 = 0 and J−|j,m〉 ∝ |j,m − 1〉 we
can explicitly construct the wavefunctions of the different states |j,m〉. The
Hamiltonian eigenfunction can be thus expanded onto the the lowest angular
momenta states:
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∣∣∣∣12 ,
1

2

〉
= A


− cos(θ)

0
sin(θ)eiφ

0

+B


0

− cos(θ)
0

sin(θ)eiφ

+ C


1
0
0
0

+D


0
1
0
0


∣∣∣∣12 , −1

2

〉
= A


sin(θ)e−iφ

0
cos(φ)

0

+B


0

sin(θ)e−iφ

0
cos(φ)

+ C


0
0
1
0

+D


0
0
0
1


∣∣∣∣32 ,

3

2

〉
= A


− sin(θ) cos(θ)eiφ

0
sin2(θ)e2iφ

0

+B


0

− sin(θ) cos(θ)eiφ

0
sin2(θ)e2iφ

+

+ C


sin(θ)eiφ

0
0
0

+D


0

sin(θ)eiφ

0
0


∣∣∣∣32 ,

1

2

〉
= A


−2 cos2(θ) + sin2(θ)

0
3 sin(θ) cos(θ)eiφ

0

+B


0

−2 cos2(θ) + sin2(θ)
0

3 sin(θ) cos(θ)eiφ

+

+ C


2 cos(θ)

0
sin(θ)eiφ

0

+D


0

2 cos(θ)
0

sin(θ)eiφ

 (3.2.6)

where the states |3/2,−1/2〉, |3/2,−3/2〉 are not explicitly exhibited, here.

3.2.1.2 Spherical boundary states and energy spectrum

It can be snown that boundary states in the spherical case for j = m = n−1/2
(n > 0) have the following form:

〈
r, θ, φ

∣∣∣∣J − 1

2
, Jz −

1

2

〉
= f∓1 (r)


0

− cos θ sinn−1 θei(n−1)φ

0
sinn θeinφ

+f∓2 (r)


sinn−1 θei(n−1)φ

0
0
0

 .

(3.2.7)
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Here f−(r) and f+(r) are radial functions localized at the boundary for
r < R and r > R, respectively, and they satisfy the equations:

(E ∓∆)f∓2 = −i∂rf∓1 −
i

r
(n+ 1)f∓1 ,

(E ±∆)f∓1 = −i∂rf∓2 +
i

r
(n− 1)f∓2 .

(3.2.8)

The system can be decoupled in a pair of Bessel equations

d2

dr2
f±1 +

2

r

d

dr
f±1 −

[
(∆2 − E2) +

n(n+ 1)

r2

]
f±1 = 0 ,

d2

dr2
f±2 +

2

r

d

dr
f±2 −

[
(∆2 − E2) +

n(n− 1)

r2

]
f±2 = 0 ,

(3.2.9)

whose solutions are:

if r < R

{
f−1 (r) = −i∆−E

κ
C− in(κr)

f−2 (r) = C− in−1(κr)

if r > R

{
f+

1 (r) = −iC+ ∆+E
κ
kn(κr)

f+
2 (r) = C+ kn−1(κr)

(3.2.10)

where in , kn are the modified spherical Bessel functions:

in(x) ≡
√

π

2x
In+ 1

2
(x) , kn(x) ≡

√
π

2x
Kn+ 1

2
(x) . (3.2.11)

The matching conditions can be written written using Eq. (3.2.10){
−iC− (∆− E) in(κR) = −iC+ (∆ + E) kn(κR) ,

C− in−1(κR) = C+ kn−1(κR) ,
(3.2.12)

which give rise to an implicit equation for the eigenenergies of the system:

∆− E
∆ + E

= −kn(κR) in−1(κR)

in(κR) kn−1(κR)
. (3.2.13)

This equation, in the limit ∆R → ∞, gives the admissible values of the
energy:

En = ±n~vF
R

, n = 1, ... , nmax. (3.2.14)
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3.2.2 Boundary states at cylinder surface

In the following appendixes we will use ~ = vF = 1, except in main results.
Let us start from the ~k · ~p model Hamiltonian of Eq.(4.1.1):

H [~r] =


∆ i∂z 0 i(∂x + i∂y)
i∂z −∆ i(∂x + i∂y) 0
0 i(∂x − i∂y) ∆ −i∂z

i(∂x − i∂y) 0 −i∂z −∆

 . (3.2.15)

To find surface states in this approximation is enough to match the solu-
tions of the Schrödinger equation at the surface of the cylinder. The gap
∆ should change its sign between in and out of the surface. We rewrite
the eigenvalue problem in cylindrical coordinates for the 4-component spinor
(ΨA,ΨB,ΨC ,ΨD):

(E −∆) ΨA(~r) = i
∂

∂z
ΨB(~r) + eiθ

(
i
∂

∂r
− 1

r

∂

∂θ

)
ΨD(~r)

(E + ∆) ΨB(~r) = i
∂

∂z
ΨA(~r) + eiθ

(
i
∂

∂r
− 1

r

∂

∂θ

)
ΨC(~r)

(E −∆) ΨC(~r) = e−iθ
(
i
∂

∂r
+

1

r

∂

∂θ

)
ΨB(~r)− i ∂

∂z
ΨD(~r)

(E + ∆) ΨD(~r) = e−iθ
(
i
∂

∂r
+

1

r

∂

∂θ

)
ΨA(~r)− i ∂

∂z
ΨC(~r) (3.2.16)

(in the following k is in the ẑ direction, which is the axis of the infinite
cylinder. Inside the cylinder, the wavefunctions which are mostly localized
close to the surface involve the modified Bessel functions In(κr) with integer
n. They diverge exponentially at infinity but are finite for r → 0. The two
eigenfunctions at fixed energy E are (κ is unknown for the moment):

|E, 1<〉 =
1

N


(E + ∆) In(κr)

k In(κr)
0

iκ In+1(κr) e−iθ

 e−inθ e−ikz,

|E, 2<〉 =
1

N


iκ In(κr)eiθ

0
−k In+1(κr)

(E −∆) In+1(κr)

 e−i(n+1)θ e−ikz.

(3.2.17)

The energies of these states are E = ±
√

∆2 + k2 − κ2. Outside the cylinder,
the functions Kn(κr) replace the In(κr), as the former decay exponentially
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for κr →∞ and ∆→ −∆. The eigenfunctions are:

|E, 1>〉 =
1

N


(E −∆)Kn(κr)

k Kn(κr)
0

−iκ Kn+1(κr) e−iθ

 e−inθ e−ikz,

|E, 2>〉 =
1

N


−iκ Kn(κr) eiθ

0
−k Kn+1(κr)

(E + ∆)Kn+1(κr)

 e−i(n+1)θ e−ikz.

(3.2.18)

The eigenvalues are again those of Eq.(3.2.17). The two wavefunctions inside
the cylinder should be matched to the two outside for each value of n. The
matching conditions at R, the radius of the cylinder, lead to

Det

∣∣∣∣∣∣∣∣
iκIn(κR) (E + ∆)In(κR) −iκKn(κR) (E −∆)Kn(κR)

0 kIn(κR) 0 kKn(κR)
−kIn+1(κR) 0 −kKn+1(κR) 0

(E −∆)In+1(κR) iκIn+1(κR) (E + ∆)Kn+1(κR) −iκKn+1(κR)

∣∣∣∣∣∣∣∣ = 0.

(3.2.19)

The vanishing of the determinant implies:[
I2
n K

2
n+1 +K2

n I
2
n+1

]
κ2 +

(
2κ2 − 4∆2

)
In In+1Kn Kn+1 = 0 . (3.2.20)

The presence of products of the Bessel functions In and Kn assures that, in
the limit of κR >> 1, there is just an inverse powerlaw dependence of the
secular problem on κR. and Eq.(3.2.20) becomes:

κ2 = ∆2

[
1− (n+ 1/2)2

∆2R2

]
. (3.2.21)

Hence, the energy of the states is, according to Eq.(3.2.22)

E = ±~vF

√
k2 +

(n+ 1/2)2

R2
+O

(
~v2

F

∆2R2

)
R� ~vF

∆
(3.2.22)

This result is in complete agreement with Eq.5 of Ref. [32]. Let us now
consider the opposite limit κR << 1. Expansion gives, up to second order
in 1/κR:

κ2

{
2n(n+ 1)

[
1 +

1

16 n2(n+ 1)2

]
+

1

2

}
= ∆2 . (3.2.23)
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The energy reads in this limit:

En(k) ≈ ±∆

√
1− 1/

(
2n(n+ 1)

[
1 +

1

16 n2(n+ 1)2

]
+

1

2

)
+

(
~vFkz

∆

)2

+O
(

~∆R

vF

)
for R� ~vF/∆ .

(3.2.24)

3.3 Scattering off a gaussian bump
We now derive the resistivity for electrons propagating at the flat boundary
surface of a TI, when they are scattered off a gaussian bump of height z (|~r|) =
h e−r

2/`2 . Changes in the Dirac Equations are well localized in space close
to the bump, hence a scattering picture can be fruitfully adopted in this
kind of setting. The Boltzmann relaxation-time approximation can be used
(ν(0) = kF/(π~vF ) is the density of states at the Fermi level for both spins):

ρ (kF ) =
2

e2v2
Fν(0)

1

τ(kF )
, (3.3.25)

where the usual definition of the total relaxation rate is

1

τ(kF )
=

2π

~
ν(0)

∫ 2π

0

dθ
(

1− k̂ · k̂′
) ∣∣〈k|teff |k′〉∣∣2 . (3.3.26)

Here
〈
k|teff |k′

〉
is the matrix element of the t−matrix, which depends on

the energy and on the scattering angle θ between the incoming and outgoing
wave. Since the metric induced on the manifold by the bump is axially
symmetric, it is convenient to rewrite the two dimensional Dirac equation in
flat space time in cylindrical coordinates:

− i~vF
(
σr∂r + σθ

1

r
∂θ

)
Ψ = EΨ . (3.3.27)

Here the matrices σr,θ are σr = cos θσx+sin θσy and σθ = − sin θσx+cos θσy.
Given the metric[26]

gµν =

 −1 0 0
0 1 + f(r) 0
0 0 r2

 , (3.3.28)
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where f(r) = (dz(r)/dr)2, we may read the tetrads

ex
1 =

cos θ√
1 + f(r)

, ey
1 =

sin θ√
1 + f(r)

,

ex
2 = −sin θ

r
, ey

2 =
cos θ

r
.

(3.3.29)

The Dirac equation on a radially symmetric manifold is

− i

[
σr√

1 + f(r)
∂r + σθ

(
1

r
∂θ +

i

2r

(
1− 1√

1 + f(r)

)
σz

)]
Ψ =

= EΨ , (3.3.30)

The gauge potential in (3.3.30) is the spin connection

Γµ =
i

2

(
1− 1√

1 + f(r)

)
σzδµ2. (3.3.31)

We pose Ψ = Φ exp
∫ +∞
r

dr′ Aθ(r
′) with Aθ is the spin connection above. This

real prefactor can be interpreted as the origin of charge puddles accumulating
at the bump. The m component of the spinor Φ has the form (m is the
angular momentum integer):

Φm(r, θ|~k, s) =

(
usm(r)

is vsm(r) eiθ

)
eim(θ−θk) (3.3.32)

where θk is the angle that the direction of the ~k vector of the incoming wave
forms with the polar axis. Substituting (3.3.32) in the Dirac eq.(3.3.30) and
dropping the labels s,m, we find that the functions u(r), v(r) have to satisfy
the following equations:

1√
1 + f

d2u(r)

dr2
+

1

r

du(r)

dr
+

(
d

dr

1√
1 + f

)
du(r)

dr
− m2

r2

√
1 + f u(r) + k2u(r) = 0,

1√
1 + f

d2v(r)

dr2
+

1

r

dv(r)

dr
+

(
d

dr

1√
1 + f

)
dv(r)

dr
− (m+ 1)2

r2

√
1 + f v(r) + k2v(r) = 0.

(3.3.33)

Due to the symmetry of the problem is suitable to expand the Green’s func-
tion for the flat space-time problem in polar coordinates

G(z, z′) =
1

2π

+∞∑
m=−∞

eim(θ−θ′)gm(r, r′). (3.3.34)
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The Green function displaying the correct jump of the derivative at r = r′

is:
gm(x, x′) = 2π2 Jm (x<)Ym (x>) . (3.3.35)

Here r<(r>) is the smaller (larger) of the two arguments r, r′. We now special-
ize the shape of the bump h(r) to be the gaussian bump z(|~r|).This implies
that f(r) = (4h2r2/`4)e−2(r/`)2 . We assume that the ratio h/` is small, so
that we can expand Eq.s (3.3.33) by retaining just the lowest power of h/`.
By comparison with the system for the flat space (i.e. f(r) = 0), we define
the perturbative potential :

h2

`2
Vm(r) =

2h2

`4
r2 e−2r2/`2

[
d2

dr2
+

(
4

r
− 8r

`2

)
d

dr
− m2

r2

]
. (3.3.36)

In the Born approximation, the Dyson equation for e.g. ukm reads:

ukm(r) = Jm(kr) +
h2

`2

∫ ∞
0

dr′ r′ gm(r, r′)Vm(r′) Jm(kr′)

= Jm(kr) +
2h2

`4

∫ ∞
0

dr′ gm(r, r′) r′
3
e−2r′2/`2 ×

×
{
k2 +

(
3

r′
− 8r′

`2

)
d

dr′

}
Jm(kr′)

(3.3.37)

We have used the fact that Jm solves the Bessel differential equation to
simplify the action of Vm onJm itself. By defining :

tan δm =
4π2k2h2

`4

∫ ∞
0

dr′Jm(kr′)r′
3
e−2r′2/`2

{
1 +

1

k2

(
3

r′
− 8r′

`2

)
d

dr′

}
Jm(kr′),

(3.3.38)
the scattering state for r/`→∞ takes the form ukm(r) ∼ Jm(kr)+tan δmYm(kr).
By exploiting the symmetry of the Dirac massless equation with respect to
replacements u ↔ v, m ↔ −m − 1, it is easy to see, that the sums which
include δm, for allm, are equal. Therefore, our result is valid for both compo-
nents of the spinor solution given by Eq.(3.3.32). The integrals of Eq.(3.3.38)
can be evaluated analytically. The asymptotic expansion of the Bessel func-
tions implies that, far from the bump ( r/`→∞ ), the outgoing wave takes
the form:

ukm(r) ∼r/`→∞
1√

1 + tan2 δm
cosχm +

tan δm√
1 + tan2 δm

sinχm

≡ cos (χm + δm) χm = kr − mπ

2
− π

4
.
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We now evaluate the t− matrix element for a scattering event, in which
an incoming wave with wavevector ~k is scattered elastically by the gaussian
bump and a plane wave of wavevector ~p emerges. The t−matrix element is:

〈p|t(~k)|k〉 =
[
1 + e−i(θp−θk)

] √ 2

πkR2
eiπ/4

1

R
× (3.3.39)

×
∫ R

0

dr e
h2

`4

RR
r dr′ r′2 e−2(r′/`)2 ∑

m

[e2iδm − 1] e−im(θp−θk) .

The space integral arises from the exponential prefactor of Ψ defined after
Eq.(3.3.31). To evaluate the relaxation time formula of Eq.(3.3.40) we first
perform the integral over the angle θp of the square modulus of the angle
dependent exponentials in the sums. The integral is non vanishing only for
m−m′ = ±2, 0. By rearranging the sums then eq. (3.3.40) is obtained.

Eq. (3.3.30) describes an unrelaxed lattice. Relaxation of the structure,
besides adding an effective gauge potential, may further change the spin
connection. As elastic deformations do not add any curvature, the change
only implies a trivial holonomy on the wave function. This is a way of
restating the Saint Venant conditions for the two-dimensional case. The
inverse relaxation time (3.3.26) using the elements of the t-matrix (3.3.39)
explicitly evaluates as

1

τ
(
~kF

) =
nbvF
kF
×
∑
m

[
sin2 δm − cos (δm+1 − δm−1) sin δm+1 sin δm+1

]
.

(3.3.40)

At low incoming electron energy, it turns out that the terms with m =
0,±1,±2 are O[(k`)4] and when choosing 4π2h2/`2 ∼ 1, they sum up to
S ≈ 0.733. The terms with m = ±3 are O[(k`)8], while the terms m = ±4
are O[(k`)12].Eventually, the resistivity for independent point like defects,
when the carrier density is low, (i.e. low incoming energy) is:

ρ (kF ) ∼ 2h

e2
nbπ`

2

{
S
(
h

`

)
(kF `)

2 +O
[
(kF `)

4
]}

. (3.3.41)

S (h/`) is a numerical prefactor which depends on the strength of the pertur-
bation parametrized by h/`. The plot of the resistivity vs energy in dimen-
sionless units, kF `, for various values of h/` is shown in Fig. 3.3. The leading
term is proportional to the density of carriers n. It has been proven recently
that the classical limit for large incoming energy (i.e. relatively high densities
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n) corresponds to an energy independent vF τ(kF ) [24]. This implies that,
according to Eq.(3.3.25), ρ ∝ h/(e2kF ) ∼ 1/

√
n, in this limit. We derive the

same conclusion with a careful analysis of the sum in Eq.(3.3.40) at k` >> 1.
Classically, angular momentum conservation in the scattering implies that
m ∼ kb. Here b is the impact parameter measured from the center of the
bump in the direction orthogonal to ~k. By asymptotically expanding the
Bessel functions appearing in the phase shifts, it turns out that there is a
collection of terms contributing to the sum, which are roughly independent
of m, as long as k` >> m. For these m values, tan δm is of the form:

tan δm ≈ π

(
h

`

)2
k`

2

[√
π

2
− (−1)m

2

(k`)3

]
. (3.3.42)

All other terms scale for m >> k` as√
m

2

(
k`

2

)2(m+1)
1

(2m− 1)!!
(3.3.43)

and therefore they rapidly converge to zero.
We conclude that in the semiclassical limit k`� 1 a factor kF comes from

the relevant terms in the sum of Eq.(3.3.40), which are all of the same order.
This factor cancels with the kF appearing in the denominator, so that the
result for vF τ(kF ) is independent of kF . This is in fact found numerically. In
Fig. 3.3 we see that the conductivity ∼ ρ−1 grows linearly at large kF ` and
has a minimum in the neighborhood of kF ` ∼ 1. In section 3.4 we report a
simple argument based on a saddle point approximation of the

∑
m which

qualitatively recovers the classical limiting result for large kF `, derived in
Ref. [24]. In Fig. 3.3 it is shown a significant increase of the cross section
of the bump for kF ` ∼ 1 and h/` & 0.2. This increase is due to quantum
resonances induced by the non trivial spin connection.

3.4 Semiclassical approximation
In this Section we present a tasteful derivation of the classical high energy
limit for the relaxation time. The latter can be obtained by assuming classical
diffusion along the geodesic trajectories across the bump and yields[24]:

1

τ
≈ vF

2A

∫
db θ2(b) . (3.4.44)

Here b is the impact parameter of the incoming particle, while θ is the scat-
tering angle and A is the area of the sample. The starting point is the usual
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Figure 3.3: (Color on-line) Main Panel: inverse scattering time as a func-
tion of kF l for different values of the aspect ratio of the bump h/l. Inset:
the resistivity due to scattering off a bump on the surface of a topological
insulator, in units ρ · e2A/(2π~`2) vs. dimensionless energy k`, at different
ratios h/`.

expression for the relaxation time of Eq.(3.3.40):

1

τ
=
vF
kA

∫ π

0

dθ (1− cos θ)

∣∣∣∣∣∑
m

fm(θ)

∣∣∣∣∣
2

(3.4.45)

given in terms of the scattering amplitudes fm(θ) =
[
ei2δm − 1

]
eimθ. At high

energy, many m terms contribute to the sum, so that we take its contin-
uum limit, which amounts to integrate over continuous values of the clas-
sical angular momentum m = kb. As forward scattering is excluded form
Eq.(3.4.45), it is enough to apply the saddle point approximation to the
resulting integral[79]:∑

m

ei(2δm+mθ) ≈ ei(2δm0+m0θ) ×
∫
dm e

i d
2δ

dm2

˛̨̨
0
(m−m0)2

. (3.4.46)

Here m0 is the stationary point, which solves the saddle point equation:

dδm
dm

∣∣∣∣
m0

− θ

2
= 0. (3.4.47)
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Derivation of this equation, once more, provides a relation between the second
derivative of the phase shift δm and the the angle θ

d2δm
dm2

− 1

2

dθ

dm
= 0. (3.4.48)

An analytical continuation in the complex m plane allows us to make the
integral converge. Gaussian integration in Eq.(3.4.46) implies that∣∣∣∣∣∑

m

fm(θ)

∣∣∣∣∣
2

≈ π

∣∣∣∣dmdθ
∣∣∣∣ , (3.4.49)

thus yielding the expected result:

1

τ
∼ vF

k

1

A

∫
dθ(1− cos θ)

∣∣∣∣dmdθ
∣∣∣∣

∼ vF
k

1

A

∫
dm

θ2

2
∼ vF

A

∫
db θ2(b) . (3.4.50)

In the last equality the conservation of the angular momentum m = kb
has been exploited, together with the remark that the scattering angle only
depends on b in the classical diffusion. This reproduces the desired high
energy behavior.

The analysis of Eq.(3.3.40) provides a similar conclusion. The quantity
δm+1 − δm−1, appearing as the argument of the cosine, is ≈ 2 dδm/dm. At
large incoming energies, δm ≈ (2m + 1)π/2, which is consistent with the
asymptotic form of the wavefunction given in Eq.(3.3). To lowest order we
get, according to Eq.(3.4.47),

sin2 δm − cos (δm+1 − δm−1) sin δm+1 sin δm−1 ≈
θ2

2
, (3.4.51)

so that we recover again

1

τ
≈ vF
kA

∫
dm

θ2

2
≈ vF

A

∫
db θ(b)2 . (3.4.52)

3.5 Conclusions
We have shown in Section II how the two dimensional Dirac equation in
curved space emerges at the simplest boundary with non trivial metric, the
surface of a sphere. The metric enters through the spin connection, which
reflects the properties of the internal spin under parallel transport along the
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surface[100]. The spin connection reflects a quantum feature of the electrons,
and cannot be inferred from solely classical arguments. The spin connection
leads to a finite Berry phase when the electron is transported around a closed
geodesic. A manifestation of this effect is the quantization of the total angular
momentum in half integer units.

The model that we have studied leads to simple analytical expressions
of the energies and wavefunctions of the boundary states. They can be
used as a zeroth approximation to situations close to spherical symmetry, or
where an isotropic electronic structure can be obtained by rescaling a length.
We find that the corrections to the two dimensional Dirac equation depend
exponentially on R/Λ ≡ R∆/~vF [1].

The model describes external surfaces of mesoscopic crystals and internal
voids in bulk systems. In the case of a small void, we find that two doublets
at a finite distance of the Dirac energy appear for radii R & 2/Λ. These
voids will act as molecules embedded into the bulk material. The interaction
energy of electrons localized inside the voids scales as the level separation,
Eint ≈ e2/(εR), where ε is the dielectric constant of the topological insulator.
At temperatures below this scale, voids with an odd number of electrons will
give rise to magnetic moments. The RKKY interaction between moments
at different vacancies should decay exponentially, JRKKY (~r−~r′) ∼ e−|~r−~r

′|/Λ.
Hence, small vacancies might give rise to a paramagnetic susceptibility in
topological insulators. If they are within a distance d ∼ Λ from the surface,
these local moments will hybridize with the surface states, leading to the
Kondo effect[34; 65].

We have analyzed the scattering of Dirac fermions by surface corrugations
which induce a non trivial curvature in the quantum limit, kF ` . 1. We find
that the resistivity due to a finite concentration of bumps, nb, vanishes as
k2
F for small kF , due to a combination of a density of states factor, which

goes as kF , and a scattering time which increases as k−3
F . By comparison, the

scattering time in the classical regime[24] (kF ` → ∞) is independent of kF ,
and ρ ∼ k−1

F . The wave nature of the quasiparticles allow them to diffract
around the bump, making it effectively transparent for long wavelengths,
kF `� 1. The non trivial curvature induces quantum reseonances for kF ` ∼ 1
and an aspect ratio h/` & 0.2.



Chapter 4

Electron-Phonon Interaction at
the surface of a Topological
Insulator

In this Chapter the interaction of surface states with Rayleigh phonons, i.e.
surface phonons, for Bi2Te3 is treated by means of perturbation theory. Start-
ing from the expression of the electron polarizator for a 2D Dirac gas [140],
screening effects are treated in RPA approximation. The phonon dumping
and the correction to frequency of surface phonons is calculated and the
comparison with a non relativistic 2DEG is done. An analysis of surface
plasmons and possible superconductive instability is done in the conclusion
of the chapter. It is found that for physical values of the Fermi momentum
such an instability can occurr, but the critical temperature is too small to be
experimentally relevant.

4.1 Stress through minimal coupling
We will study the electron-phonon interaction on the surface of a 3D topolog-
ical insulators with a single Dirac cone at the Γ point. Low energy effective
theory of electrons are described in k · p approximation using symmetries
of the lattice [146; 58; 114]. A linearized version of this model, suitable for
calculations, is the massive Dirac equation in 3+1 dimensions [107]

H0 = γ̂0∆ + ~vF γ̂iki (4.1.1)

where vF is the Fermi velocity and the matrices γ̂a are given in terms of Pauli
matrices by γ̂0 = I2×2 ⊗ τz, γ̂1 = σx ⊗ τx, γ̂2 = −σy ⊗ τx γ̂3 = σz ⊗ τx. Here
σa and τb denote matrices in the spin and even-odd orbital parity spaces,

78
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respectively. The Hamiltonian (4.1.1) can describe both a 3D topological
insulator, provided that the mass has a domain wall singularity where it
changes sign, and also topological nodal semimetals[14]. The electron-phonon
interaction is a linear combination of the components of the strain tensor,
through generic 4× 4 matrices Aij, to be determined so that the interaction
is compatible with the symmetries of the system as discussed in 4.2

Hel−ph = Aij∂iUj (4.1.2)

where U is the displacement field operator, to be determined through the
equations of elasticity. The high symmetry of the Γ point implies that the
only possible coupling to the strain tensor is through the identity matrix (see
appendix 4.2), i.e. Hel−ph = I4×4∂iUi. At zero energy the quantum state
is doubly degenerate, and the projection of the bulk Hamiltonian (4.1.1) on
this subspace is the Hamiltonian for surface states

H = H0 +Hel−ph (4.1.3)

where H0 = −i~vFσ · ∇ is the free Hamiltonian in 2+1 dimensions, and
Hel−ph = I2×2Λ(q)∂iUi where q is the modulus of the phonon momentum.
The constant Λ(q) comes from the matrix element of the operator Hel−ph
between the zero energy states

Λ(q) =

∫ ∞
0

dze−2∆zφq(z) (4.1.4)

here φq(z) takes into account the behavior of phonons in the direction orthog-
onal to the surface, and thus will be determined once the Rayleigh modes
are analyzed. In second quantization[121; 40]

Hel−ph(q, ω) = αΛ
∑
q,Λ,ω

〈k + q|∇ ·U |k〉 c†k+qck + h.c. (4.1.5)

here α = 35eV is a constant characterizing the electron-phonon interaction[40;
61], and |k, s〉 is the surface state

|k, s〉 =
1√
2

(
1

seiθk

)
eik·r (4.1.6)

The displacement field operator is

U(r, t) =

√
~

2ρMω

∑
i

ui(r)bie
−iωit + h.c. (4.1.7)
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Here ui(r) is the displacement vector and i indicates the type of phonons:
longitudinal, transverse or Rayileigh mode. In the following I will analyze
the contribution of this last type of phonons, so this index will not appear
anymore. The displacement field operator has dimensions of a length [U ] =
[L], thus the displacement vector u has the dimensions [L]−3/2.

4.2 Symmetry Analysis in the Continuum limit
The electron-phonon interaction (4.1.2) is built contracting the strain tensor

uij =
1

2
(∂iuj + ∂jui)

with a 4 × 4 matrix Aij. TI with surface states close to the Γ point and
graphene [88] are two remarkable examples where this approach is helpful.
Indeed, the symmetry groups constraining the shape of Hel−ph are the little
groups [86] preserving the wave vector of the electrons and phonons. Long-
wavelength phonons have momenta close to the Γ point and thus the little
group for a generic q is the space group of the crystal. Symmetries of the
lattice then can simplify the shape of the dynamical matrix, but since elec-
trons lying close to the Fermi level, on the other side, have usually a trivial
little group it is not possible in general to simplify the electron-phonon in-
teraction following the same principle. In the case treated in this chapter
the Dirac cone is at the Γ point and in the long wavelength limit the little
group for surface states coincides with the space group of the lattice, as for
the phonons. In the case of Bi2Se3 the space group G = {C6, I, T } has been
described in (1.6.5). Starting from the Dirac matrices in the Hamiltonian
(4.1.1)

α0 = iI⊗ τz
αi = σi ⊗ τx

(4.2.8)

it’s possible to write a basis in the whole space of 4 × 4 matrices. In the
following combinations of these matrices will be studied so that they preserve
all the operations of G. The matrix α5 is

α5 = iα0α1α2α3 = −I⊗ τy (4.2.9)

The 4 matrices αµα5 are then

α0α5 = I⊗ τx
αiα5 = −iσi ⊗ τz

(4.2.10)
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The 6 matrices Σµν = i/2[αµ, αν ] are (in the following i < j)

Σ0i = −iσi ⊗ τy
Σij = εijkσk ⊗ I

(4.2.11)

These 15 matrices, plus the identity matrix, make a basis in the space of
4 × 4 matrices {Γi} explicitly written in table 4.1. Note that immaginary
units have been added to make all the matrices hermitian, for calculation
convenience. It is possible to show that the only matrices built from this set

Matrix Cn T
Γ1 I Y Y
Γ2 iγ0 Y Y
Γ3 γ1

Γ4 γ2

Γ5 γ3 Y
Γ6 γ5 Y
Γ7 γ0γ5 Y Y
Γ8 iγ1γ5

Γ9 iγ2γ5

Γ10 iγ3γ5 Y
Γ11 iΣ01 Y
Γ12 iΣ02 Y
Γ13 iΣ03 Y Y
Γ14 Σ12 Y
Γ15 Σ13

Γ16 Σ23

Table 4.1: Basis in the space of 4× 4 matrices

that are hermitian and that do not break time reversal are only the following
4

α0α5, iΣ0i. (4.2.12)

The most general constant perturbation, i.e. not depending on phonon and
electron momenta that preserves time reversal, must be a linear combination
of these 4 matrices. From table 4.1 it is possible to extract 4 vectors
From those 4 vectors it is possible to write 7 bilinears that are second rank
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TR I
a = (γ1, γ2, γ3) -1 -1
b = (Σ23,Σ31,Σ12) -1 +1
p = (iΣ01, iΣ02, iΣ03) +1 -1
b′ = (iγ1γ5, iγ2γ5, iγ3γ5) -1 +1

tensors respecting time reversal

a2 = aiaj

b2 = bibj

b
′2 = b′ib

′
j

p2 = pipj

a⊗ b = aibj

b⊗ b′ = bib
′
j

a⊗ b′ = aib
′
j

(4.2.13)

of those the terms a⊗b and a⊗b′ break inversion symmetry, so five bilinears
remain

a2 = aiaj

b2 = bibj

b
′2 = b′ib

′
j

p2 = pipj

b⊗ b′ = bib
′
j

(4.2.14)

The four squares are all the same, since

ΣµνΣµη = γνγη

(iγµγ5)(iγνγ5) = γµγν
(4.2.15)

so we are left only with two independent bilinears

a2 = aiaj

b⊗ b′ = bib
′
j

(4.2.16)

Explicitly the components of these two tensors are

aiaj = (σi ⊗ τx)(σj ⊗ τx) = δijI⊗ I + iεijkσk ⊗ I
bib
′
j = (σi ⊗ I)(σj ⊗ τz) = δijI⊗ τz + iεijkσk ⊗ τz

(4.2.17)
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These tensors are made up of two pieces: the trace, that is respectively the
identity matrix and the matrix for the mass term iγ0, plus an antisymmetric-
antihermitian part. Thus the strain tensor in the fully isotropical model will
couple only to the traces of these two tensors. The coupling to the mass
term could be neglected since it only provides corrections to the localization
lengths of the boundary states.

4.3 Surface waves
The displacement vector in (4.1.7) in general is

u(r) = u(z)
ei(q·r−ωt)√
A

(4.3.18)

where A is the area of the sample. In the case of Rayleigh modes it can be
shown that the displacement vector is in the plane though the direction of
propagation perpendicular to the surface. Thus the index t is really a part
of the displacement vector that takes into account the out of plane part of
the displacement. Note that only the longitudinal part of the Rayleigh wave
enters into the definition of the electron-phonon coupling. This could be
explained, considering that the longitudinal and transverse part of the wave
could be written in term of a 4-potential (φl,χ) as

uL(r) = ∇φl
uT (r) = ∇× χ

(4.3.19)

Since the electtron-phonon coupling is proportional to the divergenge of u =
uL + uT , then it is clear that only uL contributes to the coupling. In order
to have a mode polarized in the plane identified but the normal to the plane
and the direction of the motion, the transverse part is χ = êtφt (where
êt ⊥ êq & êt ⊥ êz). The vector u(z), expressed through two scalar fields
φl(z) and φt(z), then is [60]

u(z) =

(
iqφl −

dφt
dz

)
êq +

(
dφl
dz

+ iqφt

)
êz (4.3.20)

where the functions φl,t are

φl,t = al,te
−iql,tz + bl,te

iql,tz. (4.3.21)

Here the dispersion relation is

ql,t =

√
ω2

c2
l,t

− q2. (4.3.22)
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The Rayleigh mode has a linear dispersion relation ω = cRq, with the velocity
related to the transverse phonon velocity through a dimensionless constant
ξ < 1 determined through the equation of elasticity cR = ξct. With these
definitions the decay lengths for the longitudinal and the transverse modes
could be defined in function of the phonon momentum k as ql,t = iλl,tq, where
two dimensionless parameters have been introduced

λt =
√

1− ξ2, λl =
√

1− γ2
0ξ

2. (4.3.23)

Here γ0 = ct/cl. With this choice the coefficients al,t = 0, and the only
coefficients bl,t remain to be computed using the equation of propagation of
elastic waves, as done in Landau Lifshitz. The solutions for the longitudinal
and the transversal part are

φl =

√
C

q
e−λlqz, φt =

√
C

q
e−λtqz. (4.3.24)

∂iui = −

√
C

q
q2(1− λ2

l )e
−λlqz (4.3.25)

The coefficient C is
1

C
= λl − λt +

(λl − λt)2

2λ2
l λt

(4.3.26)

Note that the matrix element between the potential (4.1.5) and the expo-
nentially decaying electronic modes involves the gap too, since the matrix
element is proportional to the integral (~ = vF = 1), determining the con-
stant Λ

Λ = 2∆

∫ ∞
0

dze−2∆z−λl,tqz =
2∆

2∆ + λl,t|q|
(4.3.27)

With this last observation the electron phonon coupling could written finally
as

∇ · u = −

√
C

q
q2(1− λ2

l )
2∆

2∆ + λl|q|
(4.3.28)

The values of the dimensionless constants are λl = 0.85 and λt = 0.39, and
are fixed by the values of the velocities for longitudinal and transverse modes.
Considering the definition of λl then the above expression becomes

Hel−ph(q, ω) =
α√
A

√
C

q

(
ω

(0)
q

cl

)2√
~

2ρMω
Λ(q)

∑
k

c†k+qck + h.c. (4.3.29)

The constant α has the dimension of an energy, and it is introduced in
[62], the factor 1/

√
A comes from equation (4.3.18) and ω

(0)
q = cRq is the

dispersion for Rayleigh phonons with cR = ξct being their velocity.
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4.4 Electron polarizator
In the following the effects of the electron-phonon interaction on the phonon
spectrum is considered. The central object to calculate the correction to
the dispersion relation of phonons and their scattering is the polarization
P (k, νn), whose expression at finite temperature is

P (q, νn) = −2

∫
d2k

(2π)2

n0
k+q − n0

k

i~νn − (εk+q − εk)

[
1− ss′k + q sinφ

|k + q|

]
(4.4.30)

At zero temperature the polarization is written as a P0 term, having µ = 0,
and a term ∆P depending on the chemical potential [140]

P (k, ω) = P0 + ∆P. (4.4.31)

Introducing the density of states at the Fermi level

NF =
kF

2π~vF
(4.4.32)

and the dimensionless variables ω̃ = ω/2vFkF , q̃ = q/2kF , the two terms in
(4.4.31) can be written as

P0 = −iπ 1

16π~
q2√

ω2 − v2
F q

2
= −iπ

4
NF

q̃2√
ω̃2 − q̃2

(4.4.33)

and the term depending on the finite chemical ponential is

∆P = −NF

{
1− 1

4

q̃2√
ω̃2 − q̃2

×

×
{
G

(
ω̃ + 1

q̃

)
−Θ

(
1− ω̃
q̃
− 1

)[
G

(
1− ω̃
q̃

)
− iπ

]
+

−Θ

(
ω̃ − 1

q̃
− 1

)
G

(
ω̃ − 1

q̃

)}} (4.4.34)

Here the function G(x) is

G(x) = x
√
x2 − 1− ln(x+

√
x2 − 1) (4.4.35)

Note that in the static limit the polarization has no imaginary part. A better
estimation of the phonon dump could be obtained through the imaginary part
of the polarization in the RPA approximation

PRPA =
P (q, ω)

1− vqP (q, ω)
(4.4.36)
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where vq = e2/ε0q is the 2D Coulomb interaction. In the limit ω → 0 at the
lowest non null order in ω the real and the imaginary part of the polarization
are

ReP (q, ω) = −NF

ImP (q, ω) = NF ω̃

√
1

q̃2
− 1

(4.4.37)

In the RPA approximation the imaginary part of the polarization then reads

Im(PRPA) =
Im[P (q, ω)]

(1− vqRe[P (q, ω)])2 + Im[P (q, ω)]2
(4.4.38)

where it has been assumed k < 2kF . Thus in the limit ω → 0 with q � 2kF
the imaginary part of polarization then is, considering that the limit ~ω �
~vF q � µ is considered

Im[PRPA](q, ω) =


4πNF
αFS

ω̃q̃ for q < αFSkF
2π

Im[P (q, ω)] for q > αFSkF
2π

(4.4.39)

Here the effective fine structure constant αFS has been introduced

αFS =
e2

ε0~vF
= 0.1. (4.4.40)

In contrast with electrodynamics, in the definition of αFS the Fermi velocity
appears, and no the light velocity, and a reasonable estimation of the dielec-
tric constant ε0 ≈ 50 [133; 43]. This explains the difference in the order of
magnitude of the two constants. The phonons decay rate Γq is obtained mul-
tiplying the imaginary part of the polarization for the square of the matrix
element of the electron- phonon interaction in (4.3.29) and multiplying per
A. In the limit k � pF thus the decay rate is obtained using (4.4.39)

Γq =


α2C

4α2
FSρM c

2
l

(ω
(0)
q )4

v2
F c

2
l kF

Λ(q)2 for q < αFSkF
2π

,

1
16

µ
~2v2

F

2~α2Cc2R
ρM c

4
l vF

(ω
(0)
q )2Λ(q)2 for q > αFSkF

2π

(4.4.41)

These linewidths vanish as q → 0, so that the Rayleigh phonons are well
defined at small wave vectors. The quality factor, measuring the broadening
of the phonon energy, turns out to be

Q =
~ωq
Γq

=


α2
FS

πγK(kF )

(
2kF
q

)3
1

Λ2(q)
for q < αFSkF

2π
,

16~vF
kF

ρM c
4
l vF

2α2Cc3R

1
q

1
Λ2(q)

for q > αFSkF
2π

(4.4.42)
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Figure 4.1: Quality factor Q as a function of momentum k for different
values of the Fermi wave vector: in black kF = 0.1 nm−1, in dashed red
kF = 0.2 nm−1, in dashed dotted green kF = 0.5 nm−1.

where γ = cR/vF ≈ 3 × 10−3. Here the dimensionless quantity K(kF ) has
been introduced

K(kF ) =
2α2Cξ2c2

tk
2
F

~ρMc4
l πvF

= 2.35 nm2k2
F (4.4.43)

The value of the constants used in the above equation for Bi2Te3 are[40]:
α = 35eV , ρM = 7860Kg/m3, pF ≈ 102 nm−1, C = 1.20, cl = 2800m/s,
ct = 1600m/s, vF = 4.36 × 105m/s and ξ = 0.89. The quality factor then
depends on the third power of q, through the constant K(kF ) and the ratio
γ = ξct/vF ≈ 3× 10−3 between ξct, i.e. the velocity of Rayleigh waves, and
the Fermi velocity vF .

4.4.1 Static limit and renormalization of Rayleigh phonons
frequency

In order to see effects originated from the Fermi surface such as Kohn anomaly
a different limit should be analyzed, i.e. considering a finite wave vector
in contrast with what done in the previous calculation. The real part of
polarization in the static limit ω → 0 is

P (q, 0) = − kF
2π~vF

+ Θ(q − 2kF )
q

8π~vF
G<

(
2kF
q

)
(4.4.44)
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where in this case it has not been performed the approximation k � 2pF . In
the RPA approximation the polarization in the static limit is

PRPA(k, 0) =
P (q, 0)

1− vqP (q, 0)
= −

4kF − kΘ(q − 2kF )G<

(
2kF
q

)
8~vF + e2

2κ0q

{
4kF − qΘ(q − 2kF )G<

(
2kF
q

)}
(4.4.45)

Thus Khon anomaly shows up in the quality factor as a change of its depen-

Figure 4.2: Plot of the function F (x).

dence on the phonon momentum. The correction to the phonon frequency,
∆ωq = −|M(q)|2P (q, 0)/~, is

∆ωq = −ω(0)
q K(kF ) Λ2(q) F

(
q

2kF

)
. (4.4.46)

The function F (x) is

F (x) = x2
2
x
−Θ(x− 1)G<

(
1
x

)
8 + 2αFS

{
2
x
−Θ(x− 1)G<

(
1
x

)} (4.4.47)

and it is plotted in fig. 4.2. The function F (x) goes like x/4 for (αFS/4) <
x < 1 and it has the following limit for x > 1

F (x) ≈ x2 π

16 + 2αFSπ
(4.4.48)

The correction to the phonon frequencies

ω = ω(0)
q

[
1−K(kF )Λ2(q)F (q̃)

]
(4.4.49)

is plotted in fig. 4.3(a). In narrow gap TIs, the decay of the electronic surface



CHAPTER 4. ELECTRON-PHONON INTERACTION IN TI 89

(a)

(b)

Figure 4.3: a)The dispersion relation eq.(4.4.49) as a function of wave
vector k. The blue curve shows the phonon dispersion relation for Λ(q) ≈ 1.
b) Derivative of the dispersion relation .(4.4.49) showing a singularity in the
second derivative.

states could be comparable to the decay of the Rayleigh modes, leading to
Λ(q) ≈ 1. In that case, the softening of the modes shown in Fig. 4.3(a)
suggests a lattice instability at some finite wavevector, qc. Nte that, for
qc ≈ kF a scalar potential can strongly reduce the density of states at the
Fermi energy, due to the formation of scalar potential superlattice (see refs.
[108; 48; 144] for similar effects in graphene). The density of states determines
the electronic polarizability. The reduction of the polarizability implies that
the renormalization of the Rayleigh modes will be arrested. Hence we expect
that in narrow gap TIs, the Rayleigh waves at momenta comparable to kF
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will be unstable, leading to the formation of a superlattice, and to a strong
reduction of the density of states of surface electronic modes at the Fermi
level. This effect should be measurable by STM experiments [144], and it
will also modify the electronic transport properties.

4.5 Comparison with 2DEG
The real and imaginary part of the polarization P (q, ω) for a 2DEG are

Re[P (q, ω)] = −NF

[
1 +

kF
q

(
sign(ν−)Θ(ν2

− − 1)
√
ν2
− − 1− sign(ν+)Θ(ν2

+ − 1)
√
ν2

+ − 1

)]
Im[P (q, ω)] = −NF

kF
q

[
Θ(1− ν2

−)
√

1− ν2
− −Θ(1− ν2

+)
√

1− ν2
+

]
(4.5.50)

here the density of states at the Fermi level

NF =
m

2π~2
=

kF
2π~vF

, vF =
~kF
m

(4.5.51)

and the frequency dependent quantities ν± are

ν± =
ω

qvF
± q

2kF
. (4.5.52)

In the static limit ω → 0 the ν± are both equal to q = q/2kF , thus the
imaginary part vanishes and the real part becomes

Re[P (q, 0)] = −NF

1− 2kF
q

Θ(q2 − 4k2
F )

√(
q

2kF

)2

− 1

 (4.5.53)

The static polarization for the 2DEG is continuous at 2kF , as shown on fig.
(4.4(a)), but its first derivative is not as shown in fig. (4.4(b)). The right
limit of the derivative of the static polarization goes like

lim
q→2k+

F

dP [q, 0]

dq
∝ 1√

q2 − 4k2
F

(4.5.54)

In RPA approximation the static polarization (4.5.53) becomes

PRPA[q, 0] =
P [q, 0]

1− vqP [q, 0]
= −NF

1

q̃

q̃ −Θ(q̃2 − 1)
√
q̃2 − 1

1 + αFS
q̃

1
q̃
[q̃ −Θ(q̃2 − 1)

√
q̃2 − 1]

,

(4.5.55)
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where as in the draft q̃ = q/2kF . The screening of Rayleigh phonons due to
el-ph interaction has the same shape as for surface states of TI

ω(q) = ω(0)(q)

[
1− K(kF )

4
Λ(q)2F

(
q

2kF

)]
(4.5.56)

where K(kF ) = 2.35nm k2
F and Λ(q) is the structure factor, both supposed

to be valid for the 2DEG too. The explicit form of the function F (x) is the
only difference between the two cases

F (x) =
x−Θ(x2 − 1)

√
x2 − 1

1 + αFS
x2 [x−Θ(x2 − 1)

√
x2 − 1]

(4.5.57)

The discontinuity in the first derivative of the polarization reflects in a dis-
continuity of the first derivative of the frequency as shown in fig. (4.5)

(a)

(b)

Figure 4.4: Static polarization of the 2DEG
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Figure 4.5: Derivative of the phonon frequency (4.5.56)

4.6 Electron-electron interaction
Both Coulomb interaction and phonon mediated interaction, obtained mul-
tiplying the square of the electron-phonon coupling M(q) (vertex correction,
where Migdal theorem is supposed to hold [87]) per the phonon propagator,
contribute to the electron-electron interaction

V (q, ω) = vq + |M(k)|2 1

~
D0(ω) (4.6.58)

where the on-shell value of ω(k) has been used for Rayleigh modes, and
the constant K(pF ) is in (4.4.43). We finally analyze the effective electron-
electron interaction mediated by Rayleigh waves. In Fig. 4.6 the static
interaction V (q/2kF ) multiplied for the density of states at the Fermi level
ρ(EF ) = kF/2π~vF is depicted. In order to discuss superconductivity it is
relevant the parameter λ

λ =
2ρ(EF )

π

∫ π

0

dθ V

(
2kF sin

θ

2
, 0

)
cos2 θ

2
. (4.6.59)

In Fig. 4.7 the values of λ as a function of the Fermi level is reported.
At a relatively small value of kF there is a cross over toward a possible
superconductive state in which λ < 0. For these values of kF the Coulomb
repulsion is smaller that the phonon mediated attractive interaction

e2

ε0kF
� α2C(kFa)3

Mu.c.c2
sk

2
F

. (4.6.60)

In the above formula a and Mu.c. are respectively the lattice constant and
the mass in the unit cell, cs is the velocity of sound. In this regime a rough
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Figure 4.6: The effective interaction in static limit V (q, ω) for the static
dielectric constant ε0 ≈ 50 for different values of kF

Figure 4.7: The coefficient λ as a function of the Fermi mometnum kF .

estimation of λ is the product of Vph with the density of states

λ ≈ α2C(kFa)3

Mu.c.c2
sµ

. (4.6.61)

This estimation is consistent with the data in fig. 4.7. Indeed, for µ ≈ 0.1eV
it follows that kFa ≈ 0.1 and the above formula gives λ ≈ 10−2.

4.6.1 Static dielectric function

In this section the polarization in RPA approximation (4.4.36) is considered
when the interaction then reads in this case

PRPA(q, ω) =
P (q, ω)

1− V (q, ω)P (q, ω)
(4.6.62)

The contribution of the last interaction is . I will now write explicitly the
polarization in the static limit ω → 0, so to compare its expression with the
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one used till now in our work. In the static limit P (k, 0) is

P (q, 0) = − kF
2π~vF

+ Θ(q − 2kF )
q

8π~vF
G<

(
2kF
q

)
(4.6.63)

substituting this expression in the RPA we have

PRPA(q, 0) = −4NF

2− q̃θ(q̃ − 1)G<

(
1
q̃

)
8 + [2αFS +K(kF )2ξctkF q̃3D0(0)]

{
2
q̃
− θ(q̃ − 1)G<

(
1
q̃

)}
(4.6.64)

In the static limitD0(0) = −1/ω
(0)
q = −1/ξctq, and thus the above expression

simplifies as

PRPA(q, 0) = −4NF q̃

2
q̃
− θ(q̃ − 1)G<

(
1
q̃

)
8 + [2αFS −K(pF )πq̃2]

{
2
q̃
− θ(q̃ − 1)G<

(
1
q̃

)}
(4.6.65)

This has been calculated considering the unperturbed dispersion for Rayleigh
phonons ω(0)

q = ξctq. We can also use our result for the dispersion relation
(4.4.49). The polarization then gets a correction in the denominator

PRPA(q, 0) = −4NF q̃

2
q̃
− θ(q̃ − 1)G<

(
1
q̃

)
8 + [2αFS −K(kF )q̃2(1−K(kF )F (q̃))2]

{
2
q̃
− θ(q̃ − 1)G<

(
1
q̃

)}
(4.6.66)

The full dielectric constant then could be calculated, in static limit

ε(q, 0) = ε0 + V (q, 0)PRPA(q, 0) =

= ε0 −
[2αFS −K(kF )q̃2(1−K(kF )F (q̃))2]

{
2
q̃
− θ(q̃ − 1)G<

(
1
q̃

)}
8 + [2αFS −K(kF )q̃2(1−K(kF )F (q̃))2]

{
2
q̃
− θ(q̃ − 1)G<

(
1
q̃

)}
(4.6.67)

4.7 Dynamic dielectric function and plasmons
To determine the plasmon frequency ωp(k) a different approximation for the
polarization could be used. A stable solution requires ImP (k, ω) = 0, and
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Figure 4.8: Correction to the dielectric function versus momentum k.

the limits k → 0 and ~ω � µ could be considered. In these approximations
the polarization reduces to

P (k, ω) =
vFpF
4π~

k2

ω2
=

pF
π~vF

x2

y2
(4.7.68)

where the adimensional variables x = k/2pF and y = ω/vFpF have been
introduced. The plasmon frequency then is defined through the equation

ε0 = V (k, ωp)P (k, ωp) (4.7.69)

where for later convenience the potential (4.6.58) is written synthetically as

V (k, ω) =
~vFπ
pF

1

x
g(x, y). (4.7.70)

Here the function g(x, y) has been introduced

g(x, y) = αFS +K(pF )ξ
ct
vF
x3(1−K(pF )F (x))D0(y) (4.7.71)

Introducing (4.7.68) and (4.7.70) in (4.7.69), the equation defining the adi-
mensional variable y is obtained

y4− (f 2
1 (x) + y2

0(x))y2 + y2
0(x)f 2

1 (x)

[
1− 1

4αFSγ2
K(pF )f 2

1 (x)

]
= 0. (4.7.72)

In above eqaution the frequency y0(x) has been defined, being the plasmon
frequency in absence of electron-phonon interaction

y2
0(x) =

αFS
ε0

x (4.7.73)
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Figure 4.9: Ratio y(x)/y0(x) as a function of k.

and the function f1(x) has been introduced for simplicity

f1(x) = 2γx(1−K(pF )F (x)). (4.7.74)

As in previous sections the parameter γ is the ratio between the Rayleigh
wave velocity and the Fermi velocity. Equation (4.7.72) has one real positive
solution

y2(x) =
y2

0(x)

2

1 +
f 2

1 (x)

y2
0(x)

+

√(
1− f 2

1 (x)

y2
0(x)

)2

+
K(pF )

αFSγ2

f 2
1 (x)

y2
0(x)

 (4.7.75)

In figure 4.9 the ratio y(x)/y0(x) is reported. The plasmon frequency then
takes a big correction till k0, where the correction coming from phonons
disappears and the phonon-free result is gained again. The correction to the
plasmon frequency results to be dependent of the Fermi wave vector. Indeed,
the ratio f1(x)/y0(x) is independent of pF , then the only possible dependence
is contained in K(pF ) ∝ p2

F . Thus y2(x)/y2
0(x) goes linearly in pF , i.e. the

plasmon frequency ω(k) goes linearly in pF .

4.8 Existence of surface phonons in slab geom-
etry

I will consider now the problem of a slab with elastic constants λ1, µ1, with
thickness h, rigidly attached to a seminfinite medium with constants λ2, µ2

occupying the region z < 0. Boundary conditions are given by
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• free surface condition at z = h

σ1 · nz|z=h = 0

• continuity of stress at z = 0

σ1 · nz|z=0 = σ2 · nz|z=0

• continuity of displacement at z = 0

u1|z=0 = u2|z=0

Both the slab and the bulk are considered homogeneous elastic media de-
scribed by the stress tensor

σij =
E

1 + σ

(
uij +

σ

1− 2σ
ullδij

)
= 2ρ[c2

tuij + (c2
l − 2c2

t )ullδij]. (4.8.76)

In the geometry described above two different polarization are possible
for surface phonons: Rayleigh modes, polarized in the xz plane, and the
Love waves, polarized in the xy plane. The former mode is analyzed in the
following subsection. A discussion on Love could be found for example in
Ref.[113]

4.8.1 Rayleigh modes

To write the the general ansatz on the displacement vector i will introduce
the function φ(r) and the vector function χ(r) so that the longitudinal and
the transverse part of u are

uL(r) = ∇φ
uT (r) = ∇× χ

(4.8.77)

The function φ and each component of χ satisfy the wave equation with
velocity of propagation cl and ct respectively. In the slab the most general
form of this functions giving surface waves polarized in the xz plane are

φ = (A sinhλlz +B coshλlz)ei(kx−ωt)

χ = êy(C sinhλtz +D coshλtz)ei(kx−ωt)
(4.8.78)

The displacement vector then is

uIx(r) = ∂xφ− ∂zχy = [ik(A sinhλlz +B coshλlz)− λt(C coshλtz +D sinhλtz)]ei(kx−ωt)

uIz(r) = ∂zφ+ ∂xχy = [λl(A coshλlz +B sinhλlz) + ik(C sinhλtz +D coshλtz)]ei(kx−ωt)

(4.8.79)
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The components of the strain tensor we need to write the boundary conditions
are

uxz =
1

2
{ik[λl(A coshλlz +B sinhλlz) + ik(C sinhλtz +D coshλtz)]+

[ikλl(A coshλlz +B sinhλlz)− λ2
t (C sinhλtz +D coshλtz)]}ei(kx−ωt)

uxx = ik[ik(A sinhλlz +B coshλlz)− λt(C coshλtz +D sinhλtz)]ei(kx−ωt)

uzz = [λ2
l (A sinhλlz +B coshλlz) + ikλt(C coshλtz +D sinhλtz)]ei(kx−ωt)

(4.8.80)

Similarly for the bulk the functions φ and χ are

φ = Eeλlzei(kx−ωt)

χ = êyFe
λtzei(kx−ωt)

(4.8.81)

The displacement vector is

ux = (ikEeλlz − λtFeλtz)ei(kx−ωt)

uz = (λlEe
λlz + ikFeλtz)ei(kx−ωt)

(4.8.82)

and the strain tensor is

uxx = −(k2Eeλlz + ikλtFe
λtz)ei(kx−ωt)

uzz = (λ2
lEe

λlz + ikλtλtFe
λtz)ei(kx−ωt)

uxz =
1

2
[ik(λlEe

λlz + ikFeλtz) + (ikλlEe
λlz − λ2

tFe
λtz)]

(4.8.83)

The boundary conditions written explicitly are

2ikλl1(A coshλl1h+B sinhλl1h)− (k2 + λ2
t )(C sinhλt1h+D coshλt1h) = 0

[c2
l1λ

2
l1 − (c2

l1 − 2c2
t1)k2](A sinhλl1h+B coshλl1h) + 2ikλt1c

2
t1(C coshλt1h+D sinhλt1h) = 0(

ct1
ct2

)2

[2ikλl1A− (k2 + λ2
t1)D] = [2ikλl2E − (k2 + λ2

t2)F ]

[c2
l1λ

2
l1 − (c2

l1 − 2c2
t1)k2]B + 2ikλt1c

2
t1C = [c2

l2λ
2
l2 − (c2

l2 − 2c2
t2)k2]E + 2ikλt1c

2
t1F

ikB − λt1C = ikE − λt2F
λl1A+ ikD = λl2E + ikF

(4.8.84)

The solution of this system of 6 equation in the six unknowns given by the
coefficients contained in the definition of the displacement vector is possible,
as usual, if the determinant of the coefficient matrix is null. In principle this
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equation defines the dispersion relation for the surface waves. In this case,
the equation will be of the 12th degree, and some simplification is needed to
understand physics in a faster and clearer way. The first step is to consider
a thin slab, whose thickness is negligible compared to the bulk material
one. This limit i call "ultra-thin" since it consist in taking only the zero-th
approximation for displacement vector in the slab (approximation possible
since there is a combination of hyperbolic functions in the definition of u in
the slab). In this approximation the system becomes

2ikλl1A− (k2 + λ2
t )D = 0

[c2
l1λ

2
l1 − (c2

l1 − 2c2
t1)k2]B + 2ikλt1c

2
t1C = 0(

ct1
ct2

)2

[2ikλl1A− (k2 + λ2
t1)D] = [2ikλl2E − (k2 + λ2

t2)F ]

[c2
l1λ

2
l1 − (c2

l1 − 2c2
t1)k2]B + 2ikλt1c

2
t1C = [c2

l2λ
2
l2 − (c2

l2 − 2c2
t2)k2]E + 2ikλt1c

2
t1F

ikB − λt1C = ikE − λt2F
λl1A+ ikD = λl2E + ikF

(4.8.85)

The first two equation coincide with the first member of the third and the
fourth equation respectively, giving a further simplification to the system

2ikλl1A− (k2 + λ2
t )D = 0

[c2
l1λ

2
l1 − (c2

l1 − 2c2
t1)k2]B + 2ikλt1c

2
t1C = 0

[2ikλl2E − (k2 + λ2
t2)F ] = 0

[c2
l2λ

2
l2 − (c2

l2 − 2c2
t2)k2]E + 2ikλt1c

2
t1F = 0

ikB − λt1C = ikE − λt2F
λl1A+ ikD = λl2E + ikF

(4.8.86)

Thus the third and third and the fourth equation make up an homogeneous
system of two equations in the two unknowns E,F that could be solved
separately

[2ikλl2E − (k2 + λ2
t2)F ] = 0

[c2
l2λ

2
l2 − (c2

l2 − 2c2
t2)k2]E + 2ikλt1c

2
t1F = 0

(4.8.87)

as it could be seen easily, these two equations coincide with the system defin-
ing Rayleigh waves in the previous section. Thus in the ultra-thin limit the
bulk is unaffected by the slab. Note that since the system is homogeneous it
is possible to fix the relation of one coefficient as a function of the other, thus
leaving a free parameter. I will assume to fix this parameter too, through
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normalization of the displacement vector. This is equivalent to say that the
slab is so thin that it does not affect the normalization of the mode, and this
seems consistent with the hypothesis of a really thin slab. Due to these con-
siderations the system is reduced to an inhomogeneous system of 4 equations
in 4 unknowns

2ikλl1A− (k2 + λ2
t )D = 0

[c2
l1λ

2
l1 − (c2

l1 − 2c2
t1)k2]B + 2ikλt1c

2
t1C = 0

ikB − λt1C = M1

λl1A+ ikD = M2

(4.8.88)

where M1 and M2 are assumed to be given quantities, fixed through the
solution of the previous system for E,F . The solution of this system is
possible if the determinant ∆ of the coefficients matrix is different from zero

∆ = c2
l1λl1λt1(k2 − λ2

t1)(λ2
l1 − k2) (4.8.89)

here

λl = k
√

1− γ2ξ2

λt = k
√

1− ξ2
(4.8.90)

and γ = ct/cl. With this definition the determinant above becomes

∆ = −c2
l1

√
1− γ2ξ2

√
1− ξ2k6ξ4γ2 (4.8.91)

Note that here xi ≡ ξ1, that is the parameter determining both the dispersion
relation through the equation ωR(k) = ctξk, as above and the decay length
through the definitions above. This parameter is obviously related to the
decay length calculated in the medium II through the system (4.8.87)

ξ1 =
cR
ct1

=
cR
ct2

ct2
ct1

= ξ2
ct2
ct1
. (4.8.92)

This shows that the determinant ∆ could not be zero, and thus the system
(4.8.88) has a non null solution. Indeed, to have a null ∆ it should be ξ1 = 0
or ξ1 > 1. Note that in any case there are some restriction on the elastic
parameters in the two materials. Since ξ1 < 1 then

ξ2
ct2
ct1

< 1⇒ ct2
ct1

> 1



Chapter 5

A Study on Charged Neutron
Star in AdS5

The formalism used to study defects and scattering processes in the previous
chapters is also at the base of the analysis of systems through AdS-CFT cor-
respondence: it has been postulated a correspondence between the boundary
theory of a D + 1 general relativistic models and D dimensional condensed
matter systems. Motivated by an open question raised in recent times re-
garding the phase transition during the collapse of a neutron star to form a
black hole and related stability issues, we have constructed charged neutron
stars in AdS5 and show that these stars become unstable at a particular
value of their radius, regarded as the Chandrasekhar radius. We reproduced
the calculations recently done in [54] in our AdS5 charged star. The anal-
ysis shows that the non-Fermi liquid behavior found there in AdS4 is still
true in this higher dimensional case with the presence of Kosevich-Lifshitz
oscillations.

5.1 Introduction
In recent times there has been a flurry of activity in the interplay between
condensed matter physics and AdS/CFT trying to bridge the gulf that ex-
ists in between them giving rise to several interesting original ideas in this
frontier (For an introduction to this field see for exmple [118; 52; 57; 90]).
Recently in a series of papers [25; 9] the authors addressed the issue of a
holographic description of an astrophysical phenomena i.e. the collapse of
a neutron star toward the formation of a black hole beyond the so-called
Oppenheimer-Volkoff (OV) limit [104]. Near the very end of their article
[25], they have proposed an open question regarding the CFT meaning of

101
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the OV limit under consideration.The Neutron Star to Black Hole formation
gives a hunch of a second-order quantum phase transition from a condensed
matter physicist’s view point turning a high density baryonic state into a
thermal QGP state and thus the issue needs proper investigation as sug-
gested in [25; 9]. The main point of investigation is rather open ended and it
would be really interesting to settle the issue whether a reliable realization
of a degenerate fermionic star can indeed be achieved conclusively in the
AdS/CFT duality framework. We have tried to formulate the very problem
on our own way rendering hope to give a partial, if not complete, explanation
of the underlying phenomena which of course needs further study.

In this note we study charged neutron stars in AdS5 space and focus on
their collapse toward the formation of a black hole. This process is particu-
larly interesting and worth studying from the holographic point of view (see
[25; 9] and references therein). This is because in terms of the boundary
theory this process might as well symbolize a phase transition in AdS space.

First we present a construction of a charged star in AdS space by adopting
numerical methods. Then we find that such a star ceases to exist at a par-
ticular value of the mass, charge and radius. This fact implies that this star
becomes unstable at this value of the mass and charge. This instability will
trigger the formation of a new phase and (presumably) the star will collapse
to form a black hole. Now the behavior of a test fermion in the black hole
background has recently been analyzed in [83]. It is concluded from their
analysis that in this black hole phase the boundary theory has excitations
about the Fermi-surface which is unlike the Fermi liquid. Further research on
this point [80] has shown that the Fermi vector depends exponentially on the
scaling dimension if one uses the duality to extremal RN black holes while
computing the non-Fermi liquid Green function. This proved the fact of vio-
lation of Luttinger theorem incase of non-Fermi liquids which is even true in
case of the extremal AdS5 RN Black Hole. All such computations reported
in [83; 95; 56; 82] revealed the presence of a Fermi surface in the bulk of a
non-Fermi liquid type. For a much better and clear understanding of their
results and the underlying phenomena that occurs, we thought that it might
be worthwhile to explore the boundary description of a simpler system, that
of an ideal Fermi gas in AdS without the presence of a Black Hole. 1

We perform a similar kind of analysis by putting in a test fermion in
the bulk with the charged neutron star serving as the background. From
the dynamics of such a bulk fermionic field one can compute the two point
function of the boundary composite operator that corresponds to the bulk

1It is worth pointing out here that in [55] the authors evaluated the fermionic correlators
on a background with fermions but without a Black Hole horizon.
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fermion. Although, we have not written down the boundary correlation func-
tion explicitly in the star background, but we gave a possible direction how
to do that in practice. 2 We hope that, from the pole structure of these two
point function, it will be evident that in the hydrodynamic limit one gets
either a Fermi liquid or a non-Fermi liquid type of behavior, nevertheless
the explicit computation needs to be performed. Via the AdS/CFT dictio-
nary for fermions [99] the conformal dimension of the dual operator in the
boundary CFT can be controlled by the bulk fermionic mass. In [95], it has
been already found that by tuning the mass one can match the conformal
dimension of the boundary operator to that of the free fermion, and thus
one obtains the spectral function exhibiting a peak which is consistent with
a Fermi liquid behavior. It is quite clear from their analysis that one can
deviate away from the Fermi liquid behavior by tuning the mass away from
the free value as the mass was interpreted as the proxy for coupling in [95].

However, we recalled the fact that if one computes the fermionic correla-
tion functions in charged AdS5 black hole backgrounds using probe fermion
and analyze the spectral peak as done in [80], one finds that the Fermi mo-
mentum depends exponentially on the probe fermion mass interpreted as a
proxy for the coupling and thereby violates Luttinger theorem indicating a
non-Fermi liquid behavior as was found in [83]. We then show, following [54],
the presence of Kosevich-Lifshitz (KL) kind of oscillation in our AdS5 charged
neutron star setting. One must emphasize the fact that , we are working with
“global AdS” i.e. the spatial sections are S3 rather than planes which implies
that the field theory under consideration is on time×S3 instead of being on
Minkowski space. In [53; 55; 54] the authors studied electron stars working
with a field theory defined on the Minkowski space whereas the authors of
[25; 9] adopted our point of view.

5.2 Construction of charged neutron stars
In this section we present the construction of the charged neutron star in
AdS5. We will work with units in which the AdS radius is set to unity. We
consider the following metric ansatz

ds2 = −A(r)dt2 +B(r)dr2 + r2dω2
3. (5.2.1)

2The computation is difficult in the sense that the boundary theory under considera-
tion is strongly interacting, and the neutron star to black hole collapse process is time-
dependent and hence the radial holographic dimension can’t be easily constructed on the
CFT side.
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Besides the metric we have a dynamical gauge field (H) and a fermionic
field (ψ) in this background. We will work in the gauge where the radial
component of the gauge field is zero (i.e. Hr = 0). With this choice of gauge
we write the gauge field as

H(r) = h(r)dt. (5.2.2)

Further we consider fermionic species with mass m, charged under this gauge
field with charge q. However, we shall treat the fermions in a hydrodynamic
approximation. For this we will take the limit 3 that the number of particles
per AdS radius is infinite with εF/m fixed, εF being the Fermi energy. The
ideal degenerate Fermi gas formed by these particles can then be described
by the following hydrodynamic stress tensor for ideal fluids

Tµν = (ρ+ p)uµuν + pgµν , (5.2.3)

where the pressure p and the density ρ are related to each other by the flat
space equation of state for the fermions i.e.

p+ ρ = µn (5.2.4)

The use of the flat space approximation is again justified as there are large
number of fermions within a given AdS radius and therefore the fermions do
not see the curvature of the space time. In order to be consistent with this
approximation, the mass and charge of the fermions must be greater than
the AdS radius (i.e. unity in our case). This equation of state is implicitly
given by

p =
(µ−m)3 (8m2 + 3µ(3m+ µ))

1920π2
, ρ =

2m5 − 5m2µ3 + 3µ5

480π2
, (5.2.5)

where µ is the chemical potential for the fermions, which can be expressed
in terms of the Fermi momentum (kF ) by the relation

µ =
√
k2
F +m2.

In this flat space approximation for the fermions the particle number density
(ñ) is given in terms of the volume of the Fermi surface and we have

ñ =
(µ2 −m2)

2

128π2
. (5.2.6)

3before taking this limit we must also ensure that the central charge of the boundary
CFT is taken to infinity (something similar to the large N limit for N = 4 Yang-Mills)
with all other quantities keeping fixed. This is required to ensure that all the multi-trace
operators are suppressed. One way to think of this limit in the bulk is to consider N
species of fermions with the same mass and then take N to infinity keeping everything else
fixed.
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Then it immediately follows that the charge density (n) is given by

n = qñ = q
(µ2 −m2)

2

128π2
. (5.2.7)

Note that in our problem these relations are locally valid and generally µ, n, p
and ρ are functions of r-coordinate 4 which we ultimately solve for. Here we
would like to draw attention of the reader to a subtle point. uµ as defined in
(5.2.3) is a static velocity field: uµdxµ = A(r)dt and the radial profiles of p
and ρ are determined by imposing the stress energy conservation which leads
to the following condition:

dp

dr
+

1

A

dA

dr
(ρ+ p) = 0 (5.2.8)

This equation is very easy to solve. By making use of (5.2.4) one easily
verifies the fact that (5.2.8) is satisfied while the chemical potential obeys

µ(r) =
εF
A(r)

(5.2.9)

where at this stage εF is an arbitrary constant. Thus the radial dependence
of the chemical potential µ is simply due to the gravitational redshift.

5.2.1 The Equations to be solved

In the above set up we now write down the dynamical equations which we
must solve in order to obtain the Neutron star numerically.

Firstly we have the Einstein equations. The two non-trivial Einstein
equations are obtained from the rr-component and the tt-component and
they are respectively given by

3r
(
2A′(r) + rh′(r)2

)
− 4A(r)

(
B(r)

(
r2p(r) + 6r2 + 3

)
− 3
)

= 0,

A(r)
(
6rB′(r)− 4B(r)2

(
r2ρ(r)− 6r2 − 3

)
− 12B(r)

)
− 3r2B(r)h′(r)2 = 0,

(5.2.10)

where as mentioned before we consider the pressure and the density as func-
tions of the radial coordinate.

Then we consider the Maxwell equations. In this case the non-trivial
equation stems out from the t-component (which is a mere generalization of
Coulombs law). This equation is given by(

A′(r)

A(r)
− 6

r

)
h′(r) +

B′(r)h′(r)

B(r)
− 2B(r)n(r)− 2h′′(r) = 0. (5.2.11)

4the symmetries of AdS prevent these quantities from becoming functions of the other
coordinates
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Finally we have to consider the equation of motion for the fermions. How-
ever, since the fermions are treated in a hydrodynamic approximation this
equation is the conservation of the stress tensor5. In this case the radial
component yields the non-trivial equation and is given by

A(r)
(
2rB(r)2A′(r)(p(r) + ρ(r)) + 3rB′(r)h′(r)2+

−6B(r)h′(r) (rh′′(r) + 3h′(r))) + 3rB(r)A′(r)h′(r)2 + 4rA(r)2B(r)2p′(r) = 0.

(5.2.12)

In these equations both p(r) as well as ρ(r) are present explicitly. How-
ever, we will eliminate both p(r) and ρ(r) in terms of µ(r) with the help of
the equation of state (5.2.5). Now these equations are extremely non-linear
and we have to resort to numerical means in order to solve them.

5.2.2 Solving the equations

One obvious solution to these equations is the charged black hole in AdS5

with the chemical potential being constant throughout the space. In terms
of the above mentioned functions this solution may be written as [21],

A(r) =

(
1 + r2

(
1− M

r4
+
Q2

r6

))
,

B(r) =

(
1 + r2

(
1− M

r4
+
Q2

r6

))−1

,

µ(r) = m,

h(r) = µB −
Q

r2
.

(5.2.13)

wherem and µB are constants. The parameterm is related to the ADM mass
of the Hole as M = 3ω3

16πG
m [21] where in natural units 16πG = 1 and ω3 is

the volume of the 3-sphere. Also, µB is the electrostatic potential difference
between the horizon and infinity. Since the constant value of the chemical
potential outside the star ism, the mass of the fermionic species, therefore we
use the same notation here also. Similarly we use µB to denote the constant
part of the gauge field as it ultimately turns out to be the boundary chemical
potential.

Now it is expected that outside the neutron star our solutions should
reduce to the black hole solution. Therefore, we shall obtain a solution
inside the neutron star and then patch up our solution with this black hole

5 which is the relativistic version of the Navier-Stokes equation.
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solution outside. Thus we start with a boundary condition at the origin
(which may be thought of as the centre of the star) and make a choice of the
time coordinate inside the star such that at the boundary the first derivative
of the field strengths match. In order to determine the consistent boundary
conditions at the origin we solve the equations about r = 0 and find that,

A(r) = A0 +
1

180
r2

(
−A0m

5

8π2
+

15A0m
4µ0

32π2
−

5A0m
2µ3

0

8π2
+

9A0µ
5
0

32π2
+ 180A0

)
+O(r3),

B(r) = 1 +
1

90
r2

(
m5

16π2
− 5m2µ3

0

32π2
+

3µ5
0

32π2
− 90

)
+O(r3),

µ(r) = µ0 +
r2

92160π2A0

(32A0m
5µ0 − 120A0m

4µ2
0 + 160A0m

2µ4
0 − 72A0µ

6
0

− 46080π2A0µ0 + 135m4q2 − 270m2q2µ2
0 + 135q2µ4

0) +O(r3),

h(r) = µB −
qr2 (m2 − µ2

0)
2

1024π2
+O(r3),

(5.2.14)

solve the equations (5.2.10),(5.2.11) and (5.2.12) upto O(r2). Here A0 and µ0

are the values of A(r) and µ(r) at the origin. These are the parameters of our
problem and we have to choose values for these parameters which serve as
initial values of our differential equations. Again m and q are the mass and
charge of a single species of fermion. The most striking thing to note about
this solution is that the value of B(r) at the origin is fixed to be unity. We
do not have the freedom to choose this value on independent grounds. Also
the parameter q in (5.2.14) yield the charge of the black hole as Q = 2

√
3ω3

8πG
q

[21].

5.2.2.1 Numerical Solution of the equations

We proceed to solve these equations numerically in the following way. At first
we fix the value of the chemical potential at the origin to be µ0. Then we fix
the value of A0 to be unity and then fix a scale for the time coordinate in the
patch inside the star so as to meet the boundary conditions A(r) = 1/B(r) at
the radius of the star (R). The radius of the star is obtained from the value
of r where the density ρ(r) goes to zero or the chemical potential µ(r) goes to
m as can be easily checked from the equations (5.2.5) and (5.2.13). Further
from the value of A(R) (which is the same as 1/B(R)), together with the
matching condition for the Electric field at r = R, we determine the mass
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Figure 5.1: Solution of various functions inside the star. The values of the
parameters are m = 3, q = 1 and µ0 = 6. We have shown the plots upto
r=1.48 which is the critical radius of the star.

and charge of the black hole solution with which we patch up outside the
neutron star. Note that in this procedure, matching of the first derivative of
A(r) (which is the gravitational field strength in a rough sense) at r = R is
automatic. As a part of our choice of units we take the AdS radius to be
unity.

In fig:5.1, we present the solution when the parameters m = 3, q = 1 and
µ0 = 6. This corresponds to the core density of 2.97. The Mass of the star
is 0.073 and the charge of the star is 0.0083 6.The radius of the star is 1.48.
Note that the density function ρ(r) goes to zero at the edge of the star. Also
the values of A(r) and 1/B(r) match at the end of the star.

5.2.2.2 A class of Neutron stars

Now we can vary the value of the chemical potential at the origin to obtain
a large class of neutron stars. This amounts to obtaining neutron stars for
various values of core density. Further under a variation of the core density
(which varies form 0 to ∞) we can make a plot of the mass and radius of
the star (see fig:5.2). In this plot we find there exists a maximum value of

6These values of the charge and mass should not be directly compared with the mass
and charge of a single fermion since in this case we should also consider the Newton’s
constant which we have not included in the present analysis.
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Figure 5.2: Plot for Mass vs the radius of the neutron star as the core
density is varied. Here also we have taken m = 3 and q = 1.

mass for the star sometimes termed as critical mass of the star. 7 Further
the solution ceases to exist at a particular value of the mass and radius. This
is the signature of a critical behavior and occurs when the density at the
origin approaches infinity. At this critical point the neutron star is expected
to start collapsing into a black hole.

In a similar way, we can obtain a plot for the mass vs charge of the star
(see fig:5.3). In this plot we see that for a given value of charge two solutions
exist corresponding to two different masses. Presumably the one with more
mass is the stable one, the other being unstable.

We again remind the readers of the intriguing fact that working in “global
AdS” we have S3 as spatial section thus providing a scale in the field theory,
which is the radius say R of S3. There is yet another scale in the problem, the
chemical potential µ. The related phase transition from the star to a black
hole occurs due to the competition between the two scales. In particular at
the critical point of phase transition one would get RS3 ∼ 1

µ
. So the very

existence of RS3 is crucial for our purpose.
In recent years, all the various works [83; 80; 53; 54] on Fermi surfaces

consider Minkowski space while considering the boundary field theory. This
was important in order to have a well-defined momentum k. On a sphere k
is not a good quantum number, in particular if RS3 ∼ 1

µ
one might worry

about whether the notion of a Fermi surface makes sense in the momentum
space. The answer to this is, yes, indeed the notion can be justified. As we
mentioned in Sec.5.2, that in our choice of units the charge and mass of the

7We can render a holographic interpretation to this critical mass, too. As found in [9]
the limiting mass in the boundary CFT theory translates to a limiting conformal dimension
of the composite operator made out of the fermionic primary fields which in the large N
limit construct our model degenerate star.
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Figure 5.3: Plot for charge vs mass of the neutron star as the core density
is varied. Here also we have taken m = 3 and q = 1

fermion are large, so that the boundary field theory fermions are locally in a
flat space making sense of a Fermi momentum in approximate terms.

5.3 Holographic dual of the charged star
We now study the holographic description of this neutron star solution. By
studying the dynamics of a probe fermion in this background one could get
a hint at the boundary description of this charged neutron star.

5.3.1 Dirac Equation in Spherically symmetric space
time

We first present the Dirac equations in spherically symmetric space times
which we subsequently solve in our star background [84]. 8

We have to incorporate the interaction of the probe fermion with the
fermions forming the star. This we accomplish by considering a new gauge
(different from the existing one) with only a non-zero time component being
the chemical potential, due to the fermions forming the star. We justify this
procedure in Appendix 5.5.

We consider the metric to be of the form (as in (5.2.1))

ds2 = −A(r)dt2 +B(r)dr2 +r2
(
dθ2 + sin2 θdφ2 + sin2 φ sin2 θdλ2

)
, (5.3.15)

The natural choice of vielbein basis vectors are

et̃t =
√
A; er̃r =

√
B; eθ̃θ = r; eφ̃φ = r sin θ; eλ̃λ = r sin θ sinφ. (5.3.16)

8One should pay attention to the fact that while the fermions are free in the bulk, they
are not so on the boundary (i.e. they don’t obey Dirac equation on the boundary) as the
boundary theory is strongly coupled.
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where {t̃, r̃, φ̃, θ̃, λ̃} are the tangent space coordinates. Then the non zero
components of the spin connection are

ωt̃,r̃t = −1

2

A′(r)√
A B

; ωr̃,θ̃θ =
1√
B

;

ωr̃,λ̃λ =
sin θ sinφ√

B
; ωr̃,φ̃φ =

sin θ√
B

;

ωθ̃,λ̃λ = cos θ sinφ; ωφ̃,λ̃λ = cosφ; ωθ̃,φ̃φ = cos θ.

(5.3.17)

Using the above equations the Dirac equation

( 6D −m)ψ = 0,

reduces to(
Γr̃

1√
B
∂r + Γt̃

1√
A
∇t −

1

2

1√
B

(
A′(r)

2A
+

3

r

)
Γr̃ +

1

r
6D(S3) −m

)
ψ = 0.

(5.3.18)
where 6D(S3) is the Dirac operator on the three sphere. The eigenvalues of
this operator are [15]

κ = ±i
(

3

2
+ n

)
, n ∈ {0, 1, 2, . . . }. (5.3.19)

We shall denote the eigenfunction corresponding to these eigenvalues by fκ.
Also the ∇t operator denote the gauge covariant derivative and contains both
the gauge field and its time derivative. All the gamma matrices in (5.3.18)
have a tangent space index and hence are flat space gamma matrices. Here
we use the following basis for the gamma matrices.

Γr̃ = I⊗ (−σ3); Γt̃ = I⊗ (iσ1); Γĩ = σi ⊗ σ2. (5.3.20)

where σi are the ordinary Pauli matrices. Further we consider the following
separation of variables

ψ = fκ

(
φ+

φ−

)
e−iωt. (5.3.21)

where φ± are the eigenvectors of Γr̃ with eigenvalues ±1. Using this separa-
tion of variables the Dirac equation (5.3.18) reduces to the following set of
coupled first order equations(

∂r +
1

2

(
A′(r)

2
√
A

+
3

r

)
+m
√
B

)
φ+ −

√
B

(
u(r)√
A
− k

r

)
φ− = 0.(

∂r +
1

2

(
A′(r)

2
√
A

+
3

r

)
−m
√
B

)
φ− +

√
B

(
u(r)√
A

+
k

r

)
φ+ = 0.

(5.3.22)
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where k = iκ, and u(r) = ω + µ(r)− 3/2qh(r) 9.

5.3.2 The flow equation

In this subsection we will derive and analyze the so-called flow equation for
the Dirac fermions in AdS5. Using the set of equations 5.3.22, one can define
the wave function at small r to be of the form: (Note that m is the fermionic
mass, and it enters in the expansion)

φ− = α
(
rmL + . . .

)
+ β

(
r−(mL+1) + . . .

)
,

φ+ = γ
(
r−mL + . . .

)
+ δ

(
r(mL−1) + . . .

)
,

(5.3.23)

Here L is the AdS radius that we have taken to be unity L = 1. The
coefficients α, β, γ and δ are what the authors of [80] call A, B, C, D in their
article and they are related with one another. The retarded Green function
could be written as [83; 80]

GR = ε−2m lim
ε→0

(
ξ+ 0
0 ξ−

)∣∣∣∣
1/ε

(5.3.24)

where ξ− is defined as suitably defined ratio between φ− and φ+.

ξ− = −iφ−
φ+

(5.3.25)

From the system of equations, (5.3.22) the flow equation can be derived,
dividing the second equation by φ+ and inserting into it the first one, finally
yielding:

i∂rξ− − 2iξ−m
√
B − ξ2

−

√
B

(
u(r)√
A
− k

r

)
+
√
B

(
u(r)√
A

+
k

r

)
= 0 (5.3.26)

The numerical solution of this equation has some singularity problems in
r, due to the choice of boundary conditions, thus preventing its use in the
calculation of the correlator in the neutron star background. This issue needs
further careful investigation.

5.3.2.1 The initial conditions

Now we have to specify the boundary conditions for the equations (5.3.22).
This is done by demanding regularity of the solution near the origin (r = 0).

9Note that the unconventional factor of 3/2 is present because here we are using a
different normalization of charge.
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Figure 5.4: Plot of φ+ in the star background constructed in the previous
section. The vertical line denotes the value of r for the edge of the star.
Here the values of the parameters are m = 3, q = 1, µB = 1, k = 3/2, and
ω = 3. In the right image we focus on the edge where the first derivative of
the function is continuous.

This regularity criterion in general depends on the value of k once we fix the
mass and charge of the fermion. The lowest positive value is k = 3/2, in
which we will focus for our present purpose. In this case the regularity at
the origin demands, that if φ+ is 1 at the origin then φ− should be −1 i.e.

φ+(r = 0) = 1 ; φ−(r = 0) = −1

We shall use this boundary condition to solve the equations (5.3.22).

5.3.2.2 Numerical solution of the Dirac equation

The solution of the probe fermion in the neutron star background is obtained
numerically for m = 3, q = 1 and k = 3/2. It is shown in figs:5.4 & 5.5.
Here we use the boundary conditions as discussed in §§5.3.2.1. We at first
let the differential equation evolve to obtain a solution up to the end of the
star and subsequently use the value of φ± at this edge as the initial value for
the subsequent evolution outside the star. The first derivative match of the
solution in these two patches is automatic (see figs:5.4 & 5.5) and directly
follows from the fact that all the functions that appear in the equations
(5.3.22) are continuous at the edge of the star. One possible direction, one can
take from here, is that, one might try to compute the boundary correlation
function in the presence of the star and understand the behavior of the bulk
Fermi surface in terms of the boundary correlators, taking the same route
outlined in the formalism of [66]. A noteworthy point here, is that the only
difference, we should care about, is that we need to evaluate the fermionic
correlators in the neutron star background, whereas there exist large number
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Figure 5.5: Plot of φ− in the star background constructed in the previous
section. Here the values of the parameters are also m = 3, q = 1, µB = 1,
k = 3/2, and ω = 3. Again the first derivative of φ− is continuous as can be
seen from the plot on the left.

of literature doing the same computation in the background of a charged
black hole (See for example [83; 95; 80; 56; 82].)

5.3.3 Kosevich-Lifshitz oscillations in AdS5 neutron star

It has been shown recently in [54] that, the charged star shares some im-
portant features with the Fermi liquid. In particular, the presence of the
Kosevich-Lifshitz oscillations [53] in magnetic field has been shown in the
case of AdS4 charged fermion star. As said in [54] the arguments used to
demonstrate this feature could be generalized to higher dimensions, showing
that even in AdS5 Kosevich-Lifshitz oscillations are present, nevertheless the
Luttinger theorem is violated. In order to calculate the magnetic susceptibil-
ity χ = − ∂2Ω

∂B2 we can use the relation between the free energy and the total
charge in the dual CFT as in [55; 54]:

Ω̂ ∝ Q̂ =

∫ rs

0

√
g(s)r3σ(r)dr (5.3.27)

where in general the charge density is

σ =

∫ µ

m

g(E)ν(E)dE (5.3.28)

and the density of states in the full theory is

g(E) = βE(E2 −m2 − `B) (5.3.29)

The easiest way to generalize the argument as presented in [54] to the higher
dimensional case is to add an extra dimension, i.e. by considering the
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cylindrical-like metric

ds2 = −fdt2 +
1

f
dr2 + r2dω2 + dz2 (5.3.30)

and then the integral expressing the charge density is generalized in AdS5

just by adding an integration over pz

σ =
βB

2

∫ ∞
−∞

dpz
∑
l

∫ ∞
−∞

dp
∑
l

1

1 + e
E(l,p,pz)−µ

T

(5.3.31)

The energy, as in the AdS4 case, is

E(l, p, pz) =
√
p2 + p2

z + `Bloc (5.3.32)

The local physical quantities are related to the dual field theory quantities
as [54]:

Bloc ∝
1

r2
B̂

Tloc =
T̂
√
gtt

(5.3.33)

In the following calculation we will drop out this subscript, and restore the
correct dependence on physical quantities back to position at a later point.
The Poisson resummation over Landau levels gives

σ =
βB

2

∑
k

∫ ∞
0

dl

∫ ∞
−∞

dpz

∫ ∞
−∞

dp
∑
l

1

1 + e
E(l,p,pz)−µ

T

(5.3.34)

Now expanding the Fermi distribution in terms of Matsubara frequencies and
transforming the integral over ` into an integral over energies the integral
(5.3.34) becomes

σ = −βT
2

∑
k,n

∫ ∞
−∞

dpz

∫ ∞
−∞

dp e−πik(p2+p2
z+m2)/B×

×
∫ ∞
√
p2+p2

z+m2

dEE
eπikE

2/B

E − µ(1 + iT
µ

2π(n+ 1
2
))

(5.3.35)

This integral could be performed rotating the integration path so that the
exponential in the numerator becomes real and decreasing, i.e. considering
the rotation of the energy as E → Eeiπ/4 if k > 0 or E → Ee−iπ/4 if k < 0,
and remembering that the lower integration limit is set to

√
p2 + p2

z +m2. In
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this analytical continuation one has to take into account the role of the poles
given by Matsubara frequencies. These poles contribute only if p2 + p2

z ≤
µ2 −m2 and in addition n+ 1/2 > 0 if k > 0 and n+ 1/2 < 0 if k < 0. The
contribution of the poles is the one giving the oscillatory part of the charge
density σosc, and thus it’ s the only one we will consider next, hence through
the Residue theorem the σosc is

σosc = 2πβTµ Im
∑
k,n>0

eiπk(µ2−m2)/Be−4π2k(n− 1
2)Tµ/B

∫∫
D

dpzdp e
−iπk(p2+p2

z)/B

(5.3.36)

while the last integration is made in the region D, being the circle of radius√
µ2 −m2 in the plane (p, pz). This expression could be inserted in (5.3.27),

thus obtaining the oscillating part of the free energy

Ω̂osc ∝ Q̂osc = 2πβTµ Im
∑
k,n>0

∫ rS

0

drr3
√
g(r)eiπk(µ2−m2)/Be−4π2k(n− 1

2)Tµ/B×

×
∫∫

D

dpzdp e
−iπk(p2+p2

z)/B

(5.3.37)

Since µ� B, a saddle point approximation could be done. The r dependence
of the fast oscillating exponential is

eiπk(µ2−m2)/B = exp iπk

(
h2

f
−m2

)
r2

B̂
= exp ik

A(r)

B̂
(5.3.38)

With this approximation the integral (5.3.27) becomes

Q̂osc = 2πβ Im
∑
k,n>0

r∗
√
g(r∗)

m∗eiπ/4
√
B̂√

A′′(r∗)
eiπk

A(r∗)
B̂ e−4π2k(n− 1

2)m∗T/B×

×
∫∫

D

dpzdp e
−iπk(p2+p2

z)/B

(5.3.39)

where, as usual, r∗ is the value of the radius where the argument of the
exponential has an extremum. The last integration could be done passing
to circular coordinates in the (p, pz) plane inserting the radial coordinate
ρ =

√
p2 + p2

z as∫∫
D

dpzdp e
−iπk(p2+p2

z)/B =

∫ b

0

ρdρe−iπkρ
2/B = e−i

b2π
2B

sin πb2

2B

π
(5.3.40)
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where b =
√
µ2 −m2 has been defined. The oscillatory part of the total

charge is then obtained introducing this result in (5.3.39). The summation
over the index n could be done as usual, giving an hyperbolic sine, moreover
the sum over k could be suppressed considering only the term k = 1, since
the other terms are negligible. In the end after all dusts get settled the
oscillating free energy is

Ω̂ ∝ Q̂osc = 2πβ Im

[
1

r∗

√
g(r∗)

m∗B̂3/2√
A′′(r∗)

eiπ
A(r∗)
B̂ e−i

b2π
2B

sin πb2

2B

π

∑
n>0

e−4π2(n− 1
2)m∗T/B

]
=

= F (r∗)
B̂

5
2√

A′′(r∗)

2πm∗T/B

sinh 2πm∗T/B
Im
[
eiπ/4eiπ

A(r∗)
B̂ e−i

A(r∗)π
2B

]
sin

πA(r∗)

2B
=

= F (r∗)
B̂

5
2√

A′′(r∗)

2πm∗T/B

sinh 2πm∗T/B

[√
2

2
− cos

(
πA(r∗)

B
− π

4

)]
(5.3.41)

The function F (r∗) contains all the factors coming from the integration over
the radial coordinates, like

√
g(r∗) and the numerical prefactors. As can

be seen, the expression found agrees with the standard result for three di-
mensional systems, apart from an additional and unimportant offset of the
oscillations. In particular the usual scaling dimension with the magnetic field
is found, i.e. Ω̂ ∝ B5/2 [3] and the same frequency dependence of oscillations
on the extremal section of the Fermi volume is observed.

5.4 Discussions
In a nutshell the findings of our paper is as follows: We built, using numerical
means, a charged neutron star in the AdS5 and analyzed in detail the related
gravitational collapse to form a black hole. We depicted the critical behavior
of the degenerate star with few plots and then solved the Dirac equation in
the spherically symmetric star geometry. We wrote down a flow equation
governing the dynamics of fermions constructing the charged neutron star in
AdS5. We encountered few problems while computing the boundary correla-
tion function in the presence of the star, we list the difficulties that arise in
finding the fermionic correlator in the star background. In a sense, according
to [25; 9], it is an open question to find a reliable realization of the degen-
erate star using AdS/CFT duality and find a CFT interpretation of the OV
limit [104] in the context of collapse phenomena. Here we note that, if one
computes the retarded Green function 5.3.24 in the charged AdS5 extremal
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RN Black Hole background then, according to [80],

kF ≈ kF (0) exp(−σmL) (5.4.42)

i.e. one observes that the Fermi momentum fall off exponentially from the
value it takes at zero fermion mass with kF (0) ' 0.8155 and σ ' 0.80 for
AdS5 geometry, clearly indicating a violation of Luttinger’s theorem and
hence proving a non-Fermi liquid behavior in the black hole phase. This
initially prompted us to make a conclusion that one possible holographic
interpretation one could dub to this collapse process is that when a neutron
star collapse to form a black hole, seeing from a boundary point of view one
finds a second order phase transition from an ideal degenerate Fermi gas to
a non-Fermi liquid. Recently in a paper [54] the authors have found that the
Kosevich-Lifshitz oscillations still persist in the charged neutron star phase.
In the same article the authors also explain how to reconcile the violation of
Luttinger theorem in the case of the charged fermion star and the existence
of the KL oscillation and the argument is still true in our AdS5 case : only
fermions in the spherical shell of radius r∗ contribute to the oscillations,
and thus it’ s not possible to reconstruct the whole Fermi volume from the
analysis of oscillations. From the boundary field theory point of view this
means that not all the degrees of freedom are taken into account through
quantum oscillations, and this results in the violation of Luttinger theorem.
Reproducing the calculations done in [54] in our AdS5 charged star, we have
found again the appearance of the KL oscillations due to magnetic field
consistent with the standard results for three dimensional systems (see [3]).
After all these, it is still not clear how to realize a holographic dual of the
AdS5 star, although it seems to us that both the star and the black hole are
non-Fermi liquid states of matter.

Finally, despite trying to give a concrete holographic picture of this un-
derlying phenomena we tried to rethink from a different perspective, all the
existing results on this subject and did a coherent study of all of them reach-
ing a conclusion that this elusive phenomena still require further studies.

5.5 The zero temperature and finite chemical
potential two point function in flat space

In our analysis above we have used the crucial fact that the effect of finite
chemical potential at zero temperature is captured by introducing a gauge
field whose time component is the chemical potential (all other components
being zero). In this section we shall try to justify this statement by consid-
ering fermions in flat space with a constant potential. We shall do this by
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considering the two point function of the fermions. At first we shall view, the
introduction of the chemical potential, as a redefinition of the vacuum state
of theory of free fermions. Them from there we shall demonstrate that the
two point function computed in this new vacuum state is the same as that
computed for the case where the chemical potential is introduced through
the time component of the gauge field. The later method more elegant and
easy to generalize. In fact, we have used this above in more complicated
settings where the chemical potential has a spatial variation. Therefore, in
order to be certain, 10 we present an analysis of the situation in this simple
setting and verify the equivalence of the two methods.

5.5.1 The free Fermi sea: The operator calculation

In this subsection we consider free massive fermions in flat space with the
fermions being filled upto the fermi level with fermi momentum kF . Thus
the chemical potential 11 of the system is non-zero and is given by

µ =
√
k2
F +m2,

with m being the mass of the fermion. We consider the system to be at zero
temperature. We will be interested to calculate the Feynman propagator
or the time ordered two point correlator or this system. We shall perform
this through an operator calculation in which the two point function is the
expectation value of a product of two field operators in a state. This state is
the one in which all the single particle states upto the Fermi momentum is
filled up.

We consider free fermions in flat space with the system being described
by the Dirac Lagrangian [111] This theory is a quadratic theory and can be
solved exactly. The fields ψ and ψ̄ can be expanded in terms of the creation

10This fact is certainly true and is very well known for finite temperature. In case of finite
temperature the chemical potential can be introduced but putting a twisted boundary
condition for the fermion (instead of a mere anti-periodic one) along the compactified
time circle. It is very well known that such twist can be undone by a gauge field whose
time component is the chemical potential. This implies that the chemical potential can
also introduced through such a gauge field without putting the twist. What we verify here
is that it this fact continues to hold even at zero temperature.

11Here we shall define the chemical potential to be the energy required to add one more
particle at the fermi momentum
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and annihilation operators as follows

ψ(x) =

∫
d3p

(2π)3

1√
2Ep

∑
s

(
aspu

s(p) exp (−ip.x) + bs†p v
s(p) exp (ip.x)

)
,

¯ψ(x) =

∫
d3p

(2π)3

1√
2Ep

∑
s

(
as†p ū

s(p) exp (ip.x) + bspv̄
s(p) exp (−ip.x)

)
.

(5.5.43)

Now we shall incorporate the presence of a finite chemical potential by
constructing a state in which the fermions are filled upto the energy equal to
the chemical potential, characterized by the fermi momentum. Let us denote
the state in which the fermions are filled upto the fermi level by |kF 〉 such
that,

|kF 〉 =

kF∏
p

√
2Epa

s†
p |0〉. (5.5.44)

Now for the time ordered correlation function we are required to calculate the
quantities 〈kF |ψ(x)ψ̄(y)|kF 〉 and 〈kF |ψ̄(y)ψ(x)|kF 〉. These quantities evalu-
ate to

〈kF |ψ(x)ψ̄(y)|kF 〉 =

∫ ∞
kF

d3p

(2π)3

1

2Ep
(6 p+m) exp (−p.(x− y)),

〈kF |ψ̄(y)ψ(x)|kF 〉 =

∫ ∞
kF

d3p

(2π)3

1

2Ep
(6 p−m) exp (−p.(y − x))

+

∫ kF

0

d3p

(2π)3
((6 p+m) exp (−p.(x− y))

+(6 p−m) exp (−p.(y − x))) .

(5.5.45)

Now the time-ordered two point correlation function is given by

SF (x−y) =

{
〈kF |ψ(x)ψ̄(y)|kF 〉, for x0 > y0, (close the contour below),
−〈kF |ψ̄(y)ψ(x)|kF 〉, for y0 > x0, (close the contour above).

(5.5.46)
Now the above two point function can be captured in the contour integral

SF (x− y) =

∫
d4p

(2π)4

i (6 p+m)

p2 −m2
exp−ip.(x− y). (5.5.47)

where the contour for p0 is chosen as shown in fig:5.6. Nevertheless, the same
answer can be obtained with the usual contour prescription (the dotted red
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Figure 5.6: The contour prescriptions. The blue line is the new contour
prescription in the presence of a finite constant chemical potential. The red
dotted line represents the usual contour prescription.

line in fig:5.6) if we include a real shift of µ in p0. Therefore it is convenient
to define the shifted variable,

p̃0 = p0 − µ

and make this substitution in (5.5.46). Then in terms of this shifted variable
p̃0 the contour prescription is the usual one. Now in terms of this shifted
variables, the effect of µ is completely captured is we introduce a gauge field
whose time component is µ. This is true if we consider the eigenvalues of the
∂t operator to be p̃0, instead of p0. This justifies our use chemical potential
as the time component of the gauge field.



Chapter 6

Solid States systems as
Gravitational waves antennas

Introduction
The formulation of elasticity in general relativity is analyzed, following the
lines of Carter & Quintana [17]. As a first point, the description of the kine-
matics of a continuum medium requires some attention, and it will be ana-
lyzed in the first section together with the difference between the Lagrangian
and the Eulerian framework. In the second section then the equation ruling
the dynamics of an elastic medium will be derived, perturbation theory and
possible effects on graphene monolayer are analyzed. In the last part of the
chapter it will be analyzed the effect of gravitational waves in 3D TI, showing
that the rotation of Dirac matrices is the main perturbation introduced by
gravitational waves.

6.1 Kinematics
The richness of general relativity basically relies on the treatment of space
and time at the same level, with the possibility of mixing them in whatso-
ever way is desired (or needed). At once, this also implies that the concept of
space and time coordinates looses its meaning, considering that in the general
case coordinates are not defined globally. Though extremely powerful, great
drawback comes in the treatment of realistic systems in general relativity:
the Newtonian concept of ”body” as a finite region of space occupied by an
ensemble of particles being subject to time-evolution, indeed, needs space
and time to be clearly distinguishable. In space-time, i.e. a 4- dimensional
pseudo-Riemannian Lorentzian manifold (V4, gµν), dynamics of an ensemble

122
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of particles is described by a collection of events making up an open sub-
manifoldM⊂ V4. To extract the physical meaning of its evolution, i.e. the
time-like evolution of each particle of the medium, a reference manifold B is
introduced, distinguished from V4, whose points are the idealized particle of
the medium. The relationship between events xµ ∈ V4 and points X ∈ B is
carried out through the projection map P from space-time to the abstract
body B

P : x ∈M→ X ∈ B. (6.1.1)

This map projects a time-like curve, i.e. a curve in space-time whose tangent
vector obeys the normalization condition uµu

µ = −1, to a point in B thus
associating to each point of the idealizecd body its evolution in space-time.
This is better said affirming that through the image through P−1 of a point
X ∈ B is a time-like curve in M. The projection P is also smooth, in the
sense that it associates open neighborhoods in B to open neighborhoods in
space-like surfaces in M, i.e. given a point xµ in a given space-like sub-
manifold contained in M has a neighborhood U for which the projection
P : U → B is a differentiable embedding. The body B in general is a differ-
ential manifold but not necessarily a Riemmanian one, since there is not a
metric intrinsically defined in it. A particular case in which on the contrary
it is possible to define a metric in the body will be analyzed later in the
paragraph.
Among all the possible coordinations of M the co-moving coordinates xa

are the closest ones to the intuitive evolution of a continuum medium, and
they will be used in all the following calculation. The projection of a given
point xa(a = 1, 2, 3, 0)1 in these coordinates is P = X(x1, x2, x3), where X
is a fixed coordination in B. In addition, in a properly co-moving system of
coordinates x0 ≡ τ measures the proper time of the particle in the medium,
i.e. ds2 > 0 if dτ = 0 and ds2 = −dτ 2 when dx1 = dx2 = dx3 = 0. Note that
the projection is necessary to define such a system of coordinates.
Both the coordinates xa and (Xa, τ) can be used to specify the state of the
continuum.The description made using the space time coordinates is called
Eulerian, while the description carried out through the reference body co-
ordinates is called Lagrangian [116]. Note that the Lagrangian description
requires the flow field ua to be given.
The definition of the flow vector ua given by P implies the definition of the
symmetric tensor γab

γab = gab + uaub (6.1.2)
1Latin indexes a, b, ... will be always used to indicate co-moving coordinates. Greek

indexes α, β, ... will be used to label coordinates in the idealized body. The Greek indexes
µ, ν... are reserved to general coordinates in V4, and not used in the following.
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having null contraction with ua, i.e. γabub = 0, and thus called orthogonal
projection tensor. The tensor γab acts like an effective metric for u-orthogonal
tensor fields, i.e. tensor fields having null contraction with the velocity ua
and this makes clear its physical meaning: it determines the the distances
between neighboring point in their rest frame, playing the role of the left
Cauchy tensor [131] in classical theory, and it thus describes the state of
strain of the system.
The projection map P induces a canonical isomorphism between the algebra
of tensors defined in B, also called material tensors, and the sub-algebra of u-
orthogonal tensors in T (V4) ≡ ⊗jiT

j
i (V4). This canonical isomorphism can be

extended from tensors to tensor fields in the case of materially constant fields,
i.e. tensor fields in space time whose projection through P is independent of
the point in the world line. All the formulas in the following will be expressed
in terms of space-time tensors, and only those containing materially constant
fields will be subject to an unambiguous interpretation in terms of material
tensors.
In all the treatment of material tensorial fields raised and lowered indexes are
distinguished, since in general there is not an intrinsically defined metric on
B, untill the projection tensor γab is materially constant in itself (in this case
the body is called rigid. This is equivalent to the definition given by Born
and discussed in [130]). In other words, the metric needed to raise and lower
indexes of tensors defined on the body B is the strain state of the body that
is the output of the theory. In general the metric induced on B through the
projection of γab will be not canonically defined, since it would depend on
reparametrizations of τ and thus only when γab is constant respect to proper
time τ the linear relation between covariant and contravariant tensors is
well established. A general u-orthogonal tensor, on the other hand, will be
projected into a material tensor depending on time, this projection being
not canonical, in the sense specified previously. For such a field a notion
of derivation along the world line, the convected derivative, is defined. In
particular, the convected differential corresponds to the transport along the
world line of an infinitesimal amount dτ

P(dT (x)) = dP(T )(X, τ) (6.1.3)

where dP(T )(X, τ) is the variation at a fixed point X = P(x) of the tensor
P(T (x)) due to an infinitesimal variation dτ . The coefficient of the differen-
tial dτ defines the convected derivative

[T ]∗(x) =
d

dτ
T (x). (6.1.4)

The convected derivative of a u-orthogonal field is zero if and only if it is a
material constant field. In co-moving coordinates a material constant field
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has constant components, i.e. independent of τ . In other words, a material
constant field is subject to parallel transport along the world lines, i.e. they
are Lie transported by the flow field ua. This identification of convected
derivative can be extended to all tensor fields, giving an operational meaning
to the definition above

[ ]∗ = Lu. (6.1.5)

Among all the tensor fields, the convected derivative of the strain tensor will
play an important role for the following discussion. From (6.1.5) it follows
that

[γab]
∗ = Luγab = 2(u(a;b) + u̇(aub)) ≡ 2θab. (6.1.6)

where θab is the strain rate, and it is part of the decomposition of the covariant
derivative of the flow field

ua;b = θab + ωab − u̇aub. (6.1.7)

above the antisymmetric rotation tensor ωab has been introduced. The strain
rate tensor can be further reduced introducing the trace free orthogonal ten-
sor σab, the shearing rate tensor

θab = σab +
1

3
θγab (6.1.8)

here the trace of the strain rate tensor (also called expansion rate) θ = θaa ≡
γabua;b has been introduced. The convected derivative of γab follows from
(6.1.6) and the obvious equality [γ b

a ]∗ = 0[
γab
]∗

= −2θab (6.1.9)
[γab]

∗ = 2θab (6.1.10)

As an important example of constant material field it will be analyzed the
density tensor field nabc. This tensor represents a canonical measure, possibly
the only one in the general case, in the body B and it allows to define the
density of particles per unit volume

dN = nabcdX
a ∧ dXb ∧ dXc (6.1.11)

The corresponding tensor in space time nabc is u-orthogonal nabcua = 0 and
its contraction with the space-volume density nabcεabc derived from the Levi-
Civita symbol defined in V4 will give the expression of the density of particles
n in the real space time. The space-volume is defined as εabc = εabcdu

d, and
thus is u-orthogonal too. The convected derivative of the space-volume form
comes from the τ derivative of ud

[εabc]∗ = −θεabc (6.1.12)
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and thus it determines the convected derivative of n, assumed that by defi-
nition the tensor nabc is materially constant, i.e. [nabc]

∗ = 0,

[n]∗ = −θn (6.1.13)

Now that kinematics of a continuum medium and tensor fields has been
established, in the following section the basic notions of elasticity will be
defined.

6.2 Theory of Perfect Elasticity
Before using the machinery of the previous section to write the equations
ruling the dynamics of a generic elastic continuum medium, the definition of
such a medium will be given. A perfectly elastic material gives a symmetric
contribution Tab to the energy momentum tensor respecting some additional
conditions:

• there is no material energy transport relative to the local rest frames
of the medium, i.e. the flow vector ua is an eigenvector of Tab,

• the force fa due to the interaction of the medium with other fields,
e.g. the electromagnetic field, respects the general conservation rule
T ab;b = fa,

From the first condition it follows that the energy momentum tensor Tab can
be written as

Tab = ρuaub + pab (6.2.14)

where ρ is the energy density and the symmetric tensor pab, called pressure
tensor or negative stress tensor, is u-orthogonal. The reversibility of the
evolution of a perfectly elastic body requires that ρ and pab are well defined
functions of the strain γab. This means that the projection of these quantities
through P in their material correspondent depends only on the components
of the projection of the strain tensor P(γab). As a counter-example, the
stress energy tensor of a viscoelastic material will depend on P(γab) and its
convected derivatives. As in the non general relativistic case, the dynamics of
the system is contained in the energy momentum conservation law, holding
by the second hypothesis given above (index lowered and raised respect to
this definition so to have a final result consistent with [17])

∇bTab = γbc∇cTab = fa. (6.2.15)

Following the assumptions above, the energy-momentum tensor is function of
the strain tensor γab through the seven functions ρ, pab. Since, as seen from
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its definition (6.1.2), the strain tensor is completely determined once that
the flow vector ua is known than the unknowns of eq. (6.2.15) are really the
three independent components of the vector ua. Projecting (6.2.15) on the
space-platform through the contraction with the strain tensor, it is possible
to write the three equations that solve the problem completely. Indeed, by
virtue of (6.2.14) the covariant derivative of Tab explicitly is

γbc∇cTab = γbc
[
ρ̇ua + ρu̇a + ρuaθ + (ua∇eud + γadu̇e)p

de
]
. (6.2.16)

Inserting this explicit form in (6.2.15) and contracting with γef gives three
independent equation of motion

(ργfe + pfe)u̇e = f f − γceγ
f
d∇cp

de (6.2.17)

these equations are enough to find the value of the three independent compo-
nents of the flow vector ua, once that the constitutive equations that specify
the dependence of the stress tensor on γab are given. However another equa-
tion is obtained from (6.2.15) contracting it with the flow vector

ρ̇ = −ρθ − pabθab. (6.2.18)

The presence of this equation is quite disturbing at a first glance, since it
makes the system over-complete. Since it is a relation between the density
ρ and the stress tensor it will be proved, instead, that this equation greatly
simplifies the constitutive equations. Indeed, the satisfaction of (6.2.18) is
necessary and enough to completely determine the seven unknown functions
in the energy momentum tensor ρ, pab. Eq. (6.2.18) written in term of
convected differentials is

dρ+
1

2
(ργab + pab)dγab = 0 (6.2.19)

and from this equation is possible to write the components of the stress tensor
as a well defined function of the strain tensor γab

pab = −2
∂ρ

∂γab
− ργab. (6.2.20)

Thus, once specified the only free function ρ in terms of the strain tensor, the
energy-momentum tensor Tab is completely determined. The density ρ can
also be expressed in terms of the mass per particle m, ρ = nm. Eq. (6.2.20)
expressed through derivatives of m becomes, by virtue of equation (6.1.13)

pab = −2n
∂m

∂γab
(6.2.21)
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To express the compatibility conditions when the 6 independent components
of the strain tensor are given it is necessary to introduce the elasticity tensor
Eabcd

Eabcd = −2
∂pab

∂γcd
− pabγcd (6.2.22)

and by eq. (6.2.21), if the mass per particle is given it becomes

Eabcd = 4n
∂2m

∂γab∂γcd
(6.2.23)

From eqs. (6.2.22) and (6.2.23) it follows that the elasticity tensor has only
21 independent components. If the equation of state is given specifying the
functions pab(γef ) the symmetry condition for the corresponding tensor Eabcd
is the necessary and sufficient condition for the existence of the density func-
tion ρ (or m). These conditions are the equivalent in general relativity of
the Saint Venant condition. Since the strain tensor here contains informa-
tion about both the metric gab and the dynamics through the flow vector
ua, then the Elasticity tensor contains information about the curvature of
the continuum system coming from both space-time and from the dynamics
of the system. It follows that the known form of Saint Venant condition is
a particular case in which the effective curvature is null, since there is no
curvature in Minkowski space-time and in linear elasticity the strain do not
produce any additional curvature. In this case, in addition, the vanishing
effective curvature makes possible to define the strain tensor as a function of
derivatives of the displacement vector [116; 78].
Untill now, equation written are for the most general case. In the follow-
ing section the linearized case of an Hookean elastic body will be analyzed,
making connection with the liner elasticity as expressed in Landau.

6.3 Linear Elasticity
The linear approximation of elasticity as formulated above is obtained ex-
panding the constitutive equation m(γab) up to the first order in the com-
ponents of the strain tensor. The expansion is made around a reference
configuration of the continuum where the elastic energy is minimized, i.e.
the unstrained configuration. The strain tensor of this configuration will be
indicated with κab, considered as a material constant u-orthogonal tensor.
To express the difference in the strain state in the dynamical evolution of the
system from the unstrained configuration the Lagrangian strain tensor eab is
introduced

eab =
1

2
(γab − κab). (6.3.24)
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From eq. (6.1.10) it follows that the evolution of the Lagrangian strain tensor
is given by

[eab]
∗ = θab (6.3.25)

The mass per particle in the linear approximation is given by a quadratic
form of the covariant components of the strain tensor

m = m0 +Kabcdeabecd (6.3.26)

where the tensor Kabcd has the same symmetry properties of the elasticity
tensor, and the link between these two is better specified using eq. (6.2.23)

Eabcd = nKabcd. (6.3.27)

Applying eq. (6.2.21) the pressure tensor is written simply in terms of the
elasticity tensor in the linear approximation

pab = −Eabcdecd. (6.3.28)

The isotropic case is the simplest one, where the tensor Kabcd is given in
function of rotational invariant combinations of the inverse of the reference
strain configuration

Kabcd = λ(κ−1)ab(κ−1)cd + µ[(κ−1)ac(κ−1)db + (κ−1)ad(κ−1)cb] (6.3.29)

The coefficients λ and µ are the Lamé coefficients, and are supposed to
be materially constant i.e. with null convected derivative. This tensor is
the analogous of the non-general relativistic case that could be found in
literature [122]. To establish the connection with the usual formulation of
linear elasticity a particular case will be considered: the reference strain will
be taken delta-like κab = δab. This is equivalent to say that in the reference
configuration the body is in Minkowski metric, and it is a good starting point
for a perturbative study of the effects of metric on an elastic body. Using
this particular Ansatz the mass m in (6.3.26) is written as

m−m0 = λe2 + 2µeabeab =

(
λ+

2

3
µ

)
e2 + 2µrabrab (6.3.30)

whrere rab = eab − e/3δab and e is the trace of the Lagrangian strain tensor
e = eaa. This is exactly the form of the elastic free energy for the linear elas-
ticity derived in Landau-Lifshitz. The pertubative approach to continuum
mechanics in general relativity poses an important problem. In principle
the state of strain of a continuum can change both due to a continuos dis-
placements in its space-coordinates xa → xa + ∆xa(xb) or due to a local
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change of the metric gab → gab+ δgab. A displacement can always be ”gauged
away” in a change in the metric through a change of coordinates, thus a
fully-consistent perturbation theory can be based only on perturbation to
the metric. However, it is often convenient to keep fixed the coordinates,
for example for symmetry reasons, and thus a suitable perturbation theory
should keep these two form of perturbations. A fully consistent perturbation
theory is built in [19; 16; 18; 27] and references therein, and it will be the
subject of the following section.

6.4 Perturbative approach to elastodynamics
in curved space time

The viewpoint exposed in the previous section about the dynamics of a con-
tinuum system is mathematically satisfactory but physically unclear. The
intuitive description of the dynamics of an elastic body is based on the
calculation of the displacement of point of the body from their unstressed
equilibrium positions. In the general relativistic description the concept of
displacement vector is lacking up to now, but this absence is innate in the
basic setting of the problem. A possible simple definition of displacement
vector could use the reference body B: supposing the definition of a global
coordinate system in the body, a displacement could be defined trivially as
Xα → Xα+ ∆Xα. This variation produces a shift in the world lines through
the inverse mapping P−1(B): xα → x

′a = xa + ξa(xb). Unfortunately, this
shift is in principle indistinguishable from a variation of the metric, since the
coordinate x′a can be used to describe space-time by applying the change of
coordinates on the metric

g′ab =
∂xc

∂x′a
∂xd

∂x′b
gcd. (6.4.31)

From this discussion it is clear that a coordinate system must be fixed in
space-time in order to define displacement in the intuitive way. In this way,
displacements and variation of the metric appear as separate perturbations
for an elastic body. This is equivalent to what is implicitly done in ordinary
elastodynamics, since the displacement is define with respect to an inertial
frame of reference, where Minkowski flat metric is defined. From now on, the
system of coordinates in space-time will be indicated as xa. The variations
in physical quantities can now be defined in the two coordinates systems:
the variations defined in the co-moving system of coordinates will be named
Lagrangian variations and indicated with ∆, while the variations defined in
the fixed space-time coordinates will be indicated as Eulerian variations and
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identified with δ. By definition, Lie derivative connects these two different
descriptions

∆− δ = Lξ (6.4.32)

since it is the difference between a tensorial field (the variation in this case)
parallel transported (Lagrangian variation) and the tensorial field itself (Eu-
lerian variation). As an example, from (6.4.32) it is possible to write the
Lagrangian variation of the metric when a displacement ξa is defined, known
its Eulerian variation δgab = hab

∆gab = hab + 2ξ(a;b) (6.4.33)

It is possible to apply these definition to the problem of defining the dynamics
of displacements of an elastic body, by considering the Lagrangian variation
of the equation of elasticity (6.2.17) in the form

ρu̇a + γacp
cb

;b = 0 (6.4.34)

In order to write the Lagrangian variation of this equation, the variation of
the different tensorial fields are needed [18]. The variation of the density ρ is

∆ρ = −1

2
ρycd∆cd (6.4.35)

and the variation of the pressure is

∆pab = −1

2

(
Eabcd + pabγcd − 4

c2
pc(aub)ud

)
∆cd (6.4.36)

where
ycd = γcd +

1

ρc2
pcd. (6.4.37)

Using these formulas the Lagrangian variation of eq. (6.2.17) becomes

(Aab d
c − ρyacubud)∆Γcbd =− γacEcebd

;eεbd+

+
1

c2

(
pabu̇d − 1

2
u̇apbd − 2Aa(b e)

c vceu
d + ρyacu̇

cubud
)

∆bd

(6.4.38)

where the Lagrangian variation of the connection coefficient is

∆Γcbd = ξc;(b;d) + hc (b;d) −
1

2
h c
bd − ξeRc

(bd)e. (6.4.39)
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Eq. (6.4.38) greatly simplifies when small perturbation of the metric are
considered, acting on a weak gravitational field [18; 16]

γacu
bud(ξcb;d + hcb;d −

1

2
h ;c
bd ) = ρ−1

[
Eabcd

(
ξc;d +

1

2
hcd

)]
;b

(6.4.40)

This equation can be found adding the perturbation [27]

L′ = −1

2
habT

ab (6.4.41)

to the lagrangian of a continuous medium. The simplest case that can be
considered is a gravitational wave interacting with an elastic medium in flat
space time. The covariant derivatives in this case are replaced with ordinary
derivatives, and the Hilbert gauge for the perturbation to the metric hab

h b
a ;b =

1

2
h b
b ;a (6.4.42)

makes the terms depending on hab in the left side of (6.4.40) to drop out,
living the simple equation [27]

∂t(ρ∂tξ
a) = ∂b

[
Eabcd

(
ξc,d − 1

2
hcd
)]

. (6.4.43)

It follows that an isotropic medium, whose elasticity tensor is given in (6.3.29),
couples with geometry only through the inhomogeneities of the medium. In
general, this inhomogeneity is given by the boundary of the solid body with
vacuum [27; 137]. A brief example on the use of eq. (6.4.40) is given in the
next subsection.

6.4.1 Axially symmetric perturbation of a membrane

In this subsection it will be analyzed the case of an axial symmetric change
of coordinates added to flat space time

xa → xa + f(r)δa3 (6.4.44)

where r =
√
x2 + y2. The function f(r) is supposed to have a compact

support, i.e. f(r) → 0 for r → ∞, and f ′(0) = 0. The metric in the
coordinates (t, r, θ, z′) is

gab =


−1 0 0 0
0 1 + (f ′(r))2 0 −f ′(r)
0 0 r2 0
0 −f ′(r) 0 1

 (6.4.45)
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Figure 6.1: Radial deformation of a membrane in an gaussian axial sym-
metric perturbation, with parameters a = 0.1, b = 0.01 in arbitrary units.

In the case of a membrane the out-of-plane and in-plane deformations can
be decoupled [78]. For the out-of-plane deformations, only the displacement
ξz(x, y) is considered to be different from zero. With this assumption, and
considering the radial symmetry of the problem, eq. (6.4.40) becomes

ξ′′z (r) = −f ′′(r)⇒ ξz(r) = −f(r) (6.4.46)

with the boundary conditions ξz → 0 for r → ∞ and ξ′z(0) = 0. For the
in-plane deformation the equation reduces again to a very simple form

∂rξr =
1

2
(f ′(r))2 (6.4.47)

The solution to this equation in the case of a gaussian perturbation f(r) =
ae−x

2/b2 is plotted in fig.6.1. Thus, from eq. (6.4.46) the observer in coordi-
nates x′a sees the membrane curved in the z direction following the profile
of the perturbation f(r) and contracted with radial symmetry in a neighbor-
hood of the origin.

6.5 Interaction of gravitational waves with mono-
layer graphene

In this section the existence and the corresponding magnitude of the scat-
tering of gravitational waves on graphene will be analyzed. As a first step,
the efficiency of energy transfer from gravitational waves to graphene mono-
layer will be calculated. In his article Dyson makes estimations of the energy
transfer in the scattering of gravitational waves with the surface of Earth,
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considered as flat. Considering a gravitational incident with angle θ with the
inward normal k = (ω/c)(sin θ, 0, cos θ), the perturbation to the metric given
by the gravitational wave is

hij = aRjRke
i(kix

i−ωt) (6.5.48)

where a is a dimensionless parameter that fixes the amplitude of gravitational
waves and for a circularly polarized wave the vector Ri is

Ri =
1√
2

(cos θ, i,− sin θ). (6.5.49)

The displacement vector yj is calculated using the boundary conditions,
through the consideration that velocity both the longitudinal and transverse
modes is much smaller than the velocity of light ct < cl � c

yi =
a

2

ct
ω

sin θ

(
cos θ, i,−ct

cl
sin θ

)
. (6.5.50)

The energy per unit surface and unit time of the gravitational wave trans-
formed in elastic energy of the Earth is

Q =
1

2
ρω2[ct(|y1|2 + |y2|2) + cl|y3|2]. (6.5.51)

The total flux of energy per unit time carried by the gravitational wave is
[77]

F =
c3ω2a2

64πG
| cos θ| (6.5.52)

The efficiency of the transfer ε is defined as the ratio between Q and F

ε ∝
(

8πGρ

ω2

)(ct
c

)3

(6.5.53)

Dyson is interested in the 1Hz band of gravitational waves, and his estima-
tions of physical effects proceeds as follows: two factor enter this estima-
tion, the mass density and the velocity of transverse waves. Using the values
ρ = 5.5g/cm3 and ct ≈ 4.5×105cm/s Dyson estimates 8πGρ ≈ 5×10−6sec−2,
and the ratio between the transverse velocity and the velocity of light is about
1.5 × 10−5, giving an efficiency in the case of Earth ε ≈ 10−21. A first es-
timation for the effects on graphene could be done using the corresponding
values for bulk graphite [11; 4] ρ = 2.23g/cm3, ct = 1.38 × 106cm/s, giving
8πGρ = 3.7×10−6s−2 and ct/c ≈ 10−5, giving an estimation for the efficiency
ε ≈ 3.6× 10−19. This estimation is made for the 1Hz band, as in the case of



CHAPTER 6. GRAVITATIONAL WAVES ANTENNAS 135

Dyson’s calculation, and it shows that bulk graphite is 2 order of magnitudes
more efficient than Earth to reveal gravitational waves. If the 1GHz band is
considered, the presence of the ω−2 factor in (6.5.53) reduces drastically the
efficiency to the value ε ≈ 10−37.
A finer estimation could be done using the mass density and the transverse
velocity for monolayer graphene. Due to dimensionality (ρ ∼M/L2 and not
M/L3) eq. (6.5.51) cannot be used for an estimation of the elastic energy
flux. An estimation done in the same spirit of Dyson can be performed as
follows: the energy flux per unit time can be calculated dividing the power
generated by elastic forces inside the graphene monolayer for the area of the
monolayer itself. Given the displacement yi in graphene, the power of elastic
forces P can be roughly estimated as

P = F |ẏ| = k|y||ẏ| = Mω2|y||ẏ|.

Dividing by the area of the sample and considering that ẏ ≈ ωy and eq.
(6.5.50) the flux of elastic energy for a graphene monolayer Qg is

Qg = ρω3|y|2 =
a2

4
ρωv2

s . (6.5.54)

where vs is the sound velocity. By using (6.5.52) for the energy flux of
gravitational waves, the efficiency for graphene evaluates as

εg ∝
16πGρ

ωvs

(vs
c

)3

(6.5.55)

In the case of graphene, the mass density is [63] ρ = 7.6×10−8g/cm2, and the
sound velocity [140] is vs ≈ 8Km/s. With these values of the parameters,
the dimensionless quantity 16πGρ/vsω has the value

16πGρ

ωvs
≈ 3× 10−20

ω
. (6.5.56)

Thus, in the case of the gigahertz band this quantity evaluates as 3× 10−29.
The ratio between the velocity of sound and the velocity of light is about
2.6 × 10−5, giving a value for the efficiency in the gigahertz window ε(ω =
1GHz) ≈ 10−42. In the 1Hz this values reaches the value ε(ω = 1Hz) ≈
10−33.
From (6.5.52) it can be estimated the value of the magnitude of the grav-
itational waves a, and thus the order of magnitude of the displacements
(6.5.50). Indeed, for a black body the flux is F = 2 × 10−5erg/cm2s, and
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thus aω = 3 × 10−21Hz. For a normally incident wave y = avs/2ω, that
could then be evaluated explicitly by virtue of the preceding considerations

y = 1.5× 10−21Hz
( vs
ω2

)
(6.5.57)

In the case of graphene in the gigahertz band of gravitational waves this
displacement is of the order of 1.5× 10−33cm. In conclusion, in the case of a
membrane the efficiency ε ∼ ω−1, and thus in principle at high frequency it
reacts better than a 3D solid, but this gain is overwhelmed by the small mass
density. It also follows from the value of the frequency windows interesting to
this study that the average displacement generated by a gravitational wave
is 16 orders of magnitude smaller than what is expected for Earth, following
the estimations found in litterature.

6.6 Graphene as a gravitational wave antenna
through the interaction with electromag-
netic field

In this section the case of gravitational waves will be considered. When the
metric is of the form gµν = g0

µν + hµν the Einstein equations are simply

Rµν = �hµν = 0 (6.6.58)

where � = ∇µ∇µ. In the following the symmetric traceless gauge will be
used in which the perturbation hµν satisfies the gauge conditions

∂µh
µ
ν = 0, hµµ = 0. (6.6.59)

The explicit form of hµν satisfying these conditions is

hµν =


0 0 0 0
0 h+ h× 0
0 h× −h+ 0
0 0 0 0

 , (6.6.60)

where both h+ and h× are functions of kz − ωt. From eq. (6.6.59) it follows
that the determinant of the metric is unchanged, since g = g0 + hµµ ≡ g0,
where g0 is the determinant of the unperturbed metric. Tensorial indexes are
lowered and raised with the unperturbed metric g0

µν . In this section it will be
assumed that g0

µν = ηµν , i.e. the unperturbed metric is the Minkowski one.
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As shown in the preceding section, the coupling of graphene with gravita-
tional waves could be taken as negligible. This can be thought as advantage,
and not necessarily as a drawback. If graphene is made to interact with
another physical field that is better coupled to geometry of space-time, then
it’s possible to use the knowledge trasport properties in graphene to high-
light this interaction. The first candidate as a possible interacting field is the
electromagnetic field. The coupling of electromagnetic field with geometry is
one the most studied subjects in general relativity, and the basics elements
needed to carry out our analysis can be found in standard manuals [96]. More
sophisticated studies can be found in both classical literature [128] and more
recent developments [132], but this treatment based on co-moving coordi-
nates will not be used here, since at this stage we are interested in the effects
of a small curvature perturbing Minkowski space-time. The field tensor Fµν
satisfies the Maxwell equations

Fµν;λ + Fµλ;ν + Fλν;µ = 0 (6.6.61)
∗F µν

;ν = ∗jµ. (6.6.62)

The Maxwell equations are unperturbed by space-time geometry in the case
of gravitational waves. Indeed, the field tensor by definition is

Fµν = ∇µAν −∇νAµ = ∂µAν − ∂νAµ (6.6.63)

where the last equality is justified by the symmetry of Christoffel symbols
Γλµν = Γλνµ. Eq. (6.6.62) written explicitly is

1√
−g

∂µ
√
−gF µν = jν (6.6.64)

Since the determinant of the metric is unchanged by the perturbation hµν ,
then the Maxwell equations are the same as in flat space-time. The correc-
tions to the covariant components of the vector potential Aµ are then null
too, but this is not the case for the contravariant ones Aµ, that obeys to the
equation

�Aµ = Rν
µAν (6.6.65)

where the d’ Alembert operator in curved space time is � = gµν∇ν∇µ.
Considering that for a contravariant vector field, the covariant differentiation
is ∇µAλ = ∂µ − ΓξµλAξ, the wave equation reads explicitly

1√
−g

∂µ
√
−ggµη∇ηAλ − gµνΓηνλ∇µAη = Rξ

λAξ (6.6.66)
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This equation greatly simplifies in the case of weak gravitational fields. Due
to eq. (6.6.58) left side of (6.6.66) is zero and then taking only first order
terms in (6.6.66) the wave equation become

�Aλ + hµη∂µ∂ηAλ + ηµη∂µΓξηλAξ = 0. (6.6.67)

It can be demonstrated that the third term on the right-hand side is null,
since

ηµη∂µΓξηλ =
1

2
ηµηηξσ[∂µ∂λhση + ∂η∂µhσλ − ∂µ∂σhηλ] (6.6.68)

Due to eq. (6.6.58), (6.6.59) this term then is zero, leaving the equation

�Aλ + hµη∂µ∂ηAλ = 0. (6.6.69)

where � = ∂µ∂µ.

6.7 Graphite as a gravitational wave detector
From Eq.(6.5.53) it is seen that graphite could be a good candidate to detect
gravitational waves, since it has a better efficiency than e.g. Earth. In this
section a mechanical resonator made of a cylindrical bar of radius R and
with length L of graphite will be studied. As a first step, the finite section
of the bar will be neglected, later the correction to the eigenfrequencies due
finite radius R will be analyzed. If the radius is R � L the length of the
resonator is fixed imposing that the resonance frequency of the bar should
be close to that of the gravitational wave we are interested in, i.e. 1 GHz.
The eigenfrequencies of a bar with both the ends free are [78]

ωn = π
vs
L
n (6.7.70)

and, in the case of a bar, the velocity of sound is vs =
√
E/ρ, where E

is the Young modulus and ρ is the density. In the case of graphite ρ =
1.79 × 103Kg/m3 and E = 10 Gpa, and the request of an eigenfrequency
ωn ≈ 1 GHz gives a length of the order L = 1µm. In the following only the
lowest mode n = 1 will be considered, and its frequency denoted with ω0.
Let’s treat the resonator as a spring that oscillates with frequency ω having
the mass of the resonator m = ρV sticked at its ends. Defining with ξ the
deformation of the spring, its equation of motion is

ξ̈ +
ξ̇

τ0

+ ω2
0ξ = γ (6.7.71)
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τ0 is the damping time for the mode, that takes into account internal dissi-
pation processes of the material, and γ is the acceleration produced by the
gravitational waves. Here I will consider the case of a monochromatic wave,
with h+ polarization traveling along the z-axis

hµν = h+σze
i(ωt−kz). (6.7.72)

In the following the resonator will be posed in the xy plane, with generic
orientation. The components of the acceleration ~γ are

γx = −Rx,0,j,0x̂
j = −1

2
ω2h+e

iωtx̂

γx = −Ry,0,j,0x̂
j =

1

2
ω2h+e

iωtŷ
(6.7.73)

and its projection along the oscillator direction is

γ = −1

2
ω2h+e

iωtL sin2 θ cos 2φ. (6.7.74)

With this perturbation (6.7.71) has the following general solution

ξ =
1
2
ω2h+L sin2 θ cos 2φ

ω2 − ω2
0 + iω/τ0

eiωt. (6.7.75)

When ω is close to the resonance, i.e. |ω − ω0| � ω0, the formula above
simplies as

ξ =
1
4
ω0h+L sin2 θ cos 2φ

|ω| − ω0 + i sign(ω)/τ0

eiωt. (6.7.76)

The energy of the resonator, when exited by the gravitational radiation then
is Eel = 2 · (1/2)ω2

0ξ
2. Assuming that the dumping due to internal processes

is much bigger than that produced by the emission of gravitational waves
from the resonator, the cross section of this idealized resonator can be cal-
culated making the ratio between this elastic energy and the flux of energy
of gravitational waves

EGW = T 0z =
1

32π
ω2h2

+. (6.7.77)

The resulting cross-section σ(ω) is

σ(ω) =
2πML2(ω2

0/τ0) sin4 θ cos 2φ

(|ω| − ω0)2 + (1/2τ0)2
(6.7.78)

It’s easy at this point to introduce the effect of unpolarized incoming grav-
itational radiation. Indeed, the other polarization h× will have the same
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contribution but for a factor sin2 2φ instead of the cosine. Thus, the cross
section for unpolarized radiation 〈σ〉, obtained through an average over the
direction of the incoming wave and the detector is

〈σ(ω)〉 =
8π

15

ML2(ω2
0/τ0)

(|ω| − ω0)2 + (1/2τ0)2
(6.7.79)

The maximum value of this quantity is 〈σ(ω0)〉 ≡ 〈σ〉max

〈σ〉max =
8π

15
8πML2(ω2

0τ0) (6.7.80)

This value can be expressed in a more suggestive way introducing the Schwarzchild
radius rg = 4mg/c2

〈σ〉max
(2L)2

=
4π2

15

rg
λ0

(ω0τ0). (6.7.81)

This quantity for a graphite bar of 1µ m length is quite small: rg = 8 ×
10−45m, λ0 ≈ 10−1m. The product Q = ω0τ0 is the energy dissipated
per radian of oscillation, and it depends on the internal dissipation of the
material. Following Weber it will be taken equal to 105, giving finally
〈σ〉max /(2L)2 ≈ 5× 10−39.
In general, the radiation hitting the detector will not be monochromatic, as
in the case considered until now. When the frequency window is bigger than
the width of the resonance of the detector the meaningful quantity is not the
cross section σ(ω) but its integral over frequencies, often called ”integral over
the resonance” ∫ ∞

−∞
σ(ω)

dω

2π
(6.7.82)

The integral over the resonance of equation (6.7.79) can be expressed in a
similar fashion of (6.7.81)

1

(2L)2

∫ ∞
−∞

σ(ω)
dω

2π
=

2π2

15

rg
λ0

ω0 ≈ 10−34 (6.7.83)

This quantity also has the advantage of being independent of the internal
dissipation. All the above formulae have been derived simplifying the de-
tector as a spring, but a more refined estimation of the cross section can be
done by using a symmetric shape for the bar, i.e. cylindrical

6.7.1 Vibrating bar as a detector

In this subsection with radius R and length L will be used as a detector for
gravitational waves [105; 117; 96]. Given the complete set ~Un of eigenvectors
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for each eigenmode of the bar the general displacement ~ξ is

~ξ =
∑
n

Bn(t)~Un (6.7.84)

and the equation of motion for the coefficients Bn(t) takes into account the
coupling with the driving force coming from gravitational wave with Riemann
tensor Rα

βγδ

B̈ +
Ḃn

τn
+ ω2

nBn = −c2Ri0j0

∫
d3x U i

nx
j. (6.7.85)

In the following the components of the variation of the moment of inertia
will be indicated with U ij

U ij =

∫
d3x U i

nx
j. (6.7.86)

When the mode parameter αn

αn =
nπR

L
(6.7.87)

is less than unity then the finite cylinder can be approximated with an in-
finite one (Pochammer Chree approximation) and the cross section can be
calculated up to the second order in αn in a similar way of that of a spring
[105]. In the following the dimensionless variables ρ and ζ will be used

ρ = r/R

ζ = z/R.
(6.7.88)

The eigenfrequencies of the bar up to the second order in αn are

ωn =
αn
R
vs

√
1− 1

2
σ2α2

n (6.7.89)

where σ is the Poisson ratio and the corresponding mode at the same order
has components

Uρ
n = Anσαn sin(αnζ)

U θ
n = 0

U ζ
n = An

(
1− σ

2
α2
nρ

2
)

cos(αnζ)

(6.7.90)

where An is the normalization costant for the nth mode

An =

√
2

V

[
1 +

σ(1− σ)

4
α2
n

]
(6.7.91)
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and V is the volume of the bar. With this definition the quantities (6.7.86)
up to the order o(α2

n) are

U ij
n =

√
2V

L

(nπ)2
[(−1)n − 1]

−(σ/4)α2
n 0 0

0 −(σ/4)α2
n 0

0 0 1− (σ2/4)α2
n

 .

(6.7.92)
From this expression it follows that only the odd modes, i.e. when n = 2m+1,
there is a coupling between the eigenmodes of the bar and the gravitational
radiation. The Riemann tensor for unpolarized radiation incident at an angle
θi from the detector axis is

Ri0j0 =

−R+ cos2 θi R× cos θi R+ cos θi sin θi
R× cos θi R+ −R× sin θi
R+ cos θi −R× sin θi −R+ sin2 θi

 (6.7.93)

The driving term in (6.7.85) then is

− c2Ri0j0U
ij
n = −c2R+(U22

n − U33
n ) sin2 θi (6.7.94)

The energy adsorbed by the n-th mode then is

En = −c2ρ(U22
n − U33

n ) sin2 θi

∫ ∞
−∞

dtḂ(t)R+(t) =

= c4ρ(U22
n − U33

n )2 sin4 θi

∫ ∞
−∞

dω
1

τn

ω2|R+(ω)|2

(ω2 − ω2
n)2 + ω2

τ2
n

=

=

∫ ∞
−∞

dωσn(ω)F (ω)

(6.7.95)

where the flux of the incoming wave is

F (ω) =
c7

4πG

|R+(ω)|2

ω2
(6.7.96)

and the expression of the cross section σn(ω) is

σn(ω) =
4πG

c4
ρ(U22

n − U33
n )2 sin4 θi

1

τn

ω4

(ω2 − ω2
n)2 + ω2

τ2
n

. (6.7.97)

The integral over the frequencies of this cross section would be divergent, un-
less the approximation of having the resonance frequency close to the incom-
ing wave one. This ultraviolet divergence is not physical since the adsorbed
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energy has a cut-off coming from the flux F (ω). This consideration leads to
the definition of the integral over the resonance∫ ∞
−∞

σn(ω)dω =
1

F (ωn)

∫ ∞
−∞

σn(ω)F (ω)dω =
8

π

M

n2

G

c

(vs
c

)2

sin4 θi

[
1 +

σ(1− 2σ)

2
α2
n

]
(6.7.98)

This cross section goes like n−2, i.e. the first mode has the biggest cross
section. Moreover, it goes like (vs/c)

2 and not as (vs/c)
3 as in the Dyson case,

thus having a better efficiency. In addition it has not been obtained in the
close-to-resonance approximation, thus in principle the resonator can have a
general dimension, not fixed requesting that the resonance frequency has to
be close to that of the incoming gravitational waves. The only approximation
done is that the dimension of the resonance has to be much smaller than
one wave-length, otherwise the driving force them in the equation for the
coefficient B(t) (6.7.85) has to be corrected adding higher order terms in xj.

6.8 Interaction of gravitational waves with a
3D TI

In the previous sections the mechanical effects of gravitational waves on 2D
and 3D systems has been discussed, showing that these effects are negligible
due to the magnitude of gravitational waves and the frequency windows that
is interesting to discriminate between different cosmological theories. In this
section the coupling of Dirac fermions with a gravitational wave traveling
along the z-direction is discussed, and a comparison with mechanical effects
will be done. In order to write the tetrads it’s useful to introduce the mixing
angle ϕ and the total amplitude of the gravitational wave h =

√
h2

+ + h2
× so

that the two polarizations h+ and h× are

h+ = h(t, z) sinϕ

h× = h(t, z) cosϕ
(6.8.99)

Using this convention the tetrads ea µ connecting the local Lorentzian frame
with the general coordinates xµ, i.e. such that ηabea µeb ν = gµν (with gµν =
ηµν + hµν and hµν in (6.6.60) for the gravitational waves), then are

ea µ =


1 0 0 0

0 −
√

(1−sinϕ)(1−h(t,z))
√

2

√
(sinϕ+1)(h(t,z)+1)

√
2

0

0

√
(1+sinϕ)(1−h(t,z))

√
2

(secϕ−tanϕ)
√

(sinϕ+1)(h(t,z)+1)
√

2
0

0 0 0 1


(6.8.100)
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where the latin index is the row one, and the latin one is the column index.
The inverse tetrads are

e µ
a =


1 0 0 0
0 − 1−sinϕ√

2
√

(1−sinϕ)(1−h(t,z))

cosϕ√
2
√

(1−sinϕ)(1−h(t,z))
0

0
√

sinϕ+1√
2
√
h(t,z)+1

cosϕ√
2
√

(sinϕ+1)(h(t,z)+1)
0

0 0 0 1

 (6.8.101)

In the following I will focus on 3D topological insulators, whose Hamiltonian
is

H = −iγa∂a + βM (6.8.102)

where the matrices γa = σa ⊗ σx, (a = 1, 2, 3) and iβ = iI ⊗ σz (here the
σa are the Pauli matrices and I is the identity in 2 dimensions) play the role
of Dirac matrices, i.e. they satisfy the Clifford algebra. The spin connec-
tion (2.1.19) calculated starting from (6.8.100) and (6.8.101) is in general
quite complicated. So, instead of proposing the form of Ωµ for whatso-
ever value of the mixing angle ϕ, I’ll discuss the spin connection up to the
linear order in the amplitude of the gravitational waves whose modulus is
h(t, z) = a sinωt sin kz for the two polarization i.e. the two limits ϕ→ 0 and
ϕ → π/2. For a +-polarized gravitational wave the components of the spin
connection are

Γ0 = 0

Γx =
i

2
[Σ0y∂th+ Σyz∂zh]

Γy = − i
2

[Σ0x∂th+ Σxz∂zh]

Γz = 0.

(6.8.103)

The spin connection for the ×-polarized wave, instead, is

Γ0 = Γz = 0

Γx =
i

2
√

2
[(Σ0x + Σ0y)∂th+ (Σxz + Σyz)∂th]

Γy =
i

2
√

2
[(−Σ0x + Σ0y)∂th+ (−Σxz + Σyz)∂th]

(6.8.104)

The spin connections (6.8.103) and (6.8.104) are related by a π/4 rotation.
However, the spin connection gives a second order contribution in the Dirac
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equation. Indeed, even Γµ has a first order contribution the total perturba-
tion introduced in the Dirac equation γae µ

a Γµ is of order h2. The only first
order perturbation introduced by gravitational waves in the Dirac equation
then is the rotation of the Dirac matrices.
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Appendix A

Mathematical Basic Instruments

In this appendix it is done a resume of mathematical instruments used in the
main text. The main aim of this appendix is to contain the mathematical
pre-requisites necessary to understand the Chern class, without the ambition
to be an exhaustive exposition of the mathematics presented. Thus, starting
from basic notions of differential geometry, the appendix will cover the theory
of fiber bundles and principal bundles, that is at the base of the definition of
topological invariants. The exposition will follow the lines of [100].

A.1 Preliminaries: Basic Differential Geome-
try

Let be f : M → N , where M and N are differential manifold. The function
f induces a map between the tangent spaces of M e N , called differential
of f and a map between the cotangent spaces of the two maniforlds, called
pullback or codifferential of f . Let γ : R → M be a curve in M and X
a tangent vector to this curve in the point p. The differential f∗ di f is
defined as the map associating to the vector X in pthe vector Y tangent to
the image of γ(t) through f in the point f(p). Given the coordinates xµ in
the patch containing p and yα the coordinated of the patch containing f(p),
the components of the vector Y are

Y α =
∂yα

∂xµ
Xµ

Let ω be a 1-form defined in f(p). The codifferential f ∗ of f associates the
1-forma ω′ acting on X as ω acts on the differential of X, i.e the vector Y
above, and its components are

ω′µ =
∂yα

∂xµ
ωα

147
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The formal definition of codifferential of the application f is

f ∗ω(X) = ω(f∗X)

In the following Lie groups will be used, and it is useful to summarize some
of their characteristics. A Lie group G is a differential manifold where it has
been introduced a group structure so that

• the multiplication · : G×G→ G is differentiable,

• the association of the inverse of each element is differentiable.

The right traslation Ra and the left one La are defined as

Rag = ga, Lag = ag

The tangent space in the identity of the Lie group G TeG is isomorphical to
the left invariant fields, i.e those fields defined in G so that

La∗X
∣∣∣
g

= X
∣∣∣
ag

The set of the left invariant fields, endowed with the Lie parenthesis [ , ] :
χ(M)× χ(M)→ χ(M)

[X, Y ]ν = Xµ∂µY
ν − Y µ∂µY

ν

is denoted with g and named Lie algebra.

A.1.1 Differential forms and De Rham cohomology

Let M be a differential manifold and TpM its tangent space in the point
p ∈ M . A 1-form (or covector) ω is defined as a linear application from the
tangent space to the field of the real numbers

ω : TpM → R

The set of 1-forms is the vector space T ∗pM , and it is defined as the dual
space of TpM . An basis in T ∗pM is made up of the applications dxµ (also
named θµ), defined as the application that associates to the vector X ∈ TpM
its µ-th component

dxµ(X) = Xµ

The r-forms are defined as the antysimmetrical linear and real-valued appli-
cations in TpM × TpM × . . . TpM︸ ︷︷ ︸

r volte

. The set of r-forms is indicated as Λr
p(M)
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and a basis in this space is defined starting from the outer products of the
basis 1-form in T ∗pM

dxµ1 ∧ dxµ2 ∧ . . . dxµr =
∑
P

σ(P )dxµP (1) ⊗ dxµP (2) ⊗ . . .⊗ dxµP (r) .

The outer product has the following properties

• dxµ1 ∧ dxµ2 ∧ . . . dxµr = 0 if an index is repeated;

• dxµ1 ∧ dxµ2 ∧ . . . dxµr = σ(P )dxµP (1) ∧ dxµP (2) ∧ . . . dxµP (r)

• the outer product is linear in each of its arguments.

A generic r-form ω is then a linear combination of the basis r-form

ω =
1

r!
ωµ1...µrdx

µ1 ∧ dxµ2 ∧ . . . dxµr

The components ωµ1...µr are completely antysimmetric in the indexes. The di-

mension of Λr
p(M) is

(
m
r

)
, where m is the dimension of the differential man-

ifold M . The outer derivative dr is an appilcation from Λr
p(M) to Λr+1

p (M)

dr : Λr
p(M)→ Λr+1

p (M)

defined as

drω =
1

r!

(
∂

∂xν
ωµ1...µr

)
dxν ∧ dxµ1 ∧ dxµ2 ∧ . . . dxµr

Note that dr+1dr ≡ d2 is a null operator. The space Λ0
p(M) is defined as the

space of the functions defined in the manifold M . Consider the case M = R3

and f a function defined in M . The outer derivative f is a 1-form whose
components coincide with the derivatives of f , i.e. the differential of the
function

df = ∂µfdx
µ

The outer derivative of a 1-form ω1 is the curl

dω1 = (∂xωy − ∂yωx) dx∧ dy+ (∂yωz − ∂yωz) dy ∧ dz+ (∂xωz − ∂xωz) dz ∧ dx

In the case of a 2-form ω2, dω2 is the divergence

dω2 = (∂xωyz + ∂zωxy + ∂yωzx)dx ∧ dy ∧ dz
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This considerations cover all the orders of r-form in R3, since there are not
r-forms with r > 3. An r-form ω is said to be closed if drω = 0 and exact if
it exists an r − 1-form η so that dr−1η = ω. The set of the closed r-forms is
indicated as Zr(M) while the set of the exact ones with Br(M). Since d2 = 0
then Br ⊂ Zr. It is possible to define an equivalence relation between the
closed differential form: η ≡ ω if they differ for an exact form, i.e. ω = η+dψ.
The quotient space respect to this relation is the r-th de Rham cohomology
group Hr(M)

Hr(M) = Zr(M)/Br(M).

Cohomology groups are relevant in the discussion about Chern classes: these,
indeed, are equivalence classes between closed forms i.e. elements of Hr(M).

A.2 Fiber Bundles: Definitions
A fiber bundle is defined as the set (E, π,M, F,G) where

• E is a differential manifold said total space,

• F is a differential manifold named fiber or typical fiber,

• G is a Lie group, named structure group, acting on the left in F,

• π is a surjective application π : E →M , such that the image of a point
in M through its inverse π−1(p) = Fp ∼= F is the fiber inp.

Let {Ui} be an open covering in M, endowed with a diffeomorfism φi : Ui ×
F → π−1(Ui) such that π ◦ φi(p, f) = p. The application φi is said local
trivialization. Note that by definition trivialization does not mix fibers, i.e.
fixed p ∈M and varying f ∈ F the image of the application φi(p, f) = φi,p(f)
is the fiber in p. In the intersection of two patches Ui ∩ Uj it is defined
an application tij = φ−1

i,p ◦ φj,p : F → F , the transition function, is an
element of the structure group. Trivializations are then linked by a biunivocal
application

φj(p, f) = φi(p, tij(p)f)

. Given u ∈ π−1(Ui ∪ Uj) so that π(u) = p, through the inverse of the
trivializations are associated two different elements of F

φ−1
i,p (u) = fi, φ−1

j,p(u) = fj

The elements fi e fj are linked through tij, fi = ti,j(p)fj. The properties
of the transition functions, defined so that the patches in the covering are



APPENDIX A. MATHEMATICAL BASIC INSTRUMENTS 151

linked in a consistent way, are

tii = I
tij = t−1

ji

tik = tij ◦ tjk.
(A.2.1)

When all the transition functions coincide with the identity the fiber bundle
is defined as trivial and it is nothing but the productM×F . It is possible to
define different trivializations in the same patch, the difference between them
will always be in the element associated by the inverse to a given element
of the bundle. These elements are linked in a way similar to the transition
functions through the functions gi = φ−1

i,p ◦ φ̃i,p. The functions gi also define
the transformation rule for the transition function

t̃ij = φ̃−1
i,p ◦ φ̃j,p = g−1

i ◦ tij ◦ gj.

The section s : M → E is an application such that π ◦ s = IM . The image
of a point p ∈M through s is then an element in Fp. The set of the section
defined in the bundle is indicated with Γ(M,F ).

A.2.1 Principal Bundles

A principal bundle is a fiber bundle where the fiber coincides with the
strucutre group

(E, π,M,G,G) ≡ P (M,G).

In principal bundles is defined the right action of the group G on the fiber.
GIven a local trivialization φi : Ui×F → π−1(Ui) it associates to an element
u ∈ π−1(Ui) the couple (p, gi). The right action is then defined as φ−1

i,p (ua) =
(p, gia). The right action so defined is independent of the trivialization.
Indeed,

ua = φj(p, gja) = φj(p, tjigia) = φi(p, gia).

Given a section in a principal bundle it is possible to define a local canonical
trivialization, defined as

si(p) = φ(p, e).

All the other elements in the fiber are obtained through the right action of
the group. Starting from a principal bundle it is possible to define bundles
with different fibers. Let F be a differential manifold on witch the structure
group acts on the left. An element in the associated fiber (E, πE,M,G, F, P )
is defined through the couple

(u, v) ∈ P × F
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The action of the group G on P × F is defined through the right action of
the group on the pricipal bundle P

g → (ug, g−1v)

The projection on the associated bundle is defined through the projection on
the principal bundle, i.e. πE(u, v) ≡ π(u).



Appendix B

Kubo Formula

In this appendix the basics of linear response theory [76; 98] are revised.
Before the work of Kubo, the most common technique used to calculate non-
equilibrium quantities, such as response functions, was the kinetic equation
for the molecular distribution function. Such an equation is in itself an
approximation and it has been proved to hold only after strictly (and often
not satisfied) conditions on the interaction. The Kubo formula, based on
fluctuation-dissipation approach, allows to overcome all these difficulties.

B.1 Linear Response theory
Given a many body Hamiltonian H, the density matrix ρ in Scrödinger pic-
ture obeys the Liouville equation

i~
dρ

dt
= [H, ρ] (B.1.1)

and the expectation value of an observable B is

B(t) = Tr{ρ(t)B}. (B.1.2)

When H is of the form
H = H0 + V (t) (B.1.3)

the density matrix can be decomposed as

ρ(t) = ρ0 + ∆ρ (B.1.4)

where ρ0 is the density matrix for the unperturbed Hamiltonian in the grand-
canonical ensemble

ρ0 = ζ−1 exp{−β(H0 − νN)}, with ζ = Tr exp{−β(H0 − µN)}.

153



APPENDIX B. KUBO FORMULA 154

In the formula µ is the chemical potential and N is the number operator.
Putting (B.1.4) in (B.1.1), and equation for ∆ρ at the linear order is derived,
which in interaction picture is

i~
d

dt
∆ρI = [VI(t), ρ0]. (B.1.5)

In the hypothesis that the perturbation V (t) is turned on adiabatically in
the past, the equation for ∆ρ has to be solved with the boundary condition

lim
t→−∞

∆ρ = 0. (B.1.6)

The solution of (B.1.5) then is

∆ρ(t) = − i
~

∫ t

−∞
dt′[VI(t

′), ρ0]. (B.1.7)

Let’s consider now the case of an observable B having null expectation value
in the unperturbed system, i.e. Tr{ρ(t)B} = 0. The expectation value of B
in the perturbed system then is

B(t) = − i
~

∫ t

−∞
dt′Tr{[VI(t′), ρ0]BI(t)} =

i

~

∫ t

−∞
dt′Tr{ρ0[VI(t

′), BI(t)]},

(B.1.8)
where in the last equality the ciclic property of the trace has been used.
Taking a perturbation of the type

V (t) = AF (t), with F (t) = ei(ω+iη)t (B.1.9)

Eq. (B.1.8) becomes

B(t) =

∫ t

−∞
dt′φBA(t− t′)F (t′) (B.1.10)

where it has been introduced the response function, i.e. the Green function
of the operators A and B

φBA =
i

~
Tr{ρ0[A,BI(t)]}θ(t), (B.1.11)

θ(t) being the step function. Following Kubo [76] the response function can
be usefully expressed as

φBA(t) =

∫ β

0

dλTr{ρ0Ȧ(−i~λ)B(t)}θ(t). (B.1.12)
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B.2 Electrical conductivity
In this section the formalism exposed previously will be used to calculate
the electrical conductivity, making connection with the formulas in Ch. 1.
Consider a system made up of N electrons subject to an electric field

V (t) = e

N∑
i=1

xi · E(t). (B.2.13)

The response function (B.1.12) then reads

φBν = eθ(t)

∫ β

0

dλTr{ρ0Jν(−i~λ)B(t)} (B.2.14)

where it has been used the definition of current Jν =
∑N

i=1 ẋ
µ
i . The response

to the applied field is obtained choosing B as the current density

Jν = −eJν(r) = −e
2

N∑
i=1

vνi δ(r− ri) + δ(r− ri)vνi (B.2.15)

so that the response function is the electrical conductivity which explicitly is

φBν ≡ σµν = −e2θ(t)

∫ β

0

dλ Tr{ρ0Jν(−i~λ)Jµ(r, t)} (B.2.16)

The sample averaged conductivity invoked in Ch. 1 then is

σµν(t) =
1

A

∫
drσµν(r, t) (B.2.17)

where A is the size of the system.



Appendix C

Green function in the free case

In this appendix a review of the spectral representation of the Green’s func-
tion is given, leading to the formalism used in Ch. (2) to analyze the case of
the edge dislocation in graphene.

C.1 The spectral representation
The Green’s function of the operator L(z) is defined through the equation

[ω − L(z)]G(r, r ′, ω) = δ(r− r ′) (C.1.1)

The spectral representation for the Green’s function [31] in general is

G(r, r ′, ω) =

∫
dc

Ψc(r)Ψ†c(r ′)
ω − λc

(C.1.2)

where c is the label for the continuous spectrum λc of the operator L(z) and
the discrete spectrum of this operator is supposed to be absent. I am here
interested in analyzing the case of Dirac equation in 2+1 dimensions, i.e.
L = −iγa∂a with the following choice for the Dirac matrices

γ0 = −iσz
γ1 = σy

γ2 = −σx
(C.1.3)

and σi is the i-th Pauli matrix as usual. The equation for the Green’s function
in the domain of frequencies then is

[E + iσ · ∇]G(r, r ′, ω) = iσzδ(r− r ′) (C.1.4)
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Considering the decomposition of a plane wave in angular momentum eigen-
functions

Ψ =
1√
2

∑
m

im
(

Jm(kr)
isJm+1(kr)eiθ

)
eim(θ−θk) (C.1.5)

The Green function of an edge dislocation analyzed in term of angular mo-
mentum eigenfunctions is

G (~r, ~r ′, ω) = i

∫
pdp

∑
m,s

eim(θr−θr′ )

ω − sp
×

× 1

2

(
Jm(pr) Jm(pr′) −is Jm(pr) Jm+1(pr′) e−iθr′

−is Jm+1(pr)Jm(pr′) eiθr −Jm+1(pr) Jm+1(pr′) ei(θr−θr′ )

)
=

=
i

2π~2v2
F

∑
m

∫ ∞
−∞

EdE
eim(θr−θr′ )

ω − E
×

× 1

2

(
Jm(x) Jm(x′) −is Jm(x) Jm+1(x′) e−iθr′

−is Jm+1(x)Jm(x′) eiθr −Jm+1(x) Jm+1(x′) ei(θr−θr′ )

)
(C.1.6)

where the dimensionless variables x = |E|r/~vF and x′ = |E|r′/~vF have
been introduced as in Chapter 2, and it has been taken into account that
the Bessel functions of integer order are real functions. The integration path
in the complex E plane is shown in fig. C.1. The contribution from the
circumference at infinity is null, as in the case of Fermi liquids [134]. Only
the contribution from the pole at ω then remains. The series in (C.1.6) can

Ω

Re@ED

Im@ED

Figure C.1: Integration circuit in the complex E plane in (C.1.6).
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be summed with the help of Graf’s theorem [2]∑
m

eim(θr−θr′ )Jm(ωr) Jm(ωr′) = J0(ωρ)∑
m

eim(θr−θr′ )Jm(ωr) Jm+1(ωr′) e−iθr′ = iJ1(ωρ)e−i
θ′+θ

2

∑
m

eim(θr−θr′ )Jm+1(ωr) Jm(ωr′) eiθr = iJ1(ωρ)ei
θ′+θ

2∑
m

ei(m+1)(θr−θr′ )Jm+1(ωr) Jm+1(ωr) = J0(ωρ)

(C.1.7)

So that a closed form for the Green function is (ρ(ω) is the density of states
at ω)

G (~r, ~r ′, ω) = ρ(ω)
1

2

(
J0(ωρ) J1(ωρ)e−i

θ′+θ
2

J1(ωρ)ei
θ′+θ

2 −J0(ωρ)

)
(C.1.8)
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