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Abstract

Software maintenance is an essential step in the evolution of software systems and

represents one of the most expensive, time consuming, and challenging phases of the

whole development process. In particular, the cost and the effort necessary for both the

maintenance and the evolution operations (e.g., corrective, adaptive, etc.) are mainly

related to the effort necessary to comprehend the system and its source code. As a

consequence many reverse engineering tools and solutions have been proposed to support

the maintainers in their activities.

An important resource for maintainers is represented by the architectural information

of the system. However such information is usually not documented, or the documentation

is outdated. Therefore, the existing code remains the most updated source of information

to exploit in order to automatically retrieve and reconstruct the architecture of a system.

Many research efforts are being devoted to support this task, in order to define so-

lutions that are able to re-modularise a given software application. The main purpose

of re-modularisation techniques is to automatically partition the system into meaningful

subsystems, in order to locate and group together software components that are in some

way related, e.g., they implement the same functionalities.

A number of these approaches generally attempt to discover these groups (or clusters) by

exploiting the lexical information provided in the source code, such as terms in comments,

as well as names of identifiers (e.g., variable, methods and classes).

Nevertheless, the source code lexicon has some specific peculiarities that make it con-

ceptually different from a typical textual resource: identifiers are often created by con-

i



Thesis advisors: Sergio Di Martino and Anna Corazza Valerio Maggio

catenating multiple words (e.g. getAttribute, MINHEIGHT), which may be additionally

shortened (e.g., getAttr, MINHGT) to avoid long names. As a consequence, tools and tech-

niques that analyse the source code lexicon must integrate algorithms to normalise its

vocabulary.

Another well known and largely investigated issue in software maintenance is clone

detection: it is focused on the identification of source code duplications. Software clones

might affect the reliability and the maintainability of large software systems. For example,

errors affecting a fragment of code must be fixed in everyone of its possible duplications.

Clones are usually not documented, and their identification is usually complicated since

programmers adapt software copies by applying multiple modifications (e.g., adding new

statements and renaming variables). Therefore, automatic and reliable approaches are

required in order to tackle this problem.

In this thesis we proposed new Machine Learning (ML) based approaches that mine

the relevant information directly from the source code to cope with the three introduced

issues, namely the software re-modularisation, the source code vocabulary normalisation,

and the clone detection. In particular, proposed contributions leverages the benefits of

ML algorithms, which have been properly tailored and customised in order to make them

suitable for the considered domain.

All the presented approaches have been extensively assessed with empirical evaluations

conducted on large software systems, and results have been compared with other related

techniques, whenever possible. Achieved results outperform the state-of-the-art solutions

for all the three considered problems, thus confirming the benefits derived from the defi-

nition and the application of ML algorithms to maintenance tasks.
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If a man will begin with certainties, he shall end
in doubts; but if he will be content to begin with
doubts he shall end in certainties.

Sir Francis Bacon

I
Introduction

The development and the maintenance of large software systems in a
changing environment is one of the major challenge for software en-
gineering [193]. This issue has been eloquently discussed in Brooks’
classical paper No Silver Bullet [30], where the author affirms that

developing large software involves essential difficulties related to its complexity,
conformity, invisibility and changeability.

In fact, changes are inherent to software [92]: they may be necessary to satisfy
requests for performance improvements, or to deal with errors discovered in the
system [79, 122].

In his famous Laws of Software Evolution [120], Lehman declares that software
applications must necessarily evolve and grow to remain satisfactory (Lehman’s
first law), but maintenance operations are required in order to reduce the com-
plexity of the systems (Lehman’s second law).

However, software maintenance arguably represents one of the most expensive
and time consuming software activities. Companies spend more time (and money)
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to maintain and evolve existing software than on developing new one [92].
A number of studies have been undertaken to investigate the costs of software

maintenance [60, 62, 88, 143, 151], and many of their findings declare these could
account up to the 85-90% of the total software costs [79].

The cost and the effort necessary for maintenance activities (e.g., corrective or
adaptive), are mainly related to the effort necessary to comprehend the system
and its source code [135]. In fact, it is argued that up to the 60% of the total
maintenance effort is spent on such activity [6, 108].

The main reasons are: (I) some pieces of knowledge on the specific domain
covered by the application are not explicitly stated in the documentation [108]; or
(II) the documentation is missing or not up-to-date.

Conversely, the source code represents a valuable source of information for pro-
gram comprehension [126]. On the one hand it intrinsically provides the most
up-to-date information about the system; on the other hand, its lexicon (i.e., iden-
tifiers and comments) embeds the domain knowledge provided by developers, thus
bridging the gap with the lack of a reliable documentation.

As a consequence, any solution that can improve maintenance productivity is
bound to have a dramatic impact on software costs [92]. To this aim, in the
last decades several approaches have been proposed in the literature to support
maintainers, giving rise to the establishment of the software maintenance (and
evolution) field as an accepted research area in the software engineering community.

I.a Thesis Motivations

Understanding the software is the fundamental and necessary activity that pre-
cedes any type of change to the system. The comprehension process requires a
great deal of the total time spent on analysing and applying changes to the system
to maintain. This is mainly caused by the complexity of the system, the lack of
sufficient domain knowledge, and it is usually aggravated by an incorrect, outdated
or non-existent documentation [79].

To reduce this effort, one possible solution should be to gather relevant informa-
tion about the system from the source code (e.g., the design or the architectural
model).
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Reverse engineering techniques provides effective solutions to face this kind of
issues, aiding the comprehension of the system and easing the implementation of
the desired modifications [79].

Reverse engineering approaches are distinguished according to the specific kind
of information they exploit during the analysis process. However, such techniques
share the same goal, namely to support maintenance activities by allowing a large
and usually complex system to be comprehended in terms of what it does, how it
works and its architectural representation [79].

In fact, an important resource for software maintainers is represented by the
architectural information [73]. Software architectures provide models and views
representing the relationships among the different software components, according
to a specific set of concerns [57, 155].

Several approaches have been proposed in the literature to support this task,
known as software architecture recovery [57]. The greater part of the approaches
for architecture recovery [103, 132] aim at partitioning the system into meaningful
subsystems by automatically locate and group together software components that
are in some way related, e.g., they implement the same functionalities.

This specific task is usually referred as software re-modularisation (or software
clustering). In particular, a re-modularised version of the system produces an
architectural model that is easier to comprehend and to maintain [11, 184].

A number of these approaches generally attempt to discover these groups (or
clusters) by analysing structural dependencies between software artefacts [11, 28,
141, 186]. However, if the analysis is based on the sole structural aspect, a key
source of information about the analysed software system may be lost, i.e., the
domain knowledge that developers embed in the source code lexicon. In fact,
developers usually communicate their intent and their domain knowledge by means
of significant terms in comments, as well as names of identifiers (e.g., variable,
methods and classes). However, the source code vocabulary has some specific
peculiarities that make it different from a typical plain text: identifiers are often
created by concatenating multiple words, separated by some special characters
(e.g. to_string), by capitalising their first letters, or by any special convention
(e.g. IRDocument, MAXSIZE) [61, 118]. In addition, a common programming habit
is to shorten words of compound identifiers using abbreviations and/or acronyms
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to avoid long names. As a result, tools and techniques that analyse the lexical
information provided by the source code must integrate algorithms and solutions
that are able to normalise the source code [113, 115, 117, 118], namely splitting
compound identifiers and expand possible occurring abbreviations. To this aim, in
recent years many research efforts are being devoted to deal with the structure of
the identifiers aiming at improving the performance of the so-called lexical-based
software analysis/maintenance tools [61, 66, 80, 85, 113, 115, 117, 126].

Another issue that characterise large software systems is the problem of redun-
dancies. Programs are often polluted by redundant code, namely similar code
structures are often replicated in many places of the program.

Duplicated source code is a phenomenon that occurs frequently in large soft-
ware systems [20]. Reasons why programmers duplicate code are manifold. The
most well-known is a common bad programming practice, the so-called copy and
paste [159], that gives rise to software clones, or simply clones.

Code clones may increase the difficulties in analysing and applying changes and
thus they significantly contribute to increase maintenance costs [79, 92].

To this aim, this problem is a well-known and largely investigated issue in soft-
ware maintenance, usually referred as the problem of clone detection.

The clone detection task is mainly focused on the analysis and the identification
of code duplications, aiming at documenting the different redundancies detected
in a system. In fact, maintenance problems aggravate during the evolution: the
different duplications are merged with existing code and it becomes unclear which
part of the code relate to which source of change, thus leaving duplications mostly
undocumented.

However, programmers usually adapt the copies to the new context by applying
multiple modifications such as adding new statements, renaming variables, and so
forth. This aspect further complicates the detection process: on the one hand, it
could likely happen that some clones are not detect; on the other hand this affects
the reliability of the system under investigation. As a consequence, maintainers
need to rely on automatic tools and techniques that are able to support them in
their detection duties, especially in case of large and complex systems.

The work presented in this thesis provides research contributions to all the
three maintenance issues previously described, namely software re-modularisation,
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source code vocabulary normalisation, and clone detection.
In particular, the presented contributions combine different methods gathered

from the machine learning (and information retrieval) field to automatically mine
information from the source code.

Machine learning (ML) algorithms have proven to be of great practical value in
a variety of application domains, providing flexible solutions able to analyse large
data set with an affordable computational efficiency.

Not surprisingly, the field of software engineering turns out to be a fertile ground
where many software development and maintenance tasks could be formulated as
learning problems and handled in terms of learning algorithms [192, 193].

As a matter of fact, machine learning techniques have been applied by researches
to support a variety of software engineering activities, such as prediction of software
development effort, program transformation, or reuse library construction [131],
producing some good results [3, 24, 82, 123, 125, 192, 193].

In the case of source code analysis, the aforementioned flexibility of ML ap-
proaches allows to exploit the different kind of information provided by the source
code. In particular, the proposed approaches apply the so-called Kernel Methods
[87, 146] to combine the structural/syntactical information of the source code with
the lexical one, based on the assumption that the different kind of information
could produce several significance to the considered maintenance issues. However,
a great effort is required to adapt and modify these approaches in order to make
them suitable to analyse the source code.

ML techniques are founded on a learning method that is usually referred as in-
ductive learning [142], since conclusions are derived generalising from “observed”
examples, namely the analysed data. These examples may be “labeled” or “unla-
beled”, giving rise to the so-called supervised and unsupervised learning strategies
respectively.

Nevertheless, the availability of a reliable set of labeled data is usually difficult
or impossible in some extreme cases. As a consequence, unsupervised machine
learning techniques are typically preferred over supervised ones [131], especially
in case of software engineering problems. In particular, some of the advantages of
unsupervised learning techniques are [59, 131]:
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• There is no cost of collecting and labelling data.

• Unsupervised techniques may be used to identify characteristics of the sam-
ples which are useful for differentiating between them.

• Unsupervised techniques may be used for exploring the data and analysing
its structure.

On the other hand, a trade-off is imposed on their effectiveness as they solely rely
on the quality of the analysed data.

I.b Outline of the Thesis

This section describes the contents of the thesis, highlighting its original contri-
butions.

The thesis is divided into two parts. The first part outlines background concepts
related to both software maintenance and machine learning.

Chapter 1 provides a general description of software maintenance and evolution
research themes, specifically focused on the description of the three maintenance
issues related to the research contributions presented in this thesis, namely the
software re-modularisation (Section 1.3), the source code (vocabulary) normalisa-
tion (Section 1.2), and the clone detection (Section 1.4). Each of these Sections,
provides a detailed specification of the analysed problem, together with an exten-
sive description of corresponding related work.

Furthermore, Chapter 2 introduces the notation and basic concepts of Machine
Learning used throughout the remaining chapters. Section 2.1 gives basic defini-
tions about the structures used in the following chapters. Section 2.2 provides a
general description of (machine) learning problems and definitions, outlining the
differences between supervised and un-supervised learning problems. Sections 2.3
give an overview of existing clustering approaches and of probabilistic models re-
spectively. Section 2.4 introduces the kernel functions, the convolution kernel
framework and provides a description of existing approaches for building kernel
functions. Section 2.4.2 gives an overview of kernel functions for structured data
as trees and graphs.
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The second part of the thesis is devoted to the presentation of the original
contributions.

I.c Origin of the Chapters

Chapter 3 is based on the articles [43, 45] (Section 3.1) and contains some unpub-
lished work (Section 3.2).

The material presented in Chapter 4 is based on the article [4].
Chapter 5 is based on articles [44, 46] (Sections 5.1 and 5.3) and contains some

unpublished work (Section 5.2).
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Part A

Background and Related Work
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Know how to solve every problem that has ever
been solved.

Richard Feynman

1
Software Maintenance and Evolution

The classical view on software engineering, founded upon the well-known
waterfall life-cycle process for software development [160], delegates
to maintenance activities only bug fixing and minor adjustments op-
erations [92, 139]. This view has long governed the industrial practice

in software development and it even became a part of the IEEE 1219 Standard for
Software Maintenance [69], which defines software maintenance as “the modifica-
tion of a software product after delivery to correct faults, to improve performance
or other attributes, or to adapt the product to a modified environment” [139].

However, today we know that what actually happens to software after its first
delivery its much more complicated than simply fixing errors, and the different
changes to the system may involve corrective as well as adaptive modifications.

For example, a system may need functional enhancements to take advantages of
some new technological changes in the production environment (e.g., new platforms
or architectures), or it may require several modifications to fix errors or to improve
performances.
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In more details, the ISO/IEC standard on software maintenance proposed a
categorisation of maintenance activities based on four different classes [139]:

• Perfective Maintenance is any modification of a software product after de-
livery to improve performance or maintainability.

• Corrective Maintenance is the reactive modification of a software product
performed after delivery to correct discovered faults.

• Adaptive Maintenance is the modification of a software product performed
after the delivery to keep a computer program usable in changed or changing
environment.

• Preventive Maintenance refers to software modifications performed for the
purpose of preventing problems before they occur.

For the sake of completeness, it is worth mentioning that the above classification
has been further extended by Chapin et al. [39] based on objective evidence of
maintainers’ activities [139].

As a result, the new term software evolution has been coined to better reflect
this wide range of post-release processes on software systems [92].

The term was originally coined by Manny Lehman, who in the late seventies
formulated his, now famous, Laws of Software (or Program) Evolution [119, 120],
emphasising the importance of maintenance activities in the software life-cycle,
and its great impact on the quality and the complexity of the systems.

In particular, the first two Lehman’s laws (out of eight) declare that:

Law of Continuing Change: systems must be continually adapted or
they become progressively less satisfactory to use.

(First Law of Software Evolution - Lehman, 1980 [120])

Law of Increasing Complexity: as a system evolves, its complexity in-
creases unless work is done to maintain or reduce it.

(Second Law of Software Evolution - Lehman, 1980 [120])
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Nevertheless, the term software evolution gained its widespread acceptance only
in the nineties [139], and the research on software evolution started to become
popular [15, 150].

The overall software evolution process is depicted in Figure 1.1 by means of an
UML Activity diagram. The picture represents the different activities included
in the process to satisfy a new Change Request to the system. In particular,
some of these activities, such as the Change Analysis (Figure 1.2) and the Change
Implementation (Figure 1.3), are further specified to emphasise that they are far
from being trivial tasks.

Nowadays, software evolution has become a very active and well-respected field
of research in software engineering [139]. In fact, the 2004 ACM/IEEE Software
Engineering Curriculum Guidelines list software evolution as one of the ten key
areas of software engineering education [139].

[change request rejected]

Change Verification 
and ValidationChange Request Change 

Analysis
Change 

Implementation

[change 
request 
accepted]

[further changes required]

[No more 
changes]

Figure 1.1: UML Activity Diagram of the staged process model for evolution (adapted from [190])

Change Analysis

Reverse
Engineering

Program
Comprehension

Change Impact 
Analysis

Figure 1.2: Change Analysis Activity Diagram

Change Implementation

Restructuring Change 
Propagation

Figure 1.3: Change Implementation Activity
Diagram

13



1.1 Issues in Maintaining Large Software Systems

Software maintenance is about change. It may be a small change to fix a bug or
enhance software requirements to better satisfy users [92]. However, the size and
complexity of programs make applying changes a very hard activity. In particular,
the complexity of understanding and maintaining a program is proportional to its
size and complexity [92]. In his famous paper, “No Silver Bullet: Essence and Ac-
cidents of Software Engineering” [30], Frederick Brooks argues that programming
is inherently complex. In particular, he affirms that whether we adopt a machine
language or a high-level programming language, we are not able to simplify a
program below a certain threshold that he calls an essential program complexity.
Brooks continues declaring that the two main factors that determine the program
complexity threshold are: (I) the complexity of a problem and its solution at the
conceptual level, and (II) the fact that not only do programs express problem so-
lution, but also must address a range of issues related to solving a problem by a
computer.

These two factors cannot be clearly separated one from the other in program
components, which constrains maintainers’ effort in using the “conventional de-
composition” strategy (i.e., divide and conquer) to handle the software complexity
issue.

In other words, what makes changes hard is the ripple effect of modifications [92],
coupled with the difficulties in correctly identifying what are (and will be) all the
different part of the system to modify. As a matter of fact, a single change to
the system usually affects multiple software components. For instance, a single
change in user requirements may likely affect the design and the component archi-
tecture. Furthermore, any change that affects modules interfaces or global system
properties may unpredictably impact many other different components [92].

Therefore, any solution that could alleviate these problems is inevitably bound
to improve the effectiveness of maintenance activities.

To this aim, in recent years many research efforts have been devoted to the
definition of tools and techniques aimed at supporting maintainers in their duties.
This effort fed the growing interest of the research community in these topics, and
has provided successful solutions for the industry. In fact, many adopt automated
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maintenance tools to improve the quality of their software development process.

1.1.1 Reverse Engineering Techniques

An important theme within the research domain of software maintenance and
evolution is the reverse engineering [40].

Reverse engineering approaches build higher-level, more abstract software mod-
els in an automatic fashion, gathering information from the source code or any
other available document [23, 36, 40, 92, 168].

In particular, the reverse engineering is the process of analysing a subject system
to [40, 131]:

• Identify the system’s components and their interrelationships.

• Create a representation of the system in another form, or at a higher level
of abstraction.

As a matter of fact, reverse engineering solutions are usually employed to re-
cover lost information, to improve and/or provide new documentation, to extract
reusable components or to reduce the overall maintenance effort [79]. A summary
description of these goals and their corresponding benefits for the maintenance
are reported in Table 1.1. Moreover, within the overall software evolution process
(Figure 1.1), the application of reverse engineering solutions immediately precedes
program comprehension (or program understanding) [63] tasks (Figure 1.2). In
fact, program comprehension approaches are specifically devoted to make sense of
the different information produced by reverse engineering techniques [139].

Recovering lost information: The documentation of requirements and design of
large systems is usually not up-to-date or, in extreme cases, may even not exist. As
a consequence, the program code is the only reliable source of information about
the system. To this aim, several reverse engineering tools have been developed to
exploit the precious information embedded in the source code by developers such
as their domain knowledge.
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Re-documentation: The re-documentation of a system is the recreation of a se-
mantically equivalent representation within the same relative abstraction level [79].
The main goals of this process are to create alternative views of the system to en-
hance the understanding, to improve the current available documentation, and to
generate the documentation for a newly modified program [79].

Extracting reusable components: The source code of large software systems is
polluted by a lot of redundancies and duplications. Indeed programmers usually
duplicate the code to overcome some possible limitations of the programming lan-
guage or the pressures of an upcoming deadline.
Duplications inevitably increase the size and the complexity of the code, as well
as the total effort necessary to comprehend and maintain it.
To this aim, several approaches have been defined to automatically identify the so-
called “cloned code” [21, 159]. In particular, these techniques aim at documenting
all the discovered redundancies and at refactoring possible reusable components,
improving the design and the maintainability of the analysed system.

Reducing the maintenance effort: One of the main driving force behind the in-
creasing interest in reverse engineering has ever been the intent to reduce the
maintenance effort [79]. A large percentage of the total time required to make a
change is spent in comprehending the system and its source code. This is mainly
due to the lack of an appropriate and accurate documentation and of sufficient
domain knowledge [36]. Reverse engineering techniques have the potential to al-
leviate these problems and thus reduce maintenance effort because they provides
a means of obtaining the missing information [13, 79].

In conclusion, it is worth noting that reverse engineering techniques represent
the first and the most important step within the re-engineering process [139]. In
particular, such process [13, 14] encompasses a two-step approach that aims at
examining and altering a target system in order to implement the desired modifi-
cations [79].

In more details, firstly reverse engineering techniques are used to the target
system in order to understand it and represent it in new forms [79, 139]. After-
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Objectives Benefits

1
To Recover lost Enhances understanding and aids

information the identification of errors.

2 Re-documentation Improves the documentation of the system;
Provides alternative views of the system.

3
To extract reusable Supports identification of duplications

components and refactoring of reusable knowledge.

4
To reduce Improve the quality and the

maintenance effort comprehension of the system.

Table 1.1: Summary of the objectives and benefits of reverse engineering (adapted from [79])

wards, forward engineering [154, 169] methods are applied to actually implement
and integrate the modifications, thus leading to the “new” enhanced system [79].

The overall re-engineering process is typically represented in the literature by
the well-known horseshoe model [98].

1.1.2 Typical Approaches to Reverse Engineering

When analysing a program fro understanding, maintainers create multiple mental
models of the system, aiming at identifying the concepts and their relationships [31,
92]. However, if such system models are not available in the documentation,
maintainers repeatedly recover them from the source code and from other sources.

Automated reverse engineering can ease a tedious and error-prone manual pro-
cess of recovering these information about the system [92], giving rise to the defi-
nition of several approaches aimed at supporting the practitioners in their duties.

Reverse engineering techniques may be roughly classified in two distinct cat-
egories, according to the kind of analysis they apply on the software artefacts,
namely the Static and the Dynamic Program Analysis.
On the one hand, static analysis-based techniques are performed without actually
executing the program, but all the relevant information are gathered directly from
the source code or the object code [185].
Conversely, approaches based on dynamic analysis methods require the execution
of the analysed program on “real” or “virtual” processors, in combination with
some preliminary code instrumentation and an accurate selection of input data, in
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order to produce interesting behaviours.
The execution traces analysis [22] and the code coverage [140] are examples of ap-
proaches belonging to this second category.
Furthermore, there are also techniques belonging to both classes, since they could
be based on static or dynamic analysis methods as well.
Program slicing is a good representative for this kind of approaches, whose defini-
tion considers two different application variants [102, 183].

Nevertheless, despite the different kind of analyses performed on the program,
all the reverse engineering approaches try to infer and to understand the behaviour
and the architecture of a large software system [139].

As a matter of fact, an important discipline of reverse engineering is the archi-
tecture recovery, which deals with recovering the subsystems of a software and the
dependencies between them [131]. In particular, the architecture of a software in-
volves the organisation of a software system as a composition of artefacts, mainly
focused on their interaction and relationships.

The comprehension of a software system at an architectural level is required in
many cases [131] including:

• determining whether a system has the ability to fulfil its requirements;

• adapting a system to changing requirements;

• estimating the costs and risks of a change;

• enabling the re-use of components across several projects;

• defining product family architectures.

The different approaches proposed in the literature for the recovery of archi-
tectural information exploit structural dependencies between software artefacts to
group related artefacts [11, 28, 141, 186], or rely on the lexical information pro-
vided by programmers in the source code [42, 108, 163]. In particular, the source
code lexicon represents a key source of information, since developers usually em-
bed in its terms, namely identifiers and comment, their domain knowledge about
the system. As a matter of fact, to date more and more automatic reverse engi-
neering tools exploit the lexical information of the source code to support different
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maintenance tasks, such as locating concepts [54], or recovering the traceability
links [12, 49].

Most of these lexical-based tools [108] usually complement typical static code
analysis techniques with Information Retrieval (IR) approaches [130], with the
often implicit assumption that the same words are used whenever describing a
particular concept [115].

Nevertheless, programmers usually name the concept they want to represent
by creating identifiers with multiple words, called multi-word identifiers (e.g.,
toString, DynamicTable) [61]. Therefore, lexical-based software maintenance tools
require more advanced techniques that are able to normalise [25, 26, 115] the
source code lexicon. In particular, such normalisation process implies that identi-
fiers composed by multiple words are correctly split and that all possible occurring
abbreviations are mapped to the corresponding (dictionary) words.

1.2 Source Code Vocabulary Normalisation

It is widely recognised that source code identifiers play a fundamental role in sup-
porting software analysis/maintenance tasks [25, 37, 52, 54, 86, 116, 118]. Indeed,
since the documentation of many software systems is often limited and/or out-
dated, the lexical information provided within the code represent one of the most
valuable sources for program comprehension [126], since developers usually com-
municate their intent and their domain knowledge by means of significant names
of identifiers. In addition, the code intrinsically provides the most up-to-date in-
formation about the latest changes of an evolving system [80]. As a matter of
fact, this precious information is exploited by a number of tools suited to support
analysis activities, such as software clustering [42, 108], concept location [153],
source code summarisation [81, 170], or recovering traceability links [12]. Popular
examples include ADAMS [49] or FLAT3 [162].

The common idea is to infer the “concepts” covered by a software artefact,
given the lexical information provided in its code. Unfortunately, the effectiveness
of these tools is strongly dependent on the way identifiers have been defined by
programmers. In fact identifiers are usually created by concatenating multiple
words according to some naming conventions, such as capitalising first letters of
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each word (e.g. toString) and/or using special characters, like the underscore
(e.g. to_string) [61, 116]. Thus, a splitting step is required by these tools in
order to get all the basic words constituting an identifier [126]. However, in many
cases programmers break down these conventions (e.g. IRDocument, MAXSIZE) [61],
making an automatic splitting algorithm difficult to implement.

Moreover, another typical programming habit is to shorten identifier names by
using abbreviations and/or acronyms. This is so diffuse that Hill et. al., in [85],
report that within the source code abbreviated forms of words are more frequent
than the expanded ones. This phenomenon heavily challenges the effectiveness
of software maintenance tools in exploiting lexical information, and consequently
word expansion approaches could be very suitable in this context.

1.2.1 Problem Statement

To split multi-word identifiers, most existing software maintenance techniques usu-
ally employe trivial algorithms that rely on coding conventions [61]. Typical ex-
amples are the Camel Case [2]) (e.g., buildTree), and the Snake Case* naming
conventions [1] (e.g., build_tree). When simple conventions are used, the split-
ting of multi-word identifiers is straightforward. However, there are many cases
where conventions break down [61], thus affecting the effectiveness and the appli-
cability of these kind of algorithms. In fact, developers may decide to alternate the
case of entire words instead of single characters in order to improve the readability
of the identifiers (e.g., UTFtoASCII) [61], or to not alternate letter cases at all, i.e.,
the same-case identifiers (e.g., MAXINT).

In these cases, no cues are available to identify the different composing words,
and smarter and more advanced algorithms are required to split this kind of iden-
tifiers

Another important aspect to consider is that developers make a heavy use of
abbreviations when composing identifiers names (e.g., getNextElem). Therefore,
lexical-based tools must embed an additional step in their processing to map every
possible occurring abbreviations, i.e., the short forms, to the corresponding original
(dictionary) words, i.e., the long forms.

*This name derives from the snaky shape assumed by identifiers written using this style.
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Hill et al. [85] group the short forms in two distinct categories: single-word and
multi-word short forms, based on whether they can be mapped to a single or to
multiple words.

Single-word short forms are further distinguished in (I) prefix short forms if
the abbreviations are obtained by dropping the last part of the corresponding
expansion (e.g., obj standing for object); and (II) dropped-letters, when some
letters are removed, not including the first one (e.g., msg as for MesSaGe).

Empirical studies conducted in [126] indicate that vowels are the most typical
removed letters.

On the other hand, multi-word abbreviations are distinguished in acronyms and
combinations respectively when only or at least one letter of each composing word
is considered. Examples of these two types of short forms are awt for Abstract
Windows Toolkit) (acronym) and OID for Object IDentifier) (combination).

However, it is worth noting that often there is no unique or obvious way to
expand a given abbreviation, but the correct expansion could likely depend on
the particular domain of the system. For instance, the pnt abbreviation could
be expanded in terms such as paint, pointer or point, which are equally correct
possible solutions.

This observation also holds for the splitting of identifiers, where several con-
sistent decompositions could be produced, due to the intrinsic ambiguity of the
natural language. For example, findent may be split in f|indent or find|ent,
both being valid, but only one being correct for the given context. As a result,
additional disambiguation strategies are needed in order to consider the different
domain of the system.

To this aim, in recent years some research efforts are being devoted to the
definition of new source code vocabulary normalisation techniques [61, 66, 80, 85,
117, 126].

1.2.2 Related Work

The important role of identifiers in program comprehension tasks motivates the
large body of relevant work proposed in literature.

The work presented in [66] by Feild et al. represents the first approach to deal
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with the problem of automatically splitting identifiers. In this work two approaches
to same-case identifier splitting are provided, based on a greedy optimisation algo-
rithm and on some different identifier metrics respectively. The former exploits an
English dictionary (ispell†) and a list of known abbreviations to recursively search
for the longest prefix and/or suffix of a term, to identify splitting markers. On
the other hand, the latter relies on the combination of different metrics (e.g., word
length), to determine splitting results. The approach has been evaluated on 4,000
randomly chosen identifiers gathered from 746,345 C, C++, Java and Fortran sys-
tems and results have been compared with the ones achieved by a random splitting
algorithm intended as baseline.

Another splitting approach, known as Samurai, has been proposed by Enslen
et al. [61]. It is based on the assumption that an identifier is composed by words
that should appear elsewhere in the code. Thus the algorithm determines likely
identifier splittings according to the different frequencies of words mined from the
source code. The technique has been evaluated on over 8,000 identifiers extracted
from open source Java systems. Interestingly, Samurai only relies on the domain
knowledge embedded by programmers in the code, without exploiting any external
dictionary to identify the different words composing a multi-word identifier.

The first works focusing on the expansion of abbreviations (short forms) oc-
curring in source code to their corresponding long forms are the ones by Lawrie
et al. [117] and by Hill et al. [85]. The former exploits different lists of potential
terms, gathered from code, comments, and keywords of the programming language
and an English dictionary. On the other hand, the latter proposes an approach
called AMAP, based on a set of multiple regular expressions applied on differ-
ent scopes. In particular, the AMAP approach has been evaluated considering
250 abbreviations randomly selected from five open source Java systems. Another
remarkable contribution provided by Hill et al. [85] regards the definition of a
detailed taxonomy of short forms grouped in the two main categories described in
the previous Section (Section 1.2.1)

The abbreviation expansion problem has been also investigated by Madani et al.
[126], who, to the best of our knowledge, provides the first technique to focus on
both splitting and expansion of identifiers. In particular the proposed technique

†http://www.gnu.org/software/ispell/ispell.html
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follows a two-step process: firstly it determines the splitting of identifiers whose
compound terms are dictionary words. Then it tries to reconstruct the considered
identifier by inferring the set of potential word transformations originally applied
by the developers. The approach is based on the adaptation of the Dynamic Time
Warping (DTW) algorithm aiming at finding near optimal matchings between
identifier’s substrings and words in an English dictionary. The overall approach
has been evaluated using a manually-built oracle gathered from two open source
software systems written in C and Java respectively.

Another splitting and expansion approach, named TIDIER, has been proposed
in [80]. TIDIER applies the DTW matching algorithm in combination with a set of
different dictionaries of terms, representing contextual information and specialised
knowledge. Authors conducted an extended case study where they assess the
effectiveness of their approach in both splitting and expanding identifiers by using
a sample of more than 1,000 identifiers randomly selected from a set of 340 open
source C projects.

Finally, Lawrie et al. propose the Normalize algorithm [115] that applies a
two-step approach to split identifiers into their constituent parts and to expand
possible occurring abbreviations. The first step is accomplished by the “generate
and test algorithmic strategy”, named GenTest: the algorithm generates all the
possible splittings of an identifier compound name and then it tests a scoring func-
tion for each splitting, returning the best results. The definition of such scoring

Technique Identifier Abbreviations
Splitting Expansion

Greedy Splitting Algorithm [66] 3 7

Neural Networks Splitting [66] 3 7

Samurai [61] 3 7

Abbreviation Expansion Alg. [117] 7 3

AMAP [85] 7 3

Normalize [113, 115] 3 3

DTW-based Algorithm [126] 3 3

TIDIER [80] 3 3

Table 1.1: State-of-the-art Identifier Splitting and Abbreviation Expansion Techniques
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function is obtained by the combination of multiple metrics, whose weights are
statistically estimated by a Generalized Linear Multiple Model [115]. On the other
hand, the expansion of abbreviations is achieved by using wild card string match-
ing and phrase finder tools. The same authors refines this abbreviation expansion
technique in [113], where the Normalization algorithm integrates a strategy that
determines the most likely expansion of a term. In particular, this strategy con-
siders the co-occurrences of terms with (I) terms appearing in the analysed short
forms, and (II) terms appearing in the function from which the identifier has been
extracted.

Table 1.1 summarises the list of the related works, together with an indication
of the considered problem.

1.3 Software Re-modularisation

Software architecture plays an important role in at least six aspects of software
development: understanding, reuse, construction, evolution, analysis and manage-
ment [57].

Specifying the architectural structure of a system is a significant issue, especially
in case of large and complex system [131]. As a result, several approaches have been
proposed in the literature to support the software architecture recovery (SAR) [57].
Many of these techniques derive architectural views of the subject system from the
source code by applying some clustering analysis techniques‡ to software artefacts,
considered at different levels of granularity (e.g., at classes level) [57].

1.3.1 Problem Statement

Architectural information represents an important resource for software maintain-
ers to aid the comprehension, the analysis, and the maintenance of large and
complex systems [73]. In fact, software architectures provide models and views
representing the relationships among different software components according to
a particular set of concerns [57, 155]. However, unlike classes or packages, this in-
formation do not have an explicit representation in the source code. Moreover, the

‡A more detailed description of Un-supervised machine learning algorithms in general and of
clustering algorithms in particular is reported in Chapter 2
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external documentation is usually not present or outdated. Therefore, the existing
code remains the most updated source of information to exploit in order to auto-
matically retrieve and reconstruct the architecture of a software system [131, 165].

One of the typical tasks for the maintainers is to locate groups of software
artefacts that deals with a specific topic, in order to modify them. For instance,
a maintainer could be interested in grouping all the classes that handle a given
concept in the application domain, or that provide related functionalities. As a
result, the analysed system is re-modularised into meaningful subsystems that are
easier to maintain and comprehend.

In the literature this particular analysis (sub)task of SAR approaches is usually
referred as the software re-modularisation process.

The greater part of the approaches for software re-modularisation apply clus-
tering algorithms to large software systems, to partition them into meaningful
subsystems [103, 132].

A number of these approaches generally attempt to discover clusters by analysing
structural dependencies between software artefacts [11, 28, 141, 186]. However, if
the analysis is based on the sole structural aspect, a key source of information
about the analysed software system may be lost, i.e., the domain knowledge that
developers embed in the source code lexicon. As a consequence, some effort is
being devoted to investigate the use of lexical information, namely source code
comments and identifiers, for software re-modularisation [42, 108, 164, 165].

Typical steps in a clustering-based re-modularisation process are [103]:

1. Select entities (artefacts) to be modularised and their corresponding gran-
ularity level (e.g., classes). The overall modularisation process is based on
features (attributes) possessed by the entities, namely the previously cited
structural dependencies or the source code lexicon.

2. Identify the similarity measures and algorithms to be employed in the clus-
tering analysis.

3. Evaluate the different partitions of software artefacts generated by the se-
lected clustering algorithm.
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1.3.2 Related Work

The definition of effective solutions for documenting software architectures is a
longstanding and relevant research topic in the field of software maintenance [57,
103, 108, 176, 179].

The greater part of the approaches for SAR applies clustering algorithms to
large software systems [103, 132], whose most relevant aspects will be described in
the remainder of this Section. A complete and extensive survey of SAR techniques
is proposed by Ducasse et al. [57] where authors provide an accurate taxonomy
of proposed approaches based on the analysis of five distinct aspects, namely the
goals, the process, the inputs, the techniques and the outputs.

Table 1.1 summarises the state-of-the-art regarding software clustering for the
recovery of software architectures.

To better provide a detailed overview of different approaches, in the following
the related literature is presented with respect to the information exploited in the
clustering process, namely structural information, lexical information, and their
combinations.

Structural-based approaches: The works proposed by Wiggerts [186] and by An-
quetil and Lethbridge [11] represent the first two contributions to semi-automatic
approaches for the clustering of software entities. In particular, in [11] authors
present a comparative study of different hierarchical clustering algorithms based on
structural information. However the proposed solutions require human decisions
(e.g., cutting points of the dendrograms) to get the best partition of software en-
tities into clusters. Similarly, Tzerpos and Holt [177] present a comparative study
of a number of software clustering algorithms aiming at investigating the stabil-
ity of modularisation results obtained on a set of different software systems. The
comparison is conducted generating randomly “perturbed” versions of an example
system. Differences between the partition identified by the clustering algorithms
and the original partition of the system are measured by using the MoJo distance
[178].

Maqbool and Babri in [132] highlight the features of hierarchical clustering re-
search in the context of SAR. Special emphasis is posed on the analysis of different
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Approach Authors and Clustering TechniqueType Reference Algorithm

Structural

Anquetil Hierarchical Semi-
and Lethbridge [11] Clustering automatic

Mitchell BUNCH Automaticand Mancoridis [141]

Doval et al. [55] Genetic Automaticalgorithms

Mahdavi et al. [127] Genetic Automaticalgorithms
Edge

Betweenness;
Bittencourt K-means; Semi-

and Guerrero [28] Module quality; automatic
Design Matrix.

Wu et al. [187]

Hierarchical
Clustering; Semi-

Prog. Comp. automatic
Patterns;
BUNCH.

Tzerpos Hierarchical Semi-
and Holt [177] Clustering automatic

Sartipi Data mining Semi-
and Kontogiannis [161] Techniques automatic

Lexical

Kuhn et al. [108] K-Means Semi-
automatic

Risi et al. [156] K-means Automatic

Scanniello K-means Automaticet al. [165]

Maqbool Hierarchical Semi-
and Babri [132] Clustering automatic

Maletic Minimum Semi-
Lexical and Marcus [128] Spanning Tree automatic

and Adritsos LIMBO Semi-
Structural and Tzerpos [10] automatic

Scanniello K-means Automaticet al. [163, 164]

Table 1.1: Overview of architecture recovery approaches
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similarity and distance measures that could be effectively used in clustering soft-
ware artefacts. The main contribution of the paper is, however, the analysis of
two clustering based approaches and their experimental assessment. The discussed
approaches try to reduce the number of decisions to be taken during the clustering.
They also conducted an empirical evaluation of the clustering-based approaches
on four large software systems.

Mitchell and Mancoridis in [141] present a novel clustering algorithm, named
Bunch. Bunch produces system decompositions applying search based techniques
in combination with several heuristics, such as the coupling and cohesion of pro-
duced partitions, specifically designed for the clustering of software artefacts. In
particular, the coupling and the cohesion heuristics are defined in terms of intra-
and inter-clusters dependencies respectively. The evaluation of the produced par-
titions has been conducted according to qualitative and quantitative empirical
investigations. Similarly, Doval et al. [55] propose a structural approach based on
genetic algorithms to group software entities in clusters. A search based approach
is also proposed in [127]. In order to automate the software partitioning, the au-
thors use dependencies between modules to maximise cohesion within each cluster
and to minimise coupling between clusters.

Clustering algorithms based on structural information have also been used in
the analysis of the software architecture evolution [28, 187]. Wu et al. in [187]
present a comparative study of a number of clustering algorithms: (a) hierarchi-
cal agglomerative clustering algorithms based on the Jaccard coefficient [89] and
the single/complete linkage update rules [130]; (b) an algorithm based on pro-
gram comprehension patterns that tries to recover subsystems that are commonly
found in manually-created decompositions of large software systems; and (c) a
customised configuration of an algorithm implemented in Bunch [141]. Similarly,
Bittencourt and Guerrero [28] present an empirical study to evaluate four widely
known clustering algorithms on a number of software systems implemented in
Java and C/C++. The analysed algorithms are: Edge betweenness clustering, k-
means clustering, modularisation quality clustering, and design structure matrix
clustering.

Sartipi and Kontogiannis [161] present an interactive approach composed of
four phases to recovery cohesive subsystems within C systems. In the first phase
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relations between C programs are extracted. In the second phase these relation-
ships are used to build an attributed relational graph, while in the third phase the
graph is manually or automatically partitioned using data mining techniques. A
case study is conducted to assess the validity of the approach.

Lexical-based approaches: Software clustering approaches exploiting lexical infor-
mation are based on the idea that the lexicon provided by developers in the source
code represent a key source of information. In particular, such techniques mine
relevant information from source code identifiers and comments based on the as-
sumption that related artefacts are those that share the same vocabulary.

The approach proposed by Kuhn et al. [108] constitutes one of the first proposals
in this direction defining an automatic technique based on the application of the
Latent Semantic Indexing (LSI) method [51]. The approach is language indepen-
dent and mines the lexical information gathered from source code comments. In
addition, the approach enables software engineers to identify topics in the source
code by means of labelling of the identified clusters. To identify how the clus-
ters are related to each other a correlation matrix is used. The authors perform
a qualitative analysis of the clustering results, while no quantitative analysis is
executed.

Similarly, Risi et al. [156] propose an approach that uses the LSI and the k-
means clustering algorithm to form groups of software entities that implement
similar functionality. A variant based on fold-in and fold-out is introduced as well.
Furthermore this proposal provides an important contribution on the analysis of
computational costs necessary to assess the validity of a clustering process.

Scanniello et al. [165] present an approach to automate the software system
partitioning. This approach first analyses the software entities (e.g., programs
or classes) and uses LSI to get the dissimilarity between the entities, which are
grouped using iteratively the k-means clustering algorithm. The approach is im-
plemented in a prototype of a supporting software system to partition Java and
C/C++ software systems. To assess the validity of the approach a case study on
open source software systems has been conducted.
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Structural and Lexical-based approaches: Maletic and Marcus in [128] propose
an approach based on the combination of lexical and structural information to
support comprehension tasks within the maintenance and reengineering of software
systems. From the lexical point of view, they consider problem and development
domains. On the other hand, the structural dimension refers to the actual syntactic
structure of the program along with the control and data-flow that it represents.
Software entities are compared using LSI, while file organisation is used to get
structural information. To group programs in clusters a simple graph theoretic
algorithm is used. The algorithm takes as input an undirected graph (the graph
obtained computing the cosine similarity of the two vector representations of all
the source code documents) and then constructs a Minimal Spanning Tree (MST).
Clusters are identified pruning the edges of the MST with a weight larger than a
given threshold. To assess the effectiveness of the approach some case studies on
a version of Mosaic are presented and discussed.

Andritsos and Tzerpos in [10] present LIMBO, a hierarchical algorithm for soft-
ware clustering. The clustering algorithm considers both structural and non struc-
tural attributes to reduce the complexity of a software system by decomposing it
into clusters. The authors also apply LIMBO to three large software systems.

Scanniello et al. [163] present a two phase approach for recovering hierarchical
software architectures of object oriented software systems. The first phase uses
structural information to identify software layers [164]. To this end, a customi-
sation of the Kleinberg algorithm [100] is used. The second phase uses lexical
information extracted from the source code to identify similarity among pairs of
classes and then partitions each identified layer into software modules. The main
limitation of this approach is that it is only suitable for software systems exhibiting
a classical tiered architecture.
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1.4 Clone Detection

To date code duplications (also called software clones or simply clones) occur
frequently in large systems: ad-hoc reuse through copy-and-paste is a common
habit among developers that affects the maintainability of software systems [139].
Several authors report that within large software systems, duplicated code usually
accounts from the 7% to the 23% of the total code [18, 19].

The presence of clones in a software system is considered risky in the execu-
tion of maintenance operations [21]. However, clones in software are not usually
documented, and their identification is not a trivial task in case of large systems.
Therefore, automatic approaches are required to support the software maintainer.

As a result, in recent years the identification of code clones has become a very
active research area [21, 159]. In particular, the different approaches proposed in
the literature are more or less automated and require different levels of expertise to
let maintainers effectively use them. These approaches generally take into account
either the syntactic structure (e.g., abstract syntax tree) or lexical information
(e.g., the signature of a function) [104].

However, code duplications represent an issue not only for the maintenance but
also for the evolution of a system. In fact, the different duplications inevitably
merge with existing code during the evolution and it becomes unclear which part
of the code relate to which source of change [92]. To this aim, many research effort
are being devoted to maintain software clones during the evolution [149], tracking
the different changes in the code in order to distinguish copies from the originals
[16, 56, 107]. This particular task is referred in literature as the problem of code
provenance [107].

1.4.1 Problem Statement

Reasons why programmers duplicate code are manifold. The most well known is
a common bad programming practice: copying and pasting [129, 172].

Duplications and redundancies make hard to understand the many code variants
as they increase the size of the code, and the effort necessary to maintain it [139].
In particular, software clones should be known and well documented in order to
apply consistent changes.
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The main issue in the management of clones is that errors in the original version
must be fixed in every clone. Furthermore, clones make difficult also the executions
of other kinds of maintenance operations, e.g., extensions or adaptations. Thus, the
presence of code clones is one of the factors that complicates the maintenance and
evolution of a software system [58]. To make things worse, code clones are usually
not documented and so their location in the source code is not known. This implies
that maintainers have to detect them [77] in order to properly perform maintenance
operations. In case of small-size software systems the detection of clones may be
manually performed but on large software systems it can be accomplished only by
means of automatic or semiautomatic approaches [104].

More recently a numbers of studies pointed out that the presence of clones may
be not so risky for the software maintenance and evolution [16, 96, 173]. Despite
the controversial point on the risks related to the presence of code clones, there is
a large consensus on the need of detecting them [104].

There is no agreement in the research community on the exact notion of re-
dundancy and cloning [139]. Ira Baxter’s definition of clones express this vague-
ness [20]:

Clones are segments of code that are similar according to some defini-
tion of similarity. (Baxter, 1998)

In particular, this definition allows different notions of similarity, which can be
based on the program text or on some notions of semantic aspects. Furthermore,
similarities on program text may be based on lexical or syntactic structures.

On the other hand, semantic similarities relates to observable behaviour: a
fragment of code A is “semantically” similar to another fragment B if B subsumes
the functionality of A, i.e., they have “similar” pre and post conditions [139].

Nevertheless, it is worth considering that the two different notions of similarity
are not necessarily equivalent. In fact, it is not always true that “two fragments
of code are semantically similar if and only if their program text is similar”.

In other words, even if the program text of two fragments of code is similar, their
behaviours are not necessarily equivalent or subsumed. For instance, two pieces of
code may be identical at the textual level including all variable names that occur
within, but the variable names are bound to different declarations in the different
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contexts. Then, the execution of the code changes different behaviour [139].

1 int sum = 0

2 void a_function(Iterator iter){

3 for (Item item = iter.first(); iter.has_next(); item = iter.next()){

4 sum = sum + item.value()

5 }

6 }

7 void b_function(Iterator iter){

8 int sum = 0

9 for (Item item = iter.first(); iter.has_next(); item = iter.next()){

10 sum = sum + item.value()

11 }

12 }

Listing 1.1: Example of code clones (adapted from [139])

The two functions reported in Listing 1.1 represent an example of two textu-
ally equivalent clones in the line range of 3-5 and 9-11, respectively. The two
functions iterate on a collection of numbers, summing the value of each element
to the variable sum. However, while the former (i.e., a_function), sets the global
variable sum, the latter (i.e., b_function) sets a local variable with the same name.
As a consequence, even if their program text is exactly the same, they are not
semantically equivalent at a concrete level.

1.4.2 Clone Terminology and definitions

A first step towards a more formal definition of software clones is provided in [92],
where authors defines software clones as:

program structures of considerable size that exhibit significant simi-
larity. The actual size and similarity (which can be measured, for
example, in terms of replicated lines of code) vary depending on the
context. Clones may represent similar program structures of any kind
and granularity.

In particular, two different types of clones are distinguished:
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1. Simple clones: the same or similar segments of contiguous code, such as class
methods or fragments of method/function implementation.

2. Structural clones: patterns of interrelated components (e.g., collaborating
classes) representing design solutions repeatedly applied by programmers to
solve similar problems and similar program modules or subsystems compris-
ing many components.

These two definitions give to software clones a broader meaning as they take into
account not only duplications at a code level, but also at design or architecture
levels (e.g., common design patterns or duplicated subsystems). However, even
if these definitions are too general, they emphasise the difficulties of defining the
concept of similarity (already expressed in Baxter’s definition [20]) in precise and
descriptive terms. In fact, the notion of similarity necessarily involves the human
judgement and, therefore, is inherently subjective [92].

To this aim, Kapser et al. [96] elicited judgements and discussions from world
experts regarding what characteristics define a code clone. Their experiments
concluded that less than a half of the clone candidates they presented to these
experts had 80% of agreement amongst the judges. However, judges appeared to
differ primarily in their criteria for judgement rather than their interpretation of
the clone candidates [139].

More recently, a more precise definition of code clones has been proposed that
is now largely accepted in the research community. This definition categorises the
different kind of duplications in a set of four different Types [21, 159]. Terms and
definitions reported below refer to the survey on clone detection research provided
by Roy et al. in [159].

Definition 1.1. Code Fragment. A code fragment (CF ) is any sequence of
code lines (with or without comments). It can be of any granularity, e.g., function
definition, begin-end block, or sequence of statements.
A CF is identified by the name of its source file and its corresponding line numbers
in the original code. Thus, a code fragment is denoted as a triple

CF = (CF.filename,CF.beginline, CF.endline)
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Definition 1.2. Code Clone. A code fragment CF2 is a clone of another code
fragment CF1 if they are similar by some given definition of similarity. Two
fragments that are similar to each other form a clone pair (CF1, CF2), and when
many fragments are similar, they form a clone class or clone group.

This definition is invariant to the different possible transformations applied to
the two code fragments, i.e., if CF1 and CF2 form a clone pair, f(CF1) and f(CF2)

still remain clones.

Definition 1.3. Clone Types. There are two main kinds of similarity between
code fragments. Fragments can be similar based on the similarity of their program
text, or they can be similar based on their functionality (i.e., independent of their
text). In particular, there are four different Types of clones based on textual (Type
1 to 3) [21] and functional (Type 4) [71, 101] similarities:

Type 1: Identical code fragments except for variations in whitespace, layout
and comments.

Type 2: Syntactically identical fragments except for variations in identifiers,
literals, whitespace, layout and comments.

Type 3: Copied fragments with further modifications such as changed,
added or removed statements, in addition to variations in identifiers, lit-
erals, whitespace, layout and comments.

Type 4: Two or more code fragments that perform the same computation
but are implemented by different syntactic variants.

The taxonomy of textual-based clones (Type 1 to 3) has been further detailed
and extended by Evans et al. [64] and also reported in [174, 175]:

• Exact Clone (Type 1) is an exact copy of consecutive code fragments
without modifications. That is, the transformation to the code is the identity.

• Parameter-substituted clone (Type 2) is a copy where only parameters
(identifiers or literals) have been substituted. Given a suitable structure
substitution, the transformed copy is a Type 1 clone [64].
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• Structure-substituted clone (Type 3) is a copy where program struc-
tures (complete subtrees in the syntax tree) have been substituted. Given a
suitable structure substitution, the transformed copy is a Type 1 clone [64].
For parameter-substituted clones, we can replace one leaf in the syntax tree
by another leaf. For structured-substituted clones, larger subtrees can be
replaced.

• Modified clone (Type 3) is a copy whose modifications go beyond struc-
ture substitutions by added and/or deleted code.

Similarly, Kim et al. [99] define subtypes for Type 4 clones, i.e., functional clones:

• Control replacement with semantically equivalent control structures (List-
ing 1.2).

• Statement re-ordering without modifying the semantics (Listing 1.4).

• Statement insertion without changing the computation (Listing 1.5).

• Statement modification with preserving memory behaviour (Listing 1.3).
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1 PyObject *PyBool_FromLong(long ok) {

2 PyObject *result;

3 if (ok)

4 result = Py_True;

5 else

6 result = Py_False;

7 Py_INCREF(result);

8 return result;

9 }

1 static PyObject * get_pybool(int istrue) {

2 PyObject *result = istrue? Py_True : Py_False;

3 Py_INCREF(result);

4 return result;

5 }￼￼￼￼￼￼￼￼￼￼￼￼￼￼

Listing 1.2: Type 4 clone: control replacement from Python system. The if-else statement

is substituted by the ternary conditional operator (adapted from [99])

1 void appendPQExpBufferChar(PQExpBuffer str, char ch) {

2 /* Make more room if needed */

3 if (!enlargePQExpBuffer(str, 1))

4 return;

5 /* OK, append the data */

6 str->data[str->len] = ch;

7 str->len++;

8 str->data[str->len] = ’’\0;

9 }

1 void appendBinaryPQExpBuffer(PQExpBuffer str, const char *data, size t datalen) {

2 /* Make more room if needed */

3 if(!enlargePQExpBuffer(str, datalen))

4 return;

5 /* OK, append the data */

6 memcpy(str->data + str->len, data, datalen);

7 str->len += datalen;

8 str->data[str->len] = ’’\0;

9 }

Listing 1.3: Type 4 clone: preserving memory behaviour from PostgreSQL system. (adapted

from [99])
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1 static const char *set_access_name(cmd_parms *cmd, void *dummy, const char *arg) {

2 void *sconf = cmd->server->module config;

3 core_server_config *conf = ap_get_module_config(sconf, &core_module);

4 const char *err = ap_check_cmd_context(cmd, NOT_IN_DIR_LOC_FILE|NOT_IN_LIMIT);

5 if (err != NULL) {

6 return err;

7 }

8 conf->access name = apr_pstrdup(cmd->pool, arg);

9 return NULL;

10 }￼￼￼￼￼￼￼￼￼￼￼￼￼￼￼￼￼￼￼￼￼￼￼￼

1 static const char *set_protocol(cmd_parms *cmd, void *dummy, const char *arg){

2 const char *err = ap_check_cmd_context(cmd, NOT_IN_DIR_LOC_FILE|NOT_IN_LIMIT);

3 core_server_config *conf = ap_get_module_config(cmd->server->module_config,

4 &core_module);

5 char *proto;

6 if (err != NULL) {

7 return err;

8 }

9 proto = apr_pstrdump(cmd->pool, arg);

10 ap_str_tolower(proto);

11 conf->protocol = proto;

12 return NULL;

13 }

Listing 1.4: Type 4 clone: statement reordering from Apache system (adapted from [99])
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1 const char * GetVariable(VariableSpace space, const char *name) {

2 struct _variable *current;

3 if (!space)

4 return NULL;

5 for (current = space->next; current; current = current->next) {

6 if (strcmp(current->name, name) == 0) {

7 return current->value;

8 }

9 }

10 return NULL;

11 }

1 const char * PQparameterStatus(const PGconn *conn, const char *paramName) {

2 const pgParameterStatus *pstatus;

3 if(!conn || !paramName)

4 return NULL;

5 for (pstatus = conn->pstatus; pstatus != NULL; pstatus = pstatus->next) {

6 if (strcmp(pstatus->name, paramName) == 0)

7 return pstatus->value;

8 }

9 return NULL;

10 }

Listing 1.5: Type 4 clone: statement insertion without changing computation from Post-

greSQL system (adapted from [99])

1.4.3 Related Work

The different research contributions for clone detection could be grouped accord-
ing to the particular kind of information exploited in the analysis of source code
fragments. In particular, in Table 1.1 the different proposals are grouped according
to the information they exploit and the types of clones they are able to detect.

Note that our goal here is not to provide an extensive analysis of the clone
detection approaches presented in the literature but to provide an overview of most
relevant techniques together with a general background on the problem, necessary
to introduce the proposal presented in Chapter 5.

An exhaustive survey of clone detection tools and techniques is provided in [159].
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Approach Technique Author(s) and Clone Types
Type Reference 1 2 3 4

Textual

Ducasse
3 3 7 7String et al. [58]

matching Johnson [94] 3 7 7 7

Token

Pattern Baker [18] 3 3 7 7matching
Suffix-tree Kamiya

3 3 7 7matching et al. [95]

Metrics Metric vectors Balazinska
3 3 3 7distance et al. [19]

Dynamic Yang [189] 3 3 7 7Programming
Tree Baxter

3 3 7 7matching et al. [20]
Suffix-tree Koschke

3 3 7 7Syntax AST et al. [105]
Tree Anti- Bulychev

3 3 7 7unification et al. [33]

LSH Jiang
3 3 3 7et al. [93]

Program Komondoor
3 3 3 7Slicing et al. [101]

Dependency Gabel
3 3 3 3Graph PDG et al. [71]

matching Krinke [106] 3 3 3 7

Other

Software Leitão [121] 3 7 3 7metrics
Frequent Wahler

3 3 7 7Item-sets et al. [182]

LSI Marcus and
3 3 7 7Maletic [133]

Code Roy and
3 3 3 7Transformations Cory [157, 158]

Count Yuan
3 3 3 3Matrix et al. [191]

Memory state Kim
3 3 3 3matching et al. [99]

Table 1.1: Overview of clone detection techniques
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Textual-based approaches: Ducasse et al. [58] propose a language-independent
approach to detect code clones, based on the following three steps: line-based string
matching, visual presentation of the cloned code, and detailed textual reports of
the clones.

A different approach has been proposed by Johnson [94] where the author
presents a prototype based on fingerprints to identify exact repetitions (i.e., Type
1 clones) of text in the source code of large software systems.

Both these techniques leverage the efficiency and the scalability properties of
string-matching algorithms that make them perfectly suitable for the analysis of
large software systems. However, their detection capabilities are very limited and
restricted to very similar textual duplications (Clones of Type 1 and 2).

For the sake of completeness, it is worth mentioning that textual approaches are
also used to detect cloned web pages, such as in [50]. Clone detection approaches
for web applications have not been included in Table 1.1 as the types of identified
clones do not follow the classification proposed in the literature.

Token-based approaches: Baker [18] suggests an approach to identify duplica-
tions and near-duplications (i.e., copies with slight modifications) in large software
systems. The proposed approach is able to identify source code copies that are
substantially the same except for global substitutions.

Similarly, Kamiya et al. [95] use a suffix-tree matching algorithm to compute
token-by-token matching among source code fragments. The authors adopt opti-
misation techniques that normalise token sequences. This is due to the fact that
the underlying algorithm may be expensive when used on large software systems.
To assess the validity of their approach, the authors also propose a prototype of
a supporting system and applied it on software systems implemented in C, C++,
Java, and COBOL.

The main drawback of these approaches is that they completely disregard the
syntactical information of the source code, similarly to textual-based techniques.
As a consequence, these solutions may detect a large number of false clones that
do not correspond to any actual syntactical unit.
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Metrics-based approaches: Balazinska et al. in [19] suggest a classification schema
based on software metrics to detect code clones. This approach builds metric
vectors and then compute the distances between these vectors as a clue for similar
code fragments. The approach detects clones of Types 1, 2, and 3. A similar
approach to identify scripting functions within web pages is presented by Calefato
et al. in [34] .

Syntax Tree-based approaches: Syntactic-based approaches exploit the informa-
tion provided by Abstract Syntax Trees (AST) to identify similar code fragments.
These techniques are more robust than the previous ones and are able to deal
with larger degrees of modifications among the cloned code fragments. Never-
theless, they may possibly fail in case modifications concerns the inversion or the
substitution of entire code blocks: the so-called gapped-clones [106].

Yang [189] defined a dynamic programming-based algorithm to detect differences
between two versions of the same source file. Clones of Types 1 and 2 can be
identified.

A similar approach is presented by Baxter et al. [20]. It is based on a tree
matching algorithm that compares the different sub-trees of the AST of a given
software system.

On the other hand, Koschke et al. [105] describe an approach to detect clones
based on suffix trees of serialised ASTs. The main contribution of this work con-
cerns the computational efficiency of the proposed solution. In fact, the approach
is able to identify software clones in linear time and space. This approach has been
extended and improved in [65] to improve clone detection effectiveness for both
Java and C software systems. A case study based on an extension of the Bellon’s
benchmark [21] is also conducted to assess the validity of the approach.

A different approach is presented by Bulychev et al. [33], where authors propose
a clone detection technique based on the anti-unification algorithm, widely used
in natural language processing tasks.

A novel technique for detecting similar trees has been presented by Jiang et
al. [93]. Authors proposed an automated algorithm and corresponding prototype
tool named Deckard. This algorithm defines specialised characteristic vectors of
each code fragment to approximate the structure of ASTs in a Euclidean space.
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Locality Sensitive Hashing (LSH) is then used to cluster similar vectors using the
Euclidean distance metric.

Dependency Graph-based approaches: Dependency graph-based approaches gen-
erally use algorithms to identify isomorphic sub-graphs within a graph built con-
sidering control and data flow dependencies (i.e., the program dependence graphs,
PDG) of the software system to analyse. The main advantage of these techniques
is that they do not depend on the particular textual representation of the code,
allowing to detect also “functional” duplications (i.e., Type 4 clones), in addition
to the textual based ones considered by previous approaches (Types 1-3). How-
ever the identification of isomorphic sub-graphs is a NP-hard problem and only
approximated solutions may be provided.

Komondoor and Horwitz [101] propose an approach based on program slicing
techniques, applied on a program dependence graph.

Moreover, a heuristic to identify isomorphic sub-graphs is proposed by Krinke
in [106].

More recently, Gabel et al. [71] propose a dependency graph-based technique
that maps slices of PDGs to syntax subtrees and applies the Deckard clone detec-
tion algorithm [93].

Other Approaches: In the literature techniques that combine some of the aspect
discussed so far are presented as well. For example, Leitão [121] combines syntactic
and semantic techniques using functions that consider various aspects of software
systems (e.g., similar call sub-graphs, commutative operators, user-defined equiv-
alences). This approach is defined to detect cloned source code of Types 1 and 2
in large software systems implemented in Lisp.

An approach based on an information retrieval technique is presented by Marcus
and Maletic [133]. This approach detects clones of Types 1, and 2. To this
end, similarities among source code (treated as plain text) are computed using
a measure based on Latent Semantic Indexing [130].

Differently, Wahler et al. [182] present an approach based on data mining tech-
niques to detect clones of Types 1 and 2. This approach uses the concept of
frequent item-sets on the XML representation of the the software system to be
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analysed.
On the other hand, Roy and Cordy [157, 158] present an approach based on

source transformations and text line comparison to find clones of Types up to 3.
The validity of the approach is empirically verified some C, Java and C# software
systems.

Yuan et al. [191] propose a language-independent approach named Count Matrix
Clone Detector (CMCD). The key concept behind CMCD is the so-called Count
Matrix algorithm that is able to represent the characteristics of a code segment by
counting the occurrence frequencies of every variable in pre-determined counting
conditions [191]. The approach has been applied on the 16 clones scenarios pro-
posed in and on JDK 1.6 project. Empirical results show that the approach is able
to detect clones up to Type 4.

Kim et al [99] propose a semantic clone detection technique that is able to
compare programs’ abstract memory states, which are computed by a semantic-
based static analyser. The approach has been evaluated in an experimental study
on three large open source projects written in C that assess the ability of the
technique in detecting clones up to Type 4. Another important contribution of
this paper concerns the proposal of a more refined characterisation of the Type 4
clones.
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I don’t fear computers. I fear the lack of them.

Isaac Asimov

2
Machine Learning and Pattern Matching

Techniques

Machine Learning (ML) is defined as “the systematic study of algo-
rithms and systems that improve their knowledge or performance
with experience.” [68]. As a matter of fact, machine learning com-
prises algorithms and techniques that are able to gain insight from

a (usually large) data set, in order to turn data into meaningful information [83].
This data driven methodology [167] represent one of the most important charac-
teristic of ML approaches, which differentiates them from classical Artificial In-
telligence techniques. On the one hand, ML approaches do not require that all
the necessary knowledge (i.e., facts and rules) must be specified in the knowledge
base from the very beginning [131]. On the other hand, ML algorithms are able to
generalise, namely they are able to adapt their behaviour according to the input
data and try to infer a solution. Conversely, classical knowledge base system are
not capable to adapt their behaviour to new data, unless the necessary information
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is incorporated into the knowledge base itself [131].
Therefore, such generalisation capabilities practically define the concept of learning
though experience that is a specific peculiarity of ML techniques. More formally,
learning may be defined as [142]:

“A computer program is said to learn from experience E with respect
to some class of tasks T and performance measure P, if its performance
at tasks in T, as measured by P, improves with experience E”

Moreover, Flach in [68] declares that:

“Machine learning is concerned with using the right features to build
the right models that achieve the right tasks”.

Differently from classical definitions mainly focused on the concept of learning,
the one proposed by Flach emphasises the fundamental elements (called “ingredi-
ents” by the author) constituting ML approaches. In particular, such ingredients
“may come in many different forms, and need to be chosen and combined carefully
to create a successful meal, namely the machine learning application” [68]. Indeed,
the development of a ML application encompasses the following steps [83, 193]:

1. Problem formulation: The first crucial step concerns the formulation of a give
problem in terms of the selected ML approach. Actually there are several
learning methods that are based on different theoretical backgrounds and
adopt different algorithmic strategies. All these aspects characterise the task
of different ML techniques, which must be taken into consideration during
the problem formulation [193]. In fact, as observed in [112], the power of
ML methods does not come from a particular induction, but instead from
the problem formulation.

2. Problem representation: The next step is to select an appropriate represen-
tation for both the data and the knowledge to be learned (i.e., the model).
Different learning methods require different formalisms [193], e.g., some ap-
proaches are based on a vectorial representation of data, while others require
to process structured data such as trees or graphs.
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3. Data collection: Data represent the main “ingredient” for ML algorithms.
In particular, ML approaches strongly depend on the quality and the quan-
tity of the data available to carry out the learning process. Therefore, data
must be properly sanitised to remove spurious values and uniformed to a
unique format. To this aim, several techniques of data manipulation and
data crunching are required to tackle such problems.
Furthermore, data are fundamental for the definition of features, which de-
termine much of the success of ML applications, because a model is only
good as its features [68]. Roughly speaking, a feature can be thought as a
function that map the data from one domain to another, i.e., the feature
space.
This definition will be further detailed in Section 2.4 where Kernel methods
will be presented.

4. Perform the learning process: Once the data have been collected, the learn-
ing process can be accomplished. This step represents the core of ML algo-
rithms [83], where the data are actually analysed. Depending on the specific
strategy, data may be separated in two different sets, namely the training
and the test sets, exploited in an iterative process to train and evaluate the
learning, respectively (Section 2.2).

5. Analyse and Evaluate learned Knowledge: The final step of ML applications
concerns the evaluation of performance of the learning process. Depending
on the type of application, i.e., automatic or semi-automatic, this step could
also be an integral part of the learning process itself. Besides performance
evaluations, this step is also devoted to the resolution of practical problems,
such as the overfitting, or the local optima [167], that may affect learning
methods. Some possible causes could be data inadequacy, noise or irrelevant
attributes in data.

A summary representation of a classical ML application is depicted in Figure 2.1.
In particular, a task (red box) requires an appropriate mapping, i.e., a model
from data described by features to outputs. Obtaining such a mapping is what
constitutes a learning model (blue box). Depending on the particular learning
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strategy, such mapping could possibly leverage of some training data (dashed blue
line).

Figure 2.1: An overview of how the different components of a machine learning applications are or-
ganised (adapted from [68]).

Machine learning lies at the intersection of computer science, engineering, and
statistics [83], and it can be applied to many problems. As a matter of fact, ML
algorithms have proven to be of great practical value in a variety of application
domains [193]: any field that needs to interpret and act on data can benefit from
machine learning techniques [83].

Nevertheless, the application of ML approaches to a software engineering (SE)
problem requires to address certain issues [193]: on the one hand it is necessary
to (re-)formulate the SE tasks in terms of a learning problem, in order to allow
the application of ML algorithms. On the other hand, it is important to select
a technique which is appropriate to solve the problem under consideration [131].
Moreover, it is required to adapt and modify selected ML techniques in order to
make them suitable to analyse software data. An extensive survey of SE approaches
that leverage ML techniques is provided in [193] and in [192].

2.1 Definitions and Notations

This section recalls basic definitions and notation that will be used in the following
chapters. In particular, main linear algebra notions, such as dot product and norm,
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are recalled in Section 2.1.1, while basic definitions for trees and graphs structures
are reported in Section 2.1.2.

2.1.1 Dot Products and Norms

Definition 2.1. (Field): Given a set F and two operations ∗ and +, the (alge-
braic) structure F, ∗,+ is a field, iff:

1. (F,+) is an Abelian group with identity element equals to 0, namely:
∀ f ∈ F, f + 0 = 0+ f = f ;

2. (F \ {0}, ∗) is an abelian group with identify element equals to 1, namely:
∀f ′ ∈ F, f

′ ∗ 1 = 1 ∗ f ′
= f

′;

3. (Distributivity of ∗ operator over + operator):
∀ a, b, c ∈ F, a ∗ (b+ c) = (a ∗ b) + (a ∗ c).

Remark 2.1. Real Numbers:
The set of all real numbers R is a Field, whose operations correspond to the standard
numerical addition and multiplication.

Definition 2.2. (Vector Space): A vector space over a field F is a set V together
with two binary operations, i.e., (V,+, ∗), s.a.:

(Notation): Elements of V are called vectors, and elements of F are called
scalars.

(Vector Addition): The first operation, vector addition, takes any two vectors
v and w and outputs a third vector v + w.

(Scalar Multiplication): The second operation, scalar multiplication, takes
any scalar a and any vector v and outputs a new vector a ∗ v

Therefore, the structure [V,+, ∗] corresponds to a vector space over the field F .

The operations of additions and multiplication in a vector space satisfy the
following axioms:
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▶ Associativity of scalar multiplication:

∀a, b ∈ F, v ∈ V, a ∗ (b ∗ v) = (a ∗ b) ∗ v (2.1)

▶ Distributivity of scalar multiplication w.r.t. vector addition:

∀a ∈ F, u, v ∈ V, a ∗ (u+ v) = a ∗ u+ a ∗ v (2.2)

▶ Distributivity of scalar multiplication w.r.t. field addition:

∀a, b ∈ F, v ∈ V, (a+ b) ∗ v = a ∗ v + b ∗ v (2.3)

▶ Identity element of scalar multiplication:

∀v ∈ V, 1 ∗ v = v,where 1 denotes the multiplicative identity in F (2.4)

▶ Identity element of addition (Null vector):

∃ 0 ∈ V, s.t.: v + 0 = v, ∀v ∈ V (2.5)

From now on, without loss of generality, a generic vector space [V,+, ∗] over a
field F will be synthetically referred by V . In particular, we will write RN instead
of [RN ,+, ∗] over the field R to indicate the vector space of real numbers, whenever
this does not lead to confusion.
Moreover, vector elements will be typed in boldface, i.e., v, and 0 will indicate
the null vector.

Definition 2.3. (Linear Combination): Let F be a Field and V a vector space
model over F . If v1, . . . ,vn are vectors and a1, . . . , an are scalars, the linear
combination of those vectors with those scalars (as coefficients) is defined as:

a1 ∗ v1 + a2 ∗ v2 + . . . an ∗ vn =
n∑

i=1

ai ∗ vi

where ∗ correspond to the scalar multiplication operation.
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Definition 2.4. (Dot Product): Let V be a vector space. A dot product (or
scalar product) is an application · : V ×V → R satisfying the following conditions:

a) v ·w = w · v

⇐⇒

v,w ∈ V

b) (v +w) · z = (v · z) + (w · z) v,w, z ∈ V

c) (av) ·w = a(v ·w) v,w ∈ V, a ∈ R
d) v · v ≥ 0 v ∈ V

e) v · v = 0 v = 0

f) v · (w + z) = (v ·w) + (v · z) v,w, z ∈ V

Some remarks follow from the Definition 2.4:

Remark 2.2. Notation The inner products of two vectors v, and w may be also
indicated using the symbols ⟨v,w⟩. Thus, from now on, the two notations will be
used interchangeably selecting the one that aid the readability and the comprehen-
sion of the different formulations.

Remark 2.3. Algebraic definition of the inner product:
The inner products of two vectors v = (v1, v2, . . . , vn), and w = (w1, w2, . . . , wn)

is defined as:

⟨v,w⟩ = v ·w =
n∑

i=1

vi ∗ wi = v1 ∗ w1 + . . .+ vn ∗ wn (2.6)

Remark 2.4. Axioms (a) and (b) imply (f).
Moreover, using the axiom (d), it is possible to associate to the inner product, a
quadratic form, called norm, ∥·∥, such that: ∥v∥2 = ⟨v,v⟩.

More formally:

Definition 2.5. (Norm): The norm ∥·∥ : V → R;v 7→ ∥v∥ is a function with
the following properties:

∥v∥ ≥ 0 ∀ v ∈ V

∥v∥ = 0⇐⇒ v = 0 ∀ v ∈ V

∥av∥ = ∥a∥∥v∥ ∀ v ∈ V, a ∈ R
∥v +w∥ ≤ ∥v∥+ ∥w∥ ∀ v,w ∈ V (Triangular Inequality)

51



Remark 2.5. Following from Remarks 2.3 and 2.4, an equivalent algebraic for-
mulation of the norm could be provided:

∥v∥ =
√
⟨v,v⟩ =

√√√√ N∑
i=1

v2i (2.7)

Remark 2.6. Cauchy-Schwarz’s Inequality
Norms and Inner Products are connected by the Cauchy-Schwarz’s Inequality:

|⟨v,w⟩| ≤ ∥v∥∥w∥

The definitions of dot product (Definition 2.4), and norm (Definition 2.5) allow
to formally define the notion of (internal) angle between two vectors v and w ∈ V .

Definition 2.6. (Angle between two vectors): Let v and y be vectors in a
vector space V . The angle between v and w, indicated with θ, corresponds to:

θ = arccos

(
⟨v,w⟩
∥v∥∥w∥

)
(2.8)

Figure 2.1: Scalar projection.

Remark 2.7. Geometric definition of the inner product:
Equation 2.8 leads to the following formulation:

⟨v,w⟩ = ∥v∥∥w∥ cos θ (2.9)
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Therefore, ∥v∥ cos θ corresponds to the scalar projection of vector v onto the
vector w (Figure 2.1)

Definition 2.7. (Distance): Let V be a vector space. A function
ρ : V × V → R is called a distance on V if:
a) ρ(v,w) ≥ 0 ∀ v,w ∈ V

b) ρ(v,w) = ρ(w,v) ∀ v,w ∈ V

c) ρ(v,v) = 0 ∀ v ∈ V

The (V, ρ) is called a distance space. In addition, If ρ also satisfies the
triangle inequality
d) ρ(v,w) ≤ ρ(v, z) + ρ(w, z) ∀ v,w, z ∈ V

then ρ is called a semimetric on V .
Besides, if
e) ρ(v,w) = 0 ⇒ x = y

also holds, then ρ is called a metric, and (V, ρ) is a metric space.

Remark 2.8. Cosine Similarity From Definition 2.6 and Equation 2.9, an impor-
tant conclusion can be derived.

(Equation 2.9) cos θ =
⟨v,w⟩
∥v∥∥w∥

(2.10)

(Equation 2.7 and 2.6) =

∑N
i=1 viwi√∑N

i=1 v
2
i

√∑N
i=1w

2
i

(2.11)

=

∑N
i=1 vi

∑N
i=1 wi√∑N

i=1 v
2
i

√∑N
i=1w

2
i

(2.12)

=

∑N
i=1 vi√∑N
i=1 v

2
i

∗
∑N

i=1wi√∑N
i=1w

2
i

(2.13)

=
v

∥v∥
∗ w

∥w∥
(2.14)

= ⟨ν(v), ν(w)⟩ (2.15)

where the element ν(v) = v
∥v∥ represent the vector v normalised by its corre-

sponding unit vector, called versor.
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In the literature, this formulation is usually called the cosine similarity [130] as
it represents a similarity computation (the dot product) normalised by the norms.

In conclusion,

Definition 2.8. (Euclidean Space): A set V is an Euclidean Space iff. V is a
metric space that is linear and finite-dimensional.

Remark 2.9. Euclidean Distance: It is easy to show that

ρ(v,w) = ∥v −w∥ =

√√√√ N∑
i=1

(vi − wi)2

is a metric.

Remark 2.10. Inner Product: In the context of Euclidean Space, the dot product
is sometimes indicated also by the term inner product. Thus the two terms will be
used as synonyms in case of Euclidean spaces.

2.1.2 Graphs and Trees

Definition 2.9. (Directed Graph): A directed graph is a pair of sets G =

(VG, EG), where VG = {v1, . . . , vn} is an ordered set of nodes and EG = {eij =

(vi, vj), . . . , ekl = (vk, vl)} is an ordered set of pairs of nodes, called the edges.

From now on, a generic graph will be indicated by G = (V,E) (without the
subscript G), to aid the readability of the notation. Moreover, the short form G

may be used instead of G = (V,E), whenever this does not lead to confusions.

Proposition 2.1. Undirected graph:
An undirected graph is a graph for which the following property holds:

eij ∈ E ↔ eji ∈ E.

In other words, the edge set E consists of unordered pairs of vertices, rather than
ordered pairs [47].
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Many definitions for directed or undirected graphs are the same, although cer-
tain terms have slightly different meaning in the two contexts [47]. Thus, unless
differently specified, the following definitions hold for both directed and undirected
graphs.

Definition 2.10. Labelled Graph: Let G = (V,E) be a graph, and Σ an alphabet
of characters. If there exist functions

LV : V → Σ∗; vi 7→ LV (vi)

and
LE : E → Σ∗; eij 7→ LE(ei,j)

then, G is a labelled graph.

Definition 2.11. (Directed Graph Product)
Let G = (V,E,L) and G = (V

′
, E

′
,L′

) be two labeled graphs, with labelling
functions equals to L and L′,respectively. Thus, the directed graph product
G× = G×G

′ is defined as:

V× = {(vi, v
′

i) : vi ∈ V ∧ v
′

i ∈ V
′ ∧ L(vi) = L

′
(v

′

i)} (2.16)
E× = {((vi, v

′

i), (vj, v
′

j)) : (vi, vj) ∈ E ∧ (v
′

i, v
′

j) ∈ E
′ ∧ L((vi, vj)) = L

′
((v

′

i, v
′

j))}
(2.17)

Definition 2.12. If (u, v) is an edge in a directed graph G, then we may say that
the edge (u, v) is incident from node u, and it is incident to the node v [47].
Conversely, if G is undirected, the edge (u, v) is simply said incident, w.r.t. the
considered node.

Definition 2.13. (Neighbourhood): Let G = (V,E) be a (directed) graph, and
v ∈ V a node. There exists two functions δ+, δ− that defines the neighbourhood
of a given node.
In particular:

δ+ : V → E;v 7→ δ+(v) = {(v, u) ∈ E} (2.18)
δ− : V → E;v 7→ δ−(v) = {(u, v) ∈ E} (2.19)
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Therefore, δ+(v) represents the set of all edges incident from the node v, while
δ−(v) is the set of all edges incident to the node v.

Remark 2.11. In case v is a node of an undirected graph G, δ+(v) = δ−(v) = δ(v)

Definition 2.14. (Degree of a Node) [47]: The degree of a node v in an
undirected graph is the total number of edges incident on it, i.e., |δ(v)|.
Conversely, in case of directed graphs, there exist the notions of in-degree
(|δ−(v)|) and out-degree (|δ+(v)|), related to the number of edges that are incident
to and on the node v, respectively.

Remark 2.12. A node whose degree (or in/out-degree) is equal to zero is isolated.

Remark 2.13. Maximal (In/Out) Degree of a graph: The maximal in-degree
and out-degree of a directed graph G = (V,E) are defined as:

∆−(G) = max{|δ−(v)|, v ∈′ V } (2.20)
∆+(G) = max{|δ+(v)|, v ∈′ V } (2.21)

Definition 2.15. Path: Given a graph G, a path p in the graph G is defined as
a sequence of nodes for which there exists an edge connecting to the consecutive
node. Thus: p(vi, vj) = ⟨vi, . . . , vj⟩ s.t. ek,k+1 = (vk, vk + 1) ∈ E, i ≤ k ≤ j

The length of the path is defined in terms of nodes that compose the path, and it
is usually indicated with lp.
If all the nodes composing a path are distinct, the path is said to be simple.

Definition 2.16. (Cycle) [47]:

(Directed graph): A path p = ⟨vo, . . . , vl⟩ forms a cycle if v0 = vl and the
path contains at least one edge.

(Undirected graph): A path p = ⟨vo, . . . , vl⟩ forms a cycle if lp ≥ 3 and
v0 = vl.

In both cases, the cycle is simple if, in addition, the nodes v1, . . . , vl in the path
are distinct.
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Remark 2.14. A cycle of length lp = 1 is called a self-loop

Definition 2.17. (Connected Graph) [47]:

(Directed graph): A directed graph G is strongly connected if every two
nodes are reachable from each other.

(Undirected graph): A undirected graph G is connected if every node is
reachable from all other nodes.

Figure 2.2: Example of a labelled directed graph Figure 2.3: Example of a labelled undirected graph

Figures 2.2 and 2.3 represents two variants of the same labeled graph, namely
directed and undirected respectively. In particular, in both graphs the node labeled
with e is isolated, i.e., its (in/out-)degree is zero, and a self-loop is present on the
node a.

Definition 2.18. Isomorphic Graphs [47]:
Two graphs G = (V,E), and G

′
= (V

′
, E

′
) are called isomorphic if there exists a

bijection f : v → V
′ such that (u, v) ∈ E iff (f(u), f(v)) ∈ E

′.

In other words, two graphs G and G
′ are isomorphic, if and only if it could be

possible to define a biunique correspondence between nodes in the two graphs such
that nodes in G could be mapped to nodes in G

′ .
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Definition 2.19. (Rooted Tree):
Let G = (V,E) be a graph. G is a rooted tree iff:

a) G is an undirected acyclic graph;

b) ∃! r ∈ V : r has no incoming edges. *

The node r is called the root of the Tree.

Proposition 2.2. Let G = (V,E) be an undirected graph. The following state-
ments are equivalent [47]:

1. G is a Tree.

2. Any two nodes in G are connected by a unique simple path.

3. G is connected, but if any edge is removed from E, the resulting graph is
disconnected.

4. G is connected, and |E| = |V | − 1.

5. G is acyclic, i.e., it does not contain cycles, and |E| = |V | − 1.

6. G is acyclic, but if any edge is added to E, the resulting graph contains a
cycle.

Proposition 2.3. Tree Properties and Terminology:
Let n be a node in a rooted Tree T with root r [47]:

• Any node m on the unique simple path from r to n is called an ancestor of
n.
Conversely, if m is an ancestor of n, then n is a descendant of m.

• If the last edge on the unique simple path from r to n is (m,n), then m is
the parent of n, and similarly n is a child of m.
In particular Ch(m) indicates the set of all the children nodes of the given
node m.

*The notation ∃! stands for “There exists a unique”
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• The degree of a node n corresponds to the number of its children, i.e.,
|Ch(n)|

• The unique node with no parent in T is the root r.

• Every node li ∈ T with no children is a leaf or external node.
A non-leaf node is called an internal node.

• The length of the unique simple path from the root node r and the node n is
the depth of n in T .

• The height of a node n in T corresponds to the number of edges on the
longest simple path from the node itself down to a leaf.

This Section concludes with a formal definition of substructures, namely sub-
graphs and subtree, that will be frequently recalled in the description of Kernel
methods for structured data (Section 2.4).

Definition 2.20. (Subgraph): Let G = (V,E) be a graph. The graph G
′
=

(V
′
, E

′
) is a subgraph of G if V ′ ⊆ V and E

′ ⊆ E.

In other words, given a set V
′ ⊆ V , the subgraph of G induced by V

′ is the
graph G

′
= (V

′
, E

′
), where E

′
= {(u, v) ∈ E : u, v ∈ V

′} [47].
For example, considering the Figure 2.3, if we consider the set of nodes V

′
=

V \ {e}, the inducted subgraph is G′
= (V

′
, E

′
), where E

′
= E as the excluded

node is isolated. It is worth noting that, in this case, the considered subgraph G
′

is connected.
Similarly, a Subtree T

′ of a tree T , could be defined as:

Definition 2.21. (Subtree):
Let T = (V,E) be a tree. T

′
= (V

′
, E

′
) is a subtree of the tree T iff V

′ ⊆ V and
E

′ ⊆ E, where E
′
= {(u, v) ∈ E : u, v ∈ V

′}

Moreover, for tree structures, the following definition may be applied:

Definition 2.22. (Subset Tree):
Let T = (V,E) be a tree. T

′
= (V

′
, E

′
) is a subset tree of the tree T iff:
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1. T
′ is a subtree of T .

2. ∀ n ∈ V
′: only one of the two following conditions may hold:

(a) Ch(n) ∩ V
′
= Ch(n);

(b) Ch(n) ∩ V
′
= ∅

In other words, a Subset tree is a subtree with an additional constraint that
imposes to every node in the subtree that either all or none of its children must
belong to the subtree.

Figure 2.4: Example of a Tree (a), and two corresponding possible subtrees (b) and (c). In particular,
(b) is a Subtree, while (c) is a Subset tree.

2.2 Learning from examples

Although ML systems may be classified according to different view points [38], a
common choice is to classify ML approaches according to the underlying learning
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strategy [35]. In particular, in every learning situation, the learner transforms in-
formation provided by the environment into some new form in which it is stored for
future use [9, 142]. The nature of this transformation determines the type of learn-
ing strategy used. Several basic strategies have been distinguished: rote learning,
learning by instruction, learning by deduction, learning by analogy, and learning
by induction [9]. The latter is further distinguished in learning by observation and
learning from examples [9, 38].

For the sake of brevity, only the latter strategy will be highlighted in the re-
mainder of this Section, as it is the one closely related to the topics presented in
this thesis. For a complete description of the different learning strategies and their
corresponding features, the interested reader may refer to [9, 35, 38, 142].

Learning from examples is one of the most popular and widely employed strategy
in ML approaches that is often simply called learning [35]. Similarly, the term
“example” is usually treated as a synonym for “data”. Thus, from now on, the two
terms will be used interchangeably.

The learning problem that this strategy involves can be described as “finding
a general rule that explains the data give only a sample of limited size” [35]. In
particular, this strategy comprises a set of different learning techniques that are
distinguished in three big families: Supervised Learning, Reinforcement Learning,
and Unsupervised Learning [134].

2.2.1 Supervised Learning

In supervised learning, data are represented as tuples in the form of ⟨input, output⟩
patterns. This problem is called supervised learning because the objects under
considerations are already associated with the target values [35]. In more details,
in the problem of supervised learning, a so-called training set of examples with
the correct responses (targets) are provided and, based on such training set, the
learning algorithm generalises to respond correctly to all possible inputs [134].

More formally, the training set is usually written as a set of pairs (xi, ti), where
the inputs are xi, the targets are ti

*, and the i index suggests that there are lots
of pairs, ranging from 1 to an upper limit N ∈ N [134].

*The boldface denotes a vector of values.
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Typical examples of supervised learning approaches are the Classification and
the Regression, which are distinguished according to the type of the outputs.

Classification : In the classification learning problem, the output space is com-
posed by a finite number of discrete classes, and the corresponding learning algo-
rithm is called the classifier. In particular, the learning problem is to assign to
each input data its corresponding class or set of classes.

Regression : If the output space of the learning problem corresponds to values of
continuous variables, then the learning task is known as the problem of regression.
Typical examples of regression include predicting the value of shares in the stock
exchange market, or estimating the value of a physical measure in a section of a
thermoelectric plant [35].

2.2.2 Reinforcement Learning

Reinforcement learning correspond to a strategy that lies between supervised and
unsupervised learning [134]. In fact, the algorithm get told when the output is
wrong, but does not know how to correct it [134]. Thus, the algorithm tries to
explore different possibilities until the final correct output has been discovered.

In other words, the problem of reinforcement learning is to learn what to do, i.e.,
how to map situations to actions in order to maximise a given reward [35]. Such
maximisation is what guide the learning algorithm through the different possible
solutions. A comprehensive survey of reinforcement learning can be found in [171]

2.3 Unsupervised Learning

If the input data to the learning algorithm comprise a set of samples without
associated target values, the problem is classified as unsupervised learning. In
unsupervised learning, data do not contain any indication to the correct target,
instead the algorithm tries to identify similarities between the inputs so that inputs
that are in some way related are categorised together [134].

Duda et al. in [59] indicate some of the advantages of unsupervised learning
techniques with respect to supervised ones:
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• There is no cost of collecting and labelling samples.

• Unsupervised techniques may be used to identify characteristics of the sam-
ples which are useful for differentiating between them.

• Unsupervised techniques may be used for exploring the data analysing its
structure.

Clustering algorithms represent a rich subclass of unsupervised learning tech-
niques [35].

Nevertheless, even if the difference between supervised and unsupervised tech-
niques apparently concerns the sole input examples (labelled and unlabelled re-
spectively), their corresponding learning strategies lead to conceptually different
problems. For example, let us consider classification and clustering algorithms as
for representatives of the two learning strategies. On the one hand, classification
algorithms perform a two-step learning, namely the training and the test, aiming
at identifying similarities between inputs that belong to the same class. On the
other hand, clustering algorithms aim at identify similarities by directly loooking
at the data in order to discover patterns and relationships among objects [167]. In
particular, the main goal of clustering algorithm is to create groups of input data
that are coherent internally, but clearly different from each other [130].

In the literature several clustering algorithms have been proposed [29], that have
been classified according to different view points. Clustering techniques are gen-
erally classified as partitional clustering (Section 2.3.2) and hierarchical clustering
(Section 2.3.3), based on the properties of the generated clusters [188]. Partitional
clustering directly divides data points into some pre-specified number of clusters
without any structure. As a consequence, partitional clustering algorithms are
sometimes referred as flat clustering [130].
On the other hand, hierarchical clustering groups data with a sequence of nested
partitions, either from singleton clusters to a clusters including all individuals (the
so-called bottom-up strategy [130]), or vice versa (top-down strategy [130]) [188].

Another typical criterion for the classification of clustering algorithms considers
the nature of the learning problem. Clustering strategies that allow a single object
to belong to more than one clusters, give rise to the so-called soft-clustering prob-
lem [130]. Conversely, the hard clustering problem constrains objects to belong
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to exactly one cluster. The interested reader could find many other classification
criteria for clustering approaches in [72, 90, 91, 188].

2.3.1 Clustering Terminology

Roughly speaking, by data clustering, we mean that for a given set of data points
and a similarity measure, such data are regrouped in a way that points in the same
group (i.e., cluster) are similar and points in different groups are dissimilar [72].
Thus, the clustering analysis relies on such three main concepts. However, in
the literature of data clustering, different terms may be used to express the same
thing [72]. To this aim, in the remainder of this section, a brief description of such
concepts will be provided, in order to clarify the terminology used in the following
sections.

The terms data point, object [72], item [188], and pattern [91] are used to denote
a single element in the data set. Moreover, for data points in a high-dimensional
space, terms such as attributes [91] or features [68, 72, 134] are used to indicate the
different scalar components characterising the data points [90]. More formally:

Definition 2.23. (Data) [72]:
Let X be a finite set, representing the set of input data points, or simply data,
s.t. X = {x1, . . . ,xn}, where xi = (xi1, xi2, . . . , xif )

T is a vector denoting the ith
object xi ∈ X, described by a set of f different features.

Distances and similarities play an important role in clustering analysis [72], as
they guide the learning strategy to generate groups of data. As a matter of fact,
every clustering algorithm is based on the index of similarity (or dissimilarity)
between pairs of data points [91].
The two most employed measures are the Euclidean Distance (Definition 2.7) and
the so-called cosine similarity [130]. However, in the literature several distance
and similarity functions have been proposed, which are employed according to the
specific nature of the analysed data [72].

In the literature, the terms group, and cluster are typically used interchangeably
and in an essential intuitive manner [72]. Nevertheless, the common sense of the
term cluster combines various plausible criteria and require that all objects in a
cluster satisfy the aforementioned properties imposed by clustering analysis [72].
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For example, objects in the same cluster must share the same or closely related
properties, and they must be clearly distinguishable from the rest of the objects
in the data set [72, 90].

2.3.2 Partitional Clustering

The problem of partitional clustering can be formally stated as follows:

Definition 2.24. (Partitional Clustering) [91]: Given N data points xi ∈ Xd,
where Xd is a d-dimensional metric space (see Definition 2.7).
Partitional clustering algorithms intend to determine a partition of the input data
into a set of k clusters, {C1, . . . , Ck}, which optimises a given criterion.

To date, one of the most commonly adopted strategy relies on the minimisation
of the square-error [91].

In more details, let X be a data set with N data points, and let C1, . . . , Ck

be the k disjoint clusters of X (i.e., hard clustering). Then, the error function is
defined as [188]:

E =
k∑

i=1

∑
xj∈Ci

ρ(xj, µ(Ci)) (2.22)

where µ(Ci) represents the centroid of cluster Ci. ρ(x, µ(Ci)) denotes the distance
between the input data x and µ(Ci) (see Definition 2.7).

As a matter of fact, such optimisation criterion properly characterises a family
of partitional clustering algorithms usually called centroid-based algorithms [91].

The basic idea of these family of algorithms is to start with an initial partition
and assign data to clusters with respect to their corresponding centroids, so as to
reduce the square-error [91]. In particular, the general algorithmic framework of
these techniques is reported below [91]:

Step 1. Select an initial partition with k clusters. Repeat steps 2 through
5 until the cluster membership stabilises.

Step 2. Generate a new partition by assigning each data point to its closest
cluster centre.

Step 3. Compute new cluster centres as the centroids of the clusters.
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Step 4. Repeat steps 2 and 3 until an optimum value of the criterion function
is found.

Step 5. Adjust the number of clusters by merging and/ splitting existing
clusters, or by removing the outliers.

Nevertheless, different implementations of some crucial decisions such as the
choice of the initial partition, the update strategy and the halting criterion lead to
different clustering strategies [90].

The most famous centroid-based partitional clustering is certainly the k-means
algorithm, that tries to minimise the total within-cluster variance. In other words,
recalling the Equation 2.22, the optimisation criterion is defined as:

Ekmeans =
k∑

i=1

∑
xj∈Ci

(xj − µj)
2 (2.23)

The algorithmic description of the k-means clustering is reported in Algorithm 1.
The algorithm starts by initialising the centroids (Line 2) by picking a set of k

different random points in the input space (Algorithms 2). Then the algorithm
continues by assigning each item in the data set to the closest centroid, according
to the used distance measure (Line 9). Afterwards, the new clusters configuration
is computed, and corresponding centres are updated accordingly (see Algorithm 3).
The iteration ends when clusters’ centres stop moving or a maximum number of
iterations have been performed (Line 16).

The asymptotic computational complexity of the k-means algorithm is O(NkT ),
where N is the total number of data points, k the number of clusters and T the
number of iterations.

An example clustering result of the k-means algorithm is reported in Figure 2.1
One possible variant of the k-means algorithm is the so-called k-medoids [97].

Differently from classical k-means, the k-medoids applies different initialisation
and update strategies: instead of selecting random points in the input space as
centroids, this algorithm select random points in the data set, called medoids, that
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Algorithm 1 The k-Means Algorithm
Input: k : The total number of partitions to generate.
Input: X : The input data set, namely X = {x1, . . . ,xn}
Input: T : Total number of Iterations allowed.
Output: C : The set of the generated k clusters, namely C = {C1, . . . , Ck}
1: function k-Means(k, X)
2: µ← InitialiseCentroids(k) ▷ see Algorithm 2
3: C← {∅1, . . . , ∅k} ▷ Initialisation
4: iterCount← 0
5: repeat ▷ Learning
6: µ

′ ← µ
7: for each: xi ∈ X do
8: for each: µj ∈ µ

′ do
9: dij ← ρ(xi, µj) ▷ Calculate the distance ρ to each cluster centre

10: end for
11: l← argmin1≤j≤k dij
12: Cl ← Cl ∪ {xi} ▷ Assign the data to the closest cluster centre
13: end for
14: µ← UpdateCentroids(C) ▷ see Algorithm 3
15: iterCount← iterCount+ 1
16: until µ′

= µ ∨ iterCount = T
17: return C

18: end function

Algorithm 2 k-Means Initialisation Strategy
Input: k : The total number of partitions.
Output: µ : The set of k different centroids
1: function InitialiseCentroids(k)
2: µ← ∅
3: for i← 1 to k do
4: µi ← choose a random position in the input space
5: µ← µ ∪ {µi}
6: end for
7: return µ
8: end function

are considered as representatives for each generated clusters. Therefore, the whole
partitioning strategy is performed with respect to the selected medoids, that are
changed in the update step, selecting for each clusters the new elements that lead
to the configuration with the lowest cost.

The main advantage of the k-medoid algorithm over the k-means is that it is
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Algorithm 3 k-Means Update Strategy
Input: C : Partitions generated so far during clustering.
Output: µ : The set of k different centroids
1: function UpdateCentroids(C)
2: µ← ∅
3: for i← 1 to k do
4: Ni ← |Ci|
5: µi ← 1

Ni

∑Ni
j=1 xj

6: µ← mu ∪ {µi}
7: end for
8: return µ
9: end function

Figure 2.1: An example of k-means clustering of 2D points organised in three clusters. Cluster cen-
troids are marked as large green rings, while elements in the different clusters are dots, triangles, and
stars respectively.

more robust to noise in the data and to outliers [97].
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2.3.3 Hierarchical Clustering

Differently from partitional “flat” clustering, hierarchical clustering algorithms im-
pose a structure on data. Indeed, instead of generate different disjoint partitions of
input data, these algorithms organise data into a sequence of nested partitions [90].
More formally:

Definition 2.25. (Nested Partition):
Let X = {x1, . . . ,xN} be the set of N input data, and C = {C1, . . . , CM} be the
clustering partition of X. A partition B is said to be nested in C iff. ∀ Bi ∈
B,Bi,∃Cj ∈ C : Bi ⊆ Cj

In other words, the partition B is nested in another partition C if and only if
every component of the former is a subset of a component of the latter.

Therefore, a hierarchical clustering is a sequence of partitions in which each
partition is nested into the next partition in the sequence [91]. In particular, the so-
called agglomerative hierarchical clustering (HAC) [72, 130] algorithms start with
disjoint singleton clusters, one for each element of the data set X, and continue
by repeatedly nesting the different partitions until a single cluster containing all
the N elements remains. On the other hand, the so-called divisive hierarchical
clustering algorithms perform the same task in reverse order [91].

In the following, the description will be limited only to HAC algorithms as
they are closely related to the research contributions presented in the following
Chapters.

Hierarchical clustering algorithms are usually represented by means of a tree
structure, called dendrogram [72, 188]:

Definition 2.26. (Dendrogram) [72]:
A dendrogram T is a tree in which each internal node is associated with a height
satisfying the following condition:

height(A) ≤ height(B)↔ A ⊆ B

for all possible subset of data points A and B if A ∩B = ∅
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Figure 2.2: Two examples of dendrograms representing the clustering results of the same set of data
applying two different linkage strategy, namely the complete linkage (left) and the group average link-
age (right).

Two examples of dendrograms are represented in Figure 2.2.
The algorithmic description of the HAC method is reported in Algorithm 4.

The algorithm takes in input the data set X and the so-called proximity ma-
trix [72, 188], which is a triangular matrix containing the distances between each
pair of distinct points in X. As already mentioned, the clustering procedure starts
with a set of singleton clusters (Line 2), that will be iteratively updated: at each
step, the algorithm looks for the two closest clusters to be joined. Afterwards,
the two matched clusters are merged and the similarities between all other clus-
ters are updated accordingly. Indeed, the similarity update strategy is actually
applied by invoking the Linkage function (Line 20), which represents one of the
most important aspects of HAC algorithms. In more details, the so-called linkage
method [130] defines the strategy to apply in updating the similarities between the
new cluster and remaining ones: different linkage strategies lead to different HAC
algorithms.

In the literature, several linkage methods have been proposed [148]. The most
important and widely used ones are described below, according to the parametric
formulation provided by Lance and Williams [110].

Proposition 2.4. Linkage Rule Parametric Formulation Let C be the set of clus-
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ters, let i, j be the indexes of the two clusters already joined, and let k be the index
of another cluster Ck. Thus:

sim(i+ j, k) = a(i)sim(i, k) + a(j)sim(j, k) + bsim(i, j) + c|sim(i, k)− sim(j, k)|
(2.24)

where the values of parameters a, b, and c vary depending on the specific linkage
method to apply.

Table 2.1 summarises the different values of such parameters, according to the

Algorithm 4 HAC algorithm
Input: X : The input data set, namely X = {x1, . . . ,xN}
Input: M : The proximity Matrix, namely a triangular matrix containing the distances

among all the data in X

Output: P : The list of nested partitions.
1: function HAC(k)
2: P← {{xi}, . . . , {xN}} ▷ Initialise partitions with singleton clusters.
3: while |P| > 1 do ▷ Look for the closest clusters
4: lowestPair← (1, 2)
5: closest← M(1, 2)
6: for i← 1 to N do
7: for j ← i+ 1 to N do
8: d← M(i, j)
9: if d < closest then

10: lowestPair← (i, j)
11: closest← d

12: end if
13: end for
14: end for ▷ Join Clusters and Update distances
15: left, right← lowestPair

16: leftCluster← Pleft
17: P← P \ Pleft
18: rightCluster← Pright
19: P← P \ Pright
20: newCluster← Linkage( Pleft, Pright, M)
21: P← P ∪ newCluster
22: end while
23: return P

24: end function
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Linkage Strategy Parameter Values

Single linkage

a(i) = a(i) = 0.5
b = 0
c = −0.5
(shortly: max{sim(i, k), sim(j, k)})

Complete linkage

a(j) = a(i) = 0.5
b = 0
c = 0.5
(shortly: min{sim(i, k), sim(j, k)})

Group average linkage

a(i) = |i|/(|i|+ |j|)
a(j) = |j|/(|i|+ |j|)
b = 0
c = 0

Table 2.1: Linkage update strategies, according to the parametric formulation proposed by Lance and
Williams [110]

particular linkage strategy:
The computational complexity of the HAC algorithm (Algorithm 4) is Θ(N3)

because the function exhaustively scan the N×N M for the closest clusters in each
of the N − 1 iterations.

Finally, it is worth mentioning that the two dendrograms shown in Figure 2.2
correspond to the clustering results obtained applying two different linkage meth-
ods, namely complete and group average linkage, to the same set of input data.
The two resulting partitions are almost different, thus confirming the key impor-
tance of linkage methods for HAC algorithms.

2.4 Kernel Methods

The notion of similarity is crucial for the definition and the application of ma-
chine learning techniques. In particular, this consideration holds regardless the
underlying learning strategy applied, e.g., supervised or unsupervised learning.

Roughly speaking, the most intuitive way to characterise the similarity com-
putation between pairs of objects could be simply to count the number of their
common features, and actually this is not very different from what is actually done.

Nevertheless, more formal definitions are required in order to integrate a proper
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notion of similarity into the computational framework of ML techniques. Thus, let
X be the (usual) d-dimensional set of input data as formalised in Definition 2.23.
Moreover, let us consider a similarity measure of the form

k : X ×X → R; (x,x′
) 7→ k(x,x

′
) (2.25)

that is a function that, given two patterns x and x
′ , returns a real number char-

acterising their similarity [166].
Without loss of generality, let us assume that k is symmetric, that is, k(x,x′

) =

k(x
′
,x), ∀ x,x

′ ∈ X. For reasons that will become clearer later, the function k is
called a kernel [27, 166, 167].

A very straightforward and simple type of similarity measure that is of particular
mathematical appeal is the dot product (Definition 2.4). However, this measure
strongly relies on a vectorial representation of the input data. In other words, the
underlying assumption necessary to employ the dot product as similarity measure
is that input data must exist in a dot product space (Definition 2.2). Unfortunately,
this assumption is not robust enough for the general case: for example, structured
data, such as trees or graphs, do not have an explicit vectorial representation, so
the learning algorithm may not leverage the dot product computation to compare
them.

As a result, to tackle this kind of issues, kernel functions, or simply kernels, have
been proposed to make computations [8], and applied in combination with learning
algorithms, i.e., Support Vector Machines (SVM) [48], that use kernels to make
inner products between data vectors. To date a number of learning algorithms,
called Kernel Methods, have been proposed in the literature [147, 166, 167].

As a matter of fact, the class of Kernel Methods comprises all those (learning)
algorithms that do not require an explicit representation of the examples but only
information about the similarities among them.

Any Kernel Method can be decoupled into two different components:

1. A problem-specific kernel function

2. A general purpose learning algorithm.

In particular, kernel functions have some interesting (mathematical) features:
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• The space of kernel function is closed under operations such as addition and
multiplication, thus allowing the composition of different kernel functions to
remain a kernel.

• Considering a finite set of input data of n objects, kernel functions are repre-
sented by a n× n matrix, regardless the size of each individual object. This
property could be very useful when a small dataset of large size objects (in
terms of features) has to be analysed.

In the following Sections, some mathematical background and properties of ker-
nels will be described (Section 2.4.1), together with a general overview of kernel
methods defined for structured data (Section 2.4.2).

2.4.1 Dual Representation

As briefly emphasised above, the dot product approach is not really sufficiently
general to deal with many interesting problems [87, 166].

However, in order to be able to use the dot product as a similarity measure,
we first need to represent the input data as vectors in some dot product space H
(which need to coincide to RN [166]).

Therefore, let X = {x1, . . . , xm} be a metric space (Definition 2.7). We may
define:

Definition 2.27. (Mapping Function):

Φ : X → H;x 7→ x (2.26)

That is a function that maps a given input object to its vectorial representation.

In particular, the space H is called the feature space [166, 167]. To summarise,
embedding the data into H by Φ has the following advantages [166]:

• It lets us defined a similarity measure from the dot product in H, such that

k(x, x
′
) = ⟨x,x′⟩ = ⟨Φ(x),Φ(x′

)⟩ (2.27)
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• No assumption nor limitation has been imposed in the definition of the map-
ping function. So this freedom allows to choose mappings that may be used
in a large variety of cases.

Before formally definining what a kernel function actually is, some preliminary
definitions are required.

Definition 2.28. (Positive definite matrix): An n×n matrix A = (aij), aij ∈ R
is called a positive definite matrix iff:

∑
i = 1n

n∑
j=1

cicjaij ≥ 0 (2.28)

for all n ∈ N, c1, . . . , cn ∈ R

The basic property of positive definiteness are confirmed by the following results.

Proposition 2.5. Let A be a matrix. The following two statements are equivalent:

• A is positive definite iff A is symmetric.

• A is positive definite iff A has all eigenvalues ≥ 0

Definition 2.29. Mercer Kernel:
Let X be a non empty set. A function k : X × X → R is called a Positive
Definite Kernel (or Mercer Kernel) iff:

N∑
i=1

n∑
j=1

cicjk(xi, xj) ≥ 0 (2.29)

for all n ∈ N, x1, . . . , xn ∈ X , c1, . . . , cn ∈ R

In the following, some important results underlying the basic properties of pos-
itive definite matrices are reported. For the sake of brevity, the corresponding
proofs will be omitted. Further details are provided in [166] and [167].

Proposition 2.6. Let k be a kernel on X × X . The following properties are
equivalent:
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• k is positive definite iff k is symmetric.

• k is positive definitive iff for every finite subset X0 ⊆ X , the restriction of k
to X0 ×X0, namely k[X0×X0], is positive definite.

Moreover, if k is positive definite, then k(x, x) ≥ 0∀ x ∈ X.

Remark 2.15. The inner product is a Positive Definite Kernel, namely it is a
Mercer Kernel.

Proposition 2.7. (Cauchy-Schwarz’s Inequality): For any Positive Definite
Kernel k, the Cauchy-Schwarz’s inequality holds:

|k(x, x′
)|2 ≤ k(x, x)k(x

′
, x

′
) (2.30)

The following result, provided by Mercer, allows the use of kernel functions to
make dot products.

Proposition 2.8. Let K be a symmetric function such that:

∀ x, y ∈ X ⊆ R, K(x, y) = ⟨Φ(x),Φ(y)⟩ (2.31)

where Φ : X → H, and H is the (dot product) feature space.
K can be represented in terms of Equation 2.31 iff

K = (K(xi, xj))
N
i,j=1 (2.32)

is semidefinite positive, namely K is a Mercer Kernel.
Moreover, K defines an explicit mapping if Φ is known in advance, otherwise the
mapping is implicit.

Equation 2.32 defines a kernel function in terms of its corresponding matrix
representation, namely the so-called Gram matrix. In fact, some alternative defi-
nitions of kernel functions in terms of such Gram matrix are also provided [167]:

Definition 2.30. (Gram Matrix):
The Gram matrix GK related to kernel K with respect to the input data set X is
defined as:

GK
i,j = K(xi, xj) (2.33)
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Remark 2.16. K is a valid kernel function if and only if it is symmetric and
positive semidefinite, namely if any of its Gram matrices are symmetric and positive
semidefinite.
In particular, a matrix is symmetric iff. ∀ i, j, K(xi, xj) = K(xj, xi). Besides, it
is semidefinite positive if all of its eigenvectors are nonnegative.

In conclusion, it is worth repeating that kernel functions are closed under oper-
ations such as the addition and multiplication. Therefore, the sum, the product
or a linear combination (Definition 2.3) of kernels, still produces a valid kernel.
More formally:

Proposition 2.9. Let K1, K2 : X × X → R be two kernel functions on a metric
space X = {x1, x2, . . . , xn}. Then, the following properties holds [167]:

1. (Additive Property)
K+(x, x

′
) = K1(x, x

′
) +K2(x, x

′
) is a valid kernel.

2. (Multiplicative Property)
K∗(x, x

′
) = K1(x, x

′
)K2(x, x

′
) is a valid kernel.

2.4.2 Kernels for Structured Data

Kernel methods have been widely adopted in many machine learning techniques [87]
thanks to their flexibility in providing an efficient and general mechanism to com-
pute the similarity between objects (Proposition 2.8). As a matter of fact, to
date an increasingly series of kernels that perform efficient comparisons between
structured data have been proposed [167].

An extensive survey of kernel methods for structured data is provided in [75]
and in [74].

By structured data, we intend data that are formed by combining simpler com-
ponents into more complex items, frequently involving a recursive use of simpler
objects of the same type [167]. Examples of structured data include complex (dis-
crete) objects such as trees and graphs [167].

Convolution Kernels represent a general methodology for computing kernels on
complex discrete objects [84].
The basic idea is that a complex object may be split into parts and their similarity
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calculation may be expressed in terms of their constituent subparts. Thus, assum-
ing to have at disposal a positive semidefinite kernel on the parts, Convolution
Kernels describe a way for preserving the positive semidefiniteness of functions by
a sum of kernels on the parts (Proposition 2.9).

Definition 2.31. (Convolution Kernel):
Let X ,X1, . . . ,XD be a D+1 non empty separable metric spaces, x ∈ X a structure,
and x = (x1, x2, . . . , xD) the parts of x.
A relation R : X1 × X2 × . . . × XD × X where R(x, x) is true iff (x1, x2, . . . , xD)

are the parts of x.
Moreover let R∗(x) be the set of all the subparts of x. Then the Convolution
Kernel can be expressed as:

k(xi, xj) =
∑

xi∈R∗(xi)

∑
xj∈R∗(xj)

D∏
d=1

kd(x
d
i , x

d
j ) (2.34)

where the different kd are kernels defined on the substructures.

Remark 2.17. Haussler in [84] provide a complete proof which demonstrates that,
if the kd are positive semidefinite, the kernel k in Equation 2.34 is also positive
semidefinite, and thus a kernel itself (Proposition 2.8).

Remark 2.18. R-convolution The relationship R is called the R-convolution re-
lation [84].
In particular, given R : X1×X2× . . .×XD ×X such that R(x, x) 7→ true iff. x is
a valid decomposition of x, it is always possible to define the reverse relationship,
namely R−1(x) = {x|R(x, x) = true}

Convolution Kernels have been successfully applied to a variety of problems
involving structured data, thus appearing to be a valid strategy of dealing with
structured data. In particular, in the following sections, a brief review of the main
contributions for tree and graph structured data is provided.

Tree Kernels

Tree Kernels have been widely used where the information is represented by means
of tree-based structures, like Natural Language Processing [41, 144, 146] and Bioin-
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formatics [180], where they have been applied to Parse- and Phylogenetic-trees,
respectively.

Vishwanathan and Smola describe in [181] a fast kernel that is applicable to
strings† and trees. In particular, when applied to tree structures, the proposed
kernel consider proper subtrees (Definition 2.21) of the input tree.

The kernel applies a weighted sum of the number of common subtrees, based on
the assumption that the total number of matching subtrees is small if compared
to the size of the feature space.
More formally, the proposed kernel is defined as:

K(Ti, Tj) =
∑
t∈Ti

∑
u∈Tj

m(t, s)wt

where t, u are subtrees of the input trees Ti and Tj, respectively. Moreover, wt

is the weight associated to the subtree t and m(·, ·) is a Boolean (filter) function
defined as:

m : T × T → {0, 1}

Such function returns 1 whether the two input (sub)trees are identical, 0 otherwise.
One limitation of this kernel for tree structures is that it is not able to measure

a similarity function based on the common subset trees (Definition 2.22). A kernel
for trees, based on counting matching subset trees, has been proposed by Collins
and Duffy in [41].

Let T be a tree, and T = {T1, . . . , Tn} a set of input trees in which m different
subset trees are present. Thus each feature, i.e., subset trees, can be indexed by
an integer number 1 ≤ k ≤ m. Then, the function hk(Tj) counts the number of
times the subset tree indexed by i occurs in the tree Tj. Thus each tree Tj ∈ T is
represented as: Φ(Tj) = [h1(Tj), h2(Tj), . . . , hm(Tj)].

Therefore, the final Subset Tree Kernel (SST) is defined as:

K(Ti, Tj) = ⟨Φ(Ti),Φ(Tj)⟩ =
m∑
k=1

hk(Ti)hk(Tj) (2.35)

where SST defines a similarity measure between trees which corresponds to the
†Strings are considered structured data as well [167]
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number of shared subset trees.

Nevertheless, while the definition of the kernel function is quite straightforward,
the interesting part concerns the definition of a procedure to efficiently calculate
the number of subset trees. To this aim, authors propose a recursive algorithm
that is based on a function Ik(n), called the Indicator function, which returns 1 if
the subset tree indexed by k is rooted at node n, 0 otherwise.
Thus, indicating con Ni the set of nodes of the tree Ti ∈ T , it follows that hk(Ti) =∑

n∈Ni
Ik(n). Therefore, the SST Kernel in Equation 2.35 can be rewritten as:

K(Ti, Tj) =
m∑
k=1

hk(Ti)hk(Tj) (2.36)

=
m∑
k=1

∑
n∈Ni

Ik(n)
∑
m∈Nj

Ik(m) (2.37)

=
∑
n∈Ni

∑
m∈Nj

m∑
k=1

Ik(n)Ik(m) (2.38)

In the worst case, the overall computational complexity of the SST Kernel is
O(|Ni||Nj|). However, authors discussed that this estimation represents an upper-
bound complexity, since a more accurate analysis shows that the actual complexity
depends on the number of matching subset trees. In particular, considering the
case of natural language parsing trees [41], for which SST have been originally
defined, the recursive computation may be bound by avoiding the comparison of
subset trees rooted in different nodes.

This observation has resulted in the Fast Tree Kernel algorithm [144], which
has the same worst case complexity but in practical applications may provide a
relevant speed up.

In addition, Moschitti in [145] provides a strategy to add expressiveness to the
SST Kernels proposed by Collins and Duffy for natural language parse trees. This
strategy aims to modify the recursive definition of the kernel function, in order to
enlarge the corresponding feature space.

To this aim, the author proposed the Partial Tree Kernel (PT) which is able to
apply partial matchings between subtrees.
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Graph Kernels

Similarly to trees, some research efforts are being devoted in the definition of
proper kernel functions that are able to compare graph structured data. More
formally:

Definition 2.32. (Graph Kernels): [76] Let G denote the set of all graphs, and
let Φ : G → H be a map from this set into a dot product space H. Furthermore,
let k : G × G → R be such that ⟨Φ(G),Φ(Gi)⟩ = k(G,Gi). If Φ is injective, k is
called a Complete Graph Kernel

However, in the general case, the computation of graph similarities is intrinsically
untractable problem:

Proposition 2.10. Computing any Complete Graph Kernel is at least as hard as
deciding wether two graphs are isomorphic [76].

In more details:

Proposition 2.11. (Subgraphs Kernel) [76]:
Let G and G

′ be two graphs on a metric space G, and ⊑ the relationship such that
⊑ (S,G) is true iff S is a subgraph of G (Definition 2.20) (shortly S ⊑ G). Thus,
the kernel

ksg(G,G
′
) =

∑
S⊑G

∑
S′⊑G′

kismf (S, S
′) (2.39)

where

kismf (S, S
′) =

1, if S = S ′

0, otherwise
(2.40)

Nevertheless, the first condition in Equation 2.40 holds iff the two graphs are
isomorphic, namely there exists an isomorphism between them (Definition 2.18).
However, the problem of determining if such isomorphism exists has been proven
to be a NP-Hard problem [47].

As a consequence, most of the solutions proposed in the literature define Graph
Kernels that are specifically suited for a particular class of graph structures, mak-
ing some preliminary assumptions on the input and/or the considered feature
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space. For example, the definitions of Tree Kernels consider “specialised” versions
of graphs, i.e., trees (Definition 2.19).

Moreover, Gärtner et al. in [76] propose the formulation of the so-called Prod-
uct Graph Kernels, which leverages the definition of the directed graph product
(Definition 2.11) to accomplish the matching of substructures.

Definition 2.33. Product Graph Kernel [76]:
Let G and Gi two graphs on a metric space G, G× = (V×, E×) the direct product
of G and G

′, with adjacency matrix equals to E× = E(G×G
′
) [47].

With the sequence of weights λ = λ0, λ1, . . . (λi ∈ R;λi ≥ 0 for all i ∈ N), the
Product Graph Kernel is defined as:

k×(G,G′) =

|V×|∑
i,j=1

[
∞∑

m=0

λmE
m
×

]
ij

(2.41)

if there exists

lim
n→∞

n∑
m=0

λmE
m
× (2.42)

Therefore, the existence and the computation of the whole kernel function
strongly depend on the particular choice of the sequence of weights λm, and thus on
the corresponding matrix power series inducted by the selected sequence (Equa-
tion 2.42). In fact, if we select λm = λm, then the

∑
m λm corresponds to the

geometric series that is known to converge if and only if |λ| < 1. In this case, the
limit is given by limn→∞

∑n
m=0 λ

m = 1
1−λ

.
Similarly, authors in [76] define the geometric series of a matrix as:

lim
n→∞

n∑
m=0

λmEm

If λ < 1/a, where a ≥ min(∆+(G),∆−(G)), corresponding to the maximal out-
degree/in-degree of the graph G, respectively (Remark 2.13). Feasible computation
of the limit of a geometric matrix series is possible by inverting the matrix I−λE,
which can be computed in roughly cubic time complexity[76]. The proof is almost
intuitive and is reported in [76].
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Therefore, the Geometric Product Graph Kernel is defined as:

k×(G,G′) =

|V×|∑
i,j=1

[
∞∑

m=0

λmE
m
×

]
ij

=

|V×|∑
i,j=1

[
(I− λE×)

−1
]
ij

(2.43)

Differently, Menchetti et al. in [138] propose a Graph Kernel that belongs to
the family of Convolution Kernel (Definition 2.31), called Weighted Decomposi-
tion Kernel (WDK). In particular, the WDK is computed by dividing objects
into substructures indexed by a selector. Two substructures are then matched if
their selectors satisfy an equality predicate, while the importance of the match is
determined by a probability kernel on local distributions fitted on the substruc-
tures [138].

One of the key feature of the WDK is that no prior assumptions are made
on the topology of analysed graphs, making the kernel able to handle very large
families of graph structures. The only restriction concerns the fact that graphs
are supposed to be directed (Definition 2.15), acyclic (Definition 2.16), and labelled
(Definition 2.10).

The basic idea of WDK is that, given a pre-determined R − convolution (Re-
mark 2.18) relationship on the feature space, the Graph Kernel is obtained by the
composition of two fundamental elements, namely the selector and the context.
More formally, WDK is characterised by:

Definition 2.34. (WDK Structures)
Let G, Ĝ1,G2, . . . ,GD be a D + 1 non empty separable metric spaces such that
G = (Ĝ1, ,G2, . . . ,GD) is a D-tuple of non empty subgraphs of G. Moreover, let
k = (k1, . . . , kD) be a D-tuple of positive definite kernels such that
kd : Gd × Gd → R, 1 ≤ d ≤ D, and let R(G,G) be a convolution relationship.
A Weighted Decomposition Kernel is characterised by the following decomposition
structure:

R = ⟨X, R, (δ, k1, . . . , kD)⟩ (2.44)

where R(Ĝ1, G2, . . . , GD, G) is true iff Ĝ1 is a subgraph of G called the selector
and G = (G2, . . . , GD) ∈ G2 × . . . × GD is a tuple of subgraphs of G called the
contexts of occurrence of Ĝ1 in G.
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The main advantage of this formulation is that WDK defines a general Graph
Kernel computational framework, which could be easily tailored to the specific
problem and domain by a proper definition of a selector and contexts. However,
in order to ensure an efficient kernel computation, some restrictions are placed on
the sizes of the above entities [138]. The first assumption concerns the inverse
R-convolution relationship, i.e., R−1(G), such that

|R−1(G)| = O(|VG|+ |EG|)

In other words, it is assumed that the number of ways a graph can be decomposed
grows at most linearly with its size [138].

Furthermore, selectors are assumed to have constant size w.r.t. the graph G,
i.e.,

R(Ĝ1, G2, . . . , GD, G)⇒ |VĜ1
|+ |EĜ1

| = O(1)

Finally, the general definition of WDK is completed by the kernel on parts:

K(G,G
′
) =

∑
(Ĝ1,G) ∈ R−1(G)

(Ĝ1

′
,G

′
) ∈ R−1(G

′
)

δ(Ĝ1, Ĝ1

′

)
D∑

d=2

kd(Gd, G
′

d) (2.45)
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Programming today is all about doing science on
the parts you have to work with.

Gerald Jay Sussman

3
Weighting Source Code Lexical

Information with a Probabilistic Model
for Software Re-modularisation

In the literature some approaches have been proposed to partition software
systems into meaningful subsystems exploiting the lexical information pro-
vided by programmers into the source code (Section 1.3). However these
techniques usually do not consider the programming language sections in

which the lexicon appears (e.g.: comments, class names, method names) even if it
is a common experience that programmers place different care in choosing terms
for different constructs.

However, it is arguable that programmers may place different care in choosing
terms for different constructs. For example, developers may choose differently
the terms to use for code variables rather than for comments, according to many
factors, such as their programming attitudes (e.g., coding conventions), the time-
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to-market pressure, the language they used, and the development context.
To investigate the conjecture that the lexical information provided by program-

mers may convey different levels of relevance, the contribution presented in this
Chapter defines a novel approach towards software clustering, considering sepa-
rately the contribution of six different vocabularies. They are composed of terms
extracted by the different code structures, referred as zones, where a programmer
can add lexical information, namely: (I) Class Names, (II) Attribute Names, (III)
Function Names, (IV) Parameter Names (V) Comments and (VI) Source Code
Statements.

Thanks to this separation, we applied an automatic weighting mechanism to
exploit the contribution of each vocabulary. Since each software system has its
own development peculiarities, no general weighting schema can be imposed a-
priori, but rather it should be tailored for each specific system at the hand.

To this aim, we introduced a probabilistic model of the data, whose parameters,
including the zone weights, are optimised by means of an iterative algorithm,
namely the Expectation-Maximisation (EM) [136].

In more details, the software clustering approach described in this Chapter aims
at generating software partitions relying only on the lexical information contained
within the source code of the analysed software system. Thus in our definition,
generated system partitions, (i.e., clusters), will contain lexically related software
artefacts.

To group related artefacts into different partitions, our approach consists of a
pipeline process composed by the following three steps:

1. The first step (Section 3.1) is responsible for the indexing all the source
files of the analysed systems in order to collect all the terms appearing in
each considered zones. All these terms, together with their corresponding
documents (i.e., artefacts) are then stored in an Information Retrieval (IR)
index [130] further processed in next steps.

2. The second step (Section 3.2) is devoted to automatically weight each zone,
thanks to the application of the EM algorithm. Such weights will be applied
as multipliers in a vector space model representation [130] of the software
artefacts, useful to compute similarity among them.
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3. In the final step (Section 3.3), all the related artefacts are grouped together
by means of a clustering algorithm. In particular, two different well-known
clustering algorithms are considered, namely K-Medoids [97], and Group Av-
erage Agglomerative Clustering (GAAC) [148], which have been properly
customised to make them more suitable for the software domain.

A summary description of these processing steps is depicted in Figure 3.1.

IR-Index

IR-Index IR-Index

Documents

<<transformation>>
IR-Index.Documents

ClustersArtefact
Indexing

Zone Weights
Estimation

Artefact
Clustering

Figure 3.1: The Overall Software Re-modularisation process.

To evaluate whether the introduction of the probabilistic model as well as the use
of different clustering algorithms improved the resulting partitions, the approach
has been assessed in a case study (Section 3.4).

Since no “gold-standard” partition is available in the software modularisation
domain [184], we selected a set of 19 well-known open source software systems
implemented in Java and we assessed whether the proposed approach was able to
automatically group classes in a fashion resembling an authoritative partition, i.e.,
the original partition defined for these systems. In particular, the authoritative
reference partition is gathered from the organisation of the package structures, as
already done in other works (e.g.: [28, 163, 165, 187]).

Achieved results indicate that the introduction of the probabilistic model highly
enhances the process, leading to clusters significantly more similar to the authori-
tative partitions.
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3.1 Investigating the Use of
Source Code Lexical Information

The first task towards the definition of our software clustering approach regards
the definition of a technique that is able (I) to extract the lexical information
from the source code (Section 3.1.1), and (II) to organise it into some meaningful
structures, suitable for further processing (Section 3.1.2).

3.1.1 Source Code Indexing

Since we are interested in the processing of lexical information, we assume that
each source file can be treated as a common plain-text document to which text
mining and Information Retrieval techniques can be applied.

The first operation required by IR techniques concerns the definition of the the
so-called document unit [130], namely the granularity at which source files have
to be processed. This aspect is particularly important as this correspond to the
precise definition of the artefacts to consider in the following clustering processing.
Since we are interested in dealing with the clustering of object-oriented software
systems, we choose the class as atomic element, namely the artefact to be indexed.
In other words, each class found in the analysed source files is regarded as a different
document, according to the IR terminology [130].

From now on, we will use the terms class, artefact and document interchangeably.
The extraction and the collection of the terms from the different zones is pro-

vided in the so-called (artefact) indexing process [130], whose operational steps are
depicted in Figure 3.1.

Artefact Indexing

Collect the 
artefacts to be 

indexed

Collect tokens from 
zones in each 

artefact

Normalise collected 
tokens

Create
Inverted Index

(IR-Index)

Figure 3.1: Activity Diagram of the Artefact Indexing Processing Step.
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For each class of the system, we analyse the relevance of the lexicon extracted
by each of the five zones identified by Abebe et al.[5], namely Class Names (CN),
Attribute Names (AN), Function Names (FN), Parameter Names (PN), Com-
ments (Co). Moreover, we include also the lexicon extracted by the Source Code
Statements (SCS). In particular:

I) The CN zone contains all the terms appearing in the signature of a class, i.e.,
the name of the class and possibly the names of base classes and/or
the names of implemented interfaces.

II) The AN zone contains the words in the names of attributes and con-
stants of the class and their corresponding types (if their are not primitive).

III) The FN zone contains the words appearing in method names and in their
return type (if it is not primitive).

IV) The PN zone contains the words that are in method parameters, including
both the names and the types (if they are not primitive).

V) The Co zone contains all the terms extracted from comments. It is worth
noting that possible copyright disclaimer placed as beginning comment are
removed as already done in other works (e.g., [108]). In particular such
comments do not provide any specific significance to the source file in which
they appear and consequently they are simply discarded.

VI) The SCS zone contains all the lexicon occurring in the body of methods,
such as the names of local variables, invoked methods, and passed parame-
ters.

Therefore, to keep track of the different zones of code from which terms are
gathered, every single document in the collection is represented as a set of six
different buckets (Figure 3.2).

To better explain the indexing process and all the applied operations, a sample
Java class is reported in Listing 3.1.

Therefore, given the different artefact to be indexed, the next processing step
involves the application of the so-called tokenization. Such operation consists in
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CN AN FN PN Co SCN

Figure 3.2: Document representation as a set of six different zone buckets.

segmenting the input text into pieces, called tokens [130]. In general, such tok-
enization is performed by separating the different terms on blank and punctuation
characters. However, in order to correctly avoid the extraction of useless and
noisy information, all the terms in comments are previously filtered in order to
remove likely occurring HTML tags as they do not provide any significance for the
computation (Lines 1 - 10 in Listing 3.1).

Afterwards, all the terms extracted from documents are processed (i.e., nor-
malised [130]) in order to reduce noise and redundancies.
Such normalisation applies a set of linguistic pre-processing and transformations
to the collected terms, plus an additional step to deal with specific peculiarities of
the source code vocabulary [26].

In more details, the applied normalisation consists of the following operations:

1. All the terms written using different coding conventions are split. As a
matter of fact, identifiers are usually composed by concatenating multiple
words (Section 1.2). To date, the approach is able to handle only the use of
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1 /**
2 * A handle that doesn’t change the owned figure. Its only purpose is
3 * to show feedback that a figure is selected.
4 * <hr>
5 * <b>Design Patterns</b>
6 * <img src=”images/red-ball-small.gif” width=6 height=6 alt=” o ”>
7 * <b>NullObject</b><br>
8 * NullObject enables to treat handles that don’t do
9 * anything in the same way as other handles.

10 */
11 public class NullHandle extends LocatorHandle {
12 /**
13 * The handle’s locator.
14 */
15 protected Locator fLocator;
16
17 public NullHandle(Figure owner, Locator locator) {
18 super(owner, locator);
19 }
20 /**
21 * Draws the NullHandle. NullHandles are drawn as a
22 * red framed rectangle.
23 */
24 public void draw(Graphics g) {
25 Rectangle r = displayBox();
26 g.setColor(Color.black);
27 g.drawRect(r);
28 }
29 }

Listing 3.1: Sample Java class (Extracted from JHotDraw 5.1)
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the Camel-case and Alternate-case (capitalised letters used to divide words).
For instance, in our example, the variable NullHandle is split in two distinct
words, i.e., Null and Handle. The integration of more refined techniques
that are also able to deal with abbreviations, such as the one presented in
Section 4.1, is a future work we wish to address. Finally, all the remaining
terms are lowercased.

2. All the words appearing in a list of common terms, known as stop words
(e.g.: the, a, is, etc...), are removed [130]. This is because such terms do not
provide any contribution for the analysis.
To take into account the peculiarities of the considered domain, we apply
different stop words lists to the six different zones. In particular, we remove
the most common English terms* occurring in the first four zones. As for
the fifth and sixth zones, also all the keywords of the programming language
are deleted. Considering the sample class in Listing 3.1, the terms a, as,

are, the, in, is, its, only and that are stopped.

3. All the terms are gathered in equivalence classes based on their morpholog-
ical root, or stem. Stems allow to discard all the superficial differences in
characters (such as plurals, verb conjugations, etc...), and to group all the
terms referring to the same “concept”.
To generate the stem of each term, we apply the well-known Porter’s algo-
rithm [152]. As for the example class in Listing 3.1, the terms handles and
handle appearing in the comments (Lines 1 - 10, Line 13, and Lines 21 - 22)
are all reduced to the common stem handl and regarded as a unique term
that occurs 6 times.

Once the normalisation process is completed, the final step of the indexing pro-
cess involves the construction of the so-called inverted index [130]. This structure
represent one of the central major concept in IR approaches as it provides an effi-
cient strategy to store the different terms and the references to their corresponding
documents [130]. The basic idea of an inverted index is to keep a dictionary of

*http://www.textfixer.com/resources/common-english-words.txt
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terms, whose entries correspond to the list of documents containing the corre-
sponding term, called postings [130].

However, in the proposed approach, we want to keep track of the particular zone
from which a single term has been extracted, since they are treated as different
terms. To this aim, we postpone to each term a suffix corresponding to the name of
their corresponding zone, namely _cn, _an, _fn, _pn, _co or _scs. For example,
the term locator in Listing 3.1 appears at the same time in five out of six zone,
namely CN (Line 11), AN (Line 15), PN (Line 17), Co (Line 13, and SCN (Line 18),
respectively. Therefore, in this case the dictionary will contain five different entries,
corresponding to the five different zones in which the term locator appears, namely
locator_cn, locator_an, and so forth.

Finally, it is worth noting that such modification to the terms added to the
dictionary also change the meaning of their corresponding postings lists. In fact, in
our case, the definition of postings lists becomes: “the list of documents containing
the corresponding term in a particular zone”. Thus, for example, the posting list
of term locator_an references all the documents where the term locator appears
in the AN zone.

3.1.2 Representation Model

Following an approach widely adopted by information retrieval systems, we rep-
resent each document (namely class) of the collection as a bag-of-words, i.e., the
multi-set of all the tokens contained in the document, given by all words and their
occurrences. In this way, word order gets lost, and any further processing is only
based on lexical information.

Within the bag-of-words model [130], each document is represented by an array
of real numbers whose elements are associated to the corresponding terms in the
dictionary. This vectorial representation of the documents allows to represent
each document as a point in a multi-dimensional geometrical space: the so called
Vector Space model [130]. In this space, the similarity among different documents
could be expressed in terms of the so-called cosine similarity [130] based on the
computation of the inner product among normalised document vectors.

In more details, for each term of the dictionary and for each document, a score
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following the idfschema [130] is computed. Indeed, the idf is adopted in a large
number of IR applications because of the good trade-off between simplicity and
effectiveness in describing the relevance of the terms with respect to the documents.
It is defined as follows: given a collection of N documents, namely the number of
classes of the system under investigation, the tf(t, d) (term frequency) is defined
as the number of occurrences of the term t in the document d.

On the other hand, while the df(t) (document frequency) indicates the number of
documents in which the term t occurs, its inverse gives a evaluation of the rareness
of the term. The rationale underlying the idf is that, when computing similarity
among documents, if a term appears in almost all the documents of the collection,
then its discriminative contribution is irrelevant. Conversely, the value of the idf is
high when a term appears in few documents, attaining its maximum value (logN)
when the term occurs in a unique document. Among the different applications of
the idfschema, due to its numerically good behaviour, we adopted the following
one:

tf − idf(t, d) =
√
tf(t, d) · log N

df(t) + 1
+ 1 (3.1)

Concluding, each document is therefore represented by a vector having size
equal to the dictionary size, where each element corresponds to the idfscore for
the term in the document. For all the terms not belonging to the document, the
corresponding element in the vector is zero.

3.2 Probabilistic Models for Software Re-modularisation

In this approach, we investigate the conjecture that the considered zones of the
code could convey information of different relevance starting from the observation
that developers may place different care in writing code as well as comments.
Therefore, the informative contribution of the different zones should be correctly
weighted to best exploit the conveyed information. Moreover since these weights
strongly depend on the specificities of each project, their choice can not be made
subjectively, but should be automatically estimated from the data.

To this aim we define an automatic technique that is able to estimate such
“relevance” on the basis of the lexical characteristics of each considered project.
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In particular, we are interested in determining the weights of the zones to be
used as multiplicative factors for the idfvalues of the terms during the similarity
computation among documents.

A well founded framework to solve such a problem is given by probabilistic
approaches, where different sources of information are combined by an a-priori
probability distribution.

The Maximum Likelihood Estimation (MLE) is one of the most widely adopted
approaches to estimate parameters of a probabilistic model.

This approach aims at finding the parameters of the considered model which
maximise the probability of the set of samples. In simple words, we defined three
probabilistic models describing how the words are generated and then we chose
for these models the parameters which maximise the probability of our data.

The underlying idea is that each document is produced in two steps: first of
all, a discrete random variable chooses the zone to which the token belongs. The
distribution probability of this variable corresponds to the a-priori probability of
each zone, and is multiplied for the probability of the document.

In more details, if we look at the Z zones (six in our case) as a partition of
documents, the probability of each document d is given by:

Pr(d) =
Z∏

z=1

Pr(d|z) (3.2)

Then, the formulation of the different conditional probabilities of documents
is characterised by the particular probabilistic model assumed on the dictionary
terms. In particular, without loss of generality, such models are assumed to be
statistically independent [130].

Therefore, our general probabilistic model is expressed by a mixture of multi-
variate probabilistic distributions, that can be differently instantiated (and thus,
formalised) according to the assumed distribution model of the data.

The main goal of this model is to evaluate the values of a-priori probabilities on
the different mixtures, namely z (Equation 3.2) (and possible model parameters),
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that maximise the (Log) Likelihood of the project:

logL =
N∑
i=1

log
Z∑

z=1

z Pr(d|z) (3.3)

It is worth noting that this formulation is correct only if it is assumed that all the
documents in the collection are statistically independent, so that the probability
of the project is given by the product of the probability of each document.

In this approach, three different probabilistic models are considered, namely (I)
the Gaussian, the (II) (multivariate) Bernoulli and (III) the multinomial models.
In the first model, the idfvalues of terms in each zone are assumed to follow a
Gaussian distribution, and are characterised by the values of mean (µ) and stan-
dard deviation (σ), one for each Gaussian model distribution, namely one for each
zone. In addition to this, we also consider Bernoulli and multinomial probabilis-
tic models [130]. In the former, the probability of the document is given by the
product of all probabilities of the dictionary terms of being (or not being) in the
document. On the other hand, in the latter, only the probabilities of terms ap-
pearing in the document are considered, taking into account the number of their
occurrences. These two representations are conceptually quite different in their
definitions. In fact, the Bernoulli model completely disregard in its formulation
the number of occurrences of each term in the document; while in the multinomial
model only the terms that appear in the input document contribute to the proba-
bility computation, with a factor that depends on the corresponding occurrences.

A summary description of the three different formulations of the considered
probabilistic models is reported in Table 3.1.

3.2.1 An EM algorithm for Parameter Estimation

As discussed above, we estimate the model parameters by maximising the proba-
bility of the set of examples, in our case, the documents in the project, by applying
the MLE criterion. To find the values maximising the likelihood, the EM iterative
algorithm[53] is applied.

EM is an iterative algorithm whose name refers to the corresponding two main
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Gaussian Bernoulli Multinomial

Document probabilities

Pr(d|z) =
M∏
t=1

G(µz , σz)
∏

t:t∈d[z]

Pr(t|z)
∏

t:t̸∈d[z]

(1− Pr(t, z))
M∏
t=1

Pr(t|z)tf(t, d[z])

Pr(d) =
Z∑

z=1
αz Pr(d|z)

Z∑
z=1

αz Pr(d|z)
Z∑

z=1
αz Pr(d|z)

Initialization


muz = 1

N

N∑
d=1

xt,d[z]

σ2
z = 1

N

N∑
d=1

(
xt,d[z] − µz

)2 Pr(t, z) = 1
N

∑
d:t∈d[z]

1 Pr(t, z) =

N∑
d=1

tf(t, d[z])

M∑
t′=1

N∑
d=1

tf(t′, d[z])

αz =

N∑
d=1

M∑
t=1

tf(t, d[z])

M∑
z′=1

N∑
d=1

M∑
t=1

tf(t, d[z′])

M∑
t=1

∑
d:t∈d[z]

1

Z∑
z′=1

M∑
t=1

∑
d:t∈d[z′]

1

N∑
d=1

M∑
t=1

tf(t, d[z])

Z∑
z′=1

N∑
d=1

M∑
t=1

tf(t, d[z′])

Expectation step

rd,z =
αz Pr(d|z)

Z∑
z′=1

αz Pr(d|z)

αz Pr(d|z)
Z∑

z′=1

αz Pr(d|z)

αz Pr(d|z)
Z∑

z′=1

αz Pr(d|z)

Maximisation step



µz =

N∑
d=1

ri,zxt,d[z]

N∑
d=1

rd,z

σ2
z =

N∑
d=1

rd,z(xt,d[z]−µz)
2

N∑
i=1

ri,z

Pr(t, z) =

∑
d:t∈d[z]

rd,z

N∑
d=1

rd,z

Pr(t, z) =

N∑
d=1

rd,ztf(t, d[z])

M∑
t′=1

N∑
d=1

rd,ztf(t
′, d[z])

αz =

N∑
d=1

rd,z

Z∑
z′=1

N∑
d=1

rd,z′

N∑
d=1

rd,z

Z∑
z′=1

N∑
d=1

rd,z′

N∑
d=1

rd,z

Z∑
z′=1

N∑
d=1

rd,z′

Table 3.1: EM computation for the three different models and with frequentist initialisation. G(µ, σ)
depicts the Gaussian distribution of mean µ and standard deviation σ. xt,d indicates the index for the
token t in document d.
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steps (see Table 3.1) it alternates during the execution: in the Expectation step, the
weights corresponding to each pair (document, zone) are (re)computed on the basis
of the parameters values. On the other hand, the Maximisation step (re)computes
the model parameters in a way that the likelihood does not decrease. The algo-
rithm halts when the increase in likelihood corresponding to a given iteration is
smaller than a given threshold, or when a maximum number of iterations has been
performed.

Finally, among all the resulting parameters, the algorithm returns the values
of the zone priors: a large value of z suggests that the z-th zone contribution is
important for the model. Thus, we want to combine the zone scores with weights
proportional to these priors. As both weights and priors ought to sum to one, we
choose priors exactly equal to weights.

Finally, it is worth noting that one of the problems of the EM algorithm is that it
can attain a local maximum rather than a global one. Therefore, the choice of the
initial values for the parameters is very critical for the optimisation results [137].
However, while in case of the Bernoulli and multinomial models, such initialisa-
tion is straightforward, as it is inducted by the model formalisation, in case of
the Gaussian model, different strategies may be applied in order to set up the
initial values of the model parameters, namely µ and σ. After a prior experimen-
tal investigation, in this case, we apply an initialisation strategy that estimates
initial model parameters by considering the rate between the number of tokens in
the zones and the total number of tokens. In particular, such strategy starts by
assigning “more importance” to zones containing more lexical information.

3.3 Clustering of Software Artefacts

As already mentioned, the software re-modularisation problem is also referred
sometimes in the literature with the name of software clustering, as it regards the
clustering of related software entities.

Even if this definition is quite trivial, it emphasise that this problem has several
aspects in common with a typical clustering problem as intended in the machine
learning literature (Section 3.3).

In more details, the software re-modularisation problem belongs to the category
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of hard clustering tasks, since all the entities, namely the classes of the system, can
be associated to one and only one cluster (Section 2.3). Moreover, as any other
unsupervised machine learning approach, one of the key issues of the technique is
the choice of the similarity measure, which is crucial for the clustering performance
since it states criteria to decide whether two software entities are similar enough
to be put into the same cluster [131].

In the defined vector space model, the similarity between two classes is typically
computed applying the well-known cosine similarity (Remark 2.8), expressed as
the cosine of the angle determined by the two vectors representing them. Neverthe-
less, the clustering of software entities introduces some constraints imposed by the
specific domain. The most important one is that an automatically produced par-
tition should not be either too huge (i.e., containing hundreds of software entities)
nor too tiny (i.e., containing very few software entities) [187].

For this reasons, standard algorithms may not be effective unless they are
(slightly) modified to impose such constraints.

In the remainder of this Section, a description of the proposed customisation
for two well-known clustering algorithms is reported. In particular, the K-Medoids
clustering algorithm is described in Section 3.3.1), while the Group Average Ag-
glomerative Clustering is discussed in Section 3.3.2).

3.3.1 K-medoids

As described in Section 2.3.2, the K-Medoids algorithm is a well-known variation
of the classical K-Means algorithm, which is more robust with respect to noise
and outliers. Moreover, since the resulting clustering strongly depends on the
initial choice of medoids, initial medoids are randomly selected. However, to avoid
unbalanced solutions, we introduced a novel halting criterion to avoid the risk of
resulting in extremely small or extremely large clusters, which makes sense in the
context of software re-modularisation.

Indeed, the original K-medoids algorithm starts with a random choice of the
k medoids and iterates assigning at each step all the entities to the most similar
medoids, and then recomputing the set of medoids.
Finally the algorithm returns the desired partitions organised as a set of k different

101



clusters. An algorithmic description of the K-medoids algorithm is reported in
Algorithm 1.

However, the main drawback of the algorithm is that resulting clusters strongly
depends on the initial configuration. Thus, unlucky configurations could result in
a partition including too small clusters: in the variant of the algorithm proposed,
the whole procedure is repeated until a final solution where non-extreme clusters
is attained or a maximum number of iterations are performed.

Even when the procedure halts due to the latter condition, the algorithm pro-
vides the best solution among all the ones found in each iteration.

3.3.2 Group Average Agglomerative Clustering

In addition to the K-Medoids algorithm, also the Group Average Agglomerative
Clustering (GAAC) one has been considered, which belongs to the category of the
hierarchical clustering algorithm (Section 2.3.3).

In particular, the GAAC algorithm employes a linkage strategy that aggregates
two clusters based on the the average similarity of all pairs of entities belonging to
them (see Table 2.1). The main advantage of such strategy is that it is more robust
with respect to outliers and tends to produce more balanced dendrograms [130].
An example of a dendrogram resulting after the application of GAAC algorithm
is reported in Figure 2.2.

The main feature of hierarchical clustering algorithms is that they are determin-
istic and does not require several random initialisation (as for partitional cluster-
ings, e.g., K-medoids). Moreover, although the asymptotic time complexity of the
HAC approach is worse than K-medoids one (Section 3.3.2), in the experiments
we performed the K-medoids was slower because it was applied a large number of
times on different initial points.

Conversely, from a software re-modularisation perspective, the main drawback
of HAC is that it does not provide a flat partition of the system due to its ag-
glomerative nature. Therefore, to get such partitions, the dendrogram has to be
properly cut [132]. To this aim, the proposed customisation of the HAC algorithm
consist in a specialised cutting strategy criterion. In particular, this strategy op-
timises the non extremity distribution of the partitions aiming at generating at
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Algorithm 5 GAAC Cutting Strategy
Input: Λ : The maximum number of elements admitted in a single cluster.
Input: T : The dendrogram to be cut.
Input: k : the number of partitions to generate.
Output: P : The set of k different partitions.
1: function GAACutStrategy(Λ, T, k)
2: r← root(T)
3: if r = null then
4: return P

5: end if
6: if (isLeaf(r)) ∨ (|P| ≥ k) then
7: P← P ∪ {T}
8: return P

9: end if
10: leftT← subtree(left(T)) ▷ Get the left subtree rooted in T

11: rightT← subtree(right(T)) ▷ Get the right subtree rooted in T

12: if (|leftT| ≥ Λ) ∧ (|rightT| ≥ Λ) then
13: P← P ∪ GAACutStrategy(Λ,leftT,k)
14: P← P ∪ GAACutStrategy(Λ,rightT,k)
15: else if (|leftT| ≥ Λ) ∧ (|rightT| < Λ) then
16: P← P ∪ {rightT}
17: P← P ∪ GAACutStrategy(Λ,leftT, k)
18: else if (|leftT| < Λ) ∧ (|rightT| ≥ Λ) then
19: P← P ∪ {leftT}
20: P← P ∪ GAACutStrategy(Λ,rightT, k)
21: else ▷ None of the two partition is extreme
22: P← P ∪ {leftT}
23: P← P ∪ {rightT}
24: end if
25: return P

26: end function

most k clusters. It is worth noting that this latter aspect is very important for
the assessment of the approach as it makes the two clustering solutions, namely
K-medoids and HAC, fairly comparable. The algorithm for the proposed cutting
strategy is reported in Algorithm 5
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3.4 Experimental Settings

The assessment of a clustering is typically based on an annotated test set, the
gold standard [130], in which each item of the dataset is labeled with the corre-
sponding cluster. In case of software clustering tasks, this gold standard could be
represented by a set of large and publicly available software systems with well-
understood decomposition that can be used as benchmark [184]. However, from
one hand, there is no publicly annotated dataset available; on the other hand, the
manual generation of such partitions by software architects may be too subjective
to represent a benchmark.

Therefore, following other similar works [28, 163, 187], we adopted a fair and
repeatable procedure for constructing the gold case clustering which is built on the
original source folder structure of the system under investigation. The idea behind
this protocol is the following: given the bunch of classes of a well-engineered system
(such as for instance JHotDraw, widely used to teach Software Design issues)
without any structure, if the approach is able to automatically arrange them in a
partitioning that resembles the packages proposed by the developers of the system,
then the approach will likely perform well also on other software systems. From
the software engineering point of view, this measure is called Authoritativeness
(Auth) [187].

The authoritative partition is automatically derived in accordance with the fol-
lowing three steps:

1. create the subsystem hierarchy based on the directory (package) structure
(each directory represents a single subsystem);

2. merge a subsystem with its parent if it contains less than five source files;

3. create a cluster for each resulting subsystem.

Given such authoritative partition, the next challenge is to determine a measure
that is able to compare clustering results to this partition. Several researchers in
literature have attempted to tackle this problem [11, 103, 109, 184].

One of the first proposed approach was the measure presented by Lakhotia
and Gravely [109]. However this measure could be used only on dendrograms of
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hierarchical clusterings which in practice strongly limits its applicability to other
not-hierarchical clustering algorithms.

Afterwards Anquetil and Lethbridge proposed the use of the well known mea-
sures of Precision and Recall for the evaluation of clustering results [11]. In partic-
ular, let A be the automatically identified source partition and B the authoritative
partition, they defined the Precision as the percentage of intra-pairs, i.e. pairs of
items in the same cluster, in A that are also intra-pairs in B. On the other hand,
the Recall is defined as the percentage of intra-pairs in B that are also intra-pairs
in A. The main drawback of this measure is that it is too much “sensitive” to
the number and the size of considered clusters. As a consequence, few misplaced
entities in a cluster could produce very different results.

Koschke and Eisenbarth presented in [103] a complex measure which extends
and removes limitations of the approach proposed by Lakhotia and Gravely and
that is loosely based on the Precision and Recall measures employed by Anquetil
and Lethbridge. The KE measure is built on the definition of GOOD and OK
matches. Assuming that p is a threshold parameter and that Ai and Bj are two
clusters in the source and authoritative partition respectively, the following two
definitions hold:

(GOOD match) Ai ≈p Bjiff
|Ai ∩Bj|
|Ai ∪Bj|

≥ p

(OK match) Ai ⊆p Bjiff
|Ai ∩Bj|
|Ai|

≥ p

These two matching definitions are then used to split the set of clusters in two
distinct classes, one for each relationship. Next, once all the clusters have been
classified, the GOOD class is enlarged by joining all the OK matches in which one
of the two cluster is already in the GOOD class. All the remaining clusters that are
neither in GOOD or in OK matches are referred as false positives or true negatives
in case they belong to the source or to the authoritative partition, respectively.
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Finally the overall similarity metric is defined as follows:

KE(A,B) =

∑
(a,b)∈GOOD

|a ∩ b|
|a ∪ b|

+
∑

(a,b)∈OK

|a ∩ b|
|a ∪ b|

|GOOD|+ |OK|+ |truenegatives|

The KE metric is particularly good when the source partition is close to the
authoritative partition. Conversely it is not as good in more extreme cases as its
definition takes into account only the union and the intersection between clusters,
without applying any penalty for the join operations. Last but not least, it relies on
the specification of a threshold parameter which could inevitably bias the results.

More recently, Tzerpos and Holt presented in [178] the MoJo distance, which is
the measure this work builds on. In particular, let A be the automatically identified
source partition and B the authoritative partition, MoJo(A,B) is defined as:

MoJo(A, B) = min(mno(A,B),mno(B,A))

corresponding to the minimum number of Move and Join operations necessary to
transform either the first partition A to the second partition B or vice versa [178].
The lower the value of MoJo between two partitions is, the more the clustering
algorithm is effective in creating the software partition.

Differently from the KE measure, this metric explicitly introduce the calcula-
tion of a penalty to the join operations but it has a couple of drawbacks that
make its original formulation useless for the assessment of our approach. First of
all we are interested in determining how the automatically defined partition re-
sembles the authoritative one and not vice versa. Thus we need to calculate only
the mno(A,B). Furthermore, the measure does not make the results comparable
among different software systems as its value strongly depend on the size of their
authoritative partitions.

Therefore, to overcome those limitations, we used a normalised version of MoJo,
namely the MoJoFM[184] defined as follows:

MoJoFM(A, B) = 1− mno(A,B)

max(mno(∀A,B))
(3.4)
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where max(mno(∀A,B)) calculates the maximal distance to partition B from ev-
ery possible partition derived by elements of A. In our case study we used the
implementation of MoJo available at http://www.cse.yorku.ca/~bil/downloads.

In conclusion, the Auth measure gives an estimate of the similarity between the
clustering proposed by our approach and those in an authoritative partition.

Indeed, we also require that the obtained clustering does not include too small
or too large clusters, similarly to other related work [28, 163, 165].

To this aim, a measure called Non-extremity cluster distribution (NED) has been
introduced by [187]. NED is defined as follows:

NED =
1

N

∑
ci∈C:λ≤|ci|≤Λ

|ci|

where N is the number of classes of the analysed software system, C is the set
of clusters, and λ,Λ parameters indicate the minimum and the maximum size
allowed for clusters, respectively. In accordance to other similar researches, we
limited cluster size to be included between λ = 5 and Λ = 100. In other words,
clusters with less than 5 or more than 100 software entities are considered as
extreme lower and upper limits, respectively [187]. The larger the NED value is,
the more non-extreme the size distribution of the clusters is.

Therefore, it is worth noting that the Authoritativeness provides an indicator
of the “quality” of the clusters identified by the approach. Differently, the NED is
defined to assess only other characteristics of the clustering based approach.

The assessment phase aims at evaluating the contribution of weighted zones
to clustering performance. However, the question is two-fold, because the im-
provement could come from the zone introduction alone or from the zones when
weighted by the probabilistic models we consider. Therefore, the following three
systems’ configurations are considered for the assessment:

complete system includes all the proposals, namely the lexical features with
zones weighted by means of the EM algorithm, and exploited by one of the
two clustering strategies considered;

flat system is the baseline where zones are not considered at all: the clustering
algorithm is applied to the lexical features without zones and weights;
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unweighted system represents an intermediate case which only disregards the
probabilistic model: the clustering algorithm exploits the lexical features
with zones but without any weighting schema.

Note that the flat and the unweighted configurations consider different idfscores.
In fact, when no zone is considered, the tf is given by the number of occurrences
of the term in any part of the document, while the document frequency is the
number of documents in which the term occurs. On the other hand, when zones
are introduced and the corresponding idfvalues are combined with a constant
weight, the score is computed for each zone separately and the results are then
summed. While the flat configuration tfcan be obtained by summing the tf for
each zone, this is not the case for the df , as a term can occurs in a different number
of documents depending on the considered zone.

According to the criteria, the measures and the systems defined above, we for-
mulated the following two research questions:

RQ1: Does the unweighted system outperform the flat approach?

RQ2: Does the complete system outperform the unweighted one?

3.4.1 The Dataset

To conduct the investigation presented here, we have used the following 19 open
source Java software systems:

1. Apache Ant - a Java library and command-line tool aimed to define build
files for software applications implemented in the Java language.

2. Apache Lucene - a Java framework that implements IR algorithms.

3. Apache Tomcat - a well-known Servlet/JSP container for Java web appli-
cations.

4. Azureus - Azureus is a Java-based client for sharing files using the BitTor-
rent file-sharing protocol.

5. Hibernate - an ORM (Object Relational Mapping) library for Java appli-
cations.
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6. iText.Net - iText is an open source library for creating and manipulating
PDF, RTF, and HTML files in Java.

7. jEdit - a text editor suited to support programming tasks.

8. jFreeChart - a tool supporting the visualisation of bar charts, pie charts,
line charts, scatter plots, histograms, simple Gantt charts, bubble plots, and
more.

9. jFTP - a graphical Java network and file transfer client.

10. jHotDraw- a GUI framework for technical and structured graphics.

11. jRefactory - a GUI application for the refactoring of Java applications.

12. jUnit - the Java version of the xUnit testing framework.

13. Liferay Portal - open source enterprise web platform for building business
web-based solutions.

14. Pmd - a Java source code analyser. It finds unused variables, empty catch
blocks, unnecessary object creation, and so forth.

15. Synapse - Synapse is a lightweight and high-performance Enterprise Service
Bus application, which provides support for XML, web services and REST
applications.

16. Tiger Envelopes - Tiger Envelopes is an open source personal mail proxy
that automatically encrypts and decrypts mail.

17. Velocity - a Java framework to build web and non-web applications.

18. Xalan - a XSLT processor in Java for transforming XML documents into
HTML, text, and other XML document types.

19. Xerces - a collection of components and utilities to parse, validate, and
serialise XML documents.
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System Classes KLOCs KCLOCs
Apache Ant 1452 103.5 89.6

Apache Lucene 1015 63.2 36.1
Apache Tomcat 1530 163.8 110.5

Aureus 4785 333.1 97.1
Hibernate 2267 156.0 95.8
iText.Net 1201 77.4 50.3

jEdit 869 88.4 36.1
jFreeChart 89 8.7 7.8

jFTP 469 23.5 4.7
jHotDraw 899 73.0 38.3
jRefactory 1522 110.7 91.3

jUnit 547 15.0 4.1
Liferay Portal 3961 379.1 137.3

Pmd 680 49.6 8.9
Synapse 613 45.7 20.9

Tiger Envelopes 917 73.4 25.9
Velocity 419 35.8 25.0
Xalan 915 123.7 128.3
Xerces 578 71.5 63.6

Table 3.1: Descriptive statistics of considered dataset
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Some descriptive statistics of the dataset are reported in Table 3.1. In partic-
ular, this table shows names of the software systems and the analysed versions,
together with the corresponding total number of classes, thousands of lines of code
(KLOCs), and thousands of lines of comments (KCLOCs).

3.5 Results and Discussions

In this section, we present the achieved results and threats that could affect their
validity.

3.5.1 Does the unweighted system outperform the flat approach?

Our first research question aims at assessing if a flat set of lexemes performs better
than the approach based on the zones. In particular, we want to investigate if the
lexical information provided in the six different vocabulary leads to better results.

Figure 3.1 shows obtained results after the application of the K-medoid cluster-
ing algorithm.

Figure 3.1: Authoritativeness results for RQ1 (Flat system versus the unweighted system) obtained by
the application of the K-medoid clustering algorithms

Results report that the introduction of the different vocabularies in the indexing
process of the lexical information provides far better results in terms of authorita-
tiveness. Moreover, the same results have been obtained applying the hierarchical
clustering algorithm to the two different system configurations.
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Figure 3.2: Authoritativeness results for RQ1 (Flat system versus the unweighted system) obtained by
the application of the HAC clustering algorithms

Figure 3.3: Authoritativeness results comparison of the K-medoid and GAAC clustering algorithm on
the flat system configuration.

Authoritativeness results for the GAAC algorithm are shown in Figure 3.2.
In particular, it is worth noting that in some cases, the results of the GAAC

algorithm in the unweighted configuration are by far better than results in the
flat one. This is the case of systems such as Hibernate, jFTP, Liferay Portal,
and Azureus, where the improvement in authoritativeness results is up to 5 times
better. Conversely, the K-medoid algorithm produces results that tend to be quite
acceptable even in the flat configuration thanks to the ability of the algorithm in
dealing with outliers and in changing different initialisation points.

A point-wise comparison of the two clustering algorithms for the considered
system configurations is reported in Figure 3.3 and Figure 3.4.

Results show that, on average, the K-medoid algorithm (the darkest bar in the
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Figure 3.4: Authoritativeness results comparison of the K-medoid and GAAC clustering algorithm on
the unweighted system configuration.

Figures) produces better results for both configurations.
In conclusion, if we introduce and exploit the six zones, we always got better

results than the flat vocabulary, and consequently we can positively answer our
first research question. In particular, the results is confirmed despite the selected
clustering algorithm.

3.5.2 Does the complete system outperform the unweighted one?

Once assessed this crucial point, we can start investigating if a smarter combination
of the zones can improve results. Such combination is achieved by automatically
weighting the relevance of each zone, for each software system, by means of the EM
algorithm. Moreover, we are also interested in verifying if the same result is ob-
tained regardless the clustering algorithm applied and the particular probabilistic
model on the date assumed.

To this aim, we start the discussion by initially considering the Gaussian distri-
bution as for the model employed in the EM algorithm.

Figure 3.5 shows the results obtained applying the K-medoid clustering in the
complete system configuration. In particular, it is worth noting that results re-
ported in the bar chart for the flat and the unweighted configurations are exactly
the same discussed for the first research question.

In this case, the boosting in results after applying the automatically generated
weights to zones, is less outstanding. However, the quality of the produced clusters
is improved or, at least, not worsened.

Conversely, a different scenario is presented, if we consider the application of the
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Figure 3.5: Authoritativeness results for RQ2 (Unweighted system versus the Complete system) ob-
tained by the application of the K-medoid clustering algorithms

GAAC algorithm (Figure 3.6). In fact, in some cases, using the weights to zones
does not lead to any improvements in results.

Figure 3.6: Authoritativeness results for RQ2 (Unweighted system versus the Complete system) ob-
tained by the application of the GAAC clustering algorithms

This phenomenon again confirms the limitation of the hierarchical clustering
algorithm for software re-modularisation. On the one hand, more advanced cutting
strategies must be adopted in order to better partition the agglomerated clusters
originally produced by the GAAC.

All the discussed results for the complete system configuration, considered a
Gaussian distribution as for the probabilistic model assumed on data, and ap-
plied during the iterations of the EM algorithm. However, as already mentioned,
such model introduces some issues in determining strategies to select the initial
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configuration.
As a consequence, to investigate the influence of the different defined probabilis-

tic models on the produced clusters, also the Bernoulli model has been considered
in the experimentation.

Figure 3.7: Authoritativeness results for RQ2 (Unweighted system versus the Complete system) ob-
tained by the application of the K-medoid clustering algorithms, considering the Gaussian and the
Bernoulli models.

As reported in Figure 3.7, the application of the Bernoulli model (the brown bar
in the chart) tends to positively affect the quality of the generated clusters. In fact,
on the one hand, it confirms the improvements already achieved with the Gaus-
sian model and the K-medoid clustering over the unweighted system configuration.
On the other hand, this model tends to additionally improve results over those
obtained with the Gaussian model (the green bar in the chart). This is the case
of systems such as TigerEnvelopes, jRefactory, Xalan and jHotDraw (Figure 3.7).

One possible reason for such improvements is related to some numerical aspects
concerning the iterations performed by the EM algorithm during the estimation
of model parameters. In fact, as the Bernoulli model does not considers the oc-
currences of the terms in the documents in its formulation (Section 3.2, its com-
putation does not require to to deal with some numerical issues such as numerical
underflows. Conversely, different is the situation for the Gaussian model, where
several tricks have been required to guarantee the (numerical) convergence of the
EM algorithm.

Thus, in conclusion, we may positively affirm that the the complete system
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configuration outperform the unweighted one, and that best results have been
achieved with the Bernoulli model in combination with the K-medoid algorithm.

3.5.3 Threats to Validity

To comprehend the strengths and limitations of the empirical investigation, the
threats that could affect the results are presented and discussed. In our case the
reliability of the used measures (e.g., Auth) represents a critical issue that may
affect the generalizability of the results. In fact, the results could be strongly
affected by the used authoritative partition. Also, the lower and upper limits to
compute the NED measure may affect the results. Future work will be devoted to
adopt different approaches to further investigate this concern.

Another issue is represented by the implicit randomness of the K-medoid clus-
tering algorithm, whose initialisation strategy is performed by selecting randomly
elements in the data set as medoids. To reduce biases, we performed 50 runs for
each system under investigation. Then we considered the mean NED and Author-
itativeness values of these runs.

Also the software systems we have used our empirical study may affect the re-
sults. Even if in this work the number of software systems is quite large, and their
size is much more variable, it is also true that we exploited only open source soft-
ware systems. This could threaten the validity of the results. In fact, in contrast
with more centralised models of development such as those typically used in com-
mercial software companies, these kind of systems are mainly developed according
to a distributed, voluntary collaboration. In these communities, the efforts of a
large number of developers are coordinated to create good quality software. This
has the positive effect that the used authoritative partitions well approximate the
decomposition performed by the original developers. Conversely, the overall qual-
ity of these software systems, and in particular of the employed vocabulary, may
positively affected the clustering results. To increase our awareness on the pre-
sented results, we plan to conduct a further investigation on different commercial
software systems.

Finally, we did not perform a comparison of our approach with other clustering
based approach on a public dataset. This was due to the lack of such a dataset and
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may threaten the generalisation of the results presented in the empirical evaluation
presented in the paper. To share with the community the data set used in this
work and for replication purposes we have made available on-line an experimental
package.
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Each problem that I solved became a rule which
served afterwards to solve other problems.

Rene Descartes

4
An Efficient Approach to Split Identifiers

and Expand Abbreviations

Information Retrieval (IR) techniques are being exploited by an increas-
ing number of tools supporting Software Maintenance activities. Indeed the
lexical information embedded in the source code can be valuable for tasks
such as concept location, clustering or recovery of traceability links.

The application of such IR-based techniques relies on the consistency of the
lexicon available in the different artefacts, and their effectiveness can worsen if
programmers introduce abbreviations (e.g: rect) and/or do not strictly follow
naming conventions such as Camel Case (e.g: UTFtoASCII).

Therefore, the processing of the lexical information embedded in the source code
requires an additional normalisation step in order to automatically split multi-
word identifiers, and expand possible occurring abbreviations (further details are
reported in Section 1.2).

In this Chapter an automatic approach for source code normalisation, i.e., LIN-
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SEN (Linear IdeNtifier Splitting and Expansion), is presented (Section 4.1). The
solution is able to deal with both splitting and expansion of identifiers, with the
goal of defining a technique intended as a preprocessing step for the wide variety
of IR-based software maintenance tools [26].

In particular, LINSEN applies the Baeza-Yates and Perleberg (BYP) algorithm
[17] which is an approximate string matching technique, running in linear worst
case time if some assumptions are verified. The main advantage provided by
such efficiency regards the possibility of exploiting a larger number of dictionaries
for the matching. In fact, the approach exploits several dictionaries containing
terms gathered from (I) the source code comments, (II) a dictionary of IT and
programming terms, (III) an English dictionary, and (IV) a list of well-known
abbreviations. These sources are prioritised from the most specific to the most
general one, with the idea that in presence of ambiguities, the most specific, domain
dependent context should be preferred.

The effectiveness of the proposed approach has been experimentally assessed
using 24 software systems mainly implemented in C/C++, and, whenever possible,
we compared the achieved results with those reported in three state-of-the-art
works [85, 113, 126] (Section 4.2).

Results expressed in terms of accuracy and/or F-Measure [130] show that our ap-
proach outperforms state-of-the-art techniques, but the most distinguishing point
is that our proposal is by far more efficient (asymptotically), having linear com-
plexity in the size of the dictionary, compared with the cubic one of the solution
proposed by Madani et al. [126] (Section 4.3).

4.1 The LINSEN Algorithm

The LINSEN approach aims at finding a mapping between each source code iden-
tifier and the corresponding set of dictionary words, by exploiting high-level and
domain-dependent information gathered from different dictionaries (Section 4.1.1).

The idea underlying the LINSEN approach is to adopt a graph-based represen-
tation of each input identifier, i.e., the Matching Graph, and to apply an approx-
imate string matching algorithm following a two-step process. A description of
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Algorithm 6 LINSEN Main Process
Input: Identifiers : The list of identifiers to analyse.
Output: IdMapping : The structure containing the mapping results for each identifier,

i.e., list of dictionary words associated to it.
1: function LINSEN(Identifiers)
2: D← {D1, . . . , Dk} ▷ The set of adopted Dictionaries
3: for each: identifier ∈ Identifiers do
4: tokens← SplitMatching(identifier,D)
5: dictionaryWords← collectDictionaryWords(tokens,D)
6: nonDictionaryWords← tokens \ dictionaryWords
7: longForms← ExpansionMatching(nonDictionaryWords,D)
8: IdMapping[identifier]← dictionaryWords ∪ longForms
9: end for

10: return IdMapping;
11: end function

such process is depicted in Algorithm 6.
The first step, implemented by the function SplitMatching in Algorithm 7, par-

titions each input identifier into tokens: all the tokens corresponding to dictionary
words (i.e., appearing in at least one of the considered dictionaries) are considered
correctly mapped and will not require further processing (Line 4-5).

Algorithm 7 Identifier Splitting
Input: identifier : An arbitrary identifier;
Input: D = {Dict1, . . . , Dictk} : Set of adopted dictionaries.
Output: Lmatch : List of tokens matching the given identifier (identifier).
1: function SplitMatching(identifier, D)
2: φ : φ(word) = 0, ∀ word ∈ D
3: for each: Di ∈ D do
4: Lmatch ← StringMatching(identifier, Di, φ, cSPLIT )
5: if Lmatch ̸= NoMatch then
6: return Lmatch
7: end if
8: end for
9: return Lmatch

10: end function

Then, all remaining tokens are treated as potential abbreviations and represent
the input to the second step (Lines 5-7), the ExpansionMatching in Algorithm 8,
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further discussed at the end of this section. In particular, Algorithm 8 reports
the pseudo code for the single-word short forms expansion. In case of multi-words
abbreviations, the process applies a further splitting step, based on the assumption
that strings composing a multi word abbreviation in a given file are most likely
to occur elsewhere in the same file, or in the same project [61]. In conclusion, for
each identifier, the final output is given by the union of the tokens produced by
both steps (Line 8).

Algorithm 8 (Single Word) Abbreviations Expansion
Input: nonDictionaryWords : List of non-dictionary word tokens;
Input: D = {D1, . . . , Dk} : Set of adopted dictionaries.
Output: LongForms : List of resulting long forms.
1: function ExpansionMatching(nonDictionaryWords, D)
2: LongForms← expandKnownAbbr(nonDictionaryWords)
3: toExpand← nonDictionaryWords \ LongForms
4: for each: token ∈ toExpand do
5: for each: Di ∈ D do
6: if vowels(token) > consonants(token) then
7: φ : φPREFIX

8: else
9: φ : φEXP

10: end if
11: Lmatch ← StringMatching(token, Di, φ, cEXP )
12: if Lmatch ̸= NoMatch then
13: LongForms← LongForms ∪ Lmatch
14: break; ▷ Breaks the InnerMost Loop
15: end if
16: end for
17: end for
18: return LongForms

19: end function

The approximate string matching applied in both steps is reported in Algo-
rithm 9. The main part of this algorithm is devoted to the construction of the
Matching graph (MG) (Lines 2-8). The graph includes a node for each character in
the input identifier, and an edge for each approximate matching with a dictionary
word found by the Baeza-Yates & Perlberg (BYP) algorithm [17] (Line 4). Each
edge is labeled by the corresponding matched word and its corresponding cost.
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Therefore, the MG is defined as a directed labelled graph (Definition 2.10).

Algorithm 9 String matching algorithm
Input: token = ⟨ch1 · · · chN⟩ : An arbitrary token (identifier);
Input: Dictionary : A dictionary of words;
Input: φ(·) : The tolerance function;
Input: c(·) : The cost function.
Output: The list of labels in the minimum cost path.
1: function StringMatching(token, Dictionary, φ(·), c(·))
2: G = (V, E)← initializeMatchingGraph(t)
3: for each: word ∈ Dictionary do
4: matchingSequence← BYP(token, word, φ(word));
5: for each: (⟨chi . . . chj⟩, word) ∈ matchingSequence do
6: G(E)← G(E) ∪ {⟨(i, j), word, c(word)⟩}
7: end for
8: end for
9: bestPath← Dijkstra(G)

10: return getEdgeLabels(bestPath)
11: end function

The BYP algorithm exploits a so-called tolerance function φ(·) to apply an exact
multiple pattern matching based on Aho-Corasick automata [7]. In particular, the
value of the tolerance function φ(w) corresponds to the maximum number of errors
allowed in the matching with an input dictionary word w. It is worth noting that
too restrictive tolerances would allow only exact matchings, while too slack ones
would provide solutions that can be too far from the input to be acceptable.

LINSEN considers two distinct φ(·) functions to control acceptable matching
errors. In the splitting step, it applies a null tolerance function, i.e., exact matching
(Line 2 in Algorithm 7), since it looks for identifying dictionary words composing
an identifier. On the other hand, the tolerance functions exploited in the expansion
phase bounds the length of possible matching words to be φ(w) = O(|w|/ log |w|)
(Lines 7 and 9 in Algorithm 8).

These functions guarantees a linear asymptotic complexity [17] with respect not
only to the length of the input identifier, but also to the size of the considered
dictionary, intended as the sum of the length of its entries.

The cost associated to each edge of the MG is different in the splitting and
in the expansion steps and is determined by the length and the total number
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of occurrences of each word (in case of the application-aware dictionaries - see
Section 4.1.1). In particular, this cost is chosen in order to favour longer words
and words appearing in application-aware dictionaries with respect to broader and
generic terms. However, the cost of each word is computed during dictionaries
construction and it is accessed in constant time during identifier processing, with
no effect on the overall asymptotic complexity.

Finally, the minimum cost path starting in the initial node is built by applying
the Dijkstra algorithm (Line 9). The set of labels associated to edges in this
path, i.e. matched dictionary words, are returned. In conclusion, the MG can be
constructed in linear time with respect to both the length of the input identifier
and of the considered dictionary.
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Figure 4.1: Example of matching graph for the identifier getpnt

Figure 4.1 shows an example of a matching graph for the identifier getpnt. Along
with the edges corresponding to matched dictionary words, the graph also includes
a set of additional edges (Line 2 in Algorithm 9), represented by dashed lines in
the figure. Although their function is to ensure that the graph is always connected
(Definition 2.17) so that a solution is always produced, their cost is so large that
they are included in a solution only when no alternative matching exists.

In conclusion, some more details are required for the description of the Expan-
sionMatching function (Algorithm 8).

This algorithm first checks if the analysed token appears in a list of well known
short forms (Line 2) (e.g., acronyms such as URL or XML) that do not require
any further processing (See Section 4.1.1).
Afterwards, each remaining token is processed to identify possible approximate
matchings with words in the different dictionaries analysed in an incremental fash-
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ion, similarly to the splitting step (Algorithm 7). However, differently from the
splitting phase, the algorithm selects the matchings that only requires the set of
operations typically applied in shortening words, namely characters deletions.
In particular, according to empirical evidences reported by Madani et al. [126],
only intermediate and final deletions are considered (Line 9). These evidences in-
dicate that final deletions are more likely than intermediate ones, and vowels are
more likely to be deleted than consonants when in the core of the string. Although
excluding initial deletions is not always correct, (e.g., the acronym XML, where X
stands for eXtensible) the trade off is in favour of such choice.

Another heuristic assumption is based on the hypothesis that short forms with
more vowels than consonants are prefixes and in this case only final deletions are
allowed (Line 7).

Both these strategies are embedded in the definition of two distinct tolerance
functions considered in this phase (Lines 7 and 9 in Algorithm 8).

Similar considerations inspired the definition of the cost function. In fact, both
the two types of deletions (i.e. intermediate and final) and the type of deleted char-
acters (i.e. vowels or consonants) are taken into account in the the cost function
cEXP (Line 11 in Algorithm 8).

4.1.1 The adopted Dictionaries

Since a given identifier could have multiple and equally correct mapping solutions
with different dictionary words, LINSEN considers a set of multiple dictionaries,
which convey terms belonging to different contexts The idea is to look for the dic-
tionary words matching an identifier name by firstly considering the most specific
contexts and then widening the search up to the most general ones.

In particular, the set of considered dictionary contains:

1. DFile: a dictionary of terms extracted from the comments of the source file
containing the current identifier;

2. DSystem: a dictionary of terms extracted from the comments of all the source
files of the analysed software system;

3. DIT: a dictionary of computer science and programming terms;
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4. DENG: an English dictionary.

The first two correspond to the so called application-aware dictionaries [80] that
contain terms gathered appearing in comments of the analysed source files. In
particular DFile is restricted to terms appearing in the the source file to which
identifier belongs, while DSystem gathers the terms from comments of the whole
system. All these terms are tokenised on non-alphabetical characters, removing
any occurrence of stop words (e.g.: the, a, is). In particular we consider some
common English words included in the Apache Lucene system*, together with a
set of proper nouns of length 4 or longer, already exploited by Hill et al. [85]. The
number of occurrences of all terms in these two dictionaries are collected during
their construction and are then used to compute the edge costs in the MG.

The dictionary DIT is devoted to contain terms related to computer science
and programming, such as database, wireless, or applet. In particular the dictio-
nary contains 22,940 computer science domain terms automatically extracted from
13,647 entries and definitions about Engineering and Information Technology from
a glossary available in the Internet†.

Eventually, for the most general context, DENG, we consider the ispell English dic-
tionary‡. This dictionary contains 108,315 words, from which we removed entries
corresponding to person and country names and uppercased terms.

Beside these four dictionaries, we also consider a list of widely used English and
Information Technology abbreviations, including both the short forms and their
corresponding long forms. This list has the purpose to speed up the matching
algorithm process as it would be useless and time-consuming to process well-known
abbreviations [80].

In fact, this list is exploited in both the splitting and expansion steps to identify
well-known abbreviations and associate them to the corresponding long forms,
respectively.

These abbreviations have been collected with no prior knowledge about the
identifiers to be processed. In particular, English abbreviations correspond to

*http://goo.gl/3MZSU
†http://www.computer-dictionary-online.org/
‡http://www.gnu.org/software/ispell/ispell.html
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single and multi-word short forms are taken by a publicly available list§, discarding
the ones containing multiple possible long forms. On the other hand, Information
Technology abbreviations have been automatically gathered from the definitions
included in the on-line glossary already exploited to build up the DIT dictionary.

4.2 Experimental Settings

In this Section, the design of the case study and the dataset used to assess the
proposed approach are presented.

In particular, the goal of the study is to investigate the ability of the proposed
LINSEN approach with the purpose of evaluating its ability to map a source code
identifier on the (dictionary) words composing it. The quality focus is the precision
and recall of the approach, as defined by Guerrouj et al. [80], for both splitting and
expansion, using freely available oracles. For the sake of comparison with other
techniques, the accuracy rate measure will be also considered. The perspective is
of researchers interested in improving the effectiveness of software analysis/main-
tenance tools based on IR techniques applied to the source code.

Since LINSEN encompasses multiple processing phases, namely splitting of iden-
tifiers and expansion of abbreviations, the empirical study described in this sec-
tion aims at analysing the effectiveness of the overall approach, and at providing
a deeper understanding on the characteristics of each step.

Finally, a preliminary quantitative insight on the computational performances
of the LINSEN approach is presented.

The empirical assessment of the proposed approach has been conducted with
the following three research questions in mind:

(RQ1) How does LINSEN compare with state-of-the-art approaches as for the split-
ting of identifiers?

(RQ2) How does LINSEN compare with state-of-the-art approaches as for the map-
ping of identifiers to dictionary words?

(RQ3) What is the ability of the LINSEN approach in dealing with different types
of abbreviations?

§http://www.acs.utah.edu/acs/qa_standards/psstd02a.htm
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4.2.1 Experiment Design

System Version Ids in KLOCOracle
JHotDraw 5.1 957 16

Lynx 2.8.5 3,085 174
a2ps 4.14 211 6
which 2.20 487 174

Mozilla-source 1.0 573 4,595
MySQL 5.0.17 194 2,028

Cinelerra 2.0 191 3,533
eMule 0.46 92 262
Quake3 1.32b 80 705
Gcc 2.95 70 1,289

Ghostscript 7.07 66 437
Samba 3.0.0 49 662

Asterisk 1.21 44 459
Minux 2.0 31 334

Mozilla-source 1.3 29 11,458
Mozilla-source 1.2 28 4,681
Mozilla-source 1.4 27 4,710
Mozilla-source 1.1 24 4,676

Httpd 2.0.48 22 558
Azureus 3.0 551 2,682

iText.Net 1.4.1 751 3,380
Liferay Portal 4.3.2 651 3,949

OOPortable 2.2.1 699 3,442
Tiger Envelopes 0.8.9 577 2,647

Table 4.1: Statistics of the analysed systems grouped by the different Dataset to which they belong to
(from top to bottom: [126], [113], [114], [85]).

The choice of the works in the related literature to consider for designing the
comparative study has been mainly guided by two aspects: (I) the replicability
of the experimental settings and (II) the availability of an oracle to qualitative
evaluate the results.

Given these criteria, obtained results are compared with those provided by
Madani et al. [126] and by Lawrie et al. [113] in investigating RQ1 and RQ2.
In particular, in order to provide a more exhaustive empirical evaluation of the

128



proposed approach, the comparison of LINSEN splitting results has been also
conducted against the LUDISO oracle [114]. Finally, as for the RQ3, the study
conducted by Hill et al. [85] has been selected to investigate the effectiveness of the
proposed approach in dealing with the different types of abbreviations appearing
in the source code.

The summary statistics of all the considered software systems are reported in
Table 4.1.

In order to allow other researchers to replicate our study, in the following as
much details as possible on the experimental settings will be provided for RQ1,
RQ2 (Section 4.2.2), and RQ3 (Section 4.2.3).

4.2.2 Experimental Settings for RQ1 and RQ2

As for the comparison with Madani et al. [126], results are compared against a
manually-built oracle consisting of 957 and 3,085 identifiers extracted from the
JHotDraw and Lynx systems, respectively. The effectiveness of the approach is
measured in terms of the accuracy rate, defined as the number of the correct results
over the total number of inputs. However, since the oracle does not provide any
indication on the source file from which each identifier has been extracted, our
approach may produce different results according to the specific context where the
identifier appears. For instance, in case of the JHotDraw identifier borddec, the
LINSEN approach produces both b-ord-dec (error) and in bord-dec (correct) as
splitting results. Consequently, in the evaluation we measure performance in terms
of worst case accuracy, where at least a single different splitting result w.r.t. the
oracle count as an error (in our example, borddec is counted as a misclassification).

Concerning the comparison with Lawrie et al. [113], authors kindly provided the
oracle they used in their experimentation. Such oracle contains the splitting and
the expansion of identifiers appearing in two software systems, namely which and
a2ps. In particular it contains the list of all the 487 unique identifiers appearing
in the former system, and a randomly selected sample of 211 identifiers (among
a total of 4,393) for the latter. In this case, the evaluation follows the two-level
accuracy rate criteria described by Lawrie et al. [113]: the former, referred as
the identifier-level, imposes that each expansion must be completely correct. On
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the other hand, the latter, the soft-word level, gives “partial credit” to each word
correctly expanded. It is worth noting that in case of identifier-level evaluation,
performance are again measured in terms of worst case accuracy as no indication
on the source files are reported in the oracle.

Finally, in the evaluation of the splitting phase, the LUDISO oracle [114] has
been also considered, which contains 2,663 identifiers gathered from 750 software
systems, together with their splitting results.

However, due to the unavailability of the complete software package, the eval-
uation has been restricted to the 15 software systems with the highest number
of entries in the oracle, for a total of 1,520 identifier (i.e., the 58% of the total
identifiers). The performance has been evaluated employing precision and recall,
according to the definition reported by Guerrouj et al. [80]. In particular, given
an identifier idi to be processed, indicating by ti = {termi,1, ..., termi,n} the set of
terms obtained by the approach, and by oi = {oraclei,1, ..., oraclei,m} the corre-
sponding results in the oracle, precision and recall values are computed as follows:

precisioni =
|ti ∩ oi|
|ti|

recalli =
|ti ∩ oi|
|oi|

To provide an aggregated, overall measure, the F-Measure (F1) has been further
used, which actually computes the harmonic mean of precision and recall:

F1 =
2 · precision · recall
precision+ recall

4.2.3 Experimental Settings for RQ3

The assessment of our Expansion step has been evaluated against a gold set con-
taining short forms together with their corresponding long forms. In particular
this gold set indicates 250 abbreviations randomly selected from five Java software
systems (see Table 4.1), grouped by the different types of abbreviations, namely
prefix (PR), dropped-letters (DL), acronyms (AC), combination words (CW), single-
letters (SL) and others (OO). Further details about the distribution of the short
forms in the different types for the gold set may be found in [85]. Moreover, dif-
ferently from previous ones, this oracle provides indications to the source file in

130



which each extracted short form appears. Such extra information allowed us to
precisely assess our approach, considering the exact occurrence of the identifier
referenced in the oracle.

In more details, the evaluation protocol follows this methodology: we fed each
identifier into our expansion module assuming that it was produced by a previous
splitting phase. Then we compared the resulting output with the gold set following
the same evaluation criteria used by Hill et al. [85]: if the produced expansion
has the same stem than the one appearing in the oracle, then the expansion is
considered to be correct. Performance has been evaluated in terms of the accuracy
rate, calculated for each individual type of short form and for the overall set of
identifiers, according to the different distributions of types in oracle.

4.3 Results and Discussions

In this Section, the results for the considered research question are presented (Sec-
tions 4.3.1, 4.3.2, and 4.3.3, respectively). A discussion of a quantitative evaluation
of the approach, and threats to validity of the empirical investigation conclude the
Section.

4.3.1 RQ1: How does LINSEN compare with state-of-the-art ap-
proaches as for the splitting of identifiers?

As for the first research question, results are compared with those provided by
Madani et al. [126] and by Lawrie et al. [113]. It is worth noting that results
of the comparison with the Camel Case splitting are not reported, because it is
always by far outperformed by any other technique. Even if this can seem a trivial
remark, currently the Camel Case splitter is still one of the most used techniques
in software maintenance tools for the preprocessing of identifiers. This definitely
highlights the importance of new techniques to support IR-based approaches.

From the results of the first comparison reported in Table 4.1 we can note that
the accuracy for the JHotDraw system are always better than those in Lynx, that
the spread between the two approaches is smaller on the Java system than on the
C one, and that the LINSEN approach performs better than the one proposed by
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Madani et al. [126], improving the splitting accuracy of about 5% for JHotDraw,
and of about 14% for Lynx. The conclusions we can draw are that the quality of
the naming has a high impact on the splitting step, no matter how good is the
used technique, and that our approach turns out to be more robust than the one
proposed in [126]. A summary description of these results is shown in Figure 4.1.

As for the comparison with the approach proposed by Lawrie et al. [113], a
summary representation of results are shown in Figure 4.2, while their detailed
description is reported in Table 4.2.

Here we can see that the LINSEN approach always gathers better results. In
particular it improves the splitting accuracy for a2ps of about 8% in the Identifier
Level and of about 12% in the Soft-word level together with an improvements of
about 44% for which at both the evaluation levels.

Finally, to provide deeper insights on obtained splitting results, we assess the
LINSEN approach considering the previous four systems together with those ap-
pearing in the LUDISO dataset [114], evaluating results in terms of F-Measure.
However, since F-measure values are calculated for each single identifier, instead of
only considering the mean value for each analysed system, we decided to represent
results by using box plots. The box plot reported in Figure 4.3 shows that the me-

System Unique Ids DTW LINSEN
JHotDraw 5.1 957 93.1% 94.9%
Lynx 2.8.5 3085 70.3% 80.3%

Table 4.1: RQ1: Percentage of correct Splitting compared with Single-iteration results reported
in [126].

System Identifier Level Soft-word Level
GenTest LINSEN GenTest LINSEN

which 2.20 58.0% 64.6% 70.0% 78.3%
a2ps 4.14 35.0% 50.3% 52.0% 75.1%

Table 4.2: RQ1: Percentage of correct Splitting compared with best results attained by the GenTest
Splitting algorithm [113, 115].
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dian values of the F-measure are equal to 1.0 for all projects (horizontal segments),
while the corresponding mean values are depicted by dots. As a matter of fact,

Figure 4.1: Bar Chart of splitting results compared with Single-iteration results reported in [126] (Ta-
ble 4.1).

Figure 4.2: Bar Chart of splitting results compared with best results attained by the GenTest splitting
algorithm [113, 115] (Table 4.2).
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Figure 4.3: Splitting results (F-measure) for systems gathered from [113, 114, 126]

box plots for most systems are very skewed, thus reflecting the good performance
of the splitting algorithm included in the LINSEN approach. In particular, such
positive trend in results is also remarked by the values of the means (dots) that
are all greater than 0.7.

4.3.2 RQ2: How does LINSEN compare with state-of-the-art ap-
proaches as for the mapping of identifiers to dictionary words?

To address the second research question, we compared the result of the whole
LINSEN approach again with those presented by Madani et al. [126] and by Lawrie
et al. [113].

Results reported in Table 4.3 show a reduction in the number of errors for both
techniques on the two case studies, especially considering the Lynx system. This
can be also due to the experimental protocol adopted in [126], where the expansion
module was fed by only the identifiers not correctly split, and not by the whole
list of identifiers. A summary description of mapping results are reported in

In particular we got an improvement of the 3% and of the 2% for the two systems
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Figure 4.4: Bar Chart of normalisation results (i.e., splitting of identifiers and expansion of abbrevia-
tions) compared with results reported in [126] (Table 4.3).

over results proposed in [126], together with an advance of the 1% and of the 17%

with respect to our splitting results (RQ1).

System Unique Ids DTW LINSEN
JHotDraw 5.1 957 96.1% 99.1%
Lynx 2.8.5 3085 92.9% 94.5%

Table 4.3: RQ2: Percentage of Correct Splitting and Expansion compared with results presented
in [126].

System Identifier Level Soft-word Level
Normalize LINSEN Normalize LINSEN

which 2.20 53.0% 56.7% 68.0% 71.3%
a2ps 4.14 33.0% 56.6% 46.0% 83.5%

Table 4.4: RQ2: Percentage of correct splitting and expansions compared with results presented in
[113].

In the first case, results prove the effectiveness of the LINSEN approach. On
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the other hand, this empirical evidence enforces our previous conclusion on the
influence of the quality of identifiers, pointing out the importance of an abbrevi-
ation expansion technique, used in combination with a splitting algorithm to get
more accurate results.

As for the comparison with the approach proposed by Lawrie et al. [113] (Fig-
ure 4.5), we can see interesting improvements in the results with respect to those
presented in the first research question. Here the experimental protocol is dif-
ferent from [126], since the expansion module is always fed by all the identifiers
in the source code. Again, the difference in the oracles is the key to understand
the pattern in the results, especially when compared with Table 4.3: while expan-
sion results reported in [113] are worse than splitting ones and the same trend is
observed in our results for a2ps, this is not the case for which.

Figure 4.5: Bar Chart of normalisation results (i.e., splitting of identifiers and expansion of abbrevia-
tions) compared with results reported in [113] (Table 4.4).

An explanation could be that some identifiers are only partially correctly mapped
w.r.t. the oracle. For example, the identifier S_IRUSR, standing for Status Is Read-
able User, is expanded by LINSEN in String Infrared User, as the substring IR

appears as the acronym of Infra Red in the considered list. In addition, the which

system contains a lot of identifiers composed by typical C library abbreviations,
such as argv or fprintf that LINSEN maps to argument value and file print file
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instead of argument vector and format print f respectively. In fact, this trend in
results generalises to both levels of evaluations, namely the Identifier Level and
the Soft-word Level. However, while LINSEN results for the which system are
better of the others of more than 7% in the Identifier Level and of about 5% in
the Soft-word level, for the a2ps the difference is more than 71% in the Identifier
Level and more than 81% for the Soft-word Level.

Figure 4.6: Normalisation results (F-measure) for systems considered in [113, 126]

In conclusion, results of the evaluation of the overall approach on all the previous
four systems expressed in terms of F-measure are shown in Figure 4.6. Also in this
case, box plots show the good performance on the two software systems considered
by [126], while graphically remarking issues of the approach on processing with
the C-language identifiers appearing in the which system.

4.3.3 RQ3: What is the ability of the LINSEN approach in dealing
with different types of abbreviations?

As for the RQ3, the overall results of the expansion step are reported in Table 4.5,
and depicted in Figure 4.7, both organised according to the type of short forms.
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Type % of Types AMAP LINSEN
Combination Words (CW) 9.2% 17.4% 66.7%
Dropped Letters (DL) 3.6% 77.8% 77.8%
Others (OO) 18.4% 47.8% 50.0%
Acronyms (AC) 19.6% 46.9% 36.0%
Prefix (PR) 23.6% 79.7% 86.0%
Single Letters (SL) 25.6% 68.8% 53.1%

Total (unweighted mean) 56.4% 61.6%
Total (weighted mean) 58.8% 59.1%

Table 4.5: RQ3: Percentage of correct expansions for each type of short form, compared with results
presented in [85].

On average, our approach performs better than AMAP, with an improvement
of about 5%. Indeed, although there are two types of abbreviations where AMAP
obtains better results, namely Acronyms (AC) and Single Letters (SL), the im-
provement obtained in the other cases, in particular on Combination Words, com-
pensates such deterioration.

Figure 4.7: Expansion results for systems considered in [85]

In particular, the worse results in the SL case are probably due to the fact that
the approach by Hill et al. considers fine grained scopes, totally related to the
source code. A similar consideration can be drawn for the AC. Indeed, in our
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case if an acronym does not appear in the predefined list, we try to expand it as
a generic Multi-word abbreviation. On the other hand, in the AMAP approach,
also acronym expansions are totally inferred from the code, and this can be an
advantage with very technical abbreviations contained in identifiers. For example,
they are able to correctly expand the identifier DHT, since in the considered source
code it corresponds to a class name (Distributed Hash Table).

4.3.4 Computational Performance

In order to provide a preliminary investigation on how the asymptotic compu-
tational efficiency of the BYP algorithm reflects to the actual running time, the
logging of the time necessary to LINSEN to split and expand each identifier in each
analysed software system. Due to space constraints we are not able to provide de-
tailed data but in our current and quite unoptimised implementation, the overall
computation takes on average about 3 seconds for each identifier on a 2.6Ghz AMD
Opteron. On the one hand, we judge this result promising if compared with the
8 seconds per identifiers (on average) required by the Normalize approach [113].
On the other hand, we think that this running time allows the LINSEN algorithm
to be integrated into a Software Maintenance tool, in order to be applied in an
off-line computational process.

4.3.5 Threats to Validity

To comprehend the strengths and limitations of our empirical investigation, the
threats that could affect the results are presented and discussed. In this kind of
works, the bigger threat to construct validity (i.e. the relation between the theory
and the observation) can arise from errors in the oracles. However we used the
same oracles, together with the same versions of software systems exploited in
the works we considered for comparison. It is worth noting we found some minor
typos in the oracles, that we fixed by adding (rather than replacing) a new possible
interpretation of the expansion.

Regarding the internal validity, authors in [126] based the evaluation on a two-
step experimental protocol: splitting performance are assessed considering the
so called zero-distance identifiers, i.e., identifiers directly mapped to dictionary
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words. Remaining identifiers are further processed in the second (expansion) step
and overall performance are finally attained. As a consequence, we used their
results of the first step as a benchmark for our splitting phase, and their results of
the second step for the evaluation of the splitting and expansion steps. Moreover,
as for the comparison of results reported in [113], we considered GenTest results
in the evaluation of the splitting phase (RQ1) and Normalize as for the (RQ2).

As for the threats to external validity, potential issue may arise from the software
systems we used in our empirical study. Indeed, even if they are written in different
languages and their size is quite varying, we exploited only open source software
systems. In this context, usually developers are aware that their code will be read
by other people, and thus the quality of the employed vocabulary may be higher
than those of other development settings. To get a better insight on the presented
results, we plan to conduct a further investigation on commercial software systems.

Finally, as for conclusion validity, we are aware that our approach can provide
splitting and/or expansion that may not reflect the original intent of the program-
mers. Indeed, our goal was to compare our solution with current state-of-the-art
approaches.
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If the only tool you have is a hammer, you tend
to see every problem as a nail.

Abraham Maslow

5
A Kernel Based Approach for Clone

Detection

Automatic approaches for clone detection intrinsically require the def-
inition of a proper measure to compute the similarity between code
fragments (Section 1.4.1) However, as reported in classification of
code clones in Section 1.4.2, only Type 1 clones are represented by

exactly the same set of instructions, while the other three types involve lexical and
syntactic variations between the two fragments.

To cope with this issues, the similarity computation could not rely only on the
sole lexical information provided by the code, but additional information should be
considered, such as the syntactic structure or instructions dependencies. Further-
more, the applied similarity measure should be able to combine such information
in order to produce correct solutions.

To this aim, two Kernel-based solutions for clone detection are presented (Sec-
tions 5.1 and 5.2) in this Chapter that exploit different structural representation
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of the source code, namely Abstract Syntax Tree (AST) and Program Dependency
Graph (PDG) to define effective solutions for clone detection.

Kernel Methods [87, 167] have shown to be effective in approaches considering
the similarity between complex input structures such as trees and graphs (see
Section 2.4.2). However, these techniques have never been applied for software
maintenance tasks, thus representing one of the main contribution of the presented
approaches.

In Section 5.1 the description of a Tree Kernel-based clone detection technique
is provided.

The proposed approach exploits together syntactical (AST) and lexical infor-
mation (e.g., name of methods, variables, etc...) for the identification of software
clones up to Type 3.

The main drawback of this approach is that it could not be effectively applied in
the identification of Type 4 clones, as the definition of similarity it embeds mainly
considers the program text of the compared code fragments.

Therefore, to deal with Type 4 clones, the information about the program be-
haviour becomes particularly relevant.

As a matter of fact, most of the clone detection techniques that are able to
detect Type 4 clones [71, 101, 106] use Program Dependency Graphs (PDGs) to
represent the source code (see Section 1.4.3 for further details).

To this aim, we propose the application of Graph Kernels to PDGs, similarly to
what done on AST, to detect meaningful similar subgraphs.

However, as briefly described in Section 2.4.2, the main limitation of such ap-
proaches regards the computational effort they require, which is in fact much
larger than what is needed by Tree Kernels. Thus, to find a good trade-off be-
tween such cost and the information considered in the (sub)graphs comparison, we
are focusing on the application of Weighted Decomposition Kernels (WDK) [138]
(Section 2.4.2) as they enable to define specific criteria to reduce the total number
of comparisons.

An qualitative empirical evaluation has been conducted to asses the validity of
the two proposed approaches, considering the scenario-based evaluation presented
in [159]. Moreover, the Tree Kernel-based solution has been also quantitatively
assessed, comparing achieved results with those obtained by another related clone
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detection tool, namely clone digger [32, 33]
Finally, the Chapter concludes with a proposal of a mutation-based algorithms,

devoted to automatically generate clones, towards the definition of a supervised
kernel-based clone detection solution (Section 5.3).

5.1 Tree Kernels for Clone Detection

The key idea underlying our approach is to exploit a Tree Kernel to compute
similarities of source code fragments represented by means of ASTs.

In particular, to effectively define a novel Kernel-based solution for clone detec-
tion, it is required to identify a proper set of features characterising the information
of the domain, and to define an appropriate kernel function that is able to exploit
the structured nature of data.

All these aspects will be detailed in the next Sections. In particular, in Sec-
tion 5.1.1 provides a description of the adopted features, while defined kernel
functions are detailed in Section 5.1.2).

5.1.1 The Defined Features

The first crucial step to consider in the definition of ML algorithms concerns the
definition of an effective representation of the input data, namely the source code
fragments, and their corresponding set of features to be exploited in the learning
process.

As briefly introduced in the previous section, the basic idea of the proposed ap-
proach is to apply the similarity computation on source code fragments represented
by means of their corresponding AST.

The AST is a well-known and widely adopted code structure generated by static
program analysis algorithms, which is able to provide a tree structured represen-
tation of the syntactic information of a fragment of code. Each node of the tree
denotes a construct occurring in the source code. The syntax is “abstract” in
not representing every detail appearing in the real syntax. For instance, group-
ing parentheses are implicit in the tree structure, comments are disregarded, and
a syntactic construct like an if-then expression may be denoted by means of a
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single node with two branches. Furthermore, nested statement blocks correspond
to nested (sub)trees (Definition 2.21).

An Example of (partial) AST is depicted in Figure 5.1, together with the cor-
responding C code function from which it has been generated (Listing 5.1).

1 int function (int parameter){
2 int k = 10;
3
4 printf(”Hello, this is the function”);
5
6 int i = 0;
7 while (i < 7){
8 i += 1;
9 // do something cool

10 }
11 }

Listing 5.1: Excerpt of a C code

Figure 5.1: Example of a partial AST generated from the above code example.

However, it is worth noting that while internal nodes (represented in boldface
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in the Figure) convey syntactical information, leaves (in light italic in the Figure)
provide information about the names of variables and literals, called lexemes, used
through out the corresponding code

As a consequence, such different kinds of information could be exploited in the
similarity computation in order to distinguish the different possible code variants.
In fact, code fragments that share the same syntactical and lexical information
(Type 1 clones) are different from clones that shares only all or some syntactic
information, namely Type 2 and 3 clones respectively.

Therefore, to properly combine such information, the proposed Tree kernel
method is based on a set of four different features, which are used to annotate
the nodes of the AST, namely (I) IC (Instruction Class); (II) I (Instruc-
tion); (III) C (Context); (IV) Ls (Lexemes).

The Instruction Class represents the “class” of the instruction associated
to a node, such as Loop, Conditional Control, Assignment, etc. Intuitively, this
feature allows discriminating if two instructions, i.e., nodes of the AST, are com-
parable. For instance, a while statement can be compared with do while or for

statements since all belongs to the same class of instructions, i.e., Loop. On the
contrary, the same set of instructions are not comparable with an if statement
since the latter belongs to a different class of instructions, namely Conditional

Control.

The next feature is Instruction. It contains the token provided by the lexer
during the parsing process. This is the typical information considered by AST-
based approaches [20, 104].

Table 5.1 reports about some example instances of the features Instruction
Type and Instruction regarding the Java programming language.

The Context feature indicates the Instruction Class of the statement in
which the node is contained. The rationale behind this feature is to increase the
similarity value of two nodes if they appear in the same Instruction Class.

For example, considering the code reported in Listing 5.1, nodes corresponding
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Language
Instruction Instruction Type Instruction

for Loop for-loop
while Loop while-loop
if Conditional-Control if-statement

switch Conditional-Control switch-statement

Table 5.1: Instruction Type and Instruction features examples.

to the assignment expression i += 1 (Line 8) will be assigned Loop as for their
Context feature, since the whole expression appears in the body of a (while)
loop statement. Thus, when comparing two different code fragments, in case of
exactly the same instruction (the assignment expression in this case), the simi-
larity computation will take into account the two context of the code where the
expressions appear.

Nevertheless, the computation of this feature is based on the whole AST and
therefore requires a post-processing phase after ASTs construction.

Finally, the Lexemes feature associates to each node the set of lexemes of
the subtree rooted in that node. This allows taking into account also the lexical
information in the computation of the similarity among (sub)trees. In more details,
the lexemes feature is defined recursively:

(Leaf Nodes): Ls corresponds to the lexeme associated to the node itself;

(Internal Nodes): Ls corresponds to the union of all the lexemes associ-
ated to its subtrees with the minimum height.
In particular, only the information of the minimum height subtrees is consid-
ered since they should convey the closest lexical information for an internal
node. Moreover, this limits the amount of lexemes percolated through the
tree.

Figure 5.2 shows an example of features annotation considering some of the
nodes in the AST depicted in Figure 5.1. In particular, some values are worth
mentioning in order to better clarify the role of each of the defined features.
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Figure 5.2: Associated features to node of the AST reported in Figure 5.1.

In particular, let us note that the Context of the while node correspond to
Function-Body is the loop is not nested in any other block or statement. Differ-
ently, the context of the nodes labeled with < and = is equal to Loop as expected.
Furthermore, the Lexemes associated to the while node, contains the terms i

and 7 that have been propagated from the leftmost (and nethermost) subtree (See
Figure 5.1).

5.1.2 The Defined Tree Kernel

Tree Kernels evaluate similarity between two trees in a recursive fashion: (I) com-
puting similarities among nodes; (II) aggregating up this information. Thus, they
require a similarity measure on the nodes and a function that traverses recursively
the tree combining these similarity values. In our approach, we define two primitive
kernel functions m and k that operate on single nodes in terms of their features.
To combine results on the overall tree structure, we define the Tree Kernel K.

The binary function m (Eq. 5.1) determines whether two nodes (n1 and n2) are
comparable according to their Instruction Class. The function k (Eq. 5.2)
defines a value of similarity between compared nodes according to remaining three
features, namely Instruction, Context and Lexemes.

Please note that we use the notation n.f to denote the feature f (e.g., IC or
Ls) associated to the node n.
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m(n1, n2) =

1 if n1.IC = n2.IC;

0 otherwise.
(5.1)

k(n1, n2) =



1 if


n1.I = n2.I and

n1.C = n2.C and

n1.Ls = n2.Ls

0.8 if

n1.I = n2.I and

n1.C = n2.C

0.7 if

n1.I = n2.I and

n1.Ls ∩ n2.Ls ̸= ∅

0.5 if

n1.C = n2.C and

n1.Ls ∩ n2.Ls ̸= ∅

0.25 if


n1.C = n2.C or

n1.I = n2.I or

n1.Ls ∩ n2.Ls ̸= ∅

0 otherwise (no match)

(5.2)

Two nodes have maximal similarity (i.e., 1) if all the involved features have
the same values, while their similarity is 0 if they are totally different. In case
two nodes have some differences in their features, structural similarities are more
important than the lexical ones for detecting clones. Accordingly, their similarity
is 0.8 if they differ only in their lexemes lists. The similarity is 0.7 if the nodes are
in different contexts and share lexical information and are the same instruction.
If two nodes are within the same context and share some lexemes, but are two
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different instructions their similarity is 0.5. Finally, if they share only one feature
value, their similarity is 0.25.

These similarity values has been chosen according to a pilot experimentation
conducted on the original system used in the case study. This may represent a
possible threat for the empirical assessment of the approach. Therefore, we are
going to investigate first the effect of using different similarity values and then
define some heuristics to properly choose these values.

The Tree Kernel KAST is defined on the subtrees T1 and T2, whose roots are r1

and r2, respectively:

KAST (T1, T2) = m(r1, r2) ·

k(r1, r2) +
∑

n1∈Ch(ri)

max
n2∈Ch(rj)

K(t(n1), t(n2))

 (5.3)

where t(n) indicates the subtree rooted in n, while Ch(ri) denotes the list of the
children of the node ri. The index i, at each step, corresponds to the node between
r1 and r2 having less children: in this way, the function K is symmetric.

The rationale for defining the function K relies on the fact that we are interested
in the identification of the maximum isomorphic subtrees. Since the size of two
subtrees is not constant, their similarity value must be normalised in the range
[0, 1]:

Knorm(T1, T2) =
KAST (T1, T2)√

KAST (T1, T1) ·KAST (T2, T2)
(5.4)

Also Knorm is symmetric, and it is a Kernel [167]

5.1.3 Experimental Settings

The description of the experimental settings is divided in two different parts, one
for each step considered in the evaluation protocol. The first part (Section 5.1.3)
is devoted to the description of the so-called scenario-based evaluation [159] which
is preliminary performed in order to get useful insights and indications on the
defined similarity measure. On the other hand, the second part (Section 5.1.3) is
devoted to the description of the conducted comparative study.
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Scenario-based Evaluation

Figure 5.3: Editing Taxonomy Scenarios (extracted from [159])

First of all it is worth noting that the following evaluation protocol has been
also considered in the assessment of the Graph-kernel approach described in the
Section 5.2, and thus its description will not be further replicated.

In the survey by Roy et al. [159], authors proposed a qualitative approach to
compare and evaluate almost well-known existing clone detection techniques, called
scenario-based evaluation. In particular, such evaluation strategy defines a top-
down editing taxonomy based on a set of hypothetical program editing scenarios
that are representative of typical changes to copy/pasted code [191].

All the 16 proposed scenarios are represented in Figure 5.3.
The defined scenario are categorised in 4 different groups, corresponding to
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Systems
Cleaned Type 1 Type 2 Type 3

Methods 351 423 422 433
Methods per Class 6.38 7.82 7.84 8.40
KLOC 7.6 8.8 9.4 8.9

Table 5.2: Descriptive Statistics.

the four Types of code clones. Then, each scenario comprises possible editing
transformations to source code to generate clones according to those accepted
in the definition of the corresponding clone Type. For example, in case of the
editing Scenario S1, corresponding to Type 1 clones, only changes to layout and
to comments are applied. On the other hand, in case of Scenario S3, added or
changed statements are also considered.

As a result, authors compared the performance of each clone detection tech-
niques in each scenario, and obtained results show that Scenario S1 is the easiest
one, while, as expected, Scenario S4 is hard for most techniques [159]. Moreover,
no existing techniques can perform very well in all the given scenarios [191].

Comparative Study

Although our approach is general and language-independent, the implemented
prototype detects clones at method level and supports systems written in Java.

To assess the approach and the tool prototype, we considered a Java software
system we are particularly familiar with. This system is a typical academic appli-
cation, developed at the University of Naples “Federico II” by a Master student in
Computer Science.

The software system has been checked against the presence of up to Type 3 clones
by one of the authors. The tool CloneDigger [32] and our prototype have been
used to check the presence of clones. All the detected clones have been removed
through refactoring operations. This produced the cleaned software system used
in the case study.

We manually and randomly injected in the code of the cleaned software system
some artificially created clones, thus creating three mutations of the cleaned soft-

151



ware system. Successively, we verified whether our tool was able to detect all the
injected clones. Some descriptive statistics of the cleaned system and the mutated
ones are reported in Table 5.2. It is worth mentioning that we did not analyse
the original system since it contained a few numbers of clones, thus making it not
meaningful for assessing the proposed approach.

Furthermore, we applied CloneDigger to get an indication on whether our ap-
proach outperform an AST based approach. We considered here clones at the
method level taking into account only methods that have at least one instruction,
as in [157].

In this preliminary investigation we considered three different experimental tri-
als, one for each type of clone. Thus, in each trial we injected only one type
of clones at a time and then applied the two detection tools. Regarding Type
3 clones, we considered both the definitions of Structure-substituted clone and
Modified clone [175].

We used the precision measure to assess the correctness of the results, while the
completeness has been estimated by employing the recall measure. Precision is
the fraction of real clones identified among all the retrieved ones, while recall is
the fraction of real clones among all the actual ones:

precision =
#(actual clones identified)

#(total candidates clones identified) (5.5)

recall =
#(actual clones identified)
#(total actual clones) (5.6)

Since precision and recall measure two different concerns, we used F-measure
(F1) to get a trade-off between the correctness and completeness:

F1 =
2 · precision · recall
precision+ recall

(5.7)

F1 gives the same relevance to correctness and completeness and may be intended
as an estimation of the authoritativeness of the clones identified by the approach
(i.e., how much automatically identified clones resembles the group of clones iden-
tified by an expert).
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5.1.4 Results and Discussions

In the following the obtained results for the qualitative and quantitative evaluation
of the Tree Kernel based technique are presented.

Results obtained for the scenario-based evaluation of the approach are reported
in Figure 5.4

Figure 5.4: Results for the qualitative evaluation of the proposed Tree KernelKAST clone detection
technique.

Obtained results show the effectiveness of the proposed technique in dealing with
all the considered scenarios. Duplications in the first two Scenarios, namely S1

and S2, are all correctly identified as clones with returned similarity values ranging
from 0.9 up to 1.0. Moreover, very good results have been also obtained for the
other two Types of clones, i.e., Type 3 and Type 4., showing good potentials in
correctly identifying clones in almost every considered scenario.

Nevertheless, it is worth noting that the considered scenarios for Type 4 clones
do not take into account in their definitions the extended classification proposed
by Kim et al. [99]. Moreover, the first three ones, namely S4a, S4b, and S4c,
correspond to very trivial modifications and are not very good representatives
for “real” Type 4 clones. As a matter of fact, the presented approach assigns a
similarity value equals to 1.0 for all three of them. This is because the definition
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of the KAST Kernel function intrinsically takes into account the case of statement
inversions during the traversal of the compared tree structures.

Conversely, the worst result has been obtained with the S4d Scenario, corre-
sponding to the Type 4 clone that involves replacements with semantically equiv-
alent control structures, also indicated as Type4a [99].

Therefore, the presented qualitative assessment confirms our expectations on
the very good potentials of the proposed Tree Kernel technique in dealing with
clones up to Type 3.

Furthermore, these expectations have been also met in results achieved in the
quantitative evaluation.

In particular, for the Type 1 clones our tool and CloneDigger were able to detect
all the clones without any false positive. So for both the tools we got F1 = 1. The
same holds for Type 2 clones. Thus, both the tools expressed the potential of
the AST-based approaches. In fact, independently from the used identifiers and
literals they were able to detect all the methods with the same syntactic structure.

Some further considerations are needed for Type 3 clones. In particular, it is
worth mentioning that it cannot be easy to find a crisp boundary to identify Type 3
clones, since the definition does not specify a limit in the number of differences that
could exist between two fragments of code. To deal with this issue, we imposed
different threshold values on the minimum similarity necessary to classify two code
fragments as clones. This parameter can be easily tuned by a software engineer
during the clone detection process.

Figure 5.5 summarises the results achieved to detect Type 3 clones by using
different thresholds values. The results indicates that the choice of the threshold
values strongly affects the detection performance. Indeed, high threshold values
may miss clones with a large number of modifications and causes a drop in recall.
On the other hand, for values larger than approximately 0.7 the precision is close
or equal to 1, as such conservative approach is not affected by false positives.
Conversely, lower threshold values improve the recall, but at the cost of introducing
false positives. The best trade-off between precision and recall corresponds to the
maximum in F1 (i.e., 0.74) and is achieved for a threshold value equal to 0.7.

Worse results were observed by applying CloneDigger on our data set. In par-
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Figure 5.5: Precision, Recall and F-Measure plot of achieved results for Type 3 clones

ticular, on the Type 3 clones we obtained: precision = 0.35, recall= 0.41, and
F1=0.38. These values are far from our results and have been obtained after a
heavy tuning of the many parameters of the considered clone detector. A descrip-
tion of obtained results are shown in Figure 5.6.

Figure 5.6: Bar chart summarising obtained results on Type 3 clones by CloneDigger [32] and Tree
Kernel Clone Detector.
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A possible drawback of Tree Kernels is the running time. This suggested us to
accomplish a further investigation to compare the performances between our tool
and CloneDigger. To this end, we ran both the detectors, on the cleaned system
and the different mutations, on a laptop equipped with a 2Ghz Intel Core 2 Duo
process with 4 GB of RAM.

The execution time of CloneDigger took about 10 seconds on average, while 30
seconds was the average time of our tool. It is worth noting that the computation
time of our tool is nearly the same on each mutated system.

To preliminary assess the scalability of our detector, we also used it on a bigger
Java project, namely the Eclipse-jdtcore (about 150K LOC). The needed time to
analyse this system was about 10 minutes. This is acceptable in case the detection
is performed off-line.

Threats to Validity

Construct validity threats concern the relationship between theory and observa-
tion. Precision, recall, and F-measure well reflect the performance of our approach.
However, the issue may be concerned to the systems used to assess the approach.
We tried to mitigate this threat by injecting clones in a random and controlled
way in a software system on which we were particularly familiar on.

Regarding the external validity, an important threat is related to the size of the
software system and to the fact that it was developed by a student. The rationale
for selecting this system relies on the fact that we could easily have an oracle to
evaluate the cloning results. Future work will be devoted to assess the approach
on larger software systems, thus also assessing its scalability. The evaluation of the
approach on commercial software systems represents a possible future direction for
our work. The assessment of the approach on public benchmarks [21, 157] also
represents a possible future direction.

5.2 Graph Kernels for Clone Detection

The second proposed technique for clone detection leverages the flexibility provided
by the WDK (Graph) Kernel formulation (Definition 2.34) to define a novel Kernel-
based function able to compute the similarity of code fragments represented by
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means of a PDG. In particular, Sections 5.2.1 introduces the main definitions of
the PDG and the formulation of the proposed Graph Kernel. Then, Section 5.2.2
describe the preliminary empirical evaluation conducted to assess the presented
technique.

5.2.1 WDK for Dependency Graphs

A Program Dependency Graph is a graph representation of the source code of a
procedure [67]. Basic statements, such as variable declarations, assignments, and
procedure calls, are represented as nodes in the PDG. Moreover, every node has a
single associated type, corresponding to the particular code structure it refers to.
The list of types for the nodes in the PDG is reported in Table 5.1, which illustrates
how the source code is decomposed and mapped to program nodes [124]. On the
other hand, edges in the graph correspond to data and control dependencies. In
particular:

Definition 5.1. (Control Dependency Edge) [124]: There is a control de-
pendency edge from a “control” node to a second program node if the truth of the
condition controls whether the second node will be executed.

Definition 5.2. (Data Dependency Edge) [124]: There is a control dependency
edge from program node n1 to n2 if there is some variable var such that:

• n1 may be assigned to var, either directly or indirectly through pointers.

• n2 may use the value in var, either directly or indirectly through pointers.

• There is an execution path in the program from the code corresponding to n1

to the code corresponding to n2 along which there is no assignment to var.

Definition 5.3. [124]: The Program Dependency Graph G for procedure P

is a 4-tuple element G = (V,E, µ, δ), where:

• V is the set of program nodes in P ;

• E ⊆ V × V is the set of dependency edges in P ;
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Type Short description
assignment Assignment expression
increment Increment expression (++,+,−−, . . .)
return Function return expression

expression General expression except return, assignment or increment.
declaration Declaration of a variable or a formal parameter

jump Goto, break, or continue
call-site Call to other procedures.
control Control structures (loops, conditionals)

switch-case Case or Default
label Program labels

Table 5.1: Types for nodes in a PDG (Adapted from [124])

• µ : V → S is a function assigning the types to program nodes, i.e., n 7→
µ(n) = tn : tn ∈ {call− site, return, . . .};

• δ : E → T is a function assigning dependency types, either data or control,
to edges, i.e., e = (n1, n2) 7→ δ(e) = te : te ∈ {data, control}.

Therefore, a PDG is a directed, labelled graph (Definition 2.9) which represents
the data and control dependencies within one single function. In other words, the
PDG represents how the data flows between the statements, and how statements
control or are controlled by other statements [124].

Figure 5.1 shows the PDG corresponding to the C function reported in List-
ing 5.1. In particular, program nodes are labeled with their corresponding type.
Moreover, data and control edges are shown in solid and dashed lines, respectively.

Therefore, every node and edge in a PDG is intrinsically featured by a corre-
sponding type. These types will represent the features associated to elements of
the graph and considered by the defined kernel functions.

The formulation of the WDK requires the definition of two kernel functions,
namely the selector and the contexts (see Definition 2.34). In particular, the aim
of the selector function is to filter the different comparison between all the possible
substructures, while the context has the purpose of traversing the substructures
for further comparison.
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Figure 5.1: Example of the PDG corresponding to the function reported in Listing 5.1. Nodes are la-
belled with their corresponding types, while data and control edges are depicted in solid and dashed
lines

.

Similarly to what defined for the Tree Kernel function, we define the the selector
kernel function δ̂* as a filtering function based on the type of the two compared
nodes. More formally:

δ̂(n1, n2) =

1 if µ(n1) = µ(n2);

0 otherwise.
(5.8)

On the other hand, the formulation of the context kernel function requires some
other preliminary definitions:

Definition 5.4. (Neighbourhood Types Set) Let n be a program node of a
PDG. The neighbourhood types set of the node n is given by the set of all the

*We indicate with δ̂ the selector kernel function considered in the WDK formulation to not
lead to confusions when referring to the neighbourhood of a node of the PDG.
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types of the nodes in the neighbourhood of n, i.e.,

M(δ+(n)) = {M(u), ∀u ∈ δ+(n)} (5.9)

Definition 5.5. (Neighbourhood restricted to a type) Let n be a program
node of a PDG, and T a given program node type. The neighbourhood of the
node n restricted to the type T corresponds to:

δ+(n)[T ] = {u | ∀u ∈ δ+(n) ∧M(u)} (5.10)

Proposition 5.1. (Program Nodes Intersections):
Let V and V

′ the sets of program nodes of two different PDGs G and G
′. The

intersection set of their two program nodes is defined as:

V∩ = V ∩ V
′
= {n ∈ V ,n

′ ∈ N
′ | σ(n, n′

) = 1} (5.11)

where σ corresponds to the selector kernel function defined in Equation 5.8.

Remark 5.1. Proposition 5.1 leads to the following formulation:

∀n ∈ V, n
′ ∈ V

′
,M(δ+(n)) ∩M(δ+(n′)) = M(δ+(n) ∩ δ+(n′)) (5.12)

Then, from Equation 5.12, we define

M+(n, n
′
) = M(δ+(n) ∩ δ+(n

′
)), ∀n ∈ N, n

′ ∈ N
′ (5.13)

In conclusion, the final formulation of the WDKPDG is reported:
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Definition 5.6. (WDK for Dependency Graphs):
Let n ∈ V and n

′ ∈ V
′ be the nodes of two distinct PDGs, G and G

′. The WDK
for Dependency Graph is defined as:

WDKPDG(n, n
′
, l) = λ · δ̂(n, n′

) + (1− λ)
∑

T∈M+(n,n′ )

kmax_ctx(n, n
′
, T, l)

(5.14)

where 0 ≤ λ ≤ 1 is a parameter that controls the penalisation factor of the traversed
contexts, and l is a value indicating the length of the maximum traversable path in
the context.
Moreover, the kernel function kmax_ctx on the contexts is defined as:

kmax_ctx(n, n
′
, T, l) =


1

|δ+(n)[T ]|
·
∑

u∈δ+(n)[T ]
max{WDKPDG(u, u

′
, l − 1),

∀u′ ∈ δ+(n
′
)[T ]} if l > 0

0, otherwise
(5.15)

assuming, without loss of generality, that |δ+(v)[T ]| ≤ |δ+(v′)[T ]|.

Therefore, the basic idea is to recursively iterate the exploration of the context
admitting at most a number l of recursions. This strategy has two main advan-
tages: it allows to bound the total number of performed comparisons, while, on
the other hand, this makes the whole kernel able to handle the cases of possible
loops in the graph. Furthermore, the similarity computation recursively selects at
each step the substructures that provide the highest similarity values.

5.2.2 Preliminary Evaluation

A preliminary evaluation of the proposed Graph Kernel clone detector has been
performed, generating the analysed PDGs using the Code Surfer tool.† The main
purpose of this preliminary investigation is to analyse the quality of clones, namely
the Types, that the WDKPDG Kernel is able to detect. For the sake of compara-

†http://www.grammatech.com
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bility, the empirical study considered the scenario-based evaluation, already used
for the qualitative assessment of the proposed Tree Kernel. The description of
the experimental settings is reported in Section 5.1.3, while obtained results are
reported in Figure 5.2

Figure 5.2: Results for the qualitative evaluation of the proposed Graph KernelWDKPDG clone
detection technique.

Results show the very good potentials of the proposed Graph Kernel function
for clones. In fact, the WDKPDG kernel outperforms the KAST Tree kernel in
dealing with the Type 3 and Type 4 considered clones. This is because the PDG
is inherently unaffected by statement inversions since the structure only contains
information about the relationships among the different instructions. As a conse-
quence, the WDKPDG seems to be a very promising technique for the identification
of Type 4 clones, which are usually the harder to detect [159], and represent the
real “frontier” for researchers. However, the improvements in results is traded-off
by a penalisation in the overall (asymptotically) computational complexity, w.r.t.
the Tree Kernel based solution.

Nevertheless, to deal with this issue, the implemented prototype tool leverages
the benefits of the Message Passing Interface (MPI) parallel framework. In partic-
ular, since the similarity computation could be performed in isolation, the Kernel
applies in parallel the comparison of multiple PDGs at the same time, thus lower-
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ing the total computation time necessary for the whole clone detection process.

5.3 Towards a Supervised Kernel Learning Approach
for Clone Detection

To quantitatively evaluate the effectiveness of a clone detection approach, it is
necessary to exactly know which clones occur in the source code of the analysed
software system. However, it is widely recognised that this task is usually not
feasible when considering an actual software system [104].

In other fields of empirical software engineering, a possible solution could con-
sist in using a public benchmark. Unfortunately, this is not the case with clone
detection, since to date there is no benchmark for deeply quantitatively assessing
clone detection techniques. In fact, the public data sets used in [21] can be only
employed to get an indication of the correctness of the cloning results since only a
small fraction of the actual clones is tracked.

In more details, Bellon et al. in [21] defined a pooling process [130] where a lim-
ited set of results, gathered from different clone detection tools, has been manually
cross-checked. However, the effect of such a procedure is that there is no guarantee
of completeness and so only an underestimation of the actual performance can be
provided.

From a ML perspective, in this scenario only unsupervised techniques, such as
clustering (Section 3.3), can be applied. However, clustering approaches guide
the learning process only by the similarity computation. Conversely, supervised
techniques could be potentially more effective as they could be trained in order to
automatically learn and infer properties and characteristics of code clones.

Nevertheless, a typical problem in developing supervised ML approaches regards
the necessity to arrange two different sets of annotated data, namely the training
and the assessment sets.
This problem is particularly important in the case of clone detection where these
labeled data sets are even more difficult than usual to produce, since a manual
annotation of large systems is infeasible. Furthermore, examples gathered from
the dataset provided by Bellon et al. [21] are not so effective for training new
algorithms, since they present a bias towards the clones detected by the solutions
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used to produce the data set.
As an alternative, in this section an algorithm to construct the training data by

simulation is presented. In particular, these data are automatically generated by
modifying parts of the code of the analysed system, in order to be used afterwards
to train a classifier for clone detection.

To assess the effectiveness of the proposal, results gathered by the application of
the Tree Kernel-based clone detection (Section 5.1) approach, considering different
clone types, and using different similarity thresholds. In particular, the empirical
evaluation aims to investigate the validity of generated data by comparing achieved
results with those reported in Section 5.1.4.

5.3.1 Automatic Injected Code Clones

The simulation process artificially produces clones by modifying parts of the input
project and injects them by following predefined probability distributions. In this
way, the quality of the training set can be controlled without any need of imposing
restrictions on its size. A Kernel-based classifier is then trained on this data set.

To this aim, we designed and implemented an algorithm able to inject clones
in the source code. In particular this algorithm would allow us to automatically
generate a training set and to apply a more reliable strategy in the definition of the
supervised Kernel learning process. The main core of our clone injection algorithm
is represented by the function InjectClone, whose Pseudocode is reported in
Algorithm 10. This algorithm is able to generate function clones and to track
their location in the source code, thus obtaining a labeled dataset of clones of the
given input Type.

In more details, the algorithm starts its computation by parsing the stream
of source code of the analysed software system in order to extract all the target
functions (Line 2). Afterwards each function is processed one at a time, deciding
whether or not it has to be cloned (Line 6) and how many clones should be gen-
erated (Line 9). In particular, we consider that each function has a probability
probCloning of being cloned. Moreover, if a function has to be cloned, the num-
ber of clones to generate is randomly chosen according to a geometric probability
distribution with parameter 0.5, namely Pr(nCopies) = 0.5n (Lines 9 - 11).
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Finally, the algorithm invokes the procedures Clone and Inject to perform the
generation and the injection of clones in the source code respectively, and returns
the tracking info of generated data.

The Pseudocode of the Clone procedure is reported in Algorithm 11.

Algorithm 10 Clone Injection Algorithm
Input: sourceCode : Source code of the system under analysis;
Input: type : Type of the clones to generate;
Input: probCloning: (Constant) The probability of functions/methods to be cloned.
Output: The source code of the system with randomly injected clones;
Output: The tracking info of injected clones in the source code.
1: function InjectClones(sourceCode, type)
2: functionList← parseAndExtractFunctionsFrom(sourceCode)
3: clonesTrackInfo← ∅
4: for each: function ∈ functionList do
5: probGenerateClone← random(0,1)
6: if probGenerateClone ≤ probCloning then
7: nCopies← 0
8: dice← random(0, 1)
9: while not (2−(nCopies+1) ≤ dice ≤ 2−nCopies) do

10: nCopies← nCopies+ 1
11: end while
12: for i = 1 to nCopies do
13: newClone← Clone(function, type)
14: trackInfo← Inject(sourceCode, newClone)
15: add(clonesTrackInfo, trackInfo)
16: end for
17: end if
18: end for
19: return clonesTrackInfo

20: end function

The Clone procedure is able to perform the generation of clones up to Type 4
by employing a set of different procedures to apply specific modifications to the
program text (mutation) of the target function. The invocation of such procedures
is performed in accordance with the Type of the clone to generate. We are not
reporting the Pseudocode of such functions in the current document due to space
limitations.

The first mutation operation is performed by the CopyAndChangeLayout func-
tion (Line 2) that is always applied to the target function, regardless the se-
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Algorithm 11 Clone Generation Algorithm
Input: function : Target function/method of the analysed system to clone;
Input: type : Type of the clone to generate;
Output: The artificially generated clone of the input function.
1: function Clone(function, type)

▷ This mutation operation holds for every Type of clones
2: clone← CopyAndChangeLayout(function)
3: if type ≥ 2 then

▷ This mutation operation is also applicable to Type 3 and Type 4 clones
4: SubstituteIdsAndLiterals(clone)
5: end if
6: if type = 3 then
7: AddOrDeleteStatements(clone)
8: else if type = 4 then
9: ReorderStatements(clone)

10: SubstituteEquivalentControlStructures(clone)
11: end if
12: return clone

13: end function

lected clone Type. This is because all the four definitions of clones allow some
modification in the layout of the program text. The substitution of identifiers
and literals is performed for Type 2 clones up to Type 4 ones, by invoking the
SubstituteIdsAndLiterals procedure (Line 4). In particular, such procedure
processes every literal and identifiers of the input function, each of which has a
probability probSubstituteId of being substituted with a randomly generated
identifier.

When dealing with Type 3 clones, in addition to mutations applied for Type
2, other additional operations should be considered. Indeed, in a Type 3 clone,
two fragments of code may differ also in the statements, that could be added
or removed (Line 7). Therefore, we assigned the same probability (i.e., 1/2 for
each operation) to the insertion of a new statement randomly extracted from the
considered software system and the deletion of a statement. Furthermore, we
impose an upper bound to the total number of operations which is a randomly
generated fraction of the total number of statements in the analysed function. In
this way, we may avoid the generation of a totally different function which will not
be an actual clone of the target one.

Finally, in case of Type 4 clones, the mutation operations include the reorder-
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ing of statements (Line 9) and the replacement of equivalent control structures
(Line 10). In particular the former is applied only to declaration and indepen-
dent statements, while the latter substitutes possibly occurring control structures
with other semantically equivalent. For instance, for loops may be replaced with
while loops, as well as if− elseif conditions substituted by switch− case

structures.

5.3.2 Experimental Settings

In the preceding Section we discussed the limits of the existing data sets for clone
detection and described how an artificial data set can be produced. Although
such data set aims at training, we used it also to assess the Tree Kernel technique
described in Section 5.1. Even if we can not assume that the performance obtained
on artificial data will generalise to the real case, these experiments allow us to
obtain a better understanding of the force and weakness of a Kernel based clone
detection approach.

Dataset

The considered target system is an academic application implemented in Java and
developed by a Master student in Computer Science at the University of Naples
“Federico II”. As first step, the system has been manually analysed to remove the
clones introduced during implementation. Afterwards, we applied to this cleaned
code the Tree Kernel-based clone detector (see Section 5.1). This is to verify
whether it detected either any false clone or actual clones which had escaped the
manual search. We then applied the clone generator on this system, limiting the
generation of clones to Type 3, to make results comparable with ones reported in
Section 5.1.4.

Research Questions and Variables

We assessed in this investigations the three following research questions:

RQ1 : Are the clones identified by the approach correct?

RQ2 : Is the group of clones identified by the approach complete?
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Clone Type Threshold Precision Recall F1

Type 1 N.A. 1.0 1.0 1.0
Type 2 0.7 0.6 0.9 0.7
Type 2 0.8 0.7 0.6 0.6
Type 3 0.7 0.6 0.8 0.7
Type 3 0.8 0.6 0.8 0.7

Table 5.1: Summary statistics of the results

RQ3 : Does the group of clones identified by the approach comply a good com-
promise between correctness and completeness?

Note that the definition of the third research question is motivated by the fact
that the completeness requirement is opposite to the correctness one, as the former
suggests outputting a large number of candidate clones, while the latter implies a
more conservative approach, where only quite likely clones are detected.

As already done in previous experimental evaluation, the Precision (Equation 5.5
has been used to measure the correctness of the results, while the completeness has
been assessed by employing the Recall measure (Equation 5.6). Finally, to assess
whether the approach is effective (RQ3), we computed the F1 measure (Equa-
tion 5.7).

5.3.3 Results and Discussion

Since the Tree Kernel based approach does not include any formatting detail in its
internal source code representation, Type 1 clones include no variability, and thus
no Similarity threshold is necessary. With this kind of clones, it is easy to obtain
1.0 as F-Measure.

Regarding the other two types of clones, some modifications in the identifiers
(Type 2 and 3) and in statements (Type 3 only) have been performed. In these
cases, larger values of the threshold (e.g. 0.9) produce a small number of candi-
dates. As a consequence, the recall is low, since only code fragments which are
very similar are considered as clones. This effect is particularly evident for Type
3 clones, where no clones at all are detected. On the other hand, threshold values
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like 0.7 and 0.8 lead to better performance. In particular, the value 0.7 seems to
improve completeness without affecting correctness, and is therefore preferable.
Such attained results are strongly comparable with those reported in Section 5.1.4
in terms of all the three indicators we are considering, namely correctness, com-
pleteness and effectiveness, thus confirming the validity of artificially generated
data.

Threats to Validity

We focused our attention in this section on the construct validity and the exter-
nal validity. Construct validity threats concern the relationship between theory
and observation. Precision, Recall, and F1 well reflect the performance of the
proposed approach. However, the used data set has been obtained by manually
removing source clones and then introducing new clones of Types 1, 2 and 3 in a
controlled way. The performed mutations may bias the results since they could
affect the values of these measures. However, the defined mutation approach has
been conceived to reduce this effect on the results as much as possible.

To increase our awareness on the achieved results we also plan to assess the
validity of the results using different measures to determine various aspects of
detection quality [21].

External validity threats regard the generalisation of the results. An important
threat is related to the studied software system. In particular, the size and the
fact that the system was developed by a student may threaten the validity of the
results. Also, the fact that this system was implemented in Java may affect the
generalisation of the results. To this aim, we plan to conduct case study repli-
cations on commercial software systems implemented in different programming
language. This will increase our awareness on the validity of applying Kernels
Methods in the detection of software clones. Regarding the scalability, software
systems with different size and clone density will be studied in the future.
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The greatest challenge to any thinker is stating
the problem in a way that will allow a solution.

Bertrand Russell

6
Conclusions

Software maintenance is a key phase of the software development lifecycle, and
consequently many research efforts are devoted to provide new solutions to im-
prove its effectiveness. Nevertheless it represents one of the most expensive and
challenging phase of the whole development process. In particular, most of the
effort and the time necessary for maintenance activities is spent on understanding
the system and its source code.

Indeed, the documentation of large software systems is usually not present or not
up-to-date, and so the source code remains the only valuable and reliable source
of information for software maintainers. To this aim, most of the automated
maintenance tools gather information directly from the source code in order to aid
the comprehension of the system, and thus supporting the practitioners in their
duties.

Among the different maintenance tasks, this thesis presented the proposed re-
search contributions to three specific problems, namely software re-modularisation,
source code vocabulary normalisation and clone detection. In particular, all the
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presented approaches are based on the definition and the application of unsuper-
vised machine learning techniques, which provide powerful and flexible solutions
to cope with the different considered problems.

A summary description of the proposed approach, together with an outline
of possible future research directions are described in the following Sections. In
particular, Section 6.1 concerns the problem of software modularisation, while
Section 6.2 deals with the problem of code normalisation. Finally, Section 6.3
summarises contributions for clone detection, and concludes the Chapter.

6.1 Software re-modularisation

Summary: A common scenario that has to be faced during the maintenance
of a software system is the lack of reliable architectural documentation, that of-
ten is missing or not properly up-to-date. In this situation, reverse engineering
tools have to be employed to align it with the actual implemented software ar-
chitecture [132, 164]. These tools usually rely on clustering-based approaches to
group sets of related classes, exploiting some structural-based measures of similar-
ity among software artefacts.

In this thesis the use of a similarity measure based on lexical information for
the clustering related software artefacts has been proposed. In particular, the
solution investigates the effects of mining the lexical information gathered from
six independent vocabularies: Class Names, Attributes Names, Function Names,
Parameter Names, Comments, and Source Code Statements.

The results of the clustering on these features have been then evaluated using
two criteria: Authoritativeness and Non-Extremity Distribution (NED). These
have been applied on 19 open source Java systems.

The first interesting finding we gathered is that considering the lexical informa-
tion gathered from the six considered zones always improves results over the “flat”
configuration, namely all the terms from the zones merged together.

The other key finding is that each project has its own peculiarities as for the
distribution and the relevance of the terms within these zones. Thus, to exploit
at its best the potentials of the lexical information embedded in a software sys-
tem, a mechanism to automatically weight the importance of each vocabulary is
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absolutely required.

In particular, the presented contribution leverages the Expectation-Maximisation
algorithm based on different initialisation strategies and adopted probabilistic
models, namely Gaussian, Bernoulli e Multinomial.

We got the empirical evidence that the introduction of a weighting technique
highly improves results, with a mean enhancement of 40% in terms of authorita-
tiveness, on the considered dataset.

The last contribution concerns the adopted clustering that is based on the ap-
plication of two well-known clustering strategies, namely the K-Medoid and the
Group Average Hierarchical Clustering, which have been properly customised to
make them more suited for the considered domain.

The final results show that lexical information, if properly weighted, can be
successfully employed for software clustering, since it provides better results than
unweighted ones.

Future research directions: Several are the possible future direction. The
first and the most easy to attain is to extend the preprocessing phase using the
LINSEN algorithm, and to automatically associate labels to the clusters.

At the same time, another direction could be the investigation of software sys-
tems implemented in different object oriented programming languages. This could
be easily attained thanks to the flexibility inducted by srcML. Moreover, we will
investigate the use of commercial software systems, rather than open source ones.

At the same time, it will be very interesting to investigate the possibility to
infer potential relationships between the relevance of each zone, and some process-
specific elements, such as the adopted development methodology.

Finally, the possibility of merging lexical information with the structural one,
coming from the original structure of the classes within the packages will be inves-
tigated. To this aim, we plan to investigate the applicability of Kernel Methods
to software re-modularisation.
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6.2 Source code vocabulary normalisation

Summary: Lexical information provided by programmers in the source code
identifiers is crucial for many software analysis/maintenance tools, but in order to
be properly exploited, identifiers must be processed, to split concatenated words
and to expand abbreviations.

This thesis describes a novel technique, called LINSEN, that is able to map a
given identifier to the set of corresponding dictionary words. The technique is
based on a pattern matching algorithm, the BYP, and is suitable to deal with
both the splitting of an identifier into its constituent tokens and the expansion of
possible occurring abbreviations.

The proposal has been implemented in a prototype we have assessed using 24
open source software systems, mainly written in C/C++. Results highlight that
our proposal outperforms three state-of-the-art solutions in terms of accuracy or
F-Measure, showing also interesting computation time even in its currently un-
optimised implementation.

One of the main features of the proposed approach regards the usage of multiple
dictionaries of words, providing information from different domains, in order to
tackle the problem of possible ambiguities.

Future research directions: As future work, there are many directions that
could be investigated to gain a better insight on the covered phenomena.

The first interesting one concerns a more detailed investigation on the impact of
the choice of the different exploited dictionaries on the effectiveness of the LINSEN
algorithm. Similarly, another interesting extension of the presented work concerns
the introduction of more programming-oriented dictionaries, such as the ones ex-
ploited by Enslen [61] and Hill [85], in order to compensate the actual limitation
of the approach in dealing with abbreviations related to specific code structures,
such as custom data types (e.g., DHT as for Dynamic Hash Table).

A replicated study is also required, involving commercial software systems, in
order to understand whether the open source development scenarios could bias the
results.

Moreover it would be very interesting to perform a psycho-linguistic study, in-
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volving a number of programmers, in order to understand the relation between
abbreviated and expanded forms of identifiers, in ambiguous cases. The outcome
of this study could provide interesting indications which could be embedded in
new versions of the proposed approach.

6.3 Clone detection

Summary: The presence of software clones may lead to difficulties to perform
maintenance tasks (e.g., corrective maintenance operations). Accordingly, there is
a need for tools able to detect clones within software repositories [21].

Although many research efforts have been devoted to this end, there is still
the needed for approaches that combine more techniques and/or information to
effectively detect code clones [159].

The research contributions presented in this thesis for clone detection are focused
on Kernel methods, exploiting them as a powerful and flexible tool for measuring
“similarity” between code fragments.

Indeed, Kernel Methods are a natural candidate for learning problems involving
richly structured objects, and the two proposed solutions exploit structural rep-
resentation of the source code, namely the Abstract Syntax Tree (AST) and the
Program Dependency Graph (PDG), in order to compute the similarity between
code fragments. To this aim, Tree and Graph Kernel based techniques have been
proposed, respectively.

In more details, the first solution uses a proper set of features to annotate the
nodes of the AST and a set of kernel functions to measure the similarity among
subtrees. On the other hand, the latter defines a proper WDK Graph Kernel for
clone detection exploiting the peculiarities of nodes and edges of the PDG.

Both the presented techniques have been empirically assessed in an qualitative
and quantitative evaluation. The qualitative evaluation considers the different
editing scenarios proposed by Roy et al. [159], to get insights and indications on
the potential capabilities of the Kernel-based code similarities for clones. On the
other hand, the quantitative evaluation has been performed by comparing achieved
results with other state-of-the-art techniques

The promising results in clone detection using kernels on AST and PDG are
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encouraging, showing the potential of structured kernels in uncovering similarities
between fragments.

In more details, the Tree Kernel approach has been applied on a Java software
system manually cleaned of all the cloned methods. Successively, this cleaned
system has been mutated to randomly introduce clones of Types 1, 2, and 3.
Clones at method granularity level have been considered in the experimentation,
and obtained results have been compared to those obtained by another pure AST-
based technique on the same dataset. The results indicated that Tree Kernels are
particularly suitable to detect up to Type 3 clones, outperforming the considered
state-of-the-art technique.

Conversely, the Graph Kernel algorithm has been applied on two open source
projects, namely Apache and Python, and results compared with another graph-
based state-of-the-art technique. Results show an improvement over the existing
technique on a publicly available oracle.

In addition, a promising new method for the automatic generation of labeled
clones benchmark is presented as well.

Future research directions: A first improvement that should be made is to
apply a more extensive evaluation of the Graph Kernel approach for clones in
order to corroborate the promising results obtained in the performed qualitative
evaluation. In particular, these results should also compared with the Tree Kernel
approach in order to investigates the benefits provided by both the two proposed
solutions.

Another important research direction to investigate is the one that motivated
the development of the mutation algorithm presented at the end of Chapter 5
(Section 5.3). In particular, the whole main objective of this work is to try to set
up a Kernel Learning framework based on a supervised learning strategy.

The wider variability of code found within functional modules requires an adap-
tation of kernels in order to effectively detect them. The problem can be addressed
by combining kernel redesign with kernel learning approaches [78], where the sim-
ilarity measure is not fully specified a-priori, but is learned from examples as a
combination of similarity patterns (e.g. involving different types of lexical and
structural information). Logic kernels [70, 111] are particularly promising in this
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context, as they allow to encode arbitrary domain knowledge concerning relation-
ships between code fragments from which similarity measures are to be learned.
As a result, in this scenario, no more feature weighting schemas would be necessary
as the corresponding “importance” of each feature is automatically inducted by
the training algorithm.
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