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Introdution

As santioned by the IEEE Radar Standard P686/D2 (January 2008),

the term waveform diversity indiates:

Adaptivity of the radar waveform to dynamially optimize the radar per-

formane for the partiular senario and tasks. May also exploit adap-

tivity in other domains, inluding the antenna radiation pattern (both on

transmit and reeive), time domain, frequeny domain, oding domain,

and polarization domain.

This paradigm is, undoubtedly, the expression of the revolutionary teh-

nologial advanes in the radar signal proessing �eld (suh as new �ex-

ible waveform generators, high speed signal proessing hardware, digital

array tehnology, and so on), whih have made attainable the atual

stressing performane requirements; indeed, its basis are in measure-

ment diversity, knowledge-aided proessing and design, and transmitter

adaptivity, whih only in the last deades have beome fully aessible.

The waveform diversity paradigm arises from the insatiable demands

for remote sensing performane that are always present, espeially in

military appliations. We reall here that inreasing omplex operat-

ing senarios all for more and more sophistiated algorithms with the

ability to adapt and diversify dynamially the waveform to the oper-

ating environment: it represents, indeed, the key ingredient to ahieve

a signi�ant performane gain with respet to lassi radar waveforms.

Nevertheless, this �exibility demands for renewed strategies of modeling

waveform properties and optimizing waveform design.

All these aspets highly justify the interest of the researh herein on-

duted, whose main aim has been to investigate the potentiality o�ered

by waveform design and waveform diversity. In partiular, the essene of

the present work of thesis is the possible appliation of the Optimization

Theory so as to the devise high performing transmit signal/reeive �lter

design tehniques. Verily, one a ertain �gure of merit has been ho-

XI



XII Introdution

sen and properly desribed by the mathematial language, and one the

neessary data have been olleted, many problems of pratial inter-

est in radar �eld an be modeled in terms of an optimization problem,

where the main purpose is to optimize the system performane under

some onstraints imposed by interferene, lutter and, more in general,

the operating environment. The optimization theory and its tools are

not unfamiliar to the signal proessing ommunity, although only with

the tehnologial growth of the last years they beome approahable and

omputationally reasonable.

Therefore, the thesis is organized as follows:

• In Chapter 1, a waveform design algorithm attempting to jointly

optimize the radar detetion performane and the region of ahiev-

able values for the Doppler estimation auray (for a �xed target

Doppler frequeny) in the presene of olored Gaussian noise is

proposed, under a onstraint on the transmitted energy and on the

degree of similarity with a pre-�xed radar ode. Preisely, the re-

sulting waveform design problem an be formulated in terms of a

non-onvex multi-objetive optimization problem. Thus, a family

of optimal solutions is onstruted, through the use of the Pareto-

optimal theory and the introdution of the Pareto weights.

• In Chapter 2, the unertainty over the prior knowledge of the tar-

get Doppler shift is dealt with. The starting point is the realiza-

tion that many among the algorithms and design tehniques in the

open literature optimize the radar signal in orrespondene of a

given target frequeny, whih is atually an unknown parameter:

therefore, even small mismathes between the presumed and the

atual value may result in extremely poor performane. Thus, a

max-min approah is employed, and a robust waveform design al-

gorithm with polynomial omputational omplexity is proposed to

devise good sub-optimal transmit signals, relying on the Semidef-

inite Programming (SDP) relaxation tehnique and the theory of

trigonometri polynomials, and assuming olored Gaussian distur-

bane and under a similarity and an energy onstraint.

• In Chapter 3, the imposition of a Peak-to-Average power Ratio

(PAR) onstraint is investigated, whih is appealing also from a

tehnial point of view, and very reasonable for radar appliations.

Spei�ally, it permits to keep under ontrol the dynami range of
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the transmitted waveform, whih is be a primal issue sine linear

ampli�ers with a large dynami range may be di�ult to obtain.

Design algorithms maximizing the Signal-to-Noise Ratio (SNR),

for both the ases of a given and an unknown target Doppler fre-

queny, are synthesized, and their phase quantized versions (whih

fore the waveform phase to lie within a �nite alphabet) are de-

vised. All the problems are formulated in terms of non-onvex

NP-hard quadrati optimization programs, and thus high-quality

sub-optimal solutions, relying on SDP relaxation and randomiza-

tion as well as on the theory of trigonometri polynomials, are

proposed.

• In Chapter 4, the problem of ognitive transmit signal and reeive

�lter design for a point-like target embedded in a high reverberat-

ing environment is onsidered, fousing on phase-only waveforms

sharing either a ontinuous or a �nite alphabet phase (so as to om-

ply with the tehnologial limits of the urrent radar ampli�ers);

moreover, a similarity onstraint is enfored, so as to keep under

ontrol the auto-ambiguity properties of the sought transmit ode.

In partiular, the Signal-to-Interferene-plus-Noise Ratio (SINR) is

onsidered as �gure of merit, and an iterative proedure, requiring

the solution fo both a onvex and an NP-hard quadrati frational

problem, is proposed to sequentially improve it. As for the NP-

hard problem, a relaxation and randomization approah is applied

so as to �nd good-quality sub-optimal solutions.

At the end of eah Chapter, some onlusions and possible future traks

are given.
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Notation

a olumn vetor;

a(i) i-th element of the olumn vetor a;

ai i-th olumn vetor;

A matrix;

A(i, k) (i, k)-th entry of the matrix A;

(·)T transpose operator;

(·)∗ omplex onjugate operator (omponent-wise omplex

onjugate if the argument is a matrix or a vetor);

(·)† transpose onjugate operator;

⌊·⌋ integer �oor operation;

tr(·) trae of the square matrix argument;

det(·) determinant of the square matrix argument;

diag(·) vetor formed by the diagonal elements of

the matrix argument;

Diag(·) diagonal matrix formed by the omponents of

the vetor argument;

λmin(·) minimum eigenvalue of the square matrix argument;

λmax(·) maximum eigenvalue of the square matrix argument;

I identity matrix;

0 matrix with zero entries;

ek vetor with all zeros exept 1 in the k-h position;

j imaginary unit (i.e., j =
√
−1);

R set of real numbers;

C set of omplex numbers;
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XVI Notation

ℜ{·} real part of the argument;

ℑ{·} imaginary part of the argument;

‖ · ‖ Eulidean norm of the argument vetor;

‖ · ‖∞ l∞ norm of the vetor argument, de�ned

as ‖a‖∞ = max
k∈(1,...,N)

|x(k)|;
| · | modulus of a omplex number;

arg(·) argument of a omplex number;

⊙ Hadamard element-wise produt;

E[ · ] expeted value operator;

� generalized inequality: A � B means that A−B

is an Hermitian positive semide�nite matrix;

≻ generalized inequality: A ≻ B means that A−B

is an Hermitian positive de�nite matrix.



System Model

In the following, the model for both the transmitted and the reeived

oded signals is presented, whih will be the basi assumption in most

part of the thesis.

It is onsider a radar whih transmits a oherent burst of pulses, suh

as in [1℄:

s(t) = atu(t) exp[j(2πf0t+ φ)] ,

where at is the transmit signal amplitude, j =
√
−1,

u(t) =
N−1
∑

i=0

a(i)p(t− iTr) ,

is the signal's omplex envelope (see Figure 1), p(t) is the signature of the
transmitted pulse, Tr is the Pulse Repetition Time (PRT), [a(0), a(1), . . . ,
a(N − 1)] ∈ C

N
is the radar ode, C denotes the set of omplex num-

bers, f0 is the arrier frequeny, and φ is a random phase. Moreover, the

pulse waveform p(t) is of duration Tp ≤ Tr and has unit energy, i.e.

∫ Tp

0
|p(t)|2dt = 1 .

The signal baksattered by a target with a two-way time delay τ and

reeived by the radar is

r(t) = αre
j2π(f0+fd)(t−τ)u(t− τ) + i(t) + n(t) ,

where αr is the omplex eho amplitude (aounting for the transmit

amplitude, phase, target re�etivity, and hannels propagation e�ets),

fd is the target Doppler frequeny, and the term n(t) + i(t) is overall

additive disturbane due to the interferene (it may be lutter or other

soure of interferene) and thermal noise. This signal is down-onverted

1



2 System Model

Figure 1: Coded pulse train u(t) for N = 5 and p(t) with retangular shape.

to baseband and �ltered through a linear system with impulse response

h(t) = p∗(−t). Let the �lter output be

v(t) = αre
−j2πf0τ

N−1
∑

i=0

a(i)ej2πifdTrχp(t− iTr − τ, fd) + w(t) ,

where χp(λ, f) is the pulse waveform ambiguity funtion [2℄, i.e.

χp(λ, f) =

∫ +∞

−∞
p(β)p∗(β − λ)ej2πfβdβ,

and w(t) is the down-onverted and �ltered disturbane omponent. The

signal v(t) is sampled at tk = τ + kTr, k = 0, . . . , N − 1, providing the

observables

1

v(tk) =
α√
N
a(k)ej2πkfdTrχp(0, fd) + w(tk), k = 0, . . . , N − 1 ,

where α =
√
Nαre

−j2πf0τ
. Assuming that the pulse waveform time-

bandwidth produt and the expeted range of target Doppler frequenies

are suh that the single pulse waveform is insensitive to target Doppler

shift

2

, namely χp(0, fd) ∼ χp(0, 0) = 1, it is possible to rewrite the

1

Range straddling losses are negleted; also, the assumption is that there are no

target range ambiguities.

2

Notie that this assumption might be restritive for the ases of very fast moving

targets suh as �ghters and ballisti missiles.
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samples v(tk) as

v(tk) =
α√
N
a(k)ej2πkfdTr + w(tk), k = 0, . . . , N − 1 .

Moreover, denoting by c = [a(0), a(1), . . . , a(N−1)]T the N -dimensional

olumn vetor ontaining the ode elements, p = 1√
N

[

1, ej2πνd , . . . ,

ej2π(N−1)νd
]T

the normalized temporal steering vetor, νd = fdTr the

normalized Doppler frequeny, v = [v(t0), v(t1), . . . , v(tN−1)]
T
, and w =

[w(t0), w(t1), . . . , w(tN−1)]
T
, the following vetorial model for the baksat-

tered signal is obtained [3℄

v = αc⊙ p+w . (1)

In the following the disturbane w will generally be modeled as a

zero-mean omplex irular Gaussian vetor with known positive-de�nite

ovariane matrix

E[ww†] = M ; (2)

further details will be given in ase model (2) no longer subsists.





Chapter 1

Pareto-Optimal Radar

Waveform Design

1.1 Introdution

More and more sophistiated algorithms for radar waveform design

have been reently developed, due to the onsiderable advanes in high

speed signal proessing hardware and digital array tehnology, as well as

the growing interest for better and better radar performanes [4, 5℄.

Some reent studies onerning waveform optimization in the pres-

ene of olored disturbane an be found in [6℄. Therein, some algo-

rithms, exploiting the degrees of freedom provided by a possibly rank

de�ient lutter ovariane matrix, are developed. In [7℄, a signal design

approah relying on the maximization of the SNR under a similarity

onstraint with a given waveform is proposed and assessed. In [1℄, fo-

using on the lass of linearly oded pulse trains (both in amplitude and

in phase), the authors introdue a ode seletion algorithm whih max-

imizes the detetion performane but, at the same time, is apable of

ontrolling both the region of ahievable values for the Doppler estima-

tion auray and the degree of similarity with a pre-�xed radar ode.

Further algorithms are also available attempting to determine the radar

waveforms optimizing Pd under strutural onstraints (for instane a

phase-only modulation) [8, 9℄ or possibly for airborne Spae Time Adap-

tive Proessing (STAP) senarios [10℄.

In this Chapter, the fous is still fous on onstrained ode optimization,

in the presene of olored Gaussian disturbane, assuming the same sig-

5



6 Chapter 1 Pareto-Optimal Radar Waveform Design

nal model as in [1℄. At the design stage, it is proposed a waveform

design algorithm based on the following riterion: joint optimization of

the detetion performane and of the region of ahievable values for the

Doppler estimation auray, under a onstraint on the transmitted en-

ergy and on the degree of similarity with a pre-�xed radar ode. This

is tantamount to jointly maximizing two quadrati forms, so that the

resulting waveform design problem an be formulated in terms of a non-

onvex multi-objetive optimization problem. In order to solve it, the

salarization tehnique is invoked, where the original vetorial problem

is redued to a salar one through the use of the Pareto-optimal the-

ory. Thus, the proposed odes are hosen as Pareto-optimal points

1

of

the previously mentioned multi-objetive optimization problem. Pre-

vious appliations of the multi-objetive optimization theory to radar

waveform design an be found in [12, 13℄, where Multi-Objetive Evo-

lutionary Algorithms (MOEA) are applied to approximate the Pareto

optimal set. In the present spei� appliation, it is not neessary to

approximate the Pareto set via MOEA, beause the proposed determin-

isti and non-iterative proedure, exploiting salarization, is apable of

providing the exat Pareto-optimal points.

At the analysis stage, the performane of the new enoding algo-

rithm are assessed in terms of detetion performane, region of ahiev-

able Doppler estimation auray, and ambiguity funtion, highlighting

the role of the Pareto weight in the optimization. The results show

that it is possible to trade-o� the aforementioned performane metris.

Preisely, detetion apabilities an be swaped for desirable properties

of the waveform ambiguity funtion and/or for an enlarged region of

ahievable Doppler estimation auraies. Furthermore, the trade-o� is

ruled by both the similarity onstraint and the Pareto weight. Indeed,

this last parameter de�nes the relative importane of the two objetives

in the optimization problem. Otherwise stated, it represents the ost re-

quired for improving a given objetive (namely the CRLB) making worse

the other (namely the detetion probability).

Thus, the Chapter is organized as follows. In Setion 1.2, resorting

to the system model previously presented, the mathematial formulation

for the performane measures is given. In Setion 1.3, the ode design

1

A Pareto-optimal solution of a multi-objetive optimization problem is de�ned as

any solution that an't be improved with respet to a omponent without worsening

the others [11℄.
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problem is formulated, and the algorithm whih provides Pareto-optimal

waveforms is presented. In Setion 1.4, the performane of the proposed

enoding method are assessed also in omparison with a standard radar

ode. Finally, in Setion 1.5, the onlusions and outline possible future

researh traks are drawn.

1.2 System Model and Performane Measures

In the following, assuming, for the baksattered signal, the same

model as in (1), the fous is on the key performane measures whih are

to be optimized or ontrolled during the seletion of the radar ode.

1.2.1 Detetion Probability

It is well known that the problem of deteting a target in the presene

of observables desribed by the model (1) an be formulated in terms of

the following binary hypotheses test







H0 : v = w

H1 : v = αc ⊙ p+w

. (1.1)

Under the assumption (2), the Generalized Likelihood Ratio Test (GLRT)

detetor over α for (1.1), whih oinides with the optimum test (a-

ording to the Neyman-Pearson riterion) if the phase of α is uniformly

distributed in [0, 2π) [14, 15℄, is given by

|v†M−1(c⊙ p)|2
H1
>
<
H0

G , (1.2)

where G is the detetion threshold set aording to a desired value

of the false alarm Probability (Pfa). An analytial expression of the

detetion Probability (Pd), for a given value of Pfa, is available both for

the ases of non�utuating and �utuating target. In the former ase

(NFT)

Pd = Q

(

√

2|α|2(c⊙ p)†M−1(c⊙ p),
√

−2 lnPfa

)

, (1.3)
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while, for the ase of Rayleigh �utuating target (RFT) with E
[

|α|2
]

=
σ2a,

Pd = exp

(

lnPfa

1 + σ2a(c⊙ p)†M−1(c⊙ p)

)

, (1.4)

where Q(·, ·) denotes the Marum Q funtion of order 1. This expres-
sion shows that, given Pfa, Pd depends on the radar ode, the distur-

bane ovariane matrix and the temporal steering vetor only through

the SNR [1℄, de�ned as:

SNR =

{

|α|2(c⊙ p)†M−1(c⊙ p) NFT

σ2a(c⊙ p)†M−1(c ⊙ p) RFT

. (1.5)

Moreover, Pd is an inreasing funtion of SNR and, as a onsequene,

the maximization of Pd an be obtained optimizing the SNR over the

radar ode.

1.2.2 Doppler Auray

The Doppler auray is bounded below by CRLB and CRLB-like

tehniques whih provide lower bounds for the varianes of unbiased

estimates. A reliable measurement of the Doppler frequeny is very

important in radar signal proessing beause it is diretly related to the

target radial veloity useful to speed the trak initiation, to improve the

trak auray [16℄, and to lassify the dangerousness of the target; hene

it is lear that it has to be taken in aount in the ode design operation.

It an be shown that the CRLB for known α is given by [1℄:

∆CR(fd) =
ψ

∂h
†

∂fd
M−1 ∂h

∂fd

(1.6)

where h = c⊙ p and ψ = 1
2|α|2 . Notie that

∂h

∂fd
= Trc⊙ p⊙ u,

with u = [0, j2π, ..., j2π (N − 1)]T , so that (1.6) an be rewritten as

∆CR(fd) =
ψ

T 2
r (c⊙ p⊙ u)†M−1 (c⊙ p⊙ u)

. (1.7)
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1.2.3 Similarity Constraint

Designing a ode whih just optimizes the detetion performane does

not provide any kind of ontrol on the shape of the resulting oded wave-

form. Preisely, it an lead to signals with signi�ant modulus variations,

poor range resolution, high peak sidelobe levels, and more in general with

an undesired ambiguity funtion behavior. These drawbaks an be par-

tially irumvented imposing a further onstraint to the sought radar

ode. In other words, it is required that the solution to be similar to a

known ode c0 (with ||c0||2 = 1), whih shares onstant modulus, rea-

sonable range resolution and peak sidelobe level. This is tantamount to

imposing that [7℄:

||c − c0||2 ≤ ǫ, (1.8)

where the parameter ǫ ≥ 0 rules the size of the similarity region. In

other words, (1.8) permits to indiretly ontrol the ambiguity funtion

of the onsidered oded pulse train: the smaller ǫ the higher the degree
of similarity between the ambiguity funtions of the designed radar ode

and of the referene sequene.

1.3 Problem Formulation and Pareto-optimal Code

Design

The idea pursued in this Chapter is to design a radar ode whih op-

timizes jointly the detetion performane and the CRLB on the Doppler

estimation auray, under a similarity onstraint with a known radar

ode c0 and an energy onstraint. Spei�ally, exploiting the following

relationships

(c⊙ p)†M−1(c⊙ p) = c†Rc (1.9)

and

(c⊙ p⊙ u)†M−1 (c⊙ p⊙ u) = c†R1c, (1.10)

where R = M−1 ⊙
(

pp†)∗
and R1 = M−1 ⊙

(

pp†)∗ ⊙
(

uu†)∗
are

positive semide�nite [17, pag. 1352, A. 77℄ (in partiular, notie that

R is positive de�nite sine xHRx = (x ⊙ p)HM−1(x ⊙ p) > 0 for any

x 6= 0, whih is equivalent to x ⊙ p 6= 0), it appears that Pd is an

inreasing funtion of c†Rc, while the CRLB is a dereasing funtion of

c†R1c. As a onsequene, the joint optimization of the Pd and CRLB



10 Chapter 1 Pareto-Optimal Radar Waveform Design

an be formulated in terms of a non-onvex multi-objetive optimization

problem [11, pp. 174-187℄:

max
c

(c†Rc , c†R1c)

s.t. ||c− c0||2 ≤ ǫ
||c||2 = 1.

(1.11)

assuming the standard omponent-wise partial ordering in R
2
.

In the following, radar odes are designed whih are Pareto-optimal

solutions to (1.11), through the salarization tehnique (this tehnique is

thoroughly explained in some spei� books suh as [11, 18℄, and shortly

summarized in Appendix A for reader's ease and to give self-onsisteny

to this paper). Preisely, onsider the salarized problem

max
c

c†
[

α1

λmax(R)
R+ α2

λmax(R1)
R1

]

c

s.t. ||c − c0||2 ≤ ǫ
||c||2 = 1

, (1.12)

where

α1

λmax(R)
> 0 and

α2

λmax(R1)
> 0 are the weights. A ode c is an

optimal solution of (1.12) if and only if it is an optimal solution of

max
c

c†Q(γ) c

s.t. ||c − c0||2 ≤ ǫ
||c||2 = 1

, (1.13)

whereQ(γ) = R+γR1, γ = α2
α1

λmax(R)
λmax(R1)

> 0. This laim is evident sine

the objetive funtions of problem (1.12) and (1.13) are proportional and

the onstraint sets are the same.

Given γ, an optimal solution to the previous salarized problem an

be found through the proedure proposed in [7℄. Preisely, the Pareto-

optimal point orresponding to γ an be onstruted aording to Algo-

rithm 1.

The parameter γ an be interpreted as the weight given to the seond

objetive (namely, the CRLB) with respet to the �rst one (namely, the

Pd); otherwise stated, it represents the ost required for improving a

omponent making worse the other.

A �nal remark onerns the appliability of the proposed framework

in real senarios. Evidently, the objetive funtions require the spei�-

ation of νd; as a onsequene, the solution depends on this pre-assigned
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Algorithm 1 Determination of a solution to problem (1.13)

Require: c0, ǫ, R, R1, γ;
Ensure: an optimal solution ĉ of problem (1.13);

1: let Q(γ) , R+ γR1

2: let c̃ be the unit norm eigenvetor orresponding to the greatest

eigenvalue of Q(γ);

3: de�ne ĉ = c̃e
j arg

(

c̃†c0

)

(where arg(x) de�nes the argument of x);

4: if ℜ(c†0ĉ) ≥ 1− ǫ/2 (where ℜ(x) de�nes the real part of x) then
5: copt(γ) ≡ ĉ;

6: else if ℜ(c†0ĉ) ≤ 1− ǫ/2 then
7: let λmin(Q(γ)) and λmax(Q(γ)) be, respetively, the smallest and

the greatest eigenvalue of Q(γ);
8: de�ne:

- ρ , 1
(1−ǫ/2)2

;

- η1 , λmax(Q(γ));

- η2 ,
ρ1/2(λmax(Q(γ)))−λmin(Q(γ))

(ρ1/2−1)
;

9: onsider the equation

c†
0(−Q(γ)+λ̄I)

−2
c0

[

c†
0(−Q(γ)+λ̄I)

−1
c0

]2 = ρ;

10: solve the equation above, via Newton's method, respet to λ̄, with
η1 < λ̄ ≤ η2;

11: copt(γ) =
(

1− ǫ
2

) (−Q(γ)+λ̄I)
−1c0

c†
0(−Q(γ)+λ̄I)

−1
c0

;

12: end if
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value. It is thus neessary to provide some guidelines to set νd in pratial
senarios. To this end, it is important to highlight that:

• a single oded waveform designed for the hallenging ondition of

slowly moving targets (i.e. νd ≃ 0) an be devised;

• a single oded waveform optimized over an average senario may be

designed. Spei�ally, the ode might be hosen so as to maximize

the objetives with R replaed by Ra = M−1⊙
(

E
[

pp†])∗
, where

the expetation operator is over the normalized Doppler frequeny.

If this last quantity is modeled as a uniformly distributed random

variable, i.e. νd ∼ U (−ǫ, ǫ), with 0 < ǫ < 1/2, the expetation an

be readily evaluated, leading to

Ra = M−1 ⊙Σǫ , (1.14)

where Σǫ(m,n) = sin [2ǫ(m− n)], and sin(x) = sin(πx)
πx .

1.4 Performane Analysis

In this Setion, the quality of the proposed waveform design tehnique

are investigated. The analysis is onduted in terms of Pd, CRLB for

Doppler estimation auray, and ambiguity funtion of the pulse train

modulated with the designed ode. Additionally, the Pareto-optimal

urve are provided, i.e.

{

F1(copt(γ)) , c
†
opt

(γ)Rc
opt

(γ)

F2(copt(γ)) , c
†
opt

(γ)R1copt(γ)
(1.15)

(where, aording to (1.3) and (1.7), F1 and F2 rule, respetively, Pd

and CRLB. Spei�ally, they respetively play the role of a normalized

SNR and a normalized inverse CRLB); namely the set of Pareto-optimal

values, obtained through salarization and varying the relative weight γ,
for the onsidered optimization problem. Finally, the Pareto trade-o�

between Pd and CRLB, arising through the variation of γ, is explored.

The analysis is developed assuming a disturbane ovariane matrix

M with the following struture:

M = M
lutter

+ 10−2I
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Figure 1.1: Pareto-optimal urves for γ ∈]0, 10], ǫ = 0.1 (top-left), ǫ = 0.3 (top-

right), ǫ = 0.7 (bottom-left) and ǫ = 1.9998 (bottom-right), with the polyphase

Barker ode of length N = 7 as referene ode. The set of ahievable values under

the urves is shaded in gray.

where M
lutter

= ρ|m−n|
, with ρ = 0.9. Moreover, the Pfa of the re-

eiver is �xed to 10−6
, νd = 0; a NFT is onsidered, and the referene

ode is the generalized Barker sequene of length N = 7 [2, pp. 109-

113℄ c0 = [0.3780, 0.3780,−0.1072−j0.3624,−0.0202−j0.3774, 0.2752+
j0.2591, 0.1855−j0.3293, 0.0057+j0.3779], properly normalized in order

to obtain a unitary norm vetor. Indeed, the hoie for this is mainly

beause it shares a good ambiguity funtion

2

. In Figure 1.1, the Pareto-

optimal urve for several values of ǫ is plotter; namely, di�erent degrees

of similarity between the devised and the pre-�xed ode are onsidered,

assuming that γ ranges in the interval ]0, 10]. This urve is also referred
to as optimal trade-o� urve, beause it highlights the onnetion be-

tween the two objetives, F1 and F2, emphasizing the role of the weight

γ in the determination of their Pareto-optimal values and the ost paid

for inreasing one omponent with respet to the other. The shaded re-

2

Similar results, not reported in the Chapter, have been obtained with a Frank

ode. In fat, other similarity odes may exist that, with respet to the analyzed

senari,o might perform better than the generalized Barker ode in terms of Pd and/or

CRLB.
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(a) ǫ = 1.9998 and γ = 1. (b) ǫ = 0.3 and γ = 1.

() ǫ = 0.1561 and γ = 1. (d) ǫ = 0.0506 and γ = 1.

Figure 1.2: Ambiguity funtion modulus of the designed ode with N = 7, Tr = 5Tp.

gion indiates the set of all the ahievable values (F1, F2); for example,

interepting the urve with the vertial line F1 = η (thus onsidering a

ertain value for Pd), it an be observed how small F2 (thus how large the

orresponding CRLB) has to be in order to ahieve F1 ≥ η. The same in-

terpretation arises interepting the urve with an horizontal line F2 = β
(thus onsidering a ertain value for the CRLB), whih makes evident

how small F1 (thus the orresponding Pd) has to be in order to ahieve

F2 ≥ β. The slope of the optimal trade-o� urve at a Pareto-optimal

value shows the loal optimal trade-o� between the two objetives; steep

slopes lead to large variations of F2 in orrespondene of small hanges in

F1 (this is atually what happens in the lower right region of the urves

in Figure 1.1).

Notie also how a redution of ǫ (or, equivalently, an inrease in the

degree of similarity) leads to worse and worse optimal values for both F1

and F2, namely to lower and lower Pareto-optimal urves. This result

an be explained observing that dereasing ǫ is tantamount to reduing

the size of the feasible set. However, the resulting loss (both in terms

of detetion apability and estimation auray) is ompensated for an

improvement of the oded pulse train ambiguity funtion, whih appears



1.4 Performane Analysis 15

Figure 1.3: Ambiguity funtion modulus of the generalized Barker ode c0 of length

N = 7 with Tr = 5Tp.

more and more similar to that of the referene ode. This is shown

in Figures 1.2a-d, where the ambiguity funtion modulus is plotted, for

γ = 1 and some values of the similarity parameter ǫ. Comparing them

with the ambiguity funtion of the ode c0, plotted in Figure 1.3, it

an be easily reognized a greater and greater degree of similarity as ǫ
dereases.

The e�ets of the similarity parameter ǫ on the detetion apability

and the Doppler estimation auray are analyzed in Figures 1.4a-b.

Therein, setting γ = 0.05, the Pd (Figure 1.4a) and the normalized

CRLB (CRLBn = T 2
r CRLB, Figure 1.4b) versus |α|2 are plotted for

several values of ǫ (ǫ = {0.1, 0.3, 0.7, 1.9998}). In order to ompare the

performane of the sought ode with that of the similarity sequene, the

Pd and CRLBn obtained through the use of c0 are evaluated too. As

benhmark ode, instead, it is onsider the sequene whih maximizes

the unonstrained (namely without foring the similarity onstraint) Pd

or CRLB , i.e.

c
Pd
benhmark

= argmax
c

{

c†Rc / ||c||2 = 1
}

, (1.16)

cCRLB
benchmark = argmax

c

{

c†R1c / ||c||2 = 1
}

. (1.17)

The orresponding Pd and CRLB are referred to in the following as

P benhmark

d and CRLB

benhmark

n . Usually, they are are not obtained in

orrespondene of the same ode.
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(a) Pd versus |α|2 for non-�utuating

target.

(b) CRLBn versus |α|2 for non-

�utuating target.

Figure 1.4: Pfa = 10−6
, N = 7, γ = 0.05, and: ǫ = 0.1 (solid-irle urve),

ǫ = 0.3 (dashed urve), ǫ = 0.7 (dotted urve) and ǫ = 1.9998 (solid-down triangle

urve). The urves related to c0 (solid urve) and cbenchmark (dash-dotted urve) are

highlighted diretly on the �gure; notie that the urve for ǫ = 1.9998 overlaps with

the benhmark one (Pd vs |α|2).

The urves in Figure 1.4a show that, dereasing ǫ, worse and worse

Pd values are obtained. This behavior an be explained observing that

reduing ǫ is tantamount to reduing the size of the similarity region.

Nevertheless, the quoted Pd loss is ompensated for an improvement in

the oded pulse train ambiguity funtion, whih is fored to be more

similar to the referene sequene. Di�erent onsiderations apply to the

urves of Figure 1.4b, representing the CRLB behavior for the same

values of ǫ as in Figure 1.4a. In this ase, due to the small value of the

relative weight γ, the salarization plaes almost all the emphasis on the

Pd objetive, whih substantially rules the hoie of the optimum ode for

the salarized problem. As a onsequene, enlarging the similarity region,

we an �nd a new ode improving Pd, but suh a ode an also lead to

a degradation of the CRLB beause the two objetives are ompeting.

Now the e�ets of the Pareto weight γ, on the performane of the de-

signed ode, �xing the similarity onstraint ǫ, are analyzed. To this end,
in Figure 1.5, the Pareto-optimal urve obtained for ǫ = 0.1561 are plot-

ted, highlighting six di�erent Pareto-optimal values (operating points in

the following), related to six di�erent weights. In Figures 1.6a and 1.6b,

the impat of the Pareto weight on the optimization of the detetion a-

pability and Doppler estimation auray is studied. Spei�ally, the Pd

and CRLBn versus |α|2 are plotted for the six operating points of Figure

1.5. The performane follows the same qualitative behavior explained in
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Figure 1.5: Pareto-optimal urve for ǫ = 0.1561 and γ ∈ ]0, 10]. Eah marker

represents an operative point for a given γ; γ = 0.05 (irle), γ = 0.4 (up-triangle),

γ = 1 (right-triangle), γ = 3 (square), γ = 6.5 (diamond) and γ = 10 (star).

Figure 1.1; namely, Pd and CRLB are both dereasing funtions of γ.
Finally, it is important to point out that, although tied up to the same

similarity value ǫ, the odes resulting from the optimization problem

(1.13) are learly a�eted by the hosen value for the weight γ. As a

onsequene, the orresponding pulse trains will exhibit di�erent ambi-

guity funtions as shown in Figures 1.7a-d.

1.5 Conlusions

In this Chapter, the radar waveform design, in the presene of olored

Gaussian disturbane, foring an energy and a similarity onstraints,

has been addressed. The onsidered design riterion has been the joint

onstrained optimization of the detetion performane and CRLB on

Doppler estimation auray. The problem has been formulated in terms

of a non-onvex multi-objetive optimization problem with two quadrati

onstraints. Hene, radar odes been have onstruted as Pareto-optimal

points of the aforementioned problem through the salarization proe-

dure.

At the analysis stage, the performanes of the new algorithm have
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been evaluated in terms of detetion performane, CRLB for Doppler

estimation auray, and ambiguity funtion. Additionally, the Pareto-

optimal urve has been studied showing the e�ets of the Pareto weight

on the performane trade-o�. Finally, the impat of the similarity on-

straint on the performane, for a given value of the Pareto weight, has

been analyzed.

Possible future researh traks might onern the extension of the

framework to situations where it is neessary to optimize more than two

objetives (performane measures) and/or where it is neessary to fore

additional onstraints on the struture of the radar waveform.
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(a) Pd versus |α|2 for non-�utuating

target

(b) CRLBn versus |α|2 for non-

�utuating target

Figure 1.6: Pfa = 10−6
, N = 7, ǫ = 0.1561 and γ = [0.05, 0.4, 1, 3, 6.5, 10]. Gener-

alized Barker ode (solid urve). Designed odes (dashed urves). Benhmark ode

(dash-dotted urve).

(a) ǫ = 0.1561 and γ = 0.4. (b) ǫ = 0.1561 and γ = 1.

() ǫ = 0.1561 and γ = 3. (d) ǫ = 0.1561 and γ = 10.

Figure 1.7: Ambiguity funtion modulus of the designed ode with N = 7, Tr = 5Tp.
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Chapter 2

A Doppler Robust Max-Min

Approah to Radar Code

Design

2.1 Introdution

The advent of adaptive radar transmitters, whih permit the use

of advaned and �exible pulse shaping tehniques, and the signi�ant

ahievements in high speed signal proessing hardware are paving the

way to the development of very innovative and omputational demand-

ing tehniques for radar waveform design [4, 19℄. The idea is to adapt

and diversify dynamially the transmitted signal to the operating envi-

ronment in order to ahieve a performane gain over lassi radar wave-

forms [5, 20, 21, 22, 6, 7℄.

In [1℄, fousing on the lass of linearly oded pulse trains (both in am-

plitude and in phase), the authors introdue a ode seletion algorithm

whih maximizes the detetion performane but, at the same time, is a-

pable of ontrolling both the region of ahievable values for the Doppler

estimation auray and the degree of similarity with a pre-�xed radar

ode. However, sine in several pratial situations, the radar ampli�ers

might work in saturation onditions and hene an amplitude modula-

tion might be di�ult to perform, in [8℄, the authors also onsider the

synthesis of onstant modulus phase oding shemes for radar oherent

pulse trains. Finally, in [10℄, the problem of onstrained ode optimiza-

tion for radar Spae-Time Adaptive Proessing (STAP) in the presene

21
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of olored Gaussian disturbane, under two auray onstraints (on the

temporal and the spatial Doppler frequeny) and a similarity onstraint,

is addressed.

Many among the previously mentioned algorithms optimize the radar

signal in orrespondene of a given target Doppler frequeny. Hene,

they an be easily applied to situations where it is required a on�rma-

tion of an initial detetion in a ertain Doppler bin, namely when some

knowledge about the Doppler frequeny is available. In other situations,

the Doppler parameter is usually unknown and a pratial appliation

of the tehniques an be obtained either tuning the design Doppler to

a hallenging ondition, ditated by the lutter Power Spetral Density

(PSD) shape, or optimizing the waveform to an average senario, namely

onsidering as objetive funtion the average SNR over the possible tar-

get Doppler shifts. The present Chapter moves another step towards the

synthesis of radar waveforms when no prior knowledge about the atual

Doppler is available. Spei�ally, resorting to the max-min riterion, the

waveform design problem is formulated as the onstrained maximization

of the worst ase (over the set of possible Doppler frequenies) detetion

performane. The onstraints onsidered here are an energy onstraint,

imposed by the �nite transmission resoures, and a similarity onstraint,

important to equip the waveform with desirable properties suh as small

modulus variations, good range resolution, low peak sidelobe levels, and

more in general with a good ambiguity funtion. The resulting problem

is a non-onvex Quadratially Constrained Quadrati Program (QCQP)

with in�nitely many quadrati onstraints. This lass of QCQP's, is

known to be NP-hard in general, and as a onsequene, �nding a global

optimal solution is often very di�ult [23℄. Hene, the aim is the on-

strution of a good sub-optimal solution for the quoted problem with the

goodness in the sense that the produed solution leads to an high-quality

radar ode for the onsidered robust radar waveform design problem, as

supported also by the simulations in Setion 2.4.

The Chapter is organized as follows. In Setion 2.2, the waveform

design problem is formulated aording to the max-min riterion, based

on system model (1)-(2); in Setion 2.3, the new algorithm for the on-

sidered problem is presented; in Setion 2.4, the performane of the pro-

posed tehnique is analyzed, and numerial results assessing the quality

of the produed sub-optimal solution are provided. Finally, onlusions

are given in Setion 2.5.
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2.2 System Model and Waveform Design Prob-

lem

The same signal model as in eq. (1) is herein onsidered. The main

goal is to �nd radar waveforms optimizing the worst ase detetion per-

formane, under an energy onstraint and a similarity onstraint with a

given radar ode exhibiting a good ambiguity funtion. In this Setion,

the problem is formulated mathematially, showing how the worst ase

detetion probability an be maximized and the onstraints an be en-

fored, under the assumption (2) for the disturbane. With referene to

the ase of non-�utuating target

1

, as already shown in eq. (1.2), the

detetion probability Pd of the GLRT, for a given value of the false alarm

Probability Pfa, depends on the radar ode, the disturbane ovariane

matrix, and the temporal steering vetor only through the SNR, de�ned

as in eq. (1.4), whih is a funtion of the atual Doppler frequeny due

to the dependene of p over νd. Moreover, Pd is an inreasing funtion

of SNR and, as a onsequene, the maximization of Pd an be obtained

maximizing the quadrati form

(c⊙ p)†M−1(c⊙ p) = c†
(

M−1 ⊙ (pp†)∗
)

c , (2.1)

over the radar ode, as already shown in eq. (1.8). It is important to

highlight that M−1 ⊙ (pp†)∗ is the Hadamard produt of two positive

semide�nite matries, and hene it is itself positive semide�nite [17, p.

1352, A.77℄.

Performing the maximization of (2.1), possibly under some onstraints

[1℄ (for instane auray, similarity, and energy onstraints), leads to a

ode vetor whih depends on the spei� value of the Doppler frequeny

present in the de�nition of p. In order to get a transmit radar waveform

independent of the Doppler frequeny, it is proposed here a max-min

approah attempting at maximizing the worst ase (over the possible

target Doppler frequenies) SNR. In other words, the following objetive

funtion, to maximize over the radar ode, is onsidered:

min
νd∈[0,1]

c†(M−1 ⊙ (pp†)∗)c .

Adding the similarity onstraint with a ode c0 [7℄, important to onfer

desirable properties to the radar waveform, as well as an energy on-

1

The onlusions may be easily extended to the ase of �utuating target.
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straint (aounting for the limited transmission power), the following

optimization problem arises:

max
c∈Ω

min
νd∈[0,1]

c†(M−1 ⊙ (pp†)∗)c, (2.2)

where the set Ω is de�ned as Ω = {c | ||c|| = 1, ||c − c0||2 ≤ ǫ} with

||c0|| = 1, and the parameter ǫ ≥ 0 ruling the size of the similarity region.

Indeed, the smaller ǫ is, the higher the degree of similarity between the

ambiguity funtions of the designed radar ode and c0 is.

Before presenting the new algorithm, it is worth to point out the

di�erenes between this optimization problem and those formulated and

solved in [1℄ and [8℄. To this end, observe that the objetive funtion

in [1℄ and [8℄ depends on a spei� design Doppler value, while in the

present problem the worst ase SNR (over the Doppler frequeny) is

optimized (2.2). [1℄ aounts for a Doppler dependent onstraint on the

estimation auray of fd, while in the present ase, only a similarity

and an energy onstraint are onsidered. [8℄ aounts for a phase-only

onstraint on the devised ode, while in this Chapter a general amplitude-

phase oding is onsidered. In other words, (2.2) optimizes a robust

objetive funtion with respet to [1℄ and [8℄, but the former fores one

less quadrati onstraint than the problem in [1℄, and the onstraints

of the problem spei�ed in [8℄ look very di�erent from those in (2.2) .

From the optimization theory point of view, the three formulations lead

to di�erent optimization problems:

• that in [1℄ is a homogeneous QCQP with three onstraints, a global

optimal solution for whih an be found in polynomial time (namely

for this problem the SDP relaxation is tight or, equivalently, the

problem shares an hidden onvexity);

• that in [8℄ is an NP-hard QCQP optimization problem due to the

phase-only and the possibly �nite alphabet onstraint, whose op-

timal solution is approximated using the relaxation and random-

ization approah typial of the max-ut-like problems.

• that in the urrent Chapter is a QCQP with in�nitely many on-

straints, for whih we establish a deterministi approximation pro-

edure, with polynomial time omputational omplexity, to output

a solution leading to high-quality radar waveforms.
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2.3 Approximate Solution to the Max-Min Op-

timization Problem

The max-min problem (2.2) an be reast as

max
c, t

t

s.t. t ≤ p†(M−1 ⊙ (cc†)∗)p, ∀νd ∈ [0, 1],
||c − c0||2 ≤ ǫ,
||c|| = 1.

(2.3)

Moreover, elaborating on the similarity onstraint, problem (2.3) an be

equivalently rewritten as

max
c, t

t

s.t. t ≤ p†(M−1 ⊙ (cc†)∗)p, ∀νd ∈ [0, 1],
ℜ
(

c†c0
)

≥ 1− ǫ/2,
||c||2 = 1 .

(2.4)

Observing that a rotation of c does not hange the �rst onstraint, it is

possible to laim that problem (2.4) is equivalent to

max
c, t

t

s.t. t ≤ p†(M−1 ⊙ (cc†)∗)p, ∀νd ∈ [0, 1],

c†c0c
†
0c ≥ δǫ,

||c||2 = 1,

(2.5)

where δǫ = (1− ǫ/2)2, in the sense that if (c⋆, t⋆) is an optimal solution

of problem (2.5), then (c⋆ej argc
⋆†c0 , t⋆) is an optimal solution of (2.4).

Therefore, from now on the fous will be on problem (2.5).

It an be easily seen that problem (2.5) is a QCQP with in�nitely

many onstraints. As already highlighted, this lass of problems is known

to be NP-hard in general (see [23℄) and hene di�ult to solve. In other

words, the onvex relaxation of the lass of QCQP problem may or may

not be tight, in partiular, its SDP relaxation may have only optimal

solutions of rank higher than one, or may have optimal solutions of rank

higher than one as well as equal to one. Futher, to retrieve a rank-one

optimal solution of the SDP relaxation problem from an optimal solution

of general rank is usually a non-trivial task. In the following, an approxi-

mation sheme is presented to produe a feasible solution for the problem
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(2.5), based on the tehniques of SDP relaxation, SDP representation of

trigonometri polynomials, and a spei� rank-one matrix deomposi-

tion. It turns out by the numerial simulations that the algorithm pro-

vides high-quality radar odes for the proposed robust waveform design

problem. Additionally, if the SDP relaxation is tight (namely, the SDP

has always a rank-one optimal solution) than the devised ode is also

optimal for the original non-onvex problem.

The SDP relaxation of (2.5) is

max
C, t

t

s.t. t ≤ p†(M−1 ⊙C∗)p, ∀νd ∈ [0, 1],

tr (c0c
†
0C) ≥ δǫ,

tr (C) = 1,
C � 0 .

(2.6)

Clearly, the onstraint funtion p†(M−1 ⊙ C∗)p − t is a trigonometri

polynomial [24℄ of degree N − 1, that is,

p†(M−1 ⊙C∗)p − t = x(0)− t+ 2Re

(

N−1
∑

k=1

x(k)e−jkω

)

,

where ω = 2πνd and

x(k) =
1

N

N−k
∑

i=1

(M−1 ⊙C∗)(i+ k, i), k = 0, 1, . . . , N − 1, (2.7)

with the notation (M−1 ⊙ C∗)(i + k, i) being the (i + k, i)-th entry of

M−1 ⊙C∗
.

It is known that the nonnegativity onstraint of a trigonometri poly-

nomial has an equivalent SDP representation. Spei�ally, the following

result derived in [25, Theorem 3.1℄ is quoted here as a lemma.

Lemma 2.3.1. The trigonometri polynomial f(ω) = x(0)+2ℜ
(

∑N−1
k=1

x(k)e−jkω
)

is nonnegative over [0, 2π], if and only if there exists an N ×
N Hermitian matrix X suh that

x = W †
diag(WXW †), X � 0, (2.8)

where x = [x(0), . . . , x(N − 1)]T , W = [w0, . . . ,wN−1] ∈ CM×N
, and

wk = [1, e−jkθ, . . . , e−j(M−1)kθ]T , k = 0, . . . , N − 1, θ = 2π/M , M ≥
2N − 1.
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It follows by Lemma 2.3.1 that SDP (2.6) is equivalent to the follow-

ing SDP

max
X,C, t

t

s.t. W †
diag(WXW †) + te1 = x,

tr (c0c
†
0C) ≥ δǫ,

tr (C) = 1,
C � 0,
X � 0 ,

(2.9)

where x is de�ned by (2.7), W is the same as the one de�ned in Lemma

2.3.1 by taking M = 2N − 1. In order to proeed further it is neessary

to show the following

Lemma 2.3.2. It holds that SDP problem (2.9) is solvable

2

.

Proof. See Appendix B

Let (X⋆,C⋆, t⋆) be an optimal solution of (2.9). It is easily seen that

(C⋆, t⋆) is an optimal solution of SDP (2.6) with

t⋆ = min
νd∈[0,1]

p†(M−1 ⊙ (C⋆)∗)p. (2.10)

Problem (2.10) is one dimensional optimization problem with su�iently

smooth objetive funtion, therefore it is possible to apply Newton method

to solve it. Letting

ν⋆d = arg min
νd∈[0,1]

p†(M−1 ⊙ (C⋆)∗)p, (2.11)

namely a value of νd ∈ [0, 1] minimizing the argument and

p⋆ =
1√
N

[1, ej2πν
⋆
d , . . . , ej(N−1)2πν⋆d ]T , (2.12)

it follows that

t⋆ = p⋆†(M−1 ⊙ (C⋆)∗)p⋆ = tr

[(

M−1 ⊙
(

p⋆p⋆†
)∗)

C⋆
]

.

Now if C⋆
is rank-one, namely C⋆ = c1c

†
1, then c⋆ = c1e

j argc†
1c0

and ν⋆d
are optimal for the original max-min problem, i.e. the SDP relaxation is

2

By saying solvable, it means that the problem is feasible, bounded, and the

optimal value is attained (see [26, page 13℄).
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tight. Otherwise, an approximate solution to (2.2) an be provided. To

this end, it is neessary to �nd a rank-one matrix cc† suh that

tr

[(

M−1 ⊙
(

p⋆p⋆†
)∗)

cc†
]

= tr

[(

M−1 ⊙
(

p⋆p⋆†
)∗)

C⋆
]

(2.13)

= t⋆, (2.14)

tr (c0c
†
0cc

†) = tr (c0c
†
0C

⋆) = s, (2.15)

tr (cc†) = tr (C⋆) = 1, (2.16)

as long asC⋆
is of rank higher than one. If it is possible to �nd a rank-one

solution cc† satisfying (2.13)-(2.16), then the following one-dimensional

searh yields a feasible solution of problem (2.5):

νd = arg min
νd∈[0,1]

p†(M−1 ⊙ (cc†)∗)p, (2.17)

with the optimal value

t = min
νd∈[0,1]

p†(M ⊙ (cc†)∗)p. (2.18)

In other words, (c, t) is a sub-optimal solution of problem (2.5). To �nd a

rank-one solution of (2.13)-(2.16), the following rank-one deomposition

theorem [27℄ is invoked.

Lemma 2.3.3. Suppose that X is an N × N omplex Hermitian pos-

itive semide�nite matrix of rank R, and A1,A2 are two N × N given

Hermitian matries. Then, there is a rank-one deomposition of X (syn-

thetially denoted as D(X,A1,A2)), X =
∑R

r=1 xrx
†
r, suh that

x†
rA1xr =

tr (XA1)

R
and x†

rA2xr =
tr (XA2)

R
, r = 1, . . . , R.

In the present ontext, it is neessary to perform D
(

C⋆,M−1⊙
(

p⋆p⋆†)∗ − t⋆I, c0c
†
0 − sI

)

obtaining C⋆ =
∑R

i=1 cic
†
i , where R = Rank

(C⋆). Then, it is easily veri�ed that eah cic
†
i/||ci||2 for i = 1, . . . , R,

ful�lls (2.13)-(2.16). In fat,

1

R
tr

[(

M−1 ⊙
(

p⋆p⋆†
)∗

− t⋆I
)

cic
†
i

]

=tr
[(

M−1 ⊙
(

p⋆p⋆†
)∗

−
t⋆I)C⋆] = 0, (2.19)

1

R
tr

[(

c0c
†
0 − sI

)

cic
†
i

]

=tr
[(

c0c
†
0 − sI

)

C⋆
]

= 0,

(2.20)
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whih imply

tr

[(

M−1 ⊙
(

p⋆p⋆†
)∗)

cic
†
i

]

= t⋆‖ci‖2, (2.21)

tr

[(

c0c
†
0

)

cic
†
i

]

= s‖ci‖2 . (2.22)

As a onsequene, cic
†
i/||ci||2, for i = 1, . . . , R, omplies with (2.13)-

(2.16). Performing the one-dimensional optimization problem (2.18)

gives the sub-optimal solutions (ci/||ci||, ti), where ti is the optimal value

of problem (2.18) orresponding to ci/||ci||. Take the maximal value of

{t1, . . . , tR}, say t1, and output (c1/||c1||, t1) as the sub-optimal solution

(namely the best among the ouples (ci/||ci||, ti)).
Summarizing, a sub-optimal solution for problem (2.2) an be sum-

marized as in Algorithm 2.

Algorithm 2 Approximation proedure for the max-min problem (2.2)

Require: c0, ǫ, M , N ;

Ensure: a sub-optimal solution (c⋆, ν⋆d) of problem (2.2);

1: solve SDP (2.9) �nding (X⋆,C⋆, t⋆);
2: solve problem (2.10) obtaining ν⋆d ; ompute p⋆

like (2.12);

3: let tr (c0c
†
0C

⋆) = s, and perform

D
(

C⋆,M−1 ⊙
(

p⋆p⋆†)∗ − t⋆I, c0c
†
0 − sI

)

getting C⋆ =
∑R

i=1 cic
†
i ;

4: let ci = ci/||ci||, i = 1, . . . , R, and solve problem (2.18) with pa-

rameter ci, obtaining the optimal values {t(1), . . . , t(R)} and the

optimums {νd,1, . . . , νd,R}.
5: hoose ci suh that t(i) = max{t(1), . . . , t(R)}, say ci = c1, and let

c⋆ = c1e
j argc†

1c0
and ν⋆d = νd,1.

As to the omputational omplexity of the above algorithm, it is

ditated by the solution of the SDP problem (2.9)

3

, whih has a worst-

ase omplexity of O
(

N4.5 log 1
η

)

(see [26℄), sine the spei� rank-one

deomposition involved requires O(N3) operations and the ost of the

one dimensional optimization problem

4

is very low ompared to the ost

3

An SDP problem an be e�iently solved in polynomial time through interior

point methods, and the number of iterations neessary to ahieve onvergene usually

ranges between 10 and 100 (see [11℄).

4

In the later numerial simulation, the Matlab ommand fminbnd is used.
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of the omputations in the other steps.

Before onluding, it is interesting to highlight that a possible exten-

sion of the enoding algorithm aimed at optimizing the minimum SNR

(over νd) in a sub-interval of [0, 1] (or even in the union of more than one

of suh sub-intervals) an be easily oneived exploiting [25, Theorem

3.2℄ in plae of [25, Theorem 3.1℄ to express the nonnegativity of the

trigonometri polynomial in the onsidered sub-interval.

2.4 Performane Analysis

This Setion is devoted to the performane analysis of the proposed

sheme for the robust waveform design. To this end, the assumption

is that the (l, k)-th entry disturbane ovariane matrix is given by

M (l, k) = ρ
|l−k|
1 exp [j2πγ(l − k)] + 10ρ|l−k| + 10−2I(l, k), whih is a

struture aounting for the simultaneous presene of sea lutter, land

lutter, and thermal noise. Moreover, the Pfa of the GLRT reeiver if

�xed to 10−6
, ρ1 = 0.8, ρ = 0.9, and γ = 0.2. The analysis is onduted

in terms of Pd, robustness with respet to Doppler shifts, and ambiguity

funtion of the oded pulse train whih results exploiting the proposed

algorithm, i.e.

χ(λ, f) =

∫ ∞

−∞
u(β)u∗(β − λ)ej2πfβdβ

=
N−1
∑

l=0

N−1
∑

m=0

ā(l)ā∗(m)χp[λ− (l −m)Tr, f ] .

The onvex optimization MATLAB toolbox SElf-DUal-MInimization (Se-

DuMi) [28℄ is exploited for solving the SDP relaxation. The deompo-

sition D(·, ·, ·) of the SeDuMi solution is performed using the tehnique

desribed in [27℄. Finally, the MATLAB toolbox of [2℄ is used to plot the

ambiguity funtions of the oded pulse trains. In the following, the gener-

alized Barker sequene [2, pp. 109-113℄ of length N = 10 is onsidered as

similarity ode (namely, c0 = [0.3162, 0.3162, 0.1724+0.2651j,−0.1905+
0.2524j,−0.2322+0.2147j, 0.3084+0.0697j, 0.3141+0.0367j,−0.2250−
0.2222j, 0.29851 + 0.1044j,−0.1881 − 0.2542j]T ).

In Figure 2.1, the Pd of the optimized ode (aording to the max-

min riterion) versus |α|2 is plotted for several values of δǫ, together with
Pd of the similarity ode for νd = ν⋆d . The urves show that inreasing δǫ
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Figure 2.1: Pd versus |α|2 for non-�utuating target, Pfa = 10−6
, N = 10, νd = ν⋆

d ,

and δǫ = {0.1, 0.4, 0.7, 0.9, 0.9801, 0.9999}. Generalized Barker ode (solid urve).

Max-min ode (dashed urves).

worse and worse Pd values are obtained; this behavior an be explained

observing that the smaller δǫ, the larger ǫ, the larger the size of the

similarity region. However, this detetion loss is ompensated for an im-

provement of the oded pulse train ambiguity funtion. This is shown in

Figures 2.2a-2.2d, where suh funtion is plotted assuming retangular

pulses, Tr = 5Tp. The plots highlight that the loser δǫ to 1 the higher

the degree of similarity between the ambiguity funtions of the devised

and the pre-�xed ode. This is due to the fat that inreasing δǫ is tan-
tamount to reduing the size of the similarity region. In other words, the

devised ode is fored to be similar and similar to the pre-�xed one and,

as a onsequene, we get similar and similar ambiguity funtions. The

last analysis of this Setion onerns the robustness of Pd with respet to

Doppler shifts. Spei�ally, in Figure 2.3, the Pd versus νd for the max-

min ode and the similarity ode c0 are plotted, assuming |α|2 = 23 dB.

Inspetion of the urves highlights that, for values of δǫ ≤ 0.9, Pd of the

optimized ode exhibits a quite �at behavior with respet to Doppler

frequenies. On the ontrary, Pd of the similarity ode is very sensitive
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(a) δǫ = 0.4. (b) δǫ = 0.7.

() δǫ = 0.9. (d) δǫ = 0.9999.

Figure 2.2: Ambiguity funtion modulus of the max-min ode with N = 10, Tr =
5Tp.

to the Doppler shift and exhibits signi�ant variations. Moreover, for

a wide range of Doppler shifts the max-min ode outperforms the simi-

larity sequene. Atually, the smaller δǫ, the wider the Doppler interval
where the max-min ode performs better than the similarity ode c0.

A numerial analysis, aimed at assessing the quality of the solution

produed by the new algorithm, is now proposed. Spei�ally, the nor-

malized gap ∆g between the optimal value of the SDP problem and t1
is evaluated, i.e. ∆g = t⋆−t1

t⋆ . Observing the seond row of Table 2.1, it

is possible to see that, for the onsidered values of the parameters, the

devised algorithm provides high-quality solutions. Notie that, for all

the simulated δǫ ≥ 0.7 or 0.15 ≤ δǫ < 0.4, it even outputs the optimal

solution to the max-min problem (i.e. the SDP relaxation problem has

always a rank-one optimal solution).
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Figure 2.3: Pd versus νd for |α|2 = 23 dB, non-�utuating target, N = 10, and
δǫ = {0.1, 0.4, 0.7, 0.9, 0.9801, 0.9999}. Generalized Barker ode (solid urves), Max-

min ode (dash urves).

2.5 Conlusions

In the present Chapter, a max-min algorithm for radar waveform

design, in the presene of olored Gaussian disturbane, and foring en-

ergy and similarity onstraints, has been proposed and analyzed. The

waveform synthesis has been formulated as a non-onvex quadrati opti-

mization problem with in�nitely many quadrati onstraints. Through a

lever tehnique, exploiting SDP relaxation tehniques and some results

from the theory of nonnegative trigonometri polynomials, a proedure

apable of providing an high-quality waveform from an optimal solu-

tion of the SDP relaxation has been devised. The tehnique is based

on a suitable rank-one deomposition and its implementation requires a

polynomial omputational omplexity. At the analysis stage, the perfor-

mane of the new algorithm in terms of detetion performane, ambigu-

ity funtion and robustness of Pd with respet to Doppler shifts, have
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Table 2.1: ∆g for N = 10, several values of δǫ, and Generalized Barker ode as

similarity sequene.

δǫ 0.4 0.45 0.47 0.5 0.53 0.55

∆g 0.22% 1.39% 1.89% 2.69% 3.56% 4.08%

δǫ 0.57 0.6 0.63 0.65 0.67 //

∆g 4.54% 5.16% 5.67% 5.15% 2.75% //

been evaluated. The e�et of the similarity parameter has been studied.

Preisely, if there are su�ient degrees of freedom for the optimization

problem, namely the similarity parameter is not lose to 1, then the

max-min algorithm is apable of ensuring a very robust detetion per-

formane with respet to target Doppler shifts. Moreover, this robust

behavior an be traded o� with ambiguity funtion peuliarities.



Chapter 3

Design of Optimized Radar

Codes with a Peak to Average

Power Ratio Constraint

3.1 Introdution

Modern digital tehnology and adaptive transmitters now give the

ability to generate high-auray, sophistiated, broad-bandwidth radar

waveforms, dynamially adaptable to and optimized for a range of dif-

ferent tasks (detetion, traking, target reognition, et.) potentially on

a pulse-by-pulse and hannel-by-hannel basis. For instane, a modern

multifuntion phased array radar an adapt the waveform, dwell time,

and update interval aording to the nature of the surrounding lutter

environment, the Signal to Noise Ratio (SNR), and the partiular target

(the most likely type of target, the threat that it may represent, and the

degree to whih it is manoeuvering, et.). This is essentially the subjet

of waveform diversity [4, 19, 5, 29, 30℄, namely a new �exibility and dy-

nami adaptation whih demands new ways of haraterizing waveform

properties and optimizing waveform design.

The possibility of modulating adaptively the radar signal depending

on the surrounding environment and on the expeted target harateris-

tis has lead to the onept of mathed-illumination [31, 20, 21℄, whih

determines the optimized transmission waveform and the orresponding

reeiver response through the maximization of SNR. This onept is also

thoroughly investigated in [22℄, with referene to a Gaussian point-like

35
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target and stationary Gaussian lutter, showing that the optimum al-

loation proedure plaes the signal energy in the noise band having

minimum power. Reent studies onerning waveform optimization in

the presene of olored disturbane an be found in [7℄, where a signal

design approah relying on the maximization of the SNR under a simi-

larity onstraint with a given waveform is proposed and assessed. In [1℄,

fousing on the lass of linearly oded pulse trains (both in amplitude

and in phase), the authors introdue a ode seletion algorithm whih

maximizes the detetion performane and, at the same time, is apable

of ontrolling both the region of ahievable values for the Doppler esti-

mation auray and the degree of similarity with a pre-�xed radar ode.

In [10℄ and [32℄, the approah is extended to aount for a Spae-Time

Adaptive Proessing and an unknown target Doppler frequeny respe-

tively. However, sine in several pratial situations, the radar ampli�ers

might work in saturation onditions and hene an amplitude modulation

might be di�ult to perform, in [8℄, the authors also onsider the syn-

thesis of onstant modulus (unimodular) phase oding shemes for radar

oherent pulse trains.

In this Chapter, a new waveform design approah relying on the max-

imization of the detetion performane under a more general onstraint

than unimodularity is intridued. Spei�ally, waveforms are designed

with a bounded transmitted Peak-to-Average power Ratio (PAR). This

onstraint is very reasonable for radar appliations and inludes, as a spe-

ial ase, the phase only modulation ondition. Indeed, it has also been

imposed in [33℄ for the synthesis of waveforms with stopband and orrela-

tion onstraints. Atually, ontrolling the PAR permits to onstrain the

exursions of the squared ode elements around their mean value. This

also allows to keep under ontrol the dynami range of the transmitted

waveform whih is an important pratial issue (for the urrent teh-

nology) beause high PAR values neessitate a linear ampli�er having a

large dynami range and this may be di�ult to aommodate. Finally,

the PAR ontrol is also a ruial task in OFDM (Orthogonal Frequeny-

Division Multiplexing) systems and the interested reader might refer to

[34℄ and referenes therein where this issue is addressed.

Firstly, the fous is on the seletion of the radar waveform optimizing

the SNR in orrespondene of a given expeted target Doppler frequeny,

under a PAR and an energy onstraint (Algorithm 3). Notie that this

problem is of pratial importane when it is required a on�rmation of
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an initial detetion in a ertain Doppler bin, namely when some knowl-

edge about the Doppler frequeny is available. Besides, when the Doppler

parameter is unknown, the pratial appliation of Algorithm 3 an be

obtained either tuning the design Doppler to a hallenging ondition, di-

tated by the lutter Power Spetral Density (PSD) shape, or optimizing

the waveform to an average senario. This is tantamount to onsidering

as objetive funtion the average SNR over the possible target Doppler

shifts.

Afterward, the tehnique is made robust with respet to the reeived

target target Doppler frequeny resorting to a max-min approah (Al-

gorithm 4). Otherwise stated, the worst ase (over the target Doppler)

SNR is optimized under the same onstraints as in the previous problem.

Sine Algorithms 3 and 4 do not impose any ondition on the waveform

phase (i.e. the waveform phase an range within the ontinuous interval

[0, 2π)), their phase quantized versions (Algorithms 5 and 6 respetively)

are devise too, whih fore the waveform phase to belong to a �nite al-

phabet.

All the problems are formulated in terms of non-onvex quadrati

optimization problems with a �nite (ases of Algorithms 3 and 5) or an

in�nite (ases of Algorithms 4 and 6) number of quadrati onstraints.

These problems are proved to be NP-hard and, hene, design tehniques,

relying on Semide�nite Programming (SDP) relaxation and randomiza-

tion

1

as well as on the theory of trigonometri polynomials [25℄, are

introdued, whih approximate the optimal solution with a polynomial

time omputational omplexity. For Algorithms 3 and 5, an analytial

expression of the approximation bound whih quanti�es the quality of

the obtained waveforms is provided.

At the analysis stage, the performane of the new tehnique are

assessed in terms of detetion probability ahievable by the Neyman-

Pearson reeiver and robust behavior of the detetion performane with

respet to the target Doppler frequeny. The results show that the new

algorithms trade o� detetion performane and SNR robustness with

small desirable values of the PAR as well as (Algorithms 5 and 6) with

the number of quantization levels used to represent the waveform phase.

The Chapter is organized as follows. In Setion 3.2, under the as-

1

SDP relaxation and randomization tehniques have also been used in other signal

proessing �elds. For instane, in maximum likelihood multiuser detetion [35℄ and

transmit beamforming [36℄.
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sumptions of the system model (1)-(2), the formulation of the waveform

design problems is presented; in Setions 3.3-3.6, solution algorithms for

the onsidered problems are devised; in Setion 3.7, the performane of

the new waveform design tehniques are analyzed, providing numerial

results aimed at assessing their quality. Finally, onlusions are given in

Setion 3.8.

3.2 System Model and Formulation of the Prob-

lems

The fous is on a monostati radar transmitting a linearly enoded

pulse train and onsider the signal model of eq. (1) [1℄, with the only

di�erene that p = [1, ej2πνd , . . . , ej2π(N−1)νd ]T .

The main goal is to �nd odes optimizing the SNR (either in the

mathed ase, namely in orrespondene of a given normalized target

Doppler frequeny, or in the worst normalized Doppler ase), under a

onstraint on the transmitted energy, namely ‖c‖2 = N , and foring an

upper bound to the PAR, i.e.

PAR =

max
i=1,...,N

|c(i)|2

1
N ‖c‖2 = max

i=1,...,N
|c(i)|2, (3.1)

where c = [c(1), . . . , c(N)]T ∈ C
N
. Evidently, a bound on the PAR is

tantamount to imposing a more general onstraint than the phase-only

ondition, whih an be obtained letting PAR=1.

In the following, the waveform design problems are formulated math-

ematially, showing how the mathed or worst ase SNR an be optimized

and the onstraints an be enfored, under the assumption of eq. (2) for

the disturbane vetor w. First of all, fousing (without loss of general-

ity) on the ase of non-�utuating target, the SNR an be again de�ned

as in eq. (1.8). Hene, for a given normalized target Doppler νd, the
Waveform Design Problem (WDP) an be formulated in terms of the

following omplex quadrati optimization program

max
c

c†Rc

s.t. PAR = max
i=1,...,N

|c(i)|2 ≤ γ

‖c‖2 = N

(3.2)
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(PAR onstrained WDP) where 1 ≤ γ ≤ N rules the maximum allow-

able PAR. The resulting waveform optimizes the radar performane in

orrespondene of the spei� design Doppler. From a pratial point of

view, this is of interest during the on�rmation proess, i.e. when it is re-

quired to on�rm an initial detetion in a ertain Doppler bin (obtained

using a possibly standard non-optimized waveform) so as to improve the

quality of detetion. Alternatively, the pratial appliation of the rite-

rion an be obtained either tuning the design Doppler to a hallenging

ondition, ditated by the lutter Power Spetral Density (PSD) shape

(i.e. design Doppler in orrespondene of the PSD peak), or optimizing

the waveform to an average senario.

If the target Doppler is not a-priori known, it makes sense to onsider

the waveform optimizing the worst ase SNR. By doing so, it is possible

to get a single transmitted signal apable of ensuring a robust behavior of

the detetion performane with respet to the atual Doppler frequeny.

This riterion leads to the following Robust PAR onstrained WDP

max
c

min
νd∈[0,1]

c†Rc

s.t. PAR = max
i=1,...,N

|c(i)|2 ≤ γ,

‖c‖2 = N.

(3.3)

Sine problems (3.2) and (3.3) do not impose any ondition on the wave-

form phase (i.e. the waveform phase an range within the ontinuous

interval [0, 2π)), it is of interest to onsider also their phase quantized

versions, foring the waveform phase to belong to a �nite set. This ob-

servation leads to PAR onstrained and phase quantized WDP

max
c

c†Rc

s.t. PAR = max
i=1,...,N

|c(i)|2 ≤ γ

arg (c(i)) ∈ {0, 1
M 2π, . . . , M−1

M 2π}, i = 1, . . . , N
‖c‖2 = N

(3.4)

(where the number of quantization levelsM is an integer suh that M ≥
2) and robust PAR onstrained and phased quantized WDP:

max
c

min
νd∈[0,1]

c†Rc

s.t. PAR = max
i=1,...,N

|c(i)|2 ≤ γ,

arg (c(i)) ∈ {0, 1
M 2π, . . . , M−1

M 2π}, i = 1, . . . , N
‖c‖2 = N

(3.5)
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whih respetively refer to the ase of known and unknown normalized

target Doppler.

Before proeeding with the design of solution tehniques for (3.2),

(3.3), (3.4), and (3.5), it is worth to address the di�erenes between

them and the optimization problems formulated and solved in some of

the previous works:

1. the problem in [1℄ is a non-onvex homogeneous Quadratially Con-

strained Quadrati Programming (QCQP) with three onstraints,

the strong duality holds for the problem, and a polynomial-time

algorithm is established based on a suitable rank-one deomposi-

tion;

2. the problem in [10℄ is a non-onvex homogeneous QCQP with four

onstraints for whih strong duality does not hold in general. Nev-

ertheless, the authors have shown how to onstrut an optimal so-

lution in polynomial-time, provided only that the SDP relaxation

of the original problem gives an optimal solution with rank not

equal to two;

3. the problem in [8℄ is an NP-hard QCQP optimization problem due

to the phase-only and the possibly �nite alphabet onstraint, whose

optimal solution is approximated using the relaxation and random-

ization approah typial of the boolean Quadrati Programming

(QP) problems;

4. the problem in [32℄ is a QCQP with in�nitely many onstraints,

for whih the authors establish a deterministi approximation pro-

edure, with polynomial time omputational omplexity, to output

a solution leading to high-quality radar waveforms.

In this Chapter, new randomized approximation algorithms for the WDP

(3.2) and its phase-quantized version (3.4) are established, respetively.

Due to the PAR onstraint onsidered in (3.2), whih is quite di�erent in

nature from the onstraint (the similarity onstraint under the in�nite

norm) in the optimization problem onsidered in [8℄, the approximation

proedures for (3.2) and (3.4) must be re-designed and the mathemati-

al analysis for the approximation bounds has to be re-assessed. For the

robust PAR onstrained WDPs (3.3) and (3.5), respetive randomized

approximation algorithms will be proposed, in ontrast to the determin-
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isti approximation algorithm built in [32℄, aording to some onvex

optimization tehniques and the new randomization proedures.

3.3 PAR Constrained WDP

Problem (3.2) an be equivalently reformulated as

max
c

c†Rc

s.t. |c(i)|2 ≤ γ, i = 1, . . . , N
‖c‖2 = N.

(3.6)

Notie that when γ = 1, a feasible point for (3.6) has the property that

|c(i)| = 1 ∀i, and thus the norm onstraint ‖c‖2 = N is redundant, i.e.,

(3.6) redues to

max
c

c†Rc

s.t. |c(i)|2 ≤ 1, i = 1, . . . , N.
(3.7)

Problem (3.7) has been proven NP-hard in [37℄

2

(see related works [38℄,

[39℄, [40℄) and approximation algorithms for (3.7) are established in [37℄

(see [41℄ also). An interesting appliation for (3.7) with all parameters

and design variable being real-valued an be found with referene to

blind Maximum-Likelihood (ML) detetion of Orthogonal Spae-Time

Blok Codes (OSTBCs) with unknown Channel State Information (CSI)

in Multiple-Input-Multiple-Output (MIMO) transmissions [42℄.

In this Setion, problem (3.6) is onsidered with γ > 1, whih means

that the norm onstraint does not vanish. Clearly, problem (3.6) is a

non-onvex QCQP with multiple onstraints

3

. It is possible to laim

that problem (3.6) with γ greater than one is NP-hard by a redution

from an even partition problem whih is known to be NP-omplete.

2

Indeed, problem (3.7) is equivalent to (3.7) with all the inequality onstraints

beoming equality onstraints, due to the fat that the maximal value of a onvex

funtion is attained only at the boundary of a onvex region. In other words, replaing

the inequality onstraints in (3.7) into equality ones, neither the optimal value nor

the optimal solution set of problem (3.7) would be hanged. It has been shown in [37℄

that the problem (3.7) with all equality onstraints is NP-hard, thus problem (3.7) is

NP-hard, as it stands now.

3

For a QCQP, non-onvexity does not imply that it is hard to solve; it turns out

that, if the number of onstraints is not too high, the QCQP an be solved e�iently;

in other words, the SDP relaxation of it is tight. See [27℄, [43℄.
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Proposition 3.3.1. The radar ode design problem (3.6) is NP-hard

with parameters R � 0 and γ > 1.

Proof. See Appendix C.

Due to Proposition 3.3.1, the radar ode design problem (3.6) is un-

likely to admit a polynomial time solution method (whih means (3.6) is

omputational intratable in general). Thus, e�orts will be made in the

following toward the design of an approximation algorithm for (3.6).

3.3.1 Approximation algorithm via semide�nite program-

ming relaxation and randomization

To get an approximate solution (alternatively termed as a suboptimal

solution) of (3.6), onsider its SDP relaxation:

max
C

tr (RC)

s.t. C(i, i) ≤ γ, i = 1, . . . , N
tr (C) = N
C � 0.

(3.8)

Evidently, problem (3.8) with the additional rank onstraint Rank (C) =
1 is equivalent to (3.6). It follows from the strong duality theorem [26,

Theorem 1.7.1℄ of SDP that (3.8) is solvable

4

, sine the SDP (3.8) is

feasible (for example, I is a feasible point) and its dual is stritly feasible:

min
t(i)

t(0)N + γ
∑N

i=1 t(i)

s.t. R−∑N
i=1 t(i)Ei − t(0)I � 0

t(i) ≥ 0, i = 1, . . . , N

(3.9)

where Ei stands for the N × N matrix with the ii-th entry being one

and all other entries being zero. In pratie, an optimal solution of (3.8)

an be obtained using publi solvers (suh as vx [44℄ and SeDuMi [28℄).

Let C⋆
be an optimal solution of (3.8). The main goal is to extrat a

rank-one feasible solution of (3.8) with mathematially provable quality

from C⋆
, whih may or may not be of rank-one. Notie that if RankC⋆

happens to be one, then the radar ode design problem (3.6) is optimally

solved and the SDP relaxation is tight.

4

By saying solvable, it means that the problem is feasible, bounded, and the

optimal value is attained (see [26, page 13℄).



3.3 PAR Constrained WDP 43

However, often, it is not the ase that Rank C⋆
is one, whih means

that the SDP relaxation (3.8) is not tight for (3.6). Therefore, the de-

sign of a suitable proedure to onstrut in polynomial time a suboptimal

solution of problem (3.6) is a ompromising must. The idea of a Gaus-

sian randomization proedure to produe an approximate solution to an

NP-hard optimization problem omes from the seminal work [45℄ by Goe-

mans and Williamson where the authors proposed a randomized approxi-

mation algorithm for the NP-hard max-ut problem, with the approxima-

tion bound 0.87856, via the SDP relaxation tehnique. Sine then, a large

number of NP-hard optimization problems have been solved by the ap-

proximation method of SDP-relaxation-plus-randomization, importantly

with theoretially assured approximation bound. For an overview of it

from a perspetive of signal proessing, the reader is invited to refer to

the magazine paper [43℄. Using the idea (mainly from [45℄ and [46℄ and

referenes therein), a Gaussian randomization proedure is presented so

as to obtain an approximate solution of problem (3.6), based on the

optimal solution C⋆
of the SDP relaxation problem (3.8). The quoted

proedure requires the de�nition of a suitable �ad ho� ovariane matrix

of the Gaussian distribution to be adopted in the randomization step.

The basi riterion for seleting suh a ovariane matrix is that the

entire randomization proedure has to lead to a feasible solution of the

original problem with probability one and it has also to provide math-

ematial tratability in assessing the quality of the resulting solution.

Aording to this guideline, denote by

d =
√

diag(C⋆), (3.10)

and by d−

(d−)i =

{

1/d(i), if d(i) > 0
1, if d(i) = 0

i = 1, . . . , N. (3.11)

Additionally, let

D = Diag(d), D− = Diag(d−), (3.12)

and observe that, from (3.10)-(3.12),

(D−D)(i, i) =

{

1, if d(i) > 0
0, if d(i) = 0

i = 1, . . . , N. (3.13)
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Hene, the entries of the matrix

C̃
⋆
= C⋆ + (I −D−D) (3.14)

omply with

C̃⋆(i, k) =







C⋆(i, k), if i 6= k
C⋆(i, i), if C⋆(i, i) > 0
1, if C⋆(i, i) = 0

. (3.15)

By the onstrution of C̃
⋆
, it is possible to see that the diagonal

elements C̃
⋆
are positive and that C̃⋆(i, i) = 1 provided that C⋆(i, i)

vanishes. Exploiting the above de�nitions and observations, further im-

portant properties about C̃
⋆
follow:

Proposition 3.3.2. Let C⋆
be a positive semide�nite matrix and d, d−

,

D, D−
, C̃

⋆
be de�ned as (3.10)-(3.12), (3.14), respetively. Then, the

matrix D−C̃
⋆
D−

enjoys the following properties:

(i) D−C̃
⋆
D− � 0;

(ii) the diagonal elements of D−C̃
⋆
D−

are one.

Proof. See Appendix D.

This proposition indiates that D−C̃
⋆
D−

an be a suitable hoie

for the ovariane matrix of a Gaussian distribution to be adopted in the

randomized approximation algorithm. Indeed, suppose to take a Gaus-

sian random vetor ξ from the distribution NC(0,D
−C̃

⋆
D−); then eah

omponent of ξ is with zero mean and unit variane (aording to (ii)

of Proposition 3.3.2), i.e., the vetor ξ enjoys dependent standard om-

plex Gaussian random omponents. It an be seen that with probability

one, (
√

C⋆(1, 1) ξ(1)
|ξ(1)| , . . . ,

√

C⋆(N,N) ξ(N)
|ξ(N)|) is feasible for the PAR on-

strained WDP (3.2). Additionally, suh a onstrution of the ovariane

D−C̃
⋆
D−

shares some advantages in mathematially assessing the qual-

ity of a randomized approximation algorithm (as it an be seen in the

next sub-setion). Based on these observations, in order to produe an

approximate solution (i.e., a suboptimal solution, or a feasible solution)

of (3.6), the following randomization proedure (in Algorithm 3) is pro-

posed.

It is worth to remark that in pratie the randomization steps 3

and 4 an be repeated many times, in order to obtain a solution with
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Algorithm 3 Gaussian randomization proedure for radar ode design

problem (3.6)

Require: R, γ;
Ensure: a randomized approximate solution c of (3.6);

1: solve the SDP (3.8) �nding C⋆
;

2: de�ne d, d−
, D, D−

aording to (3.10)-(3.12);

3: draw a random vetor ξ ∈ C
N
from the omplex normal distribution

NC(0,D
−(C⋆ + (I −D−D))D−);

4: let c(i) =
√

C⋆(i, i)ej arg(ξ(i)), i = 1, . . . , N .

better quality. As it an be diretly seen, the omputational ost of

Algorithm 3 is dominated by solving SDP (3.8) whih has a omplexity

of O(N3.5 log(1/ǫ)) [43℄, given a solution auray ǫ > 0.

3.3.2 Approximation bound

The approximation bound of an approximation algorithm is a mea-

sure haraterizing the quality of the algorithm. For a randomized ap-

proximation algorithm solving a maximization (minimization) problem,

an approximation bound

5 R ∈ (0, 1] (R ∈ [1,+∞)) means that for all

instanes of the problem, the algorithm always delivers a feasible solu-

tion whose expeted objetive funtional value is at least (at most) R
times the optimal value. Suh an algorithm is usually alled random-

ized R-approximation algorithm. More preisely, let v(·) be the optimal

value of an instane of a given maximization (minimization) problem (·),
then a feasible solution z produed by a randomized R-approximation

algorithm, omplies with

E[the objetive funtion evaluated at z] ≥ Rv(·)

(E[the objetive funtion evaluated at z] ≤ Rv(·) for minimization prob-

lem). It is lear that an algorithm produes a better approximation (for

either maximization problem or minimization problem), if the approxi-

mation bound is loser to 1. The aim of this subsetion is to establish an

approximation bound for Algorithm 3. Toward this end, a result proved

in [37, Setion 3.3, pp. 884℄ is invoked:

5

It is also termed as performane guarantee, or worst ase ratio in the open

literature.
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Lemma 3.3.3. Let Z be a positive semide�nite matrix with all one di-

agonal elements and z be a randomized vetor generated setting z(i) =
ej arg(ξ(i)), i = 1, . . . , N , where ξ ∼ NC(0,Z). Then,

E[zz†] = F (Z) =
π

4
Z+

π

2

∞
∑

k=1

((2k)!)2

24k+1(k!)4(k + 1)
(ZT ⊙Z)(k)⊙Z � π

4
Z

(3.16)

where (A)(k) denotes the Hadamard produt of k opies of A.

Besides, from Proposition 3.3.2, it follows

Proposition 3.3.4. Let C⋆
be a positive semide�nite matrix and d, d−

,

D, D−
, C̃

⋆
be de�ned as (3.10)-(3.12), (3.14), respetively. Then,

D(D−C̃
⋆
D−)D = C⋆.

Proof. See Appendix E.

Capitalizing Lemma 3.3.3 and Proposition 3.3.4, the proposition be-

low is obtained showing that the randomized Algorithm 3 has the ap-

proximation abound

π
4 .

Proposition 3.3.5. Let c be the randomized solution output by Algo-

rithm 3. Then,

E[c†Rc] = tr (R(DF (D−C̃
⋆
D−)D)) ≥ π

4
tr (RC⋆) ≥ π

4
v((3.6))

(3.17)

where C̃
⋆
is de�ned in (3.14) and the funtion F (·) is de�ned in (3.16).

Proof. See Appendix F.

Before onluding, it is important to remark that problem (3.6) is

equivalent to the real-valued quadrati program:

max
u,v

[uT vT ]

[

ℜ(R) −ℑ(R)
ℑ(R) ℜ(R)

] [

u

v

]

s.t. u(i)2 + v(i)2 ≤ γ, i = 1, . . . , N
∑N

i=1(u(i)
2 + v(i)2) = N

(3.18)

where u = ℜ(c) and v = ℑ(c). The approximation bound for the

approximation algorithm solving a real-valued quadrati program like

in (3.18) but without any speial struture of the positive semide�nite
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matrix appearing in the objetive funtion, obtained in [46℄, is

2
π (≈

0.6366), instead of

π
4 (≈ 0.7854). It is easy to see that omplex quadrati

program (3.6) is a strutured real quadrati program (3.18); in other

words, the matrix appearing in the objetive funtion of (3.18) has the

struture

[

ℜ(R) −ℑ(R)
ℑ(R) ℜ(R)

]

,

rather than a general (2N) × (2N) positive semide�nite matrix. As a

onsequene, the omplex quadrati program (3.6) is equivalent to a

sublass of real quadrati programs, and it is reasonable that it shares a

tighter approximation bound. Indeed, this phenomenon happens also in

related literature as for instane in [37℄, [38℄ and [27℄.

3.4 Robust PAR Constrained WDP

Problem (3.3) an be equivalently expressed as

max
c, t

t

s.t. t ≤ p†(M−1 ⊙ (cc†)∗)p, ∀νd ∈ [0, 1]
|c(i)|2 ≤ γ, i = 1, . . . , N
‖c‖2 = N.

(3.19)

The onventional SDP relaxation of (3.19) is

max
C, t

t

s.t. t ≤ p†(M−1 ⊙ (C)∗)p, ∀νd ∈ [0, 1]
C(i, i) ≤ γ, i = 1, . . . , N
tr (C) = N
C � 0.

(3.20)

Problem (3.20) inludes the in�nitely many quadrati onstraints t ≤
p†(M−1⊙ (C)∗)p, ∀νd ∈ [0, 1]. However, it an be proved that they an

be transformed into a �nite number onvex onstraints, resorting to the

SDP representation of nonnegative trigonometri polynomials [25℄. To

this end, �rst observe that

p†(M−1 ⊙ (C)∗)p − t = x(0)− t+ 2ℜ
(

N−1
∑

k=1

x(k)e−jkω

)

,
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where ω = 2πνd and

x(k) =

N−k
∑

i=1

(M ⊙ (C)∗)(i+ k, i), k = 0, 1, . . . , N − 1. (3.21)

Hene, the following theorem, proved in [25, Theorem 3.1℄ and quoted

here as a lemma, is exploited.

Lemma 3.4.1. The trigonometri polynomial f(ω) = x(0) + 2ℜ (
∑

k=1
N−1x(k)e−jkω

)

is nonnegative over [0, 2π], if and only if there exists an

N ×N Hermitian matrix X � 0 suh that

x = W †
diag(WXW †), (3.22)

where x = [x(0), . . . , x(N − 1)]T , W = [w0, . . . ,wN−1] ∈ C
L×N

, wk =
[1, e−jkθ, . . . , e−j(L−1)kθ]T , k = 0, . . . , N − 1, θ = 2π/L, L ≥ 2N − 1.

The above Lemma implies that (3.20) an be reast equivalently as

the following SDP:

max
C,X, t

t

s.t. W †
diag(WXW †) + te1 = x

C(i, i) ≤ γ, i = 1, . . . , N
tr (C) = N
C � 0, X � 0

(3.23)

where x is de�ned by (3.21) and W is the same as the one de�ned in

Lemma 3.4.1 by taking L = 2N − 1.

Proposition 3.4.2. It holds that SDP problem (3.23) is solvable.

Proof. See Appendix G.

Let (C⋆,X⋆, t⋆) be an optimal solution of (3.20). Feasible solutions

ck, k = 1, . . . ,K (K will be referred to as the number of randomizations),

of (3.3) are generated using C⋆
in a way similar to Algorithm 3. Then

pik ck, say c1, suh that the objetive funtion value t(1) is maximal

over all

t(k) = min
νd∈[0,1]

p†(M ⊙ (ckc
†
k)

∗)p, k = 1, . . . ,K. (3.24)
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The minimization problems (3.24) are one dimensional optimization prob-

lem. It is seen that eah problem in (3.24) is equivalent to an SDP. In

fat, for eah k, it follows that

t(k) = max
s

s s.t. p†(M ⊙ (ckc
†
k)

∗)p ≥ s, ∀νd ∈ [0, 1]. (3.25)

It follows from Lemma 3.4.1 that problem (3.25) is equivalent to

t(k) = max
X1, s

s

s.t. W †
diag(WX1W

†) + se1 = xk

X1 � 0, s ∈ R

(3.26)

where the l-th element of xk is similar to that de�ned in (3.21), i.e.,

xk(l) =
N−l
∑

i=1

(M ⊙ (ckc
†
k)

∗)(i+ l, i), l = 0, 1, . . . , N − 1. (3.27)

Algorithm 4 summarizes the proedure to generate an approximate

solution of (3.3).

Algorithm 4 Gaussian randomization proedure for the ode design

problem (3.3)

Require: M , γ;
Ensure: a randomized approximate solution c of (3.3);

1: solve the SDP (3.23) �nding C⋆
;

2: de�ne d, d−
, D, D−

aording to (3.10)-(3.12);

3: draw random vetors ξk ∈ C
N
from the omplex normal distribution

NC(0,D
−(C⋆ + (I −D−D))D−), k = 1, . . . ,K;

4: let ck(i) =
√

C⋆(i, i)ej arg(ξk(i)), i = 1, . . . , N , k = 1, . . . ,K;

5: ompute

t(k) = min
νd∈[0,1]

p†(M ⊙ (ckc
†
k)

∗)p,

by solving SDP (3.26), k = 1, . . . ,K;

6: pik the maximal value over {t(1), . . . , t(K)}, say t(1), and output

c1.

It is worth to remark that the omplexity of the algorithm is domi-

nated by the omputation required for solving SDPs (3.23) and (3.26).

Lastly, notie that an alternative way to numerially solve the one di-

mensional problems is to perform one dimension searh sine eah of
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the problems has su�iently smooth objetive funtion and ompat

feasible interval. In the numerial simulation, we shall use the Matlab

©ommand fminbnd to perform it.

3.5 PAR Constrained and Phase QuantizedWDP

In this setion, the synthesis of an approximation algorithm for (3.4)

has been onsidered, equivalently reformulated as:

max
c

c†Rc

s.t. |c(i)|2 ≤ γ

arg (c(i)) ∈ {0, 1
M 2π, . . . , M−1

M 2π}, i = 1, . . . , N
‖c‖2 = N.

(3.28)

Clearly, whenM goes to in�nity, (3.28) beomes (3.6). The laim is that

problem (3.28) is also NP-hard, as shown below.

Proposition 3.5.1. The phase quantized ode design problem (3.28) is

NP-hard with parameters R � 0 and γ > 1.

Proof. See Appendix H.

Due to the hardness of problem (3.28), similar to Algorithm 3, it

is proposed a randomized approximation algorithm based on the SDP

relaxation tehnique (as explained in Algorithm 5). Notie that the SDP

relaxation problem for (3.28) is (3.8) as well.

Notie that, using the related idea in [46℄, the approximation algo-

rithm is appliable to the following quadrati program:

max
c

c†Rc

s.t. arg (c(i)) ∈ {0, 1
M 2π, . . . , M−1

M 2π}, i = 1, . . . , N
[|c(1)|2, . . . , |c(N)|2]T ∈ F

(3.30)

where F ⊆ R
N
+ is a losed onvex set. In this ase, the onvex relaxation

of (3.30) is

max
C

tr (RC)

s.t. diag(C) ∈ F
C � 0

(3.31)

whih an be solved e�iently due to the onvexity of the problem. As to

the approximation bound for Algorithm 5, Lemma 3.3 of [37℄ is quoted

as the following lemma.
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Algorithm 5 Gaussian randomization proedure for radar ode design

problem (3.28)

Require: R, γ, M ;

Ensure: a randomized approximate solution c of (3.28);

1: solve the SDP (3.8) �nding C⋆
;

2: de�ne d, d−
, D, D−

aording to (3.10)-(3.12);

3: draw a random vetor ξ ∈ C
N
from the omplex normal distribution

NC(0,D
−(C⋆ + (I −D−D))D−);

4: let c(i) =
√

C⋆(i, i)µ(ξ(i)), i = 1, . . . , N . where µ(x) is de�ned as

µ(x) =























1, if arg(x) ∈ [0, 2π 1
M )

ej2π
1
M , if arg(x) ∈ [2π 1

M , 2π 2
M )

.

.

.

ej2π
M−1
M , if arg(x) ∈ [2πM−1

M , 2π)

. (3.29)

Lemma 3.5.2. Let Z be a positive semide�nite matrix with all diagonal

elements being one, z be a randomized vetor generated setting z(i) =
µ (ξ(i)), i = 1, . . . , N , where ξ ∼ NC(0,Z), and the rounding funtion

µ(x) is de�ned aording to (3.29). Then,

E[zz†] � 2

π
ℜ(Z) for M = 2, and E[zz†] � M2 sin2 π

M

4π
Z for M ≥ 3.

(3.32)

Resorting to the above lemma, it an be obtained the following result

onerning the approximation bound.

Proposition 3.5.3. Let c be the randomized solution obtained through

Algorithm 3. Then,

E[c†Rc] ≥ R(M)× tr (RC⋆) ≥ R(M)× v((3.28)) (3.33)

where

R(M) =

{

2
π , if M = 2
M2 sin2 π

M
4π , if M ≥ 3

. (3.34)

Proof. The proof is based on Propositions 3.3.2, 3.3.4, and Lemma 3.5.2.

It is ompletely similar to the proof of Proposition 3.3.5 and, thus, it is

omitted here.
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In words, Algorithm 5 is a randomized R(M)-approximation algo-

rithm for (3.28), where some examples of R(M) are R(4) = 0.6366,
R(8) = 0.7458, R(16) = 0.7754, R(32) = 0.7829, R(64) = 0.7848,
R(128) = 0.7852.

3.6 Robust PAR Constrained and Phase Quan-

tized WDP

In this Setion, the main goal is to solve problem (3.5), whih an be

equivalently written as

max
c, t

t

s.t. t ≤ p†(M−1 ⊙ (cc†)∗)p, ∀νd ∈ [0, 1]
|c(i)|2 ≤ γ, i = 1, . . . , N

arg (c(i)) ∈ {0, 1
M 2π, . . . , M−1

M 2π}, i = 1, . . . , N
‖c‖2 = N.

(3.35)

It is veri�ed that (3.20) is an SDP relaxation of (3.35). Let (C⋆,X⋆, t⋆)
be an optimal solution of (3.20). Based on C⋆

, approximate solutions

of (3.5) are onstruted, and then the one with the best performane is

seleted. Algorithm 6 summarizes the proedure to generate an approx-

imate solution of (3.5).

Notie that, although there is not an analytial approximation bound,

the numerial simulations indiate that suh an approximate sheme

leads to high quality radar waveforms, also with a moderate sample size

K. This point will be better eliited in the setion addressing numerial

results.

3.7 Performane Analysis

This Setion is devoted to the performane analysis of the proposed

waveform design tehniques in orrespondene of di�erent values for the

design parameters (namely, the PAR onstraint γ, the number of ran-

domizations K, the number of phase quantization levels M , et.). To

this end, a disturbane ovariane matrixM , aounting for both lutter

and thermal noise, with the following struture is assumed:

M =

Nc
∑

i=1

βip(νd,i)p(νd,i)
† + βnI
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Algorithm 6 Gaussian randomization proedure for radar ode design

problem (3.5)

Require: M , γ, M ;

Ensure: a randomized approximate solution c of (3.5);

1: solve the SDP (3.23) �nding C⋆
;

2: de�ne d, d−
, D, D−

aording to (3.10)-(3.12);

3: draw random vetors ξk ∈ C
N
from the omplex normal distribution

NC(0,D
−(C⋆ + (I −D−D))D−), k = 1, . . . ,K;

4: let ck(i) =
√

C⋆(i, i)µ (ξk(i)), i = 1, . . . , N , k = 1, . . . ,K, where

µ(x) is de�ned in (3.29);

5: ompute

t(k) = min
νd∈[0,1]

p†(M ⊙ (ckc
†
k)

∗)p,

by solving SDP (3.26), k = 1, . . . ,K;

6: pik the maximal value over {t(1), . . . , t(K)}, say t(1), and output

c1.

where the number of disrete lutter satterers Nc = 10, their strength
βi = β = 103, νd,i = (i− 1)/2, i = 1, . . . , 10, and βn = 10−2

.

The analysis is onduted in terms of Pd of the GLRT reeiver [1℄ (or

equivalently the standard mathed �lter with pre-whitening, followed

by squared modulus operation and threshold omparison) for a pre-

sribed target normalized Doppler frequeny ν̄d (design parameter for

Algorithms 3 and 5), and robustness of the detetion apabilities with

respet to Doppler shifts for a �xed ᾱ:

Pd(α, ν̄d) = Q

(

√

2|α|2c†R(ν̄d)c,
√

−2 lnPfa

)

,

Pd,rob = Pd(ᾱ, νd), νd = −1

2
, . . . ,

1

2
, α = ᾱ,

where Q (·, ·) is the Marum Q funtion [47℄, assuming a false alarm

probability Pfa = 10−6
. Additionally, due to the randomization pro-

edures involved into Algorithms 3-6, the aforementioned performane

metris have been averaged over 500 independent trials. It is important

to highlight that, for Algorithms 3 and 5, Pd,rob = Pd(ᾱ, νd) is the dete-
tion performane obtained when the ode is designed for the given ν̄d,
while the atual target and the reeiver steering vetors are mathed to

the same Doppler νd.
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Figure 3.1: Pd versus |α|2 for Pfa = 10−6
, ν̄d = 0.1, N = 10 and γ ∈

{1, 1.3, 1.6, 1.9, 2.2, 2.5}. Algorithm 3 - PAR onstrained ode.

In Figure 3.1, the Pd, ahieved using the ode devised aording

to Algorithm 3, versus |α|2, in plotted, for N = 10, some values of γ
(preisely, γ ∈ {1, 1.3, 1.6, 1.9, 2.2, 2.5}), and ν̄d = 0.1. The urves high-
light that greater and greater PAR parameters lead to better and better

Pd values. Suh behaviour was indeed expeted, beause inreasing γ
(namely, imposing a less restritive PAR onstraint on the devised ode)

is tantamount to inreasing the size of the feasible set of the problem.

However, it is also evident that, after a threshold value for γ, depending
on the maximum eigenvalue of the ovariane matrix M , no additional

performane improvements an be observed. This phenomenon has a

lear analytial interpretation. In fat, for γ greater than the threshold

value, the PAR onstraint beomes inative and an optimal solution to

(3.2) oinides with an optimal solution to

max
c

c†Rc

s.t. ‖c‖2 = N.
(3.36)

In other words, the optimal waveform is proportional to the eigenvetor

of R orresponding to the maximum eigenvalue.

The robustness of Algorithms 3 and 4 with respet to target Doppler

shifts is studied in Figure 3.2. Therein, the Pd,rob versus the atual νd is
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Figure 3.2: Pd versus νd for Pfa = 10−6
, |ᾱ|2 = 0 dB, ν̄d = 0.1, K = 10, N = 10,

and γ ∈ {1, 1.3, 1.6, 1.9, 2.2}. Algorithm 1 - PAR onstrained ode (solid urves).

Algorithm 4 - Robust PAR onstrained ode (dashed urves).

plotted for the PAR onstrained (Algorithm 3) and the Robust PAR on-

strained (Algorithm 4) odes, assuming N = 10, K = 10, |ᾱ|2 = 0 dB,

and γ = {1, 1.3, 1.6, 1.9, 2.2}. The nominal target Doppler for Algorithm

3 is set to ν̄d = 0.1, while Algorithm 4 does not require this information.

Inspetion of the urves shows that Algorithm 3 outperforms Algorithm

4 when the atual target Doppler is su�iently lose to the nominal

one. However, in the presene of signi�ant Doppler mismathes, Pd,rob

of Algorithm 3 exhibits a signi�ant deterioration, approahing values

very lose to zero. Besides, the transition from the Doppler interval with

lose to 1 detetion rates to the undetetability region is quite sharp.

On the ontrary, the performane urves of Algorithm 4 show a quite

�at shape with respet to Doppler variations, outperforming Algorithm

3 for a wide range of Doppler shifts. This feature is far more evident as γ
inreases, leading (for the onsidered values of the parameters) to odes

with greater and greater detetion apabilities, due to the less restritive

onstraints enfored in the optimization problem.

In Figure 3.3, the impat of the number of randomizations K on the

detetion performane of Algorithm 4 is analyzed. Spei�ally, the worst

ase Pd versus |α|2 is plotted for N = 10, γ = 1.3, and several values ofK
(K ∈ {1, 5, 10, 25}). It is easy to notie a performane improvement asK
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Figure 3.3: Worst ase Pd versus |α|2 for Pfa = 10−6
, γ = 1.3, N = 10, and

K ∈ {1, 5, 10, 25} randomizations. Algorithm 4 - Robust PAR onstrained ode.

inreases. This behavior an be explained based on Step 6 of Algorithm

4, whih selets the ode ensuring the best performane among all the

K randomization experiments. It is also worth pointing out that, for a

quite moderate number of randomizations, K = 5, 10, the performane

an be onsidered satisfatory, in the sense that an additional inrease

in K does not lead to additional sensible improvements in Pd.

In Figures 3.4 and 3.5, the same analysis developed in Figures 3.1

and 3.2 (for Algorithms 3 and 4), with referene to the performane

of Algorithms 5 and 6, has been onduted. Preisely, in Figure 3.4,

the Pd of the ode designed aording to Algorithm 5 versus |α|2 is

plotted for N = 10, ν̄d = 0.1, some values of the PAR parameter γ ∈
{1, 1.3, 1.6, 1.9, 2.2}, and M = 4 levels for the phase quantization. As

in Figure 3.1, inreasing γ leads to better and better detetion levels.

In Figure 3.5, the Pd,robs versus the atual νd for the PAR onstrained

Phase quantized (Algorithm 5) and the Robust PAR onstrained Phase

quantized (Algorithm 6) odes are plotted, assuming N = 10, K = 10,
|ᾱ|2 = 0 dB, M = 4 and γ ∈ {1, 1.3, 1.6, 1.9, 2.2}. The nominal target

Doppler for Algorithm 3 is set to ν̄d = 0.1, while Algorithm 4 does not

require this information. Analyzing the urves, the same onsiderations

as in Figure 3.2 an be repeated.
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Figure 3.4: Pd versus |α|2 for Pfa = 10−6
, ν̄d = 0.1, M = 4, N = 10, and

γ ∈ {1, 1.3, 1.6, 1.9, 2.2}. Algorithm 5 - PAR onstrained Phase quantized ode.
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Figure 3.5: Pd versus νd for Pfa = 10−6
, |ᾱ|2 = 0 dB, ν̄d = 0.1, K = 10, M =

4, N = 10, and γ ∈ {1, 1.3, 1.6, 1.9, 2.2}. Algorithm 5 - PAR onstrained Phase

quantized ode (dashed-dotted urves). Algorithm 6 - Robust PAR onstrained Phase

quantized ode (dashed x-marked urves).
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(a) γ = 1
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(b) γ = 1.9
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(d) γ = 2.5

Figure 3.6: Pd versus |α|2 for Pfa = 10−6
, ν̄d = 0.1, M = 4, K = 10, N = 10.

Algorithm 3 - PAR onstrained ode (solid line). Approximation Bound of Algorithm

3 (dashed o-marked urve). Algorithm 5 - PAR onstrained Phase quantized ode

(dashed-dotted line). Approximation Bound of Algorithm 5 (dotted x-marked urve).

The fous is now on Algorithms 3 and 5 and the orresponding

approximation bounds. In Figures 3.6, assuming N = 10, ν̄d = 0.1,
K = 10, and M = 4, the performane of Algorithms 3 and 3 are om-

pared with the Pd urves obtained exploiting their approximation bounds

de�ned by (3.17) and (3.33) respetively (i.e. using (3.17) or (3.33) in

the �rst argument of the Marum Q funtion in plae of the respetive

quadrati form). Eah subplot refers to a spei� value of the PAR pa-

rameter γ. The plots highlight that Algorithm 3 performs better than

Algorithm 5, whih quantizes the phase of the transmitted waveform on

four di�erent levels. The performane loss of the latter with respet to

the former is kept within 1 dB, for Pd = 0.9, and is quite aeptable

onsidering also the less demanding hardware implementation of a phase

quantized waveform. It is also interesting to observe that the Pd urves

obtained using the approximation bound provide a quite good approxi-

mation of the atual detetion performane, for all the onsidered values

of the parameter γ and for both the onsidered algorithms. As a matter



3.7 Performane Analysis 59

−14 −12 −10 −8 −6 −4 −2 0 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
d

|α|
2
[dB]

 increasing M

Figure 3.7: Pd versus |α|2 for Pfa = 10−6
, ν̄d = 0.1, γ = 1.3, K = 10, and

M ∈ {2, 4, 8, 16}. Algorithm 5 - PAR onstrained Phase quantized ode (dashed-

dotted lines). Algorithm 3 - PAR onstrained ode (o-marked urve). Notie that

the urve of Algorithm 3 overlaps with that referring to Algorithm 5 for M = 8 and

M = 16.

of fat, the lower bound approximation is at most 2 dB far from the true

Pd urve.

In the last part of this Setion, the e�ets of the number of quan-

tization levels are investigate. Spei�ally, in Figure 3.7, the Pd versus

|α|2 is plotted for ν̄d = 0.1, K = 10, γ = 1.3, and several values of M
(M ∈ {2, 4, 8, 16}). As expeted, inreasing the number of quantization

levels, leads to better and better performanes until M ≤ 8. Then, a

saturation e�et is experiened and the performane obtained by the

phase quantized Algorithm 5 ends up oinident with that provided by

Algorithm 5, whih, as already pointed out, assumes ode elements with

phases ranging in a ontinuous interval.

Finally, before onluding this setion, in Table 3.1 the average CPU

time required to solve the SDP problem (3.8) (and (3.23)), whih is the

most omputational expensive step of Algorithms 3 and 5 (Algorithms 4

and 6), are provided. All the experiments were onduted on a desktop

omputer equipped with a Intel Core 2 Quad Q9400 CPU (2.66 GHz).

The results highlight that the omputational time is quite modest and

aeptable for all the onsidered values of γ. Nevertheless, it is also worth
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Table 3.1: Average CPU time in seonds required to solve problems (3.8) and (3.23).

γ 1 1.3 1.6 1.9 2.5

SDP (3.8) 0.083 0.104 0.097 0.085 0.086

SDP (3.23) 0.097 0.143 0.158 0.128 0.112

pointing out that the waveform design must not neessary be performed

on-line. It an be also implemented o�-line produing a waveform library

[30℄ and then during the operation a waveform from the library is seleted

for that partiular senario.

3.8 Conlusions

In this Chapter, radar waveform design in the presene of olored

Gaussian disturbane under a PAR and an energy onstraint has been

onsidered. First of all, the fous has been on the seletion of the radar

signal optimizing the SNR in orrespondene of a given expeted target

Doppler frequeny (Algorithm 3). Then, through a max-min approah,

a robust version (with respet to the reeived Doppler) of the aforemen-

tioned tehnique has been devised (Algorithm 4), optimizing the worst

ase SNR under the same onstraints as in the previous problem. Sine

Algorithms 3 and 4 do not impose any ondition on the waveform phase,

introdued their phase quantized versions (Algorithms 5 and 6 respe-

tively) have been introdued, foring the waveform phase to belong to

a �nite alphabet. Atually, this is a quite nie feature for a pratial

implementation of the tehniques. All the problems have been formu-

lated in terms of non-onvex quadrati optimization programs with a

�nite (Algorithm 3 and 5) or an in�nite (Algorithm 4 and 6) number

of quadrati onstraints. The NP-hard nature of the problems has been

proved and, hene, design tehniques have been introdued, relying on

Semide�nite Programming (SDP) relaxation and randomization as well

as on the theory of trigonometri polynomials, whih provide high quality

sub-optimal solutions with a polynomial time omputational omplexity.

At the analysis stage, the performane of the devised algorithms have

been evaluated, onsidering both the detetion probability ahieved by

the Neyman-Pearson detetor, as well as the robustness with respet

to target Doppler shifts. Additionally, the e�ets of the possible phase

quantization have been studied, showing the trade o� existing between
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the number of quantization levels and some simpliity in iruitry im-

plementation.

Possible future researh traks might onern the generalization of

the waveform design problem so as to aount for an additional similar-

ity onstraint with a known ode sequene. This new approah will pave

the way to a joint ontrol of both the PAR and the waveform ambiguity

funtion. Unfortunately, the additional onstraint annot be easily han-

dled and the design of a solution method to the resulting optimization

problems is still an open issue.
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Chapter 4

Cognitive Design of the

Reeive Filter and

Transmitted Phase Code in

Reverberating Environment

4.1 Introdution

The problem of radar waveform diversity and reeiver optimization

has been addressed over and over during the last few deades, due to

the inreasing performane requirements in terms of target loalization

and traking auray, range-Doppler resolution, mainlobe lutter reje-

tion and low sidelobe signal and/or �lter design. The growth in terms

of tehnology, suh as new omputing arhitetures, high speed and O�

The Shelf (OTS) proessors, and digital arbitrary waveform generators,

had made possible to perform very omplex and e�etive signal proess-

ing [51, Ch. 6, 11, 25℄, leading the path to the reent ognitive paradigm

(see [52℄, [53℄, [54℄, and [55℄), whih states indeed a new suess fron-

tier for radar signal proessing. Its main innovation onerns the smart

use of some a-priori information and previous radar experienes about

the operating environment (as for instane loation of eletromagneti

interferenes, re�etivity harateristi of the environment, weather on-

ditions and disrete lutter).

Two prinipal researh modalities, exploiting the waveform diversity to

improve the radar performanes, have emerged. The �rst is foused on

63
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the signal-independent interferene and well models, but is not limited

to, radar environments where the main ontribution to the disturbane

is represented by thermal noise, and/or intentional interferene (Jam-

mers), and/or unintentional emissions by information soures, and/or

terrain sattering due to signals from other radar platforms (hot lut-

ter), [7, 8, 56, 57℄. The latter assumes a reverberant environment, namely

a signal-dependent lutter senario, with disturbanes produed by radar

re�etions from terrain or non-threatening targets in the surveillane vol-

ume. For a point-like target embedded in signal-dependent lutter, opti-

mization of the transmit signal and reeive �lter to maximize the Signal

to Interferene plus Noise Ratio (SINR) has been aomplished, assum-

ing both an energy onstraint [58℄ and a dynami range onstraints [59℄,

on the transmitted waveform. Implementation errors [59℄, amplitude

and phase modulation limitations [60℄, and quantization error e�ets

[61℄, have also been onsidered, modifying the proedure of [58℄. In [62℄,

a ognitive approah for the design of the transmit signal (amplitude-

phase modulated pulse train) and reeive �lter, aounting for a sim-

ilarity between the transmitted sequene and a presribed radar ode,

has been devised. In [63℄, innovative algorithms for optimizing the mean-

square error of a target baksattering estimate in the presene of signal-

dependent lutter, have been derived. Either a onstant-modulus or a

low Peak to Average power Ratio (PAR) onstraint has been enfored on

the transmitted waveform. For a zero-Doppler Gaussian point target in

the presene of signal-dependent Gaussian lutter, modeled as the out-

put of a stohasti Linear-Time-Invariant (LTI) �lter with a stationary

Gaussian shaped impulse response, analyti approahes to optimizing the

energy-onstrained transmit signal spetrum while maximizing detetion

performane have been introdued [22℄.

In this Chapter, the joint optimization of the transmit signal and

reeive �lter for a radar system whih operates in a highly reverberant

environment is addressed, fousing on both ontinuous and �nite alpha-

bet phase odes. Spei�ally, the assumption is that the radar system an

predit the atual sattering environment, using a dynami environmen-

tal database, inluding a geographial information system, meteorologi-

al data, site spei� lutter maps [64℄, and some eletromagneti re�e-

tivity and spetral lutter models. Thus, exploiting the aforementioned

information and onsidering as �gure of merit the Signal-to-Interferene

plus Noise Ratio (SINR), a suitable radar phase ode and reeive �lter
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are devised, under a similarity onstraint between the sought waveform

and a referene ode [7℄, [8℄. The devised onstrained optimization pro-

edure sequentially improves the SINR. Eah iteration requires the so-

lution of both a onvex problem and an NP-hard optimization problem.

As to the NP-hard quadrati frational optimization problem, the relax-

ation and randomization approah [8℄ is invoked in order to �nd a good

quality solution. The resulting omputational omplexity is linear with

the number of iterations and trials in the randomized proedure, and

polynomial with the reeive �lter length. The performane of the new

algorithm is analyzed in a homogeneous lutter environment, showing

that interesting SINR improvements an be obtained jointly optimizing

the transmitter and the reeiver.

The Chapter is organized as follows. In Setion 4.2, we desribe

the system model is desribed, whih slightly di�ers from the one in

eq.s 1-2. In Setion 4.3, the onstrained optimization problems for the

design of (either ontinuous or �nite alphabet) radar phase odes and the

reeive �lters is formulated. Additionally, two sequential optimization

proedures are introdued, so as to obtain high quality solutions to these

problems. In Setion 4.4, the performane of the proposed algorithms are

assessed. Finally, in Setion 4.5, onlusions are drawn out and possible

future researh traks are disussed.

4.2 System Model

The model herein onsidered is slightly di�erent from the one pre-

sented in eq.s 1-2, sine the lutter disturbane and the thermal noise

terms will be expliitly separated. The fous is still on a monostati radar

system that transmits a oherent burst of N pulses. The waveform at the

reeiver end is down-onverted to baseband, undergoes a pulse mathed

�ltering operation, and then is sampled. The N -dimensional olumn

vetor v = [v(1), v(2), . . . , v(N)] ∈ C
N

of the observations, from the

range-azimuth ell under test, an be expressed as

v = αTc⊙ p(νdT ) + i+ n, (4.1)

with c = [c(1), c(2), . . . , c(N)]T ∈ C
N

the radar ode, αT a omplex

parameter aounting for the target response, p(νdT ) = [1, ej2πνdT , . . . ,

ej2π(N−1)νdT ]T , νdT the normalized target Doppler frequeny, i ∈ CN
the

vetor of lutter samples, and n ∈ C
N
the vetor of noise samples.
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The lutter vetor i is modeled as the superposition of returns from

di�erent unorrelated satterers, eah from the (r, i)−th range-azimuth

bin, namely:

i =

Nc−1
∑

r=0

L−1
∑

i=0

α(r,i)J r

(

c⊙ p(νd(r,i))
)

, (4.2)

where Nc ≤ N is the number of range rings

1

that interfere with the

range-azimuth bin of interest (0, 0), L is the number of disrete azimuth

setors, α(r,i) and νd(r,i) are, respetively, the eho and the normalized

Doppler frequeny of the satterer in the range-azimuth bin (r, i); fur-
thermore, ∀r ∈ {0, . . . , N − 1}

J r(l,m) =

{

1 if l −m = r
0 if l −m 6= r

(l,m) ∈ {1, . . . , N}2,

where Jr = JT
−r denotes the shift matrix. As to the statistial hara-

terization of the noise vetor n, it is still assumed that it is zero-mean

and white, i.e.:

E [n] = 0, E

[

nn†
]

= σ2nI.

Now, onsider the statistial haraterization of the lutter vetor i. As

previously stated, the satterers are assumed to be unorrelated; more-

over, for eah satterer, denote by σ2(r,i) = E
[

|α(r,i)|2
]

, assume that the

expeted value of its omplex amplitude is zero, i.e. E
[

α(r,i)

]

= 0,
and that its normalized Doppler frequeny, statistially independent of

α(r,i), is uniformly distributed around a mean Doppler frequeny ν̄d(r,i) ,

i.e. νd(r,i) ∼ U
(

ν̄d(r,i) −
ǫ(r,i)
2 , ν̄d(r,i) +

ǫ(r,i)
2

)

. As a onsequene, we have:

E [i] = 0 and

Σi (c) = E

[

ii†
]

=

Nc−1
∑

r=0

L−1
∑

i=0

σ2(r,i)J rΓ(c, (r, i))J
T
r , (4.3)

where

Γ(c, (r, i)) = Diag(c)Φ
ν̄d(r,i)
ǫ(r,i) Diag(c)

†,

and, ∀ (l,m)∈{1, . . . , N}2,

Φ
ν̄d
ǫ (l,m)=e(j2πν̄d(l−m)) sin[πǫ(l−m)]

[πǫ(l −m)]
.

1

Notie that model (4.2) refers to the general ase of range ambiguous lutter. It

redues to the range unambiguous senario letting Nc = 1.
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A relevant senario, whih an be desribed and modeled aording to

(4.3), is now desribed (see also [62℄). Let assume that, for any (r, i)

range-azimuth bin, the Radar Cross Setion (RCS) σ
(r,i)
0 of the satterer

is predited through the interation between a digital terrain map, suh

as the National Land Cover Data (NLCD) and RCS lutter models

2

.

Whenever σ
(r,i)
0 has been estimated, aording to the previous informa-

tion, we an evaluate σ2(r,i) as

σ2(r,i) = σ
(r,i)
0 Kr|G (θi) |2,

where Kr is a onstant aounting for the hannel propagation e�ets,

suh as the free spae two-way path loss and additional system losses

(radar equation), θi is the azimuth angle of the bin (r, i), and G (θ) is
the one-way antenna gain for the angle θ.

4.3 Problem Formulation and Design Issues

The present Setion deals with the design of a suitable radar ode

and reeive �lter maximizing the SINR, under some onstraints on the

shape of the ode. Spei�ally, assuming that the vetor of observations

v is �ltered through w, the SINR at the output of the �lter

3

an be

written as:

SINR =
|αT |2

∣

∣w† (c⊙ p(νdT ))
∣

∣

2

w†
Σi (c)w + σ2n‖w‖2

, (4.4)

where |αT |2
∣

∣w†(c⊙ p(νdT ))
∣

∣

2
is the useful energy at the output of the

�lter, while σ2n‖w‖2 and w†
Σi (c)w represent, respetively, the noise

and the lutter energy at the �lter output. Notie that the lutter en-

ergy w†
Σi (c)w funtionally depends both on the reeive proessing w

and the transmitted waveform through Σi (c) (namely it is a quarti

polynomial in variables w and c). This observation represents the main

di�erene between a signal-dependent and a signal-independent environ-

ment where the output lutter energy is only a funtion of w, being a

homogeneous quadrati form in that variable.

To develop the proposed SINR optimization algorithm, the following

tehnial Lemma 4.3.1 (whose proof is given in [62℄) has been used, so

as to provide an alternative expression to the SINR:

2

Otherwise, it ould be estimated exploiting feedbaks from previous sans.

3

Obviously, the impliit assumption is that w 6= 0.
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Lemma 4.3.1. An equivalent expression of the SINR is given by:

SINR =
|αT |2

∣

∣cT (w∗ ⊙ p(νdT ))
∣

∣

2

cTΘi (w) c∗ + σ2n‖w‖2
(4.5)

where:

Θi (w) =

Nc−1
∑

r=1

L−1
∑

i=0

σ2(r,i)Diag(J−rw
∗)Φ

ν̄d(r,i)
ǫ(r,i) Diag(J−rw)+

L−1
∑

i=0

σ2(0,i)Diag(w
∗)Φ

ν̄d(0,i)
ǫ(0,i) Diag(w) .

As to the shape of the ode, the fous is on both ontinuous al-

phabet phase odes, i.e. |c(k)| = 1, k = 1, . . . , N , and �nite alphabet

phase ode, namely c(k) ∈ {1, ej2π/M , . . . , ej2π(M−1)/M}, k = 1, . . . , N .

Furthermore, a similarity onstraint [7, 8℄ is enfored, namely

‖c − c0‖∞ ≤ δ , (4.6)

where the parameter δ ≥ 0 governs the size of the similarity region and

c0 is a pre�xed phase ode. By doing so, it is required the solution

to be similar to a known ode c0, whih shares some nie properties

suh as reasonable range-Doppler resolution and peak sidelobe level. In

other words, imposing (4.6) is tantamount to indiretly ontrolling the

ambiguity funtion of the onsidered oded pulse train: the smaller δ the
higher the degree of similarity between the ambiguity funtions of the

devised radar ode and c0.

Summarizing, the joint design of the radar ode and reeive �lter

an be formulated in terms of the following onstrained optimization

problems:

•

Pc



















max
c,w

|αT |2
∣

∣w† (c⊙ p(νdT ))
∣

∣

2

w†
Σi (c)w + σ2n‖w‖2

s.t. |c(k)| = 1, k = 1, . . . , N
‖c− c0‖∞ ≤ δ

(4.7)

for a ontinuous alphabet phase ode;
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•

Pd



















max
c,w

|αT |2
∣

∣w† (c⊙ p(νdT ))
∣

∣

2

w†
Σi (c)w + σ2n‖w‖2

s.t. c(k) ∈ {1, ej2π/M , . . . , ej2π(M−1)/M}, k = 1, . . . , N,
‖c − c0‖∞ ≤ δ

(4.8)

for a disrete alphabet phase ode.

Problems Pc
and Pd

are non-onvex optimization problems, sine the

objetive funtion is a non-onvex funtion and the onstraints |c(k)|2 =
1, k = 1, . . . , N, and c(k) ∈

{

1, ej2π/M , . . . , ej2π(M−1)/M
}

, k = 1, . . . , N ,

de�ne non-onvex sets. The tehnique adopted to �nd a good quality

solution for Pc
and Pd

is based on a sequential optimization proedure.

The idea is to iteratively improve the SINR. Spei�ally, given w(n−1)
,

it will be searhed an admissible radar ode c(n) at step n improving

the SINR orresponding to the reeive �lter w(n−1)
and the transmitted

signal c(n−1)
. Whenever c(n) is found, the signal will be �xed and a new

searh, now for the adaptive �lter w(n)
improving the SINR orrespond-

ing to the radar ode c(n) and the reeive �lter w(n−1)
. will start, and

so on. Otherwise stated, w(n)
and c(n) are used as starting point at step

n + 1. To trigger the proedure, the optimal reeive �lter w(0)
to an

admissible ode c(0) is onsidered.

From an analytial point of view, w(n)
is an optimal solution to the

optimization problem:

Pw(n)







max
w

|αT |2
∣

∣w†
(

c(n) ⊙ p(νdT )
)

∣

∣

2

w†
Σi

(

c(n)
)

w + σ2n‖w‖2
. (4.9)

As shown in [62℄, Pw(n)
is solvable and a losed form optimal solution

w(n)
an be found for any feasible c(n). Spei�ally, an optimal solution

to Pw(n)
is given by:

w(n) =

(

Σi

(

c(n)
)

+ σ2nI
)−1 (

c(n) ⊙ p(νdT )
)

∥

∥

∥

(

Σi

(

c(n)
)

+ σ2nI
)−1/2 (

c(n) ⊙ p(νdT )
)
∥

∥

∥

2
, (4.10)

from whih it is evident the in�uene of c(n) and the steering vetor
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p(νdT ) on w(n)
. Furthermore, c(n) is given by:

c(n) = argmax
c∈{c(n−1),c(⋆)}

|αT |2
∣

∣w(n−1)† (c⊙ p(νdT ))
∣

∣

2

w(n−1)†
Σi (c)w

(n−1) + σ2n‖w(n−1)‖2

where c(⋆) is a good solution of problem Pc
c
(n)

if the fous is on Pc
, and

a good solution of problem Pd
c

(n)
if the fous is on Pd

, respetively given

by:

•

Pc
c

(n)



















max
c

|αT |2
∣

∣w(n−1)† (c⊙ p(νdT ))
∣

∣

2

w(n−1)†
Σi (c)w

(n−1) + σ2n‖w(n−1)‖2
s.t. |c(k)| = 1, k = 1, . . . , N,

‖c− c0‖∞ ≤ δ

; (4.11)

•

Pd
c

(n)



























max
c

|αT |2
∣

∣w(n−1)† (c⊙ p(νdT ))
∣

∣

2

w(n−1)†
Σi (c)w

(n−1) + σ2n‖w(n−1)‖2
s.t. c(k) ∈ {1, ej2π/M , . . . , ej2π(M−1)/M},

k = 1, . . . , N,
‖c− c0‖∞ ≤ δ

. (4.12)

Making use of [62, Proposition 2.1℄, the following Proposition 4.3.2 holds

true:

Proposition 4.3.2. Let

{(

c(n),w(n)
)}

be a sequene of points obtained

through the proposed sequential optimization proedure, either for the

ontinuous or the disrete alphabet ases; let SINR

(n)
be the SINR value

orresponding to the point

(

c(n),w(n)
)

at the n−th iteration. Then:

• the sequene SINR

(n)
is a monotoni inreasing sequene;

• the sequene SINR

(n)
onverges to a �nite value SINR

⋆
;

• starting from the sequene

{(

c(n),w(n)
)}

, it is possible to on-

strut another sequene

{(

c̃(n
′), w̃(n′)

)}

, that onverges to a feasi-

ble point (c̃⋆, w̃⋆) of problems Pc
or Pd

, suh that the SINR eval-

uated in (c̃⋆, w̃⋆) is equal to SINR

⋆
.
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Figure 4.1: Blok diagram of the proposed transmit-reeive optimization proedure,

for both the ontinuous phase ode ase and the disrete phase ode ase.

Observe that, from a pratial point of view, the proposed optimiza-

tion proedure requires a ondition to stop the iterations; to this end, an

iteration gain onstraint an be fored, namely |SINR(n)−SINR

(n−1)| ≤
ζ, where ζ is the desired gain. In Figure 4.1 a pitorial representation

of the proposed joint optimization proedure of the reeive �lter and the

transmit phase ode is given (in partiular, the symbol Pc
(n)

refers to

either problem Pc
c
(n)

for the ontinuous phase ode ase or to problem

Pd
c

(n)
for the disrete phase ode ase). The next Subsetions will be de-

voted to the study of the optimization problems Pc
c
(n)

and Pd
c

(n)
required

for implementing the proposed sequential optimization proedures.

4.3.1 Radar Code Optimization: Solution of the Problem

4.11

An algorithm to �nd in polynomial time a good quality solution to

the NP-hard problem Pc
c
(n)

is now desribed. Using Lemma 4.3.1, Pc
c
(n)

an be equivalently reast as the following problem P1:

P1



























max
c

∣

∣

∣
cT
(

w(n−1)∗ ⊙ p(νdT )
)
∣

∣

∣

2

cTΘi

(

w(n−1)
)

c∗ + σ2n‖w(n−1)‖2
s.t. |c(k)| = 1, k = 1, . . . , N

‖c− c0‖∞ ≤ δ

, (4.13)
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This is a non-onvex frational quadrati problem. Notie that, sine

|c(k)| = |c0(k)| = 1, k = 1, . . . , N , the similarity onstraint

max
k∈[1,...,N ]

|c(k)− c0(k)| ≤ δ

an be equivalently written as ℜ [c∗(k)c0(k)] ≥ 1−δ2/2 for k = 1, . . . , N ,

whih is tantamount to imposing arg (c(k)) ∈ [γk, γk + δc], where γk =
arg (c0(k)) − arccos(1 − δ2/2) and δc = 2arccos

(

1− δ2/2
)

for k =
1, . . . , N , [8℄. Thus, problem (4.13) is equivalent to:

P ′
1



























max
c

∣

∣

∣
cT
(

w(n−1)∗ ⊙ p(νdT )
)
∣

∣

∣

2

cTΘi

(

w(n−1)
)

c∗ + σ2n‖w(n−1)‖2
s.t. |c(k)| = 1, k = 1, . . . , N

arg (s(k)) ∈ [γk, γk + δc] , k = 1, . . . , N

. (4.14)

Observe that problem P ′
1, even in the simpler formulation orre-

sponding to ǫ = 2, is generally NP-hard, onsequently one annot �nd

polynomial time algorithms for omputing its optimal solutions. Hene,

the fous is on approximation tehniques, thus a relaxation and ran-

domization based algorithm is proposed, whih provides a randomized

feasible solution to (4.14). To this end, assume that

S =
(

w(n−1) ⊙ p(νdT )
∗
)(

w(n−1) ⊙ p(νdT )
∗
)†
, (4.15)

and

M = Θi

(

w(n−1)
)∗

+
σ2n
N

‖w(n−1)‖2I. (4.16)

The relaxed version of problem P ′
1, obtained negleting the similarity

onstraint, namely the onditions arg (s(k)) ∈ [γk, γk + δc], k = 1, . . . , N ,

is given by the following frational quadrati problem P ′′
1 ;

P ′′
1



















max
c

∣

∣

∣
cT
(

w(n−1)∗ ⊙ p(νdT )
)
∣

∣

∣

2

cTΘi

(

w(n−1)
)

c∗ + σ2n‖w(n−1)‖2
s.t. |c(k)| = 1, k = 1, . . . , N

, (4.17)

whih is equivalent to

P ′′′
1















max
X,c

tr (SX)

tr (MX)
s.t. X(k, k) = 1, k = 1, . . . , N

X = cc†, c ∈ C
N

. (4.18)
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The SDP relaxation [26℄ of problem P ′′′
1 , obtained dropping the rank-

one onstraint X = cc†, is:














max
X

tr (SX)

tr (MX)
s.t. X(k, k) = 1, k = 1, . . . , N

X � 0

. (4.19)

In order to solve the frational problem (4.19), following the guidelines

of [65℄, it su�es to solve the equivalent SDP problem:

(SDP)



















max
X, u

tr (SX)

s.t. tr (MX) = 1
X(k, k) = u
X � 0, u > 0

. (4.20)

Indeed, both problems (4.19) and (4.20) are solvable and have equal op-

timal value; in fat, if

(

X̂, û
)

is an optimal solution of (4.20), then it an

be shown straightforward that X̂/û is an optimal solution of (4.19); also,

if X̂ solves (4.19), then

(

X̂/tr (MX̂), 1/tr (MX̂)
)

solves (4.20). Thus,

following the same approah as in [8, pp. 8-9℄, a randomized feasible so-

lution c(⋆) to problem Pc
c
(n)

an be omputed using Algorithm 7, where

H indiates the number of randomizations involved in the proedure.

Notie that the H randomizations involved into steps 3-6 are meant

to improve the approximation quality; in fat the randomized feasible

solution yielding the largest objetive value will be hosen as the ap-

proximate solution. As to the omputational omplexity onneted with

the implementation of the algorithm, the solution of the SDP relaxation

requires O(N3.5) �oating point operations (�ops)4 whereas eah random-

ization involves O(N2) �ops [35℄. It follows that, for a modest number

of randomizations, the most relevant ontribution to the omputational

omplexity is onneted with the SDP solution.

4.3.2 Radar Code optimization: Solution of the Problem

4.12

At the urrent state of the art, most radar systems use phase oded

waveforms, where the phases are taken from a �nite and regularly spaed

4

Herein, the Landau notation O(n) is used; hene, an algorithm is O(n) if its

implementation requires a number of �ops proportional to n [66℄.
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Algorithm 7 Radar Phase Code Optimization

Require: M ,S,H, {γi}, δc.
Ensure: A randomized approximate solution c(⋆) to Pc

c
(n)

;

1: Let (X⋆, u⋆) be an optimal solution to problem (4.20).

2: Denote by X̂ = X⋆/u⋆.
3: Generate random vetors (ξ)h ∈ C

N
, h = 1, . . . ,H, from the omplex

normal distribution NC(0,Y ) where Y = X̂ ⊙ ycy
†
c, where yc =

[e−jγ1 , . . . , e−jγN ]T .
4: Let (s(k))h = y∗c (k)σ((ξ(k))h), k = 1, . . . , N , h = 1, . . . ,H, where

σ(x) = ej
arg(x)

2π
δc , x ∈ C.

5: Compute

t(h) =
c
†
hSch

c
†
hMch

, h = 1 . . . ,H.

6: Pik the maximal value over {t(1), . . . , t(H)}, say t(1), and output

c(⋆) = c1.

alphabet. As a onsequene, in this Subsetion, an algorithm to �nd in

polynomial time good solutions to the NP-hard problem Pd
c

(n)
is de-

sribed.

Firstly, assume that c0(k) ∈ {1, ej2π 1
M , . . . , ej2π

M−1
M }, k = 1, . . . , N , and

5

M ≥ 2. Then, using Lemma 4.3.1, Pd
c

(n)
an be equivalently rewritten

in terms of the following problem P2:

P2



























max
c

∣

∣cT
(

w(n−1)∗ ⊙ p(νdT )
)

∣

∣

2

cTΘi

(

w(n−1)
)

c∗ + σ2n‖w(n−1)‖2

s.t. c(k) ∈ {1, ej2π 1
M , . . . , ej2π

M−1
M }, k = 1, . . . , N

‖c− c0‖∞ ≤ δ

. (4.21)

This is a non-onvex frational quadrati problem. Notie that, aount-

ing for {c(k), c0(k)} ∈
{

1, ej2π
1
M , . . . , ej2π

M−1
M

}2
, k = 1, . . . , N , the

onstraint max
k∈[1,...,N ]

|c(k) − c0(k)| ≤ δ, k = 1, . . . , N , an be equivalently

written as ℜ [c∗(k)c0(k)] ≥ 1 − δ2/2 for k = 1, . . . , N , whih in turn

5

Notie that, for M = 2 and δ < 2, the optimal solution to problem (4.21) is the

trivial one, i.e. c(⋆) , c0.
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amounts to enforing

c(k) ∈ {ej2π
βk
M , ej2π

βk+1

M , . . . , ej2π
βk+δd−1

M },

where

βk = [M arg(s0(k))/(2π)] − ⌊[M arccos(1− δ2/2)]/(2π)⌋

depends on c0(k) and δ,

δd =

{

1 + 2⌊M arccos(1−δ2/2)
2π ⌋ δ ∈ [0, 2)

M δ = 2

depends only on δ [8℄.

Thus, problem (4.21) is equivalent to:

P ′
2























max
c

∣

∣cT
(

w(n−1)∗ ⊙ p(νdT )
)

∣

∣

2

cTΘi

(

w(n−1)
)

c∗ + σ2n‖w(n−1)‖2
s.t. arg (c(k)) ∈ 2π

M [βk, βk + 1, . . . , βk + δd − 1] ,
|c(k)| = 1, k = 1, . . . , N.

. (4.22)

Observe that problem P ′
2, even in the simpler formulation orresponding

to ǫ = 2, is generally NP-hard, onsequently one annot �nd polynomial

time algorithms for omputing its optimal solutions. As a onsequene,

in the following, the fous is on approximation tehniques, and a relax-

ation and randomization based algorithm is proposed, whih provides a

randomized feasible solution of (4.22). Thus, using S and M de�ned

respetively in (4.15) and (4.16), resorting to the same relaxation proe-

dure as in (4.17)-(4.20), and following the same steps as in [8, pp. 13-14℄,

a randomized feasible solution c(⋆) to problem Pd
c

(n)
an be omputed

using Algorithm 8.

As for Algorithm 7, the H randomizations involved into steps 3-6 are

meant to improve the approximation quality; moreover, the omputa-

tional omplexity is mostly related to the solution of the SDP problem

(O(N3.5) �ops). Finally, also with referene to the �nite alphabet ase,

a modest number of randomizations is su�ient to ensure satisfatory

performanes.
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Algorithm 8 Radar Quantized Phase Code Optimization

Require: M , S, H, {βi}, M , δd.

Ensure: A randomized approximate solution c(⋆) of Pd
c

(n)
;

1: Let (X⋆, u⋆) be an optimal solution to problem (4.20).

2: Denote by X̂ = X⋆/u⋆.
3: Generate a random vetor (ξ)h ∈ C

N
, h = 1, . . . ,H, from the om-

plex normal distribution NC(0,W ) where W = X̂ ⊙ ydy
†
d, with

yd = [e−j 2π
M

β1 , . . . , e−j 2π
M

βN ]T .
4: Let (s(k))h = y∗d(k)µ((ξ(k))h), k = 1, . . . , N , h = 1, . . . ,H, where

µ(x) =























1, if arg(x) ∈ [0, 2π 1
δd
);

ej2π
1
M , if arg(x) ∈ [2π 1

δd
, 2π 2

δd
);

.

.

.

ej2π
δd−1

M , if arg(x) ∈ [2π δd−1
δd

, 2π).

5: Compute

t(h) =
c
†
hSch

c
†
hMch

, h = 1 . . . ,H.

6: Pik the maximal value over {t(1), . . . , t(H)}, say t(1), and output

c(⋆) = c1.

4.3.3 Transmit-Reeive System Design: Optimization Pro-

edure

In this Subsetion, the proposed sequential optimization proedures

for the reeive �lter and the radar ode are summarized and shematized

respetively as Algorithm 9 for the ontinuous alphabet ase and Algo-

rithm 10 for the �nite alphabet ase. To trigger the reursion, an initial

radar ode c(0), from whih we obtain the optimal reeive �lter w(0)
, is

required; a natural hoie is obviously c(0) = c0.

The omputational omplexity, onneted with the implementation

of both Algorithm 9 and Algorithm 10, depends on the number of it-

erations N as well as on and the omplexity involved in eah iteration.

Preisely, the overall omplexity is linear with respet to N , while eah

iteration inludes the omputation of the inverse of Σi (c0) + σ2nI and
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Algorithm 9 Transmit-Reeive System Design for Continuous Alphabet

Phase Codes

Require:

{

σ(r,i)
}

,
{

ν̄d(r,i) , ǫ(r,i)

}

, σ2n, c0, νdT ,H, δ, ζ.

Ensure: A solution (c⋆,w⋆) of Pc
.

1: Set n = 0, c(n) = c0,

w(n) :=

(

Σi (c0) + σ2nI
)−1

(c0 ⊙ p(νdT ))
∥

∥

∥

(

Σi (c0) + σ2nI
)−1/2

(c0 ⊙ p(νdT ))
∥

∥

∥

2 ,

and SINR

(n) = SINR.

2: do

3: n := n+ 1;
4: Construt the matries

S =
(

w(n−1) ⊙ p(νdT )
∗) (w(n−1) ⊙ p(νdT )

∗)†
and M =

Θi

(

w(n−1)
)∗

+ σ2n‖w(n−1)‖2I , and the parameters {γi}, δc.

5: Find a good quality solution c(⋆) to problem Pc
c
(n)

, through the use

of Algorithm 7.

6: Set

c(n) = argmax
c∈{c(n−1),c(⋆)}

|αT |2
∣

∣w(n−1)† (c⊙ p(νdT ))
∣

∣

2

w(n−1)†
Σi (c)w

(n−1) + σ2n‖w(n−1)‖2
.

7: Construt the matrix Σi

(

c(n)
)

.

8: Solve problem Pw(n)
�nding an optimal reeive �lter

w(n) :=

(

Σi

(

c(n)
)

+ σ2nI
)−1 (

c(n) ⊙ p(νdT )
)

∥

∥

∥

(

Σi

(

c(n)
)

+ σ2nI
)−1/2 (

c(n) ⊙ p(νdT )
)∥

∥

∥

2
,

and the value of the SINR for the pair

(

c(n),w(n)
)

.

9: Let SINR

(n) = SINR.

10: until |SINR(n) − SINR

(n−1)| ≤ ζ.
11: Output c⋆ = c(n) and w⋆ = w(n)

.
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Algorithm 10 Transmit-Reeive System Design for Finite Alphabet

Phase Codes

Require:

{

σ(r,i)
}

,

{

ν̄d(r,i) , ǫ(r,i)

}

,σ2n,c0,νdT ,H,δ,ζ,M .

Ensure: A solution (c⋆,w⋆) of Pd
.

1: Set n = 0, c(n) = c0,

w(n) :=

(

Σi (c0) + σ2nI
)−1

(c0 ⊙ p(νdT ))
∥

∥

∥

(

Σi (c0) + σ2nI
)−1/2

(c0 ⊙ p(νdT ))
∥

∥

∥

2 ,

and SINR

(n) = SINR.

2: do

3: n := n+ 1;
4: Construt the matries

S =
(

w(n−1) ⊙ p(νdT )
∗) (w(n−1) ⊙ p(νdT )

∗)†
and M =

Θi

(

w(n−1)
)∗

+ σ2n‖w(n−1)‖2I , and the parameters {βi}, δd.

5: Find a good solution of problem Pd
c

(n)
, through the use of Algorithm

8.

6: Set

c(n) = argmax
c∈{c(n−1),c(⋆)}

|αT |2
∣

∣w(n−1)† (c⊙ p(νdT ))
∣

∣

2

w(n−1)†
Σi (c)w

(n−1) + σ2n‖w(n−1)‖2
.

7: Construt the matrix Σi

(

c(n)
)

.

8: Solve problem Pw(n)
�nding an optimal reeive �lter

w(n) :=

(

Σi

(

c(n)
)

+ σ2nI
)−1 (

c(n) ⊙ p(νdT )
)

∥

∥

∥

(

Σi

(

c(n)
)

+ σ2nI
)−1/2 (

c(n) ⊙ p(νdT )
)
∥

∥

∥

2
,

and the value of the SINR for the pair

(

c(n),w(n)
)

.

9: Let SINR

(n) = SINR.

10: until |SINR(n) − SINR

(n−1)| ≤ ζ.
11: Output c⋆ = c(n) and w⋆ = w(n)

.
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the omplexity e�ort of Algorithm 7 and Algorithm 8, respetively. The

former is in the order of O(N3) [66℄. The latter, for a modest number of

randomizations, is onneted with the SDP solution, i.e. O(N3.5) [62℄.

4.4 Performane Analysis

In this Setion, the performane analysis of the proposed algorithm

for the joint optimization of the radar ode and the reeive �lter s pre-

sented. An L-band radar is onsidered, whose operating frequeny is

f0 = 1.4 GHz, and exploiting a broadside array with Na = 21 elements

pointing in the range-azimuth bin of interest (0, 0). Spei�ally, a uni-

formly weighted linear array with uniform spaing equal to d = λ/2 is

onsidered. Consequently, the radiation pattern is given by:

G(θ) =















1

Na

sin
(

Na
π

2
cos(θ)

)

sin
(π

2
cos(θ)

)
if 0 ≤ θ ≤ π

10−3
if π ≤ θ ≤ 2π

.

The fous is on a senario with a homogeneous range-azimuth lutter

where the number of range rings that interfere with the range-azimuth

bin of interest (0, 0) is Nc = 2 and the number of azimuth ells in eah

ring is L = 100. Moreover, the pulse train length is set to N = 20
and, as similarity ode c0, the N -dimensional generalized Barker ode

and its M -quantized version

6

are set for Algorithm 9 and Algorithm

Cogn:Alg4, respetively. With referene to the ontinuous phase ase, it

is worth to remark that the hoie for this similarity ode is mainly due to

its autoorrelation properties, namely its minimal peak-to-sidelobe ratio

exluding the outermost sidelobe. The desription of generalized Barker

odes an be found in [67℄ and [68℄, also for other values of N . The exit

6

Spei�ally, given the ode c, its M -quantized version cq is onstruted as

cq(k) = µ̄(c(k)), k = 1, . . . , N , where the non-linearity µ̄(x) is de�ned by

µ̄(x) =























1, if arg(x) ∈ [0, 2π 1
M
)

ej2π
1

M , if arg(x) ∈ [2π 1
M
, 2π 2

M
)

.

.

.

ej2π
M−1

M , if arg(x) ∈ [2πM−1
M

, 2π)

.
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δ = 2;
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Figure 4.2: Algorithm 3 - SINR behavior for δ = [0.1, 0.4, 1, 1.5, 1.7, 2].

ondition implemented to stop the proedure assumes ζ = 10−5
, namely:

|SINR(n) − SINR

(n−1)| ≤ 10−5.

The randomizations for both Algorithms 7 and 8 have been set to H =
100.

As to the parameters of the uniform lutter, the assumption is that

σ0
σ2
n
Kr = CNRKr = 30 dB, a mean Doppler frequeny ν̄d = 0, and

Doppler unertainty

ǫ
2 = 0.35 for eah range-azimuth bin. Additionally,

a target with Signal to Noise Ratio

|αT |2
σ2
n

= SNR = 10 dB and normalized

Doppler frequeny νdT = −0.4 is supposed to be on the sene.

The analysis is onduted in terms of the attainable SINR, in orre-

spondene of the devised transmit ode and reeive �lter, as well as the

shape of the related auto- and ross-ambiguity funtions

7

.

In Figure 4.2, the SINR behavior, averaged over 100 independent tri-
als of Algorithm 9, is plotted versus the number of iterations, for di�erent

values of the similarity parameter δ. As expeted, inreasing δ, the opti-
mal value of the SINR improves sine the feasible set of the optimization

problem beomes larger and larger. Atually, performane gains up to

22 dB, with respet to step zero of the proedure, orresponding to the

traditional adaptation on reeive side only, an be observed for δ = 2. Of

7

The MATLAB

© toolbox SeDuMi [28℄ for solving the SDP relaxation, and the

MATLAB

© toolbox of [70℄ for plotting the ambiguity funtions of the oded pulse

trains, have been exploited.
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(a) c0. (b) Algorithm 9 - c⋆ for δ=0.1.

() Algorithm 9 - c⋆ for δ=1. (d) Algorithm 9 - c⋆ for δ=2.

Figure 4.3: Algorithm 9 - Ambiguity Funtion modulus of the radar odes, assuming

Tr = 3Tp.

ourse, this is just a potential value and in real onditions smaller gains

ould be experiened due to some inauraies in the available informa-

tion. Also, observe that the number of iterations, required to ahieve

onvergene, inreases as well.

In Figures 4.3, the ambiguity funtion

8

of a synthesized ode c⋆, to-

gether with that of the referene ode c0, is plotted for two di�erent sizes

of the similarity region. Indeed, an opposite behavior with respet to Fig-

ure 4.2 an be observed. Preisely, inreasing δ, the set of feasible points
beomes larger and larger, and better and better SINR performanes

are swapped for worse and worse ambiguity behaviors. Notie that the

ambiguity funtion allows to visually represent the similarity between

8

A oherent pulse train with ideal retangular pulses of width Tp and pulse rep-

etition time Tr is onsidered.
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the referene ode and the devised one. Moreover, it has also a ertain

relevane for the following reason: in order to update the site spei�

lutter maps, as well as to dynamially estimate other lutter parame-

ters and aount for a full ognitive implementation, a parallel reeiving

proessing branh, exploiting a onventional pulse train mathed �lter,

ould be adopted. It is thus of paramount importane the availability

of a signal sharing good range-Doppler resolution and ambiguity proper-

ties. By doing so, e�etive real-time estimates of the lutter parameters

with a low omputational ost an be obtained.

In Figures 4.4, the frequeny behavior of the radar ode and the

reeive �lter, orresponding to δ = 2, and for di�erent values of the

iteration number (n = [0, 5, 20, 50]), is analyzed.
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(a)

(

c(0),w(0)
)

. (b)

(

c(5),w(5)
)

.

()

(

c(19),w(19)
)

. (d)

(

c(50),w(50)
)

.

Figure 4.4: Algorithm 9 - Cross-Ambiguity Funtion, in dB, of the radar ode and

reeive �lter.

Preisely, the ontour map of the (slow-time) ross-ambiguity fun-

tion is plotted,

g

(n) (m, νd) =
∣

∣

∣
w(n)†

(

Jm

(

c(n) ⊙ p (νd)
))
∣

∣

∣

2
(4.23)

where m is the delay-lag and νd is the Doppler frequeny of the inoming

signal, whih also allows to visualize the systems response to ambiguous

ranges. For a given value of m, it gives the Doppler response to a lut-

ter path loated m PRI away from the one of interest. As fored by

the design proedure, the ross-ambiguity funtion is equal to one at

(m, νd) = (0,−0.4), whih is the range-Doppler position of the nominal

target. Moreover, lower and lower values of g

(n) (m, νd) an be observed

in the strip 0 ≤ m ≤ 2, −0, 35 ≤ νd ≤ 0.35 as the iteration step n grows

up. Interestingly, this performane trend re�ets the apability of the
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δ = 2;

δ = 1.7;

δ = 1.5;

δ = 1;

δ = 0.4;

δ = 0.1.

Figure 4.5: Algorithm 10 - SINR behavior for δ = [0.1, 0.4, 1, 1.5, 1.7, 2], M = 16.

proposed joint transmit-reeive optimization proedure to sequentially

re�ne the shape of the ross-ambiguity funtion in order to get better

and better lutter suppression levels.

In Figure 4.5, the SINR behavior, averaged over 100 independent

trials of Algorithm 10, is plotted versus the number of iterations, for

di�erent values of the similarity parameter δ, and for M = 16. The

same onsiderations as for the analysis onduted in Figure 4.2 hold true;

indeed, inreasing δ, better and better SINR values are experiened,

due to the enlargement of the feasible set. Performane gains up to

approximatively 12 dB, with respet to step zero of our proedure an

be observed for δ = 2.
In Figures 4.6, the ambiguity funtion of a synthesized ode c⋆, to-

gether with that of the referene quantized ode c
q
0, is plotted for three

di�erent sizes of the similarity region, assuming M = 16. Again, an

opposite trend with respet to Figure 4.5 is observed, whih re�ets how

δ rules the trade-o� between SINR performane and ambiguity behav-

ior. Preisely, inreasing δ, the set of feasible points beomes larger and

larger, and better and better SINR performanes are swapped for worse

and worse ambiguity shapes.
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In Figure 4.7, the impat of the number of quantization level on the

devised ode is onsidered, for a �xed similarity parameter δ = 2. As

expeted, the ahieved average SINR inreases as the number of levels in-

volved into the quantization proedure inreases. Indeed, the greater the

ardinality of the alphabet, the higher the degrees of freedom available

in the hoie of the radar ode.

4.5 Conlusions

In this Chapter, the problem of ognitive onstant envelope transmit

signal and reeive �lter joint optimization in a signal-dependent lut-

ter environment has been onsidered. Iterative algorithms have been

devised, trying to optimize the SINR while aounting for a similar-

ity onstraint on the transmitted sequene. At eah step, the proposed

proedures require the solution of both onvex and NP-hard problems.

In order to �nd a good quality solution to the latter, relaxation and

randomization tehniques have been invoked. At the analysis stage,the

performane of the proposed algorithms have been assessed in terms of

average SINR (versus the number of iterations), ambiguity funtion of

the resulting phase ode, and ross-ambiguity funtion of the transmit

signal and reeive �lter pair. Furthermore, with referene to the �nite

alphabet ase, the impat of the quantization level on the system per-

formane have been analyzed. The results have highlighted that, in the

presene of a perfet a-priori knowledge, with a modest number of trials,

signi�ant SINR gains (up to 22 dB foe the ontinuous alphabet ase, or

12 dB withM = 16 for the quantized alphabet ase, respetively) an be

obtained jointly optimizing the transmitter and reeiver. Possible future

researh traks might onern the study of further onstraints on the

reeive �lter, so as to keep under ontrol other key parameters suh as

the Integrated-to-Sidelobe Level or the Peak-to-Sidelobe Level. �nally,

it is of primary onern to study the impat of an imperfet a-priori

knowledge, due to di�erent error soures, on the potential performane

gain.
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(b) c⋆ for δ=0.4.
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(d) c⋆ for δ=2.

Figure 4.6: Algorithm 10 - Ambiguity Funtion modulus of the radar odes, assum-

ing M = 16 and Tr = 3Tp.
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M = 32;

M = 16;
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Algorithm 3

Figure 4.7: Algorithm 10 - SINR

(n)
behavior for δ = 2, M = [4, 8, 16, 32, 64];

Algorithm 9 (o-marked violet dashed line).



Appendix A

Multi-Objetive Optimization

Problems

A multi-objetive optimization problem

1

presents a vetor-valued ob-

jetive funtion and an be written in the form

min
x

f0(x)

s.t. fi(x) ≤ 0, ∀i = 1, . . . ,m,
hi(x) = 0, ∀i = 1, . . . , p

(A.1)

where x ∈ R
n
is the optimization variable, fi(x), i = 1, . . . ,m and hi(x),

i = 1, . . . , p denote respetively the i-th inequality onstraint and the

i-th equality onstraint funtion, f0(x) : x ∈ R
n → R

q
is the vetor-

valued objetive funtion whose q omponents F1(x), . . . , Fq(x) an be

interpreted as q di�erent salar objetives, eah of whih we would like

to minimize

2

.

If x and y are both feasible, we say that x is at least as good as

y aording the i-th objetive if Fi(x) ≤ Fi(y), while x is better than

y (or x beats y) aording the i-th objetive if Fi(x) < Fi(y); so, if
Fi(x) ≤ Fi(y) for i = 1, . . . , q and, for al least one j, Fj(x) < Fj(y), we
say that x dominates y.

A point x⋆
is de�ned optimal only if it omplies with

Fi(x
⋆) ≤ Fi(y), i = 1, . . . , q

1

The material in this sub-setion is taken from [11, pp. 174-187℄.

2

The material of this Appendix is taken from [11, pp. 174-187℄
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for every feasible y; otherwise stated, x⋆
has to be simultaneously opti-

mal for eah of the salar problems

min
x

Fj(x)

s.t. fi(x) ≤ 0 ∀i = 1, . . . ,m,
hi(x) = 0, ∀i = 1, . . . , p

for j = 1, . . . , q. In the presene of an optimal point, the objetives are

said nonompeting, sine no ompromises have to be made among them:

eah objetive is as small as it ould be made, even if the others were

ignored.

However, the set of ahievable values for problem (A.1) does not always

present a minimum element, and thus the problem itself has not an

optimal point and an optimal value. In these ases, one fouses on the

minimal elements [11, pp. 45℄ of the set, namely on the so-alled Pareto-

optimal points.

A feasible point x⋆
is referred to as Pareto-optimal only if f0(x

⋆) is
a minimal element of the set of ahievable values O (the set of objetive

values of feasible points

3

); in this ase, f0(x
⋆) is a Pareto-optimal value

for (A.1). Considering the q salar omponents of the objetive funtion

f0(x), x
⋆
an be onsidered Pareto-optimal only if it is feasible and no

better feasible point exists. Preisely, if y is a feasible point and Fi(y) ≤
Fi(x

⋆) for i = 1, . . . , q, then neessarily Fi(x
⋆) = Fi(y) for i = 1, . . . , q.

This also implies that: if a feasible point is not Pareto-optimal, than

there is at least another feasible point that is better. Hene, the searh

for �good� points an be limited to Pareto-optimal ones.

A standard tehnique to �nd Pareto-optimal points is the salarization,

where the vetorial problem (A.1) is redued to the salar one

min
x

λTf0(x)

s.t. fi(x) ≤ 0
hi(x) = 0

(A.2)

one it has been de�ned the vetor of weights λ ≻ 0, namely a vetor with

positive omponents. In fat, it an be shown [11, pp. 178℄ that if x⋆
is an

optimal point for problem (A.2), than it is also a Pareto-optimal point

for the problem (A.1). Nevertheless it is worth pointing out that, for

3O = {f0(x
⋆) : ∃x ∈ D, fi(x) ≤ 0, i = 1, . . . ,m, hi(x) = 0, i = 1, . . . , p},

where D is the domain of the optimization problem.
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non-onvex multi-objetive optimization problems, it is possible through

salarization to obtain a sub-set, but not all, the Pareto-optimal points.

The hoie of the parameter λ plays a primary role in the determina-

tion of the Pareto points, de�ning the weight given to eah of the salar

omponents. Spei�ally, it quanti�es our desire to make Fi(x) small.
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Appendix B

Proof of Lemma 2.3.2

We �rst laim that problem (2.9) is feasible. It is seen that (c0, t
⋆)

with

t⋆ = min
νd∈[0,1]

p†(M−1 ⊙ (c0c
†
0)

∗)p,

is feasible for problem (2.3), and thus (c0c
†
0, t

⋆) is feasible for SDP prob-

lem (2.6). It follows by Lemma 2.3.1 that there is a matrix X � 0 suh

that (c0c
†
0, X, t⋆) is feasible for (2.9).

Now, we wish to show that problem (2.9) is solvable. To this end,

we are about to prove that the dual problem of (2.9) is stritly feasible

and bounded above. Let us ompute the dual of SDP problem (2.9).

Reall that W = [w0, . . . ,wN−1] ∈ CM×N
, wk =

[

1, e−jkθ, . . . ,

e−j(M−1)kθ
]T
, k = 0, . . . , N − 1, θ = 2π/M , M = 2N − 1. Then, we an

rewrite W as

W =













v
†
0

v
†
1
.

.

.

v
†
M−1













, vm =











1
ejmθ

.

.

.

ej(N−1)mθ











, m = 0, . . . ,M − 1. (B.1)

Thus, W †
diag(WXW †) =

∑M−1
m=1 (v

†
mXvm)vm. From the equality

onstraint te1 = x−W †
diag(WXW †), we have

t =
1

N

N
∑

i=1

(M−1 ⊙C∗)(i, i) −
M−1
∑

m=0

v†
mXvm, (B.2)
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and

1

N

N−k
∑

i=1

(M−1 ⊙C∗)(i+ k, i) =

M−1
∑

m=0

v†
mXvme

jkmθ, k = 1, . . . , N − 1.

(B.3)

It is lear that (B.2) an be further rewritten into

t = tr (A0C)− tr (B0X), (B.4)

where

A0 =
1

N
I ⊙M−1 , B0 =

M−1
∑

m=0

vmv†
m, (B.5)

that is, A0 is the diagonal matrix with diagonal elements being

1
NM−1

's

diagonal elements. Observe that (B.3) has 2(N − 1) equalities (ounting
the real part and imaginary part):

tr (Ak,1C) = tr (Bk,1X), tr (Ak,2C) = tr (Bk,2X), k = 1, . . . , N − 1,
(B.6)

where

Bk,1 =

M−1
∑

m=0

vmv†
m cos(kmθ), Bk,2 =

M−1
∑

m=0

vmv†
m sin(kmθ),

k = 1, . . . , N − 1, (B.7)

and

Ak,1 =
1

2
Mk, Ak,2 =

1

2
(M k ⊙E), k = 1, . . . , N − 1. (B.8)

The N ×N Hermitian matries Mk are de�ned by

Mk(i+ k, i) = M−1(i+ k, i), i = 1, . . . , N − k ; (B.9)

the diagonal elements and the other lower triangular elements of Mk

equal to zero. The N ×N Hermitian matrix E is de�ned by

{

E(i, i) = 1, i = 1, . . . , N,
E(i, l) = −j, ∀i > l.

(B.10)
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By onsidering (B.2)-(B.4), (B.6), we an rewrite problem (2.9) equiva-

lently into the following form

max
X,C

tr (A0C)− tr (B0X)

s.t. tr (Ak,1C)− tr (Bk,1X) = 0, k = 1, . . . , N − 1,
tr (Ak,2C)− tr (Bk,2X) = 0, k = 1, . . . , N − 1,

tr (c0c
†
0C) ≥ δǫ,

tr (C) = 1,
C � 0,
X � 0.

(B.11)

Therefore, the dual problem of (B.11) is

min
y,z,{x1(k)},{x2(k)}

yδǫ + z

s.t. zI + yc0c
†
0 +

∑N−1
k=1 (x1(k)Ak,1 + x2(k)Ak,2) � A0,

∑N−1
k=1 (x1(k)Bk,1 + x2(k)Bk,2) � B0,

y ≤ 0, z ∈ R, x1(k) ∈ R, x2(k) ∈ R,
∀k = 1, . . . , N − 1 ,

(B.12)

with R the set of real numbers.

Sine problem (2.9) is feasible, then (B.11) is feasible. It follows by

weak duality theorem that problem (B.12) is bounded below. It an be

also proved that problem (B.12) is stritly feasible. In fat, let z be a

su�iently large positive number, y a negative number su�iently lose

to zero, x1(k), x2(k) equal to zero, then (z, y, x1(1), x2(1), . . . , x1(N −
1), x2(N − 1)) is a stritly feasible solution of (B.12). Therefore, from

Theorem 1.7.1 of [26℄ (Coni Duality Theorem), we an onlude that

problem (2.9) is solvable beause the dual is bounded below and stritly

feasible.
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Appendix C

Proof of Proposition 3.3.1

It is lear that problem (3.6) is equivalent to the problem:

max
z

z†Rz

s.t. |z(i)|2 ≤ 1, i = 1, . . . , N
‖z‖2 = N/γ.

(C.1)

Let N = 3P +1, γ = 1+ P
2P+1 , z = [xT ,yT ]T , where x = [z(0), z(1), . . . ,

z(P ), z(P + 1), . . . , z(2P )]T and y = [z(2P + 1), . . . , z(3P )]T ; let b0 =
[−j
2 eTa,aT , 0TP ,0

T
P ]

T
, bi = [−j,eTi ,−eTi ,0

T
P ]

T
, i = 1, . . . , P , where a ∈

R
P
is a given vetor with integer-valued omponents and e ∈ R

P
is the

all-one vetor. Let λ be any number not less than the maximal eigenvalue

of

∑P
i=0 bib

†
i , and R be

[

λI2P+1 0

0 0P×P

]

−
P
∑

i=0

bib
†
i . (C.2)

This previous assumption ensures R � 0. Therefore, it follows that

z†Rz = λ‖x‖2 −
P
∑

i=0

|z†bi|2 ≤ λN/γ = λ(2P + 1) (C.3)

and the equality holds for any feasible point z for (C.1), if and only if

|z(i)| = 1, i = 0, . . . , 2P , and b
†
iz = 0, i = 0, . . . , P . That is, all z(i),

i = 0, . . . , 2P , are of unit modulus and

j

2
eTaz(0) +

P
∑

i=1

a(i)z(i) = 0, jz(0) + z(i)− z(P + i) = 0, k = 1, . . . , P,
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whih, due to nonzero z0, are equivalent to

j

2
eTa+

P
∑

i=1

a(i)(z(i)/z(0)) = 0, j + z(i)/(z(0)) − z(P + i)/(z(0)) = 0,

i = 1, . . . , P, (C.4)

Set z(i)/z(0) = ejθi , i = 1, . . . , 2P , and the last P equations of (C.4)

beome

cos θi − cos θP+i = 0, 1 + sin θi − sin θP+i = 0, i = 1, . . . , P,

whih imply that θi = −θP+i ∈ {−π
6 ,−5

6π}, and the �rst equation of

(C.4) beomes

1

2
eTa+

P
∑

i=1

a(i) sin θi = 0,

P
∑

i=1

a(i) cos θi = 0,

whih further amounts to

P
∑

i=1

a(i) cos θi = 0, θi ∈ {−π
6
,−5

6
π}, i = 1, . . . , P.

This is learly equivalent to the partition problem desribed in [48, pages

47 and 60℄, namely �nding a binary vetor x suh that

P
∑

i=1

a(i)x(i) = 0, x(i) ∈ {±1}, i = 1, . . . , P. (C.5)

Summarizing, the onlusion is that �nding a feasible solution suh that

(C.3) is valid with equality, is equivalent to �nding a solution x ∈ R
P
of

(C.5).



Appendix D

Proof of Proposition 3.3.2

(i) It follows from (3.13) that I −D−D � 0. Thus C̃
⋆
= C⋆ + (I −

D−D) � 0, whih implies D−C̃
⋆
D− � 0.

(ii) It is seen immediately from (3.10)-(3.12) and (3.15).
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Appendix E

Proof of Proposition 3.3.4

Notie that D−D = DD−
, namely D and D−

ommute. Sine C⋆

is positive semide�nite, then

DD−C⋆D−D = C⋆,

where the property that, if a positive semide�nite matrix has a diagonal

element 0, then the orresponding row and olumn ontains all zero

elements, has been used. Observe that (I −D−D)D−D = 0. Then, it

follows that

DD−C̃
⋆
D−D = DD−(C⋆ + (I −D−D))D−D = C⋆.
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Appendix F

Proof of Proposition 3.3.5

Let y(i) = ej arg(ξ(i)), i = 1, . . . , N , where ξ(i) is generated by step

3 of Algorithm 3. Thus c = Dy. It follows from Lemma 3.3.3 that the

expetation of yy†
is

E[yy†] = F (D−C̃
⋆
D−) � π

4
D−C̃

⋆
D−.

Therefore, it follows that

E[c†Rc] = E[y†DRDy]

= tr (DRDE[yy†])

≥ π

4
tr (DRDD−C̃

⋆
D−)

=
π

4
tr (RDD−C̃

⋆
D−D)

=
π

4
tr (RC⋆)

≥ π

4
v((3.6))

where the �rst inequality is due to the fat that DRD � 0 and, in the

last equality, Proposition 3.3.4 has been applied.
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Appendix G

Proof of Proposition 3.4.2

This appendix deals with the dual problem of (3.23), showing that it

is stritly feasible and bounded above, whih by the strong duality [26,

Theorem 1.7.1℄, means that (3.23) is solvable.

Reall that W = [w0, . . . ,wN−1] ∈ C
L×N

, wk = [1, e−jkθ, . . . ,
e−j(L−1)kθ]T , k = 0, . . . , N − 1, θ = 2π/L, L = 2N − 1. Then, W

an be rewritten as

W =













v
†
0

v
†
1
.

.

.

v
†
L−1













, vm =











1
ejmθ

.

.

.

ej(N−1)mθ











, m = 0, . . . , L− 1. (G.1)

Thus, W †
diag(WXW †) =

∑L−1
m=0(v

†
mXvm)vm. From the equality

onstraint te1 = x−W †
diag(WXW †), we have

t =

N
∑

i=1

(M ⊙C∗)(i, i) −
L−1
∑

m=0

v†
mXvm, (G.2)

and

N−k
∑

i=1

(M ⊙C∗)(i+ k, i) =
L−1
∑

m=0

v†
mXvme

jkmθ, k = 1, . . . , N − 1. (G.3)

It is lear that (G.2) an be further rewritten as

t = tr (A0C)− tr (B0X), (G.4)
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where

A0 = I ⊙M , B0 =
L−1
∑

m=0

vmv†
m. (G.5)

Observe that (G.3) has 2(N − 1) equalities (ounting the real part and

imaginary parts):

tr (Ak,1C) = tr (Bk,1X), tr (Ak,2C) = tr (Bk,2X), k = 1, . . . , N − 1
(G.6)

where

Bk,1 =
L−1
∑

m=0

vmv†
m cos(kmθ), Bk,2 =

L−1
∑

m=0

vmv†
m sin(kmθ),

k = 1, . . . , N − 1, (G.7)

and

Ak,1 =
1

2
M k, Ak,2 =

1

2
(Mk ⊙E), k = 1, . . . , N − 1. (G.8)

The N ×N Hermitian matries Mk, k = 1, . . . , N − 1, are de�ned by

Mk(i+ k, i) = M (i+ k, i), i = 1, . . . , N − k (G.9)

and the diagonal elements and the other lower triangular elements of

M k are zero. The N ×N Hermitian matrix E is de�ned by

{

E(i, i) = 1, i = 1, . . . , N,
E(i, l) = −j, ∀i > l.

(G.10)

By onsidering (G.2)-(G.4), (G.6), it is possible to rewrite problem (3.23)

equivalently into the following form

max
X,C

tr (A0C)− tr (B0X)

s.t. tr (Ak,1C)− tr (Bk,1X) = 0, k = 1, . . . , N − 1
tr (Ak,2C)− tr (Bk,2X) = 0, k = 1, . . . , N − 1
tr (EiC) ≤ γ, i = 1, . . . , N
tr (C) = N
C � 0, X � 0

(G.11)
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where Ei are the same as those in problem (3.9). Therefore, the dual

problem of (G.11) is

min
{y(i)},z,{x1(k)},{x2(k)}

γ
∑N

i=1 y(i) +Nz

s.t. zI +
∑N

i=1 y(i)Ei +
∑N−1

k=1 (x1(k)Ak,1 + x2(k)
(Ak,2) � A0,
∑N−1

k=1 (x1(k)Bk,1 + x2(k)Bk,2) � B0,
y(i) ≥ 0, i = 1, . . . , N, z ∈ R, x1(k) ∈ R,
x2(k) ∈ R, k = 1, . . . , N − 1.

(G.12)

Take a point c satisfying |c(i)| ≤ γ for i = 1, . . . , N and ‖c‖ = N ,

and set

t = min
νd∈[0,1]

p†(M ⊙ (c0c
†
0)

∗)p,

whih is a one-dimensional optimization. It follows from (3.26) that

solving the one-dimensional optimization is equivalent to solving an SDP.

Thus (c, t) is feasible for (3.19) and (cc†, t) is feasible for (3.20), and thus
(3.23) is feasible. It follows by the weak duality theorem that the dual

SDP (G.12) is bounded below.

It is further seen that problem (G.12) is stritly feasible. In fat,

let z be a su�iently large positive number, yi positive numbers su�-

iently lose to zero, x1(k), x2(k) equal to zero; then (z, y(1), . . . , y(N),
x1(1), x2(1), . . . , x1(N − 1), x2(N − 1)) is a stritly feasible solution of

(G.12). It is interesting to note that B0 = W †W is the diagonal matrix

with eah diagonal element being L. Therefore, it is possible to onlude
that problem (3.23) is solvable, beause the dual is bounded below and

stritly feasible.
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Appendix H

Proof of Proposition 3.5.1

The present appendix is devoted to show that problem (3.28) inludes

the max-ut problem and the max-3-ut problem whih are known to be

NP-hard [45℄, [49℄, and [50℄. In fat, problem (3.28) is equivalent to

max
c

c†Rc

s.t. |c(i)|2 ≤ 1

arg (c(i)) ∈ {0, 1
M 2π, . . . , M−1

M 2π}, i = 1, . . . , N
‖c‖2 = N/γ.

(H.1)

The max-ut problem for a given undireted weighted graph (E, V ) with
P nodes, is ast as

max
x

∑

k<l (wkl(1− x(k)x(l))) /2

s.t. x(k) ∈ {±1}, k = 1, . . . , P
(H.2)

where wkl ≥ 0 is the weight on the edge between nodes k and l1. Let Q
be the Laplaian matrix of the graph, i.e., Q(k, l) = −wkl for k 6= l and
Q(k, k) =

∑P
l 6=k, l=1wkl. Thus, Q � 0 and the objetive funtion of max-

ut problem (H.2) is equal to

1
4x

TQx. Now, in (H.1), setting M = 2
(this means that arg (c(i)) ∈ {0, π}, ∀i, i.e., any c(i) is real-valued),

N = 2P , γ = 2 (this implies that ‖c‖2 = P ), and

R =

[

1
4Q 0

0 0P×P

]

1

When there is no edge between k and l, one sets wkl = 0.
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(the so-de�ned R, together with ‖c‖2 = P and |c(i)| ≤ 1 ∀i, implies that

an optimal solution c⋆ of the maximization problem (56), has |c(i)⋆| = 1,
i = 1, . . . , P , and |c⋆i | = 0, i = P + 1, . . . , 2P ), it is possible to redue

(H.1) into the max-ut problem (H.2).



Bibliography

[1℄ A. De Maio, S. De Niola, Y. Huang, S. Zhang, and A. Farina,

�Code Design to Optimize Radar Detetion Performane under A-

uray and Similarity Constraints�, IEEE Transations on Signal

Proessing, Vol. 56, No. 11, pp. 5618-5629, November 2008.

[2℄ N. Levanon and E. Mozeson, Radar Signals, John Wiley & Sons,

2004.

[3℄ R. A. Horn and C. R. Johnson, Matrix Analysis, Cambridge Uni-

versity Press, 1985.

[4℄ A. Farina, �Waveform Diversity: Past, Present, and Future�, Third

International Waveform Diversity & Design Conferene, Plenary

Talk, Pisa, June 2007.

[5℄ A. Nehorai, F. Gini, M. S. Greo, A. Papandreou-Suppappola, and

M. Rangaswamy, �Adaptive waveform design for agile sensing and

ommuniations,� IEEE J. Sel. Topis Signal Proess. (Speial Issue

on Adaptive Waveform Design for Agile Sensing and Communia-

tions), Vol. 1, No. 1, pp. 2-213, Jun. 2007.

[6℄ J. S. Bergin, P. M. Tehau, J. E. Don Carlos, and J. R. Gueri,

�Radar Waveform Optimization for Colored Noise Mitigation�, 2005

IEEE International Radar Conferene, pp. 149-154, Alexandria, VA,

9-12 May 2005.

[7℄ J. Li, J. R. Gueri, and L. Xu, �Signal Waveforms Optimal-under-

Restrition Design for Ative Sensing�, IEEE Signal Proessing Let-

ters, Vol. 13, No. 9, pp. 565-568, September 2006.

[8℄ A. De Maio, S. De Niola, Y. Huang, Z. Q. Luo and S. Zhang,

�Design of Phase Codes for Radar Performane Optimization With

111



112 Bibliogra�a

a Similarity Constraint�, IEEE Transations on Signal Proessing,

Vol. 57, No. 2, pp. 610-621, February 2009.

[9℄ L. K. Patton and B. D. Rigling, �Modulus onstraints in adaptive

radar waveform design�, 2008 IEEE Inter. Radar Conf., pp. 1-6,

Rome, Italy, 26-30 May 2008.

[10℄ A. De Maio, S. De Niola, Y. Huang, D. P. Palomar, S. Zhang and

A. Farina, �Code Design for Radar STAP via Optimization Theory�,

IEEE Transations on Signal Proessing, Vol. 58, No. 2, pp. 679-694,

February 2010.

[11℄ S. Boyd and L. Vandenberghe, Convex Optimization, Cambridge

University Press, 2003.

[12℄ V. J. Amuso, P. Antonik, R. A. Shneible, and Y. Zhang, �Evolu-

tionary Computation Approah to Multi-mission Waveform Design�,

Radar 2002, Edinburgh, Sotland, UK, pp. 454-458, Otober 2002.

[13℄ V. J. Amuso and J. Enslin, �An Evolutionary Algorithm Approah

to Simultaneous Multi-Mission Radar Waveform Design�, Chapter

5 in Priniples of Waveform Diversity and Design, Siteh In., pp.

110-125, 2010.

[14℄ I. S. Reed, J. D. Mallet, and L. E. Brennan, �Rapid onvergene rate

in adaptive arrays�, IEEE Transation on Aerospae and Eletroni

Systems, Vol. 10, No.6, pp. 853-863, November 1974

[15℄ J. S. Goldstein, I. S. Reed, and P. A. Zulh, �Multistage partially

adaptive STAP CFAR detetion algorithm�, IEEE Transation on

Aerospae and Eletroni Systems, Vol. 35, No. 2, pp. 645-661, Apr.

1999.

[16℄ A. Farina and S. Pardini, �A Trak-While-San Algorithm Using

Radial Veloity in a Clutter Environment�, IEEE Transations on

Aerospae and Eletroni Systems, Vol. 14, No. 5, pp. 769-779,

September 1978.

[17℄ H. L. Van Trees, Optimum Array Proessing. Part IV of Detetion,

Estimation and Modulation Theory, John Wiley & Sons, 2002.

[18℄ K. Deb, Multi-Objetive Optimization Using Evolutionary Algo-

rithms, John Wiley & Sons, 1st ed. , June 2001.



Bibliogra�a 113

[19℄ M. Wiks, �A Brief History of Waveform Diversity", Proeedings of

the 2009 Radar Conferene, Pasadena, May 2009.

[20℄ A. Farina and F. A. Studer, �Detetion with High Resolution Radar:

Great Promise, Big Challenge", Mirowave Journal, pp. 263-273,

May 1991.

[21℄ S. U. Pillai, H. S. Oh, D. C. Youla, and J. R. Gueri, �Optimum

Transmit-Reeiver Design in the Presene of Signal-Dependent In-

terferene and Channel Noise�, IEEE Transations on Information

Theory, Vol. 46, No. 2, pp. 577-584, Marh 2000.

[22℄ S. Kay, �Optimal Signal Design for Detetion of Point Targets in

Stationary Gaussian Clutter/Reverberation�, IEEE Journal on Se-

leted Topis in Signal Proessing, Vol. 1, No. 1, pp. 31-41, June

2007.

[23℄ Z. Q. Luo and T. H. Chang, �SDP Relaxation of Homogeneous

Quadrati Optimization: Approximation Bounds and Applia-

tions," Convex Optimization in Signal Proessing and Communi-

ations, D. P. Palomar and Y. Eldar, Eds, Cambridge, U.K.: Cam-

bridge Univ. Press, 2010, h. 4.

[24℄ B. Dumitresu, Positive Trigonometri Polynomials and Signal Pro-

essing Appliations, Springer, 2007.

[25℄ T. Roh and L. Vandenberghe, �Disrete Transforms, Semide�nite

Programming, and Sum-of-Squares Representations of Nonnegative

Polynomials," SIAM Journal on Optimization, Vol. 16, No. 4, pp.

939-964, 2006.

[26℄ A. Nemirovski, �Letures on Modern Convex Optimization�, Class

Notes, Georgia Institute of Tehnology, Fall 2005.

[27℄ Y. Huang and S. Zhang, �Complex Matrix Deomposition and

Quadrati Programming", Mathematis of Operations Researh,

Vol. 32, No. 3, pp. 758-768, Aug. 2007.

[28℄ J. F. Sturm, � Using SeDuMi 1.02, a MATLAB Toolbox for Opti-

mization over Symmetri Cones,� Optimization Methods and Soft-

ware, Vol. 11-12, pp. 625-653, August 1999.



114 Bibliogra�a

[29℄ R. Calderbank, S. Howard and B. Moran, �Waveform Diversity in

Radar Signal Proessing", IEEE Signal Proessing Magazine, Vol.

26, No. 1, pp. 32-41, February 2009.

[30℄ D. Cohran, S. Suvorova, S. Howard and B. Moran, �Waveform

Libraries", IEEE Signal Proessing Magazine, Vol. 26, no. 1, pp.

12-21, February 2009.

[31℄ D. T. Gjessing, Target Adaptive Mathed Illumination Radar: Prin-

iples and Appliations, Peter Peregrinus: IEE Eletromagneti

Waves Series, July 1986.

[32℄ A. De Maio, Y. Huang, and M. Piezzo, �A Doppler Robust Max-Min

Approah to Radar Code Design", IEEE Transations on Signal

Proessing, Vol. 58, No. 9, pp. 4943-4947, September 2010.

[33℄ H. He, P. Stoia, and J. Li, �Waveform Design with StopBand and

Correlation Constraints for Cognitive Radar," The 2nd Interna-

tional Workshop on Cognitive Information Proessing, Elba Island,

Italy, June 2010.

[34℄ T. Jiang and Y. Wu, �An Overview: Peak-to-Average Power Ratio

Redution Tehniques for OFDM Signals," IEEE Transations on

Broadasting, Vol. 54, No. 2, pp. 257-268, February 2008.

[35℄ W. K. Ma, T. N. Davidson, K. M. Wong, Z. Q. Luo, and P.

C. Ching, �Quasi-Maximum-Likelihood Multiuser Detetion Using

Semi-De�nite Relaxation with Appliation to Synhronous CDMA",

IEEE Transations on Signal Proessing, Vol. 50, No. 4, pp. 912 -

922, April 2002.

[36℄ E. Karipidis, N. D. Sidiropoulos, Z. Q. Luo, �Convex Transmit

Beamforming for Downlink Multiasting to Multiple Co-Channel

Groups", Proeedings of the 2006 IEEE International Conferene on

Aoustis, Speeh and Signal Proessing, Vol. 5, Toulouse, Frane,

14-19 May 2006.

[37℄ S. Zhang and Y. Huang, �Complex Quadrati Optimization and

Semide�nite Programming," SIAM Journal on Optimization, Vol.

16, No. 3, pp. 871-890, 2006.



Bibliogra�a 115

[38℄ Z. Q. Luo, N. D. Sidiropoulos, P. Tseng, and S. Zhang, "Approx-

imation Bounds for Quadrati Optimization with Homogeneous

Quadrati Constraints," SIAM Journal on Optimization, Vol. 18,

pp. 1-28, February 2007.

[39℄ A. Nemirovski, C. Roos, and T. Terlaky, "On Maximization of

Quadrati Form over Intersetion of Ellipsoids with Common Cen-

ter," Mathematial Programming, Vol. 86, pp. 463-473, 1999.

[40℄ N. Sidiropoulos, T. Davidson, and Z.-Q. Luo, �Transmit Beamform-

ing for Physial-Layer Multiasting," IEEE Transations on Signal

Proessing, Vol. 54, No. 6, pp. 2239-2251, June 2006.

[41℄ A. So, J. Zhang, and Y. Ye, �On Approximating Complex

Quadrati Optimization Problems Via Semide�nite Programming

Relaxations," Mathematial Programming, Series B, Vol. 110, No.

1, pp. 93-110, June 2007.

[42℄ W.-K. Ma, B.-N. Vo, T. N. Davidson, and P.-C. Ching, �Blind ML

Detetion of Orthogonal Spae-Time Blok Codes: E�ient High-

Performane Implementations", IEEE Transations on Signal Pro-

essing, Vol. 54, No. 2, pp. 738-751, November 2008.

[43℄ Z.-Q. Luo, W.-K. Ma, A.M.-C. So, Y. Ye, and S. Zhang, �Semide�-

nite Relaxation of Quadrati Optimization Problems," IEEE Signal

Proessing Magazine, Vol. 27, No. 3, pp. 20-34, May 2010.

[44℄ M. Grant and S. Boyd, �CVX: Matlab Software for Dis-

iplined Convex Programming (web page and software),"

http://stanford.edu/∼boyd/vx, Deember 2008.

[45℄ M. X. Goemans and D. P. Williamson, �Improved Approxima-

tion Algorithms for Maximum Cut and Satis�ability Problem us-

ing Semi-De�nite Programming," Journal of the ACM, Vol. 42, pp.

1115-1145, 1995.

[46℄ S. Zhang, �Quadrati Maximization and Semide�nite Relaxation,"

Mathematial Programming, Ser. A, Vol. 87, No. 3, pp. 453-465,

2000.

[47℄ S. M. Kay, Fundamentals of Statistial Signal Proessing: Detetion

Theory, Englewood Cli�s, NJ: Prentie-Hall, 1998, vol. II.



116 Bibliogra�a

[48℄ M. R. Garey and D. S. Johnson, Computers and Intratability: A

Guide to the Theory of NP-Completeness. San Franiso, CA: Free-

man, 1979.

[49℄ M. X. Goemans and D. P. Williamson, �Approximation Algorithms

for MAX-3-CUT and Other Problems Via Complex Semide�nite

Programming", Journal of Computer and System Sienes, Vol. 68,

No. 2, pp. 442-470, Marh 2004.

[50℄ A. Frieze and M. Jerrum, �Improved Approximation Algorithms for

MAX k-CUT and MAX BISECTION", Algorithmia, Vol. 18, No.

1, pp. 67-81, May 1997.

[51℄ M. Skolnik, Radar Handbook, 3rd Ed., M Graw Hill, 2008.

[52℄ P. Antonik, H. Shuman, P. Li, W. Melvin, and M. Wiks,

"Knowledge-Based Spae-Time Adaptive Proessing," 1997 IEEE

National Radar Conferene, Syrause, NY, May 1997.

[53℄ P. A. Antonik, H. Gri�ths, D. D. Wiener, and M. C. Wiks, �Novel

Diverse Waveform,� Air Fore Researh Lab., New York, In-House

Rep., June 2001.

[54℄ F. Gini and M. Rangaswamy, Editors, Knowledge Based Radar De-

tetion, Traking and Classi�ation, John Wiley & Sons, In., 2008.

[55℄ J. R. Gueri, Cognitive Radar, The Knowledge-Aided Fully Adaptive

Approah, Arteh House, 2010.

[56℄ L. K. Patton, �On the Satisfation of Modulus and Ambiguity Fun-

tion Constraints in Radar Waveform Optimization for Detetion,�

Dotor of Philosophy (PhD) Dissertation, Wright State University,

Engineering PhD, 2009.

[57℄ A. De Maio, Y. Huang, M. Piezzo, S. Zhang, and A. Farina, �Design

of Optimized Radar Codes with a Peak to Average Power Ratio

Constraint,� IEEE Transations on Signal Proessing, Vol. 59, No.

6, pp. 2683-2697, June 2010.

[58℄ W. D. Rummler, �A Tehnique for Improving the Clutter Perfor-

mane of Coherent Pulse Trains Signals,� IEEE Transations on

Aerospae and Eletroni Systems, Vol. AES-3, No. 6, pp. 689-699,

November 1967.



Bibliogra�a 117

[59℄ D. F. Delong JR. and E. M. Hofstetter, � The Design of Clutter-

Resistant Radar Waveforms with Limited Dynami Range,� IEEE

Transations on Information Theory, Vol. IT-15, No. 3, pp. 376-385,

May 1969.

[60℄ J. S. Thompson and E. L. Titlebaum, �The Design of Optimal Radar

Waveforms for Clutter Rejetion Using the Maximum Priniple,�

Supplement to IEEE Trans. on Aerosp. Eletron. Syst., Vol. AES-3,

pp. 581-589, November 1967.

[61℄ A. I. Cohen, �An Algorithm for Designing Burst Waveforms with

Quantized Transmitter Weights,� IEEE Transations on Aerospae

and Eletroni Systems, Vol. AES-11, No. 1, pp. 56-64, Jannuary

1975.

[62℄ A. Aubry, A. De Maio, A. Farina, and M. Wiks, �Knowledge-Aided

(Potentially Cognitive) Transmit Signal and Reeive Filter Design

in Signal-Dependent Clutter�, IEEE Transations on Aerospae and

Eletroni Systems, Vol. 49, No. 1, pp. 93-117, January 2013.

[63℄ P. Stoia, H. He, and J. Li, �Optimization of the Reeive Filter

and Transmit Sequene for Ative Sensing�, IEEE Transations on

Signal Proessing, Vol. 60, No. 4, pp. 1730-1740, April 2012.

[64℄ A. Kurekin, D. Radford, K. Lever, D. Marshall, and L. K. Shark,

�New method for generating site-spei� lutter map for land-based

radar by using multimodal remote-sensing images and digital terrain

data�, IET Radar, Sonar & Navigation, Vol. 5, No. 3, pp. 374-388,

Marh 2011.

[65℄ A. De Maio, Y. Huang, D. P. Palomar, S. Zhang, and A. Farina,

�Frational QCQP With Appliations in ML Steering Diretion Es-

timation for Radar Detetion,� IEEE Transations on Signal Pro-

essing, Vol. 59, No. 1, pp. 172-185, January 2011.

[66℄ G. H. Golub and C. F. Van Loan, Matrix Computations, 3rd Ed.,

The Johns Hopkins University Press, Baltimore and London, 1996.

[67℄ L. Bomer and M. Antweiler, �Polyphase Barker Sequenes,� Ele-

tronis Letters, Vol. 25, n. 23, pp. 1577-1579, November 1989.



118 Bibliogra�a

[68℄ M. Friese, �Polyphase Barker Sequenes up to Length 36,� IEEE

Transations on Information Theory, Vol. IT-42, No. 4, pp. 1248-

1250, July 1996.

[69℄ M. A. Rihards, J. A. Sheer, and W. A. Holm, Priniples of Modern

Radar: Basi Priniples. Raleigh, NC: Siteh Publishing, 2010.

[70℄ E. Mozeson and N. Levanon, �MATLAB Code for Plotting Ambi-

guity Funtions,� IEEE Transations on Aerospae and Eletroni

Systems, Vol. AES-38, No. 3, pp. 1064-1068, July 2002.


	List of Figures
	List of Algorithms
	List of Tables
	Introduction
	Notation
	System Model
	Pareto-Optimal Radar Waveform Design
	Introduction
	System Model and Performance Measures
	Detection Probability
	Doppler Accuracy
	Similarity Constraint

	Problem Formulation and Pareto-optimal Code Design
	Performance Analysis
	Conclusions
	Acknowledgment

	A Doppler Robust Max-Min Approach to Radar Code Design
	Introduction
	System Model and Waveform Design Problem
	Approximate Solution to the Max-Min Optimization Problem
	Performance Analysis
	Conclusions

	Design of Optimized Radar Codes with a Peak to Average Power Ratio Constraint
	Introduction
	System Model and Formulation of the Problems
	PAR Constrained WDP
	Approximation algorithm via semidefinite programming relaxation and randomization
	Approximation bound

	Robust PAR Constrained WDP
	PAR Constrained and Phase Quantized WDP
	Robust PAR Constrained and Phase Quantized WDP
	Performance Analysis
	Conclusions

	Cognitive Design of the Receive Filter and Transmitted Phase Code in Reverberating Environment
	Introduction
	System Model
	Problem Formulation and Design Issues
	Radar Code Optimization: Solution of the Problem 4.11
	Radar Code optimization: Solution of the Problem 4.12
	Transmit-Receive System Design: Optimization Procedure

	Performance Analysis
	Conclusions
	Acknowledgment

	Appendix
	Multi-Objective Optimization Problems
	Proof of Lemma 2.3.2
	Proof of Proposition 3.3.1
	Proof of Proposition 3.3.2
	Proof of Proposition 3.3.4
	Proof of Proposition 3.3.5
	Proof of Proposition 3.4.2
	Proof of Proposition 3.5.1
	Bibliography

