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SUMMARY 

 

On May 2007, ENEA (Italian National Agency for New Technology, Energy and 

Sustainable Economic Development) started, with the aid of the public partners 

Università degli studi di Napoli Federico II (DETEC) and Seconda Università degli 

studi di Napoli (DIAM) and the private partners CRIS-Ansaldo and Angelantoni 

Industria, the ELIOSLAB project. The main purpose of the project was to realize at 

ENEA Research Centre of Portici (Na) a national laboratory to develop technologies 

for solar thermal energy at high temperature (≥ 850 °C) for thermo-chemical water 

splitting, hydrogen production, high temperature test facilities of materials. 

The above mentioned applications require good and inexpensive solar receiver-

reactors of the concentrated solar radiation, which absorb well the light and transfer 

efficiently heat to an intermediate fluid. A volumetric receiver, with open-cell foam 

as the absorber material, seemed a suitable choice. In fact, high porosity open-cell 

foams (metallic, ceramic or carbon based) are nowadays widely used in a large 

number of systems. Their thermo-mechanical characteristics, in particular stiffness-

strength ratio, lightness, tortuosity, good flow-mixing capability, high surface area 

density (i.e. interfacial surface area per unit volume), are very useful when the 

efficiency in the heat removing is necessary, from the power electronic systems to 

the thermal solar or thermo-chemical applications. 

The mentioned applications generally imply high temperatures and then, the radiative 

heat transfer plays a significant role in the heat transfer process that, therefore, must 

be suitably accounted for. Unfortunately practical, flexible and sufficiently accurate 

tools, to model the radiative heat transfer, for the design and the optimization of 

systems, are scarce in the literature, whereas rather convoluted methods are suitable 

for scientific research purposes. 
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The aim of this work is to improve existing models and develop accurate and user 

friendly models. It has required the refined morphological modeling of inherently 

disordered reticulated material, too. 

The morphology of the actual open-cell foams has been reviewed in Chapter 1. 

Suitable geometrical idealizations of the actual random reticular structure have been 

made using appropriate polyhedrons. Useful correlations among the principal 

morphological parameters of the foams, like the porosity, the strut thickness, the strut 

length, the cell size or the windows size with a functional relation have been 

proposed, according to the basic unit geometry assumed. 

The conventional morphological correlations available in the literature have been 

considered and discussed. New correlations for the prediction of the interfacial 

surface area per unit volume as a function of the windows diameter and the porosity 

have been derived. They have then been compared with existing correlations and 

with experimental data found in the literature. 

The morphological parameters predicted by correlations proposed in this work are in 

better agreement with experimental data than those predicted by the existing 

correlations, particularly when reference is made to the dependence of the struts 

cross-section on the porosity. 

In Chapter 2 the radiation heat transfer in open cells foams has been modelled by a 

simplified analytical-numerical method based on a cubic cell, that modified an 

analytical model taken from the literature. 

A more accurate evaluation of view factors between the significant geometric 

elements of the basic unit cell was carried out, by ray-tracing and numerical 

simulations based onto Monte Carlo method. The predictions by the original model 

and those by the proposed model have been compared to experimental data. The 

recalculated coefficients worked better than the original ones. The morphology of the 

foam turned out to markedly affect the radiative conductivity. 
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Successively, the assumption of a basic unit cubic cell has been removed and a more 

refined idealized structure based on a tetrakaidecahedric cell has been used. Again, 

the model involves a suitable discretization of the foam and asks for the evaluation of 

macroscopic parameters, such as radiosity and configuration factors, with a more 

refined geometry than in the previous model. 

Configuration factors have been evaluated both by numerical Monte Carlo method 

and analytically with a suitable spherical approximation of the TD. The predictions 

of the model were compared both with experimental results from the literature and 

with predictions by a simplified model proposed by Zhao et al. [92] and based on a 

simple cubic representation of the foam unit cell. The agreement between predictions 

by the proposed model and experimental results is good and it is far better than 

predictions by the simplified model. One can, therefore, conclude that morphological 

characteristics need to be adequately evaluated when radiation heat transfer in foams 

is to be modelled, because of its dependence on the morphological characteristics of 

porous media. 
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1 Morphology of the Open-Cell Foams 
and their Geometrical Representation  

 
1.1 Introduction 

The open cell foams can be considered as a part of the larger class of the so named 

cellular solids. These materials are largely produced and used for a lot of engineering 

applications (with microstructure of foams or honeycomb) and are also widely 

diffused in nature and, then, are largely studied. The first experimental studies of 

foams are owed to Hooke (1665), who discovered the typical tissues microstructure, 

whose fundamental unit he named "cellula". Darwin proposed some theories about 

the origin of cellular structure and about its function. The attention of Hooke, in 

particular, dwells on honeycomb planar structures in the sense that the walls which 

divide cells can be generated by the translation of a two dimensional structure 

moving in the direction perpendicular to the plane. 

Another possible structure directly regards the type of materials object of this 

dissertation and is, instead, three dimensional. In the general 3-D case the cells could 

be both closed and not and the walls (real or unreal, according to whether cells are 

closed or not) are usually randomly oriented (see fig.1.1-1.2). Obviously, the 

topological modeling in the 3-D situation is much more difficult to realize than in the 

2-D modeling. 

In order to model foams reference is commonly made to a cellular structure as 

vertexes, joined by edges, which surround faces, that enclose cells [1]. The face-

connectivity is defined as the number of walls that meet at an edge and similarly the 

edge-connectivity is the  number  of edges  that meet at  a  vertex.  Usually,  the face- 
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Fig.1.1. Examples of cellular solids: (a) a 2-D honeycomb; (b) a 3-D 

foam with open cell; (c) a 3-D foam with closed cell (from [1]). 

 

connectivity is equal to three, but it can be as high as six in the 3-D cases. So the 

edge-connectivity is generally equal to three for the honeycomb structure or planar 

structure, but it is, instead, equal to four or higher in foams (3D). 
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Fig.1.2. Some examples of 3-D foams: (a) open-cell polyurethane; 

(b) closed-cell polyethylene; (c) open-cell nickel; (d) open-cell copper; 

(e) open-cell zirconia; (f) open-cell mullite; (g) open-cell glass; 

(h) open-cells and closed-cells of a polyether foam (from [1]). 

 

Substantially, the study of the foams morphology is based on geometrical 

idealizations of the cell that, filtering out the random fluctuations of the actual foams, 
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allow to derive suitable correlations among the relative density of the material, the 

dimensions of the cell, the dimensions of the faces, the length or the transversal 

dimensions of the edges. The last quantity has sense only when open cell foams are 

concerned. The topological laws that govern the edges and the faces connectivity, in 

fact, offer a precious aid since they impose geometric constraints to the dispersion 

laws and then they permit the comprehension of the structural details in the actual 

foams, too. 

As far as the geometry and the form of the cell are concerned, the objective is, in 

general, to determine an "ideal" unitary cell that, with the best approximation, 

reproduces the actual cell form in detail, starting from geometrical characteristics 

measured experimentally or furnished by the manufacturers. This is the principal aim 

of this chapter where the analysis required by the exposed target will be described. 

In fact, the actual length and the orientation of the edges, or struts (in the case of 

open cells), randomly fluctuate around a mean orientation or are dispersed around a 

mean length, that can be just determined by means of suitable measurements. In such 

a way, the mean length and orientation can be represented by the edge of the ideal 

basic cell, which obviously belongs to more contiguous cells. 

In order to model an actual cellular solid with a regular structure, i.e. obtained with a 

regular repetition of an appropriate basic unit, such a unit must, by means of periodic 

spatial translation, fill space without leaving any voids and without overlaps. In 

many cases the basic unit can be directly identified with the same unitary cell but in 

other cases, a group of two o more cells is necessary. 

Some ideal polyhedrons, shown in fig.1.3, have such a property. 

Others polyhedrons are possible as characteristic cells for a foam. A more complete 

list of polyhedrons and the related geometrical characteristics are reported in fig.1.4 

and in Table 1.1, respectively. 
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Fig.1.3. Some examples of polyhedra that fill the space: (a) triangular prisms; 

(b) rectangular prisms; (c) hexagonal prisms; (d) rhombic dodecahedra; 

(e) tetrakaidecahedra (from [1]). 

 

A noteworthy example of polyhedron of large use in literature to analyze the 

convective or radiative heat transfer, the pressure drops and, in general, the transport 

phenomena in fluid is the pentagonal dodecahedron, which will be referred to in the 

next paragraphs. 
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Fig.1.4. Three-dimensional polyhedric cells: (a) tetrahedron; (b) triangular prism; 

(c) rectangular prism; (d) hexagonal prism; (e) octahedron; (f) rhombic dodecahedron; 

(g) pentagonal dodecahedron; (h) tetrakaidecahedron; (i) icoesahedron (from [1]). 

 

As far as natural foams and spontaneously aggregated foams are concerned, 

however, one can reasonably think of them as formed according to the criterion of 

minimization of the energy or, in some manner, of equilibrium like, as it is discussed 

in the following. 

Sir William Thomson (Lord Kelvin) studied the ideal structure of a three 

dimensional foam as early as 1887 [2] with the aim to elaborate an appropriate model 

of ether. He reached onto the issue brilliant results which, however, did not enthrall 

his coevals [3]. The reason was that then the fundamental scientific debate onto 

nature of ether had started to turn in favour of its immateriality. The widespread 

opinion was that ether had to be considered as no more than a conventional verbal 

expression to indicate the vacuum, while Thomson persevered in the idea that it was 

"a material thing" filling the space. 
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Table 1.1. Geometric properties of the ideal polyhedric cells [1]. 

Cell shape Faces, 

f 

Edges, 

n 

Vertices, 

v 

Volume Notes 

 (a) (b) (c) (d) (e) (f) 

Tetrahedron 4 6 4  Regular 

Triangular prism 5 9 6 
 

Packs to 

fill space 

Square prism 6 12 8  Packs to 

fill space 

Hexagonal prism 8 12 6 
 

Packs to 

fill space 

Octahedron 12 24 14  Regular 

Rhombic 

dodecahedron 

12 30 20  Packs to 

fill space 

Pentagonal 

dodecahedron 

14 36 24  Regular 

Tetrakaidecahedron 20 30 12  Packs to 

fill space 

Icosahedron     Regular 

 

Although the immateriality of the ether was soon demonstrated, since then results of 

Kelvin have been very useful in scientific and technical areas different from that for 

which they were presented: i.e. in crystallography, for the study of colloids, in many 

applications of chemical and mechanical engineering, in heat transfer problems and, 

in general, everywhere foams are employed. 

As it has already been underlined, the problem is to realize a partition of the space 

vacuum using cells or group of cells having the same volume and the minimum 

surface. The mathematical problem is well described in [4] and "is solved in foam", 

how summed up by Kelvin. Previously Plateau [4] had proposed a qualitative 

solution of the problem, i.e. a rhombic dodecahedron (see fig.1.5a), in terms of the so 

named Plateau's rules. Lord Kelvin took into account the Plateau's rules, that states 

that the face-connectivity, Zf, of a cell in equilibrium should be equal to 3 and that its 

edge-connectivity, Ze, should be equal to 4. He concluded that the equilibrium cell 
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Fig.1.5. Proposed and idealized unitary cells to fill space with minimum energy: (a) rhombic 

dodecahedron by Plateau [4]; (b) unitary cell by Lord Kelvin, that is a TD whose edges are 

suitably slightly curved [2]; (c) Weaire-Phelan unit [5]; (d) idealized Kelvin's unitary cell; (e) 

pentagonal dodecahedric cell, that does not fill the space without overlapping or voids but 

idealizes the Weaire-Phelan unit. 

 

coherent with the hypothesis was a polygonal bubble, having curved faces that meet 

at 120° angles (the so named Plateau lines) and edges that meet at equal 109.47° 

angles, thus resulting a partition of the vacuum space without overlaps and voids. 

The Kelvin's result is not only qualitative but also quantitative and highly accurate, 

even though some approximations were used in the calculations. The resulting basic 

unit consists of only one cell: a polyhedron with 36 equal plane edges, that form the 

contour of 6 nearly squared surfaces and of 8 nearly hexagonal surfaces (see 

fig.1.5b). 

A long time afterwards it was pointed out that Kelvin's solution, based on the 

Plateau's rules, is only an equilibrium configuration in terms of minimization of the 
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surface per unit volume but not necessarily the configuration with the minimum 

energy (surface) in absolute [3]. In fact, Weaire-Phelan [5], thanks to some 

simulations with the calculator, concluded that a basic unit with energy per unit 

volume less than that of Kelvin is constituted by an aggregation of 8 cells: 6 made up 

by 12 pentagonal faces and 2 hexagonal faces and 2 made up by a pentagonal 

dodecahedron (PD). The authors proved that such a basic unit constitutes a partition 

of the space without overlaps and voids (see fig.1.5c). 

Usually, two models of the cells are used in order to represent the foams under 

consideration with the required accuracy. For instance, this occurs in the cases, 

somewhat frequent, either of convective and/or conductive heat transfer or, also, 

when the fluid-dynamic is involved in this kind of materials. One of these models is 

based on a cell with tetrakaidecahedric geometry (truncated octahedron)and another 

is based, instead, on a pentagonal dodecahedron cell (see figs.1.5d-1.5e). Both the 

geometrical figures are further idealizations of the actual structure of a foam. The 

former, obviously, originates from the model proposed by Kelvin from which the cell 

can be obtained neglecting any curvature; the latter is an immediate derivation of the 

Weaire-Phelan model for which a prevalence of pentagonal faces is expected. 

For open-cells foams, both the foregoing models in many cases match fairly well 

with the actual foams, as it is shown by the detailed experimental images of the 

foams (SEM, X-ray µ-Tomography). The important issue tackled in this thesis is that 

the pentagonal dodecahedron, contrary to the Weaire-Phelan unit, is not a partition of 

the vacuum space in the way previously described. Therefore, the radiative heat 

transfer cannot be modeled with the approach proposed in this work since it is not 

possible to build up a regular lattice starting directly from a cell having the PD form. 

The representation of such a type of cell with a suitable equivalent cubic cell, that is 

needed in order to obtain a coherent and useful lattice, will be presented in section 

1.12. The tetrakaidecahedron (TD), in turn, is well known in cristallography and in 

solid state physics as the Wigner-Seitz cell of a body centered cubic (bcc) lattice [6]. 
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As it has already been underlined, it is useful for modeling the radiative heat transfer 

inside a foam, by means of an innovative semi-analytical approach, as it will be 

shown in the following chapter 2. 

Some models and correlations often used in literature, based on TD and PD cells or 

on suitable equivalent structures, are described and analyzed in the following 

sections. Correlations more largely used to determine the geometrical parameters of 

the cells starting from the experimental morphological data will be discussed and 

compared with experimental data taken from the literature. In many cases some new 

correlations predict values that better match the experimental data than those in the 

literature. They seem to have more solid bases than correlations usually found in the 

literature. 

 

1.2 Structure of the open cells metallic and ceramic foams 

Both metallic and ceramic open-cells foams can be considered as a net of 

interconnected solid rods whose transverse section generally is either circular or 

triangular or triangular with concave sides. The body of the rods (struts) can be either 

empty or full (see fig.1.6). The length of the rods, also named struts, is variable and 

lumps of material are often present where the intersections of the edges of the ideal 

geometry should be located. 

The morphology and the microstructure of the struts and, thus, of the foams in terms 

of the dimensions, cross-sections, lengths, and so on, has been and still is the object 

of many studies and experimental investigations, as a consequence of the always 

more frequent and interesting applications of metallic and ceramic foams. 

Finally, external solid surfaces have often a remarkable roughness that sometimes 

concurs to make difficult the geometrical interpretation. 
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Fig.1.6: Examples of hollow cylindrical and triangular struts: 

on the left, SSiC foam [7]; on the right, Nickel foam [8]. 

 

The aim of the morphological study is to find the characterizing structural 

parameters, such as the relative density ρr defined as follows 

  (1.1)  

where ρs that is the density of the reticular solid structure, equal to 

  (1.2)  

and ρo is the calculated density of the entire block, that is the solid material plus the 

fluid where the foam is immersed and that fills the vacuum spaces 

  (1.3)  

where the mass of the air is assumed to be negligible compared to the mass of the 

ceramic or metallic solid which substantiate the foam. If VI is the entire inner 

volume, i.e. that occupied by all the pores of the foam, eqs.1.1 - 1.3allow to write 
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  (1.4)  

where 

  (1.5)  

is the total porosity. It is the most important characteristic parameter of foams and 

represents the ratio of the volume of the pores (open in our usual hypothesis) to the 

total volume of the sample. It is worth to be remarked that very often the struts of 

actual foams are hollow, as it clearly shown by the SEM image in fig.1.6. Before 

having a deeper insight in the issue, it is worthwhile to underline that the outer 

surfaces of the struts are those that undergo both convective and radiative heat 

transfer. Therefore reference is usually made to the so named outer or open porosity, 

φ, that involves only the inner part of each open cell without considering the not 

accessible inner volume of the struts. For the sake of brevity, in the following the 

outer porosity will be indicated simply as porosity. Exception will be explicitly 

indicated when the strut has to be assumed a full body, that is without any cavity. In 

this case the symbol φ can be used without ambiguity. Viceversa, when the struts are 

hollow a fictitious density ρ
* 

= Vstrut/Vo = 1 - φ must be referred to, linked to the open 

porosity by means of a correlation similar to eq.1.4. 

In fairly general terms the relative density of foams is less than about 0.3, also for 

polymeric foams, and can attain values of porosity as low as 0.003. The foams 

considered in this study have typical porosities as high or very high in literature: i.e. 

porosity higher than about 0.8 but less than about 0.99. In this work reference is 

made to three ranges of the porosity: 0.80 ≤ φ < 0.90 (high porosity), 0.90 ≤φ <0.94 

(very high porosity), 0.94 ≤ φ < 0.99 (top porosity). 
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Gibson and Ashby [1] point out that, remarkably, the mechanical properties of the 

foams and, specially, the thermal ones are fairly dependent on the size of the cells 

but, rather, by the form of the cell itself and in turn by the porosity of the material or 

its relative density. 

As it will be shown in the following chapters, however, it is concluded in this work 

that, at contrary, the dimensions of the open cells are fundamental together with the 

porosity in the determination of radiative thermal transport properties of the foams. 

In the following section 2.4 the dimension of the cell will turn out to be more 

important than the porosity in radiation heat transfer. 

From a general point of view and in particular from a geometrical one, a cellular 

structure can be thought as constituted by vertexes, mutually connected by edges, 

which in turn form the contours of faces (or windows, in the case of open pores) that 

contain the cell [1]. As it was already said, the number of edges that converge on a 

vertex (in mean) is named edges-connectivity, Ze, while the mean number of the 

faces converging on an edge is named connectivity of the faces Zf. 

For three dimensional cases and for a large number of cells the following equation 

holds 

  (1.6)  

where C is the number of cells, F is the number of faces, E is the number of edges 

and V is the number of vertexes. In such case for a single cell (C=1) one can obtain 

from eq.1.6 the following expression of the mean number of edges in each face  

  (1.7)  

where f is the number of faces of a cell [1]. 
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An important and useful consequence of the eq.1.7 is that in most foams, 

independently of the geometrical form of the cell, most faces have five edges. In fact, 

when the form of the cell is dodecahedric (f = 12), remembering that Ze = 4 and Zf = 

3, . 

In all cases,  and  also when f = 14 (TD) and f = 20 (icoesahedron), 

respectively, as it will be proposed for the radiative model in the following. 

Therefore, though pentagonal faces are frequently observed in actual foams, one is 

not allowed to conclude that the cell has a pentagonal dodecahedric form. 

It has already been stated that so far reference was made to geometrical structures 

that idealize the geometry of the actual cell which really exhibits dispersions in its 

form and dimensions. The manufacturers of metallic and ceramic foams usually 

provide the user with the two essential characteristics of a foam: the porosity (or 

relative density) and the nominal density of the pores, usually expressed in PPI i.e. 

pores per inch. PPI represents the number of cells (pores) per unit length of material, 

and it is practically equal to the reciprocal of the mean diameter of the pore (nominal 

diameter), dN, that is the diameter of the sphere tangent to the faces of the ideal 

polyhedron associable to the real one. Such a sphere, tangent to all the faces of the 

ideal polyhedron associated to the real cell exists only if the polyhedron is a 

pentagonal dodecahedron. When, on the contrary, the polyhedron is a TD, such the 

above said sphere does not exist and the sphere could only be tangent to some of the 

polyhedron faces 

  (1.8)  

A sphere capable to represent the cell has, then, to be determined. It is however 

possible to outline that eq.1.8 can be used to determine the mean diameter of the pore 

experimentally, by counting the number of pores in a given length of the material 

using images captured by means of many instruments (X-ray axial tomography, SEM  
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Fig.1.7. Pore size distribution for α-Al2O3: [9] on the left; [10] on the right. 

 

images, etc.). Measured values are, generally, far different from the value that can be 

derived on the basis of data given by the manufacturer, namely the PPI value. For 

this reason it is better to use different symbols when reference is made to the two 

values. Typical results reported by Twigg et al. [9] and Incerra-Garrido et al. [10] are 

presented in fig.1.7. 

Both diagrams show, superimposed, the normal distribution with the mean values 

and the standard deviations of the measured frequency distributions. The good fit of 

Gaussian distributions, in general cases, as in those shown here, confirms the 

stochastic fluctuation of lengths and directions of the struts in open-cell foams.  

Further geometrical characteristics of foams and various correlations proposed in the 

literature to determine all the characteristic parameters useful to predict fluid-

dynamics and heat transfer will be investigated in the following sections. 

 

1.3 Relative density, edges thickness and edges length of an ideal 

polyhedral cell 

The relative density, ρr, or, equivalently, the porosity, φ, are of paramount 

importance in the characterization of a foam. The porosity, however, does not affect 
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directly momentum and heat transfer inside the material, that are, rather, dependent 

on the morphology and the microstructure of the material, that, in turn, affects its 

porosity. 

From the engineering point of view, the main interest is obviously in building up 

suitable and useful models, depending only on a limited number of microscopic 

parameters of the foam, in particular on those more easily measurable. Models 

should also allow fairly accurate predictions and should be user friendly. To this aim, 

correlations that link the relative density, ρr, to the edge length, l, or to the edge 

thickness, to, in the case of open-cell foams, for which a defined unitary ideal cell is 

fixed, are needed. 

The first approach to the problem was proposed by Gibson and Ashby [1]. Their 

correlations are largely used in the literature, with a particular reference to a 

tetrakaidecahedric cell. The authors presented the following correlation 

  (1.9)  

that holds for an open cell foam with sufficiently low density. The C1 factor must be 

calculated by suitably considering the geometrical details of the cell idealization [1].  

Equation 1.9 holds when an open-cell foam with sufficiently low density is involved 

and the C1 factor must be calculated appropriately accounting for the geometrical 

details of cell idealization [1]. 

A more accurate formulation of the correlations among l, to and ρr take into account 

that eq. 1.9 overestimates the density because count more times (Ze times) the single 

struts (or better the portion of them which can be considered as part of the cell) 

which meet to vertexes. The correction to higher order proposed by Gibson and 

Ashby [1] is the following general expression 
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  (1.10)  

that introduces a new constant, C2. However, the correction introduced is, as 

underlined by the authors, significant only for relative density larger than 0.2, i.e. for 

porosity less than 0.8. It is worth noticing that differently from what just said from 

the results of this thesis, as it will be seen in the following, one can conclude that a 

similar correction regarding the calculation of the specific surface Sv (see paragraph 

1.15) is instead relevant, also for porosity values larger than about 0.80 (see 

par.1.17). 

In the present work the interest is focused on high porosity (0.80 – 0.90) foams and 

very high/top porosity (0.91 – 0.99) foams. Therefore, eq. 1.9 will be assumed as the 

starting point for our quantitative consideration on the argument. 

It is important to note, however, that correlations such as eq.1.9-1.10 are meaningful 

only for regular, space-filling structures because only for this type of structures it is 

possible to calculate the relative density in a simple and direct way. For structures 

based on a 3-D cell, such as a PD or an icosahedrons, or a 2-D pentagon, at contrary 

it is not possible to fill the space and a mixing of more figures and distortions of 

them are necessary to calculate, also with noticeable difficulty, a suitable relative 

density of the resultant structure. Therefore, equations such as eqs.1.9 and 1.10 are 

not useful. A list of correlations similar to eq.1.9, valid for 3-D high porosity open 

cell foams is reported in [1], with reference to the paper by De Hoff and Rhines [11]. 

The above cited correlations are presented in Table 1.2, together with the principal 

characteristics in terms of edges connectivity Ze, faces connectivity Zf, mean number 

of sides for face , mean number of faces for cell  and the aspect ratio Ar = h/l, 

where h is the height and l is the base of the prisms when prisms are involved, 

because in these cases two sides characterize the geometry. 
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Table 1.2. Edge and face connectivities (Ze, Zf), mean number of edges for face ( mean 

number of faces for cell ( ), relative density for the principal filling space polyhedral [1]. 

Three dimensions: open cell (Aspect ratio Ar = h/l) 

Triangular prisms 

(Ze = 8.0, Zf = 4.5, ) 
 

Square prisms 

(Ze = 6.0, Zf = 4, ) 
 

Hexagonal prisms 

(Ze =5.0, Zf = 3.6, ) 
 

Rhombic dodecahedra 

(Ze = 5.3, Zf = 4.5, ) 
 

Tetrakaidecahedra 

(Ze = 3.0, Zf = 3, ) 
 

 

It is reported in the named references that results are deduced for to << l, that is for 

very slim struts which can be considered a good position for ρr lesser than 0.2. 

When the aspect ratio is 1 the values of the C1 constant are comprised between 1.06 

and 4.61.In particular, a coefficient equal to 1.06 results for the very important case 

of the TD. 

One can notice that neither basic or starting assumptions, with a particular reference 

to the geometry, hypothesis, nor comments, for TD, on the most used correlation in 

the study of 3D foams, are reported in [1, 11]  

In the following some correlations taken from the literature and those proposed in the 

present work will be compared. Some idealized and geometrical models will be 

compared with experimental data. Particularly, correlations for the prediction of the 

values of the surface per unit volume Sv will be validated, since it is of paramount 
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importance in the determination of the thermo-fluidodynamic and the radiative 

behaviour of porous materials. 

 

1.4 The Gibson-Ashby correlation [1]: strut thickness as function of 

the porosity and of the edges length 

The tetrakaidecahedric idealization of the basic cell in the actual open-cell foams is 

one of the more plausible and then frequently used representation of the foam at a 

sufficiently accurate level. Thanks to this representation, some new correlations will 

be proposed to better predict some significant morphological parameters, such as, 

tipically, the surface per unit volume and the strut thickness for assigned values of 

the pore size, the windows diameter, the porosity. The proposed correlations will be 

compared with experimental data taken from the literature and to the predictions of 

morphological models, i.e., models based on a pentagonal dodecahedric cell (see 

section 1.12) , the Richardsone t al.'s model (see section 1.7), the Inayat et al.'s model 

(see section 1.8). 

Apart from the dodecahedric representation each correlation can be derived by from 

the Gibson-Ashby correlation [1], that links the strut thickness to the porosity and to 

the strut length. It is critically analyzed in the following. Its analysis will result very 

useful to introduce, successively, two different basic correlations among the process 

parameters, such as the specific surface, Sv, as a function of the porosity, φ, the 

windows diameter, dw, the pore size, dp. 

We now start deriving the basic relation reported in the Table 1.2 for the TD, on the 

basis of simple geometrical considerations, that allow to deduce that the volume of a 

TD with an l long edge is equal to 

  (1.11)  
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and that the relative volume occupied by solid struts with mean section area A (that 

are in the first approach considered filled) is, instead, equal to 

  (1.12)  

where the ratio 1/3.0 represents the fraction of the strut that has to be considered to 

belong to the unitary cell, since in TD Ze = 3.0. 

Equation.2.11 should be compared with the expression given by Gibson and Ashby 

[1], account being taken that, as well as in [1], until now we made no assumption on 

the cross-section profile 

  (1.13)  

Remembering the correlation between the relative volume and the porosity 

 and eq.1.12, one can obtain 

  (1.14)  

Usually, however, the Gibson-Ashby equation [9, 10, 12-17]), very similar to eq.1.14 

is actually used 

  (1.15)  

which is also equivalent to eq.1.13. Differently from eq.1.13, the symbol lt is used in 

eq.1.15 to underline that all researchers, implicitly or explicitly, assume that the 

cross-section of the strut is an hollow triangle. 

Rigorously, however  for a suitable equivalent linear dimension tm of the 

ligament section and one can write, from a general point of view, 



Chapter 1  Gaetano Contento – Ph.D. Thesis  

 - 21 - 

  (1.16)  

where k is a constant to be determined using measured morphological data either on 

empirical or on theoretical bases. Equation 1.15 holds only if k = 1, i.e. if the fraction 

of the ligament belonging to the cell (1/3) had a square section, with a tm long side. 

However, as it is widely recognized in the literature, the shape of the ligament 

section (triangular concave, triangular, circular) is strongly affected by the porosity 

[13] and, therefore, eq.1.16 cannot be used on an empirical basis. 

 

1.5 Two new correlations for cylindrical and triangular cross 

section 

Equation 1.15 is largely used and it is one of the basic correlations to calculate the 

important parameter Sv, i.e. the fluid-solid interface area per unit volume of foam. 

This is a fundamental parameter in the study and the prediction, through suitable 

models, pressure drop and convective heat transfer inside foams. Naturally, such a 

parameter, often measured experimentally with various methods or indirectly 

deduced by means of morphological measurements, plays an important role also in 

the radiative heat transfer. 

No derivation of eq.1.15 was proposed by Gibson-Ashby book [10], however. The 

authors took it by the De Hoff and Rhines’ book [11] where, in turn, the correlation 

was introduced without any geometrical justification but only on an empirical basis, 

in the opinion of the author. Furthermore, no assumption about the cross-section 

profile was made. Anyway in the literature, as to the Gibson-Ashby correlation and 

some of the correlations that were derived by it, reference is made to Richardson et 

al. [14] who recommend to consider tga as the side of a triangle section strut (see 

fig.1.8) is usually assumed, but the reason for this choice is not given. 
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Since the Gibson-Ashby correlation was the source for some useful morphological 

correlations, it is worthwhile to discuss and validate it as well as correlations 

proposed in the present work by comparison with experimental data presented in 

[15,16], for assigned values of the thickness and the porosity. 

Experimental data of the strut thickness, strut length and porosity for seven open cell 

foams samples are summarized in Table.1.3 [15]. 

Mancin et al. [15,16] assumed a cylindrical struts and use eq.1.15 to derive their 

diameter and to evaluate the porosity, that is then compared with that given by the 

manufacturer. As a consequence, an indirect test of predictive capacity of eq.1.15 is 

carried out. The match among the values was good when a circular section of the 

ligament circular was assumed. 

However, eq.1.15 is usually employed with reference to the work of Richardson et al. 

[14] that assumed an equilateral triangle shaped section, with a side t (ts in fig.1.8c ) 

just derived from eq.1.15. 

 

.  

Fig:1.8:Morphological model proposed by [14]: (a) ideal tetrakaidecahedron; 

(b) ideal cell; (c) assumed strut cross-section. 
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Table 1.3. Morphological characteristics of seven aluminum foam samples [15]. 

Sample SM-1 SM-2 SM-3 SM-4 SM-5 SM-6 SM-7 

PPI (in
-1

) 10 10 5 40 5 10 10 

Porosity, φ 0.896 0.903 0.921 0.930 0.932 0.934 0.956 

Relative density, ρr (%) 10.4 9.7 7.9 7.0 6.8 6.6 4.4 

Mean pore diameter, dp 

(mm) 

2.54 2.54 5.08 0.635 1.27 2.54 2.54 

Area per unit volume, 

Sv (m
-1

) 

866 839 339 1679 1156 692 537 

Fiber thickness, t (mm) 0.484 0.529 0.540 0.324 0.365 0.450 0.445 

Fiber length, l (mm) 1.900 1.870 1.959 1.072 1.218 1.785 1.351 

 

Two very simple modifications to eq.1.15 will be presented in the following, that 

take into account the shape of the strut cross-section and the suitable different ways 

to denote the strut thickness. 

When reference is made to a circular cross section, the following correlation can be 

written, with A =  

 

 

 

(1.17)  

while for a triangular cross section we can write 
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(1.18)  

s of the classical Gibson-Ashby correlation, match fairly well the experimental data 

for longer struts, while the other two correlations herein proposed work very well for 

the shorter struts.  
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Fig. 1.9. Strut thickness times  vs. measured ligament length 
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One can also remark that there are only slight deviations from the predictions given 

by eq.1.17 for the cylindrical model and those given by the Gibson-Ashby's model. It 

was to be expected because of the small difference between eq.1.15 and eq.1.17. 

More precisely the correlation for the triangular strut works better for the higher 

porosity (φ = 0.956) and the cylindrical section whereas the Gibson-Ashby 

correlation tends to work better for the lower porosities (φ = 0.932, φ = 0.930).  

This results agree with data for the cross-section geometry of the an open cell foam 

struts from the literature, that, generally, varies from a circular to a triangular shape 

in the 0.85 – 0.94 porosity range and from a triangular to an inner concave triangular 

shape in the 0.94 - 0.98 porosity range [13,17]. For shorter lengths experimental data 

agree better with the cylindrical correlation of this work. On the contrary, for larger 

lengths, the Gibson-Ashby model works better than the cylindrical model proposed 

in this work. Anyway, both correlations exhibit a good agreement for all lengths. 

One can, however, remark that, as outlined in [18] and clearly shown in fig.1.10, the 

actual thickness of the struts varies passing from the centre to the extremities, is 

thinner in the center, where it is commonly measured, and is thicker in the proximity 

of the nodes (vertexes). Because of this, the diameter of the equivalent cylinder is 

systematically underestimated, as it was to be expected specially for longer struts, 

where differences between measured and predicted values are expected to be larger. 

As a consequence, eq.2.15, that underestimates more than eq.2.17 the average value 

of the thickness, gives a more accurate estimate for longer struts. 

SEM images of strut cross-sections of metallic foams as a function of the porosity 

are presented in fig. 1.10. It shows that the larger the porosity the larger the variation. 

They show that the larger the porosity the larger the variation of the cross-section 

profile whose side changes from cylindrical into triangular and then into triangular 

concave. The approximate ranges of the above mentioned profiles are schematically 

sketched on the top [13]. 
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Table 1.4. Measured fiber length, l and fiber thickness, tmeas [18]; thickness predicted with 

eq.1.15, tga; diameter predicted with eq.1.17, d; thickness predicted with eq.1.18, t. 

Sample SM-1 SM-2 SM-3 SM-4 SM-5 SM-6 SM-7 

Fiber thickness, 

tmeas (mm) 

0.484 0.529 0.540 0.324 0.365 0.450 0.445 

Fiber length, l (mm) 1.900 1.870 1.959 1.072 1.218 1.785 1.351 

tga (mm) from eq.1.15 0.595 0.565 0.535 0.275 0.308 0.445 0.275 

(tmeas - tga)/tmeas (%) - 22.9 - 6.9 1.0 15.0 16.0 1.0 38.2 

d (mm) from eq.1.17 0.671 0.638 0.603 0.311 0.348 0.502 0.310 

(tmeas - d)/tmeas (%)  - 38.7 - 20.6 - 11.7 4.1 5.2 - 11.6 30.2 

t (mm) from eq.1.18 0.904 0.859 0.812 0.418 0.469 0.677 0.418 

(tmeas - t)/tmeas (%)  - 86.8 - 62.6 - 50.5 - 29.2 - 27.7 - 0.4 6.0 

 

SEM images of a typical tetrakaidecahedron unitary cell [13] are presented in 

fig.1.11. The differences between the thickness at the centre and at the extremities of  

the strut can be detected in the left side image. The differences between the thickness 

of windows and pores is highlighted in the right image. 

Predicted and measured fiber length and fiber thickness for seven open cell foams 

samples are summarized in Table.1.4 The percent deviations between predicted and 

measured values are sometimes fairly large. This is comprehensible because the 

experimental determination of the geometrical parameters of a foams is not simple 

also for the intrinsic disorder of the actual microstructure compared to the simple 

geometrical picture also in the cases of modeling based on fairly refined 

tetrakaidecahedric or dodecahedric cell. In all cases such an approach is very useful 

from an engineering point of view. In particular, a set of suitable geometrical 
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correlations is often used in the literature, as suggested by various authors. Therefore, 

a limited number of fundamental parameters, such as pore size, cell size, strut 

thickness, strut length and porosity is necessary to determine all the others, thus 

allowing the prediction of the foam behavior. More, it is the case to underline here 

that reasonably a suitable correlation, could be more precise to predict the thickness 

of the strut than, with the connected difficulties, 

 

 

Fig.1.10. SEM images of strut cross-sections of metallic foams vs. the porosity. 
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Fig. 1.11. SEM images of a typical tetrakaidecahedron unitary cell [13]  

 

directly measure it. In fact, if sufficiently accurate a correlation  links among them a 

suitable mean thickness, the pore size and the porosity and permits then to calculate 

thickness of the strut as an appropriate and significant mean value. In order to 

calculate the specific surface, Sv, for example is not necessary to know the measured  

An example of an important quantity from this point of view is the externally 

accessible fluid-solid interface area per unit volume of material, Sv, that is a widely 

used parameter in thermo-fluidodynamics modeling and in radiative heat transfer. 

thickness, that as already noted is often underestimated, but rather a suitable mean 

value with which get the effective porosity or the surface area per unit volume. 

Since the errors on the calculation of the thickness or on the length of the ligament 

directly affect the evaluation of the specific surface, one can to conclude that a more 

refined glance on this argument is necessary, in order to reach more accurate results 

onto the models and onto morphology of open cells foams. With this aim a 

comparison with experimental data taken from the literature is important to test the 

more used correlations as well as those herein proposed. In particular, it is important 

to coherently suppose a well defined cross-section geometry of the strut, because in 

the two cases of cylindrical cross-section and of triangular cross-section the two 

different relations must be used to calculate at a first order of approximation the 

specific surface respectively 
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  (1.19)  

  (1.20)  

More detailed considerations on open cells foams morphology and some new useful 

geometrical correlations will be presented and tested in the next sections. 

 

1.6 The pores size and the windows size: fundamental definitions 

Two more geometrical parameters are frequently used to characterize open-cell 

foams, namely the pore size (cell size) and the window size. In this work a net 

distinction between the two quantities will be made, though often authors give a 

different meaning to the "pore size" expression. As remarked also by Giani et al.[19] 

the unit cell in a foam resembles a polyhedron that limits a spherical-like inner space, 

so that a pore can be defined as the hollow volume of the polyhedron both PD or TD. 

According with [13, 16, 20] the diameter of the pore, dp, is the reciprocal of the 

number of pores per unit length that, in turn, is measured counting the number of 

pores contained in a certain length along a fixed direction (see fig.1.11b)- 

Alternatively, but less accurately it can be referred to as the reciprocal of the PPI 

(Pores Per Inches) quantity, that characterizes the foam and that is usually given by 

the manufactures. It makes reference to the original polymer sponges, starting by 

which the final foam is obtained, so that the PPI is meaningful only for that sponge. 

Representative metallic foams are depicted in Figures 1.11 and 1.12, that clearly 

exhibits the hexagonal faces and the square faces as well as a sphere-like structure of 

the cell with prevalently concave struts.  
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Fig.1.12. Representative metallic foams. 

  

Fig.1.13. Details of a representative pentagonal dodecahedric cell. [15] 

 

Examples of ceramic foam windows and struts are also pointed out. In the case of a 

foam whose cells have prevalent tetrakaidecahedric geometry and that, as 

consequence, can be represented with the simplified Kelvin model, there are three 

ways to interpret and calculate the pore size according to the ideal geometrical model 

of the foam used.  

One consists in the identification of dp with the diameter of a sphere tangent to the 

hexagonal faces; another one consists, instead, in the identification of dp with the 

diameter of a sphere tangent to the square faces; finally, the third method, simply 

consists in calculating dp as a mean of the above couple of values. On the contrary, 

for an ideal model of the foam, based on a cell with the PD geometry, dp can be 
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interpreted either as the diameter of the inscribed sphere (that is a unique one) inside 

the cell or as that of the circumscribed sphere, or, again, as their mean value. 

With the symbol dw we denote the diameter of the window (void) whose contour is 

formed by the struts (see figs.1.11-1.12). Generally, distinct hexagonal faces 

(hexagonal voids) and squared ones [23,24] (see fig.1.12) and sometimes pentagonal 

faces [17] (see fig.1.13) can be observed inside foams. In the first case, usually, the 

measured window dimensions are those of the hexagonal faces, which can be easily 

detected inside the foams. In these cases the measured diameter can be looked at as 

the diameter of the inscribed circle or, as it occurs more frequently, as the diameter 

of a circle having the same area as that of the hexagonal or pentagonal face. 

Sometimes, however, because of the ellipsoidal form of the window, the two axes of 

the ellipse are measured and their average value is assumed as dw [20] (see fig.1.13). 

Finally, some authors define the measured diameters as the mean values of the 

equivalent diameters of the square and hexagonal faces, by taking into account the 

relative theoretical weights or frequencies with which each type of face should occur 

in a random check [25]. The same authors, moreover, underline very clearly the 

difference between the window diameter and the reciprocal value of the "pore 

count", even if, they name "pore diameter, dp" the quantity that herein is indicated as 

dw. In particular, they emphasize difficulties that arise from counting the number of 

the pores from a plane cut through the foam which includes not only pores parallel to 

the observation plane but also pores lying in different space directions causing 

foreshortening and all kinds of sections of cells [25]. 

In some cases, however, the preceding distinction is not so clear and the pore 

dimension or/and the cell size are treated in a somewhat incoherent manner.  

Richardson et al. [14] define the quantity dp as 1/PPI or as the reciprocal of the 

number of cells per unit length, but afterwards they refer it as the diameter of circle 

having an area equivalent to the hexagonal window, thus obtaining a set of 

geometrical correlations, based on the Gibson-Ashby correlation (eq.1.15), 



Chapter 1  Gaetano Contento – Ph.D. Thesis  

 - 32 - 

frequently used in literature. Also in [16] the difference between dw and dp is not so 

clear. 

In the following the Richardson's correlations will be discussed, new correlations 

will be proposed, with the aim to better predict some geometrical parameters, 

particularly with reference to the interface fluid-solid area per unit volume, Sv.  

 

1.7 The Richardson et al.'s correlation [14]  

In order to calculate the diameter of the circle having the same area of the hexagonal 

windows, that is the area of an hexagonal face without considering the contribution 

of the struts, reference is made to one sixth of the hexagon (see fig.1.14). 

Thanks to very simple geometrical considerations, one can obtain the area of the 

window 

  
(1.21)  

Noting that the area of a circle of diameter dw is equal to π dw
2
/4, the following 

equation is then obtained imposing the equality of the two areas 

  (1.22)  

Richardson et al. [14] combined eq.1.22 with the Gibson-Ashby correlation eq.1.15 

and obtained the following important correlation between the window diameter, the 

porosity and the strut length 

  (1.23)  
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Fig.1.14. Sketch of one sixth of a hexagonal face with the portion of the strut thickness 

belonging t the unitary TD represented: a): cylindrical strut; b) prismatic triangular strut. 

 

Notice that, even though dw was determined using eq.1.21, it was defined as the same 

quantity elsewhere defined as the pore diameter. Moreover, a triangular cross-section 

was assumed in [14] and the Gibson-Ashby relation combined with eq.1.23 was 

used. 

However, a more useful correlation is often used, which directly links the strut 

thickness to the pore size, to the windows diameter and to the porosity by means of a 

suitable functional dependence for various cases. They substituted eq.1.23 into 

eq.1.15 and obtained the following Richardson's correlation 

  (1.24)  
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The above correlation was proposed by the authors in the implicit assumption that 

the Gibson-Ashby correlation works and the cross-section of the strut is triangular. 

However, the interpretation of dw is doubtful since in eq.1.24 in [14] it is defined and 

calculated as the window diameter, but the symbol dp is used instead of dw and 1/PPI 

is the way through which the authors seem to measure it using experimental data for  

PPI. In any case there is no doubt that eq.1.22 is used accounting for the quantity that 

there is called the window diameter. Equation 1.24 will be compared with other 

correlations in the following. 

 

1.8 The Inayat et al.'s correlation [7] 

Inayat et al. [7] presented three correlations for the cases of the tetrakaidecahedra 

model: cylindrical, triangular and concave cross-section. They did not derive the 

equations starting from basic geometrical argumentations but modifying the 

Richardson's relation eq.1.24. According to me, this implied an uncorrect 

modification of the Gibson-Ashby's correlation eq.1.15, on which eq.1.24 was based, 

under the assumption of validity for triangular strut. The authors use the correlation 

suggested for cylindrical strut, by considering the circle circumscribed to the 

triangular cross section (see fig.1.15). They considered two cases: a triangular cross-

section, for which Gibson-Ashby eq.1.15 was made reference to and a cylindrical 

cross-section. In the latter case a new equation (eq.1.25) was obtained multiplying 

eq.1.15 times the factor , thus obtaining an equation valid for a cylindrical strut 

circumscribed to a triangular prismatic strut in the hypothesis (however doubtful) 

that, in any case, eq. 1.15 correctly describes the last type of strut 

  (1.25)  

where the symbol lIn-c denotes that the strut is assumed to be a cylinder. 
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Fig.1.15. Sketch and the reciprocal geometrical correlations of an idealized: triangular strut, 

triangular concave strut inscribed in it, cylindrical strut circumscribed to it.[7]. 

 

The direct consequence is the somehow implicit assumption of the authors that, for a 

given porosity, the length of the cylindrical strut, when it is circumscribed to the 

triangular prismatic strut, is 2⁄√3 times longer than it. 

In a similar manner, starting again from eq.1.15, the authors introduced an inner-

concave triangular strut having the same vertexes of the triangular and associated to 

it an "apparent thickness" equal to the actual thickness of the triangular strut and an 

"effective thickness" related to the effective external surface of the strut, which 

should be considered in the evaluation of the specific surface Sv.  

The effective thickness was obtained by multiplying eq.1.15 times the factor , 

under the assumption that the thicknessis equal to the sum c + c (see fig.1.15). Once 

again and surprisingly, however, the implicit assumption in the paper is that the 

Gibson-Ashby correlation is still valid, in between the effective thicknesses dInayat-
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concave-effective - lInayat-concave. This implies, in turn, the explicit assumption that this last 

length is equal to the length, lIn-c, of the circumscribed cylindrical strut. 

However, as clearly shown by eq.1.14, no theoretical justification exists for a such 

type of assumption, because the relating foam in this case could not have the same  

porosity as that of the foam with cylindrical struts. In my opinion the three cases 

seem not coherently described. 

The three correlations proposed by the authors to link the thickness and the windows 

diameter in the various cases are reported in the following equations [26]. 

  (1.26)  

  (1.27)  

  (1.28)  

Equations 1.26 ÷ 1.28 show that if eq. 1.15 correctly describes a triangular prismatic 

strut two foams having a common value of the windows diameter, dw, and a 

cylindrical strut and a concave triangular strut, the former being circumscribed to the 

latter, should have the same density, that, obviously, would be absurd. In fact, if dw is 

the same, the same should also be the length of the TD edge, l, since c assumes the 

same value in both cases). Furthermore, eqs.1.26 ÷ 1.28 do not permit to distinguish 

concave struts from triangular struts, for a given porosity and a given windows 

diameter. Finally, eqs. 1.26 and 1.27 imply that two foams with the same porosity 

and the same window would have a circular shape, whose diameter is given by 

eq.1.26, and a triangular shape, whose side is given by eq.1.27, respectively, i.e. they 

would be circumscribed; this would again be absurd. 
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The above mentioned equations will be discussed in the following section, with 

reference to equations to be derived by them, account being taken of the interface 

surface for unit volume Sv in the three cases above considered. 

Now, we only remark that by the authors' position on concave profile follows that the 

measured thickness will be the "apparent" one, for which, again, we get 

  (1.29)  

the Gibson-Ashby correlation being valid in this case. 

 

1.9 New geometrical correlation among the strut thickness, the 

windows diameter and the porosity 

As previously deduced, however, more coherently with the assumption of a 

triangular cross-section of the ligament, eq. 1.18 should be used instead of the 

Gibson-Ashby’s one. With reference to fig.1.14, noting from the geometry that 

 

 

 

 

(1.30)  

it is easy to deduce that for the case of a triangular cross-section of a strut in a 

tetrakaidecahedric geometry (Ze = 3), only a third of the struts belongs to each cell 

(TD): it is a prism having a triangular cross-section, two sides of length c and one 

side of length t. Using the first and the second eqs.1.30, we obtain 
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  (1.31)  

and, using eq.1.22, 

  (1.32)  

When reference is made to a cylindrical strut, using the first and the third eqs.1.30 

and substituting them into eq.2.17, we obtain 

  (1.33)  

and, using eq.1.22, the following correlation is derived 

  (1.34)  

If eq.1.34 is substituted into eq.1.17 and eq.1.32 is substituted into eq.1.18, the 

following equations are derived for the struts with triangular cross-section 

 
 

 

(1.35)  

and for struts with a cylindrical cross-section 

 
 

 

(1.36)  
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Three differences can be noticed between the results of the above analysis and those 

of Richardson: 

1) not a unique correlation has been derived for the TD case, like it was in [14], 

independently of the shape of the strut cross-section (triangular or cylindrical); 

2) a clear connection to the window diameter dw and not to the pore (cell) diameter dp 

was found; 

3) two new correlations have been proposed. 

 

1.10 Correlations for the inner concave triangular cross-section 

profiles as function of the windows diameter 

It is now possible to propose a somewhat more refined correlation for the case of 

concave triangular cross-section ,which has usually proposed for a 0.94 – 0.99 

porosity range (see fig.1.10), namely for top porosities, in agreement with the 

terminology used in this work. 

Such a correlation is eq.1.42 and is obtained with reference to the inner concave 

triangular cross-section with a profile constructed adding up three circular arcs 

whose subtended cords are equal to the sides, t, of an equilater triangle that 

circumscribes the strut cross-section (see fig.1.16). The curvature centre of each 

circular arc is assumed too be the vertex of another equilateral triangle which has a 

common side with the external triangular profile. In other words, the arcs subtend 

60° angles. Under such assumptions the internal area delimeted by each arc of length 

s and its cord of length t is equal to 

  
(1.37)  
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where the first term is the area of a circular sector delimited by the arc s and the two 

sides of the external equilateral triangle (dotted line in fig.1.16) and the second term 

is the area of the triangle. The area of concave cross-section turns out to be 

  
(1.38)  

So, noting that t, we can write 

  (1.39)  

and, using eqs.1.39 and 1.14 the following coorrelation is finally obtained 

  (1.40)  

Naturally, similar considerations allow to deduce a useful correlation for an inner-

concave triangular profile among apparent inner-concave thickness, porosity and 

equivalent diameter of window. In this case eq.1.22 must be combined with a 

suitable expression of the x/l ratio (see eq.1.31 or eq.1.33 and fig. 1.14) valid for this 

specific case. In particular, also for a concave profile the first and the second term in 

eq.1.30 are valid. They link the apparent thickness, dic, which is equal to the side t of 

the circumscribed triangle, the geometrical parameters x and c and, using eq.1.40 

gives the following equation 

  (1.41)  

Now, with the ratio x/l given by eq.1.41 and using eqs.1.22 and 1.40, one can obtain 

the following interesting correlation 
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  (1.42)  

where the thickness dic assumes the clear meaning of the "apparent thickness" for the 

case of a triangular concave strut with fixed porosity, which is equal to the side of 

triangle circumscribed. However, in this case, such triangular strut has not the same 

porosity as that for the concave case, if the same is the windows diameter as it was 

implicitly assumed to derive eq.1.27, that is far different from eq.1.42, which was 

used for both the cases. 

 

 

Fig.1.16. Proposed simplified geometry used to describe inner-concave triangular prismatic 

strut. 
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1.11 New geometrical correlations among the strut thickness, the 

pore size and the porosity  

As it was already said, often the distinction between the pore size and windows 

diameter is not clear in the literature.  

In this work, however, with the aim to test the validity of the Gibson-Ashby’s 

correlation in cases where the pore size dp is clearly measured, correlations will be 

presented among the pore size, the thickness and the porosity. The pore size can be 

assumed to represent the diameter of the sphere tangent to the square faces, d1; the 

diameter of the sphere tangent to the hexagonal faces, d2; the average of d1 and d2 

 

 

 

(1.43)  

The first definition in eqs 1.6 and the average of d1 and d2, only when explicitly 

indicated,  will give the two following correlations respectively, for whichever cross-

section profile. 

  (1.44)  

  (1.45)  

 independent of the porosity of the foam. 

The correlations between the thickness and the pore size, considered as the distance 

between two faced square faces in both cases, eqs.1.17 and 1.44 give 

  (1.46)  

and, from eqs.1.18 and 1.44, one gets 
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  (1.47)  

It should be noted that in the above cases the dependence on the porosity is different 

from than in the previous ones. However, in all cases it is no surprise since in 

eqs.1.35 and 1.36 the windows diameter clearly depends on the pore size dp, 

increasing with it, and on the porosity, decreasing with it. 

Finally, considering that, as reported in the literature [13,17] there are many 

experimental evidences that in the 0.85÷0.94 porosity range the shape of the cross-

section of the strut varies from the circular to the triangular, it is useful to introduce a 

correlation among the measured thickness, the porosity and the size of the cell, in 

order to interpret the measured value as a middle form in-between them. The 

thickness, obtained as an average value of those given by eqs. 1.46 and 1.47, is 

  (1.48)  

From eqs.2.40 and 2.44, denoting the apparent thickness with the symbol dic instead 

of t, we obtain 

  (1.49)  

that is just equal to the measured value. 

Finally, with same procedure and starting form eq.1.15, the Gibson-Ashby 

correlation between the thickness of the strut and the pore size can be obtained 

  (1.50)  

different from Richardson's correlation eq.1.24. We can also remark that the Inayat's 

correlations discussed in section 1.8 imply the validity of eq.1.15 in all cases, i.e. that 

is not possible to distinguish the strut profile by means of the measure of the pore 
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size and of the porosity, whatever its range. On the contrary, this is made possible by 

the correlations herein proposed. 

In conclusion, it is worth noticing that as it was reported in section 1.8, the 

correlations of the eq.1.25 and the eq.1.29, here again represented, hold i.e.in all 

cases the Gibson-Ashby (correlation eq.1.15) 

  (1.25) 

  (1.29) 

The basic geometric eq.1.43, which directly links the length of the edges of a TD 

(indifferently lt or lc) and the dimension of the cell, dp, implies is that the correlation 

proposed by Gibson-Ashby (eq.1.50) must be used both for a cylindrical strut and for 

a prismatic triangular strut, in agreement with Inayat et al.. This permits to validate 

empirically and directly the Gibson and Ashby triangular strut assumption and the 

Inayat et al. all cross-sections assumption, apart the doubts already underlined, about 

equations 1.15, 1.24 and 1.50 that can be derived only from the following eq.1.14 

  (1.14) 

 

1.12 The Calmidi et al.'s pentagonal dodecahedric correlations 

[13,27] 

Calmidi et al. [27] were the first to propose a substantial simplification of the open-

cell foams morphological model. They introduced a modeling of the convective heat 

transfer based on a simple cubic structure (sc), i.e. a cubic reticular structure of 

cylindrical fibers, having an appropriate diameter, df, as depicted in fig.1.17. In such 
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a model both the fiber diameter df and their mutual distance dp
'
 must be suitably 

chosen, that is, in such a manner that the resulting sc structure has the same porosity  

(relative density ρr). In order to take into account the dependence of the fiber 

diameter on the porosity, they introduced the following shape parameter, G 

  (1.51)  

and derived the following correlation among the porosity, φ, the fiber diameter, df, 

and the square side of cubic pores, dp
'
, which had to be the distance between two 

close fibers in the simple cubic (sc) reticulate and not the dimension of the cell, a, 

  (1.52)  

Battacharya et al.[13] then modified eq.1.52 observing that it fixes only the ratio of 

the representative cylindrical fibers, df, to their reciprocal distance, dp
'
. In fact, 

imposing that the area of squared faces of the sc structure, equal to (dp
'
)
2
, coincides 

with the area of the pentagonal faces of the PD having an l edge, they derived the 

following correlation between the dodecahedric cell size a and the step of sc grid, dp
'
 

  (1.53)  

 

where the parameter a is determined by counting the number of cells in a given 

direction and repeating the procedure over different lengths to get an average value 

[16]. In other words a has the same significance of the pore or cell size, dp, as it is 

denoted in the present work. 
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Fig.1.17. Basic geometry of the Calmidi et al.model: on the left the simple cubic reticular 

structure at which actual foam is equivalently reduced; on the right the unitary ideal cell 

adopted in the model: i.e. a pentagonal dodecahedron [28]. 

 

Then, using this symbol the following correlation among the porosity, the diameter 

of the cylindrical fiber and the pore size can be derived for the case of PD geometry 

in sc representation 

  (1.54)  

And it will be referred to as the Calmidi correlation. 

Equations 1.53 and 1.54, in particular, were used by Zhao et al. [28, 29, 30] with the 

aim to model the actual foam from a geometrical point of view, in order to get an 

analytical model both of the convective and radiative heat transfer inside foams. 

The radiative model, in particular, inspired the work developed in this thesis in order 

to predict the radiative thermal conductivity by accurately using as the starter the 

model proposed by Zhao et al. and, successively, by modifying it by means of a 

geometrical modeling of open-cell ceramic and metallic foams, based on an idealized 

Kelvin's geometry and on a correlated lattice structure of the type "body centered 
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cubic" (bcc). All the details on this such approach will be discussed in the next 

chapter. 

As to the dp parameter, whose meaning in the Calmidi model is undoubtful, it is not 

fully clear if Zhao et al. [29,30] determined it either by counting the number of pores 

per unit length, i.e. in some way in the same manner by which the reciprocal of the 

PPI value (pores per Inches) given by the manufacturer is calculated, or counting the 

number of windows in the unit length in a cut plane through the sample. 

In fact, in the first case the pore size or the cell size, dp, interpreted as the distance 

between two faced pentagonal faces, should be measured whereas, in the second 

case, the quantity herein named the windows diameter, dw, which in the Calmidi's 

model is coincident with the step of the sc reticulate, dp', it should be equal to t. 

Finally, the first interpretation was preferred. 

 

1.13 Validation of the proposed correlations among the strut 

thickness, the porosity and the pore size  

With the aim to test the validity of the correlations in eqs.1.46 - 1.49 and eq.1.50 

experimental data presented by Calmidi and Mahajan [21] and by Bhattacharya et al. 

[13], summarized in Table 1.5, have been used. The pore size in the above referred 

papers should represent the diameter of the cell (dp herein) and not the void face 

diameter (dw herein).  

Measured values taken from [13] and values predicted in this work (eq.1.46), in this 

work (eq.1.47) and by Gibson-Ashby (eq.1.50 deduced using eqs. 1.43 and 1.15) of 

the strut thickness times  as a function of the cell size, in the 0.89 ÷ 0.98 

porosity range, are presented in fig.1.18. 

One can remark a small difference between values predicted by the Gibson-Ashby 

correlation (eq.1.50) and by the cylindrical correlation (eq.1.46), even though, for 
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instance, in order to evaluate the specific surface Sv, one must know the perimeter 

and, therefore, the shape of the cross section that in eq.1.50 was assumed to be 

triangular, should have a more important effect. Then, in order to account also for the 

dependence of strut shape on the porosity which is experimentally proved, it is useful 

to organize data in relation to this parameter. Data given by Bhattacharya et al. [13], 

and reported in fig.1.18, are divided and collected in three different groups: the first 

for the 0.89 ÷ 0.94 porosity range (figs.1.19 and 1.20); the second for the 0.94 ÷ 0.97 

porosity range (fig.1.21); the third for the 0.97 ÷ 0.98 porosity range (fig.1.22). 

 

Table 1.5. Morphological parameters of metal foams samples used to test correlations. The 

data are extracted from Calmidi and Mahajan [21] and Bhattacharya et al. [13]. 

Samples Porosity, φ PPI df (m) dp (m) 

1 0.9726 5 0.0005 0.00402 

2 0.9118 5 0.00055 0.0038 

3 0.9486 10 0.0004 0.00313 

4 0.9138 10 0.00045 0.00328 

5 0.8991 10 0.00043 0.0032 

6 0.9546 20 0.0003 0.0027 

7 0.9245 20 0.00035 0-0029 

8 0.9005 20 0.00035 0.00258 

9 0.9659 40 0.0002 0.0019 

10 0.9272 40 0.00025 0.00202 

11 0.9132 40 0.00020 0.0018 

12 0.971 5 0.00051 0.004 

13 0.946 5 0.00047 0.0039 

14 0.905 5 0.00049 0.0038 

15 0-949 10 0.00037 0.0031 

16 0.909 10 0.00038 0.00296 

17 0.978 20 0.00038 0.0028 

18 0.949 20 0.00032 0.0027 

19 0.906 20 0.00034 0.0026 

20 0.972 40 0.00023 0.0018 

21 0.952 40 0.00024 0.00198 

22 0.937 40 0.00024 0.002 
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Measured values taken from [13] and values predicted in this work (eq.1.46), in this 

work (eq.1.47) and by Gibson-Ashby (eq.1.50 derived by eqs. 1.43 and 1.15) of the 

strut thickness times  as a function of the cell size, in the 0.89 ÷ 0.94 

porosity range are presented in fig.1.19. The linear regression of experimental data, 

that has a minimum variance with respect to data, is also reported in the figure. 

The same experimental data and predictions of this work by correlations 1.46, 1.47 

and 1.48, in the 0.89 ÷ 0.94 porosity range, are presented in fig.1.20. It can be noted 

that the correlation 1.48 relative to a strut having an intermediate profile, between the  
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Fig. 1.18. Measured cell size vs. ligament thickness multiplied for the factor . 
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cylindrical and the triangular, matches very well with the experimental data. In 

particular, it adapts very well, and better than any other set of predicted values, to the 

best-fit line of experimental data, the correlation 1.48 having the minimum variance 

with respect to data. 

Measured data and predictions obtained by eqs. 1.46, 1.47 and 1.49, for triangular, 

cylindrical and inner-concave triangular cross-section, together with the linear 

regression of data, in the porosity range 0.94 - 0.97, are reported in fig.1.21.  
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Fig. 1.19. Measured cell size vs. ligament thickness multiplied for the factor  
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Table 1.6a. Data extracted from Fuller et al. [31]. Sintered FeCrAlY foam samples. 

Sample S1 S2 S3 S4 S5 S6 S7 

Measured pore size, 

dp (mm) 
3.131 3.109 1.999 2.089 0.975 0.959 1.998 

Measured ligament 

diameter 

df (µm) 

287 351 215 267 124 154 241 

Effective porosity, 

φ 
0.917 0.822 0.917 0.879 0.898 0.852 0.897 
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Figure 1.20. Measured cell size vs. measured ligament thickness multiplied for the factor 

. 
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Table 1.6b. Data extracted from Zhao et al.[24, 25]. Copper samples whose effective 

porosity coincide with outer porosity (full struts). 

Sample Cu1 Cu2 Cu3 Cu4 Cu5 Cu6 

Measured pore size 

dp  (mm) 
2.645 2.697 1.284 1.431 0.554 0.657 

Measured ligament diameter, 

df  (µm) 
263 270 122 127 88.8 93.2 

Effective porosity, 

φ 
0.926 0.885 0.940 0.881 0.927 0.915 
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Figure 1.21. Measured cell size vs. measured ligament thickness multiplied for the factor 
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Coherently with experimental observations [13] (see fig.1.10) the triangular cross-

section give the best predictions.  

Measured data and predictions given by eqs. 1.46, 1.47 and 1.49, for triangular, 

cylindrical and inner-concave triangular cross-section, together with the inear 

regression of data, for a porosity φ ≥ 0.97, are presented in fig.1.22 which clearly 

shows the validity of inner-concave triangular cross-section. 

0

1

2

3

4

5

1,5 2 2,5 3 3,5 4 4,5

Porosity 0.97-0.99

t-this work - Eq. 1.47
d-this work - Eq. 1.46
dic-this work - Eq. 1.49
Linear Regression
Experimental [13]

th
ic

k
n

e
s

s
*(

1
-

)-0
.5

 (
m

m
)

d
p
 (mm)

 

Figure 1.22. Measured cell size vs. measured ligament thickness multiplied for the factor 

. 
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Figure 1.23. Measured cell size vs. measured ligament thickness multiplied for the factor 

. 

 

Experimental data by Fuller et al. [31] and from Zhao et al.[24, 25], reported in Table 

1.6, have been used to test the correlations among the thickness of the ligament, cell 

size and the porosity, even though in these last works the interpretation of term "pore 

size" is somewhat doubtful. Furthermore, measured values of the relative density 

have been suitably corrected by the authors in order to take into account the effect of  

the hollow struts. An effective porosity of the investigated samples has been 

evaluated that could have introduced some inaccuracies in the evaluated quantities. 
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Figure 1.24. Measured cell size vs. measured ligament thickness multiplied for the factor 

. 

 

Data from Fuller et al. [31], with their linear regression, and predictions by eqs. 1.46, 

1.47 and 1.50 of the struts thickness times the factor , with the porosity 

ranging between 0.80 and 0.94, are reported in fig.1.23. In this case too one can 

remark that cylindrical correlation 1.50 fairly well matches the linear regression of 

the data in the 0.80 - 0.89 porosity range, in good agreement with results obtained 

with the Bhattacharya et al. data [13] for a porosity less than about 0.90, even though 
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the tendency to overestimate the thicknesses is exhibited (see fig. 1.24 for data in the 

range 0.80 - 0.89). 

Slightly different, nevertheless, is the case for a porosity in the range between 0.89 

and 0.94, presented in fig.1.25. Equation 1.46 still works well, except that for the two 

samples with smaller cells that are in good agreement also with the triangular model 

(eq.1.47). 
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Figure 1.25. Measured cell size vs. measured ligament thickness multiplied for the factor 
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We can conclude that, provided the cells size, dp, is known, eq.1.46 for a cylindrical 

correlation (or, with very little difference, the Gibson-Ashby eq.1.50) should be used  

for porosities less than about 0.89 - 0.90, while the triangular correlation (eq.1.47) 

should be employed for porosities in the 0.94 - 0.97 range. 

For porosities larger than 0.97, the inner-concave triangular eq.1.49 is recommended. 

Furthermore, for porosities in the range 0.89 – 94 the mixed circular-triangular 

correlation (eq.1.48) seems to be the best, even though, for data by [24, 25] the 

cylindrical correlation well matches measured values also in the 0.89 - 0.94 range. 

It is worth underlining that the proposed porosity ranges and the relatives suggested 

correlations agree very well with those presented by Bhattacharya et al. [21] and by 

Huu et al. [17]. It is, however, important to remark that in both papers the effect of 

the strut cross-sections and the differentiation of the morphological models are 

limited to triangular and cylindrical cross-sections and, above all, are based on a 

pentagonal dodecahedric cell instead of the tetrakaidecahedric one. 

In conclusion, results herein obtained confirm that such experimental observations on 

the strut profile are very well compatible and, till a refined level, with TD cell, too. 

 

1.14 Validation of the proposed correlations among the strut 

thickness, the porosity and the windows diameter 

Now the above proposed correlations among the significant parameters and windows 

diameter, eqs. 1.35, 1.36, 1.42, the classical Richardson et al.'s correlations (eqs.1.24) 

and Inayat's correlations (eqs.1.26 – 1.28) for various values of the porosity, will be 

validated, comparing them with experimental results taken from the literature. It is 

worth reminding that, when the cross section of the strut is a mix of a cylinder and a 

triangular prism, reference can be made to the average value of predictions from eqs. 

1.35 and 1.36. 
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A review of the experimental results reported in the literature was presented by Huu 

et al. [17], who compared them with predictions by a model based on a pentagonal 

dodecahedric cell. They are presented in Table 1.7. 

However, not all of the above mentioned data have been used in the present work. As 

a matter of fact, data taken from Giani et al. paper [19] have not been accounted for 

since they are the result of measured values of the strut thickness and of the specific 

surface predicted numerically by means of the cubic geometrical model proposed by 

Lu et al. [32]. 

 

Table 1.7. Morphological parameters of various foams samples [17]. 

Source Porosity, φ dw, (µm) ds, (µm) Sv, (m
2
/m

3
) 

Lu et al.[32] 0.96 500 92  

 0.96 1000 190  

 0.96 2000 360  

 0.92 500 110  

 0.92 1000 215  

 0.92 2000 440  

 0.88 500 130  

 0.88 1000 250  

 0.88 2000 490  

Du Plessis et 

al.[33,34] 

0.973 254 47  

 0.975 423 54  

 0.978 564 54  

Stemmet et al.[35] 0.931 2450 553  

 0.932 612 138  

 0.936 314 66  

Groβe et al.[20, 36]  

(Outer porosity) 
0.757 1096 258 1229 

 0.745 1232 422 1247 

 0.760 745 154 1974 

Huu et al.[17] SiC 

foam 
0.91 1326 405  

 0.90 1200 456  

 0.915 392 140  
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 0.91 1053 225  

 0.88 750 226  

Huu et al. [17] PU 

foam  
0.96 1259 303  

 0.955 893 284  

 0.98 591 120  

 0.97 797 166  

Buciuman and 

Kraushaar-

Czarnetzki [25] 

0.834 1500 680  

 0.864 1550 550  

 0.947 1580 430  

 0.799 950 300  

 0.851 959 280  

 0.884 940 270  

 0.897 980 260  

 0.767 580 220  

 0.837 620 20  

 0.844 630 180  

 0.797 340 150  

 0.849 360 90  

 0.872 370 70  

 0.827 210 90  

 0.878 250 40  

Moreira and Coury 

[37]  

0.94 2300  1830 

 0.88 800  1920 

 0.76 360  2340 

Incera Garrido et al. 

[10] (Outer porosity) 
0.772 1933 835 675 

 0.751 1192 418 1187 

 0.766 871 319 1437 

 0.761 666 201 1884 

 0.812 2254 880 629 

 0.814 1131 451 1109 

 0.807 851 330 1422 

 0.801 687 206 1816 

 0.719 1069 460 1290 
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On the other side, experimental data for alumina Al2O3 and SiSiC ceramic foams 

obtained by Inayat et al. [26] and Grosse et.al [20], have been added to experimental 

values from Table 1.7 and are presented in Table 1.8 and 1.9, respectively. 

In the Figure 1.27-1.32, as for the preceding case, the measured thicknesses and the 

calculated ones by means of the various correlations considered are plotted, after the 

multiplication for factor , versus the windows diameter dw.  

Measured and predicted values of the ligament thickness times the factor  

as a function of the windows diameter, dw, for different porosities, are reported in 

figs.1.27-1.32.  

 

Table 1.8. Morphological parameters of some SiSiC foam samples used to test correlations 

[7]. 

PPI dw, (µm) ds, (µm) φ (Outer) Sv, (m
2
/m

3
) 

10 1800 0.701 0.853 732 

20 1297 0.480 0.873 858 

30 1030 0.399 0.862 1136 

 

Table 1.9. Morphological parameters of some Al2O3 and SiSiC foam samples used to test 

correlations [20]. 

PPI (material) dw (µm) ds (µm) φ (Outer) Sv (m
2
/m

3
) 

10 (Al2O3) 1974 1007 0.688 639 

20 (Al2O3) 1070 651 0.719 1260 

10 (Al2O3) 1796 944 0.773 664 

20 (Al2O3) 955 509 0.745 1204 

30 (Al2O3) 847 391 0.754 1474 

45 (Al2O3) 781 138 0.763 1884 

10 (Al2O3) 1952 809 0.812 629 

20 (Al2O3) 1137 544 0.813 1109 

30 (Al2O3) 860 273 0.793 1520 

45 (Al2O3) 651 217 0.783 1816 

10 (SiSiC) 2181 695 0.865 477 

20 (SiSiC) 1603 470 0.867 683 
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Figure 1.26. Theoretical ratio  vs. the porosity. 

 

All the equations clearly show that the quantity  where d is the strut 

thickness, does not depend on dw linearly as is the case for the correlations involving 

the pore size parameter, dp. In fact, as in fig.1.26 it is plain that the ratio 

 depends on the porosity, φ. Anyway as shown the dependence of this 

ratio with the porosity is fairly weak, above all for the cylindrical case and for that of 

Richardson, and above all if the values of porosities are comprised in limited 

intervals with values at below of about 0.97. So, especially in order to compare the 

cylindrical model, the Richardson's model and the Inayat's model among them, in  
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Figure 1.27. Measured windows size vs. measured ligament thickness multiplied for the 

factor . 

 

restricted intervals of the porosities (less than 0.81, in the range 0.81 ÷ 0.89 or 0.89 ÷ 

0.94, for example) a linear regression can represent an acceptable good reference to 

validate predictions with experimental data (specially for cylindrical and triangular 

model herein proposed as it is shown in fig.1.26). 

The totality of data (Table 1.7-1.8) and predictions of the triangular model (eq.1.35), 

cylindrical model (eq.1.36), Richardson et al.'s model or Inayat's triangular apparent  
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Fig. 1.28. Measured windows size vs. measured ligament thickness multiplied for the factor 

. 

 

model (eq.1.24) and Inayat et al.'s cylindrical model (eq.1.26), for porosities less than 

89%, are presented in fig.1.27. 

The predictions for the triangular model have not been reported and a best linear 

regression is added in fig.1.28, where the three models seem to work fairly well, 

even though predictions for the cylindrical model (eq.1.36) seems to work better 

(together with Richardson's model), while Inayat's cylindrical model seems to work 

worse than the others.  
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Fig. 1.29. Measured windows size vs. measured ligament thickness multiplied for the factor 

. 

 

Naturally the results obtained with Richardson et al.'s model could be considered 

consistent with a concave triangular profile at the light of Inayat et al.'s model: but, 

as we know this is not consistent with experimental observations [13]. 

The substantial agreement between the prediction of the cylindrical model herein 

proposed and experimental data is furthermore confirmed if, accounting for th 

already mentioned dependence of the ratio  on the porosity, the 

experimental values are split in two sub-ranges of the porosity: 0.81 ÷ 0.89 and 0.70 
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÷ 0.81. In the latter porosity range the agreement between the best linear regression 

and the predictions of the cylindrical model is confirmed, whereas for the former 

porosity range the Inaya et al.t's model predictions seem to fit only slightly better 

than the correlation 1.36 (cylindrical model of this work). However it should to be  

underlined that splitting the porosity into intervals is only speculative because no 

substantial difference in the cross-section profile has been experimentally observed 

in actual foams for porosities less than 0.89.  
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Fig. 1.30. Measured windows size vs. measured ligament thickness multiplied for the factor 

. 
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Fig. 1.31. Measured windows size vs. measured ligament thickness multiplied for the factor 

. 

 

Therefore, predictions obtained using eq.1.36 and reported in fig.1.28 can be 

considered more coherent with experimental data for a cylindrical cross-section and 

for porosities less than about 0.89. 

The three correlations exhibit a fairly good prediction capability, the difference 

among the predicted quantities being rather small.  

In Figure 1.31 instead are shown experimental data and theoretical predictions for the 

porosity in the range 0.89÷0.94 and the linear regression of the data. As it possible to  
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Fig. 1.32. Measured windows size vs. measured ligament thickness multiplied for the factor 

. 

 

see the theoretical values which better match to the measured values are in this case 

those obtained with Inayat's cylindrical model and those obtained using a mixed 

model (cylindrical-triangular) by means of the average of the eq.1.35 and eq.1.36. In 

particular this last mixed model is in better concordance with the experimental 

observation. The Inayat's correlation truly works only slightly worse in this range, 
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Fig. 1.33. Measured windows size vs. measured ligament thickness multiplied for the factor 

. 

 

but should imply, again, that a cylindrical strut should be assumed till to values of the 

porosity as great as 0.94, in contrast instead with the experimental relevance reported 

in literature. 

Data in fig.1.31 refer to the 0.89÷0.94 porosity range. The best agreement with the 

measured values is exhibited by the predictions obtained with the Inayat's cylindrical 

model and those obtained using a mixed model (cylindrical-triangular) by averaging 
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eqs.1.35 and eqs.1.36. The mixed model shows the best agreement with the 

experimental data. The Inayat's correlation truly works only slightly worse in this  

range, but this should imply, again, that a cylindrical strut should be referred to up to 

a 0.94 porosity, in contrast with the experimental data reported in the literature. 

Finally, the adequacy of the approach herein proposed is further confirmed in the 

0.94 ÷ 0.98 and 0.98 ÷ 0.99 porosity ranges. Foremost in the 0.94 ÷ 0.98 range the 

triangular correlation (eq.1.35) clearly matches very well the data. The Richardson et 

al.'s and the triangular Inayat's correlations coincide and their agreement 

withmeasured values is not good, as fig.1.32 points out. It also notes that in this 

range of very high porosity (0.94 ÷ 0.98) a linear regression is not a very good fit for 

the data as evident also in the fig.1.32. 

One can remark that also for the data taken from the literature, with known window 

diameter and porosity, eqs.1.35, 1.36 and 1.42 work generally better than predictions 

by Inayat et al. and Richardson et al. for high porosities (φ > 0.80), specially in order 

as to the capability to predict the dependence of the cross-section shape variation n 

the porosity. They are also fully justified from a geometrical point of view differently  

from the other correlations herein discussed that seems to be justified at most under a 

strictly empirical point of view. 

To conclude, the unique value of the measured thickness for porosities larger than 

0.98, is reported in fig.1.33, that exhibits the prediction of our concave triangular 

correlation (eq.1.42) to be largely the best, also if it is not yet optimal.  

In conclusion of this section it is worthwhile remembering that a morphological 

model has been introduced and discussed that is the basis for the evaluation of the 

interface (solid-fluid) area per unit volume, Sv, an important morphological 

characteristic of a foam, that widely affects the radiative and convective heat 

transfer. 
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1.15 Prediction of the area of the interfacial surface per unit volume: 

indirect method 

The simpler method to obtain an useful expression of the specific surface area, Sv, 

namely of the interface area per unit volume of foam, is to derive it by means of the 

correlations which link the length and the thickness of the strut to the windows 

diameter. 

The unit cell or the REV (Representative Elementary Volume) of the idealized foam 

is assumed to be tetrakaidecahedric in this work. In order to evaluate the useful 

surface per unit volume, i.e. the surface directly involved in the convective and 

radiative heat transfer, reference is made to outer (open) porosity, φ. As it was 

pointed out in section 1.2, it coincides with the total porosity, φt, when the struts are 

not hollow, just like it is assumed in the present work; in the opposite case reference 

has to be made to the following equation 

  (1.55)  

where a suitable fictitious apparent density ρ
*
 is introduced. 

It is worth reminding high pressure experimental techniques allow to measure the 

hollow volume of the strut body and, therefore, to distinguish between the outer or 

open porosity and the total porosity [10].  

Practically, in order to calculate a suitable value of specific surface Sv in the various 

cases one must take into account the REV volume i.e. the volume of the TD that 

represents the cell and consider only the third of the strut perimeter (remember that 

for Kelvin's cell Zf = 30) facing the inner part of the cell. Then the external surface of 

a strut belonging into a unit cell is evaluated. At the first order of approximation, that 

is neglecting the effect of intersection of the strut at each TD vertex (24 vertexes), it 

is possible to distinguish three cases, that refer to strut with cylindrical, triangular or 
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inner concave triangular cross-section, respectively, whose the following expressions 

can be used 

  (1.56)  

  (1.57)  

  (1.58)  

Nevertheless, with the aim to get a higher level of accuracy, a more refined model of 

the interface area per unit volume Svc can be proposed, by evaluating more accurately 

the contribution of the vertexes at the interface area of the unit cell. At a second level 

of approximation the contribution to the outer surface of the terminal part of the 

cylinders at the vertex surface is currently counted three times in eq.1.56, once for 

each cylinder. With reference to fig.1.14 and to an lc long strut, it must be remarked 

that, for each strut in the unit cell, the extremities of the three struts converging at 

each vertex can be considered as an x long cylinder for which the first and the third 

in eqs.1.30 hold for a cylindrical strut. One can take into account this overcounting 

effect by considering only the contribution of one strut instead of that of the all three 

strut at the vertex. As a consequence, since one third of the outer surface of each strut 

must be considered, it is possible to conclude that for any vertex an area equal to 

  (1.59)  
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must be subtracted from eq.1.56 so that only the contribution of one cylinder is 

considered as indicated by the factor 2/3 in eq.1.56. Since there are 24 vertexes, we 

have 

  (1.60)  

where reference was made to eq.1.30 for the case of cylindrical ligament. 

If eq.1.60 is expressed explicitly as a function of the windows diameter and the 

porosity, the following correlation for the specific surface in the case of cylindrical 

strut is obtained 

  (1.61)  

This second order expression is substantially equivalent to a correlation proposed 

Grosse et al. [20] for the case of a Weaire-Phelan structure with cylindrical struts and 

spherical knots of suitable diameter,but in their work the correlation is a function of 

the reciprocal of the sum of window diameter and strut thickness, dw+d. Most 

important in [20] good results have been obtained for ceramic foams with 

coefficients obtained empirically. 

Naturally, the cylindrical correlation (eq.1.61) should be used only for porosities less 

than 0.94, for which the cylindrical model matches well the experimental data 

whereas eqs.1.57 and 1.58 should be used for very high or top porosities. 

Unfortunately, to the knowledge of the author of this work, no measured values of 

specific surface are available for foams with porosities higher than 0.9.  

As a matter of fact, Table 1.7 summarizes values taken from the Huu et al. [17] 

paper. In the Table 1.8, instead, are shown data by Inayat et al. [7] for ceramic 

foams: windows size, strut size and specific surface are measured with the aid of X-
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ray computed tomography (CT), while open porosity is determined with He-

picnometry and mercury intrusion. Finally, in the Table 1.9 there are other 

experimental values of specific surface measured for ceramic foams, with outer 

porosities, and windows diameters by means of Pycnometry and MRI or Volume 

Image Analysis by Grosse et al. [20].  

The first order of approximation of the correlations among the interface area per unit 

volume, the porosity and the window diameter, for the cases of a triangular strut or a 

inner-concave triangular strut proposed in this work, are reported in eqs.1.57 and 

1.58 in terms of strut thickness and strut length and, explicitly, in terms of porosity 

and windows size in the following  

  (1.62)  

  (1.63)  

The aim is to validate the correlations proposed in this work for porosities less than 

0.90, for which it is possible to make a comparison among experimental data from 

the literature and the predictions by the Richardson et al.'s [14] and Inayat eta al.'s [7] 

models, with reference to a given surface. These last papers, in particular, reported 

the following correlations [7, 14] which are also compared with predictions of this 

work  

  (1.64)  

  (1.65)  
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  (1.66)  

The Richardson's correlation always assumes a triangular cross-section whereas 

Inayat et. al.'s correlation adds to a triangular model other two correlations valid for 

the case of a cylindrical strut and a concave strut respectively. Equations 1.64, 1.65 

and 1.66 have been derived from eqs.1.26 and 1.28. 

In conclusion of this section it should be pointed out that the correlation proposed by 

Inayat et al. for the case of triangular strut is the same as that deduced by Richardson 

et al., and that the Richardson et al.'s correlation differs from that reported in [14], 

probably because of a misprint. For clearness this different expression is reported 

here in the following eq.1.67 

  (1.67)  

The expression of the specific surface is clearly indicated in [14] and it is calculated 

similarly to eq.1.57 with the proper values of thickness and length deduced by 

eqs.1.15 and 1.24: from which eq. 1.65 was obtained. 

 

1.16 Spherical direct correlation for the area of the interfacial 

surface per unit volume 

A morphological representation of an ideal foam based on the Kelvin's geometry is 

presented in this section. The inner pore of each tetrakaidecahedric cell is obtained 

subtracting the material contained in a sphere having a suitable diameter an ideal full 

TD. The above said diameter should be compatible with the measured characteristic 

of the foam, such as the diameter of the windows, dw, and the porosity,  This 

approach has already been proposed by Duan et al. .[8] for the case of a pentagonal 
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dodecahedric cell and by Krishnan et al.[38] for a reticular configuration of Kelvin 

type. It is not dissimilar from that proposed in the present work but for the different 

calculation procedure. Moreover, goals are slightly different since Krishnan et al. 

[38] aim to find a simpler alternative to the procedure based on the software Surface 

Evolver for building up the unit cell of an ideal Weaire-Phelan representation of a 

foam and obtaining a good mesh for a CFD calculations. In the procedure proposed 

in the present work the Kelvin geometry is strictly connected with a bcc (body 

centered cubic) lattice if one simply substitutes a lattice site at the centre of each TD, 

that is the TD is a Wigner-Seitz cell associated to a bcc lattice. If such a unit-cell is 

placed according a bcc lattice scheme, the foam can be easily reconstructed with 

concave triangular strut and lumps at the intersections, as it is often observed for very 

high or top porosities.  

 

 

Figure 1.35. Schematic representation of the unit cell in the herein so named spherical 

approach . 
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As an example of the above mentioned procedure a TD emptied in such a manner 

that a sphere opens a circular window in all the faces of the TD, both squared and 

hexagonal, is sketched in fig.1.35. The empting does not introduce any structural 

failure of the reticule with the break of the struts of the unit cell. 

This is not surprising as far as open cell metal foams are concerned, such as 

aluminum foams, since metal foams are made up by blowing gas through a molten 

metal, with ceramic particles as stabilizers [39] and with the formation of gas 

bubbles which tend to agglomerate with the liquid metal in the interstices. 

The model has also been used for graphitic carbon foams [40] and herein it will be 

tested for ceramic foams, too. The concave struts have been observed in the foams 

for porosities well above 0.9., however data used for the test refer to values of the 

porosity below 0.9. Also for this type of foam, however, a spherical type approach 

has been used to model the geometry, with the aim to carry on a numerical computer 

simulation, and it is justified also in this case by the manufacture technique [41]. 

From an analytic point of view the appropriate diameter of the sphere which must 

hollow out the TD can be determined imposing simple suitable conditions. 

With reference to fig.1.36, where the structure of a bcc lattice is sketched, it is 

possible to note that in the Kelvin's representation the unit ideal cell is a TD which 

can be obtained as the Wigner-Seitz cell of the bcc lattice. The fourteen first and 

second neighbourings of a lattice node are shown. The bisection of all the segments 

represented allows to construct the Wigner-Seitz cells. The eight hexagonal faces and 

the six squared faces of a TD, respectively, are thus obtained. 

As consequence, a is the distance among aligned sites of a bcc lattice and it is also 

the distance between two facing squared face of the TD, i.e. the pore size dp in the 

present work. 
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Figure 1.36. Schematic representation of a bcc lattice for which a the basic cube has edge of 

length a. The Wigner-Seitz cells are TD. At bottom the fourteen first and second 

neighbourings of a lattice node are shown: the bisection with planes of all the segments 

represented consents to construct the Wigner-Seitz cells  

 

From an analytic point of view the appropriate diameter of the sphere which must 

hollow out the TD can be determined imposing the following simple suitable 

conditions. At first, the diameter of the circle open on the hexagonal faces of TD 

must be equal to the measured windows diameter, dw, as defined in this work. In 

other words, the assumption is made that the measured diameter is only an average 

value of the hexagonal windows, the effect of the squared ones being neglected.  

Significant geometrical parameters in the spherical cap of a sphere of radius rs. A 

plane cuts off in the sphere a circle having a diameter dw if a distance equal to 

 is imposed between the plane and the center of the sphere. The distance 

between two facing windows is then equal to ). Figure.1.37 allows to 

conclude that 

 
 

(1.68)  

The portion of the spherical surface facing the pore can be calculated remembering 

that the area of a spherical segment of height h and radius rs is equal to 2 π rs h. As a 
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consequence, if So is the area of the internal surface of an open cell and if hhex and hsq 

are the heights of spherical caps onto hexagons and squares, respectively, So is equal 

to 

  (1.69)  

  (1.70)  

where the diameter of the sphere must be enough large to open the square face of the 

TD, as required by the first condition expressed by the eq.1.70, but also small enough 

to guarantee the structural consistence of the cell. In other words, it should not 

hollow out the struts, as required by the second condition in eq.1.71. Equivalently, 

the portion of the inner area of the sphere to be considered is equal to 

  (1.71)  

  
(1.72)  

where the first inequality in expression 1.72 guarantees that the hexagonal voids are 

opened and the second guarantees that only them are opened. 

Remembering that the volume of unit cell (TD) is equal to  

  (1.73)  

we can conclude that in the two cases of completely open cells and of partially open 

cells the specific area are, respectively, equal to  
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  (1.74)  

  (1.75)  

The length of the edge of a TD, l, is related to the pore size, dp, through eq.1.43, 

  (1.76)  

and fig.1.37 allows to write 

 

 

 

(1.77)  

and it is possible to conclude that the expression of the specific surface area reported 

in eqs.1.74 and1.75 can be also considered as a function of the radius of the sphere, 

rs, and the pore size, dp.  

A correlation which links the porosity of the foam to the parameters such as the 

radius of the sphere, the pore size and the windows diameter would be very useful. In 

fact, if for assigned porosity, φ, and windows diameter, dw, it were possible to 

determine the characteristics of the cell and, mainly, the pore size, dp, thanks to 

eqs.1.74, 1.75, 1.68 1.76, it would also be possible to calculate the specific surface 

area, in all cases.  

To express the porosity as a function of the other parameters of the cell some further 

simple considerations are necessary. If the volume of the spherical cap cut out from 

the sphere are denoted with the symbols Vsshex and Vsssq in the two cases of the sphere 
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Figure 1.37. A sphere of radius rs and a plane which cut off a spherical cap with base circle 

of diameter dw . at a distance equal to  from the center. 

 

segment onto hexagonal face and of the sphere segment onto square face, in the two 

considered cases of completly open cell and partially open cell we get 

 

 

 

(1.78)  

Furthermore, geometrical considerations permit to write 

 

 

 

(1.79)  

and, since it is possible to write 
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(1.80)  

in the cases of the completly open cell and the partially open cell, if eqs.1.76 ÷ 1.79 

are substituted into eq.1.80 the following two implicit equations are obtained in the 

two considered cases, respectively 

 

 

(1.81)  

 

 

(1.82)  

Equations 1.81 and 1.82 must be used when the disequations 1.70 and 1.72 are 

verified. They are substantially conditions onto the ratio of the sphere radius and the 

pore size, that, for an assigned windows diameter, can be transformed in suitable 

conditions on the porosities ranges. Imposing the appropriate conditions on the 

values of rs, hhex and hsq in the limiting cases before substituting them into eq.1.80, it 

is possible to determine the applicabilty ranges of eqs.1.81 and 1.82, respectively. 

The range of application of eq.1.81 is 

  (1.83)  
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obtained under the conditions  and  for the first inequality and 

by the conditions  and  for the second inequality. 

The range of application of eq.1.82 is 

  (1.84)  

obtained under the condition . 

In conclusion for assigned windows diameter, dw, porosity, φ, and pore size, dp, the 

implicit equations 1.81 or 1.82, can be solved numerically for this spherical model 

which, in turn, through eqs.1.68, 1.76 and 1.77 permits to evaluate the specific 

surface, Sv, with the aid of eqs. 1.74 and 1.75. In this paper the numerical procedure 

has employed the Mathematica  software [42]. 

However, the applicability conditions of eqs.1.83 and 1.84 and the above cited 

experimental observations on the geometrical profile of the strut cross-section and 

the conclusions at the end of the previous sections suggest that the present spherical 

model can likely be applicable almost in the high range of porosity (0.97 ÷ 0.99) of 

the eq.1.84. Unfortunately, as it will be shown in next section, the available 

measured values of the surface per unit volume, Sv, found in the literature, refer to 

porosities less than 0.9 so that the eq.1.81 and 1.75 can be used and tested only in 

this range: i.e. exactly that which the author estimate less coherent and adapt. 

 

1.17 Validation of the proposed correlations to calculate specific 

surface of a foam Sv 

All the correlations proposed in the preceding sections for the prediction of the 

specific surface, Sv, are a function of the windows diameter, dw, and of the porosity, 

φ, since, apart from its importance, all the measured values found in the literature and 
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reported in Table 1.7 and 1.9 refer to foams whose windows diameter and not pore 

size is known. 

The triangular correlation, eq.1.62, the triangular inner-concave eq.1.63, the 

spherical described in the preceding section 1.16 are first considered. The reason is 

simply that, as anticipated in the previous section for the spherical model, in 

principle and on the basis of the images of real foams (ref.[16]) so like on the basis 

of the conclusions of the sections 1.13-1.14 those correlations are those that should  
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Fig. 1.39. Measured windows size vs. specific surface. 
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not fit well to the experimental data because it refers to geometrical profiles observed 

at more higher values of the porosity. At contrary, as confirmed by our analysis of 

the experimental data of the section 1.13-1.14 it is waited that, for porosity less than 

0.90 how are those in the Table 1.7 and 1.9 generally the cross-section of the profile 

of the strut is circular, or that, as a minimum, this has not a cross-section with 

concave profile; which should then exclude the predictive capability of the spherical 

model or of the inner concave correlations of the eq.1.63 or 1.66. 
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Fig. 1.40. Reciprocal of the measured windows size vs. specific surface. 
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Experimental and predicted values of the specific surface, Sv, as a function of the 

window diameter, dw, for porosities less than 0.9, are reported in fig.1.39.  

The specific surface area as a function of the window diameter, with experimental data 

taken from Table 1.7, and 1.8 and predictions of the Inayat et al.'s cylindrical model 

(eq.1.66), triangular model in this work (eq.1.62), concave-triangular model in this 

work (eq.1.63), spherical model in this work (eqs. 1.81 and 1.82)., in the 0.89÷0.94 

porosity range, is reported in fig.1.39. 
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Fig. 1.41. Reciprocal of the measured windows size vs. specific surface. 
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Somewhat surprisingly the spherical correlations work better than the concave 

correlation, which, in turn, seems to work better than the concave Inayat et al.'s ones. 

However, the agreement is in all cases better than that for the triangular correlation  

that, it is again worthwhile to underline, is a first order approximation that does not 

take into account the contribution of the lumps; it can easily explain the 

overestimation of the specific surface area. 
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Fig. 1.42. Reciprocal of the measured windows size vs. specific surface. 
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A more detailed analysis is possible if the specific surface area is represented as a 

function of the reciprocal of the window diameter. Therefore, specific surface area as a  

function of the reciprocal of the window diameter, with experimental data taken from 

Table 1.7, 1.8 and predictions of the Inayat's cylindrical model (eq.1.66), triangular 

model in this work (eq.1.62), concave-triangular model in this work (eq.1.63), 

spherical model in this work (eqs. 1.81 and 1.82), the linear regression of the data, in 

the 0.70÷0.90 porosity range, is reported in fig.1.40. 

The specific surface area as a function of the reciprocal of the window diameter, with 

experimental data taken from Table 1.7, 1.8 and predictions of the Inayat's 

cylindrical model (eq.1.65), Richardson et al.’s triangular model (eq.1.64), 

cylindrical model in this work (eq.1.61), spherical model in this work (eqs. 1.81 and 

1.82), the linear regression of the data, in the 0.70÷0.90 porosity range, is reported in 

fig.1.41. 

It should be pointed out that eq.1.64 makes implicit reference to triangular struts, 

without any limitations in the porosity range for its application. On the contrary, the 

other two predicting correlations for cylindrical struts apply for porosities lower than 

0.9, according to Bhattacharya et al. [13] and according to the results herein obtained 

(see sections 1.13-1.14). 

Figure 1.41 clearly shows that the triangular concave and the spherical models are 

the best among those chosen and work acceptably even though they were designed 

for larger porosities. One can also notice that all the models exhibit a nearly linear 

trend even though the corresponding correlations exhibit a dependence on the 

porosity; on the contrary, the triangular concave model shows a marked sensivity to 

porosity variations that alone can to explain the larger scattering of data. 

Also the experimental data are largely scattered, as it was to be expected considering 

the difficulty in measuring the specific surface, the roughness of the surface, the 

irregularities of the structure and the different measuring techniques used. Again a 

linear regression has been proposed for these data implicitly admitting that the 
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dependence of the surface per unit volume Sv on the porosity is negligible according 

to the theoretical models considered, as fig.1.41 points out, except for the triangular 

model, that exhibits the worst prediction of measured data. 

Figure 1.42, where the same quantities as those in fig.1.41 are reported, apart from 

predictions of eq.1.64 and sections 1.16, shows that the cylindrical correlation herein 

proposed (eq.1.61) matches very well with linear regression of the data, that is, the 

agreement of such correlation with experimental data is certainly the best one. Also 

the Inayat's cylindrical correlation works well, even though worse than the other. In 

any case, however, it has been already underlined that in the author opinion such a 

correlation has a doubtful theoretical base and gives incoherent results. 

 

1.18 Conclusions 

In this chapter the morphology of the actual open-cell foams have been reviewed. 

Some geometrical idealizations of the actual random reticular structure are possible. 

Polyhedral solids as cubes, tetrakaidecahedrons (TDs), pentagonal dodecahedrons 

(PDs) are considered useful basic units of an idealized, but yet realistic, structure 

which resembles to a typical ceramic or metallic foam. 

The ligaments of the reticular structure are located where there are the edges of 

polyhedrons and can be either hollow or not. Their cross-sections are assumed to be 

circular, triangular or concave triangular as many experimental evidences clearly 

show. The thickness of struts is then appropriately defined, taking into account their 

cross sections. 

The typical and useful correlations used in the literature link the main morphological 

parameters of the foams, such as the porosity, the strut thickness, the strut length, the 

cell size or the windows size with a functional relation, according to the assumed 

basic unit geometry. In particular, since only polyhedra which fill the space without 

overlaps neither voids have been considered, for the case of PD cell, a suitable 
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correlation has been taken from the literature which reduces it to an equivalent cubic 

structure. 

The principal and conventional morphological correlations have been considered and 

studied and new correlations have been proposed. Furthermore. correlations which 

express the functional dependence of the interfacial surface area per unit volume on 

the windows diameter and the porosity have been presented, taking into account the 

different cross-sections in different porosity ranges. 

Finally, all correlations and experimental data have been compared. 

The results show that: 

•  differently from what is reported in the literature, a clear distinction has to be made 

between the cell size and the windows size and, therefore, different correlations 

have been proposed as a function of them; 

•  four ranges of porosity can be distinguished (0.70 ÷ 0.90, 0.90 ÷ 0.94, 0.94 ÷ 0.97, 

0.97 ÷ 0.99,) each of them implying a different cross-section and, then different 

correlations, must be used and have been successfully used; 

•  in agreement with the previous conclusion and with experimental data, the 

predicted cross-sections tend to transform first from circular into triangular and , 

then, into concave triangular with the rise in the porosity; 

•  the herein proposed correlations generally agree with experimental data better than 

correlations found in the literature; 

•  the cylindrical correlation of the interfacial surface area per unit volume proposed 

in this work gives the best prediction of experimental data in the allowed (< 0.90) 

porosity field of investigation. 

This more accurate modeling of the foam morphology can become useful when a 

realistic geometric representation of the open-cell foams is needed.
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2 Radiative heat transfer in open 
cells metallic and ceramic foams 
 

2.1 State of art 

2.1.1 Introduction 

Thanks to the technological progress and to the recent development in the areas of 

processing, manufacturing, analysis and design of the open cell foams (metallic, 

ceramic or carbon based), these materials are nowadays widely used in a large 

number of structures and systems. Their specific thermo-mechanical characteristics, 

in particular in terms of stiffness-strength ratio, lightness, tortuosity, good flow-

mixing capability, high surface area density (i.e. surface area of the solid-air or solid- 

fluid interface per unit volume) which, for metal foams, is in the 1.000 ÷ 3.000 

m
2
/m

3
 range and can reach values as high as 8.000 m

2
/m

3
 after compression [43], are 

very useful in many cases [44–46]. 

 

 

Fig. 2.1. Ceramic foams burners (on the left) and metal foams brazed or soldered to a 

substrate to form heat sinks (on the right). 
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Figure 2.2. Some examples of metallic foams applications. 

 

In fact, the efficiency of the foams removing heat is unique and attractive in a great 

variety of industrial sectors and practical or scientific applications where heat 

transfer is important, from the solar thermal or thermochemical applications [47–61] 

to the thermal control of electronic systems, where high heat fluxes must be removed 

[43] and to automotive and aeronautic sectors [62–64]. In all these applications the 

lightness and low density requirements, stiffness/strength of the structures together 

with low production costs are very important. 

Ceramic [65, 66] and metallic foams [44, 45, 66, 67] are widely used in many 

applications, such as thermal insulation and protection systems in aircrafts (specially 
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C/SiC, SiC/SiC) [65]; molten-metal and diesel-engine-exhaust filters [68, 69]; porous 

radiant burners [70]; catalyst supports [71]; volumetric absorbers in receivers of 

concentrator solar systems for thermal applications or thermochemical reactors [47–

49, 54]; fire barriers [72]; compact heat exchangers [32]; impact-blast energy 

absorption systems; sound absorbers; electrodes for electric battery; catalytic reactors 

for biodiesel [44,45]; matrices for absorption and desorption; steam reformers for 

fuel cells, wicks for heat pipes and vacuum chambers [43, 73–82]. Some examples of 

applications f open cell foams are reported in figs. 2.1 and 2.2. 

In most of the previously mentioned applications the good knowledge of the thermal 

behavior of the foam is essential. Moreover, they generally imply high temperatures 

and, thus, the radiative heat transfer plays a significant role and, therefore, it must be 

accounted for. 

 

2.1.2 Modeling of the radiative heat transfer: analytical, numerical 

and experimental analysis 

The analysis of the radiative heat transfer in heterogeneous and porous media, where 

the opaque phase is usually solid, is complex. In fact, the absorption, the emission 

and scattering of radiative energy by the solid phase occur, and, strictly, they depend 

not only on the porous structure of the phase, which is inherently randomly 

distributed in the fluid phase, but also on its optical properties, that are hardly 

available at high temperature. 

Porous or heterogeneous materials can be classified as semi-transparent or dispersed 

media and their radiative characteristics can be evaluated by means of an analytical 

or numerical modeling of the heat transfer together with an experimental approach 

based on direct measurements of the reflectance and the transmittance or, 

alternatively, on a ray-tracing Monte Carlo simulation [83, 84]. 
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In general, two orders of problems must be addressed for the dispersed materials: the 

determination or, better, the modeling of the radiative energy transfer in the 

heterogeneous media, in terms of a suitable solution of the radiative transfer equation 

(RTE) that, in turn, can be adequately and variously formulated and the 

determination of the fundamental radiative properties that affect the heat transfer 

[85]. 

Two methods are commonly used to account for the foams microstructural level. 

The first consist in building analytical models of the medium in such a way that they 

link the geometry and the pore level, i.e. the microstructure of the foam or of the 

dispersed phases (one or more, transparent or not) of the medium, to the radiative 

properties of an equivalent continuum medium i.e. a pseudo-continuum. 

Subsequently, the related RTE, or the RTEs, are solved at the continuum level, 

analytically or numerically. In order to solve the RTE, a continuous standard 

formulation or, alternatively, a discrete formulation can be adopted, that make use of 

a continuous or discontinuous representation of the medium, respectively. Analytical 

methods and Monte Carlo simulation are usually used in the two formulations, 

respectively. 

The second consists in directly simulating, at the pore level, the radiation heat 

transfer. 

In any cases, however, in the most part of works the validity of geometrical optics is 

assumed (since wavelengths of the involved radiation generally can be assumed to be 

far shorter than the characteristic dimension of the solid scattering elements) together 

with the assumption of independent scattering particles [85]. 

The theoretical and experimental approaches to the models of radiative heat transfer 

in foams are reviewed in [43] and in [85]. 

In a semi-transparent continuum or pseudo-continuum medium the radiative energy 

transfer is governed by the already mentioned RTE. For a participating medium, i.e. 
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a scattering, absorbing and emitting medium, a radiative balance can be made, that 

describes the radiative intensity field within the enclosure containing the 

medium as a function of vector position, r, the unit direction vector, ŝ, and 

wavelength, λ. Taking into account the contributions in all directions and all 

wavelengths it obtains 

 

 

(2.1)  

  (2.2)  

where 

  is the monochromatic scattering coefficient, which quantifies the energy 

flux removed and redirected by the material from the incident direction 

without absportion, 

  is the monochromatic absorption (emission) coefficient, 

  is the monochromatic extinction coefficient, that represents the fraction of 

radiative intensity that is removed by a pencil of rays around a certain 

direction  by scattering or absorption per unit length in that direction. 

All the listed quantities are measured in m
-1

 and their reciprca represent the mean 

free path of a photon before it is scattered, absorbed or extinct. In addition, the single 

scattering albedo,  is frequently used and measured. 

The term  in the equation 2.1 is the black body intensity whilst the third term 

containing the integral take into account the radiant energy per unit time that moving 

from all directions are by scattering redirected in direction . 
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Equation 2.1 is a formulation of the radiant energy balance at a local level and the 

phase function of scattering,  [83, 84] describes (but it is not equal to) the 

probability that radiation moving from the direction  is scattered in the direction . 

We have the following normalization condition 

  (2.3)  

Referring to a one-dimensional problem for which the temperature gradient exists 

only (or substantially) in the direction of the z axis, the relation between  and 

the total radiation heat flux parallel to the gradient is obtained by integrating over all 

the directions 

  (2.4)  

where ,  is the polar angle about the z direction and cylindrical 

symmetry holds. 

As a consequence, in order to describe radiative heat transfer within a semi-

transparent medium, the radiative characteristics of the medium, such as the phase 

scattering function and the absorption and the scattering coefficients, must be 

somehow obtained by means of experiments, numerical simulations, theoretical 

approaches to model the involved phenomena or a mix among them. For example, 

theoretical approaches can use either a combination of the geometric optics and of 

the diffraction theory or alternative methods, such as Mie theory based on Rayleigh 

scattering or Rayleigh-Debye-Gans scattering from the others [85–87], as a function 

of the ratio of the wavelength to the typical dimensions of the target. Results of 

radiation transmitted through, reflected by or scattered by the foam, together with the 

solutions of RTE and the simulations by means of numerical-analytical techniques 
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based on Monte Carlo method can be used, too [88, 89]. Naturally, the Geometrical 

Optic Approximation (GOA) greatly simplifies the theoretical approach and it is very 

often used in with foams whose typical dimensions (the pore diameter, dp, and the 

thickness of strut, d) are in the order of hundreds of micrometers so that the size 

parameter x = π* dp/λ is typically far larger than 1 for temperatures in the order of 

hundreds of Kelvin degrees and GOA can be adopted. 

In general, when it is necessary, porous media geometry can be implemented by 

geometrical approximations [87, 90–93] or using data from X-ray Computer 

Tomography (CT) [66, 94–99]. In any cases, the very problem is the determination 

of the radiative characteristics of the pseudo-continuous medium. Tancrez and Taine 

[100] proposed a method to directly identify the absorption and scattering 

coefficients and the phase function starting from their physical definitions. With the 

usual geometrical optical approximation and assuming a porous medium with 

statistically isotropic distribution, a Monte Carlo ray tracing method, for a 

sufficiently large number of rays, was used to evauate the significant radiative 

parameters. The same method was applied for the evaluation of extinction and 

absorption coefficients with anisotropic phase function in highly porosity metallic or 

ceramic foams. The morphology at the microstructure level necessary for the Monte 

Carlo ray tracing method was obtained in some cases with the aid of the X-ray CT 

[101, 102] and in other cases thanks to an appropriate geometric approximation of 

the open basic cell of the foams, as in [91], where both tetrakaidecahedron (TD) and 

pentagonal dodecahedron (PD), with a triangular cross-section of the strut, were used 

to represent the unit cell. Placido et al. and Coquard et al. [93, 103] developed a 

geometrical cell model to predict the radiative and conductive properties of various 

types of insulating foams, such as expanded polystyrene, extruded polystyrene and 

polyurethane foams with different morphologic structures. The effective thermal 

conductivity of foams was compared to experimental data. The same type of solution 

will be adopted in this work (sections 2.2 and 2.3), making use of the results and the 

correlations proposed and validated in Chapter I. This approach is works very well in 
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the design and the optimization of the engineering devices. 

For scientific purposes the Monte Carlo method is frequently used in conjunction 

with a 3-D tomographic representation of the foam microstructure. Besides the 

already mentioned authors, Petrasch et al. [94] investigated theoretically the radiative 

heat transfer in reticulated porous ceramics, in order to define the representative 

elementary volume (REV), that represents from a statistical point of view the 

medium for the continuum domain. Subsequently, the works of Loretz et al. [95], 

Akolkar and Petrasch [98], Coquard et al. [99] moved along a similar approach to 

represent the morphology of foams. 

However, the most part of the studies that analyze the media as a continuum and 

solve the RTE make use of the Homogeneous Phase Approach (HPA) It assumes a 

composite medium as equivalent to an optically homogeneous medium, in such a 

way that a unique RTE, like that in eq.2.1 and a unique intensity of radiation can be 

used to model the thermal radiation. Alternatively, the discrete modeling of foams, 

that overcomes some difficulties met in the HPA approach, makes reference to an 

equivalent medium and combines it with implicit or inverse techniques [43,88]. 

Baillis et al. [104, 105] used the HPA to model radiative heat transfer in carbon 

foams for aeronautic and spatial thermal insulation. The authors used a combination 

of the geometric optics laws and of the diffraction theory to study foams constituted 

of randomly arranged struts with triangular cross-sections. The reflectivity of the 

material was identified by means of bi-directional transmittance measurements in the 

0.2 - 2.1 μm wavelength range. Loretz et al. [95] reviewed analytical models for the 

computation of radiative characteristics of foams for a wide variety of cells shapes 

and struts cross sections. The authors determined the model and the microstructure 

that best simulate the radiative behaviour of high porosity metal foams, comparing 

predictions by the model with results of spectrometric measurements. The above 

cited model was used by Coquard et al. [106,107] in the prediction of coupled 

conductive and radiative heat transfer in metallic foams at fire temperature. The same 
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authors [107] investigated the coupled conductive/radiative heat transfer for NiCrAl 

and FeCrAl foams and ceramic foams using thermograms obtained from laser-

FLASH measurements. They concluded that three thermal parameters, the effective 

conductivity of the foam, the extinction coefficient and the scattering albedo 

coefficient (defined as the ratio of the scattering coefficient to the extinction 

coefficient) can roughly determine the thermal radiation behaviour in porous foams. 

More recently a refined multi-phase approach (MPA) has been suggested to model 

heterogeneous participating media constituted of two transparent, semitransparent or 

opaque homogeneous phases [97, 108, 109]. The approach is substantially 

continuum-based and is applied both for open cell metal foams and closed cell 

polymer foams [97]. The MPA method is an extension of HPA and introduces two 

RTEs: one for the solid phase and one for the fluid phase, each-other coupled. If the 

boundary conditions at the interfaces of the two phases are suitably addressed and the 

exact morphology of the microstructure is known, the coupled equations can be 

solved by means of the stochastic ray tracing based on Monte Carlo method 

[108,109]. The morphology to solve the problem is exactly determined by means of 

X-ray CT which furnishes a 3-D mesh of the detailed structure. The spatial averaging 

theorem is applied to rigorously derive continuum-scale equations of the radiative 

transfer in two-phase media consisting of arbitrary-type phases in the limit of 

geometrical optics [109]. 

Going back to the methods to solve the RTE in a continuum medium (eq.2.1), it is 

important to illustrate one of them, the Rosseland approximation [83, 84], frequently 

used and particularly useful in the design and the optimization of heat transfer in 

optically thick porous media. 

Details about the optically thick approximation or diffusion approximation can be 

found in ref. [83, 84]. Here the final steps of the approach are reported. Let η be the 

wave number associated to the wavelength, λ, the spectral radiative heat flux in a 

certain direction, that is, the heat flux within a unitary wave number range, and 
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perpendicular to an infinite plane at constant temperature T in the direction z is given 

by the following equation 

  (2.5)  

that, integrated on all wave numbers, gives the total radiative heat flux 

  (2.6)  

where  is Stefan-Boltzmann constant, n is the refraction index of the medium and 

 is the Rosseland-mean extinction coefficient, defined as 

  (2.7)  

Equation 2.9, valid for an optically thick medium, i.e. for , with L the 

thickness of the foam, has the same form as the Fourier's law of heat diffusion and 

the Fick's law of mass diffusion, from which the alternative name of diffusion 

approximation follows. Thanks to this approximation it is possible to directly 

introduce a radiative conductivity 

  (2.8)  

in such a manner that the radiative heat diffusion can be treated as a "conduction" 

problem with a conductivity strongly dependent on the temperature 
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  (2.9)  

Thanks to eq.2.8 the radiative conductivity is strictly coupled to the temperature-

dependent specific anisotropic extinction coefficient  that is to be determined 

by experimental-numerical approaches [91, 95], such as inverse methods [43, 88, 

108] or Monte Carlo simulations [91, 94, 95, 100–102]. 

In general, however, the solution of the RTE allows the evaluation of the radiative 

heat flux, qr, between two parallel plates placed at distance L and at the temperatures 

Th and Tc. It is then possible to calculate the kr by means of the following eq.2.10, 

that is obtained integrating eq.2.9 and assuming a linear gradient of the temperature 

(this hypothesis is valid for samples having a small thickness) 

  (2.10)  

The above method has been used in the models proposed in this thesis for 

sufficiently thick samples. If samples aren’t optically thick the radiative conductivity 

coefficient can depend on sample thickness, temperatures and emissivity of the cold 

and hot plate [110–112], as it will be discussed in sections 2.2.6 and 2.3.5. 

An expression such as eq.2.10 is very useful in the solution of radiative heat transfer, 

especially because of the importance of the coupled conductive-radiative heat 

transfer in the practical applications of metallic and ceramic foams. The problem has 

been treated by Zhao et al. from an experimental point of view in the case of steel 

alloy FeCrAlY foams with various pores sizes and porosities [113]. The data of Zhao 

et al. have been used in this work with the aim to test two new models of radiative 

heat transfer, which can be considered an evolution and refinement of a Zhao et al.'s 

analytical approach [92], since they better predict the radiative conductivity. Also 

Coquard et al. [107, 110] investigated experimentally the coupled heat transfer in 



Chapter 2  Gaetano Contento – Ph.D. Thesis  

 - 101 - 

metallic and ceramic foams at high temperature using the laser-FLASH technique on 

several sample foams of NiCrAl, FeCrAl, Mullite and PsZ. They measured the 

effective thermal conductivity at high temperatures and two radiative properties of 

the equivalent homogeneous semi-transparent materials associated with the foams 

(the extinction coefficient and the albedo scattering) to analyze the heat transfer. The 

authors concluded that the coupled heat transfer is relatively weak;[107,110] the total 

heat transferred through the foams can be simply obtained summing the contributes 

of conduction and radiation obtained separately with the Fourier expressions 

  (2.11)  

with 

  (2.12)  

This approximation, used also by Zhao et al. in their attempt to model the radiative 

heat transfer [92], greatly simplifies the problem still being accurate enough. This is 

also assumed in the present work (sections 2.2.2 and 2.3.2) and ensures that the 

approaches and the analysis proposed to evaluate the radiative heat conductivity 

make sense in the high temperature practical applications. 

Glicksman et al. [114, 115], Lee and Cunnington [116, 117], and Caps et al. [118] 

modeled thermal radiation in fibrous insulations by using a diffusion approximation 

based on a combination of the geometric optics laws and diffraction theory. Very 

interesting were the works of Glicksman et al., in particular from an engineering 

point of view. The authors, in fact, use a type of ideal geometric approximation of 

the unit cell which was discussed in section 1.12 of this work, i.e. a pentagonal 

dodecahedron (PD) with a triangular cross-section. On the basis of empirical 

considerations and experiments, they suggest a correlation which links directly the 
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extinction coefficient to the porosity of the foam and to the pore size [110,114,115]. 

This approach has many common points with the approach used in this work, that is 

to try to determine methodologies and suitable correlations that allow to evaluate the 

radiative conductivity as a function of the temperature and the significant 

morphological parameters for a fixed geometry of the unit cell. In other words, the 

objective is to identifying the parameters of the foams that characterize their thermal 

behavior. A similar approach would be very useful in many fields of applications 

making easier the design and the optimization of the practical devices as recognized 

by other authors, too [110]). 

Zhao et al. [119] developed a numerical model for the study of the radiative heat 

transfer in metallic foams. However, it seems to be not quite suitable in engineering 

applications because of the complicated optical theories which make the underlying 

physics implicit. Consequently, the authors, successively abandoned the effective 

medium approach and proposed a rather simple explicit analytical model, based on a 

discrete representation of foams, in order to establish functional relationships 

between the cellular structure and the radiative transfer characteristics, in terms of 

radiative conductivity of metallic foams [92]. The radiation in open-cell metallic 

foams is described with reference to cells having an ideal morphology. The model 

assumes a simple cubic cell consisting of slider cylinders as unit cell. The predicted 

effective radiative conductivities were compared with those of FeCrAlY foams 

measured by the same authors in vacuum [113]. The Zhao’s et al. model was also 

used by Andreozzi et al. [120] to evaluate the local radiative conductivity and the 

effect of radiative heat transfer in a two-dimensional conductive-convective-radiative 

problem involving a forced fluid flow within a heated channel filled with a metallic 

foam. However, the test performed on the model showed that it led to inaccurate 

predictions of the actual heat transfer rate. 

In order to improve the predictive capability of the Zhao et al.'s analytical model a 

numerical approach to calculate view factors and coefficients different from those 
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evaluated in [92] is proposed as the first step in section 2.2 of this thesis. In 

particular, Monte Carlo simulations [83,84,121][83, 84 ] realized with ray tracing 

software TracePro [122] are used to calculate the view factors which cannot be 

obtained by means of analytical methods [121]. Nevertheless, the predicted radiative 

conductivity was in the section 2.2 of this thesis 10% - 20% lower than the measured 

one. It is argued, in agreement with Zhao et al., that, likely, this is due to the 

simplified description of the foam geometrical structure [92]. Therefore, in section 

2.3 of the present work the theoretical approach proposed by Zhao et al. is used to 

develop a radiative heat transfer model based on a more realistic representation of 

metallic or ceramic open cell foams. The tetrakaidecahedric (TD) geometry proposed 

by Lord Kelvin has been chosen as the basic unit cell of the model. The analytical 

method is combined with numerical simulations based onto ray-tracing Monte Carlo 

(MCRT) realized with software TracePro [122] used, again, to calculate the involved 

view factors, and with an iterative procedure implemented by means of the matrix 

algebra and the software Mathematica [42], used to consistently calculate the 

involved view factors. Then the radiative conductivity of foams has been predicted 

by means of the proposed model and has been compared with both the experimental 

results obtained on several metal foams by Zhao et al. [113] and with the values 

predicted by a simplified model based on a cubic representation of the foam unit cell. 

Zhao et al. [92] and by Coquard et al. [110] used the Geometrical Optic 

Approximation (GOA), a widely used approach, that has also been adopted in the 

present work. 

Coquard et al., in particular, accurately discussed also the often implicit assumption 

of Independent Scattering Approximation (ISA) [110]. They proved, in agreement 

with other researchers that, when  and GOA is applied, the ISA assumption is 

rather satisfying and can surely be adopted with little error for high porosity foams. 
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2.2 Simplified model of the radiative heat transfer based on simple 

cubic morphology: a variant of the Zhao et al.'s analytical 

model [92] 

2.2.1 Introduction 

Zhao et al. [92] proposed a rather simple explicit analytical model, based on a 

discrete representation of foams and on the evaluation of radiosities. Radiation in 

open-cell metallic foams, in terms of emissivity, reflectivity and view factors, was 

described, using cells with ideal morphologies. The model assumed a simple cubic 

cell as unitary idealized cell and predicted the correct trend of the experimentally 

measured conductivity versus temperature curve, although the predicted conductivity 

was, in general, lower than that measured. 

The Zhao’s et al. model was used by Andreozzi et al. [120] to evaluate the local 

radiative conductivity and the effects of radiation heat transfer in a two-dimensional 

conductive-convective-radiative problem involving a forced fluid flow within a 

heated channel filled with a metallic foam. 

In the present section reference is made to open-cell metallic foams and to the model 

proposed by Zhao et al. [92], in order to improve its capability to predict a correct 

value of radiative conductivity for high, very high or top porosity samples (0.80 ≤ φ 

< 0.99) where the porosity ranges are those referred in section 1.1. Coefficients in the 

Zhao et al.'s iteration model are recalculated and different assumptions are made to 

evaluate the involved view factors. When it is necessary, they are calculated by 

means of numerical methods based onto ray-tracing Monte Carlo method, that is 

more accurate than the Zhao et al.'s analytical approach. An iterative procedure is 

implemented by means of the software Mathematica [42], used to consistently 

calculate the view factors and coefficients. The radiative conductivity of foams is 

evaluated. Predictions are compared to both experimental results obtained on several 

metal foams by Zhao et al. [113] and predictions given by the Zhao et al.’s model 
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[92]. As in [92], a simplified representative elementary cubic volume of the foam is 

assumed, with reference to the correlations proposed by Calmidi [13,28] and the 

radiative heat flux is evaluated by computing radiosities and view factors. 

The analytical approach proposed in this paragraph slightly modifies some 

coefficients of the original model. The comparison of values predicted by the 

proposed model with experimental results shows that they are more accurate than the 

values predicted by the original model. 

 

2.2.2 Assumptions of the radiation heat transfer model 

As it has been shown in section 1.1, the Weaire-Phelan cell is the ideal basic unit cell 

which well minimizes the surface energy per unit volume of a foam cell (fig.1.6). 

This is an aggregation of 8 cells, 6 constituted of 14 faces (12 pentagonal and 2 

hexagonals) and 2 constituted of a pentagonal dodecahedron (PD) which represents a 

partition of the space without overlaps and voids. As a consequence, according to 

Calmidi [13, 28] (section 1.12), the microstructure of a typical open cell metallic 

foam can be assumed to be made up of ligaments that form a network of 

interconnected dodecahedric cells of characteristic size d’p, as shown in fig. 2.3. The 

ligaments are randomly orientated and their length fluctuates, too. The cells are 

mostly homogeneous in size and shape. The ligaments are composed by metal struts 

and lumpings of solid material in their intersection points. The porous medium is 

characterized by the porosity, φ, and by the pore density that is referred to in Pores 

Per Inch, PPI, units. As concluded in the previous chapter the geometry of the cross 

section of the metal struts varies from a circular to a triangular shape in the 0.85 ÷ 

0.94 porosity range and from a triangular to an inner concave triangular shape in the 

0.94 ÷ 0.98 porosity range [123]. In the following, similarly to the assumption of 

Zhao et al. [92] the effect of different cross section strut geometries on radiative 
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conductivity is neglected and a circular section is assumed in all cases. Reference is 

made to a d's diameter of the cylindrical struts. 

Since the dodecahedron is not a partition of the space without voids and overlaps and 

in order to simplify the modeling of the radiation heat transfer in this complex 

geometry, the Calmidi correlations reported in section 1.12 are used to define an 

equivalent open cell foam made up of uniformly distributed, equal-sized, cubic cells. 

In particular, reference is made to an s thick foam sample, sandwiched between two 

L long and W wide plates, sketched in fig.2.3. A cubic unit cell is chosen, at first, as 

the basic cell to represent the foam, since its simplicity allows the evaluation of 

approximate closed-form solutions for significant heat transfer parameters. 

In the next section of this chapter, instead, a more realistic representation of the foam 

based on the Lord Kelvin cell will be done. In particular, the cubic unit cell, shown in 

fig.2.4b, is composed by equivalent cylinders of diameter ds and length dp, 

intersecting in three mutually perpendicular directions, that, for simplicity, are 

assumed to be parallel to the x, y, z coordinates. The sizes of the simple cubic (sc) 

unit cell are calculated assuming a porosity of the model foam equal to that of an 

idealized foam based on a pentagonal dodecahedric cell.  

 

 

Figure 2.3. A pentagonal dodecahedron of size dp’ with ligaments of thickness ds’ is a 

possible ideal representation of the basic cell of the foam. This is assumed in this paragraph. 
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Figure 2.4. Scheme assumed to analyze the radiation heat transfer in foams (a). Calmidi 

[13,28] correlations of the par. 1.12 are used to reduce the actual reticular structure to a more 

simple cubic one (b). 

 

The relationship between d’p and dp based on the same porosity was obtained by 

Calmidi et al.[22], as 
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  (2.13)  

Then, the strut diameter, ds, can be correlated to the pore size, dp, of the cubic cell in 

the following way (eq.1.52) 

  
(2.14)  

where G = 1 - exp(- (1 - φ)/0.04) is a shape function that introduces a corrective term 

which accounts for the dependence of the strut diameter on the porosity [28]. 

Both plates are thin enough as to allow to assume the top and the bottom plates to be 

at uniform temperatures, Tc and Th, respectively. We also assume that Th is higher 

than Tc and that the sandwich structure is under vacuum and thermally insulated at 

the side walls. The condition Th  > Tc implies a radiation heat flux, qr, in the positive 

z direction, as represented in fig.2.4. In a unit cell the top and bottom surfaces (voids) 

are referred as A and E, and each lateral surface is denoted as C. The twelve solid 

struts are labeled with numbers from 1 to 12. Note that only a quarter of each strut is 

included in the unit cell, the remaining three quarters belonging to the neighboring 

cells. Under vacuum, convection does not occur and heat is transferred by 

conduction and radiation. Generally, conduction and radiation are non-linearly 

coupled in high porosity metal foams, since radiation can be assumed to be 

exchanged mostly through voids of neighbouring cells. Therefore, conduction and 

radiation can be considered decoupled and the temperature can be assumed to depend 

linearly on z [92]. Assuming that the foam sample is sufficiently thick (s >> dp), 

differences in the temperature within the unit cell can be neglected and a unique 

value of the temperature can be assigned at each cell in each x y plane. Finally, the 

grey body assumption is also made. 
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The objective is now to evaluate the conductivity due to thermal radiation alone, 

namely the radiative conductivity. 

 

2.2.3 Analysis 

The difference in the temperatures of two cells in adjacent planes along the z 

direction is 

  (2.15)  

where Np = s/dp is the total number of cells in the z direction. 

In the following, the analysis will be carried out with reference to the Np-1 planes 

parallel to x y plane. Once the center-plane between planes in contact with plates at 

Th (z=0) and Tc (z = s) is assumed as the 0 plane (reference plane), planes will be 

numbered from – (Np - 1)/2 at z = 0 to + (Np – 1)/2 at z = s and the temperature T of 

the cells in the ith plane is 

  (2.16)  

where  = Th + Tc /2 is the average temperature. The heat flux between two adjacent 

cells along the z direction is sustained by the temperature difference ΔT, whereas no 

heat is transferred along the x and y directions, where the temperature gradient is 

zero. 

The radiative conductivity, , can be evaluated by the following equation 
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  (2.17)  

Therefore, the radiative heat flux, qr, is now to be calculated. 

 

 

Figure 2.5. Two contiguous cells in z direction corresponding to two consecutive planes of 

cells labeled with consecutive values of the index i. Involved heat flux through voids A and 

E of each cells are shown. Heat flux direction is upward between the separation planes. 
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With reference to fig.2.5 and to the area Asq of the square in the x y plane, whose side 

length is dp, the radiative heat flux, , can be calculated as the difference between 

the radiosities of the top void A, JA, in the opposite direction 

  (2.18)  

where superscripts refer to the planes where radiation comes from and plus and 

minus subscripts denote the irradiation in the positive z direction and in the negative 

z direction, respectively. 

In order to compute the radiosities and  an iterative procedure has been 

implemented, that takes into account the irradiation from all the other planes, step by 

step, up to the farthest ones, in direct contact with the external plates at temperatures 

Th and Tc. In particular, three are the contributions to the radiosity of the top surface 

of a cell in the reference plane: one arises directly from the radiative emission of 

internally faced struts, characterized by its emissivity, ε; one arises from the radiosity 

of the opposite bottom void, JE
(i)

; one comes from the four lateral surfaces C that 

delimit cells in the same plane (see fig.2.5). The expressions of radiosities , 

, , with reference to the two directions, i.e. planes above or below the 

surface, are the following 

  (2.19)  

  (2.20)  

  (2.21)  
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where coefficients α1, α 2, β1, β2, β3 are a function of view factors, that will be 

presented in the following subsection. 

As far as the farthest boundary planes, in direct contact with the external plates, are 

concerned, their radiosities are 

  (2.22)  

  (2.23)  

Let 

  (2.24)  

  (2.25)  

by substituting equ 2.20 into eq. 2.19, one obtains 

  (2.26)  

By means of algebraic expressions, the coefficients and  can be correlated to the 

geometrical characteristics of the cells through both the areas involved and the view 

factors between the geometric elements. 

 

2.2.4 The calculus of the model coefficients 

Coefficients β1, β2, β3 as a function of view factors between of the struts and voids 

are 
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  (2.27)  

  (2.28)  

 

 

(2.29)  

where FjΠ is the view factor between the internal faced quarter of the jth strut (j = 1 - 

12) and the void Π (A, E, C), As is the area of the strut surface, AE is the area of the E 

void surface, ρ = 1 – ε is the reflectivity of the metal strut, FΠΩ is the view factor 

between the void Π and the void Ω and Fss is the average strut-strut view factor. 

In order to calculate the coefficients β1, β2 and β3 two contributions are to be 

considered: the direct one and the reflected one, the latter being calculated by 

neglecting second order reflections. The former is obtained by summing up the 

following contributions to the radiosity of the top void A, : the Stefan-

Boltzmann radiation of each internal faced quarter strut, the radiation of the faced 

void E, the radiation of the four lateral voids C. They are given by the first term on 

the right side of the eqs.2.27, 2.28 and 2.29, respectively. The latter is obtained by 

summing up the contributions of the radiation first emitted by the struts or irradiated 

by the voids E and C toward each internal faced strut surface and then reflected 

toward the top void A. The contributions of the reflection are represented by the 

second term on the right side of the eqs.2.27, 2.28 and 2.29, respectively. 

The contribution of the strut emission from neighbouring cells of same order and that 

of the radiosity of their cell voids can be evaluated taking into account the inward 
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radiosity of a current C void of the reference cell. It is, therefore, necessary to 

express coefficients α1 and α2 as a function of view factors. To this aim the radiosity 

of a C void, , can be expressed as follows 

  (2.30)  

On the right side of the eq.2.30 the first term represents the contribution to the void 

irradiance on C from the radiosity of other facing C voids; the second term represents 

the contribution of direct emission from struts both direct, i.e. from strut to void 

without reflections, that from strut to the void after one strut reflection (contribute of 

multiple reflections are neglected); the third term is due to radiosity of the bottom 

void E, either with or without the contribute of one reflection by the struts. The first 

term is frontal and has a view factor indicated as FCCf; the other two are located 

laterally and have a view factor indicated as FCCl. The coefficients ,  can be 

expressed as a function of the external area of the struts, AS, the area of the void, AE, 

and the above mentioned view factors by means of the following correlations 

 

 

(2.31)  

  (2.32)  

  (2.33)  

Since, because of symmetry, the view factors FiA between the strut i and the void A 

are equal to FjC for the appropriate strut j, from eqs. 2.20 and 2.30 one can obtain 
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  (2.34)  

  (2.35)  

and, therefore, 

  (2.36)  

  (2.37)  

where  

  (2.38)  

  (2.39)  

  (2.40)  

Since FCCl = FEC and FCCf = FEA, no further view factor needs to be introduced in 

addition to those already reported in eqs. 2-27-2.29. 

Heat flux from each lateral Ci void toward all struts (1-12) and, thanks to the 

reflection toward void A, from each strut must be accounted for in eq. 2.29. Because 

of the symmetry (see next section) the contributes of the voids Ci are equal and they 

sum up, as reported in eq.17; moreover only two view factors describe the involved 
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thermal contact (different from zero) between the voids and the struts of the cell, F5A 

and F9A. 

Similar considerations can be made when reference is made to eqs.2-31, 2.32, 2.33, 

for heat flux from each void C toward the other. Consequently, the coefficients in 

theeEqs. 2.36 and 2.40 are fairly different with respect to those  analogous Zhao et 

al.'s equations reported in the reference [92]. 

 

2.2.5  The Monte Carlo ray-tracing and the evaluation of the view 

factors  

View factors on which the above presented coefficients depend are now evaluated. 

Because of the geometrical symmetry, the following correlations hold 

  (2.41)  

  (2.42)  

  (2.43)  

In order to evaluate F5A and F9A view factors, cylindrical struts and planes with fixed 

sizes, that are directly related to the foam geometric parameters, have been 

considered. In particular, the above mentioned view factors were evaluate using 

known analytical correlations [83] and common reciprocity correlations. The 

software Mathematica [42] was used to implement an iterative routine and the 

numerical integration. 

For the strut-strut view factors, a unique value has been used in all investigated 

cases, as reported by Zhao et al. [92]. However, whereas they evaluated all view 
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factors analytically, in the present paper an average strut-strut view factor, Fss, 

numerically calculated, was referred to for the Fijs view factors. 

In the evaluation of FEC and FEA view factors and of view factor FjΠ between the Π 

void perimetral struts and the void, two cases have been distinguished: low (90%) 

and high (95%) porosity. For the lower porosity the strut diameter, ds, was 

considered not negligible and a direct numerical procedure based on the Monte Carlo 

ray-tracing was used to evaluate FEC, FEA and FjΠ. This is a numerical standard 

procedure [83, 84, 121] and for the scope the commercial software TracePro was 

used as ray-tracer [122]. For the higher porosity (95%), instead, ds has been 

neglected with respect to dp and the aforementioned view factors were calculated as 

reported by Zhao et al. [92]. They proposed, as to FEC and FEA, the following cross-

relationship 

  (2.44)  

that, once the void size dp- ds, is assumed to be equal to dp, gives FEC = FEA = 0.2. 

The view factor FjΠ was assumed to be zero, as it was proposed by Zhao et al. [92]. 

 

2.2.6 Results and discussion 

In order to validate the model, predicted values of the radiative conductivity are 

compared with experimental results in the 300 - 750 K range, for FeCrAlY (Fe 75%, 

Cr 20%, Al 5%, Y 2%) metallic foams, produced via sintering route presented by 

Zhao et al. [113]. They used a guarded-hot-plate apparatus for the measurements 

under vacuum of total conductivity of steel alloy foams. The radiative contribution to 

the total conductivity measured under vacuum, was derived by means of the 

analytical model of solid conduction proposed by Zhao et al. [113]. In particular, 

reference is made to four samples, S3, S4, S5, S6 equal to those used by Zhao et al. 
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[113]. S4 and S6 had a 90% high porosity and 30 and 60 Pores Per Inch; S3 and S5 

had 95% very high porosity and 30 and 60 Pores Per Inch, respectively. The 

characteristics of the considered foams, as measured by SEM, the nominal values of 

the porosity and cell size, as given by the manufacturers, are reported in Table 2.1. In 

all simulations, the measured morphological characteristics have been considered. 

Radiative conductivity has been evaluated with a step procedure, taking into account 

the irradiation from all other planes (namely also orders), up to the farthest ones in 

direct contact with the external plates at Th and Tc, if necessary. In fact, preliminary 

evaluations showed that number of orders higher than 15 must be reached to stabilize  

 

Table 2.1. Morphological parameter of the foams studied. Data extracted from [113]. 

 Samples 

 S3 S4 S5 S6 

Pores Per Inch (1/inch) 30 30 60 60 

Nominal porosity (%) 95 90 95 90 

Measured relative 

density (%) 
95.9 90.7 94.5 90.8 

Nominal cell size (mm) 0.847 0.847 0.423 0.423 

Measured cell size 

(mm) 
1.999 2.089 0.975 0.959 

Struts diameter (mm) 0.215 0.267 0.124 0.154 
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the predicted value of the radiative conductivity. The radiative conductivity as a 

function of the number of orders, at different temperatures, for the S3 sample and a 

0.6 emissivity of the solid, is reported in fig.2.6. In all simulations, however, since a 

high enough computation speed was checked, a number of orders equal to 25 has 

been considered. 
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Figure 2.6. Radiative conductivity vs number of iterations for the sample S3. 
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It is worth to underline that for samples with a thickness less than twice the minimum 

order of stabilization, i.e. less than about 30•dc, the model presented in this paper 

predicts a radiative conductivity that depends on the sample thickness. This was 

already pointed out in [110 – 112] and it plays a significant role when radiative 

conductivity is to be measured. 
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Figure 2.7. Radiative conductivity vs emissivity for the sample S3. 
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Figure 2.8. Radiative conductivity vs temperature for the sample S3. 

 

More, it is worthwhile to remark that if the sample cannot be considered optically 

thick, that is its thickness is below the 30•dc threshold, for which the boundary  

conditions are eqs.2.10 and-2.11, the radiative conductivity depends also on the 

emissivity of the plates. 

A 0.6 foam solid face emissivity has been assumed, that is the value for the FeCrAlY 

alloy given by [84] and used in [92]. The radiative conductivity as a function of the 

emissivity, at different temperatures, for the S3 sample is reported in fig.2.7. One can  
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Figure 2.9. Radiative conductivity vs temperature for the sample S5. 

 

notice that in the range of the investigated temperatures deviations of the emissivity 

from the 0.6 typical value are nearly negligible. 

Finally, a grey foam solid face emissivity has been assumed.  

This last assumption was also made in Zhao et al.'s paper. In particular, the authors 

highlighted that the relatively poor accuracy of their model results could be just due 

to this simplification and to the idealized geometry used (simple cubic) [92]. 
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Figure 2.10. Radiative conductivity vs temperature for the sample S4. 

 

The assumption of a grey emissivity is too difficult to overcome and it is convenient 

to maintain it. 

Instead, with the aim to improve the model predictability, the geometrical 

representation has been made more realistic in this work, by modifying the  

coefficients and by adopting a Monte Carlo numerical procedure for the evaluation 

of the configuration factors [83, 84, 121]. 
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Figure 2.11. Radiative conductivity vs temperature for the sample S6. 

 

Figures 2.8 and 2.9 show that for a 95% foam porosity, both the values predicted by 

the present and the Zhao et al’s models agree well with the experimental data. It is 

worth noticing that the proposed model works better than the model proposed by 

Zhao et al. [92]. 

Figures 2.10 and 2.11, for a 90% foam porosity, point out large differences between 

the values of radiative conductivity predicted by the Zhao’s model and the 
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experimental ones, whereas a good agreement can be observed between experimental 

data and predictions by the model presented in this section. 

Figures 2.10 and 2.11, for a 90% foam porosity, point out large differences between 

the values of radiative conductivity predicted by Zhao et al. [113] and the 

experimental ones, whereas a good agreement can be observed between experimental 

data and predictions by the model presented in this work. 

In all cases results show that the values of radiative conductivity predicted by the 

proposed model are in better agreement with the values measured at different 

temperatures [113] than the predictions obtained by means of the Zhao et al’s model 

[92]. 

 

2.3 Semi-analytical modeling of the radiative heat transfer based 

on a Lord Kelvin idealized morphology [2] of the open-cell 

foams  

2.3.1 Introduction 

A radiative heat transfer model based on the tetrakaidecahedric (TD) representation 

of the foam cells proposed by Lord Kelvin has been developed in this section with 

the aim to overcome one of the simplification of the original analysis (see section 

2.2.6).  

The analytical approach has been combined with numerical simulations based onto 

ray-tracing Monte Carlo method [83, 84, 121] and with a matrix algebra 

implemented procedure, used to consistently calculate the involved view factors. The 

radiative conductivity of foams has been evaluated by means of the proposed model. 

Predictions are compared both with experimental results from the literature, obtained 

on several metallic foams, and with predictions given by the simplified model 
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proposed by Zhao et al. [92] based on a cubic representation of the foam unit cell and 

described in previous section. Concerning to the ability to predict the experimental 

results, the TD model described in this section works better than both, the simplified 

cubic model proposed in section 2.2 and the model [92]. 

In the present study, however, with reference to metal open cell foams, the 

theoretical approach developed in the section 2.2 has again been used to further 

refine the model and to obtain a model based on a more realistic representation of the 

foam cells. The radiative conductivity of foams has been evaluated by means of the 

proposed model. 

 

2.3.2 The assumptions of the model 

It is worth reminding that both ceramic and metallic open-cells foams can be 

considered as a net of interconnected solid rods whose transverse section has a form 

that can be circular, triangular, triangular with concave sides. The body of the rods 

(struts) can be either empty or full. The dimensions of the struts are variable along 

their length and lumps of material are often present at the intersections of the ideal 

geometry that represents the cell. It has a tetrakaidecahedron (TD) shape with the 

characteristic size dp, as shown in fig.2.12. The cells are randomly oriented and 

mostly homogeneous in size and shape. Finally, external solid surfaces have often a 

remarkable roughness that sometimes concurs to make difficult the geometrical 

characterization. 

In order to simplify the modeling of heat transfer in this complex geometry, 

reference has been made to an open cell foam sample made up of uniformly 

distributed, equal-sized cells, sandwiched between two cylindrical plates. The 

sandwich thickness is s. The sample configuration is sketched in fig.2.13. The TD 

geometry proposed by Lord Kelvin, formed by 6 square and 8 hexagonal faces, was 

chosen as the basic cell of the model. 
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Figure 2.12. Sketch of a typical open cell metal foam: a) SEM morphology; b) foam cell 

with triangular strut; c) TD geometry. 

 

As already shown in section 1.2 the porous medium is characterized by the porosity 

φ, and by the pore density, that is referred to in Pores Per Inch, PPI, units. In the 

following reference will be made to porosities up to about 0.90 and, therefore, a 

circular cross section of the metal struts will be assumed according to conclusions of 

chapter 1 and similarly to what is reported in ref. [123]. 

The correlation between the total porosity, φt, and the relative density, , is 

  (1.4)  

where 

  (1.5)  

and Vs is the volume of the solid strut,  is the volume of the total inner void spaces 

(inclusive of the hollow spaces into strut body, if any) and  is the outer volume of 

the entire sample. As remarked in section 1.2, in fact, very often the struts of real 

foams are hollow and, therefore, both the really accessible surface for fluids and the 

radiating, reflecting and absorbing surfaces involved in the radiation heat exchange  
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Table 2.2. Characteristics of foams [31] 

Quantity Sample 

 S-3 S-4 S-5  S-6 

Pores Per Inch (1/inch) 30 30 60 60 

Nominal relative density (%) 5 10 5 10 

Measured relative density (%) 4.1 9.3 5.5 9.2 

Nominal cell size (mm) 0.847 0.847 0.423 0.423 

Measured cell size (mm) 1.999 2.089 0.975 0.959 

Struts diameter (mm) 0.215 0.267 0.124 0.154 

Effective porosity  0.917 0.879 0.898 0.852 

 

are the outer surfaces of the struts. As a consequence it is useful to introduce an 

effective porosity, φ, as that which involves only the inner part of each open cell but 

without considering the not accessible inner surface of the struts, if any. When the 

struts are hollow a fictitious density, ρ
*
 = Vstrut/Vo = 1 - φ is defined. . To validate the 

thermal model of this paragraph this aspect, together with the already mentioned  

more realistic unitary cell is considered. As consequence it is introduced the so 

named outer or effective porosity φ as that which involves only the inner part of each 

open cell but without considering the not accessible inner volume of the struts if 

there is. If the strut are hollow a fictitious density ρ
*
=Vstrut/Vo=1-φ must be 

introduced. To test the thermal model of this paragraph this aspect, together with the 
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already mentioned more realistic unitary cell is considered. According to Fuller et al. 

[31], the values of porosities have been corrected in the following way 

  (2.45)  

where di is the diameter of the internal hollow as estimated by SEM measurements 

and d is the external diameter of the cylindrical strut. 

The samples used for the comparison are again those in [113] S-3, S-4, S-5 and S-6, 

whose morphological parameters are those listed in Table 2.2. 

 

2.3.3 Analysis of the heat transfer 

Reference is made to the configuration reported in fig.2.4. Both plates are thin 

enough as to allow to assume the top and the bottom plates to be at uniform 

temperatures, Tc and Th, respectively. We also assume that Th is higher than Tc and 

that the sandwich structure is under vacuum and thermally insulated at other ends. 

The Th > Tc assumption implies a net radiation heat transfer in the positive z-

direction. In a cell the top and bottom square surfaces (voids) are referred as A and E 

and each of the four lateral square surfaces is denoted as C. The eight hexagonal 

surfaces on the upper and lower halves of the cell are referred as B and D, 

respectively. The struts are numbered clockwise starting from the contour of surface 

A. For the sake of clarity of the image numbering was not shown in the figure. Under 

vacuum, convection does not occur and heat is transferred by conduction and 

radiation. Though, generally, conduction and radiation are non-linearly coupled, one 

can assume that in highly porous metal foams radiation is transferred mostly through 

voids of neighbouring cells. Therefore, conduction and radiation can be considered 

decoupled and temperature can be assumed to depend linearly on z [92]. Finally, the 

grey body assumption is made. 
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Figure 2.13. Sample configuration: a) sketch; b) Lord Kelvin geometry. 

 

 

Figure 2.14. Wigner-Seitz cells: a) connected cells; b) body centered cubic lattice; c) 

reticular distances. 

 

Assuming a thick enough foam sample (s >> dp), variations of the temperature within 

the unit cell can be neglected and a uniform temperature can be assigned to each cell, 

that, for the sake of simplicity, can be represented as a node. 

Consequently, the usual approach of crystallography is now inverted. In fact, in 

cristallography the tetrakaidecahedric cell associated to each node is well known as 

the Wigner-Seitz cell of a body centered cubic lattice (bcc), as reported in fig.2.14. 

The Wigner-Seitz cell is obtained by bisecting with planes the 14 segments that 
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connect each node with the 8 nearest neighbouring nodes and the 6 second 

neighbouring nodes. It is worth noticing that the distance between a couple of 

opposite square surfaces, a, is equal to the distance between aligned nodes of the bcc 

lattice (fig.2.14b). Thanks to this representation, the heat transfer between two 

adjacent nodes can be regarded to flow through virtual segments (continuous lines in 

fig.2.14c). 

The difference between the temperatures of nodes belonging to two adjacent planes 

containing vertically aligned nodes is 

  (2.46)  

Thus, heat is transferred in the z direction and along the diagonal under temperature  

differences equal to ΔT and ΔT/2, respectively, whereas no heat is transferred in the x 

and y directions, along which the temperature gradient is zero. 

The radiative conductivity, kr, can be evaluated by the following equation 

  (2.47)  

once the heat flux, qr, is evaluated. 

In the following, calculations will be carried out with reference to the 2Np - 1 planes 

that contain faces of the bcc lattice parallel to the xy plane. Once the center-plane 

between planes in contact with plates at Th (z = 0) and Tc (z = s) is assumed as the 0 

plane, planes will be numbered from – (Np -1) at z = 0 to + (Np – 1) at z = s. 

With reference to fig.2.15 and to the area of the square surface in the xy plane, Abcc, 

whose center is the node n1 in the reference plane 0 and whose side is a, the heat flux 

can be calculated as the sum of the difference between the radiosities of the top void, 
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JA (fig.2.13b), in the opposite directions, and the differences between the radiosities 

of the four voids, JB, (fig.2.13b), in the opposite directions 

  (2.48)  

where superscripts refer to the planes where nodes exchanging heat with node n1 are 

located. The plane # -1 (fig.2.15) contains nodes n3, n4, n5, n6, exchanging heat with 

the node n1 in the diagonal direction while the node n2 exchanging heat with n1 in 

the z direction is contained in the plane # - 2. Plus and minus subscripts denote the 

direction of the heat flux: plus for irradiation in the positive z direction and minus for 

the irradiation in the opposite direction.  

 

 

Figure 2.15. Scheme for the heat flux calculation. 
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In order to compute the radiosities  , ,  an iterative procedure 

has been implemented, that takes into account the irradiation from all the other 

planes, step by step, up to the farthest ones, in direct  contact with the external plates 

at temperatures Th and Tc. As far as the radiosities are concerned, in particular, the 

contribution from all the voids and the struts of the cells has to be taken into account. 

In eqs.2.49 and 2.50 the radiosities of the top surface, , and of the four lateral 

surfaces in the upper half of the cell, , of the i-th plane can be obtained adding 

up four contributions. The first is the radiation emitted from the surfaces of the struts 

facing the inner region of the cell. The second is due to the radiosities of the four 

lateral surfaces D in the lower half of the cell. The third is due to the radiosities of 

the four lateral surfaces, C, where the radiosity , as reported in eq.2.51, is the 

sum of the emission of the ligaments and of the radiosities of the surfaces placed on 

the half bottom E and D. The fourth is due to the radiosity of the bottom surface, 

. 

 
 

(2.49)  

 

 

(2.50)  

 
 

(2.51)  
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Coefficients , ,  weigh the contribution of the radiative emission of the struts 

at the temperature of a cell, T(i), to the radiosity of the void A, all the voids B, all the 

voids C, respectively. Coefficients ,  weigh the contribution of the D void 

radiosity to the radiosity of the voids A, B, C, respectively. Coefficients  

weigh the contribution of the C void radiosity to the radiosity of the voids A, B and 

C, respectively. Coefficients ,  weigh the contribution of the E void radiosity 

to the radiosity of the voids A, B, C, respectively. 

Coefficients αi, βi, γi, are expounded in the next section and in the Appendix A. 

Observing fig.2.14a one can easily derive also the following correlations 

  (2.52)  

  (2.53)  

Boundary conditions are 

  (2.54)  

  (2.55)  

  (2.56)  

  (2.57)  

 

2.3.4 Coefficients and view factors 

Coefficients αi, βi, γi, depend on the ratio of the surface area of the void or the strut 

where radiation is coming from to the area of surfaces A, B, C and can be calculated 
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considering the view factors and the areas of the voids and struts involved in each 

case. The expressions of coefficients αi, βi, γi, as it will be expounded in the 

Appendix A, are the following 

  (2.58)  

  (2.59)  

  (2.60)  

  (2.61)  

  (2.62)  

  (2.63)  

  (2.64)  

  (2.65)  

  (2.66)  
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  (2.67)  

  (2.68)  

  (2.69)  

In eqs. 2.58 – 2.69 the first term accounts for the direct irradiation on a surface and 

the second term takes into account the irradiation on a surface after the first 

reflection occurred. Since in the following reference is be made to foams with 

porosity in the 0.85 – 0.94 range and a 0.6 reflectivity, larger than the first order 

reflections by the struts can be neglected. In cylindrical struts, the area of their lateral 

surface, facing the inner region of the cell, has the following expression, common to 

all 36 struts of the cell, 

  (2.70)  

The areas of the square void surfaces A, C, E and those of the hexagonal void 

surfaces B, D are, respectively, 

  (2.71)  

  
(2.72)  

where l is the length of the side of the square void, that is a function of the cell size 

dp for the TD. 
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Tr are the traces of the matrixes presented in the Appendix A, as a function of view 

factors. 

ρ = 1 – ε is the reflectivity of the strut which is assumed completely diffuse because 

the scale of the surface irregularities considered is supposed greater than the 

wavelengths. 

FCA, FDA, FEA, FCB, FDB, FEB, FDC are the void-void view factors; Fst, av is the average 

value of the strut-strut view factors Fs-t. Two approaches have been followed to 

calculate the view factors. The former numerical approach makes use of ray-tracing 

simulations based on Monte Carlo method. As already highlighted this is a numerical 

standard procedure [83,84,121] and for the scope the commercial software TracePro 

[122] was used as ray-tracer. The latter employs an appropriate geometrical 

approximation of the voids in the TD. 

Before presenting the above said geometrical approximation, it is worthwhile 

reminding that, with reference to the surface of a sphere, the view factor between 

either a finite (area S) or infinitesimal (area dS) irradiating portion of the sphere and 

an infinitesimal (area dA) irradiated portion of it, , is given by 

  (2.73)  

where r is the radius of the sphere. Similarly, the view factor between either a finite 

(area S) or infinitesimal (area dS) irradiating portion of the sphere and a finite (area 

Airr) irradiated portion of it, , can be written as 

  (2.74)  
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Equations 2.73 and 2.74 show that in a sphere the view factor between two portions 

of its surface depends only on the area of the irradiated surface and is independent of 

the size of the irradiating surface and of the location of both surfaces. 

If now a sphere is chosen whose diameter, ds, is such that portions of its surface area 

approximate the area of the voids, eq.2.74 can be used in the evaluation of view 

factors between voids. In the easiest way reference is made to a sphere whose 

diameter is equal to the distance between two opposite square voids, dp, and, 

therefore, the sphere is tangent to all the six square voids. In this case, because of a 

little area, for cells of sufficiently big size, they can be all well approximated by the 

spherical caps tangent to the square voids and having the same areas. This naturally it 

is not the only possible sphere which approximates well the square voids, as a 

consequence does not exist only one method to determine them, and the numerical 

values of the obtained configuration factors will be very similar each other if the 

spheres used to fit the square voids are all a good approximation. 

Ultimately then the guide criterion for the choice of one sphere or another is only that 

of the usefulness. In particular, would be very useful if the sphere could be chosen, in 

such a manner that a simple formula analogue to eq.2.74 can be used also for all the 

eight hexagonal voids. 

At this aim, let dw, be the diameter of a circle having a same area as the hexagon, we 

can determine a sphere with a diameter dS, such that the plane containing the 

hexagon cuts off a spherical cap whose circular base has the diameter dw. Such a 

sphere has the following diameter (see section 1.16 and eq.1.68 too) 

  
(2.75)  

where dp is the distance between opposite square voids of the cell and, therefore, 

/2) dp is the distance between opposite hexagonal voids. At first, since ds is not  
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Figure 2.16. (a) Spherical approximation of the TD cell. (b) Section of the sphere: with AD 

area of the facing hexagons and A
'
D area of the subtended caps. 

 

far different from dp for typical dw values, the sphere with the ds diameter is not 

tangent to square voids but well approximates them. The above defined sphere 

allows a very accurate evaluation, using an equation very similar to eq.2.74, of the 

configuration factors involving the hexagonal voids. 

As far as the view factors between two hexagonal voids are concerned, some other 

simple considerations must be made. Reference is made now to two spherical caps 

whose base are two circles of diameter dw, i.e. circles with same area as that of a 

hexagonal void of the cell, . Applying eq.2.74 for two, facing or not 

facing,spherical caps with two such subtended circles (fig.2.16b) we obtain, that for 

each couple of hexagons or equivalent circles 

  (2.76)  

since each optical ray moving from one cap of area  (or from any other surface) 

and intercepting another cap intercepts also the subtended circle; that is,: the cap-cap 

view factors are equal to circle (hexagon)-cap view factors and to cap-circle view 

factors. If the first and the third term in eq.2.76 are multiplied by and the view 
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factor reciprocity correlation is applied to the first term (

), one can conclude that the following correlation holds for the view factors 

between each couple of hexagonal voids 

  (2.77)  

where  is also equal to  

  (2.78)  

with h the height of the spherical cap and  

  
(2.79)  

Similar considerations allow to derive the correlation for view factors between an 

hexagonal and a square void as well as between two square voids 

  (2.80)  

  (2.81)  

  (2.82)  

where again for the segment of the spheres related to the hexagonal faces is used the 

primed symbol such as that relate to the square faces  which, as already outlined, 

can be assumed to be equal to the area  of the square. 
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2.3.5 Validation of the model and discussion 

In order to validate the model, predicted values of the radiative conductivity are 

compared with experimental results presented by Zhao et al. [113], in the 300 ÷ 750 

K temperature range, on metal foams produced via the sintering route. Reference is 

made to four the samples, S-3, S-4, S-5, S-6, equal to those used by Lu et al.[30], 

whose characteristics are reported in Table 2.2. 
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Figure 2.18. Radiative conductivity vs emissivity for the sample S3. 
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Table 2.3. Coefficients in Eq [113]. 

 
C0 

(W/mK) 

C1 

(W/mK
2
) 

C2 

(W/mK
3
) 

C3 

(W/mK
4
) 

S-3 - 0.4353 0.00184 - 1.7266E-6 1.5126E-9 

S-4 1.3076 - 0.00859 1.6989E-5 - 8.9502E-9 

S-5 - 0.5337 0.00283 - 4.6439E-6 3.4488E-9 

S-6 0.05551 - 0.00051 -1.3333E-5 9.1125E-9 

 

Experimental results have been correlated by the following third grade polynomial 

  (2.1)  

whose coefficients are reported in Table 2.3 [113]. 

Radiative conductivity is evaluated with a step by step procedure by means of 

eqs.2.49 and 2.50. 

As for the sc geometric representation analyzed in the previous section the evaluation 

of the dependence of the radiative conductivity on the order of iterations, i.e. of the 

number of planes of nodes involved in the calculus, showed that orders higher than 

about 15 must be reached to stabilize the predicted conductivity value. 

The radiative conductivity as a function of the number of orders, at different 

temperatures, for the S3, S4, S5 and S6 samples and a 0.6 emissivity of the solid, is 

reported in fig.2.17. In all simulations, however, since a high enough computation 

speed was checked, a number of orders equal to 25 has been considered. 
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Figure 2.19. Radiative conductivity vs temperature for the sample S3. 

 

Just like in the sc case, the thickness above which the radiative conductivity becomes 

independent of the sample thickness is nearly equall to 30·dc. In fact, eq.1.53 gives dc 

= 0.59 dp for the sc case and dc = 0.5 dp for the case of the tetrakaidecahedric cell. 

Considerations similar to those made in paragraph 2.2.6 can be made with reference 

to the emissivity. A 0.6 foam solid face emissivity has again been assumed and the 

radiative conductivity as a function of the emissivity, at different temperatures, for 

the S3 sample is reported in fig.2.18. In this case, too, we can remark that in the  
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Figure 2.20. Radiative conductivity vs temperature for the sample S4. 

 

range of the investigated temperatures deviations of the emissivity from the 0.6 

typical value are nearly negligible. Also in this case, if the sample is sufficiently thin 

(s < 15·dp) the boundary conditions, eqs.2.42-2.45, imply that the predicted values 

can depend on the emissivity of the external plates, too. 

Predicted radiative conductivity for the samples S-3, S-4, S-5, S-6, in the 350 - 750 K 

temperature range, are compared to experimental data presented by Zhao et al. [113]  
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Figure 2.21. Radiative conductivity vs temperature for the sample S5 

 

and to radiative  conductivities obtained by means of the model presented in [92] in 

figs.2.19-2.22. Effective porosity values are assumed both for the TD and sc models. 

The agreement between predictions derived by means of the proposed model and 

experimental results is good and far better than that between predictions by the 

simplified model and experimental results, particularly for the samples S-3, S-5 and 

S-6. 
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Figure 2.22. Radiative conductivity vs temperature for the sample S6 

 

Radiative conductivity as a function of the temperature, for the samples S3, S4, S5, 

S6 and for the  samples S4, S5, is presented in figs.2.23 and 2.24, respectively. 

First, both figures show that the larger the pore size the higher the thermal 

conductivity, for a given porosity. In particular, we can notice that twice the pore size 

twice the radiative conductivity, that suggests a proportionality between them. This is 

no wonder, since, the porosity and, then, the relative density being unchanged, 

increasing the size of the cell, the same quantity of material can occupy the same  
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Figure 2.23. Model predicted radiative conductivities vs temperature for the samples S3, S4, 

S5 and S6 

 

volume, with a less branched  reticulated  structure. Consequently, the solid-vacuum 

interface, where the radiation is reflected and absorbed, interrupting the heat flux  

exchanged between the two facing plates, increases. In other words the "penetration 

thickness" becomes larger and the radiative conductivity increases. 

This an important remark, since Zhao et al. [92], on the contrary, concluded that a 

larger cell size implies a larger solid-vacuum interface, which, in turn, should result 
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Figure 2.24. Model predicted radiative conductivities vs temperature for the samples S4, S5 

having approximately the same porosity but pore double one of another  

 

in a larger "penetration thickness". From two wrong implications an exact conclusion 

followed. In fact, a larger cell size cannot imply a larger solid-vacuum interface (i.e. 

a more branched   reticular  structure), while a larger absorption cannot imply a 

larger“penetration thickness", but, rather, the opposite. 

Second, for an assigned pore size, the greater the porosity the lower the conductivity. 

This occurs, since a larger porosity implies, for a certain cell size, a smaller area of 

the solid-vacuum interface to the heat flux, with a decreasing diameter and an 
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unchanged length of the strut. An increase in the radiative conductivity occurs for the 

same reasons. 

 

2.4 Conclusions 

Radiation heat transfer in open cells foams was modelled by a simplified analytical-

numerical method. It modified an analytical model taken from the literature. The 

original model involved a simplified foam discretization by a cubic representative 

elementary volume and allowed the evaluation of the foam radiative conductivity. 

The analytical-numerical approach proposed in this first phase slightly modified 

some coefficients of the original model. A more accurate  evaluation of view factors 

was carried out in such cases by test ray-tracing and by numerical simulations based 

onto Monte Carlo method. Predictions by the original model and those by the 

modified proposed model were analyzed and compared to experimental results. The 

recalculated coefficients worked better than the original ones. 

A more accurate evaluation of configurations factors between voids, by means of a 

numerical approach, was needed for foams with a density larger than 5%. 

Results showed clearly that the radiative conductivity of the foam can markedly 

depend on its morphology and geometrical characteristics. 

As underlined by Zhao et al. [92], the discrepancies between the values predicted by 

the model and experimental data have the following reasons: 

1) the strong simplificative assumption of a linear temperature variation; 

2) the assumed independence of the radiation properties of the wavelength; 

3) the inherent uncertainty in the value of the solid emissivity; 

4) the idealized structure of the foam. 

The first three reasons are very difficult to tackle and to be overcome. On the 

contrary, there was room to build up a better idealized structure of the foam. It was 
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made in the subsequent part of this work. The model again involved a suitable 

discretization of the foam and asked for the evaluation of macroscopic parameters, 

such as radiosities and configuration factors but implied a more refined geometry 

than that of  the previous model. In particular, a Lord Kelvin idealized geometry 

using as unit cell a TD, was employed for the discrete representation of the foams. 

A more accurate evaluation of configuration factors was carried out, using both the 

numerical Monte Carlo method and an analytical methods with a suitable spherical 

approximation of the TD. The predictions of the model were again compared both 

with experimental data from the literature and with values predicted by a simplified 

model based on a simple cubic representation of the foam unit cell. The agreement 

between predictions by the improved model and experimental data was good and far 

better than that between predictions by the previous model and experimental data. 

One can, therefore, conclude that morphological characteristics should be adequately 

measured in order to model radiation heat transfer in foams since radiative models 

have a marked sensitivity to morphological properties of porous media. 

Finally, the following conclusions on the essential characteristics of radiative heat 

transfer in foams can be made: 

• the radiative conductivity of an open cell foam depends on the sample thickness 

when it is below a threshold limit, that is a multiple of the cell size; for the 

samples herein analyzed it is fifteen times the cell size; 

• when the thickness is less than fifteen times the cell size, the radiative 

conductivity of the sample can be affected by the emissivity of the hot and cold 

external plates; 

• when the thickness is larger than fifteen times the cell size, for which the 

"penetration thickness" is shorter than half the sample thickness, the radiative 

conductivity depends linearly on the cell size; 

• the radiative conductivity of an open cell foam increases when the porosity 

increases.
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APPENDIX A 
 

The traces of matrixes in eqs.2.58 - 2.69, as a function of view factors, that are useful 

in the evaluation of coefficients αi, βi, γi in eqs.2.58 - 2.69, are expounded in the 

following, employing Mathematica  software [42]. 

Besides of the notations for voids presented in section 2.1, the numbers of struts are 

now detailed and view factors are presented. Struts are numbered clockwise starting 

from the contour of the upper level void A; 1 – 4 at the first level; 5 – 8 at the second 

level; 9 – 16 at the third level; 17 – 20 at the fourth level; 21 – 28 at the fifth level; 

29 – 32 at the sixth level; 33 – 36 at the seventh level. 

FsΠ is the view factor between the s-th strut (s = 1 - 36) and the void Π (A, Bi, Ci, Di, 

E); FΠ- is the view factor between a void Π and another void Ω; Fst is the view 

factor between a strut s and another strut t; Fst, av is the average strut-strut view factor. 

Now we must take into account that there are one void A, four voids B, four voids C, 

four voids D, one void E. Voids B, C, D will be numbered in the following way: Bi, 

Ci, Di; however, for the sake of brevity, subscripts will be omitted when unnecessary. 

Let now introduce three 7x8 matrixes, denoted as Fs-A, Fs-B, Fs-C, that contain the 

view factors between struts and voids A, B, C, respectively, are presented in eqs. A.1 

– A.3. Rows refer to struts level from 1 to 7 and columns refer to the maximum 

number of struts in a level, i.e. 8 struts at level 3 and 5.Zero elements have been 

inserted in the rows that refer to levels 1, 2, 4, 6, 7, containing four struts. All the 

rotational symmetry properties of TD have been used in the matrixes, where only one 

value of common view factors is reported. 

In a similar way three 7x8 matrixes, denoted as FC-s, FB-s, FE-s, are introduced, whose 

elements are the view factors between voids C, D, E and struts, respectively, in eqs. 

A.4 – A.6 
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where 

 

 

 

 

(A.7) 

and, thanks to the symmetry of the cell, in each row of the matrixes the view factors 

have a common value. 

The above presented six matrixes allow the evaluation of some coefficients in 

eqs.2.49 - 2.51. In fact, with reference to an irradiating void Π (Π = A, Bi, Ci, Di, E) 

and an irradiated void Ω, the contribution of the void Π to the radiosity of the void Ω, 

after one reflection by a strut s, is given by the following correlation 

  (A.8) 

If reference is made to the bcc surface area, Abcc, eq.A.8 becomes 

  (A.9) 

Summing up the radiosity in eq.A.9 over all struts, one obtains the total contribution 

of the irradiating void Π to the radiosity of the Ω void and, then, summing up over all 

voids and over the index i from 1 to 4, when it is necessary (i.e. for voids B, C, D), 

one obtains the total contribution of all irradiating voids Π to the radiosity of the Abcc 

surface, orthogonal to the z direction. One can conclude that these algebraic 

operations are equivalent to extract the diagonal of the row by column product of 

matrix FΠ-s by the transpose of matrix , that both represent the heat transferred. 
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Then we calculate the sum of components of the obtained vector: i.e. are equivalent 

to calculate the trace of the mentioned matrixes product. 

For example, as to the heat transfer between all irradiating C voids and the irradiated 

void A, the contribution of irradiating C voids to the irradiated void A after one 

reflection by a strut s, is given by the following correlation 

  (A.10) 

where represents the matrix CA in Eq.2.48. All other similar coefficients 

in eqs.2.46-2.57 can be expressed in the same way as . 

Let us now consider the interaction between struts and voids after one reflection from 

struts. To this aim the same matrix approach and similar symbols can be used to 

indicate the product of matrixes sA, sB and sC when reference is made to the 

interaction of a strut with the respective void 

 

 

 

 

(A.11) 

where Fst,av is the average strut-strut view factor and  is the unitary matrix.  

The contribution of any strut arbitrarily set at the emissive power after one reflection 

to the radiosity in eqs.2.58, 2.62 and 2.66.can, therefore, be expounded in the 

following way 
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(A.12) 

where account has been taken that the heat reflected by a strut seems to radiate 

directly from that strut, apart from of the loss by reflection and that there are 35 equal 

terms, as many as are the couples involved in the emissions and reflections by the 

generic and originary selected strut. Therefore, the contributions of direct emission of 

the strut toward voids must be added to eq.A.12, in order to obtain eqs.2.58, 2.62 and 

2.66. The terms are the following 

 

 

 

 

(A.13) 

The number of independent view factors that allow the evaluation of the coefficients 

or, best, of their reflected components, can be reduced, by using both the reciprocity 

property and symmetry correlations. 
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NOMENCLATURE 
 

Symbol Quantity Unit 

a Distance between bcc nodes or cell size m 

ai,bi Coefficients in eqs.2.24-2.25 dimensionless 

A Area of the strut cross-section  m
2 

Aac Area of surface in eq.1.37 m
2
 

Aic Area of the strut with concave cross-section  m
2
 

Abcc bcc surface area m
2 

Ae Area of the hexagonal voids m
2
 

Aext Factor correction of the area in eq.1.59 m
2
 

Ai Square void surface area (section 2.2) m
2
 

AI Void surface area (section 2.3) m
2
 

Airr Irradiated surface area of a sphere m
2
 

Ar Aspect ratio (h/l) dimensionless 

As Strut surface area m
2
 

Asq Area of the square m
2
 

c Geometrical parameter in eqs.1.30 m 
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C Number of cells (in eq.1.6) dimensionless 

C1, C2 Coefficients in eqs. 1.9, 1.10 dimensionless 

d Diameter of a cylindrical strut (theoretical) µm, mm, m 

d1 Diameter of the sphere tangent to the 

squares of a TD 

µm, mm, m 

d2 Diameter of the sphere tangent to the 

hexagons of a TD 

µm, mm, m 

df Measured diameter of a cylindrical strut µm, mm, m 

di Average inner diameter of the hollow struts µm, mm, m 

dic Apparent diameter of a concave strut 

(theoretical) 

µm, mm, m 

dIn-c Diameter of a cylindrical strut by Inayat et 

al. 

µm, mm, m 

dIn-con-a Apparent diameter of a concave strut by 

Inayat et al. 

µm, mm, m 

dIn-con-e Effective diameter of a concave strut by 

Inayat et al. 

µm, mm, m 

dN Nominal diameter of a strut inch 

dp Characteristic cell size (diameter) µm, mm, m 

d’p Side of a cubic pore µm, mm, m 
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ds Measured diameter of cylindrical struts µm, mm, m 

dS Diameter of the sphere µm, mm, m 

d’s Diameter of a cubic REV strut µm, mm, m 

dtc Apparent diameter of a convex strut 

(theoretical) 

µm, mm, m 

dw Windows size (diameter) µm, mm, m  

E Number of edges (in eq.1.6) dimensionless 

F, f Number of faces (in eq.1.6) dimensionless 

Fi Strut-void view factor dimensionless 

Fs-s Strut-strut view factor dimensionless 

Fs- Strut-void view factor dimensionless 

FΠ- Void-void view factor dimensionless 

Fs-s, av Average strut-strut view factor dimensionless 

FS1-S2 View factor between surfaces S1 and S2 

finite or infinitesimal  

dimensionless 

G Parameter in eq.2.14 dimensionless 

h Height of the sphere segment or height of a 

prism 

m 

hhex Height of spherical caps onto hexagons  m 
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hsq Height of spherical caps onto squares m 

Ibλ Black body radiative intensity field W/µm m
2
 sr 

Iλ Monochromatic radiative intensity field W/µm m
2
 sr 

JA
(i)

 A void radiosity W/m
2
 

JB
(i)

 B void radiosity W/m
2
 

JC
(i) 

C void radiosity W/m
2
 

JD
(i)

 D void radiosity W/m
2
 

JE
(i)

 E void radiosity W/m
2
 

kc Thermal conductivity W/m K 

kr Radiative conductivity W/m K 

kR Rosseland radiative conductivity W/m K 

keff Effective conductivity W/m K 

l Void side length, edge length of a 

polyhedron or strut length 

µm, mm, m 

L Length of the plate m 

lc Length of a cylindrical strut (theoretical) µm, mm, m 

lga Length of a triangular strut by Gibson and 

Ashby 

µm, mm, m 

lic Length of a concave strut (theoretical) µm, mm, m 
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lIn-c Length of a cylindrical strut by Inayat et al. µm, mm, m 

lIn-t Length of a triangular strut by Inayat et al. µm, mm, m 

ls Measured strut length µm, mm, m 

lt Length of a triangular strut (theoretical) µm, mm, m 

n Index of refraction dimensionless 

ni Nodes dimensionless 

Np Number of cells along z dimensionless 

PPI Pores Per Inch 1/inch 

qr Heat flux W/m
2 

qr,η Monochromatic radiative heat flux W/m
2
 

qr
z 

Heat flux in z direction  

rs Radius of a sphere m 

s Sample thickness m 

S Irradiating surface area of a sphere m
2
 

So Area of the internal surface of an open cell 

for the spherical model 

m
2
 

Sc Area of the internal surface of a partially 

closed cell for the spherical model 

m
2
 

Sv Interfacial surface per unit volume m
2
/m

3
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Svc Interfacial surface per unit volume of a 

partially closed cell for the spherical model 

m
2
/m

3
 

SvIn-con-e c Interfacial surface per unit volume for 

cylindrical strut (theoretical) 

m
2
/m

3
 

Svic Interfacial surface per unit volume for 

concave strut (theoretical) 

m
2
/m

3
 

SvIn-c Interfacial surface per unit volume for 

cylindrical strut by Inayat et al. 

m
2
/m

3
 

SvIn-con-e Effective interfacial surface per unit volume 

for concave strut by Inayat et al. 

m
2
/m

3
 

Svo Interfacial surface per unit volume of an 

open cell for the spherical model 

m
2
/m

3
 

Svrich Interfacial surface per unit volume for 

triangular strut by Richardson et al. 

m
2
/m

3
 

Svt Interfacial surface per unit volume for 

triangular strut (theoretical) 

m
2
/m

3
 

t Generic side length of the triangular cross-

section of a strut 

µm, mm, m 

tga Side length of the triangular cross-section of 

a strut by Gibson and Ashby 

µm, mm, m 

tm Side length of the square cross-section of a 

strut 

µm, mm, m 
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tmeas Measured thickness of a strut in Table 1.4 mm 

to Generic thickness of a strut µm, mm, m 

ts Side length of the triangular cross-section of 

a strut (theoretical) 

µm, mm, m 

trich Side length of the triangular cross-section of 

a strut by Richardson et al. 

µm, mm, m 

T Temperature K 

Tc Temperature of the cold plate K 

Th Temperature of the hot plate K 

V Number of vertexes of a polyhedron dimensionless 

Vhollow Hollow volume internal to the struts m
3
 

VI Volume of the empty space in a foam 

external to the struts 

m
3
 

Vo Block volume m
3
 

Vcs Volume of the empty space in a partially 

closed cell for spherical model 

m
3
 

Vos Volume of the empty space in a opened cell 

for spherical model 

m
3
 

Vs Solid volume m
3
 

Vsshex Volume of spherical caps onto hexagonal m
3
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faces 

Vsssq Volume of spherical caps onto square faces m
3
 

Vstrut Strut volume m
3
 

VTD Tetrakaidecahedron volume m
3
 

W Width of the plate m 

x Geometrical parameter in eqs.1.30 m 

x, y, z Cartesian coordinates m 

Ze Edge connectivity dimensionles 

Zf Face connectivity dimensionles 

Greek letters 

αi, βi,i Coefficients in eqs.2.24-2.25, 2.49-2.51  dimensionless 

βλ, βη Monochromatic extinction coefficient m
-1

 

βR Rosseland-mean extinction coefficient m
-1

 

δi Coefficients in eqs 2.34-2.35 dimensionless 

ε Emissivity dimensionless 

η Wave number µm
-1 

φ,  Porosity or effective porosity dimensionless 

λ Phase function of scattering dimensionless 
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φt External or outer porosity dimensionless 

κλ Monochromatic absorption (emission) 

coefficient 

dimensionless 

λ Wavelength µm 

ζλ Monochromatic scattering coefficient dimensionless 

ωλ Ssingle scattering albedo coefficient dimensionless 

φt External or outer posity dimensionless 

ΔT Temperature difference  K 

ρ
* 

Fictitious relative density for empty struts dimensionless 

ρo Foam density kg/ m
3
 

ρs Solid density kg/m
3 

ρr Relative density dimensionless 

ˉ  Stephan-Boltzmann constant W/m
2
 K

4
 

Subscripts 

c Cold plate  

h Hot plate  

i i-th plane  

Π, Refers to voids  
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Superscripts 

ˉ Average  
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