```
"FILE M1 "
"PROGRAM : HO3 FS wave eq solve"
"This file initiates a suite of programs working out calculations reported in :
   Comments on MECHANICS and THERMODYNAMICS of the BERNOULLI OSCILLATORS Parts I
   and II, (Google search : FEDOA Comments on), by G. Mastrocinque - Department
  of Physics - Engineering Faculty - University of Naples Federico II"
"These Comments refer to the papers : "
"Annales de la Fondation de Broglie 36, 91
  (2011) (http://aflb.ensmp.fr/AFLB-361/aflb361m726.pdf) "
"and "
"Annales de la Fondation de Broglie 36, 159
   (2011) (http://aflb.ensmp.fr/AFLB-361/aflb361m727.pdf)"
"Numerical example : Harmonic oscillator, n == 3;
  math calculations relative to eqs. (29) ÷ (43) in the Comments"
"FIRST STEP CALCULATIONS"
Off[General::"spell"]
Off[General::"spell1"]
"INPUT DATA (cf. eqs. (31) \div (38), (55))"
n = 3
\lambda\lambda = \frac{\sqrt{h}}{2\sqrt{m} \pi \sqrt{vc}}
\xin = 1.5811388300841898`
cn = 1.1901196373307197`
\rhomax = 0.371461/\lambda\lambda
\sigma n = 2.1363708827170136 \lambda \lambda^2
\xifin[n] = 3.9111226611226613`
"equations to be solved : (39), (40) \implies"
derphi[\xi_{-}] =
  2\pi \frac{\operatorname{cn}\rho \max \lambda \lambda}{4} \left( \frac{1}{\rho n[\xi]} - \rho n[\xi] + \frac{\sigma n (\operatorname{cn} - 1)}{\lambda \lambda^2 \rho n[\xi]} \left( \partial_{\xi}\rho n[\xi] \sqrt{\left(\partial_{\xi}\rho n[\xi]\right)^2} \right) \right) \operatorname{UnitStep}[\xi n - \xi];
eq39 = derphi[\xi] ^2 == 5 - \xi^2 + Expand \left[\frac{\partial_{\xi} \partial_{\xi} \sqrt{\rho n[\xi]}}{\sqrt{\rho n[\xi]}}\right]
"END INPUT DATA"
"keep in memory :"
cn0 = cn
\rho \text{max} 0 = \rho \text{max}
\sigma n (cn0 - 1) / \lambda \lambda^2
"SOLVE"
solveq =
 NDSolve[{eq39, \rhon[\xin] == 1, \rhon'[\xin] == 0}, \rhon, {\xi, 0, \xifin[n]}, MaxSteps \rightarrow 100000]
```

```
"RESULTS"
"density, normalised to max value \rhomax (Fig. 1) :"
\rho \ln[\xi] = \text{Evaluate}[\rho n[\xi] /. \text{solveq}][[1]];
Plot[\rholn[\xi], {\xi, 0, \xifin[n]}, AxesLabel \rightarrow {\xi, \varrholn[\xi]}]
"derivative in \xi = 0 (eq. (41)) :"
\rho 1n'[0]
"density norm (eq. (2)) :"
norm = 2 \lambda\lambda \rhomax NIntegrate[\rho1n[\xi], {\xi, 0, \xifin[n]},
    AccuracyGoal \rightarrow \infty, MinRecursion \rightarrow 4, MaxRecursion \rightarrow 1000000]
"phase derivative \varphi_1'[\xi] (Fig. 2) :"
derphi1[\xi] = Evaluate[derphi[\xi] /. solveq][[1]];
Plot[derphi1[\xi], {\xi, 0, 1.1 \xin}, AxesLabel \rightarrow {\xi, \varphi<sub>1</sub> '[\xi]}]
"phase difference over a round trip (eq.(43)) :"
fasdif = 4 \text{ NIntegrate}[\text{derphi1}[\xi], \{\xi, 0, \xi \text{fin}[n]\},
    AccuracyGoal \rightarrow \infty, MinRecursion \rightarrow 4, MaxRecursion \rightarrow 1000000];
fasdif / (2\pi) HoldForm [2\pi]
"(relative) phase error compared to expected value of eq. (43):"
\texttt{relfas} = \texttt{Simplify} \Big[ \frac{\texttt{fasdif} - (n-1) \ 2 \ \pi}{(n-1) \ 2 \ \pi} \, \Big]
"SUITE OF CALCULATIONS : is in file HO3 SS wave eq solve in the same library.
  Warning: the following programs use data provided by the present one"
```

FILE M1

```
PROGRAM : HO3 FS wave eq solve
```

```
This file initiates a suite of programs working out calculations reported in :

*Comments on MECHANICS and THERMODYNAMICS of the BERNOULLI OSCILLATORS

Parts I and II, (Google search : FEDOA Comments on), by G. Mastrocinque

- Department of Physics - Engineering Faculty - University of Naples Federico II
```

```
These Comments refer to the papers :
```

```
Annales de la Fondation de Broglie 36, 91 (2011) (http://aflb.ensmp.fr/AFLB-361/aflb361m726.pdf)
```

and

```
Annales de la Fondation de Broglie 36, 159
(2011) (http://aflb.ensmp.fr/AFLB-361/aflb361m727.pdf)
```

```
Numerical example : Harmonic oscillator, n == 3; math calculations relative to eqs. (29) \div (43) in the Comments
```

FIRST STEP CALCULATIONS

```
INPUT DATA (cf. eqs. (31) ÷ (38), (55))
```

3

$$\frac{\sqrt{h}}{2\sqrt{m} \pi \sqrt{vc}}$$

1.58114

1.19012

$$\frac{2.33396\sqrt{m}\sqrt{vc}}{\sqrt{h}}$$

3.91112

equations to be solved : (39), $(40) \Rightarrow$

$$0.482222 \, \text{UnitStep}[1.58114 - \xi]^2 \left(\frac{1}{\rho n[\xi]} - \rho n[\xi] + \frac{0.406166 \, \rho n'[\xi] \, \sqrt{\rho n'[\xi]^2}}{\rho n[\xi]} \right)^2 = 5 - \xi^2 - \frac{\rho n'[\xi]^2}{4 \, \rho n[\xi]^2} + \frac{\rho n''[\xi]}{2 \, \rho n[\xi]}$$

END INPUT DATA

keep in memory :

1.19012

 $\frac{2.33396\sqrt{m}\sqrt{vc}}{\sqrt{h}}$

0.406166

SOLVE

 $\{\{\rho n \rightarrow InterpolatingFunction[\{\{0., 3.91112\}\}, <>]\}\}$

RESULTS

density, normalised to max value ρ max (Fig. 1) :

- Graphics -

```
derivative in \xi = 0 (eq. (41)) :
2.70866 \times 10^{-6}
density norm (eq. (2)):
1.
phase derivative \varphi_1'[\xi] (Fig. 2) :
          \varphi_1'[\xi]
         3.5
           3
         2.5
           2
         1.5
           1
         0.5
                                           1.25 1.5 1.75
                 0.25 0.5 0.75
- Graphics -
phase difference over a round trip (eq.(43)) :
1.97856 (2 π)
(relative) phase error compared to expected value of eq. (43):
-0.0107177
```

SUITE OF CALCULATIONS: is in file HO3 SS wave eq solve in the same library.

Warning: the following programs use data provided by the present one