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ABSTRACT 

CA IX is a member of the carbonic anhydrase family of enzymes. It is a well known 

marker of hypoxia and is involved in pH regulation, migration/invasion and survival in 

hypoxic cancer cells. It is indicative of a poor prognosis in many cancer types and is 

associated with resistance to conventional therapy. So, there is a diffuse interest in 

inhibiting its function. Unfortunately, small molecule inhibitors that are available to 

inhibit CA IX demonstrated to be not much selective because of a high degree of 

homology amongst the catalytic sites of the various CA isoforms. 

The main aim of my PhD project was to identify molecular interactors of CA IX, and 

through them, to contribute to clarification of CA IX biological mechanisms. These 

molecules may drive design and development of peptide mimetics interfering with CA 

IX function. 

A complex protein network of novel CA IX interactors has been highlighted: several 

proteins belong to the family of the ARM and HEAT-repeat containing proteins and 

several members of the nucleocytoplasmic transport machinery have been identified 

as CA IX interactors under hypoxia, including importins and exportins. XPO1 and 

TNPO1 have been chosen as representative members of the nucleocytoplasmic 

transport machinery. 

Cullin-associated NEDD8-dissociated protein 1 (CAND1) is a nuclear HEAT/ARM-

containing protein that is involved in gene transcription and assembly of the SCF E3 

ubiquitine ligase complex. It interacts with CA IX under both normoxic and hypoxic 

conditions.  

Immunofluorescence (IF) analysis further proved complex subcellular localization of 

CA IX in human cell lines, highlighting a nuclear accumulation of CA IX in hypoxic 

cells. Nuclear presence of CA IX was also observed in two out of seven cases of 

clear cell renal cell carcinoma (ccRCC). 

Putative NLS/NES sequences have been identified in CA IX protein sequence; IF 

analysis showed that they are able to affect distribution of reporter protein GFP inside 

the cell. 

Collectively these data suggest that subcellular localization and functions of CA IX 

are more complex than previously thought. CA IX may have intracellular functions 

different from those already known at the plasma membrane. Investigation on this 
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emerging scenario may prove useful to highlight unsuspected features in CA IX 

biology and its involvement in molecular mechanisms of cancer.  
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1. INTRODUCTION 

 

1.1 Carbonic Anhydrases 

Carbonic Anhydrases (CAs; also known as Carbonate Dehydratases EC 4.2.1.1) are 

ubiquitous zinc metalloenzymes present in prokaryotes and eukaryotes that catalyze 

the reversible hydration reaction of carbon dioxide (CO2) to bicarbonate (HCO3
-) and 

protons (H+). They are encoded by five evolutionarily unrelated gene families that are 

the α-CAs (present in vertebrates, bacteria, algae and cytoplasm of green plants); the 

β-CAs (predominantly in bacteria,  algae and chloroplasts of monocotyledons and 

dicotyledons); the γ-CAs (mainly in archaea and some bacteria); the δ-CAs and ζ-

CAs (present in some marine diatoms)1-5.  

In mammals, 16 α-CA isozymes or CA-related proteins with different catalytic activity, 

subcellular localization and tissue distribution are present6-13. In human they are 

fifteen, as the CA XV gene is expressed in rodents, but appears to have become a 

pseudogene in primates14. They can be classified according to various criteria 

including subcellular localization, catalytic activity and expression pattern. 

Accordingly, we can now describe intracellular (CA I-III, VA, VB, VII, VIII, X, XI, XIII) 

and extracellular (CA IV, VI, IX, XII, XIV), catalytically active (CAI-VII, IX, XII-XIV) and 

inactive (CA VIII, X, XI), wide-spread (CA II, IV, VB, XII, XIV) and restricted to few 

tissues (CA I, III, VA, VI, VII) carbonic anhydrases (Figure 1). Different combinations 

of the above listed properties create a series of features, allowing each isoform to 

fulfil a unique role in a specific physiological context15.   

CAs are usually expressed in well differentiated metabolically active cells and 

tissues. Among all isoforms, CA II is the most widely distributed, being almost 

ubiquitous, and one of the most efficient catalyst16. 

The CA reaction is involved in many physiological and pathological processes based 

on gas exchange, ion transport and pH balance, such as respiration and transport of 

CO2 and bicarbonate between metabolizing tissues and lungs; pH and CO2 

homeostasis; electrolyte secretion in various tissues and organs; biosynthetic 

reactions (gluconeogenesis, lipogenesis and ureagenesis); bone resorption; 

calcification; production of body fluids; digestion; renal acidification and  
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Figure 1. Schematic representation of 15 members of human -Carbonic Anhydrase family. The 
intracellular CAs possess only the catalytic domain; the transmembrane CAs have a transmembrane 
region and also a cytoplasmic tail. Peculiar features are shown by the extracellular CAs, CA VI and CA 
IX, devoid of the intracellular tail or possessing unique N-terminal proteoglycan-like domain, 
respectively (Truppo et al.; Bioorg. Med. Chem. Lett. 2012, 22, 1560–1564). 
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tumorigenicity6-9. As a consequence, many CAs are important therapeutic targets that 

may be inhibited to treat a range of disorders including edema, glaucoma, obesity, 

cancer, epilepsy and osteoporosis17.   

Among all isoforms, CA IX is particularly interesting, as it is overexpressed in many 

cancer types and often associated to radio/chemo-resistance18, 19.  

 

1.1.1 CA IX 

CA IX is a peculiar member of the CA family, because of both structural properties 

and subcellular distribution. Moreover, as CA XII18, it is a tumor-associated isoform 

and its expression is a negative prognostic factor20-23, also indicative of resistance to 

conventional therapy24.  

It was discovered in HeLa cells using monoclonal antibody M75 and initially termed 

MN6. MN consisted in a transmembrane glycoprotein, whose expression was 

regulated by cell density and correlated with tumorigenicity25. It was also detected in 

clinical specimens of cervical and some others human carcinomas and was absent in 

normal tissues of corresponding organs26. 

The cDNA of CA IX was described by Pastorek et al. in 199427, as a cDNA coding for 

the novel human protein MN. Based on striking homology between the central part of 

the MN protein and carbonic anhydrases and on capability of binding zinc and 

catalyze CA reaction, MN was considered as a new -carbonic anhydrase isozyme, 

that was designed as CA IX by Hewett-Emmett and Tashian in 199628.  

The MN/CA IX protein consists of 459 amino acids that are organized in an N-

terminal signal peptide (aa 1–37), an extracellular part (aa 38–414), a 

transmembrane region (aa 415–434), and an intracellular C-terminus (aa 435–459). 

The extracellular part is further composed of two distinct domains: the PG-like 

domain (53-111) and CA domain (135-391)29.  

Gene and transcriptional regulation 

The MN/CA IX gene was characterized by Opavsky et al. in 1996; it consists of 11 

exons and 10 introns and encompasses 10.9 Kb29 in the p12-p13 region of the 

chromosome 930. The first exon encodes the putative signal peptide and the entire 

PG-like domain, the exons 2-8 encode the CA domain and finally the exons 10 and 
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11 encode the transmembrane region and the intracellular tail, respectively29 (Figure 

2).  

Even if the intron distribution in the CA domain coding region as well as the amino 

acid sequence homology suggest an early divergence in evolution of MN/CA IX 

gene, MN CA IX protein has highly conserved catalytic domain, indicating a 

functional importance of its catalytic activity29. 

The -173 to +31 fragment was identified as MN/CA IX promoter by deletion analysis. 

It contains six cis-acting elements: five regions protected in DNase I footprinting 

(PR1-PR5)31 and a HRE element TACGTGCA, corresponding to the -3/-10 sequence 

between the transcription start and PR1, that is activated by the hypoxia inducible-

factor (HIF)32. Among them, five (HRE, PR1, PR2, PR3, PR5) positively affect and 

one (PR4) negatively affects CA IX transcription31. More specifically PR1 (-45/-24) 

and PR5 (-163/-145) bind Sp1/Sp3 factors 33-35, PR2 (-71/-56) binds AP-131, 35, PR3 (-

101/-85) binds proteins from nuclear extracts31 and finally repressor binding PR4 has 

not been identified.  

The HRE is the most critical regulatory element in the CA IX promoter32, 34; binding of 

HIF complex to HRE is a prerequisite for recruiting the transcriptional machinery to 

the CA IX promoter. So other regulatory elements act amplifying signals received at 

the HRE.  

The minimal CA IX promoter also includes PR1 and, as said, is dependent on 

Sp1/Sp3 activity; Kaluz et al., have proposed that PR1 and HRE form a novel type of 

hypoxia-responsive enhancer element34 (Figure 3). 

CA IX transcription is highly inducible, but no mRNA is detected in the basal, 

uninduced state27.  

Hypoxia, through HIF-1, is directly involved in regulation of CA IX expression. This 

has been demonstrated both in vivo and in vitro; on one hand in tumor samples CA 

IX immunostaining is mostly restricted to hypoxic regions32, 36, on other hand CA IX is 

expressed in most cancer cell lines only under hypoxic conditions32, 37.   

HIF-1 consists of two subunits: one is the oxygen-regulated HIF-1 subunit, the other 

is the constitutively expressed HIF-1ß (also known as ARNT)38. Under normoxic 

conditions, HIF-1 is targeted for ubiquitin-mediated degradation by the 26S  



11 
 

 

 
Figure 2. Map of human CA IX gene (Opavsky et al.; Genomics 1996, 33, 480-487).  

 

 

 

 

Figure 3.Schematic representation of -173/+31 promoter region of CA IX.  The promoter of CA IX 
gene is formed by five protected regions (PR1-5) and a HRE element. The region PR1 together with 
HRE element constitute the minimal CA IX promoter and activate CA IX gene transcription through 
Sp1 and HIF respectively (Ihnatko et al; International Journal of Oncology 2006, 29, 1025-1033). 
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proteasome. This process is primarily regulated by prolyl hydroxylases (PHDs) which 

hydroxylate proline residues (Pro402 and Pro564 of HIF-1) localized within an 

oxygen-dependent degradation domain (ODDD). These allow binding of the VHL 

protein (pVHL), a component of the VCB E3 ubiquitin ligase complex39, 40. Moreover, 

HIF-1 is hydroxylated at asparagine residue (Asn803) within the C-terminal 

transactivation domain (C-TAD) by the factor inhibiting HIF-1 (FIH-1) which prevents 

binding of the p300/CBP coactivator41, 42. Under hypoxic conditions, hydroxylation 

and acetylation are inhibited and therefore, pVHL cannot target HIF-1 for 

degradation. After accumulation of HIF-1 in the nucleus and dimerization with HIF-

1ß, HIF-1 mediates essential homeostatic responses to cellular and systemic hypoxia 

by activating transcription of multiple genes (e.g. VEGF, Glut1, CA IX) whose 

promoters contain HREs (5'-RCGTG-3')43 (Figure 4).  

In addition to hypoxia, other agents and genetic factors can induce CA IX expression 

but majority of them converge on the HIF-1 pathway by regulating HIF-1 stability, 

HIF-1 transcriptional activity or both44. For example, inactivating mutations or 

epigenetic silencing of VHL associate to overexpression of CA IX under normoxic 

conditions through stabilization of HIF-132, 33, 45; p53 activation is linked to CA IX 

down-regulation through increased proteasome-dependent degradation of HIF-1 

and by competing for CBP/p30046, 47; high cell density, corresponding to mild 

hypoxia, causes CA IX overexpression through an increased PI3K activity, that in 

turn upregulates HIF-1  levels or activity in a cell-type specific manner48, 49. A further 

level of complexity in the understanding of CA IX transcriptional regulation is added 

by different kinetic of HIF-1 and CA IX; the first is quickly degraded in normoxia and 

quickly stabilized in hypoxia, whereas CA IX is slowly both activated and degraded in 

hypoxia. This discrepancy may explain those cases in which CA IX expression does 

not correlate with hypoxic markers. So, HIF-1+ CA IX – cell profile may indicate that 

cells have recently become hypoxic and CA IX protein is not yet measurable. 

Conversely HIF-1- CA IX + cell profile may indicate that cells had been hypoxic and 

have been reoxygenated but they still express long-lived CA IX44. Finally it has to be 

taken into account that HIF-1 can be also regulated by O2-independent factors, such 

as oncogenes and oncosuppressors50, free radicals51.  
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Figure 4. HIF-1 regulation pathway.  In normoxia HIF-1 protein is quickly degraded by 26S 
proteasome as polyubiquitylated by VHL, that recognizes and binds proline hydroxylated by PDHs. 
Moreover, asparagine hydroxylation by FIH-1 prevents CBP/p300 co-activator recruitment, so 
inhibiting transcriptional activity of HIF-1. In hypoxia both PDHs and FIH-1 are inhibited by lowered O2 

tension and HIF-1 can translocate to the nucleus, where it associates to HIF-1β, forming a complex 
that activates transcription of genes whose promoter contains HRE elements (Lu et al.; Clin. Cancer Res. 

2010, 16, (24), 5928–5935). 
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CA IX gene is transcribed into a 1.5 Kb mRNA27. So far, two splicing variants have 

been described: full length and AS. The first variant is predominant, low expressed in 

very few normal tissues and induced in hypoxic cancer cells; conversely, the second 

is less abundant in tumors, being not mainly dependent on hypoxia and cell density, 

but it can be detected in normal tissues and under normoxia. AS CA IX variant lacks 

exons 8 and 9 and produces a truncated form of CA IX protein, which is lacking the 

transmembrane region, intracellular tail and C-terminal part of the catalytic domain. 

Subsequently, it is incorrectly distributed; it is not localized at the plasma membrane, 

but mainly occupies intracellular space and is also released to the extracellular 

medium. Moreover, it is unable to form oligomers and shows reduced catalytic 

activity. It may behave in a dominant negative fashion, interfering with the function of 

the endogenous, hypoxia-induced FL protein52 (Figure 5). 

Protein structure and function 

 At the beginning, structure of CA IX protein was analysed on the basis of sequence 

homology with other family members27, then it was studied through x-ray 

crystallography53. As already introduced, CA IX is described as a transmembrane, 

multi-domain glycoprotein consisting of a N-terminal proteoglycan (PG)-like region, a 

carbonic anhydrase (CA) catalytic domain, a transmembrane (TM) segment, and an 

intracellular (IC) tail27, 29. Biochemical characterization of CA IX demonstrated that it 

forms dimers through a symmetrical intermolecular disulfide bond involving C137 

localized on the backbone of the catalytic domain54. Moreover, CA IX contains an 

intramolecular disulfide bond (C119−C299), a unique N-linked glycosylation site at 

Asn 309, in the catalytic domain, which is modified by high mannose-type glycans, 

and an O-linked glycosylation site at Thr 78, next to the PG domain. The recently 

reported crystal structure of the CA domain of this enzyme confirmed its dimeric 

nature and showed that the N-terminal regions of both monomers are located on the 

same face of the dimer, whereas the C-terminal ones are situate on the opposite face 

(Figure 6). 

The CA IX catalytic domain appeared as a compact globular domain; the active site 

is located in a large conical cavity in the bottom of which the zinc ion is buried.  The 

catalytic site is delimited by two distinct regions made of hydrophobic (Leu91, 

Val121, Val131, Leu135, Leu141, Val143, Leu198 and Pro202) or hydrophilic amino  
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Figure 5. Human splicing variants of CA IX.  (A) Match between amino acid sequences deduced 
from the human FL and AS CA IX cDNA. AS hCA IX lacks the C-terminal part of the catalytic domain 
(grey background), the transmembrane region (black background) and the intracellular tail. Dashes 
correspond to residues deleted in AS-hCA IX (B) Schematic representation of the human FL and AS 
CA IX proteins (Barathova et al.; British Journal of Cancer 2008, 98, (1), 129 – 136). 

 

 

 

Figure 6. CA IX structure and domain organization  (A) CA IX dimer structure on the cell 
membrane, based on the X-ray crystallography data. The PG-like domain (53-111) is reported in 
magenta, the catalytic domain (135-391) in cyan, the transmembrane region (415-433) in yellow and 
finally the intracellular tail (434-459) in green (Alterio et al.; PNAS 2009, 106, 38, 16233–16238); (B) Schematic 
representation of domain organization of CA IX highlighting its main biochemical features. C137 
mediates CA IX dimerization, whereas C119 and C299 form an intramolecular disulfide bond. T78 and 
N309 are sites of O- and N- glycosylation respectively (Swietach et al.; Oncogene 2010, 29, 6509–6521). 
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acids (Arg58, Arg60, Asn62, His64, Ser65, Gln67, Thr69, and Gln92) and spans from 

the surface to the center of the protein53.   

Each domain of CA IX protein has been associated to specific functions55.  

The PG-like domain, a region of around 60 amino acids that is a distinctive feature of 

CA IX, is involved in cell-cell adhesion, intercellular communication56-58 and, most 

probably, also in tumor invasion through interaction with β-catenin55, 58, 59. Moreover it 

seems to contribute to the improvement of the CA IX catalytic activity at the acidic pH 

values at which it generally operates, especially in the hypoxic cells53. Otherwise CA 

reaction would be highly disadvantaged at acidic pH values, as optimal pH for CO2 

hydration would be around neutral values. Presence of PG-like domain confers to CA 

IX an optimal activity at pH 6.49 differently to all other isoforms that work better in the 

pH range 6.9-7.160.  

In 2003 Zavada et al. demonstrated that the whole extracellular domain (ECD) of CA 

IX can be released into the cell culture medium or into the body fluids of tumor 

patients61; this process is metalloprotease-mediated and is regulated by 

TACE/ADAM 17 but its biological function is unknown. CA IX ECD represents 10% of 

total CA IX under both normoxia and hypoxia; it may affect full length CA IX functions 

interacting with its binding partners62. 

The CA domain has been associated to the growth and survival of tumor cells55 and 

recently also to an increase of cell migration63. 

Finally, the intracellular tail (IC) was seen to be essential for correct functioning of CA 

IX, because its removal changes CA IX subcellular localization, whereas its 

mutagenization reduces ectodomain shedding and cell dissociation capacity of CA IX 

and abolishes the capability to acidify extracellular medium under hypoxia64. 

Previously, it has been related to signal transduction through phosphorylation of a 

Tyr residue that allows interaction with regulatory subunit of PI3K and subsequent 

activation of Akt and other cancer-related signaling pathways65.  

Recently, our investigations have highlighted presence of putative nuclear 

localization sequences (NLS) and nuclear export sequences (NES) in the intracellular 

tail and transmembrane region respectively, that seem to drive intracellular 

distribution of CA IX65. 

CA IX expression is slowly activated but, once CA IX is present, it is very stable with 

a half-life of 2-3 days67, 68.  It is evident up to 96 hours after re-oxygenation and its 
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expression level reduces very slowly67-69. Conversely, HIF-1 is an indicator of 

oxygenation state, as it is quickly stabilized under hypoxic conditions and quickly 

degraded under re-oxygenation70. Consequently CA IX expression does not always 

correlate with HIF-1 stabilization, as seen in perinecrotic regions of solid tumors71.  

Role in cancer disease 

CA IX is a tumor-associated enzyme. According to its involvement in tumorigenesis, 

CA IX is normally present in only few normal tissues, such as the gastrointestinal 

tract, whereas it is highly expressed in the perinecrotic hypoxic regions24 of many 

cancer types including gliomas/ependymomas3, mesotheliomas3, papillary/follicular 

carcinomas3, carcinomas of the bladder72, uterine cervix73, 74, nasopharyngeal 

carcinoma75, head and neck76, breast21, 24, 77, oesophagus3, lungs22, brain3,  vulva3, 

squamous/basal cell carcinomas3, and kidney78 tumors. Differently in renal cell 

carcinoma CA IX is expressed also under normoxic conditions in the presence of 

VHL inactivating mutations that stabilize HIF-179-82.   

Strong tumor-association of CA IX mainly arises from almost exclusive transcriptional 

activation of the CA IX gene by HIF-1, that is the master regulator of cellular 

response to hypoxic stress32.  

CA IX is a well established endogenous marker of hypoxia67, 83, 84. Hypoxia is a key 

event in tumor progression deriving from excessive tumor growth rate, that exceeds 

the capacity of the host vasculature, with subsequent inadequate blood supply. It is a 

feature of many solid tumors and correlates with their aggressiveness and resistance 

to anti-cancer therapies. Indeed, hypoxia triggers architectural and phenotypic 

rearrangements of tumor tissue, resulting in the development of necrotic areas 

surrounded by zones of surviving hypoxic cells, that often become the most 

aggressive tumor cells85.  

Cancer cells respond to hypoxic stress mainly through stabilization and activation of 

HIF-1 that in turn triggers expression of genes encoding for proteins involved in 

glucose metabolism, blood vessel growth, oxygen carriage, iron metabolism, cell 

migration and pH control. As a consequence of hypoxic conditions cancer cells 

undergo an adaptative glycolytic switch that leads them to become mainly dependent 

on glycolysis rather than on oxidative phosphorylation for energy production. 

Anaerobic metabolism is maintained also after re-oxygenation, as it produces 
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metabolic intermediates, namely piruvate and lactate, that can be used for the 

biosynthesis of amino acids, nucleotides, and lipids, all important to sustain high cell 

proliferation rate of tumor cells86. Use of anaerobic glycolysis by cancer cells also 

under normoxic conditions has been described as the “Warburg effect” 87, 88. 

To survive cancer cells have to maintain a physiological intracellular pH (pHi) value; 

one consequence of hypoxia-mediated acidosis is exactly the alteration of the 

intracellular pH, a decrease in which rapidly affects basic cellular functions, including 

membrane integrity, metabolism and energy production and proliferation86, 89. So they 

have to release in extracellular space the piruvate and lactate produced through 

anaerobic glycolysis, creating a pH gradient characterized by acidic pH values 

around 6 in the extracellular microenvironment, in contrast to normal tissues, which 

has characteristic pH values around 7.4, and by slightly alkaline pH values within 

them, which are optimal for their proliferation and survival90.  

As suggested by its orientation, CA IX function in hypoxic cancer cells consists in 

maintaining this pH gradient through acidification of extracellular pH (pHe) and 

alkalinization of intracellular one, so counteracting hypoxia-induced acidosis91. 

Indeed bicarbonate and protons produced by CA reaction contribute to further 

increase intracellular pH (pHi) and decrease extracellular one, respectively90. More 

specifically, CA IX interacts with bicarbonate transporters forming metabolon that 

allows bicarbonate to be transported back into the tumor cells where it contributes to 

maintain an intracellular pH (pHi) value suitable for biosynthetic reactions55, 89; 

alternatively bicarbonate can be transported to blood capillaries through anionic 

exchanger  HCO3
-/Cl-. Moreover bicarbonate is a substrate for cell growth, as it is 

required in the synthesis of pyrimidine nucleotides3, 92. Protons, however, remain in 

extracellular space, where they contribute to acidify extracellular pH. So, tumor cells 

decrease their extracellular pH (pHe) both by excessive production of lactic acid and 

by CO2 hydration catalyzed by CA IX90, 91, 93-98 (Figure 7). 

Acidic extracellular pH (pHe) confers a selective advantage to survival of cancer cells. 

Indeed, via promotion of chromosomal rearrangements, extracellular matrix 

breakdown, migration and invasion, induction of the expression of cell growth factors 

and protease activation, impairment of immune functions and finally protonation of 

weakly basic anticancer drugs, such as anthracyclines, that become impermeant, so 

reducing their uptake3, 92, 94, 96-102. 
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Figure 7. pH regulation within cancer cells.  Cancer cells show a pH gradient characterized by 

acidic pH values in the extracellular microenvironment and by slightly alkaline pH values within them. 

To survive and better proliferate they maintain this gradient also through membrane-bound CAs, such 

as CA IX and CA XII, that catalyze hydration reaction of CO2 to bicarbonate and protons. Bicarbonate 

comes back into the cell buffering intracellular pH, whereas protons accumulate in the extracellular 

microenvironment further acidifying it (Supuran; Nat Rev Drug Discov 2008, 7, (2), 168-81).  
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As already introduced, CA IX is involved in tumorigenesis also through its capacity to 

modulate cell adhesion58. So, it is not only a marker of tumor hypoxia, but it is 

functionally involved in pathogenesis of cancer disease. 

Differential expression between normal and cancer tissues and membrane 

localization make CA IX protein a useful therapeutic target against cancer92. Several 

monoclonal antibodies and small molecule inhibitors are in various stage of clinical 

development58, 103. Among inhibitors, two main classes are known: the metal-

complexing anions and the unsubstituted sulphonamides and their bioisosteres, 

sulphamates and sulphamides. 

A crucial problem in CAIs design is related to the high number of isoforms, their 

diffuse localization in many tissues and organs and the lack of isozyme selectivity of 

the presently available inhibitors1. Among possible approaches to overcome this 

problem there are the addition of charged species, bulky entities such as FITC or 

albumin or hydrophilic sugar moieties limiting transport across the plasma 

membrane1, 9, 10, 86, 104, bioreductive prodrugs that are activated by hypoxia12, 13. In 

2010 Cianchi et al., tested three CA IX inhibitors and showed they decrease cell 

proliferation and induce apoptosis through intracellular acidification that activates 

ceramide-controlled signaling pathways105. 

Strong dependence of CA IX expression from HIF-1 and so hypoxia can be also 

exploited to synthetize some CA IX targeted fluorescent imaging agents employing 

sulphonamide targeting groups  and NIR fluorochromes to develop a non-invasive 

approach  to detect and to quantify CA IX in tumors and so, to measure tumor 

oxygenation both in pre-clinical research and in patients106. 

 

1.2   The Armadillo and HEAT repeats 

Protein repeats vary from short amino acid repetitions to large repetitions containing 

multiple domains. They arise via intragenic duplication and recombination events 

and, whether advantageous, are fixed among populations. Their most common 

function deals with protein-protein interactions. They are more common in eukaryotic 

organisms than in prokaryotes107, 108. 

Two of such protein repeats are the Armadillo and HEAT repeats, that are -helical 

domains of around 50 residues, which pack together to form elongated super-helices 
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or “solenoids”109, 110. They are involved in many different cellular processes to which 

both take part mediating protein interactions111. 

The Armadillo (ARM) repeats derive their name from the product of the D. 

melanogaster segment polarity gene Armadillo, in which they were first found112; then 

they were also discovered in the junctional plaque protein plakoglobin113, in the tumor 

suppressor adenomatous polyposis coli (APC)114, and in the nucleocytoplasmic 

transport factor importin 115.  

They are highly conserved and, in the canonical form, consist of three helices: H1, 

that is the shorter, H2 and H3 that are the longer. The H2 and H3 helices pack 

against each other in an antiparallel fashion and are roughly perpendicular to the 

shorter H1 helix, with a sharp bend between helices H1and H2 mediated by a 

conserved glycine residue116. 

The HEAT repeats are so named from four diverse eukaryotic proteins in which they 

were first identified: Huntingtin, Elongation factor 3, PR65/A subunit of protein 

phosphatase  A and TOR116. They are also present in importins 1 and 2, in 

proteins related to the clathrin-associated adaptor complex116, in the microtubule-

binding colonic and hepatic tumor-related protein (CTOG) family117 and in many 

others proteins related to chromosome dynamics118.  

The typical HEAT repeats consist of a pair of anti-parallel helices, A and B, which 

form a helical hairpin. The repeats are usually stacked in parallel, so that the A and B 

helices of each repeat are parallel to the corresponding helices in an adjacent repeat, 

creating a double layer structure in which the A and B helices form the outer convex 

and inner concave faces, respectively109. Being variable in length, amino acid 

sequence and 3-D structure HEAT repeats have been divided in three classes; AAA, 

IMB and ADB111. 

Even if the ARM and HEAT repeats are differently organized, their structure and 

function are very similar, with helices H1 and H2 corresponding to strongly bent helix 

A and helix H3 corresponding to helix B111. Often these latter helices of each repeat 

form the groove in which protein interactions occur107 (Figure 8). 

A common phylogenetic origin but a divergent evolution has been suggested for the 

ARM and HEAT repeats119-121. To confirm this suggestions these latter share seven  
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Figure 8. The ARM and HEAT repeats. (A) Schematic representation of the ARM and HEAT repeat. 
Helix A of the HEAT repeat corresponds to helices H1 and H2 of the ARM repeat and helix B 
corresponds to helix H3 (B) Structural organization of specific ARM and HEAT repeats from importin 

, importin β and the PR65/A subunit of phosphatase 2A (C) Some examples of ARM and HEAT 
repeat containing proteins Helix B/H3 of every repeat form the groove in which protein interactions 
occur. Ligand are in blue (Andrade et al.; J. Mol. Biol. 2001, 309, 1±18). 
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highly conserved hydrophobic residues, located at positions 10, 13, 17, 24, 28, 32, 

and 35, that form the hydrophobic core of the repeat111. 

 

1.3 The nucleocytoplasmic transport  

In eukaryotic cells the genetic material is enclosed in the nucleus; so proteins 

involved in replication and transcription of DNA, that occur in the nucleus, and mRNA 

molecules  that  are translated in the cytoplasm have to be exported from, or 

imported in the nucleus, respectively. This continuous movement of macromolecules 

occurs through the nuclear pore complex (NPC) that spans the nuclear envelope. 

The NPC structure is highly conserved and each NPC consists of three main 

substructures: the cytoplasmic filaments, a central core and the nuclear basket. The 

central core connects cytoplasmic ring to nuclear one through eight spokes forming 

an aqueous channel.  Each NPC results from assembly of about thirty different 

nucleoporins proteins; each protein is present in multiple copies122, 123. 

Nucleoporins are differently involved in the nucleocytoplasmic transport: 

transmembrane nucleoporins fasten the NPC to the nuclear envelope; FG-

nucleoporins have FG-repeats, that represent sites of binding to karyopherins 

crossing the NPC. 

Β-karyopherins constitute a protein family of nucleocytoplasmic transport factors that 

includes at least 20 members in human. They are relatively large proteins of about 

100 kDa and notoriously contain 19 to 20 HEAT repeats, so showing a superhelical 

structure that confers them an inherent flexibility that is important for conformational 

change associated with cargo binding124. Their interaction with cargoes is regulated 

by RanGTP. Β-karyopherins are distinguished in importins and exportins on the basis 

of specific transport that they mediate. They carry across the nucleus large 

dimension molecules that are unable to cross passively, by diffusion, the nuclear 

envelope. Indeed, the NPCs are impermeable to most macromolecules, with the 

exceptions of Β-karyopherins, alone or associated to their cargo, as NPC recognition 

occurs at sites on the karyopherins distinct from those involved in cargo binding125. 
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1.3.1 Nuclear import 

Importins bind their cargo in the cytoplasm; interaction with it can be direct or 

mediated by an adaptor protein. The complex, once recognized by the NPC, is 

translocated to the opposite side of the nuclear envelope, where the cargo is 

released after association with RanGTP.  

Importin β, also known as karyopherin β1, mediates the nuclear import of proteins 

carrying the classical Nuclear Localization Sequence (NLS). It does not directly 

interact with them but via the adaptor protein importin , that possessing at the N-

terminus an importin β-binding domain (IBB) plus an NLS-binding domain, in turn 

recognize and binds the NLS.  

Importin , also known as karyopherin , is an ARM repeat containing protein; its 

NLS-binding domain consists of 10 ARM repeats and interaction with cargo occur at 

the inner concave surface. 

There are two types of NLSs: monopartite, such as the SV40 large T-antigen NLS 

(PKKKRKV126), or bipartite, as the nucleoplasmin NLS (KR-10aa-KKKL127)128-131.  

The first consists of a cluster of three or five positively charged residues, the second 

has a further cluster of basic residues, that is separated from the monopartite-like 

structure by a linker of 10 to 12 residues. 

In the nucleus RanGTP binds the complex importin β- importin - cargo causing 

release of cargo. One possible mechanism is that RanGTP leads to dissociation of 

importin β from the complex importin β- importin - cargo, subsequently causing 

destabilization of importin - cargo bond. 

Importin β can also directly interact with cargo containing classical NLSs. In this 

case, release of cargo in the nucleus is determined by mutually exclusive binding of 

cargo and RanGTP, as their binding site, at the N-terminal arch of importin β, are 

almost completely overlapping126. 

After release of cargo, importin -RanGTP complex comes back to the cytoplasm 

associated with the exportin CAS (Figure 9). 
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Figure 9. Schematic description of nuclear import. The NLS sequence present in the cargo to be 
imported is recognized by the adaptor molecule importin α (impα) via its armadillo-repeat domain 
(ARM). The importin β-binding (IBB) domain of importin α binds in a helical conformation to importin β 
(impβ). The cargo: impα: impβ complex is transported to the nucleus via the nuclear pore complex 
(NPC), where it is dissociated upon the formation of importin β: RanGTP complex. In the absence of 
impβ, the IBB domain of impα is autoinhibitory because it binds at the NLS-binding site. The adaptor 
impα is recycled back by the exportin Cse1/CAS (Cook et al.; Annu. Rev. Biochem. 2007, 76, 647–71). 
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1.3.2 Nuclear export 

Conversely, exportins bind their cargo in the nucleus, in the presence of RanGTP. In 

the cytoplasm the cargo is released after hydrolysis of RanGTP to RanGDP.  

The exportin Crm1, also known as exportin-1, mediates the nuclear export of cargoes 

containing the Nuclear Export Sequence (NES) that is a hydrophobic leucine-rich 

sequence, such as the protein kinase A inhibitor (PKI) NES132 (Figure 10). 

Leptomycin B is a small molecule that inhibits nuclear export mediated by Crm-1 

through its covalent attachment to a cysteine residue of Crm-1, that interferes with 

cargo binding133, 134.  

Not only proteins are exported from the nucleus, also several types of RNA are 

transported in the cytoplasm135. Exportin-t is involved in the transport of tRNA and 

exportin-5 in the transport of tRNA and microRNA precursors. In this last case the 

RNA hairpin structure with a 3’ overhang is recognized as the NES136, 137. 

 

1.3.3 Ran-dependent transport  

Ran is a small GTPase of 24 kDa belonging to the Ras superfamily. It is present as 

RanGTP in the nucleus and as RanGDP in the cytoplasm138, 139
. Hydrolysis of 

RanGTP to RanGDP is catalyzed by the RanGTPase-activating protein RanGAP, 

that is located in the cytoplasm and in turn is stimulated by the proteins RanBP1 and 

RAnBP2140, 141. RanBP1 is a 23-kDa cytoplasmic protein that contains a single Ran-

binding domain (RanBD)142, whereas RanBP2 is a component of the cytoplasmic 

fibrils of the NPC and contains four RanBDs143. The C-terminal domain of RanGAP is 

modified through covalent linkage to the ubiquitin-like protein SUMO-1 that localizes 

Ran-GAP to the cytoplasmic face of the NPC through interaction with RanBP2144, 145. 

After hydrolysis RanGDP comes back to the nucleus by the transport factor NTF2146, 

147, that specifically recognizes Ran in its GDP-bound state149-154. In the nucleus 

RanGDP is quickly re-converted to RanGTP by the guanine nucleotide exchange 

factor RanGEF, that is there located because of a interaction with chromatin through 

histones H2A and H2B155 (Figure 11).  

RanBP3 is another regulatory protein located in the nucleus that stimulates RanGEF 

activity156. 
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.  

Figure 10. Schematic description of nuclear export. The NES present in the cargo to be exported 
in the cytoplasm is recognized by the nucleocytoplasmic transport factor Crm1 in the presence of 
RanGTP. In the cytoplasm cargo is released after hydrolysis of RanGTP to RanGDP (Cook et al.; Annu. 

Rev. Biochem. 2007, 76, 647–71). 

 

 

Figure 11. Schematic illustration of the Ran cycle. The high concentration of RanGDP in the 
cytosol is maintained by RanGAP, which is bound to the cytoplasmic fibrils of the nuclear pore 
complex. It acts on the RanGTP that enters the cytoplasm (via binding to exportins and importins). The 
high concentration of RanGTP in the nucleus is maintained by RanGEF, a chromatin-bound guanine 
exchange factor, which acts on the RanGDP, that enters the nucleus with its dedicated transport factor 
nuclear transport factor 2 (NTF2) (Cook et al.; Annu. Rev. Biochem. 2007, 76, 647–71). 
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RanGAP localization in the cytoplasm and RanGEF localization in the nucleus allow 

to create a gradient of Ran GTP that ensures the directionality of the 

nucleocytoplasmic transport132. 

 

1.4 The Ubiquitin-Proteasome Pathway 

The Ubiquitin-Proteasome Pathway (UPP) is a system by which proteins are first 

targeted for degradation through ubiquitylation and then degraded through the 26S 

proteasome157-159. 

Ubiquitylation is a post-translational modification which leads to formation of a 

covalent binding between ubiquitin, a small 76 amino acid protein, and a substrate 

protein. It is a complex three-step reaction which requires the sequential action of 

three enzymes: an ubiquitin-activating enzyme E1, an ubiquitin-conjugating or 

ubiquitin-carrier enzyme E2 and an ubiquitin-ligase E3.  

In the first step E1 activates the C-terminal Gly residue (G76) of ubiquitin for 

nucleophilic attack through an ATP-dependent reaction that consists of an 

intermediate formation of ubiquitin adenylate, with the release of PPi, followed by the 

binding of ubiquitin to a Cys residue of E1 in a thiol ester linkage, with the release of 

AMP. In the second step activated ubiquitin is transiently transferred to an active site 

Cys residue of E2 through formation of a thioester bond. In the third and last step C-

terminus of previously activated ubiquitin is linked to a -amino group of Lys residues 

of substrate protein forming an isopeptide bond160, 161. 

Ubiquitylation may be highly variable in length and linkage type. Substrates can be 

monoubiquitylated, via the attachment of a single ubiquitin, or multiubiquitylated, 

such that more than one amino acid is modified with monoubiquitin, or 

polyubiquitylated, such that ubiquitin is added sequentially to substrates to form 

ubiquitin chains162. In this last case the whole process of ubiquitylation usually 

consist of many cycles of the three-step reaction, in order to form the polyubiquitin 

chain, in which the C-terminus of each ubiquitin unit is linked to a specific Lys residue 

(most commonly Lys48) of the previous ubiquitin.  

Indeed the address of polyubiquitylated substrates is indicated by which lysine within 

ubiquitin is linked to the C-terminus of an adjacent ubiquitin163. The K48-linked 
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polyubiquitin chain serves as signal for proteosomal degradation159, whereas the 

K63-linked polyubiquitin chain functions in signal transduction and DNA repair164, 165. 

Polyubiquitilated proteins are usually degraded by the 26 proteasome complex 

through an ATP-dependent reaction that produces different types of products: free 

peptides, short peptides still ubiquitylated and polyubiquitin chains. These last two 

products are converted to free and reusable ubiquitin by the action of ubiquitin-C-

terminal hydrolases or isopeptidases157. 

The 26S proteasome is assembled in an ATP-dependent manner and consist of a 

catalytic component, the 20S proteasome and of a regulatory component, the 19S 

cap, that contains several ATPase subunits and other subunit involved in the action 

of the 26 proteasome on ubiquitylated proteins. Moreover, it mediates substrate 

recognition through interaction with polyubiquitylated chains157. 

Indeed, ubiquitin-binding proteins containing ubiquitin-binding domain (UBDs) are 

responsible for recognizing the different ubiquitin signals  and targeting  modified 

proteins to specific cellular processes, including ubiquitin/26S proteasome-mediated 

proteolysis166. The predominant ubiquitin signal for UPP appears to be the K48-linked 

ubiquitin chain with a minimum length of four ubiquitin units167. Specifically 

polyubiquitylated substrates to be degraded by the 26S proteasome are recognized 

by two types of ubiquitin receptors: those intrinsic 26S proteasome base subunits, 

such as Rpn10168 and Rpn13169, 170, which are capable of directly recognizing 

ubiquitylated substrates, and the ubiquitin-like domain (UBL)-containing shuttle 

factors, such as Rad23, Dsk2 and Ddi1, capable of targeting ubiquitylated substrates 

to the 26S proteasome, by binding ubiquitylated substrates and the 26S proteasome 

simultaneously using one N-terminal UBL and one to two C-terminal ubiquitin-

associated (UBA) domains, respectively171-174.  

Before being degraded by the proteasome, substrates are deubiquitylated and 

unfolded to reach the catalytic center of the proteasome. Rpn13 contains a domain 

through which it binds and activates the deubiquitylating enzyme (DUB) Uch37175-177, 

so it might carry out a dual function178. 
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1.4.1 Ubiquitin Ligases (E3) 

Among enzymes involved in ubiquitylation reaction, E3 is that responsible mainly for 

the selectivity of ubiquitin-protein ligation as it binds specific protein substrates 

containing specific ubiquitylation signals.  

There are multiple families of E3s or E3 multiprotein complexes that differ not only for 

substrate specificity, but also for action mechanism.  

To date around a thousand of E3s have been identified and they have been divided 

into two main large groups: 

 HECT domain E3s 

 RING E3s 

The HECT domain family comprises modular E3 enzymes with a highly variable N-

terminus, interacting with a specific substrate, and an HECT domain, mediating E2 

binding and the chemistry of ubiquitylation. More specifically, the latter consists in a 

region of about 350 amino acids containing a highly conserved cysteine residue, that 

acts as a site of thiolester formation with ubiquitin in an intermediary ubiquitin transfer 

reaction179.  

The RING finger family comprises single-subunit and multisubunit E3 enzymes180-

183.The feature of these enzymes is that of showing in their sequence a series of 

histidine and cysteine residues with a characteristic spacing that allows for the 

coordination of two zinc ions in a cross-brace structure called the Really Interesting 

New Gene finger. E3s belonging to this family seem to function as molecular 

scaffolds. Similarly, to members of the HECT domain family, they also have a 

modular organization with the RING finger and regions near it involved in E2-

dependent ubiquitylation of the substrate and the other domains recognizing 

substrate ubiquitylation signals. 

Differently from HECT domain E3s, RING E3s catalyze direct transfer of the activated 

ubiquitin from E2 to the E3-bound substrate (Figure 12). 

Among multisubunit RING E3s so far known, the SCF (Skp1-Cullin-F-box protein) E3 

ubiquitin ligase complex has been well characterized.  It catalyzes ubiquitylation of 

many important regulatory proteins taking part to diverse cellular pathway181. Among 

them there are Cdk inhibitor p27184, 185, Cdk2 regulatory subunit cyclin186-188, NF-kB 

inhibitor IkB, and Wnt signal transducer β-catenin189-192. Substrates such as the  
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Figure 12. The Ubiquitin–Proteasome Pathway. Ubiquitin is first activated to a high-energy 
intermediate by E1. It is then transferred to a member of the E2 family of enzymes. From E2 it can be 
transferred directly to the substrate, when the E3 belongs to the RING finger family of ligases, or 
transferred first to the E3 before it is conjugated to the E3-bound substrate, when the E3 belongs to 
the HECT-domain-containing family of ligases. Multiple cycles of the basic three-step reaction allow to 
generate a polyubiquitin chain. The polyubiquitylated substrate so binds to the 26S proteasome 
complex (Ciechanover et al.; Trends in Cell Biology 2004, 14, (3), 103-106 ). 
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cyclin E and the CDK inhibitor p27 are targeted to SCF complex by phosphorylation 

193-197, that seems to be the predominant signal. However, core oligosaccharides that 

have a high mannose content are also recognized by SCF in humans198.  

Within this complex the RING finger protein is Roc1; as already introduced, it has a 

molecular scaffold function199, 200 and strongly interacts with cullin. Moreover, it is 

involved in recruitment of E2200-203. Cul1 and Roc1 represent the catalytic core of the 

complex. Also Skp1 takes part to SCF complex; it functions as an adaptor protein 

that recruits the substrate-specific F-box proteins, which recognize the substrate F-

box motif180, 204, 205. Cul1/Roc1/Skp1/E2 represents a common platform to which the 

various F-box proteins competitively associate. All F-box proteins share the N-

terminal region, that mediates their binding with Skp1, whereas differ at the C-

terminal region, that is the protein-protein interaction domain and is involved in 

binding of substrate to be ubiquitylated. The E3 activity of the SCF complex is 

regulated through the ubiquitin-like protein Nedd8/Rub1, that is linked to a cullin 

specific lysine residue180, located at the very C-terminal highly conserved winged –

helix B (WH-B) domain206, 207, by the Nedd8 E1, Nedd8 E2 and Roc1208-212 (Figure 

13). SCF complex neddylation seems to be required for subsequent substrate 

polyubiquitylation210, 213, 214 and is a reversible reaction; Nedd8 removal from cullin is 

mediated by the eight subunit COP9 signalosome complex (CSN)215. CSN has a 

metalloprotease activity based on the JAMM motif of the CSN5 subunit 216 and is 

present in eukaryotic cells; it binds SCF complex and remove Nedd8 by 

deneddylation. Additionally CSN recruits the deubiquitylating enzyme UBP12, which 

counteract the intrinsic ubiquitin-polymerizing activity of the catalytic core217. 

Nevertheless, CNS is considered a positive regulator of SCF as it seems to protect F-

box proteins from autocatalytic degradation in absence of substrates. In the presence 

of substrate deneddylation is inhibited218. 

Recent identification of an inhibitor of SCF complex, namely CAND1/TIP120A, has 

added new insights about regulation of assembly and disassembly of the SCF 

complex and role of neddylation cycle in these processes. 

 

1.4.2 CAND1 

The CAND1 protein was first found by Yogosawa et al in 1996  in rat liver nuclear 

extracts, using histidine-tagged TBP as a ligand for affinity-purification of proteins  
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Figure 13. The SCF E3 ubiquitin ligase complex. (A) Schematic representation of SCF E3 complex. 
Roc1 (the RING protein) and Cul1 constitute the catalytic core of the complex. Cul1 has an elongated 
shape, with the RING protein bound to the C-terminal cullin-homology domain, near to a conserved 
Lys residue that is conjugated to Nedd8. The RING subunit is thought to function as the docking site 
for ubiquitin conjugating enzymes (E2s). Substrates are recruited through the adaptor protein SKP1 
and an F-box-protein substrate receptor. (B) The crystal structure of the SCF

SKp2
 complex. The 

substrate-specificity module of SCF is separated from the E2-docking site by a series of three cullin 
repeats that form the curved N-terminal stalk of cullin-1 (Cul1) (Petroski et al.; Nature Reviews Molecular Cell 

Biology 2005, 6, 9-20). 
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bound to TBP; so, being a 120-kDa protein, it was named TBP-interacting protein 

120 (TIP120)219.  

Cloning and characterization of TIP120/CAND1 cDNA allowed to find that it encoded 

for a novel polypeptide of 1230 amino acids219.  

Subsequent studies performed by Makino et al in 1999 showed the TIP120/CAND1 

was able to activate basal transcription in vitro, in a dose-dependent manner, through 

the stimulation of recruitment of TFIIF/RNAPII into a pre-initiation complex220. Despite 

TIP120/CAND1 did not show any typical motifs that were often found in transcription 

factors, two regions, namely that acidic at the N-Terminus (202-370) and that 

comprising the two leucine-rich domains at the C-terminus (988-1230), that could 

function as transcription factor were identified. Indeed they were able to bind TBP 

and stimulate a basal transcription, so suggesting that TIP120/CAND1 could be a 

bipartite transcription factor221. 

The human gene of CAND1 is located in the q14 region of the chromosome 12. Four 

splicing variants have been identified that are correctly translated. TIP120A mRNA 

was seen to be highly expressed in the heart and in the liver, mildly expressed in the 

skeletal muscle and in the brain and low expressed in the spleen and in the lung222. 

Conversely TIP120B (CAND2) that is 60% homologous to CAND1 is highly 

expressed in the skeletal muscle220.  

As many nuclear proteins, CAND1 consists of 27 tandem HEAT repeats and shows 

as a nearly all-helical solenoid protein. Collectively these repeats form an unusually 

tertiary structure with the N-terminal half of CAND1 forming a right-handed superhelix 

and the C-terminal half forming a left-handed superhelix. The whole structure of 

CAND1 can be divided into three arches (N-terminal, C-terminal and central) that 

enclose the space involved in protein-protein interactions with cullins (Figure 14). 

CAND1 competes with Skp1 for binding to Cul1, around which coils, making multiple 

and extensive intermolecular contacts. Indeed, through an unusual B-hairpin CAND1 

occupies part of the Skp1 binding site on Cul1, so blocking further assembly of the 

SCF complex. CAND1 only binds to Cul1 molecules that are not conjugated to 

Nedd8 because of steric hindrance that inhibit it223 (Figure 15). 
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Figure 14. CAND1 structure. (A) Surface representation of CAND1 protein. In evidence three arches 
in which its overall shape can be divided (B) Opposite handedness of N- and C-terminus of CAND1 
(C) Ternary complex formed by Cand1-Cul1-Roc1 (Goldenberg et al.; Cell 2004, 119, 517–528). 
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Figure 15. Regulation mechanism of SCF E3 complex activity by the cycle CAND1/Nedd8. (A) 
SCF complex is inactive as its catalytic core is assembled with CAND1; (B) Neddylation of Cul1 lysine 
leads to CAND1 dissociation; (C)  The catalytic core can assemble with SKP1–F-box substrate-
recognition module reconstituting an active complex that is able to ubiquitylate bound substrates; (D) 
Ubiquitylation and degradation of F-box protein allow association of a new F-box protein with SCF; (E) 
CSN-mediated deneddylation of SCF might lead to the dissociation of SKP1 and the sequestration of 
Cul1 by CAND1 (Goldenberg et al.; Cell 2004, 119, 517–528). 
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2. AIM OF THE PROJECT 

 

As broadly introduced, CA IX is a tumor-associated CA isoform, acting as a negative 

prognostic factor in many cancer types. Moreover, an increasing number of scientific 

papers shows an involvement of CA IX in resistance to anticancer drugs. In 

particular, a recent paper published on the FEBS Journal in 2010 suggests that CA 

IX may be involved in anticancer drug resistance through its capability to acidify 

extracellular microenvironment224. 

Because of its selective expression in tumor cells, critical function as pH regulator 

and cell localization to the membrane, CA IX represents an attractive target for anti-

cancer drug design.  

At present, two main classes of CA IX inhibitors are under investigations, monoclonal 

antibodies and small molecule inhibitors. Unfortunately, both classes of inhibitors 

possess some limitations; monoclonal antibodies reach with difficulty poorly 

vascularized and hypoxic tumor regions, whereas small molecules are poorly specific 

because of high degree of homology among the catalytic sites of the various 

mammalian CAs. So, an important goal would be to design highly selective drugs 

that inhibit only extracellular CA IX without inhibiting intracellular ones, such as CA II, 

that is ubiquitous and expressed under physiological conditions. 

As the intracellular tail of CA IX was demonstrated to be critical for its membrane 

localization and ability to acidify the extracellular space, suggesting a possible 

involvement in protein-protein interactions that drive CA IX towards the plasma 

membrane and stabilize its correct localization allowing its proper functioning a pH 

regulator, a winning strategy could be to interfere with such interactions via peptides 

mimicking CA IX physiological interactors.  

So, the aim of this project is to characterize the cellular interactome of this protein, in 

order to better clarify its biological mechanisms and to identify new molecular targets 

for design of peptide mimetics. 
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3. RESULTS 

  

3.1 CA IX expression in normoxic and hypoxic HEK-293 cells 

To characterize CA IX interactome I have chosen a biochemical strategy, based on 

the Strep-Tag System, that allows to purify interactors taking advantages of high 

affinity binding between Strep-tagged bait protein and Strep-Tactin resin.  

A sequence encoding the C-terminal Strep-tag was fused to the full length human CA 

IX cDNA and the strep-tagged CA IX was overexpressed in the human embryonic 

kidney cell line HEK-293 under both normoxic and hypoxic conditions.  

Correct expression of strep-tagged CA IX was evaluated biochemically, through a 

western blot analysis on protein lysates from normoxic and hypoxic cells, and by 

confocal immunofluorescence microscopy on transfected cells grown in both 

normoxia and hypoxia. 

The strep-tagged CA IX produced the typical two bands profile in SDS-PAGE; CA IX 

bands were clearly up-regulated in hypoxia (Figure 16A). 

Confocal analysis of CA IX-transfected cells showed that CA IX is present at the 

plasma membrane and, surprisingly, also in the cytoplasm and in the nucleus, with 

exclusion of nucleoli. A similar pattern of subcellular distribution was also observed in 

the hypoxic counterpart, but nuclear and perinuclear staining, accordingly to 

biochemical up-regulation, was more pronounced and exclusion of nucleoli was 

decreased (Figure 16B). 

Strep-tagged protein was also characterized by MALDI-TOF-MS analysis. More 

specifically, CA IX glycopeptides were analysed, proving the expected occurrence of 

N- and O- glycosylation at Asn 309 and T78 respectively and consequently correct 

post-translational modification of CA IX (Figure 16C). 

 

3.2 CA IX interactome in normoxic and hypoxic HEK-293 cells 

Once verified the correct synthesis, post-translational modification and expression of 

strep-tagged CA IX, an affinity purification experiment was performed, taking 

advantage of the Strep-Tag System, on protein extracts from HEK-293 cells 

transfected with the recombinant protein and grown under both normoxic and hypoxic  
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Figure 16. Strep-tagged CA IX expression in HEK-293 cells (A) Western blot analysis of lysates 
from normoxic (N) and hypoxic (H) HEK-293 cells transfected with the strep-tagged CA IX vector. 
Protein extracts of lanes 1 and 2 were loaded on Strep-Tactin columns for co-purification of CA IX and 
its interactors in both normoxic and hypoxic conditions. Flow-through (lanes 3−4) and eluate (lanes 
5−6) fractions were probed with a CA IX antibody; (B) Immunofluorescence analysis of recombinant 
CA IX in normoxic (left) and hypoxic (right) HEK-293 cells; (C) MALDI-TOF analysis on glycopeptides 
from tagged-CA IX.  
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conditions. As control sample, to identify non-specifically bound interactors, a protein 

extract from mock-transfected HEK-293 cells was used. So, tagged CA IX was co- 

purified with bound interactors. Eluates from mock, normoxic and hypoxic lysates 

were loaded on a SDS-PAGE gel. After silver staining, each gel lane was cut into 21 

similar slices and subjected to nLC-ESI-LIT-MS/MS for protein identifications (Dr. G. 

Renzone and A. Scaloni, ISPAAM, CNR, Naples) (Figure 17). 

29, 45 and 72 proteins were identified in the normoxic, hypoxic and mock samples, 

respectively. A list of potential CA IX interactors was obtained subtracting from 

normoxic and hypoxic identifications those from mock sample. CA IX putative 

interactors were 6 for normoxic condition and 25 for hypoxic condition; 3 of them, 

namely CAND1, CV028 and RS5, were found in both experimental conditions. 

Electrophoretic analysis of co-purified interactors had already highlighted that a 

higher number of interactions occurred under hypoxic conditions (Table 1).  

To better understand physical and structural interactions among the 25 potential 

interactors of CA IX, I performed a bioinformatic analysis through the tool String 9.0 

that is a database for annotation of physical and functional interactions.  

CA IX interactors identified from normoxic cells comprise the mitochondrial ATP 

synthase α/β subunits (ATP5A1 and ATP5B), and Ras GTPase activating protein-

binding protein 2 (G3BP2), a scaffold component for mRNA transport. This protein is 

linked via exportin XPO1 to the main network of CA IX-interacting proteins identified 

under hypoxia. Interestingly, most of the proteins of this network belong to the 

nucleocytoplasmic transport machinery, including several members of the importin α 

(KPNA2), -β (IPO4, IPO5, IPO7, IPO9, TNPO1, TNPO3), and exportin (XPO1, 

XPO2/CSE1L, XPO5, XPOT) families. STRING also highlighted connection of the 

signal recognition particle receptor subunit β (SRPRB) with the ribosomal protein 

RPS5 and the catalytic subunit of the tRNA-splicing ligase complex (C22orf28). The 

latter two CA IX interactors were also found under normoxia. Proteins not connected 

in the network included the acetyl-CoA carboxylase 1 enzyme (ACACA), the HEAT 

repeat-containing protein 3 (HEATR3), the mitochondrial trifunctional enzyme subunit 

alpha (HADHA), the protein SAAL1, and the cullin-associated NEDD8-dissociated 

proteins 2 and 1 (CAND2 and CAND1), the latter being also found under normoxic 

conditions (Figure 18A). 



41 
 

 

Figure 17. SDS-PAGE analysis of the CA IX interacting proteins in HEK-293 cells. Lysates from 
normoxic (N) and hypoxic (H) cells transfected with the Strep-tag CA IX vector and from cells 
transfected with an empty vector were loaded on Strep-Tactin columns for co-purification of CA IX and 
its binding partners. Eluates were separated on a 10% SDS-PAGE gel and detected by silver nitrate 
staining: gel bands corresponding to the interactors are those absent in the mock eluate. After 
staining, each lane was cut into 21 slices to identify interactors by nLC-ESI-LIT-MS/MS analysis. 

 

 

 

Accession Description Normoxic Hypoxic 

Q16790 Carbonic anhydrase 9, CA9 [CAH9_HUMAN] X (bait) 
X (bait 

Q86VP6 Cullin-associated NEDD8-dissociated  protein 1, CAND1 

CAND1_HUMAN] 

X X 

Q9UN86 Ras GTPase-activating protein-binding protein 2, G3BP2 

G3BP2_HUMAN] 

X  

P25705 ATP synthase subunit alpha,  mitochondrial, ATP5A1 [ATPA_HUMAN] X  

P06576 ATP synthase subunit beta, mitochondrial, ATP5B [ATPB_HUMAN] X  

Q9Y3I0 UPF0027 protein C22orf28, C22orf28 [CV028_HUMAN] X X 

P46782 40S ribosomal protein S5, RPS5 [RS5_HUMAN] X X 

O75155 Cullin-associated NEDD8-dissociated protein 2, CAND2 

[CAND2_HUMAN] 

 X 

Q13085 Acetyl-CoA carboxylase 1, ACACA [ACACA_HUMAN]  X 

Q96P70 Importin-9, IPO9 [IPO9_HUMAN]  X 
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Q8TEX9 Importin-4, IPO4 [IPO4_HUMAN]  X 

O00410 Importin-5, IPO5 [IPO5_HUMAN]  X 

O95373 Importin-7, IPO7 [IPO7_HUMAN]  X 

P52292 Importin subunit alpha-2, KPNA2 [IMA2_HUMAN]  X 

Q9HAV4 Exportin-5, XPO5 [XPO5_HUMAN]  X 

O43592 Exportin-T, XPOT [XPOT_HUMAN]  X 

P55060 Exportin-2, CSE1L [XPO2_HUMAN]  X 

O14980 Exportin-1, XPO1 [XPO1_HUMAN]  X 

Q9Y5L0 Transportin-3, TNPO3 [TNPO3_HUMAN]  X 

Q92973 Transportin-1, TNPO1 [TNPO1_HUMAN]  X 

Q9UBB4 Ataxin-10, ATXN10 [ATXN10_HUMAN]  X 

P00918 Carbonic anhydrase 2, CA2 [CAH2_HUMAN]  X 

Q7Z492 HEAT repeat-containing protein 3, HEATR3 [HEATR3_HUMAN]  X 

Q96ER3 Protein SAAL1, SAAL1 [SAAL1_HUMAN]  X 

Q9Y5M8 Signal recognition particle receptor subunit beta, SRPRB 

[SRPRB_HUMAN] 

 X 

P40939 Trifunctional enzyme subunit alpha, HADHA [ECHA_HUMAN]  X 

 

Table 1. List of potential binding partners of CA IX in HEK-293 cells. Strep-tagged CA IX from 
transfected cells grown under both normoxic and hypoxic conditions was used as bait to dock its 
interactors. Such complexes were bound by Strep-Tactin and, once purified, resolved by SDS-PAGE. 
Each gel lane was cut into 21 similar slices, which were then treated with trypsin and subjected to 
nLC-ESI-LIT-MS/MS analysis for protein identification. Aspecifically-bound interactors were excluded 
subtracting from total protein identifications identifications relative to mock sample. 
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Figure 18. Bioinformatic characterization of CA IX interactors. (A) Identified proteins were 
subjected to String analysis to highlight possible physical and functional interactions among the 25 
interactors of CA IX. Proteins are connected by lines of different colors, according to the color code 
shown at the bottom. Values close to the lines report the confidence scores, as revealed by functional 
interaction analysis; (B) Clustering of interactors on the basis of descriptors for biological process 
(BP), cell compartment (CC), molecular function (MF), or protein family (INTERPRO) suggested by 
DAVID database. 
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After String analysis, the potential CA IX interactors were further classified under 

gene ontology parameters (namely, biological process and INTERPRO) in the DAVID 

bioinformatic database. This new analysis, besides highlighting that most proteins 

were obviously involved in nucleocytoplasmic transport of proteins and RNA and 

located at the NPC/ nuclear envelope, showed that around 50% of potential 

interactors belonged to the family of the ARM and HEAT repeat containing proteins. 

The latter include those involved in nucleocytoplasmic transport, as well as CAND1, 

CAND2 and HEATR3 (Figure 18B). As already introduced, members of this family 

feature the presence of -helical domains that are usually involved in protein 

interactions. 

 

3.3 Validation of XPO1, TNPO1 and CAND1 as CA IX interactors 

To confirm data emerged from affinity purification experiments and identifications 

obtained by mass spectrometry analysis, co-precipitation experiments where 

performed.  

XPO1, TNPO1 and CAND1 were selected as representative members of the CA IX 

interactome. The first two interactions were chosen as representative of the main 

network of CA IX-interacting proteins, the last, that seems to occur also in normoxia, 

for the involvement of CAND1 in important biological processes such as regulation of 

transcription and proteasome-mediated protein degradation. 

Results validated all three interactions.  

In fact even if all three proteins were equally expressed in total lysates from normoxic 

and hypoxic transfected cells, they co-precipitated and were only represented under 

hypoxic conditions in the case of XPO1 and TNPO1, under both normoxic and 

hypoxic conditions in the case of CAND1.  

Since western blotting of the input samples clearly shows that endogenous XPO1, 

TNPO1, and CAND1 levels do not vary in hypoxia, it can be postulated that 

increased levels of the endogenous proteins interacting with strep-tagged CA IX may 

depend on the known overexpression of CA IX in hypoxic cells (Figure 19). 
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Figure 19. Co-precipitation of CA IX with XPO1, TNPO1 and CAND1. Interactors chosen for 
validation were affinity precipitated through recombinant CA IX in lysates from normoxic (N) and 
hypoxic (H) cells transfected with the Strep-tag CA IX vector. As negative control, co-precipitation was 
also performed on lysates from cells transfected with an empty vector (Mock). Eluates were subjected 
to western blot analysis and interactors detected by commercial antibodies. 
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3.4 Identification of the minimal CA IX sequence required for the 

interaction with XPO1, TNPO1 and CAND1 

As most CA IX interactors, identified by interactome analysis, were intracellular 

proteins, the next step was to investigate the region of the C-terminal intracellular 

portion of CA IX involved in the binding to XPO1, TNPO1 and CAND1.  

So pull-down experiments were performed, using synthetic peptides, reproducing the 

cytosolic portion of CA IX (434-459), on cellular lysates from HEK-293 cells 

transfected with strep-tagged CA IX and grown in both normoxia and hypoxia.  

Results show that the entire intracellular tail alone is not sufficient to interact with 

validated interactors XPO1, TNPO1 and CAND1, irrespective of its phosphorylation 

status (lanes 3 and 4). This prompted us to design longer peptides and allowed us to 

verify that the minimal region required for interactions with these proteins also 

requires 16 amino acids of the TM region (418-459). Moreover, phosphorylation of 

this region at T443 (lane 5) and Y449 (lane 6) leads to a more efficient binding than 

the non-phosphorylated counterpart (lane 7), even if phosphorylation is important but 

non crucial for occurrence of interactions. The specificity of the binding was verified 

by a scrambled C-terminal sequence peptide (lane 2) (Figure 20). 

 

3.5 Native complexes of XPO1 and CA IX IN HEK-293 cells 

To confirm data emerged from the characterization of CA IX interactome also in cells 

non transfected with strep-tagged CA IX and so expressing only endogenous protein, 

I performed an immunoprecipitation experiment to validate the occurrence of XPO1 

and CA IX complexes in HEK-293 cells. 

Co-IP experiments were performed on cell lysates from HEK-293 cells, grown under 

both normoxic and hypoxic conditions; XPO1 was co- precipitated through the anti-

CA IX monoclonal antibody M75 and revealed in the western blot experiment of 

figure 21, lane 4, only in the hypoxic condition.  

This experiment does indeed show the presence of native CA IX complexes in living 

cells, in which endogenous levels of the two proteins are expressed. Once again, the 

occurrence of the complexes in the hypoxic condition could be associated to higher 

expression of CA IX and/or its increased nuclear presence in the hypoxic cells. 
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Figure 20. Biochemical characterization of the minimal region required for CA IX interactions. 
Pull down assays were performed on lysates from normoxic and hypoxic cells transfected with the 
Strep-tag CA IX vector using synthetic peptides, fused to a C-terminal Strep-tag, reproducing the 
intracellular tail of CA IX. After a first negative result using the fragment 434-459 , both non-modified 
(lane 3) and phosphorylated (lane 4), the minimal region useful for binding of interactors was 
recognized in the fragment 418-459 (lanes 5, 6 and 7), encompassing sixteen TM amino acids. 

 

 

 

Figure 21. Immunoprecipitation of endogenous CA IX and XPO1 complexes. The CA IX 
interactors XPO1 was immunoprecipitated together with CA IX through the anti CA IX monoclonal 
antibody M75 in lysates from normoxic (N, lane 2) and hypoxic (H, lane 4) HEK-293 cells. As negative 
control, immunoprecipitation was also performed on the same lysates through mouse IgG (lanes 1 and 
3). Eluates were subjected to western blot analysis and interactors detected by commercial antibody. 

 

XPO1 
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3.6 Analysis of subcellular distribution of CA IX in normoxic and 

hypoxic HEK-293 cells 

CA IX so far has been described mainly as a membrane-bound carbonic anhydrase. 

However results from characterization of interactome and preliminary data from 

immunofluorescence analysis of strep-tagged CA IX in HEK-293 cells suggest a 

more complex localization of this glycoprotein, shown to interact with cytoplasmic and 

nuclear proteins and to distribute almost uniformly within cells in both normoxia and 

hypoxia. 

Further experiments were then performed in HEK-293 cells to compare distribution of 

endogenous proteins in normoxia and hypoxia. 

Images corresponding to normoxic cells (upper panel of figure 22) show that CA IX 

(green) gives a diffuse staining and also accumulates in the nucleus, with exclusion 

of nucleoli; in this condition, membrane staining is also present but membrane CA IX 

accumulation is limited. The same pattern of distribution was observed in images 

relative to hypoxic cells (lower panel of figure 22), where staining is more 

pronounced, especially in the nucleus. Moreover, CA IX accumulates in the nucleoli 

that were excluded in normoxic condition. Interestingly, several cells showed bright 

fluorescence enrichment in close proximity to the nuclei, compatible with centrosome. 

In this experiment possible co-localization of CA IX with XPO1was also evaluated. 

Images show that, as expected, XPO1 (red) is located in the nuclear and perinuclear 

region, with a striking re-distribution to the nuclear envelope and to nucleoli in 

hypoxic cells. Confirming biochemical data, CA IX and XPO1 co-localize in both 

nucleoli and perinuclear region under hypoxic conditions, as suggested by the 

occurrence of yellow signals in the merged images, top and bottom panels on the 

right.  

This distribution is even more evident observing intensity profiles of isolated signals 

of CA IX and XPO1 in the nucleus and in the nucleoli. In normoxic cells, nuclear CA 

IX signal is moderate whereas nucleolar one is weak; in these cells, in two out of the 

three cases, nucleolar XPO1 signal is positive. In hypoxic cells, also nucleolar CA IX 

signal becomes discrete and that of XPO1 is even stronger. 

Nuclear localization of CA IX and its redistribution in nuclear compartments under 

hypoxia was also confirmed by confocal microscopy experiments on isolated nuclei  
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Figure 22. Immunofluorescence analysis of CA IX and XPO1cell distribution in normoxic and 
hypoxic HEK-293 cells. Graphics at the bottom show signal intensity of CA IX and XPO1 along red 
lines that cross nuclei in which nucleoli are more representative.    
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from normoxic, hypoxic, and DMOG-treated HEK-293-CA9 cells constitutively 

expressing the full-length CA IX protein. DMOG treatment is an example for a 

chemically induced hypoxia. Isolated nuclei were highlighted by DAPI. CA IX staining 

(green) appeared with a punctuate pattern in perinuclear compartments of normoxic 

cells (upper panel of Figure 23); conversely, strong CA IX signals were easily 

appreciated in hypoxic cells (middle panel of Figure 23), both in DAPI-stained 

nuclear compartments and in DAPI-excluded nucleoli. Under chemical hypoxia (lower 

panel of Figure 23), an evident CA IX staining was also represented in the DAPI-

excluded nucleoli. It is worth noting that in all tested conditions, the isolated nuclei 

showed perinuclear enrichments of CA IX staining compatible with centrosome 

localization. Altogether, these results support the existence of a hypoxia-driven 

molecular mechanism regulating the increased expression of CA IX and its enriched 

presence in nuclear, nucleolar, and perinuclear compartments. 

 

3.7 Identification and analysis of putative NES and NLS in CA IX 

sequence 

To understand how CA IX interacted with XPO1 and TNPO1, a bioinformatic analysis 

of the minimal region required for these interactions was performed, in order to 

evaluate the presence of putative NES and NLS sequences in the CA IX C-terminal 

region. 

The putative NES has been found using the software NetNES; it consists in a 

hydrophobic region, leucine-rich, that may be involved in interactions with exportins, 

and specifically correspond to the sequence ILALVFGL (415-422) (Figure 24A). 

Instead, a putative NLS was found through the software NLStradamus; it consists in 

a basic motif corresponding to the sequence RRGHRRGTKGG (436-446) (Figure 

24B).  

To evaluate whether these two putative sequences were functional NES and NLS 

sequences, their ability to affect the subcellular distribution of a GFP protein reporter 

was tested. To this purpose, several fusion constructs in which GFP was in-frame 

fused at the C-terminus with canonical and putative NES/NLS sequence, were 

generated and transfected in HEK-293 cells, to be analysed by confocal 

immunofluorescence microscopy (Figure 25). 
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Figure 23. Immunofluorescence analysis of nuclei isolated from HEK-293-CA IX cells. Nuclei 

isolated from HEK-293-CA IX cells were fixed and stained with DAPI (blue) and with CA IX specific antibody 
(green). Merged images were converted to graphs representing the intensity profiles of DAPI and CA IX-related 
signals across the nuclei. 
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Figure 24. Bioinformatic analysis of CA IX (A) A putative NES sequence has been predicted by 
NetNES in the transmembrane region (http://www.cbs.dtu.dk/services/NetNES/); (B) A putative NLS 
sequence has been predicted by NLStradamus in the intracellular tail 
(http://www.moseslab.csb.utoronto.ca/NLStradamus/). 

 

 

 

Figure 25. GFP Fusion constructs.  GFP was in-frame fused at the C-terminus with the following 
sequences: canonical NES+NLS, CA IX putative NES+NLS, canonical NLS, CA IX putative NLS, 
canonical NES, CA IX putative NES. 

 

 

 

 

 

B 

http://www.moseslab.csb.utoronto.ca/NLStradamus/
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Pattern of subcellular distribution of GFP obtained from each canonical construct was 

compared with that obtained from the corresponding putative one and with the 

normal pattern of subcellular distribution of GFP alone. 

Correct expression and expression levels of fusion proteins have been verified 

through western blot analysis. 

Cells were fixed and analyzed by confocal microscopy 24 hours upon transfection. 

Images show that in cells transfected with GFP alone there is both a nuclear and a 

cytosolic staining in the absence of nuclear or cytosolic enrichments. An analogous 

pattern of expression is shown by cells under both normoxia and hypoxia (Figure 

26A); cells expressing the fusion protein GFP_NLS, either canonical or CA IX 

putative, showed a strong nuclear and nucleolar staining, with a weaker cytosolic 

staining, more evident in normoxic cells transfected with the GFP_CA IX putative 

NLS construct (Figures 26 B and C). Cells transfected with the 

GFP_canonicalNES+NLS construct showed an impaired nuclear and nucleolar 

staining and an intense cytosolic staining, that was even more evident in hypoxic 

cells (Figure 26 D). Cells transfected with the CA IX putative NES+NLS construct 

were characterized by a perinuclear GFP accumulation. In this last case normoxic 

and hypoxic cells behave in a similar way, but, because of a low efficiency of 

transfection, images relative to hypoxic condition were not taken (Figure 26 E).  

Cells transfected with fusion constructs containing the NES sequences were 

subjected to treatment with Leptomycin B for 4 hours and then fixed and analysed, to 

the aim of understanding whether this inhibitor of the XPO1-dependent export was 

actually able to determine GFP accumulation in the nucleus.  

Images show that in cells expressing the fusion protein GFP_NES, regardless of 

whether sequence was that canonical or putative one, staining was exclusively 

cytosolic and nuclei seemed to be empty. In both cases treatment with Leptomycin B 

was able to increase nuclear staining but not nucleolar one (Figure 27). Altogether, 

these results indicate that the putative NES and NLS CA IX sequences are really 

able to drive a reporter protein, such as GFP, in the nucleus and nucleoli (NLS) or in 

the cytoplasm (NES). Moreover NES sequence is sensitive to treatment with 

Leptomycin B. In the presence of both NES and NLS sequences, the nuclear export 

of the fusion proteins seems to be dominant over the nuclear accumulation. 
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Figure 26. Subcellular localization of NLS and NES+NLS sequences of CA IX in HEK-293 cells. 
(A) Cells transfected with constructs encoding GFP, (B) GFP_canonicalNLS, (C)GFP_CA IX putative 
NLS, (D) GFP_canonical NES+NLS, (E) GFP_CA IX putative NES+NLS were grown under normoxia 
(left panels) or subjected to hypoxic treatment, 24h upon transfection, for 6h (right panels). 

 

 

 

 

Figure 27. Subcellular localization of NES sequence of CA IX in HEK-293 cells. (A) Cells 
transfected  with constructs encoding GFP_canonicalNES and  (B) GFP_CA IX putativeNES were 
treated  with 70% methanol (left panels) or with Leptomycin B, 24h upon transfection, for 4h (right 
panels). 

 B 
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3.8 Comparison of subcellular distribution of CA IX among 

different cell lines 

To better clarify localization of CA IX in “non-manipulated” and basally CA IX 

expressing cell models, subcellular distribution of endogenous protein, under 

normoxic conditions, was evaluated in four cell lines of different tissue origin by 

confocal immunofluorescence microscopy. 

Specifically analysis was carried out in the human colon adenocarcinoma cell line 

GEO, in the human embryonic kidney cell line HEK-293, in the human 

neuroblastoma cell line SH-SY5Y and finally in the immortalized human fibroblast cell 

line BJ5T.  

According with data available in literature about increased expression of CA IX in 

high density cell coltures49, images show that CA IX is expressed almost exclusively 

at the plasma membrane only in the GEO cells, where a weak perinuclear or nuclear 

staining is anyhow detectable, whereas, surprisingly, it accumulates in the nucleus 

and, to a lesser degree, in the cytoplasm and at the plasma membrane in the other 

cell lines, confirming pattern of cell distribution showed by transfected cells for 

recombinant protein (Figure 28). 

 

3.9 In vivo expression and localization of CA IX 

Finally, to further deepen pattern of CA IX expression in cancer disease, seven cases 

of clear cell renal cell carcinomas (ccRCC) were analysed by immunohistochemical 

analysis.  

Here I show four representative samples (Figure 29).  

In each of them CA IX was mainly detected at the cell membrane and often co-

detected in the cytosol. Moreover two out of the seven specimens also showed a 

nuclear localization for CA IX (lower panels C and D). In these cases, nuclear 

reactivity for CA IX was associated with cancer tissue districts containing tightly 

linked neoplastic cells and a limited fibrovascular network, suggesting its possible 

relationship to physiological hypoxia. 
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Figure 28. Subcellular distribution of CA IX in some human cancer cell lines. GEO (colon 

adenocarcinoma), HEK-293 (embryonic kidney carcinoma), SH-SY5Y (neuroblastoma) and BJ5T  
(telomerase immortalized fibroblasts) cells were fixed and permeabilized to detect CA IX (green). In 
GEO cells is shown the best known membrane localization of CA IX, whereas in the other cell lines CA 
IX is broadly distributed, with a positive staining of nuclei.  

 

 

Figure 29. Immunohistochemical analysis of CA IX expression in clear cell renal cell carcinoma 
(ccRCC). In all four ccRCC cases, CA IX is mainly detected at the cell membrane and often co-
detected in the cytosol. In two (lower panels C and D) out of the seven specimens, CA IX also showed 
a nuclear localization. 
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3.10 Functional validation of CA IX-CAND1 interaction  

To investigate a possible functional significance of interaction between CA IX and 

CAND1 I attempted to generate cell clones stably expressing low levels of CAND1 

protein through RNA interference technology. 

Three different shRNA constructs, potentially able to interfere with CAND1 mRNA 

expression, namely sh2454, sh2555 and sh2562, were transfected in HEK-293 cells; 

a pool of clones interfered with CAND1 was obtained from each construct.  

Interference efficiency was evaluated through western blot analysis on cell lysates 

from the different pools. Results showed that the sh2555 and sh2562 constructs 

(lane 3 and 4, respectively) were more efficient in interfering with CAND1 mRNA 

expression than sh2454 construct (lane 2) (Figure 30). 

As already introduced, CAND1 is involved in regulation of protein stability through 

inhibition of assembly of SCF E3 ubiquitine ligase complex, that targets protein for 

degradation by 26S proteasome. To investigate if CAND1 was involved in CA IX 

stabilization, I evaluated by western blotting CA IX protein levels in cell lysates from 

HEK-293 clones stably interfered with CAND1. 

Results of analysis show that there is a parallel decrease in CA IX protein level in 

clones interfered with CAND1 (lane 2 and 3) in comparison to clones interfered with a 

non silencing construct (shNS) (lane 1). This datum strongly supports initial 

hypothesis that CA IX is a target of the Ubiquitin-Proteasome Pathway (UPP) and is 

positively regulated by CAND1, so suggesting that a functional interaction between 

CA IX and CAND1 occur and may responsible of high stability of CA IX protein 

(Figure 31). 
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Figure 30. Western blot analysis on lysates from stable HEK-293 pools of clones expressing 
shRNAs targeting CAND1 mRNAs. shRNAs 2555 and 2562 are able to stably interfere with CAND1 
expression in the generated pool of clones. 

 

 

 

 

 

Figure 31.  Western blot analysis on lysates from HEK-293 cells stably expressing the shRNAs 
2555 and 2565. In HEK-293 clones interfered with CAND1 expression through the shRNAs 2555 and 
2562 a parallel decrease in CA IX expression is associated to down-regulation of CAND1. 
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4. MATERIALS AND METHODS 

 

4.1 Cell lines and experimental treatments 

The HEK-293, SH-SY5Y, BJ5T and GEO cell lines were purchased from ATCC. 

Cells were cultured in DMEM containing 10% fetal bovine serum (Euroclone) and 

penicillin/streptomycin, at 37°C, in 5% CO2 humidified atmosphere. 

Transient transfection of HEK-293 cells with the empty vector, pRcCMV, or the strep-

tagged CA IX vector have been performed at a confluence of 70% using the calcium 

phosphate method. At 24 hours after transfection some cells were maintained under 

normoxic conditions while other were subjected to hypoxic treatment, for sixteen 

hours,  in an incubator with N2 atmosphere containing 2% O2 and 5% CO2.  

HEK-293 cells for analysis of putative NES and NLS CA IX sequences were 

transfected with the same method. 24 hours upon transfection cells transfected with 

the constructs containing the NLS or NES+NLS sequences were grown in hypoxia for 

six hours or maintained under normoxic conditions, while cells transfected with the 

constructs containing the NES sequences were treated for 4 hours with 20ng/mL of 

Leptomycin B (Sigma Aldrich) or, as control, with 70% methanol, that is the solvent in 

which is solved Leptomycin B. 

Analogously HEK-293 cells were transfected with pSM2 vectors containing shRNAs 

targeting CAND1 mRNAs to interfere their expression. Stable clones were 

established by treating cells for two weeks with 2 μg/ml of puromycin and amplified 

using 0, 25 μg/ml of puromycin to maintain stable expression of constructs. 

 

4.2 DNA constructs 

The expression construct encoding the full-length CA IX protein was obtained by RT-

PCR amplification of mRNA isolated from non small cell lung cancer explanted 

tumors with ImProm-II Reverse transcriptase (Promega) and Pfu DNA polymerase. 

The primers for cDNA amplification were synthesized at CEINGE oligonucleotide 

facility and were the following: ca9for, 5′-cacaagcttagccgccatggctcccctgtgccccagc-3′; 

ca9rev, 5′-cactctagattatcctcctcctttttgaactgcgggtggctccaggctccatctcggctacctc-3′. This 

last oligonucleotide contained additional bases encoding for the Strep-tag II 
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sequence WSHPQFEK, through which recombinant protein was tagged. The PCR 

product was cloned in the pRcCMV vector (Invitrogen). cDNA was fully sequenced 

for verification. 

Constructs containing NLS, NES+NLS and NES sequences, canonical and CA IX 

putative, were generated in frame-fusing them at the C-terminus of EGFP in the 

vector of expression pEGFP_C1.  

The construct pEGFP_NLS-SV40 (TAg) was generated through annealing of the 

following synthetic oligonucleotides: NLS_SV40 (TAg) _US: 5’-

GATCTCCAAAAAAGAAGAGAAAGGTAG-3’; NLS_SV40 (TAg) _LS: 5’-

TCGACTACCTTTCTCTTCTTTTTTGGA-3’;  

The construct pEGFP_canonicalNES+NLS was produced using a synthetic forward 

oligonucleotide as template and a reverse oligonucleotide as primer to copy the 

template: NES_NLS_can_US: 5’-

ATAAGATCTCCAAAAAAGAAGAGAAAGGTAGGATCCGGCGGCGGCTTAGCCTT

GAAATTAGCAGGTCTTGATATC-3’; NES_NLS_can_Rev: 5’-

ACTGTAGTCGACGATATCAAGACCTGCTAATTTC-3’.  

The construct pEGFP_NES-PKIA was generated as described above for NLS, using 

the following oligonucleotides: NES_PKIA_US: 5’- 

GATCTTTAGCCTTGAAATTAGCAGGTCTTGATATCG-3’; NES_PKIA_LS: 5’- 

TCGACGATATCAAGACCTGCTAATTTCAAGGCTAAA -3’;  

Finally the constructs pEGFP_CA IX putativeNLS and pEGFP_CA IX 

putativeNES+NLS, encompassing sequence from 434 to 459 and from 412 to 459 of 

the full length protein, respectively, were generated by PCR from cDNA of full length 

CA IX using the following oligonucleotides: CA9_Cterm_For: 5’-

ATAAGATCTGGTGACATCCTAGCCCTGGT-3’; CA9_Cterm_Rev:5’-

ACTGTAGTCGACGGCTCCAGTCTCGGCTACCT-3’; CA9_IC_For: 5’-

ATAAGATCTCAGATGAGAAGGCAGCACAGA-3’; CA9_Cterm_Rev: 5’-

ACTGTAGTCGACGGCTCCAGTCTCGGCTACCT-3’.  

Differently the construct pEGFP_CA IX putativeNES, including CA IX sequence from 

410 to 435, was produced by annealing of the following synthetic oligonucleotides: 

CA9_NES_FWD: 5’-

GATCTGCTGGTGACATCCTAGCCCTGGTTTTTGGCCTCCTTTTTGCTGTCACCA
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GCG-3’; CA9_NES_RV: 5’- 

TCGACGCTGGTGACAGCAAAAAGGAGGCCAAAAACCAGGGCTAGGATGTCACC

AGCA -3’ 

Forward oligonucleotides contained the restriction site for BglII, whereas reverse 

oligonucleotides possessed the restriction site for SalI. They have been synthesized 

at CEINGE oligonucleotide facility and fully sequenced for verification. 

The pSM2 vectors containing the shRNAs 2454 (5’- 

TGCTGTTGACAGTGAGCGACCGTTTGTCCTGCAAGAAATATAGTGAAGCCACAG

ATGTATATTTCTTGCAGGACAAACGGCTGCCTACTGCCTCGGA-3’), 2555 (5’-

TGCTGTTGACAGTGAGCGCGCAATGTAGATGATGATGAATTAGTGAAGCCACAG

ATGTAATTCATCATCATCTACATTGCATGCCTACTGCCTCGGA-3’) and 2562 (5’- 

TGCTGTTGACAGTGAGCGCCCTCATGTTTCTACCATTATATAGTGAAGCCACAG

ATGTATATAATGGTAGAAACATGAGGATGCCTACTGCCTCGGA-3’), targeting 

CAND1 mRNAs, together with the non silencing shNS construct,  were selected from 

a library of shRNAs generated by Dr. Greg Hannon  at Cold Spring Harbor 

Laboratory (CSHL) and provided us by the Open Biosystems. These shRNAs were 

designed to be expressed as human microRNA-30 (miR30) primary transcripts to 

increase Drosha and Dicer processing of the expressed hairpins and consequently 

knockdown efficiency. Briefly the hairpin stem consists of 22-nt of dsRNA, 

complementary to mRNA target, the loop is formed by 19-nt from human miR30; the 

125-nt of flanking sequence on either side of the hairpin are also from miR30.  

The 22-nt dsRNA portion of all three shRNAs targeting CAND1 mRNAs is 

complementary to sequences present in the coding region. 

 

4.3 Cell lysates preparation, interactome characterization and 

mass spectrometry protein identification 

Cell lysates were generated by lysis in a buffer containing 50 mM Tris-HCl, 150 mM 

NaCl, 0,5% Triton X-100, 10% glycerol, pH 7.5, 50 mM NaF, 1 mM Na3VO4, 1 mM 

DTT, 0,4 mM EDTA, pH 8.0, and a mixture of protease inhibitors (Sigma Aldrich)225. 

Lysates were clarified by centrifugation at 12,000 g for 20 min at 4 °C and quantified 
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using BioRad Protein Assay, based on the Bradford method, following the 

manufacturer’s instructions.  

Each lysate (2 mg) was challenged with 250 μL of Strep-Tactin resin (IBA), and 

incubated for 12 h, at 4 °C. After washing, proteins were eluted with 100 mM Tris-

HCl, 150 mM NaCl, 1 mM EDTA, 0.1% Triton X-100, 2 mM D-biotin, pH 8.  

Interactors eluted with CA IX were analyzed by 12% SDS-PAGE (14 cm × 16 cm × 

0.75 mm) in an SE600 vertical electrophoresis system (Hoefer), at 18 °C, using a 

constant current setting of 25 mA and a maximum of 150 V.  

Detection of proteins was performed by silver nitrate staining. Gel images were 

scanned by the Image Scanner III (GE Healthcare) apparatus and analyzed by the 

Image Master 2D Platinum 6.0 software (GE Healthcare), according to the 

manufacturer’s instructions.  

Each of the three gel lanes from SDS-PAGE was cut and subdivided into 21 similar 

slices, which were then processed for downstream protein identification by mass 

spectrometry. Peptide digests of interactors as well as CA IX glycopeptides and 

phosphopeptides were analyzed by nLC-ESI-LIT-MS/MS. The latter were also 

analyzed by MALDI-TOF-MS. MS analysis was performed by Dr. G. Renzone and A. 

Scaloni, ISPAAM, CNR, Naples, as described in detail66. 

 

4.4 Bioinformatic analysis 

Proteins identified by nLC-ESI-LIT-MS/MS were analyzed using the String v. 9.0 

database (http://string-db.org/) to discover functional interaction between them226. 

A classification of the identified proteins under parameters of gene ontology was 

performed through the web-accessible DAVID (v 6.7) annotation system 

(http://david.abcc.ncifcrf.gov/home.jsp)227, 228. 

A bioinformatic analysis of CA IX C-terminal region to find putative NES and NLS 

sequences was performed using the predictive software NetNES 1.1 Server 

(http://www.cbs.dtu.dk/services/NetNES/)  and NLStradamus 

(http://www.moseslab.csb.utoronto.ca/NLStradamus/229), respectively. 

 

http://string-db.org/
http://david.abcc.ncifcrf.gov/home.jsp
http://www.moseslab.csb.utoronto.ca/NLStradamus/
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4.5 Antibodies, interaction assays and western blot analysis 

Antibodies used in experiments described in this thesis were the following:  CA IX 

VII/20 and M75, mouse monoclonals230; CA IX, rabbit polyclonal (H-120, Santa Cruz 

Biotechnology); XPO1 (CRM1 C-20, Santa Cruz Biotechnology), goat polyclonal; 

TNPO1 (karyopherin β2 F-6, Santa Cruz Biotechnology), mouse monoclonal; CAND1 

(TIP120A 48, Santa Cruz Biotechnology), mouse monoclonal.  

Affinity purification experiments were performed on 1mg of protein extracts on Strep-

Tactin resin for 2 hours, at 4°C. Elution was preceded by 5 washes with lysis buffer. 

Eluates were analyzed by 10% SDS-PAGE. 

Pull down experiments were carried out using synthetic peptides231. Protocol 

provides for two sequential incubations at 4°C: the first occurs between peptides (0, 

5nmol each) and strep-Tactin resin (10l); the second between peptides bound to 

resin and protein extracts (500 g). Proteins specifically bound to resin through 

peptides and eluted from the resin were determined by western blot analysis. Filters 

were probed with the XPO1, TNPOI and CAND1 antibodies. 

Co-immunoprecipitation experiments for analysis of CA IX-XPO1 native complexes 

were performed using an anti- CA IX antibody; immunocomplexes were captured by 

protein A/G plus agarose (Santa Cruz Biotechnology) and, once eluted, subjected to 

western blot analysis. 

 

4.6 Fluorescence and immunofluorescence analyses 

Immunofluorescence experiments were performed on HEK-293, SH-SY5Y, GEO and 

BJ5T cells. 

Cells used for analysis were plated on glass slides and, after being subjected to 

various treatments described in previous sections, fixed with 3% (w/v) 

paraformaldheyde, 1% (w/v) sucrose in PBS for 15 min and permeabilized with 0.3% 

(w/v) Triton X-100 in PBS for 3 min, at 4 °C. Cells were then incubated with 

appropriate dilutions of primary antibodies: CA IX VII /20, mouse monoclonal; XPO1, 

goat polyclonal. To visualize by fluorescence target protein, cells were incubated for 

1h at 25°C with the following secondary antibodies: Texas Red-conjugated donkey 

anti-goat; Alexa-488-conjugated rabbit antimouse (Jackson Laboratories).  
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An immunofluorescence analysis was also performed on the isolated nuclei from 

HEK-293-CA9 cells. Cells were resuspended in 0.1% Tween-20 in PBS and spun at 

13 000 × g for 15 min, at 4 °C. After two washes in PBS, the isolated nuclei in the 

pellet were fixed on polylysine slides (Thermo Scientific) with ice-cold methanol and 

analyzed using anti-CA IX antibody VII/20, followed by Alexa Fluor 488 donkey 

antimouse IgG (Invitrogen). The nuclei were stained with DAPI. 

For fluorescence analysis on HEK-293 cells transfected with the constructs 

containing GFP fused at the C-terminus with CA IX NES and NLS sequences under 

investigation, a transient transfection has been performed. After treatment with 

Leptomycin B, cells were fixed with 3% (w/v) paraformaldheyde, 1% (w/v) sucrose in 

PBS for 20 minutes at room temperature (RT). 

 

4.7 Immunohistochemical analysis 

Immunohistochemical analysis was performed on seven archived formalin-fixed 

tissue blocks from ccRCC patients. From each block, 5 μm-thick sections were 

obtained. They were dewaxed and rehydrated with graded ethanol concentrations. 

Before staining, sections first were incubated in citrate buffer pH 6, for 45 min, at 

97°C, and then in 3% H2O2/methanol for 10 min to block endogenous peroxidase 

activity. Non-specific sites were blocked by background reducing components 

(DAKO), for 30 min, at room temperature. Tissue sections were incubated at room 

temperature with primary antibody (CA IX H-120) at 1:50 dilution, for 1 h. Staining 

was performed with LSAB+System-HRP (DAKO) and diaminobenzidine chromogen 

(DAKO). Tissue sections were counterstained with Mayer’s hematoxylin and 

coverslipped. 
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5. DISCUSSION 

 

CA IX is a transmembrane glycoprotein that is overexpressed in many solid tumors. 

In the era of targeted therapy, several carbonic anhydrase inhibitors are available. 

Among these agents, some target CA IX. However, they still show some limitations, 

among which there is the poor specificity, because of high degree of homology 

among the catalytic sites of the various mammalian CA, with subsequent side effects 

deriving from inhibition of ubiquitous physiological intracellular CAs, such as CA II.  

An alternative strategy to target CA IX may be the design and development of 

peptide mimetics that are capable to compete for interactions. To design these 

antagonists it is necessary to characterize the protein network involving CA IX. 

Even though scientific literature contains many data about CA IX functions and, more 

specifically, about its involvement in tumor progression, few studies describe binding 

partners through which it acts. 

Scientific work described in this PhD thesis represents the first and unique study 

aimed to characterize the interactome of CA IX, until now.  

CA IX interactome was characterized in HEK-293 cells, in both normoxia and 

hypoxia, as CA IX expression is mainly driven by HIF-1.  

Its characterization allowed to discover an unexpected protein network of potential 

interactors, mainly represented by cytosolic and nuclear proteins, such as those 

involved in nucleocytoplasmic transport and, among others CAND1 and CAND2, 

regulating protein degradation and gene transcription.  

This strongly suggests that CA IX may play additional roles inside tumor cells, 

besides those already known of pH regulation and facilitation of cell migration. 

Among nucleocytoplasmic transport factors, XPO1 has been chosen as the 

representative member of the whole pathway for validation of interactomic results. As 

well-known, it drives active transport of proteins and mRNAs involved in ribosomal 

biogenesis across the NPCs.  

As so far CA IX has been described as an enzyme located at the plasma membrane, 

firstly its subcellular distribution was compared in a panel of four cell lines to 

investigate its expression pattern in tissues of different embryonic origin. So it has 
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been observed that CA IX distribution in human colon adenocarcinoma cell line GEO 

is that “canonical” at the plasma membrane, even if a weak nuclear and perinuclear 

staining was anyhow detectable. Conversely, a broad subcellular distribution, 

including nuclear localization, was observed in HEK-293, SH-SY5Y and BJ5T cells. 

As the antibody used to visualize CA IX in these cell lines is directed against the 

extracellular region of CA IX, it follows that is the full length protein to be translocated 

into the nucleus, similarly to some RTKs undergoing nuclear import.  

This intracellular and, especially, nuclear localization of CA IX has been further 

deepened in HEK-293 cells, where hypoxic treatment seems to stimulate 

internalization of CA IX and its accumulation in the nucleus and in the nucleoli. Co-

localization of CA IX and XPO1 in the nucleoli in hypoxia further confirms 

biochemical validation through co-precipitation experiments with both strep-tagged 

and endogenous CA IX.  

Occurrence of this interaction in hypoxia rather than in normoxia may derive from 

increased expression of CA IX under hypoxic conditions or from activation of specific 

intracellular pathways that modify, through post-translational modifications, these 

proteins when cells are subjected to hypoxic stress.  

In particular, as suggested from pull-down experiments with synthetic peptides, CA 

IX phosphorylation may stabilize this interaction in hypoxia. 

Also interaction of CA IX with TNPOI has been biochemically validated. As TNPOI 

drives transport of proteins in the nucleus, such as transcription factors, co-factors of 

transcription and mRNA binding proteins , strong interaction between them supports 

the hypothesis that CA IX  may take part to mechanisms that regulate transcription, 

as shown for EGFR232, 233, ErbB2234, ErbB4235.  

A hypothetical nuclear function for CA IX was already proposed on the basis of its 

ability to bind DNA in DNA-cellulose chromatography27.  

Moreover bioinformatic analysis highlighted the presence of a stretch of basic amino 

acids able to bind DNA. 

On the basis of CA IX localization in the nucleoli, where it seems to interact with 

ribosomal proteins, such as RPS5 and with XPO1, an involvement of CA IX in 

ribosomal biogenesis may be also hypothesized. 

CA IX minimal region required for validated interactions with XPO1, TNPOI and 

CAND1 has been identified and comprises the intracellular tail and 16 amino acids of 
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the transmembrane region; it has been shown that all these interactions occur much 

more when T443 and Y449 are phosphorylated. Within this region putative NES and 

NLS sequences have been identified. Fusion constructs between reporter protein 

GFP and these putative sequences were generated to analyze their capability to 

drive GFP distribution within transfected HEK-293 cells. Results emerged from 

immunofluorescence analysis on these cells suggest the full functionality of these 

sequences, that have demonstrated to mediate both import and export processes in 

and from the nucleus, respectively. 

It is known that hypoxia modulates many pathways whose members resulted to be 

potential interactors of CA IX: nucleocytoplasmic transport236-238, ribosome 

biogenesis, translation and protein degradation239. 

CAND1 is a nuclear protein: on one hand it was described as a factor activating 

basal transcription in vitro, in a dose-dependent manner, through the stimulation of 

recruitment of TFIIF/RNAPII into a pre-initiation complex; on the other hand it inhibits 

assembly of SCF E3 ubiquitine ligase complex, involved in the degradation of 

specific substrates by the proteasome 26S.  

Biochemical data, from co-precipitation experiments performed with strep-tagged CA 

IX, confirmed interaction between CA IX and CAND1.  

It is worth to highlight that CAND1 is one of few binding partners interacting with CA 

IX both in normoxia and hypoxia, even if under hypoxic conditions their binding is 

more pronounced.  

To better investigate and functionally understand interactions between these two 

proteins, stable pools of clones from HEK-293 cells interfered with CAND1 or CA IX 

were generated through RNA interference technology.  

Preliminary data from HEK-293 clones interfered with CAND1 mRNA expression 

showed a decrease in CA IX protein in comparison to clones interfered with a non 

silencing construct, suggesting that CAND1 may be involved in CA IX protein 

stabilization. This might explain CA IX accumulation in hypoxic conditions in HEK-

293 cells transfected with the strep-tagged protein, whose expression in hypoxia is 

not driven by HIF-1 stabilization, as CMV promoter lacks HRE element. 

In the same way shRNAs interfering with CA IX mRNA expression were transfected 

in HEK-293 cells to generate stable pools of clones interfered with CA IX but 
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unfortunately without obtaining clones, probably because of involvement of CA IX in 

cell survival (data not shown).  

That of CA IX is not the unique case of a transmembrane protein that is also found in 

the nucleus. Many cases are described in scientific literature of transmembrane 

receptors that enter the nucleus via the transportin-dependent pathway and function 

as nuclear signal transducers; c-Erb-B2, EGFR, FGFR and CD44 are only some of 

many known examples240-242. 

CA IX demonstrated to be a more highly versatile carbonic anhydrase. CA IX role at 

the plasma membrane as pH regulator and active player in cancer cell migration 

represents only part of different functions in which CA IX is involved.  
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