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Introduction

Curiosity is a powerful force pushing human beings towards exploring and experimenting

and it is indeed the best weapon we have been using to win our place against other species

in the evolutionary pit. The role of curiosity has been hailed since ancient times by Homer

in his epic poems in which Odysseus’ sharpness of mind, capable of winning wars brute

force could not resolve, is strongly linked with his continuous challenge to the unknown.

While our minds grew more and more sophisticated, however, curiosity about things and

places has been integrated by curiosity about ourselves. As narcisistic as it can sound, we

are often awed by our own nature. As disturbing as it can sound, on the other hand, the

most scary things we meet during our lives come from the deeps of our own souls.

When it comes to understanding human nature, we often confront ourselves with well

known experiences that we strive to define: we are put in charge of a machine, our body, we

do not fully understand. A machine that, sometimes, behaves differently from we expected

or even from what we wanted. The main primordial energy fueling this machine are indeed

emotions. While playing a critical role for survival of the species and accounting for a

number of situations needing fast response, emotions are pure instinct and, by definition,

irrational. When the emotional self takes over the rational self, we are spoiled of any

control over our actions but not of our responsability of them. Acting emotionally is

tempting as it often gives satisfaction in the short term but always has consequences in

the long term. Shogun Tokugawa Ieyasu, who united Japan under his rule after fighting

many years against other japanese clans, knew very well how emotions can be harmful to

long and delicate tasks like strategic warfare. His definition of patience, in particular, was
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tightly linked to the concept of emotions:

“The strong manly ones in life are those who understand the meaning of the

word patience. Patience means restraining one’s inclinations. There are seven

emotions: joy, anger, anxiety, adoration, grief, fear, and hate, and if a man

does not give way to these he can be called patient.”

Other than a first example of discrete representation of emotions, which I will discuss

in Chapter 1, it is interesting to see how emotions were considered by a great Japanese

strategist to be opposing the patience needed to pursue his plan. It is right, in my opinion,

to give in to emotional behavior from time to time as it is part of our nature but it is

also necessary to watch over our emotional self as much is the damage it is able to bring

to ourselves and to others. By residing deep inside our brain, emotions are often taken

for granted. However, although we all know what we are talking about when we discuss

emotions, their nature is elusive and difficult to describe, thus making our own emotions

mysterious and almost unpredictable. H. P. Lovecraft used to call unspeakable horrors

things one could not only understand but even name. This uncapability to confront with

something, in a lovecraftian setup, drives people to madness. How should we feel, then,

considering that the least understood thing on earth, ourselves, is constantly following us?

Questions thousands of years old about the self have been asked and we tried to answer

them by means of the best instruments we had available throughout our relatively short

presence on the planet: philosophy, religion, biology and psychology among these. We now

live in the age of technology and, through this work, I make my own journey among the

mists of my mind, trying to understand more about myself by using the instruments given

to us by modern age knowing that, especially in this case, the journey is more important

than the destination.

This work is about both human and synthetic emotions and is motivated by my opin-

ion that it may be possible to better understand emotions by trying to simulate them.

Emotions, however, do not exist in one’s body only. Perceived emotions are often more

important than felt emotions as they are, more or less consciously, transmitted during



communication. Here, I designed my approach by considering one of the most basic hu-

man communication channels, voice, and limiting my analysis to the acoustic properties

of the human voice, without introducing semantics. This is because my attempt is aimed

at understanding how much information can be gained from the raw sound without in-

volving higher cognitive layers. I employ a set of basic linguistic rules in order to create

an intepretable representation of speech that I use to discuss the results I present. This

is because I will try to take advantage of the terminology coming from decades of linguis-

tic studies on intonation to better illustrate my goals and the results I obtained. This

representation, described in Chapter 2, has also an impact on the performance of the tech-

nological artifact produced as an application example of the analysis method. Since the

representation I will describe identifies only specific areas of the speech signal to be impor-

tant for emotion recognition and since these areas are not difficult to isolate, the required

comuputation load is reduced by extracting information from these segments only. After

presenting the analysis method, in Chapter 3 I will present experiments to evaluate its

performance on dimensional and continuous emotional tracking by using emotional speech

corpora and human annotations. However, while I believe that emotional speech corpora

are useful to study emotion expression through voice, I also believe that, being hard for

humans to talk about and to quantify the experienced emotional response, it may be bet-

ter to evaluate the capability of a technological artifact to recognize, simulate and exploit

emotions by setting up a basic interactive task in which successful emotional communica-

tion is essential to reach the designated goal. In Chapter 4, I will therefore present how

the offline analysis method presented in Chapter 2 and the results presented in Chapter

3 can be ported in a real-time setting by keeping the linguistically inspired setup. The

real-time implementation of the speech analysis method is used to design a simple task to

check if the user’s intended emotions can be correctly captured and interpreted to produce

believable emotional behaviours in an animal-like robot. Coherence in the behavior of the

robot can then be interpreted as good emotional recognition performance.



Figure 1: General organization of the presented work



Chapter 1

Emotions and Affective Computing

In this Chapter I discuss about the structure of the brain and about its reactions to

external stimuli. The goal of this overview is to clarify how the brain is organized

from a biological point of view, how it processes signals coming from the peripheral

nervous system and how it stores past experience. Special attention will be paid to the

way physiological reactions to emotional experience spread throughout the brain making

emotions an important driving force with respect to cognitive processes.

1.1 Neurobiology of emotions

One of the most influential works about emotions from a neurobiological point of view is

the work of Ledoux (1998). In his book, Ledoux presents a summary of his experience in

studying emotions in the brain, their role in everyday life and their relationship with other

mental processes. Among the themes discussed by the author in his book, I will build my

approach on a subset of them.

First of all, Ledoux highlights how the brain does not possess nor does anything that

can be referred to as emotion. This term is rather an exemplification label, a linguistic

trick to enable us to talk about complex physical experiences. Being these experiences

composed of many different physical reactions like faster heartbeat, increased breathing
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14 CHAPTER 1. EMOTIONS AND AFFECTIVE COMPUTING

frequency and modifications in muscular tension, it makes sense to assume that there are

different systems, each one dedicated to the control of an emotional reaction, that work

together to create the experience we refer to as emotion.

Another point of interest for Ledoux is that emotions cannot be controlled consciously.

We can control external elements in such a way that we know a certain emotion will

arise but we can’t simply experience that emotion. While emotions cannot be rationally

controlled, they influence rational thought. They consist of basic contextual evaluations

that can both support decision processes or even establish goals for them if we follow the

theory presented in Arnold (1960) that emotions are the tendency to go towards what we

believe to be useful and to stay away from what we believe it is harmful.

Ledoux also highlights a number of neurobiologically motivated reasons why emotions

cannot be assimilated to cognition but should rather be considered a different system

interacting with cognitive processes:

• Damages to specific regions of the brain can erase the capability of emotionally eval-

uating a stimulus without altering the capability of perceiving the stimulus. Rep-

resentation and evaluation are therefore processes that are performed separately by

the brain.

• Emotional evaluation can be completed before cognitive processing is complete. In

other terms, emotional significance can be attributed to an object before knowing

what it is.

• Emotional memory is stored separately from cognitive memory. Specific kinds of

damage can remove the capability of assigning emotional value to a stimulus without

altering the capability of remembering information about previous experiences with

that stimulus and vice-versa.

• Emotional evaluation systems are directly connected to action systems. Cognitive

processing systems are not so tightly bound to reaction systems.
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• Being strongly associated with reaction systems, it is more frequent that results of

an emotional evaluation process provoke physical sensations than what happens with

cognitive processes.

To support the distinction between emotion and cognition, I would like to add to the

observations made by Ledoux a personal one. It is common, in nature, to observe defence

strategies based on mimicry stimuli usually associated with dangerous species. This is

called Batesian mimicry. For example, a cat’s hissing has been described as an imitation

of the snake’s menacing sound. As reptilians are among the most ancient creatures on

Earth, it makes sense that their warnings are so very well known by all other terrestrial

creatures to be automatically associated with a danger feeling. For an relatively recent

creature like a mammal, it makes sense to use a hiss as a warning or a menace by exploiting

the instinctive fear response associated to that sound. This works in practice although a

cat is clearly not a snake. Other species, moreover, evolved to disguise themselves as

more dangerous creatures. The anilius scytale is a harmless snake that disguises itself by

taking the same colors, but with a different pattern, of the venomous Micrurus fulvius,

better known as coral snake. For this reason, the anilius scytale is also known as the false

coral snake. In this case, the fear reaction associated with the colors of the coral snake

are exploited by the false coral snake to survive. Through cognitive processes we are, of

course, able to distinguish the two species because of the different pattern but the fast,

emotional, fear reaction we experience regardless of our reasoning is what the snake relies

onto in order to be able to scare off potential predators and flee. This adds, in my opinion,

on LeDoux observations regarding the separation of emotional evaluation systems from

cognitive processes I will follow in this work.

1.2 Psychology of emotions

Different models have been proposed in psychology to describe emotions in a formal way.

In this Section I will present the most important models that have been proposed in the
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Figure 1.1: A subset of the images used in Darwins investigation

literature: categorical, dimensional and appraisal models.

1.2.1 Categorical models

Deriving directly from the usual way we talk about emotions by labeling them, emotions

can be separated into discrete classes. The first discrete representation of emotions was

formulated by Charles Darwin (Darwin, 1872). In his dissertation about genetically de-

termined communication concerning facial expression, Darwin dedicates a book chapter to

each of the superclasses he identified among emotions: low spirits like grief, high spirits

like love, then anger, disgust, surprise and, lastly, complex emotions like shame and shy-

ness. Darwin relied on a questionnaire he circulated among different ethnic groups along

with a large number of pictures showing emotionally expressive actors and children and

on descriptions of psychiatric patients. His work aimed at identifying the common traits

between humans and animals in the expression of basic feelings and emotions. Figure 1.1

shows a sample of the images used by Darwin for his investigation on emotions.

In Ekman (1992), a study specifically aimed at identifying a set of basic emotions

to which all other emotions could be referred to was presented. As in Darwin’s work, the
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Figure 1.2: Facial expressions associated with Ekman’s basic emotions

experiment was based on facial expressions evaluated by different ethnic groups and it iden-

tified a set of six emotions that which expression was shared among cultures. These were

anger, joy, sadness, disgust, fear and surprise (the neutral emotion was also considered).

Figure 1.2 shows the set of facial expressions associated with Ekman’s basic emotions.

1.2.2 The dimensional model

Research on emotions has moved from discrete classifications through categories to a more

dynamical representation using multi-dimensional spaces, where the focus is on the compo-

nents of emotions rather than on emotions themselves. At the very first stage in emotion

research, the choice for discrete (and therefore basic and acted) emotions, considered as

categories, was mainly due to the fact that such material was easier to obtain and to col-

lect (Schuller et al., 2011). On the other hand, the increasing development and interest in

human-machine interactions with more realistic and real-time situations forced researchers

to take into account real-life variations in landmark emotions by using dynamical scales

(dimensions) in order to introduce more variability in the classification of emotional speech.

For this reason researcher advocating the dimensional description of emotions argue that

a single label or a set of discrete classes may not be able to account for the complexity

and the variability of affective information. According to the dimensional view of human
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affect, affective states are not independent from one another but they are related to one

another in a systematic manner (Gunes et al., 2011).

Dimensional descriptions of emotions usually adopt annotation scales along a continuum

of affective behavior in terms of latent dimensions (eg. arousal, power and valence). A

number of different models accounting for a dimensional description of human affect exist.

One of these models, the circumplex model of affect introduced by Russell (1980), represents

emotions as a bipolar entity of arousal (relaxed vs. aroused) and valence (pleasant vs.

unpleasant), therefore being part of the same emotional continuum. Cowie et al. (2000,

2001) used a similar model to model and assess affect from speech. The 3D emotional

space proposed by Mehrabian (1996) is another dimensional model accounting for pleasure

- displeasure, arousal - non arousal and dominance - submissiveness (also referred to as

PAD or as emotional primitives; see Espinosa et al. (2010); Jia et al. (2011). Grimm and

Kroschel (2005) used a similar framework to describe emotions by means of three emotion

primitives, or attributes (valence, activation, and dominance) proposing a real-valued 3D

emotion space concept to overcome the limitations of discrete emotion categorization (also

referred to as VAD space). However, as noted by (Gunes et al., 2011, p.829)

“[. . . ] there is no coding scheme that is agreed upon and used by all researchers

in the field that can accommodate all possible communicative cues and modal-

ities.”

This absence of agreement on a coding scheme in the dimensional view of emotions and

the variability of scales and attributes considered falls back into the availability of speech

databases. As far as naturalistic databases are concerned (as opposed to acted) the most

employed database is The Vera am Mittag (VAM) corpus collected by Grimm et al. (2008)

describing emotions on a continuous-valued scale in the valence, activation, and dominance

(VAD) space.

From a theoretical point of view, Fontaine et al. (2007) emphasize the considerable

disagreement on how many dimensions are essential to provide an optimal framework in

emotion research and point out how the debate still remains open. However, the research
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Figure 1.3: Emotional labels distributed in the four dimensions indicated by Fontaine et al. (2007)

carried out by Fontaine et al. (2007) in the representation of the semantic space of emotion

confirms that more than two dimensions are needed for a low-dimensional representation.

In proposing a four-dimensional structure they also confirm that the three dimensions

(evaluation-pleasantness, potency-control, activation-arousal) taken into account in the

first studies in this domain are the most important ones even in a multi-cultural setting.

This interest in the way of representing emotions is not limited to the theoretical field but

it is a very important topic from the technical point of view too (Wöllmer et al., 2008).

Despite the debate regarding the opportunity of using a discrete rather than a dimensional

representation of emotions, the two directions are not mutually exclusive and, as it was

noted in (Schuller et al., 2011, p.1065)

“[. . . ] Irrespective of strong beliefs in the one or the other type of modeling,

in practice, categories can always be mapped onto dimensions and vice versa

albeit not necessarily lossless.”

In Figure 1.3, the relation between emotional labels and the model presented in Fontaine

et al. (2007) is shown.

While a categorical view of emotions easily matches the discrete nature of machines, a

dimensional model allows designers to decompose the complex phenomenon represented by

emotions into its components. Later discretization can be performed in the n-dimensional

space if needed.
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1.2.3 Appraisal models

Appraisal models are based on the concept that emotions arise from the evaluation of

contingent events in terms of present and future effects both concerning the subject and

other involved people. A number of appraisal models of emotions have been proposed in

the literature. Due to the difficulty of defining appraisal in general terms, these can be

significantly different as noted in (Scherer et al., 2001, p. 11)

“Examination of these models indicates that although there is significant over-

lap [between the two types of structural models], there are also differences: in

which appraisals are included; how particular appraisals are operationalized;

which emotions are encompassed by a model; and which particular combina-

tions of appraisals are proposed to elicit a particular emotional response.”

Among these approaches, Roseman’s theory of appraisal (Roseman, 1996) and Scherer’s

Multi Level Sequential Checks (Scherer et al., 2001). Roseman’s appraisal theory describes

emotions as the composition of the outcomes of specific evaluations related to the expe-

rienced situation and considers motive consistency and accountability as the two most

important components of the appraisal process. Figure 1.4 shows a summary of the emo-

tions considered by Roseman and of their composition relatively to the relevant evaluations.

Sadness, for example, is elicited by verified circumstances aversing the subject’s goal and

on which control potential is low

Multi Level Sequential Checks are made up of three levels of appraisal process, with se-

quential constraints at each level of processing that create a specifically ordered processing

construct happening ad different conscience levels. The first of these levels describes mech-

anisms that are mostly genetically determined like prototypic unconditioned fear eliciting

stimuli. The second level describes socially learned behaviors, which become almost auto-

matic like in the first level but are not innate. The last level refers to emotions elicitated

by high level, propositional-symbolic processes related to goals and beliefs. These levels

of appraisal and their components are summarized in Table 1.1 as they were reported in
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Figure 1.4: Roseman’s appraisal schema
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Level Novelty Pleasantness
Goal/need

conductiveness
Coping potential

Norm/self

compatibility

Sensory-motor
Sudden, intense

stimulation

Innate

preferences /

aversions

Basic needs Available energy
Empathic

adaptation (?)

Schematic

Familiarity

(schema

matching)

Learned

preferences /

aversions

Acquired needs /

motives
Body schema

Self / social

schemata

Conceptual

Expectations

(cause / effect,

probability)

Anticipated

positive /

negative

estimates

Conscious goals
Problem solving

ability

Self ideal, moral

evaluation

Table 1.1: Appraisal levels as presented by Leventhal and Scherer (1987)

(Leventhal and Scherer, 1987, p. 17), which is the work Scherer et al. (2001) builds on.

Appraisal models represent a tendency to treat emotions like other cognitive processes.

Ledoux (1998), on the basis of the neurobiologically motivated points presented in Section

1.1, is against the forceful inclusion of emotions in a cognitivist setup by stating (Ledoux,

1998, p. 68-69):

“My desire to protect emotion from being consumed by the cognitive monster

comes from my understanding of how emotion is organized in the brain.”

This particularly strong expression is motivated by the attempt of cognitivists to include

emotions in a cold framework in which logical processes are used to describe even the

most innate reactions. Marvin Minsky, pioneering leader of this research field stated that

emotions are (Minsky, 2006, p. 1)

“[. . . ] not especially different from the processes that we call thinking.”

In his dissertation, Ledoux acknowledges that appraisal theories are very close to the

truth but he criticizes two points of the approach. First of all, he considers the investiga-

tion method, which is mainly based on verbally reported introspection by subjects, to be

inappropriate to study emotions as they are usually treated, in language, through exem-

plification labels taht do not contain all the details of what an emotion actually is and why

it arises. Secondly, he considers cognitive processes to have too much weight in emotion

definition.
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For what it concerns the influence of cognitive processes, I personally agree with Ledoux

that a strictly cognitivist view of emotions is to be avoided. On the other hand, I believe

that much of the debate is caused by the unclear use of emotional terms and by the absence

of a prudent distinction, from a cognitive point of view, of what is intended to be described

through cognitive processes and what actually is a cognitive process.

To discuss my views on this matter, I will concentrate on Scherer’s Multi Level Sequen-

tial Checks theory. Concerning the first point, I believe that it is misleading to talk about

emotions on all the three levels considered in the model. I believe that different terms

should be used to describe the results of the evaluation performed on each level. The

results of higher level evaluation, involving goals, beliefs and personal experiences produce

feelings and, being this level strictly associated with symbolic computation, it is the level

in which a strictly cognitivist view is appropriate.

Results obtained through second level evaluations, being determined by social experi-

ence, produce affections. I choose this term by following Spinoza’s concept of affectus as

the modification or variation produced in a body (including the mind) when it interacts

with another body which increases or diminishes the body’s power of activity.

On the first level there is what I think should be called emotions as the purely reactive

nature of the outcomes of this kind of processing appears to me to be particularly close to

the meaning of commonly used emotional labels.

The Multi Level Sequential Checks theory accounts for instinctive reactions on this

first level but it includes an explicit evaluation of events against basic needs and innate

preferences through cognitive processes. As these processes are said to be genetically

determined and automatic, the presence of a motivation in the reaction appears to be out

of place. This, however, is more an artifact than a real problem and it is caused by the

need of presenting a uniform model: although we are not capable of verbally explaining

the reasons why we experience an emotional reaction, this does not mean that there is no

motivation. The reason why we have an innate fear snakes, for example, is motivated by

the evolutionary need of protecting ourselves from venomous species. While, at present, we

do not need to think about the possible danger represented by a snake to experience fear,
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the process associating the general template of the snake or the sounds it produces can

be described in cognitive terms but it really represents an evolutionary process. That is, I

believe that as long as cognitivism does not claim to represent what actually happens in the

brain at lower levels and limits itself to describe an interiorized, evolutionarily determined

process in cognitivist terms with the only goal of pursuing model uniformity, there is

enough room for the different views to coexist. Describing emotions in cognitive terms is

acceptable in my opinion, as long as the motivations coming with cognitive processing are

attributed to evolution rather than to conscience.

In the view of appraisal theories, I will concentrate here of the first level only, considering

paralinguistic features for emotions communication and a reactive robotics architecture to

evaluate the coherence of the behaviors shown on the basis of automatic recognition.

1.3 Affective computing

The idea of including emotional behavior into machines has been proposed since the be-

ginning of research into artificial intelligence. Affective computing is a branch of artificial

intelligence that has gained significant importance, in recent years, mainly because of the

work by Rosalind Picard (Picard, 1997), who defined the term too. A formal definition of

the term is reported in Tao and Tieniu (2005):

Affective computing is the study and development of systems and devices that

can recognize, interpret, process, and simulate human affects.

Emotions have been found to be critical in order to obtain believable artificial agents

both in the form of conversational systems and in robotics. Of course, the field includes

many different areas of application because of its broad definition. In this Section, I

will concentrate on summarizing the work that has been done in recent years for what it

concerns emotional speech (excluding semantic analysis) and robotics.
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1.3.1 Emotional speech

Studying the way emotions are conveyed through speech is probably the main field of ap-

plication of affective computing together with facial expression recognition. Multimodal

databases of emotionally colored content mainly account for these two modalities with ges-

tures gaining more importance in recent years. Studying emotions is complicated mainly

because of the need researchers have of big amounts of descriptive data. Being emotions

hard to describe, however, makes it difficult to collect this kind of material and to rep-

resent its content. Categorically annotated corpora have been used in the first years of

computationally based analysis of emotional speech (e. g. the Berlin Emotional Speech

Database (Burkhardt et al., 2005)) while, in recent years, dimensional models have been

used instead (e. g. the Vera Am Mittag corpus (Grimm et al., 2008)). Other than anno-

tation, elicitation methods have been discussed. Read or acted speech, used initially, has

been found to be significantly different from spontaneous speech (Vogt and Andre, 2005;

Jürgens et al., 2011). While acted speech has been useful in the first years to study the

basics of emotion communication through speech, research has now consistently moved

to spontaneous emotions. These can be elicitated in a human-machine setup by means

of Wizard of Oz techniques, where an artificial agent is operated by a human operator

without the subject knowing (McKeown et al., 2010), or in a human-human interactions

by capturing TV recordings (Grimm et al., 2008).

Data processing methods for emotional speech are, of course, a hot research topic in

these years. Both features and classification methods are being heavily tested in order to

find a minimal set of features and a classification schema. Finding a general representation

of emotional speech and a universally efficient classification method has been challenging

until now. Recently, there has been a tendency in relying on automatic feature selection

starting from very large acoustic feature sets (often more than 1000). This, in my opinion, is

too much a brute force approach and is not as helpful in understanding the way emotions are

conveyed as methods based on interpretable features set are. Other than acoustic features,

classification a number of generic and specifically designed approaches have been proposed.
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Support Vector Machines (SVMs) (Vapnik, 1982) and Regressors (SVRs) (Vapnik, 1995)

are considered to be state-of-the-art among general purpose classifiers respectively for the

discrete classification and continuous regression tasks. Linguistically motivated models

coming from research on prosody have also inspired recent models like the hierarcical

graphical model used in Fernandez and Picard (2011), which combines local information,

based on syllables, and global information, based on global statistics over the acoustic

properties of the utterance.

1.3.2 Emotional robotics

Emotions are a strong force influencing the way humans choose which actions to employ

to correctly respond to arising situations. Responding correctly is not limited to survival

related tasks but also to social conventions: acting emotionally, under the constraint of

timing and modulation, significantly affects how people are perceived and how much easy

is for them to acquire high social standings. At the same time, emotions continue to assolve

their primordial goal of physically preparing the body to react to external stimuli. The

physiological component of emotions often led to criticism about the attempt of introducing

emotions into automated systems. Doubts arise both when it comes to the challenge of

making computers and robots feel emotions and when it comes to introducing emotional

communication. In (James, 1884, p. 190) it was stated that

Without the bodily states following on the perception, the latter would be

purely cognitive in form, pale, colourless, destitute of emotional warmth.

In the same paper, the author also argued (James, 1884, p. 193) that

Emotion dissociated from all bodily feeling is inconceivable.

Given the specificity of the emotional experience from a physiological point of view for

the (organic) human body, we should ask ourselves if it possible to find a correspondence

in the (electro-mechanical) body of a robot. Should this not be possible, we would lose an
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important component of human emotions seriously damaging the credibility of anything

we would dare to call a synthetic emotion. Obviously, robots do not have to regulate,

for example, blood pressure because they do not need muscles preparation to produce

a particularly strong effort. Nevertheless, we can refer to the needs of a robotic body,

different from from the ones organic bodies have, to look for an electronic counterpart of

the physiological experience creating emotions.

To employ emotions in a robotic system, it is therefore necessary to take into account the

two levels on which emotions operate: the cognitive level, which mainly involves decision

making processes, and the physiological level, which is related to the way the robot can

efficiently take advantage of its sensorial apparatus.

There have been multiple attempts to mimic the psychological effects of emotions in

decision making processes because of the applications in software systems like virtual con-

versational agents (Becker et al., 2004; Bevacqua et al., 2010). In robotics, emotionally

influenced planning of action sequences was presented in Kim and Kwon (2010); Gordon

et al. (2010). These works concentrated on modeling the influence of the emotional expe-

rience by means of the appraisal theory summarized in Section 1.2.3.

In Kim and Kwon (2010), for example, the Kaist Motion Expressive Robot (KaMERo)

was presented. Experiments with KaMERo were designed to assess how much easier is

for human people to interact with a robot that expresses emotions in a multimodal way.

KaMERo was programmed to play the Game of Twenty-Questions and it was equipped

with touch sensors, face recognition and voice recognition capabilities to establish a deeply

interactive experience with the user. KaMERo would have shown happy cartoonish faces

while playing nice sound effects in relation to the answers given by the human player. The

system was therefore composed of a logical module which tried to identify which ques-

tion was the most likely to help the robot win the game and of an emotional module

which influeced the robot’s behavior with respect to the user. As it is shown in Figure

1.5, the planning module, implemented as a Partially Observable Markov Decision Process

(POMDP) was coupled with a Deliberative Emotion Generation System (DEGS) to pro-

duce logically founded behaviors modulated by emotional reactions. Roseman’s cognitive
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Figure 1.5: The cognitive appraisal architecture used in KaMERo

appraisal processes (see 1.4) were employed to generate KaMERo’s emotional behavior.

In the proposed architecture, a set of standalone algorithms was developed to produce a

probabilistic interpretation of the result of each appraisal process.

Other than applications emotions can have in a cognitive architecture, the physiological

interpretation of emotions has also inspired self-regulation applications in robotics that are

motivated by neurobiology and related to attentional mechanisms. These can be designed

both to direct processing power towards arousing stimuli or to introduce asynchronies in

the periodic activation of behaviors in a robot in order to obtain an automatic adaptation

in the emergent behavior without having an explicit action selection mechanism Burattini

and Rossi (2010). This last work, in particular, shows that explicit cognitive processes are

not necessarily needed to select actions on a low conscience level.

1.4 Neurobiology, psychology and robotics

In this work, I will concentrate on a linguistically motivated speech processing method for

dimensional and continuous emotional tracking and on the definition of a robotics archi-

tecture to simulate a simple emotional intelligence without recurring to higher cognitive

processes. In my opinion, higher functions should be included in an artificial intelligence

only after exploiting as much as possibile on the lower levels of pure wired and instinctive
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behavior. We should, therefore, check how much intelligence can be perceived in an arti-

fact working on the basis on synthetic emotions before concentrating on the definition of

more complex processes to integrate what will be missing. As it was pointed out in the

very influential work by (Brooks, 1990, p. 13)

“It is unfair to claim that an elephant has no intelligence worth studying just

because it does not play chess.”

In my view, disregarding lower levels of intelligence is not just unfair but totally wrong

because of the principle of least effort, defined as follows (Zipf, 1949, p. 1)

“In simple terms, the Principle of Least Effort means, for example, that a person

in solving his immediate problems will view these against the background of his

future problems, as estimated by himself. Moreover, he will strive to solve his

problems in such a way as to minimize the total work that he must expend in

solving both his immediate problems and his probable future problems. That

in turn means that the person will strive to minimize the probable average rate

of his work-expenditure (over time). And in so doing he will be minimizing his

effort. Least effort, therefore, is a variant of least work.”

This principle has been applied to a wide range of situations concerning not only human

behavior, but animal behavior in general. For example, this tendency to economicity has

been observed for reduction phenomena in speech minimizing articulatory effort (Millward,

1996), on information seeking in general (Poole, 1985) and in particular concerning the way

people use websites (A. and A., 2002).

By considering the importance this energy saving principle has in nature, it appears

to be logical to structure an approach to artificial intelligence design by first considering

what it can be accomplished by the lower levels of intelligence, less powerful but also

less demanding from the required effort point of view. In the framework described by

Zipf (1949), if it is possible to spend less effort to solve an immediate problem by using

emotional or purely wired systems, these must be used. In fact, preserving energy may
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increase the probability of the system being able to solve more future problems. Higher

level capabilities like symbolic analysis and long range planning, more powerful but more

expensive in terms of energy and time spent, should be introduced as an integration to

these basic processes rather than being considered the main resource the human brain

relies onto. That is, in my view emotional processes are mainstream in brain activity while

symbolic reasoning and problem solving capabilities represent auxiliary processes that are

ignited by emotions. Of course, rules concerning how and when to invoke higher cognitive

levels should also be researched.

In Chapter 4, I will follow the distributed view of emotions described in Ledoux (1998)

both in a vertical and in a horizontal sense. Strictly following Ledoux’s view of how

perceptual systems contribute in a different and parallel way in defining the emotional

experience, I define a horizontal dimension in which sensors and data processing modules

contribute to the emotion definition. These contributions are then vertically organized

by means of the dimensional model proposed by Fontaine et al. (2007) to abstract the

emotional response on which reactions are based. The proposed architecture, while taking

into account neurobiology on the horizontal dimension, considers emotions as a much more

tangible and localized object by introducing a dedicated emotional model on the vertical

dimension. This is because, while neurobiology suggests an efficient organization design for

what it concerns perception and data flow evaluation in an emotional sense, the linguistic

trick represented by the term emotion give an efficient and synthetic representation of

the results of the emotional processing. By using the dimensional model, it is possible to

avoid the limits of a discrete set of emotional words and obtain an efficient interface between

perception and action. This interface is abstract enough to collect and generalize the results

coming from a distributed emotional evaluation by decomposing the emotional effect into

cross-culturally valid components. On the other hand, the interface is practical enough to

let designers associate behaviors to the emotional states by exploiting the common way

of referring to emotions as a whole. That is, the interface lets data processing modules

contribute to the emotional state in a biologically motivated way and it abstracts the results

into an unnamed emotional state representing a familiar basis on which designers can define
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behaviors. In Figure 1.6, I summarize the contributions neurobiology and psychology give,

in my view, to the definition of a synthetic emotion. While neurobiology inspires the

organization of the contributions of the data coming from sensors that do not necessarily

mimic human perception capabilities, psychological models organize the results of the

separated emotional evaluation processes into a single object, called synthetic emotion.

While this object does not exist in the human brain, as specified by Ledoux (1998), it

provides a convenient basis for behavioral design as it describes a complex set of emotional

responses in simple terms by summarizing multiple evaluation processes and by abstracting

the outcome into intuitive continuous components.
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Figure 1.6: Neurobiology and psychology contribution to the definition of synthetic emotions in a robot.



Chapter 2

Speech processing with phonetic

syllables

It is common to find, in the literature, approaches to speech processing for intonational

features extraction that concentrate on global statistics of the pitch curve to obtain

prosodic descriptors. While pitch is indeed the main correlate of intonation, the work

of prosodists often consists in describing intonation phenomena in terms of the synchro-

nization between pitch movements and segmental events like the occurrence of syllabic

nuclei and boundaries. By considering global statistics, moreover, every part of the speech

signal has the same importance of the others, contrasting with the literature concerning

the perceptual phenomenon called prominence. In this Chapter, I will present a number

of experiments on syllable-based speech processing concerning automatic syllabification,

pitch stylization and prominence detection. The results presented in this Chapter will be

the basis of features extraction technique presented in the next one.

2.1 Prosody

The term prosody comes from the greek πρoσωδία, which is composed by the two words

πρoς (near) and ωδή (song). It refers to all the melodical, qualitative and rhythmical

33
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Figure 2.1: The source-filter model as described in Fant (1960). (a) represents a cross-section of the human

vocal tract, (b) shows the spectrum produced by the vocal folds while vibrating, (c) shows the resonance

spectrum of the vocal tract when it is configured to produce the /æ/ vowel, (d) shows the effect applied on

the sound after radiating out of the vocal tract to result in the final spectrum (d)

components of speech that enrich the semantic content, often critically for what it concerns

the correct transmission of a message.

First of all, it is important to consider the phonatory apparatus and how humans use

it. These sounds, in general, are produced by letting the airflow coming from the lungs

resonate in the vocal tract. The configuration of the vocal tract can be described in

articulatory terms, by considering the position of articulators like tongue and lips, and in

spectral terms, by considering the enhancing and dampening effects different part of the

vocal tract applied on specific frequencies of a basic signal coming from the vocal folds.

The spectral view of voice production is known as the source-filter model (Fant, 1960) and

is summarized in Figure 2.1.

Depending on whether the vocal folds vibrate or are kept open while the airflow is

passing, speech can be respectively voiced or unvoiced. While the vocal folds vibrate, the

source signal is periodic and the frequency at which the vocal folds open and close consti-
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tutes the fundamental frequency (F0) of a voiced sound. F0 is indeed the main correlate

of intonation but, to study the role intonation has in communication, it is necessary to

consider the integration phenomena the human ear and brain apply to the received signal

before decoding it. For example, it is well known in the literature that the human ear is

less capable of discerning high frequencies than low frequencies. The most widely accepted

explanation, in psychoacoustics, about this is the place theory (Von Bekesy, 1960). This

theory relates frequency perception to the area of the basilar membrane that resonates

together with an submitted stimulus, activating the connected neural terminations (hair

cells). The perceptual correlate of F0 is pitch and it is usually computed by means of

a logarithmic transformation of the observed F0 value to mimic the lower discriminative

capability of the human ear at higher frequencies. Of course, pitch varies as a function

of time during speech production so pitch movements are a fundamental part of prosodic

analysis.

Pitch and pitch movements alone, however, are not sufficient to describe intonational

patterns. In the literature, these cues are always considered in terms of their relationship

with the segmental level, on which elements like syllables, words and phrases are realized.

Since intonational events are typically described as anchored to specific segmental events,

the level on which they are realized is called supra-segmental. The autosegmental-metrical

theory to intonational phonology (Pierrehumbert, 1980; Ladd, 1996) is the most important

example of this close relation.

The synchronization between pitch movements and the occurrence of segmental mate-

rial is very subtle and, even when small shifts are introduced, the human ear is able to

detect them, possibly assigning a completely different meaning to the utterance. A very

clear example of this is reported in D’Imperio and House (1997). In that work, the au-

thors show that, by altering the alignment of a peak tone with the occurrence of a stressed

vowel, neapolitan native speakers associate a declarative or interrogative function to the

utterance depending on the position of the peak with respect to the syllabic nucleus. Ex-

periments were performed both by altering an originally declarative production and an

originally interrogative production. In order to analyze the correlation of the utterance’s
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Figure 2.2: The stimuli used in D’Imperio and House (1997)

function both with the temporal alignment of the tonal peak and with the the presence of

pitch movements inside the vowel, the artificial utterances (synthesized with the PSOLA

algorithm) were produced by altering both the tonal peak alignment and the movement

occurring inside the vowel. For each type of alterations, 4 shifting steps of equal duration

were applied. Figure 2.2 shows a summary of the stimuli used in the experiment.

The number of equal responses obtained by human judges, summarized in Figure 2.3,

shows that, as alterations get more significant, the category shift becomes more evident,

especially for stimuli in which the tonal peak alignment was altered.

This study shows very clearly how the message conveyed by intonation can be radically

changed as the synchronization between the segmental elements and the suprasegmental

elements is altered. Moreover, it should be noted that stressed syllables usually constitute

the area on which prosodists attention concentrates and that, as intonational strategies can

be realized only in presence of voiced sounds, vowels have a particularly important role



2.2. SYLLABIFICATION 37

Figure 2.3: Graphical summary of the results presented in D’Imperio and House (1997)

in prosodic analysis. This indicates that, when analyzing a speech utterance, automatic

systems should not consider all areas of the associated signal as equally important.

This example makes it clear that, to obtain a linguistically motivated representation of

prosody to be used in a technological framework, it is necessary to introduce an analysis

method that takes into account the same elements considered by linguists to build their

theories and frameworks. Specifically for the the technological framework I am presenting

here, I will take into account

• the basic segmental units used in linguistics to describe prosodic phenomena

• a perceptually consistent description of the pitch curve

• the relative weight each unit has with respect to its neighbouring units

2.2 Syllabification

Syllable segmentation is important in speech processing because it is connected with the

main prosodic factors including rhythm and tempo and also because the opinion that

syllables can be used as basic units in speech recognition has been investigated for a long

time, see for example Wu et al. (1997); Jones et al. (1997). At the same time, the definition
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of syllable is still controversial. It depends, among others, on the observed language,

on the phonotactical rules involved in the morpho-phonological description adopted for

that language and on some particular phonetic constraints. Moreover, as highlighted in

(Sawusch, 2005, p. 7),

“While descriptions of language and language processes use terms like word,

phrase, syllable, intonation, and phoneme, it is important to remember that

these are explanatory constructs and not observable events. The observable

events are the movements of the articulators and the resulting sound. Conse-

quently, understanding the nature of speech sounds is critical to understanding

both the mental processes of production and perception.”

In this work we are interested in which acoustic cues can be useful for an automatic

syllabic segmentation. In the field of articulatory phonetics and phonology some authors

link syllables with jaw movement (De Saussure, 1967), some others to chest burst (Stetson,

1951) or they consider syllables as the basic units of speech programming (Kozhevnikov

and Chistovich, 1966). From the acoustic point of view, energy temporal patterns play

a fundamental role: Jespersen (1920) was the first one to link syllabification with energy

oscillation, observing that syllable nuclei are usually found in correspondence with energy

maxima, while syllable boundaries correlate with energy minima. A first attempt to auto-

matically segment a speech utterance into syllabic portions was presented in Mermelstein

(1975). In this work a loudness function obtained by assigning a weight to each element

within a set of spectral bands was used. An algorithm evaluating the shape of the loudness

pattern (convex-hull) was then employed to find syllable boundaries.

In Pfitzinger et al. (1996), the speech signal was processed in three steps: first the

authors used a bandpass filter, then they computed the energy pattern using a short term

window and finally they low-pass filtered this energy function. The syllable nuclei were

found by searching the local maxima of the energy contour. Another important result of

Pfitzinger and colleagues was the comparison of the different manual syllabic segmentation

that were done by several human labelers. They found an agreement of only 96% on
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nuclei positions, making them assume this value as an upper bound for any automatic

segmentation.

Another approach for speech syllabification was proposed by Jittiwarangkul et al.

(1998). Their method was based on energy computation and successive smoothing. They

tested various kinds of temporal energy functions for syllable boundary detection. The

behavior of their algorithm depended on a number of empirically predefined thresholds.

In Reichl and Ruske (1993) one of the first attempts to use neural networks to segment

speech into syllables was presented. The goal of this work was to find syllabic nuclei in

German read sentences. The features extracted from the speech signal and given as input

to the network consisted of Bark-scaled loudness spectra that were calculated every 10

ms. Two kinds of artificial neural networks were compared: a multilayer perceptron and a

radial basis function neural network.

In Wu et al. (1997) the analysis method was based on smoothed speech spectra com-

puted by two dimensional filtering techniques. This way the energy changes of the order of

150ms were enhanced while other techniques to emphasize the syllable onsets were used.

The average energy over nine critical frequency bands every 10ms was also considered. The

resulting vector was concatenated with log-RASTA features and was provided as input for

a multilayer perceptron.

In Greenberg and Kingsbury (1997) the speech modulation spectrogram, a system for

searching invariant features related to frequency portions of the speech spectrum, dis-

tributed across critical band-like channels, was introduced. According to Greenberg, in-

variants are mainly positioned in slowly varying dynamic features of the speech signal.

The processing and recognition of speech features involves temporal constants that take

two kinds of factors into account: speech rhythm parameters and the auditory temporal

integration of the slowest spectral components.

Starting from the modulation spectrogram, a different kind of neural network was

used in Shastri et al. (1999), specifically the temporal flow network that was previously

introduced in Watrous (1993). With this tool the authors computed a function having

local peaks at syllabic nuclei. The main differences between this net and the multilayer
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perceptron is that the employed one allows recurrent links and time delay.

In Nagarajan et al. (2003) an automatic syllable segmenter using the minimum phase

group delay function was developed. The author’s approach is deterministic in the sense

that they don’t make use of stochastic evaluations about the signal. In their work they

try to face the principal problem of the classic approaches to segmentation using the short

term energy function, that is thresholding and energy fluctuations. If we consider the short

term energy function as a magnitude spectrum, it can be demonstrated that it is associated

to a minimum phase signal. The study of the negative derivative of the short term energy

function (that is the ”group delay function”, if it was a magnitude spectrum) shows that

it has peaks at syllable boundaries which are less sensible to energy fluctuations. This

approach tries to find a more reliable reference to establish a decision threshold for syllable

boundaries. An error rate of utmost 40ms for the 83% of the syllable segments suggests

that this is one of the most powerful approaches found in literature. Continuation of this

work was also presented in Prasad et al. (2004).

In Petrillo and Cutugno (2003) an algorithm employing energy analysis to set syllable

boundaries corresponding to energy minima between two maxima was presented. Addi-

tional strategies to refine the initial result were employed to avoid segments containing

fricative sounds only and to recompact long stressed vowels that were erroneously splitted.

The values used for the set of parameters needed to perform automatic syllabification were

obtained by using a number of function minimization techniques like genetic programming

(Carnahan and Sinha, 2001) and simulated annealing (Kirpatrick et al., 1983).

In this Section I will describe a syllabification approach developed on the basis of the

algorithm presented by Petrillo and Cutugno (2003).

2.2.1 Energy profile extraction

Since we are interested in detecting syllable nuclei, which are mainly vowel-like sounds, we

filter the input signal to remove all the irrelevant spectral data like, for example, fricative

noise. This filtering step makes energy peaks caused by the occurrence of a syllable nucleus
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to stand out better than it would have been by looking at the energy profile extracted from

the raw signal. For the presented approach, a band-pass filter with a lower cutoff frequency,

set at 150 Hz, and an upper cutoff frequency set at 2800 Hz is used.

It is also necessary to smooth the energy profile in order to remove a high number of very

weak energy peaks that would be taken into account as syllable nuclei candidates. Since

we know that this kind of energy peak will never correspond to an actual syllable nucleus,

it is necessary to avoid having the algorithm considering them as candidates by employing

smoothing. This is done using the built-in PRAAT energy profile extraction procedure: the

values in the sound object are first squared and then convolved with a Gaussian analysis

window (Kaiser-20, sidelobes below -190 dB). Since the effective duration of the analysis

window is computed as the ratio between 3.2 and the minimum periodicity frequency in

the signal, which can be set by the user, we can obtain a smoother energy contour by

lowering the minimum pitch parameter. In our experiments, we set the minimum pitch to

80 Hz.

In Figure 2.4 the energy profile of a raw speech signal along with its spectrum and its

manual segmentation into syllable units is shown while in Figure 2.5 the smoothed energy

profile and the filtered spectrum of the same speech signal is shown. In the example

it is possible to see how this preprocessing step removes many energy peaks caused by

phenomena other than syllable nuclei occurrence.

2.2.2 Syllable nuclei candidates detection

After filtering the speech signal in the frequency domain and obtaining a clean energy

profile, the algorithm applies filtering in the time domain to remove artifact peaks that

are not to be considered syllable nuclei candidates. It builds a syllable nuclei candidate

list that, in the beginning, contains all the energy peaks that were not removed during the

previous step. Then, it removes from the list the energy peaks that do not appear to be

eligible as syllable nuclei candidates according to a second analysis step.

First of all, silent areas in the speech signal are computed using a silence threshold
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Figure 2.4: The original signal along with its manual syllabic segmentation. The first frame shows the

energy profile while the second one shows the unfiltered spectrum.

defined according to the PRAAT standard. Areas where the energy value is less than

the maximum energy value minus a user defined parameter (which we set to 30 db) are

considered silent. Peaks falling in silent areas of the speech signal are removed from the

candidate list.

Filtering in the time domain is especially needed to remove a particular kind of artifact

energy peak that is resistant to frequency domain filtering. The artifact we want to remove

during this step shows up as a weak energy peak on a steep rise of the intensity profile. This

is mainly caused by the occurrence of alveolar trills, which are very frequent in Italian, and

is particulary hard to avoid during syllable nuclei candidates evaluation since its phonation

type is voiced. In Figure 2.6 an example of an artifact peak caused by the alveolar trill
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Figure 2.5: The filtered signal along with its manual syllabic segmentation. The first frame shows the

smoothed energy profile while the second one shows the filtered spectrum.

occurring inside the [tre] syllable is shown.

In order to avoid the systematic insertion errors caused by this artifact, the algorithm

uses a template to detect this specific situation. This procedure scans the syllable nuclei

candidate list searching for peaks showing up on an energy rising that reaches its top in, at

most, 100 ms. If the difference between the value of the peak and the value of its following

energy minimum is less than 15% of the total rise, the peak is recognized as artifact and

removed from the candidate list. When an artifact is removed, its immediately following

energy dip is removed from the list of energy minima too. This is because by removing

an energy peak the subsequent valley becomes inconsistent and must not be taken into

account anymore when evaluating the next energy peak.
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Figure 2.6: An artifact peak caused by an alveolar trill. This artifact, if not detected, causes an insertion

error because of a false positive occurrence during the syllable nuclei detection step.

2.2.3 Syllable boundary markers positioning

Having found syllable nuclei, the algorithm needs to set syllabic boundaries. A specialized

strategy is employed for the first and the last syllable marker because their position is

determined by the silence threshold being crossed. In particular, we found that the position

of the first marker must be adjusted when the sentence starts with a fricative consonant.

To correctly position the first marker, we employed the same approach used in Petrillo and

Cutugno (2003) to set the generic syllable marker. First, we position the marker where the

silence threshold is exceeded and then we compute the residual energy by low pass filtering

the signal using a cutoff value of 1100Hz. We left-shift the marker until the difference

between the original signal and the filtered one is inferior to 1db. This strategy leaves the

marker near to the point in which the silence threshold is exceeded when there is not a

fricative consonant while recovering it when it occurs at the beginning of the sentence.

Regarding the other markers, for each found syllable nucleus, the preceding energy dip

is considered as the initial position of the related marker. The marker is then moved by

considering the following

tb = argmint∈[tp;td]E
′(t) (2.1)
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Figure 2.7: The energy profile of a speech signal along with its manual and automatic syllabification

where tb is the time at which the syllable boundary is finally positioned, tp is the time at

which the preceding nucleus is found, td is the time of the original position of the boundary

and E is the energy profile of the signal. Through Equation (2.1), we position the syllable

marker where the slope of the energy profile between the preceding nucleus and the original

position of the marker itself reaches its maximum. The last step the algorithm performs

is to merge syllables that are shorter than a user defined threshold (we used 70 ms) with

the syllable on their right side. The last syllable, if too short, is merged with the one at

its left side.

In Figure 2.7 we show the final result of the syllabification procedure compared to the

manual one.

2.2.4 Evaluation

In order to evaluate the automatic segmentation procedure, it is necessary to compare the

output of the system with manually annotated boundaries. The evaluation of automatic

analysis is expressed in terms of the number of differences between automatic and human

analysis. These differences, here called errors, can be of three types:

• Deletions

• Insertions

• Substitutions
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Figure 2.8: A very distant marker being considered a substitution because of the search region being too

large

A deletion error occurs when a syllable is not recognized at all, i.e. when two syllables

are expected and only one segment is found. Insertion errors, on the opposite, occur when

an expected syllable is split into two segments. The last kind of error produces a difference

between the temporal positions of the separation marker from the two types of annotation

that results greater than a fixed threshold, without altering the number of recognized

segments.

The testing protocol is a modified version of the system presented by Petek et al. (1996)

and is documented in Ludusan (2010). Consider R = (r1, ..., rn) and S = (s1, ..., sm) the

string of the manual segmentation and the string of the automatic segmentation. A search

region for each element ri (with i = 1...n) is defined and all the elements sj are assigned

to their corresponding region. If no marker sj can be found in a certain search region,

the marker corresponding to ri is considered a deletion. If there is just one marker sj in a

search region, it is a substitution of ri. If there are two or more markers in a search region,

the nearest is considered a substitution while all the others are considered insertions.

As suggested by Petek et al. (1996), a search region of the marker ri starts at half of the

interval [ri−1, ri] and it ends at half of the interval [ri, ri+1], thus excluding the possibility

of overlapping regions.

This way, however, search regions may become too large or too small. In case of large

regions it may be possible to consider as a substitution a marker quite distant from the

reference marker. This case is illustrated in Figure 2.8.

In this example, in the search region of the marker ri+1 there is only sj+1, so the

algorithm will consider sj+1 as if it was a substitution of ri+1. Since the two markers
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Figure 2.9: Thresholding to limit the size of each semi-regions solves the problem of distant markers being

considered as substitutions.

Figure 2.10: An example of an insertion-deletion couple being inserted in place of a substitution because

of the search region being too small.

are very distant from each other, however, it is better to consider them as an insertion

and a deletion. To solve this problem a threshold to limit the size of each semi-region is

introduced (see Figure 2.9).

On the contrary, if the search region is too small, an insertion and a deletion are

introduced instead of a substitution. In the example shown in Figure 2.10, sj is considered

an insertion and ri+1 a deletion but they are close enough to consider sj a substitution of

ri+1. To solve this, all the consecutive pairs (insertion-deletion), or viceversa, are processed

and they are converted into substitutions, depending on the distance between the two

markers.

As baseline for this test, the algorithm presented in Petrillo and Cutugno (2003) is con-

sidered. In Table 2.1 results obtained by the two approaches with the employed evaluation

system are summarized.
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Substitutions Insertions Deletions Correctness Accuracy

Proposed algorithm 2.03 6.19 5.72 91.74 85.14

Petrillo-Cutugno 4.13 5.74 5.61 89.67 83.58

Table 2.1: Results obtained on the SPEECON corpus (in %) by the new algorithm and by the baseline

approach for Italian.

2.3 Pitch stylization: preliminar analysis

The modulation of pitch plays a prominent role in everyday communication fulfilling very

different functions, like contributing to the segmentation of speech into syntactic and in-

formational units, specifying the modality of the sentence, regulating the speaker-listener

interaction, expressing the attitudinal and emotional state of the speaker, and many others

(see Vassière (2005) for a complete overview). It is therefore not surprising that research on

pitch has received great attention in recent years. However, both the phonetic description

of pitch movements and their communicative interpretation still present several method-

ological and theoretical challenges. I will concentrate only on the task of modeling the

pitch curve on a psycho-acoustical basis, thus adopting the principle that when analyzing

communicative intents attention should be focused on what is heard rather than what is

spoken. For what it specifically concerns pitch stylization, as it was pointed out in (t’Hart

et al., 1990, p. 25)

“[. . . ] No matter how systematically a phenomenon may be found to occur

through a visual inspection of F0 curves, if it cannot be heard, it cannot play

a part in communication.”

Among the first attempts to follow this principle, it is important to highlight the work

presented in (Hirst and Espesser, 1993) where the pitch curve was considered as the result of

the composition of a micro-prosodic component, intended as perturbations caused by mere

articulation, and of a macro-prosodic one. The MOMEL algorithm (Hirst and Espesser,

1993; Hirst et al., 2000) was designed to separate the micro-prosodic component from
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the macro-prosodic one, which was represented by means of a quadratic spline function.

The MOMEL algorithm is often used as a term of comparison for stylization algorithms

although it was designed to produce a model of macro-melody rather than a stylization.

The difference lies in the fact that the output of the MOMEL algorithm does not discard

the micro-melodic component, thus allowing to recover the original pitch profile. Being

widely used in prosodic research, however, the macro-melodic component of the MOMEL

output constitutes a reference for all representations of prosody aiming at describing general

intonation profiles.

Research on pitch stylization algorithms is highly attractive both for speech technolo-

gists and prosodists. An economic and perceptually reliable stylization is a fundamental

component for many technologies of voice, like speech recognition, speech synthesis, lan-

guage identification, and speaker recognition. On the other hand, for prosodists, a per-

ceptually based stylization of pitch constitutes a solid ground to define a set of descriptive

units of intonation. For example, this kind of set could be used to develop automatic or

semi-automatic systems of prosodic annotation (Campione et al., 2000; Mertens, 2004).

Lastly, integrating a tonal perception model in the stylization algorithm has important

implications for basic research on pitch perception: by submitting re-synthesized stimuli

to the human ear in perceptual tests, it is possible to evaluate different models of tonal

perception and to provide important clues for developing more reliable models.

In this Section, I will first show the results of a preliminar study to verify the impact

syllabic prominence can have on the task of pitch stylization and I will also show that

statistical closeness measures are not a good estimator for what it concerns the quality of

the stylized curve. The algorithm used in this preliminar study uses a set of empirically

determined parameters that are removed in the following Sections, where I will report on

the development of an original approach based on a tonal perception model that will be

used for emotional features extraction in the next Chapter.
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2.3.1 An adaptive strategy for pitch stylization

Although pitch is the perceptual correlate of F0 variations, the relationship between the

perceived pitch and the F0 curve is not trivial. First, many micro changes in the F0

curve do not have a perceptual counterpart; these variations are therefore irrelevant for

communication and must be filtered out from the actually perceivable events. For this

reason, the need of a stylization that maintains only the perceptually relevant aspects of

the F0 curve arises. Following the definition of stylization given by (t’Hart et al., 1990, p.

42),the synthetic curve

“[. . . ] should eventually be auditorily indistinguishable from the resynthesized

original”

and, moreover, it

“[. . . ] should meet the additional requirement that it must contain the smallest

possible number of straight-line segments with which the desired perceptual

equality can be achieved.”

This definition was interpreted as an optimization process for the first time in Ghosh and

Narayanan (2009). In that work a Dynamic Programming (DP) algorithm was designed

to find the optimal balance between an empirically determined number of segments, based

on the findings of Wang and Narayanan (2005), and the Mean Square Error of the stylized

curve with respect to the original one. In this section, this same interpretation is followed

but a divide et impera approach is used instead of dynamic programming and the stylized

curve is constrained to contain the smallest number of control points rather than segments.

From hereon, I will refer to this approach the Optimal Stylization (OpS) algorithm. The

cost of the stylized curve is also explicitly taken into account during computation and for

evaluation purposes by measuring the number of points used by the different algorithms,

which is an aspect that has often been overlooked in previous works.
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First of all, it is necessary to show that, for the pitch stylization problem, the optimal

substructure property holds as this is a necessary condition for divide et impera and dy-

namic programming approaches to be applicable. We therefore have to prove the following

Theorem 1. Given a pitch curve P and a stylization S of P , if S is optimal, its subcurves

must be optimal too with respect to the pitch curve section they stylize.

Suppose we have a generic function F that evaluates, with respect to the definition,

how good a stylized curve S is, given the original pitch curve P . To indicate a point on a

sampled pitch curve the following notation will be used:

px = (vsx , tsx) (2.2)

where vpx is the value in semitones of the point and tsx is the time instant of the point in

ms. Both P and S can therefore be described as sequences of points so that P = [p1, ...,pn]

and S = [s1, ..., sm] with m ≤ n. If S is an optimal stylization for P , then F(S) ≥ F(S)

holds for every possible stylization S of P .

Given an index i such that 1 < i < m, we consider the two subcurves S ′ = [s1, ..., si] and

S ′′ = [si, ..., sm]. We need to prove that, for every stylization S ′ and for every stylization

S ′′, both F(S ′) ≥ F(S ′) and F(S ′′) ≥ F(S ′′) hold. Let us concentrate on S ′: if S ′ would

not be optimal, some other S ′ should exist such that F(S ′) > F(S ′). Since the F function

evaluates the quality of the stylization on the basis of what it was stated by t’Hart et al.

(1990), S ′ is either perceptually better and/or less expensive than S ′. If there was such a

curve, then it would be possible to replace S ′ with S ′ inside S, thus obtaining a new S 6= S

such that F(S) > F(S), contradicting the initial hypothesis. Then, if S is optimal, its

subcurves must be optimal too with respect to the pitch curve section they stylize (q.e.d.).

The DP algorithm presented by Ghosh and Narayanan (2009) was designed to optimize,

in O(KN2), the Mean Square Error (MSE) of a pitch stylization by using a predetermined

number K of segments for a curve with N segments. To automatically establish how

many segments should be used to stylize the original pitch curve, the authors adopted an

approach based on the results presented by Wang and Narayanan (2005). They performed
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a multilevel decomposition of the pitch contour using a Daubechies wavelet (Db10) and

considered the number of extrema in the third level of the decomposition to be equal to

K − 1. The choice for the third level was motivated by the results of a perceptual test in

which subjects indicated that the third decomposition level contained the optimal number

of extrema in 60% of the cases (Wang and Narayanan, 2005). However, the same data also

showed that in 27% of the cases the optimal decomposition was found in the fourth level,

in 2% of the cases it was found in the fifth level and in 11% of the cases it was found in

the first level. Since the higher the chosen level, the less the number of extrema, it can be

concluded that, by systematically choosing the third level to estimate K, the number of

segments in Ghosh and Narayanan (2009) was probably optimal in 60% of the cases, with

29% of the times being better to use fewer segments and 11% of the cases being better to

use more segments.

The mathematical formulation of the pitch stylization problem presented here is more

adherent to the definition given in t’Hart et al. (1990) than the one used by Ghosh and

Narayanan (2009). Specifically, the goal of the optimization process should be to obtain the

best balance between curve quality and cost. That is, the two constraints provided by the

definition of stylization should be taken into account at the same time during computation.

In the two-step process employed in Ghosh and Narayanan (2009), this was not the case

and the DP algorithm was not able to correct a non-optimal choice of the K parameter

because it was designed to find the minimum MSE stylization for a pre-determined number

of segments. Since we have seen that the first step finds the optimal number of segments

in most cases but not always, the second constraint is not guaranteed to be satisfied. In

the formulation used here, F represents an evaluation of the balance between quality and

cost of the stylized curve so that, given a quality function q(S) and a cost function c(S),

we can describe F as a generic composition of the two measures. We therefore need to

define the q(S) and c(S) functions.

In Ghosh and Narayanan (2009) it is assumed that MSE is the best measure to evaluate

how similar the stylized curve will be perceived to be with respect to the original one. While

assuming the same for now, one of the goals of this preliminar investigation is to check
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if this is actually the best choice, given that perceptual phenomena are important in this

task. Should this not be the case, it would be easy to substitute the q(S) function with a

more appropriate one while retaining the same framework. Considering Normalized Root

Mean Square Error (NRMSE) as a quality measure we obtain

q(S) = 1−

√√√√√√√
n∑
i=1

(
pi − pi
pi

)2

n− 2 (2.3)

where n is the number of points of the original curve, pi is the i-th point of the original

curve and pi is the corresponding point on the stylized curve estimated after linear interpo-

lation of the S curve control points. If we sample the original curve at a sufficiently small

time interval (10ms in the presented tests) and we linearly interpolate it, we obtain a very

good quality curve that will also be very expensive in terms of the number of points used.

If we take this curve as reference, we can evaluate the cost of a stylization as the ratio

between the number of points used in the proposed curve |p| and the number of points |p|

used in the reference one.

This ratio is weighted with a sigmoid function to evaluate the final cost parameter so

that values of the cost measure at one end of the scale will not be very different. The value

of the function c(S) is therefore

c(S) = 1−
(

1
1 + e

−(x−0.5)
0.13 )

)
(2.4)

where x = |p|/|p|. As q(S) and c(S) are two different performance measures of the

same object, we can evaluate the balance between the two, which is F(S), by using the

harmonic mean.

F(S) = (1 + β2)q(S)c(S)
β2q(S) + c(S) (2.5)

However, we would like to dynamically adjust how the two parameters are weighted by

taking into account how complex the original curve seems to be. Specifically, we want to

favor cost over quality in areas that can be approximated linearly while favoring quality
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when important changes appear. In this experiment, this is accomplished by adjusting the

β parameter on the basis of the standard deviation of the differences between consecutive

points in the original curve and using it as a penalization factor to an initial value of 2,

which means that cost is weighted twice quality. Therefore we have

β = 2− stdev(∆(pi, pi−1)) (2.6)

We set the inferior limit of β to 0.5 for symmetry with respect to the effect of β = 2.

This is an empyrical way of solving the problem that will be better addressed in Section

2.4.

Having set the q(S) and c(S) functions, we can design a divide et impera algorithm

in which the original problem is iteratively split into two subproblems of approximately

equal size until a subproblem with a trivial optimal solution is found. By backtracking and

combining the solutions of each couple of subproblems an optimal solution for the original

problem can be found. First, we define a function to obtain the possible merging of two

curves sharing an endpoint:

g([sa1 , ..., sak ], [sb1 , ..., sbz ]) = [sa1 , ..., sak−1 , sb2 , ...sbz ],

[sa1 , ..., sak , sb2 , ..., sbz ]


(2.7)

Then, we can define a recurrence relation as follows:



Opt([p1,p2]) = [p1,p2]

Opt([p1, ...,pn]) = argmax
S

F (S) := S ∈ g(Opt([p1, ...,pmid]),

Opt([pmid, ...,pn]))


(2.8)

The procedure to solve the problem by means of this recurrence relation is shown by

Algorithm 1. Computational complexity is O(NlogN).



2.3. PITCH STYLIZATION: PRELIMINAR ANALYSIS 55

Algorithm 1 The OpS algorithm
procedure merge(P, Sa, Sb)

k = length(Sa)

z = length(Sb)

forig = F (P, [sa1 , ..., sak , sb2 , ..., sbz ])

fmod = F (P, [sa1 , ..., sak−1 , sb2 , ...sbz ])

if forig <= fmod then

return [sa1 , ..., sak−1 , sb2 , ...sbz ]

return [sa1 , ..., sak , sb2 , ..., sbz ]

end procedure

procedure optimize(P, pstart, pend)

if pend − pstart < 2 then

return P [pstart : pend]

pmid = length(P [pstart : pend])/2

Sa = optimize(P, pstart, pmid)

Sb = optimize(P, pmid, pend)

S = merge(P [pstart : pend], Sa, Sb)

return S

end procedure

procedure main(P )

for all voiced segments Pv do

pstart = Get the Pv start point index

pend = Get the Pv end point index

Sv = optimize(P, pstart, pend)

end procedure
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One of the goals of this preliminar test is to evaluate the impact of syllabic prominence

in the task of pitch stylization. I introduce here a variant using manual syllable level

segmentation and prominent syllables annotation to obtain less expensive curves. The

objective is to demonstrate the following

Hypothesis 1. When stylizing a pitch contour, it is possible to use fewer points in pitch

curve sections falling inside non-prominent syllables without damaging perceptual equality.

In this variant of the OpS algorithm using manual annotations, which I will call Op-

SProm as opposed to OpSNoProm, we slightly modify the steepness of the sigmoid function

employed by the cost function c(S) to favor the removal of points in non-prominent sylla-

bles while we use the same cost function presented before to stylize the pitch curve inside

prominent syllables. The reader is referred to Section 2.6 for more information on the auto-

matic prominence detection problem and for the results of specific experiments performed

on this task.

2.3.2 Testing methods

In order to take into account perceptual significance, the OpS algorithm was evaluated

using both objective measures and a subjective listening test. The quality evaluation of

the stylized curves proposed by OpS and by its variant was performed by comparing them

with the ones proposed by the MOMEL algorithm and by the DP algorithm. The cost

evaluation was performed on a larger corpus as well as the investigation of the effectiveness

of statistical closeness as quality measure. This is because while the need to collect human

subjective evaluations poses a limit on the number of samples to employ, the differences in

the objective measures we wanted to observe were not definite enough to be captured by

statistical tests on a limited number of samples.
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2.3.3 Test material

For the objective evaluations the 382 files of the prominence annotated TIMIT subset used

in Tamburini and Wagner (2007) were employed to test automatic methods for prominence

detection. For the listening test, 20 sentences of duration varying between 2 and 3 sec-

onds were selected from the CLIPS corpus of Italian semi-spontaneous speech (Savy and

Cutugno, 2009). The chosen sentences contained a single tonal unit in order to obtain

coherent intonational profiles for the listening test. The CLIPS subset was annotated by

an expert linguist following the same method used for the TIMIT subset.

2.3.4 Listening test setup

For the subjective, qualitative, evaluation of the stylizations, a humming track of each

original pitch curve and of each stylization was generated using the dedicated routine

implemented in PRAAT. This was in order to allow the subjects to concentrate on the

pitch curve and to be uninfluenced by semantic and pragmatic information. The listening

test was designed following the approach presented in t’Hart et al. (1990) to evaluate the

performance of each competing algorithm. Human listeners were presented with a series

of stimuli pairs and were asked to judge if the stimuli in each pair were actually the same

stimulus played two times or if they could detect any difference between the two. In

each run of this test, 10 stimuli were chosen to be paired with those obtained by the used

algorithm (group A), 5 further stimuli were paired with themselves (group B) and 5 further

ones were paired with an intentionally altered version (group C). In these altered profiles,

the pitch curve was shifted 10% up to introduce subtle but audible modifications. Mean

pitch in the test files was 145Hz. Shifting the pitch curve 10% up means adding 14 Hz, thus

obtaining new curves with 159Hz mean value. A relative difference of approximately 1.6

semitones between the original and the artificially altered curves was therefore introduced,

falling in the region indicated by t’Hart (1981) (t’Hart et al., 1990, p.29) to indicate the just

noticeable difference threshold in pitch, which was comprised between 1.5 and 2 semitones.

This is different from what it was suggested by t’Hart et al. (1990): indications were of
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shifting forward the pitch curve of about 50ms but it was not possible to do this in this

particular experiment because, by using the humming track, this modification would have

not introduced any difference detectable by the human ear: that is, the only difference

would have been an initial silence 50ms longer as there would not have been any segmental

content to contrast with. The stimuli assigned to each group were different among the four

test runs to avoid the subjects to become acquainted with the stimuli of group C (the most

easily recognizable ones). To limit the effect of tiredness and overtraining, each subject

was presented the four runs in different order. Randomization for the presentation of the

stimuli was also employed. 14 subjects (7 males and 7 females) were asked to evaluate

if the paired humming tracks were equal or not. The (B+C) control group was used to

evaluate the capability of the listeners to correctly discriminate equal stimuli (group B)

from the ones in which clear differences were artificially introduced (group C).

The expected result of this test is that the proposed preliminar approaches are at least

equivalent, from a qualitative point of view, to other approaches presented in the literature,

thus validating Hypothesis 1.

2.3.5 Results

The OpS algorithm and its prominence based variant are compared here with the MOMEL

algorithm and with the DP approach presented in Ghosh and Narayanan (2009). We

evaluate the four approaches in terms of percentage of times that the proposed curves were

judged to be equal by the listeners, in terms of points per second (Pps) used and in terms

of NRMSE. In Table 2.2 the summary of the data is shown.

Table 2.2: Subjective (CLIPS) and objective (TIMIT) statistical comparison among the algorithms

OpSNoProm OpSProm MOMEL DP

Equality 72.86% 69.29% 76.43% 70.71%

Pps 3.78 3.47 3.75 5.72

NRMSE 0.1685 0.1975 0.1789 0.0663
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A chi-squared test was used to compare the number of times the stylized curves were

considered to be equal to the original one. The test found that the differences shown

in Table 2.2 are never statistically significant (p > 0.3). The number of points used is

therefore the key factor to decide how good the proposals are. An ANOVA test was used

to evaluate the significance of the differences in terms of Pps. The test found that the

OpSNoProm algorithm shows similar performance with respect to the MOMEL algorithm

(p > 0.5). The OpSProm variant uses significantly fewer points with respect to the MO-

MEL algorithm (p < 0.01) while the DP approach clearly uses many more points than the

others. Differences in terms of NRMSE were also evaluated with ANOVA and were always

significant (p < 0.01). This means that although the DP approach, as expected, obtains

the best NRMSE, it does not introduce an improvement in subjective evaluation, as shown

by the chi-squared test.

Data presented in Table 2.2 show that no difference in perceptual equivalence is caused

by the pps redction caused by the use of manual annotation of prominent syllables, vali-

dating Hypothesis 1. These results are presented in Origlia et al. (2011).

2.4 A tonal perception model for optimal pitch

stylization

In this Section I will analyze strengths and weaknesses of the basic OpS approach in the

light of the results summarized in the preceding section. The main updates to the original

algorithm presented in this work are based on the observations reported here.

2.4.1 Observations

Observation 1. The basic OpS algorithm equals the performance of the MOMEL algorithm

with the additional advantage of being parameter independent.

This observation comes from the fact that there was no statistically significant dif-

ference between the basic OpS algorithm and the reference MOMEL algorithm both on
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the subjective test and on the number of points used. Observation 1 implicates that, for

the same pitch curve, only one stylization can be found by the OpS algorithm while the

MOMEL approach proposes a different solution each time it is provided with different

parameters. Given the result of the ANOVA test on the NRMSE measures we can assume

that the curves proposed by the two OpS variants and MOMEL can differ in shape up to

a statistically detectable degree. However, the listening test, which is the ultimate way of

verifying the quality of the curves in the pitch stylization task, highlights that these differ-

ences do not introduce appreciable differences to the human ear. This is in line with what

was noted in (t’Hart et al., 1990, p. 42), where the term close copy is used as synonym of

stylization

“[. . . ] there is not just one close copy for a given F0 curve. The limits of dynamic

pitch perception, together with restrictions of human memory capacity, make

it possible that a second close copy would show small deviations if visually

compared to the first one. Due to perceptual tolerances, however, they sound

equal to each other, and to the resynthesized original.”

Given the motivations stated in (Ghosh and Narayanan, 2009, p. 810) that

“[. . . ] optimality in terms of some objective function is necessary to understand

the effect of parameterization of the pitch contour in a systematic way.”

between two stylization approaches leading to equal perceptual performance, the one

that yields a univocal solution is to be preferred at least for the standardization possibilities

it offers to researchers working on prosody.

Observation 2. Statistics about the S curve closeness to the P curve are not a good

estimator of a stylized pitch curve quality.

The chi-squared test performed on the subjective data shown in Table 2.2 and the

ANOVA results on NRMSE statistics highlight that although the DP approach performed

significantly better than the other approaches in terms of NRMSE, it did not introduce an
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improvement in subjective evaluation. This is in line with the observation reported by the

authors that (Ghosh and Narayanan, 2009, p. 813)

“[. . . ] the result of the listening test using the stylization obtained by the DG

approach (Directed Graph (Nygaard and Haugland, 1998)) turned out to be

similar to that of the DP approach, although DP achieves the minimum MSE.”

Since statistical closeness measures do not appear to represent what happens on a

perceptual level, Observation 2 gives credit to the choice made in D’Alessandro and Mertens

(1995); Mertens (2004) to employ a tonal perception model to directly take into account

psycho-acoustical phenomena in the pitch stylization task. This indicates to us the need to

redefine the q(S) function so that quality evaluation would be based on a tonal perception

account rather than on the statistical closeness of S to P .

Observation 3. Not all areas of the pitch curve should be stylized with the same degree of

accuracy.

The chi squared test on the subjective evaluation, together with the ANOVA test on Pps

statistics regarding the OpSNoProm/OpSProm pair, shows that by exploiting prominence

annotation, the stylization quality is not damaged from a perceptual point of view and

uses significantly fewer points than the basic approach. This result indicates that saliency

is an important feature to take into account when producing stylizations: by allowing the

use of fewer points without influencing how the contour is perceived, the stylized curve

complies with the requirements set by the definition and, consequently, better captures

important pitch movements. The task of automatically identify salient areas, however,

is not straightforward both from a theoretical and from a practical point of view. As a

consequence of these considerations, the following observation is introduced:

Observation 4. It is safer to employ acoustic parameters related to syllabification and

prominence detection into an integrated control system for the stylization algorithm rather

than introducing a serialized process performing segmentation and prominence annotation

before stylization.
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In the preliminar tests, a manual prominence annotation performed by an expert lin-

guist was used to identify salient areas. To make the OpS approach independent from

manual annotation, the obvious approach would have been to introduce an automatic syl-

labification and prominence annotation step, as suggested in Origlia et al. (2011). The idea

would have been of using the method presented in Petrillo and Cutugno (2003) to perform

syllabification and combine it with the one presented in Ludusan et al. (2011) to perform

prominence annotation. This approach, however, was discarded because it is not possible

to obtain an automatic syllabification that always matches the manual one. Although past

approaches like D’Alessandro and Mertens (1995); Mertens (2004), employed the concept

of phonetic syllable to produce stylizations on the basis of the underlying syllabic struc-

ture, it is not possible to follow this approach because we also need to identify prominent

syllables, introducing the problem of automatic prominence annotation: past approaches

regarding automatic prominence annotation (Silipo and Greenberg, 2000; Tamburini, 2006;

Abete et al., 2010; Avanzi et al., 2010; Ludusan et al., 2011) assume a manual syllabic seg-

mentation to perform acoustic analysis leading to prominence detection. It would not be

procedurally correct to apply an approach designed to be used on a manual syllabification

with an automatic segmentation into phonetic syllables. Moreover, the definition of promi-

nence itself is debated: some (Silipo and Greenberg, 2000; Avanzi et al., 2010; Ludusan

et al., 2011) use a binary definition of prominence while others (Vanderslice and Ladefoged,

1972; Eriksson et al., 2002; Jensen, 2003; Tamburini, 2006) prefer to employ more levels.

It is interesting, however, to note that in the scientific community there is much more

consensus regarding the acoustic correlates of prominence: typically, energy and duration

of the syllable nucleus together with synchronized pitch movements are taken into account

to derive a prominence function in which local maxima correspond to prominent syllables.

In House (1990) the Spectral Constraint Hypothesis (SCH), which states that “As

the complexity of the signal increases, pitch sensitivity decreases”, was introduced: tonal

movement perception capability was described as inversely proportional to the amount

of change in energy and spectral information independently by the type of change. In

House (1995), however, results showing that prepausal tonal movements were perceived
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with increased accuracy by human listeners were presented. When describing the effects

of this finding, the author indicated that (House, 1995, p. 952)

“[. . . ] greater precision is necessary in modeling prepausal boundary tones for

speech synthesis and automatic stylization of intonation than is necessary for

phrase internal contours.”

Following this finding, the author updated the SCH to take into account the syllabic

structure by stating that (House, 1996, p. 2051)

“[. . . ] The area of maximum new spectral and intensity change occurring typ-

ically between syllable onset and syllable nucleus appears to be a crucial point

for the timing of tonal movement. Movement through this area will be recoded

as tonal levels as indicated in the earlier model. However, movement through

the beginning of the syllable coda can be perceived as movement per se and

described using movement features.”

By phonetically reinterpreting the phonological framework used by House, it can be

hypothesized that tone perception is related to the synchronized energy behavior both in

terms of movement type (rising/falling) and in terms of rate of change (slopeness). There

also seems to exist an extended superimposition between the effects described in House

(1990, 1995, 1996), the widely used parameters for automatic prominence annotation and

a syllable-like segmentation approach based on energy peaks and valleys. Because of this,

an automatic pitch stylization algorithm can be built in such a way that every parameter

is taken into account at the same time during the process without having to introduce

pitfalls and further discretization of the speech signal based on a phonological account.

The analysis of the interactions between pitch movements and energy glides should, of

course, be at the basis of such an approach.

Observation 5. Thresholds dealing with F0 glissando perception should not be absolute

but rather modulated by the interaction of pitch movements with co-occurring energy move-

ments.
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There has been an extensive investigation, in the past, regarding the glissando threshold

(Sergeant and Harris, 1962; Klatt, 1973; Schouten, 1985; t’Hart et al., 1990), the limit in

the rate of change of a pitch segment over which a gradually changing tone is perceived

instead of a static one. The differential glissando threshold, the limit in the difference

between the rate of change of two segments over which they are perceived as two different

glissandos, was less studied but it was taken into account in D’Alessandro and Mertens

(1995). This parameter will be taken into account in the presented pitch stylization method

as well.

Regarding the glissando threshold, the research effort concentrated on looking for an

analytic expression that could tell if a pitch movement would be perceived as a static tone

rather than a glissando. In t’Hart et al. (1990) such a expression was derived by comparing

the different results that were obtained in previous works and it was defined as

gthr = .16/T 2 (2.9)

where T is the time interval in which the movement is realized. In Mertens (2004),

however, it was found that, when comparing an automatic prosodic transcription, the

Prosogram, with one provided by humans, the best result could be obtained by doubling

the constant value at the numerator of Equation 2.9 and using it to produce a pitch

stylization by the method presented in (D’Alessandro and Mertens, 1995) before performing

the automatic transcription step. The way in which the formulas in t’Hart et al. (1990) and

D’Alessandro and Mertens (1995) are constructed implicitly assumes that the threshold

they define is intended to be absolute. As a matter of fact, in (t’Hart et al., 1990, p.33)

Equation 2.9 was named absolute threshold of pitch change. In the same work, the authors

had the intent of finding a glissando threshold that was as compatible as possible with the

ones proposed in the previous studies they took into account. Even though this proposal

was reasonably near to most of the examined studies, the authors also observed very high

differences between their threshold and the ones presented in (Sergeant and Harris, 1962;

Pollack, 1968; Rossi, 1971).
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In this work, I adopt a different approach with regard to the glissando threshold and

take into account a number of results about the effect the energy contour has on glissando

perception (Zwicker, 1962; Maiwald, 1967; Feth, 1972; Rossi, 1972) to produce our styl-

ization. Since energy movements can modify the way pitch glissandos are perceived, they

must be taken into account when trying to algorithmically predict how a certain movement

will be perceived by human listeners. Under this assumption, a mathematical model tak-

ing into account the psychoacoustical effect resulting from the interaction of energy and

pitch movements should dynamically adjust the thresholds given the specific situation it

is representing.

2.4.2 The tonal perception model

First of all, the rate of change of the segment [sx, sy] is defined as follows:

V ([sx, sy]) = |vsy − vsx|
tsy − tsx

(2.10)

The difference between the stylized segment and the original one can be evaluated by

considering the difference between the two slopes.

When discussing Observation 2, I underlined the need of employing measures that

would take into account psychoacoustical phenomena rather than statistics about curve

closeness. In Observation 3 I also described how an efficient quality measure should not

evaluate every part of the curve in a uniform way and, in Observation 4, I described the

advantages of an integrated phonetic model with respect to a serial phonological model.

Lastly, in Observation 5 I noted that, to correctly employ the psychoacoustical effects given

by the interaction between energy and pitch, the glissando threshold and the differential

glissando threshold should be automatically adjusted with respect to the specific situation.

We now construct our quality function on these premises by using a number of accessory

functions dedicated to the analysis of different aspects of pitch stylization based on a

psychoacoustical background. First of all, we introduce a Γg function which evaluates the

likelihood of a pitch segment to be heard as a glissando.
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Γg([s1, s2]) =


1 if V ([s1, s2]) > 0.32

T 2

(
V ([s1,s2])T 2

0.32

)γ
otherwise

(2.11)

This function is based on empirical proof presented in (Mertens, 2004) where 0.32 is

the best value to use as numerator in Equation 2.9. However, we will not use this value to

introduce an abrupt separation between movements that are perceived as glissandos and

movements that are perceived as static tones. We start by assuming that if the rate of

change of the pitch segment exceeds Mertens’ threshold it will be perceived as a glissando

and then, should this not be the case, we compute the likelihood of the pitch segment

to be perceived as a glissando as the ratio between the actual rate of change and the

one established in Mertens (2004). Another advantage of this method is that the original

threshold established by t’Hart et al. (1990) is not simply ignored but it is rather assigned

a glissando likelihood value of 0.5. In Equation 2.11 we also model the effect of energy

movements on pitch perception by means of a gamma correction. The γ value which is

used as exponent in the second part of equation 2.11 is evaluated as follows

γ =



100+mean(E′)+1
100 if mean(E ′) ≤ 0

100
100−mean(E′)+1 otherwise

(2.12)

where E is the energy profile. In this equation, the value that will be put as exponent

in the second part of Equation 2.11 depends both on the direction of the local energy

profile and on its slopeness. The effect of the gamma correction is to dampen the modeled

glissando perception capability proportionally to the slopeness of the energy profile if the

pitch movement is aligned with an ascending energy movement. In the area comprising

the phonetic syllables nuclei, where spectral stability is expected (E ′ ≈ 0), there will be

little or no gamma correction on the perceived pitch estimated in Equation 2.11 while pitch

movements aligned with falling energy glides will be more likely to be heard as glissandos

proportionally to the slopeness of the energy curve. We can describe the gamma correction
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Figure 2.11: Glissando likelihood values are computed on the basis of energy movements in terms of gamma

correction. In the figure glissando likelihood value transformations for glissandos not exceeding Mertens’

threshold are reported.

effect as a controller for a dynamic gradient between the value which is assigned to flat pitch,

which is 0, and the one assigned to movements reaching Mertens’ threshold, which is 1.

In conditions of spectral stability, the gradient is linear and the middle value corresponds

to t’Hart’s threshold. When spectral conditions change causing rising or falling energy

movements, the middle value is reached respectively at higher or lower rates of change.

This is summarized in Figure 2.11.

It should be noted that the effect of energy movements alone, while being consistent

with the formulation of the SCH based on syllabic subparts, cannot account for the full

set of changes indicated by the original formulation of the theory. Specifically, while the

energy profile can detect changes in the amount of energy found in the spectrum, it cannot

detect changes in the energy distribution among the frequencies. Adding to the model the

capability of detecting and reacting to this kind of changes will be matter of future works.

For the sake of simplicity and in absence of contrary evidence, I assume that the sharp-

ening effect in glissando perception when falling energy movements are present is symmet-

rical to the one found in correspondence of rising ones. I also assume that the maximum
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energy difference we can find on an energy movement is 100 db. This value seems to be

reasonable given the recordings found in the corpora in my availability.

We now define the difference between the glissando likelihood of two vectors [si, si+1]

and [s̄i, s̄i+1] as follows

D([si, si+1], [s̄i, s̄i+1]) = Dacc([si, si+1]) + Γg([si, si+1])− Γg([s̄i, s̄i+1]) (2.13)

where Dacc([si, si+1]) is the accumulated distance of S from P in the time interval

[ti, ti+1] after the preceding stylization steps. Let us clarify this with an example: suppose

we want to stylize the curve [s1, s2, s3] and we find that removing s2 is a good move.

After merging [s1, s2] and [s2, s3] we obtain [s̄1, s̄3] which can be also viewed as [s̄1, s̄2, s̄3]

where s̄1 and s̄3 are control points (they are equal to s1 and s3) and s̄2 is the result of

the linear interpolation between the two in the time instant t2. We can therefore define

Dacc([s̄1, s̄3]) as the mean glissando likelihood difference of the segments in [s̄1, s̄2, s̄3] from

the ones in [s1, s2, s3]. This method allows to keep track of the modifications made during

the preceding steps and to correctly evaluate the impact of the new ones. Obviously, when

si = pi and si+1 = pi+1, Dacc([si, si+1]) = 0 holds.

It is now possible to evaluate how likely it is that the stylization process has introduced

a glissando in the S̄ curve where a static tone was perceived in the S curve and vice-versa

by defining a glissando quality evaluation function qg(S, S̄). Since the maximum value that

the function D([si, si+1], [s̄i, s̄i+1]) can assume is 1 by construction, it is straightforward to

define the quality of a single segment of the S̄ curve with respect to glissandos and static

tones as 1 − |D([si, si+1], [s̄i, s̄i+1])|. By evaluating this formula on each segment in the S

curve and weighting the results for the time fraction that the segment stylizes, we obtain

qg(S, S̄) =
n−1∑
i=1

(
(1− |D([si, si+1], [s̄i, s̄i+1])|)tsi+1 − tsi

tsn − ts1

)
(2.14)

As in the preceding example, I assume that if sk is the point in S which is candidate

for removal, s̄k is the result of the linear interpolation of the points sk−1 and sk+1 in the

time instant tk.
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The notion of differential glissando is now used to deal with the problem of checking

that perceived glissandos are not being altered by the stylization process in a perceivable

way. In fact, while Equation 2.14 can detect the erroneous introduction or removal of

glissandos, it does not tell anything about the difference between two glissandos, even if

their rates of change are not concordant in sign. We define the Γd function, which evaluates

glissando similarity, as follows:

Γd([s1, s2], [s̄1, s̄2]) =



(
min(V ([s1,s2]),V ([s̄1,s̄2]))
max(V ([s1,s2]),V ([s̄1,s̄2]))

) 1
γ if concordant(V ([s1, s2]), V ([s̄1, s̄2]))

0 otherwise

(2.15)

In Equation 2.15, the value 0 is given to vectors which are not concordant in sign. If

they are, the ratio between the two is considered, as it was in t’Hart et al. (1990), and the

final score is modulated by the energy in the same way it is in Equation 2.11. In this case

we use the inverse value of γ because while a falling energy movement, bearing sharpening

effect, increases the glissando perception likelihood, evaluated by Equation 2.11, the same

effect lowers the glissando similarity likelihood, which is estimated by Equation 2.15, due

to the increased sensitivity we intend to model. For rising energy movements the inverse

way of reasoning holds.

We can now define the likelihood of the S̄ curve to introduce perceivable differences in

glissandos with a qd(S, S̄) function

qd(S, S̄) =

n−1∑
i=1

(
Γd([si, si+1], [s̄i, s̄i+1])Γg([si, si+1]) tsi+1−tsi

tsn−ts1

) (2.16)

The value obtained by applying Γd([si, si+1], [s̄i, s̄i+1]) is weighted not only by the time

fraction of the whole curve that the segment is stylizing but also by the value of Γg([si, si+1]).
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This way Γd contributes to the quality evaluation of the S̄ curve segments proportionally

to the likelihood of the corresponding segments in S to be heard as glissandos.

We can now combine the qg(S, S̄) function and the qd(S, S̄) into a new quality function

by taking their weighted mean

q(S, S̄) = qg(S, S̄) + qd(S, S̄)

1 +
n−1∑
i=1

(
Γg([si, si+1]) tsi+1−tsi

tsn−ts1

) (2.17)

The q(S, S̄) function represents a quality evaluation of the stylized curve with respect

to the findings regarding tonal perception we took into account. This function can be

introduced in the original framework of the OpS algorithm with little modifications that I

describe in the next section.

2.4.3 Segmentation strategy

In the previous approach, the algorithm systematically divided in two equal parts each

subcurve during the segmentation step. After introducing the new quality function, how-

ever, continuous rise/fall movements were not stylized well by the algorithm either by

misaligning the peak, damaging quality, or by describing the movement with a plateau,

damaging economicity. This was caused by the fact that the new quality function, being

more flexible than the one based on NRMSE, sometimes was also less strict than needed

when stylizing the small portion at the peak of the movement at the early steps of the

algorithm. The problem was addressed by introducing the following rule in the segmen-

tation strategy: if the curve contains a local maximum, the curve is splitted in the point

corresponding to it, otherwise the curve is split into two equal parts. The new rule implic-

itly assigns more importance to local maxima: being evaluated later in the backtracking

process, they are never considered in a limited context, which was the situation that caused

the problem. This modification does not alter the divide et impera setup of the algorithm

because the approach does not impose a specific segmentation strategy. Considering local

minima as splitting points did not seem to introduce any improvement in the first set of
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experiments and were therefore not considered for the results presented in Section 2.4.6.

The modification is shown in Algorithm 2.

2.4.4 Cost function

The tonal perception model described in Section 2.4 is designed to dynamically adjust

the quality evaluation of the curve given the pitch movement and its interaction with the

energy profile. This method has a more solid foundation than the old, empirical, one based

on the computation of the local variability index β which was used to set the balance of the

harmonic mean in Equation 2.5. We can therefore weight equally the quality and the cost

measure in Equation 2.5 by setting a constant value β = 1. Also, since we do not rely on a

binary prominent/non-prominent manual annotation but on a dynamic qualitative model,

we do not need anymore to alter the steepness of the sigmoid cost function in different

situations.

Another modification we introduced addressed a problem of the cost function related

to the fact that it was not making any distinction between long and short curves: cost

differences were much more evident in short voiced segments than they were in long ones,

causing the cost function to be too rapidly dominated by the quality function. To address

this, we imposed a penalization factor to the value of the ratio between the original number

of points and the one proposed by the stylization based on the portion of the entire curve

that the subcurve is stylizing. Since in the original cost function high values for the ratio

resulted in worse cost evaluation, the penalization factor is designed to give a slightly

higher value to the ratio depending on the length of the voiced segment. To do this we

compute an α value to be used as exponent for the ratio in the original cost function

α = ((2 ∗ (ti − tk))/(5 ∗ (tn − t1))) + 0.4 (2.18)

where ti and tk are, respectively, the end and start time of the subcurve and tn and

t1 are the end and start time of the whole curve in the voiced segment. The formula

constrains the penalization factor α in the interval [0.4,0.8]. This value was tuned on a
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development set comprising 20 speech audio files that were not part of the corpora used

for tests. The α value was chosen by empirically checking the balance between the quality

of the resynthesis and the number of points used on the development set. Introducing α

in the cost function, we obtain

c(S, S̄) = 1−
 1

1 + exp(−(xα−0.5)
0.1 )

 (2.19)

where x = |p̄|
|p| .

2.4.5 Testing methodology

Because of the different approach, the testing procedure has to be adjusted. The main

cause of incompatibility between the old testing methodology and the new approach lies

in the fact that the stylized curve depends not only on how pitch behaves but also on how

energy movements are synchronized with them. While this has no effect on the objective

test, it is necessary to preserve the energy profile in the subjective test in order to correctly

check the decisions made by the new algorithm and, because of this, it is not possible to

use the humming track anymore. Utterances in the subjective test corpus were therefore

resynthesized by using the PSOLA algorithm implemented in PRAAT and, to keep the

subjects focused on pitch differences, they were explicitly asked not to care about what

was actually being said but to look for differences in intonation.

This different setup also allowed us to align ourselves with the original test employed

in t’Hart et al. (1990) in the sense that we could generate the stimuli in group C (the

artificially altered ones) following the directions of the work presented by t’Hart: these

stimuli were generated by shifting the pitch curve forward by 50ms rather than 10% up.

This had the effect of introducing intonational mismatches that were subtle and localized

just like the kind of errors a stylization algorithm usually tends to commit. This was

intended to induce test subjects to pay particular attention to small, localized differences.

The listening test setup was the same one presented in Section 2.3.5.

Since there was no qualitative difference among the competing algorithms in Origlia
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Algorithm 2 The OpS algorithm
procedure merge(P, Sa, Sb)

k = length(Sa)

z = length(Sb)

forig = F ([sa1 , ..., sak , sb2 , ..., sbz ])

fmod = F ([sa1 , ..., sak−1 , sb2 , ...sbz ])

if forig <= fmod then

return [sa1 , ..., sak−1 , sb2 , ...sbz ]

return [sa1 , ..., sak , sb2 , ..., sbz ]

end procedure

procedure optimize(P, pstart, pend)

if pend − pstart < 2 then

return P [pstart : pend]

if ∃k|(pstart < pk < pend) ∧ (vk > vk−1) ∧ (vk > vk+1) then

pmid = pk

else

pmid = floor(length(P [pstart : pend])/2)

Sa = optimize(P, pstart, pmid)

Sb = optimize(P, pmid, pend)

S = merge(P [pstart : pend], Sa, Sb)

return S

end procedure

procedure main(P )

for all voiced segments Pv do

pstart = Get the Pv start point index

pend = Get the Pv end point index

Sv = optimize(P, pstart, pend)

end procedure
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et al. (2011), it is necessary to compare the new OpS algorithm only against the old version

employing manual prominence annotation. This way, the subjective test became much less

tiring for the subjects.

Regarding the subdivision of the stimuli among the three groups, group A was dif-

ferentiated between the two tests by swapping 5 stimuli with group C. This way, group

A was composed both of shared stimuli and independent stimuli in a balanced way and,

since group C was completely different, the test subjects could not become acquainted with

the intentionally altered stimuli. The two test runs were administered to the subjects in

different order to avoid the effect of overtraining and the stimuli presentation order was

randomized during each test.

The number of subjects recruited for this test was 16 (8 males and 8 females). Five

of them reported to have received some kind of musical training. By considering the

performance obtained on the control group, two kind of statistics were computed: first

I consider the whole group of human judges and then I consider only the subjects that

performed sufficiently well on the control group by correctly evaluating at least 70% of the

control stimuli.

Regarding the objective test, since the goal is to evaluate if the new approach intro-

duces an improvement with respect to OpSNoProm and how different it is with respect to

OpSProm, it is again not necessary to compare the new OpS algorithm with MOMEL and

DP.

2.4.6 Results

First of all, it is evaluated how good the recruited human judges were in discriminating the

stimuli in groups B and C. Among the 16 subjects, 5 were considered non-discriminative

because they did not distinguish at least 70% of the control stimuli. As shown in Table

2.3, the performance of the discriminative group is higher: the mean values, which should

ideally be 50%, show a better recognition capability with respect to the one of the full

group. Table 2.3 also shows that, even among discriminative subjects, there is a certain
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bias towards the Equal response. This is to be expected since the majority of the presented

stimuli are intended to be labeled as such: they either are part of group B or they are

generated by an algorithm designed not to introduce differences. All the subjects that

received musical training were retained in the discriminative group.

Table 2.3: Control group statistics.

Discriminative Full group

Equal (%) Different(%) Equal (%) Different(%)

Group B 90 10 87.5 12.5

Group C 27 73 43.13 56.88

Mean 58.5 41.5 65.31 34.69

Results of the subjective test are presented in Table 2.4. The chi-squared test did not

show any significant difference in quality between OpSProm and the new approach. Given

the design of the experiment and the results obtained both on the discriminative and on

the full group of human judges, it is reasonable to assume that the qualitative performance

of the two algorithms is the same.

Table 2.4: Subjective test results for both discriminative and discriminative + non-discriminative subjects.

Percentages refer to the number of times a resynthesized utterance has been judged to be equal to the original

one by the human listeners. Differences were never statistically significant by a chi-squared test (p > 0.1)

OpS (%) OpSProm (%)

Discriminative 78 83

Full group 79.38 82

Since we can assume that no perceivable difference exists between the curves produced

by the new approach and the ones produced by the reference one, we concentrate on

evaluating the difference in the number of points used. A repeated measures one-way

ANOVA test on the number of points used in each file confirmed that it was possible to

proceed with the paired t-tests (p < 0.001). The difference between the number of points
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Figure 2.12: Mean values and standard deviations for the number of points per second employed by the

different algorithms.

used by the new OpS algorithm has been found to be very significant with respect with

the OpSNoProm algorithm (p < 0.001) while the difference with the OpSProm variant

has not been found to be significant (p > 0.01). P-values were corrected using the Holm

method. In Table 2.5 the results both in terms of points per second and in terms of the

total number of points used to stylize the pitch curves of the test corpus are shown. These

results were published in Origlia et al. (2013)

Table 2.5: Objective test results.

OpS OpS/Prom OpS/NoProm

Points per second 3.59 3.47 3.75

Total points 4118 4009 4350

Curve economicity is particularly important to statistically investigate the macro-

prosodic component of speech: by removing useless points, noise in the data is reduced and,

if a point-based labeling system like INTSINT (Campione et al., 2000) is used, the num-

ber of labels needed to describe a movement is lower, thus simplifying analysis. Machine

learning algorithms aimed at extracting information from prosody can also take advantage

from this de-noised version of the pitch curve. The need for an automatic method capable

to provide a perceptual account of intonational profiles has been underlined in recent years
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Figure 2.13: A stylization example. The pitch curve and the stylization proposed by the OpS algorithm

are shown along with the energy profile of the utterance. A manual annotation of the energy profile is also

shown: R indicates a rising energy movement, D indicates a descending one and S indicates an area of

spectral stability.

by the applications that the Prosogram has found in different research areas (Patel, 2005;

Ioannou et al., 2006; Caridakis et al., 2006; Avanzi et al., 2008).

The impact in basic research on prosody is highly significant too. A perceptually reliable

stylization of F0 constitutes a solid base on which to search for basic intonational units of

natural languages. This is essentially the path followed by the IPO research group to find

standardized pitch movements for different languages (t’Hart et al., 1990). Better automatic

stylization techniques allow to continue on this path in a more reliable, consistent and fast

way.

2.5 A simplified model: the SOpS algorithm

The results of the perceptual tests reported in the previous section, in which naive listeners

were recruited, indicate that the stylization proposals of the OpS algorithm performed, in

terms of quality, in a similar way with respect to other approaches. The OpS algorithm has

the advantage of being parameter independent and it is able to use less points by explicitly

taking into account a cost measure during computation. In Origlia and Alfano (2012),
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we included the OpS algorithm in the Prosomarker tool (see Appendix A for details): an

instrument designed to give a perceptual account of the pitch curves and to describe the

synchronization of the pitch targets with automatically detected segmental events (syllable

boundaries and nuclei). While using this tool to describe simple intonation phenomena, it

was possible to trace a number of recurring situations in which the OpS algorithm was not

able to capture specific classes of details from the curve that appeared to be critical to an

expert linguists’ ear.

2.5.1 Observations

Observation 6. Considering local minima as equally important than non-maxima points

did not make a difference for naive listeners but it introduced errors detected by expert

listeners

During the development of the OpS algorithm, it was found that giving priority to local

minima if no local maxima can be found in the the curve during the splitting phase did

not seem to introduce improvements. Not having this rule introduced the possibility that

a local minimum was evaluated very early during backtracking. This implicitly assigns less

importance to the point because the impact of its removal is evaluated on a limited portion

of the curve. For the experts evaluating the quality of the OpS curves for their work this

made a difference as they were able to detect small discrepancies both in timing and in

tonal level of lowering targets in the resynthesis with respect to the original utterance.

Observation 7. The quality measure dominating the cost measure in long pitch segments

is not completely addressed by the introduction of the α parameter.

Continuous pitch segments longer than the ones we tuned α on were found in other

corpora: in these segments the effect was strong enough to make the α weighting useless.

The presence of the α parameter is also less motivated from a theoretical point of view

than the rest of the model, thus making the framework less reliable than intended.
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Observation 8. When local maxima split the curve in two subcurves that are very un-

balanced in length, the algorithm was unable to adequately protect the smaller part of the

curve.

This was caused by the weighting of each segment dependently of the fraction of time

it stylized. The quality of the longer subcurve was considered more important than the

quality of the shorter subcurve that, subsequently, was often overstylized.

2.5.2 The final model

I now present the updates to the OpS algorithm that were introduced to address the

problems highlighted in the previous section. The final model is simplified with respect to

the preceding version. For this reason, I will refer to the final version of the OpS algorithm

as the Simplified Optimal Stylization (SOpS) algorithm.

To address the problem presented by Observation 6, the splitting rule giving priority to

local minima if no local maxima can be found was reintroduced. By evaluating these points

later during the backtracking phase, the SOpS algorithm is able to protect low targets bet-

ter than the OpS algorithm. Problems related to Observations 7 and 8 were both caused

by the measure we used to evaluate shared endpoints removal during backtracking. Specif-

ically, having the whole subcurves influence the quality measure introduced the problems

related to differences in the curves’ length. However, the removal of the shared endpoint,

while generically influencing the quality of the two curves’ mergings, is more specifically

related to the quality of the two neighbouring segments. Back to the preceding example,

given the A and B curves, the removal of the shared point an = b1 only influences the

quality of the [an−1, an] and [b1, b2] segments. Therefore, having the quality evaluation of

the curves [a1, an−1] and [b2, bm] contributing to the evaluation introduces an identical fac-

tor on both sides of the comparison operator. Eliminating this factor makes the algorithm

take into account only the neighbouring segments quality. By weighting equally these two

segments, the effect of longer movements being considered more important than shorter

ones is removed too. Equation 2.14 is reformulated as
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qg(S, S̄) = (2− |D([si−1, si], [s̄i−1, s̄i])| − |D([si, si+1], [s̄i, s̄i+1])|)/2 (2.20)

Also, by considering local minima earlier in the splitting phase of the divide et im-

pera schema, the midpoint split rule is applied to segments that are either quasi-linear or

parabolic. In the first case, small differences are introduced by removing points while, in

the second case, the midpoint split rule rapidly produces quasi-linear segments. This way,

early evaluated points are more concerned with small details mainly depending by energy

and pitch interactions, while lately evaluated points are more related with the description

of larger prosodic events. Because of this distinction, it is not necessary to retain the fine

details produced by the early backtracking steps up to the points controlling medium/long

range pitch movements. Since the changes introduced by removing these points become

very evident by delaying their evaluation to the latest steps of the backtracking process,

the influence of the fine details in late steps of the decision process is not relevant. We

therefore modified Equation 2.13 so that it does not keep track anymore of the preceding

stylization steps obtaining the new formulation

D([si, si+1], [s̄i, s̄i+1]) = Γg([si, si+1])− Γg([s̄i, s̄i+1]) (2.21)

Concerning the cost measure, as the impact of the sigmoid transformation revealed

itself to have a negative effect with respect to the evaluation of the quality/cost balance,

SOpS considers the untransformed ratio represented as x in Equation 2.19 as cost measure.

2.5.3 Evaluation

To evaluate the SOpS algorithm, we are interested in checking that the changes that were

introduced to improve the performance on specific details do have an impact on these

details without altering the general performance obtained with the OpS algorithm. The

TIMIT dataset was used to check that the number of points used and the visual differences

between the two algorithms are not relevant while a case study will be presented to show
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that, on specific details, the output of the SOpS algorithm is better than the one obtained

with the OpS algorithm.

From the quantitative point of view, we considered the number of points used by the

SOpS algorithm with respect to OpS. The SOpS algorithm, on the considered dataset, uses

3.46 points per second (Pps) while the OpS algorithm uses 3.59 Pps. Table 2.6 shows a

summary of the cost test between OpS, SOpS and OpSProm.

Table 2.6: Cost test results.

OpS SOpS OpSProm

Points per second 3.59 3.46 3.47

Total points 4118 4007 4009

A paired t-test indicated that the difference in Pps between OpS and SOpS is not

statistically significant (ρ > 0.01). However, close inspection of the pitch curves where the

OpS algorithm introduced more points than necessary showed that the SOpS algorithm

does not suffer from this problem. The amount of reduction observed (0.13 Pps) and the

actual ρ-value (0.012) are coherent with the goal of reducing the number of points used

only in specific areas. The performance of the SOpS algorithm in terms of Pps is much

more similar to the one we obtained with the OpSProm algorithm. A paired t-test between

the Pps measures obtained by SOpS and OpSProm confirms this (ρ > 0.9) with greater

certainty with respect to the result presented in the preceding section, where the difference

between OpS and OpSProm, while still not significant, (ρ > 0.01), was to be taken carefully

as the actual ρ-value was 0.0142.

From the qualitative point of view, a Wilcoxon test on the differences between curves

generated by the two algorithms showed that the location shift is not significant (ρ > 0.4).

The size of the considered dataset makes it safe to assume that no significant differences

can be found between the curves proposed by the two algorithms on a large scale. This

result confirms that the modifications introduced by the SOpS algorithm do not alter the

stylized curve up to a statistically detectable degree. Close inspection of the cases on
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Figure 2.14: A pitch contour (solid line) along with the OpS stylization (dashed line) and the SOpS one

(dotted line). The stylized curves are shifted by 2 Semitones each with respect to the original one for

visualization purposes. Along with the pitch curve, the energy profile of the considered speech fragment is

shown.

which the new model is intended to perform better, however, shows that the details the

OpS algorithm was not able to retain are correctly modeled by the SOpS algorithm.

I will now present a case study to show the kind of modifications the SOpS algorithm

introduces with respect to the OpS algorithm. In Figure 2.14, we show the detail of a pitch

contour, the stylization proposed by the OpS algorithm (dashed line) and the alternative

proposed by the SOpS algorithm (dotted line) along with the energy profile. While the

two algorithms perform identically on the first movement, the final rise/fall sequence is

described differently. Since the curve’s portion after the peak is much shorter than the rest

of the curve, protecting the final lowering movement was considered not valuable enough

by the OpS algorithm. This decision is encouraged by the tonal perception model as

the rising movement preceding the final fall is synchronized with a rising energy profile,
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thus lowering the modeled glissando perception capability. The influence of sections that

do not depend by the point being evaluated also plays a role, as discussed before. The

SOpS algorithm, by considering only the neighbouring subcurves and by weighting them

equally, is able to protect the final movement when evaluating the peak point, as expected

because of the synchronized falling energy contour. The turning point before the rise is

shifted 60ms earlier because of the segmentation strategy giving more importance to local

minima. This improves the representation of the subcurve synchronized with the falling

energy movement. The following pitch rise, synchronized with a rising energy contour, is

more stylized than before, so no points are added. From perceptual inspection, this choice

appears to improve the overall quality of the curve used in the example.

The magnitude of the changes the SOpS algorithm introduces with respect to the OpS

curves are, in general, similar to the ones shown in the example. This explains why the

similarity test based on statistical closeness is not able to detect a significant difference

between the two algorithms. Being these changes important for an expert listener, however,

we can confirm that statistical closeness measures are not good estimators of the general

quality of a stylized curve.

2.6 Prominence detection

Linguistic research has concentrated for a long time on the investigation of syllabic promi-

nence, the phenomenon by which some units are perceived to be salient with respect to the

others. There is no consensus regarding the definition of syllabic prominence nor on the

appropriate annotation methodology. A first definition was given in Bloomfield (1933):

“[. . . ]Stress - that is intensity or loudness - consists in greater amplitude of

sound-waves, and is produced by means of more energetic movements, such as

pumping more breath, bringing the vocal chords closer together for voicing,

and using the muscles more vigorously for oral articulation”
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This first definition concentrated on the energetic component of prominence, exluding

any contribution from intonational strategies. This was rectified by Bolinger (1958) with

the introduction of the pitch accent: an intonational marking realized on a particular unit

that is therefore perceived as different from its surrounding ones. The most widely accepted

definition of prominence is also a very prudent one, given by Terken (1991):

“[. . . ] Prominence is the property by which linguistic units are perceived as

standing out from their environment.”

This definition emphasizes the perceptual nature of prominence and it refers to a generic

environment giving the prominent syllable a background with which it contrasts with.

It is common, especially in automatic annotation studies, to use a binary notation to

mark syllables (prominent/non-prominent). This type of annotation is generally preferred

because it offers a simple method to evaluate the performance obtained by automatic

approaches. Prominence detection has been the subject of a wide number of investigations

in the past (Silipo and Greenberg, 1999; Tamburini, 2006; Abete et al., 2010; Avanzi et al.,

2010; Ludusan et al., 2011). Automatic prominence detection systems are based mainly on

rule-based approaches as machine learning techniques can make it difficult to understand

how a certain performance was reached by the underlying statistical model. Although

supervised approaches were used in this work, absolute performance was considered a

secondary objective with respect to the possibility of using machine learning to collect

data useful to improve current rule-based annotation systems based on a linguistic, as

opposed to a statistic, background.

Conditional Random Fields (CRF) (Lafferty et al., 2001) are a class of discriminative

models used for sequence segmentation and labeling which are designed to maximize the

conditional probability of the labels given the sequence of observations. The use of CRFs

is now well established as they have been successfully applied to a wide range of scien-

tific fields, including natural language processing and speech analysis tasks. In the case

of prominence annotation, it was shown that CRFs outperform HMMs in the task of pre-

dicting pitch accents at word level with a combination of acoustical and syntactic features
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Figure 2.15: Graphical representation of a Conditional Random Field and a Latent-Dynamics Conditional

Random Field.

(Gregory, 2004). CRFs were also used to investigate pitch accent detection along with the

realization of givenness and focus at word level by employing lexical and acoustic features

(Sridhar et al., 2008). Differently from these previous studies, in this work only acoustic

features are used and the syllable level is taken into account.

There are three main ways in which this particular kind of sequence labeling models

can be applied to the problem of automatic syllabic prominence annotation. Structural

differences analysis among classifiers, paired with performance comparison, gives infor-

mation regarding the interactions among the features. Feature sets comparison and

multiple contexts comparison estimate the predictive power of the considered features

and the amount of context that should be taken into account. In this work, these three

different kinds of analysis are applied by employing different classifiers, feature sets and

context extensions.

2.6.1 Latent-Dynamic Conditional Random Fields

CRFs are designed to capture inter-class relationships by maximizing the conditional prob-

ability of the sequence of labels from a sequence of observations. Given a set of weights

estimated during training λ, the sequence of labels Y and the sequence of observations X,

a Linear Chain Conditional Random Field estimates P (Y |X) as follows

P (Y |X,λ) = 1
Z(X)exp

(
K∑
k=1

λkfk(yt, yt−1,xt)
)

(2.22)

where N is the number of observations, fk(yt, yt−1,xt) represents either a state feature
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function or a transition feature function and Z(X) is a normalization constant. State

feature functions describe the relation between observation/label pairs while transition

feature functions describe the relation between observations and transitions from one state

to another. Since the definition of feature functions includes a vector of observations in

the third term, the set of feature functions can be computed over an arbitarily extended

context of surrounding observations W . CRFs are limited as they can model inter-class

relationships but cannot model intra-class dynamics. Latent Dynamic Conditional Random

Fields (LDCRF) (Morency et al., 2007) are an extension of CRFs designed to introduce

hidden variables in the model, in order to capture both kinds of dynamics. Hidden states

represent a sequence of unobserved variables H and are used to define the following latent

conditional model:

P (Y |X,λ) =
∑
H

P (Y |H,X, λ)P (H|X,λ) (2.23)

The above model allows only disjoint sets of hidden states for each class label. There-

fore, each label yj has an associated set Hyj of hidden states with Hyi ∩Hyj = ∅ for i 6= j,

making it is possible to rewrite Equation 2.23 as:

P (Y |X,λ) =
∑

h∈Hyj

P (H|X,λ) (2.24)

The conditional probability of the hidden states given the set of observations and

weights can then be formulated as for the CRF model:

P (H|X,λ) = 1
Z(X)exp

(
K∑
k=1

λkfk(ht, ht−1,xt)
)

(2.25)

A graphical comparison between a CRF and an LDCRF is shown in Figure 2.15. In the

LDCRF model there is no longer a direct connection between observations and labels due

to the introduction of a layer of hidden variables. Since the labels are disconnected from

the observations, they are considered to be conditionally independent, given the hidden

states.
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2.6.2 Feature sets

Features related to energy, segments durations and internal pitch movements for each sylla-

ble are usually employed in the automatic prominence annotation task and the particularly

important role that syllable nuclei play in the detection of prominent syllables is widely

recognized in the literature. In Silipo and Greenberg (1999), the mean amplitude inside the

syllable nucleus ∆A and the nucleus length ∆Tn were combined into an evidence variable

as follows:

Ev = ∆A∆Tn (2.26)

After computing an Ev value for each syllable, local maxima in the sequence of evi-

dence variables were marked as prominent. Since, in the literature concerning automatic

annotation of syllabic prominence, a great importance has been assigned to ∆A and ∆Tn,

these two features are always included in the feature sets used in the experiments. Given

the manual segmentation into syllables, nuclei onsets and offsets are estimated by taking

the energy peak inside the syllable and computing the -3dB band.

Energy and duration do not account for prominences caused by pitch movements

through the nucleus. In Avanzi et al. (2010), a syllable was automatically marked as

prominent if a rising pitch movement exceeding a threshold was detected. In Abete et al.

(2010), the same concept was implemented as an integration of the approach proposed in

Silipo and Greenberg (1999) with a pitch movement dependent parameter. Equation 2.26

was then reformulated as

Ev = m∆A∆Tn (2.27)

where m represented a heuristically computed penalization factor for syllables that do

not exhibit a rising movement through the nucleus. The m parameter is included in the

feature sets F3 and F4.

The previous two attempts to use pitch features in an automatic system for prominence

annotation were based on heuristics and assumed that only rising pitch movements had an
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Table 2.7: Feature sets composition

∆A ∆Tn m Γs1,s2 ∆Ts V/Ts

F3 X X X

F4 X X X X

F5 X X X X X

effect on prominence perception. To check the informative content of the Γsi,si+1 feature

introduced in Equation 2.11, I substitute the heuristically computed m parameter with

Γsi,si+1 in the features set F5 together with the ratio between voiced time and total syllable

time to give an account of the context in which the movement is realized, as it can influence

perception.

The total syllable time ∆Ts is introduced in the features set F4 as it is common, in the

literature, to find documentation regarding the importance of duration features in prosodic

analysis. A detailed description of the composition of the three feature sets tested in this

work is shown in Table 2.7.

2.6.3 Materials

For the experiments on automatic prominence annotation an Italian corpus containing read

numbers and an English corpus containing read sentences were used. The Italian corpus

consists of a subset of the SPEECON corpus (Siemund et al., 2000) that has been used to

evaluate the system presented in Abete et al. (2010); Ludusan et al. (2011). The English

corpus consists of a subset of the TIMIT corpus that has been used to evaluate the system

presented in Tamburini (2006). Both subsets were manually segmented into syllables and

annotated by an expert linguist using a binary notation for syllabic prominences. The

SPEECON subset contains 288 utterances (15 minutes of speaking time) containing at

least 5 syllables (mean: 15, total: 4265). The TIMIT subset contains 382 utterances (17

minutes of speaking time) containing at least 4 syllables (mean: 12.51, total: 4780).
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Table 2.8: F-measures obtained on the SPEECON subsets. The best performance obtained with each

features set by the two classifiers is marked in bold.

CRF LDCRF

F3 F4 F5 F3 F4 F5

W1 65.12 79.79 82.76 65.09 79.69 82.75

W2 67.10 82.08 84.30 75.10 84.66 86.32

W3 68.00 83.46 85.77 75.39 85.58 87.82

W4 68.27 84.05 86.15 76.12 85.71 87.66

W5 68.94 84.07 86.08 76.55 85.54 87.85

Table 2.9: F-measures obtained on the TIMIT subset. The best performance obtained with each features

set by the two classifiers is marked in bold.

CRF LDCRF

F3 F4 F5 F3 F4 F5

W1 53.43 68.50 68.91 53.52 68.56 68.90

W2 60.47 71.71 70.96 72.03 78.01 77.24

W3 60.43 71.91 71.54 72.52 77.83 77.52

W4 61.46 72.07 72.03 72.12 77.86 77.26

W5 61.76 72.36 72.48 72.12 77.83 77.21

2.6.4 Results

Each classifier was tested on the SPEECON and on the TIMIT subset. For each features

set, both classifiers were tested by varying the context extension for building the feature

functions from a minimum of 1, which considers only the two neighboring syllables, to a

maximum of 5. Performance is measured in terms of F-measure (Prominent class as TRUE)

and the test protocol is 10-fold cross validation. The summary of the results obtained on

the SPEECON subset is reported in Table 2.8 while results obtained on the TIMIT subset

are detailed in Table 2.9.



90 CHAPTER 2. SPEECH PROCESSING WITH PHONETIC SYLLABLES

Table 2.10: Statistical significance tests on the SPEECON corpus, for different pairs of values for the W

parameter. Check marks indicate significant differences.

Window length pairs

2/3 2/4 2/5 3/4 3/5 4/5

CRF

F3

F4 X X X

F5 X X X

LDCRF

F3 X X

F4 X

F5 X X X

The statistical significance of the differences between the obtained performances was

evaluated by means of a McNemar test. To evaluate the performance of the LDCRF with

respect to the CRF, I compared, for each features set, the results obtained by the best CRF

with the ones obtained by the best LDCRF. The differences were found to be statistically

significant in all cases (p < 0.01).

To evaluate the performance difference obtained with the various feature sets, I com-

pared the performance of the best LDCRF from each features set with the performance of

the best LDCRFs from the other feature sets. While on the SPEECON subset the differ-

ences were found to be always significant (p < 0.001), on the TIMIT subset the differences

F3/F4 and F3/F5 were statistically significant (p < 0.001) while the difference F4/F5

was not significant.

To evaluate the influence of the context extension, I compared, for each corpus, classifier

and features set, the pairwise combinations of values of the W parameter. While on the

TIMIT subset only comparisons involving W = 1 were found to be significant, tests on the

SPEECON subset yielded a different situation, summarized in Table 2.10.

Both LDCRFs and CRFs applied to the SPEECON subset outperform the systems

presented in Abete et al. (2010), in which 73.3% F-measure was reported, and in Ludusan
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Figure 2.16: Summary of the obtained performances for each combination of classifier, features set and

context extension on the two test corpora.

et al. (2011), where 75.1% F-measure was reported. Concerning the TIMIT corpus, in

Tamburini (2006) an error rate of 18.64% was reported. If we take into account the

performance of the LDCRF that obtained the best results on TIMIT (F4/W2), the error

rate is 16.32%. A graphical summary of the presented tests is shown in Figure 2.16.

By varying the context extension, on the SPEECON subset significant differences

among various tests can be found consistently up to a three syllables context. On the

TIMIT subset a context window of two syllables seems to be sufficient to achieve maximum

performance. This is in contrast with approaches used in earlier automatic prominence

annotation (Silipo and Greenberg, 1999), but it is consistent with more recent findings

regarding context extension (Avanzi et al., 2010).

By varying the composition of the features set, it was found that syllable length is a

particularly important feature as the comparison between the best LDCRF using the F3

features set is always inferior to the performance obtained by the best LDCRF using the F4

features set in a statistically significant way. Since the F5 features set enabled the LDCRF

to obtain better performance with respect to the F4 features set on the SPEECON subset

only, the combination of the Γsi,si+1 and V/Ts features contains at least the same amount

of information as the m parameter, while having a better theoretical background.
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2.7 Conclusions

I will now summarize the different elements that will constitute the basis of the prosodic

representation used in the next Chapter.

Concerning syllabification, I substituted the phonological concept of syllable, typically

used in prosodic studies, with its phonetical interpretation to obtain an automatic seg-

mentation of the examined utterance. While the units constituting this segmentation only

partially overlap with manually marked syllables, by using a phonetic template the system

does not depend on language-specific syllabification rules, thus generalizing well. Also, as

the phonetic syllable template has a very simple formulation, it does not impose a heavy

computational load and it makes it easy to extract features because of its stability.

Concerning pitch stylization, by looking at the differences in terms of Pps among the

considered algorithms, one could easily underestimate them, but the total number of points

helps in evaluating the impact of the new approach and to understand why the statistical

test detects a significant difference. For example, having OpS using 0.16 Pps less than Op-

SNoProm has the effect of removing 232 points without compromising perceptual equality

while a difference of 0.28 Pps between OpSNoProm and OpSProm causes 341 points to be

removed. If we interpret the stylization process as a filter for inaudible pitch movements,

it is clear that the presented approach is able to improve the curve economicity without

compromising perceptual equality.

As noted by t’Hart et al. (1990) and as shown in Section 2.3, visual similarity between

the original curve and the stylized one can be misleading: in many cases the algorithm

proposed a curve that looked over-stylized but was judged to be equal to the original one

by the majority of the subjects participating in the perceptual test. In Figure 2.13 a pitch

curve along with its stylization and a manual annotation of rising, falling and stable energy

segments in voiced areas is shown. In the first highlighted segment, labeled D because of

the descending energy glide, we can see that the algorithm chose to keep both endpoints

of the voiced segment because it detected a significant energy drop along with the pitch
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movement. On the contrary, in the second highlighted segment, labeled R because of the

rising energy glide, the algorithm chose not to stylize the synchronized pitch movement.

Although a number of visual differences can be noted in the stylized curve with respect to

the original one, from the perceptual test I observed that 12 of the 16 judges labeled the

proposed curve as equal to the original one. The same curve was judged to be equal to the

original one by 9 of the 11 discriminative judges. This shows that, by removing the pitch

movement aligned with a rising energy glide and protecting the pitch movement aligned

with a dropping energy glide, the algorithm was able to mantain perceptual equality and to

avoid using points stylizing a movement that seems not to have importance to the human

ear.

An example of the potential of the automatic approach for linguistic research is Oliver

(2005), in which a modified version of the MOMEL algorithm (Hirst and Espesser, 1993) is

used to obtain a stylized F0 curve which is given as input to a clustering algorithm (Oliver,

2005, p. 161)

“[. . . ] to derive prototypical pitch contour types found in Polish, based on their

acoustic characteristics.”

On a similar line, Mertens (2006) matched default intonational profiles predicted by

lexical and syntactic features with profiles actually produced by speakers of a corpus and

automatically labelled by means of the Prosogram, in order to identify the marked move-

ments of pitch which are not predictable from lexicon and syntax, thus conveying an

independent meaning. Defining a set of descriptive intonational units in speech is a very

important step both for research on prosody and speech technologies, however there is not

much agreement on the nature and number of such units (Silverman et al., 1992; Campione

et al., 2000; Taylor, 2000). Research in this field will continue in the coming years and will

hopefully benefit from a stylized representation of the actually perceived pitch movements,

which seems to constitute a better basis than simple F0. Moreover, this kind of reliable

pitch stylization allows to develop systems for automatic prosodic annotation, thus over-

coming the limits of manual annotation, which is a time-consuming activity implying a
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certain amount of subjectivity.

Concerning prominence detection, results offer insight on three different issues regard-

ing prominence detection: model performance, context influence and feature sets. LDCRFs

perform systematically better than CRFs. On the SPEECON subset, every LDCRF per-

forms better than its direct CRF counterpart while on TIMIT this effect is even more

evident as the lowest performance obtained by an LDCRF is similar to the best CRF

performance. The main difference between the two classifiers lies in the presence, in the

LDCRF model, of hidden states. This difference is critical as it allows the classifier to learn

complex dynamics that are not explicitly described by the raw sequence of observations. In

order to better understand these results two observations are important: (1) the advantage

of LDCRFs is that they detect hidden dynamics inside a single class and (2) the binary

annotation mainly produces sequences of non-prominent syllables separated by prominent

syllables. A possible cause of LDCRFs outperforming CRFs in this task could, therefore,

be that a hidden dynamic lies in the sequence of non-prominent syllables.



Chapter 3

Emotional speech

Human affect is a rich source of information, one of these consisting of audio signals. It

is well known that affective information through audio signals is conveyed as a sum of

explicit messages, consisting of semantic units, and of more implicit messages reflecting

the way words are uttered, consisting of acoustic and prosodic cues. Affective information

in everyday life as such a product may become very complex and variable. In this Chapter

I will show how the syllable based speech analysis method presented in Chapter 2 performs

on the dimensional and continuous emotional speech tracking task.

3.1 Non-verbal communication of emotions

In a specific study about the influence of nonverbal communication over human interaction

it was shown (Graham et al., 1991, p. 59) that

“[. . . ] Nonverbal communication was important to all surveyed, and most re-

spondents agreed that nonverbal communication would influence their interac-

tions with people more than would verbal content.”

In the same work, inconsistencies between verbal and nonverbal content were found

to be severely disruptive when it comes to trust and mutual understanding. Being the

95
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area of interest of the authors concerned with interactions in business organizations, the

obtained results led to a very specific direction for managers to improve communication

with employees (Graham et al., 1991, p. 58)

“[. . . ] Keeping in mind that such discrepancy can cause miscommunication,

distrust, and frustration managers should become more cognizant of this prob-

lem and make real efforts to keep their verbal and nonverbal communication

consistent with each other.”

There are a number of issues in emotion research that still remain unsolved, as recently

highlighted in Schuller et al. (2011). Focusing here on the task of automatically detecting

emotional content from purely acoustic properties in the human voice, two points seem to

be dominating the debate at present. The first point is represented by the need of a shared

view of emotions in terms of the way they should be collected and modelled. The second

one is related to the definition of what can be considered the smallest chunk of analysis to

be referred to for evaluation procedures on emotional corpora (real or acted). This problem

must take into account the needs of real-time systems needing to give an estimate of the

emotional content of an utterance during its production rather than waiting for it to be

completed.

The first point was discussed in Chapter 1. Going to the second point, different ap-

proaches have taken into account different chunks of speech for emotional speech analysis

and classification (ranging from utterances to smaller units such as vowels and syllables,

i.e., linguistic units, or other technical units such as frames or time slices (see Schuller et al.

(2011)). Features extraction has been carried out on whole utterances (see Fragopanagos

and Taylor (2005) for a review); on segments like words, ememes, considered the smallest

possible meaningful emotional unit (Batliner et al., 2010); on syllables obtained through

Forced Alignment (FA) or Automatic Speech Recognition ASR (Kao and Lee, 2006); on

individual vowels investigating the effect emotion dimensions have on formants placement

(Goudbeek et al., 2009) or accounting for the importance of formants in the distinction of

emotions (Vlasenko et al., 2011; Gharavian et al., 2012), analyzing the voice quality char-
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acteristics of stressed and unstressed vowels pronounced in a VCV setting (Drioli et al.,

2003), exploring the correlation of a set of discrete emotions with a number of acoustic

features extracted from sustained \\a\\ sounds (Patel et al., 2011); on distinct portions

of speech using a Voice Activity Detection module to extract features only in active speech

areas (Wu et al., 2009, 2010), thus working at utterance level. Related to this second

point and comparing earlier with more recent works on automatic emotion recognition,

there is a tendency to limit or reduce the number of features used for classification or for

recognition. For example, in Vlasenko et al. (2011) the authors compare their recognition

results to those presented in Schuller et al. (2008) stressing the fact that they used only a

two class problem instead of a seven class problem, only one average F1 value instead of 39

MFCC, 7 indicative vowels instead of 41 phonemes and, finally, only one Gaussian for each

phoneme model instead of 96. Such comparisons may look like a cutthroat competition,

but to obtain real-time systems estimating the emotional content of an utterance during

its production, an important step lies in reducing the amount of features to be analyzed,

the computational difficulties implicit in each modelling attempt and possibly, as in the

case of the present work, the amount of data to be analyzed. In this work, we will adopt

an approach focusing on syllable-like segments as our smallest unit for features extraction.

These particular units are automatically detected as shown in Section 2.2 and coincide

with the concept of phonetic syllables by D’Alessandro and Mertens (1995):

“[. . . ] a continuous voiced segment of speech organized around one local loud-

ness peak, and possibly preceeded and/or followed by voiceless segments”

However, while keeping the term phonetic syllables, I will follow a later definition, given

by Roach (2000), that accounts for voiced consonants in a better way. In (Roach, 2000,

p.70), in fact, these units are described as

“[. . . ] consisting of a centre which has little or no obstruction to airflow and

which sounds comparatively loud; before and after that centre (. . . ) there will

be greater obstruction to airflow and/or less loud sound”
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Since another possible issue in emotion classification is, as above mentioned, represented

by features extraction techniques and types/number of features considered, it is necessary

to pay particular attention to the features extraction technique and on the features used to

perform automatic regression. In this work, I will present a features extraction technique

different from the ones usually found in the literature in the sense that supra-segmental

features extraction will be strictly connected to a preliminar segmental analysis, following

the general indications coming from linguistic studies on prosody in which intonational

phenomena are often described in terms of the synchronization between pitch movements

and the occurrence of segmental units.

3.2 Features set

After segmenting the speech signal into phonetic syllables and stylizing the pitch contour

by means of the SOpS algorithm (Section 2.5), features are extracted from each syllable

nucleus at least 64ms long are retained. This value corresponds to the window length

used to compute the Intensity profile inside the syllable nucleus at a higher resolution

so that Shimmer can be evaluated. Concerning duration features, nucleus and syllable

lengths are included together with the length of the syllable’s head and coda. Of course,

these values are 0 if the corresponding segment is not present. The mean pitch, energy,

Harmonics-Noise Ratio (HNR) and Zero Crossing Rate (ZCR) are also extracted together

with the mean value of the Teager Energy Operator (TEO). Shimmer is extracted as a

measure of stability for the energetic content. As the window length used to compute

Shimmer is 64ms long, only syllables having a nucleus equal or longer to this value were

retained. From the stylized pitch contour, the mean value in semitones together with the

glissando likelihood value of the segment crossing the energy peak, computed as shown

in Equation 2.11, is included in the features vector of each syllable. Therefore, for each

phonetic syllable associated with a nucleus represented by a voiced energy peak occurring

at time tk, if [si, si+1] is the stylized segment such that tsi < tk < tsi+1 holds, Γg([si, si+1])

is included in the features set of the considered syllable. This is intended to describe the
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likelihood of a pitch movement realized in a syllable nucleus to be heard as a glissando.

The first 13 MFCC coefficients are extracted from syllable nuclei only at frame level.

The MFCC vector is extracted by centering a 15ms window on the energy maximum

associated with the syllable nucleus. This is because we can assume that energy distribution

inside the nucleus is relatively stable across the frequencies.

Taking as reference the work presented in Wu et al. (2010), we consider to be prosodic all

the features that do not represent energy distribution among the frequencies. That is, only

duration, energetic and periodicity related features are considered to be prosodic. This can

be considered very restrictive and possibly inaccurate as it leaves out of the picture voice

quality that is considered a supra-segmental characteristic of speech (Scherer et al., 2003).

We follow this approach to allow comparison between our results and the ones presented

in Wu et al. (2010) for what it concerns the performance of prosodic features only. The

representation of spectral information, in this work, is delegated to MFCC features to allow

comparison between the performances of prosodic features combined with MFCCs, which

in Wu et al. (2010) yields the best results on the VAM corpus.

To allow the use of SVMs to perform emotion regression, syllable-level features are

collapsed into global statistics, similarly to what it was done in Wu et al. (2010) after

extracting frame-level features. During speech production, however, not all segmental units

have the same importance: prominent syllables, generally defined as syllables standing

out with respect to their context, contain more reliable acoustic information than their

non-prominent counterparts (Seppi et al., 2010). Since a number of works concerning

the automatic detection of prominent syllables (Silipo and Greenberg, 1999; Tamburini

and Wagner, 2007; Avanzi et al., 2010; Ludusan et al., 2011) highlighted the particular

importance of the syllable’s nucleus length, when extracting global statistics from syllable-

level features we compute the weighted mean of all features by taking the normalized nuclei

lengths as weights as shown in the following equation:

wi = ni/
N∑
j=1

nj (3.1)
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where wi is the weight of the features extracted from the i-th syllable, ni is the length

of the i-th nucleus and N is the number of syllables in the utterance. Since the weights

sum to 1, mean values of each feature are obtained as follows:

µ̄j =
N∑
i=1

fijwi (3.2)

where µ̄j is the weighted mean of the j-th feature and fij is the value of the j-th feature

in the i-th syllable. In the same way, weighted standard deviation, when considered, is

computed as

σ̄j =

√√√√ N∑
i=1

wi(fij − µ̄j)2 (3.3)

Aside from weighted mean and standard deviation, this step also introduces in the

features set speech rate, computed as the ratio between the number of syllables and the

speaking time. Speech rate has been shown to be an important emotional marker, together

with pitch variability, in Breitenstein et al. (2001). We also include the percentage of time

in which vowels are realized %V , computed as the percentage of speaking time occupied by

the nuclei associated with each phonetic syllable, and ∆C, computed as the mean length

of the segments obtained by merging the length of each syllable’s head with the length of

the preceding syllable’s coda. %V and ∆C were introduced in Ramus et al. (1999) in an

attempt to classify languages by their rhythm and, while their effectiveness in this task

has been repeatedly questioned, especially in recent years (Arvaniti, 2009), they are still

an effective correlate of speech rhythm in general terms. Lastly, the maximum among the

energy peaks associated with syllable nuclei is retained. A summary of the final prosodic

features set is presented in Table 3.1 while a block diagram of the features extraction

process is represented in Figure 3.1.
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Max Mean Standard deviation

Nucleus length X X

Syllable length X X

F0 X X

Speech Rate X

Harmonicity X X

Energy X X X

Shimmer X

Glissando likelihood X

TEO X X

ZCR X

∆C X

%V X

Table 3.1: Statistics computed over the features extracted from the syllables in the utterance (prosodic

only). %V and ∆C are considered as mean values over the whole utterance.

3.3 Emotion regression

In this section we report an analysis of the features’ predictive power and the performance

of the automatic emotion regression task for a qualitative and quantitative view on the

obtained results. During the features extraction step, one file containing a very short

utterance was removed from the corpus as the syllabification algorithm was not able to

detect any phonetic syllable in it.

3.3.1 Material

In this experiment, the Vera am Mittag (VAM) corpus (Grimm et al., 2008) is used.

The material consists of 48 minutes of audio recordings from a German talk show. The

recordings were manually annotated by a pool of human judges with continuous values
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Figure 3.1: Blocks diagram of the features extraction process.

Figure 3.2: Scores distribution for the three axes in the VAM corpus as reported in Grimm et al. (2008)

in the VAD space. The VAM corpus is divided into two subsets. The first (VAM I) is

composed by 478 utterances from 19 speakers assessed by 17 human evaluators while the

second (VAM II) is composed by 469 utterances from 28 speakers assessed by 6 evaluators.

For our tests, the full corpus (VAM I+II) is used. Due to the material contained in the

corpus, while Activation and Dominance scores are quite balanced, the Valence scores are

unbalanced towards negative values, as shown in Figure 3.2.

3.3.2 Features analysis

To evaluate the raw predictive power of the prosodic features with respect to each of

the considered axes, we computed the Spearman’s ρ and found that all the features are

correlated with at least one axis in a statistically significant way. Detailed graphs reporting
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Figure 3.3: Spearman’s rho for segmental features with respect to the three axes. The dotted line shows the

critical value for α = 0.01.
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Figure 3.4: Spearman’s rho for frequency features with respect to the three axes. The dotted line shows the

critical value for α = 0.01.

the actual ρ values with respect to a threshold of 0.075, representing the critical value for

944 degrees of freedom and a significance level of 99%, are reported in Figures 3.3, 3.4

and 3.5. Each graph shows the correlation values for a subgroup of the prosodic features,

divided in segmental, frequency and energy related.

It is necessary to evaluate the inter-correlation of the features, other than the direct

correlation of the features themselves, to assess the predictive power of the obtained rep-

resentation. To this purpose, the Correlation-based Feature Selection (CFS) algorithm

(Hall, 1998) is used. The CFS algorithm selects a subset of the initial features set exhibit-

ing high correlation with the target class or value while keeping low intercorrelation be-

tween features: if two features exhibiting high correlation with the target are also strongly

inter-correlated, only the feature exhibiting the best correlation with the target value is

retained. A Leave-One-Out cross-validation (LOO-CV) test with the CFS algorithm was



104 CHAPTER 3. EMOTIONAL SPEECH

Mean_energy Stdev_energy Maximum_energy Shimmer Mean_TEO Stdev_TEO

Energy features

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

V A D

Figure 3.5: Spearman’s rho for energy features with respect to the three axes. The dotted line shows the

critical value for α = 0.01.

performed on the features set for each dimension to check which features were selected by

the algorithm and evaluate the actual predictive power of the whole features set. Results

of this test are reported in Table 3.2. The indications of the CFS algorithm were used only

to evaluate the features set: no features were removed when performing emotion regression

to avoid overfitting on the VAM corpus.

3.3.3 Results

Automatic prediction, for a voice stimulus, of the coordinates it will have in the VAD space

is performed by means of a Support Vector Regressor (SVR). For the presented tests, the

LibSVM implementation (Chang and Lin, 2011) of an ε-SVR with a Radial Basis Function

(RBF) kernel was used. This is the same kernel used in Wu et al. (2010). As in the reference

work, absolute error is used as performance measure together with Pearson’s correlation

coefficient, computed as:

r =

N∑
i=1

(xi − x̄)(yi − ȳ)√
N∑
i=1

(xi − x̄)2
N∑
i=1

(yi − ȳ)2

(3.4)

In Wu et al. (2010), the complexity parameter C and the γ parameter of the RBF

kernel were optimized on the whole training set by means of a grid search. This was

because the test protocol consisted of a LOO-CV to allow comparison with the results
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Table 3.2: CFS results for prosodic features. For each feature and each dimension, the percentage of times

the feature was selected by the algorithm in a LOO-CV setup to predict the value of each dimension is

reported.

Valence Activation Dominance

Mean nuclei length 100% 0% 0%

Stdev nuclei length 100% 0% 0%

Mean syllable length 100% 0% 0%

Stdev syllable length 8% 5% 0%

F0 mean 100% 100% 0%

Speech rate 100% 0% 0%

Harmonicity 0% 100% 100%

Stdev Harmonicity 100% 0% 0%

Mean energy 100% 100% 100%

Stdev energy 100% 0% 0%

Maximum energy 0% 100% 100%

Shimmer 100% 0% 0%

Mean Γg 100% 100% 100%

Mean TEO 100% 100% 100%

Stdev TEO 100% 100% 100%

∆C 1% 100% 100%

%V 100% 100% 100%

Mean ZCR 100% 0% 100%
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Table 3.3: Pearson correlation coefficients and absolute errors obtained by the SVR both in the 10-Fold-CV

setup and in the LOO-CV setup. Results obtained in Wu et al. (2011) are reported for comparison.

Pearson correlation coefficient

10-Fold-CV LOO-CV

Valence Activation Dominance Valence Activation Dominance

PROS Only - Wu et al. - - - 0.47 0.77 0.75

PROS + MFCC - Wu et al. - - - 0.56 0.83 0.80

PROS Only - Proposed 0.37 0.77 0.75 0.39 0.78 0.76

PROS + MFCC - Proposed 0.45 0.80 0.78 0.48 0.81 0.79

Absolute error

10-Fold-CV LOO-CV

Valence Activation Dominance Valence Activation Dominance

PROS Only - Wu et al. - - - 0.13 0.17 0.15

PROS + MFCC - Wu et al. - - - 0.12 0.15 0.14

PROS Only - Proposed 0.14 0.17 0.16 0.14 0.17 0.15

PROS + MFCC - Proposed 0.13 0.16 0.15 0.13 0.16 0.14

reported in Grimm et al. (2008) and the authors assumed that a single sample would not

have had a significant impact on the choice of parameters. The same was assumed in

the Feature Selection (FS) step they included in their approach. In this work, we present

results obtained both with 10-Fold cross-validation (10-Fold-CV) and LOO-CV. While in

the LOO-CV tests we used the optimal parameters found for the entire training set by

means of a grid search, the results obtained with the 10-Fold-CV protocol were obtained

by optimizing the parameters on each of the ten training sets by internal 10-Fold-CV

and then evaluating the obtained model on the test fold. Final results, together with the

reference ones, are reported in Table 3.3.
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3.3.4 Discussion

In this experiment, I concentrated on a dimensional representation of emotions by per-

forming regression in the VAD space as, in this case, I prefer a top-down approach starting

from a continuous emotional representation to reduce the influence of emotional words and

work later on the identification of areas in this space to which emotional labels can be

assigned. While this is mainly useful for communication needs it can also be used, as I will

show in Chapter 4, to define part of the behavior of a robotic architecture.

Concerning the choice of the unit of analysis, this work focuses on the use of the phonetic

syllable. Syllables were used in previous works in the automatic emotion classification task

(i.e. Kao and Lee (2006)) but they are typically obtained by Forced Alignment (FA) or

Automatic Speech Recognition (ASR) modules, consequently assuming the presence of

a trascription or, at least, of a dictionary, which is limiting from the point of view of

technological applications. ASR, in particular, is only justified, in my opinion, if linguistic

features are to be considered for emotion recognition, which is a different area of interest

than the one I am exploring here.

In this work, I avoid the need of FA or ASR by using a phonetic definition of syllable so

that all we need to take into account is the structure of the signal in terms of energy profile

and voicing information. The use of a phonetic, rather than a phonological, definition

of the analysis unit introduces, of course, a number of problems related to syllabification

like insertion and deletion errors, where the former is caused by syllable splitting by the

occurrence of artifact energy peaks and the latter is caused by syllables merging typically

in cases of coarticulation. As I have shown in Chapter 2, these problems usually lower

performance measures of syllabification algorithms when their output is compared with a

manual transcription taken as reference and usually following phonological segmentation

rules. For features extraction, however, it is not a problem to work on a segmentation

into syllable-like units that only partially overlaps with manually marked syllables as a

segmentation of the signal into acoustically self-consistent units is sought rather than a

correspondence with phonological expectations. As an element of novelty with respect to
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other approaches using units of analysis with length ranging from frame-level to word-

level, including syllables, I am not considering all areas of the signal in an equal way. By

extracting energy and periodicity related features together with MFCCs from the phonetic

syllables nuclei only, we discarded all spectral information related to consonants, which

mostly introduces noise. This approach is motivated by studies on the acoustic properties

of emotional speech that concentrated on vowels only. In Drioli et al. (2003), the voice

quality characteristics of stressed and unstressed vowels pronounced in VCV setting were

investigated, in Patel et al. (2011) the correlation with a set of discrete emotions of a

number of acoustic features extracted from sustained \\a\\ sounds was explored while in

Vlasenko et al. (2011) and in Gharavian et al. (2012) the particular importance of formants

when distinguishing emotions has been reported.

Another point of novelty in this work is represented by features weighting in terms of

nuclei durations. By weighting syllable-level features on the basis of the relative portion

of nuclei time they occupy, more importance is assigned to long nuclei while reducing

the influence of shorter nuclei. Since duration is the main cue when detecting prominent

syllables, this approach is in line with the indications given in Seppi et al. (2010) that

features extracted from prominent syllables perform in a similar way to features extracted

at word level and contain better emotional markers than their non-prominent counterparts.

An obvious advantage of limiting the extraction of spectral features from phonetic

syllables nuclei only is the amount of data that needs to be analized in order to obtain

performances comparable to the state of the art. Since in Wu et al. (2010) a Voice Activity

Detection module was used to avoid extracting features from silent areas, we can estimate

that the amount of speech processed in the reference work was roughly equal to the time

covered by our automatically detected syllables, which is 36 minutes. Since automatically

detected syllable nuclei cover a total of 22 minutes, these results are obtained by processing

40% less of the signal.

From the data shown in Table 3.3, we can observe that performance equals state of

the art on Activation and Dominance while it is lower on Valence. Low performance

of automatic emotion labeling systems on Valence is frequently found in the literature
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when acoustic features only are involved: the opposition between anger and happiness is

typically reported to be the most difficult to model. While obtained results are higher

than the ones reported in Grimm et al. (2008) (where a mean correlation equal to 0.6 and

a mean absolute error equal to 0.24 were reported), the approach presented in (Wu et al.,

2010) is better than the one I am presenting on this particular dimension, although even

in that case performance is still low. A first observation we can make about this is that the

main difference between our approach and the reference one lies in the lack, in our features

set, of descriptors of spectral dynamics as in (Wu et al., 2010) deltas and double deltas of

MFCC coefficients were included. Not having this kind of information appears to have no

effect for what it concerns Activation and Dominance regression while influencing Valence

regression only. In the literature, it has been repeatedly found that static classifiers obtain

acceptable performance on the reference corpora and this has led to the wide popularity of

SVMs on emotion classification. However, our results, combined with the results presented

in reference work, seem to suggest that, while this approach works in an acceptable way

on Activation and Dominance, it may be necessary to adopt a different strategy for the

Valence axis only. This possibility may have been masked in the past by posing the emotion

recognition problem in terms of classification. Having a single classifier working on a full set

of classes, in fact, does not allow to separate the process dedicated to separating emotion

classes that are distinguishable only in terms of Valence. On the contrary, in the emotion

regression problem, by having a regressor dedicated to each axis, it is easier to structure

a system tracking emotional levels on Activation and Dominance using static approaches

based on global statistics while having a separate regression algorithm tracking Valence by

taking into account features dynamics.

From the qualitative analysis of the features performed on the VAM corpus, both in

terms of absolute correlation with the VAD axes shown in Figures 3.3, 3.4 and 3.5 and in

terms of choice of the CFS algorithm, we obtain useful insight. First of all, we observe

that ∆C appears to be dominating speech rate. The two are strongly correlated (ρ: -0.56),

in line with the basis on which the V arco∆C rhythmic measure (Dellwo, 2006) has been

developed and with the findings reported in Barry et al. (2003); Dellwo and Wagner (2003).
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∆C, however, has better correlation with Activation (ρ= -0.16 vs ρ= 0.15) and Dominance

(ρ= -0.14 vs ρ= 0.11). This is confirmed by the CFS data for Activation and Dominance

while for Valence the CFS algorithm preferred speech rate although neither of the two

was significantly correlated with that axis. CFS appears to be selecting speech rate only

because there are almost no features correlated with this axis in a strong way.

In (Wu et al., 2010), it was assumed that the LOO-CV setting has no influence on the

choice of the features: while this is not entirely true, as in Table 3.2 some features were

occasionally selected by the algorithm, in most cases if a feature was selected once, then it

was included in every features set. This result validates Wu’s assumption and supports our

choice to use the optimal parameters found on the full dataset for the SVM in LOO-CV

experimental setup. This choice is also supported by the comparison between the results

we obtained in the 10-Fold-CV setup with the ones obtained in LOO-CV setup, in which

only a minor performance difference in terms of correlation coefficient can be observed on

the Activation axis.

CFS features selection consistently discards segmental features, with the exception of

∆C and %V , thus suggesting that their role is exhausted in features weighting. This is in

line with what it has been shown in (Seppi et al., 2010) regarding the particular importance

of the acoustic content found in prominent syllables and it validates our attempt to intro-

duce an adaptive way of considering features along the speech signal, avoiding to consider

them as equally important in every area. Since our method of features weighting is based

on nucleus duration, which represents the primary cue for prominence detection, this ob-

servation also opens the way to the introduction of features weigthing based on prominence

scoring for emotion regression. This, in our opinion, would represent an important step to

recognize important areas of the speech signal, allowing an automatic system to focus on

them to obtain cleaner data.

Lastly, the Γg feature appears to be a good descriptor for pitch, being always selected by

the CFS algorithm. This is interesting as the Γg value represents a continuous score for the

occurrence of glissandos in the utterance and the correlation of this particular phenomenon

with emotions, to our knowledge, has never been tested before.
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3.4 Continuous emotion regression

I will now concentrate of continuous emotion regression on a per-syllable basis. For the

following tests and for the affective robotics system I will present in Chapter 4. As the

current interest is to evaluate the contribution of a single unit to emotion tracking, I

will limit my analysis to the correlation of a single syllable’s features vector with the

instantaneously perceived emotional level. I will then show how this analysis allows to

set up an affective robotic architecture working in real-time with syllable based analysis.

While it is possible to enlarge the features’ scope by employing features vectors from the

preceding syllables, this is left for future work as it makes more complicate to present

a clear interpretation of the contribution of each single feature for continuous emotional

tracking.

3.4.1 Material

For the test presented in this Section, the SEMAINE corpus (McKeown et al., 2010)

is used. The considered dataset is composed of 55 interaction sessions between human

subjects and artificial sensitive listeners each one having a distinct personality (happy,

gloomy, pragmatic...). From the audio recordings of the human subjects involved in the

interactions, silent intervals long at least 2 seconds were marked as separators between

isolated utterances. With this method, 882 segments were extracted for a total speaking

time of 3 hours and 28 minutes.

In the SEMAINE corpus, continuous annotations are available on the three axes we

are considering in this Chapter, among others. By considering the mean instantaneous

scores provided by the human judges, a single stream of continuous values is obtained.

The number of raters per session varies from a minimum of two to a maximum of 8, with

the majority of the sessions having 6 raters. After applying the segmentation strategy

presented in Chapter 2 and filtering out syllables having nuclei less than 64ms long, 29440

phonetic syllables, 75% of the total number of syllables found, were extracted. As, in
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Table 3.4: Pearson correlation coefficients and absolute errors obtained by the SVR on the SEMAINE

corpus.

Pearson correlation coefficient

Valence Activation Dominance

PROS Only 0.27 0.47 0.22

PROS + MFCC 0.4 0.57 0.31

Absolute error

Valence Activation Dominance

PROS Only 0.22 0.2 0.16

PROS + MFCC 0.2 0.19 0.16

this experiment, we are interested in evaluating the predictive power of each automatically

detected syllable, the target value associated with each unit is computed as the mean value

of the scores inside that unit.

3.4.2 Results

As in Section 3.3, an SVR was trained for each axis. This time, this is done on the basis of

each automatically detected syllable. The target variable is computed by taking first the

mean value assigned by each human judge to each frame and then considering the mean

value over the entire syllable for each axis. Table 3.4 shows a summary of the obtained

results. Since using phonetic syllables as units for continuous emotion recognition on the

SEMAINE corpus represents a novel approach, there is no directly comparable work to take

into account. As in Section 3.3, I report the results obtained both with prosodic features

only and with MFCCs. Correlation coefficients for the considered prosodic features are

shown in Figure 3.6.
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Figure 3.6: Spearman’s rho of the considered features with respect to the three axes on a per-syllable basis.

The dotted line shows the critical value for α = 0.01.

3.5 Conclusions

I presented a system for automatic emotion regression in the VAD space based on phonetic

syllables. I have shown that state of the art results for Activation and Dominance can be

obtained by extracting spectral features from phonetic syllables nuclei only and weighting

them by the relative duration of each nucleus. As a performance drop with respect to the

reference approach can be observed only in the case of the Valence axis, on which state of

the art performance is still low, it can be hypothesized that, while a static regressor may

be successful for Activation and Dominance, dynamics may be important for the Valence

axis only. Should this be the case, a dimensional model of emotions would have to be

preferred to a discrete one, from a technological point of view, because it allows to isolate

and easily deal with a problematic area of emotion recognition, often represented by the

difficult problem of modelling anger/happiness opposition.

I also presented a qualitative analysis of the considered features showing that segmental

features appear to exhaust their role in features weighting, with the exception of rhythm-

related features, opening the way to the introduction of prominence scores into features
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extraction and, together with the fact that state of the art results can be matched at least

on Activation and Dominance regression by considering only syllable nuclei for spectral

information, highlights the need to avoid considering all areas of the speech signal as

having the same importance for emotion regression. From the same qualitative analysis,

we have shown that three not commonly used features, ∆C, %V and Γg, appear to be

powerful descriptors of the emotional content.

The final test on continuous emotion tracking, performed on a per-syllable basis, shows

that instantaneous emotional tracking with no contextual information appears to be reliable

for the Activation axis only. From the reported analysis, relevant prosodic features for this

task appear to be the mean pitch and energy, the nucleus length, the TEO and the ZCR.



Chapter 4

Emotional speech driven robotic

architecture

Emotions are tightly bound to the physical world and should not be treated as

abstract classes. Moreover, it is widely accepted that obtaining ground truth

labelings of audio and video recordings is a difficult task. This is because emotion

perception can vary a lot among judges, making the final scores less reliable. This difficulty

comes from the fact that, while we are perfectly aware of what we are talking about when

we discuss emotions, it is not as simple to define emotions. Following the theory presented

in Ledoux (1998), as I discussed in Chapter 1, I follow the idea that the word emotions

does not refer to something that actually exists in the brain. Emotions are linguistic

tricks that allow us to describe complex physiological experiences. For this reason, while

using emotional corpora is indeed useful to study emotions, it is necessary to evaluate the

capability of an automatic system of recognizing emotions by its capability of reacting

accordingly to the emotional stimuli coming from a user. This way, it is possible to verify

the performance of the emotional speech analysis module by considering the consistency of

the robot’s behavior. In this Chapter I present a general affective robotics architecture in

which I include a real-time implementation of the syllable based speech analysis method

115
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presented in Chapter 2 and tested on emotional speech corpora in Chapter 3. I will consider

the Activation axis only as it appears to be the most reliable given a context of one phonetic

syllable. I will also not include the trained SVM model to perform emotion tracking. This

is because the language the models were trained on was English and I only had Italian

speakers available and because my goal is to show that, by keeping an interpretable features

set, it is possible to better illustrate how the robot works. Specifically, even though the

presented task is simple, I believe that, if a certain system works, it is important to be able

to explain why it works. A linguistically motivated approach to speech analysis is helpful,

in this sense, as it allows the system to be described by including terms coming from a

well-established terminology concerning prosody.

4.1 Virtual creatures

Robotic architectures simulating real creatures, both animal or humanoids, are often re-

ferred to as virtual creatures. From a commercial point of view, many of these can be

considered the rightful successors of the old tamagotchi concept: they are designed to sim-

ulate the basic need of pets like feeding and caring and to acts like artificial companions.

Among recent approaches to this kind of product, the Aibo robot, shown in Figure

4.1, represents a very well known example. Aibo was developed by Sony and distributed

between 1999 and 2005. The latest model was characterized by a MIPS R7000 processor,

64MB of RAM and 20 degrees of freedom distributed among legs, head and tail. It was

controlled by a proprietary operating system developed by Sony, named Aperios, featuring

a modular architecture to allow easy integration with modules sold separately. While

designed with the primary objective of being a commercial entertainment product, Aibo has

been also used in academic research to study, for example, children’s behaviour (Batliner

et al., 2011) and verbal human-robot interaction (Kuremoto et al., 2011).

The Nao robot, shown in Figurefig:Nao, is a widely used humanoid platform designed

mainly for research purposes that allows users to experiment both with locomotion and

with human-robot interaction. It features 25 degrees of freedom, 2 cameras, 4 microphones,
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Figure 4.1: The Aibo robot

9 tactile sensors and 8 pressure sensors. It is equipped with an Intel ATOM processor and

runs a Linux kernel operating with a proprietary middleware (NAOqi). While it does not

come with a built-in personality, Nao is often provided by researchers with basic com-

munication capabilities and it is used as a virtual companion in human robot interaction

therapy for autism (Shamsuddin et al., 2012) and to study emotional movements in social

games (Barakova and Lourens, 2010).

In this work, I use the Pleo robot, shown in Figure 4.3. While being a relatively cheap

commercial product, Pleo is provided with a simple programming interface based on the

PAWN language that allows users to write original behaviors for the robot overriding its

pre-defined artificial personality. It has 14 degrees of freedom, an Atmel ARM7 processor,

12 touch sensors, two binaural microphones and a camera dedicated to light detection and

basic navigation and object tracking. Given the limitations of the PAWN programming

language and of the available hardware, I took advantage of the USB interface to perform

signal processing on a dedicated PC and delegated the necessary animation control to a pre-

loaded PAWN script. The Pleo robot was chosen for the presented experiments because,

by representing a pet, I assumed it would have been more easily accepted by the human

subjects although the simulated intelligent behaviors are limited.
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Figure 4.2: The Nao robot

4.2 Proposed architecture

The affective robotics architecture presented here is used to discuss the following observa-

tions:

Observation 9. using emotions can aid the design of a modular robotics architecture by

acting as an interface between perception and action, thus abstracting the low-level decision

processes from the raw signal processing phase

Observation 10. a linguistically motivated method to process speech, such as the one

presented in Chapter 2 has an impact on the performance of a technological system

Observation 11. it is possible to test a continuous emotion tracking system by using it

in a simple task rather than by comparing results with manual annotations, that are only

partially reliable

Concerning Observation 9, as it happens for humans from a linguistic point of view,

emotions can be used in robotics architectural design to abstract complex configurations in
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Figure 4.3: The Pleo robot

a simple way. This abstraction can be then used in order to let a technological approach re-

act accordingly to the experienced synthetic emotion. By representing internally the result

of the evaluation of all the channels over which the synthetic emotion is computed, decisions

can be taken on the basis of a summary of the results rather than considering every single

channel independently. In the architecture used to test the syllable-based emotional speech

tracker, represented in Figure 4.4, I define an interface based on instantaneous emotional

stimuli coming from signal analysis modules. The internal model represents the current

emotion in terms of the four dimensions described in Fontaine et al. (2007) (Activation,

Valence, Dominance, Unpredictability) so incoming emotional stimuli are represented by

4-dimensional vectors. Although in the implementation used in this work only the module

dedicated to speech analysis is connected to the emotional interface, the emotional model

is designed to compute the emotional impulse on each of the four axes by taking the mean

value of all the incoming pulses. As not every signal processing module may be designed

to influence the emotional state on all the considered axes, modules that do not intend to

contibute in defining the emotional state on a specific axis are allowed to transmit a Not-

a-Number (NaN) component in the 4-dimensional impulse vector. This way, the emotional
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Figure 4.4: Generic model of the affective robot

model does not consider the contribution of the module when computing the mean emo-

tional impulse on that axis. In the presented experiments, the real-time speech processing

module sends emotional pulses on the Activation axis only. This is because, by looking

at the data presented in Chapter 3, this is the axis about which we are able to obtain

the most reliable results. The Voice Analysis module shown in Figure 4.4 is designed to

send pulses in the form o a 4-dimensional vector containing [x,NaN,NaN,NaN ] where x

represents an emotional impulse on the Activation axis. This design choice is intended to

leave the architecture open to allow an easier expansion in the future by including more

channels. Figure 4.4 also shows a decision module working on the basis of the internal

emotional state. This highlights how the decision process is not concerned with signal pro-

cessing but relies only on the internal configuration resulting from the perception step and

abstracted in terms of synthetic emotion. Also, the emotional model works in continuous

(e.g. dimensional) mode only. Discretizing the dimensional representation, if necessary,

is left to decision modules depending on what they are designed to do. Details on the

decision module used in this implementation of the emotional architecture are described

in Section 4.3.

Concerning Observation 10, it is necessary to describe how the offline speech processing

method presented in Chapter 2 has been moved to a real-time environment. The most

important implication of the speech processing method described in this work is that a

linguistic unit, the phonetic syllable, is considered as the basis on which emotion tracking

is performed. This is the case for the real-time system too. Instead of providing emotional
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pulses on a constant frequency (i.e. with a frame-based strategy), these are sent to the

emotional model on the basis of the variable frequency depending on syllable occurrence.

Given the definition of phonetic syllable reported in Section 3.1, the phonetic concept of

syllable can be introduced in an technological real-time system by using buffering. As the

definition describes the syllable in terms of voiced energy peaks, it is necessary to compute

on a frame basis only pitch and intensity of an incoming signal. In the presented system,

instantaneous pitch and intensity measures are accumulated in a buffer until the template

of a phonetic syllable is detected. When this condition is verified, the syllable is passed to

the features extraction module and an emotional impulse is generated on the basis of the

method described in Chapter 3. This means that, in the presented system, the features

extraction module is not always active. On the contrary, it is disabled, thus reducing the

computational load, until a phonetic syllable is detected. Moreover, as spectral features

are computed over the syllable nucleus only, the system saves the effort needed to examine

non-nuclear portions of the signal. As shown in Chapter 3, this does not alter significantly

the performance on the emotion regression task.

Figure 4.5 shows the frame level computation module dedicated to buffering. Given

the incoming signal and its Fast Fourier Transform (FFT), the intensity value of the frame

is computed and, if the silence threshold is exceeded, autocorrelation based Voice Activity

Detection is used to verify if the frame is voiced and, if that is the case, what is its

pitch. Intensity, voicing, and frequency information, along with the raw signal, are saved

in dedicated buffers.

Figure 4.6 shows how the frame based analysis module allows the use of syllable based

analysis in real-time. From the intensity buffer, the presence of a local maximum not yet

associated with a syllable is verified. If a voiced local maximum followed by a local mini-

mum is found in the buffer and it has not been already assigned to a syllable, the template

check module enables the features extraction module. By considering the buffered data,

the syllable-based module generates an emotional impulse in the form of a 4-dimensional

vector, sending it to the emotional model to be processed.

Figure 4.7 shows how the system extracts the last syllable found in the buffer. At this
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Table 4.1: Features used in the real-time system. The correlation coefficient computed on the SEMAINE

data and the adjusted weight used to compute the emotional stimulus are also reported.

Feature Correlation Weight

Nucleus length -0.08 -0.1

Nucleus energy 0.29 0.3

Mean pitch 0.25 0.2

TEO 0.08 0.1

ZCR 0.3 0.3

stage, the length of the nucleus is extracted and the emotional stimulus is computed only

if the nucleus is long enough to contain clear spectral information (during the experiments

this limit was set to 80ms). The emotional stimulus is computed as the weighted mean of a

subset of the prosodic features presented in Chapter 3 by taking into account the correlation

coefficients of the considered features with the manual annotations of the SEMAINE test

(per-syllable emotion tracking) Since the the real-time pitch tracking module was less

reliable than the offline pitch tracker used in the experiments with emotional corpora, the

value of the mean pitch coefficient was slightly reduced in favor of the other features. The

considered features along with their original correlation coefficient and the adjusted weight

is reported in Table 4.1.

The emotional model, shown in detail in Figure 4.8, keeps track of the internal emo-

tional state of the robot. It receives emotional stimuli from the signal processing modules

and computes the new emotional state on the basis of the previous one and by taking into

account a simulated tendency to return to a neutral state in absence of emotional stim-

uli. The emotional stimulus is computed as the mean of the incoming emotional stimuli on

each axis. Since in the presented implementation only the voice analysis module generating

pulses on the Activation axis is present, the emotional stimuli are computed as the mean

between the output of this module and of the back force simulating the tendency towards

a neutral state. Back force is computed by multiplying the preceding emotional value of

each axis by a constant factor θ (θ = −0.0005 in the presented experiments). After taking
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the mean value of the contributing factors on each axis, the impact of the stimulus on

the synthetic emotion is modulated depending on whether the stimulus is concordant with

the present emotional state or not. If the robot is in a positive (negative) emotional state

and a positive (negative) stimulus is incoming, the positive (negative) effect is dampened

proportionally to the strenght of the present emotional state, otherwise the effect of the

stimulus is tripled. This way, weak stimuli, both positive and negative, have less effect on

the robot if it is already in a very excited or in a very relaxed state, repeated stimuli of the

same strength have a decreasingly lower impact as their influence sums up and opposing

stimuli rapidly change the emotional state of the robot. These simple rules constitute a

model of affective adaptation (Frederick, 1999) modulating the impact of the incoming

stimulus on the synthetic emotion. Affective adaptation is the process of weakening of the

affective response of a constant or repeated affective stimulus by psychological processes.

This means both that the positive effect of a stimulus weakens after some time time (simu-

lated by the back force rule) and that continuous exposure to the same stimulus lowers the

importance of the stimulus itself over time (simulated by the stimulus modulation rule).
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Figure 4.8: The emotional model

4.3 Case study

In order to illustrate how the presented architecture can be deployed and to evaluate the

performance of the syllable based emotional speech tracker, a simple task with the Pleo

robot has been designed. Subjects participating to the experiment were asked to draw

Pleo’s attention on a screen when a butterfly was visible and to calm him down when the

butterfly was not there. They were told that they were allowed to use voice only to control

Pleo and that, although it was listening to them, the robot would not have been able to

understand what they were saying so they should treat it like a real cub. To perform signal

processing and to remotely control the Pleo robot, a notebook running Windows 7 (32 bit

OS, 4GB RAM, Centrino 2 processor) was used in the tests. The PC is connected with

Pleo by the USB interface and to a second monitor showing images of a lawn with a flying

butterfly or without the butterfly to elicit reactions from the user. The user’s voice was

captured by means of a Sennheiser headset connected to the PC (sampling frequency was

set to 16000). The test runs for 1 minute and the experimental setup is shown in Figure

4.9.

The behavior control module, shown in Figure 4.10, shows the structure of the decision

process based on the internal emotional state only. First of all, the first component of the

emotional vector, representing Activation, is extracted. The continuous Activation space,

normalized in the interval [-1, 1], is discretized into three intervals A = [−1,−0.5], B =
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Figure 4.9: Experimental setup

[−0.5, 0.5], C = [0.5, 1]. Decisions are taken depending on the transition from one area

to the other. To avoid multiple transitions if the Activation curve moves around the 0.5

and -0.5 boundaries, the areas are blended in the intervals [-0.6, -0.4] and [0.4, 0.6]. A

transition from area A to area B is therefore accepted only if the curve crosses -0.4 while

rising and a transition from area B to area A is accepted only if the curve crosses -0.6

while descending. The same holds for areas B and C. If an area transition is detected, a

command is generated by taking into account the areas involved in the transition. While

the generic model running on the control PC sends command strings remotely through the

USB interface, animation and sound playing are handled asynchronously by a PAWN script

running on Pleo. Table 4.2 shows a summary of the commands sent to Pleo relatively to

each possible situation.

When the experiment starts, the butterfly is present on the screen so the user is expected

to get Pleo excited. When area C is entered, the system makes the butterfly disappear

from the screen with 5 seconds delay in order to have the user calm down Pleo. When

area A is entered, the system makes the butterfly appear again with 5 seconds delay in

order to have the user get Pleo excited again. Figure 4.11 shows two interaction examples:
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Table 4.2: Command generation matrix.

to area → A B C

A Keep relaxed position Keep relaxed position -

B Play relaxed animation Keep last position Play happy animation

C - Keep looking at the screen Keep looking at the screen

black peaks show syllable based emotional impulses while the light grey curve shows how

the internal Activation state of the Pleo robot changes as a function of time and emotional

stimuli coming from the user’s voice. It is possible to observe that, while not being provided

with specific instructions about how to control the robot, a user is generally able to move

the Activation curve in the [-1, 1] interval to produce the expected pattern. 5 female and

4 male subjects were recruited for the experiment. Table 4.3 shows the number of hits for

each behavior obtained by each of the subjects. An exhibited behavior is considered a hit

only if it was expected. For example, an excited behavior is considered a hit only if the

butterfly was on the screen and if the Activation curve is kept in the correct area until the

butterfly disappears from the screen.
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(a) Subject #6

(b) Subject #8

Figure 4.11: Two examples of interaction plots. Emotional stimuli (black peaks) are shown together with

the Activation curve (light grey) over time
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Table 4.3: Number of hits per expected behavior for the 9 subjects who participated in the experiment.

Subject number Excited hits Relaxed hits

1 2 2

2 3 2

3 2 1

4 1 0

5 2 2

6 3 2

7 3 3

8 1 0

9 3 3

4.4 Conclusions

In this Chapter I have shown an example of how the syllable based speech processing

method presented in Chapter 2 and evaluated on emotional speech in Chapter 3 can be

deployed in a real-time robotic architecture. By using buffering, it is possible to reproduce

the syllable based features extraction method illustrated in Chapter 2 and concentrate the

analysis on automatically detected syllable nuclei. This reduces computational load, as the

features extraction module is not always active, and introduces linguistically meaningful

segmental features in a real-time setting. A generic architecture using emotions as an inter-

face between perception and action has been presented. This architecture is generic in the

sense that it does not make assumptions on the number of incoming channels contributing

to emotion computation or about the number of behavior controls. The emotional model

is dimensional and it considers the four axes (Activation, Dominance, Valence and Unpre-

dictability) indicated in Fontaine et al. (2007). Although the model is four-dimensional, in

the presented implementation an example considering Activation only is considered as the

predictive capability of the prosodic features set appears to be reliable on this axis only

when a per-syllable setup is considered as shown in Section 3.4. By designing a simple
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game, it was possible to observe if human users were able to control the behavior of the

Pleo robot without being instructed about the system’s design. Recruited subjects gener-

ally showed a good capability of controlling the robot. The final Activation curve was, as

expected, a wave-like pattern in most of the cases. Only two of the considered nine sub-

jects were not able to control the robot. In both cases the subjects were not able to induce

the relaxed state after reaching the excited state. Given the limited number of features

considered and the limited context (one syllable) for continuous emotional tracking, this

can be considered a promising result.



Conclusions and future work

This work consisted in the development of a linguistically motivated speech analysis method

concentrating on intonation analysis for emotional speech recognition. In Chapter 2, I

have presented a segmentation algorithm into phonetic syllables, the unit I have chosen

to be at the basis of my system. I have also presented a pitch stylization algorithm to

obtain a perceptual account of the tonal movements and performed a series of experiments

on syllabic prominence perception to identify the relevant features allowing the analysis

method to differentiate among units on the basis of their perceptual importance. The

syllable based analysis method presented here leaves room for improvement by introducing

a better description for the phonetic syllable. Error analysis revelas that some situations

appear to introduce systematical errors in the segmentation when the definition of the

considered units fails to detect a boundary. This is mainly due to spectral alterations not

being captured by the intensity profile which can be summarized by considering situations

where the energy distribution among frequencies varies without changing the total amount

of energy in the signal. Extending the definition of phonetic syllable may also improve

the performance of the SOpS algorithm by making its psychoacoustical basis closer to the

original definition of the Spectral Constraing Hypothesis, where generic changes in the

spectrum of the signal were considered rather than syllabic subparts.

In Chapter 3, I have shown how the analysis method can be applied to the task of

emotional speech recognition, in a dimensional setup. I have also shown how the same

method can be applied to continuous emotional speech tracking by keeping the phonetic

syllable as basic unit. Concerning dimensional recognition, results have shown that per-
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formance competitive with the state of the art can be reached by analyzing a significantly

lower percentage of the signal. The results obtained on the emotion tracking task, more-

over, have shown that, although considering a very limited context of one phonetic syllable,

the correlation between the automatically obtained values on the considered axes and the

manual annotations obtained from human judges is strong enough to allow real-time im-

plementation in a robotic system at least for Activation. Future work concerning emotion

recognition on emotional speech corpora will consist of improving performance by extend-

ing the context to more syllables. Indications concerning context extension may come from

the experiments on prominence perception, where the perceptual relevance of a unit with

respect to its surrounding ones was estimated to be equal to three syllables.

In Chapter 4, I have shown how the considered analysis method can be ported in

a real-time setting, thus keeping the advantage of being able to describe its functioning

through linguistic terminology. The proposed robotic architecture considers emotions as

an interface between perception and action. Action modules are not concerned with the

analysis of raw data coming from sensors but they rely on an abstraction of the results of

this kind of analysis performed by dedicated modules. From a technological point of view,

this consists of a modular design in which sensors and analysis modules can be added to

the architecture without altering the decision processes. Decision processes, on the other

hand, can be extended without altering the way data coming from the sensors are analyzed.

An affective robotic architecture can also be used to get around the ground truth prob-

lem research has encountered in studying emotions. While using emotional speech corpora

has been very useful to design analysis methods and compare them, the need of obtaining

reliable human judgments for perceived emotional experience is hard. By designing affec-

tive robotics architectures and by proposing tasks that can only be completed if successful

emotional communication is realized, it may be possible to better estimate how well the

proposed methods perform by taking back emotions from an abstract annotative level to

the applicative level they belong to. User experience, in other words, may be a better per-

formance indicator than the correlation with manual annotation. Designing better tests

and a psychologically valid questionnaire to evaluate user experience without explicitly ask
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users to talk about emotions will be matter of future works.





Appendix A

The Prosomarker tool

Prosodic research in recent years has been supported by a number of automatic analysis

tools aimed at simplifying the work that is requested to study intonation. The need to

analyze large amounts of data and to inspect phenomena that are often ambiguous and

difficult to model makes the prosodic research area an ideal application field for computer

based processing. One of the main challenges in this field is to model the complex relations

occurring between the segmental level, mainly in terms of syllable nuclei and boundaries,

and the supra-segmental level, mainly in terms of tonal movements. I present here a tool

for automatic annotation of prosodic data, the Prosomarker, designed to give a visual

representation of both segmental and suprasegmental events usinge the syllabification an

pitch stylization algorithms presented in Chapter 2. The representation is intended to be

as generic as possible to let researchers analyze specific phenomena without being limited

by assumptions introduced by the annotation itself.

Architecture

The system architecture is composed of two main processes running independently. The

first one is dedicated to data extraction from the segmental level. This process extracts

the energy profile to detect syllable nuclei and position syllable boundaries as shown in

Chapter 2. The second process deals with suprasegmental analysis of the speech signal by
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means of the SOpS algorithm (see Section 2.5).

The INTSINT coding scheme (Hirst et al., 2000) is then used to produce the automatic

annotation. INTSINT was chosen among the various coding schemes because it was specif-

ically designed to annotate the target points of a stylized curve, thus producing a phonetic,

rather than phonological, account of intonation. Instead of using the target points of the

MOMEL curve (Hirst and Espesser, 1993), Prosomarker uses the target points defining

the SOpS curve. While the pitch stylization and annotation process is always performed,

segmental analysis and annotation are performed only if the user chooses to visualize this

kind of events.

In Figure A.1, the Prosomarker architecture is summarized. The design is modular in

order to be easily updated by working separately on the syllabification algorithm and on

the pitch stylization algorithm. Modular independence also leaves open the possibility, in

the future, to parallelize the process, thus saving computational time, and to extend the

analysis. For the implementation, we chose to employ the well known software PRAAT

(Boersma and Weenink, 2011) as it contains a large set of primitives to perform phonetic

analysis. Also, PRAAT is designed to efficiently handle multilayer annotations in terms of

automatic generation, because of the scripting language, in terms of visualization, because

of the built-in editors and drawing capabilites, and in terms of compatibility with external

software, as the TextGrid format is widely supported. The Python implementations of the

SOpS algorithm and of the syllabification algorithm are called from within PRAAT.

Since Prosomarker is designed to work on speech corpora, as soon as the user checks

the desired options and presses the OK button in the main interface, the tool asks for the

folder in which the audio (WAV) files can be found and, if any of the exporting options

is set, it will ask for the folder in which to save results. In Figure A.2 a screenshot of the

interface of the tool is shown.

Prosomarker can run both in automatic and semi-automatic mode: the user can select

which steps of the annotation process he/she wishes to check manually and the tool will

show the intermediate result waiting for confirmation before proceeding. It is also possible

to go back to the target points manual positioning step after visualizing the automatically
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Extract Energy Extract Pitch

Stylize PitchSillabify

Produce INTSINT
annotation

Annotate syllable 
nuclei/boudaries

Combine
annotations

Segmental analysis Supra-segmental 
analysis

Figure A.1: The architecture of the Prosomarker tool

Figure A.2: The main interface of Prosomarker
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assigned labels. This allows to check the positioning of the target points, to view and

modify the labels and to introduce new tiers in the final TextGrid (for example, to introduce

comments). Here I summarize all the different options the user can choose to customize

how Prosomarker behaves:

• Perform syllabification: activates the segmental analysis process. Syllable nuclei

and boundaries positions are automatically found and annotated in a separate tier.

• Import existing TextGrid: imports an existing annotation in TextGrid format and

merges it with the requested output obtained from SOpS and from the syllabification

algorithm. TextGrids to be imported must have the same name of the corresponding

audio file.

• Manual check targets: activates the semi-automatic mode of Prosomarker. After

performing the pitch stylization step, the tool will create a Manipulation object and

open the corresponding PRAAT editor window in which the user can add target

points, remove them or adjust their position.

• Manual check labels: activates the semi-automatic mode of Prosomarker. After

performing the automatic annotation step, the tool opens a PRAAT editor window

showing the waveform of the original sound file, its spectrum, pitch and intensity

profile along with the produced annotations. Any operation available in PRAAT

to manage TextGrids is available at this time. If the Manual check targets option

was set, the possibility of going back to the target points adjustment step becomes

available at run-time.

• Export resynthesis: instructs Prosomarker to generate a resynthesized version of

the original sound file in which the stylized pitch curve is substituted to the original

one by means of the PSOLA algorithm available in PRAAT. The resulting audio file

is saved in the output directory set by the user.
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• Export PitchTier: instructs Prosomarker to save the PitchTier object containing

the target points used in the stylization process. If the user changes the target

points, these changes will be saved. This can be useful to perform further analysis

after running the tool.

• Export TextGrid: instructs Prosomarker to save the TextGrid containing the gen-

erated annotations. If the user modifies the TextGrid, the changes will be saved.

This option is useful to transport data coming from the Prosomarker tool into other

software supporting the TextGrid format.

• Draw: instructs Prosomarker to draw the original pitch curve along with its styl-

ization and with the aligned TextGrid. In Figure A.3 we show an example of the

automatic annotations Prosomarker produces generated with this option set.

• Customize pitch tracking settings: allows the user to customize pitch tracking

settings used to obtain the pitch curve. The stylization process depends on the pitch

curve extracted by PRAAT so these parameters influence the final SOpS curve.

Applications and future development

Prosomarker is an application designed to represent data coming from two algorithms deal-

ing with different linguistic levels. The integrated visualization of these levels is proposed

as a framework to provide researchers dealing with prosody an objective account of the

occurrence of segmental and suprasegmental events along with their synchronization. Run-

ning in semi-automatic mode, the tool can be used both for fast data exploration and as

a valid support to a prosodic analysis based on a phonetic approach: labels associated to

target points not only provide a coherent description of global prosodic patterns, but they

are also related with segmental events in such a way they can reveal linguistic regularities

in the relationship between prosodic events and segmental string. Approaching speech

from a perspective that tries to account for segmental and prosodic events simultaneously,
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Figure A.3: An example of the annotation produced by Prosomarker. First tier: INTSINT labels. Second

tier: syllable nuclei (N) and syllable boundaries (Bo). Third tier: extension of syllable nuclei from incipit

(I) to offset (O).

Figure A.4: The production of a native Italian speaker (on the left) compared with the production of a

nonnative speaker (on the right). On the first tier: annotation labels; on the second tier: F0 differences of

each target point compared with the previous one; on the third tier: duration increase; on the fourth tier:

syllable nuclei (N) and syllable boundaries (Bo); on the fifth tier: extension of syllable nuclei from incipit

(I) to offset (O)
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but independently from each other, applies equally to quantitative and qualitative research

strategies and offers the possibility to support a prosodic analysis considering different lev-

els of detail within different theoretical frameworks. Depending on the specific research

issues, Prosomarker can be used to analyze prosodic realizations related with linguistic

modalities, pragmatic functions or emotion expressions, for instance.

The examples in Figure A.4 aim to show how Prosomarker can constitute a valid

support in the interpretation of significant differences: they deal with the realizations

of the same Italian question “E’ alzata?” (“Is it standing up?”) produced by a native

Italian speaker and by a nonnative speaker in which we can observe how Prosomarker’s

annotations highlight differences in the comparison between L1 and L2 productions. The

native realization is indeed characterized by a rising-falling contour (M - B(L) - T(H) -

L - H) in which the maximum F0 value is aligned with the nucleus of the stressed vowel

and with an important increase (almost 80 Hz), while the nonnative production presents

a rising contour (B(M) - S - T(H)) in which F0 value increases progressively, reaching its

maximum value at the end of the utterance.

In automatic mode, the tool can be used to rapidly process large sets of data for

subsequent statistical analysis. In particular, the opportunity to produce an abstract rep-

resentation of intonation involving different linguistic levels at the same time, but keeping

them well separated is suitable to perform machine learning tasks.





Appendix B

Personality perception

Introduction

Social cognition has shown that people attribute, spontaneously and unconsciously, a wide

range of socially relevant characteristics to others Uleman et al. (2008). Furthermore, the

effect is so pervasive and ubiquitous that it takes place not only when people meet others

in person, but also when others simply appear in audio and video recordings Reeves and

Nass (1996). From a multimedia point of view, the main effect is that the perception of

social and psychological phenomena taking place in the data influences significantly what

we remember about the data we consume Dumais et al. (2003).

This work considers one aspect of this phenomenon, namely the spontaneous attribu-

tion of personality traits to unacquainted speakers. In particular, the article proposes an

approach for Automatic Personality Perception (APP) based on prosody, the combination

of (i) intonation, namely the combination of loudness, pitch, and speaking rate that char-

acterizes the way someone speaks and (ii) voice quality, which reflects the way energy

distribution across the frequency spectrum affects speech.

The main motivation for this choice is that the influence of both intonation and voice

quality on personality perception has been extensively investigated in human sciences (e.g.,

see Scherer (1977)). Furthermore, domains like Social Signal Processing have shown that

non-verbal behavioral cues (e.g. vocalizations, facial expressions, gestures, etc.) are a
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reliable evidence for machine understanding of social, affective and psychological phenom-

ena Vinciarelli et al. (2009).

To date, only a few approaches for APP have been proposed in the computing liter-

ature (see, e.g., Mairesse et al. (2007); Mohammadi and Vinciarelli (2012); Pianesi et al.

(2008); Polzehl et al. (2010)). In contrast, the relationship between prosody and person-

ality perception has been investigated for several decades in human sciences. The main

findings can be summarized as follows: (i) high pitch variation tends to be perceived as

higher competence and benevolence, and vice-versa Ray (1986), (ii) mean pitch tends to

have negative correlation with respect to extraversion and dominance for females speakers,

but positive correlation for male speakers Scherer (1977), and (iii) speaking rate tends to

be positively correlated with perceived competence Ray (1986). In general, those findings

suggest that prosody plays an important role in the way people perceive others.

To date, only a few approaches for APP have been proposed in the computing literature

(see, e.g., Mairesse et al. (2007); Mohammadi et al. (2010); Mohammadi and Vinciarelli

(2012); Pianesi et al. (2008); Polzehl et al. (2010)). In contrast, the relationship between

prosody and personality perception has been investigated for several decades in human

sciences. The main findings can be summarized as follows: (i) high pitch variation tends

to be perceived as higher competence and benevolence, and vice-versa Ray (1986), (ii)

mean pitch tends to have negative correlation with respect to extraversion and dominance

for females speakers, but positive correlation for male speakers Scherer (1977), and (iii)

speaking rate tends to be positively correlated with perceived competence Ray (1986);

Smith et al. (1975). In general, those findings suggest that prosody plays an important

role in the way people perceive others.

The experiments of this work, performed over the largest database of speakers assessed

in terms of perceived personality traits, show that it is possible to predict the mutual

position of two speakers in the personality space with up to 80% accuracy. The proposed

approach is based on Ordinal Regression, which is the most suitable methodology to clas-

sify ordinally labeled data. To the best of our knowledge, this is the first work that goes

beyond the simple prediction of traits attributed to speakers by predicting differences be-
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tween individuals, in line with the cognitive processes behind personality perception Funder

(2001).

APP can be beneficial for several technological domains, including the generation of

synthetic voices capable of eliciting desired social perceptions (see Reeves and Nass (1996)),

or the development of multimedia indexing approaches taking into account the way users

perceive people portrayed in data Pantic and Vinciarelli (2009). More generally, APP can

contribute to bridging both the social intelligence gap between people and machines and

the semantic gap between the features and the content that people perceive in the data.

Personality: Model and Data

This section presents the personality model employed in this work and describes the data

used in the experiments.

The “Big Five” Model

Personality is the latent construct accounting for “individuals’ characteristic patterns of

thought, emotion, and behavior together with the psychological mechanisms - hidden or

not - behind those patterns” Funder (2001). The Big Five (BF) personality model is the

most commonly applied and accepted personality model Wiggins (1996) and proposes a

personality representation based on five traits that have been shown to account for most

of the individual differences:

• Extraversion: Active, Assertive, etc.
• Agreeableness: Appreciative, Kind, etc.
• Conscientiousness: Efficient, Organized, etc.
• Neuroticism: Anxious, Self-pitying, etc.
• Openness: Artistic, Curious, etc.

The BF model represents personalities in terms of five scores (one for each of the

traits above) that can be obtained with appropriate assessment questionnaires. The scores
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measure how well the adjectives accompanying the traits described a given individual. This

work adopted the BFI-10 Rammstedt and John (2007), a short version (see Table B.1) of a

longer questionnaire known as the Big Five Inventory (BFI) Rammstedt and John (2007).

Each question in Table B.1 is associated to a Likert scale including five points ranging from

“Strongly disagree” to “Strongly agree” and mapped into the interval [−2, 2]. The scores

corresponding to each trait are obtained by simple numerical calculations performed over

the answers to the questionnaire (see Rammstedt and John (2007) for more details). The

main advantage of the BFI-10 is that it can be completed in less than a minute while still

providing reliable results Rammstedt and John (2007).

The Data The experiments of this study were carried out over a corpus of 640 10 sec-

onds long speech clips randomly extracted from the 96 news bulletins that Radio Suisse

Romande, the French speaking Swiss national broadcast service, has broadcast during

February 2005. There is one speaker per clip and the total number of unique speakers

is 322. The personality assessment pool included 11 judges that have listened to each

clip of the corpus and, immediately after listening, have filled the BFI-10 questionnaire.

The judges have never met one another and have worked independently without being co-

located (the assessment was performed via an online application). The judges have worked

no more than 60 minutes per day (split into two 30 minutes sessions) to avoid tiredness

effects. The clips have been presented to each judge in random order to cope with the re-

duction in attention observed towards the end of each session. The clips are in French and

the 11 judges have signed a document stating that they do not speak or understand such

language. This ensures that the content of the clips influences the personality assessment

process only to a minor extent.

At the end of the assessment process, each clip is assigned five scores corresponding to

the BFs. Each score is the average of the 11 scores assigned individually by the assessors.

The average scores for each trait were then converted into N ordinal categories so that they

represented a “degree” associated each personality trait. This was achieved by ordering the

samples according to the corresponding score and then by splitting the resulting ranking
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1 This person is reserved

2 This person is generally trusting

3 This person tends to be lazy

4 This person is relaxed, handles stress well

5 This person has few artistic interests

6 This person is outgoing, sociable

7 This person tends to find fault with others

8 This person does a thorough job

9 This person gets nervous easily

10 This person has an active imagination

Table B.1: The BFI-10 questionnaire used in the experiments (as proposed in Rammstedt and John (2007)).

into N equally sized groups.

The Approach

The proposed APP approach comprises three main steps: (i) extraction of short-term

speech features by means of the method presented in Chapter 2, (ii) estimation of long-

term statistical features, and (iii) mapping of those features into ordinal categories.



148
C

H
A

PT
ER

4.
EM

O
T

IO
N

A
L

SPEEC
H

D
R

IV
EN

RO
BO

T
IC

A
RC

H
IT

EC
T

U
R

E

N = 3 N = 4 N = 5 N = 6

ρ 0% 50% 80% 0% 50% 80% 0% 50% 80% 0% 50% 80%

Ext. 78.6% 84.2% 88.8% 76.1% 79.5% 81.2% 75.0% 77.3% 76.8% 74.9% 76.9% 81.4%

Agr. 65.8% 69.0% 74.7% 63.6% 67.8% 76.9% 64.6% 67.5% 70.5% 64.1% 67.0% 70.6%

Con. 70.8% 74.8% 76.4% 69.4% 73.9% 81.7% 68.9% 73.6% 74.8% 68.2% 71.3% 75.6%

Neu. 72.0% 75.7% 77.8% 70.4% 74.2% 76.2 % 69.9% 73.4% 73.4% 69.0% 71.3% 69.4%

Ope. 63.9% 70.1% 69.3% 61.3% 64.7% 62.4% 61.6% 66.0% 69.6% 61.3% 65.6% 66.1%

Table B.2: Pairwise ranking results. The table reports the accuracy in predicting, for each trait, the speaker that has been scored higher by the

assessors. The results were obtained for different numbers N of ordinal categories and different values ρ of rejection rate.
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Statistical Features Estimation

At the end of the short-term feature extraction process, each nucleus is represented by

a vector where each component corresponds to one of the features above. Statistics esti-

mated over the feature values extracted from each nucleus individually are then used to

represented a speech sample. In particular, the mean is computed for all features, the

standard deviation is computed for nuclei and syllable length, pitch, energy, spectral slope,

harmonicity, and spectral centroid, the entropy is estimated for nuclei and syllable length,

pitch, energy, spectral slope, spectral centroid, and glissando likelihood. Mean and band-

width of the first three formants are also extracted from each syllable nucleus The feature

set is completed by the minimum of the pitch and the maximum energy. The total number

of features is 35.

Ordinal Regression

Personality perception refers to the detection of phenotypic differences between individuals.

Hence, the last step of the approach consists in automatically ranking people according to

the personality traits attributed by human assessors. The most suitable method for such

a purpose is Ordinal Regression (OR) McCullagh (1980). In OR, samples xi are assigned

to ordinal labels yi belonging to the ordered set C = (1, 2, . . . , N). This work employs a

linear probabilistic approach to OR as in McCullagh (1980).

Experiments and Results

The goal of APP is to rank people according to the personality traits attributed to them by

human assessors. One way to evaluate the predictive power of an APP approach is to test

its ability to rank correctly all possible pairs of test samples. In order to do so, consider a

pair of test samples xi,xj such that the corresponding labels for a given personality trait

satisfy, say, yi > yj. The performance score is simply the average number of times that

the APP approach predicts a label for xi that is greater than the label predicted for xj
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over the entire test set (the probability of being correct by chance is 50%). Given the

probabilistic nature of the proposed APP approach, predicting the most likely ranking for

a pair of test samples xi and xj, with corresponding predictive probabilities p(hi|xi) and

p(hj|xj), becomes

arg max
(hi,hj)∈C×C

{p(hi|xi)p(hj|xj)} , (4.1)

with the constraint that hi 6= hj. In this application, the number of ordinal categories

ranges from 3 to 6, and so the solution to eq. 4.1 is found by enumerating all possible

rankings. Another advantage of taking a probabilistic approach, is that it is possible to

reject the percentage ρ of samples where the ordinal regression approach is less confident

about the prediction, as illustrated next.

In order to test the approach over the entire corpus while keeping a rigorous separation

between training and test set, the experiments were performed using a K-fold validation

procedure (K = 15) as follows. The corpus was split into K subsets of which K − 1

were used for training and one for testing. The folds were obtained randomly, but it was

ensured that the same person did not appear in both training and test set. Performance

were evaluated leaving one of the K folds out at each time and averaging the results

obtained.

The second is to consider all N -tuples of test samples such that each element belongs

to a different ordinal category (N is the number of ordinal categories), and to predict

automatically the ordinal category each sample of the N -tuple belongs to. In the former

case, the approach works correctly when it finds the sample that has actually been scored

higher (the probability of being correct by chance is 0.5). In the latter case, the approach

works correctly when each sample of the N -tuple has been assigned to its actual ordinal

category (the probability of being correct by chance is N !−1).

The first and simplest way of measuring the performance of the approach is to consider

all pairs of samples in the test set and to measure the fraction of times that the approach

ranks the two corresponding people correctly, i.e. the number of times that the person
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with a higher score along a given trait is assigned a higher ordinal category. In this case,

the probability of ranking correctly the samples is 50%.

The second way of measuring the performance is to measure the fraction of times that

the approach ranks correctly N samples belonging to N different categories. Given a N -

tuple of test samples (x1, . . . , xN), where the ordinal category of xk is k and all samples

belong to different categories, an Ordinal Regression approach finds the N -tuple of ordinal

categories H∗ = (h∗1, . . . , h∗N), where hi 6= hj for i 6= j, that satisfies the following equation:

H∗ = arg max
H∈H

N∏
k=1

πhk(xk) (4.2)

where H is the set of all possible N -tuples of ordinal categories where hi 6= hj for i 6= j.

When H∗ is such that h∗k is the actual category of xk for all k values, it means that the

approach has ranked correctly the samples of the test N -tuple. Therefore, the performance

of the approach can be measured by considering all testN -tuples where each sample belongs

to a different class and by considering the fraction of times that all N -tuple samples are

assigned to the correct ordinal category. The probability ranking correctly the samples of

the N -tuple is (N !)−1.

Results

Table B.2 reports the results obtained using models with N = 3, 4, 5 and 6 (and ρ =

0%, 50% and 80%.). The higher the number of ordinal categories N , the higher the reso-

lution at which it is possible to discriminate between people. The performance difference

with respect to chance is always statistically significant with p-value p < 5%. The results

suggest that the approach is robust with respect to the number of ordinal categories as no

major performance losses are observed when going from N = 3 to N = 6. The influence

of ρ depends on the particular trait, but the general trend is of an increase by roughly 5%

when going from no rejection to ρ = 50%, and by another 5% when further increasing ρ to

80%.
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According to the indications of the psychological literature, the prediction of Extraver-

sion and Conscientiousness achieves, on average, higher performance. The reason is that,

from a cognitive point of view, these are the two most accessible traits Funder (2001). In

contrast, the good performance on Neuroticism seems to be a peculiarity of the dataset

and it probably depends on the polarization of the assessments (many subjects tend to be

assigned to the extremes of the scale). From an acoustic point of view, the correlation of

every feature with every trait is significant with p < 5%. In this respect, the results of this

work confirm the psychological findings mentioned in the Section 4.4.
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N = 3 (p = 16.7%) N = 4 (p = 4.2%) N = 5 (p = 0.8%) N = 6 (p = 0.1%)

ρ 0% 50% 80% 0% 50% 80% 0% 50% 80% 0% 50% 80%

Ext. 50.3% 55.9% 65.7% 21.3% 26.5% 48.2% 8.8% 15.7% 14.7% 3.1% 6.3% 23.3%

Agr. 30.8% 32.1% 41.2% 10.4% 13.8% 25.1% 3.5% 5.0% 21.8% 0.8% 2.9% 12.0%

Con. 39.3% 45.2% 45.9% 15.8% 21.1% 36.6% 5.8% 10.3% 19.1% 1.9% 5.6% 7.8%

Neu. 38.7% 41.3% 41.6% 15.0% 16.1% 30.6% 5.4% 5.0% 28.6% 1.2% 2.4% 12.7%

Ope. 29.7% 31.8% 46.0% 9.6% 13.4% 21.8% 2.8% 3.2% 21.9% 0.6% 1.8% 11.7%

Table B.3: Sequence ranking results. The table reports the accuracy in ranking N -tuples including as many samples as the ordinal categories.

The results were obtained for different numbers N of ordinal categories and different values ρ of rejection rate. The value p is the chance

performance.
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Sequence Ranking

The experiments are similar to pairwise ranking, but in this case the goal is to rank correctly

N test samples, each belonging to a different ordinal category. Equation (4.1) can easily be

extended to the case of a N -tuple (h1, . . . , hN) ∈ CN , where hi 6= hj for i 6= j. Table B.3

reports the results for the same values of N and ρ used for pairwise ranking. In this case

as well, the difference with respect to chance performance is statistically significant for all

reported values . The performance is satisfactory only for high values of ρ and low values

of N . However, it must be noted that a sequence is considered wrong even if only one of

the elements is in the wrong order. The high performance in pairwise ranking suggests

that, in most cases, most of the elements of an N -tuple are still in the right order.

Conclusions

The key elements of the proposed approach are (i) the use of features extracted from

intonation and voice quality, (ii) the use of a probabilistic approach to map such features

into the personality space, and (iii) a thorough evaluation based on the largest database

of personality assessments from radio broadcasts available in the literature. These results,

published in Mohammadi et al. (2012), show that it is possible to automatically rank people

with different degrees of personality traits with an accuracy around 80%.
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A. (2011). Vowel formants analysis allows straightforward detection of high arousal

emotions. In Proc. of ICME, pages 4230–4235.

Vogt, T. and Andre, E. (2005). Comparing feature sets for acted and spontaneous speech

in view of automatic emotion recognition. In Proc. of ICME, pages 474–477.

Von Bekesy, G. (1960). Experiments in hearing. McGraw-Hill.

Wang, D. and Narayanan, S. (2005). Piecewise linear stylization of pitch via wavelet

analysis. In Proc. of the European Conference on Speech Communication and Technology,

pages 1–4.



176 BIBLIOGRAPHY

Watrous, R. L. (1993). Gradsim: a connectionist network simulator using gradient opti-

mization techniques. Technical report, Siemens Corporate Research Inc, Princeton, New

Jersey.

Wiggins, J., editor (1996). The Five-Factor Model of Personality. Guildfor Press.
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