
 via Claudio, 21- I-80125 Napoli - [+39] (0)81 768 3813 - [+39] (0)81 768 3816

 UNIVERSITA' DEGLI STUDI DI NAPOLI FEDERICO II

 Dottorato di Ricerca in Ingegneria Informatica ed Automatica

DEPENDABILITY ASSESSMENT OF

WIRELESS SENSOR NETWORKS WITH FORMAL METHODS

ALESSANDRO TESTA

Tesi di Dottorato di Ricerca

Marzo 2013

Dipartimento di Ingegneria Elettrica e delle Tecnologie dell'Informazione

Comunità Europea

Fondo Sociale Europeo

 via Claudio, 21- I-80125 Napoli - [+39] (0)81 768 3813 - [+39] (0)81 768 3816

 UNIVERSITA' DEGLI STUDI DI NAPOLI FEDERICO II

 Dottorato di Ricerca in Ingegneria Informatica ed Automatica

DEPENDABILITY ASSESSMENT OF

WIRELESS SENSOR NETWORKS WITH FORMAL METHODS

ALESSANDRO TESTA

Tesi di Dottorato di Ricerca

(XXV Ciclo)

 Marzo 2013

Il Tutore Il Coordinatore del Dottorato

Prof. Marcello Cinque Prof. Franco Garofalo

Il Cotutore

Ing. Antonio Coronato (ICAR-CNR di Napoli)

Dipartimento di Ingegneria Elettrica e delle Tecnologie dell'Informazione

Comunità Europea

Fondo Sociale Europeo

DEPENDABILITY ASSESSMENT OF WIRELESS SENSOR

NETWORKS WITH FORMAL METHODS

By

Alessandro Testa

SUBMITTED IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

AT

“FEDERICO II” UNIVERSITY OF NAPLES

VIA CLAUDIO 21, 80125 – NAPOLI, ITALY

MARCH 2013

c© Copyright by Alessandro Testa, 2013

“A mio padre che ha avuto sempre fiducia in me”

ii

Table of Contents

Table of Contents iii

List of Tables vi

List of Figures vii

List of Listings ix

Acknowledgements x

Introduction 1

1 Dependability Issues of Wireless Sensor Networks 7

1.1 Wireless Sensor Networks . 7

1.2 Dependability Threats in Wireless Sensor Networks 9

1.3 Critical WSN-based Applications . 13

1.3.1 WSN Dependability Metrics . 15

1.3.2 Environmental Monitoring . 16

1.3.3 Security Monitoring . 17

1.3.4 Ambient Intelligence . 18

1.3.5 Health Monitoring Systems . 21

1.4 FMEA of a WSN-based Monitoring System 25

1.5 Open issues . 32

2 Related Research 35

2.1 Experimental approaches . 35

2.2 Simulative approaches . 37

2.2.1 Simulators . 39

2.3 Analytical approaches . 40

2.4 Formal approaches . 42

2.4.1 Model Checking . 42

iii

2.4.2 Linear Temporal Logic (LTL) . 44

2.4.3 Situation Calculus . 45

2.4.4 Event Calculus . 47

2.4.5 Formal approaches for WSN . 49

2.5 Comparison of Related Work . 52

2.6 Discussion . 56

2.7 Workflow towards a Methodology for Dependable WSN-based Applications 57

2.7.1 Informal Modeling . 58

2.7.2 General Correctness Specification Modeling 59

2.7.3 Structural Correctness Modeling . 61

2.7.4 Verification/Testing . 62

3 Static Verification 63

3.1 Rationale of the static verification technique 63

3.2 General Correctness Specification . 65

3.2.1 Isolation event . 66

3.2.2 Packet Loss event . 70

3.2.3 Battery Exhaustion event . 73

3.3 Structural Specification . 75

3.4 Types of Analysis . 77

3.4.1 What-if Analysis . 77

3.4.2 Robustness Checking . 78

3.5 Application Scenario . 82

3.5.1 Structural Specification generated by Event Calculus 84

3.5.2 Outcome and Metrics computation 86

4 Dynamic Verification 90

4.1 Rationale of the dynamic verification technique 90

4.2 Runtime Verification . 92

4.2.1 Reactive Event Calculus . 94

4.3 Event Capture in a Dynamic Verification context 94

4.3.1 Intra-WSN . 96

4.3.2 Gateway Services . 96

4.3.3 Remote Center Services . 97

4.3.4 External Applications . 97

4.3.5 System Monitors . 97

4.4 Application Scenario . 100

5 The ADVISES Tool 103

5.1 Introduction . 103

5.2 Workflow . 104

iv

5.3 ADVISES Tool GUI . 106

5.3.1 ADVISES Tool for Static Verification 107

5.3.2 ADVISES Tool for Dynamic Verification 112

5.4 Metrics computation . 116

6 Case Studies 119

6.1 Case study 1 (what-if analysis): A Wireless Body Sensor Network 119

6.1.1 Scenario . 119

6.1.2 Results . 120

6.2 Case study 2 (what-if analysis): A more complex WSN 123

6.2.1 Scenario . 123

6.2.2 Results . 124

6.3 Case study 3 (robustness checking): Is it worth to add a node? 126

6.3.1 Scenario . 126

6.3.2 Results . 127

6.4 Case study 4 (robustness checking): Checking robustness in harsh environments128

6.4.1 Scenario . 128

6.4.2 Results . 129

6.5 Case study 5 (runtime verification): WSN robustness checking at runtime . 131

6.5.1 Scenario . 131

6.5.2 Results . 134

Conclusions 139

Bibliography 146

v

List of Tables

1.1 Failure Mode and Effect Analysis of a monitoring system 31

2.1 Fault Injection Tools . 36

2.2 Approach Classification . 56

3.1 Basic elements of the specification for the isolation event 68

3.2 Basic elements of the specification for the packet loss event 72

3.3 Basic elements of the specification for the battery exhaustion event 74

4.1 Basic events detected by the system monitors 98

5.1 Tool Inputs . 106

6.1 Results of simple linear topology . 127

vi

List of Figures

1.1 Wireless Sensor Network . 8

1.2 Wireless Body Sensor Network . 22

1.3 A Mobile Health Monitoring Architecture 24

1.4 A WSN-based Monitoring Architecture . 28

1.5 Components and subcomponents considered in the FMEA 29

2.1 Comparison of Related Work . 55

2.2 The workflow for designing specifications for WSN-based applications (4

blocks - 14 tasks). 58

3.1 Workflow for designing specifications for WSN-based applications: General

Correctness Specification Modeling . 65

3.2 Isolation of a WSN subnet . 67

3.3 Example of packet loss . 70

3.4 Workflow for designing specifications for WSN-based applications: Structural

Correctness Specification Modeling . 75

3.5 Example of topology of a WSN . 76

3.6 Workflow for designing specifications for WSN-based applications: Verifica-

tion/Testing . 82

3.7 WSN topology of application scenario . 83

4.1 Running System with support of the Runtime Checker 93

4.2 WSN-based system with event monitors . 95

4.3 Application scenario in dynamic context . 101

vii

5.1 Workflow . 105

5.2 ADVISES GUI at design time . 108

5.3 Channel Model and Initial Battery level frames 110

5.4 Example of an Initial Event Trace specified by the user 110

5.5 Example of a EC file generated by the ADVISES tool 111

5.6 Use of the ADVISES Tool at runtime . 113

5.7 Flow chart of the ADVISES operating at runtime 114

5.8 ADVISES GUI at runtime . 115

6.1 WBSN case study . 120

6.2 Topology loading with ADVISES tool . 121

6.3 Topology loading with ADVISES tool . 121

6.4 Topology of a more complex WSN . 123

6.5 WSN with line topology . 127

6.6 WSN with extra node in line topology . 127

6.7 WSN topology with 8 nodes . 129

6.8 Results of the case study . 130

6.9 WSN topology in dynamic scenario . 132

6.10 Scenario with Stop(5) event . 132

6.11 Scenario with Stop(7) event . 133

6.12 Java-based emulator . 134

6.13 ADVISES GUI in dynamic verification . 135

6.14 ADVISES GUI receives first event from the WSN 136

6.15 2-level forecasting with first detected event 136

6.16 3-level forecasting with first detected event 136

6.17 ADVISES GUI receives second event from the WSN 137

viii

List of Listing

2.1 Example of Event Calculus narrative 48

3.1 Correctness Specification for the Isolation event 68

3.2 Correctness Specifications for the packet loss event 70

3.3 Correctness Specification for the battery exhaustion event 74

3.4 Example of Neighbor predicate Specification 76

3.5 Example of initial event trace . 78

3.6 Algorithm for the computation of event sequences with n failures . . 80

3.7 Structural specification written in Event Calculus language for WSN-

based application scenario . 85

3.8 Outcome produced by the DECReasoner for WSN-based application

scenario . 87

6.1 Initial event trace for a WBSN . 121

6.2 Parameters for a WBSN . 122

6.3 Outcome of the DECReasoner for a WBSN 122

6.4 Initial event trace for a more complex WSN 124

6.5 Parameters for a more complex WSN 125

6.6 Outcome of the DECReasoner for a more complex WSN 125

ix

Acknowledgements

“Il raggiungimento di un primo traguardo cośı importante, rappresenta il punto di arrivo di

un percorso maturato tre anni...”

(tratta dalla tesi laurea triennale - Marzo 2006)

“Questo ulteriore lavoro di tesi testimonia in realtá che nel 2006 non fu solo un punto

di arrivo (momentaneo), benśı un nuovo punto di partenza in salita andando incontro a

nuove soddisfazioni.”

(tratto dalla tesi laurea specialistica - Settembre 2008)

E giá! Chi l’avrebbe mai detto che anche il gradino della laurea specialistica sarebbe

diventato a sua volta un nuovo punto di partenza?!!

Concluso quest’altro step che chiude definitivamente il ciclo di studi accademico mi verrebbe

da dire, citando una delle espressioni piú celebri del Carosello degli anni ’60:“E mo’, e mo’,

e mo’? Moplen!”

Ora, trascorsi questi tre anni di training, di nuove esperienze, di ricerca scientifica, di scrit-

tura di articoli scientifici, l’obiettivo é investire sul lavoro svolto mettendo in pratica la

maturitá, l’esperienza acquisita e (perché no?!) un pizzico di fortuna; come diceva il buon

Cicerone: “Audaces fortuna juvat” (da Tusculane).

Fare i ringraziamenti non é mai una cosa semplice, non tanto per i contenuti ma piuttosto

per l’attenzione a non dimenticare nessuno e garantire la par condicio. Quindi, dal momento

che ho il desiderio di ringraziare chiunque mi sia stato accanto in questi tre anni, mi scuso

a priori se qualche nome non mi verrá in mente ma ció non vuol dire che non lo porti con

me.

Premesso ció, i miei primi ringraziamenti vanno a coloro che hanno reso possibile questo

lavoro di tesi e cioé al mio tutor accademico Marcello e al mio tutor aziendale Antonio.

Entrambi si sono distinti per la loro esperienza e capacitá nel seguirmi, nel darmi suggeri-

menti, nel rendermi piú critico di fronte ai complessi problemi della ricerca. Non posso non

ringraziare anche i boss delle relative parti: Domenico e il Prof. Russo, e Pino che mi hanno

x

dato la preziosa possibilitá di svolgere l’attivitá di ricerca presso l’Istituto di Calcolo e Reti

ad Alte Prestazioni (ICAR) del Consiglio Nazionale delle Ricerche (CNR) di Napoli.

Ringrazio la mia famiglia e soprattutto mia mamma e mio padre che mi sono continuamente

vicini (chi fisicamente, chi spiritualmente). Anche se parte della famiglia sin dall’inizio (o

forse ancora ora?) si é mostrata scettica riguardo la scelta fatta tre anni fa, come dico sem-

pre, nella vita bisogna avere sempre fede e credere in ciò che si fa portando avanti sempre

degli obiettivi prefissati! E anche nel dottorato bisogna avere sempre fede e crederci sino in

fondo!

Un ringrazimento speciale va ad una persona speciale e dolcissima: Cristina. Gli anni della

mia attivitá di ricerca trascorsi sono pari agli anni in cui mi sta accompagnando in un nuovo

e stupendo viaggio fatto non piú da una sola persona ma da due. Mi ha sempre spinto,

spronato ed é riuscita a sostenermi anche nei momenti piú difficili e durante il periodo di

permanenza a Londra. Ti amo!

Ringrazio il collegio dei docenti della Scuola di Dottorato per la professionalità e l’attenzione

costante che hanno mostrato proponendo nuovi ed interessanti corsi, seminari e scuole di

dottorato; e quindi non posso non ringraziare il coordinatore, Prof. Franco Garofalo, per il

suo ruolo da guida svolto con il massimo impegno attraverso i continui aggiornamenti e la

preziosa attenzione ai vari impegni che ciascun dottorando ha dovuto adiempere.

Uno special thanks al Dr. Juan Carlos Augusto il quale mi ha dato la possibilitá di

trascorrere parte del dottorato presso la School of Science and Technology della Middlesex

University of London; la sua fiducia, il suo interesse per l’attivitá di ricerca svolta e le sue

lezioni-lampo d’inglese mi hanno dato ulteriore supporto. E qui colgo l’occasione per ricor-

dare i ragazzi del lab, in cui sono stato ospitato, i quali hanno assistito ad un’evoluzione

parziale del presente lavoro: Arni, Joshua, Krishna, Friedrick, Yetish, Ryan, Ali, Rand,

Hanna, Payam, Mirco, Pietro, Franco e Leonardo. E ringrazio Mario P., un compagno

delle elementari ritrovato (dopo ben 18 anni!) a Londra che mi ha aiutato ad affrontare

psicologicamente una metropoli come Londra by day and by night.

Un grazie a tutta la famiglia ”allargata”: cognato, suoceri, zii, zie, cugini, cugine, ecc. In

questi tre anni posso dire che si è estesa ed ognuno di voi con il suo gesto (diretto o indiretto)

si è reso complice di questo traguardo.

Ringrazio tutta la banda MobiLab (Flavio, Lelio, Enzo) e CINI (Antonio P., Roberto N. e

P., Anna, Francesca e Stefania) ma in particolare i miei compagni di squadra del dottorato:

Domenico, Antonio e Fabio; con loro ho condiviso diversi momenti (corsi, seminari, scuole

di dottorato, le presentazioni di fine anno e la fase finale di questo percorso).

Come accennavo, il dottorato è stato frutto di un lavoro svolto presso l’ICAR; dunque mi

sembra doveroso porgere un ringraziamento anche a tutta la squadra ICAR e in particolare

a Nello, Mario C., Luigi, Giovanna, Nico, Massimo, Mario S., Christian, tutti i ragazzi del

xi

lab e tutti gli altri ricercatori, tecnici e componenti dell’amministrazione.

Sebbene l’impegno di ricerca mi ha portato via molto tempo, costringendomi a non fre-

quentare con la stessa assiduità di una volta i miei vecchi e nuovi amici, voglio tuttavia

menzionare alcuni di loro che porto sempre con me cercando di mantenere quel legame che

ci unisce da una vita: Enzo, Paola, Fabrizio, Francesco L.S., Luca, Antonio Capi, Ilaria,

Ale Fox e tutta la combriccola puteolana, Fiorella, Diego, Licia, Salvo, Sasi, Ale, Rosario,

Valentina, Enzo, Monica, Mario, Nello, Tony, ed i miei compagni di studio e non solo, Bar-

bara, Alfonso e Fabio.

Infine last but not least, come oramai mio solito in ogni ringraziamento, voglio fare uno

speciale ringraziamento a Colui che ha reso possibile tutto ciò sin dall’inizio; certo, se sono

qui è per l’amore dei miei genitori, ma è soprattutto perché l’ha voluto il Signore che mi ha

donato tutto il suo Amore e mi custodisce giorno dopo giorno. E quindi, tutto sommato....se

sono riuscito ad arrivare fin qui lo devo anche a Lui. Grazie!

Napoli, Italy

March 30, 2013 Alessandro

xii

Introduction

Wireless Sensor Networks (WSNs) [30] are being more and more used into critical appli-

cation scenarios where the level of trust on WSNs becomes an important factor, affecting

the success of large-scale industrial WSN applications; the extensive use of this kind of

networks stresses the need to verify their dependability properties not only at design time

to prevent wrong design choices but also at runtime in order to make a WSN more robust

against failures that may occur during its operation.

Examples are target tracking, environmental monitoring (e.g. detection of fires in forests [5]),

structural monitoring of civil engineering structures [146], health monitoring (in medical

scenarios) [67, 114] and patient monitoring [44] by means of Ambient Intelligence (AmI[1])

systems. Depending on application scenarios, different dependability requirements can be

defined, such as, node lifetime, network resiliency, and coverage of the monitoring area. The

work presented in [36] evidenced that also in a simple deployment, a single node can be

responsible of the failure of a huge piece of the network. For instance, a node that is close

to the sink (i.e., the gateway of the WSN that has the role to collect all of the measures

detected by the sensors) is more likely to fail due to the great solicitations it is subjected

to, and its failure would likely cause the isolation of a set of nodes from the sink. Moreover,

the correct operation of a WSN can be affected by other several undesired events, such as

the crash of a node due to the cheap hardware adopted [136], software errors [41], battery

exhaustion, and the unreliability of the wireless medium. Failure occurrences are strongly

exacerbated when nodes are deployed in harsh environment [117] and these, in turn, may

1

2

isolate whole portions of the network or cause packets to be lost during their traversal to

the destination.

If not adequately considered, these events may cause severe failures with dangerous con-

sequences, such as, a health monitoring system not able to report critical alerts about a

patient status to a medical center, or a structural monitoring system unable to report a

developing crack in a structure.

Therefore it is necessary to verify the WSNs at design time in order to increase the confi-

dence about the robustness of the designed solution before putting it into operation. It is

also necessary to monitor the system during operation in order to avoid unexpected results

or dangerous effects. Hence, it is important to verify such networks at runtime to perform

what in the literature is defined continuous monitoring [81].

Formal methods are widely adopted in the literature to verify the correctness of a system

specification. They are a particular kind of mathematically based techniques for the spec-

ification, development and verification of software and hardware systems [70] and allow to

define specifications using a language very close to humans.

However, their practical use for the verification of dependability properties of WSNs has

received little attention, due to the distance between system engineers and formal meth-

ods experts and the need to re-adapt the formal specification to different design choices.

Even if some development teams would invest on the definition of a detailed specification

of WSN correctness properties, a design change (e.g., different network topology, number

of produced packets) could require to rethink the formal specification, incurring in extra

undesirable costs. Nevertheless, it could be very useful to have an unique set of formal

specifications that are able to check the WSN behavior at design time and runtime.

To address these issues, the profuse effort in this dissertation deals with the definition of

formal specifications used for the behavioral checking of WSN based systems in static and

3

runtime phases; a set of correctness specifications applied to a generic WSN has been de-

fined using a formal language. Since the behavior of a WSN can be characterized in terms

of an event flow (e.g. a node turns on, a packet is sent, a node stops due to failure, etc.)

we decided to adopt the Event Calculus formalism [124]that allows to easily specify the

system in terms of events. This formal language is event-based and narrative-based, i.e. it

allows to observe the sequence of generated events, given a received event. The narrative is

very useful to analyze the behavior of the network and to indirectly evaluate the metrics of

interest, such as coverage, resiliency, and lifetime. It is considered the DECReasoner [104]

as an Event Calculus reasoner to produce the event traces.

In particular, the main contributions of this dissertation are:

• the definition of the formal specification of WSN correctness as two logical sets: a

general correctness specification, valid independently of the particular WSN under

study, and a structural specification related to the properties of the target WSN (e.g.,

number of nodes, topology, channel quality, initial battery charge), designed to be

generated automatically; in this way, it is no necessary rewrite all the specifications

that are common for every WSN, applying a modular solution;

• the use of specific WSN dependability metrics, such as connection resiliency, coverage,

data delivery resiliency and lifetime, as drivers to guide design choices;

• the realization of two types of verification techniques exploiting the same set of formal

specifications: static verification and dynamic verification. The former analyzes a

WSN during the design phase evaluating the robustness against a sequence of failures

that can occur; instead the latter, by means of a runtime verification techniques,

consists in observing the WSN behavior during its operation and detecting, with a set

of monitors, the occurring of failures in order to provide information about critical

nodes and to perform forecasting at runtime about next criticalities.

4

• the development of an automated verification tool, named ADVISES (AutomateD

VerIfication of wSn with Event calculuS), to simplify the adoption of the proposed

approach.

It is conceived: i) to operate in double mode: static and dynamic; ii) to automati-

cally generate the structural specifications given the properties of a target WSN (e.g.

topology); iii) to perform the reasoning starting from the correctness and structural

specifications; iv) to compute dependability metrics starting from the event trace pro-

duced by the reasoner; and v) to receive events in real-time from a WSN to start

runtime verification and to evaluate current and future criticalities;

• the presentation of the usefulness of the approach in the context of case studies, to

show how the proposed framework and tool can help system engineers to take deci-

sions upon key design and runtime questions such as: “How many nodes are covered

in the WSN if a given sequence of failures occurs?”, “How many failures the WSN is

able to tolerate so that a minimum coverage level is guaranteed?”, “How the WSN

behaves, in terms of delivered packets, if the channel quality changes (e.g., to con-

sider environments with different levels of harshness)?”,“What are the current critical

nodes that can compromise the robustness of the network?”.

The ADVISES tool has been designed in order to provide useful support for answering

questions like the ones above.

In static verification, this tool is used to perform two different types of analysis (starting

from the same specification):

1. what-if analysis, to verify how the WSN behaves in response to a given sequence of

events of interest for the designer;

2. robustness checking, to verify the long term robustness of the WSN against random

5

sequences of undesired events, useful to identify corner cases and dependability bot-

tlenecks.

In runtime verification, the tool operates as a server that is in waiting for new events coming

from the WSN; it autonomously returns informational messages to the user. For example,

if a node fails in a WSN while it is running, this failure is detected by a monitor which sends

the event to the tool. The tool receives the event and, by means of a reasoning, calculates

the dependability metrics both for the current status of the WSN (e.g. raising an alarm if a

given criticality level is reached) and to assess the criticality of the network, in order to alert

the user about possible future hazardous scenarios considering the new network conditions.

The rest of the dissertation is organized as follows.

Chapter 1 provides the needed background on WSNs and on the dependability threats

of these networks, then it describes the critical WSN-based applications presenting a failure

modes and effects analysis of a generic WSN-based monitoring system. Open issues are

considered to motivate the contribution of the dissertation.

A description of the main approaches used to assess the dependability in WSNs is given in

chapter 2. The chapter also proposes a comparison of the studied work under most impor-

tant chosen parameters.

Chapter 3 is dedicated to the static verification study of WSNs. After giving the defi-

nitions of general correctness specifications for a WSN to detect some failures that can

occur and the definition of structural specification of WSNs, the chapter presents the types

of analysis used for the static verification: what-if analysis and robustness checking.

6

The dynamic verification technique is discussed in chapter 4. It first provides the needed

background on the Runtime Verification, then it discusses the concept of monitor used by

the tool to receive critical events. Finally the chapter shows how the tool can be used in a

runtime verification context.

The chapter 5 outlines the ADVISES Tool which has been designed and implemented for

the automated formal dependability verification of WSN at design time and runtime. The

chapter describes the GUI of the tool, the settings, the parameters to choice and all of the

offered facilities. Also, it discusses the workflow of the tool that summarizes the function-

alities of the ADVISES tool.

In the chapter 6 some case studies are shown. The chapter describes and discusses of

the results obtained by some considered scenarios; the objective is to validate the proposed

methodology and the strong novelty of the ADVISES tool at design time and runtime.

The dissertation concludes with final remarks and the indication of the lessons learned.

He who loves practice without theory is
like the sailor who boards ship without
a rudder and compass and never knows
where he may cast.

Leonardo da Vinci

Chapter 1

Dependability Issues of Wireless
Sensor Networks

In last decade Wireless Sensor Networks (WSNs) have become one of the most discussed topic in sev-

eral research areas, with increasing interest and strong impact on technological development. WSNs

are are being more and more used into critical application scenarios, such as environmental mon-

itoring or health monitoring where the dependability still is an important issue. For this reason,

dependability assessment is becoming more popular in WSN research activities. This Chapter briefly

introduces the WSNs, the dependability threats for this kind of networks, critical WSN-based applica-

tions. Finally, open issues are discussed motivating the need of the approach presented in this thesis.

1.1 Wireless Sensor Networks

The main purpose of a Wireless Sensor Network (WSN) [6] as a whole is to serve as an

interface to the real world, providing physical information such as temperature, light, radi-

ation, and others, to a computer system.

A WSN is a distributed system consisting of a set of nodes capable of hosting sensors or

actuators, perform processing and communicate with each other through multi-hop network

protocols by means of that a message reaches its destination after having crossed a number

of nodes.

7

Chapter 1. Dependability Issues of Wireless Sensor Networks 8

These networks are formed by many elements, called “sensor nodes” able to sense phys-

ical features of their surroundings or to monitoring a set of items. WSN nodes transmit

information on environment in order to have a global view of the monitored items which

is made accessible to the external user through one or more gateway node(s), named base

station or sink node(s) [96]. Usually a WSN consists of one base station and a high number

of wireless sensors (nodes).

An example of WSN is shown in figure 1.1.

Sensor nodes are often considered as smart sensors because of their power, processing and

memory capabilities [69, 51, 142, 10]. The small size of sensors (about the size of a coin)

allows them to be easily embedded into materials [142] or deployed in a mobile scenarios

such as remote health care, cars, or floats over water [50].

Figure 1.1: Wireless Sensor Network

Chapter 1. Dependability Issues of Wireless Sensor Networks 9

1.2 Dependability Threats in Wireless Sensor Networks

Currently, the provision of appropriate means to enforce and/or to assess the dependability

of WSN-based applications remains an unsolved issue.

The definitions of dependability, its attributes, threats and means, considered until today,

have to be reviewed in the new context of WSNs since they introduce novel dependability

threats, due to their highly evolvable and dynamic nature. Such new threats call for new

means to be adopted to reach an adequate dependability and/or security level.

Simoncini in [129] introduced several drivers for WSN research over the next few years and

he suggested some considerations for future work, with respect to the four main typologies

of dependability means, i.e., fault prevention, fault tolerance, fault removal, and fault fore-

casting [12].

Fault prevention means are used to prevent the occurrence or introduction of faults. In the

context of WSNs, this calls for a formal definition of novel accidental and malicious faults

which may be introduced in a WSN-based system.

Fault removal techniques are instead used to reduce the number and severity of faults. To

this aim, novel statistical testing and robustness testing techniques should be defined for

such evolvable systems.

Fault tolerance means are adopted to avoid failures in the presence of residual faults, which

escape the prevention and removal means. In the case of WSN-based systems, it is impor-

tant to consider that the majority of faults are transient in nature, even if they may lead to

catastrophic consequences. In order to define proper counter measures, such faults should

Chapter 1. Dependability Issues of Wireless Sensor Networks 10

be carefully classified and characterized, based on their causes, triggers, and manifestation.

An analysis on such threats is performed in paragraph 1.4.

Fault forecasting embraces the set of techniques to estimate the present number, the future

incidence, and the likely consequences of faults. In the context of WSNs, it could be useful

to define specific fault-injection techniques to build dependability benchmarks to compare

competing systems and architectures on an equitable basis. A dependability assessment

of WSNs at design time could help to increase the confidence about the robustness of the

designed solution before putting it into operation and to detect and remove possible critical

node.

In addition, specific tools for the on-line monitoring of an WSN-based system need to be

defined, in order to statistically characterize the system based on realistic data gathered

from the field of operation. The collected data can then be used to improve successive

generations of systems and to define proper fault tolerance strategies at runtime.

In [91] the energy, the fault-tolerance and the mobility of the WSNs represent the funda-

mental issues to be faced for developing the next-generation of smart environments. In

particular, authors highlight the problem of the high spatial correlation among the nodes

and link failures in these systems, due topological constraints and the common dependency

from external events.

The recently proposed prototypes of WSN-based systems present severe technological lim-

itations, which introduce several threats to the dependability of the overall system. Being

the system usually composed by low-cost, battery-powered and wireless-enabled devices,

Chapter 1. Dependability Issues of Wireless Sensor Networks 11

their correct functioning is affected by the capacity of batteries, the unreliability and vari-

ability of wireless communications, the mobility of users, the risk of physical damage, etc.

In addition, the presence of hardware faults, due to defects and interference, and the pres-

ence of residual software bugs further complicate the picture.

These threats are in part discussed in [79], where authors discuss about the limited device

lifetime and communication due to low electrical energy and the poor physical protection

of mobile devices which can make them prone to physical damage, if deployed in a harsh

environment. Therefore authors raise the issue of realizing a fault- and intrusion-tolerant

collaborative data backup for WSN-based systems. They consider a scenario where it is

needed to protect the backed-up data against denial-of-service attacks and availability prob-

lems due to failures.

In [8] technologies based on WSN are considered as one of the key research areas to favor the

development of future healthcare industries. The authors illustrate the state of the art on

WSN-based systems for healthcare with related benefits, issues and challenges. It is inter-

esting to note that several challenges and open research problems for Ambient Intelligence

(AmI) Systems are indicated, in particular for dependability problems. In this work it is

reported an analysis of open issues divided by layers. The majority of dependability issues

result to be concentrated in the physical layer, where the scarce transmission power and

the small size of antennas particularly compromise the resilience of the communication. In

particular, the reduced Signal-to-Noise Ratio (SNR) causes high bit error rates and reduces

the capacity of the network to reliably cover the area of interest. Similar dependability

Chapter 1. Dependability Issues of Wireless Sensor Networks 12

issues are discussed for the transport layer. The scarce computation power of sensor de-

vices does not allow to implement complex, reliable transport protocols, with control flow

and retransmission. On the other hand, the loss of even a single packet may result in a

significant hazard. This is a major impairment to medical monitoring systems, dealing with

life-critical data. In such systems, the resilient delivery of medical data could result vital

for monitored patients.

Thus, the research is progressively recognizing the need of novel solutions to build depend-

able WSNs. These solutions mainly focus on two key issues: node failures and wireless

network interference.

Regarding node failures, WSNs may suffer from intentional or unintentional node removal

or unresponsive nodes. A combination of node redundancy and multi-sensor data fusion was

one of the solutions proposed to face these issues [15, 52]. The introduction of redundant

sensors avoids the loss of any data if a node becomes compromised or faulty. In addition,

they can serve to facilitate multiple paths when the routing becomes an issue.

Interference has the potential to cause significant delays and data loss and is a major con-

cern with all wireless devices. Motes can interfere with each other in the WSN as well as

being subject to environmental noise. This is due to the lack of harmonious regulations

and standards, as demonstrated in [65, 132]. A solution would be to eliminate the wireless

aspect of the wireless network [72, 66]. Sensor Network based systems such as MITHrill

[72], SMART [72], and MobiHealth [141] all employ a wired connectivity between sensors

and the aggregate. However, these solutions strongly limit the usability of the system, es-

pecially for elderly people, and makes it hard to interconnect all the sensors to commodity

Chapter 1. Dependability Issues of Wireless Sensor Networks 13

mobile devices, such as patients’ smartphones, hence requiring ad-hoc aggregating devices

which increase the overall cost of the system.

Currently, in literature several fault-tolerant techniques for WSN have been proposed. How-

ever, there still is an open issue about the validation method of these techniques both at

design and runtime. Hence, one of the aims of this dissertation is also to answer some

questions such as “Given a fault-tolerant technique, am I able to obtain a certain coverage

value?”,“Is the chosen fault-tolerant technique it convenient? Is it an expensive or cheap

solution?”; an overview of the methods and techniques for the WSN assessment, discussed

in Chapter 2, will help to answer to the raised questions.

1.3 Critical WSN-based Applications

Nowadays the field of WSNs offers a multi-disciplinary and rich area of research, in which

several tools and concepts can be employed to address particular kinds of applications. As

such, many potentials of this field have been under study both in academia and in the in-

dustry. Only recently they have become a technology more envisioned in real applications,

included industrial systems or critical scenarios as a good opportunity to drastically reduce

installation, management, and maintenance costs and related times.

According to the European Commission, Critical scenarios consist of “[...] those physical

and information technology facilities, networks, services and assets which, if disrupted or

destroyed, would have a serious impact on the health, safety, security or economic well-being

of citizens. [...]”[111].

Chapter 1. Dependability Issues of Wireless Sensor Networks 14

This section focuses on five types of critical WSN-based monitoring systems: environment

monitoring, security monitoring, object tracking, ambient intelligence and health monitor-

ing. On the basis of the context, WSNs may be constituted by of a number of nodes that

can be low in case of health monitoring or high in case of security monitoring or environ-

mental monitoring. Nodes may be distributed on a large region or be inserted in a small

area with high density.

For each application scenario, we discuss if the following WSN requirements are met:

• Coverage

Coverage represents the percentage value of the number of nodes that are running and

connected and reachable by the sink node at a given time. To assure the monitoring of

the phenomena keeping an high degree of confidence, WSN applications set a minimal

value of coverage to guarantee.

• Lifetime

Typically in almost all critical WSN-based applications the nodes are self-powered

since they are deployed in harsh environments, and hence, they can be active and

operating for a finite time. The lifetime metric adopted for these scenarios is defined

as the time until a given percentage of nodes in the WSN goes below a given threshold

[27].

Chapter 1. Dependability Issues of Wireless Sensor Networks 15

• Data delivery resiliency

A common WSN is realized to collect data that contain measurements and send them

to the sink node. On the basis of a specific application, it is necessary to collect a

minimal amount of data in order to obtain a correct monitoring (e.g. in case of health

monitoring a WSN equipped with ECG has to send to the monitoring application all

the necessary data thus to have a correct ECG signal).

However, interferences and other types of failures may make necessary a reconfigura-

tion of the WSN topology that may have effects on the data delivery efficiency.

• Timeliness

In WSN-based monitoring applications the several data, coming from the sensors of

a WSN, have to be correlated in order to obtain desired measurements. In WSNs, by

means of synchronization protocols, sensors exchange periodically extra radio packets

to perform continually high-precision synchronization mechanisms that compensate

inaccuracies caused by the oscillators of the clocks.

1.3.1 WSN Dependability Metrics

We define following dependability metrics, already adopted in [55, 137], in order to verify

the mapping with the WSN requirements (excluding timeliness):

• Coverage is the time interval in which the WSN can operate, while preserving a given

number of nodes connected to the sink.

Chapter 1. Dependability Issues of Wireless Sensor Networks 16

• Connection Resiliency represents the number of node failures and disconnection events

that can be sustained while preserving a given number of nodes connected to the sink.

• Data Delivery Resiliency is the number of node failures and disconnection events that

can be sustained while preserving a given number of correct packets delivered to the

sink.

• Power consumption is the battery power consumed by each sensor, useful to estimate

the expected lifetime of the WSN.

Overall these metrics allow to evaluate the expected dependability of the WSN in terms of

its robustness to failure events, its capacity to cover a given area, and its duration (lifetime).

Clearly, other metrics can be defined for other purposes.

1.3.2 Environmental Monitoring

To periodically measure meteorological and hydrological parameters, such as temperature,

sound, vibration, pressure, motion of the earth, etc., environment monitoring [128, 56] is

adopted exploiting a number of nodes equipped with sensors to have data of physical phe-

nomena.

Dangerous phenomena, such as fires in forests [61, 40], can occur and it would be difficult to

forecast; thus the role of the wireless sensors is to detect them and guarantee a dependable

delivery of collected data to the sink node. Hence, lifetime and data delivery resiliency

represent the most important requirement for this type of monitoring. Since packet losses

are frequent it becomes hard to have a good level of resiliency because of harsh phenomena

Chapter 1. Dependability Issues of Wireless Sensor Networks 17

(e.g., interference, heavy rain, intense cold) which are at the same time the most inter-

esting episodes for data analysis. Moreover, since WSNs are characterized by a multi-hop

organization, typically disconnections of nodes to the sink occur causing a partition of the

network.

Usually wireless sensors used in environmental monitoring are placed in harsh environments

[20]. An example of environmental monitoring is discussed in [144]. In SensorScope project

wireless sensor network is deployed in remote and difficult-to-access places and for this rea-

son it was necessary a helicopter for carrying hardware and people.

1.3.3 Security Monitoring

WSN-based security monitoring applications [25] do not collect any data; the common task

of each node is to frequently check the status of its sensors, and to transmit a data report

strictly only when an exception is detected (report by exception), such as security breaches

or unauthorized access to an environment. Being important to guarantee security [123],

nodes are equipped with backup power sources to address the problem of battery exhaus-

tion. For this reason lifetime in these nodes is no critical as for other monitoring systems.

The most important requirements for this type of monitoring is the data delivery resiliency

since for security reasons data have to be delivered without errors.

Chapter 1. Dependability Issues of Wireless Sensor Networks 18

1.3.4 Ambient Intelligence

Ambient Intelligence (AmI) is the emerging computing paradigm used to build next gener-

ation smart environments. It is claimed to provide services in a flexible, transparent, and

anticipative manner, requiring minimal skills for human-computer interaction. Recently,

AmI is being adopted also to build smart systems to guide human activities in critical do-

mains, such as, healthcare, ambient assisted living, and disaster recovery.

AmI is a term coined by Philips management to conjure up a vision of an imminent future

in which persons are surrounded by a multitude of fine grained distributed networks com-

prising sensors, and computational devices that are unobtrusively embedded in everyday

objects such as furniture, clothes, and vehicles, and that together create electronic habitats

that are sensitive, adaptive and responsive to the presence of people [21, 86].

Such systems are be based on a large number of heterogeneous devices, from handheld

and wearable devices operated by users to smart sensing and actuating devices embedded

in the surrounding environment, able to interact each other spontaneously by exploiting

different communication links. In this context, applications have to make effective use of

the resources available on-the-fly, and adapt to different hardware and software, and even

firmware configurations.

Examples of Ami applications are smart offices and buildings [100]. In a smart offices, every

movement of the employees is recorded as well as their location during a certain temporal

interval and the temperature of the rooms in which the employees work.

A survey of the technologies of ambient intelligence systems [43] shows several challenges

Chapter 1. Dependability Issues of Wireless Sensor Networks 19

and opportunities that AmI researchers will face in the coming years. The authors orga-

nize the contributing technologies into five areas: Sense, Reason, Act, Human-Computer

Interface and Secure. In the last area, Secure, they highlight some dependability issues; for

example, at the sensor level, the sensor reliability, the error handling process, and the errors

due to misconfiguration can create security vulnerabilities. To ensure security in sensor net-

works, the designer must consider these factors together with sensor communication channel

reliability/availability and sensor data integrity and confidentiality. An ongoing challenge

for AmI researchers is mentioned about the design of self-testing and self-repairing AmI

software that can offer quantitative quality-of-service guarantees and a high degree of de-

pendability.

Currently, in the literature, there is still a lack of a commonly accepted architecture to

build the AmI systems of the future, with predictable dependability properties. This issue

is considered in [129], where the author pointed out the concepts of “architecture” and

“system” need to be redefined in the context of AmI systems, in order to properly define

“ambient dependability” attributes, threats and means.

In [17], authors define a dynamic system able to adapt itself to the current situation. They

claim that, in order to guarantee dependability requirements, the system architecture has

to be manageable, controllable and it has to provide means for the prediction of the system

correctness at runtime. In [108], authors proposed an integrated system approach for living

assistance systems based on ambient intelligence technology. They claim that the construc-

tion of trustworthy, robust, and dependable living assistance systems is a challenging task

which requires novel software engineering methods and dependability assessment tools (to

Chapter 1. Dependability Issues of Wireless Sensor Networks 20

validate engineering choices), and novel approaches for dependable self-adapting software

architectures, able to react to changes due to frequent failures and reconfiguration events,

which become the norm, rather than the exception.

Georgalis et al. argue that the most important architectural property in an AmI architec-

ture is the fault-tolerance [63]. The fault tolerance, in the context of an AmI architecture,

has to be able to isolate failures, to eliminate single points of failure, to restart failing ser-

vices before that are used by the clients, and finally to provide mechanisms for notifying

the fault level about the irreparable failure of a specific service.

Coronato and De Pietro [44] pointed out that the design of AmI applications in critical

systems requires rigorous software-engineering-oriented approaches. The authors proposed

a set of formal tools and a specification process for AmI, which have been devised to lead

the developer in designing activities and realizing software artefacts.

Zamora-Izquierdo et al. propose a platform [149] that provides a home automation architec-

ture, called DOMESTIC, able to satisfy current and future needs in indoor environments.

Although the architecture is claimed to be robust and dependable, there is not evidence

nor experimental study assessing the dependability level.

Hence, having analyzed previous work, we can assert that stringent dependability require-

ments are called for the practical application to such domains, since even if a single compo-

nent fails then there may be dangerous loss or hazard to people and machineries. Moreover,

because of mobility of resources [4, 24] and the peculiarities of domains [17], AmI appli-

cations ca be affected by new treats. Dependability requirements in AmI applications to

consider are data delivery, timeliness and lifetime.

Chapter 1. Dependability Issues of Wireless Sensor Networks 21

Finally, the attention to dependability issues in AmI systems is also witnesses by recent

European Union initiatives, such as the SERENITY (System Engineering for Security and

Dependability) Project [95] that aims to provide security and dependability in AmI systems.

1.3.5 Health Monitoring Systems

Health monitoring systems have been shown to be effective in helping to manage chronic

disease, post-acute care, and monitoring the safety of the older adult population [49]. They

can help older adults slow progression of chronic disease and ensure continued recovery

after being discharged from an acute care setting. The implementation of such systems is

gaining an increasing attention in the academia and the industry, also due to the increasing

healthcare costs and the aging of the world population [67].

To this purpose, cabled measurement equipment is already used to guarantee reliable and

robust control of vital signs. However such systems complicate patient autonomy and mo-

bility. Hence, wireless technologies and mobile devices are starting to be applied to build

more comfortable and patient-friendly health monitoring systems [114].

An health monitoring system is based on Wireless Body Sensor Networks (WBSNs) [110].

The term Wireless Body Sensor Network was coined for the first time in [147] in order to

define a wireless network of wearable computing devices. A set of physiological sensors can

be integrated into a wearable wireless body area network that can be involved for computer-

assisted rehabilitation or early detection of medical conditions.

The basic structure of WBSN consists on a set of wireless physiological sensors, such as body

Chapter 1. Dependability Issues of Wireless Sensor Networks 22

temperature, oximeter, blood pressure and ECG. By means of these sensors, we are able to

monitor remotely a patient (Home Monitoring). It is also possible to use WBSN in helping

assisted-living (see Ambient Assisted Living Applications [45, 108]) and independent-living

residents by continuously and unobtrusively monitoring health-related factors such as their

heart-rate, heart-rhythm, and temperature.

In a WBSN time latency has to be limited and the transmission of the vital signs has to be

dependable. Moreover, coverage is a dependability metric to take in account since WBSNs

are constituted by a very limited number of nodes that can be vulnerable to some failure

(due to crash, interference, etc.). Thus, it is opportune to provide WBSNs of an system

that, by means of messages, alerts caregivers.

Figure 1.2: Wireless Body Sensor Network

Figure 1.2 shows a patient with a number of wireless sensors attached to the body (e.g. a

pulse oximeter, an ECG,...), each of which is connected to a small processor, an antenna

Chapter 1. Dependability Issues of Wireless Sensor Networks 23

and a wireless battery, and all together form a WBSN.

Nevertheless, the use of wireless technologies and the adoption of commodity hardware/-

software platforms, such as smartphones, pose new challenges on the correct functioning of

health monitoring systems. Wireless channels can be affected by packet loss, due to shadow-

ing and absence of signal coverage. Smartphones can be subjected to unpredictable failures,

which could affect the correct functioning of the system. Finally, cheap and wireless-enabled

medical devices can exhibit wrong readings and temporary disconnections.

These issues may induce the medical staff to take wrong decisions, e.g., to administer wrong

dosages of medicine, which can happen to be fatal for the patient.

For these reasons, the problem of failure detection and management in health monitoring

systems is starting to be addressed in the literature, especially for mobile systems. How-

ever, several studies are based on simplistic failure assumptions or on basic fault tolerance

schemes (such as, sensor redundancy), which are not assured to cover all possible failure

scenarios. For instance, sensor replication is ineffective against smartphone failures.

To overcome the limitations of current solutions, several reliable mobile health monitoring

systems have been proposed and designed in the last years.

Among different implementations, we chose three of the most popular: the MedApps System,

the Nicolet Ambulatory Monitor System and a system used by the Center for Technology

and Aging.

The MedApps System [57] provides a healthcare connectivity platform that delivers scal-

able and flexible remote distribution using cellular, wireless and wired technologies with

cloud-based computing. This system can work with multiple internal and external devices.

Chapter 1. Dependability Issues of Wireless Sensor Networks 24

Figure 1.3: A Mobile Health Monitoring Architecture

Patient data is collected, analyzed and forwarded, via cell phone to servers, guaranteeing a

more robust picture of the patients’ health.

The Nicolet Ambulatory Monitor System [145] combines a flexible, high quality diagnostic

unit, ideal for patients of all ages. It is a flexible, robust system specifically realized to

provide the requirements of long-term monitoring. This system diagnoses patients’ cerebral

function (premature neonates to older adults) monitoring continuously ill patients at risk

for brain damage and secondary injury.

Finally, authors in [62] discuss two areas of opportunity for remote patient monitoring: i)

Patient Safety and ii) Chronic Disease Management and Post-Acute Care Management.

In alignment with the mission of the Center for Technology and Aging, they focus on

technology-enabled innovations, such as wireless connectivity, mainly aimed at improving

Chapter 1. Dependability Issues of Wireless Sensor Networks 25

the health of older adults and promoting independent living in community-based, home,

and long-term care settings.

A typical mobile health monitoring system is illustrated in figure 1.3.

In the health monitoring systems the transmission of vital sign data and the alarms have

to be dependable in order to intervene as soon as possible and the time latency has to be

limited and predictable. Moreover, coverage and lifetime of network are important, since

WBSNs are composed by few sensor nodes each of which is devoted to monitor a physio-

logical sign.

1.4 FMEA of a WSN-based Monitoring System

To fill the gap in the knowledge about the possible threats that may affect the correct func-

tioning of a monitoring systems, in this section we present the results of a Failure Modes and

Effects Analysis (FMEA) conducted to identify the failure modes of the main components

composing such systems and which have been already published in [35, 32, 34] and here are

briefly summarized.

The analysis takes advantage of past experience and detailed field studies on the dependabil-

ity of mobile devices, wireless communication technologies, such as Bluetooth, and wireless

sensor networks (WSNs), and builds on such results to propose a comprehensive characteri-

zation of the problems that may affect modern monitoring systems. In [35, 34], the analysis

has been realized considering a mobile health monitoring system (as represented in figure

1.3) and it is based both on previous studies on different system components (such as WSNs,

Chapter 1. Dependability Issues of Wireless Sensor Networks 26

smart phones, and short range communication technologies) and on FMEA results available

on some subcomponents, such as devices (i.e. medical devices, environmental sensors, ...).

Firstly some FMEA fundamentals are introduced to better know this kind of analysis and

secondly a FMEA table, produced analyzing a typical monitoring system, is presented as a

guidance tool to direct future research efforts towards the realization of more dependable

monitoring systems.

FMEA fundamentals

FMEA is a team-based, systematic and proactive approach for identifying the ways that a

process or design can fail, why it might fail, and how it can be made safer [84]. To properly

evaluate a process or product for strengths, weaknesses, potential problem areas or failure

modes, and to prevent problems before they occur, a FMEA can be conducted. The pur-

pose of performing an FMEA, as described in US MIL STD 1629 [3], is to identify where

and when possible system failures could occur and to prevent those problems before they

happen. It represents a procedure for analysis of potential failure modes within a system

for classification by the severity and likelihood of the failures.

An FMEA provides a systematic method of resolving the questions: How can a process or

product fail? What will be the effect on the rest of the system if such failure occurs? What

action is necessary to prevent the failure?

To realize a FMEA, the system is divided in components/functions that are divided in

subcomponents/subfunctions; it considers a table in which the rows are composed by the

Chapter 1. Dependability Issues of Wireless Sensor Networks 27

subcomponents/subfunctions and the columns represent respectively the failure modes, the

possible causes and the possible effects. If a particular failure could not be prevented, then

the goal would be to prevent the issue from affecting users of the teams in the accreditation

process. The FMEA team determines the effect of each failure by failure mode analysis and

identifies single failure points that are critical.

It may also classify each failure according to the criticality of a failure effect (severity) and

its probability of occurring (probability). There are some motivations why this analysis

technique is very advantageous. FMEA provides a basis for identifying root failure causes

and developing effective corrective actions; the FMEA identifies reliability and safety criti-

cal components; it facilitates investigation of design alternatives at all phases of design; it

is used to provide other maintainability, safety, testability, and logistics analyses. FMEA is

thus part of a larger system of quality control, where documentation is vital to implemen-

tation. In our case, FMEA is useful to detect the main dependability threats which have

to be taken in account to perform dependability assessment of a WSN.

Since FMEA is effectively dependent on the members of the team which examines the fail-

ures, it is limited by their experience of previous failures. If a failure mode cannot be

identified, then external help is needed from consultants who are aware of the many differ-

ent types of product failure.

Chapter 1. Dependability Issues of Wireless Sensor Networks 28

FMEA results

In this paragraph the results of the FMEA performed on generic monitoring systems are

presented.

Let us consider a monitoring system (figure 1.4) composed by a number of sensors, a gateway

device (a handheld device) and a remote station; typical communication means are blue-

tooth, ZigBee (within the WSN - Intra WSN communication), WiFi and cellular (external

to the WSN - Extra WSN communication). Data are sensed by sensors (i.e. accelerometer,

light sensor, etc.) and transmitted to a mobile device over a bluetooth network. Afterwards,

data are sent to a remote station deployed, for an example, in an office by means of either

a WiFi or a cellular connection (the remote center location).

Figure 1.4: A WSN-based Monitoring Architecture

Chapter 1. Dependability Issues of Wireless Sensor Networks 29

In this typical network, possible failures can occur in sensors, in the bluetooth communi-

cation, in the mobile device, during the WiFi/cellular communication and finally in the

local monitoring station of the operator. The most frequent failure occurrences have been

obtained from past experiences on real architectures and from the existing literature, trying

to relate failure occurrences with potential causes (faults).

Considering the general architecture, the remote center location is omitted, since it should

be more reliable and under the direct control of the staff, who can immediately intervene

in case of failures (e.g., they can connect to the system using a different machine). Hence,

the focus is on the components which have to be used by other users, who might not be

technology experts and who need to rely on a monitoring system able to work even in case

of accidental failures.

To perform the FMEA four components/functions have been identified [35]: the node (i.e.,

the sensor used to monitor a phenomenon), the Intra WSN communication, the Extra WSN

communication, and the gateway (i.e., a smartphone).

In figure 1.5 an organization of components and subcomponents is shown.

Figure 1.5: Components and subcomponents considered in the FMEA

Chapter 1. Dependability Issues of Wireless Sensor Networks 30

Four sub-components/subfunctions have been identified for the node component: the sensor

board, the power supply unit, the CPU, and the OS are the general components of a node,

and their analysis is based on our previous study on sensor networks [36, 39]. The failures

of such devices have been identified starting from existing studies, such as [75, 131].

In table 1.1 the FMEA results are presented. Further it is reported for each failure mode

the related severity and probability of occurrence that are represented by a value between 1

and 4. With lower value we identify a weak severity/probability instead with higher values

a strong severity/probability [133]. For example if a failure is classified with severity 4 and

probability 4 it means that the failure is very dangerous and very probable. But if a failure

is classified with severity 1 and probability 1 then there is almost nothing to worry.

Table 1.1 is structured by seven columns. Every row contains the description of a single

failure mode. So, considering a possible failure mode that may occur in the monitoring

system, we identify from left to right the component (and the subcomponent if it exists)

interested by failure mode, the failure mode, the possible effects of failure, the possible

cause of failure and finally the severity and probability of occurrence, to highlight the more

dangerous and frequent failures.

All of these analyzed failures cause abnormal data readings, or even it can happen that a

value is not received at the remote center location; in this case an inaccurate monitoring

is provided, potentially resulting in a significant hazard to monitored system. WSN-based

monitoring systems must be aware of all the possible failures, in order to react to them or,

at least, to detect them. For instance, in case of failure detection, a possible action can be

to call to the operator or to call to an emergency contact to suddenly check the system and

Chapter 1. Dependability Issues of Wireless Sensor Networks 31

Table 1.1: Failure Mode and Effect Analysis of a monitoring system

Component Sub-
component

Potential
Failure Mode

Potential Effects of
Failure

Potential Causes of
Failure

Sev. Prob.

Node Sensor
Board

Stuck at Zero The device is out-of-order;
it does not deliver any out-
put to inputs

Sensing hardware 4 2

Null Reading The device delivers null
output values

Sensing hardware 4 4

Out of Scale
Reading

The device delivers no
meaningful values

Sensing hardware 3 4

Power sup-
ply

Stuck at Zero The device is out-of-order;
it does not deliver any out-
put to inputs

Natural energy exhaus-
tion

4 4

Reset The node resets itself to
its initial conditions

Anomalous current re-
quest that cannot be
supplied by batteries

3 1

CPU Stuck at Zero The device is out-of-order;
it does not deliver any out-
put to inputs

Micro-controller 4 4

OS Software Hang The device is powered on,
but not able to deliver any
output

Operating system’s
corrupted state

4 3

Intra WSN
Communication

Routing Packet Loss The radio packet is not de-
livered

Packet corruption 3 2

Buffer overrun
Isolation The node is not longer

connected to the sink node
Failure of all forward-
ing nodes

4 2

Bluetooth
Stack

Bluetooth
stack failure

A Bluetooth module (e.g.
L2CAP, BNEP, etc.) fails

Bluetooth stack’s cor-
rupted state

3 1

Bluetooth
Channel

Header corrup-
tion

Header delivered with er-
rors

Packet corruption 2 1

Header length
mismatch

Header length deviates
from the specified one

Packet corruption 2 1

Payload cor-
ruption

Payload delivered with er-
rors

Packet corruption 3 1

Extra WSN Communica-
tion

Data Delivery
Failures

The network is not able
to deliver the required
amount of measurements

The number of failed
nodes is more than a
given threshold

3 3

Cellular/WiFi
network un-
available

Monitoring stopped Area without cellu-
lar/WiFi signal

4 3

Gateway Device
(the smart-
phone)

Freeze The device’s output be-
comes constant; the de-
vice does not respond to
the user’s input.

System’s corrupted
state

3 3

Self-shutdown The device shuts down it-
self; no service is delivered
at the user interface.

Natural energy exhaus-
tion or self-reboot due
to corrupted state

4 2

Unstable be-
havior

The device exhibits erratic
behavior without any in-
put inserted by the user

System/Application
corrupted state

4 2

Output failure The device delivers an
output sequence that de-
viates from the expected
one

System/Application
corrupted state

3 4

Input failure User inputs have no effect
on device behavior

System/Application
corrupted state; Natu-
ral energy exhaustion

1 1

Bluetooth
Application

Inquiry/Scan
Failure

The scan procedure termi-
nates abnormally

A Bluetooth module
fails or device out of
range

2 3

Discovery Fail-
ure

The discover procedure
terminates abnormally

A Bluetooth module
fails or device out of
range

2 3

Connect Fail-
ure

The device is unable to es-
tablish a connection

A Bluetooth module
fails or device out of
range

4 3

Packet Loss Expected packets are not
received

Packet corruption 3 1

Data mismatch Packets are delivered with
errors in the payload

Memoryless channel
with uncorrelated
errors

3 1

Chapter 1. Dependability Issues of Wireless Sensor Networks 32

restore the normal operation of the system.

At the same time, a dependability assessment tool to be used at design time should emulate

the main failure modes, such as node failures and packet losses, to evaluate the dependabil-

ity level of the WSN against possible undesired events.

1.5 Open issues

The dependability level of WSN-based systems is challenged by severe impairments, due

to their open and evolving nature. An WSN-based system operates proactively, does its

job automatically with minimal human intervention, it interacts with humans by messages,

alerts, and other forms of natural communication and it should provide its service in a

stable, robust and reliable way, even in the presence of component malfunctions, power/-

battery break down, or other exceptional conditions.

Generally, faults in a system are unavoidable and they make a system less available, reliable,

safe and secure. This combination of heterogeneity, mobility, dynamism, sheer number of

devices, accidental failures, and the presence of unavoidable software and hardware defects

makes increasingly difficult to build WSN-based systems with verifiable dependability prop-

erties.

Despite these compelling issues, there is still little understanding in the literature on the

dependability delivered by current research proposal for monitoring environments and on

the methods and techniques needed to build more dependable WSN-based systems in the

next future.

Chapter 1. Dependability Issues of Wireless Sensor Networks 33

Dependability assessment of WSNs by means of monitoring systems still represents an in-

teresting research issue on the basis of defined specific metrics.

The aim is to have a support tool that could help to i) calculate the robustness level of

the WSN, i) anticipate critical choices e.g., concerning node placement, routing, ii) mitigate

risks, e.g., by forecasting the time when the WSN will not be able to perform with a suitable

level of resiliency, and iii) prevent money loss, e.g., providing a criteria to plan and schedule

maintenance actions effectively.

It is needed to evaluate the performance and the robustness of a WSN-based system at

design time in order to check the level of the fault tolerance of the WSN and it is needed

to continuously monitor the WSN when it is running to promptly detect the occurrence of

failures. Usually to satisfy these two aims, it is necessary to apply two approaches: the sim-

ulative approach to study the network at design time and experimental approach to observe

the behavior of the WSN at runtime; to rely on only could be much more advantageous

since the same means of verification at design time could be extended to the runtime.

Although various interesting dependability evaluation techniques and tools have been pro-

posed in literature, still there is few attention to define formal-based approaches as alter-

native dependability evaluation techniques able to check the behavior of the WSN both at

design and runtime.

Use of formal verification could represent a crucial key for the dependability assessment of

WSN since by means of specifications, defined in a human-friendly language, it is possible

to build tools that can help a network manager to do critical choices about the WSN to

monitor and to perform continuous monitoring [80] (or runtime verification [143]) of the

Chapter 1. Dependability Issues of Wireless Sensor Networks 34

deployed system using the same set of specifications adopted at design time.

Research is the process of going up
alleys to see if they are blind.

Marston Bates

Chapter 2

Related Research

The approaches adopted in literature to evaluate WSN dependability attributes can be categorized in

four classes: experimental, simulative, analytical and formal. The first allows to analyze depend-

ability at runtime, second and third at design time; none of these allows to do assessment both at

design and runtime. Formal approaches offer a new opportunity for the dependability study of WSNs

but until now there is no work that has proven how use a formal method to perform dependability

assessment of a WSN both before and after its deployment. This Chapter revises experimental, sim-

ulative, analytical and formal approaches and tools currently used in the field of WSN dependability

assessment, including related studies; a comparison of related work is presented to summarize the

state-of-art and reason about what is still missing. Finally guidelines to help designers to realize

correctness properties specifications of WSN are discussed.

2.1 Experimental approaches

Experimental approaches are used to measure the WSN dependability directly from a real

system, during its operation. In the prototyping phase, it is possible to perform an acceler-

ated testing, for example by forcing a fault (by means of Fault Injection (FI) [30, 37]); at

runtime, it is possible to collect occurring failures directly from system (by means of Field

Failure Data Analysis (FFDA) techniques [31]).

Fault Injection is defined as the dependability validation technique based on the observation

of the system behavior under the presence of faults which are deliberately introduced into

the system [73].

35

Chapter 2. Related Research 36

Typically FI is used to i) assess the dependability level of a target system, such as an op-

erational systems, a system prototype, or an emulated execution environment (the last two

options are used especially in the pre-deployment phase of the system), and ii) to shed some

light on the design choice of a system, for instance, showing its potential dependability bot-

tlenecks. FI tries to determine whether the response of a system matches its specifications

in the presence of a defined space of faults.

Table 2.1: Fault Injection Tools

Tool Technique Fault Model

XCEPTION [92] SWIFI with exception trigger Transient faults

FERRARI [77] SWIFI with interrupt, fork,
trap

Transient and permanent faults

FIAT [14] SWIFI with exception trigger Bit-flip faults in the memory

NFTAPE [135] SWIFI with exception trigger Several types of faults (arbitrary
model)

MESSALINE [9] HWIFI with forcing and inser-
tion

Faults of type stuck-at-0, stuck-at-1,
logical bridging, physical bridging

AVR-INJECT [30] SWIFI with exception trigger Bit-flip faults in the memory area,
code area and special registers

The implementation of tools for injecting faults has been the focus of several studies. Table

2.1 reports a summary of well known tools for fault injection. Beyond their inherent differ-

ences, they operate in a similar way: each of them performs a study of the fault-free target,

obtaining a ’gold file’; then, it injects a fault (obtaining the ’fault file’) and it compares the

gold file with the fault file, to evaluate the system behavior in response to the fault.

Among of the tools mentioned in the table 2.1, there is the AVR-Inject Tool. We have

Chapter 2. Related Research 37

implemented this tool [30] to experimentally study a WSN; it has been useful for the real-

ization of the FMEA discussed in the previous chapter. Unfortunately the AVR-Inject tool

cannot be used at design time since it needs a prototype of the system, an assembly code

that runs on the sensors and thus it needs very detailed information in design phase. For

this reason we had to investigate other solutions to reach the aim of this dissertation since

we can use this tool only when a system is in running.

Field Failure Data Analysis (FFDA) [23] of a system represents the set of fault forecasting

techniques which are performed at runtime. By means of this analysis, the dependability

attributes of an actual and deployed system are measured considering real conditions. A

system which is in normal operation is observed and the natural occurring errors and fail-

ures are monitored and recorded in log files.

The FFDA is not practical, not feasible for the WSNs since they do not provide log and

they have to be lightweight [22].

2.2 Simulative approaches

A simulative approach for assessing WSNs usually makes use of behavioral simulators, i.e.,

tools able to reproduce the expected behavior of a system by means of a code-based de-

scription. Behavioral simulators allow to reproduce the expected behavior of WSN nodes

on the basis of the real application planned to execute on nodes. However, it is not always

possible to observe non-functional properties of WSNs by means of simulative approaches,

since models need to be redefined and adapted to the specific network to simulate.

Chapter 2. Related Research 38

Typical simulative approaches to evaluate WSN fault/failure models are provided in [127,

82].

In [127] authors address the problem of modeling and evaluating the reliability of the com-

munication infrastructure of a WSN. Authors assume that failures can be categorized in

node and network failures.

The first on-line model-based testing technique [82] has been conceived to identify the sen-

sors that have the highest probability to be faulty. The effectiveness of the approach is

evaluated in the presence of random noise using a system of light sensors; a fault classi-

fication taxonomy for wired sensors is introduced. This technique is not oriented to the

wireless sensor networks.

Some work like [103, 126] provide code generation of sensor network applications to perform

behavioral simulation and performance analysis.

In [103], a framework for modeling, simulation and code generation of WSNs is presented.

The framework is based on Simulink, Stateflow and Embedded Coder; it allows engineers

to simulate and automatically generate code of sensor network applications based on Math-

Works tools. By means of this tool, an application developer can configure the connectivity

of the sensor nodes and can start simulation and functional verification of the application.

This framework is able to generate the complete application code for several target operat-

ing systems (e.g. TinyOS and MantisOS) from the simulated model.

In [126] a model-driven process (MDD) is presented to obtain a major effort of optimization

for WSN applications. In this work a set of modeling languages is the starting point for

code generation and performance analysis.

Chapter 2. Related Research 39

Finally, the network lifetime is analyzed in [58]; to calculate the lifetime of a WSN, the

authors perform simulation by means of a Castalia-based approach that models path-loss.

2.2.1 Simulators

Several simulators for WSNs have been proposed in literature, such as NS-2, OMNet++,

Prowler, TOSSIM, OPNET and Avrora, [109, 93, 19, 125, 89, 90, 76, 138].

NS-2 [109] is a event-based simulation tool for WSN. It is amply adopted in academic

research being open source and easy to use. The simulations are written with C++/C

languages and they can be observed graphically by Network AniMator (NAM).

OMNeT++ [93] is a component-based discrete network simulator. Even this simulator is

based on C++ language and it has graphical tools for simulation building and evaluating re-

sults in real time. The most recent simulation environment built on OMNeT++ is Castalia

[19]. This framework was realized for Wireless Sensor Networks, Body Area Networks[148]

and networks of low-power embedded devices and it allows to test distributed algorithms

and protocols for WSN considering some features of a real WSN like wireless channel, power

consumption and considering a real node behavior. Castalia can be used to simulate a wide

set of wireless sensor platforms.

Prowler [125] is an event-driven WSN simulator conceived to operate in Matlab environ-

ment. Initially it was realized to simulate MICA motes but then it has been extended also

for more general platforms. Advantages of Matlab environments are simple implementing

of applications, friendly GUI interface and good visualization facilities. By means of this

Chapter 2. Related Research 40

simulator, it is possible to perform deterministic simulation to test application code of a

WSN application and to perform probabilistic simulation to observe the behavior of the

sensor nodes.

TOSSIM [89, 90] is the simulator built for TinyOS applications. Actually TOSSIM is an

emulator rather than a simulator since it runs actual application code; it allows to simulate

the hardware of a sensor but it does not provide information about WSN dependability.

Finally, TOSSIM is provided of a visualization tool, TinyViz.

OPNET [76] is a discrete event, object oriented network simulator. this tool was developed

initially for military purposes but its large use grew as much to be considered also for com-

mercial use. OPNET is a powerful software that it can be used for research purpose and

also as a network design tool.

Finally Avrora [90] is a simulator that adopts an approach which is more oriented to the

verification of behavioral properties or performance indicators, and not oriented to the

observation of dependability properties. Avrora is a low-level emulator of the AVR pro-

cessor mainly used to test the behavior of WSNs application prior to their deployment.

It executes the disassembled code instruction per instruction and emulates the hardware

of the processor and the hardware of the node (memory, LEDs, sensors, radio channel, etc.).

2.3 Analytical approaches

The study of the performance and dependability of WSNs can be performed by means of

analytical models [55, 68, 101, 2, 29, 134, 85].

Chapter 2. Related Research 41

Some of these models [54] are based on a mathematical representation of the WSN charac-

teristics and are solved by means of simulation.

In [55] authors introduce an approach for the automated generation of WSN dependability

models, based on a variant of Petri nets.

An analytical model to predict the battery exhaustion and the lifetime of a WSN, LEACH,

is discussed in [68]. In [101] the authors present a network state model used to forecast

the energy of a sensor. AboElFotoh et al. [2] present a probabilistic technique to observe

the WSN behavior and discuss about dependability of a WSN; they suppose that the main

causes of the failures are related to the crashes, power failures and natural causes. The

authors evaluate dependability on the basis of the number of packets received by the sink

in a deterministic time (decision interval). The dependability is computed evaluating the

delay of the expected message.

In [29] authors develop an analytical model to investigate the relation between energy saving

and system performance and to observe the effects when sensor sleep/active mode vary. By

means of this model, authors can obtain several performance metrics, such as the distribu-

tion of the data delivery delay. This work adopts analytical model specifically representing

the sensor in sleep/active mode considering channel contention and routing issues. In this

work authors model a WSN by means of Markovian techniques; they assess dependability

using data delivery resiliency and power consumption metrics.

A linear programming model [134] is introduced to address the problem of “multi-hop life-

time aware routing”. The authors propose a Garg-Konemann-based approach to obtain

the minimum cost arborescence for reaching the sink node optimizing the lifetime of sensor

Chapter 2. Related Research 42

nodes.

Finally in [85] the node aging problem is addressed. The authors try to solve this problem

by associating a survivor function for each sensor node (using Weibull distribution). The

aim of this work is to demonstrate that the node aging process has an important impact on

the connectivity at the increasing of the hop distance. By means of a mathematical analysis

and a simulation, they observe that nodes at first hop consume their energy because of the

aggregation with children nodes. Hence, they assert that the consumption is related to the

number of children nodes.

2.4 Formal approaches

Formal approaches are based on formal verification that consists in checking of the correct-

ness of a system taking in account specifications or properties, using formal methods.

The formal verification is performed by providing a proof on an abstract mathematical

model of the system. Typically to model systems we can consider labeled transition sys-

tems, timed automata, finite state machines, Petri nets, process algebra, hybrid automata,

formal semantics of programming languages such as axiomatic semantics, operational se-

mantics and denotational semantics.

2.4.1 Model Checking

One of the well known formal approaches is model checking [16]. This technique consists

of a systematically exhaustive exploration of the mathematical model (this is possible for

Chapter 2. Related Research 43

finite models, but also for some infinite models where infinite sets of states can be effectively

represented finitely by using abstraction or taking advantage of symmetry). Usually this

consists of exploring all states and transitions in the model, by using smart and domain-

specific abstraction techniques to consider whole groups of states in a single operation and

reduce computing time. Implementation techniques include state space enumeration, sym-

bolic state space enumeration, abstract interpretation, symbolic simulation, abstraction

refinement. The properties to be verified are often described in temporal logics, such as

linear temporal logic (LTL) or computational tree logic (CTL) [64]. The great advantage of

model checking is that it is often fully automatic; its primary disadvantage is that it does

not in general scale to large systems; symbolic models are typically limited to a few hundred

bits of state, while explicit state enumeration requires the state space being explored to be

relatively small.

Typically Model Checking allows to verify if a defined property of a system is satisfied.

Thus, the limit of this technique is related to the prediction of a sequence of events. In

other words, by means of model checking, an user is able to control if, given an event, the

correctness properties are satisfied but is not able to know what will be the behavior of the

system after that given event which is instead the goal of our verification approach.

In the work presented in [53] authors consider the Approximate Probabilistic Model Checker

(APMC), a tool that allows to approximately check the correctness of extremely large prob-

abilistic systems, to verify it. Instead, we rely on deterministic checking of correctness

properties.

Chapter 2. Related Research 44

SPIN Model Checker

SPIN [71] is an efficient verification system widely diffused for models of distributed soft-

ware systems. It has been implemented to detect design errors in applications ranging from

high-level descriptions of distributed algorithms to detailed code for controlling telephone

exchanges. It is a general tool for verifying the correctness in a rigorous and mostly auto-

mated fashion. It was written by Holzmann and others members of the Unix group of the

Computing Sciences Research Center at Bell Labs.

Systems to be verified are described in Promela (Process Meta Language) [98], which

supports modeling of asynchronous distributed algorithms as non-deterministic automata

(SPIN stands for ”Simple Promela Interpreter”). Properties to be verified are expressed as

Linear Temporal Logic (LTL) formulas, which are negated and then converted into Buchi

automata as part of the model-checking algorithm.

2.4.2 Linear Temporal Logic (LTL)

Linear temporal logic or linear-time temporal logic [74, 140] (LTL) is a modal temporal

logic with modalities referring to time. LTL is a formalism used for specification and ver-

ification of properties in reactive systems, as Pnueli defined in his work [116]. A set of

infinite sequences is described by a formula of temporal logic (temporal property). If all of

the computations of temporal property belong to this set then the property is satisfied. The

formulas of LTL are useful to define temporal properties of transition systems [60].

In [11] authors present PARADIGM and adopt a propositional LTL (PLTL) to specify and

Chapter 2. Related Research 45

verify behavior correctness of dynamic systems. They assert that some specifications can

be automatically translated to a PLTL-based program, producing an executable model for

the real system. This model is composed by a set of logic rules implying, at any time, the

current state of process executions.

The complexity of the formulas to define properties in this logic formalism makes more hard

its application. Axioms have to be defined by means of particular logic symbols that make

difficult the understanding. Moreover, since there is not a way to determine if a property is

true or false at given time, the computation of the dependability metrics is more difficult.

2.4.3 Situation Calculus

The situation calculus is a logic formalism designed for representing and reasoning about

dynamical domains. It was first introduced by John McCarthy [97]. The main version of

the situational calculus, that is used, is based on that introduced by Ray Reiter [120].

The situation calculus represents changing scenarios as a set of first-order logic formulas

[130]. The basic elements of the calculus are: the actions that can be performed in the

world, the fluents that describe the state of the world and the situations. Actions can be

performed in the world and quantified. Fluents describe the state of the world (these are

predicates and functions whose value may change depending on the situation). Situations

represent a history of action occurrences [47].

A dynamic world is modeled as a series of situations, resulting from the various actions

performed within the world. A domain is formalized by a number of formulas, namely: i)

Chapter 2. Related Research 46

Action precondition axioms, one for each action, ii) Successor state axioms, one for each

fluent, iii) Foundational axioms of the situation calculus and iv) other axioms describing

the world in various situations; in particular the dynamic world is axiomatized mainly by

adding initial world axioms, effect axioms, and successor state axioms. The initial world

axioms describe the starting state of the environment, made up of its objects, their posi-

tion, their properties, and so forth; effect axioms instead describe the effect upon a fluent

of performing an action in a given situation. It is also necessary to specify, for each fluent,

the non-effect of other actions.

The work described in [46] focuses on detecting and identifying dangerous and abnormal

situations - due to patient behaviors - in order to provide assurance to the patient of her

safety and to help clinician to assess the state of the disease. It adopts Situation Calcu-

lus to define correctness properties to model a situation-awareness scenario and the Golog

Logic Programming Language for situation calculus [88] to realize intelligent agents for the

detection and recovery. Situation Calculus and Golog are well known for the specification

and monitoring of the evolving world in case of robots performing specific actions within a

controlled environment.

However the situation calculus is based on global states and the actions are hypothetical

without giving information about time.

Chapter 2. Related Research 47

2.4.4 Event Calculus

Event Calculus was proposed for the first time in 1986 by Marek Sergot and Robert Kowal-

ski [83] and then it was extended by Murray Shanahan and Rob Miller in the 1990s [99].

This language belongs to the family of logical languages and it is commonly used for repre-

senting and reasoning of the events and their effects [139]. Fluent, event and predicate are

the basic concepts of Event Calculus [124]. For every timepoint, the value of fluents or the

events that occur can be specified.

This language is also named narrative-based : in the Event Calculus, there is a single time

line on which events occur and this event sequence represents the narrative.

The most important and used predicates of Event Calculus are: Initiates, Terminates, Hold-

sAt and Happens.

Supposing that e is an event, f is a fluent and t is a timepoint, we have:

• Initiates(e, f, t)

It means that, if the event e is executed at time t, then the fluent f will be true after t.

• Terminates(e, f, t)

It has a similar meaning, with the only difference being that when the event e is

executed at time t, then the fluent f will be false after t.

• HoldsAt(f, t)

It is used to tell which fluents hold at a given time point.

Chapter 2. Related Research 48

• Happens(e, t)

It is used when the event e occurs at timepoint t.

Since the normal and failing behavior of a WSN can be characterized in terms of an event

flow (for instance, a node is turned on, a packet is sent, a packet is lost, a node stops to work

due to crash or battery exhaustion, or it gets isolated from the rest of the network due to

the failure of other nodes, etc.), Event Calculus, that is an event-based formal language, can

be used to formally specify the occurrence of such events and the response of the WSN to

them, to check if given correctness properties are verified. Moreover dependability metrics

can be valuated by analyzing the narrative generated by a Event Calculus reasoner based

on the specification of the target WSN.

An example of narrative is shown in listing 2.1.

Listing 2.1: Example of Event Calculus narrative

1 1

2 Happens(Disconnect(5, 3), 1).

3 2

4 -IsLinked(5, 3).

5 Happens(Isolate(5), 2).

6 3

7 -IsReachable(5).

8 Happens(Stop(4), 3).

9 4

10 -IsAlive(4).

11 Happens(Isolate(6), 4).

12 5

13 -IsReachable(6).

14 Happens(Isolate(7), 5).

15 6

16 -IsReachable(7).

17 7

18 8

19 9

20 10 �

Chapter 2. Related Research 49

By the listing 2.1 we can understand that at timepoint 1 there is a disconnection of node 5

from 3 and this event causes an isolation of the node 5; at timepoint 3 node 4 stops to work

causing an isolation of nodes 6 and 7. Supposing to calculate the coverage, we are able to

measure it knowing the number of isolated nodes in every timepoint.

Finally several techniques are considered to perform automated reasoning in Event Calcu-

lus, such as satisfiability solving, first-order logic automated theorem proving, Answer Set

Programming and logic programming in Prolog.

To check the proposed correctness properties defined in Event Calculus we use the Discrete

Event Calculus (DEC) Reasoner. The DEC Reasoner [105, 104] uses satisfiability (SAT)

solvers [106] and by means of this we are able to perform reasoning like deduction, ab-

duction, post-diction, and model finding. It is documented in details in [107] in which its

syntax is explained (e.g. the meaning of the symbols used in the formulas).

2.4.5 Formal approaches for WSN

Lifetime of WSN is defined and evaluated in [26] by means of a mathematical formalism. In

this work a generic definition of sensor network lifetime is presented and it is conceived in

such way to incorporate different application requirements, such as i) number of alive nodes,

ii) time latency in the delivery process, iii) delivery ratio, iv) connectivity, v) coverage, and

vi) availability.

Recently, different formal methods and tools have been applied for the modeling and anal-

ysis of WSNs, such as [112], [94] and [18].

Chapter 2. Related Research 50

In [78] authors apply a formal tool to wireless sensor networks. Authors propose a formal

language to specify the WSN and a tool to simulate it. However, the formal specification

has to be rewritten if the WSN under study changes.

In [94] authors propose a methodology for modeling, analysis and development of WSNs

using a formal language (PAWSN) and a tool environment (TEPAWSN). Authors consider

only power consumption as dependability metric that is necessary but not sufficient to as-

sess the WSN dependability (e.g. other problems of WSN such as the isolation problem of

a node have been analyzed) and also they apply only simulation.

In [18] authors describe a model-driven performance engineering framework for WSNs

(called Moppet). This framework uses the Event Calculus formalism to estimate the perfor-

mance of WSN applications in terms of power consumption and lifetime of each sensor node;

other dependability metrics like coverage, connection resiliency and data delivery resiliency

are not considered. The features related to a particular WSN have to set in the framework

every time that a new experiment starts.

There are some papers ([113],[122],[115]) that considered the formal method in real-time

contexts. In [113] authors model and study WSN algorithms using the Real-Time Maude

formalism. Though authors adopt this formalism, they use NS-2 simulator to analyze the

considered scenarios making the work very similar to simulative approaches.

The work presented in [122] describes a new formal model for the specification and the

validation of WSN. Authors assert the use of rigorous formal method in specification and

validation can help designers to limit the introduction of potentially faulty components

during the construction of the system. They consider a WSN as a Reactive Multi-Agent

Chapter 2. Related Research 51

System consisting of concurrent reactive agents. In this paper dependability metrics are

not treated and calculated and authors just describe the structure of a Reactive Decisional

Agent by means of a formal language. Also, no case studies are reported to validate their

proposal.

Patrignani et al. in [115] consider policies to monitor wireless sensor network applications

in a WSN middleware characterized by a Component and Policy Infrastructure (CaPI); by

means of a formalization they are able to catch dangerous or undesired effects which may

compromise the correct behavior of a WSN application. In this work it has been developed

a prototype that operates on the basis of a application topology in terms of communicating

nodes and a set of properties to satisfy. Even if authors confirm that one of the most im-

portant benefits of formal approach is that problems occurring at runtime can be detected,

they model a static and not dynamic network configuration, focusing only on security (en-

cryption and decryption messages) and resource usage problems and in their scenario they

do not consider other dependability metrics (coverage, data delivery resiliency, ...).

An open issue with formal specifications of WSNs is that they need to be adapted when

changing the target WSN configuration, e.g., in terms of the number of nodes and topology.

To address this problem, it is necessary to provide separated specifications and thus conceive

two logical sets of specifications: a general specification for WSN correctness properties that

is valid for any WSN, and a structural specification related to the topology of the target

WSN, designed in order to be generated automatically.

Chapter 2. Related Research 52

2.5 Comparison of Related Work

In this section it is shown and discussed a comparison of the related work presented in

the previous paragraphs in which it emerges a lack of a work that satisfies all the chosen

characteristics.

By means of the figure 2.1, the analyzed work and their characteristics are reported.

In the grid on the rows there are the approaches, tools and models considered in the related

work; on the columns there are the properties chosen to highlight the differences. For each

work it has been analyzed if some formal method has been used, if it is focalized on WSN,

what dependability metrics have been considered, if specifications have been separated (in

case of use of formal method), if the work is supported by some tool, if What-if analysis

has been considered, if Runtime Verification has been considered and finally if some case

study has been presented.

In particular we have considered the following features:

• WSN to determine if the related work is focused on the Wireless Sensor Networks;

• WSN Dependability metrics to determine if the related work considers the following

dependability metrics: coverage, connection resiliency, data delivery resiliency, power

consumption;

• Formal Method to determine if the related work is based on some formal method (e.g.

model checking, LTL, Event Calculus, etc.) and in particular if the work adopts an

approach that provides Separated specifications: we want to verify if the related work

applies a modular solution considering two logical sets of specifications: a general

Chapter 2. Related Research 53

correctness specification, valid independently of the particular WSN under study, and

a structural specification related to the properties of the target WSN (e.g., number of

nodes, topology, channel quality, initial battery charge);

• Tool to determine if the related work proposes a novel tool to support designers;

• What-if analysis to determine if in the related work the target system is observed

under precise circumstances;

• RV to determine if the related work proposes a runtime verification technique;

• Case study to determine if the related work considers case studies in order to validate

the proposed work.

From the survey of the literature it is possible to assert that few apply formal approaches

to study the behavior of WSN from the same perspective we do in this work. Among the

most important dependability metrics, the power consumption is the only one that has

been considered extensively, instead data delivery resiliency and connection resiliency are

the least analyzed.

Let us note that for APMC work it is not possible to consider it as contribution for WSN

since authors assess data delivery resiliency and power consumption for cabled sensor net-

works.

The majority of papers propose a tool and present results by means of a case study applying

what-if analysis.

Chapter 2. Related Research 54

There is no work that considers specifications defined separately (see the Separated speci-

fications column); this is a disadvantage that it will be overcome with the ADVISES tool

proposed in the next chapters: in fact ADVISES tool it is the first work that considers sep-

arated specifications considering the general specifications on one side and the structural

specifications dependent on the WSN topology on another side.

Therefore looking the figure 2.1 there is no work that meets all of the important charac-

teristics identified by the columns and this comparison helps to make the contribution of

the thesis more robust and useful demonstrating its novelty in the field of dependability

research for WSN.

Chapter 2. Related Research 55

F
o

rm
a

l
M

et
h

o
d

W

S
N

W

S
N

 D
ep

en
d

a
b

il
it

y
 m

et
ri

cs

S
ep

a
ra

te
d

 s
p

ec
if

ic
a

ti
o

n
s

T
o

o
l

W
h

a
t-

if

a
n

a
ly

si
s

R
V

C

a
se

st
u

d
y

C
o

v

C
o

n
n

.
R

es
il

.
D

a
ta

 D
el

.
R

es
il

.
P

o
w

.
C

o
n

s.

N
s2

 [
1

1
0

]

M
a
th

.
A

n
a
ly

si
s

w
o
rk

 [
8

6
]

P
et

ri
 n

et
s

F
ra

m
ew

o
rk

 [
5

6
]

R
ea

l-
ti

m
e

M
a
u

d
e

to
o
l

[1
1

4
]

A
P

M
C

 [
5

4
]

T
E

P
A

W
S

N
 [

9
5

]

M
o
p

p
et

 [
1

8
]

X
ce

p
ti

o
n

 [
9

3
]

F
er

ra
ri

 [
7

8
]

M
es

sa
li

n
e

[9
]

N
ft

a
p

e
[1

3
7

]

F
ia

t
[1

4
]

A
V

R
-I

n
je

ct
 [

3
0

]

R
O

B
D

D
 [

1
2

9
]

O
n

-l
in

e
M

o
d

el
-b

a
se

d
 T

es
ti

n
g

 [
8

3
]

M
a
th

W
o
rk

-b
a
se

d
 F

ra
m

ew
o
rk

 [
1

0
4

]

A
v
ro

ra
 [

9
1

]

T
o
ss

im
 [

9
0

]

M
D

D
 [

1
2

8
]

C
a
st

a
li

a
-b

a
se

d
 A

p
p

ro
a
ch

 [
5

9
]

O
m

N
et

+
+

 [
9

4
]

P
ro

w
le

r
[1

2
7

]

O
p

n
et

 [
7

7
]

L

E
A

C
H

 [
6

9
]

 N
et

w
o
rk

 S
ta

te
 M

o
d

el
 [

1
0

2
]

 A
lg

o
ri

th
m

 f
o
r

W
-D

S
N

 [
2

]

M
a
rk

o
v
-b

a
se

d
 M

o
d

el
 [

2
9

]

 G
a
rg

-K
o
n

em
a
n

n
-b

a
se

d
 A

p
p

ro
a
ch

 [
1

3
6

]

F
o
rm

a
l

M
o
d

el
 f

o
r

W
S

N
 l

if
et

im
e

[2
6

]

S
P

IN
 [

7
2

]

P
A

R
A

D
IG

M
 [

1
1

]

S
it

u
a
ti

o
n

-a
w

a
re

n
es

s
M

o
d

el
 [

4
6

]

R
ea

ct
iv

e
M

u
lt

i-
A

g
en

t
S

y
st

em
 [

1
2

3
]

C
a
P

I-
b

a
se

d
 W

S
N

 A
p

p
li

ca
ti

o
n

s
[1

1
6

]

F
ig

u
re

2.
1:

C
om

p
ar

is
on

of
R

el
at

ed
W

or
k

Chapter 2. Related Research 56

2.6 Discussion

All the analyzed work presented interesting methods and/or techniques which give a con-

tribution for the dependability assessment in WSN. These methods have been grouped in

four categories: experimental, simulative, analytical and formal.

Experimental methods are used to evaluate a real system and therefore they need for a

existent prototype; they are useful at runtime since through these methods do experiments

directly on the real system from which they collect data. Simulative and analytical may

be adopted in the design phase: they model a system and make an estimate of reliability

before of the system release. Finally formal methods make use of correctness specifications

and they can be used at runtime too by means of runtime verification techniques.

In table 2.2 a classification of the presented approaches is shown.

Table 2.2: Approach Classification

Approach Verification
Static Dynamic

Experimental × X
Simulative X ×
Analytical X ×

Formal X X

Currently there are proposals in the literature documenting the application of formal meth-

ods to model the WSN but they only focus on some dependability metric like lifetime and

power consumption; it is necessary to provide a method of assessing the dependability not

only in terms of lifetime and power consumption but also in terms of other important key

dependability metrics, such as coverage, connection resiliency to undesired events and data

delivery resiliency.

Chapter 2. Related Research 57

Moreover, formal methods appear to be an attractive solution for the verification of de-

pendability both at design time that at runtime by defining one specification for the system

suitable for both purposes; the lack of a formal approach that can be applied for doing

static and dynamic verification in WSN remains an open issue.

The contribution of this dissertation wants to go beyond. Indeed it is proposed an auto-

matic process, supported by a user friendly tool, for adapting the specifications to the target

WSN and for computing dependability metrics automatically, starting from the analysis of

the reasoning output, during the design and when the WSN operates in a real scenario;

the proposed approach can help to bridge the gap between system engineers and formal

methods experts. The proposed automated dependability verification, using Event Calcu-

lus, calculates the mentioned dependability metrics giving information or warning messages

to the user.

2.7 Workflow towards a Methodology for Dependable WSN-
based Applications

In this paragraph we present and discuss the guidelines to define specifications for WSN-

based applications using Event Calculus. The workflow illustrated in figure 2.2 shows the

steps that we followed to realize verifiable specifications. This workflow is characterized

by four sequential blocks: Informal Modeling, General Correctness Specification Modeling,

Structural Correctness Modeling and Verification/Testing ; all the workflow consists of 13

tasks.

Chapter 2. Related Research 58

2.7.1 Informal Modeling

In the Informal Modeling block the application domain and correctness properties are an-

alyzed.

Task 1.1: Informal Analysis of domain

Using natural language the application domain is described in a textual form useful to

understand what are the events, the fluents, the parameters (number of sensors, number of

packets, etc.).

Informal
Modeling

General Correctness
Specification Modeling

Structural Correctness
Specification Modeling

Verification/Testing

Task 2.1:
2.1.1 Identify failures

Task 2.3:
2.3.1 Identify events

Task 2.5:
2.5.1 Identify fluents

Task 2.2:
2.2.1 Define failures
2.2.2. Define correctness
properties
2.2.3 Verify/test

Task 2.4:
2.4.1 Define events
2.4.2 Define properties
2.4.3 Verify/test

Task 2.6:
2.6.1 Define fluents
2.6.2 Define properties
2.6.3 Verify/test

Task 3.1:
3.1.1 Identify WSN topology

Task 3.3:
3.3.1 Identify WSN parameters

Task 3.4:
3.4.1 Define number of sensor
3.4.2 Define number of packets
3.4.3 Define number of timepoints

Task 3.5:
3.5.1 Define Event Trace

Task 1.1:
1.1.1 Informal Analysis of
domain

Task 1.2:
1.2.1 Informal Analysis of
correctness properties

Task 4.1:
4.1.1 Verify/test

Corrections

Corrections

Iteractions

Task 3.2:
3.2.1 Define neighbor
relationship between
nodes

Figure 2.2: The workflow for designing specifications for WSN-based applications (4 blocks
- 14 tasks).

Chapter 2. Related Research 59

Task 1.2: Informal Analysis of correctness properties

After having defined the application domain, in this task the correctness properties to verify

are described, for example “A sensor is completely isolated if there is no path between this

node and the sink node”, “If a packet is not delivered to the sink node due to some failure

(node crash or disconnection between a couple of sensors), the packet is lost”, “If a node is

discharged, it stops its operation”.

2.7.2 General Correctness Specification Modeling

This block includes the identification of the correctness properties to detect which are valid

for every WSN. In particular failures, events and fluents are identified, defined and refined

after a verification and testing subprocess.

Task 2.1: Identify failures

This task identifies the failures that can occur in a WSN (e.g. isolation event, packet lost

event, battery exhaustion event). To perform this task we are based on results of FMEA

[34, 35] discussed in the chapter 1.

Task 2.2: Define the failures, the correctness properties, and verify/test

In this task failures, that are identified in task 2.1, and related correctness properties are

defined by means of Event Calculus language. Finally, verification and testing are performed

in this task; this could help to catch some specification errors, requiring their modification,

and thus verifying again the specification.

Chapter 2. Related Research 60

Task 2.3: Identify events

This task identifies the events that sensors can generate during their running. For example,

a sensor can stop, restart, it can send a packet towards the sink node.

Task 2.4: Define the events, the properties, and verify/test

Formally in this task the identified events are defined in Event Calculus language; all their

properties are defined (e.g. sink node cannot ever be switched off) and verification and

testing of these events are performed. Also in this task, if after verification there is some

error, the specification of events has to be reviewed and corrected.

Task 2.5: Identify fluents

This task identifies the fluents associated to the events. Their values are dependent on the

events. An example of fluent is IsAlive(n): if the fluent is true then it means that the sensor

n is alive (i.e. it is working) else it means that the sensor is not working.

Task 2.6: Define the fluents, the properties, and verify/test

Formally in this task the identified fluents are defined in Event Calculus language; defin-

ing their properties it is possible to establish the initial conditions of the WSN (e.g. at

timepoint 0 all the sensors are reachable and are started) and verification and testing of

these fluents are performed. Also in this task, if after verification there is some error, the

specification of fluents has to be reviewed and corrected.

Chapter 2. Related Research 61

2.7.3 Structural Correctness Modeling

This block is mainly related to the topology of the WSN and completed by parameters

regarding the structure of the WSN (number of sensors, number of packets) and by the

chosen observation time (number of timepoints). Differently from the previous step, this

specification varies on the basis of the characteristics of the target WSN.

Task 3.1: Identify WSN topology

This task focuses on the structure of topology WSN. In particular the specific topology to

consider is identified.

Task 3.2: Define neighbor relationship between nodes

In this task, it is formally defined the WSN topology. To specify the topology, the predicate

Neighbor is used to indicate how nodes are linked in the topology.

Task 3.3: Identify WSN parameters

In the Structural Specifications modeling, it is necessary identify what are the main WSN

parameters to formally declare.

Task 3.4: Define number of sensors, number of packets, number of timepoints

In this task we have to declare the number of the sensors of the topology, the number of the

packets that every sensor can send and the number of timepoints to select the observation

time.

Chapter 2. Related Research 62

Task 3.5: Define Even Trace

In this task, we can formally declare, by means of Happens predicates, any initial sequence

of events of interest for the designer, e.g., to test the defined specifications in the previous

steps.

2.7.4 Verification/Testing

The last block concludes the workflow. The aim is to formally verify or test the entire set

of specifications by means of a Event Calculus reasoner. If some error is detected at this

phase, possible corrections may be performed in some previous block.

Task 4.1: Verify/test

The aim of this task is to verify if the defined general correctness specifications and the

defined structural specifications are correct or have to be reviewed to reach the aim without

errors.

Many things difficult to design prove
easy to performance

Samuel Johnson

Chapter 3

Static Verification

Undesired events, such as node crash and packet loss, may undermine the dependability of a WSN.

Their effects need to be properly assessed from the early stages of the development process onwards

to minimize the chances of unexpected problems during use.

This chapter presents a methodology for the static verification of WSN based systems using the Event

Calculus formal language. In particular we show how the formal specification can be used to verify the

design of a WSN in terms of its dependability properties defining a set of correctness specifications

in order to control the behavior of a generic WSN, coupled with specific structural specifications

describing the target network topology to evaluate. We present two different types of analysis: what-

if analysis and robustness checking. Finally an application scenario concludes the chapter describing

this type of verification in practice.

3.1 Rationale of the static verification technique

Formal methods are widely adopted in the literature to verify the correctness of a system

specification at design time. However, their practical use for the verification of dependabil-

ity properties of WSNs has received little attention, due to the distance between system

engineers and formal methods experts and the need to re-adapt the formal specification to

different design choices. Even if some development teams would invest on the definition

of a detailed specification of WSN correctness properties, a design change (e.g., different

network topology, number of produced packets) could require to rethink the formal specifi-

cation, incurring in extra undesirable costs.

63

Chapter 3. Static Verification 64

To address the issues listed above, a methodology for performing formal dependability ver-

ification of WSN at design time is presented.

In particular in this chapter we are going to describe the formal specification of WSN

correctness as two logical sets:

1. general correctness specification - a set of correctness properties specifications,

valid independently of the particular WSN under study

2. structural specification - a set of specifications and parameters related to the prop-

erties of the target WSN, e.g., number of nodes, network topology, quality of the wire-

less channel (in terms of disconnection probability), and initial charge of batteries.

The general specification is defined once and used across different WSN designs. The struc-

tural specification, instead, has to be adapted when changing the target WSN.

As dependability metrics, we consider connection resiliency, coverage, data delivery re-

siliency and power consumption, introduced in chapter 1, that are the most important

dependability metrics for WSN. The proposed static verification technique is characterized

by two different types of analysis (starting from the same specification):

1. what-if analysis to verify how the WSN behaves in response to a given sequence of

events of interest for the designer,

2. robustness checking to verify the long term robustness of the WSN against ran-

dom sequences of undesired events, useful to identify corner cases and dependability

bottlenecks.

Chapter 3. Static Verification 65

3.2 General Correctness Specification

The proposed verification framework is founded on the definition of a core formal specifi-

cation in Event Calculus. The main idea is to formalize the correctness properties allowing

engineers to verify if a given WSN design, specified in terms of number of nodes, position of

nodes, channel quality, and initial battery level, is able to satisfy given design constraints.

The metrics, defined in chapter 1, are evaluated by analyzing the narrative generated by

the reasoner based on the specification of the target WSN.

Following the workflow for designing specifications for WSN-based applications, discussed

in section 2.7, in this phase we are performing the second step (figure 3.1).

Informal
Modeling

General Correctness
Specification Modeling

Structural Correctness
Specification Modeling

Verification/Testing

Task 2.1:
2.1.1 Identify failures

Task 2.3:
2.3.1 Identify events

Task 2.5:
2.5.1 Identify fluents

Task 2.2:
2.2.1 Define failures
2.2.2. Define correctness
properties
2.2.3 Verify/test

Task 2.4:
2.4.1 Define events
2.4.2 Define properties
2.4.3 Verify/test

Task 2.6:
2.6.1 Define fluents
2.6.2 Define properties
2.6.3 Verify/test

Task 3.1:
3.1.1 Identify WSN topology

Task 3.3:
3.3.1 Identify WSN parameters

Task 3.4:
3.4.1 Define number of sensor
3.4.2 Define number of packets
3.4.3 Define number of timepoints

Task 3.5:
3.5.1 Define Event Trace

Task 1.1:
1.1.1 Informal Analysis of
domain

Task 1.2:
1.2.1 Informal Analysis of
correctness properties

Task 4.1:
4.1.1 Verify/test

Corrections

Corrections

Iteractions

Task 3.2:
3.2.1 Define neighbor
relationship between
nodes

Figure 3.1: Workflow for designing specifications for WSN-based applications: General
Correctness Specification Modeling

Chapter 3. Static Verification 66

The general correctness specification is described in the following. It specifies that a WSN

performs correctly if none of the following undesired events (or failures) happen:

1. isolation event, i.e., a node is no more able to reach the sink;

2. packet loss event, i.e., a packet is lost during the traversal of the network;

3. battery exhaustion event, i.e., a node stops to work since it has run out of battery.

The first two kind of events can be caused by more “basic events”, such as the stop of one

or more nodes (e.g., due to crash or battery exhaustion) or the temporary disconnection of

a node to its neighbor(s) due to transmission errors. The last kind of event is generated by

considering the initial battery charge and the energy request of nodes due to packet sending

and receiving activities (in general assumed to be power demanding activities with respect

to CPU activities [118]).

We concentrate on the three main events described previously considering the results of a

Failure Modes and Effect Analysis conducted on WSNs in [36, 35, 34] and described in chap-

ter 1. Moreover the approach allows to extend the specification with other events, if needed.

3.2.1 Isolation event

The isolation event happens when a node is no more able to reach the sink of the WSN,

i.e., the gateway node where data are stored or processed. The isolation might be caused

by more simple, basic events, such as a stop of a node, due to an arbitrary crash or battery

exhaustion, and the disconnection of a node from another node.

Chapter 3. Static Verification 67

For instance, let us consider the figure 3.2 and let us suppose that node i is the only one

allowing the transmission of data between the sink node and the subnet A. We want to

check when the subnet A is isolated from the rest of network. We suppose that node i is

connected with node j and k. If node i fails, the nodes j and k (and the all the nodes of

the subnet A) are alive but isolated and so the whole subnet A is isolated.

More in general, if a subnet depends by a node and this node becomes isolated then all of

the nodes of the subnet are isolated.

Figure 3.2: Isolation of a WSN subnet

In table 3.1 we report the basic elements (sorts, events and fluents) used for the specification.

We distinguish basic events from generated events. These last events are generated by

the reasoner on the basis of the specification and of the sequence of basic events actually

occurred.

Listing 3.1 shows the rules that represent the core of the specification for an isolation

event. In lines 1-7 we define a rule to verify when a node becomes isolated. A sensor can

Chapter 3. Static Verification 68

Table 3.1: Basic elements of the specification for the isolation event

Elements Name Description
Sorts sensor reference sensor for events and

fluents
to sensor sensor used in case of connection

(i.e. a sensor connects to an-
other sensor)

from sensor sensor used in case of disconnec-
tion (i.e. a sensor disconnects
from another sensor)

Basic
Events

Start(sensor) it occurs when a sensor turns on

Stop(sensor) it occurs when a sensor turns off
Connect(sensor, to sensor) it occurs when a sensor connects

to another sensor
Disconnect(sensor, from sensor) it occurs when a sensor discon-

nects from another sensor
Generated
Events

Isolate(sensor) it occurs when a sensor is iso-
lated from the network

Join(sensor) it occurs when there is at least a
connection between a sensor and
one or more sensors

Fluents IsAlive(sensor) true when a Start event occurs
for a sensor

IsLinked(sensor, to sensor) true when a Connect event oc-
curs

IsReachable(sensor) true when a sensor is reachable
from the sink node

be isolated if it is initially reachable (HoldsAt(IsReachable (sensor),time)), alive (HoldsAt(

IsAlive(sensor),time)) and, considering a link with another sensor (Neighbor (from_sensor

, sensor)), there is no sensor that is alive, reachable and connected with the sensor (!{from

_sensor2} (HoldsAt(IsAlive(from_sensor2),time)& HoldsAt(IsReachable (from_sensor2),

time)& HoldsAt(IsLinked(sensor , from sensor2) , time)) & Neighbor (from_sensor2,

sensor)).

Chapter 3. Static Verification 69

Listing 3.1: Correctness Specification for the Isolation event

1 [sensor,from_sensor, time] Neighbor(from_sensor,sensor) & HoldsAt(

2 IsReachable(sensor),time) & HoldsAt(IsAlive(sensor),time) &

3 (!{from_sensor2} (HoldsAt(IsAlive(from_sensor2),time) &

4 HoldsAt(IsReachable(from_sensor2),time) & HoldsAt(

5 IsLinked(sensor,from_sensor2),time)) &

6 Neighbor(from_sensor2,sensor)) ->

7 Happens(Isolate(sensor),time).

8

9 [sensor,from_sensor, time] (!HoldsAt(IsReachable(sensor),time) &

10 HoldsAt(IsAlive(sensor),time) & HoldsAt(IsAlive(

11 from_sensor),time) & HoldsAt(IsReachable(from_sensor),time))

12 & HoldsAt(IsLinked(sensor,from_sensor),time) &

13 Neighbor(from_sensor,sensor) ->

14 Happens(Join(sensor),time).

15

16 [sensor,from_sensor, time] ((HoldsAt(IsAlive(from_sensor),time) &

17 HoldsAt(IsReachable(from_sensor),time) & HoldsAt(

18 IsLinked(sensor,from_sensor),time)) | !HoldsAt(

19 IsReachable(sensor),time) | !HoldsAt(IsAlive(sensor),time))

20 & Neighbor(from_sensor,sensor) ->

21 !Happens(Isolate(sensor),time).

22

23 [sensor,from_sensor,time] (HoldsAt(IsReachable(sensor),time) |

24 !HoldsAt(IsAlive(sensor),time) | !HoldsAt(

25 IsLinked(sensor,from_sensor),time) |

26 !HoldsAt(IsAlive(from_sensor),time) | !HoldsAt(

27 IsReachable(from_sensor),time)) & Neighbor(from_sensor,sensor)->

28 !Happens(Join(sensor),time). �
Also we report (in lines 9-14) another rule which allows to check a Join event. In

particular the rule declares that if a sensor is not reachable, because is isolated, (!HoldsAt

(IsReachable(sensor),time)) and alive (HoldsAt(IsAlive(sensor),time)) and its neighbor

sensor is also alive and reachable (HoldsAt(IsReachable(from_sensor),time))& HoldsAt(

IsLinked(sensor , from_sensor) , time)) and there is a connection between

them (HoldsAt(IsLinked(sensor,from_sensor),time)) then the sensor can join the network

(Happens(Join(sensor),time)) and becomes reachable again.

Chapter 3. Static Verification 70

3.2.2 Packet Loss event

When there is a failure in a node or a link between a couple of nodes is disrupted then all

of the packets that are in delivery towards this node are lost. In turn, these packets are not

delivered to the sink.

For instance, let us consider figure 3.3. Node A sends a packet pkt to node B. If node B

crashes it cannot receive the packet from node A and forward it to a node towards the sink;

so the packet is lost.

Figure 3.3: Example of packet loss

In table 3.2 we report the basic elements (sort, events and fluents) used for the specification

related to the packet loss event. Again, events are divided in basic and generated ones. In

the listing 3.2 there are the rules that represent the core of the specification for the packet

loss event.

Listing 3.2: Correctness Specifications for the packet loss event

1 [pkt,sensor,to_sensor,time]Happens(Send(pkt,sensor),time) &

2 Neighbor(to_sensor, sensor) ->

3 Happens(Forward(pkt,sensor,sensor,to_sensor),time).

4

5 [sensor,from_sensor,source,pkt,time]

6 HoldsAt(IsOnChannel(pkt,source,from_sensor, sensor),time) &

7 (!{sensor2,from_sensor2,source2,pkt2} HoldsAt(

8 IsOnChannel(pkt2,source2,from_sensor2, sensor2),time) &

9 source!=source2 & sensor=sensor2) & HoldsAt(

10 IsAlive(sensor),time) & HoldsAt(IsLinked(from_sensor,

11 sensor),time) & !HoldsAt(IsLost(pkt,source),time) ->

Chapter 3. Static Verification 71

12 Happens(Catch(pkt,source,sensor, from_sensor),time).

13

14 [sensor,from_sensor,pkt,from_sensor2, pkt2,source, source2, time]

15 HoldsAt(IsOnChannel(pkt,source,from_sensor, sensor),time) &

16 HoldsAt(IsOnChannel(pkt2,source2,from_sensor2, sensor),time) &

17 source<source2 & HoldsAt(IsAlive(sensor),time) & HoldsAt(

18 IsLinked(from_sensor,sensor),time) & !HoldsAt(

19 IsLost(pkt,source),time)->

20 Happens(Catch(pkt,source,sensor, from_sensor),time).

21

22 [sensor,to_sensor,from_sensor,source,pkt,time]

23 Happens(Catch(pkt,source,sensor, from_sensor),time) &

24 Neighbor(sensor, from_sensor) & Neighbor(to_sensor, sensor) &

25 HoldsAt(IsAlive(sensor),time) & !HoldsAt(IsLost(pkt,source),time) ->

26 Happens(Forward(pkt,source,sensor,to_sensor),time+1).

27

28 [from_sensor,source,pkt,time]Happens(Catch(pkt,source,1, from_sensor),time) ->

29 Happens(Receive(pkt,source),time).

30

31 [sensor,to_sensor,source,pkt,time]HoldsAt(IsInDelivery(pkt,source),time) &

32 !HoldsAt(IsLost(pkt,source),time) & HoldsAt(

33 IsOnChannel(pkt,source,sensor, to_sensor),time) & Neighbor(

34 to_sensor, sensor) & (!HoldsAt(IsLinked(sensor,to_sensor),time) |

35 Happens(Stop(to_sensor),time) | !HoldsAt(IsAlive(to_sensor),time)) ->

36 Happens(PacketLoss(pkt,source),time). �

By means of the rule defined in lines 1-3, we assert that when a Send event comes from the

WSN (Happens(Send(pkt,sensor),time)), a Forward event is generated (Happens(Forward(

pkt,sensor,sensor,to_sensor),time)) and the packet delivery starts.

In the lines 5-12, we define the Catch event (Happens(Catch(pkt,source,sensor, from_

sensor),time)) that occurs when, being the packet on the channel between a couple of

nodes (HoldsAt(IsOnChannel(pkt,source,from_sensor, sensor),time)), the receiving sen-

sor is alive (HoldsAt(IsAlive(sensor),time)), the packet is not lost (!HoldsAt(IsLost(pkt,

source),time)) and there is a connection between the nodes (HoldsAt(IsLinked(from_sensor

,sensor),time)). Note that we also included a concurrency control in order to manage

Chapter 3. Static Verification 72

Table 3.2: Basic elements of the specification for the packet loss event

Elements Name Description
Sorts pkt it is the packet id

source it is the sensor that
sends the packet

Basic
Events

Send(pkt,source) it occurs when a sen-
sor starts the delivery
of a packet (pkt) to-
ward the sink node

Generated
Events

Receive(pkt, source) it occurs when sink
node receives a packet

Catch(pkt,source, sensor, from sensor) it occurs when a sensor
catches a packet from
one of its neighbor sen-
sors

Forward(pkt,source, sensor, to sensor) it occurs when a sen-
sor, once caught a
packet sent by a sen-
sor, forwards it to its
neighbor sensor

PacketLoss(pkt, source) it occurs when a packet
is lost

Fluents IsInDelivery(pkt, source) true when a packet de-
livery starts

IsOnChannel(pkt,source, sensor, to sensor) true when a packet is
in transmission on the
channel between two
nodes

IsLost(pkt, source) true when a packet is
lost

packets that come from different nodes (!{sensor2,from_sensor2,source2,pkt2}HoldsAt(

IsOnChannel(pkt2,source2,from_sensor2,sensor2),time)& source!=source2 & sensor=sensor

2).

Also, we can check the end of the packet delivery (lines 28-29) when it is caught (Happens

(Catch(pkt,source,1, from_sensor),time)) by the sink node (node 1) and so it is received

(Happens(Receive(pkt,source),time)).

Finally, in lines 31-36 we report the rule that checks when a packet is lost.

Chapter 3. Static Verification 73

Considering a packet, that is not lost (!HoldsAt(IsLost(pkt,source),time)) and is in deliv-

ery toward the sink node (HoldsAt(IsInDelivery(pkt,source),time)) and is on the channel

between two nodes (HoldsAt(IsOnChannel(pkt,source,sensor, to_sensor),time)), when a

disconnection event between the two nodes (!HoldsAt(IsLinked(sensor,to_sensor),time))

or the failure of receiving node occurs (Happens(Stop(to_sensor),time)|!HoldsAt(IsAlive(

to_sensor),time)) then there is a packet loss event (Happens(PacketLoss(pkt,source),time

)).

3.2.3 Battery Exhaustion event

A battery exhaustion event happens when a node completely consume its available energy.

To this aim, we adopt a sort in the specification for each sensor node, called level, which

represents the level of the battery of the node, and that is decremented each time the node

sends, catches, or forwards a packet.

In table 3.3 we report the basic elements (sort, events and fluents) used for the specification

related to the battery exhaustion event. For this specification, the basic events are the same

shown for the previous specifications. Hence, we only report generated events.

In the listing 3.3 there are the rules that represent the core of the specification for the

battery exhaustion event.

Chapter 3. Static Verification 74

When a forward event occurs (due to a sending of a packet) (Happens(Forward(pkt, source,

sensor,to_sensor),time)) and the battery level of the sensor is positive (HoldsAt(BatteryLevel

(level,sensor),time)& level>0) then we consider the new consume level (lines 1-3), (Happens

(Old_Consume(level,sensor),time)& ({levelnew}levelnew=level-1 & Happens (

New_Consume (levelnew ,sensor),time))).

In the lines 5-7 we can see that when the battery level of a sensor, that is alive (HoldsAt(

IsAlive(sensor),time)), is zero (HoldsAt(BatteryLevel(0,sensor),time)) then a failure for

the node occurs due to battery exhaustion (Happens(Stop(sensor),time)).

Table 3.3: Basic elements of the specification for the battery exhaustion event

Elements Name Description
Sorts level the current battery level of a sensor

levelnew the new battery level of a sensor after
RX/TX operations related to a packet

capacity indicates the maximum battery capac-
ity of a sensor, in terms of the maximum
number of packets that it can send

Basic
Events

- -

Generated
Events

New Consume(level,sensor) it occurs when the battery level of a sen-
sor decreases after the forwarding of a
packet

Old Consume(level,sensor) event created for specification reasons
Fluents BatteryLevel(level,sensor) true when the battery charge of a sensor

is equal to a certain level

Listing 3.3: Correctness Specification for the battery exhaustion event

1 [pkt,sensor,to_sensor,source,level,time]

2 Happens(Forward(pkt, source, sensor,to_sensor),time) & HoldsAt(BatteryLevel(level,

sensor),time) & level>0->

3 Happens(Old_Consume(level,sensor),time) & ({levelnew}levelnew=level-1 & Happens(

New_Consume(levelnew,sensor),time)).

4

5 [sensor,time]

6 HoldsAt(BatteryLevel(0,sensor),time) & HoldsAt(IsAlive(sensor),time) ->

7 Happens(Stop(sensor),time). �

Chapter 3. Static Verification 75

3.3 Structural Specification

General correctness specifications are complemented by a structural specification of the tar-

get WSN. This is mainly related to the topology of the WSN and completed by parameters

regarding the initial level of batteries and the quality of channels. Differently from the

specifications described in the previous sub-section, this specification varies on the basis of

the characteristics of the target WSN.

Following the workflow for designing specifications for WSN-based applications in this phase

we are performing the third step (figure 3.4).

Informal
Modeling

General Correctness
Specification Modeling

Structural Correctness
Specification Modeling

Verification/Testing

Task 2.1:
2.1.1 Identify failures

Task 2.3:
2.3.1 Identify events

Task 2.5:
2.5.1 Identify fluents

Task 2.2:
2.2.1 Define failures
2.2.2. Define correctness
properties
2.2.3 Verify/test

Task 2.4:
2.4.1 Define events
2.4.2 Define properties
2.4.3 Verify/test

Task 2.6:
2.6.1 Define fluents
2.6.2 Define properties
2.6.3 Verify/test

Task 3.1:
3.1.1 Identify WSN topology

Task 3.3:
3.3.1 Identify WSN parameters

Task 3.4:
3.4.1 Define number of sensor
3.4.2 Define number of packets
3.4.3 Define number of timepoints

Task 3.5:
3.5.1 Define Event Trace

Task 1.1:
1.1.1 Informal Analysis of
domain

Task 1.2:
1.2.1 Informal Analysis of
correctness properties

Task 4.1:
4.1.1 Verify/test

Corrections

Corrections

Iteractions

Task 3.2:
3.2.1 Define neighbor
relationship between
nodes

Figure 3.4: Workflow for designing specifications for WSN-based applications: Structural
Correctness Specification Modeling

Chapter 3. Static Verification 76

To specify the topology, we use the predicate Neighbor (already used in the previous spec-

ifications) to indicate how nodes are linked in the topology. For instance, considering the

topology in figure 3.5, let us suppose node i is connected with j and k and let us consider

a tree graph where the sink node (root node) is the node i and the nodes j and k are child

nodes.

Figure 3.5: Example of topology of a WSN

The resulting specification is reported in listing 3.4, where sensor1 is the parent node (i)

and sensor2 are the child nodes (j and k). Clearly, this specification can be changed easily

if the topology of the WSN changes.

Listing 3.4: Example of Neighbor predicate Specification

1 [sensor1,sensor2] Neighbor(sensor1,sensor2) <-> (

2 (sensor1=i & sensor2=j) |

3 (sensor1=i & sensor2=k)

4). �
The role of the Neighbor predicate is very important to understand when an axiom can be

applied. Let us examine the axiom related at a possible isolation (lines 1-7 of listing 3.1)

Chapter 3. Static Verification 77

and let us apply it for the figure 3.5. The described implication is true when, given a couple

of nodes (sensor, from sensor), the conditions about isolation are true and there is a link

between nodes (in this case, between node j and i or between node k and i). This, for

instance, can never be true for the couple of nodes j and k, since there is not a physical link

between them.

Regarding the parameters, their values can be used to check the correctness properties of

the WSN under different conditions, i.e., under different assumptions on the initial charge

of batteries (e.g., to verify a WSN in the middle of its life), or under different environmen-

tal conditions affecting the quality of the channels (impacting on the probability to have a

disconnection event when checking the robustness of the WSN).

3.4 Types of Analysis

To provide useful support for static verification we introduce two different types of analysis:

what-if analysis, to verify how the WSN behaves in response to a given sequence of events

of interest for the designer, and robustness checking, to verify the long term robustness of

the WSN against random sequences of undesired events, useful to identify corner cases and

dependability bottlenecks.

3.4.1 What-if Analysis

The goal of a what-if scenario analysis is to verify the behavior of the target WSN under

precise circumstances. To this aim, we need to indicate an initial event sequence (Event

Chapter 3. Static Verification 78

Trace). For example, as listing 3.5 shows, by means of Happens predicates, we can declare

that at timepoint 1 sensor j stops, at timepoint 3 sensor k stops, etc. In this way, by means

of the reasoner, we can observe the consequences of any initial sequence of events of interest

for the designer, e.g., to test the robustness of the designed topology against the temporary

unavailability (failure/recovery) of a given set of nodes, or to quantify to what extent a

modification of the topology can be beneficial for the network.

Listing 3.5: Example of initial event trace

1 Happens(Stop(j),1).

2 Happens(Stop(k),3).

3 Happens(Start(k),4).

4 Happens(Disconnect(k,i),5).

5

6 completion Happens �
3.4.2 Robustness Checking

For Robustness Checking we intend a technique to statically verify the behavior of a WSN

in front of a number of failures that can occur during its operation.

We distinguish two types of robustness checking analysis. The first one aims to analyze

the robustness of the network, in terms of coverage, against a variable number of failures

(stop and disconnection events), from 1 to n, where n is selected by the user, considering

all combinations without repetitions. It is particularly useful to evaluate the coverage and

connection resiliency of the network and pinpoint weak points in the topology. The second

one aims to analyze how the target WSN behaves during a periodic sending of packets if

random failures happen, causing packets to be lost. It is useful to evaluate the data delivery

Chapter 3. Static Verification 79

resiliency of the network. These two types of robustness checking analysis are detailed in

the following.

Coverage Robustness Checking

This test is aimed to verify how many node failures the network can tolerate, while guaran-

teeing a given minimum level of coverage. For example if we consider a network composed

by m nodes and a threshold coverage equal to 50%, we may want to understand what are

the sequences of failures causing more than m/2 nodes to be isolated (i.e., coverage under

the specified threshold) and how the resiliency level varies when varying the sequences of

failures. This allows to evaluate the maximum (and minimum) resiliency level reachable by

a given topology and what are the critical failure sequences, i.e., the shortest ones causing

a loss of coverage. These are particularly useful to pinpoint weak points in the network.

We developed an algorithm to generate automatically the sequences of failures (stop and

disconnection events) against which checking the robustness of the WSN. The algorithm is

aimed to reduce the number of failure sequences to be checked. The principles are to avoid

repetitions and to end the sequence as soon as the coverage level becomes lower than the

user defined threshold. For instance, we start considering all the cases when there is one

failure. By means of the DECReasoner we compute the coverage; if the coverage is above

the threshold, the resiliency is surely greater than 1, because there is just one failure and it

is tolerated in all cases. In the generic k− th step, we consider sequences of k failures. If the

generic sequence {f1, f2, ..., fk} leads to a coverage below the threshold, we do not consider

Chapter 3. Static Verification 80

sequences starting with a {f1, f2, ..., fk} prefix in the (k + 1)− th step. By considering the

percentage of sequences with k failures where the coverage is above the threshold, let us

say gk%, we can say that the resiliency is k in gk% of cases.

The described process is summarized by means of the algorithm for the computation of

event sequences with n failures shown in listing 3.6.

Listing 3.6: Algorithm for the computation of event sequences with n failures

1 int f=1;

2 while (f<=failures)

3 {

4 {if f==1

5 {

6 Computation of all combinations with 1 failure

7 gen_traces()

8 Storing these traces in a combination file

9 create_and_reason() //Create and make reasoning on these traces

10 new_traces = compute_resiliency() // Resiliency computation

11 Percentage of resiliency: number of traces with coverage upper the threshold (

dim) / all of the events (total number of single failures)

12 per_resiliency = (dim*100) / events_map.size();

13 }

14 2 or more failures

15 else {

16 for (int ev =0; ev<new_traces.size(); ev++)

17 {

18 gen_traces()

19 Create and make reasoning on these traces

20 create_and_reason(traces_pp,f_count,events_map, coverage,con_resiliency);

21 Resiliency computation: if the experiment with the ’ev’-th trace produces

coverage false, it is deleted otherwise this trace will stay in ’traces_

prov’ (provvisory)

22 traces_prov=calcola_resiliency(traces_pp, events_map,f_count,output_r);

23 Insert the traces, contained in ’traces_prov’ and related to this \textbf{for

} cycle, in a global file; in this last file there are all the traces to

consider for the experiments with upper number of failures.

24 for (int traces_prov_ind =0; traces_prov_ind<traces_prov.size(); traces_prov_ind

++)

25 {

26 traces_all.addElement(traces_prov.elementAt(traces_prov_ind));

27 }

28

Chapter 3. Static Verification 81

29 Calculate total number of combinations.

30 * Ex.: if number of failures is 2 and the number of possible failures is 12, we

have 12!/(12-2)! = 12*11 = 132

31 den = fatt(events_map.size()) / fatt(events_map.size()-f_count);

32 Percentage of resiliency: number of traces with coverage upper the threshold (

dim) / all of the combinations (den)

33 per_resiliency = dim * 100 / den;

34 new_traces = traces_all;

35 }

36 f_count++; // counter of the while cycle

37 }

38 } �
Data Delivery Robustness Checking

In this case we want to check the robustness of the WSN in case of failures when there are

packets being delivery on the network.

To do this, we model each link of the WSN on the basis of the Gilbert-Elliott Channel Model

[59], and we associate to each link a disconnection probability (indicating the channel qual-

ity), set as a parameter by the user together with the structural specification. This way, the

user can simulate different scenarios, e.g., environments with different channel conditions.

We simulate that, assuming a periodic WSN, every sensor sends periodically a packet to

the sink. At the same time we randomly generate failures (failures node and/or disconnec-

tion events), taking into account disconnection probabilities. The data delivery resiliency is

computed as the maximum number of failures that can be sustained while a given fraction

of packets (above a given threshold) is still received at the sink.

Chapter 3. Static Verification 82

3.5 Application Scenario

In this paragraph we want to show the static verification technique by means of an appli-

cation scenario; the aim is to describe how it is possible to detect failures and observe their

effects in a WSN with Event Calculus.

By means of the application scenario we are going to verify the defined sets of specifications.

In fact, following the workflow for designing specifications for WSN-based applications in

this phase we are performing the fourth and last step (figure 3.6).

Informal
Modeling

General Correctness
Specification Modeling

Structural Correctness
Specification Modeling

Verification/Testing

Task 2.1:
2.1.1 Identify failures

Task 2.3:
2.3.1 Identify events

Task 2.5:
2.5.1 Identify fluents

Task 2.2:
2.2.1 Define failures
2.2.2. Define correctness
properties
2.2.3 Verify/test

Task 2.4:
2.4.1 Define events
2.4.2 Define properties
2.4.3 Verify/test

Task 2.6:
2.6.1 Define fluents
2.6.2 Define properties
2.6.3 Verify/test

Task 3.1:
3.1.1 Identify WSN topology

Task 3.3:
3.3.1 Identify WSN parameters

Task 3.4:
3.4.1 Define number of sensor
3.4.2 Define number of packets
3.4.3 Define number of timepoints

Task 3.5:
3.5.1 Define Event Trace

Task 1.1:
1.1.1 Informal Analysis of
domain

Task 1.2:
1.2.1 Informal Analysis of
correctness properties

Task 4.1:
4.1.1 Verify/test

Corrections

Corrections

Iteractions

Task 3.2:
3.2.1 Define neighbor
relationship between
nodes

Figure 3.6: Workflow for designing specifications for WSN-based applications: Verifica-
tion/Testing

Let us consider the figure 3.7.

Chapter 3. Static Verification 83

Figure 3.7: WSN topology of application scenario

The network reported in figure is composed by 9 nodes disposed on the basis of a defined

topology.

We want to observe the behavior of this WSN in 10 timepoints, supposing that, after two

timepoints, node 6 stops, a disconnection between node 7 and node 4 occurs at timepoint

4 and that node 2 stops at timepoint 7. In particular, we are interested to evaluate if the

reasoning performed by the DECReasoner on our specifications is correct.

For a coverage threshold set at 60%, we should observe a coverage interval equals to [0;4]

(i.e., when node 7 disconnects from node 4 at timepoint 4, four nodes are not reachable,

namely 6, 7, 8 and 9), and a connection resiliency equals to 1 (i.e., only the first stop event

is tolerated).

In the following, we show the structural specification written in Event Calculus language

Chapter 3. Static Verification 84

and created for this application scenario, and the trace produced by the DECReasoner by

providing the WSN connectivity matrix and the initial event trace chosen for this example.

3.5.1 Structural Specification generated by Event Calculus

Previously, we have discussed about the application scenario we want to observe give an

occurring particular sequence of events.

Now, we want to discuss about the structural specification file (listing 3.7) in which, by

means of Event Calculus syntax, the files used by DECReasoner are loaded, it is formally

defined the WSN topology, the event trace to consider and all the parameters that charac-

terized the network and the study are defined. For instance, we define the links between

the nodes considering the chosen topology, the events that we have supposed occur during

the observation time and the number of the sensors and of the timepoints.

File loading

In the first part (lines 1-2) we have to load the main Event Calculus files (Root.e and EC.e).

Root.e file defines the boolean, integer, predicate and function sorts; EC.e defines the sorts,

functions, predicates and axioms for the Event Calculus.

For our aim, we have to load the IsolationWorld.e file, too (line 4). In this manner, the

axioms defined to detect isolation events are interpreted for the topology described in this

application scenario.

Chapter 3. Static Verification 85

Listing 3.7: Structural specification written in Event Calculus language for WSN-based
application scenario

1 load foundations/Root.e

2 load foundations/EC.e

3

4 load /home/alessandro-64/IsolationWorld.e

5

6 [sensor1,sensor2] Neighbor(sensor1,sensor2) <-> (

7 (sensor1=1 & sensor2=2) | (sensor1=1 & sensor2=3) | (sensor1=1 & sensor2=4) |

8 (sensor1=2 & sensor2=5) |

9 (sensor1=3 & sensor2=6) |

10 (sensor1=4 & sensor2=7) |

11 (sensor1=6 & sensor2=8) | (sensor1=6 & sensor2=9)

12).

13

14

15

16 [sensor] HoldsAt(IsAlive(sensor),0).

17 [sensor,from_sensor] Neighbor(from_sensor, sensor) <-> HoldsAt(IsLinked(sensor,

from_sensor),0).

18

19 Happens(Stop(6),2).

20 Happens(Disconnect(7 , 4),4).

21 Happens(Stop(2),7).

22

23

24

25 completion Happens

26

27 range from_sensor 1 9

28 range sensor 1 9

29 range to_sensor 1 9

30 range time 0 10

31 range offset 1 1

32 option n_models 1

33 option modeldiff on �
Formal definition of topology

Analyzing the WSN topology, we establish (lines 6-12) how the nodes are linked by means

of a predicate symbol Neighbor.

Chapter 3. Static Verification 86

Initial conditions

In the lines 16-17 we set some initial conditions. The reasoner considers these conditions

when it starts the reasoning.

Every sensor is alive, is reachable and is linked with another sensor on the basis of the WSN

topology.

Event Trace

In the application scenario, we insert an event trace (lines 19-21) that is composed by a list

of Happens predicates that specify nodes and timepoints in which a given event occurs.

The completion statement specifies that a predicate symbol (i.e. Happens) should be sub-

ject to predicate completion.

Parameters

Finally, in the last part we consider ranges of values for sensors and timepoints.

In this case we know that the network is composed by 9 nodes and we want to observe what

it could happen in 10 timepoints.

3.5.2 Outcome and Metrics computation

Listing 3.8 reports the outcome produced by the DECReasoner.

The event trace confirms our expectations. We can observe that at timepoint 2 node 6 stops

Chapter 3. Static Verification 87

(line 50), due to a failure, and it is not alive anymore isolating nodes 8 and 9 (lines 53-54).

Thus these two nodes become not reachable (lines 56-57). Considering that, because of a

disconnection from node 4 (line 58) at timepoint 4, node 7 is isolated (line 61) becoming

not reachable (line 63), then this means that at timepoint 5 a total of 4 nodes are isolated.

The coverage is computed as the time point of the last failure event causing such isolation,

that is 4. Consequently, the connection resiliency is computed by counting the number of

failures and disconnection events in the interval [0; 4], excluding the last event; hence, it

is equal to 1. At the last, the failure of the node 2 at timepoint 7 (line 65) (and thus the

isolation of node 5 (lines 69-70)) do not alter the results.

The dependability metrics can be valuated by analyzing the event flow (the narrative) gen-

erated by the DECReasoner based on the specification of the target WSN.

In the lines 22-47 the outcome shows the conditions of the WSN at timepoint 0: all of the

nodes are alive, are reachable and every node is linked with its neighbor on the basis of the

considered topology.

Listing 3.8: Outcome produced by the DECReasoner for WSN-based application scenario

1 #

2 # Copyright (c) 2005 IBM Corporation and others.

3 # All rights reserved. This program and the accompanying materials

4 # are made available under the terms of the Common Public License v1.0

5 # which accompanies this distribution, and is available at

6 # http://www.eclipse.org/legal/cpl-v10.html

7 #

8 # Contributors:

9 # IBM - Initial implementation

10 #

11

12 loading /home/alessandro-64/Dottorato/EventCalculus/EC_Application/topology1803EC

_20130318174304.e

13 loading foundations/Root.e

Chapter 3. Static Verification 88

14 loading foundations/EC.e

15 loading /home/alessandro-64/IsolationWorld.e

16 15329 variables and 129112 clauses

17 relsat solver

18 1 model

19 ---

20 model 1:

21 0

22 IsAlive(1).

23 IsAlive(2).

24 IsAlive(3).

25 IsAlive(4).

26 IsAlive(5).

27 IsAlive(6).

28 IsAlive(7).

29 IsAlive(8).

30 IsAlive(9).

31 IsLinked(2, 1).

32 IsLinked(3, 1).

33 IsLinked(4, 1).

34 IsLinked(5, 2).

35 IsLinked(6, 3).

36 IsLinked(7, 4).

37 IsLinked(8, 6).

38 IsLinked(9, 6).

39 IsReachable(1).

40 IsReachable(2).

41 IsReachable(3).

42 IsReachable(4).

43 IsReachable(5).

44 IsReachable(6).

45 IsReachable(7).

46 IsReachable(8).

47 IsReachable(9).

48 1

49 2

50 Happens(Stop(6), 2).

51 3

52 -IsAlive(6).

53 Happens(Isolate(8), 3).

54 Happens(Isolate(9), 3).

55 4

56 -IsReachable(8).

57 -IsReachable(9).

58 Happens(Disconnect(7, 4), 4).

59 5

60 -IsLinked(7, 4).

61 Happens(Isolate(7), 5).

Chapter 3. Static Verification 89

62 6

63 -IsReachable(7).

64 7

65 Happens(Stop(2), 7).

66 8

67 -IsAlive(2).

68 Happens(Isolate(5), 8).

69 9

70 -IsReachable(5).

71 10

72 P �
To simplify the adoption of the specification and thus the performing of an experiment con-

sidering a WSN with its topology and a particular event trace, in the chapter 5 we are going

to present a support tool designed to automatically generate the structural specifications,

given the target WSN topology, perform reasoning, by means of the DECReasoner, starting

from the correctness and structural specifications and from an initial event trace (i.e., to

perform the What-if analysis of a WSN), and finally compute dependability metrics, such

as connection resiliency, coverage, data delivery resiliency and power consumption, starting

from the outcome produced by the reasoner.

Make your own recovery the first
priority in your life.

Robin Norwood

Chapter 4

Dynamic Verification

To evaluate the WSN dependability at design time is necessary in order to increase the confidence

about the robustness of the designed solution before putting it into operation; but it is also necessary

to monitor the system during operation in order to avoid unexpected results or dangerous effects.

Runtime Verification is a good solution to perform this type of verification and despite in literature

there already are tools and languages (i.e. Reactive Event Calculus) that are able to perform runtime

verification, our aim is to demonstrate that we can perform both verification techniques (static and

runtime) exploiting the same sets of specifications (general and structural).

This chapter presents a rationale of the dynamic verification technique of WSN based systems. In

particular we present the Runtime Verification technique and propose the design of a reliable WSN-

based monitoring system based on dependable monitoring services and on the configurable and the

automatic deployment of system monitors. Finally an application scenario concludes the chapter

describing this type of verification in practice.

4.1 Rationale of the dynamic verification technique

Since WSNs are used in critical scenarios (Ambient Assisted Living, Home Monitoring,

Health Monitoring, ...), it is not sufficient to verify them only at design time but it is also

necessary at runtime since even if the system has been verified during its design, it needs

to be monitored during all his life to detect unexpected differences and avoid dangerous

effects. In other terms, it is needed to perform a continuous monitoring in order to check

the dependability behavior even when the WSN is operating.

In the Chapter 3 we have defined a set of general correctness specifications and a set of

90

Chapter 4. Dynamic Verification 91

structural specifications dependent on a target WSN; after these definitions we have pre-

sented a static verification technique.

In this chapter we want to show that it is possible also to perform dynamic verification ex-

ploiting the same specifications defined for the static verification. The aim of the dynamic

verification is not only to detect the criticalities of the WSN in the current state but it also

is to perform a prediction of the possible future criticalities that may occur in the WSN.

To monitor a WSN-based system at runtime we can adopt the Runtime Verification (RV)

technique.

RV is a technique that is dedicated to studying, to developing and to implementing of so-

lutions that verify whether correctness properties defined for a system are met or violated.

In particular among the RV techniques there is one that is based on the Event Calculus

formalism: the Reactive Event Calculus (REC). Though REC could be a valid solution for

our aim, we chose to not consider it since it would have implied the using of a different

tool, and to re-adapt all the specifications for Prolog since the current REC tool is based

on Prolog.

Moreover, since the events, defined in the previous chapter (i.e. Start, Stop, Send, etc...)

are not simulated anymore but they have to be detected from the system, in this chapter

we also propose the design of a reliable WSN-based monitoring system based on depend-

able monitoring services and on the configurable and the automatic deployment of system

monitors with the task of catching events to consider to perform reasoning for the dynamic

verification. For example, if a node fails in a WSN while it is running, this failure event is

detected by a system monitor; by means of a reasoning, on the basis of the received event,

Chapter 4. Dynamic Verification 92

dependability metrics are calculated both for the current status of the WSN and to assess

the criticality of the network, in order to alert the user about possible future hazardous

scenarios considering the new network conditions.

4.2 Runtime Verification

Runtime verification [121] is the discipline of computer science that deals with the study,

development, and application of verification techniques that allow checking whether a run

of a system under scrutiny satisfies or violates a given correctness property [87]. The field

of runtime verification arose from the desire to check the correctness of complex programs

without needing to check every possible execution of the software.

The goal of runtime verification [13] is to determine, at every time step, if the system is

currently meeting its correctness requirement (in our case, dependability attributes); a de-

scription of system correctness is a set of formally specified, high-level and time-evolved

behaviors that have been determined to be necessary for correct system operation. It can

be used to automatically evaluate test runs, either on-line, or off-line analyzing stored exe-

cution traces; or it can be employed on-line, during the operation of the system, potentially

steering the application back to a safety region if a property is violated.

In detail, runtime verification enables the checking of correctness properties with respect to

system implementations [48]. It concerns the application of a lightweight formal verification

during the execution of the system by checking traces of events generated from the system

run against the correctness properties. When a property is violated, a recovery strategy

Chapter 4. Dynamic Verification 93

is triggered. The technique scales well since just one model of computation is considered,

rather than the entire state space like in model-checking [42].

Figure 4.1: Running System with support of the Runtime Checker

The Runtime verification may become a major verification technique especially for systems

in which the behavior depends heavily on the environment and operational conditions [33].

In other words, the behavior of highly dynamic systems such as adaptive, self-organizing,

self-healing, or pervasive systems, depends heavily on the environment and changes over

time, which makes their behavior hard to predict and analyze prior the execution. To

ensure certain correctness properties, the runtime verification can become part of the archi-

tecture of dynamic systems, independently from the specific architectural model adopted.

Figure 4.1 shows an example of use of a runtime checker: while the system is running, the

Runtime Checker checks if the system is currently meeting its correctness properties (the

specification).

Chapter 4. Dynamic Verification 94

4.2.1 Reactive Event Calculus

The Reactive Event Calculus (REC) is a reactive version of the logic-based Event Calculus

language [28]. In the REC fluents are initiated and terminated by dynamically occurring

events.

A REC based system everytime receives a new event (or more events), it reacts by calculat-

ing the new sequence of events (the narrative) and by consequently extending the obtained

result to the previously computed result so to have the complete sequence of events.

The axiomatization of the REC is performed in accord to the SCIFF Abductive Logic [7]

and it is fully declarative axiomatization: operational specifications are not necessary.

The most common tool used to perform specification defined in REC language is the jREC

[102]. It is a JAVA+Prolog-based tool for reasoning upon the dynamics of an event-based

system with respect to an Event Calculus specification. More specifically, jREC dynami-

cally acquires the event occurrences characterizing a running execution of the system and

monitors their effects by updating the evolution of the corresponding fluents.

Despite REC is a valid solution, we chose to not use it since it would have implied the using

of a different tool, and to re-adapt all the specifications for Prolog (REC tool is based on

Prolog); for this reason REC is not suitable for our aim.

4.3 Event Capture in a Dynamic Verification context

In this section we present the monitoring services conceived to automatically detect unde-

sired events and potentially react to them by means of RV. The services have been proposed

Chapter 4. Dynamic Verification 95

in [34] and they are discussed with respect to a reference WSN-based monitoring system,

depicted in figure 4.2. First we present the services offered to applications, and their role.

Then, we introduce the concept of monitor and describe the monitor components introduced

in the system.

Intra-WSN

Sink Desktop
Application

Cellular ConnWifI Conn

Extra-WSN
Conn Monitor

Sensor ConnSensor Discovery

Sensor
Monitor

Connection & Discovery

Device
Monitor

Connection

Gateway
Monitor

StreamData
Monitor

Data Stream

Data

WifI Discovery

Gateway
Monitor

App

App

App
App

App

Monitor
Descriptor

Figure 4.2: WSN-based system with event monitors

The architecture of the monitoring system is shown in 4.2 and it is structured in four main

parts: Intra-WSN, Gateway Services, Remote Center Services and External Applications.

Chapter 4. Dynamic Verification 96

4.3.1 Intra-WSN

The Intra-WSN is a particular network constituted by a set of sensor nodes that commu-

nicate among each other and with the gateway. Every node is provided of an running

application that is in charge of to collect all the data of interest and send them to the sink.

4.3.2 Gateway Services

The services offered on the Gateway side (sink) are summarized in the following:

• Sensor Connection: this service provides the communication between a sensor of the

Intra-WSN and the gateway device (i.e. a PDA, a notebook, etc...);

• Sensor Discovery : this service is used to discover the sensors in the Intra-WSN;

• Wifi Discovery : this service is used to verify if there is an access point for the WiFi

connection;

• Wifi Connection: this service provides the WiFi communication to transmit the data

stream to the remote center;

• Cellular Connection: this service provides the cellular communication (GPRS, UMTS,

etc...) to transmit the data stream to the remote center when a WiFi access point is

not available;

• Connection & Discovery : this service is placed at an upper layer and it has the role

to hide to applications the details on the communication technology (Bluetooth, WiFi

Chapter 4. Dynamic Verification 97

and cellular). Further, it provides technology-agnostic discovery services, which are

then specialized for Bluetooth and WiFi;

• Data Stream: it provides streaming services for sensed data to the application.

4.3.3 Remote Center Services

The services offered for the Remote Center side (desktop) are:

• Connection: this service provides the needed communication interface to receive data

from the Gateway and to send commands to manage the monitoring;

• Stream: it is the service that dialogues with the desktop application of the Remote

Center. It reports the data acquired by the sensors.

4.3.4 External Applications

Finally, we have to consider external application for both side (mobile and desktop). These

applications generally include the GUI used by users on the mobile side (e.g. patients in

case of health monitoring) and by the operators on the fixed side (e.g. foresters in case

of environmental monitoring), and implement application specific data interpretation and

reporting functions.

4.3.5 System Monitors

Once introduced the general services of the WSN-based monitoring system, we enrich the

system with event capture capabilities. To this aim, we introduce the concept of System

Chapter 4. Dynamic Verification 98

Monitors [34].

In order to start the runtime verification, a system monitor has to be able to detect basic

events that we report in the table 4.1 and that have been presented in the chapter 3.

Table 4.1: Basic events detected by the system monitors

Event Description

Start it occurs when a sensor turns on

Stop it occurs when a sensor turns off

Connect it occurs when a sensor connects to another sensor

Disconnect it occurs when a sensor disconnects from another sensor

Send it occurs when a sensor starts the delivery of a packet to-
wards the sink node

A monitor is a service instantiated on-demand on the basis of the events that have to be

detected. By means of a Monitor Descriptor file (i.e. a XML file), the developer can set the

events that he wants to observe. This file is provided to the Sink that, in turn, dynamically

creates the requested monitors, which run in the background and are managed transparently

from developers.

Specifically, first we introduce the following monitors that are used for detection of the

considered basic events:

• App Monitor

It is deployed on the sensor node and it detects all of the events that occur inside. This

monitor can be considered as a event logger for the node, since it can store its state

before of the failure event, and report it to the gateway when the device is recovered.

Its support is very important for detection of Send and Disconnect (or Connect)

Chapter 4. Dynamic Verification 99

events. When this monitor notices of packet being sent from a node then it detects the

Send event; when it does not receive anymore any packet from a neighboring node then

it detects the Disconnect event. Both events are sent to the Sensor Monitor by means

of the Sensor Connection service. On the basis of packet loss event specification, the

combination of Send and Disconnection events can generate a Packet Loss event (see

section 3.2.2).

• Sensor Monitor

It is deployed on top of the Sensor Discovery and Sensor Connection services. Sensor

and App Monitor are very essential for detecting all basic events. This monitor, in

addition to receive the detected event from the App Monitor, is able to detect Stop (or

Start) event. Let us suppose that every node in the WSN periodically sends a packet

(e.g. one packet every hour); if the system monitor observes that in a certain time

interval does not receive any packet from sensor x then it detects a Stop(x) event. On

the contrary, if starts again to receive packets from a node x that was stopped then

it detects a Start(x) event.

Therefore Sensor and App monitors are helpful to detect the basic events we have defined

and that are summarized in table 4.1.

Then we briefly present the other event monitors present in the WSN-based system; they

aim to detect the failure events that have been presented in the FMEA study (see section

1.4):

Chapter 4. Dynamic Verification 100

• Extra-WSN Monitor

checks the availability of the WiFi and Cellular connections. It can be efficiently used

to manage the hand off process between the two technologies.

• Data Monitor checks if there are anomalies in the data stream acquired.

• Device Monitor detects mainly if a sensor node is unavailable. In this case, to better

analyze the event it is necessary to require extra information to the Sensor Monitor.

• Gateway Monitor is present both in the Gateway and in the Remote Center. The aim

of this monitor is to check if the gateway operates correctly. The Gateway Monitor in

the Remote Center can only detect if the gateway becomes unavailable but it cannot

know the cause. Instead the Gateway Monitor in the sink side, can keep track of

occurred failure events, such as a freeze, self-shutdown, etc, following for instance the

logging approach proposed in [38].

4.4 Application Scenario

In this paragraph we want to show the dynamic verification technique by means of an

application scenario; the aim is to describe how it is possible to catch events and observe

their effects in a WSN at runtime.

In the figure 4.3, from the left to right, we can see when a event occurs in a wireless sensor

node, by means of a wireless communication, it is detected by a system monitor that runs

on a gateway. The failure event (for instance Stop(n)) is managed by the monitor and

Chapter 4. Dynamic Verification 101

Wireless
Communication

Gateway

M

DEC Reasoner

Stop(n) Happens(...).
Happens(...).
Happens(Stop(n)).

Happens(...).
Happens(...).
Happens(Stop(n)).

Event Trace

Structural
Specifications

General Correctness
Specifications

Potential Critical NodesCurrent Dependability
Level

Figure 4.3: Application scenario in dynamic context

added to the current event trace to perform the reasoning.

The new event trace is included in the structural specification; thus the DECReasoner

receives the structural specifications with the last occurred event and considering the general

correctness specifications performs the reasoning returning a couple of outcomes: i) the

current dependability level of the WSN and ii) the potential critical nodes.

The former informs the user about the WSN dependability at current state calculating

the current metrics (current coverage, current connection resiliency, current data delivery

resiliency and current power consumption). The latter returns a prediction about possible

Chapter 4. Dynamic Verification 102

criticalities that may occur after the current event.

Moreover in the dynamic verification we have to take in account the changes of the WSN

topology: if a sensor fails, all the packets delivered to it have to be sent to another sensor

and thus the topology, defined in Event Calculus through the predicate Neighbor, has to be

updated at runtime. The dynamic verification technique supports this feature.

The typical components of this scenario are: the Running System (the WSN), the Runtime

Detector (the system monitor that runs on the gateway and the DECReasoner) and the

Recovery Process (the outcomes that inform about criticalities of the WSN).

The engineer is the key figure in the
material progress of the world; he
translates scientific knowledge into
tools, resources, energy and labor to
bring them into the service of man.

Sir Eric Ashby

Chapter 5

The ADVISES Tool

In this chapter we propose a framework to investigate the correctness of the design of a WSN from

the point of view of its dependability, i.e., resilience to undesired events. The framework, named

ADVISES tool, is based on the Event Calculus formalism and it is aimed to simplify the adoption of

our approach by network maintainers. The ADVISES tool allows to specify the target WSN in a user-

friendly way and it is able to generate automatically the Event Calculus specifications used to check

correctness properties and evaluate dependability metrics, such as connection resiliency, coverage

and lifetime. It is able to work at design and runtime. In particular at runtime the ADVISES tool

is like a server that is in waiting for new events coming from the WSN and, performed the reasoning

using the same specifications, is able to do prediction about future criticalities of the WSN.

5.1 Introduction

A Java-based tool, called ADVISES (AutomateDVerIfication of wSn with Event calculuS),

has been designed and implemented to facilitate the application of the two proposed verifi-

cation techniques (static and dynamic).

The goal of the ADVISES tool is to automate the instrumentation of the Event Calculus

scripts to obtain specification for any network.

The ADVISES tool is able to work in both modes: at design time and at runtime; in par-

ticular in the last case it is like a server that is in waiting for new events coming from the

WSN and that are detected by means of a system monitor. The main aim of the ADVISES

103

Chapter 5. The ADVISES Tool 104

tool is to automatize all the steps that have been considered during the description of the

application scenarios in static and dynamic verification discussed in chapters 3 and 4.

A workflow is presented to show the functioning of the ADVISES tool: from the creation of

the structural specification file for a target WSN to the computation of the dependability

metrics and the sending of information/warning messages.

Next we present the Graphic User Interface (GUI) of the ADVISES tool realized for per-

forming static verification and another one for performing dynamic verification: in the static

we need to select several parameters that in dynamic are not necessary.

5.2 Workflow

In this paragraph we explain the workflow that describes the operation of the ADVISES

tool realized using the Java programming language, the Event Calculus as a formal language

and the DECReasoner to produce the narrative.

Let us observe the workflow represented in figure 5.1 to better understand how the AD-

VISES tool works.

Initially the Pre-processing block receives the operator’s inputs (see table 5.1) and settings,

many of which can be chosen only at design time since at runtime the most of information

comes from the monitored WSN, (i.e. the disconnection probability for every link of the

WSN, the initial battery levels of each node and the initial event trace in case of What-if

scenario). By means of this block the ADVISES tool is able to automatically generate the

Structural Specification file (a file with “.e” extension) with initial conditions in terms of

Chapter 5. The ADVISES Tool 105

Figure 5.1: Workflow

Event Calculus formalism.

The general correctness specifications are included in the structural specification file which

is then provided by the ADVISES tool as input to the DECReasoner, which produces the

outcome as the result of the reasoning (Reasoning block). The DECReasoner generates

the output (the narrative) in a single textual file (Outcome) or in a set of them, when we

perform Robustness Checking.

The Metric Processing block analyzes the outcome produced by the previous block and cal-

culates the coverage, the connection resiliency, the data delivery resiliency and the power

consumption. The metrics are calculated on the basis of their definitions and considering

the fluent values produced by the DECReasoner at each timepoint for each model.

Finally the ADVISES tool sends messages to the operator in order to inform or alert him

Chapter 5. The ADVISES Tool 106

Table 5.1: Tool Inputs

Input Description

Topology File A file with *.txt extension (textual file). It is a topol-
ogy file in which links between nodes are represented.

Number of timepoints User has to indicate the observation time of behavior
of the considered WSN. It is a positive integer number.

Number of sensors User has to indicate the number of the sensors that
compose the WSN topology. It is a positive integer
number.

Number of packets It is the number of packets that every node can send
to the sink node. It is a positive integer number.

Number of failures It is the number of failures which the user considers
in order to know the robustness level of the WSN. It
is a positive integer number.

Battery capacity It is the maximum battery capacity of a sensor ex-
pressed in Joule. It is a positive integer number.

TX/RX energy It is the energy expressed in µJoule necessary for every
node to perform a TX/RX operation. It is a positive
integer number.

Threshold It is the threshold value associated to the coverage
and data delivery resiliency metrics. It is a percentage
value within the range 0-100.

about WSN robustness. In particular in case of dynamic verification, the ADVISES tool is

able to make prediction about possible future critical nodes and thus to suggest operator

to make some change at the WSN topology.

5.3 ADVISES Tool GUI

Since the static and dynamic verification do not require the same number of input param-

eters, we present a GUI for static verification and another GUI for dynamic verification.

The ADVISES tool GUI for static verification is rich and it needs several parameters like

the number of packets, the number of failures (for performing the robustness checking at

Chapter 5. The ADVISES Tool 107

design time), the battery capacity value of a node, the initial event trace, etc.

The ADVISES tool GUI for dynamic verification is simpler because it works on the basis

of the events that receives from the WSN.

5.3.1 ADVISES Tool for Static Verification

By means of the GUI shown in figure 5.2, an user can simply specify i) the topology of

the target WSN, using a connectivity matrix, ii) the formal correctness specifications (for

checking isolation events, packet losses and battery exhaustion), iii) the temporal window

size to consider, in terms of the number of timepoints, iv) the number of packets that each

sensor can send, v) the number of failures (in case of coverage robustness checking), vi) the

battery capacity of a sensor (in Joule) and the needed energy for RX/TX operations (in

µJoule), vii) the metrics to calculate (for coverage and data delivery resiliency it is neces-

sary also the threshold value), viii) the channel model (in case of data delivery robustness

checking), ix) the initial battery level, x) the initial event trace (to perform what-if scenario

analysis).

The GUI is subdivided by five panels.

In the first panel there is a message that reports the application title. The Topology section

is dedicated at the loading/creating of a network topology. The user has to select a topology

file that can be found by means of Open button or created on-the-fly using the New topology

button. Show topology button allows to display the selected topology in a separate frame.

In this file links between nodes are represented.

Chapter 5. The ADVISES Tool 108

Figure 5.2: ADVISES GUI at design time

Selected the topology, let us analyze the Settings section panel. By means of this panel the

user can set the several parameters (numbers of timepoint, of packets, of failures, battery

capacity and TX/RX energy) that will be considered for the static verification; the number

of sensors is automatically calculated by the ADVISES tool. Moreover the user can choose

what general correctness specifications (Isolation, Packet Loss and Power Consumption)

are necessary for a particular verification and whether to perform a what-if analysis or a

robustness checking: this option helps to avoid that user can do wrong choices (e.g. inser-

tion of the number of failures in case of what-if analysis or choice of an initial event trace

in case of robustness checking).

In the Metrics section, the user with a tick chooses the desired metrics and if he selects

Chapter 5. The ADVISES Tool 109

coverage or data delivery resiliency he has to write the percentage values (default value is

50).

In the fourth panel (Actions) the ADVISES tool presents the possible steps that user can

perform.

• Channel Model

Pressing this button the users can select the disconnection probability for every link of

the WSN topology choosing a percentage value (0%=never disconnection; 100%=ever

disconnection). This action is disabled if user wants to perform What-if analysis or

robustness checking but without considering the packet loss. In fact the channel model

is defined to randomly generate disconnection failures in order to verify the packet

loss event.

Figure 5.3a shows an example of the dialog associated with this button.

• Initial Battery Level

Pressing this button the users can set the initial battery level for every node of

the WSN topology choosing a percentage value (0%=completely discharged node;

100%=completely charged node). This action is disabled if user wants to perform

experiments without considering the Power Consumption specification in Settings

section.

Figure 5.3b shows an example of the dialog associated with this button.

Chapter 5. The ADVISES Tool 110

(a) Channel Model (b) Initial Battery Level

Figure 5.3: Channel Model and Initial Battery level frames

• New Event Trace

Pressing this button the users can set the initial event trace that could occur in the

WSN. This action is disabled if user wants to perform robustness checking: the initial

event trace is considered only in case of What-if analysis.

Figure 5.4 shows an example of dialog associated with the New Trace Event button;

note that the dialog is so smart to guide the user in the adding new events avoiding

wrong values (i.e. a link for a Start or Stop event or a node for a Disconnection event).

Figure 5.4: Example of an Initial Event Trace specified by the user

Chapter 5. The ADVISES Tool 111

• Create EC file

Pressing this button the ADVISES tool automatically generates an Event Calculus

file in the same directory of the topology file. This file wraps the general correctness

specifications chosen in the Settings section and the structural specifications. Once

EC file is created, it is displayed in a separate frame.

Figure 5.5 shows an example of the frame generated by the ADVISES tool.

Figure 5.5: Example of a EC file generated by the ADVISES tool

Chapter 5. The ADVISES Tool 112

• Run

To obtain the output of the DECReasoner the user has to press this button; analyz-

ing the fluent values contained in the outcome produced by the DECReasoner, the

ADVISES tool computes the desired dependability metrics. A pop-up message will

appear on the screen in order to notify user the end of the computation.

Finally in the Log messages panel, the ADVISES tool reports all the useful messages in

order to perform the user if some error occurs.

5.3.2 ADVISES Tool for Dynamic Verification

Ultimated the design phase of a WSN, however it is necessary to monitor the robustness of

the network at runtime. Before to present the GUI for dynamic verification, it is necessary

to know how the ADVISES tool can work at runtime.

Figure 5.6 shows an application schema.

When a failure occurs in a wireless sensor node, it is detected, by means of a wireless com-

munication, by a system monitor that runs on a gateway. The event failure (for instance

Stop(n)) is managed by the monitor and sent to the ADVISES Tool that is in listening on

a port ready to receive events and start reasoning.

The ADVISES tool, received the output from the DECReasoner, calculates the selected

dependability metrics to establish both the current status of the WSN and the robustness

and therefore a possible reaction in the case of further failures.

Chapter 5. The ADVISES Tool 113

Figure 5.6: Use of the ADVISES Tool at runtime

Then, verified the obtained metrics values with the thresholds set by the user, the ADVISES

tool sends messages to network maintainer which may be purely informative or alerts in

case these values are under the desired threshold.

Therefore the ADVISES tool “advises” the network maintainer of problems related to the

network and reports its critical points.

The flow chart in figure 5.7 describes the ADVISES operating at runtime. Once started,

the ADVISES Tool is in server mode and in waiting for events coming from the WSN

(Waiting for events); if a new event is detected (New detected event?) then it receives this

event (Receiving event) and automatically updates the sequence (Updating event sequence)

of received events and generates the EC file in order to perform the reasoning with the DE-

CReasoner (Reasoning). Finally it calculates the current metrics and performs robustness

Chapter 5. The ADVISES Tool 114

checking to predict the future criticalities (Current metrics and RC prediction). After the

last step, the ADVISES tool continues to work waiting next detected events.

Figure 5.7: Flow chart of the ADVISES operating at runtime

For this purpose we have realized another GUI of the ADVISES Tool in order to receive

events from a WSN in real-time detected through a system monitor and to start the runtime

verification evaluating both current and future criticalities.

Chapter 5. The ADVISES Tool 115

Figure 5.8: ADVISES GUI at runtime

Figure 5.8 shows this GUI.

By means of this GUI, a user can simply specify i) the topology of the target WSN, using

a connectivity matrix, ii) the temporal window size to consider, in terms of the number

of timepoints, iii) the metrics to calculate (for coverage and data delivery resiliency it is

necessary also the threshold value).

Even this GUI is subdivided by five panels but with a different goal; for example the Actions

section disappears and replaced by the Log events panel since user does not have to choose

Chapter 5. The ADVISES Tool 116

anything but only to observing the behavior of the WSN.

The first panel is identical to the GUI for static verification. Before to start the dynamic

verification, the user has to set the topology of the WSN to monitor.

Selected the topology, let us analyze the Settings panel. In dynamic verification the number

of sensors is automatically calculated by the ADVISES tool and the user has just to set the

number of timepoints to consider: in this context this value represents the time range for

observing the effects of the current event.

The Metrics panel is identical to the GUI for static verification. In the Log events panel the

ADVISES tool reports all the events coming from the WSN and that have been detected

by the system monitor.

Finally in the Log messages panel, the ADVISES tool reports all the performed computa-

tions about current state of the WSN and the risks that may affect its robustness. Also

there are useful messages in order to perform the user if some error occurs.

5.4 Metrics computation

By means of a parser that analyzes the traces produced by the DECReasoner, the ADVISES

tool calculates the dependability metrics.

The computation of Coverage and Connection Resiliency depends on a threshold parame-

ter, to be indicated as a percentage by the user in the GUI (see the “Threshold” text field in

the Metrics section in figure 5.2). The threshold expresses the fraction of failed and isolated

nodes that the user can tolerate, given its design constraints. For instance, over a WSN

Chapter 5. The ADVISES Tool 117

of 20 nodes, a threshold set to 100% means that all the 20 nodes have to be connected,

whereas 50% means that the user can tolerate at most 10 isolated nodes.

Considering the threshold value, we calculate the Coverage analyzing the IsReachable(sensor)

and IsAlive(sensor) fluents found to be true in the event trace produced by the reasoner:

if a -IsReachable(x) or a -IsAlive(sensor) fluent is true in the event trace, this means that

node x became isolated or it stopped. For example in the case of coverage at 50%, for

a WSN with 7 nodes, there is coverage when at least 4 nodes are not isolated (i.e., they

are reachable). Hence, as soon as 4 different nodes are no reachable nor alive (looking at

the fluents), the network is not covered anymore. The coverage can be then evaluated as

the interval [0, t], being t the timepoint of the last failure or disconnection event before the

isolation (e.g., the timepoint of the event that caused the isolation of a number of nodes

exceeding the threshold).

The Connection Resiliency can then be evaluated as the number of failure and disconnec-

tion events (namely, Stop(sensor) and Disconnect(sensor, from sensor) events) that happen

within the coverage interval, excluding the last failure/disconnection event, that is, the one

that actually leads the number of isolated nodes to overcome the threshold. For example, if

we have coverage in the interval [0, 6], and during this period 3 failure/disconnection events

can be counted, than the Connection Resiliency is 2, that is, the WSN was able to tolerate

2 failures or disconnections while preserving more than 50% of the nodes connected.

Even the computation of the Data Delivery Resiliency depends on a threshold parameter

indicated by the user as the percentage value. By means of this percentage value, the user

can express the fraction of the number of packets that can be lost. For instance, over a

Chapter 5. The ADVISES Tool 118

WSN of 30 nodes, a sensors sends 10 packets; if this threshold is equal to 60%, it means that

at most 4 packets can be lost. Considering the threshold value, the ADVISES tool calcu-

lates the data delivery resiliency analyzing the IsInDelivery(pkt,source) fluent in the event

trace produced by the reasoner: if a +IsInDelivery(pkt,source) fluent is true in the event

trace, this means that a packet has been sent by a sensor; if a -IsInDelivery(pkt,source)

fluent is true, this means that a packet has been received by the sink node. If the number

of instances where the fluent -IsInDelivery(pkt,source) is equal to the number of instances

where the fluent +IsInDelivery(pkt,source), then every packet has been correctly received

by the sink node, otherwise this means that some packet is lost. As soon as the fraction

of lost packets becomes lower than the threshold value then the ADVISES tool verifies the

number of failures (Stop and Disconnect events) occurred; the number of the occurred fail-

ures represents the value of the data delivery resiliency.

Power consumption is computed analyzing the BatteryLevel (level, sensor) fluent. For each

timepoint, if a +BatteryLevel(level,sensor) fluent is true then the ADVISES tool updates

the battery consumption of the related sensor. After the last timepoint, for each sensor the

ADVISES tool computes the percentage of power consumption. If the behavior of nodes is

known (e.g., each node send packets periodically, with a known period), this information

can be used to evaluate the lifetime of the network as the time when the number of alive

and not isolated nodes falls below the coverage threshold.

There are three principal means of
acquiring knowledge: observation of
nature, reflection, and experimentation.
Observation collects facts; reflection
combines them; experimentation
verifies the result of that combination.

Denis Diderot

Chapter 6

Case Studies

In this chapter we report the results from five representative case studies. The first two case studies

are based on what-if scenario analysis, and their aim is to evaluate if the reasoning performed by the

DECReasoner on our specifications is correct. They also aim to show how the ADVISES tool can be

used to verify the behavior of a WSN in a precise scenario at design time. The third and fourth are

based on robustness checking. In these cases, the aim is to show how the proposed approach can be

helpful to analyze a design and drive engineers’ choices. Finally the last shows how the ADVISES

tool works at runtime.

6.1 Case study 1 (what-if analysis): A Wireless Body Sensor
Network

6.1.1 Scenario

As first case study for what-if analysis let us consider a wireless body sensor network real-

ized by Quwaider et al. in [119] shown in figure 6.1a. This Wireless Body Sensor Network

(WBSN) is constructed by mounting seven sensor nodes attached on two ankles, two thighs,

two upper-arms and one in the waist area. Each node consists of a 900 MHz Mica2Dot

MOTE (running Tiny-OS operating system).

In figure 6.1b it is reported the related node tree graph in which the arrows indicate the

relationship between a couple of nodes (i.e. node 2 depends on node 1, node 3 and 4 depend

119

Chapter 6. Case Studies 120

(a) WBSN scenario (b) WBSN topology

Figure 6.1: WBSN case study

on node 2, etc.). We only have to load the topology file in the GUI, to allow the axioms

defined for correctness properties to be interpreted and automatically created for the given

topology.

We suppose that the following basic events occur: Disconnect(5 , 3) at timepoint 1 and

Stop(4) at timepoint 3. For a coverage threshold set at 50%, we should observe a coverage

interval equals to [0, 3] (i.e., when node 4 stops at time point 3, 4 nodes are not reachable,

namely 4, 5, 6 and 7), and a connection resiliency equals to 1 (i.e., only the disconnection

event is tolerated).

6.1.2 Results

Figure 6.2 shows the loading of the topology for this case study. To perform the analysis,

we charge an initial event trace in the ADVISES tool (figure 6.3); the user has to select the

timepoint, the event and the node (in case of Start/Stop/Send event) or the couple of nodes

Chapter 6. Case Studies 121

Figure 6.2: Topology loading with ADVISES tool

(in case of Disconnect/Connect event) to include in the event trace. This is translated in a

list of Happens predicates that specify nodes and timepoints in which a given event occurs.

Figure 6.3: Topology loading with ADVISES tool

The completion statement specifies that a predicate symbol (i.e. Happens) should be subject

to predicate completion.

Listing 6.1: Initial event trace for a WBSN

1 Happens(Disconnect(5 , 3),1).

2 Happens(Stop(4),3).

3

4 completion Happens �

Chapter 6. Case Studies 122

Finally, in the last part we consider ranges of values for sensors and timepoints.

In this case we know that the network is composed by 7 nodes and we want to observe what

it could happen in 10 timepoints.

Listing 6.2: Parameters for a WBSN

1 range sensor 1 7

2 range time 0 10 �
Listing 6.3 reports the outcome (the narrative) produced by the DECReasoner when invoked

by the ADVISES tool. The event trace confirms our expectations. We can observe that

after the stop of node 4, nodes 6 and 7 becomes not reachable. Considering that node 5

was already not reachable, this means that a total of 4 nodes are isolated. The coverage

is computed as the time point of the last failure event causing such isolation, that is 3.

Consequently, the connection resiliency is computed by counting the number of failure and

disconnection events in the interval [0, 3], excluding the last event; hence, it is equal to 1.

Listing 6.3: Outcome of the DECReasoner for a WBSN

0

1

Happens(Disconnect(5, 3), 1).

2

-IsLinked(5, 3).

Happens(Isolate(5), 2).

3

-IsReachable(5).

Happens(Stop(4), 3).

4

-IsAlive(4).

Happens(Isolate(6), 4).

5

-IsReachable(6).

Happens(Isolate(7), 5).

6

-IsReachable(7).

Chapter 6. Case Studies 123

7

8

9

10 �

6.2 Case study 2 (what-if analysis): A more complex WSN

6.2.1 Scenario

As second case study, we consider the topology of a WSN that has been realized in our

laboratory using TMOTE sensors.

Figure 6.4: Topology of a more complex WSN

This WSN (figure 6.4) is constructed by mounting ten sensor nodes. Node 1 is the sink

of the network. Each node consists of a TMOTE SKY XM1000 (Tiny-OS and ContikiOS

compatible) which follows the IEEE 802.15.4 standard.

We are interested to evaluate the behavior of the network, in terms of coverage, connection

Chapter 6. Case Studies 124

resiliency, and data delivery resiliency, when the following sequence of basic events occurs:

Send(1,5) at timepoint 1, Send(1,9) at timepoint 2, Stop(4) at timepoint 4 and Discon-

nect(3 , 1) at timepoint 7.

For a coverage threshold set at 70%, we should observe that coverage interval is equals to

[0, 7] (i.e., when node 3 disconnects from node 1 at time point 7, 4 nodes are not reachable,

namely 3, 4, 8 and 9), and a connection resiliency equals to 1 (i.e., only the disconnection

event is tolerated).

For a data delivery resiliency threshold set at 60%, we should observe that the packets sent

by node 5 and node 9 are received by the sink without being lost.

6.2.2 Results

The initial event trace produced by the ADVISES tool is given in Listing 6.4.

Listing 6.4: Initial event trace for a more complex WSN

1 Happens(Send(1,5),1).

2 Happens(Send(1,9),2).

3 Happens(Stop(4),4).

4 Happens(Disconnect(3 , 1),7).

5

6 completion Happens �
The ADVISES tool generates the values for the range of sensors and timepoints, again

analyzing user inputs. In this case, we know that the network is composed by 10 nodes that

can send al most 1 packet and we want to observe what it could happen in 10 timepoints.

Chapter 6. Case Studies 125

Listing 6.5: Parameters for a more complex WSN

1 range sensor 1 10

2 range pkt 1 1

3 range time 0 10 �
Also in this case, the outcome produced by the DECReasoner (see listing 6.6) reports the

event trace by means of which we can validate our assumptions. In fact, we can observe that

when node 4 stops, there are still 9 reachable nodes. When there is a disconnection between

nodes 3 and 1, there are 6 reachable nodes. For this reason the coverage is 7 because in the

interval [0, 7] the covered nodes are 9 on 10 (90%); the connection resiliency is equal to 1.

Finally, the data delivery resiliency is 100%; the packets sent by node 5 and node 9 are

correctly received by the sink.

Listing 6.6: Outcome of the DECReasoner for a more complex WSN

0

1

Happens(Forward(1, 5, 5, 2), 1).

Happens(Send(1, 5), 1).

2

+IsInDelivery(1, 5).

+IsOnChannel(1, 5, 5, 2).

Happens(Catch(1, 5, 2, 5), 2).

Happens(Forward(1, 9, 9, 3), 2).

Happens(Send(1, 9), 2).

3

-IsOnChannel(1, 5, 5, 2).

+IsInDelivery(1, 9).

+IsOnChannel(1, 9, 9, 3).

Happens(Catch(1, 9, 3, 9), 3).

Happens(Forward(1, 5, 2, 1), 3).

4

-IsOnChannel(1, 9, 9, 3).

+IsOnChannel(1, 5, 2, 1).

Happens(Catch(1, 5, 1, 2), 4).

Happens(Forward(1, 9, 3, 1), 4).

Happens(Receive(1, 5), 4).

Chapter 6. Case Studies 126

Happens(Stop(4), 4).

5

-IsAlive(4).

-IsInDelivery(1, 5).

-IsOnChannel(1, 5, 2, 1).

+IsOnChannel(1, 9, 3, 1).

Happens(Catch(1, 9, 1, 3), 5).

Happens(Receive(1, 9), 5).

6

-IsInDelivery(1, 9).

-IsOnChannel(1, 9, 3, 1).

7

Happens(Disconnect(3, 1), 7).

8

-IsLinked(3, 1).

Happens(Isolate(3), 8).

9

-IsReachable(3).

Happens(Isolate(8), 9).

Happens(Isolate(9), 9).

10

-IsReachable(8).

-IsReachable(9). �
6.3 Case study 3 (robustness checking): Is it worth to add a

node?

6.3.1 Scenario

As a first case study for robustness checking let us consider a simple WSN with 6 nodes

(Figure 6.5). This topology is commonly adopted to monitor a linear structure, such as a

tunnel or an oil pipeline. From the figure, it is intuitive to conclude that node 2 represents

the most critical dependability bottleneck for this topology, since it has to route the packets

from all other nodes to the sink.

Chapter 6. Case Studies 127

Figure 6.5: WSN with line topology

The simplicity of the topology allows to reason on dependability bottlenecks, and on poten-

tial improvements. In particular, the objective of the case study is to quantify the benefits,

in terms of connection resiliency, of adding one extra node (see figure 6.6).

Figure 6.6: WSN with extra node in line topology

6.3.2 Results

In order to obtain the results, shown in table 6.1, we have considered in both topologies a

reasoning performed on 10 timepoints, a coverage threshold value equal to 70% (5 reachable

nodes), and a number of failures from 1 to 4.

Table 6.1: Results of simple linear topology

Outcome
Simple linear topology

6 sensors 6 sensors + 1 extra
No. of Failures 1 2 3 4 1 2 3 4
Connection Resiliency 1 0 0 0 1 2 0 0
Percentage of Cases 20% - - - 66% 24% - -

For both topologies we report the number of failures, the connection resiliency, and the

percentage of the cases in which the connection resiliency is not 0.

Chapter 6. Case Studies 128

For example in simple linear topology (without extra node), exploring all of the cases in

which 1 failure occurs, we have connection resiliency equal to 1 in 20% of the cases. In

the other cases, the coverage is below 70%. If 2 failures occur, we have no cases in which

coverage is above 70% and so, the maximum connection resiliency level achievable is 1. This

confirms numerically that the topology is extremely fragile and susceptible to failures in the

majority of cases when undesired events occur.

If we add an extra node then we gain benefits because we triple the chances (66%) to have

connection resiliency with coverage >70% in case of 1 failure, and we have coverage upper

than threshold value also when 2 failures occur (in the 24% of the cases). Hence, in this

case the maximum connection resiliency level is 2. In this way we can assert that adding a

node (accounting for 17% of extra cost) in the proximity of the sink allows to significantly

boost the robustness of the WSN, by triplicating the chances of survival in case of 1 failure,

and by doubling the maximum connection resiliency achievable.

6.4 Case study 4 (robustness checking): Checking robustness
in harsh environments

6.4.1 Scenario

In this case study we consider the WSN with 8 nodes reported in figure 6.7. In particular we

want to observe how the WSN reacts and consequently, how the percentage of data delivery

changes with different disconnection probabilities. This is useful to check the robustness of

the WSN in different deployment scenarios, e.g., from environments with a good channel

Chapter 6. Case Studies 129

quality (for instance, an outdoor scenario in good whether conditions, with no interferences)

to harsh environments (such as, indoor scenario with fading due to obstacles and walls and

electromagnetic interferences due to the presence of other wireless devices).

Specifically, we analyze the percentage of delivered packets when every link has a probability

of disconnection ranging from 5% to 40% with step 5%. We expect that, the more the

disconnection probability grows, the more failures occur, and the less is likely that a packet

is delivered to the sink. In particular, we want to check under which operational conditions

the network is still able to deliver more than 50% of packets to the sink.

Figure 6.7: WSN topology with 8 nodes

6.4.2 Results

The graph in figure 6.8 shows the results of the study, where O.F. (Occurred Failures) rep-

resents the number of the occurred failures and D. Pkt. (Delivered Packets) the percentage

Chapter 6. Case Studies 130

of delivered packets. Both the values are reported as a function of the disconnection prob-

ability from 5% to 40%. Each point of the graph is obtained by repeating the experiment

3 times, letting the ADVISES tool generate different random sequences starting from the

disconnection probability set by the user. For this reason, each point represents a mean

value, and also standard deviation bars are reported.

Figure 6.8: Results of the case study

From the graph, we can observe the expected inverse relationship between the trend of the

occurred failures and the trend of delivered packets: when the probability of disconnection

increases, also the number of the failures increases, whereas the number of the delivered

packets decreases.

It is interesting to observe a certain resilience of the network for disconnection probability

values ranging from 20% to 35%. In this range it seems that, even if the number of failures

keeps increasing as expected, the network is redundant enough to tolerate them. Hence the

Chapter 6. Case Studies 131

percentage of delivered packets remains the same, and we need to stress the network up to

a 40% of disconnection probability to observe a more significant loss in the percentage of

delivered packets.

Considering instead our requirement on checking up to which conditions the WSN is able

to deliver more than 50% of packets to the sink, we can observe that this requirement is

satisfied up to a disconnection probability of 15%, and a number of failures below 5. This

means that the data delivery resiliency for this network is 5 (with the threshold set to 50%),

and that the WSN is able to conform to expectations only if deployed in an environment

where quality of channels is such that the disconnection probability of links does not over-

come the critical level of 15%.

6.5 Case study 5 (runtime verification): WSN robustness
checking at runtime

6.5.1 Scenario

In the last case study we consider the WSN topology composed by 8 nodes and reported in

figure 6.9.

We want to verify this WSN at runtime and thus we consider a Runtime Verification sce-

nario (illustrated in figure 6.10). We see how a failure that occurs in node 5 (Stop(5)) is

notified to a monitor that is running on the gateway. The monitor, received the event, sends

it to the tool which starts the reasoning by means of the DECReasoner.

Then we suppose that Stop(7) event occurs and it is notified again to a monitor in charge

Chapter 6. Case Studies 132

2

4

7 8

5 6

3

1

Figure 6.9: WSN topology in dynamic scenario

Figure 6.10: Scenario with Stop(5) event

Chapter 6. Case Studies 133

of sending the event to the ADVISES tool (Figure 6.11).

Figure 6.11: Scenario with Stop(7) event

We are interested to detect the criticalities of the WSN at runtime when a sequence of

events occurs.

For this scenario no initial event trace has to be defined and no channel model or number of

possible occurring failures. The ADVISES is in running and initially is in a sleeping phase

until it receives an event from the system monitor.

For a coverage threshold set at 65%, we should observed that when it occurs the first event

(Stop(5)), there would be 7 reachable nodes and thus the coverage would be higher than

the threshold value; moreover it would be necessary to control the nodes 2, 3, 4 because if

they failed there would be at most 5 reachable nodes and the coverage would go under the

desired threshold.

Chapter 6. Case Studies 134

Then when it occurs the second event (Stop(7)) there would be 6 reachable nodes and thus

the coverage still would be higher than the threshold value; even in this case it would be

necessary to continue controlling the nodes 2, 3, 4.

Moreover in this case study, for every received event, the ADVISES tool performs forecast-

ing at 2 and 3 levels (that is performing robustness checking with two and three subsequent

failures included the current event). In this way the network maintainer can know not only

the next critical nodes but also the nodes that could become dangerous in a second moment

and thus intervening with changes (e.g. adding a node) to avoid undesired consequences.

6.5.2 Results

To test the runtime behavior of the ADVISES tool, the events are emulated and sent to the

tool by means of a simple java-based program (figure 6.12).

(a) Emulator for generic sending of events

(b) Emulation by means of Castalia file

Figure 6.12: Java-based emulator

Chapter 6. Case Studies 135

It has been realized with a two functionalities: the first one consists in the manually gener-

ating Stop and Send events (figure 6.12a); the second one in extracting, from a file obtained

with Castalia simulator, a real sequence of events that may occur in the target WSN file

(figure 6.12b). Even if we use an emulator, the server-side interface of the tool does not

change and its behavior would be the same even if the events were sent by a WSN.

ADVISES, having loaded the topology file, knows the WSN topology and it is listening in

server mode; it just receives Stop(5) event, it automatically generates the EC file and starts

the reasoning invoking the DECReasoner (figure 6.13); the received event is annotated in

the Log events panel.

Figure 6.13: ADVISES GUI in dynamic verification

The first result is shown in figure 6.14: the ADVISES tool is able to inform the network

maintainer about current robustness of the network: for a coverage level set to 65% we have

current coverage at 88%.

After this result the ADVISES tool starts the computation about possible critical nodes;

it performs a reasoning to detect the next failure (2-level forecasting) and then the next

couple of failures (3-level forecasting) that could cause a coverage value under the threshold

value. Results are shown in figure 6.15 and 6.16 respectively.

Chapter 6. Case Studies 136

Figure 6.14: ADVISES GUI receives first event from the WSN

Figure 6.15: 2-level forecasting with first detected event

Figure 6.16: 3-level forecasting with first detected event

Chapter 6. Case Studies 137

From these figures we can see that nodes 2, 3, 4 are particularly critical: if it occurs a

failure in one of these nodes, the WSN is not dependable anymore on the basis of the set

constraints. Moreover from these results we also know all the sequences of two events that

can be dangerous: for example it is true that if it occurs Stop(6) after Stop(5), the coverage

still is good but if it occurs Stop(6)Stop(4) the effect can be dangerous.

This information can help the network maintainer to making modifications at the WSN in

order to improve the its quality and the robustness; for instance, to add a redundant node

between nodes 2 and 3 after the failure of node 5. Given these results, the ADVISES tool

becomes again in a sleeping state ready to intervene in case of next detected event.

Figure 6.17: ADVISES GUI receives second event from the WSN

To conclude let us observe the scenario after the Stop(5) event; in the WSN the Stop(7)

event occurs. Figure 6.17 shows the GUI updated with the new event and the result about

new current coverage: the coverage value is decreased from 88% to 75% but it still is higher

than the threshold value. The reader can note that in Log event panel it is reported the

Chapter 6. Case Studies 138

sequence of the events detected.

Conclusions

This thesis addressed the problem of the dependability assessment of WSNs with formal

methods. Assessing the dependability of WSNs is a crucial task since this kind of net-

works are more and more used into critical application scenarios where the level of trust

becomes an important factor; depending on application scenarios, different dependability

requirements can be defined, such as, node lifetime, network resiliency, and coverage of the

monitoring area. From a preliminary analysis it emerged the need of verifying a WSN at

design time in order to increase the confidence about the robustness of designed solutions

before putting it into operation and the need of monitoring a WSN during operation in

order to avoid unexpected results or dangerous effects and thus to perform what in the

literature is defined continuous monitoring.

We have seen that formal methods are widely adopted in the literature to verify the correct-

ness of a system specification but until now not much applied for checking of dependability

properties in the WSNs.

To address these issues, the research activity dealt with the definition of formal specifica-

tions used for the behavioral checking of WSN based systems in static and runtime phases;

a set of correctness specifications applied to a generic WSN has been defined using Event

139

Conclusions 140

Calculus as formal language since the behavior of a WSN can be characterized in terms of

an event flow (e.g. a node turns on, a packet is sent, a node stops due to failure, etc.) and

the Event Calculus formalism allowed to easily specify the system in terms of events.

In particular, the main contributions of this dissertation have been: i) the definition of the

formal specification of WSN correctness as two logical sets: a general correctness specifica-

tion, valid independently of the particular WSN under study, and a structural specification

related to the properties of the target WSN (e.g., number of nodes, topology, channel qual-

ity, initial battery charge), designed to be generated automatically, ii) the use of specific

WSN dependability metrics, such as connection resiliency, coverage, data delivery resiliency

and lifetime, as drivers to guide design choices, iii) the realization of two types of verifi-

cation techniques exploiting the same set of formal specifications (static verification and

dynamic verification), iv) the development of an automated verification tool, named AD-

VISES (AutomateD VerIfication of wSn with Event calculu textbfS), to simplify the adop-

tion of the proposed approach and v) the presentation of the usefulness of the approach in

the context of case studies, to show how the proposed framework and tool can help system

engineers to take decisions upon key design and runtime questions.

The ADVISES tool has been conceived: i) to operate in double mode: static and dynamic,

ii) to automatically generate the structural specifications given the properties of a tar-

get WSN (e.g. topology), iii) to perform the reasoning starting from the correctness and

structural specifications, iv) to compute dependability metrics starting from the event trace

produced by the reasoner, and v) to receive events in real-time from a WSN to start runtime

verification and to evaluate current and future criticalities.

Conclusions 141

Other than providing specific considerations on the presented case studies, in this chapter

we discuss on some lessons which have been learned and that can be reasonably considered

when performing the dependability assessment of WSNs with formal methods.

Lessons Learned

Static and Dynamic Verification Using Same Specifications

The first main lesson learned from this dissertation has been the proposal of a methodology

that merges static and dynamic verification exploiting a single set of correctness properties

and one tool as mean for adapting this methodology for any WSN.

Hence by means of a single set of correctness specifications for WSNs (in the Event Calculus

formalism) we have been able to perform three different techniques: What-if Analysis, Ro-

bustness Checking and Runtime Verification. The first two for static verification, the third

for dynamic verification. This has been possible by relying on a single tool (ADVISES)

able to automatically generate on the basis of a target WSN complete specifications (gen-

eral correctness specifications + structural specification) and from these calculate desired

dependability metrics.

Considerations About Case Studies

The effectiveness of the approach has been shown in the context of five case studies. They

allowed to illustrate that the reasoning performed on the defined specification produced re-

sults which are consistent with our expectations. More importantly, they have shown how

Conclusions 142

the results have been useful to drive design choices (e.g., whether is worth to add a node)

and to check limit operational conditions (the minimum channel quality required to let the

WSN work to expectations).

In particular in the first two case studies we have proved the validation of the general cor-

rectness specifications of WSNs defined in this thesis; it has also been an opportunity to

prove the correct operating of the proposed tool that automatizes our methodology and to

comment the outcome generated by the DECReasoner.

More interesting results have been obtained with the last three case studies.

Firstly, the third case study has allowed us to show one of the capacities of the robustness

checking technique performed with our methodology. It is possible to perform static veri-

fication in order to study possible improvements in a WSN. In fact in this case study we

have seen that, starting from a simple linear topology, adding a node between the node 4

and the sink node has been advantageous since we gained benefits: we tripled the chances

(66%) to have connection resiliency with coverage >70% in case of 1 failure, and we have

had coverage upper than threshold value also when 2 failures occurred (in the 24% of the

cases). Hence, the maximum connection resiliency level has gone from 1 to 2. In this way

we have asserted that adding a node (accounting for 17% of extra cost) in the proximity

of the sink allowed to significantly boost the robustness of the WSN, by triplicating the

chances of survival in case of 1 failure, and by doubling the maximum connection resiliency

achievable.

In the fourth case study we have studied the robustness of a WSN in which every node

periodically sent a packet towards the sink node. We have observed that the WSN has been

Conclusions 143

able to deliver more than 50% of packets to the sink keeping a disconnection probability

lower of 15% and tolerating a number of failures below 5. This meant that the data delivery

resiliency for this network is 5 (with the threshold set to 50%), and that the WSN has to

be deployed in an environment where quality of channels is such that the disconnection

probability of links does not overcome the critical level of 15%.

The fifth and last case study has shown the runtime verification technique performed by

means of Event Calculus without using external tools and languages (like Reactive Event

Calculus). We have seen how a generic event coming from the WSN (i.e Stop(5)) is detected

by a monitor that is running on the gateway and sent to the ADVISES tool which starts the

reasoning by means of the DECReasoner. The aim of this case study has been to describe

practically the dynamic verification technique. From an event we are able to have several

outcomes, such as the current critical nodes that can compromise the robustness of the

network, the next critical nodes that have to be particularly monitored.

On the Criticality of the Reasoning Time

The definition of the general correctness specifications (for isolation, packet loss and bat-

tery exhaustion event) has been an hard and long task since we had to write their informal

descriptions in Event Calculus formalism, to realize some initial simple scenario and veri-

fy/test them by means of the DECReasoner.

Among them we found particular criticality of the packet loss event specification and thus

battery exhaustion event specification (because the last one is linked to the packet loss

event). While the reasoning performed on the specification for the isolation event took few

Conclusions 144

time during the reasoning, the reasoning performed on the specification for packet loss (and

for battery exhaustion) took much more time, producing the desired output anyway.

This is due to a more complex logic that characterizes this specification and surely it is

necessary to review it in order to improve the reasoning time and so the performances of

the proposed methodology.

Moreover due to long reasoning time we had to consider WSNs with topologies composed

by few nodes (about 10); performing some tests, both with 100 and 30 nodes we observed

that the DECReasoner took much time without returning the outcome but an error message

that at the moment is not documented; after several tests we asserted that the limit of the

nodes that can be considered is about 10 (considering health monitoring scenario it is a

reasonable number for a WBSN that is characterized usually from not more of 5/6 nodes).

Probably the long reasoning time depends on our defined specifications that may be opti-

mized in the future work.

Next Steps

This dissertation demonstrated that it is possible to assess the dependability of WSNs by

means of the formal methods in particular Event Calculus formalism.

However, the proposed approach has also to resolve some design challenges (criticalities of

the reasoning time) as documented in the last point of the lessons learned. As future steps,

we want to review all the general correctness specifications optimizing them and improving

the reasoning time in order to apply the approach at WSN with high number of nodes.

Conclusions 145

Alternatively we can suppose to follow the divide et impera concept: to subdivide the WSN

in subnets and to apply the approach for each subnet thus to collect all the obtained data.

Moreover we want to apply the entire methodology to a real WSN, to define new metrics of

dependability not oriented towards the WSNs but considering the failure events that may

occur in other components of the WSN-based systems.

Finally another aim is to adopt all of this approach (static and dynamic verification with

formal methods) in completely different scenarios: for example adopting the approach for

gesture and activity recognition for patients with cognitive disorders.

Bibliography

[1] Emile Aarts and Reiner Wichert. Ambient intelligence. Technology Guide, pages 244–249,
2009.

[2] H.M.F. AboElFotoh, S.S. Iyengar, and K. Chakrabarty. Computing reliability and message de-
lay for cooperative wireless distributed sensor networks subject to random failures. Reliability,
IEEE Transactions on, 54(1):145 – 155, march 2005.

[3] U.S. National Aeronautics and Space. Us mil std 1629 1980: Procedure for performing a
failure mode, effect and criticality analysis, method 102, November 1980.

[4] S.I. Ahamed, M. Zulkernine, and S. Anamanamuri. A dependable device discovery approach
for pervasive computing middleware. In Availability, Reliability and Security, 2006. ARES
2006. The First International Conference on, pages 8 pp.–, April.

[5] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci. A Survey on Sensor Networks.
IEEE Communications Magazine, 40(8):102–114, August 2002.

[6] Ian F Akyildiz and Mehmet Can Vuran. Wireless sensor networks, volume 4. Wiley, 2010.

[7] Marco Alberti, Federico Chesani, Marco Gavanelli, Evelina Lamma, and Paolo Mello,
Paola Torroni. Verifiable agent interaction in abductive logic programming: the sciff frame-
work. ACM Transactions on Computational Logic, V(N):1–41, 2007.

[8] Hande Alemdar and Cem Ersoy. Wireless sensor networks for healthcare: A survey. Computer
Networks, 54(15):2688–2710, 2010.

[9] J. Arlat, M. Aguera, L. Amat, Y. Crouzet, J.-C. Fabre, J.-C. Laprie, E. Martins, and D. Powell.
Fault injection for dependability validation: a methodology and some applications. Software
Engineering, IEEE Transactions on, 16(2):166–182, Feb 1990.

[10] G. Asada, M. Dong, T.S. Lin, F. Newberg, G. Pottie, W.J. Kaiser, and H.O. Marcy. Wireless
integrated network sensors: Low power systems on a chip. In Solid-State Circuits Conference,
1998. ESSCIRC ’98. Proceedings of the 24th European, pages 9 – 16, sept. 1998.

[11] Juan Carlos Augusto and Rodolfo Sabás Gómez. A procedure to translate paradigm specifi-
cations to propositional linear temporal logic and its application to verification. International
Journal of Software Engineering and Knowledge Engineering, 13(06):627–654, 2003.

[12] Algirdas Avizienis, J-C Laprie, Brian Randell, and Carl Landwehr. Basic concepts and taxon-
omy of dependable and secure computing. Dependable and Secure Computing, IEEE Trans-
actions on, 1(1):11–33, 2004.

146

Conclusions 147

[13] Howard Barringer, Allen Goldberg, Klaus Havelund, and Koushik Sen. Rule-based runtime
verification. In Bernhard Steffen and Giorgio Levi, editors, Verification, Model Checking,
and Abstract Interpretation, volume 2937 of Lecture Notes in Computer Science, pages 44–57.
Springer Berlin Heidelberg, 2004.

[14] J.H. Barton, E.W. Czeck, Z.Z. Segall, and D.P. Siewiorek. Fault injection experiments using
fiat. Computers, IEEE Transactions on, 39(4):575–582, Apr 1990.

[15] S. Baskiyar. A real-time fault tolerant intra-body network. In Local Computer Networks,
2002. Proceedings. LCN 2002. 27th Annual IEEE Conference on, pages 235 – 240, nov. 2002.

[16] Armin Biere, Alessandro Cimatti, Edmund M Clarke, Ofer Strichman, and Yunshan Zhu.
Bounded model checking, volume 58. Elsevier, 2003.

[17] Juergen Bohn, Felix C. Gartner, and Harald Vogt. Dependability Issues of Pervasive Comput-
ing in a Healthcare Environment. In first International Conference on Security in Pervasive
Computing, 2003.

[18] Pruet Boonma and Junichi Suzuki. Moppet: A model-driven performance engineering frame-
work for wireless sensor networks. Comput. J., 53(10):1674–1690, 2010.

[19] Athanassios Boulis. Castalia: revealing pitfalls in designing distributed algorithms in wsn. In
SenSys ’07: Proceedings of the 5th international conference on Embedded networked sensor
systems, pages 407–408, New York, NY, USA, 2007. ACM.

[20] W Bourgeois, P Hogben, A Pike, and RM Stuetz. Development of a sensor array based mea-
surement system for continuous monitoring of water and wastewater. Sensors and Actuators
B: Chemical, 88(3):312–319, 2003.

[21] Commissioned by European Commission for the FP6. Study on economic impact of e-health
in ambient intelligence.

[22] Gabriella Carrozza. Software Faults Diagnosis in Complex OTS-Based Critical Systems. PhD
thesis, PhD Thesis, Dipartimento di Informatica e Sistemistica, Universitá di Napoli Federico
II, www. mobilab. unina. it/tesiDottorato. html, 2008.

[23] Gabriella Carrozza and Marcello Cinque. Modeling and Analyzing the Dependability of Short
Range Wireless Technologies via Field Failure Data Analysis. Journal of Software, 4:707–716,
2009.

[24] D. Chakraborty, A. Joshi, Y. Yesha, and T. Finin. Toward distributed service discovery in
pervasive computing environments. Mobile Computing, IEEE Transactions on, 5(2):97–112,
Feb.

[25] A. Chehri, P. Fortier, and P.-M. Tardif. Security monitoring using wireless sensor networks. In
Communication Networks and Services Research, 2007. CNSR ’07. Fifth Annual Conference
on, pages 13–17, May.

[26] Yunxia Chen and Qing Zhao. On the lifetime of wireless sensor networks. Communications
Letters, IEEE, 9(11):976 – 978, nov. 2005.

[27] Zhao Cheng, M. Perillo, and W.B. Heinzelman. General network lifetime and cost models for
evaluating sensor network deployment strategies. Mobile Computing, IEEE Transactions on,
7(4):484–497, April.

[28] Federico Chesani, Paola Mello, Marco Montali, and Paolo Torroni. A logic-based, reactive
calculus of events. Fundam. Inf., 105(1-2):135–161, January 2010.

Conclusions 148

[29] C.-F. Chiasserini and M. Garetto. Modeling the performance of wireless sensor networks. In
INFOCOM 2004. Twenty-third AnnualJoint Conference of the IEEE Computer and Commu-
nications Societies, volume 1, pages 4 vol. (xxxv+2866), march 2004.

[30] M. Cinque, D. Cotroneo, C. Di Martino, S. Russo, and A. Testa. Avr-inject: A tool for injecting
faults in wireless sensor nodes. In Parallel Distributed Processing, 2009. IPDPS 2009. IEEE
International Symposium on, pages 1 –8, may 2009.

[31] Marcello Cinque. Dependability evaluation of mobile distributed systems via field failure data
analysis. PhD thesis, PhD Thesis, Dipartimento di Informatica e Sistemistica, Universitá di
Napoli Federico II, www. mobilab. unina. it/tesiDottorato. html, 2006.

[32] Marcello Cinque, Antonio Coronato, and Alessandro Testa. Dependability analysis of a vital
sign monitoring application. Lecture Notes in Engineering and Computer Science, 2195.

[33] Marcello Cinque, Antonio Coronato, and Alessandro Testa. On dependability issues in ambient
intelligence systems. International Journal of Ambient Computing and Intelligence (IJACI),
3(3):18–27, 2011.

[34] Marcello Cinque, Antonio Coronato, and Alessandro Testa. Dependable services for mobile
health monitoring systems. IJACI, 4(1):1–15, 2012.

[35] Marcello Cinque, Antonio Coronato, and Alessandro Testa. A failure modes and effects analysis
of mobile health monitoring systems. In Khaled Elleithy and Tarek Sobh, editors, Innovations
and Advances in Computer, Information, Systems Sciences, and Engineering, volume 152 of
Lecture Notes in Electrical Engineering, pages 569–582. Springer New York, 2013.

[36] Marcello Cinque, Domenico Cotroneo, Catello Di Martinio, and Stefano Russo. Modeling and
assessing the dependability of wireless sensor networks. In Proceedings of the 26th IEEE In-
ternational Symposium on Reliable Distributed Systems, SRDS ’07, pages 33–44, Washington,
DC, USA, 2007. IEEE Computer Society.

[37] Marcello Cinque, Domenico Cotroneo, Catello Di Martino, and Alessandro Testa. An effective
approach for injecting faults in wireless sensor network operating systems. In Computers and
Communications (ISCC), 2010 IEEE Symposium on, pages 567–569. IEEE, 2010.

[38] Marcello Cinque, Domenico Cotroneo, Zbigniew Kalbarczyk, and Ravishankar K Iyer. How
do mobile phones fail? a failure data analysis of symbian os smart phones. In Dependable
Systems and Networks, 2007. DSN’07. 37th Annual IEEE/IFIP International Conference on,
pages 585–594. IEEE, 2007.

[39] Marcello Cinque, Domenico Cotroneo, and Alessandro Testa. A logging framework for the
on-line failure analysis of android smart phones. In Proceedings of the 1st European Workshop
on AppRoaches to MObiquiTous Resilience, page 2. ACM, 2012.

[40] Marcello Cinque, Catello Di Martino, and Alessandro Testa. icaas: interoperable and con-
figurable architecture for accessing sensor networks. In Proceedings of the 3rd international
workshop on Adaptive and dependable mobile ubiquitous systems, pages 19–24. ACM, 2009.

[41] Marcello Cinque, Catello Di Martino, and Alessandro Testa. Analyzing and modeling the
failure behavior of wireless sensor networks software under errors. In IWCMC, pages 1136–
1141, 2012.

[42] E.M. Clarke, O. Grumberg, and D.A. Peled. Model Cheking. Mit Press, 1999.

Conclusions 149

[43] Diane J Cook, Juan C Augusto, and Vikramaditya R Jakkula. Ambient intelligence: Tech-
nologies, applications, and opportunities. Pervasive and Mobile Computing, 5(4):277–298,
2009.

[44] A. Coronato and G. De Pietro. Formal design of ambient intelligence applications. Computer,
43(12):60 –68, dec. 2010.

[45] Antonio Coronato. Uranus: A middleware architecture for dependable aal and vital signs
monitoring applications. Sensors, 12(3):3145–3161, 2012.

[46] Antonio Coronato and Giuseppe De Pietro. Situation awareness in applications of ambient
assisted living for cognitive impaired people. Mobile Networks and Applications, pages 1–10,
2012.

[47] Antonio Coronato, Massimo Esposito, and Giuseppe De Pietro. A multimodal semantic lo-
cation service for intelligent environments: an application for smart hospitals. Personal and
Ubiquitous Computing, 13(7):527–538, 2009.

[48] Antonio Coronato and Alessandro Testa. Runtime verification of location-dependent correct-
ness and security properties in ambient intelligence applications. In Internet Communications
(BCFIC Riga), 2011 Baltic Congress on Future, pages 153–160. IEEE, 2011.

[49] Antonio Coronato and Alessandro Testa. Long-term monitoring of vital signs for mobile
patients. In PECCS’12, pages 15–20, 2012.

[50] Jun-Hong Cui, Jiejun Kong, M. Gerla, and Shengli Zhou. The challenges of building mobile
underwater wireless networks for aquatic applications. Network, IEEE, 20(3):12 – 18, may-june
2006.

[51] Professor David Culler, Robert Szewczyk, Alec Woo, and Jason Hill. A software architecture
supporting networked sensors. Technical report, Master’s thesis, 2000.

[52] Daniel-Ioan Curiac, Constantin Volosencu, Dan Pescaru, Lucian Jurca, and Alexa Doboli.
A view upon redundancy in wireless sensor networks. In Proceedings of the 8th WSEAS
international conference on Signal processing, robotics and automation, ISPRA’09, pages 341–
346, Stevens Point, Wisconsin, USA, 2009. World Scientific and Engineering Academy and
Society (WSEAS).

[53] Akim Demaille. Probabilistic verification of sensor networks. In In Proc. 4th IEEE Int. Conf.
on Comput. Sci., Research, Innovation and Vision for the Future (RIVF’06, pages 45–54.
IEEE Computer Society, 2006.

[54] Catello Di Martino. Resiliency assessment of wireless sensor networks: a holistic approach.
PhD thesis, PhD Thesis, Dipartimento di Informatica e Sistemistica, Universitá di Napoli
Federico II, www. mobilab. unina. it/tesiDottorato. html, 2009.

[55] Catello Di Martino, Marcello Cinque, and Domenico Cotroneo. Automated generation of
performance and dependability models for the assessment of wireless sensor networks. IEEE
Trans. Comput., 61(6):870–884, June 2012.

[56] Catello Di Martino, Gabriele D’Avino, and Alessandro Testa. icaas: An interoperable and
configurable architecture for accessing sensor networks. International Journal of Adaptive,
Resilient and Autonomic Systems (IJARAS), 1(2):30–45, 2010.

[57] Kent E. Dicks. Telemedicine 2.0 has arrived. Future Healthcare Magazine, 2007.

Conclusions 150

[58] K. Doddapaneni, E. Ever, O. Gemikonakli, I. Malavolta, L. Mostarda, and H. Muccini. Path
loss effect on energy consumption in a wsn. In Computer Modelling and Simulation (UKSim),
2012 UKSim 14th International Conference on, pages 569 –574, march 2012.

[59] E. O. Elliott. Estimates of Error Rates for Codes on Burst-Noise Channels. Bell System
Technical Journal, 42:1977–1997, September 1963.

[60] E Allen Emerson. Temporal and modal logic. Handbook of theoretical computer science,
2:995–1072, 1990.

[61] GM Foody. Remote sensing of tropical forest environments: towards the monitoring of envi-
ronmental resources for sustainable development. International Journal of Remote Sensing,
24(20):4035–4046, 2003.

[62] Center for Technology and Aging. Technologies for remote patient monitoring in older adults.
December 2009.

[63] Yannis Georgalis, Dimitris Grammenos, and Constantine Stephanidis. Middleware for ambient
intelligence environments: Reviewing requirements and communication technologies. Universal
Access in Human-Computer Interaction. Intelligent and Ubiquitous Interaction Environments,
pages 168–177, 2009.

[64] Thilo Hafer and Wolfgang Thomas. Computation tree logic ctl and path quantifiers in the
monadic theory of the binary tree. Automata, Languages and Programming, pages 269–279,
1987.

[65] Salim. A Hanna. Regulations and standards for wireless medical applications. In Third In-
ternational Symposium on Medical Information and Communication Technology (ISMICT),
2009.

[66] M.A. Hanson, H.C. Powell, A.T. Barth, K. Ringgenberg, B.H. Calhoun, J.H. Aylor, and
J. Lach. Body area sensor networks: Challenges and opportunities. Computer, 42(1):58 –65,
jan. 2009.

[67] Yang Hao and Robert Foster. Wireless body sensor networks for health-monitoring applica-
tions. Physiological Measurement, 29(11):R27–R56, November 2008.

[68] W.R. Heinzelman, A. Chandrakasan, and H. Balakrishnan. Energy-efficient communication
protocol for wireless microsensor networks. In System Sciences, 2000. Proceedings of the 33rd
Annual Hawaii International Conference on, page 10 pp. vol.2, jan. 2000.

[69] J.L. Hill and D.E. Culler. Mica: a wireless platform for deeply embedded networks. Micro,
IEEE, 22(6):12 – 24, nov/dec 2002.

[70] C.M. Holloway. Why engineers should consider formal methods. In Digital Avionics Systems
Conference, 1997. 16th DASC., AIAA/IEEE, volume 1, pages 1.3–16–22 vol.1, Oct.

[71] Gerard J Holzmann. The model checker spin. Software Engineering, IEEE Transactions on,
23(5):279–295, 1997.

[72] Y. Hovakeemian, K. Naik, and A. Nayak. A survey on dependability in body area networks.
In Medical Information Communication Technology (ISMICT), 2011 5th International Sym-
posium on, pages 10 –14, march 2011.

[73] Mei-Chen Hsueh, Timothy K Tsai, and Ravishankar K Iyer. Fault injection techniques and
tools. Computer, 30(4):75–82, 1997.

Conclusions 151

[74] Michael Huth and Mark Ryan. Logic in Computer Science: Modelling and reasoning about
systems, volume 2. Cambridge University Press Cambridge,, UK, 2004.

[75] Carmen B Hayes James R Cook, Joe Konwinski. Failure mode effects and criticality analysis
(fmeca) - home ecg test kit. 2004.

[76] Petr Jurč́ık and Anis Koubâa. The ieee 802.15.4 opnet simulation model: Reference guide
v2.0. Technical report, IPP-HURRAY!, May 2007.

[77] G.A. Kanawati, N.A. Kanawati, and J.A. Abraham. Ferrari: a flexible software-based fault
and error injection system. Computers, IEEE Transactions on, 44(2):248–260, Feb 1995.

[78] K. Kapitanova and S.H. Son. Medal: A compact event description and analysis language
for wireless sensor networks. In Networked Sensing Systems (INSS), 2009 Sixth International
Conference on, pages 1–4, 2009.

[79] Marc-Olivier Killijian, David Powell, Michel Banâtre, Paul Couderc, and Yves Roudier. Col-
laborative backup for dependable mobile applications. In Proceedings of the 2nd workshop on
Middleware for pervasive and ad-hoc computing, pages 146–149. ACM, 2004.

[80] Hye-Jin Kim, Ho-Sub Yoon, and Jae-Hong Kim. User recognition based on continuous moni-
toring and tracking. In Human-Robot Interaction (HRI), 2011 6th ACM/IEEE International
Conference on, pages 163–164, March.

[81] Alexander Kott and Curtis Arnold. The promises and challenges of continuous monitoring
and risk scoring. IEEE Security & Privacy, 11(1):90–93, 2013.

[82] F. Koushanfar, M. Potkonjak, and A. Sangiovanni-Vincentelli. On-line fault detection of sensor
measurements. In Sensors, 2003. Proceedings of IEEE, volume 2, pages 974 – 979 Vol.2, oct.
2003.

[83] R Kowalski and M Sergot. A logic-based calculus of events. New Gen. Comput., 4(1):67–95,
January 1986.

[84] Robert J. Latino and Anne Flood. Optimizing fmea and rca efforts in health care. Journal of
Healthcare Risk Management, 24(3):21–28, 2004.

[85] Jae-Joon Lee, Bhaskar Krishnamachari, and C-C Jay Kuo. Impact of energy depletion and
reliability on wireless sensor network connectivity. In Proceedings of SPIE, volume 5440, pages
169–180, 2004.

[86] Ren-Guey Lee, Yih-Chien Chen, Chun-Chieh Hsiao, and Chwan-Lu Tseng. A mobile care
system with alert mechanism. Information Technology in Biomedicine, IEEE Transactions
on, 11(5):507–517, Sept.

[87] M. Leucker and C. Schallhart. A brief account of runtime verification. Journal of Logic and
Algebraic Programming, 78(5):293–303, 2009. cited By (since 1996) 56.

[88] Hector J Levesque, Raymond Reiter, Yves Lesperance, Fangzhen Lin, and Richard B Scherl.
Golog: A logic programming language for dynamic domains. The Journal of Logic Program-
ming, 31(1):59–83, 1997.

[89] Philip Levis and Nelson Lee. Tossim: A simulator for tinyos networks, page 24. 2003.

[90] Philip Levis, Nelson Lee, Matt Welsh, and David Culler. Tossim: accurate and scalable
simulation of entire tinyos applications. In Proceedings of the 1st international conference on
Embedded networked sensor systems, SenSys ’03, pages 126–137, New York, NY, USA, 2003.
ACM.

Conclusions 152

[91] Menno Lindwer, Diana Marculescu, Twan Basten, R Zimmennann, Radu Marculescu, Stefan
Jung, and Eugenio Cantatore. Ambient intelligence visions and achievements: linking abstract
ideas to real-world concepts. In Design, Automation and Test in Europe Conference and
Exhibition, 2003, pages 10–15. IEEE, 2003.

[92] H. Madeira and J. G. Silva. Xception: Software fault injection and monitoring in proces-
sor functional units. In in Processor Functional Units, DCCA-5, Conference on Dependable
Computing for Critical Applications, pages 135–149, 1995.

[93] C. Mallanda, A. Suri, V. Kunchakarra, S. S. Iyengar, R. Kannan, A. Durresi, and S. Sastry.
Simulating Wireless Sensor Networks with OMNeT++.

[94] K. L. Man, T. Vallee, H.L. Leung, M. Mercaldi, J. van der Wulp, M. Donno, and M. Pastr-
nak. Tepawsn - a tool environment for wireless sensor networks. Industrial Electronics and
Applications, 2009. ICIEA 2009. 4th IEEE Conference on, pages 730–733, May.

[95] A. Mana, C. Rudolph, G. Spanoudakis, V. Lotz, F. Massacci, M. Melideo, and J. M. Lopez-
cobo. Security Engineering for Ambient Intelligence: A Manifesto. IGI Global, Hershey, Pa.,
2007.

[96] K. Martinez, J.K. Hart, and R. Ong. Environmental sensor networks. Computer, 37(8):50 –
56, aug. 2004.

[97] John McCarthy and Patrick Hayes. Some philosophical problems from the standpoint of arti-
ficial intelligence. Stanford University, 1968.

[98] Erich Mikk, Yassine Lakhnech, Michael Siegel, and Gerard J Holzmann. Implementing stat-
echarts in promela/spin. In Industrial Strength Formal Specification Techniques, 1998. Pro-
ceedings. 2nd IEEE Workshop on, pages 90–101. IEEE, 1998.

[99] Rob Miller and Murray Shanahan. Reasoning about discontinuities in the event calculus. In in
Proceedings of the Fifth International Conference on Principles of Knowledge Representation
and Reasoning (KR’96), pages 63–74. Morgan Kaufmann, 1996.

[100] Daniel Minder, Pedro José Marrón, Andreas Lachenmann, and Kurt Rothermel. Experi-
mental construction of a meeting model for smart office environments. In Proceedings of the
First Workshop on Real-World Wireless Sensor Networks (REALWSN 2005), SICS Technical
Report T2005:09, June 2005.

[101] A. F. Mini, Badri Nath, and Antonio A. F. Loureiro. A probabilistic approach to predict the
energy consumption in wireless sensor networks. In In IV Workshop de Comunicao sem Fio
e Computao Mvel. So Paulo, pages 23–25, 2002.

[102] Marco Montali. Jrec. http://www.inf.unibz.it/ montali/tools.html.

[103] M.M.R. Mozumdar, F. Gregoretti, L. Lavagno, L. Vanzago, and S. Olivieri. A framework
for modeling, simulation and automatic code generation of sensor network application. In
Sensor, Mesh and Ad Hoc Communications and Networks, 2008. SECON ’08. 5th Annual
IEEE Communications Society Conference on, pages 515 –522, june 2008.

[104] E. Mueller. Decreasoner. http://decreasoner.sourceforge.net.

[105] Erik T. Mueller. Event calculus reasoning through satisfiability. Journal of Logic and Com-
putation, 14:2004, 2004.

[106] Erik T. Mueller. A tool for satisfiability-based commonsense reasoning in the event calculus.
In FLAIRS Conference’04, pages –1–1, 2004.

Conclusions 153

[107] Erik T. Muller. Discrete event calculus reasoner documentation. page
http://decreasoner.sourceforge.net/csr/decreasoner.pdf, 2008.

[108] Jürgen Nehmer, Martin Becker, Arthur Karshmer, and Rosemarie Lamm. Living assistance
systems: an ambient intelligence approach. In Proceedings of the 28th international conference
on Software engineering, pages 43–50. ACM, 2006.

[109] The Network Simulator NS-2. http://www.isi.edu/nsnam/ns/.

[110] T. O’Donovan, J. O’Donoghue, C. Sreenan, D. Sammon, P. O’Reilly, and K.A. O’Connor. A
context aware wireless body area network (ban). In Pervasive Computing Technologies for
Healthcare, 2009. PervasiveHealth 2009. 3rd International Conference on, pages 1 –8, april
2009.

[111] Commission of the European communities. Communication from the commission to the council
and the european parliament: Critical infrastructure protection in the fight against terrorism.
page 702, October 2004.

[112] P.C. Olveczky and S. Thorvaldsen. Formal modeling and analysis of wireless sensor network
algorithms in real-time maude. Parallel and Distributed Processing Symposium, International,
0:157, 2006.

[113] Peter Ölveczky and José Meseguer. Specification and analysis of real-time systems using
real-time maude. Fundamental Approaches to Software Engineering, pages 354–358, 2004.

[114] M. Paksuniemi, H. Sorvoja, E. Alasaarela, and R. Myllyla. Wireless sensor and data transmis-
sion needs and technologies for patient monitoring in the operating room and intensive care
unit. Engineering in Medicine and Biology Society, 2005. IEEE-EMBS 2005. 27th Annual
International Conference of the, pages 5182–5185, 2005.

[115] M. Patrignani, N. Matthys, J. Proenca, D. Hughes, and D. Clarke. Formal analysis of policies in
wireless sensor network applications. In Software Engineering for Sensor Network Applications
(SESENA), 2012 Third International Workshop on, pages 15 –21, june 2012.

[116] Amir Pnueli. The temporal logic of programs. In Foundations of Computer Science, 1977.,
18th Annual Symposium on, pages 46–57. IEEE, 1977.

[117] J. Polastre, R. Szewczyk, A. Mainwaring, D. Culler, and J. Anderson. Analysis of wireless
sensor networks for habitat monitoring.Wireless sensor networks.399–423. Kluwer Academic
Publishers, Norwell, MA, USA, 2004.

[118] Joseph Polastre, Jason Hill, and David Culler. Versatile low power media access for wireless
sensor networks. In Proceedings of the 2nd international conference on Embedded networked
sensor systems, SenSys ’04, pages 95–107, New York, NY, USA, 2004. ACM.

[119] Muhannad Quwaider and Subir Biswas. Dtn routing in body sensor networks with dynamic
postural partitioning. Ad Hoc Netw., 8(8):824–841, November 2010.

[120] Raymond Reiter. The frame problem in the situation calculus: A simple solution (sometimes)
and a completeness result for goal regression. Artificial intelligence and mathematical theory
of computation: papers in honor of John McCarthy, 27:359–380, 1991.

[121] Grigore Roşu and Klaus Havelund. Rewriting-based techniques for runtime verification. Au-
tomated Software Engg., 12(2):151–197, April 2005.

Conclusions 154

[122] R. Romadi and H. Berbia. Wireless sensor network a specification method based on reac-
tive decisional agents. In Information and Communication Technologies: From Theory to
Applications, 2008. ICTTA 2008. 3rd International Conference on, pages 1 –5, april 2008.

[123] Peter Rothenpieler, Daniela Krüger, Dennis Pfisterer, Stefan Fischer, Denise Dudek, Christian
Haas, and Martina Zitterbart. Flegsens - secure area monitoring using wireless sensor networks.
In In Proceedings of the 4th Safety and Security Systems in Europe, 2009.

[124] Murray Shanahan. The Event Calculus Explained. Lecture Notes in Computer Science,
1600:409–430, 1999.

[125] Ajay K. Sharma and Deepti Gupta. Performance evaluation of routing protocols for wsns
based on energy-aware routing with different radio models. International Journal of Computer
Applications, 3(12):6–14, July 2010. Published By Foundation of Computer Science.

[126] Ryo Shimizu, Kenji Tei, Yoshiaki Fukazawa, and Shinichi Honiden. Model driven development
for rapid prototyping and optimization of wireless sensor network applications. In Proceedings
of the 2nd Workshop on Software Engineering for Sensor Network Applications, SESENA ’11,
pages 31–36, New York, NY, USA, 2011. ACM.

[127] A. Shrestha, Liudong Xing, and Hong Liu. Infrastructure communication reliability of wireless
sensor networks. In Dependable, Autonomic and Secure Computing, 2nd IEEE International
Symposium on, pages 250 –257, 29 2006-oct. 1 2006.

[128] Slobodan N. Simić and Shankar Sastry. Distributed environmental monitoring using random
sensor networks. In Feng Zhao and Leonidas Guibas, editors, Information Processing in Sensor
Networks, volume 2634 of Lecture Notes in Computer Science, pages 582–592. Springer Berlin
Heidelberg, 2003.

[129] L. Simoncini. Architectural challenges for ”ambient dependability”. In Object-Oriented Real-
Time Dependable Systems, 2003. WORDS 2003 Fall. Proceedings. Ninth IEEE International
Workshop on, pages 245–249, Oct.

[130] Raymond M Smullyan. First-order logic. Dover Publications, 1995.

[131] Ian Sommerville. Software Engineering (7th Edition). Pearson Addison Wesley, 2004.

[132] J. Spadotto K. M. SE., Hawkins. Ict convergence, confluence and creativity: The application
of emerging technologies for healthcare transformation. In In Proc. of the 3rd Int. Symp. on
Medical Information and Communication Technology, February 2009.

[133] Dean H Stamatis. Failure mode and effect analysis: FMEA from theory to execution. Asq
Press, 2003.

[134] Jeffrey Stanford and Sutep Tongngam. Approximation algorithm for maximum lifetime in
wireless sensor networks with data aggregation. In Software Engineering, Artificial Intelli-
gence, Networking, and Parallel/Distributed Computing, 2006. SNPD 2006. Seventh ACIS
International Conference on, pages 273–277. IEEE, 2006.

[135] David T. Stott, Benjamin Floering, Daniel Burke, Zbigniew Kalbarczyk, and Ravishankar K.
Iyer. Nftape: A framework for assessing dependability in distributed systems with lightweight
fault injectors. In In Proceedings of the IEEE International Computer Performance and De-
pendability Symposium, pages 91–100, 2000.

[136] R. Szewczyk, A. Mainwaring, J. Polastre, J. Anderson, and D. Culler. An analysis of a
large scale habitat monitoring application. Proceedings of the 2nd international conference on
Embedded networked sensor systems (SenSys ’04), pages 214–226, 2004.

Conclusions 155

[137] Alessandro Testa, Antonio Coronato, Marcello Cinque, and Juan Carlos Augusto. Static
verification of wireless sensor networks with formal methods. In Signal Image Technology and
Internet Based Systems (SITIS), 2012 Eighth International Conference on, pages 587–594.
IEEE, 2012.

[138] Ben L. Titzer, Daniel K. Lee, and Jens Palsberg. Avrora: scalable sensor network simula-
tion with precise timing. In Proceedings of the 4th international symposium on Information
processing in sensor networks, IPSN ’05, Piscataway, NJ, USA, 2005. IEEE Press.

[139] F. Van Harmelen, V. Lifschitz, and B. Porter. Handbook Of Knowledge Representation. Foun-
dations of Artificial Intelligence. Elsevier, 2008.

[140] Moshe Vardi. An automata-theoretic approach to linear temporal logic. Logics for concurrency,
pages 238–266, 1996.

[141] K. Wac, R. Bults, B. van Beijnum, I. Widya, V. Jones, D. Konstantas, M. Vollenbroek-
Hutten, and H. Hermens. Mobile patient monitoring: The mobihealth system. In Engineering
in Medicine and Biology Society, 2009. EMBC 2009. Annual International Conference of the
IEEE, pages 1238 –1241, sept. 2009.

[142] B. Warneke, M. Last, B. Liebowitz, and K.S.J. Pister. Smart dust: communicating with a
cubic-millimeter computer. Computer, 34(1):44 –51, jan 2001.

[143] C. Watterson and D. Heffernan. Runtime verification and monitoring of embedded systems.
Software, IET, 1(5):172–179, October.

[144] Daniel J. Weiss and Stephen J. Walsh. Remote sensing of mountain environments. Geography
Compass, 3(1):1–21, 2009.

[145] C.O.M. Ximo. Carefusion. Ject Press, 2012.

[146] Ning Xu, Sumit Rangwala, Krishna Kant Chintalapudi, Deepak Ganesan, Alan Broad, Ramesh
Govindan, and Deborah Estrin. A wireless sensor network for structural monitoring. In
Proceedings of the 2nd international conference on Embedded networked sensor systems, SenSys
’04, pages 13–24, New York, NY, USA, 2004. ACM.

[147] G.Z. Yang. Body Sensor Networks. Springer-Verlag London Limited, 2006.

[148] Kamya Yekeh Yazdandoost, Kamran Sayrafian-Pour, et al. Channel model for body area
network (ban). IEEE P802, 15, 2009.

[149] Miguel A Zamora-Izquierdo, José Santa, and Antonio F Gómez-Skarmeta. An integral and
networked home automation solution for indoor ambient intelligence. Pervasive Computing,
IEEE, 9(4):66–77, 2010.

