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Abstract

Geophysical granular flows, such as snow avalanches and debris flows, represent a great hazard

to man and infrastructures. These natural phenomena are characterized by the rapid flow of a

granular solid phase, embedded in an ambient fluid. Since such events occur with little warn-

ing, in addition to investigating the triggering conditions, it is of crucial interest to predict their

propagation and run-out distances.

The main purpose of the present research is to better understand the flow dynamics of dry

granular flows, in the presence of no-slip bottom boundary conditions, and predict their propagation

by using a depth-averaged approach. In this case, a stratification of different flow regimes, such

as quasi-static and dense collisional, occurs and makes the utilization of the classical single layer

depth-averaged models insufficient, because of important uncertainties about the velocity and shear

stress distributions along the flow depth.

In the first part of the present work, an experimental-numerical study on dam-break flows of

dry granular material is reported. It has been found that a modification to the formula, proposed

in the Savage-Hutter model for calculating the earth-pressure coefficient, leads to an improved

agreement with experimental data, in presence of no-slip bottom conditions.

In the second part, an experimental study on steady state velocity profiles of dry granular flows

is reported. The granular material, used in this experimental research, was Ottawa sand (ASTM

C-778 20/30). The velocity profiles at the side walls and free surfaces have been obtained, through

granular PIV techniques. The measurements are in accordance with other experimental works on

different granular materials and suggest the occurrence of a rheological stratification along the flow

depth, in case of no-slip bottom condition.

In order to better describe such a complex flow dynamics, a two-layer depth-averaged model

has been proposed. The dynamics of the two layers, ideally corresponding to dense-collisional

and quasi-static regimes, have been considered independently. As well, mass exchanges between

the layers have been calculated through a physically based closure equation. The well-known

mathematical issue of the hyperbolicity loss in two-layer models has been carefully addressed. In

order to overcome it, a local modification of source terms of the original mathematical model has

been proposed. Such a treatment consists of introducing an extra resistance at the interface, if

necessary, to avoid the hyperbolicity loss. This approach has been found to be robust and yields

reasonable results, as long as the asymptotic steady state solution and boundary conditions fulfil the

hyperbolicity requirements of the original model. Through comparisons with experimental data,

the two-layer approach turns out to be very promising to describe the complex flow dynamics in

case of no-slip bottom boundary conditions, although a more detailed description of the basal shear

stress seems to be required.

In the third part of the present dissertation, the same two-layer approach has been used in order

to rewrite the mathematical model in a curvilinear coordinates system, attached to the interface

between the two layers. The model equations have been obtained, by using the same approach

proposed in Tai and Kuo (2008). In the model derivation, the physically negligible quantities are

identified in a more rational way than the previous model, by means of a scaling approximation.
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Chapter 1

Granular flows

Chapter Summary

In this chapter an introduction to geophysical granular flows is presented. The importance

to better understand the propagation stages of such phenomena from the initiation to deposit is

highlighted.

Particular attention is given to the mechanics that underlies such events, by focusing on the rel-

atively simple case of dry granular flows. The main features observed in dry granular flows (e.g.

the different flow regimes, force networks) are described.

Within the context of a continuum mechanics approach to granular flows, the most relevant find-

ings in Literature are introduced and discussed. The still open problem of defining a universal

constitutive law, capable to describe the rheology at the different flow regimes observed in dry

granular flows and, especially, at the dense collisional transition regime, is highlighted.

Moreover, a review of depth-averaged models applied to dry granular flows, similar to the Shallow

Water equations, is presented. Strengths and drawbacks of the existing background works are

shown so that it is clear the direction taken by the present research.

The main goal of this chapter is to introduce the subject of the present dissertation. At the

end of the chapter, a brief outline of the present dissertation is reported.

1
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1.1 Geophysical grain flows

Geophysical grain flows, such as debris flows, snow avalanches, rock avalanches or pyroclastic

flows, represent a great hazard to man and infrastructures. Although these events may seem very

different from each other, they share many similarities. In fact, these natural phenomena are

characterized by the rapid flow of a granular solid phase, embedded in an ambient fluid, which

is usually water or air. Differently from the free surface flows typically observed in the context

of river hydraulics, the flowing is gravity-driven, namely it is triggered and fed by the forces of

gravity more than pressure gradients. By way of illustration, in Figs. 1.1 and 1.2 some pictures of

avalanches and debris flows are shown.

Such events occur with little notice, typically exhibit high flow velocities, that can reach tens

meters per second (e.g. Iverson, 1997; Ancey, 2001b), and are notorious for being able to travel

unexpected long distances. The damage potential is usually high: by way of example, the volume

involved in a large debris flow can reach 109 m3 and can release an enormous amount of potential

energy, up to 106 J (Iverson, 1997). In Italy every year many snow avalanches and debris flows

endanger human lives and damage structures located in mountain areas. It is worth to remind the

catastrophic pyroclastic mudslides, occurred on 4th-6th May 1998 in the Apennine area near Vesu-

vius volcano (Naples, Southern Italy), that caused the death of more than 150 people, particularly

in the town of Sarno. Furthermore, the risk of damage from such events is greatly increased over

the last decades due to both an increased soil use and construction in high altitude and mountain

areas.

On the one hand, it is very important to study the mechanisms leading to initiation or trig-

gering. The study of the initiation stages of geophysical grain flows typically involves disciplines

such as glaciology, hydrology and soil-mechanics. On the other hand, a proper description of the

propagation stages, from initiation to deposit, is of great importance. In fact, a detailed knowl-

edge of these phases would be very useful for a more reliable definition of risk areas, as well as

for proper designing protection structures. The pressing need to better understand the dynamics

of granular flows has recently caught the interest of many researchers from different fields (e.g.

applied mathematics, fluid-dynamics, hydraulics and soil-mechanics).

The first step towards a better description of the propagation stage of geophysical granular

flows would be to study the mechanics of the granular matter from a theoretical viewpoint. An

in-depth study on the motion mechanisms of dry granular materials is also important in order to

better design devices, used for transportation of granular material in industrial contexts.

Basically, two approaches could be chosen. The first one consists in describing the granular

matter, as it is, namely, a set of discrete particles with some physical properties, that interact

with each other and with physical boundaries according to the laws of classical dynamics. This

approach has been followed e.g. by da Cruz et al. (2005) and, usually, makes use of discrete element

numerical simulations, often referred to as molecular dynamic simulations (e.g Goldhirsch, 2003).

The second approach is the classical fluid-dynamic one. This approach requires to assume that

the flowing granular matter can be treated as a continuous medium. This assumption, that could

seem rather crude at first sight, is supported by the fact that grain flows, observed in nature, often

exhibit a behaviour similar to viscous fluids (Ancey, 2001b). The hypothesis of continuous medium

is acceptable as long as the flow domain is big enough with respect to the mean particle size. It is

required for a proper application of the whole set of tools of continuum dynamics. Moreover, by
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assuming that the processes under study are isothermal, the motion of grain flows can be described

only by the mass and momentum balance equations, together with suitable boundary conditions

and a proper constitutive law. This approach is often called hydrodynamic because it has been

commonly adopted in an hydraulic engineering context in order to study the water dynamics.

Figure 1.1: (left) Snow avalanche, source: R. Armstrong, NSIDC; (right) deposits of a channelized

snow avalanche, source: Geological Survey of Canada.

For further information on snow avalanches the Reader is referred to monographic studies about

this topic, e.g. Ancey (2001b), Salm (2004), or the comprehensive textbook Pudasaini and Hutter

(2007).

For more information about debris flows, the Reader is referred e.g. to Iverson (1997) or Iverson

and Vallance (2001) or to the monograph in Italian by Seminara and Tubino (1993).

Comprehensive reviews about the mechanics of granular flows are for example Savage (1984)

and Ancey (2007). Further information about the gas-like regime could be found e.g. in reviews

papers Campbell (1990) or Goldhirsch (2003).

1.2 Hydrodynamic approach

Firstly, by assuming that the grain matter can be described by an equivalent continuous fluid,

every intensive physical property f , such as the flow velocity, is mathematically defined at every

point x of the spatial domain and represents the value of the following spatial mean over a reference
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Figure 1.2: (left) Debris flow traces (Sarno, Southern Italy, May 1998); (right) rock avalanche,

source: Geological Survey of Canada.

volume Ω that goes toward zero,

f (x) = lim
Ω→0

1

Ω

∫
Ω

f dV. (1.1)

It should be pointed out that, from a physical viewpoint, the integral in Eq. (1.1) should be

substituted by a summation over the discrete number of particles inside the reference volume,

owing to the discrete character of granular matter.

Moreover, it should be kept in mind that the quantity expressed by Eq. (1.1) has a physical meaning

only if the reference volume Ω is sufficiently bigger than the mean grain particle size. A “point-

wise” measurement of an intensive physical quantity should be referred to the minimum volume on

which the measurement is physically meaningful. This concept is reminiscent of the Representative

Elementary Volume (REV), widely used in groundwater hydraulics and environmental engineering.

Generally speaking, a constitutive law is a relation between the main physical quantities, in-

volved in a given physical phenomenon. In the framework of hydrodynamics, it is also referred to

as rheological law and consists of a relation between the shear rate tensor Γ̇ and the stress tensor

T .

By way of example, in plane shear of Newtonian fluids (e.g. water) the rheological law is

represented by the well-known Newton’s law, that postulates the existence of a constant ratio,

called dynamic viscosity, between the shear stress τ and the shear rate γ̇.

Unfortunately, in grain flows things are much more complicated, because different momentum

exchange mechanisms are involved and often coexist. The present dissertation is focused on dry

granular flows, in which the ambient fluid is air. Therefore, this particular case will be discussed

into detail hereafter. A detailed study of the complex interplay between the granular matrix and

a dense ambient fluid (e.g. clear or muddy water), which is present in various granular flows such

as debris flows or mud-flows, is beyond the scope of the present dissertation.

In the context of dry granular flows, the dynamic interactions between air and grain particles

can be neglected, in the case of not too large grain velocities. Under these assumptions, the

dynamics is uniquely governed by the momentum exchanges between the grains. The mechanisms

of momentum exchange are mainly of two types: frictional and collisional. The first one occurs

as a result of the relative sliding of grains, where the contacts between them are continuous over
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time. The second one, conversely, occurs as a result of collisions between grains, which last for

a short time compared to the time when the grains are free to move. These mechanisms are

energy dissipative. During the grain sliding, part of the mechanic energy transforms into heat due

to friction between grains. In collisions, the energy loss is mainly due to non-elasticity of grain

collisions, owing to attrition, plastic deformation, micro-crack formations (Goldhirsch, 2003).

The relative importance of friction and collision mechanisms is related to another important

quantity, the volume fraction φ. It is useful to give a definition of this physical quantity here

because it will be widely used over the course of this dissertation. Given a reference volume inside

the granular flow (big enough to be representative), the volume fraction φ is the ratio between the

volume effectively occupied by the grain matter and the total reference volume. It is defined as

follows,

φ =
Vg
Vtot

. (1.2)

By definition, φ is always between 0 and 1. For spherical particles with constant size, it can be

shown that its maximum value is approximately 0.74. For natural grain matter at rest, typical

values of φ are hardly found to be higher than 0.65 and mainly depend on the sedimentation history

(e.g. Lambe and Whitman, 1991). Similarly to the stress tensor T , also the volume fraction, φ,

depends on the shear rate γ̇, in the case where φ is free to vary. In that case, such as in free-surface

granular flows, an increase of γ̇ typically produces a decrease of φ. This phenomenon is also known

as Reynolds’ dilatancy (Reynolds, 1885) and is mainly due to the fact that, owing to the shearing,

the interlocking grains need to expand in volume in order to move around one another.

In the framework of Rheometry, laboratory shearing tests with granular material can be ba-

sically of two types: pressure-controlled or volume-controlled shearing tests (e.g. Forterre and

Pouliquen, 2008). In the first kind of tests dilatancy is observed, because the volume fraction is

free to adjust, analogously to what happen in free surface flows. Conversely, in the second kind

of tests, the sample volume is kept constant during the shearing procedure and, thus, also the

volume fraction is kept constant. In this case the normal pressures inside the shearing sample

must increase in order to counterbalance the tendency of the grain material to expand.

The 1954 suspension experiment of Bagnold

A very first pioneering study on the rheology of granular mixtures was brought by Bagnold

(1954). His experiments involved different neutrally buoyant granular mixtures, composed of

spherical grains, made of paraffin wax and lead stearate, embedded in a Newtonian fluid of varying

viscosity (water and a glycerine-water-alcohol mixture). Such mixtures were sheared in the annular

space between two concentric drums. Although this work did not involve dry granular mixtures,

we believe it is useful to report it here, because many of his findings are valid also in the context

of dry granular flows and they represent a milestone for all researchers on the rheology of granular

matter.

The experimental apparatus consisted of two concentric drums with diameter of 4.62 cm and

5.7 cm. The height of these cylinders was 5 cm. After placing the mixture in the space between

the two cylinders, the outer cylinder was being rotated at a constant speed between 15 and 500

revolutions per minute, while the inside cylinder was kept at rest thanks to a spring, that allowed

the measurement of torque Mt. By knowing the geometry of the inner cylinder and Mt, it was
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possible to calculate the shear stress τ exerted by the mixture on the side surface of the inner

cylinder. The side surface of the inner drum was made of a thin rubber sheet, that was able

to deform owing to the normal pressure, exerted by the mixture. The volume inside the inner

cylinder was permanently filled with water. Hence, by measuring the pressure of this fluid through

a manometer, at the equilibrium it was possible also to estimate the normal pressure p exerted by

the mixture on the side wall of the inner cylinder. The experiments were performed at different

shear rates γ̇, by keeping the volume fraction φ fixed.

Firstly, almost at every different shear rates, Bagnold observed a radial dispersive pressure.

Moreover, interestingly such a dispersive pressure p was found to be roughly proportional to the

shear stress τ .

Bagnold identified two different flow regimes. The first one, occurring at lower values of the

shear rate, was called macro-viscous regime. In this regime the shear stress τ and the dispersive

pressure p were found to depend linearly on γ̇

τ ∝ λ3/2µγ̇

p ∝ λ3/2µγ̇

where λ is the linear grain concentration, namely the ratio between the grain diameter d and the

mean distance between grains. The linear concentration is related to the solid volume fraction by

λ =
[
(φ0/φ)

1/3 − 1
]−1

in which φ0 is the maximum possible static volume fraction.

In this regime the main mechanism of momentum exchanges inside the mixture is due to the

viscosity of the ambient fluid. This mechanism obviously does not take place in dry granular

flows because of the negligible air viscosity. Moreover, it should be noted that these experiments

have been performed under no-gravity like conditions, since the mixture was neutrally buoyant:

therefore friction effects do not take place. Conversely, in free surface dry granular flows, because

of gravity, the effect of friction is important and it strongly modifies the stress tensor T .

The second regime, called grain-inertia regime, occurs at high values of γ̇ and exhibits a γ̇-

quadratic dependence of the shear stress and dispersive pressure

τ ∝ ρd2λ2γ̇2

p ∝ ρd2λ2γ̇2

where ρ is the grain density, which is equal to the ambient fluid density since the mixture is

neutrally buoyant. In this case, the main mechanism of momentum exchange seems to be due to

grain collisions. Although these results have been obtained for neutrally buoyant suspensions, this

behaviour can be extended also to fast dry granular flows. In particular, these relations are valid

in the collisional gas-like regime, that will be defined in detail further.

Bagnold also introduced a dimensionless number, named Bagnold Number after him , that is

calculated as the ratio of collisional and viscous forces and can be written as follows,

N =
ρd2λ2γ̇2

µλ3/2γ̇
=
ρd2λ1/2γ̇

µ
.
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He found that the macro-viscous regime occurs approximately for N < 40, while the grain-inertia

regime occurs for N > 450.

Although the Bagnold’s findings have been partly criticized recently because of some possible

issues of his experimental apparatus (Hunt et al., 2002), his significant contribution consists in

having identified a link between shear stress and normal stresses in granular matter.

Nonetheless, it seems to be useful to remind that the experiments, performed by Bagnold, were

at controlled volume fraction. What he called dispersive normal stresses only occurs when the

volume fraction is kept constant. This phenomenon takes place since the granular material cannot

decrease its volume fraction during the shearing (i.e. dilatancy). Conversely, in a free surface flow,

in which there is no constraint, the volume fraction tends to decrease as the shear rate increases,

owing to dilatancy.

1.3 Flow regimes

In dry granular flows, different motion regimes with different behaviours have been observed

experimentally (e.g. Midi, 2004).

The shift from one to another regime is similar to a phase transition, because the granular ma-

terial suddenly goes from a flowing state to another one with very different properties (e.g. Savage,

1984; Goldhirsch, 2003; Ancey, 2007). The main flow regimes are often referred to with terms that

recall phase transitions: solid-like, liquid-like and gas-like regimes. Nonetheless, differently from

actual phase transitions the molecular temperature does not play any role. In this regard, another

kind of temperature, usually called granular temperature (Savage, 1984; Goldhirsch, 2003), can be

defined as the average over a reference volume of the square of the fluctuating velocities of grain

particles

Tg =
〈
v′2
〉
. (1.3)

The granular temperature Tg increases when the volume fraction decreases and is responsible for

grain collisions.

In the case of small deformations and consequently high volume fraction, inter-granular contacts

are long-lasting and momentum exchanges are mainly due to friction. Such a solid-like regime, often

called quasi-static regime, can be roughly described by the classic models of the soil mechanics.

Yet, the most of soil mechanic studies focus only on the failure mechanisms, i.e. the initiation of

the motion, without being able to describe precisely what happens after the failure during long

deformations.

At the opposite end, there is the gas-like regime, also called dilute-collisional regime, in which the

particles interact with each other by means of short-lasting collisions, which often are binary and

are due to the low volume fraction. In order to describe the gas-like regime, some kinetic theories,

similar to the molecular gas theory, have been developed (for more details see e.g. Savage, 1984;

Campbell, 1990; Goldhirsch, 2003). These theories, in addition to mass and momentum equations,

need to consider also the kinetic energy balance equation. Moreover, the granular temperature,

defined in Eq. (1.3), is used as state variable (e.g. Savage, 1984).

Between the aforementioned regimes, lies a transition regime, often called dense-collisional

(to distinguish it from the dilute-collisional gas-like regime) or called frictional-collsional (Ancey,

2007), in which the behaviour of granular matter is fluid-like (Forterre and Pouliquen, 2008).
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The volume fraction is smaller than the solid-like regime but it is large enough to allow that the

momentum exchanges are due both to collisions and friction mechanisms.

Microscopic scale properties

A quantity often used to evaluate in a simple way the non-elasticity of grain collisions is the

coefficient of restitution, e. It is a dimensionless quantity that can be defined as the ratio of the

rebound velocity to initial velocity in a head-on binary collision and varies from 1 for perfectly

elastic grains to 0 for perfectly inelastic grains. The coefficient of restitution e can be regarded as a

microscopic scale property of the grain matter as it mainly depends on the material with which the

grain particles are made. Molecular dynamic numerical simulations suggest that the restitution

coefficient e does not influence very much the fluid dynamics in dense-collisional regime. Yet, e

seems to be responsible for the transition from the liquid-like regime (i.e. dense-collisional) to the

gas-like regime. For every given grain material, it could be found a critical value of volume fraction

φc above which the gas-like regime is observed. The bigger is e, the smaller is φc and, thus, the

wider is the domain where the gas-like regime is observed at the expense of the liquid-like regime

(Forterre and Pouliquen, 2008).

Beside to e, another microscopic scale property can be defined: the inter-particle friction coef-

ficient (e.g. Midi, 2004). It is a dimensionless quantity that accounts for the friction between the

grain surfaces and, thus, only depend on the roughness of the grain surface.

Some experimental studies and molecular dynamic numerical simulations have shown that

the influence of this property on the macro-scale flow dynamics is very limited (Midi, 2004). In

particular, the inter-particle friction coefficient has almost no influence on the flow dynamics, as

long as it is sufficiently far from zero, which is very common in real geophysical flows, that involve

natural grain material. The reason of this apparently strange phenomenon is due to the fact that

the macroscopic friction between grains is mainly due to the shape and size of grains, much more

than inter-particle friction coefficient: the relative sliding of two layers of grain causes the grains

of the upper layer to “climb” over the grains of the lower layer. Therefore, typically the bigger is

the mean particle size, the bigger is the shearing resistance.

These findings are very interesting because suggest that the microscopic properties weakly

influence the flow dynamics. As it will be clear further on, the properties that mostly influence

the flow dynamics are at the scale of the grain size d (Midi, 2004).

Grain-scale properties

Differently from the microscopic properties, it has been found that the properties at the scale

of grain size (d) are much more important in the flow dynamics (Midi, 2004).

The dimensional analysis permits to define some constraints to the formulation of constitutive

law of dry granular flows. In the simple case of plane deformation of rigid grains of constant size

and without ambient fluid, the rheological parameters must depend on two dimensionless numbers.

The first one is the macroscopic friction coefficient ϕ that accounts for the momentum ex-

changes, due to the Coulomb type momentum exchange between grain particles. As already stated

in the previous section, this quantity mainly depends on the size and shape of grain particles.

Under the plane shear condition, the Coulomb friction law relates the shear stress and the normal
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stress by mean of the following relation

τ = σ tanϕ. (1.4)

The second dimensionless parameter is the so-called Savage Number (Savage, 1984), also known

as Coulomb Number (Ancey et al., 1999). More recently, some scientific works often refer to the

square root of the Savage number, renamed inertial number (e.g. da Cruz et al., 2005; Forterre

and Pouliquen, 2008) and written as follows

I =
γ̇d√
P/ρs

(1.5)

in which γ̇ is the shear rate, d the grain diameter, P the normal pressure exerted on the grain

material and ρs the density of the grain. This dimensionless number can be regarded as the ratio

between two time scales. The first one, d/
√
P/ρs, is a microscopic time scale and represents the

time scale of grain rearrangements. It is the typical time it takes for a grain particle in order to

fall into an hole of size d under the effect of the confining pressure P . Conversely, the second time

scale, 1/γ̇, is of macroscopic type and represents the time scale of the mean deformation of the

granular pile (e.g. Pouliquen, 2009).

In the quasi-static solid-like regime, I is very small because the macroscopic time scale of

deformations is small compared with the microscopic type scale of grain rearrangements. On the

contrary, in the dilute collisional gas-like regime, I exhibits large values because the macroscopic

deformations occur faster than grain rearrangements, owing to grain collisions. Because of this

connection with flow regimes, I can be also regarded as a measure of the ratio between the collision

and friction effects on the momentum exchange.

The dense-collisional regime

As already stated in the previous sections, in the dense-collisional regime, friction mechanisms

cannot be neglected as an effect of relatively high volume fraction. A rheological law is demanded

also for this regime, but, to date, none of the proposed approaches is universally accepted. The

main issue is the need to incorporate in a single law friction and inertial-collision effects.

One of the first rheological laws for describing the dense-collisional regime has been proposed

by Savage (1979). The one-dimensional form of this approach, also reported by Ancey (2007), can

be written as

τ = σ tanϕ+ µ (T ) γ̇ (1.6)

where the first term represents the friction contribution, which is assumed of Coulomb type, while

the second term stands for the collisional contribution and it is of viscous type with the viscosity

µ depending on the granular temperature.

Recently, Midi (2004) and Jop et al. (2005) proposed a constitutive law for describing dense

granular flows (i.e. liquid-like regime), that is based on a Coulomb friction law where the friction

coefficient depends on the inertial number. The one-dimensional form of this rheological law can

be written as follows

τ = σµ (I) . (1.7)
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In Jop et al. (2005) and Forterre and Pouliquen (2008) the following relations have been found

from experimental data fitting.

µ(I) = µmin +
µmax − µmin
I0/I − 1

, φ(I) = φmax + (φmin − φmax) I

where µmin is the friction coefficient at the beginning of the motion (i.e. at I = 0+), while µmax

is the maximum friction coefficient at high values of shear rates, namely when I → ∞. The

dependence of φ has been found to be almost linear with I and therefore increasing with distance

from the free surface. A tensorial generalization of the constitutive equation (1.7) is given in

Jop et al. (2006) and numerical simulations were compared successfully with experimental data,

obtained in laboratory heap-flow geometrical configuration (e.g. Midi, 2004).

Although this model is very attractive because of its inner simplicity, it is not capable to describe

some important features of the flow, such as the transition between the solid-like regime and dense-

collisional regime or the hysteresis of the friction coefficient, observed experimentally between the

initiation and stopping stages of flows.

Another approach is that one proposed by Josserand et al. (2004) that, differently form (Jop

et al., 2005), introduce a rheological law where the shear stress depends on the volume fraction φ

instead of the inertial number I,

τ = σµ (φ) + ρd2µT (φ) γ̇2. (1.8)

where d is the grain size and ρ is the bulk density.

All of these aforementioned approaches typically yield results in agreement with experimental

observations only for some particular flow conditions. Yet, they cannot capture all the features

observed in different flow conditions and with different granular materials.

The formulation of a unified rheology to describe the dense collisional regime is still an open

problem and it is a topic of great interest for physicists and engineers. Furthermore, a universal

constitutive law, that would be capable to describe properly the grain motion at different flow

regimes and also the transition from one regime to another, is still lacking.

The existence of a local rheology

Even before looking for an optimal rheology, another open problem that should be addressed

concerns the existence of a local rheology, namely the existence of a relationship between the local

stress tensor and local shear rate tensor. In fact, in dense-collisional regime and also in the solid-

like regime the hypothesis of a local rheology is strongly undermined by the occurrence of particle

networks. Such clusters or networks of particles with enduring contact are able to transmit and

diffuse stresses and so they are often referred to as force networks.

It is understood that such networks influence the stress tensor by means of non-local effects

(e.g. Pouliquen and Chevoir, 2002; Pouliquen, 2009). In this regard, in addition to the grain scale,

another intermediate geometric scale, sometimes called mesoscopic scale (e.g. Goldhirsch, 2003),

should be taken into account in order to describe the flow dynamics. Roughly speaking, such an

intermediate scale should have the length of the mean force chain.

Nevertheless, it is not yet clear to what extent such non-local effects modify the local stresses and

whether a local rheology can still be used as a working hypothesis or as a practical approximation

for describing these phenomena in an engineering context.
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Rheological stratification

Some experimental works have shown that a rheological stratification often occurs in free-

surface dry granular flows (Drake, 1990), namely there is a coexistence of two (or even three)

flow regimes in the same flow cross section. Such phenomenon takes place, mainly, in case of a

no-slip boundary condition at the bottom surface. In fact, because of the no-slip bottom boundary

condition, a lower domain in solid-like regime exists, where the granular material is subject to a

slowly creeping flow, as observed experimentally by Komatsu et al. (2001).

Conversely, in the upper part of the flow, a liquid-like dense-collisional flow develops up to the

free surface. This kind of flows is usually referred to as surface flows. This geometrical configuration

in a laboratory context can be found in rough bed chutes and heap-flows as well as in rotating

drums (Midi, 2004).

In case of high flow velocities, an additional gas-like layer develops up to the liquid-like layer.

It is observed in Nature in the so-called mixed-motion snow avalanches that exhibit a lower dense

flowing layer and an upper air-borne low density layer (e.g. Ancey, 2001b). The reason of such a

rheological stratification is due to bottom boundary condition that imposes null shear rate. Such

a kinematic boundary condition causes the increase of the volume fraction φ along the flow depth,

from the free surface towards the bottom surface, owing to the increased confining normal pressure.

In fact, the inertial number I that accounts for the relative effect of collisions and friction, decreases

with the depth from the free surface because the confining pressure increases and the shear rate γ̇

decreases owing to the basal boundary condition.

In Fig. 1.3 an explanatory picture, describing the stratification of flow regimes in surface flows

is reported (Forterre and Pouliquen, 2008). A similar stratification has also been found in granular-

liquid mixtures by Armanini et al. (2005, 2009), although the viscous effects due to the ambient

fluid render much more complex the flow dynamics.

As well as the transition between the dense-collisional to dilute-collisional regime seems to

be governed by a dimensionless parameter that is the restitution coefficient e, analogously also

the transition between the quasi-static solid-like and dense-collisional regime is expected to be

controlled by a dimensionless number that is likely to be the inertial number. Nevertheless, at

present, the mechanisms that cause the transition from the solid-like to the dense-collisional regime

are not completely understood.

1.4 Depth-Averaged models

Despite the big lack of knowledge about the dynamics of granular flows and still open problems

about the constitutive law, in recent years many efforts have been made to solve practical technical

problems related to geophysical granular flows. The main goals of such engineering approaches are

to better define the risk areas due to avalanches and debris flows and to properly design protection

infrastructures.

Most of these approaches are based on depth-averaged models. These models are obtained by

integrating along the flow depth the mass and momentum balance equations together with proper

boundary conditions and simplifying assumptions like the well-known Long Wave Approximation.

As regards the one-dimensional case, the Long Wave Approximation consists in assuming that the

characteristic length, related to the avalanche spreading in the flow direction x is much bigger
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Figure 1.3: Rheological stratification (Forterre and Pouliquen, 2008).

than the characteristic length H along the normal to bed direction z. Such an assumption leads

to shallow water type models that in their one-dimensional form are similar to the well-known De

Saint Venant equations. The final equations typically consist of a partial differential equations

(PDE) system of hyperbolic type. With this approach, the very complex rheology that influences

the flow dynamics of granular flows, is enormously simplified by being incorporated into the basal

shear stress and into the Boussinesq coefficient.

One of the earliest and most famous models with a depth-averaged approach in the context of

the avalanches of dry material is the Savage Hutter model, proposed by Savage and Hutter (1989).

Its original formulation consists of a hyperbolic system of two partial differential equations that

describes the motion of a granular pile along an inclined plane{
∂th+ ∂x(hu) = 0,

∂t(hu) + ∂x(K (ϕ, δ) gz/2 h2 + β hu2) = gxh− gzh tan δ sgn (u) (1.9)

where u is the depth-averaged velocity, h is the flow depth, gx = g sinα and gz = g cosα represent

the x- and z-component of the gravity acceleration, respectively, where α is the basal inclination

angle, K is an earth-pressure coefficient, relating the normal pressure exerted on a surface normal

to the flow direction with that exerted on a surface parallel to the basal surface, δ and ϕ are the

basal and internal friction angles, respectively. The parameter β is the Boussinesq coefficient,

whose value is determined by the velocity distribution along the flow thickness. In SH theory a

uniform velocity distribution is assumed, i.e. β = 1. This model was afterwards generalized to

more complex geometries (Hutter and Koch, 1991; Greve and Hutter, 1993; Greve et al., 1994;

Gray et al., 1999). It is based on the assumption that the constitutive law at the basal surface of

the flowing material is of Coulomb-type, i.e.

τ |b = σz tan δ (1.10)

where σ represents the normal pressure at the basal surface and δ is the angle of friction between

the granular material and the basal surface. The strong hypothesis of constant friction angles, ϕ

and δ, is based on some experimental observations (e.g. Hungr and Morgenstern, 1984).
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The model incorporates the anisotropy of the granular material, by using the earth pressure

coefficient K that allows to write the normal stress exerted along the cross section surface σx as

function of the normal stress exerted along the basal surface σz. In its original formulation, K is

a two-value step function depending on the internal friction angle ϕ, the basal friction angle δ and

the spatial derivative of the flow velocity u. A more detailed description of this formula can be

found in Chapter 2 of the present dissertation.

The numerical integration of equations of SH model presents some difficulties because of the

discontinuous behaviour of the earth pressure coefficient K. In order to overcome these numerical

issues, a regularized version of the earth pressure coefficient has been proposed by Tai and Gray

(1998). The numerical techniques adopted most successfully for solving numerically the SH model

are the NOC schemes (e.g. Tai et al., 2002) or the finite volume schemes with approximate Riemann

solvers HLL or HLLC (Vollmöller, 2004).

The main strength of the SH model relies on its very simple formulation: the model only has

two parameters, that are the friction angles ϕ and δ. Those parameters can ideally be measured

independently because they have a precise physical meaning. However, in real case situations,

e.g. in order to predict snow avalanches run outs, the friction angles often need to be calibrated

by means of a back analysis on previous data (Ancey, 2001b). Moreover, the model is scale

independent. It permits to extend the validity of the model to real scale events, just by comparing

its results with laboratory experiments. Numerous laboratory experiments showed that the SH

model is capable to predict the propagation of granular avalanche in presence of steep slopes and

smooth basal surfaces (Hutter et al., 2005). The same model has also been used with some success

to describe the motion of solid phase in two-phase type models designed for studying debris flows

(Iverson, 1997; Denlinger and Iverson, 2001).

Nonetheless, the SH model exhibits some limitations. Firstly, according to the rheological

assumption of Coulomb type basal friction, the steady state flow is expected to occur only whenever

the slope of the basal surface is equal to the basal friction angle δ. This is in contrast with some

experimental observations (Ancey, 2001a; Pouliquen, 1999) that showed the existence of steady

state motion for a rather large range of bottom inclination angles (of order of 5◦ -10◦).

In addition, some experimental studies showed (e.g. Pouliquen and Forterre, 2002) that in cases

of rough bed surfaces, the SH model seems to be less suitable to properly describe the avalanche

motion. Probably, neither the assumption of a pure Coulomb-type basal shear stress nor the

assumption of a constant velocity distribution inside the flowing pile (i.e. Boussinesq coefficient

set equal to 1) are acceptable in this situation.

1.5 Outline of the dissertation

In the previous section we have provided a brief overview on the existing depth-averaged models,

with particular attention to the Savage-Hutter model (Savage and Hutter, 1989).

The Savage-Hutter model, that exhibits a basal shear stress independent from the shear rate,

could be considered a zero-order model, because the rheology of flowing material is actually not

specified. In fact, the assumed Coulomb law does not impose any condition to the shear rate

γ̇. Its main strength is the possibility to measure the two parameters by independent physical

measurements. Nevertheless, in the case of no-slip basal boundary conditions, it has been observed
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that such a simple Coulombian resistance is insufficient to predict with good accuracy the flow

motion.

In that case, the observed stratification of quasi-static and dense-collisional regimes makes

difficult a depth-averaged approach. A reliable model should be capable to predict the extent of

the dense-collisional and quasi-static domains. Moreover, a more strong shear rate dependence of

the shear stress is expected in the dense collisional regime, differently from the quasi-static regime.

For this reason also the velocity profile in these different regimes is expected to be very different.

At this moment many questions arise: what is the extension of the dense-collisional flowing

layer? Is the hypothesis of hydrostatic distribution of normal pressure acceptable in the whole

physical domain? What is the influence of network forces in quasi-static and dense-collisional

regions?

Moreover, particular attention should be paid to the choice of the earth-pressure coefficient

that appears in the momentum equation of the SH model and serves to relate parallel and normal

to bed stresses.

From this rather complex picture about the dynamics of dry granular flows, it emerges that

a further improvement of depth-averaged models is hoped for better describing the propagation

stages of dry granular flows in case of no-slip basal boundary condition. In this case, the hypothesis

of a unique rheology for the flowing layer seems to be in contrast with the stratification of flow

regimes observed experimentally in heap flows and rotating drum geometries.

A partial answer to these open questions could be given by a new model, capable to describe

such a rheological stratification and the effective velocity distribution along the flow depth. After

some experimental investigations on dry granular flows in transient and steady state, in the present

dissertation we propose a two-layer depth-averaged approach with the aim of overcoming these

issues.

In particular, the present dissertation focuses on dry granular flows with no-slip bottom bound-

ary condition and it is aimed to partly answer some of these questions.

In Chapter 2, the reliability of Savage-Hutter type depth-averaged models in dam-break prob-

lems is addressed. Smooth and rough bed boundary conditions have been separately investigated.

Particular attention is given to the optimal choice of the earth-pressure coefficient to be used at

the early stages of dam-break flows.

In Chapter 3, an experimental research that makes use of Particle Image Velocimetry (PIV)

applied to granular flows is presented. The main goal is to obtain information about the velocity

profiles at the side walls of the channel, in order to identify the extension of the solid-like and

dense-collisional domain in case of no-slip boundary condition.

In Chapter 4, a depth-averaged two-layer approach is proposed in order to better describe the

transition from the solid-like regime to the dense-collisional regime. The main mathematical and

numerical problems related to this approach are addressed and discussed.

In Chapter 5, comparisons between the proposed numerical model and experimental data are

reported and discussed.

In Chapter 6, a two-layer depth-averaged model, written in curvilinear coordinates, is proposed.

In this Chapter, the derivation of this mathematical model and its main features are presented

and discussed.

In Chapter 7, the main findings of this dissertation are summarized and discussed. As well,



CHAPTER 1. GRANULAR FLOWS 15

perspectives and further developments of the present research are highlighted.
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Chapter 2

Dam-break flows of dry granular

material

Chapter Summary

In this Chapter, an experimental-numerical study on dam-break flows of dry granular materials

is reported and discussed.

The experimental activity has been performed at the LIDAM (Laboratory of Environmental

and Maritime Hydraulics of the University of Salerno, Italy), under the supervision of Prof. Ing.

Maria Nicolina Papa.

The main purpose of the present research is to better understand to what extent depth-averaged

models, like the Savage-Hutter model, are capable to describe dry granular avalanches in presence of

different bottom boundary conditions. Smooth and rough bed boundary conditions are separately

analysed.

Moreover, an important issue is the determination of the earth-pressure coefficient K in Savage-

Hutter type models, at the early stages of dam-break waves. In this time window, the main physical

quantities, such as flow velocity and stresses, dramatically vary along the flow direction and also

the normal to bed component of flow velocity is not negligible. Hence, the hydrostatic pressure

assumption is not fulfilled at the flow initiation. However, models with hydrostatic pressure as-

sumption are often employed beyond their formal limits in an engineering context.

In this regard, we tried to shed light on the following question: what is the optimal choice

for the pressure coefficient in depth-averaged Savage-Hutter type models, to be used at the early

stages of a dam-break problem?

This problem has already been addressed by Hungr (2008) in a Lagrangian numerical context

(DAN model), and a correction of the formula proposed by Savage and Hutter, depending on

the local free surface slope has been proposed. In this work we propose a new regularization

formula that makes the earth-pressure coefficient K, at the early stages of dam-break flow, vary

between a minimum value, which is calculated by means of the Rankine formula, and a maximum

value, calculated by means of the original Savage-Hutter formula. This new formulation seems

to be more stable in our finite-volume framework than the one proposed by Hungr (2008). The

19
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comparison between numerical simulations and laboratory experimental data shows an apparent

improvement in describing the early stages of dam-break waves over rough beds. The comparison

with experiments over smooth bed surface exhibits minor evidence of improvement. Nonetheless,

in this case the proposed formula yields results very similar to those obtained by the original

Savage-Hutter formula.

The main results reported in this Chapter have been presented in Sarno et al. (2011) and Sarno

et al. (2012).



CHAPTER 2. DAM-BREAK FLOWS OF DRY GRANULAR MATERIAL 21

2.1 The experimental apparatus

An 8-m-long chute (Fig. 2.1) designed for studying dry granular flows and granular-liquid

mixtures, was set up at the LIDAM (Laboratory of Environmental and Maritime Hydraulics of

the University of Salerno, Italy).

Figure 2.1: A picture of the channel at LIDAM (University of Salerno, Italy).

The channel inclination, which is constant for its whole length, can be varied from 0◦ to about

23◦, by rotating the structure around its lower end, thanks to an hydraulic ram controlled by a

pumping system. The channel width can be adjusted between 0 and 80 cm, as the right side wall

position can be moved and adjusted thanks to a screw system. The 90-cm-high side walls and the

bottom are both made of Plexiglas and are suitably supported by structural steels. At the upper

end of the chute, there is a wide tank, integral with the chute structure, with a capacity of about

2.8 m3. In addition, at the lower end of the channel a collector tank, with about the same capacity

as the upper one, is located. A detailed scheme of the chute is reported in Fig. 2.2 that pictures

the channel in horizontal and inclined positions.

The experimental apparatus was originally designed with the main purpose of studying steady

state flows: hence, it is also equipped with a screw pumping system (LK-130, manufacturer Sydex,

Vicenza, Italy), that is capable to lift up granular mixtures from the lower collector tank to the

upper tank. The maximum flow rate, allowed by the pump, is approximately 50 l/s and the

maximum pressure at the delivery pipe is approximately equal to 5 bar.

The pump is capable to work with granular-liquid mixtures with a maximum volume fraction

equal to 0.5. Moreover, the maximum allowed size of grain particles is around 12 mm.

2.2 Experimental set-up for dam-break flows

The here illustrated experimental activity concerns dam-break flows of dry granular material.

In order to perform this kind of experiments, some modifications to the original design of the

experimental apparatus have been carried out.
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Figure 2.2: (Top) the experimental channel at LIDAM in horizontal position; (bottom) the same

channel in inclined position.
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Firstly, the upper tank was not utilized to store the granular material because too big for our

purposes. On the contrary, the first upper part of the channel, 2 m-long, was used as reservoir.

Such an arrangement is beneficial for two reasons:

• There is no variation in width between the reservoir and the rest of chute: hence, during

the dam-break flow, at the reservoir outlet there is no flow contraction along the cross-flow

direction. Such a flow geometry allows a direct comparison between experimental data and

numerical simulations obtained through one-dimensional mathematical models.

• The small size of the reservoir allows to make use of a relatively small amount of granular

material in order to observe sufficiently high flow depths for a reliable measurement through

video-recording.

The channel width was set to 24 cm. Although the influence of the side walls on the flow mechanics

is somehow reduced by a such large channel width, it is is still evident and, thus, has to be accounted

for in the mathematical model.

2.2.1 The release gate

At the beginning of each run, a granular pile was restrained in the upper part of the chute by

a wooden plate, that was placed at exactly 2 m from the beginning of the chute. When closed,

the plate is perpendicular to the channel bed. On the other hand, it is capable to release the

material when rapidly rotated counter-clockwise, thanks to a spring mechanism. The wooden

plate is composed of three pieces: a central one fixed together with a metal mechanism; two lateral

flaps that are able to rotate when the gate opens. The lateral flaps, which are connected to the

central part by means of metal hinges, are in contact with the chute side walls when the release

gate is closed and ensure the seal. As soon as the plate opens, the two flaps rotate around the

hinges and do not touch the side walls any more. This mechanism is useful to avoid incidental

scratches of the Plexiglas walls and also reduces the wake effect on the granular material, due to

the moving plate.

The opening apparatus has been designed to open quickly in order to avoid any significant

influence on the forming dam-break wave. The total opening time results less than 2/12 s. Besides,

only after 1/12 s, the frames, captured by a camera placed at the side of the channel, show that

there is no contact between the gate and the upstream material. Therefore, the influence of the

opening procedure on the flow is negligible and can be regarded as practically instantaneous.

2.2.2 The granular material

The granular material, used in the present experimental investigation, consists of spheroidal

acetalic resin beads (HERAFORM R900). The major and minor diameter of grains are respectively

equal to 3.9 mm and 2.8 mm. In Fig. 2.3 is reported a picture of the granular material. The most

relevant features of the material are reported in Table 2.1.

The present experiments involved a mass of granular material of about 100 kg. At each run,

the total mass (100 kg) of granular material was suddenly released by opening the wooden gate.

Particular attention was given to set the initial position of the pile upstream the gate in order to

impose the same initial condition in each test. A trapezoidal-shaped initial deposit was used for



CHAPTER 2. DAM-BREAK FLOWS OF DRY GRANULAR MATERIAL 24

Figure 2.3: The granular material (acetalic resin beads, HERAFORM R900).

Commercial name HERAFORM R900

Material POM Acetal copolymer

Grain density ρg 1410 kg/m3

Shape spheroidal

Colour Light grey

Minor diameter 2.8 mm

Major diameter 3.9 mm

Mean diameter 3.35 mm

Internal friction angle ϕint ≈ 27◦

Basal friction angle with Plexiglas surface δs ≈ 17◦

Basal friction angle with sandpaper surface δr > 27◦

Volume fraction at rest φ0 0.62

Table 2.1: The granular material, HERAFORM R900

all the runs and is reported in Fig. 2.4. The volume fraction at rest, φ0, typically depends on

the loading procedure. In our experiments, thanks to a standardised loading procedure, it was

found that φ0 was almost constant and approximately equal to 0.62. During each experiment, the

granular material was collected in a plastic bag, placed at the outlet of the channel, so that, after

each experiment, it was possible to lift the bag containing the material and move it up to reservoir

by using a bridge crane.

Friction angles

One of the main advantages of the Savage-Hutter type models is that its two parameters (i.e.

the friction angles) have a clear physical meaning and can be measured independently.

The first parameter represents the internal friction angle ϕ and depends on the sole granular

material. Although it was experimentally observed that the internal friction angle vary with the
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Figure 2.4: Initial position of the granular material before the release, where α is the inclination

angle.

shear rate (Pouliquen, 1999), in its original form, the Savage-Hutter assumes a constant value of

φ, which consists of the so-called dynamic friction angle. The dynamic friction coefficient is the

angle of friction, observed after the beginning of shearing, and is typically smaller than the static

friction angle by 2◦ − 3◦ (e.g. Hungr and Morgenstern, 1984a,b). In soil-mechanics, this value is

also referred to as constant-volume friction angle. It represents the value measured at the end of

laboratory shear tests, when dilatancy effects cease and the volume fraction of the sample does

not vary any more.

The second parameter is the basal friction angle, δ, and depends on the granular material and

on the basal surface. Also in this case, the dynamic friction angle has to be considered. Both of

these angles can be measured by means of independent tests.

The following procedure was carried out to measure the angle of internal friction ϕint. A single

layer of plastic beads was glued on two thin plywood sheets. Then, one of these sheets was placed

in a inclined position with the granular layer upward. The second sheet was gently placed with the

granular layer downward onto the inclined bumpy surface. The slope of the lower surface was being

increased quasi-statically. The measured internal friction angle is ϕint ≈ 27◦. This measurement

can be considered a good estimate of the constant-volume friction angle. In fact, before the failure,

the two overlapping layers of material are already weakly packed, because the particle have been

glued on the plywood sheet and have a fixed position, and, thus, the interlocking is expected to be

negligible.

An analogous procedure was performed in order to obtain estimate of basal friction angles δs

and δr between the two basal surfaces and the granular material. A single layer of plastic beads

was glued on a thin plywood sheet. Moreover, two wooden plates were lined with Plexiglas and

sandpaper. Then, the plywood sheet was gently placed with the granular layer downward onto

the inclined surface. The slope of the lower surface was being increased quasi-statically. A reliable

measure of the static friction angle is obtained by choosing the minimum angle at which the static

equilibrium of the plywood sheet on the inclined surface is no longer possible. For the smooth

basal surface made of Plexiglas, δs ≈ 19◦ was measured. The measured angle is a good estimate

of the static friction angle.
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Because the dynamic friction angle is typically smaller (around 2-3◦) than the static friction

value (e.g. Hungr and Morgenstern, 1984a), we lowered the estimates of these angles by 2◦, so that

the best agreement between the Savage-Hutter model and experimental data was obtained. Hence,

the basal friction angle in the Savage-Hutter model was set equal to δs = 17◦.

An angle much greater than the internal friction angle, ϕ, was observed for the sandpaper bed

δr > 27◦. Therefore, in this latter case, failure is expected to occur only inside the pile (i.e. no-slip

boundary condition). Hence, the friction angle of material ϕint, instead of the bed friction angle

δr will be considered in order to calculate the basal shear stress in the Savage-Hutter model.

2.2.3 Measuring instruments

The motion was recorded by a CCD digital video camera (Sony Super HAD), capable to capture

12 frames per second, connected to a digital video recorder. The camera was installed at the side

of the channel and, thanks to the side wall transparency, allowed for the view of about 80 cm

downstream the gate. The effective resolution of the camera was about 450 lines, with a total

accuracy of ±5 mm, being assured in the chosen field of view.

In order to rectify the images, captured by the camera, a 2 cm grid was put on the opposite

side wall. The recorded images were digitally post-processed. At first, the lens deformations were

minimized by using a photo editing software. Then, the frames were subjected to a perspective

rectification. Image rectification was accomplished by exploiting the fixed spots of the grid behind

it. In order to minimize errors, a set of 8 fixed points of the back grid were taken for the rectification

procedure. After this procedure, an evaluation of residual errors was carried out. Errors due to

rectification were always less than 3 mm, so well below the total accuracy.

2.2.4 The experiments

After carefully checking the experimental repeatability with the aforementioned experimental

apparatus, two kinds of tests were carried out. The first type of experiments were dam-break flows

of dry granular material on a smooth Plexiglas bed. In the second type, dam-break experiments

were performed on a bed, roughened by a lining of coarse sandpaper (grit P40 FEPA/ISO 6344).

The chosen sand paper is coarse enough to ensure a no-slip condition at the bed surface.

Each series of tests involved the investigation of different channel slopes. The channel slope was

varied between 19◦ and 22.7◦ for both of experimental configurations. Before each run, the channel

slope was measured through geometric measurements and elementary trigonometric calculations.

The overall accuracy of this measurement is very good and is less than 0.1◦.

In Table 2.2 the complete list of experiments is reported.

2.3 The Savage-Hutter model

The Savage-Hutter model, hereafter briefly referred to as SH model, (Savage and Hutter, 1989,

1991) is a depth-averaged hyperbolic PDE model. For constant inclination angle α , its one-
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Identification code Incl. Bed surface

S19 19.0◦ smooth (Plexiglass)

S20 20.0◦ smooth (Plexiglass)

S227 22.7◦ smooth (Plexiglass)

R19 19.0◦ rough (Sandpaper)

R20 20.0◦ rough (Sandpaper)

R227 22.7◦ rough (Sandpaper)

Table 2.2: List of dam-break experiments at LIDAM (University of Salerno, Italy)

dimensional expression can be written in the following conservative form

{
∂th+ ∂x (hu) = 0,

∂t(hu) + ∂x
(
K gz/2 h2 + β hu2

)
= gxh− gzh tan δ sgn(u) (2.1)

where t means time, x-axis indicates the down-slope direction, h is the flow depth measured

normally to the bed and u represents the x-component of the depth-averaged velocity. In Eqs.

(2.1), gx = g sinα and gz = g cosα represent the x- and z-component of the gravity acceleration,

respectively, so that gxh is the momentum gain due to the gravity, while the term gzh tan δ sgn (u)

is the momentum loss due to the basal Coulomb friction with δ the angle of friction at bottom. The

parameter β is the Boussinesq coefficient, whose value is determined by the velocity distribution

along the flow thickness. In SH theory a uniform velocity distribution is assumed, i.e. β = 1. It can

be found that the SH equations mainly differ from the Shallow Water equation for its basal friction,

which is of Coulomb type, and the anisotropy of the normal stresses, where the longitudinal stress

σxx is related to the basal normal stress σzz by the earth-pressure pressure coefficient K. Under

the assumption of constant value of K over the depth, the depth-averaged values of the normal

stress are related by

σxx =
1

h

∫ b

h

σxxdz =
K

h

∫ b

h

σzzdz = K σzz (2.2)

where σxx and σzz stand for the averaged normal stresses over the flow thickness h.

2.3.1 The earth-pressure coefficient

Here, we only focus on 1D flows, so that a plane state of stress is assumed and the stress

states at any given point can be geometrically represented by the Mohr’s circle (e.g. Lambe and

Whitman, 1991). In Savage and Hutter (1989, 1991) the granular matter is assumed to behave as

a cohesion-less material of Mohr-Coulomb type, so that the value of K is given by

K = K∓SH =
2

cos2ϕ

[
1∓

√
1− (1 + tan2δ) cos2ϕ

]
− 1 (2.3)

in which ϕ is the angle of internal friction of the granular material and δ is the angle of friction

at the bottom surface. In Eq. (2.3), the choice of the sign “∓” depends on whether the spatial

derivative of velocity, ∂xu, is positive (active state) or negative (passive state), respectively; thus

the value of K exhibits a discontinuity at ∂xu = 0. This discontinuity causes some numerical
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issues and some regularization for the transition between K−SH and K+
SH has been proposed, see

e.g. Tai and Gray (1998). The K value in (2.3) is obtained under the hypotheses that the failure

occurs simultaneously at the bed and inside the pile. Because of the non-null basal shear stress,

formula (2.3) implies that the principal directions of stress are not parallel to the basal surface but

counter-clockwise rotated. The detailed derivation of (2.3) makes use of Mohr’s circles of stress

and can be found in (Savage and Hutter, 1991).

Another way to take into account the anisotropy of normal stresses is represented by the

Rankine formula (e.g. Hungr, 1995; Bartelt et al., 1999)

K = K∓R =
1∓ sinϕ

1± sinϕ
(2.4)

where K is assumed to depend only on the internal angle of friction, ϕ. Hungr (1995) proposed

a linear dependence on the longitudinal strain to relate the two values of K in Eq. (2.4), by

introducing two stiffness coefficients for compression and unloading. It is interesting to note that

the SH formula (2.3) reduces to the Rankine expression (2.4) when δ → 0. In that case, the basal

shear stress vanishes and, thus, the principal directions of stress become normal and parallel to

the basal surface.

Recently, the fluid-like isotropic assumption (Pouliquen and Forterre, 2002; Gray et al., 2003;

Mangeney-Castelnau et al., 2005), i.e.

K = 1 (2.5)

has been applied to well developed granular flows. This hypothesis gives good results in predicting

the flow behaviour in presence of a rough bed surface (Pouliquen and Forterre, 2002) and it is

also supported by discrete particle numerical simulations (Ertas et al., 2001). In the simulation

of (Gray et al., 1999) it is found that the assumption (2.5) gives quite acceptable results in the

early stages but a huge under-estimation of the deposit has been observed in both longitudinal and

lateral directions.

Although all of the above mentioned formulae have their strengths and drawbacks, the SH-

formula (2.3) is supported by different laboratory experimental data (e.g. Greve and Hutter, 1993;

Hungr, 1995; Tai et al., 2001; Hutter et al., 2005). In these works we found that trustworthy results

can be obtained when the shallowness assumption is fulfilled and the basal surface is sufficiently

smooth (i.e. δ is small compared to ϕ). If δ ≈ φ, (2.3) yields K−SH ≈ K+
SH ≥ 1, and the stress state

along the bed is coincident with the internal failure state (i.e. it lies on the Coulomb envelope).

As observed by some experimental studies (e.g. Pouliquen, 1999), a wedge of deposited material

forms near the bed. In this regard, (Iverson, 1997) simply suggested to use the Rankine formula

(2.4).

2.3.2 Regularization formula for the early stages of dam break waves

An important additional issue is the determination of the earth-pressure coefficient K at the

early stages of dam-break waves. In this time window, the main physical quantities (e.g. velocity,

stresses) strongly vary along the x-direction and also the z-component of velocity is not negligible.

Hence, the hydrostatic pressure assumption is not fulfilled at the initiation of dam-break flow.

However, models with hydrostatic pressure assumption are often employed beyond their formal
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limits in an engineering context (e.g. Hutter et al., 2005). In this regard, the optimal choice of the

earth-pressure coefficient K becomes an open problem.

Comparisons between numerical simulations and experimental data in Sarno et al. (2011)

showed that none of the formulae (2.3), (2.4) or (2.5) could yield good agreement in the whole time

domain. The numerical simulations with Rankine formula (2.4) generally yield a better agreement

at the very beginning of dam-break flows but they systematically underestimate the avalanche

spreading at later time points.

Hungr (2008) observed that formula (2.3) overestimates the value of the pressure coefficient K

because the averaged direction of flow lines is far to be tangential to the bed at the beginning of

dam-break waves. Thus, he proposed to modify the quantity δ in Eq. (2.3) by means of

tan δ mod = max

(
0, tan δ − λK

∣∣∣∣∂h∂x
∣∣∣∣) (2.6)

in which λ is an empirical coefficient. The optimal value of λ is found to be around 0.333 in Hungr

(2008). By reducing the friction angle, δ, formula (2.6) aims to describe a clockwise rotation of the

stress principal axes, due the clockwise rotation of the failure planes inside the pile (i.e. the flow

lines). Although the approach of Eq. (2.6) works very well in the Lagrangian framework by the

DAN model, some oscillations are observed at the beginning of dam break flows in the distribution

of the earth pressure coefficient, see Fig. 14 in Hungr (2008). We found that similar oscillations

of the earth pressure coefficient cause numerical instability in our finite-volume framework.

In the present study, an alternative regularization for K is proposed. A new parameter r (t)

is introduced with respect to the effective flow domain, where velocities of the flow body are

non-vanished. Namely,

r (t) =
hmax(t)− hmin(t)

Leffective(t)
(2.7)

in which Leffective is the length of the effective flow domain and hmax and hmin are the maximum

and the minimum depths in the effective flow domain. The parameter r (t) represents the tangent

of the averaged inclination angle of the free surface in the effective flow domain, thus it can be

regarded as an estimate of the averaged slope of the flow lines inside the flow. At the early stage,

the spatial extent of the dam-break wave is quite small. Hence, it is reasonable to use a non-local

value of K, to be calculated through the proposed regularization formula

K (r (t)) = K−R + (Kmax −K−R )

(
1− 1

1 + ea (−r (t)+b)

)
(2.8)

in which a and b are dimensionless positive parameters. The formula (2.8) yields the value K−R
as r → ∞ and a value very close to Kmax when r = 0, provided that the quantities a and b are

sufficiently large. The value of Kmax can be set equal to K−SH or K = 1, depending on whether it

is chosen Eq. (2.3) or Eq. (2.5) as the limiting model for small values of r. Eq. (2.8) exhibits a

sigmoid shape as shown in Fig. 2.5.

The parameters a and b in Eq.(2.8) can be determined by solving the equation system

K (r = tan (γ1), a, b) = K−R + (1− ε) (Kmax −K−R )

K (r = tan (γ2), a, b) = K−R + ε (Kmax −K−R ) (2.9)

in which ε > 0 serves as a smoothness parameter, γ1 and γ2 represent the threshold angles at

which the values K−R and Kmax are reached. When the ratio r ≈ 0, the value of K is expected
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Figure 2.5: The regularization function K(r) with a = 5.632 and b = 0.816 (obtained by imposing

γ1 = 0◦, γ2 = 58.5◦, ε = 0.01).

to be close to Kmax, (e.g. K−SH), because the flow lines are approximately parallel to the bed

surface. Thus, it is logical to choose γ1 ≈ 0◦. On the other hand, a reasonable value for γ2 is the

inclination angle of the failure plane at Rankine’s active state, φR = 45◦ + ϕ/2 (e.g. Lambe and

Whitman, 1991). This value has a clear physical meaning since it is an estimate of the inclination

angle of the lower wedge of deposit below the real surface flow (e.g. Crosta et al., 2009) and so it

is a reasonable limiting value of the averaged slope of the flow lines.

2.4 Experimental validation

In this section we shall illustrate the comparison between the theoretical model and the labo-

ratory experiments carried out at LIDAM and presented in Sarno et al. (2011).

The resistance due to side walls is taken into account in a way similar to Roberts (1969).

Namely, an equivalent basal friction angle δeff is calculated, so that

tan δeff = tan δ

(
1 + k

h

W

)
(2.10)

where W indicates the cross-section width and k represents an empirical parameter. If a hydrostatic

distribution of pressure is assumed along side walls, the parameter k can be recast as follows

k = Ky
tan δside

tan δ
(2.11)

in which Ky is the lateral pressure coefficient and δside is the friction angle at the side walls. It was

found that Ky = 0.6 yields the best agreement between the experimental data and the numerical

simulation with the Savage-Hutter formula Eq. (2.3). As observed in (Sarno et al., 2011), it is

worth noting that the chosen value of Ky is very similar to the value obtained by the Jaky formula,

which is an estimate of the earth pressure coefficient at rest (Jaky, 1944). The friction angle at the

side walls is δside = 17◦, because the material is identical to the basal surface in tests with smooth

bed (i.e. Plexiglas).

Numerical simulations with formulae (2.3), (2.4), (2.5) and the regularization formula (2.8) are

performed and compared. The following values are used in the regularization formula: γ1 = 0◦
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, γ2 = φR = 58.5◦ , ε = 0.01. The numerical solutions of the equation system (2.1) have been

obtained through a finite volume scheme that uses thef-wave approach (Bale et al., 2002). A more

detailed description of the numerical code is reported in the following section.

The performance of the agreement between numerical simulations and the experimental data

is evaluated by an error index of the type of normalized Holder 1-norm,

I (t) =

∑N
i=1

∣∣hSIMi (t)− hDATAi (t)
∣∣∑N

i=1 h
DATA
i (t)

, (2.12)

where N is the number of measurements at each time point, hSIMi represents the computed flow

depth at the i-th spatial position, and hDATAi is the measured flow depth at the corresponding

position.

2.4.1 The numerical code

A finite volume scheme using the f-wave approach, proposed by (Bale et al., 2002), has been

implemented for solving the equation system (2.1). This scheme solves the Riemann problem at

each cell interface by decomposing the jump of the flux function f (q)

f i (qi)− f i-1(qi-1)=

m∑
p=1

βpi−1/2 r
p
i−1/2 =

m∑
p=1

zpi−1/2 (2.13)

where q = (h, hu)
T

is the vector of unknowns, β1−1/2 = R−1
1−1/2 (f i(qi) − f i−1(qi−1)) in which

Ri−1/2 is the matrix of the right eigenvectors at interface between cells i-1 and i, calculated using

the Roe means (Roe, 1981). The updating formula of the second order reads

qj+1
i = qji −

∆x

∆t
(A+∆qi−1/2 +A−∆qi+1/2 )− ∆x

∆t
(F̂i+1/2 − F̂i−1/2 ), (2.14)

where the fluctuations are written as functions of the f-waves in the following way,

A+∆qi−1/2 =
∑

p: sp
i−1/2

>0

zpi−1/2 , A−∆qi−1/2 =
∑

p: sp
i−1/2

<0

zpi−1/2 (2.15)

and F̂ are the second order TVD flux corrections (LeVeque, 2002). To properly handle transonic

rarefaction waves, the approach proposed by LeVeque and George (2008) is adopted so as to fulfil

the entropy requirement by the f-wave scheme. As regards the first characteristic family at the

interface i− 1/2 an entropy fix is needed if

λ1
i−1 < 0 < 2λ̃1

i−1/2 − λ1
i−1. (2.16)

In Eq. (2.16) λ1
i and λ1

i−1 are the eigenvalues calculated at cells i and i−1, while 2λ̃1
i−1/2−λ1

i−1 is

an estimate for the characteristic speed at the center of rarefaction fan, with λ̃1
i−1/2 the Roe speed

at the interface. In such a case, Eqs. (2.15) need to be modified, as the f-wave z1
i−1/2 is split into

two f-waves going into the cells i and i− 1,

(z1
i−1/2 )

+
=

[
1− (λ̃1

i−1/2 − λ1
i )

λ1
i−1 − λ1

i

λ1
i−1

λ̃1
i−1/2

]
z1
i−1/2 , (2.17)

(z1
i−1/2 )

−
=

[
λ̃1
i−1/2 − λ1

i

λ1
i−1 − λ1

i

λ1
i−1

λ̃1
i−1/2

]
z1
i−1/2 (2.18)
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where (z1
i−1/2)

−
and (z1

i−1/2)
+

are left-going and right-going f-waves, respectively. An analogous

treatment has been implemented for the second characteristic family.

Due to the non-vanishing source terms in System (2.1), the operator splitting technique

(LeVeque, 2002) is applied as follows. At first, the homogeneous system (i.e. without source

term) is numerically solved by using the f-wave approach; in the second stage, the source term of

the momentum equation is taken into account explicitly. In addition, a special treatment for the

dry/wet interface on the wave front is needed and a thin layer (h0 = 10−5 m) is added over the

whole domain in our scheme. This treatment is rather usual (e.g. Zhang and Cundy, 1989). In the

present computations, a constant space mesh ∆x = 0.01 m and Courant-Friedrichs-Lewy number

(CFL = 0.8) for the time increment ∆t are adopted.

ID Incl. angle Earth pressure parameters t=0.5 s t=1.0 s t=1.5 s t=2.0 s t=4.0 s Average

R19-1 α = 19.0◦ K = K−SH = 1.519 0.3136 0.0912 0.0988 0.1030 0.1613 0.1536

R19-2 α = 19.0◦ K = K−R = 0.376 0.1523 0.1345 0.1692 0.1928 0.2440 0.1786

R19-3 α = 19.0◦ K = 1 0.2018 0.0413 0.0898 0.0986 0.1572 0.1177

R19-4 α = 19.0◦ γ1 = 0◦, γ2 = φR, Kmax = K−SH 0.1651 0.1147 0.0345 0.0285 0.0902 0.0866

R19-5 α = 19.0◦ γ1 = 0◦, γ2 = φR, Kmax = 1 0.1079 0.0364 0.0562 0.0884 0.1386 0.0855

R20-1 α = 20.0◦ K = K−SH = 1.519 0.2377 0.0949 0.0573 0.0855 0.1654 0.1282

R20-2 α = 20.0◦ K = K−R = 0.376 0.1337 0.0919 0.1554 0.1990 0.2441 0.1648

R20-3 α = 20.0◦ K = 1 0.1342 0.0342 0.0459 0.0927 0.1633 0.0940

R20-4 α = 20.0◦ γ1 = 0◦, γ2 = φR, Kmax = K−SH 0.1122 0.1594 0.0435 0.0304 0.0994 0.0890

R20-5 α = 20.0◦ γ1 = 0◦, γ2 = φR, Kmax = 1 0.0754 0.1003 0.0738 0.1038 0.1460 0.0999

R227-1 α = 22.7◦ K = K−SH = 1.519 0.2387 0.0792 0.0732 0.0897 0.1036 0.1169

R227-2 α = 22.7◦ K = K−R = 0.376 0.1584 0.0361 0.1628 0.1858 0.2084 0.1503

R227-3 α = 22.7◦ K = 1 0.1717 0.0323 0.0558 0.0947 0.1186 0.0946

R227-4 α = 22.7◦ γ1 = 0◦, γ2 = φR, Kmax = K−SH 0.1092 0.1408 0.0328 0.0317 0.0624 0.0754

R227-5 α = 22.7◦ γ1 = 0◦, γ2 = φR, Kmax = 1 0.1067 0.1072 0.0589 0.1026 0.1248 0.1000

Table 2.3: Error indexes I of numerical simulations (rough bed).

ID Incl. angle Earth pressure parameters t=0.5 s t=1.0 s t=1.5 s t=2.0 s t=4.0 s Average

S19-1 α = 19.0◦ K = K−SH = 0.604 0.1477 0.0786 0.0366 0.0563 0.0775 0.0793

S19-2 α = 19.0◦ K = K−R = 0.376 0.1213 0.0666 0.1088 0.1512 0.1512 0.1198

S19-3 α = 19.0◦ γ1 = 0◦, γ2 = φR, Kmax = K−SH 0.0843 0.1057 0.0657 0.0465 0.0660 0.0737

S20-1 α = 20.0◦ K = K−SH = 0.604 0.1278 0.0671 0.0440 0.0956 0.1608 0.0991

S20-2 α = 20.0◦ K = K−R = 0.376 0.1299 0.0807 0.1119 0.1613 0.2201 0.1408

S20-3 α = 20.0◦ γ1 = 0◦, γ2 = φR, Kmax = K−SH 0.1289 0.0943 0.0635 0.1007 0.1839 0.1143

S227-1 α = 22.7◦ K = K−SH = 0.604 0.1731 0.0528 0.0837 0.1142 0.0549 0.0957

S227-2 α = 22.7◦ K = KR- = 0.376 0.2523 0.0988 0.1356 0.1600 0.2396 0.1773

S227-3 α = 22.7◦ γ1 = 0◦, γ2 = φR, Kmax = K−SH 0.2080 0.0735 0.0858 0.1264 0.0661 0.1119

Table 2.4: Error indexes I of numerical simulations (smooth bed).

Results on rough bed

Table 2.3 lists the error indexes I between numerical simulations (marked by identification

codes) and experiments on rough bed. The ID Codes “Rxx-1”, “Rxx-2” and “Rxx-3” respectively
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ID Earth pressure parameters t=0.5 s t=1.0 s t=1.5 s t=2.0 s t=4.0 s Average

R20-4 γ1 = 0◦, γ2 = φR, Kmax = K−SH 0.1122 0.1594 0.0435 0.0304 0.0994 0.0890

R20-6 γ1 = 1◦, γ2 = φR, Kmax = K−SH 0.1165 0.1581 0.0430 0.0300 0.0999 0.0895

R20-7 γ1 = 5◦, γ2 = φR, Kmax = K−SH 0.1314 0.1526 0.0408 0.0275 0.1024 0.0910

R20-8 γ1 = 10◦, γ2 = φR, Kmax = K−SH 0.1460 0.1481 0.0380 0.0251 0.1055 0.0925

Table 2.5: Error indexes I of numerical simulations performed by using different values for the

parameter γ1 (20◦, rough bed).

ID Earth pressure parameters t=0.5 s t=1.0 s t=1.5 s t=2.0 s t=4.0 s Average

R20-4 γ1 = 0◦, γ2 = φR, Kmax) = K−SH 0.1122 0.1594 0.0435 0.0304 0.0994 0.0890

R20-9 γ1 = 0◦, γ2 = φR − 10◦, Kmax = K−SH 0.0848 0.2131 0.0871 0.0505 0.0788 0.1029

R20-10 γ1 = 0◦, γ2 = φR + 10◦, Kmax = K−SH 0.1734 0.1275 0.0288 0.0356 0.1202 0.0971

R20-11 γ1 = 0◦, γ2 = φR − 20◦, Kmax = K−SH 0.2588 0.2655 0.1634 0.0870 0.0644 0.1678

R20-12 γ1 = 0◦, γ2 = φR + 20◦, Kmax = K−SH 0.2049 0.1093 0.0305 0.0604 0.1428 0.1096

Table 2.6: Error indexes I of numerical simulations performed by using different values for the

parameter γ2 (20◦, rough bed).

indicate the simulation by using the formulae (2.3), (2.4) and (2.5), where “xx” denotes the corre-

sponding basal friction angle. Besides, the ID Codes “Rxx-4” and “Rxx-5” are the results by using

the regularization formula (2.8) with Kmax = K−SH and Kmax = 1, respectively. For comparisons,

the simulations “Rxx-1” are regarded as reference simulations.

Firstly, it is interesting to note that, for the three inclination angles, the simulations with K = 1

(R19-3, R20-3, R227-3) yield a better agreement than the reference simulations (R19-1, R20-1,

R227-1). Yet, the early spreading is still considerably overestimated. Conversely, the simulations

with K−R (R19-2, R20-2, R20-3) yield a good agreement with experimental data at t = 0.5 s

but they underestimate the spreading of the avalanche very much at the later time points. The

simulations that make use of the regularization formula (R19-4, R20-4, R227-4) exhibits a very

good agreement at t = 0.5 s, with a reduction of I with respect to the reference simulations of

47%, 53% and 54% in 19.0◦, 20.0◦ and 22.7◦ runs, respectively. Although the agreement of these

simulations is worse than reference simulations at the time point t = 1.0 s, they fit the experimental

data slightly better at the subsequent time points. Hence, the overall improvement is significant for

all inclination angles (19.0◦ , 20.0◦ and 22.7◦ ), with a decrease of I with respect to the reference

simulations of 43%, 30% and 35%, respectively.

We also performed numerical simulations with Kmax = 1 (R19-5, R20-5, R227-5). Such simula-

tions exhibit an agreement at t = 0.5 s, even better than Rxx-4, with a reduction of I with respect

to the reference simulations of 66%, 68% and 55% in 19.0◦, 20.0◦ and 22.7◦ runs, respectively.

Nevertheless, the averaged error indexes of R20-5 and R227-5 are slightly higher than R20-4 and

R227-4. However, it is hard to conclude that Kmax = K−SH is the optimal choice, because the

results might depend on the particular choice of regularization parameters. The depth profiles,

related to runs with inclination angles of 19◦ and 22.7◦, are reported in Figs. 2.6 and 2.8.
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Results on smooth bed

As regards the smooth bed runs, Table 2.4 lists the error indexes I related to the numerical

simulations. The ID Codes “Sxx-1”, “Sxx-2” and “Sxx-3” indicate the usage of formulae (2.3),

(2.4), (2.5) and (2.8) with Kmax = K−SH , respectively. The plots of flow depths, referring to runs

with inclination angles of 19.0◦ and 22.7◦, are reported in Figs. 5 and 6. We choose only to show

the comparisons related to the time interval up to t = 4 s, although the flows on smooth bed do no

stop at t = 4 s. However, we carefully checked that the model with the regularization formula (2.8)

gives results almost identical to those obtained by using the formula (2.3) for all the subsequent

time-points (i.e. t > 4 s).

Firstly, it should be noted that numerical simulations with the Rankine formula (i.e. S19-2,

S20-2, S227-2) tend to underestimate the avalanche spreading. At the lowest inclination angle

(i.e. 19.0◦), the numerical simulation with the regularization formula, S19-3, yields a noticeable

improvement at the time point t = 0.5 s (I decreases by 43% with respect to the reference simulation

S19-1). Also the averaged error index of S19-3 is slightly smaller than that of reference simulation

S19-1. Conversely, at α = 20.0◦ and α = 22.7◦, the regularization formula (2.8) cannot yield

significant improvements. The reason of such a behaviour is suspected to be due to the fact that

the whole granular pile moves altogether immediately after the release of the gate, due to the small

value of the basal friction compared to the angle of the internal friction of the material. Thus, the

average slope of the failure planes inside the pile (i.e. the flow lines) is somehow smaller than what

expected by estimating r. This effect becomes dominant when the inclination angle increases, as

one can easily see by comparing Figs. 2.7 and 2.9.

2.5 Parameter study

Sensitivity analyses on the parameters (γ1, γ2, ε) of regularization formula are performed. In

order to check the effects of γ1 on numerical simulations, we let γ1 vary between 0◦ and 10◦. Table

2.5 lists the error indexes of numerical simulations, performed with different γ1 and related to the

rough bed run with α = 20◦. The best agreement with experimental data is obtained by using

γ1 = 0◦. Nonetheless, we have found that the model exhibits very small sensitivity to γ1, provided

that the chosen value is sufficiently close to 0◦ (i.e. 0◦ < γ1 < 5◦). A similar behaviour has

been observed also for different inclination angles. As regard smooth bed runs, an even smaller

sensitivity on γ1 has been noticed.

Additionally, we carried out different numerical simulations by varying γ2 between

[φR − 20◦, φR + 20◦] (i.e. 38.5◦ < γ2 < 78.5◦). Tables 2.6 lists the error indexes of the nu-

merical tests, related to the 20◦ rough bed run. The best choice is found to be γ2 = φR; however,

as long as γ2 > φR − 10◦, the average error is reasonably small. An analogous trend has been

observed at different inclination angles both in rough and smooth bed runs. The parameter ε

should be set as small as possible, in order to the asymptotic values K−R and Kmax be effectively

reached. Nevertheless, the smaller ε, the sharper the transition between K−R and Kmax. We found

that in presence of a too sharp regularization function (i.e. ε < 0.01) an unrealistic secondary wave

is observed in numerical results. Therefore, ε is set carefully equal to 0.01 for all the simulations

considered in the present study.

Finally, in Fig. 2.10 the evolution of the earth pressure coefficient, K, in simulations S20-3 and
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Figure 2.6: Comparisons between flow

depths predicted by numerical simulations

and experimental data (19◦ slope, rough

bed). The whole channel with the initial

condition and the field of view (FOV) of

the side camera are shown in the first panel.

The FOV is [2.0 m, 2.8 m]. From Sarno et al.

(2012).
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R20-4 is reported. K rapidly increases and reaches approximately 98% of K−SH at t = 0.5 s in

S20-3 and at t = 0.7 s in R20-4. After those time points, K can be considered practically constant.

The reason of such a slight difference between the K evolution in smooth and rough bed runs is

due to the fact that the spreading of the avalanche also depends on the chute basal roughness.

The evolution of K in the other numerical simulations over smooth bed (i.e. S19-3 and S227-3) is

almost identical to what observed in S20-3. As well, a very similar behaviour to what observed in

R20-4 has been found in numerical simulations R19-4 and R227-4.
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Figure 2.10: The evolution of the earth pressure coefficient K in numerical simulations with the

regularization formula (2.8).
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2.6 Conclusions

In this Chapter we showed the experimental apparatus, located at the LIDAM (University of

Salerno), and provided a report about the experimental activity on dam-break flows of dry granular

material. Dam-break experiments have been carried out over smooth and rough bed conditions.

Acetalic resin beads, with mean diameter of 3.3 mm, have been used as granular material.

At first, the original Savage-Hutter model has been tested with different values for calculating

the earth-pressure coefficient. The comparisons with experimental data showed that none of the

earth-pressure coefficients, available in Literature, are able to provide successful results at the early

stages of dam-flows as well as at the final time points. The results of this preliminary study have

been published in Sarno et al. (2011).

Then, we proposed a formula for determining the value of the pressure coefficient K in the

Savage-Hutter type models at the early stages of dam-break waves or collapses. This regularization

formula is a function of the averaged free surface slope in the effective flow domain. The parameters

of the regularization formula are determined by invoking physical arguments: i.e. the limiting

averaged slope of flow lines is supposed to be close to the inclination angle of the failure plane

in Rankine’s active state. Numerical simulations are preformed and compared with experimental

measurements, where both smooth and rough bed surfaces are considered. The regularization

formula exhibits a significant improvement in rough bed tests, both at the early stages of dam

break and at the final time points. However, only minor improvement is obtained by smooth bed

tests. In particular, the improvements become insignificant as the inclination angle increases. The

reason of this discrepancy seems to be due to the fact that the failure at the bed occurs immediately

after the release of the gate. As a general limitation of depth-averaged models, the assumption of

hydrostatic vertical pressure distribution is not fulfilled in presence of large flow depth gradients

and, thus, these models are not expected to produce very accurate results at flow initiation. The

proposed correction could be regarded as an engineering tool more than a theoretical improvement.

The parameter study shows that the model is weakly sensitive to γ1, γ2, provided that they are

chosen close to physically reasonable values (i.e. γ1 ≈ 0◦, γ2 ≈ φR). This proves the robustness of

the proposed formula and reveals the potential for a general practical application. Especially, after

further validation, this approach may become a practical engineering tool for better describing

rock/snow avalanches as well as ridge collapses.

Finally, the different behaviours between smooth and rough bed runs highlight on the com-

plexity of these kinds of flows. Moreover, it is worth reporting that, in the experimental runs over

rough bed, we observed that the avalanche did not stop instantaneously in a given cross section.

More precisely, it was noticed a progressive slowdown of the granular matter from the bottom up

to free surface. This phenomenon suggests the occurrence of a flow regime stratification, similar to

what has been observed in heap flows experiments in Midi (2004) or by Drake (1990). Obviously,

since the motion of dam-break waves is in transient state, the ideal interface separating the lower

quasi-static regime from the upper dense-collisional regime is in motion and moves progressively

up to the free surface.

Further study is particularly needed on the influence of the basal surfaces and, hence, it would

be particularly useful to obtain more information about the velocity profiles along the flow depth.

In this regard, in Chapter 3 an experimental study about velocity profiles is reported.
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Chapter 3

Steady state velocity profiles

Chapter Summary

In this Chapter, an experimental study on the velocity distributions in dry granular free surface

flows is reported.

The experimental activity has been performed at the Department of Hydraulic and Ocean

Engineering of the National Cheng-Kung University (Tainan City, Taiwan), under the supervision

of Prof. Y.-C. Tai. Such investigations on steady-state dry granular flows involved the use of the

Granular Particle Image Velocimetry technique, also called G-PIV, which is a modified version

of Particle Image Velocimetry applied to granular flows. Thanks to this technique, the velocity

profiles at the side walls of the channel and at the free surface have been obtained.

The purposes of this experimental research are mainly two. The first one is achieving further

information about velocity profiles of dry granular flows in case of different bottom boundary

conditions (i.e. smooth and rough bed). Particular attention has been paid to the case with no-slip

bottom boundary condition, that is expected to cause a rheological stratification inside the flowing

pile. The second objective consists of comparing the experimental data with the mathematical

two-layer model, that will be introduced in Chapter 4.

40
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3.1 Particle Image Velocimetry

In this section a preliminary and concise description of the Particle Image Velocimetry technique

is given, then its application to granular flows is discussed.

The Particle Image Velocimetry (PIV ) is an optical non-invasive technique, developed in the

mid 1980s in the field of experimental fluid mechanics, which allows to obtain instantaneous mea-

surements of the velocity field. One of the original purposes of the PIV technique is towards better

understanding the turbulence in Newtonian fluids. Such a technique typically makes use of seeding

particles inside the fluid under investigation, in order to obtain optical reflections and be able to

get information about the flow velocity field. Although the method of adding small objects to a

fluid in order to get rough information about the motion has been sometimes used in the past

centuries, the German scientist and engineer, L. Prandtl, was the first one to use this approach

systematically at the beginning of 1900.

If we look into the recent past, the precursor technique of PIV might be identified into the laser

Doppler velocimetry (often briefly called LDV ), that uses the Doppler effect in a laser beam to

measure the flow velocity at a given point. The great advantage of PIV and LDV over the former

techniques, like e.g. the hot-wire anemometry, is the non-invasiveness, guaranteed by the fact

that the measurements are optical and, thus, apart from the seeding particles, the experimental

apparatus is completely outside the flow. Moreover, differently from the laser Doppler velocimetry,

that is only capable to measure the flow velocity at a single point, the PIV technique produces

a two-dimensional (or even three-dimensional) velocity vector field. For that reason, nowadays it

represents the most popular tool of experimental fluid mechanics for studying turbulent structures

and all other phenomena that require the knowledge of the entire velocity field to be correctly

understood.

Roughly speaking, the PIV technique works by calculating the cross-correlation function of

the Image intensity field (i.e. the matrix of pixel brightness) between a pair of two consecutive

frames, taken by a camera and separated by a short time interval, ∆t. The image is partitioned in

rectangular shaped regions, called interrogation areas. The study of the cross-correlation function

allows to determine the most likely displacements of each of these interrogation areas and, thus,

an estimation of the flow velocity field. If the fluid under investigation is transparent (e.g. water

or air), it needs to be seeded by some small reflective particles. By assuming that such seeding

particles move together with the fluid, the knowledge of their velocity at any point is equivalent

to knowing the flow velocity.

It is very important to underline that the displacement found by the PIV analysis, represents

the most likely displacement of the gray scale brightness pattern inside each interrogation area.

Thus, it is not related to the movement of a particular individual particle but to the entire set

of moving particles inside the interrogation area. In this feature, PIV essentially differs from

another important optical technique, the Particle Tracking Velocimetry (PTV ), that, instead,

allows to obtain the velocities vectors of some individual seeding particles inside the flow under

investigation. In this regard, by analogy to mathematical models, it could be said that, while the

PTV technique adopts a Lagrangian type approach, the PIV uses an Eulerian type approach.

After dividing the displacements by the time interval between the two images, ∆t, a velocity

vector for each interrogation area is obtained. In order to ensure proper illumination of the area of

interest inside the fluid under investigation, in the classical PIV technique a laser pulsating light
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needs to be used. The laser is equipped with a series of lenses that spread the laser light into a

thin sheet inside the fluid under investigation. The laser light has to be sufficiently powerful to

allow capturing pictures with a very short exposure time (of order of nanoseconds). Moreover, it is

required to produce the same illumination at different pulses, so that the image of a static object

produces the same brightness pattern, under the same exposure time. This property is very impor-

tant, because, otherwise, some brightness oscillation in the pictures, due to the illumination, would

influence erroneously the cross-correlation analysis for determining the most likely displacements.

A typical PIV experimental apparatus is composed of the following components:

• a camera that records pairs of images of the illuminated plane inside the fluid under investi-

gation,

• a laser equipment that produces a pulsating powerful light and allows the camera to capture

images form a particular area under investigation inside the fluid,

• a synchronizer that synchronizes the camera exposure and the laser pulse,

• a computer that stores the recorded frames from camera and performs the data analysis (i.e.

cross-correlation),

• the seeding particle that need to be inserted inside the fluid under investigation before the

measurements,

• the fluid under investigation.

3.1.1 Theoretical aspects

In this section we briefly introduce some basic concepts of the PIV Theory.

The Region of interest represents the volume under investigation, that can be seen in the field

of view of the camera. While, in general, the field of view is a larger area, the region of interest only

consists of the volume of fluid, that is illuminated by the laser light. This region can be viewed as

a three dimensional space with Cartesian coordinates X ≡ (X, Y, Z). It can be then partitioned

in Interrogation volumes. The camera lens maps these volumes into Interrogation areas, that lie

in a two-dimensional space (i.e. the recorded frame) with coordinates x ≡ (x, y). Namely, the

camera lens operates a transformation between the region of interest in physical space and the

recorded image in the imaging plane: everything in the physical space corresponds to something

in the recorded image. In Fig. 3.1 the geometric imaging arrangement is reported.

In the physical space the seeding particles reflects a certain amount of the light energy. This

phenomenon gives rise to a brightness distribution, often called grey scale pattern, in the recorded

image. In fact, the pixel brightness in a digital image is a measure of the light reflected by the

corresponding spot in physical space.

Mathematically, the brightness field is called image intensity field. It is a scalar field, I, defined

as follows

I (x, Γ) =

N∑
i=1

V0 (X) τ (x− xi) (3.1)
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Figure 3.1: Geometric imaging arrangement showing the relation between interrogation volumes

and interrogation areas (Raffel et al., 1998).

where Γ = {X1, X2, ..., XN} is the set of dots in the three dimensional space, V0 is the transfer

function and τ is the point spread function of the lens. The intensity function I is defined at any

point x and, formally, depends on all the particles in the region of interest.

After a time step ∆t, the intensity field changes as follows

I ′ (x, Γ +D) =

N∑
i=1

V0 (X +D) τ (x− xi − d) (3.2)

where D is the displacement in the three dimensional space and d the corresponding displacement

after the mapping into the imaging plane.

In PIV applications, it is widely assumed that interrogation areas only move rigidly without

deformations. Even though, this assumption might seem gross, it turns to be acceptable as long

as the time interval between the two picture is kept small.

The displacement in the imaging plane, d, is unknown and can be determined by means of

pattern recognition techniques based on statistical arguments. In this regard, the cross-correlation

function for any given interrogation area αI can be defined,

RI−I′ (s, Γ, D) =
1

αI

∫
αI

I (x, Γ) I ′ (x+ s, Γ +D) dx =

1

αI

∑
i, j

V0 (Xi) V0
′ (Xj +D)

∫
αI

τ (x− xi) τ (x− xi + s− d) dx (3.3)

in which s represent the generic displacement in the correlation plane.

The correlation plane contains every possible displacement, s, to which corresponds a value

of the cross-correlation function. The most likely displacement corresponds to the 1st maximum

peak of the cross-correlation function. The reliability of this measure is usually accounted for by

calculating the ratio between the 1st and the 2nd peak (also called first noise peak), that is a good

estimate of the signal to noise ratio.

Once the displacement vector is calculated for each interrogation area, the velocity can be

straightforwardly obtained by dividing the displacement by the time interval between the two

frames (Katzenbach et al., 2011).
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Finally, after obtaining the raw data of velocity field from the cross-correlation analysis, a

validation procedure follows in order to eliminate faulty data. Such a procedure typically consists

in the application of filters, such as the Standard Deviation filter and Range filters (e.g. Eckart

and Gray, 2003).

For more details about the PIV techniques the Reader is referred to e.g. Raffel et al. (1998) or

Adrian and Westerweel (2010).

3.1.2 Granular PIV

In the last decade, many attempts have been made in order to take advantage of the PIV

technique also in the framework of granular flows. As a result, a slight different PIV technique,

often called granular PIV (G-PIV ), has been developed. Some of the first pioneering works,

where G-PIV has been applied, are e.g. Eckart and Gray (2003) and Lueptow et al. (2000). Other

remarkable experimental works that make use of this technique are e.g. Pudasaini and Hutter

(2007); Pudasaini et al. (2007); Tai and Lin (2008); Katzenbach et al. (2011).

There are some small differences between the classical PIV technique and the granular PIV,

that need to be reported here and briefly discussed.

Firstly, since the granular matter is a non-transparent medium, the PIV analysis can be per-

formed only at the boundary surfaces of the motion domain. By way of example, in the case of

channelized free surface flows, the PIV measurements can be performed at the free surface and

at the bottom and side walls of the channel (if the channel is transparent). As a consequence of

this fact, a laser equipment for illuminating the inner planes of the motion domain is not useful in

G-PIV. Moreover, the use of laser beams for illuminating the boundary surfaces was found to be

unreliable, because of unacceptable variations of illumination intensity (Lueptow et al., 2000). In

fact, analogously to the classical PIV technique, the illumination intensity has to be as much as pos-

sible constant in time and space during the recording, in order to avoid errors in cross-correlation

analysis. In this context, the illumination equipment is usually composed of stroboscopic flash

lights, to be synchronised with the camera (Lueptow et al., 2000; Eckart and Gray, 2003), or high

power LED light sources (Sheng et al., 2011). Since a non-standard light equipment is usually

adopted in G-PIV, particular attention should be paid also to the light placement.

An important requirement for the light equipment is to have a sufficient brightness to avoid

underexposed images in presence of short shutter times. In fact, the time delay between every

couple of frames has to be small enough to allow a reliable pattern recognition (i.e. cross-correlation

analysis). Also the shutter time has to be accordingly small. Moreover, a sufficiently short shutter

time is important to avoid blurred pictures. The optimal values for the time delay between frames

and shutter time have to be chosen on the basis of the maximum and minimum flow velocities. In

typical laboratory applications for studying rapid granular flows with the G-PIV technique, the

time delay is of order of hundreds microseconds (Katzenbach et al., 2011).

Another difference between G-PIV and the classical PIV technique consists of the fact that

the seeding is usually unnecessary. Indeed, the granular material typically exhibits a reflective

structure, that allows a reliable pattern recognition even without treatment (Katzenbach et al.,

2011).

Further information about G-PIV can be found in Eckart and Gray (2003), (Pudasaini and

Hutter, 2007) or Katzenbach et al. (2011).
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3.2 Velocity profiles

The laboratory experimental activity carried out at the Department of Hydraulic and Ocean

Engineering of the National Cheng-Kung University (NCKU, Taiwan) concerns the measurement

of steady state velocity profiles in channelized dry granular flows. These measurements have been

performed through using a high-speed camera and granular PIV techniques. The granular material

used in the present research was Ottawa sand, a well-sorted sand compliant to the ASTM C-778

20/30 Standard.

3.2.1 Experimental apparatus

In this section a detailed description of the experimental apparatus is given.

Laboratory channels

The experimental apparatus is composed of two straight laboratory channels, 140 cm long and

4 cm wide, made of 10 mm thick polymethacrylate sheets (i.e. Plexiglas). Details are reported in

Fig. 3.2, in which x and y represent the longitudinal and the transverse axes, respectively, while z is

the axis normal to chute bottom. These chutes, specifically designed for the present research, have

been built identical both in size and material. The first chute has been used for obtaining velocity

profiles over a smooth bed surface, and thus, its original smooth bed surface made of Plexiglas has

been kept unchanged. Instead, the second chute is equipped with a roughened bed. More precisely,

a layer of grainy sandpaper has been glued on the original smooth bed surface in order to make

it rough enough, so that a no-slip bed condition was guaranteed. A suitable sandpaper grit was

chosen, so that the angle of friction between the sandpaper and the granular material was higher

than the internal friction angle of the granular material.

The upper part of the channel, 28 cm long, has been designed to be used as reservoir for the

granular material. The reservoir width is exactly the same of the rest of the chute, in order to

reduce three-dimensional effects during the flow. Moreover, the height of side walls in the tank

is much bigger (50 cm) than that of the lower part of the chute (12 cm), so that the amount of

granular material stored in the tank was enough to ensure the occurrence of statistically steady

state during the flow. The tank is separated from the lower part of the chute by a thin baffle,

made of Plexiglas, with an opening, 5 cm high, close to the chute bottom. This aperture has the

same width of the chute (i.e. 4 cm). It allows the granular material to flow from the upper tank to

the chute without sensible deformations along the transverse y direction. During the tank loading,

the aperture is kept closed, thanks to an additional plate made of Plexiglas, placed in front of

the baffle, separating the upper tank from the rest of the chute, and fixed to it, thanks to some

adhesive tape.

Such an additional plate was manually removed at the beginning of each experiment.

The channel was placed on two rigid frames so that the bottom slope in x direction could

be chosen and adjusted before each experiment. The range of channel slopes, investigated in the

present experiments, was chosen, so that it was possible to observe steady state flows, and is

between 28◦ and 40◦. Before each experiment the channel inclination was measured thanks to a

digital level (model Bosch DNM 60L) with an accuracy of 0.05◦.
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Particular care was taken in checking that there was null inclination in y direction within an

error of about 0.2◦. In fact, an even small inclination in transverse direction could lead to a non-

symmetrical velocity distribution along the transverse direction, which is highly undesired in the

present study.

In order to collect the flowing granular material, a small container was placed at the lower

outlet of the chute.

Figure 3.2: Details of the laboratory channels. Dimensions are expressed in millimetres.

Granular material

The granular material used in the whole set of experiments, preformed at the NCKU, was

Ottawa sand, compliant to ASTM C-778 20/30 Standard. It is a well-sorted round shaped silica

sand, whose mean diameter is about 0.7 mm. More precisely, the Standard C-778 20/30 means

that the most of the aggregate (99% of the total weight) passes through the sieve No. 20, with

mesh size equal to 0.850 mm, while it is almost completely retained (97% of the total weight) by

the sieve No. 30, with mesh size of 0.600 mm.

Table 3.1 shows the main properties of the granular material and in particular the friction

angles that will be used in the mathematical model. The angle of repose of material ϕrep, which

is by definition the maximum slope angle of a static pile of grains with respect to the horizontal

plane, had been measured previously by Tai and Lin (2008), as well as the basal friction angle with

Plexiglas surfaces. The dynamic angle of friction is typically smaller than the static friction angle,

as widely reported in Literature (e.g. Hungr and Morgenstern, 1984a,b).

The angle of basal friction with the roughened surface of the Chute No.2, δr, was bigger than

internal friction angle.

It has been observed that the seeding is usually unnecessary in G-PIV applications (Katzenbach

et al., 2011), because granular materials are optically rough. Nonetheless, because the Ottawa sand

has an almost uniform colour pattern, in order to further improve the quality of PIV analysis, a

small amount of sand (about 10% of the total weight) has been coloured black through using
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alcohol-based ink. We can reasonably exclude that this treatment could have changed the friction

properties of the granular material because the friction angle mainly depends on the shape and

size of particles more than the microscopic friction of the grain surfaces (e.g. Midi, 2004).

Standard Code ASTM C-778 20/30

Mineral Quartz (SiO2), 99.8%

Grain Density ρs 2650 kg/m3

Hardness 7 (Mohs scale)

Diameter 0.725± 0.125 mm

Angle of repose ϕrep 34.1◦ ± 1.4◦

Dynamic friction angle ϕ ≈ 30− 31◦

Basal friction angle with Plexiglas surface δs 23.0◦ ± 1.1◦

Basal friction angle with sandpaper surface δr > 34◦

Volume fraction at rest φ0 0.64

Table 3.1: Granular material properties.

For each experiment, an amount approximatively equal to 6.66 kg of Ottawa sand, was loaded

into the upper tank and let flow down, after releasing the gate. From the depth of the granular

material deposit in the tank, it was possible to obtain a rough estimation of the volume fraction

at rest, which has been found approximately equal to 0.64 and it is in good agreement with many

measurements on coarse sand widely reported in Literature (e.g. Lambe and Whitman, 1991). This

value was found to be almost constant during the experiments, owing to a standardised loading

procedure.

High-speed camera

The image acquisition of the granular flow has been performed through using a high-speed

camera (model IDT XStream3-Plus), capable to capture pictures at an high frame rate. The

camera has a CMOS panchromatic sensor with a resolution of 1280×1024 pixel, and is capable

to record at the speed of 625 frames per second at its highest spatial resolution. Nonetheless, by

reducing the spatial resolution, i.e. by selecting a smaller Region of Interest (ROI ), it is possible

to increase the maximum recording speed. The camera is equipped with a very bright lens, model

Sugitoh TSL-50095 (f/0.95), with focal length equal to 50 mm, capable to obtain a good frame

exposures, even with rather short shutter times. Moreover, the lens exhibits a negligible barrel

distortion: no correction to captured frames was required before PIV analysis. The camera was

carefully fixed on a tripod with a 360◦ adjustable tilt head (model Manfrotto 410 Junior Geared

Head). The camera, together with its tripod, was placed at the side of the inclined channel, in

order to capture images of the flow motion at the side wall.

After checking the repeatability of the experiments, different runs at the same slope and with

the same bottom surface were performed, so that it was possible to take high-speed pictures at

different cross sections. In particular, two cross sections have been investigated, the first one was

20 cm downstream the opening gate, while the second one is 35 cm downstream the opening gate.

Moreover, each experiment was further repeated in order to take pictures at the free surface at the
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two chosen cross sections. In this case the camera was placed above the channel in order the ROI

to be centred on the cross section under investigation.

Because we are mainly interested in capturing velocity profiles at a particular cross section, the

ideal ROI should be high enough to capture the entire flow depth from the chute bottom up to

the free surface. Conversely, we are not very interested to have a wide field of view in x direction,

i.e. in the direction of the flow. Therefore, the whole set of high-speed images has been been

recorded at a spatial resolution equal to 648×312 pixel, with a frame rate of 2000 fps. In order to

capture velocity profiles at the side wall, the camera was placed at the side of the channel wall,

about 25 cm far from it, with an inclination with respect to the horizontal plane equal to channel

inclination, so that the ROI was a rectangle with a span of about 5 cm and 2 cm in the direction

normal and parallel to to the channel bottom, respectively. For side view recordings, the exposure

time was set at 100 µs together with a lens aperture of f/2, so as to avoid blurred images and, at

the same time, to get a sufficiently deep depth of field for obtaining easily a sharp focus.

The camera focus was obtained before each run by taking a series of pictures of a reference

grid (mesh 1 cm×1 cm), printed on a sheet of paper placed on the inner side of the side wall of

the chute. Such a grid was also useful to measure the actual geometric scale in captured frames.

Regards the front view recordings, we had some problems to get the grains on the free surface

in focus because the flow depth slightly oscillates, due to grain saltation. In order to overcome this

problem, we used a reference grid, fixed on a rigid surface, about 2 cm far from the chute bottom,

to set the focus before each run. Then, we had to reduce the lens aperture to f/4 in order to widen

the depth of field. At the same time to preserve the exposure we increased the shutter time up to

200 µs. Despite that, we did not observe blurry frames.

In Fig. 3.3 are reported typical images, recorded by the high-speed from the side of the

channel (a) and from the front position (b). These images are presented as they are before any

pre-processing treatment.

The high-speed camera is equipped with an internal memory of 2 GB, that allows to record up

to 3352 frames at the selected spatial resolution and frame rate. In terms of time span, it equals

to 1.675 s at 2000 fps.

Light equipment

In order to ensure a proper exposure of the images captured by the high-speed camera, it is

crucial to use a convenient light equipment that provides constant and adequate brightness.

To do so, two lights, specifically designed for high-speed applications have been used. The

first one was a high-power LED light source (9000 lumen). With the aim of properly illuminating

the field of view of the camera, it was placed, from time to time, near the cross section under

investigation at the same side of the high-speed camera. The distance of the LED light source

from the channel was about 30 cm. In order to reduce a bit its brightness so as to avoid flares and

undesired reflections on the grain surfaces, a thin film of paper was placed in front of the LED

light source.

Particular care was taken to increase the image quality near the free surface. In particular,

to reduce reflections from the farther side Plexiglas wall, a paper sheet completely printed with a

white noise pattern was put at the outer side of the farer side wall. Thus, that white noise pattern

is the background of all recorded frames and improves dramatically the PIV analysis at the free
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(a) (b)

Figure 3.3: Typical frames, captured by high speed camera from the side position (a) and front

position (b). In the white box frame number and time point are reported.

surface of the flowing material.

The second light, model MedalLight FL-220AN (6000 lumen), was of fluorescent type. Its

main purpose is to increase the background illumination in order to reduce incidental shades. This

second light was placed about 50 cm above the channel.

Differently from the most of previous works that make use of the G-PIV technique with flash

lights (e.g. Pudasaini et al., 2007; Katzenbach et al., 2011), the lights, employed in the present

research, are not of stroboscopic type, but constantly on. Yet, they do not suffer from brightness

oscillations issues, thanks to a specifically designed power supply. This set-up turned out to be

very convenient, at least for two reasons:

• no synchronization between the camera shutter and the light pulse is required, because the

light is always on;

• the maximum acquisition rate is governed by the camera capabilities and does not depend

on the charging time of the capacitors, commonly used in flash power supplies.

Figure 3.4 shows the experimental apparatus, during a front-view recording, where it is easy

to identify the two lights and the high-speed camera.

Image acquisition software

After each run, the recorded pictures were downloaded from the camera to a notebook, via

USB connection. The frames are saved in 8-bit gray-scale lossless format. The image acquisition

procedures are controlled by the commercial software IDT X-Vision. The same software permits
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Figure 3.4: The experimental apparatus.

also to set all the recording parameters to the camera before each run and to trigger the recording.

Conversely, the PIV analysis has been performed by using the commercial software IDT ProVision-

XS. A detailed description of the PIV analysis is reported in the next section.

3.2.2 Granular PIV analysis

Each recording is composed of 3352 frames that have been analysed in separated pairs.

The overall analysis procedure is composed of the following stages:

• Pre-processing of the images in order to improve the image quality,

• PIV analysis that yields an estimate of the velocity field in the Region of Interest,

• Post-processing of the raw data from PIV analysis, in order to remove faulty data.

Before the actual PIV analysis, all the frames have been subjected to a pre-processing digital

treatment, aimed at improving the image quality. More precisely, to enhance the image contrast,

a contrast limited adaptive histogram equalization (CLAHE ) has been employed.

The software IDT ProVision-XS has been used for the PIV analysis of all recordings. The

chosen coupling rule for PIV analysis was the following: we take the first two frames together,

then the third one together with the fourth one and so on, i.e. 1-2, 3-4, 5-6 etc. In total, a set of

1676 couples of frames is obtained for each run. Each couple of frames yields a velocity field.
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The main parameter of the PIV analysis is the size of the interrogation area. Obviously, the

optimal choice of this value depends on the minimum and maximum displacements (in terms of

pixel) in the recorded frame pairs. On the one hand, this value cannot be too small, otherwise

the cross-correlation analysis will fail to properly recognize the motion of fastest particles. On the

other hand, a too big interrogation area would reduce too much the sensitivity of the velocity field

reconstruction, i.e. the minimum recognized velocity would be unacceptably high.

A thumb rule to obtain a reliable velocity field is that the maximum displacement should be

less than 1/4 of the span of the interrogation area (Keane and Adrian, 1993). In our case, the

aforementioned condition is globally fulfilled by choosing an interrogation area, 32×32 pixel wide,

that corresponds approximately to a 2 mm×2 mm square in real scale. The mesh overlap is chosen

equal to 50%, in order to fulfil the Nyquist sampling criterion.

After the PIV analysis, a vector validation of raw data has been carried out. During this stage,

only a Range Filter, that removes the velocity vectors that lie beyond some given limits, has been

used. In fact, especially in case of no-slip bottom boundary condition, the velocity field exhibits

large velocity gradients: hence, the usage of a Standard Deviation filter would be detrimental.

Faulty data, whose amount was typically around 5% in each frame pair, are substituted through

interpolation of neighbour data. The obtained velocity field for each frame couple has a spatial

extension of about 2 cm in x direction and is centred on the cross section under investigation, i.e.

x=20 cm or x=35 cm. Because we are only interested in acquiring velocity profiles at these cross

sections, only the velocity vectors related to these positions are kept from the PIV analysis and

are reported in detail hereafter.

The software IDT ProVision-XS uses a proprietary cross-correlation algorithm, hence, it was

not possible to know a priori the sensitivity of the PIV analysis, i.e. the minimum measurable

displacement. However, from the calculated velocity field we estimate that, in our experimental set-

up, the minimum measurable velocity is definitely below 0.01 m/s and corresponds to a sub-pixel

accuracy of 1/10, at least.

3.2.3 Experiments

Two series of experiments have been performed. The first series was on smooth bed surface

and was performed by using chute No. 1. The second one was on rough bed (chute No. 2). The

purpose of this experimental research is to study the velocity profiles at different bed conditions

in order to better understand the effects of bottom boundary conditions on the velocity profile.

The setting of each experiment requires the following procedures:

• the chute is carefully positioned on the aluminium frames with the chosen slope,

• the upper tank is loaded with Ottawa sand with a total amount of about 6.66 kg,

• the high-speed camera and lights are carefully positioned close to the cross section under

investigation,

• the release plate is manually removed, so that the granular material could flow from the

reservoir into the channel,

• after a few seconds after the opening, the high-speed camera is triggered so as to record

images of the flowing pile.
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Since we are interested in steady-state velocity profiles, the first concern was to check whether

a statistically steady state was reached at the different channel slopes under investigation. With

the term “statistically steady state”, or simply “steady state” hereafter, we mean that the time

averages (of the Reynold’s type) of the main quantities, such as flow velocity and flow depth, are

unchanging in time. The methods, used to check the occurrence of the steady state, are reported

in the next subsection.

The opening between the tank and the chute is chosen to be 5 cm-high for all the experiments.

This choice has been determined by two opposing needs. On the one hand, it is required that the

opening be small enough to ensure a sufficiently long steady state before the complete empting of

the reservoir. On the other hand, in order to obtain an acceptable detail of the velocity profiles,

the opening gate should be big enough to avoid that the flow depth be too small. After several

tests, this choice turned out to be the best compromise between these two needs.

The complete list of experiments is reported in Table 3.2. In run R-28r steady state is not

observed because of the premature stop of the granular avalanche. Therefore, the related data are

not considered in the further analysis and discussion. Each run was repeated several times in order

ID code Incl. Chute Bed surface

R-28s 28◦ No. 1 smooth (Plexiglass)

R-31s 31◦ No. 1 smooth (Plexiglass)

R-34s 34◦ No. 1 smooth (Plexiglass)

R-40s 40◦ No. 1 smooth (Plexiglass)

R-28r 28◦ No. 2 rough (Sandpaper)

R-31r 31◦ No. 2 rough (Sandpaper)

R-34r 34◦ No. 2 rough (Sandpaper)

R-40r 40◦ No. 2 rough (Sandpaper)

Table 3.2: Runs

to take recordings at the two different cross sections and different views (i.e. side and front views).

Moreover, for each camera position, the experiment was repeated 4 times in order to verify the

repeatability of the phenomenon and obtain further statistical information.

The first cross section under investigation, which is 20 cm downstream the release gate, will be

hereafter referred to as upper cross-section, while the second one, which is 35 cm downstream the

release gate, will be referred to as lower cross-section. The rationale for choosing the first cross

section is the following: it has to be far enough from the opening gate to avoid strong curvatures

of flow lines.

Moreover, since the flow depth typically is found to decrease with x, the second investigated

cross section was chosen at the lowest point, where the flow depths were still big enough to allow

to obtain a reasonable number of data points in the velocity profiles.

The complete set of recordings is reported in Table 3.3. The frame rate was set to 2000 fps for

every recording. The Identification code of recording is reported in the first column. The position

of the cross section is reported in the second column. The camera position is in Column 3. The

number of experiment repetitions are reported in Column 4. Finally, information about the camera

parameters, such as spatial resolution, lens aperture, shutter time, are reported in columns 5, 6
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and 7, respectively.

Identification code Cross section View Rep. Spat. res. Aperture Shutter

R-28s-UP x=20 cm Side 4 312×648 f/2 100 µs

R-28s-DOWN x=35 cm Side 4 312×648 f/2 100 µs

R-28s-FRONTUP x=20 cm Front 4 312×648 f/4 200 µs

R-28s-FRONTDOWN x=35 cm Front 4 312×648 f/4 200 µs

R-31s-UP x=20 cm Side 5 312×648 f/2 100 µs

R-31s-DOWN x=35 cm Side 4 312×648 f/2 100 µs

R-31s-FRONTUP x=20 cm Front 4 312×648 f/4 200 µs

R-31s-FRONTDOWN x=35 cm Front 4 312×648 f/4 200 µs

R-34s-UP x=20 cm Side 4 312×648 f/2 100 µs

R-34s-DOWN x=35 cm Side 4 312×648 f/2 100 µs

R-34s-FRONTUP x=20 cm Front 4 312×648 f/4 200 µs

R-34s-FRONTDOWN x=35 cm Front 4 312×648 f/4 200 µs

R-40s-UP x=20 cm Side 5 312×648 f/2 100 µs

R-40s-DOWN x=35 cm Side 4 312×648 f/2 100 µs

R-40s-FRONTUP x=20 cm Front 4 312×648 f/4 200 µs

R-40s-FRONTDOWN x=35 cm Front 4 312×648 f/4 200 µs

R-31r-UP x=20 cm Side 4 312×748 f/2 100 µs

R-31r-DOWN x=35 cm Side 4 312×748 f/2 100 µs

R-31r-FRONTUP x=20 cm Front 4 312×648 f/4 200 µs

R-31r-FRONTDOWN x=35 cm Front 4 312×648 f/4 200 µs

R-34r-UP x=20 cm Side 3 312×648 f/2 100 µs

R-34r-DOWN x=35 cm Side 4 312×648 f/2 100 µs

R-34r-FRONTUP x=20 cm Front 4 312×648 f/4 200 µs

R-34r-FRONTDOWN x=35 cm Front 4 312×648 f/4 200 µs

R-40r-UP x=20 cm Side 4 312×648 f/2 100 µs

R-40r-DOWN x=35 cm Side 4 312×648 f/2 100 µs

R-40r-FRONTUP x=20 cm Front 4 312×648 f/4 200 µs

R-40r-FRONTDOWN x=35 cm Front 4 312×648 f/4 200 µs

Table 3.3: Complete list of high-speed recordings.
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Steady state

The first problem was to verify the occurrence of a statistically steady state at the different

channel slopes under investigation. It is important to point out that, strictly speaking, steady state

does not occur in rapid granular flows, similarly to what happens in turbulent Newtonian flows.

In fact, there are continuous fluctuations of the flow velocities, due to grain collisions (i.e. non-null

granular temperature), and so the flow velocity field depends on time. Nonetheless, a statistically

steady state can be defined. Namely, it is reached when the time averaged physical quantities are

unchanging in time. The time average of a given physical quantity f can be calculated as follows

f =
1

T

∫ T

0

f (t) dt (3.4)

where T is a sufficiently large time to avoid residual fluctuations of f . The problem of practically

choosing an optimal value for T , in the present experimental analysis, is addressed in the next

subsection.

A preliminary side view recordings at the frame rate of 500 fps were carried out for each slope

under investigation. Each of these recordings has a time extent of 6.7 s. These recordings are not

for PIV analysis but for manually checking the evolution of flow depths in time. We verified that

after a few seconds after the release, the flow depths became almost constant at the different cross

sections, except for some oscillations, due to grain saltations at the free surface.

It is worth noting that, although the flow depth in the tank actually reduces as the time goes

on, an almost steady state is observed after a few seconds after the beginning of the release. This

behaviour is also confirmed by other experimental investigations on the same granular material,

in which the mass flow rate was also measured (Tai and Lin, 2008). Such an apparently strange

phenomenon is explained by the fact that, differently from what it is observed in clear water and

Newtonian fluids, the outflow rate of dry granular material from a small orifice weakly depends on

the hydraulic head (e.g. Savage, 1984).

In addition to this preliminary check, the occurrence of an almost steady state is further verified,

through the PIV analysis of recordings at 2000 fps (i.e. those reported in Table 3.3), by comparing

the velocity profiles at different time intervals. Each recording is composed of 1676 couples of

frames which corresponds to a total recording time of 1.676 s. The PIV analysis provides as many

velocity profiles at the two chosen cross sections. From PIV data, we calculated the time-averaged

velocity profiles over three separate time intervals of 0.5 s (i.e. 500 frame pairs). In other words,

from each recording, we used the first 500 frames pairs to obtain the first time-averaged velocity

profile; then we used the frame pairs between 501th and 1000th to obtain the second velocity

profile. Similarly, the third velocity profile has been obtained by calculating the time-average

velocity profile from 1001th to 1500th frame pairs. These three profiles are carefully compared each

other for each repetition of each recording.

Some examples of these preliminary comparisons are reported in Figs. 3.5 and 3.6 (recording

R-40s-UP). Here and afterwards in this Chapter, the velocity profiles are plotted in dimensionless

form, by following the same scaling proposed by Midi (2004); Forterre and Pouliquen (2008). In

particular, the flow velocity is normalized by the quantity
√
gd, while the distance from the bed

surface z is divided by d.

In Figs. 3.5 and 3.6, the left-hand diagrams represent the z-component of flow velocity along
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the flow depth, while the right-hand one are the x-component of the flow velocity. As evident

from the figures, the x and z components of flow velocities are weakly dependent on the chosen

time interval. Similarly, also the relative standard deviations are almost independent on the time

interval. The same behaviour is also observed, when comparing the time averaged velocity profiles,

obtained from two different repetitions of the same experiment.

These comparisons have been performed for each experiment (at different repetitions) and yield

analogous satisfactory results. Therefore, we can reasonably state that an almost steady-state is

reached in every experiment, except for the run R-28r in which, as already said, a prematurely

stop was observed.
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Velocity profile at x=20cm, 40◦ smooth bed - Average over 500 frame pairs

 

 

ux, uz(frame pairs 1-500)
ux, uz(frame pairs 501-1000)
ux, uz(frame pairs 1001-1500)
Std. deviation

uz component

ux component

Figure 3.5: Time averaged velocity profiles over different time intervals (recording R-40s-UP, 1st

repetition). Both x and z components of the velocity vector are reported.

3.2.4 Time averages

Another important concern is the identification of an acceptable value for the time window,

T , to be used in time averages in Eq. (3.4). In order to get steady state velocity profiles, the

time window, T , has to be big enough to filter out all velocity fluctuations. Hence, the minimum

acceptable value of T is expected to depend on the flow dynamics and, in particular, on granular

temperatures. Moreover, the PIV technique may introduce some errors, that add additional noise

to the velocity profiles. A proper time averaging is also useful to eliminate this kind of additional

artificial noise.

For every recording, different velocity profiles have been calculated over the following different

time windows

T ∈ {0.01 s, 0.02 s, 0.05 s, 0.10 s, 0.25 s, 0.50 s, 1.00 s, 1.676 s} . (3.5)

The maximum value, that has been investigated, Tmax = 1.676 s, corresponds to the total extent

of every high-speed recording and, thus, cannot be exceeded. All different time averaged velocity

profiles have been compared, in order to identify the minimum value of T , above which the velocity
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Figure 3.6: Time averaged velocity profiles over different time intervals (recording R-40s-UP, 2nd

repetition). Both x and z components of the velocity vector are reported.

profile is found to be reasonably unchanging. In order to analytically estimate the deviations of

different time averaged velocity profiles, an error index, of the type of the normalized 1-norm, is

defined as follows

E(T ) =

∑N
i=1 ‖ui(T )‖ − ‖ui (Tmax)‖∑N

i=1 ‖ui (Tmax)‖
, (3.6)

where ui(T ) represents the i-th velocity vector, time-averaged over T , and N is the total number

of data points of the velocity profile. The error index, defined in Eq. (3.6), is an estimate of

the deviation of a given time averaged velocity profile from that one, time averaged over the

total recording time Tmax. The critical value of T is defined as the minimum value over which

E(t) ≤ 0.01. In principle, such a value varies from one experiment to another.

By way of example, the comparisons among different time averaged velocity profiles from the

recording R-40s-UP (smooth bed) and R-40r-UP (rough bed), are shown in Figs. 3.7 and 3.8,

respectively. Also the velocity profiles, obtained without time averaging, have been added in these

diagrams. Firstly, as one can easily see from Figs. 3.7 and 3.8, velocity fluctuations have stronger

effects in z component velocity profiles. This is mainly due to the fact that uz are about tenfold

smaller than ux. As well, in Tables 3.4 and 3.5, the error indexes E, corresponding to different

time-averaged velocity profiles, are shown. From Table 3.4, one can notice that the critical time is

approximately equal to T = 1s. Similarly, as reported in Table 3.4, the critical time for experiment

R-40r-UP is still around T = 1s, though it is somehow smaller than the case R-40s-UP. Similar

findings have been observed in the comparisons, related to different recordings. Generally speaking,

it has been found that the critical value of T increases with the bottom slope and, in particular,

with the maximum flow velocity. Moreover, experiments over smooth basal surface typically exhibit

slightly bigger values of the critical T , if compared with experiments over rough basal surface at the

same inclination. This finding suggests that there is a dependence of T on the granular temperature

and, hence, on the flow regimes. Nonetheless, the differences among the critical values of T have
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T E(T )

0.01 s 0.0763

0.02 s 0.0577

0.05 s 0.0436

0.10 s 0.0426

0.25 s 0.0444

0.50 s 0.0171

1.00 s 0.0094

Table 3.4: Deviations of time averaged ve-

locity profiles (exp. R-40s-UP), measured by

means of error index, defined in Eq. (3.6).

T E(T )

0.01 s 0.0287

0.02 s 0.0263

0.05 s 0.0107

0.10 s 0.0114

0.25 s 0.0181

0.50 s 0.0108

1.0 s 0.0069

Table 3.5: Deviations of time averaged ve-

locity profiles (exp. R-40r-UP), measured by

means of error index, defined in Eq. (3.6).

been found to be quite small in the present dataset.

Therefore, a time window equal to T = 1.0 s, corresponding to 1000 frame pairs, has been

used for calculating all the velocity profiles presented in this Chapter and used in the rest of this

dissertation.
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Figure 3.7: Comparisons among different time averaged velocity profiles from the recording R-40s-

UP; x-components and z-components of the flow velocity vectors are reported in the top frame

and in the bottom frame, respectively.
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Figure 3.8: Comparisons among different time averaged velocity profiles from the recording R-40r-

UP; x-components and z-components of the flow velocity vectors are reported in the top frame

and in the bottom frame, respectively.
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3.2.5 Side-wall velocity profiles

In this section the velocity profiles, measured at the side wall, are presented and carefully

compared. All the diagrams here reported have been obtained by time-averaging the flow velocity

measurements over a time window equal to 1 s (i.e. 1000 frame pairs).

Smooth bed runs

At first, we are going to show the data, related to the experiments, performed over smooth bed

surface.

In Fig. 3.9 the x and z-components of the flow velocity vectors at the Upper cross section are

reported. As well, in Fig. 3.10 the velocity profiles at the lower cross section are shown. Together

with the time averaged values, the relative Standard Deviations are also reported.

As one can easily see from the x-component of velocity vectors in Figs. 3.9 and 3.10, at the

small inclinations angles (i.e. 28◦ and 31◦) there is a lower zone almost at rest. This is very

interesting because it means that a no-slip boundary condition could be found also in smooth bed

runs. It could seem strange, if we consider that the basal friction angle, δs, in the case of smooth

bed surface, is smaller than all the investigated inclination angles (cf. Table 3.1). Nonetheless, the

reason of this apparently strange phenomenon can be found in the effect of side wall resistances.

In fact, in channelized flows and, in particular if the channel width is narrow, compared to the

flow depths, the side walls have an important influence on the flow dynamics. Conversely, at big

inclination angles (i.e. 34◦ and 40◦) there is a slip boundary condition, i.e. a non-null velocity at

the basal surface. In such a case, the mass forces are stronger. Hence, the resistances at the basal

and side wall surfaces are not sufficient to enforce a no-slip bottom boundary condition.

By focusing on the x-component of velocity vectors, we notice that the velocity profiles exhibit

clearly different behaviours at different slopes. In the case of no-slip boundary condition, the

x-component velocity profiles have a convex shape and seem to be composed of two zones with

different behaviours. In the first one, which is near the free surface, the velocity exhibits an almost

linear profile. In the second zone, that goes down to the basal surface, the velocity profile consists

of an exponential tail, in which the x-component of velocity goes asymptotically to zero with a

zero gradient. A similar behaviour has been observed in other experimental configurations and

different granular materials, e.g. in heap flows and rotating drum experiments reported in Midi

(2004). What there is in common among these different experimental set-ups is the occurrence

of a no-slip bottom boundary condition. In the case of slip boundary condition, instead, the

velocity profile is clearly linear, as observed in R-40s-UP and R-40s-DOWN. Somehow, Exp. R-

34s represents an intermediate case. In fact, while in the Upper cross-section (cf. R-34s-UP) a

slip boundary condition is observed but the velocity profile still has a slightly convex shape, in the

Lower cross-section (cf. R-34s-DOWN) the slip velocity is bigger and the velocity profile is almost

linear.

As regards the standard deviations in the x-component plots, it is interesting to note that they

slightly increase with the flow velocity, although this behaviour is more evident in Experiments

R-28s and R-31s. At the free surface, in some profiles the standard deviation increases rapidly. It

could be mainly due to the fact that the flow depth is constant, only in a time-averaged sense, owing

to grain saltation and rearrangements. Such saltating particles may induce additional velocity
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Figure 3.9: x and z components of the flow velocity at x = 20 cm from the release gate with related

standard deviation (smooth bed condition). Velocity vectors have been averaged over 1000 frame

pairs, from repetition No.1.
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fluctuations at the free surface. Moreover, whenever the interrogation areas across the free surface

were not completely “full” of grain particles, the PIV analysis might produce some calculation

errors.

As regards the z-component velocity profiles in Figs. 3.9 and 3.10, firstly, it is important

to point out that the z-component of velocity vector is much smaller (about 1/10) than the x-

component. This behaviour is widely expected in shallow flows and partially supports the well-

known assumption of Long Wave Approximation, usually employed for the derivation of depth-

average mathematical models. Moreover, it is noteworthy that z-component of flow velocities

are practically always negative, namely the grain particles are subjected to a slow, yet continuous,

falling down. By observing several high-speed recordings in slow-motion with naked eyes, we found

that this phenomenon seems to be due to the effect of grain rearrangements. Typically, during

the motion, the granular pile is subjected to a continuous shearing that, from time to time, causes

the development of “holes”. Such holes are rapidly filled up by other grain particles, that fall into

them owing to gravity.

The z-components of flow velocity increase with the distance from the bottom surface but

exhibit their maximum value noticeably below the free surface (within a distance of about 3-

10 grain diameters). At the bottom surface, because of the kinematic boundary condition (i.e.

v · n = 0), the z-component velocity should be rigorously null. It seems to be in contrast with

some of the PIV measurements, that yield non-null values, in particular for Experiments R-34s

and R-40s. This disagreement is partially due to the fact that the first point of the velocity profile

is not exactly on the bottom surface but a little bit above it, because it is referred to the centre

of the interrogation area and not to its boundary. The standard deviations tend to increase with

the time-averaged values, quite similarly to what observed about the x components, but are quite

constant near at the free surface, although the time-averaged values here decrease.

Rough bed runs

In Figs. 3.11 and 3.12 are shown the dimensionless velocity profiles, obtained in rough bed

runs, at the cross sections x = 20 cm and x = 35 cm, respectively.

As regards the x-component of velocity vectors, the shape of the velocity profiles is similar to

what observed in Experiments R-28s and R-31s over smooth bed surface: there is a linear behaviour

at the top and an exponential tail in the lower part with an almost zero velocity gradient at the

bottom. In this case, a no-slip bottom boundary condition and convex shaped velocity profiles are

observed for every inclination angle. Namely, in the case of rough bed condition, it was not possible

to observe a slip bottom boundary condition, even at the highest inclination angle investigated

(i.e. 40◦). By observing the velocity profiles in Figs. 3.11 and 3.12, it could be inferred that the

quasi-static zone can be further divided into two zones: a lower one where the granular material

is at rest and an upper one where exhibits an exponential velocity profile. These two zones can

be clearly identified in Exp. R-31. However, through taking long exposure photographs, Komatsu

et al. (2001) observed that the effective flow depth is far bigger than what appears in high speed

recordings, owing to a slow creep motion of grain particles. Therefore, a threshold velocity should

be used to arbitrarily separate the “deposit” from the flowing zone.

Again, it is worth noticing that the kinematic boundary condition at the bottom is the main

factor that governs the flow behaviour. However, owing to the bigger resistance at the bottom
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surface, the flow velocities are always smaller, with respect to the smooth bed runs with the same

inclination angle.

In velocity plots referred to runs R-34r-DOWN and R-40r-DOWN, a slight decrease of the

partial derivative of time-averaged velocity, ∂zux, is observed near the free surface. It could be due

to the already mentioned uncertainty of the PIV analysis at the free surface.

Regards the standard deviations, they have a trend, similar to what observed in smooth bed

runs, although they are generally smaller.

Now, let us examine the diagrams of the z component of flow velocity. Analogously to what

observed in smooth bed runs, the z-components are always negative. Moreover, they have their

maximum value below the free surface. Since the z-components of flow velocities are likely to be

induced by grain rearrangements, their maximum values are located where such arrangements are

expected to be more frequent. Standard deviation follow a trend, similar to what observed in

smooth bed experiments.
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Figure 3.10: x and z components of the flow velocity at x = 35 cm from the release gate with

related standard deviation (smooth bed). Average over 1000 frame pairs, from repetition No.1.
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Figure 3.11: x and z components of the flow velocity at x = 20 cm from the release gate with

related standard deviation (rough bed condition). Average over 1000 frame pairs, from repetition

No.1.
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Figure 3.12: x and z components of the flow velocity at x = 35 cm from the release gate with

related standard deviation (rough bed). Average over 1000 frame pairs, from repetition No.1.
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Id. ux,mean/minux maxux/minux

R-28s-FRONT-UP 1.64 1.91

R-28s-FRONT-DOWN 1.47 1.66

R-31s-FRONT-UP 1.23 1.29

R-31s-FRONT-DOWN 1.24 1.31

R-34s-FRONT-UP 1.13 1.15

R-34s-FRONT-DOWN 1.12 1.14

R-40s-FRONT-UP 1.07 1.09

R-40s-FRONT-DOWN 1.07 1.09

Table 3.6: Ratios between the mean value of ux along the cross section and its minimum value (at

the side wall). Smooth bed runs.

3.2.6 Free surface velocity

Beside the velocity profiles at the side wall, we obtained also the velocity distribution at the

free surface at the Upper and Lower cross sections. In Figs. 3.13 and 3.14 the free surface velocities

at x = 20 cm and x = 35 cm, related to smooth bed runs, are reported. As well, the free surface

velocities related to rough bed runs are shown in Figs. 3.15 and 3.16.

As one can easily see, both x and z components of the flow velocity exhibit an almost symmet-

rical shape. While, the x component of the flow velocity have its maximum value at the centreline,

the z component of flow velocity exhibits its maximum value not far from the side walls and has

null values at the side walls and at the centreline.

In Table 3.6 are reported the ratios between the mean and the minimum values of ux at the free

surface, at different slopes and cross sections, related to smooth bed runs. In Table 3.7 are reported

the ratios between the mean and the minimum values of ux at the free surface, at different slopes

and cross sections, related to rough bed runs. It is interesting to notice that the ratio between the

mean velocity across the cross section and the value at the side walls, which also corresponds to the

minimum value, slightly decreases as the inclination angle increases presumably together with the

flow rate. This behaviour is rather different to what found e.g. in Jop et al. (2005). For instance,

with reference to smooth bed experiments, there is an important difference between the smaller

slopes (i.e. 28◦ and 31◦), where the ratio is about 1.5-1.6, and the run at higher slope that exhibits

values between 1.07-1.24. An analogous behaviour has been found in rough bed experiments (cf.

Table 3.7).

The ratios between the mean and the minimum values of ux at the free surface, will be used in

Chapter 5 in order to estimate the velocity profile, depth-averaged across the transverse y direction.

Such a treatment will be required for comparisons with numerical simulations, since the proposed

model is one-dimensional.

Moreover, although the x component velocity is by far higher than the transverse y component,

there is always a non-null y component due to the fact that the grains spread also laterally during

the fall at the free surface. This phenomenon can be reasonably explained considering the random

momentum exchanges after each collision between a given flowing grain with the underlying layer

of grains. It is very interesting to note that while the mean value of the y component of free surface
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Id. ux,mean/minux maxux/minux

R-31r-FRONT-UP 1.70 1.93

R-31r-FRONT-DOWN 1.70 1.94

R-34r-FRONT-UP 1.14 1.18

R-34r-FRONT-DOWN 1.13 1.17

R-40r-FRONT-UP 1.10 1.13

R-40r-FRONT-DOWN 1.07 1.09

Table 3.7: Ratios between the mean value of ux along the cross section and its minimum value (at

the side wall). Rough bed runs.

velocity increases with the inclination angle (cf. runs R-28s-FRONT-UP and R-31s-FRONT-UP),

its maximum value is reached in the run R-34s-FRONT-UP and R-34s-FRONT-DOWN and not

at the highest inclination angle. In particular, the distribution of uy in R-40s-FRONT-DOWN

is much more blunt at the middle of the chute. This behaviour might be caused by the higher

values of ux at the highest chute inclination angle, that seems to reduce somehow such a secondary

transverse spreading.
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Figure 3.13: x and z components of flow velocity at free surface (x = 20 cm), smooth bed condition.

Average over 1000 frame pairs, from repetition No.1.
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Figure 3.14: x and z components of flow velocity at free surface (x = 35 cm), smooth bed condition.

Average over 1000 frame pairs, from repetition No.1.
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Figure 3.15: x and z components of flow velocity at free surface (x = 20 cm), rough bed condition.

Average over 1000 frame pairs, from repetition No.1.
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Figure 3.16: x and z components of flow velocity at free surface (x = 35 cm), rough bed condition.

Average over 1000 frame pairs, from repetition No.1.
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Chapter 4

Two-layer depth-averaged models

Chapter Summary

In Chapter 3 we have reported an experimental study on the velocity profiles in steady-state

dry granular flows. By experimental results, it is clear that in case of no-slip bottom boundary

condition there exists a stratification of flow regimes. This situation can be induced by a sufficiently

rough basal surface, as observed in rough bed experiments, but also by the side wall friction, as

observed in smooth bed experiments at low inclination angles. Moreover, in Chapter 2 we have

shown some issues about using a Savage-Hutter type model for describing the avalanche spreading

in case of rough bed conditions. The main uncertainties are found, particularly, in the choice of

the earth pressure coefficient and the basal resistance.

We believe that the source of these problems relies on the rheological stratification occurring

inside the flowing pile. For a proper description of such a stratification, we propose a two-layer

depth-averaged approach that would be able to capture the main features of quasi-static and dense-

collisional regimes. In this way, while preserving the simplicity and the small computational load

of depth-averaged models, the capability of the mathematical model to describe the actual flow

dynamics is increased.

Firstly, a short review of two-layer depth-averaged models is given. Particular attention has

been paid to describe the main mathematical issues of a two-layer approach, like the loss of hyper-

bolicty.

Then, a two-layer depth-averaged model for describing dry granular flows is proposed. The

important choice of the resistance formulae both at the basal surface and at the interface between

the two layers is dealt with carefully. In order to prevent the loss of hyperbolicity, a local modi-

fication of the source terms is proposed. The numerical scheme, for the numerical integration of

the proposed model, is, then, presented. Some tests are shown at the end of this Chapter with

the aim to highlight the main features of the proposed approach. Conversely, a careful comparison

between the two-layer mathematical model and experimental data will be reported in Chapter 5.

75
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4.1 Two-layer depth-averaged models

The two-layer depth-averaged mathematical models have been formulated in a hydrodynamic

context, in order to describe superimposed flows of two immiscible fluids with different densities

(see e.g. Long, 1956; Lawrence, 1990). In stable conditions (hereafter it will clear in which sense),

such kind of flows exhibits a sharp stratification of the two fluids, in which the denser fluid is below

the lighter one, for the equilibrium stability.

The one-dimensional two-layer model, written in Cartesian coordinates (x, z) and without

friction at the bottom and at the interface between layers, can be regarded as the simplest form of

two-layer depth-averaged models. It consists of the following partial differential equations (PDE)

system (e.g. Castro et al., 2002; Kim and LeVeque, 2008)

∂h1

∂t
+
∂h1u1

∂x
= 0

∂h1u1

∂t
+

∂

∂x

(
1

2
gh1

2 + β1h1u1
2

)
= −gh1

∂h2

∂x
− gh1

∂b

∂x

∂h2

∂t
+
∂h2u2

∂x
= 0

∂h2u2

∂t
+

∂

∂x

(
ρ1

ρ2
gh1h2 +

1

2
gh2

2 + β2h2u2
2

)
=
ρ1

ρ2
gh1

∂h2

∂x
− gh2

∂b

∂x
(4.1)

where, while the subscript 1 refers to the upper layer, the subscript 2 refers to the lower layer; t is

time and x is the reference axis parallel to principal direction of motion, while the coordinate axis

z is chosen parallel to the gravity field; h1, u1 and h2, u2 are the flow depths and the flow velocities

of the upper layer and lower layer, respectively; g is the gravity acceleration; b(x) is the bottom

topography. Moreover, ρ1 and ρ2 represent the densities of each layer. Owing to the equilibrium

stability, it is required that ρ1 ≤ ρ2. The derivation of the PDE system (4.1) can be obtained

similarly to the Shallow Water equations, after depth-integrating mass and momentum equations

in both layers together with some simplifying assumptions (i.e. Long wave approximation). The

symbols β1 and β2 stand for the Boussinesq coefficients. While the first and second equations in

System (4.1) represent the mass and momentum balance equations of the upper layer, the third

and fourth ones are the mass and momentum equation of the lower layer. For the sake of simplicity,

in the following, β1 = β2 = 1 and a flat bottom topography (i.e. b(x) = 0) are assumed. A simple

scheme of the flow geometry is reported in Fig. 4.1.

Although it is out of the scope of this dissertation, it seems useful to observe that a general-

ization of System (4.1) to more than two layers is not difficult to be derived and can be found for

example in Audusse (2005).

Eigenvalue structure of the two-layer model

Firstly, differently from the single layer Shallow Water equations, in the right-hand side of

system (4.1) there are two non-conservative terms, depending on the spatial derivatives of the

lower layer flow depth, h2, by which the two momentum balance equations are coupled. These

terms are intrinsically non-conservative, as they cannot be put inside the flux term in the left-hand

side. From a physical viewpoint, these terms account for the momentum exchanges at the interface

between the two layers, due to the interface slope. A first mathematical issue, arising from the
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Figure 4.1: Geometry of one-dimensional two-layer flow (hypothesis of constant velocity profiles,

i.e. β1 = β2 = 1).

presence of such non-conservative terms, is that the two-layer depth-averaged model (4.3) cannot

be written in conservative form. This creates some difficulties in finding proper weak solutions, in

presence of shocks waves (e.g. Abgrall and Karni, 2009).

It is worth highlighting that the conservative pressure term in the lower layer momentum

equation is actually composed of two terms. The reason of this expression is obvious. Provided

that a pressure hydrostatic distribution is assumed in both layers (which directly comes from the

Long Wave approximation, the pressure distribution in the lower layer is the sum of the pressure

at the interface ρ1gh1, plus a linear term, accounting for the distribution along the lower layer

depth, ρ2g (h2 − z).
By using the product rule of partial differentiation, it is possible to recast the former term, as

follows

∂x

(
ρ1

ρ2
gh1h2

)
=
ρ1

ρ2
gh1∂xh2 +

ρ1

ρ2
gh2∂xh1. (4.2)

Then, after cancelling out the term ρ1/ρ2gh1∂xh2, that appears both in the left hand side and

right hand side of the lower layer momentum equation, the PDE system (4.1) is recast as follows

∂h1

∂t
+
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= 0
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+

∂
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(
1

2
gh1

2 + β1h1u1
2

)
= −gh1
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∂h2

∂t
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∂h2u2

∂x
= 0

∂h2u2

∂t
+

∂

∂x

(
1

2
gh2

2 + β2h2u2
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)
= −ρ1

ρ2
gh2

∂h1

∂x
. (4.3)

Note that source terms, due to topography, vanish owing to the assumption that b(x) = 0.

In order to analyse the eigenvalue structure of a conservative PDE system, it is common to
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rewrite the PDE system in quasi-linear form

∂tq + ∂qf ∂xq = s (q) (4.4)

where ∂qf is the Jacobian matrix of the flux vector f .

Although the two-layer system (4.3) is not in conservative form, it is equally possible to rewrite

it in the following quasi-linear form

∂tq +A∂xq = s (q)

with the slight difference that, in this case, the matrix A does not correspond to the Jacobian

matrix of the flux vector because it comprises also non conservative terms on the right hand side

of momentum equations. More properly, it will be called pseudo-Jacobian matrix hereafter.

Because the vector of unknowns is

q = (h1, h1u1, h2, h2u2)
T

= (q1, q2, q3, q4)
T
, (4.5)

the flux can be written as function of q, as follows

f (q) =

(
q2,

1

2
g q2

1 + q2
2/q1 , q4,

1

2
g q2

3 + q2
4/q3

)T
. (4.6)

Therefore the pseudo-Jacobian matrix A can be written as sum of the Jacobian matrix ∂qf of the

flux vector and the matrix Anon−cons that collects non-conservative terms

A = ∂qf +Anon−cons =

=


0 1 0 0

gq1 − q2
2/q

2
1 2q2/q1 0 0

0 0 0 1

0 0 gq1 − q2
4/q

2
3 2q4/q3

+


0 0 0 0

0 0 gq1 0

0 0 0 0

ρ1/ρ2 g q3 0 0 0

 . (4.7)

The calculation of the eigenvalues of the pseudo-Jacobian matrix A, consists in finding the algebraic

roots of the characteristic polynomial

det (A− λI) = 0,

i.e. solving the following 4th order algebraic equation(
(λ− u1)

2 − gh1

)(
(λ− u2)

2 − gu2

)
=
ρ1

ρ2
g2h1h2. (4.8)

Generally speaking, a first order PDE system is hyperbolic when its pseudo-Jacobian matrix A is

diagonalizable with real eigenvalues for every solution q (e.g. LeVeque, 2002). Usually, mathemati-

cal models that describe the propagation of some physical quantities, i.e. wave-like phenomena, are

hyperbolic. From a more physical viewpoint, the hyperbolicty of a mathematical model implies,

as a direct consequence, that information propagates with a finite speed. Therefore, it takes a

finite amount of time for a given perturbation of the solution to propagate from a position, x1, to

another position, x2, of the spatial domain. Checking the hyperbolic character of a mathematical

model is also very important in order to give well-posed boundary conditions, as it will be clearer

further.
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By way of example, the De Saint Venant equations, which are the one-dimensional form of

the one-layer shallow water equations, have the well-know expressions for the eigenvalues: λ1, 2 =

u±√gh. Such eigenvalues represent the celerities of small free surface perturbations.

Conversely, in the case of two-layer shallow water model (4.3), it is not possible to have a

straightforward access to the system eigenstructure (e.g. Abgrall and Karni, 2009). Most com-

monly, some approximate formulae are used to numerically calculate eigenvalues. Under the as-

sumption of ρ1 ≈ ρ2 and to O (u1 − u2), Castro et al. (2002) reports the following formulae

λout =
h1u1 + h2u2

h1 + h2
±
√
g (h1 + h2), (4.9)

λin =
h1u2 + h2u1

h1 + h2
±

√√√√g′
h1h2

h1 + h2

[
1− (u2 − u1)

2

g′ (h1 + h2)

]
. (4.10)

where g′ = g (1− ρ1/ρ2) is a reduced gravity. The minimum and maximum eigenvalues, which

are obtained through Eqs. (4.9), are sometimes called barotropic celerities (Audusse and Bristeau,

2007) or, simply outer eigenvalues, and refer to the celerities of small level perturbations at the

free surface. It is interesting noting that with the current assumptions, these eigenvalues match

with those of a single-layer current with a flow velocity equal to the depth-averaged velocity and a

flow depth equal to the sum of the layer flow depths. On the other hand, eigenvalues calculated by

means of Eqs. (4.10), usually called baroclinic celerities (Audusse and Bristeau, 2007) or simply

inner eigenvalues, are the celerities of small level perturbations at the interface between the two

layers.

Hyperbolity Loss

It can be easily noticed that the inner eigenvalues are real numbers, as long as

(u2 − u1)
2

g′ (h1 + h2)
≤ 1. (4.11)

When Cond. (4.11) is not fulfilled the approximate eigenvalues become conjugate complex num-

bers. It should be kept in mind that Cond. (4.11) is only a crude approximate condition for sys-

tem hyperbolicty, since it is obtained from an approximated form for calculating the eigenvalues.

Nonetheless, Eq. (4.11) is useful to better understand which role the different physical quantities

play with respect to this kind of instability. In fact, from Eq. (4.11) one can immediately notice

that the difference of flow velocities between the two layers has a very strong destabilizing effect,

while the total flow depth h1 + h2 as well as the density ratio ρ2/ρ1 have a stabilizing effect. In

particular, it can be easily shown that in the case of no density difference between layers, i.e.

ρ1 = ρ2, the system is non-hyperbolic as soon as a non-null shear velocity between layers occurs.

From what has been said, the system (4.3) is only conditionally hyperbolic. More precisely, it

becomes not hyperbolic for all values of solution q that cause the inner eigenvalues to be complex

conjugate numbers.

The hyberbolicity loss of the mathematical model sometimes corresponds to a particular phys-

ical phenomenon that is a dynamical instability of the interface between the fluids, called Kelvin-

Helmotz instability after L. Kelvin and H. von Helmholtz (e.g. Kim and LeVeque, 2008). It consists
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of the occurrence of large eddies at the interface and causes a strong mixing and momentum ex-

change between the two layers. This kind of instability is often visible in planet atmospheres and

is due to the velocity shear between the superimposed fluids at different densities. In Fig. 4.2

it is reported an example of Kelvin-Helmotz instability, observed by Brown and Roshko (1974),

consisting of a plane turbulent mixing between two streams of different gases. In other situations,

the hyperbolicity loss is due only to the mathematical assumptions used for the derivation of the

two-layer model, e.g. constant velocity distribution and hydrostatic pressure distribution inside

the layers. Therefore, in these cases a better description of the physics would avoid this kind of

instability.

Nonetheless, once the inner eigenvalues become conjugate complex numbers, the mathematical

model ceases to be hyperbolic and becomes elliptic. Hence, the model breaks down as it is not useful

for describing wave-like phenomena any more. From a mathematical viewpoint, an elliptic PDE

system requires that boundary conditions be assigned along the all spatial-domain boundaries. In

particular, in order to “predict” the flow evolution in a time interval T , the final solution should

be known and set as boundary condition (e.g. Gray, 1999). Hence, the model is useless because of

the lack of causality.

Figure 4.2: An example of Kelvin-Helmotz instability (plane turbulent mixing between two streams

of different gases). From Brown and Roshko (1974).

After choosing a particular value of the density ratio ρ1/ρ2, it is possible to numerically calculate

the hyperbolic and non-hyperbolic domains in the space of solutions. In Fig. 4.3 an example of

such a computation, presented in Castro-Dı́az et al. (2011), is shown. As one can easily see from

Fig. 4.3, the higher is the density ratio, the wider is the non-hyperbolic domain. Moreover, it is

worth noting that an hyperbolic region also exists where the flow shear velocity is very high (e.g.

Greco et al., 2008; Castro-Dı́az et al., 2011). Nevertheless, this situation is unlikely to be observed

in real flows, because the system has to go across the non-hyperbolic domain and it causes a

non-reversible mixing due the Kelvin-Helmotz instability.

Stabilizing effect of resistances

The system (4.3) has been derived under the simplifying hypotheses of no resistances at the

interface and at the bottom surface. Hence, it has to be regarded as an ideal case. In practical

applications, we deal with real fluids and thus, non-null resistances at the bottom and at interface



CHAPTER 4. TWO-LAYER DEPTH-AVERAGED MODELS 81

Figure 4.3: Hyperbolic (blue) and non-hyperbolic (red) domains at different density ratios ρ1/ρ2.

From Castro-Dı́az et al. (2011).

are expected and depend on the particular fluid rheology. After choosing an appropriate rheology,

at the interface typically there would be a non-null momentum flux, that goes from the faster layer

towards the lower one and, hence, reduces somehow the shear velocity between the two layers, with

respect to ideal case, i.e. System (4.3), (e.g. Kim and LeVeque, 2008).

Recent applications of two-layer and multi-layer depth-averaged models

Despite the important issue, related to the loss of hyperbolicity, the two-layer shallow water

models and, in general, multi-layer models have attracted much interest in the field of fluid dy-

namics and hydraulic engineering. The possible applications go far beyond the simplest case of two

immiscible fluids and turn out to be very attractive because of the relatively low computational

load. Here, we like to cite only some of the most recent papers that made use of a multi-layer

approach. By way of example, Capart and Young (2002) proposed a two-layer model for describing

erosion and bed-load in the context of geomorphic flows; successively, Chen and Peng (2006) and

Chen et al. (2007) used a similar two-layer model in order to study confluence problems and describe

the intrusion of a mud flow into quiescent water. Fernández-Nieto et al. (2008) proposed a two-layer

Savage-Hutter type model for studying submarine avalanches and the subsequent tsunamis; Luca

et al. (2010) formulated a three-dimensional two-layer model in topography-adjusted coordinate

system for geophysical mass flows, such as debris flows, hydraulic sediment transport and turbidity

currents. Audusse (2005) and Audusse and Bristeau (2007) proposed a multi-layer approach in

order to reproduce the dynamics of clear water free surface flows, as a cheaper computational alter-

native to the fully three-dimensional Navier-Stokes equations. Doyle et al. (2010) used a two-layer

approach to modelling the transformation of dilute-collisional pyroclastic into dense pyroclastic

flows. Castro et al. (2004) used a two-layer approach to model the stratified current, occurring

at the Gibraltar Strict, owing to the superimposition of the less salty Mediterranean water on the
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Atlantic Ocean water.

As a direct consequence of such a great interest on two-layer depth-averaged models, recently

many studies have also dealt with the numerical problems, related to this kind of models. In

particular, as regards the annoying issue of hyperbolicity loss, many attempts have been proposed.

A relatively recent and brief summary of the possible stabilizations is reported by Noelle (2010).

The proposed treatments to stabilize the hyperbolicity loss could be roughly divided into two types:

• treatments that operate at the mathematical “level”, by slightly changing the mathematical

model, so as to it becomes strictly hyperbolic;

• treatments that operate at the numerical “level”, by preventing the occurrence of numerical

instabilities, through specifically designed numerical treatments.

Yet, such a classification often turns out to be only apparent, since, sometimes, numerical schemes,

specifically designed to stabilize the hyperbolicty issues, are convergent to the solution of another

mathematical model which is strictly hyperbolic. This is the case of the modified multi-layer

model, proposed by Audusse (2005), in which non-conservative terms are treated as source terms

and integrated implicitly. An interesting approach to stabilize the hyperbolicity issue has been

proposed recently by Castro et al. (2010) and consists of adding a third intermediate layer near

the interface, that somehow describes the mixing layer that naturally occurs in presence of Kelvin-

Helmotz instability. In this approach, the two-layer model shifts into a three-layer model, that

typically exhibits a wider extent of hyperbolic domain in the space of solutions. Differently, aimed

at investigating in a simple way the eigenvalue structure of two-layer models, Abgrall and Karni

(2009) proposed a relaxation approach that also avoids the hyperbolicty loss. Finally, another

kind of treatments consists of adding friction at the interface of the two layers, as proposed e.g. in

Castro-Dı́az et al. (2011). This kind of approach will be discussed in detail hereafter, because it

has some common points with that one, proposed in the present dissertation.

4.2 A two-layer approach to describe dry granular flows

In the previous section, we have seen that a two-layer approach can be employed in many

contexts of applied fluid dynamics and hydraulic engineering. In the present dissertation, we

propose a similar approach to better describe the rheological stratification, found in channelised

dry granular flows in case of a no-slip bottom boundary condition.

In Chapter 2, the results of an experimental investigation, performed on Ottawa sand, showed

that, in case of no-slip bottom boundary condition, the velocity profile is composed of two zones

with quite different behaviours: an upper one, characterized by a linear velocity distribution, and a

lower one, where the flow velocity follows a negative exponential behaviour and goes towards zero

with zero gradient. Similar velocity profiles have also been found with different granular materials

in different studies (e.g. Midi, 2004).

In our approach, differently from the most classical applications, there is no difference in ma-

terial between the two layers: in fact, they are both composed of the same granular matter. The

only difference is due to the volume fraction and, hence, the bulk density. However, such a density

stratification is supposed to induce important differences in the flow dynamics, as the experimental

velocity profiles suggest.
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4.2.1 Two-layer model derivation

In this section, we derive the depth-averaged equations of a one-dimensional two-layer model

for describing dry granular flows. At the first, we obtain the depth-averaged equations without

simplifications, then, we simplify them by imposing the long wave like approximation. Note that

the derivation of this model can be performed in different ways, nonetheless, the structure of the

final system is similar to the two-layer shallow water model, presented in the previous Section.

In this case, a frame of reference be Cartesian is chosen such that the x-axis be parallel and

oriented according to the mean bed slope. This is advantageous for the derivation of the model

equations. Besides, let z-axis be upward oriented, so as to the coordinate system has a right-handed

orientation.

u
2

u
1

h
2 

h
1

ρ
1

ρ
2

x

z

α

Figure 4.4: Flow geometry and frame of reference (x is parallel to the basal channel slope).

In a fluid dynamics context, mass and momentum balance equations can be written as follows

in Cartesian coordinates 
∂ρ

∂t
+∇x · (ρv) = 0

∂ρv

∂t
+∇x · (ρv ⊗ v − T ) = ρg

(4.12)

(4.13)

where ρ is the fluid density, v the flow velocity, T the stress tensor with tension positive convention

and g the gravity vector. For conciseness. we used the tensor relation ∇x · (u⊗ u) = u (∇x · u) +

(∇xu)u (e.g. Gray et al., 1999).

In the present model, we assume that the whole granular flow is composed of two layers with

different densities, one on top of the other, and they are separated by an interface Γ. Such an



CHAPTER 4. TWO-LAYER DEPTH-AVERAGED MODELS 84

interface, that represents a geometric separation between two flows with different constitutive laws,

is supposed to be a non-material surface. Some similar assumptions can be found, for instance, in

Fraccarollo and Capart (2002),Brivois et al. (2007) or Lê and Pitman (2010).

The model equations can be derived by depth-integrating the mass and momentum equations

(4.12) and (4.13) along the flow depths of the two layers, together with suitable boundary con-

ditions. After obtaining the exact depth-integrated equations, some further simplifications can

be done, e.g. by using the well-known Long Wave Approximation or by means of an asymptotic

analysis (e.g. Savage and Hutter, 1989).

In Fig. 4.4 a sketch of the frame of reference together with a scheme of the two layer flow is

reported.

In the present two-layer model, we suppose that velocity and stress fields are continuous func-

tions inside each layer but exhibit a jump across the interface. We refer to these functions using

the subscripts 1 or 2 depending on whether they are calculated in the upper layer domain or in

the lower one. Moreover, it is supposed that the bulk densities, ρ1 and ρ2, are constant inside each

layer.

Jump conditions at the interface

Let us assume that the interface, Γ between the two layers can be described by means of the

following equation

Fi = z − i(x, t) = z − h2(x, t) = 0. (4.14)

where the distance i of the interface from the reference axis x. Because it is also assumed the

the basal topography is fixed and corresponds to the reference x axis, it turns out that i simply

corresponds to the flow depth of the lower layer, h1. Please, note that the unit normal, ni =

∇Fi/ ‖∇Fi‖ points upwards.

It is assumed that there is a jump at interface for any intensive quantity, defined in the flow

domain. Namely, for any given function f , defined in the flow domain, it is assumed that

lim
z→i+

f1 (x, z, t) 6= lim
z→i−

f2 (x, z, t) (4.15)

where i is the interface distance from the x axis.

We assume that a mass flux Mflux between the two layers may take place across the interface

Γ . Such phenomenon gives rise to volume exchanges into the two layers, E1 and E2. We prefer to

name these quantities volume exchanges instead of volume fluxes, because actually E1 6= E2, since

ρ1 < ρ2. Nonetheless, the mass conservation between layers does hold

E1ρ1 = E2ρ2 = Mflux. (4.16)

In order to obtain some useful conditions on the mass and momentum exchange across the

interface Γ, the Rankine-Hugoniot jump conditions (Rankine, 1870), expressing local conservation

of mass and momentum across a discontinuity, can be written with reference to the interface Γ as

[ρ (i) (v (i)− vint) · ni]21 = 0 (4.17)

[(ρ (i)v (i)⊗ (v (i)− vint)− T (i))ni]
2
1 = 0 (4.18)



CHAPTER 4. TWO-LAYER DEPTH-AVERAGED MODELS 85

where f1,2 (i) = lim
z→i+,i−

f1,2 (x, z, t), vint is the interface velocity (i.e. the velocity of a pseudo-

particle attached to the interface) and ni = ∇Fi/‖∇Fi‖ is the unit normal to the interface Γ.

By using Eq. (4.17), the volume exchange of the upper layer, E1, can be written as follows,

E1 =
Mflux

ρ1
= [v1 (i)− vint] · ni, (4.19)

where v1 (i) indicates the flow velocity at the interface, as limit from above. We followed the sign

convention according to which, E1 > 0, if the upper layer volume increase at the expense of the

volume of the lower layer. As well, the volume exchange of the lower layer, E2 can be written as

follows,

E2 =
Mflux

ρ2
= [v2 (i)− vint] · ni, (4.20)

where v2 (i) indicates the flow velocity at the interface, as limit from below. E2 > 0 when the

lower layer volume decreases, according to the aforementioned convention. Eqs. (4.19) and (4.20)

can be recast in the following expression

[v (i) · ni]21 = [E]
2
1 =

[ρ (i)]
2
1

ρ1 (i) ρ2 (i)
Mflux. (4.21)

This equation relates velocity and density jumps at the interface.

Moreover, by slightly manipulating the momentum jump condition (4.18), we get

[ρv · (v − vint) ni − T ni]21 = 0 ⇒ [v]
2
1Mflux = [T ni]

2
1 (4.22)

which is a general relation between the jump of the stress tensor and the velocity jump across the

interface. Such a condition turns out to be very useful in the derivation of the present two-layer

model. In fact, the closure equation to calculate the mass flux across the interface, will be defined

by means of the x component of Eq. (4.22), as it will be shown in detail in the following.

Depth-averaged mass equations

By integrating Eq. (4.12) along the upper layer flow depth, through using the Leibnitz rule

(A.3), the mass balance equation in the upper layer can be written as follows

∂

∂t

∫ hT

i

ρ1 dz +

[
ρ1
dz

dt

]i
hT

+
∂

∂x

∫ hT

i

ρ1v1,xdz +

[
ρ1v1,x

dz

dt

]i
hT

+ [ρ1v1,z]
hT
i = 0 (4.23)

where hT = h1 + h2, i is the distance of the interface form the reference x axis, h1 and h2 are

the flow depths measured along the z direction of the upper and lower layer, respectively. In the

present model we assume that the basal topography is constant, thus, i = h2.

It is useful to write the Kinematic boundary conditions (also referred to as KBC hereafter) at

free surface and at interface. Let us assume that the free surface can be described by means of the

following equation

Fs = z − hT (x, t) = 0. (4.24)

The normal unit vector points towards increasing z. Since the free surface is a material surface,

the KBC condition there can be written as follows

dFs
dt

= 0 ⇒ −∂hT
∂t
− ∂hT

∂x
v1,x + v1,z = 0. (4.25)
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Differently from the free surface, the interface is a non-material surface, hence the KBC there has

to be written as follows

dFi
dt

= 0 ⇒ ∂Fi
∂t

+ vint · ∇Fi = 0 ⇒ −∂h2

∂t
− ∂h2

∂x
vint,x + vint,z = 0 (4.26)

with vint being the interface velocity, instead of flow velocity.

By adding the term v1 · ∇Fi to both sides of Eq. (4.26) and using equation, expressing the

volume exchange in the upper layer, (4.19), Eq. (4.26) is recast as follows

− ∂h2

∂t
− ∂h2

∂x
· v1,x + v1,z = (v1 − vint) · ∇Fi = E1 ‖∇Fi‖ . (4.27)

By substituting Eqs. (4.25) and (4.27) into Eq. (4.23) and after some simplifications, we obtain

the following depth-integrated mass balance equation

∂h1

∂t
+
∂ (v1,xh1)

∂x
=
Mflux

ρ1
‖∇Fi‖ . (4.28)

Here and hereafter, we use the over-bar to denote the averaged value over the flow thickness, i.e.

h1f =

∫ hT

h2

fdz for the upper layer, h2f =

∫ h2

0

fdz for the lower layer. (4.29)

Analogously, we depth-integrate the mass equation along the flow depth of the lower layer. By

using the Leibnitz rule (A.3), we obtain

∂

∂t

∫ h2

0

ρ2 dz +

[
ρ2
dz

dt

]0

h2

+
∂

∂x

∫ h2

0

ρ2v2,xdz +

[
ρ2v2,x

dz

dt

]0

h2

+ [ρ2v2,z]
h2

0 = 0 (4.30)

Generally speaking, the bottom surface can be described by a function Fb = z − b(x, t) = 0.

Nonetheless, because a fixed plane bottom is assumed, i.e. b = 0, the corresponding KBC at the

bottom surface can be written in the following simplified way,

dFb
dt

= 0 ⇒ −∂b
∂t
− ∂b

∂x
v2,x + v2,z = 0 ⇒ v2,z = 0. (4.31)

Thanks to KBCs at the interface and at the bottom surfaces (4.26) (4.31) and after dividing all

terms by ρ2, Eq. (4.30) is recast as follows

∂ (h2)

∂t
+
∂ (v2,xh2)

∂x
= −Mflux

ρ2
‖∇Fi‖ . (4.32)

Depth-averaged momentum equations

Similarly, the depth-averaged momentum balance equations are derived. As regards the upper

layer, it can be written as follows

∂

∂t

∫ hT

i

ρ1v1dz +

[
ρ1v1

∂z

∂t

]i
hT

+
∂

∂x

∫ hT

i

(ρ1v1 ⊗ v1) êx dz+[
(ρ1v1 ⊗ v1) êx

∂z

∂x

]i
hT

+ [(ρ1v1 ⊗ v1) êz]
hT
i

− ∂

∂x

∫ hT

i

T1êx dz −
[
T1êx

∂z

∂x

]i
hT

− [T1êz]
hT
i =

∫ hT

i

ρ1g dz (4.33)
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where êx = (1, 0)
T

and êz = (0, 1)
T

represent the coordinate unit vectors and T1 represents the

stress tensor, defined in the upper layer domain.

The x component of Eq. (4.33) can be written as

∂

∂t
(v1,xh1) +

[
v1,x

∂z

∂t

]i
hT

+
∂

∂x

(
v1,x

2h1

)
+

[
v1,x

2 ∂z

∂x

]i
hT

+ [v1,xv1,z]
hT
i −

∂

∂x

(
t1,xxh1

)
−
[
t1,xx

∂z

∂x

]i
hT

− [t1,xz]
hT
i = gxh1 (4.34)

Since the free surface is assumed to be stress free, the Dynamic boundary condition (DBC) there

can be written as follows

T1n = 0 ⇒ −t1,xx∂xhT + t1,xz = 0 (4.35)

By using the KBC at free surface (4.25) and at interface (4.27), together with the DBC at the free

surface (4.35), Eq. (4.34) is recast

∂

∂t
(v1,xh1) +

∂

∂x

(
v1,x

2h1

)
− ∂

∂x

(
t1,xx
ρ1

h1

)
− v1,x|i

Mflux

ρ1
‖∇Fi‖ −

t1,xx
ρ1

∣∣∣∣
i

∂h2

∂x
+
t1,xz
ρ1

∣∣∣∣
i

= gxh1

(4.36)

where the symbol |i indicates that the argument is calculated at the interface i.

Similarly, the x-component of the lower layer depth-averaged momentum balance equation can

be written as follows

∂

∂t
(v2,xh2) +

∂

∂x

(
v2,x

2h2

)
− ∂

∂x

(
t2,xx
ρ2

h2

)
+ v2,x|i

Mflux

ρ2
‖∇Fi‖+

t2,xx
ρ2

∣∣∣∣
i

∂h2

∂x
+

[
t2,xz
ρ2

]0

i

= gxh2

(4.37)

Analogous derivations of the z components of depth-averaged momentum equations can be done.

Nonetheless, we do not to report them because they will not be used in the final model.

Approximations

Equations (4.28), (4.32),(4.36) and (4.37) have been obtained with the only simplifying assump-

tion of constant bulk densities inside each layer. In this section, we are going to discuss about

some further simplifications that lead to the final PDE system.

Since granular geophysical flows are typically thin and long, we employ a long-wave like ap-

proximation along the x-direction. With this assumption, we basically assume that z-component

of any vector field is much smaller than its x-component and that any quantity f varies smoothly

along x-direction, i.e. ∂xf is small. Thanks to the first assumption, we are allowed to ignore

the z-component of flow velocities and their derivatives in z-component depth-averaged momen-

tum equations. It directly follows that an hydrostatic normal pressure distribution holds over the

depth in both layers, namely

t1,zz (z) = −ρ1gz (h− z) ⇒ t1,zz (i) = −ρ1gzh1 (4.38)

t2,zz (z) = t1,zz (zi)− ρ2gz (h2 − z) . (4.39)

Now, we need to relate the normal pressure exerted on a surface parallel to the bed, tzz with that

exerted on a surface perpendicular to it, txx. By following the same assumptions of Savage-Hutter

model (Savage and Hutter, 1989), the following relations between the normal stresses are assumed

t1, xx (z) = K1 t1, zz (z) , t2, xx (z) = K2 t2, zz (z) (4.40)
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where K1 and K2 are earth-pressure coefficients, that can be defined as functions of internal and

basal friction angles, analogously to what proposed in Savage and Hutter (1989). Thanks to Eqs.

(4.39), together with Eq. (4.40), it is possible to calculate the depth-averaged normal stresses t1,xx

and t2,xx in Eqs. (4.36) and (4.37).

From the second assumption of the long-wave approximation, it follows that the interface slope

with respect to the x-axis, ∂xh2, is expected to be very small compared to 1 and, hence

‖∇Fi‖ =

√
∂xh2

2 + 1 ≈ 1. (4.41)

Hence, it follows also that

ni ≈ (0, 1)
T
. (4.42)

In addition, some assumptions have to be made about the flow velocity distributions inside

each layer. In fact, in Eqs. (4.36) and (4.37), terms accounting for momentum exchange due to the

mass flux across at the interface, v1,x|iMflux/ρ1 ‖∇Fi‖ and v2,x|iMflux/ρ2 ‖∇Fi‖, require that

flow velocities be calculated at the interface. As well, the velocity distribution influences also the

terms v1,x
2 and v2,x

2. Because at the moment we are interested to study the main properties of a

two layer-approach, we use the simplest hypothesis that x-component of velocity are approximately

constant within each layer. In this way, it holds

v1,x
2 ≈ (v1,x)

2
, v2,x

2 ≈ (v2,x)
2

(4.43)

v1,x (i) ≈ (v1,x) , v2,x (i) ≈ (v2,x) (4.44)

Finally, thanks to Eqs. (4.44) and (4.42), the x component of the momentum jump condition

(4.22) can be recast as follows

Mflux =
t1, xz − t2, xz
v1, x − v2, x

. (4.45)

This equation, which is similar to that reported after a slightly different derivation in Fraccarollo

and Capart (2002), will be used as closure equation of the PDE system, in order to calculate the

mass flux at the interface.

The aforementioned assumptions lead to the definition of the final PDE system. It should be

said that a more rigorous derivation of the model equations can be done through an asymptotic

analysis of depth-averaged equations (e.g. Savage and Hutter, 1989, 1991; Gray et al., 1999). In

this regard, a small dimensionless parameter, ε, representing the ratio between the typical flow

depths, H, and the typical spread of the avalanche, L, is defined. Then, such a parameter is

used to isolate physically negligible terms in mass and momentum depth-averaged equations. The

application of this technique will be reported in Chapter 6, when a slightly different two-layer

model will be derived in curvilinear coordinates.
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4.2.2 Final model equations

The proposed model is a PDE system composed of the following five equations,

∂h1

∂t
+
∂ (v1,xh1)

∂x
=
Mflux

ρ1
,

∂

∂t
(v1,xh1) +

∂

∂x

(
v1,x

2h1 +
1

2
K1gzh1

2

)
=

gxh1 − gzh1
∂h2

∂x
+ v1,x

Mflux

ρ1
− t1i,xz

ρ1
−R1, side,

∂h2

∂t
+
∂ (v2,xh2)

∂x
= −Mflux

ρ2
,

∂

∂t
(v2,xh2) +

∂

∂x

(
v2,x

2h2 +
1

2
K2gzh2

2

)
=

gxh2 − gz
ρ1

ρ2
h2
∂h1

∂x
− v2,x

Mflux

ρ2
+
t2i,xz
ρ2
− t2b,xz

ρ2
−R2, side,

Mflux =
t1,xz − t2,xz
v1,x − v2,x

. (4.46)

The vector of unknowns is q = (h1, h1v1,x, h2, h2v2,x)
T

, in which v1,x and v2,x are the depth-

averaged x-components of the flow velocity in the upper and lower layers, respectively, and h1 and

h2 are the flow depth of upper and lower layer, respectively. gx = g sinα and gx = g cosα where

α is the inclination angle of the reference axis x with respect to the horizontal plane. The bulk

densities of the upper and lower layer are represented by the symbols ρ1 and ρ2, respectively. These

values can be calculated as the product of the grain density ρg and the volume fractions, φ1 and

φ2, supposed to be constant in each layer. Differently from the classical two-layer shallow water

System (4.3) and from the two-layer shallow water model proposed by Capart and Young (2002),

two earth-pressure coefficients, K1 and K2, are introduced in order to express the x-normal stresses,

σx, as functions of normal to bed normal stresses, σz. This treatment is analogous to that proposed

by (Savage and Hutter, 1989, 1991). In a first approximation, these earth-pressure coefficients can

be calculated by means of the formula proposed by (Savage and Hutter, 1989), i.e. as a function

of internal and basal friction angles. While the first two equations represent the balances of mass

and x-component momentum in the upper layer, the third and fourth ones represent the mass and

x-component momentum balances in the lower layer. Finally, the fifth equation of System (4.46)

represents a closure equation, that is used to calculate the Mflux between the two layers. It has

been obtained by employing the Rankine-Hugoniot jump condition at the interface, in a similar

fashion to that used in Fraccarollo and Capart (2002).

Although the pseudo-Jacobian matrix associated with the mathematical System (4.46) is slightly

different from that of classic two-layer shallow water model (cf. Eq. (4.7)) because of the earth

pressure coefficients K1 and K2, it can be easily shown that also this system is conditionally hy-

perbolic. Also in this case, according to what reported in Eq. (4.11) of Section (4.1), the shear

velocity between the two layers has a destabilizing effect, while the inverse density ratio and total

flow depth have stabilizing effects on the system hyperbolicity.

Now, let us describe more in detail the source terms of the System (4.46). In the mass balance

equations the terms Mflux/ρ1 and Mflux/ρ2 represent the volume exchanges in the upper and lower

layer, respectively. Please note that, while the mass flux is unique in both equations because the
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physical system, composed of two layers, is mass-conservative, the volume exchanges are different

because of different densities. As regards the momentum balance equations, there are three types

of source terms. For sake of conciseness, let us examine only the momentum balance equation,

referred to the upper layer. Analogous considerations can be done for the momentum balance

equation, referred to the lower layer.

• the term gxh1 stands for the accelerating effect of the gravity force;

• the term v1,xMflux/ρ1 represents the momentum flux, due to the mass exchange between

the two layers;

• the term t1i,xz/ρ1 represents the momentum flux, due the shear stress at the interface;

• the term R1, side accounts for the effects of side wall resistances.

Accordingly to what has been extensively explained in Section (4.1), the term −gzh1∂xh2 cannot

be regarded as a source term, as it represents a non-conservative term, depending on the spatial

derivative of the unknown h2.

By supposing a Coulomb-type friction at the side walls, analogously to what assumed in the

single layer model of Chapter 1, the side walls resistances in the upper layer momentum equation

can be specified as follows

R1, side = −gzh
2
1Ky tan δside sgn (v1,x)

W
, (4.47)

where W is the width of the channel cross-section, δside the friction angle at the side walls and Ky

is an earth-pressure coefficient, relating the normal pressure exerted on a surface parallel to the

side wall, σy, to that one exerted on a surface parallel to the basal surface, σz. In (Sarno et al.,

2011), it has been observed that a good estimation of Ky can be the earth pressure coefficient at

rest calculated by means of the Jaky formula (Jaky, 1944).

Similarly, the side walls resistances in the lower layer momentum equation can be written as

follows

R2, side = −2gz (ρ1/ρ2h1 + h2/2)h2Ky tan δside sgn (v2,x)

W
. (4.48)

Shear stresses

Now, it is needed to specify the formulae for calculating the effects of the shear stresses at the

interface and at the bottom surface. By following (Savage and Hutter, 1989), a Coulomb-type

friction law is supposed at the bed surface. Thus, the shear stress there can be simply written as

follows

t2b,xz = gz (ρ1h1 + ρ2h2) tan δ sgn (v2,x) (4.49)

where δ represent the angle of basal friction.

Such an assumption is supported by the fact that the lower layer exhibits a quasi-static flowing

regime, where the main momentum exchange mechanism is expected to be due to friction.

At the interface two values of the shear stresses have to be defined: t2i,xz as limit from below

and t1i,xz as limit from above. Obviously, the chosen analytic expressions of these terms depend on
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the constitutive laws assumed in the two layers. In the lower layer, in which a solid-like quasi-static

regime is observed, a purely Coulomb-type constitutive law is supposed: therefore, it holds

t2i,xz = gzρ1h1 tan ϕint sgn (v1,x − v2,x) (4.50)

where ϕint is the internal friction angle of the granular material at the interface.

Conversely, since the upper layer is in friction-collision (i.e. dense-collisional) regime, the

shear stress as limit from above, t2i,xz, is supposed to be composed of two terms. While the

first one, which is rate independent, takes into account the momentum exchange due to friction,

the second one depends on the shear velocity between layers and thus it takes into account the

momentum exchange due to collisions (e.g. Bagnold, 1954). More precisely, we postulate the

following expression

t1i,xz = gz ρ1 h1 k tanϕint sgn (v1,x − v2,x) + r ρ1(|v1,x − v2,x|)β sgn (v1,x − v2,x) (4.51)

where k and r are empirical parameters, β is an exponent depending on the chosen constitutive law.

On the basis of existing works available in Literature, β is typically between 1 and 2 (e.g. Bagnold,

1954; Nishimura, 1991). The dimensionless parameter k, supposed to be always smaller than 1, is

aimed to account for the relative diminution of the friction effects, due to the volume fraction jump,

φ1−φ2. In fact, it is expected that, once the volume fraction reduces, also the time for the friction

effects to influence the flow dynamics does reduce (e.g. Ancey, 2007). Conversely, the parameter,

r accounts for the relative influence of collision effects. Please note that r is dimensionless only if

β is chosen equal to 2.

It should be noted that Eq. (4.51) is reminiscent of the constitutive law proposed by Josserand

et al. (2004), although it is written in a non-local form.

Mass flux

By substituting Eqs. (4.50) and (4.51) into the fifth equation of System 4.46, it is recast as

follows

Mflux =
t1i,xz − t2i,xz
v1,x − v2,x

= r ρ1 (|v1,x − v2,x|)β−1 − (1− k) gzρ1h1 tan ϕint

|v1,x − v2,x|
(4.52)

In a slight different context, Fraccarollo and Capart (2002) considered the process of mass exchange

across the interface between the flowing layer and the stationary bed as a relaxation law of the upper

layer flow depth towards an equilibrium condition. In this fashion, by neglecting the advection

term ∂x (v1,xh1), the first Eq. of System (4.46) can be written as follows

dh1

dt
=
Mflux

ρ1
⇒ dh1

dt
=
h1,eq − h1

tM
(4.53)

where h1,eq represents the upper layer equilibrium depth, at which Mflux = 0, and tM is a relax-

ation time reflecting the rapidity of the process towards the equilibrium state. Hence, the value of

h1,eq, can be determined by imposing Mflux = 0, i.e. t1i,xz = t2i,xz. With the help of Eqs. (4.50)

and (4.51), it reads

h1,eq =
r (v1,x − v2,x)

β

gz tan ϕint (1− k)
≥ 0. (4.54)
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This alternative formulation of the process of mass exchange will be very useful in designing the

numerical scheme.

Likewise, the relaxation time tM can be written as follows

tM =
|v1,x − v2,x|

gz tanϕint (1− k)
. (4.55)

4.2.3 The numerical scheme

The PDE system (4.46) has been numerically integrated through a finite volume scheme. Such

a numerical scheme is similar to that proposed by Fraccarollo et al. (2003), as regards the treatment

of advection terms and non-conservative terms. In particular, it is based on the HLL approximate

Riemann solver with a lateralized treatment of non-conservative terms. Since the equation system

exhibits non-null source terms, the Operator Splitting technique (e.g. LeVeque, 2002) has been

used for taking into account the effects of source terms, separately from the effects of advection.

Moreover, after each time step, an additional stage is introduced in order to check whether it is

needed to regularize the hyperbolicity loss. In case of loss of hyperbolicity of the original system,

a final step, in which the source terms in the momentum equations of System (4.46) are slightly

modified by adding an extra friction at the interface, is performed so that the hyperbolicity loss is

avoided.

The numerical scheme, here presented, is composed of four steps that can be briefly summarized

as follows:

1. the homogeneous conservation PDE system, associated with the complete PDE system (4.46),

is used in order to calculate the advection effects to the solution at each time step,

2. the effect of source terms are accounted for by solving the ordinary differential system (ODE)

associated with the source terms; two sub-steps have been used: the first one for accounting

the effects of mass flux between the layers, the second one for accounting the effects of shear

stresses and mass forces;

3. after updating the numerical solution, the eigenvalues of System (4.46) are numerically cal-

culated in order to check if they are real,

4. in the case that the inner eigenvalues of System are complex numbers, in order to avoid the

hyperbolicity loss, an extra momentum flux at the interface is added in the source terms of

the original System, strictly sufficient to keep the numerical solution inside the hyperbolicity

domain.

Let us discuss the aforementioned steps more in detail.

First step: calculation of advection effects

In the first step, only the advection effects are calculated. In order to do so, the homogeneous

PDE system, associated with System (4.46),

∂q

∂t
+A

∂q

∂x
= 0 (4.56)
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is considered, in whichA is pseudo-Jacobian matrix that also takes into account the non-conservative

terms.

The lateralized HLL (often referred to as LHLL) scheme proposed by Fraccarollo et al. (2003)

has been applied to numerically solve the homogeneous system (4.56). This numerical scheme can

be regarded as an extension of the classical HLL approximate Riemann solver (Harten et al., 1983)

to treat non-conservative systems. The scheme is explicit and is conditionally stable, provided that

the Courant-Friedrichs-Levy (CFL) number be smaller than 1. In a finite-volume framework, the

following explicit formula is used to update the vector of unknowns q,

qPDEi = qji −
∆t

∆x

(
F ji+1/2 − F

j
i−1/2

)
(4.57)

where qPDEi represents the numerical solution at the i-th cell, F ji+1/2 and F ji−1/2 are the numerical

fluxes, to be computed at the interfaces of i-th cell at the time level j.

At first, by following the original HLL approach (Harten et al., 1983), the numerical fluxes at

cell interfaces can be written by disregarding the non-conservative terms, i.e.

F ∗ji+1/2 =
SRF

∗j
i − SLF ∗ji+1 + SRSL

(
qji − qji+1

)
SR − SL

. (4.58)

Here SR and SS are some lower and upper bounds of the eigenvalues set of the Jacobian matrix

∂F /∂q. In the present numerical scheme, they are calculated by using the following formulae

SR = min
{

0, min
[
eig
(
∂F /∂q |ji

)
, eig

(
∂F /∂q |ji+1

)]}
,

SL = max
{

0, max
[
eig
(
∂F /∂q |ji

)
, eig

(
∂F /∂q |ji+1

)]}
(4.59)

where the symbol “eig” denotes the eigenvalue-set. The eigenvalues in (4.59) have been calculated

numerically because there are no simple analytical formulae. In order to take into account the

non-conservative terms, we follow the lateralised approach proposed by (Fraccarollo et al., 2003).

Namely, it is assumed that the numerical fluxes are double valued functions at cell interfaces, owing

to the effects of non-conservative terms. More precisely, the numerical flux jump at the interface

is supposed to be the following

FL1+1/2 − FR1+1/2 =


0[

(h2)i+1 − (h2)i
]

(gzh1)i+1/2

0[
(h1)i+1 − (h1)i

]
(gzρ1/ρ2 h2)i+1/2

 (4.60)

where the superscripts L and R indicate the left-hand and right-hand values of the numerical fluxes

at the cell interface. As a result, the original HLL numerical fluxes reported in Eq. (4.58) have to

be modified according to Eq. (4.60). More precisely, Eq. (4.57) can be recast as follows

qPDEi = qji −
∆t

∆x

(
F j, Li+1/2 − F

j, R
i−1/2

)
(4.61)

with the flux correction

F j, Li+1/2 = F ∗ji+1/2 +
SL

SR − SL


0[

(h2)i+1 − (h2)i
]
gz(h1)i+1/2

0[
(h1)i+1 − (h1)i

]
gzρ1/ρ2 (h2)i+1/2

 (4.62)
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where (h1)i+1/2 and (h2)i+1/2 are taken equal to the arithmetic mean values of the i-th and (i+1)-

th cells.

By means of the first calculation step, the solution of System (4.56), referred to as qPDE

hereafter, is advanced by the time step ∆t. The new value, calculated at each finite volume cell,

will be used as initial condition of the following calculation step.

Step 2: Source terms treatment

The second calculation step is in order to calculate the effects of source terms on the solution,

advanced by a time step ∆t. This step basically consists of solving the following ordinary differential

system (ODE), by using as initial condition the solution coming from the first calculation step,

dq

dt
= sm + sr with q (0) = qPDE . (4.63)

There are two sub-step in order to solve the ODE system (4.63).

First sub-step

In the first sub-step, we calculate explicitly (i.e. by using the backward Euler scheme) the mass

flux during the generic time step ∆t. Only the flow depths of both layers are updated during this

sub-step, i.e.,

(h1)
I
i = (h1)

PDE
i + ∆tM∗flux/ρ1

(h2)
I
i = (h2)

PDE
i + ∆tM∗flux/ρ2

(h1u1)
I
i = (h1u1)

PDE
i

(h2u2)
I
i = (h2u2)

PDE
i , (4.64)

where, while with the superscript PDE we denote the solution obtained from the first calculation

step, with the superscript I we denote the updated solution after this first sub-stage. Moreover,

M∗flux represents a constrained value, as to avoid negative layer depths or overshooting the equi-

librium depth, h1,eq. More precisely, the value of M∗flux is determined by

M∗flux =

{
min (Mlim1, Mflux) , if Mflux > 0,

max (Mlim2, Mflux) , if Mflux ≤ 0,
(4.65)

in which the value of Mflux is obtained by Eq. (4.52), Mlim1 and Mlim2 are the limiting values,

i.e.

∆tMlim1 = min
(
ρ1

(
h1,eq − hPDE1

)
, ρ2

(
hPDE2 − hth

))
,

∆tMlim2 = max
(
ρ1

(
h1,eq − hPDE1

)
, ρ1

(
hth − hPDE1

))
. (4.66)

In Eqs. (4.66), h1,eq is the equilibrium depth computed by (4.54) and hth is a very small threshold

value that avoids negative flow depths.

Second sub-step

In this stage, we deal with the momentum exchanges, due to the term sr that accounts the

source terms in the momentum balance equations. Since the terms in sr that depend on the flow

velocities may be very large during the computation, i.e. they exhibit a stiff-like behaviour (e.g.

LeVeque, 2002), it is convenient to treat them in an implicit fashion. In this numerical scheme an
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implicit backward Euler scheme has been used, similarly to the approach of Chen et al. (2007).

The main advantage of a implicit treatment is that it is unconditionally stable. We use as initial

condition the solution vector obtained from the previous sub-step, marked by the superscript I.

The updating formula can be written as follows

qIIi = qIi + ∆t sIIr,i (4.67)

where the source vector SIIr, i is calculated at the end of the time step and, thus, is function of the

unknown qIIi . Therefore, the vector Eq. (4.67) is a non-linear algebraic system, composed of 4

scalar equations, with the unknown qIIi . Nonetheless, since sr(1) = sr(3) = 0, then qIIi (1) = qIi (1)

and qIIi (3) = qIi (3). Therefore, Eq. (4.67) can be simplified into a 2×2 non-linear algebraic system

with unknowns qIIi (2) and qIIi (4). In computing sr, it is required to make use of formulae for shear

stresses, i.e. Eqs. (4.49), (4.50), and (4.51).

We observed some oscillation issues due to the sign function around zero in the shear stress

formulae (4.49), (4.50), and (4.51). In order to overcome this numerical issue, we replaced the sign

function with the following regularized function in Eqs. (4.49), (4.50), and (4.51)

R (∆u) =
2

1− e−α∆u
− 1 (4.68)

in which α is a shape parameter. The regularization function (4.68) depends on the shear velocity

∆u and exhibits a sigmoid shape, as shown in Fig. 4.5. This treatment, yet simple, turns out to be

very useful to reduce flow depth oscillations around the state of rest. Through several comparisons,

we found that numerical results are roughly identical by using any reasonable α > 300. Therefore,

in the here presented numerical simulations we set α = 300.
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Figure 4.5: Regularization function R.

Hyperbolicity check and regularization

The original System (4.46) is only conditionally hyperbolic. The loss of hyperbolicity typically

occurs in presence of a too large relative velocity between the two layers. In such a case, the inner

eigenvalues of the pseudo-Jacobian matrix, A, associated with the System (4.46), become conjugate

complex numbers. In this situation, the mathematical model breaks down and, consequently, also

the numerical solution give unreliable results. As reported in Section 4.1, in the space of solutions
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q, there exists a multi-connected domain where the mathematical model is hyperbolic. By ignoring

the particular case of hyperbolic solutions with very large shear velocity, which is unrealistic in

free surface granular flows that start from a state of rest, the hyperbolic domain is characterized

by a relatively small shear velocity between layers.

In order to avoid the loss of hyperbolicity, we propose a local modification of the source terms

of the original two-layer model (4.46). Although the treatment consists of a local modification of

the mathematical model; however, the criterion to apply such a modification is designed inside the

numerical scheme. Therefore, this method could be regarded as of hybrid type with respect to the

classification made in Section 4.1.

The proposed treatment consists of the following steps.

At first, after advancing in time the solution by means of the second sub-step of the source

term treatment, the hyperbolicity of numerical solution is checked at each finite volume cell, by

numerically calculating the eigenvalues of the pseudo-Jacobian matrix. Namely, at any given i-th

finite volume cell, the eigenvalues set,

eig
(
A
(
qIIi
))

(4.69)

is numerically calculated.

If all the eigenvalues are real, the solution q is simply updated at the new time point j+ 1 with

the vector obtained through the second sub-step of the source term treatment, i.e.

qj+1
i = qIIi . (4.70)

Instead, if the inner eigenvalues are complex numbers, it means that the original model (4.46)

enters the non-hyperbolic domain, during the latest time step. In order to avoid non-hyperbolic

solutions, the source terms of the second sub-step are modified, by adding an extra resistance at

the interface,

qIIi = qIi + ∆t sIIR, i + ∆t


0

−R (∆u)Fextra/ρ1

0

R (∆u)Fextra/ρ2

 (4.71)

where ∆u = u1 − u2 is the shear velocity. The second sub-step is, thus, repeated in the modified

form (4.71).

The extra resistance Fextra acts like an additional shear stress at the interface and, thus, causes

a net momentum flux from the faster layer to the slower one. As a result, the shear velocity between

the two layer reduces. We take advantage of this effect, in order to bring back the solution inside

the hyperbolic domain. Obviously, the optimal amount of this extra resistance is the minimum

value necessary for obtaining an hyperbolic solution. The calculation of such an optimal amount

is obtained through an iterative algorithm:

1. a tentative value of Fextra is assigned;

2. the second sub-step of the source term treatment is repeated accordingly to the modification

(4.71);

3. the eigenvalues of the new solution qIIi are numerically calculated;
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4. if the inner eigenvalues, λ2 and λ3, are still complex numbers, the next tentative value of

Fextra is chosen larger than the previous one and the algorithm comes back to Point No. 1;

5. if the inner eigenvalues, λ2 and λ3, are real numbers but |λ2 − λ1| > νth, with νth being a

small threshold celerity, the next tentative value of Fextra is chosen smaller than the previous

one and the algorithm comes back to point No. 1;

6. the algorithm converges, as soon as the inner eigenvalues are real numbers and |λ2 − λ1| <
νth.

This approach is similar to that proposed in Castro-Dı́az et al. (2011), although in the present

case we do not use a simplified formula for checking the hyperbolicity but the actual eigenvalues of

pseudo-Jacobian matrix. From a more theoretical viewpoint, this numerical treatment corresponds

to solving a slightly different two-layer model. More precisely, in the new regularized model, the

source terms of the balance momentum equations are locally modified as follows

∂

∂t
(v1,xh1) +

∂

∂x

(
v1,x

2h1 +
1

2
K1gzh1

2

)
= s (2)− Fextra

ρ1
R (v1,x − v2,x)

∂

∂t
(v2,xh2) +

∂

∂x

(
v2,x

2h2 +
1

2
K2gzh2

2

)
= s (4) +

Fextra
ρ2

R (v1,x − v2,x) , (4.72)

in which s(2) and s(4) represent the original source terms of System (4.46).

After this treatment the solution q is updated at the new time point j + 1 with the vector

obtained through the latest iteration of the aforementioned algorithm, which corresponds to an

hyperbolic solution.

This approach seems to be very stable in cases when the loss of hyperbolicity are limited in

time and space, since it permits to overcome some local hyperbolicity losses of the original model.

From an engineering viewpoint, the modification of source terms can be justified as long as it is

small, compared with the other source terms and, in particular, if it is comparable with the already

existent uncertainties in accounting the shear stress terms at the interface.

Moreover, the proposed treatment has some interesting properties. Firstly, the linear momen-

tum of the global system, composed of the two layers, is not modified by the extra resistance

Fextra. In fact, such a treatment only transfers momentum from the faster layer to the slower one.

Secondly, the inclusion of an extra resistance at the interface mimics somehow the effects due to

a Kelvin-Helmotz type instability. In fact, in this case a turbulent momentum flux goes from the

slower layer to the faster one.

As an important limitation, it should be noted that this approach requires that the boundary

conditions of the PDE System be hyperbolic. In fact, such a condition is necessary to fulfil the

well-posedness of the mathematical model.

4.2.4 Boundary conditions

The boundary conditions have to be studied carefully and require to be implemented in the

numerical code in a proper way, in order to obtain a well-posed mathematical problem. As a

general rule, in a PDE hyperbolic problem, at each boundary there should be assigned as many

simple boundary conditions (i.e. scalar equations of the unknowns q) as they are the characteristic

curves ingoing the spatial domain. The remaining unknowns at the boundaries can be calculated
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as function of the solutions at the previous times in the physical domain, together with the imposed

values at the boundary. In fact, information propagates from the physical domain to the boundary

along the outgoing characteristic families. These relations are usually named compatibility boundary

equations because they require to be fulfilled in order the mathematical problem to be well-posed.

Which are outgoing and which are ingoing characteristic families is very straightforward to be

checked by calculating the sign of the eigenvalues of the pseudo Jacobian matrix, A, associated

with the PDE system. For instance, at the left-hand boundary an ingoing characteristic family

occurs when its celerity, i.e. the related eigenvalue, is a positive number. On the other hand,

when it is negative it means that information propagates outside the physical domain, hence it is

a outgoing characteristic family.

In the case we are not interested in assigning specific values at the boundaries, it is useful

to simply use non-reflecting boundary conditions (also called absorbing boundary conditions) at

the both ends of the computational domain. This kind of conditions is straightforward to be

implemented and guarantees that any perturbation at the boundaries does not propagate inside

the computational domain (e.g. LeVeque, 2002). This treatment avoids the occurrence of spuri-

ous reflections of the outgoing waves inside the computational domain. Non-reflecting boundary

conditions can be implemented in a numerical scheme by means of a zero-order extrapolation of

the solution q at the boundaries. In other words, we add ghost cells beyond the boundaries with

symmetrical values with respect of the unknowns q at the first and last physical numerical cells,

respectively. These boundary conditions can be written as follows

qj+1
1 = qj+1

2 , qj+1
end = qj+1

end+1. (4.73)

It is worth noting that this treatment does not involve the computation of the eigenvalues signs.

Nevertheless, there are other situations in which it is needed to assign particular values of the

physical quantities at the domain boundaries, e.g. flow depths or flow rates. For example, it is

needed in case of comparisons between numerical simulation and experimental data, reported in

Chapter 5. In this case we have to assign as many boundary conditions as they are required by

the mathematical model. The other values of the solution at the boundaries, can be calculated

by means of compatibility equations. The approach used in the present numerical code is similar

to that one proposed by Savary and Zech (2007). It is composed of the following stages. Firstly,

at each time step the eigenvalues associated with the hyperbolic System (4.46) are numerically

calculated at the boundaries of the computational domain, in order to check how many boundary

conditions have to be imposed. Secondly, these required conditions are imposed according with the

experimental data. Usually, discharges are imposed at the left-hand boundary, while flow depth

are assigned at the right-hand boundary. Then, the compatibility equations need to be considered

for calculating the other values at the boundaries. By following the work by Savary and Zech

(2007), for a given outgoing characteristic with eigenvalue λi, it holds

li1

(
dq1

dt

)
λi

+ li2

(
dq2

dt

)
λi

+ li3

(
dq3

dt

)
λi

+ li4

(
dq4

dt

)
λi

= 0 (4.74)

where q1, q2... are the components of the unknown vector q and the lij is the jth component of

the left eigenvector Li, that is the i-th row of the matrix L, defined as follows,

A = L−1ΓL (4.75)
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in which A is the pseudo-Jacobian matrix associated with the hyperbolic system (4.46) and Γ

represents the diagonal matrix of eigenvalues.

Please note that the time derivative (dq/dt)λi is a total derivative along the i-th characteristic

line. Formally, in non linear problems the eigenvalues vary with time, hence the characteristic line

is actually a curve. Nevertheless, we refer to the linearized hyperbolic problem, i.e. we numerically

calculate L at the time-step j and assume that for a small time step ∆t the eigenvalues can be

considered constant.

Therefore, the time derivatives in (4.74) can be calculated by means of the ratio ∆qi/∆t, where

∆qi has to be calculated as difference between the unknown value qj+1
boundary at the boundary at the

new time point tj+1 and the known value q∗i on the same characteristic line at the previous time

point tj = tj+1−∆t. This value necessarily lies into the cell adjacent to the boundary because ∆t

is chosen, so that CFL < 1.

Assuming, for instance, that the second characteristic family is outgoing at the left-hand bound-

ary, the discrete form of (4.74) can be written as follows

l21

(
(h1)

j+1
boundary − (h1)

j
1

∆t

)
+ l22

(
(h1u1)

j+1
boundary − (h1u1)

j
1

∆t

)
+

l23

(
(h2)

j+1
boundary − (h2)

j
1

∆t

)
+ l24

(
(h2u2)

j+1
boundary − (h2u2)

j
1

∆t

)
= 0 (4.76)

in which subscripts refer to the cell position in the numerical code and superscripts specify the

time point.

After writing Eq. (4.76) for each outgoing characteristic line, we get a linear system. The

unknowns are the values of qboundary at the boundary that cannot be assigned as boundary con-

ditions because depend on the solution at the previous time point. After solving this system we

have the complete solution qboundary.

4.3 Numerical Tests

Some numerical tests, performed by using the mathematical model (4.46) with the proposed

modification of source terms to recover the hyperbolicity (4.72), are reported here. These tests

are intended to show the main features of the proposed two-layer approach and the robustness of

the numerical scheme. Some further comparisons between the numerical model and experimental

data are reported in Chapter 5. The numerical results, presented here, have been also reported in

Sarno et al. (2011).

Simulation parameters

In the present numerical tests, a spatial domain L=10 m long is considered, where the spatial

mesh is uniform and equal to ∆x = 0.05 m. The Courant-Friedrichs-Levy (CFL) number is set

equal to 0.8, for determining the time interval ∆t at each time step. Non-reflecting boundary

conditions, calculated by means of a zero-order extrapolation, are assigned at the boundaries of

numerical spatial domain. The mass balance is verified after each numerical simulation within an

error typically smaller than 0.5% of the initial mass. The average CPU time per point, at each
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time-advancing, is found to be around 3.8 · 10−3 s (on a 2.2 GHz processor), in the case that the

hyperbolicity correction is not present. Instead, in case of hyperbolicity correction, the average

CPU time per point is approximately 1.1 · 10−2 s. Such a noticeable increase of the computation

time is due to the fact that the hyperbolicty correction consists of an iteration algorithm, in

which the second sub-step, to account the source terms effects, has to be repeated several times.

Nonetheless, it should be remarked that, since the hyperbolicity correction operates only when

necessary (i.e. locally in time and space), the impact of this additional computation time on the

global time, required to complete a numerical simulation, is typically limited.

The volume fractions of the two layers are set to be φ1 = 0.4 and φ2 = 0.6. This choice is

congruent with many experimental studies, in which the volume fraction of dry granular flows are

reported to typically range between [0.3, 0.7] (e.g. Ancey, 2001; Midi, 2004). The shear resistance

at the interface as limit from above, i.e. Eq. (4.51), is chosen to have a quadratic dependence on

the shear velocity, namely β = 2 is chosen. In this fashion, Eq. (4.52) for calculating the mass flux

Mflux becomes

Mflux = r ρ1 |v1,x − v2,x| −
(1− k) gzρ1h1 tan ϕint

|v1,x − v2,x|
. (4.77)

The effect of side walls is neglected, i.e. R1, side = R2, side = 0. From a physical viewpoint, this

condition corresponds to an infinitely large cross-section, W →∞.

Both of the internal, ϕint, and basal friction angles, δ, are set to be equal to 30◦. In the

computation, non-reflective boundary condition at both ends of the computational domain are

adopted and the depth threshold, hth in Eq. (4.66) is chosen to be hth = 10−4.

Depositional scenario

In order to highlight the importance of a non-null mass flux between layers, we compare the

results from the System (4.46) with and without the mass exchange Mflux. The initial velocities

of the upper and the lower layer are chosen to be 2 m/s and 1 m/s, respectively. The initial depths

of both of the layers are equal to 1 m. In the computation, the inclination angle of the chute is 20◦,

r is 0.2 and k is 0.9. The test parameters are concisely reported in Table 4.1. The total duration

of simulation is 4 s.

α δ ϕint r k

20◦ 30◦ 30◦ 0.2 0.9

Table 4.1: Parameters used in Test No. 1.

Figure 4.6 illustrates the evolution of the depth distribution with and without the mass ex-

change. Because the bottom slope is less than the basal and internal friction angles, both of the

two layers are in a decelerating motion. With the parameters in Table 4.1, Eq. (4.77) implies that

Mflux < 0, i.e. there is a net mass flux from the upper layer into the lower one. In the simulation

with Mflux 6= 0, the mass merges rapidly from the upper layer into the lower layer, so that the

volume of the upper layer decreases with time.

At t = 2 s, only the front of the upper layer exists. This is probably due to the large acceleration

by the high surface gradient at t = 0 s and to the thin flow thickness of the front part (cf. Eq.
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Figure 4.6: Evolution of flow depths (depositional scenario, Test No. 1).
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(4.77)). At t = 4 s, the whole flow body is at the state of rest, and it is entirely composed of the

lower frictional layer. It should be noted that, the total volume reduces whenever there is a mass

flux across the interface from the upper into the lower layer. This is due to the fact that the lower

layer exhibits a higher density. In the simulation with null mass exchange Mflux = 0, both of the

two layers decelerate without merging into each other. In Fig. 4.6, the red and black lines depict

the evolution of the flow surface and the interface, respectively. Fig. 4.7 illustrates the velocity

distributions of the upper and lower layers along the downstream x-direction. In both cases, the

lower layer decelerates rapidly and reaches a state of rest between t = 1 s and t = 2 s, whilst the

upper layer is still in motion. Before t = 1 s, there is no significant difference found either in the

depth or in the velocity distribution of the upper layer in the rear part. Yet, with Mflux 6= 0, the

velocity surge of the upper layer propagates ahead of the one with Mflux 6= 0. After t = 1 s, the

results with Mflux = 0 exhibit slightly higher velocities, although the front surge is behind that

obtained by the simulation with Mflux 6= 0. Apparently, this phenomenon seems to be due to the

fact that the upper layer gets a lower loss of momentum across the interface when Mflux = 0, cf.

Eq. (4.46). Yet, with Mflux 6= 0 the depth of the upper layer reduces as well, so that the velocity

does not decrease noticeably. Therefore, the velocity differences are more likely due to different

depth gradients that develop during the time and are only indirectly induced by the mass flux.

Finally, approximately at t = 4 s, all the flow layers reach a state of rest.

Erosional scenario

In this section, the flow behaviours are examined when the lower layer is being eroded. Higher

values for the inclination angle α, r and k in Eq. (4.51) are chosen and reported in Table 4.2.

The initial conditions are identical to the previous test, as well as the basal and internal friction

angles ϕ and δ.

α δ ϕint r k

40◦ 30◦ 30◦ 0.4 0.99

Table 4.2: Parameters used in Test No. 2.

Figures 4.8 and 4.9 display the evolution of the flow layer depths and flow velocities in cases

of null and non-null mass flux, Mflux. Since the beginning, the depth evolutions from simulations

with Mflux 6= 0 exhibit a rapid increase of the upper layer flow depth, at the expense of the

lower layer flow depth. Moreover, the front of the upper layer propagates slightly faster than that

obtained, by assuming Mflux = 0. The flow depth of the lower layer keeps decreasing notably at

subsequent time points and reaches a very small depth at the final time point t = 6 s. It is worth

noting that, as time goes by, the total flow depth increases. This is due to the fact that the net

mass flux goes from the lower layer, characterised by a higher volume fraction, to the upper layer

with an lower volume fraction.

By comparing the flow velocity evolutions, reported in Fig. 4.9, firstly we can notice that

both of the layers are in accelerating motion. The velocity diagrams at t = 0.5 s and t = 1 s are

congruent with what already observed by studying the flow depth evolution: in the simulation

with Mflux 6= 0, the front of the upper layer wave is ahead with respect to that predicted by the
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simple model with Mflux 6= 0. Nevertheless, the velocity differences between the two simulations

are slightly smaller than those observed in the depositional scenario.

At t = 4 s, both of the flows are still in accelerating motion because the inclination angle α is

bigger than the friction angles δ and ϕ. Nonetheless, it should be noted that the velocity difference

between the two layers reach a stationary value. This is due to the rate-dependent term in the

shear stress at the interface, computed by Eq. (4.51).

Sensitivity of the parameters k and r

Two additional tests have been performed in order to investigate the model sensitivity on

parameters k and r that appear in the formula for calculating the shear stress at interface, as limit

from above (Eq. (4.51)).

Sensitivity tests on parameter k

Firstly, we aim to investigate the effects on the flow dynamics of variations of the parameter k.

From a physical viewpoint, the parameter k is related to the volume fraction jump across the

interface, since a smaller value of volume fraction in the upper layer reduces the effective time,

in which the friction contacts between grains take place. Therefore, k is expected to be smaller

than 1. Nonetheless, it should be noted that the effective jump of volume fractions is likely to be

smaller than that assumed in the present model, because the real volume fraction distribution is

not piece-wise constant. At first glance, one could be tempted to roughly assume that k is equal

to the ratio of volume fraction φ1/φ2 = 2/3 between the layers. However, a reliable estimation of

k can only be obtained through careful comparisons with experimental data. At this moment, our

purpose in to observe and study the variations of flow depth evolutions, owing to a variation of k.

In this test, the initial conditions, the inclination angle and the friction angles, used in this

sensitivity test, are identical to those of Test No. 1 (depositional scenario), so that the analysis

refers to a scenario of deposition. Conversely, different values of k have been investigated in a

range between 0.1 and 0.99. The test parameters are listed in Table 4.3. Besides, Fig. 4.10 reports

the flow depths evolutions observed in the numerical simulation with k = 0.99, 0.66, 0.1.

α δ ϕint r k

20◦ 30◦ 30◦ 0.2 [0.1, 0.99]

Table 4.3: Parameters used in Test No. 3.

As one can see in Fig. 4.10, the results computed with higher value of k generally exhibit a

slower deposition. This is due to the fact that higher values of k imply higher values of equilibrium

depth h1.eq (cf. (4.77). As well, it is remarkable that the differences in depth profiles rely mostly

in the first time steps (i.e. t = 1 s, t = 2 s). It is of important to note that at the end, all the

numerical simulations tend to converge to the same profile of deposit. These numerical results

are very interesting because they show that the parameter k only influence the flow motion in the

transient state. Moreover, by comparing several numerical simulations it has been found that the

sensitivity of the model on parameter k dramatically increases as k approaches to 1. This is due

to the fact that, as k approaches 1, it causes bigger and bigger variations of the equilibrium depth

h1.eq. Furthermore, it should be noted that, in the ideal case that k → 1, though h1.eq tends to
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Figure 4.8: Evolution of flow depths (erosional scenario, Test No. 2).
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infinity, the mass flux tends to the finite value

Mflux → rρ1 |v1,x − v2,x| , (4.78)

as it can be easily found from Eq. (4.77).

Sensitivity tests on parameter r

Similarly to what done in Test No. 3, a sensitivity test on the parameter r has been carried out.

The initial conditions, inclination angle and friction angles are kept identical. The test parameters

are listed in Table 4.4.

α δ ϕint r k

20◦ 30◦ 30◦ [0.02, 0.4] 0.9

Table 4.4: Parameters used in Test No. 4.

Computations have been performed by varying the value of r in the range between 0.02 and 0.4.

Figure 4.11 illustrates the evolution of the depth profiles at different r. The trends are generally

similar to what observed in Fig. 4.10. Yet, it is very interesting to note that, while at t = 1 s

the higher is r the bigger is the upper layer depth, at t = 2 s the behaviour reverses completely.

This is due to the fact that, though h1,eq is proportional to r, a higher value of r also means

that there is more shear resistance at interface and so velocity difference between the two layer

decreases faster over time. Thus, h1,eq strongly reduces because of such a decrease. At the end,

all the simulations converge quite exactly to a common profile. Even though it is not reported in

Fig. 4.11, we also carried out numerical simulations with smaller values of r, down to r = 0.005,

but the results are substantially identical to those obtained by using r = 0.02. Sensitivity on r

is quite small compared to that on parameter k. However, in order to confirm this trend further

numerical tests with different geometries and boundary conditions would be needed.
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Chapter 5

Comparisons and discussion

Chapter Summary

In Chapter 3 an experimental study on steady state free surface flows has been presented. The

velocity profiles, in case of no-slip bottom boundary condition, exhibit a linear behaviour close

to the free surface and an exponential tail in the lower zone. This suggests the occurrence of a

rheological stratification along the flow depth. In Chapter 4 a two-layer depth-averaged model has

been proposed in order to describe such a rheological stratification. The model aims to reproduce

the dynamics of each layer separately, by assuming two different constitutive laws and a closure

equation at the interface for calculating the mass-flux between the layers.

In experimental velocity profiles, such an interface could be, ideally, located where the velocity

profile becomes almost linear, but this criterion would be uncertain and, somehow, arbitrary. In this

Chapter, a more objective criterion for identifying the interface position in experimental velocity

profiles is proposed. The rationale of its formulation consists of linking the interface position to a

critical value of the inertial number, already defined in Chapter 1.

After identifying the interface position in experimental velocity profiles, depth-averaged flow

velocities and flow depths of both of the layers have been calculated through numerical integration

of experimental data. Finally, experimental data have been compared with numerical results,

obtained by using the two-layer model introduced in Chapter 4.
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5.1 Identification of the interface position in experimental

velocity profiles

In this section we are going to present a criterion for identifying the position of the interface,

separating the dense-collisional and the quasi-static domain in experimental velocity profiles.

In the two-layer model, the interface is assumed to be a non-material surface, where main

physical quantities (e.g. flow velocities and flow densities) exhibit a jump. Nevertheless, it should

be reminded that, in reality, such an interface does not separate two immiscible fluids but it only

consists of an ideal surface, separating two regions in which the flow dynamics experiences different

rheological regimes (i.e. quasi-static in the lower zone and dense-collisional in the upper zone).

Time-averaged experimental velocity profiles, presented in Chapter 3, are everywhere continuous

and, thus, they suggest that there is no sharp interface between the two zones.

However, since the observed velocity profiles exhibit a lower exponential tail, connected to a

linear profile on the upper part, one could infer that the extent of the dense-collisional regime

roughly corresponds to that of the upper linear profile. Hence, the interface position could be,

ideally, located where the velocity profile becomes almost linear. Yet, this criterion is uncertain

and arbitrary because the transition between these two behaviours is rather smooth.

Another geometrical construction to identify the boundary between the exponential and linear

profile has been proposed in Midi (2004). In particular, after drawing the tangent line to the upper

linear part of the velocity profile, the interface is assumed to be located in correspondence with the

intersection of such a tangent line and z axis. However, also this construction is somehow arbitrary

because the experimental velocity profiles are not exactly linear in their upper part.

In order to overcome such uncertainties, we propose a more objective criterion for identifying

the interface position, obtained on the basis of physical arguments.

5.1.1 Inertial number distributions from experimental data

The inertial number, I, (defined in Eq. (1.5)) is a dimensionless scalar field, defined in the flow

domain, governing the dynamics of rigid dry granular flows. In Chapter 1, we have reported that

the quasi-static solid-like regime is characterized by a small value of I, while the collisional regime

exhibits a larger value of it (e.g. Midi, 2004).

Hence, it is logical to connect the rheological stratification, observed in the case of no-slip

bottom boundary condition, with the inertial number distribution inside the flowing pile. By

definition (cf. Eq. (1.5)), I increases with γ̇ and decreases inversely with the square root of the

confining normal pressure P . Because of the no-slip boundary condition, γ̇ is null at the bottom

and increases as the distance from the bottom increases. Conversely, the normal pressure, P ,

increases with the distance from the free surface. It should be noted that, in the case of non-null

bottom slip velocity, the behaviour of I along the flow depth is quite different, because everywhere

γ̇ 6= 0 and, so, I exhibits non negligible values also at the bottom surface.

It could be very interesting to obtain an estimate of the distribution of the inertial number

from the experimental data. In order to so, it is required to numerically calculate γ̇, on the basis

of the experimental velocity profiles, and to estimate the confining pressure P , as well.

Under the simplifying assumption of hydrostatic pressure distribution (acceptable in case of
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shallow flows), it is possible to write

P (z) =

∫ h

h−z
g ρ (z) dz =

∫ h

h−z
g φ (z) ρg dz = g ρgφ (z) (h− z) (5.1)

where ρ is the bulk density, ρg is the grain density and φ represents the volume fraction. Moreover,

by the symbol φ (z) we denote the depth-averaged volume fraction along the depth h − z. As a

matter of fact, φ and, hence, ρ depend on the distance from the free surface, h−z, and, in particular,

they increase with it in surface flows, owing to the rheological stratification (e.g. Midi, 2004).

Strictly speaking, in order to calculate the inertial number profiles, the distribution of the volume

fraction, φ, should be previously measured. Unfortunately, it is quite demanding to get reliable

measurements of the volume fraction distributions at the side walls through optical techniques,

like G-PIV. Moreover, such measurements are unlikely to be representative of the effective volume

fraction distribution inside the flowing pile (e.g. Sheng et al., 2011). In the experimental research,

reported in Chapter 3, volume fraction distributions have not been measured.

Nonetheless, in dry granular flows, the variation of volume fraction along the flow depth is

expected to be rather limited. More precisely, the volume fraction in the quasi-static regime is

typically around 0.6 (close to the value at rest), while that of collisional regime is hardly smaller

than 0.3 (e.g. Ancey, 2001; Sheng et al., 2011). In dense-collisional regime φ is expected to be even

bigger than 0.3.

The distributions of the inertial number, I, along the flow depth, have been calculated from

the experimental velocity profiles in the following way. The shear rate γ̇(z), which is equal to

∂zux(z) in plane shearing, has been numerically approximated by employing the experimental

time-averaged flow velocities in a central difference formula. At the extrema of the flow domain,

i.e. at the free surface and at the bottom, the backward and forward difference formulae have been

used. Since we are interested in obtaining an estimate of the inertial number distribution, that

is depth-averaged along the transverse direction (i.e. y direction), the side walls velocity profiles

have been previously normalized by means of the ratio umean/umin, reported in Tables 3.6 and 3.7

of Chapter 3. Namely, we assume that the velocity profile, depth-averaged along the y direction,

is equal to the side wall velocity profile, multiplied by the factor, umean/umin, obtained through

the free surface measurements.

As regards the volume fraction distribution, owing to the lack of direct measurements, we

assumed several linear distributions along the flow depth, so as to fulfil the following realistic

constraints

φ (z) = φmin + (φmax − φmin)
h− z
h

with

{
φmin ≥ 0.3

φmax ≤ 0.65
(5.2)

Each distribution of φ, provided that the γ̇(z) distribution is obtained through experimental data,

yields an inertial number distribution along the flow depth. Interestingly enough, by comparing the

calculations, obtained by using different volume fraction distributions, we found small differences

among I distributions, except for the points very near the free surface. The reason of such a

behaviour is due to the fact that P depends on the depth-averaged value of φ, which acts as

a low-pass filter on the effective volume fraction distribution. Moreover, I only depends on the

square-root of P : hence, the sensitivity of I on φ distribution is found to be very small within the

investigated range [0.3, 0.65].
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For these reasons, in order to calculate the inertial number distributions, presented here, we

have assumed the simple uniform distribution, φ(z) = 0.5. The diagrams of the inertial number,

calculated from the velocity profiles of smooth bed runs, are reported in Fig. 5.1. As well, the

inertial number distributions, calculated from the velocity profiles of rough bed runs, are reported

in Fig. 5.2.
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Figure 5.1: Distributions of the inertial number, I, along the flow depth (smooth bed runs).

Firstly, by observing Fig. 5.1, one can immediately notice that I increases with z and its

derivative rapidly increases, when approaching the free surface, due to the decrease of the confining

pressure, P , near the free surface. Such a behaviour gives a characteristic convex shape to almost

all inertial number distributions. Moreover, in experiments with inclination angles 28◦ and 31◦

(i.e. runs R-28s and R-31s), the inertial number is almost null near the bottom surface: this is

due to the no-slip bottom boundary condition. Instead, in runs R-34s and R-40s, I exhibits a non

null value near the bottom surface. In this case, the variations of I along the flow depth are more

limited.

A similar behaviour can be observed in the inertial number distributions, related to the rough

bed runs (Fig. 5.2). In all these experiments, I is practically null at the bottom surface, because

of no-slip bottom boundary condition. It is interesting to note that, differently from the others

distributions, in R-40r-DOWN the inertial number distribution exhibits a convex shape near the

bottom surface but it is almost constant in the upper part. This is probably due to the slight

decrease of γ̇, observed in the upper part of the velocity profile (cf. Fig. 3.12 in Chap. 3).

5.1.2 Critical inertial number

Now that we have estimated the inertial number distributions for every experimental profiles,

an interesting question arises. Is there a critical value of the inertial number, common to the whole

dataset, corresponding to the position of the interface between quasi-static and dense-collisional
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Figure 5.2: Distributions of the inertial number, I, along the flow depth (rough bed runs).

zones?

In order to answer this question, it seems to be useful to address the problem from the slightly

different viewpoint of the two-layer mathematical model.

In steady-state condition, the position of the interface between the two layers is unchanging

over time in any cross section. It means that the shear stresses at the interface, t1i,xz and t2i,xz

(cf. 4.51 and 4.50 in Chap. 4), defined in the mathematical model, have to be equal,

t1i,xz = t2i,xz ⇒[
gz ρ1 h1 k tanϕint + r ρ1(|v1,x − v2,x|)β

]
sgn (v1,x − v2,x) = gzρ1h1 tan ϕint sgn (v1,x − v2,x) .

(5.3)

After some simple algebraic manipulation, Eq. (5.3) can be recast

Θ =
r

(1− k) g tanϕint
=

cosαh1

(∆u)
β
, (5.4)

where ∆u = v1,x− v2,x. Θ is a quantity, that only depends on the rheological parameters r, k and

ϕint. Thus, it is expected to be constant in the whole experimental dataset, as the same granular

material has been used in all experiments. Please, note that the dimension of Θ is
[
L1−βT β

]
.

Equation (5.3) can be regarded as a relation between the parameters r and k and, hence, it

reduces to 1 the degrees of freedom for choosing r and k. Moreover, it is noteworthy that Θ can

be calculated by using the formula in the left-hand side of Eq. (5.4), which depends on the upper

layer flow depth h1, on the depth-averaged velocity difference ∆u and on the channel inclination

α, provided that β has been previously chosen. Such a formula turns out to be very useful, because

it allows to calculate Θ directly from steady-state experimental data.

Now, let us explain in detail, how to perform this calculation. Analogously to what done

for the calculations of I distributions, also in this case we refer to the velocity profiles, depth-
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averaged along y direction. Moreover, in the present investigation, we chose to cut the lower

zone of the velocity profiles, which is practically at rest. In order to do so, a threshold velocity,

equal to 0.001 m/s (which is carefully chosen one order smaller than the G-PIV accuracy) has

been set to separate the “motionless” zone from the flowing zone. Such a treatment is needed for

the subsequent comparisons between experimental data and numerical simulations, since in the

proposed mathematical model (cf. (4.46)) an uniform velocity distribution in the lower layer has

been assumed. However, it should be kept in mind that the separation between the motionless

and quasi-static zone is only conceptual. In fact, the lower exponential tail of the velocity profile

is found to be larger than that observed through high speed measurements, due to creep motion

phenomena (Komatsu et al., 2001).

The procedure for the calculation of Θ is composed of the following steps:

1. a value for β is previously chosen, so as to specify the expression for calculating t1i,xz (cf.

4.51 in Chap. 4);

2. an arbitrary position of the interface is set in the experimental velocity profile;

3. the interface divides the velocity profile into two layers, whose flow depths (h1 and h2) and

depth-averaged velocities (v1,x, v2,x) are calculated by means of numerical integration of the

experimental velocity profile;

4. once v1,x, v2,x and h1 are known, the value of Θ, corresponding to the chosen interface

position, can be straightforwardly calculated by means of Eq. (5.4).

5. the procedure is repeated by varying the interface position from the bottom to the free

surface.

In order to increase the number of the investigated interface positions (Point No. 1) and the

precision of the numerical integrations (Point No. 3), the experimental data of velocity profiles have

been numerically interpolated by using a piecewise cubic Hermite polynomial. These computations

have been carried out for all experimental velocity profiles and for different values of β. Typically,

in the main rheological approaches, available in Literature, β is assumed to be comprised between

1 and 2 (e.g. Bagnold, 1954; Voellmy, 1955; Nishimura, 1991). In order to determine the optimal

value of β in the framework of our numerical model, we performed these computations by varying

β in the set β ∈ [0.5, 1, 2].

For each experimental velocity profile, we obtain the function Θ (zinterface), which is monoton-

ically decreasing with the distance of the interface from the bottom surface. By way of example,

in Fig. 5.3 the diagrams of Θ, obtained by using β = 1, are reported. It is important to highlight

that, although Θ is a quantity introduced in the context of the particular two-layer mathematical

model, such calculations have been entirely obtained on the basis of experimental data.

Now, it is interesting to relate the information obtained from the inertial number distributions

and that obtained from the Θ profiles. Thanks to the fact that both Θ and I are bijective functions

of zinterface, for each experiment, it is possible to calculate the function Θ (I). We performed such

calculations for all experimental data by varying β. Then, we plotted all the diagrams, Θ − I,

related to a given value of β, in the same figure.

The diagrams, Θ − I, obtained by using β = 0.5, 1, 2, are reported, respectively in Figs. 5.4,

5.5 and 5.6. Black symbols and red symbols correspond to the experiments on smooth and rough
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Figure 5.3: Diagrams of Θ (zinterface), obtained by using β = 1. Black symbols and red symbols

correspond to the experiments on smooth and rough bed, respectively.

bed, respectively. Firstly, it should be noted that Θ (I) are monotonically decreasing functions.

This is due to the fact that, as Θ increases, the interface position gets near to the basal surface (i.e.

zinterface decreases), and, thus, also I decreases (cf. Figs. 5.1-5.2). Moreover, please note that,

above a certain threshold of Θ, a non-null constant value of I is observed in some Θ−I diagrams, e.g.

R-34s-UP, R-34s-DOWN, R-40s-UP, R-40s-DOWN. This apparently strange behaviour depends on

the fact that there is a threshold of Θ, above which the interface position always corresponds to the

bottom surface. Because the velocity profiles, R-34s-UP, R-34s-DOWN, R-40s-UP, R-40s-DOWN,

exhibit a slip-boundary condition, a non-null value of I is observed at the basal surface. Conversely,

large values of I correspond to small values of Θ , because, in that case, the interface gets near to

the free surface.

Moreover, as it is evident from the Figures, at any given value of Θ, there is a certain scattering

of the values of inertial number, I, calculated from different experimental velocity profiles. The

mean function, Î (Θ), also shown in Figs. 5.4-5.5- 5.6 (green dashed line), is defined as follows

Î (Θ) =

N∑
i=1

Ii (Θ). (5.5)

where the summation is over all the N values of the inertial numbers, with N being equal to

the number of velocity profiles investigated, i.e. 14. If a unique critical inertial number, Icritical,

corresponding to the interface position, exists, the Θ − I plots should exhibit a small deviation

around a particular value of I.

By comparing Figs. 5.4-5.5- 5.6, one can easily notice that the overall dispersions, obtained by

using β = 2, are far bigger than those obtained by assuming β = 0.5 or β = 1.

In order to find such a critical value in a more analytical way, the root mean square deviations
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Figure 5.4: Diagrams of Θ (I), obtained by assuming β = 0.5 in Eq. (4.51). Black symbols and

red symbols correspond to the experiments on smooth and rough bed, respectively. Green dashed

line represent the mean curve Î (Θ).
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Figure 5.5: Diagrams of Θ (I), obtained by assuming β = 1.0.
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Figure 5.6: Diagrams of Θ (I), obtained by assuming β = 2.0.

(RMSD) of I from Î have been calculated, by means of the following formula

RMSD (Θ) =

√√√√ 1

N − 1

N∑
i=1

(
Ii (Θ)− Î (Θ)

)2

. (5.6)

The diagrams of RMSD (Θ), in cases of β = 0.5, 1, 2, are reported respectively in Figs. 5.7, 5.8

and 5.9.

By comparing Figs. 5.7-5.8-5.9, it is found that the minimum dispersions are obtained by

assuming β = 1, for which, the absolute minimum of the RMSD function corresponds to Θcritical =

0.011 s. Now, thanks to the fact that Î (Θ) is a bijective function, it is possible to calculate also

the corresponding critical inertial number, that is approximately equal to Icritical = 0.33.

This value seems to be very reasonable and congruent with other studies, available in Literature.

Savage and Hutter (1989), through an experimental analysis, inferred that a threshold of the Savage

number, to roughly classify friction-dominated and collision-dominated granular avalanches, could

be chosen approximately equal to 0.1. This value is also reported by Iverson (1997) and Iverson

and Vallance (2001). Since the inertial number is nothing else than the square root of the Savage

number, it is easy to notice that the critical value found in the present analysis, Icritical = 0.33, is

perfectly congruent with NSavage = 0.1.

In order to check the sensitivity of these results on the volume fraction distribution, used

to get inertial number profiles, we repeated the same calculations with several volume fraction

distributions, fulfilling Cond. (5.2). It has been found that the smallest overall dispersion of Θ− I
functions is still obtained by using β = 1. Moreover, the minimum value of the RMSD function is

exactly the same of that obtained with φ(z) = 0.5, because the volume fraction distribution does

not modify the Θ function. The critical inertial numbers, corresponding to Θcritical, are quite near
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Figure 5.7: Root mean square deviation, RMSD (Θ), obtained by assuming β = 0.5.
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Figure 5.8: Root mean square deviation, RMSD (Θ), obtained by assuming β = 1.0.
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Figure 5.9: Root mean square deviation, RMSD (Θ), obtained by assuming β = 2.0.

each other and always within the range [0.3, 0.4]. The results of these computations are briefly

reported in Table 5.1.

Therefore,the following criterion to identify the interface positions in experimental velocity

profiles has been chosen: zinterface is where Θcritical = 0.011 s. Namely, for any given velocity

profile, we identify zinterface, that corresponds to Θcritical (cf. Fig. 5.3). Please, note that it

is equally possible to employ the condition on the inertial number, Icritical = 0.33, as criterion

to determine zinterface. We found that, this alternative calculation yields practically identical

results, as long as φ(z) = 0.5 is chosen. However, we prefer to use the criterion on Θ, instead of I,

because in this fashion we get rid of the aforementioned arbitrary assumptions on volume fraction

distributions.

φmin φmax Θcritical[s] Icritical min(RMSD)

0.50 0.50 0.011 0.34 0.065

0.60 0.60 0.011 0.30 0.07

0.40 0.40 0.011 0.37 0.06

0.40 0.60 0.011 0.36 0.07

0.40 0.50 0.011 0.37 0.072

0.30 0.65 0.011 0.40 0.081

Table 5.1: Root mean square deviations, obtained by varying the volume fraction distributions

along the flow depths.

It is worth to briefly summarize the interesting results, that emerge from the present investi-

gation.
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Firstly, it is interesting that the best correspondence between the proposed two-layer theory and

experimental data has been found by assuming β = 1 in Eq. (4.51), instead of the most obvious

quadratic dependence (i.e. β = 2). Although, from the Bagnold scaling (Bagnold, 1954) and

dimensional analysis, rate-dependent stresses in collisional regime are expected to depend on the

square of the shear rate, it should be reminded that the shear stresses at the interface are defined

as functions of the depth-averaged flow velocities and, so, do not depend directly on the local

shear rate (cf. Eq. 4.51). The depth-averaged flow velocities in each layer are obviously influenced

also by the side walls resistances. Such resistances have a crucial role in the flow dynamics of

channelised granular flows and their complex interplay with basal resistances also influences the

steady state conditions. Further experimental investigation would be needed to better understand

this topic. In particular, it would be interesting to verify whether similar results can be obtained

in different experimental geometries (i.e. by varying the cross-section width) and with different

granular materials.

Secondly, it is noteworthy that the critical inertial number, found to be roughly equal to 0.33,

is congruent with other experimental works and, in particular, matches quite perfectly with the

threshold value of the Savage number, found to be approximatively equal to 0.1 (Savage and Hutter,

1989), to distinguish the friction-dominated regime from the “fluidized” collisional-frictional one.

Such a correspondence seems not to be accidental and it is little sensitive to the assumptions about

the volume fraction distribution, made in order to calculate the inertial number.

5.1.3 Interface positions in experimental velocity profiles

In this section, the interface positions, obtained by using the aforementioned criterion, are re-

ported.

In Table 5.2, flow depths and depth-averaged velocities, referred to the two layers, together

with the total flow depth and the overall depth-averaged velocity are reported. In Figs. 5.10-5.11-

5.12-5.13 the velocity profiles (depth-averaged along y direction) related to the smooth bed runs

are reported, together with the interface position (dashed line). As well, the interface positions,

related to the rough bed runs, are shown in Figs. 5.14-5.15-5.16. The lower zone of all velocity

profiles, where velocity is smaller than 0.001 m/s has been cut off.

As one can see from the Figures, the predicted interface positions, in cases of no-slip bed

condition (i.e. R-28s, R-31s, R-31-r, R-34r, R-40r), are in very good agreement with the initial

conjecture that the dense-collisional zone roughly corresponds to the upper linear profile. Yet, it

should be noted that, in cases of slip bed condition (i.e. R-34s and R-40s), the proposed criterion

seems to be less reliable, as the predicted interface position appears too far from the bottom surface

(e.g. R-40s-UP).

The truncated velocity profiles, related to runs R-31r-UP and R-31r-DOWN, are practically

overlapping, as one can see from Figure 5.14. It means that, in the experiment R-31r, a fully

developed steady state (i.e. uniform flow) is reached. For this reason, this experiment will be used

to calculate the dynamic friction angle, corresponding to the interface.
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Figure 5.10: Velocity profiles R-28s-UP (blue line) and R-28s-DOWN (red line) and related inter-

faces (dashed lines).
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Figure 5.11: Velocity profiles R-31s-UP (blue line) and R-31s-DOWN (red line) together with

interfaces between layers (dashed lines).
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Figure 5.12: Velocity profiles R-34s-UP (blue line) and R-34s-DOWN (red line) and related inter-

faces (dashed lines).
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Figure 5.13: Velocity profiles R-40s-UP (blue line) and R-40s-DOWN (red line) and related inter-

faces (dashed lines).
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Figure 5.14: Velocity profiles R-31r-UP (blue line) and R-31r-DOWN (red line) and related inter-

faces (dashed lines).
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Figure 5.15: Velocity profiles R-34r-UP (blue line) and R-34r-DOWN (red line) and related inter-

faces (dashed lines).



CHAPTER 5. COMPARISONS AND DISCUSSION 128

ID h1 [m] h2 [m] u1,x [m/s] u2,x [m/s] h [m] ux [m/s]

R-28s-UP 0.0017 0.0068 0.167 0.028 0.0085 0.056

R-28s-DOWN 0.0015 0.0109 0.151 0.026 0.0124 0.041

R-31s-UP 0.0043 0.0183 0.396 0.144 0.0226 0.192

R-31s-DOWN 0.0038 0.0146 0.384 0.084 0.0184 0.146

R-34s-UP 0.0063 0.0100 0.709 0.225 0.0163 0.412

R-34s-DOWN 0.0065 0.0060 0.752 0.254 0.0125 0.513

R-40s-UP 0.0076 0.0065 0.906 0.372 0.0141 0.660

R-40s-DOWN 0.0093 0.0016 0.957 0.309 0.0109 0.862

R-31r-UP 0.0034 0.0081 0.312 0.042 0.0115 0.122

R-31r-DOWN 0.0033 0.0080 0.298 0.040 0.0113 0.115

R-34r-UP 0.0065 0.0123 0.564 0.067 0.0188 0.239

R-34r-DOWN 0.0068 0.0109 0.579 0.066 0.0177 0.263

R-40r-UP 0.0083 0.0057 0.670 0.091 0.0140 0.435

R-40r-DOWN 0.0111 0.0030 0.819 0.043 0.0141 0.654

Table 5.2: Experimental flow depths and depth-averaged velocities.
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Figure 5.16: Velocity profiles R-40r-UP (blue line) and R-40r-DOWN (red line) and related inter-

faces (dashed lines).
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5.2 Friction angle at the interface

In this section we are going to show how the angles of friction (δ and ϕint), employed in the

two-layer mathematical model, have been chosen. The procedure we are going to report makes use

of the experimental data of R-31r, found to be in uniform condition.

On the basis of dimensional arguments, da Cruz et al. (2005) showed that the dynamics of dry

rigid particles is controlled by the inertial number. In plane shearing, such a dependence can be

written as

τ = µ (I)P = tanϕ (I)P, (5.7)

where P is the confining pressure, τ the shear stress and ϕ the dynamic angle of friction (Midi,

2004; Jop et al., 2006). It means that the dynamic angle of friction is expected to vary with the

local inertial number and, thus, with the distance from the free surface.

It is possible to obtain the function ϕ (I (z)) by means of an experimental uniform velocity

profile, by following the inverse approach to that employed by Jop et al. (2005) in order to obtain

the velocity profile from a known rheology. In uniform conditions, the flow depth and the flow

velocity distribution are unchanging over time and over space. With reference to a channelised

free surface flow and assuming that x reference axis is parallel to free surface, the x-component of

the force balance on a control volume, of length dx and thickness z, delimited by the free surface,

a lower surface parallel to it and the side walls, can be written as follows

dxWρg sinϑ − 2 dx

∫ z

0

Ky tan δsideρ g z
′ cosϑ dz′ − dxW tan (ϕ (I (z))) ρ z cosϑ = 0 (5.8)

where ϑ is the inclination angle of the free surface, W is the cross section width, δside is the friction

angle at the side walls, ρ is the bulk density and is equal to ρgφ, and Ky represents the earth-

pressure coefficient to calculate σy as function of σz. The first term in (5.8) is due to the gravity;

the second one represents the resistances at the side walls; the third one represents the resistance

exerted along the lower surface, parallel to the free surface. It should be noted that typically ϑ is

slightly different from the channel inclination angle. In the case of experiment R-31r, it is found

to be equal to 32.6◦.

After some manipulations, Eq. (5.8) is recast as

tanϑ−Ky tan δside
z

W
− tanϕ (I (z)) = 0. (5.9)

The side wall friction δside between Ottawa sand and Plexiglas has been measured by Tai and Lin

(2008) and is found to be approximatively equal to 22− 23◦. As well, the angle of friction at rest

is reported to be 34.1± 1.4◦. Sarno et al. (2011) proposed to use the simple Jaky formula, which

is an estimate of the coefficient of earth pressure at rest, to calculate Ky.

From the truncated velocity profile of experiment R-31r (cf. Fig. 5.14), the total flow depth

is known, h = 0.0114 m. Therefore, it is possible to get a reliable estimate of the dynamic angle

of friction at the initiation of motion (i.e. I = 0+), by solving Eq. (5.9) with z = h. The value

obtained is approximately equal to 30.5◦. Please note that this value has to be chosen as the basal

friction angle, δ, in case of no-slip bottom boundary condition. Such a value is congruently smaller

than the angle of repose.

The dynamic friction angle at the interface ϕint, can be, as well, calculated by means of Eq.

(5.9). More precisely, it is the solution of Eq. (5.9), corresponding to z = zinterface, which is found
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to be equal to 0.033 m in experiment R-31r (cf. Table 5.2). Such a value is found to be equal

to ϕ = 31.9◦. This dynamical friction angle only depends on the local inertial number, which is

supposed to be constant at the interface. Thus, it is assumed to be constant among the whole

experimental dataset.

5.3 Comparisons

In this section, some comparisons between experimental data and numerical results, obtained

from the two-layer model presented in Chapter 4, are reported.

The purpose of these tests is to test the rheological assumptions made in the mathematical

model, by comparing the numerical results with experimental steady states. Such comparisons

should not be regarded as a validation of the two-layer approach itself. In fact, the two-layer

mathematical approach represents a family of models, since the shear stresses formulae (at the

bottom and at interface) and the other assumptions (e.g. velocity distributions and earth-pressure

coefficients) can be specified in different ways.

Moreover, since we are mainly interested in employing the two-layer approach to better describe

the flow dynamics in case of no-slip bottom boundary conditions, experiments R-34s and R-40s

have not been considered in these comparisons.

Simulations parameters

The extent of the computational domain, L, is chosen to be equal to the distance of the two

experimental cross sections (x = 20 cm and x = 35 cm), i.e. L = 0.15 m. The size of the mesh

is set equal to ∆x = 0.005 m. The time step is calculated at each time-advancing, by imposing

the condition CFL = 0.8. The numerical simulations have been performed over a time domain

T = 15 s, sufficient to obtain steady state conditions at the final time points for all the investigated

cases. In order to verify the occurrence of the steady state, we checked that the maximum relative

errors between the solutions at T = 15 s and those at T = 7 s were less than 1%.

The basal friction angle δ is chosen to be equal to 30.5◦, while ϕ = 31.9◦. It should be remarked

that these parameters have been calibrated only on experiment R-31r, as reported in Section 5.2.

No calibration has been performed on the other experimental data.

The friction angle at the side walls is δside = 23◦, according to the measurements reported in

(Tai and Lin, 2008). The earth-pressure coefficient Ky has been calculated by means of the Jaky

formula (Jaky, 1944), as function of the basal friction angle, and it is equal to 0.49.

The volume fractions of the two layers are chosen to be φ1 = 0.4 and φ2 = 0.6, similarly to

what done in numerical simulations, reported in Chapter 4. Differently from the previous numerical

simulations, the shear resistance at the interface as limit from above, i.e. Eq. (4.51), is chosen to

have a linear dependence on the shear velocity, namely β = 1. This choice is motivated by the

experimental results, reported in Section 5.1.

The parameters r and k are chosen equal to 0.013 and 0.8 respectively, so as to fulfil the condi-

tion Θ = Θcritical = 0.011 s. It has been found that, although the choice of r and k dramatically

influences the flow dynamics in transient state, as widely shown in Chapter 4, their values have a

very small influence on the final steady state, provided that the equilibrium condition Θ = Θcritical
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is fulfilled. Moreover, a proper calibration of these parameters would require transient state ex-

perimental data and it is beyond the scope of the present dissertation.

The earth-pressure coefficients K1 and K2, to define the momentum fluxes of System (4.46),

have been calculated by means of the Savage-Hutter formula (cf. Eq. (2.3) in Chapter 2), with

δ = ϕ = 30.5◦ and are K1 = K2 = 1.69.

The friction angles and other relevant parameters, used in the present calculations, are syn-

thetically reported in Table 5.3.

δ ϕint δside r k

30.5◦ 31.9◦ 23◦ 0.013 0.8

Table 5.3: Parameters used in Test No. 1.

The boundary conditions are imposed in accordance with the experimental data. Firstly, by

calculating the number of positive and negative eigenvalues for each boundary through using ex-

perimental data reported in Table 5.2, it is known how many boundary conditions have to be

imposed in the mathematical problem.

As regards the experiments R-28s, R-31s, R-31r and R-34r, three boundary conditions have to

be imposed at the left-hand boundary and one at the right-hand boundary. Therefore, we chose

to impose the flow rates of both layers at the left-hand side boundary and the flow depth of the

lower layer at the right-hand side boundary,

q (1)|left boundary = h1|left boundary = h1|exp,UP

q (2)|left boundary = h1u1|left boundary = h1u1|exp,UP

q (4)|left boundary = h2u2|left boundary = h2u2|exp,UP

q (3)|right boundary = h2|right boundary = h2|exp,DOWN (5.10)

where the subscripts “exp,UP” and “exp,DOWN” indicate the experimental values measured in

the Upper and Lower cross sections, respectively.

As regards experiment R-40r, non-hyperbolic boundary conditions are found in this case:

namely, the inner eigenvalues, numerically calculated by using the corresponding experimental

boundary conditions, are not real. As stated in Chapter 4, the proposed regularization model to

keep the hyperbolicity cannot work in case of ill-posed boundary conditions. Therefore, compar-

isons with R-40r could not be performed.

The initial conditions of the mathematical problem have been chosen as follows

q (1)|t=0 = h1 (x, 0) = h1|exp,UP + 0.5 sin
(
π
x

L

)
h1|exp,UP

q (3)|t=0 = h2 (x, 0) = h2|exp,DOWN + 0.3 sin
(
π
x

L

)
h2|exp,DOWN

q (2)|t=0 = (h1u1) (x, 0) = h1u1|exp,UP

q (4)|t=0 = (h2u2) (x, 0) = h2u2|exp,UP (5.11)

in which two sinusoidal perturbations have been added, in order to calculate initial flow depth

over the whole spatial domain. Differently, the initial values of the flow rates h1u1 and h2u2 are



CHAPTER 5. COMPARISONS AND DISCUSSION 132

chosen to be constant and equal to the left-hand boundary conditions. It has been verified, through

several numerical tests, that the steady state solution is practically independent from the chosen

initial condition, though, obviously, the time to reach such a the steady state is influenced by it.

Four numerical simulations have been carried out. The ID Codes “SIM-31r”, “SIM-34r”, “SIM-

28s” and “SIM-31s” indicate the numerical simulations, related to experiments R-31r, R-34r, R-28s

and R-31s, respectively. Each simulation reproduces the flow evolution from the initial condition

to the final steady state. In all the numerical simulations, the mass balance in the computational

domain has been verified within an error of 0.5% of the initial mass. As regards to the hyper-

bolicity regularization, in SIM-31r, SIM-28s and SIM-31s, no extra resistance has been added at

the interface, as the model was found to be hyperbolic in the whole computational domain. In

SIM-34r, the hyperbolicity regularization, Eq. (4.72), sometimes was found to operate during the

transient state. The maximum value of the normalized extra resistance, Fextra/ρ1 is found to be

equal to 0.002 m2/s2. Such a local correction to the source terms of System (4.46) is small with

respect to the other terms in SIM-34r, as being, for instance, about one order smaller than the

gravity force term, h1gx.

With reference to simulation SIM-31r, the evolutions of flow depths and flow velocities are

reported in Figs. 5.17 and 5.18, respectively.

Comparisons

The comparison, presented here, consists of calculating and examining the relative errors be-

tween the final steady state solutions, obtained from numerical computations, and experimental

data, at the flow boundaries. Naturally, such a comparison makes sense only for the physical quan-

tities, that have not been fixed by the boundary conditions. More precisely, at the left hand-side

boundary, relative errors of h2 and u2,x are considered. Similarly, at the right-hand side boundary,

relative errors of h1, u1,x and u2,x are taken into account. The average of the relative errors is

also calculated in order to have a unique indicator of performance. Relative errors are reported in

Table 5.4.

ID h2|UP u2|UP h1|DOWN u1|DOWN u2|DOWN Average

SIM-31r 0.021 0.021 0.025 0.064 0.028 0.032

SIM-34r 0.206 0.259 0.077 0.012 0.215 0.154

SIM-28s 0.236 0.191 0.411 0.256 0.604 0.340

SIM-31s 0.311 0.237 0.050 0.235 1.144 0.395

Table 5.4: Relative errors between numerical simulations and experimental data at the domain

boundaries.

As one can easily see from Table 5.4, the agreement between the numerical results and experi-

ment R-31r is excellent. The relative errors are always within 6% and their averaged value is about

3%. Although a good agreement was somehow expected, since the most sensitive parameters of

the mathematical model (i.e. δ and ϕ) have been chosen on the basis of R-31r experimental data,

this result is noteworthy. In fact, it strongly supports the reliability of the main features of the

two-layer approach.
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Figure 5.17: Evolution of flow depths (SIM-31r). The flow depths, related to the upper and lower

layer, are represented in light-blue and green, respectively.
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Figure 5.18: Evolution of flow velocities (SIM-31r). The depth-averaged flow velocities, related to

the upper and lower layer, are represented by light-blue and green lines, respectively.
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By examining the relative errors, related to the other comparisons (i.e. SIM-34r, SIM-28s,

SIM-31s), the performance of agreement noticeably decreases. In particular, SIM-34r exhibits a

good agreement, as regards the dynamics of the upper layer, with relative errors of 7.7% and 1.2%

on h1|DOWN and u1|DOWN, respectively. Nevertheless, at the left-hand boundary, the lower layer

flow depth, h2|UP, is underestimated by about 20%, while the lower layer depth-averaged velocity,

u2|UP, is overestimated by about 25%. As well, at the right-hand boundary, the lower layer depth-

averaged velocity, u2|DOWN is overestimated by about 20%. The average relative error is about

15%. Even though the overall agreement in SIM-34r is smaller than that observed in SIM-31r, it is

still good. Moreover, these results should be regarded as very promising, if one considers that they

have been obtained without using back-analysis to adjust the model parameters to experimental

data. In SIM-28s and SIM-31s, bigger relative errors have been observed. The average errors

in SIM-28s and SIM-31s are equal to 34% and 39.5%. Such relatively big values result from the

fact that the mathematical model systematically fails to predict the lower layer velocity at the

right-hand boundary, u2|DOWN, as one can see from Table 5.4. Such a phenomenon could be due

to a poor description of the basal resistance in the lower layer momentum equation. In this regard,

we suspect that the hypothesis of a pure Coulomb friction at the bottom surface does not work

very well, if there is a no-slip bottom boundary condition. Further investigation on this topic is

required. A rate-dependent term could be added in the formula for calculating t2b,xz (cf. Eq.

4.49) in a further version of the mathematical model. Moreover, it should be noted that also the

assumption of constant velocity profiles in both layers is an important shortcoming of the present

model.

Nonetheless, an additional source of error could lie on the boundary conditions, imposed in the

numerical simulation. In fact, such conditions are obtained from experimental velocity profiles on

the basis of the found interface position, but it is possible that, for some experiments, the inter-

face position, predicted by the aforementioned criterion, is unrealistic. It follows that unrealistic

boundary conditions are imposed in the mathematical model, and, consequently, they lead to a

steady state, noticeably different from that observed experimentally. In order to avoid these un-

certainties, it could be interesting to repeat these comparisons, by varying the interface positions

in a more probabilistic approach.

Finally, it should be reminded that the present comparisons are between a one-dimensional

model and experimental velocity profiles, measured at the side wall and normalized by means of

the ratio ux,mean/minux by frontal PIV measurements. In this fashion, we assume that such a

normalized velocity profile is representative of the effective flow velocity distribution inside the

flowing pile. Although this simple assumption is strictly required to perform comparisons between

a one-dimensional model and three-dimensional flows, it could lead to important additional errors.

For example, the flow depth is expected to vary along y direction and is probably bigger at the

centreline of the channel, than at the side walls. This could, obviously, influence also the velocity

profile. A further experimental research on this topic would be needed.
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Chapter 6

The two-layer model in curvilinear

coordinates

Chapter Summary

In order to better identify the physically negligible terms, a slightly different formulation of

the two-layer model is here proposed. The equations of the new model are written in moving

curvilinear coordinates, as regards the upper layer, and in Cartesian coordinates, as regards the

lower layer. The curvilinear coordinate system is assumed to be attached to the moving interface

between the two layers.

The derivation of the model makes use of the Unified Coordinate method (e.g. Hui et al., 1999;

Hui, 2004, 2007), combined with the approach proposed by Bouchut and Westdickenberg (2004).

The overall procedure for obtaining the final model equations is analogous to that proposed by Tai

and Kuo (2008) and also used in works by Tai and Lin (2008) and Tai et al. (2012). The main

advantage of this formulation, with respect to a classical curvilinear approach (e.g. Gray et al.,

1999), is that it permits to avoid the complicated calculation of Christoffel symbols, with obvious

simplifications in the model design and also in its numerical integration.

The procedure for deriving the model equations basically consists of writing the depth-averaged

mass and momentum balance equations for each layer and, then, simplifying these equations by

means of an ordering argument and some other simplifying assumptions about the velocity profiles

inside the layers. The final equations exhibit some interesting advantages with respect to the

former Cartesian formulation (cf. Chapter 4), that are carefully discussed.
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6.1 The two-layer model in curvilinear coordinates

We are interested in reformulating the one-dimensional two-layer depth-averaged model, pro-

posed in Chapter 4, in a curvilinear coordinate framework. In order to do so, we use the approach

proposed by Tai and Kuo (2008), that merges the Unified Coordinate theory (Hui et al., 1999; Hui,

2004, 2007) with the geometrical treatment of the basal surface in Savage-Hutter type models,

proposed by Bouchut and Westdickenberg (2004). The main advantage of this recent and promis-

ing approach, with respect to the classical curvilinear approach (e.g. Gray et al., 1999), is that it

permits to avoid the complicated calculation of Christoffel symbols.

Similarly to the model proposed in Chapter 4, we assume that the granular flow can be ideally

divided in two superimposed layers, separated by a sharp non-material interface. The upper layer

is aimed to describe the dense-collisional regime, while the lower one corresponds to the quasi-

static regime. Similarly to the previous model, it is assumed that the bulk densities, ρ1 and ρ2, are

constant within each layer. Moreover, in the present model formulation, for the sake of simplicity,

the earth pressure coefficient relating the normal stresses are chosen to be equal to 1 in both of

the layers.

The mass and momentum balance equations of the upper layer are written in curvilinear co-

ordinates, that move together with the interface. More precisely, a curvilinear coordinate system,

attached to interface, separating the two layers is employed. Differently, the balance equations

of the lower layer are written in Cartesian coordinates, analogous to those used in Chapter 4.

The Cartesian frame of reference is assumed to be fixed and x axis forms an angle δ with respect

to the horizontal equipotential lines, so that the gravity vector components can be written as

g = (g sin δ, −g cos δ)
T

. Moreover, an orthogonal curvilinear coordinate system (ξ, ζ), attached

to the interface Γ between the two layers, is considered. The ξ coordinate is everywhere locally

parallel to the interface Γ, while ζ is perpendicular to it. We call ϑ the local inclination angle of

the reference surface Γ with respect to the reference Cartesian axix x. The convention that ϑ > 0

in case of positive slope is assumed.

In order to avoid notation overload, in this Chapter (unless otherwise specified), we use the

symbols v and w (instead of v1 and v2) to represent the upper layer and lower layer flow velocities.

Moreover, since the model derivation involves using many equations, the more relevant ones have

been put inside boxes in order to highlight them.

The procedure, to obtain the final model equations, is briefly summarized as follows

1. the mass and momentum balance equations are written in curvilinear coordinates for the

upper layer and in Cartesian coordinates for the lower one;

2. the kinematic and dynamic boundary conditions are written for each layer;

3. the mass and momentum balance equations are, then, depth integrated along the upper layer

and lower layer flow depths;

4. the resulting depth-integrated equations are put in dimensionless form, after making some

assumptions about the scaling of the main physical quantities. The main scaling parameter

is chosen to be ε = H/L, which is the ratio between a typical flow depth and a typical

avalanche span in a similar approach to that used in Savage-Hutter type models (e.g. Savage

and Hutter, 1989; Gray et al., 1999; Tai and Kuo, 2008; Tai et al., 2010, 2012);
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5. the dimensionless depth-integrated equations are further simplified by neglecting terms of

order higher than O (ε).

A detailed description of the main features of the Unified Coordinate method, relevant for

model equation derivation, and of the main features of the coordinate transformation can be found

in Appendix B.

6.1.1 Mass and momentum equations in curvilinear coordinates

At the first, in order to write the depth averaged balance equations of the upper layer, it

is required to rewrite Eqs. (4.12) and (4.13) with respect to the curvilinear coordinate system,

attached to a the moving interface Γ between the two layers.

Thanks to the UC relations (B.7) - (B.15), it possible to rewrite the mass balance equation

(4.12) in curvilinear coordinates as follows

∂ (J ρ)

∂λ
+∇ξ · [J ρ (v∗ − q∗)] = 0 (6.1)

in which v∗ = (vξ, vζ) is the flow velocity in ξ coordinates, q∗ = (qξ, qζ) is the velocity of the

curvilinear frame of reference, J represents the determinant of the Jacobian matrix of coordinate

transformation (cf. Appendix B).

Proof. In fact, by virtue of Eq (B.10) and Eq (B.13) we get

∂ρ

∂t
=

1

J

[
∂ (Jρ)

∂λ
−∇ξ ·

(
ρ J q

∗)]
∇x · (ρv) =

1

J
∇ξ ·

(
ρv

∗)
from which Eq (6.1) is easily demonstrated.

Analogously, with the help of UC relations (B.7) - (B.15), also the momentum equation (4.13)

can be recast in curvilinear coordinates as follows

∂ (J ρv)

∂λ
+∇ξ ·

{
J
[
ρv ⊗ (v∗ − q∗)− TΩ−T

]}
= J ρ g (6.2)

where TΩ−T represents the mixed tensor, hereafter simply referred to as Σ.

Proof. Thanks to Eq (B.10) we get

∂ (ρv)

∂t
=

(
1/J [∂λ (ρ ux)−∇ξ · (ρ ux J q∗)]

1/J [∂λ (ρ uz)−∇ξ · (ρ uz J q∗)]

)
=

1

J

∂ (J ρ v)

∂λ
−∇ξ ·

(
ρ J v ⊗ q∗

)
. (6.3)

Moreover, by means of Eq (B.13) we obtain

∇x · (ρv ⊗ v) = ∇x ·
(
ρuxux ρuxuz
ρuzux ρuzuz

)
= ∇x ·

(
ρuv

ρw v

)
=

(
1/J ∇ξ · (ρux v∗)

1/J ∇ξ · (ρuz v∗)

)
=

1

J
∇ξ ·

(
ρv ⊗ v∗)

(6.4)

and by means of Eq (B.15)

∇x · T =
1

J
∇ξ ·

(
J T Ω

−T
)
. (6.5)
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6.1.2 Upper layer boundary conditions

The local balance equations, (6.1) and (6.2), have to be equipped with kinematic and dynamic

conditions at the boundaries, before being depth-integrated along the upper layer flow depth. Also

these conditions have to be written in curvilinear coordinates. The upper boundary is represented

by the free surface, while the lower boundary is represented by the interface Γ, separating the two

layers.

Boundary conditions at the free surface

The free surface can be described by an implicit equation in curvilinear coordinates,

F̃s(ξ, ζ) = 0. (6.6)

Because the flow is expected to be shallow with respect to the curvilinear reference surface, we

assume that it is possible to express ζ into F̃s(ξ, ζ) explicitly, so that Eq. (6.6) can be recast as

follows

F̃s = ζ − s̃(ξ, λ) = 0. (6.7)

From Eq. (6.7) it follows that the unit normal vector of the free surface points towards increasing

ζ.

The free surface is a Lagrangian surface, thus the Kinematic Boundary Condition (KBC) there,

written in Cartesian coordinates, yields

dFs
dt

=
∂Fs
∂t

+ v · ∇xFs = 0 (6.8)

where v is the upper layer flow velocity.

By using the UC formulae (B.7) - (B.15), we obtain the corresponding relation in curvilinear

coordinate system

∂s̃

∂λ
+
∂s̃

∂ξ

(
vξ − qξ

)
−
(
vζ − qζ

)
= 0. (6.9)

Proof. Thanks to Eq. (B.10), we can write

∂Fs

∂t
=

1

J

∂

∂λ

(
J F̃s

)
− 1

J
∇ξ ·

(
J F̃s Ω

−1
q
)

=
1

J

∂

∂λ
[J (ζ − s̃)]− 1

J

∂

∂ξ

[
J (ζ − s̃) qξ

]
− 1

J

∂

∂ζ

[
J (ζ − s̃) qζ

]

=
∂ (ζ − s̃)
∂λ

+
(ζ − s̃)
J

∂J

∂λ
− 1

J

∂

∂ξ

[
J (ζ − s̃) qξ

]
− 1

J
Jq
ζ − (ζ − s̃)

J

∂
(
Jqζ

)
∂ζ

,

then, by using Eq. (B.7) and after some simplifications, we get

∂Fs

∂t
= − ∂s̃

∂λ
+

(ζ − s̃)
J

[
�
��
�∂

∂ξ

(
Jq
ξ
)

+
�
��
�∂

∂ζ

(
Jq
ζ
)]
− 1

J
J q

ξ ∂ (ζ − s̃)
∂ξ

(6.10)

−
��

���
��(ζ − s̃)

J

∂

∂ξ

(
J q

ξ
)
− qζ −���

���(ζ − s̃)
J

∂
(
Jqζ

)
∂ζ

= − ∂s̃
∂λ

+ q
ξ ∂s̃

∂ξ
− qζ .

Moreover, we can write the convective term as follows

v · ∇xFs = v · Ω−T∇ξF̃s = Ω
−1
v · ∇ξF̃s = v

∗ · ∇ξF̃s = v
ξ ∂F̃s

∂ξ
+ v

ζ ∂F̃s

∂ζ
= −vξ ∂s̃

∂ξ
+ v

ζ
. (6.11)

Finally, by summing the terms (6.10) and (6.11), we get finally

∂s̃

∂λ
+
∂s̃

∂ξ

(
v
ξ − qξ

)
−
(
v
ζ − qζ

)
= 0.
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At the free surface, normal and tangential stresses are supposed to be null, hence, the dynamic

boundary condition (DBC) there can be written as

T ns = Ω
(
T ∗n∗

s

)
= (ΩT ∗)n∗

s = 0 (6.12)

where ns and n∗
s = ΩTns are the normal vectors written in Cartesian coordinates and in curvilinear

coordinates, respectively. Please note that, in general, while ‖ns‖ = 1,
∥∥n∗

s

∥∥ ≥ 1 because of the

metric (cf. Eq. (B.38)).

Eq. (6.12) can be recast in a more explicit form as follows

Σn∗
s =

(
σ1n

ξ
s + σ2n

ζ
s

σ3n
ξ
s + σ4n

ζ
s

)
=

(
0

0

)
. (6.13)

where Σ = ΩT ∗ = TΩ−T represents the mixed tensor.

Boundary conditions at the interface

The lower boundary of the upper layer domain, which corresponds with the interface Γ between

the upper layer and the lower layer, can be described by means of the following equation in

curvilinear coordinates

F̃i(ξ, λ) = ζ = 0. (6.14)

It should be noted that Eq. (6.14) follows directly from imposing that the curvilinear reference

frame moves together with the curve Γ. The unit normal vector points towards increasing ζ.

Moreover, it should be noted that, because the unit normal vector n∗, written in curvilinear

coordinates, has zero ξ component, it follows that ‖n∗‖ = ‖n‖ = 1 (cf. (B.38)).

Differently from the free surface, we assume that the interface Γ is not a material surface

because mass exchanges between the two layers across the interface may occur. Moreover, the

tangent components of flow velocities may exhibit a jump here.

KBC at the interface

Therefore, the kinematic boundary condition (KBC), written in Cartesian coordinates, is the

following
dFi
dt

=
∂Fi
∂t

+ vint · ∇xFi = 0 (6.15)

where vint is the interface velocity, namely the velocity of a pseudo-particle that moves together

with the surface Γ.

By using the UC relations (B.7)-(B.15), we simply obtain the following KBC in curvilinear

coordinates

vζint − qζ = 0. (6.16)

Eq. (6.16) is a constraint to the choice of q and it is a direct consequence of imposing that the

curvilinear frame of reference is coincident with the interface Γ. It is interesting to note that no

constraint is imposed to the ξ component of the mesh velocity, qξ.
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Proof. By using Eqs. (B.10) and (B.7) and after some simplifications, we obtain

∂Fi

∂t
=

1

J

∂

∂λ

(
J F̂zi

)
− 1

J
∇~ξ ·

(
F̂iJ Ω

−1
q
)

=
1

J

∂

∂λ

(
J F̃i

)
− 1

J

∂

∂ξ

(
F̃i∆ q

ξ
)
− 1

J

∂

∂ζ

(
F̃ziJ q

ζ
)

=
J

J

∂ζ

∂λ
+
ζ

J

∂J

∂λ
− 1

J

∂

∂ξ

(
ζ J q

ξ
)
− J

J
q
ζ − ζ

J

∂
(
Jqζ

)
∂ζ

=
∂ζ

∂λ
+
ζ

J

[
��

��∂

∂ξ

(
Jq
ξ
)

+
��

��∂

∂ζ

(
Jq
ζ
)]
−
��

��1

J
J q

ξ ∂ζ

∂ξ
−���

��ζ

J

∂

∂ξ

(
J q

ξ
)
− qζ −

��
��
�

ζ

J

∂
(
J qζ

)
∂ζ

= −qζ . (6.17)

Note that ∂λζ = ∂ξζ = 0 because of Eq. (6.14).

Moreover, we can write the convective term as follows

vint · ∇xFi = vint · Ω−T∇ξF̃i = Ω
−1
vint · ∇ξF̃i = vint

∗ · ∇ξF̃i = v
ξ
int

∂ζ

∂ξ
+ v

ζ
int

∂ζ

∂ζ
= v

ζ
int. (6.18)

Finally, by summing the terms (6.17) and (6.18), we obtain Eq. (6.16).

Similarly to what assumed in the model presented in Chapter 4, a mass flux Mflux between

the layers may take place. The volume exchanges of each layer have to fulfil the mass conservation

equation (4.16). Nonetheless, it is useful now to rewrite their analytical expressions in curvilinear

coordinates. The volume variation E1 of the upper layer can be written as follows

E1 =
Mflux

ρ1
= (v − vint) · n = (v − vint) ·

∇xFi
‖∇xFi‖

= Ω (v∗ − v∗int) · Ω−T n∗ = (v∗ − v∗int) · n∗. (6.19)

We followed the sign convention according to which E1 > 0 if the upper layer volume increases at

the expense of the lower layer. Since n∗ = (0, 1)
T

, Eq. (6.19) can be further simplified as follows

E1 =
Mflux

ρ1
= vζ − vζint. (6.20)

Similarly, the volume exchange E2 of the lower layer is the following

E2 =
Mflux

ρ2
= (w − vint) · n = (w∗ − v∗int) · n∗ = wζ − vζint (6.21)

where w is the flow velocity in the lower layer.

Thanks to Eq. (6.20) and after summing the term −vζ to the l.h.s and r.h.s of Eq. (6.16), the

KBC at the interface can be recast as

qζ − vζ = −Mflux

ρ1
. (6.22)

DBC at the interface

As regards the dynamic boundary condition at the interface, similarly to what assumed in

Chapter 4, we postulate the existence of a rate-dependent term, beside the Coulomb friction term.

In particular, by using the tension positive convention for stress tensor, the following relation

holds

T1n− (n · T1n)n =
∆vt
‖∆vt‖

(
k tanϕint

(
−tζζ

)
+ r ρ1 ‖∆vt‖β

′)
(6.23)
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where T1 is stress tensor defined in the upper layer, ϕint is the dynamical friction angle of the

granular material, ρ1 is the bulk density in the upper layer, k and r are the same empirical

parameters, introduced in the model in Chapter 4. Moreover, β′ is the exponent of rate-dependent

shear stress and, thus, depends on the chosen rheology. ∆vt = ∆v∗ − [(v −w) · n]n is the jump

of the tangent components of flow velocities at the interface and −tζζ is the normal pressure,

calculated as limit from above at the interface. Please note that the physical quantity T1n in Eq.

(6.23) represents the stress vector exerted by the upper layer on the lower layer.

After left-multiplying the l.h.s. and the r.h.s. by Ω−1 and after writing ‖∆vt‖ as function of∥∥∆v∗t
∥∥ (cf. (B.37)), Eq. (6.23) can be written also as follows

T ∗
1 n

∗ −
(
n∗ · T ∗

1 n
∗)n∗ =

∆v∗t√
G11

∥∥∆v∗t
∥∥ (k tanϕint

(
−tζζ

)
+ r ρ1G11

∥∥∆v∗t
∥∥β′) (6.24)

where ∆v∗t =
(
vξ − wξ, 0

)T
and n∗ = (0, 1)

T
.

After left-multiplying by Ω, Eq. (6.24) is finally recast as

Ω (T ∗n∗ − (n∗ · T ∗n∗)n∗) =
Ω ∆v∗t√
G11

∥∥∆v∗t
∥∥
(
k tanϕint

(
−tζζ

)
+ r ρ1G11

∥∥∆v∗t
∥∥β′)

= Σn∗ − tζζn =
∆v∗t√

G11

∥∥∆v∗t
∥∥
(
k tanϕint

(
−tζζ

)
+ r ρ1G11

∥∥∆v∗t
∥∥β′) (6.25)

where

∆vt = Ω∆v∗t =
(
vξ − wξ, − tanϑ

(
vξ − wξ

))T
.

Please note that, even though normal vectors are covariant and transform according to Eq. (A.11),

in this particular case it holds n = Ω−Tn∗ = Ωn∗, because n∗ = (0, 1)
T

.

6.1.3 Depth-integration of the upper layer balance equations

In this section, the local mass and momentum equations (6.1) and (6.2) are depth-integrated

along the upper layer flow depth.

Depth-integration of the mass equation

Equation (6.1), depth-integrated from the interface (ζ = 0) up to the free surface (ζ = s̃), with

the help of the Leibnitz rule (A.3), can be written as follows

∂

∂λ

∫ s̃

0

Jρ1 dζ + 0− Js̃ρ1
∂s̃

∂λ
+

∂

∂ξ

∫ s̃

0

Jρ1

(
vξ − qξ

)
dζ

+ 0− Js̃ρ1

(
vξ − qξ

)∣∣
s̃

∂s̃

∂ξ
+ Js̃ρ1

(
vζ − qζ

)∣∣
s̃
− J0ρ1

(
vζ − qζ

)∣∣
0

= 0 (6.26)

where Js̃ and J0 are the determinants of the Jacobian matrix of transformation, calculated at the

free surface and at the interface, respectively. Because it is assumed that the bulk density ρ1 is

constant in the upper layer domain, we are allowed to take ρ1 out of the integrals signs. After
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some simplifications and thanks to the KBCs (6.9) (6.22), it is recast

∂

∂λ

∫ s̃

0

J dζ +
∂

∂ξ

∫ s̃

0

J
(
vξ − qξ

)
dζ

− Js̃
(((

((((
(((

((((
((([

∂s̃

∂λ
+
(
vξ − qξ

) ∣∣
s̃

∂s̃

∂ξ
−
(
vζ − qζ

) ∣∣
s̃

]
︸ ︷︷ ︸

KBC at free surface

−J0

(
vζ − qζ

) ∣∣
0︸ ︷︷ ︸

KBC at interface

= 0 (6.27)

and, after substituting the expression at the l.h.s. of Eq. (6.22), we finally obtain

∂

∂λ

∫ s̃

0

J dζ +
∂

∂ξ

∫ s̃

0

J
(
vξ − qξ

)
dζ = J0

Mflux

ρ1
. (6.28)

Depth-integration of the momentum equation

The same procedure has been done to the momentum equation (6.2). In order to depth-integrate

each term separately, it seems useful to we rewrite Eq. (6.2) in a more explicit form

∂ (Jρ1v)

∂λ
+∇ξ ·

{
J

[(
ρ1vx

(
vξ − qξ

)
ρ1vx

(
vζ − qζ

)
ρ1vz

(
vξ − qξ

)
ρ1vz

(
vζ − qζ

))−(σ1 σ2

σ3 σ4

)]}
= Jρ1g ⇒[

∂λ (Jρ1vx)

∂λ (Jρ1vz)

]
+

[
∂ξ
(
J ρ1vx

(
vξ − qξ

))
+ ∂ζ

(
J ρ1vx

(
vζ − qζ

))
∂ξ
(
J ρ1vz

(
vξ − qξ

))
+ ∂ζ

(
J ρ1vz

(
vζ − qζ

))]

−
[
∂ξ (Jσ1) + ∂ζ (Jσ2)

∂ξ (Jσ3) + ∂ζ (Jσ4)

]
= Jρ1

(
gx

gz

)
. (6.29)

By depth-integrating the first term and with the help of the Leibnitz rule (A.3), we obtain∫ s̃

0

∂ (Jv)

∂λ
dζ =

∂

∂λ

∫ s̃

0

Jv dζ + 0− [Jv]s̃
∂s̃

∂λ
. (6.30)

The advective momentum fluxes can be depth-integrated as follows∫ s̃

0

∂
(
Jv
(
vξ − qξ

))
∂ξ

dζ =
∂

∂ξ

∫ s̃

0

Jv
(
vξ − qξ

)
dζ + 0−

[
Jv
(
vξ − qξ

)]
s̃

∂s̃

∂ξ
(6.31)

∫ s̃

0

∂
(
Jv
(
vζ − qζ

))
∂ζ

dζ =
[
Jv
(
vζ − qζ

)]
s̃
−
[
Jv
(
vζ − qζ

)]
0
. (6.32)

Moreover, depth-integrating momentum fluxes due to stresses yield

∫ s̃

0

∂

(
J

(
σ1/ρ1

σ3/ρ1

))
∂ξ

dζ =
∂

∂ξ

∫ s̃

0

J

(
σ1/ρ1

σ3/ρ1

)
dζ + 0− Js̃

(
σ1/ρ1

σ3/ρ1

)∣∣∣∣∣
s̃

∂s̃

∂ξ
(6.33)

∫ s̃

0

∂

(
J

(
σ2/ρ1

σ4/ρ1

))
∂ζ

dζ =

(
Jσ2/ρ1

Jσ4/ρ1

)∣∣∣∣∣
s̃

−
(
Jσ2/ρ1

Jσ4/ρ1

)∣∣∣∣∣
0

. (6.34)
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By collecting all the aforementioned terms into the balance momentum equation, we obtain

∂

∂λ

∫ s̃

0

Jv dζ +
∂

∂ξ

∫ s̃

0

Jv
(
vξ − qξ

)
dζ − ∂

∂ξ

∫ s̃

0

J

(
σ1/ρ1

σ3/ρ1

)
dζ

+ [Jv]0
[
vζ − qζ

]
0︸ ︷︷ ︸

KBC at interface

−[Jv]s̃
(((

((((
(((

((((
(((

∂s̃

∂λ
+
[
vξ − qξ

]
s̃

∂s̃

∂ξ
−
[
vζ − qζ

]
s̃

)
︸ ︷︷ ︸

KBC at free surface

+ Js̃

���
���

���
���

���((
σ1/ρ1

σ3/ρ1

)∣∣∣∣∣
s̃

∂s̃

∂ξ
−
(
σ2/ρ1

σ4/ρ1

)∣∣∣∣∣
s̃

)
︸ ︷︷ ︸

DBC at free surface

+J0

(
σ2/ρ1

σ4/ρ1

)∣∣∣∣∣
0

=

∫ s̃

0

Jg dζ, (6.35)

and, finally we obtain the following two-vector equation

∂

∂λ

∫ s̃

0

J

(
vx

vz

)
dζ +

∂

∂ξ

∫ s̃

0

J
(
vξ − qξ

)(vx
vz

)
dζ − ∂

∂ξ

∫ s̃

0

(
Jσ1/ρ1

Jσ3/ρ1

)
dζ

=

∫ s̃

0

J

(
gx

gz

)
dζ − J0

(
σ2/ρ1

σ4/ρ1

)∣∣∣∣∣
0

+ J0

(
vx

vz

)∣∣∣∣∣
0

Mflux

ρ1
.

(6.36)

It should be noted that the depth-averaged equations (6.28) and (6.36) have been obtained with the

sole simplifying hypothesis of constant density inside the upper layer. All the scaling simplifications

are yet to be done. Although for the sake of completeness Eq. (6.36) is written in its vector form,

only the first scalar equation will be used in the resulting model.

In the final depth-averaged momentum equation (6.36), the great advantage of this approach is

evident. In fact, although Eq.(6.36) has been derived in a curvilinear coordinate system, the flow

velocity components inside the vector of unknowns are written in Cartesian coordinates. Such a

model design avoids the complicated calculation of Christoffel symbols (Tai and Kuo, 2008).

6.1.4 Depth-integration of the lower layer balance equations

Similarly to what done for the upper layer, now we derive the depth-averaged equations of the

lower flowing layer. In this case, the derivation is much simpler because we make use of the mass

and momentum equations written in Cartesian coordinates (4.12) and (4.13). Their derivation is

analogous to that reported in Chapter 4. At the first, kinematic and dynamic boundary conditions

are defined; then, Eqs. (4.12) and (4.13) are depth-integrated along the lower flow depth.

KBC at the bottom

In general, the bottom surface b can be described by the following equation

Fb(x, z, t) = z − b(x, t) = 0. (6.37)

In the simple case of fixed bed, the bottom surface equation can be recast simply as Fb(x, z, t) =

z − b(x) = 0. In this particular case, because there is no mass flux across the bed surface, i.e. the

bottom surface is a material surface, the KBC there can be written as follows

dFb
dt

=
∂Fb
∂t

+w · ∇xFb = 0 (6.38)
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where w stands for the flow velocity field in the lower layer. In order to simply as much as possible

the present model, an even stronger assumption is made, i.e. that the bottom is a plane surface,

coincident with the x axis. In other words, we impose that b(x, t) = 0. Thus, Eq. (6.38) simplifies

into

wz = 0. (6.39)

DBC at the bottom

At the bottom, the shear stress is assumed to be of Coulomb type, similarly to what assumed

in Savage-Hutter type models (e.g. Hutter et al., 1989; Gray et al., 1999; Tai et al., 2001; Hutter,

2005)

T2nb − (T2nb · nb)nb =
w − (w · nb)nb
‖w − (w · nb)nb‖

tanϕbNb (6.40)

in which ϕb and Nb are the basal angle of friction and the normal pressure at the bottom, respec-

tively. Since in case of bed surface coincident with x axis, the normal unit vector at the basal

surface turns out to be nb = (0, 1)
T

, then Nb = − t2, zz|0. Therefore, after some easy calculations,

Eq. (6.40) can be recast as

t2, xz|0 = − sgn(wx) tanϕb t2, zz|0 . (6.41)

KBC at the interface

We assume that the interface Γ between the two layers can be described by the following

equation

Fi = z − zi (x, t) = 0. (6.42)

In general, zi = h2 is the distance of the interface Γ from the coordinate axis x. The KBC is Eq.

(6.15), that can be made explicit as follows

− ∂zi
∂t
− ∂zi
∂x

vint, x + vint, z = 0. (6.43)

With the help of Eq. (6.21) for calculating the volume exchange and by adding w · ∇xFi to the

l.h.s. and the r.h.s. of Eq. (6.43), it is recast as follows

−∂zi
∂t
− ∂zi
∂x

wx + wz = (w − vint) · ∇xFi =
Mflux

ρ2
‖∇xFi‖ . (6.44)

DBC at the interface

Similarly to the assumption made in the model presented in Chapter 4 (cf. Eq. (4.50)), the

dynamic boundary condition at the interface is

T2n− (T2n · n)n =
∆vt
‖∆vt‖

tanϕint

(
−tζζ2

)
(6.45)

where n is the normal unit vector of the interface,
(
−tζζ2

)
is the pressure at the interface, calculated

as limit from below and ∆vt is the tangential component of the jump of flow velocities at the
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interface, i.e. ∆vt = (v −w)− [(v −w) · n]n. After some simple algebraic manipulations of Eq.

(6.45), it follows that

tξζ2 =
sgn

(
vξ − wξ

)
√
G11

tanϕint

(
−tζζ2

)
. (6.46)

Depth integration of the mass equation

We integrate, now, the mass equation (4.12) over the lower layer flow depth, h2. With the help

of the Leibnitz rule (A.3), it is possible to write

∂

∂t

∫ zi

0

ρ2 dz +

[
ρ2
∂z

∂t

]0

zi

+
∂

∂x

∫ zi

0

ρ2wx dz +

[
ρ2wx

∂z

∂x

]0

zi

+ [ρ2wz]
zi
0 = 0. (6.47)

where zi = h2. Then, after some simplification and after collecting the terms in order to use the

KBCs (6.43) and (6.39), we get

∂

∂t
h2 +

∂

∂x

∫ zi

0

wxdz −���wz|0 −
(
∂zi
∂t

+ wx
∂zi
∂x
− wz

)∣∣∣∣
zi︸ ︷︷ ︸

KBC at the interface

= 0 (6.48)

After some further simplifications, it can be recast as

∂h2

∂t
+
∂(h2wx)

∂x
= −Mflux

ρ2
‖∇xFi‖ (6.49)

where we use the over-bar to represent the depth-averaged value along the flow depth (cf. Eq.

(4.29)).

6.1.5 Depth integration of the momentum equation

An analogous procedure has been performed in order to obtain the depth-averaged momentum

equations. By integrating Eq. (4.13) over h2 and after some simple simplifications, we obtain

∂

∂t

∫ zi

0

w dz +
∂

∂x

∫ zi

0

(
wxwx

wxwz

)
dz − ∂

∂x

∫ zi

0

(
t2, xx/ρ2

t2, zx/ρ2

)
dz+

−w|0���wz|0 − w|zi
(
∂zi
∂t

+ wx
∂zi
∂x
− wz

)∣∣∣∣
zi︸ ︷︷ ︸

KBC at the interface

=

∫ zi

0

(
gx

gz

)
dz +

[(
t2, xz/ρ2

t2, zz/ρ2

)]zi
0

−
(
t2, xx/ρ2

t2, zx/ρ2

)
∂h2

∂x
. (6.50)

Through using KBCs (6.38) and (6.44), we finally obtain the following two scalar equations. The

x-component of the depth-averaged momentum equation reads

∂

∂t
(h2wx) +

∂

∂x

(
h2w2

x − h2
t2,xx
ρ2

)
= h2gx +

t2,xz
ρ2

∣∣∣∣
zi

− t2,xz
ρ2

∣∣∣∣
0

− t2,xx
ρ2

∣∣∣∣
zi

∂h2

∂x
− wx|zi

Mflux

ρ2
‖∇xFzi‖

(6.51)
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The z-component of the depth-averaged momentum equation can be written as follows

∂

∂t
(h2wz) +

∂

∂x

(
h2wxwz − h2

t2,zx
ρ2

)
= h2gz +

t2, zz
ρ2

∣∣∣∣
zi

− t2, zz
ρ2

∣∣∣∣
0

− t2, xz
ρ2

∣∣∣∣
zi

∂h2

∂x
− wz|zi

Mflux

ρ2
‖∇xFzi‖ .

(6.52)

6.2 Jump conditions at the interface

Similarly to what has been assumed in the model presented in Chapter 4, the density, flow veloc-

ities and stress tensor are supposed to exhibit a discontinuity across the interface Γ. Previously, we

used the symbols v and w to denote the velocity fields in the upper and lower layer, respectively.

Therefore, the conditions reported in Chapter 4, directly obtained from the Rankine-Hugoniot

jump conditions, (4.21) and (4.22), hold also in this case.

In order to use the synthetic notations of Conditions (4.21) and (4.22), only in this section, we

recover the former notation for representing flow velocities, i.e. v1 = v and v2 = w. Now by left-

multiplying both sides of Eq. (4.22) by the inverse of the Jacobian matrix of the transformation,

Ω−1 and with the help of transformations (A.9), (A.11) and (A.12), we get[
Ω−1vi

]1
2
Mflux =

[
Ω−1Ti

]1
2
n⇒ [v∗i ]

1
2Mflux = T ∗n∗ (6.53)

where n∗ = (0, 1)
T

is the unit normal vector written in curvilinear coordinates.

The ξ component of Eq. (6.53) reads(
vξ1 − vξ2

)
Mflux = tξζ1 − tξζ2 . (6.54)

Eqs. (6.54) permits to calculate the unknown Mflux, as function of the other variables. Therefore,

it will be used a closure equation of the present model.

As well, the ζ component reads as follows(
vζ1 − vζ2

)
Mflux = tζζ1 − tζζ2 . (6.55)

Since vζi = vi · n, with the help of Eq. (4.21), it is recast(
ρ2 − ρ1

ρ1ρ2

)
M2
flux = tζζ1 − tζζ2 . (6.56)

6.3 Mesh velocity

As already stated before, the quantity q represents the velocity of a pseudo-particle whose

coordinates are (ξ, ζ) in curvilinear coordinates, i.e. it is the velocity of the curvilinear coordinate

system. In other words, it can be regarded as the mesh velocity if we take the viewpoint of the

numerical scheme. Since we impose that the curvilinear coordinate system moves together with

the interface Γ, we have found that the KBC at the interface (6.16) is the following

qζ0 = vζint. (6.57)
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This is a constraint to q at any given point on the interface Γ.

However, no constraint is about the tangential component qξ, thus, there is a residual degree

of freedom in order to chose it. The choice qξ = 0 has been adopted in Tai and Kuo (2008);

Tai et al. (2010, 2012) with some obvious numerical advantages in the case of single layer models.

Nevertheless, in the present model there is an underlying moving layer, that continuously exchanges

mass with the upper layer. Therefore, it is convenient for the numerical scheme, that the mesh of

the upper layer, which is in curvilinear coordinates, always overlaps the mesh of the lower layer.

It is why, we choose to impose that

qx, 0 = vint, x = 0. (6.58)

The value of vξint = qξ, which in general is non-zero, can be directly calculated from the contravari-

ant transformation ((A.9)), provided that qx and qz are known.

The advantage of imposing qx = 0 is that at the interface Γ the boundaries of the mesh in the

upper layer are always coincident with those of the mesh of the lower layer, written in Cartesian

coordinates. Nonetheless, it should be noted that because qξ 6= 0 at the interface, then it varies

along the flow depth owning to the local curvature. On the contrary, qζ is constant along the flow

depth and is equal to qζ0 = vζint. Moreover, together with Eq. (6.58), the KBC at the interface

written in Cartesian coordinates, (6.43) implies that

qz, 0 = vint, z = ∂tzi = ∂th2. (6.59)

6.4 Scaling and approximations

In this section, we write the mass and momentum depth-averaged equations in a dimensionless

form, in order to do some scaling approximations. Such a procedure is very important for the

quality of the final equation system. In fact, it is in this stage that the most crucial physical

and engineering assumptions have to be evaluated and applied in order to obtain a reliable final

equation system. Since the asymptotic analysis, here reported, makes wide use of the so-called

big-O notation, a brief description of such a notation is reported in Appendix C.

6.4.1 The scaling of the upper layer equations

Main scalings

In the present model, we mainly follow the same scaling assumptions proposed in Savage-Hutter

type models (Savage and Hutter, 1989; Gray et al., 1999) and employed also in other works that

make use of UC theory (e.g. Tai and Kuo, 2008; Tai et al., 2012). In order to get an appropriate

scale for non-dimensional quantities, we firstly define a characteristic longitudinal length of flow

L, namely the typical spread of the avalanche, and its characteristic depth H. Please note that H

is referred to the whole flow depth and not only to the upper or lower layer depths. Because the

flows under investigation are typically shallow, it is assumed that

ε =
H

L
� 1. (6.60)
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In the following approximations ε will be regarded as an infinitesimal function, since in real

avalanches ε typically exhibits very small values, of order of 10−3 − 10−4, as reported e.g. by

Hutter (2005).

The main physical quantities can be non-dimensionalised by means of the following scalings

(ξ, ζ) = L
(
ξ̂, εζ̂

)
,(

vξ, vζ
)

=
√
gL
(
v̂ξ, εv̂ζ

)
,

(vx, vz) =
√
gL (v̂x, v̂z) ,(

tξξ, tζζ
)

= ρ1gH
(
t̂ξξ, t̂ζζ

)
,

(σ1, σ2, σ3, σ4) = ρ1gH (σ̂1, σ̂2, σ̂3, σ̂4) ,(
tξζ
)

= ρ1gH tanϕint
(
t̂ξζ
)

= ρ1gHε
β
(
t̂ξζ
)
,

(λ) =
√
L/g

(
λ̂
)
.

(6.61)

(6.62)

(6.63)

(6.64)

(6.65)

(6.66)

(6.67)

where dimensionless variables are written with the symbol .̂ Moreover, it is assumed that dimen-

sionless variables are O(1) functions everywhere in the time-space domain, as well as their partial

derivatives. Please note that the length scales H and L, together with ρ1 and g, are independent

from time and space, thus, in the following calculations these factors can be put outside of the

derivatives and integrals operators.

Now, we are going to provide some explanations about the chosen scalings (cf. Eqs. (6.61)-

(6.67)).

By following Savage and Hutter (1989), the ξ-component of flow velocity vξ is assumed to be

of order
√
gL. Moreover, it is assumed that vζ � vξ because of the shallowness assumption, so

it is reasonable that vξ is of order ε
√
gL. The flow velocity components in Cartesian coordinates

vx and vz are of the same order of vξ, since they are obtained through a linear combination of vξ

and vζ (cf. Eq. (A.9)). From Eq. (6.62) it follows that the characteristic time (namely the time

for the avalanche to cover the distance L) is equal to
√
L/g (Eq. (6.67)). The normal stresses

tξξ, tζζ are of order ρ1gH because their most important term is due to hydrostatic pressure, as it

will be shown in the following. On the other hand, tξζ is of order ρ1gH tanϕint, analogously to

the Savage-Hutter model. Please note that the component of mixed stress tensor σi are of order

ρ1gH because they are calculated as a linear combination of the tensor components in curvilinear

coordinates (cf. Appendix C).

Scaling of curvatures

By following Tai and Kuo (2008), another length scale is introduced about the interface curva-

ture. More precisely, it is assumed that the characteristic curvature radius (i.e. the radius of the

local osculating circle) is of order R, such that

L

R
= O (εα) , 0 < α ≤ 1. (6.68)

This assumption is crucial in this model, since it allows many useful simplifications regarding the

Jacobian matrix and its inverse matrix.

It also follows that the scaling of the local curvature is

k′ = −
(√

G11

)−1

∂ξϑ = − cosϑ
1

R
∂ξ̂ϑ̂ =

1

R
k̂′ (6.69)
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where the dimensionless quantity ∂ξ̂ϑ̂ is assumed to be of order 1 and we use the symbol k̂′ to

represent the quantity − cosϑ∂ξ̂ϑ̂.

As well, it is useful to define the scaling of the time derivative of the negative local inclination

angle l = −∂λϑ. This quantity is a kind of temporal curvature of the interface. By following the

same scaling as before and, provided that ∂λ̂ϑ̂ = O(1), we get

l = −∂λϑ = −L
R

√
g

L
∂λ̂ϑ̂ = −

√
gL

R
∂λ̂ϑ̂ =

√
gL

R
l̂. (6.70)

where l̂ stands for −∂λ̂ϑ̂.

Moreover, according with Gray et al. (1999), the scale of tanϕint is assumed to be

tanϕint = O
(
εβ
)
, 0 < β ≤ 1. (6.71)

This scaling is quite common among the Savage-Hutter type models and it is physically justified

by the fact that in real situations, tanϕint is typically around 0.5 or even smaller.

Scaling of the mass flux

By assuming that the shear stress jump, tξζ1 − tξζ2 , is of order O (ρ1gH) and that the velocity

jump, vξζ1 − vξζ2 , is of order O (gL), through using Eq. (6.54), the mass flux can be recast in the

following dimensionless form

Mflux

ρ1
=
H

L

√
gL

M̂flux

ρ̂1
= ε
√
gL

M̂flux

ρ̂1
. (6.72)

Mesh velocity

Since qz, 0 = ∂th2 (cf. Eq. (6.59)), it can be easily shown that

qz, 0 = vint,z =
H

L

√
gLq̂z, 0. (6.73)

As already stated before, qx and qz vary with ζ. By using the UC conditions (B.5) and the scaling

of l (6.70), it follows that

∂ζqx = ∂λΩ12 = ∂λ (cosϑ) = − sinϑ∂λϑ = − sinϑ

√
g

L

L

R
∂λ̂ϑ̂ (6.74)

∂ζqz = ∂λΩ22 = ∂λ (− sinϑ) = − cosϑ∂λϑ = − cosϑ

√
g

L

L

R
∂λ̂ϑ̂. (6.75)

Then, it is possible to write

qx (ζ) = qx, 0 +

∫ ζ

0

∂ζqx dζ =
H

L

√
gL q̂x, 0 − sinϑH

√
g

L

L

R

∫ ζ̂

0

∂ζ̂ q̂x dζ̂

= ε
√
gL q̂x, 0 − ε1+α sinϑ

√
gL

∫ ζ̂

0

∂ζ̂ q̂x dζ̂ = qx, 0 +O
(
ε1+α

)
. (6.76)

Similarly, it can be shown that

qz (ζ) = qz, 0 +O
(
ε1+α

)
. (6.77)
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Please note that these scalings are justified by the hypothesis of small curvature of Γ.

It can be easily shown that the scaling of the mesh velocity, written in curvilinear coordinates,

is as follows

qξ (ζ) = − sinϑ cosϑ ε
√
gL q̂z, 0 +O

(
ε1+α

)
. (6.78)

Scaling of the Jacobian matrix

Thanks to the scaling (6.68), it follows

Ω = Ω0 +O
(
ε1+α

)
(6.79)

J = det Ω = det Ω0 +O
(
ε1+α

)
(6.80)

Ω−1 = Ω−1
0 +O

(
ε1+α

)
. (6.81)

where the elements of the matrices Ω0, Ω−1
0 and det Ω0 are O(1) functions for all ϑ 6= π/2.

Proof. Since the matrix Ω can be factorized as follows

Ω =

(
1 sinϑ

− tanϑ cosϑ

)(
1− ζ ∂xs 0

0 1

)
(6.82)

where the elements of the first matrix, which actually is Ω0, are O (1) for values of ϑ 6= π/2.

Since ∂xs = k′ = 1/Rk̂′, i.e. it represents the spatial curvature, it follows that

ζ ∂xs = O

(
H

L

L

R

)
= O

(
ε
1+α

)
. (6.83)

Therefore,

Ω = Ω0 +O
(
ε
1+α

)
. (6.84)

Analogously, also Eq. (6.81) can be demonstrated.

Furthermore, thanks to the Binet theorem, we can write

det Ω = det Ω0 det

(
1− ζ ∂xs 0

0 1

)
= det Ω0 (1− ζ ∂xs) = det Ω0

[
1 +O

(
ε
1+α

)]
. (6.85)

6.4.2 Dimensionless depth-averaged upper layer mass equation

Now that the main scalings of physical quantities have been calculated, we can write the depth-

averaged mass equation, (6.28), in dimensionless form. Since s̃ = h1, namely the depth of the upper

layer measured normally to the interface Γ, and h1 = Hĥ1 where ĥ1 = O(1), Eq. (6.28) can be

recast as follows

H√
L/g

∂

∂λ̂

(
ĥ1

∫ 1

0

J dζ̂

)
+
H

L

√
gL

∂

∂ξ̂

(
ĥ1

∫ 1

0

J
(
v̂ξ − εq̂ξ

)
dζ̂

)
= J0

H

L

√
gL

M̂flux

ρ̂1
. (6.86)

After some simplification we get

∂

∂λ̂

(
ĥ1

∫ 1

0

(
J0 +O

(
ε1+α

))
dζ̂

)
+

∂

∂ξ̂

(
ĥ1

∫ 1

0

(
J0 +O

(
ε1+α

)) (
v̂ξ − εq̂ξ

)
dζ̂

)
= J0

M̂flux

ρ̂1
.

(6.87)

Please, note that J0 does not vary along the flow depth. After collecting all terms that are O(ε1+α)

or smaller and by using over-bars to denote depth-averaged quantities, we finally get

∂

∂λ̂

(
ĥ1J0

)
+

∂

∂ξ̂

(
ĥ1J0

(
v̂ξ − εq̂ξ

))
= J0

M̂flux

ρ̂1
+O

(
ε1+α

)
. (6.88)
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6.4.3 Dimensionless depth-averaged upper layer momentum equations

Similarly to what have been done to the depth-averaged mass equation, we rewrite the dimen-

sionless depth-averaged momentum equations, (6.36), in dimensionless form

1√
L/g

∂

∂λ̂

[
Hĥ1

∫ 1

0

J

(√
gLv̂x√
gLv̂z

)
dζ̂

]
+

1

L

∂

∂ξ

[
Hĥ1

∫ 1

0

J

(√
gLv̂x√
gLv̂z

) √
gL
(
v̂ξ − εq̂ξ

)
dζ̂

]

− 1

L

∂

∂ξ

[
Hĥ1

∫ 1

0

(
JgHσ̂1

JgHσ̂3

)
dζ̂

]
= gHĥ1

∫ 1

0

J

(
sin δ

− cos δ

)
dζ̂ − gHJ0

(
σ̂2

σ̂4

)∣∣∣∣∣̂
i

+ ε
√
gLJ0

(√
gLv̂x√
gLv̂z

)∣∣∣∣∣
ẑi

M̂flux

ρ̂1
. (6.89)

By collecting all the constant terms outside the integrals and derivative signs and by expressing

J = J0 +O(ε1+α), Eq. (6.89) can be recast as follows

H
√
gL√
L/g

∂

∂λ̂

[
ĥ1

∫ 1

0

(
J0 +O

(
ε1+α

))(v̂x
v̂z

)
dζ̂

]

+
H
√
gL
√
gL

L

∂

∂ξ̂

[
ĥ1

∫ 1

0

(
J0 +O

(
ε1+α

))(v̂x
v̂z

) (
v̂ξ − εq̂ξ

)
dζ̂

]

− gH2

L

∂

∂ξ̂

[
ĥ1

∫ 1

0

(
J0 +O

(
ε1+α

))(σ̂1

σ̂3

)
dζ̂

]
= gHĥ1

(
sin δ

− cos δ

)∫ 1

0

(
J0 +O

(
ε1+α

))
dζ̂

− gHJ0

(
σ̂2

σ̂4

)∣∣∣∣∣̂
i

+ ε
√
gL
√
gLJ0

(
v̂x

v̂z

)∣∣∣∣∣̂
i

M̂flux

ρ̂1
. (6.90)

Then, Eq. (6.90) can be further simplified as follows

∂

∂λ̂

J0ĥ1

(
v̂x

v̂z

)
+

∫ 1

0

O
(
ε1+α

)(v̂x
v̂z

)
dζ̂︸ ︷︷ ︸

O(ε1+α)



+
∂

∂ξ̂

ĥ1J0

(
v̂x (v̂ξ − εq̂ξ)
v̂z (v̂ξ − εq̂ξ)

)
+

∫ 1

0

O
(
ε1+α

)(v̂x
v̂z

) (
v̂ξ − εq̂ξ

)
dζ̂︸ ︷︷ ︸

O(ε1+α)



− ∂

∂ξ̂

ĥ1J0

(
εσ̂1

εσ̂3

)
+

∫ 1

0

O
(
ε1+α

)(σ̂1

σ̂3

)
dζ̂︸ ︷︷ ︸

O(ε1+α)

 =

ĥ1

(
sin δ

− cos δ

)[
J0 +O

(
ε1+α

)]
− J0

(
σ̂2

σ̂4

)∣∣∣∣∣̂
i

+ J0

(
v̂x

v̂z

)∣∣∣∣∣̂
i

M̂flux

ρ̂1
(6.91)
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After collecting all the terms O(ε1+α), we finally get

∂

∂λ̂

[
J0ĥ1

(
v̂x

v̂z

)]
+

∂

∂ξ̂

[
ĥ1J0

(
v̂x (v̂ξ − εq̂ξ)
v̂z (v̂ξ − εq̂ξ)

)]
− ∂

∂ξ̂

[
ĥ1J0

(
εσ̂1

εσ̂3

)]

= J0ĥ1

(
sin δ

− cos δ

)
− J0

(
σ̂2

σ̂4

)∣∣∣∣∣̂
i

+ J0

(
v̂x

v̂z

)∣∣∣∣∣̂
i

M̂flux

ρ̂1
+O

(
ε1+α

)
.

(6.92)

In the final equation system we will only utilize the first component of Eq. (6.92). The stress terms

involved in this equation, such as σ̂1 and σ̂2, need to be specified. As well, some assumptions about

the flow velocity distribution along the flow depth are required, in order to calculate the depth-

averaged quantities that involve v̂x and v̂ξ and the value of v̂x at the interface Γ.

6.4.4 Normal stresses in the upper layer

Now, we need to specify the analytical expressions of mixed stresses σ̂1 and σ̂2 at the interface,

involved in the first component of the momentum equation (6.92).

Firstly, we need to determine analytical expressions for the normal stresses t̂ζζ and t̂ξξ. Since the

main purpose of the scaling simplifications is to obtain a final partial differential equation system

that will be at least accurate of order O (ε), we are allowed to use two different approximating

formulae for the normal stresses. In fact, in order to calculate the depth averaged term σ̂1, it is

sufficient to have an order εα accuracy, because this term is further multiplied by ε in Eq. (6.92)

and, thus, the final quantity is of order ε1+α (e.g. Tai and Kuo, 2008). On the contrary, the

quantity σ̂2 at the interface needs to be calculated with a better accuracy.

By using the second component of Eq. (6.92) and following a reasoning similar to that employed

in Tai and Kuo (2008), it can be shown that the analytical expression of the normal stress t̂ζζ along

the upper layer flow depth, can be written as follows

t̂ζζ
(
ζ̂
)

= (sinϑ sin δ − cosϑ cos δ)
(
ŝ− ζ̂

)
+O (εα) . (6.93)

Please note that ŝ− ζ̂ is the distance of a given point with coordinate ζ̂ from the free surface, thus,

Eq. (6.93) corresponds to the hydrostatic assumption, obtained in a less rigorous way by simply

applying the long-wave approximation (cf. Chapter 4).

Such an expression is used for calculating the depth averaged normal stress, as follows

h1t̂ζζ =

∫ ŝ

0

t̂ζζdζ̂ =

∫ ŝ

0

[
(sinϑ sin δ − cosϑ cos δ)

(
ŝ− ζ̂

)
+O (εα)

]
dζ̂

= (sinϑ sin δ − cosϑ cos δ)
ĥ2

1

2
+O (εα) . (6.94)

Now, we need to find an analytic expression for the longitudinal normal pressure t̂ξξ, in order to

calculate σ̂1. For the sake of simplicity, in this model we assume that the pressure coefficient K

relating t̂ζζ and t̂ξξ is equal to 1. If the local basis was normalized, i.e. with the same metric of

Cartesian frame of reference, it would be simply t̂ξξ = t̂ζζ . Nevertheless, we have to deal with the

metric of the curvilinear frame of reference. In this regard, it can be easily shown that

t̂ξξ =
1

G11
t̂ζζ = cos2 ϑ t̂ζζ (6.95)
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where G11 is the first element of the metric tensor (B.16), i.e. G11 = (gξ · gξ)−1
. Thus, the depth

averaged normal stress tξξ reads

ĥ1t̂ξξ = cos2ϑ (sinϑ sin δ − cosϑ cos δ)
ĥ2

1

2
+O (εα) . (6.96)

Differently, we need to use a more accurate expression for t̂ζζ in order to calculate σ̂2| at the

interface. By still using the second component of Eq. (6.92), it can be easily shown the expression

for t̂ζζ
∣∣̂
i

with accuracy of order ε is the following

t̂ζζ
∣∣̂
i

= (sinϑ sin δ − cosϑ cos δ) ĥ1 − εαJ0 l̂ ĥ1 vξ − εαJ2
0 k̂ĥ1

(
vξ
)2

+O (ε) . (6.97)

where the first term, of order zero, represents the hydrostatic contribution. Instead, the second

and the third terms take into account the curvatures of the reference curve. These terms should be

regarded as fictitious forces, that arise because of the curvature (in time and space) of the reference

frame.

6.4.5 Expressions of the mixed tensor elements

Now, it is possible to write the analytic expressions of the mixed tensor element Σ, so as to

calculate σ̂1 and σ̂2 at the interface, that are in Eq. (6.92). Firstly, thanks to the scaling of Ω

(6.79), it is possible to write(
σ1 σ2

σ3 σ4

)
= Ω

(
tξξ tξζ

tζξ tζζ

)
= Ω0

(
tξξ tξζ

tζξ tζζ

)
+O

(
εα+1

)
. (6.98)

The depth-averaged term σ̂1

By using the scaling of stresses (6.64) - (6.66), we obtain

σ1 = tξξ + sinϑ tζξ +O
(
εα+1

)
⇒ σ̂1 = t̂ξξ + εβ sinϑ t̂ζξ +O

(
εα+1

)
. (6.99)

Thanks to Eq. (6.98), it follows that

σ̂1 = t̂ξξ + εβ sinϑ t̂ζξ +O
(
εα+1

)
. (6.100)

Therefore, the term ∂ξ̂

(
εJ0ĥ1t̂ξξ

)
in Eq. (6.92) can be recast as follows

∂

∂ξ

(
εJ0ĥ1σ̂1

)
= ε

∂

∂ξ

(
J0ĥ1t̂ξξ

)
+ εβ+1 ∂

∂ξ

(
J0ĥ1 sinϑ t̂ζξ

)
= ε

∂

∂ξ

(
J0ĥ1t̂ξξ

)
+O

(
εβ+1

)
.

(6.101)

in which ĥ1t̂ξξ can be calculated by means of Eq. (6.96).
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The term σ̂2

Analogously, by using Eq. (6.98), σ2 can be written as follows

σ2 = tξζ + sinϑ tζζ +O
(
εα+1

)
⇒ σ̂2 = εβ t̂ξζ + sinϑ t̂ζζ +O

(
εα+1

)
. (6.102)

According to the assumptions made about the constitutive law at the interface (cf. Eq. (6.25)), we

postulate that the shear stress tξζ at the interface is composed of two terms, a Coulomb friction

term and a rate-dependent term. In order to find a proper scaling of this term, some assumptions

are required. In this regard, it is assumed that ‖∆vt‖ is of order ει
√
gL, with ι fulfilling the

following condition

β′ι− 1 ≥ β (6.103)

so as to the contribution, due to the rate-dependent term, is not dominant over the friction term

in tξζ . Such an assumption is physically reasonable because the rate-dependent shear stress is

expected to be smaller or at least of the same order of the friction term in dense collisional regime.

In this fashion, tξζ is still assumed to be of order εβ , like in the classical Savage-Hutter type models

(Savage and Hutter, 1989; Gray et al., 1999).

By making explicit this scaling, Eq. (6.25) can be recast as follows

ρ1gHσ̂2 = ρ1gH cosϑ sgn
(
v̂ξ − ŵξ

)
k tanϕint

(
−t̂ζζ

)
+ ρ1

(√
gL
)β′

cosϑ sgn
(
v̂ξ − ŵξ

)
r

(
v̂ξ − ŵξ

)β′
cos2ϑ

+ ρ1gH sinϑt̂ζζ (6.104)

where t̂ζζ can be calculated by means of Eq. (6.97), which has order ε accuracy. After some

simplifications the factor, it is recast as

σ̂2 = cosϑ sgn
(
v̂ξ − ŵξ

)
k tanϕint

(
−t̂ζζ

)
+ ε−1 cosϑ sgn

(
v̂ξ − ŵξ

)
r

(
v̂ξ − ŵξ

)β′
cos2ϑ

+ sinϑt̂ζζ .

(6.105)

6.5 The scaling of the lower layer equations

Analogously to what done for the upper layer, we now deal with the scalings of the main

physical quantities, involved in the lower layer flow dynamics. The following scalings are assumed

(x, z) = L (x̂, εẑ) ,

(wx, wz) =
√
gL (ŵx, εŵz) ,

(t2, xx, t2, zz) = ρ2gH
(
t̂2, xx, t̂2, zz

)
,

(t2, xz) = ρ2gH tanϕb
(
t̂2, xz

)
= ρ2gH εβ

(
t̂2, xz

)
,

(t) =
√
L/g

(
t̂
)
.

(6.106)

(6.107)

(6.108)

(6.109)

(6.110)

where H and L are the same lengths, used in the previous scaling, corresponding to the charac-

teristic total flow depth and to the characteristic avalanche spread, respectively. Moreover, also in

this case, it is assumed ε = H/L� 1 and it is considered an infinitesimal function. The aforemen-

tioned scalings are in accordance with many other works on the Savage-Hutter type models (e.g.

Gray et al., 1999).
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6.5.1 Dimensionless depth-averaged lower layer mass equation

With the help of the Eqs. (6.106) - (6.110), the depth-averaged mass equation of the lower

layer (6.48) can be recast as follows

H√
L/g

∂

∂t̂

(
ĥ2

∫ 1

0

dẑ

)
+
H
√
gL

L

∂

∂x̂

(
ĥ2

∫ 1

0

ŵx dẑ

)
= −H

L

√
gL

M̂flux

ρ̂2
‖∇xFi‖ (6.111)

where ĥ2 = ẑi is the lower flow depth, measured in z direction. After simplifying all the scaling

factors and by using the notation for depth-averaged quantities, Eq. (6.111) is recast

∂

∂t̂

(
ĥ2

)
+

∂

∂x̂

(
ĥ2ŵx

)
= −M̂flux

ρ̂2
‖∇xFi‖ (6.112)

It is interesting to note that no negligible terms have been found in Eq. (6.112).

6.5.2 Dimensionless depth-averaged lower layer momentum equation

Similarly, with the help of the scaling (6.106) - (6.110), the x component of the depth-averaged

momentum equation of the lower layer (6.50) can be recast as follows√
g

L
H
√
gL

∂

∂t̂

(
ĥ2

∫ 1

0

ŵx dẑ

)
+

1

L
H
√
gL
√
gL

∂

∂x̂

(
ĥ2

∫ 1

0

ŵ2
x dẑ

)
− H

L
gH

∂

∂x̂

(
ĥ2

∫ 1

0

t̂2, xx dẑ

)
= gH ĥ2 sinϑ+ εβ gH

(
t̂2,xz

∣∣
ẑi
− t̂2,xz

∣∣
b̂

)
− gH2

L
t̂2xx

∣∣
ẑi

∂ẑi
∂x̂
−
√
gL

H

L

√
gL ŵx

∣∣∣∣
ẑi

M̂flux

ρ̂2
‖∇xFi‖ (6.113)

where b̂ = 0. After some simplification and with the help of the notation for depth-averaged

quantities, it is recast

∂

∂t̂

(
ĥ2ŵx

)
+

∂

∂x̂

(
ĥ2ŵ2

x

)
− ε ∂

∂x̂

(
ĥ2t̂2, xx

)
= ĥ2 sinϑ

+ εβ t̂2,xz
∣∣
ẑi
− εβ t̂2,xz

∣∣
b̂
− ε t̂2xx

∣∣
ẑi

∂ẑi
∂x̂
− ŵx|ẑi

M̂flux

ρ̂2
‖∇xFi‖

(6.114)

Obviously, it is necessary to provide analytic expressions for the quantities t̂2, xx, t̂2, xz
∣∣
b̂

and

t̂2, xz
∣∣
ẑi

in Eq. (6.112). Moreover, some assumptions about the velocity profile in the lowe layer

are required to calculate the depth-averaged quantities, ŵx, ŵ2
x, together with the velocity at the

interface ŵx|ẑi .

Dimensionless shear stress at the basal surface

As regards the basal shear stress in Eq. (6.112), expression (6.41) can be recast in its dimen-

sionless form as follows

εβ t̂2, xz
∣∣
b

= − sgn (ŵx) tanϕb t̂2, zz. (6.115)
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Normal stresses in the lower layer

We need to define the normal stresses distribution in the lower layer, so as to calculate the

depth-averaged quantity t̂xx in Eq. (6.114). It can be easily shown that the z component of the

depth-averaged momentum equation in dimensionless form, can be written as follows

∂ẑ t̂2, zz = cos δ +O (ε) . (6.116)

Then, by integrating Eq. (6.116) between the interface Γ and a given depth z, we obtain∫ ẑi

ẑ

∂ẑ t̂2, zz dζ̂ =

∫ ẑi

ẑ

cos δ dζ̂ ⇒ t̂2, zz
∣∣
ẑ

= t̂2, zz
∣∣
ẑi
− cos δ (ẑi − ẑ) , (6.117)

namely, the normal stress, t2,zz, exhibits an hydrostatic distribution to order O (ε). Obviously, it is

now required to define the quantity t̂2, zz
∣∣
ẑi

, that corresponds to the normal stress at the interface

Γ. By using Eq. (6.56) together with the scaling of Mflux (6.72), it can be easily shown that

tζζ1 − tζζ2 = O
(
ε2
)
, therefore we can assume that tζζ1 ≈ tζζ2 , without impairing the global accuracy

of the mathematical model, . The elements of the stress tensor in Cartesian components can be

calculated simply by applying the transformation formula, T = ΩT ∗ΩT (cf. Eq. (A.12)),(
t2, xx t2, xz

t2, zx t2, zz

)∣∣∣∣∣
zi

=

(
1 sinϑ

− tanϑ cosϑ

) (
tξξ2 tξζ2
tζξ2 tζζ2

)∣∣∣∣∣
i

(
1 − tanϑ

sinϑ cosϑ

)

=

(
tζζ + 2 sinϑ tξζ tξζ

(
cos2ϑ− sin2ϑ

)
/cosϑ

tξζ
(
cos2ϑ− sin2ϑ

)
/cosϑ tζζ − 2 sinϑ tξζ

)
(6.118)

obtained with the help of Eq. (6.95). Then, by using the scaling relations (6.64), (6.66), (6.108)

and (6.109), it is possible to write the same relation in dimensionless form(
t̂2, xx εβ t̂2, xz

εβ t̂2, zx t̂2, zz

)∣∣∣∣∣
ẑi

=
ρ1

ρ2

(
t̂ζζ2 + εβ 2 sinϑ t̂ξζ2 εβ t̂ξζ2

(
cos2ϑ− sin2ϑ

)
/cosϑ

εβ t̂ξζ2
(
cos2ϑ− sin2ϑ

)
/cosϑ t̂ζζ − εβ2 sinϑ t̂ξζ

)∣∣∣∣∣̂
i

.

(6.119)

Now, since in Eq. (6.114) the two terms which require the calculation of t̂xx or t̂zz are both

multiplied by ε, it is possible to simplify these quantities as follows

t̂2,xx
∣∣
ẑi
≈ t̂2,zz

∣∣
ẑi

=
ρ1

ρ2
t̂ζζ
∣∣̂
i
+O

(
εβ
)

(6.120)

without impairing the global accuracy of the model. In this way Eq. (6.114) has an accuracy of

order ε1+β .

In the present model, for the sake of simplicity we assume that the pressure coefficient to write

t2, xx as function of t2, zz is equal to 1 everywhere along the lower layer flow depth and, thus,

t̂2, xx = t̂2, zz .

By depth integrating over the lower layer flow depth we finally get

ĥ2 t̂2, xx = ĥ2 t̂2, zz = t̂2, zz
∣∣
ẑi
ĥ2 − cos δ

ĥ2
2

2
=
ρ1

ρ2
t̂ζζ
∣∣̂
i
ĥ2 − cos δ

ĥ2
2

2
(6.121)
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Dimensionless shear stress at the interface

By using Eq. (6.119) it is possible also to express the term, t̂2, xz, at the interface as function

of t̂ξζ2 . More precisely, it follows

t̂2,xz
∣∣
ẑi

=
ρ1

ρ2

(
cos2ϑ− sin2ϑ

)
cosϑ

t̂ξζ2

∣∣∣̂
i
. (6.122)

where the quantity t̂ξζ2 is the dimensionless form of expression (6.46).

6.6 Hypotheses about the velocity distribution

Upper layer

As regards the upper layer, in order to define the depth-averaged quantities in Eqs. (6.88) and

(6.92), such as v̂ξ, v̂x, v̂xv̂ξ, v̂xq̂ξ and v̂ξ
∣∣̂
i
, it is necessary to make some assumptions about the

velocity distribution.

At this stage of investigation, it is simply assumed that the velocity profile is almost uniform

along the flow depth. This assumption is quite common in Savage-Hutter type models (e.g. Gray

et al., 1999), though it is far from being realistic in some experimental cases, especially in case of

no-slip bottom boundary condition (cf. Chapter 3). More precisely, we assume that

v̂ξ (ζ) = vξ +O
(
εγ+1

)
. (6.123)

It follows that

v̂ξ
∣∣̂
i

= vξ +O
(
εγ+1

)
. (6.124)

where 0 < γ ≤ 1. With the aim of calculating the components of the flow velocity in Cartesian

coordinates, we employ the Contravariant transformation (A.9) and the scaling of Ω−1 (6.81),(
vx

vz

)
= Ω

(
vξ

vζ

)
= Ω0

(
vξ

vζ

)
+O

(
εα+1

)
≈
√
gLΩ0

(
v̂ξ

ε v̂ζ

)
=
√
gLΩ0

(
v̂ξ

0

)
+O (ε) . (6.125)

Therefore, it follows that

vx = vξ + sinϑ vζ = vξ +O (ε) . (6.126)

Then, by using the notation for depth-averaged quantities, we obtain

v̂ξ ≈ v̂x, (6.127)

v̂ξ
∣∣̂
i
≈ v̂x, (6.128)

v̂ξ v̂ξ =
(
v̂x
)2

+O
(
εγ+1

)
, (6.129)

v̂xv̂ξ =
(
v̂x
)2

+O (ε) . (6.130)

These relations will be used in Eqs. (6.88) and (6.92).
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Mesh velocity

Thanks to the Contravariant transformation (A.9) and the scaling of Ω−1 (6.81), the ξ-component

of the mesh velocity can be written as(
qξ

qζ

)
= Ω−1

0

(
qx

qz

)
+O

(
εα+1

)
⇒ qξ = cos2ϑ qx − sinϑ cosϑ qz, (6.131)

then, with the help of the scaling of qx and qz, Eqs. (6.76) and (6.77), it is recast as follows

qξ = cos2ϑ qx, 0 − sinϑ cosϑ qz, 0 +O
(
εα+1

)
= − sinϑ cosϑ qz, 0 +O

(
εα+1

)
. (6.132)

Finally, we obtain the depth-averaged quantity

q̂ξ = q̂ξ0 +O
(
εα+1

)
= − sinϑ cosϑ q̂z, 0 +O

(
εα+1

)
, (6.133)

From Eq. (6.133) it follows that

v̂xq̂ξ = v̂x q̂ξ +O (ε) . (6.134)

This relation will be used in the depth-averaged momentum equation, (6.92), in order to calculate

the term v̂xq̂ξ.

6.6.1 Lower layer

As well, some assumptions on the lower layer velocity profile are required. Similarly, we assume

that the velocity profile is almost uniform also in the lower layer. It follows that

ŵx = ŵx +O
(
εγ+1

)
, (6.135)

ŵx|ẑi = ŵx +O
(
εγ+1

)
, (6.136)(

ŵx
)2

= ŵ2
x +O

(
εγ+1

)
. (6.137)

6.7 The final equations

In this section, the final equations of the two-layer model, written in mixed coordinates, are

presented. The depth-averaged dimensionless balance equations, referred to both of layers, i.e.

Eqs. (6.88), (6.92), (6.112) and (6.114), are considered here, after dropping all terms of order

O
(
ε1+α

)
or smaller. Moreover, Eqs. (6.127), (6.128), (6.129), (6.130), (6.135), (6.136), (6.137) are

used in order to write all the terms as functions of only the two depth-averaged flow velocities, v̂x

and ŵx.
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The resulting PDE system can be written as follows

∂

∂λ̂

(
J0ĥ1

)
+

∂

∂ξ̂

(
J0ĥ1

(
v̂x − εq̂ξ

))
= J0

M̂flux

ρ̂1
(6.138)

∂

∂λ̂

(
J0ĥ1v̂x

)
+

∂

∂ξ̂

(
J0ĥ1v̂x

(
v̂x − εq̂ξ

)
− εJ0ĥ1σ̂1

)
= J0ĥ1 sin δ − J0 σ̂2 |̂i + J0v̂x

M̂flux

ρ̂1
(6.139)

∂

∂t̂

(
ĥ2

)
+

∂

∂x̂

(
ĥ2ŵx

)
= −M̂flux

ρ̂2
‖∇xFi‖ (6.140)

∂

∂t̂

(
ĥ2ŵx

)
+

∂

∂x̂

(
ĥ2

(
ŵx
)2 − ε ĥ2t̂2,xx

)
=

ĥ2 sin δ + εβ t̂2,xz
∣∣
ẑi
− εβ t̂2,xz

∣∣
b̂
− εt̂2,xx

∣∣
ẑi

∂ĥ2

∂x̂
− ŵx

M̂flux

ρ̂2
‖∇xFi‖ , (6.141)

in which the vector of unknowns is u =
(
J0ĥ1, J0ĥ1v̂x, ĥ2, ĥ2ŵx

)T
.

As regards the upper layer equations (6.138) and (6.139), there are some terms that need to be

expressed as function of the unknowns. In particular, thanks to Eqs. (6.96) and (6.101), the term

ĥ1σ̂1 can be written as

ĥ1σ̂1 ≈ ĥ1t̂ξξ =
1

2
cos2ϑ (sinϑ sin δ − cosϑ cos δ) ĥ2

1 +O
(
ε1+γ

)
. (6.142)

with γ = min (α, β).

Moreover, σ̂2 at the interface is defined by means of Eq. (6.105), here reported again

σ̂2 = cosϑ sgn
(
v̂ξ − ŵξ

)
k tanϕint(− t̂ζζ

∣∣̂
i
) + ε−1 cosϑ sgn

(
v̂ξ − ŵξ

)
r

(
v̂ξ − ŵξ

)β′
cos2ϑ

+ sinϑ t̂ζζ
∣∣̂
i
,

(6.143)

where t̂ζζ
∣∣̂
i

can be calculated by means of Eq. (6.97), accurate to order (ε). The ξ component of

the lower layer flow velocity w at the interface in Eq. (6.143) can be calculated by means of the

contravariant formula. Eq. (A.9)

ŵξ
∣∣
ẑi

= cos2ϑ ŵx|ẑi − ε sinϑ cosϑ ŵz|ẑi = cos2ϑ ŵx|ẑi +O (ε) = cos2ϑ ŵx
∣∣
ẑi

+O (ε) . (6.144)

Finally, the term q̂ξ, which is the depth-averaged value of the ξ-component of the mesh velocity q,

can be calculated with the help of Eq. (6.133) and (6.59) as follows

q̂ξ ≈ q̂ξ0 = − (sinϑ cosϑ) q̂z, 0 = − (sinϑ cosϑ) ∂t̂ĥ2. (6.145)

which is accurate to order O
(
εα+1

)
.

Similarly, we need to make explicit some terms in the lower layer equations (6.140) and (6.141).

In particular, the term ĥ2t̂2,xx in Eq. (6.141) can be calculated by means of Eq. (6.121),

ĥ2 t̂2, xx = ĥ2 t̂2, zz = t̂2, zz
∣∣
ẑi
ĥ2 − cos δ

ĥ2
2

2
=
ρ1

ρ2
t̂ζζ
∣∣̂
i
ĥ2 − cos δ

ĥ2
2

2
. (6.146)

in which the term t̂ζζ
∣∣̂
i

can be calculated by mean of the Eq. (6.93), accurate to order O (εα).

The same expression can be used also for calculating the term εt̂2,xx
∣∣
ẑi
∂x̂ĥ2, so that the overall

accuracy of this term is to order O
(
ε1+α

)
.
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Moreover, the shear stress at the bottom, t̂2,xz
∣∣
b̂
, is simply calculated thanks to Eq. (6.115)

that is reported as follows

εβ t̂2, xz
∣∣
b

= − sgn (ŵx) tanϕb t̂2, zz = sgn (ŵx) tanϕb

(
cos δ ĥ2 −

ρ1

ρ2
t̂ζζ
∣∣̂
i

)
. (6.147)

In this case, because the term εβ t̂2,xz
∣∣
b̂

is of order O
(
εβ
)
, the order ε approximation of t̂ζζ

∣∣̂
i

(cf.

Eq. (6.97)) can be used, instead of that one accurate to order εα, since it is not known a priori

whether α+ β ≥ 1.

Analogously, the term t̂2,xz
∣∣
ẑi

can be expressed with the help of Eq. (6.122) as function of t̂ξζ2
as follows

t̂2,xz
∣∣
ẑi

=
ρ1

ρ2

(
cos2ϑ− sin2ϑ

)
cosϑ

t̂ξζ2

∣∣∣̂
i

(6.148)

It is useful, now, to rewrite System (6.138)-(6.139)- (6.140)-(6.141) in a slightly different form.

With the help of the product rule of partial differentiation, it is possible to write the term εĥ2t̂2,xx

as follows

∂x̂

(
−εĥ2t̂2,xx

)
= ε ∂x̂

[
cos δ

ĥ2
2

2
− ρ1

ρ2
t̂ζζ ĥ2

]
= ε ∂x̂

(
cos δ

ĥ2
2

2

)
−ε ĥ2 ∂x̂

(
ρ1

ρ2
t̂ζζ
)
−ε ρ1

ρ2
t̂ζζ
(
∂x̂ĥ2

)
.

(6.149)

Therefore by substituting Eq. (6.149) into Eq. (6.141) and after some further manipulations, the

PDE System can be rewritten as follows

∂

∂λ̂

(
J0ĥ1

)
+

∂

∂ξ̂

(
J0ĥ1

(
v̂x − εq̂ξ

))
= J0

Mflux

ρ1
(6.150)

∂

∂λ̂

(
J0ĥ1v̂x

)
+

∂

∂ξ̂

(
J0ĥ1v̂x

(
v̂x − εq̂ξ

)
+ ε

1

2
cos3ϑ (cosϑ cos δ − sinϑ sin δ) J2

0 ĥ
2
1

)
=

sin δ J0ĥ1 − J0 σ̂2 |̂i + J0v̂1, x
Mflux

ρ1
(6.151)

∂ĥ2

∂t̂
+
∂
(
ĥ2wx

)
∂x̂

= −J0
Mflux

ρ2
(6.152)

∂

∂t̂

(
ĥ2wx

)
+

∂

∂x̂

(
(wx)

2
ĥ2 + ε

1

2
cos δĥ2

2

)
=

sin δ ĥ2 + εβ
(
t̂2,xz

∣∣̂
i
− t̂2,xz

∣∣
b̂

)
+ εĥ2

ρ1

ρ2

∂

∂x̂

(
(sinϑ sin δ − cosϑ cos δ) ĥ1

)
− J0wx

Mflux

ρ2
. (6.153)

Given the assumptions made above, the overall accuracy of the present model is at least of order

O (ε). This system has to be equipped with the closure equation for calculating Mflux, (6.54),

written in dimensionless form, where ŵξ can be calculated by means of Eq. (6.144).

6.8 Discussion and conclusions

The proposed model has some valuable advantages with respect to the two-layer model, pre-

sented in Chapter 4.

At the first, it should be noted that the employment of scaling approximations is more rigorous

than simply applying the Long-wave approximation and, it permits a more rational identification

of physical negligible terms. Moreover, such a scaling procedure is very versatile, since it allows to
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add or remove assumptions quite easily. Namely, after writing the model equations in dimensionless

form, it is possible to obtain several final models, depending on the chosen order of accuracy.

As regards the hyperbolicity issues, it is interesting to note that no non-conservative terms,

depending on the spatial derivative of the lower layer flow depth, are present in the upper layer

depth-averaged momentum equation. This is due to the formulation of the upper layer equations

in curvilinear coordinates. The coupling between the two layers is still present, but it appears

in a more “diffused” form. Namely, the influence of the lower layer dynamics on the upper layer

dynamics is incorporated in the topographic terms, depending on the interface inclination angle,

ϑ. These terms are in σ̂2 |̂i and also in the flux function. Moreover, it should be noted that all

these topographic terms are upper-bounded trigonometric functions of ϑ. This feature suggests

that the issues related to the hyperbolicity loss could be avoided or reduced somehow. However, a

further investigation about this topic is advisable.

Furthermore, it is important to highlight that the scaling analysis shows that the influence of

the upper layer on the lower layer dynamics is weaker than the opposite. In fact, in Eq. (6.153)

the only coupling with the upper layer flow dynamics is represented by the term εĥ2ρ1/ρ2∂x̂
(
t̂ζζ
)
,

which is only of order O (ε) and is also multiplied by ρ1/ρ2 < 1. In case of h1 � h2, which is rather

realistic in presence of a rheological stratification of the granular flow, this term could be simply

neglected. It leads to the derivation of another simplified PDE model, still accurate of order O (ε),

which is hyperbolic.

As regards the numerical integration of the model, it should be noted that the eigenvalue struc-

ture of the whole system is not accessible because of different coordinate systems used for deriving

Eqs. (6.150)-(6.151) and Eqs. (6.152)-(6.153) . In the context of a numerical scheme, the eigenval-

ues calculation could be performed in a decoupled way. Namely, the eigenvalues of the Jacobian

matrix of flux vectors can be calculated independently for each layer. The topographic terms,

depending on ϑ, can be treated as spatial varying functions, that adapt in a non-instantaneous

way, reminiscent of the relaxation approach proposed by Abgrall and Karni (2009). To this regard,

a numerical implementation that makes use of an f-wave type finite volume scheme (Bale et al.,

2002) is in progress.

Finally, the presented model can be regarded as a particular case of a more complex model that

incorporates also basal topographic variations, below the lower layer. In this general case, also the

lower layer equations could be written in curvilinear coordinates in order to better identify the

physical negligible terms during the subsequent scaling approximation. Moreover, less simplistic

assumptions about the velocity profiles inside each layer can be made in a further version of the

model.
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Chapter 7

Conclusions

In this brief Chapter, the main findings of this dissertation are summarized and discussed. As

well, perspectives and further developments of the present research are highlighted.

Geophysical granular flows, such as avalanches or debris flows, are particularly dangerous events,

characterized by the rapid flow of a granular solid phase, embedded in an ambient fluid. The

flow dynamics of such phenomena is still far from being completely understood. In an engineering

context, one of the main tools, available to describe the propagation of granular flows from initiation

to deposit, are the depth-averaged models. In the particular context of dry granular flows, this

approach turns out to be sufficiently reliable to describe the flow dynamics and final run-outs, in

presence of slip bottom boundary conditions. These models, like the Savage-Hutter model (Savage

and Hutter, 1989; Gray et al., 1999), have been extensively validated through many laboratory

experiments over smooth basal surfaces. Nevertheless, the reliability of classical depth-averaged

models seems to be noticeably reduced, in case of no-slip bottom boundary conditions. Such a

condition is rather frequent in real geophysical situations, as occurs in presence of a sufficiently

large roughness of the basal surface. In this case, a stratification of different flow regimes (quasi-

static and dense collisional regimes) occurs. It makes the utilization of the classical single layer

depth-averaged models insufficient, because of important uncertainties about the velocity and shear

stress distributions along the flow depths.

The present dissertation aimed at better understanding the dynamics of free surface dry gran-

ular flows, in presence of no-slip bottom boundary conditions.

To this regard, the first stage of the present research involved an experimental-numerical study

on dam-break flows of granular material, conducted at the LIDAM (University of Salerno), in

which acetal grain particles have been used. Tests were carried out on a smooth Plexiglas bed

surface, as well as, on a roughened surface. The experimental investigation consisted of capturing

the flow depth evolutions over time, through a camera, placed at the side of the channel. After

several comparisons between experimental data and numerical results, obtained from some different

Savage-Hutter type models, it has been found that a modification to the formula, proposed in the

Savage-Hutter model for calculating the earth-pressure coefficient, leads to an increased agreement

with experimental data, in presence of no-slip bottom boundary conditions. This approach, which is

165
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similar to that proposed by Hungr (2008), turns out to be very robust in a finite volume framework

and yields good agreement with experimental data at the early stages of dam-break flows. The

rationale of the proposed modification to the earth-pressure coefficient is the strong curvature of

flow lines at the early stages of dam-breaks, owing to high flow depth gradients. Nonetheless,

the regularization formula provides no particular improvement in case of slip bottom boundary

conditions. It suggests that the shear stresses, as well as the flow velocities, are strongly influenced

by the boundary conditions.

In the second stage of the present research, an experimental study on steady state velocity

profiles of channelized dry granular flows was carried out at the National Cheng Kung University

(Taiwan). The granular material, used in this experimental research, was Ottawa sand, a well-

sorted sand compliant to the ASTM C-778 20/30 Standard. The main purpose of these experiments

was to better understand the flow dynamics in presence of different boundary conditions, through

measuring the flow velocity profiles at the side walls and at the free surface. Such measurements

have been obtained, through using granular-PIV techniques. The measurements are in good

accordance with other experimental studies on different granular materials (Midi, 2004). Moreover,

it has been found that a no-slip bottom boundary condition may also occur in presence of smooth

bed surfaces, if the side walls resistances are big enough to induce the deposition of a lower wedge

of granular material. As well, the dynamical effects of side walls are also evident from the velocity

measurements at the free surface, where parabolic-shaped profiles have been observed.

As regards the side wall velocity profile, in case of slip bottom boundary condition, a linear

profile from the free surface to the bottom has been observed. Conversely, in case of no-slip

boundary condition, the velocity profile is exponential in their lower zone and almost linear in

proximity of the free surface. The extent of these two zones is highly variable from one experiment

to another. Such experimental findings support the occurrence of a rheological stratification along

the flow depth, i.e. the coexistence of different constitutive laws in the same cross section. Such a

physical interpretation is also supported by dimensional analysis arguments. In fact, the inertial

number, which is the main dimensionless parameter involved in the flow dynamics of stiff dry

granular materials, strongly decreases with the distance from the free surface in case of no-slip

bottom condition. Therefore, it is natural to infer that also the constitutive law (i.e. the relation

between the shear stress and the shear rate tensor) varies noticeably along the flow depth.

In order to better describe such a complex flow dynamics, a two-layer depth-averaged model

has been proposed. The main purpose of this approach is to better reproduce the effective velocity

distribution along the flow depth and to capture the main dynamical features of such rheological

stratification. In the proposed mathematical model, the dynamics of the two layers, ideally cor-

responding to dense-collisional and quasi-static zones, have been considered independently. More-

over, a rate-dependent term has been considered in the shear stress of the upper layer at the

interface, in order to take into account of the effects, due to collisional resistance mechanisms.

As well, mass exchanges between the two layers have been implemented and have been calcu-

lated through a closure equation, based on the Rankine-Hugoniot jump condition, similar to that

proposed in Fraccarollo and Capart (2002).

The well-known mathematical issue of the hyperbolicity loss in two-layer models has been

carefully addressed. In order to overcome this problem, a local modification of the source terms

of the original mathematical model has been proposed. Such a treatment consists of adding an
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extra resistance at the interface, strictly sufficient to avoid the loss of hyperbolicity at any given

time-advancing of the numerical scheme. This approach has been found to be very robust, and

yields reasonable results, as long as the asymptotic steady state solution and boundary conditions

fulfil the hyperbolicity requirements of the original model.

In order to compare the experimental data, obtained through granular PIV techniques, with

numerical results from the two-layer model, a physically based criterion, to identify the interface

position inside the experimental velocity profiles, has been developed. Such a criterion is based

on the assumption that the interface position approximately corresponds to a critical value of the

inertial number. This hypothesis is supported by our experimental data, if a linear rate-dependent

shear stress at the interface is assumed. Moreover, the critical value of the inertial number has been

found to be approximately equal to 0.33. This value is reasonable and in good accordance with

a similar criterion, based on the Savage number and proposed to roughly distinguish the friction-

dominated from the fluidized collisional regime (Savage and Hutter, 1989; Iverson and Vallance,

2001).

Through comparisons with experimental data, the two-layer approach turns out to be promising

to describe the complex flow dynamics in case of no-slip bottom boundary conditions. Yet, it has

been found that the velocities of both layers, and, particularly that one of the lower layer, sometimes

are not properly predicted. In particular, the experimental comparisons suggest that assuming a

pure Coulomb friction law in the lower layer could be insufficient to correctly describe its dynamics.

Nonetheless, it should be noted that these comparisons have been performed without any

calibration of the model parameters and could be also affected by some important uncertainties,

related to the estimation of the depth-averaged velocity profiles, along the transverse direction, y.

These preliminary results, on the one hand, suggest a further experimental investigation on the

effective velocity distribution inside the flowing pile. In this regard, it could be very valuable also

to obtain measurements of the volume fraction distributions inside the flow. On the other hand,

the rheological assumptions of the proposed two-layer model need to be revised. In particular, a

more detailed description of the basal shear stress seems to be required and could incorporate a

rate-dependent term.

As well, a more detailed description of the effective velocity distribution inside the layers can

be implemented in a further version of the mathematical model.

Furthermore, in order to properly calibrate the parameters, r and k, that are in the expression

of the upper layer shear stress, a further experimental research on dry granular flows in transient

state conditions would be required. As well, a comparison with transient state flows would be very

valuable to evaluate the reliability of the model to correctly capture the interface position over

time.

In addition to the two-layer model, written in Cartesian coordinates, the same two-layer ap-

proach has been employed to obtain a different formulation of the model in curvilinear coordinates.

The balance equations of this model are written in moving curvilinear coordinates, as regards the

upper layer, and in Cartesian coordinates, as regards the lower layer. The curvilinear coordinate

system is assumed to be attached to the moving interface between the two layers. The deriva-

tion of the model makes use of the Unified Coordinate method (e.g. Hui et al., 1999; Hui, 2004,

2007), combined with the arbitrary coordinate system of Bouchut and Westdickenberg (2004), as

proposed by Tai and Kuo (2008). After obtaining the exact depth-averaged balance equations,
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a scaling approximation has been performed in order to identify and drop out all the negligible

physical terms. This approach has some important advantages with respect to the two-layer model,

written in Cartesian coordinates.

Firstly, all the approximations are made through a scaling analysis, where the effective direction

of the avalanche is considered. The utilization of scaling approximations permits a more rational

identification of physical negligible terms.

Moreover, differently from the two-layer model, written in Cartesian coordinates, there are no

non-conservative terms in the upper layer momentum equation. The dynamical coupling between

the two layers is still present, but it appears in a more diffused form, due to the different coordinates

used for deriving the upper and lower layer balance equations. Namely, the influence of the lower

layer on the upper layer dynamics is incorporated in some upper-bounded topographic terms,

depending on the interface inclination angle. This feature suggests that the issues related to the

hyperbolicity loss could be avoided or reduced somehow. However, a further investigation about

this topic is advisable.

The long-term goal of the present research is to provide reliable mathematical-numerical tools

to better describe the propagation of dry granular flows, in real situations where a no-slip bottom

boundary condition usually occurs. As well, since many mathematical models for describing debris

and grain-water flows make use of a two-phase approach (e. g. Iverson, 1997; Iverson and Vallance,

2001), the results of this research could be also applied, after suitable modifications, to debris flow

models.
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Appendix A

Mathematical notations and useful

formulae

A.1 Main notations

Bold italic symbols (e.g. v) stand for vectors, unless otherwise specified. Vectors written in

curvilinear coordinates, exhibit the superscript ∗. Capital italic symbols stand for matrices and

tensors, unless otherwise specified. The symbol · between two vectors indicates the scalar product,

while ⊗ indicates the dyadic product.

The symbol ‖v‖ stands for
√
v · v. Because the metric of the curvilinear coordinate system is

different from that in Cartesian coordinates, please note that, in general, ‖v‖ 6= ‖v∗‖. Only the

norm, written in Cartesian coordinates, represents a distance in an Euclidean sense.

The absolute value of a given quantity x is written as |x|, instead.

Dyadic product

Let v be a vector field defined in Rn. The dyadic product is a n× n matrix, defined as follows

v ⊗ v = vvT .

Divergence of a matrix

We need to define a convention to extend the definition of divergence to matrices. This con-

vention will be used in every calculation of the present dissertation.

Let A be an n×m matrix. Its divergence can be defined as the following column vector

∇ ·A =

m∑
j=1

(
∂aij
∂xj

)
∈ Rn. (A.1)

Thus, the divergence of the stress tensor T is

∇x · T = ∇ ·
(
txx txz

tzx tzz

)
=

(
∂xtxx + ∂ztxz

∂xtzx + ∂ztzz

)
. (A.2)
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It is interesting to note that only if the matrix is symmetric, the aforementioned definition is

equivalent to that one obtained by summation over the columns instead of rows,

∇ ·A =

n∑
i=1

(
∂aij
∂xi

)
∈ Rm.

A.2 Leibniz integral rule

Let f (x, t) be a function such that ∂tf exists and is continuous, it holds,

∂

∂t

∫ b(t)

a(t)

f (x, t) dt =

∫ b(t)

a(t)

∂tf (x, t) dt+ f (b (t) , t) ∂tb (t)−f (a (t) , t) ∂ta (t) . (A.3)

This calculus rule, named Leibniz integral rule after the mathematician G. Leibniz, is particularly

useful to move the partial derivative operator outside the integral sign, or vice versa. This for-

mula has been widely in the present dissertation for the derivation of the depth-averaged model

equations.

A.3 Covariance and contravariance

Covariance and contravariance are concepts, used for the first time by J. Sylvester in 1853 in

multilinear algebra in order to describe how the components of certain physical quantities vary

with a change from a coordinate system to another.

A vector undergoes a contravariant transformation if it is transformed in the same way of the

coordinate system. On the other hand, a covariant vector transforms oppositely to the coordinates.

If the coordinates transformation consists of a simple rotation, there is no difference between

contravariant and covariant vectors.

In two-dimensional space, let B be the orthonormal canonical basis of a Cartesian coordinate

system

B = (e1 e2) =

(
1 0

0 1

)
.

Let us consider the local tangent basis of a given curve, written in Cartesian coordinates,

B∗ = (g1 g2)

where the local basis vectors are the tangent vectors of the curve, i.e.

g1 =
∂x

∂ξ
, g2 =

∂x

∂ζ
.

Such a basis is also called covariant local basis.

Let Ω be the Jacobian matrix of the transformation between the Cartesian coordinate system

and that defined on the given manifold, defined as follows

Ω = ∂ξx =

(
∂ξx ∂ζx

∂ξz ∂ζz

)
= (g1, g2) , (A.4)
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it can be easily shown that

B∗ = BΩ = Ω (A.5)

or equivalently

(B∗)T = ΩTBT = ΩTB. (A.6)

A.3.1 Contravariant vectors

In Euclidean spaces, the position vector s, which is a geometrical vector representing the

position of a given point P with respect to a reference origin O, can be regarded as the prototype

of any contravariant vector. The choice of a particular basis allows s to be determined by a set of

coordinates numbers.

In Euclidean plane, the components vector of any given vector s can be written as follows

c = (sx, sz)
T
, c∗ =

(
sξ, sζ

)T ⇒ s = sxex + szez = sξg1 + sζg2, (A.7)

where c and c∗ are the coordinate vectors with respect to the basis B and B∗, respectively.

In other words, s can be written in the following different ways

s = Bc = B∗c∗ = BΩc∗ ⇒ c = Ωc∗. (A.8)

This formula tells how the components of s transform, owing to the change of basis. Thus, it

is possible to write the following transformation formula for contraviariant vectors

v = Ωv∗. (A.9)

A.3.2 Covariant vectors

The gradient of a scalar field can be regarded as the prototype of any covariant vector. Let

f(x, z) be a scalar field defined in E2, its gradient is

∇f =

(
∂xf

∂zf

)
. (A.10)

Because of x = x(ξ, ζ) and z = z(ξ, ζ), by using the chain rule we get

∂xf = ∂ξf ∂xξ + ∂ζf ∂xζ

∂zf = ∂ξf ∂zξ + ∂ζf ∂zζ.

This implies that

∇xf = Ω−T∇ξf. (A.11)

For instance, the normal vector to a given surface is a covariant vector and so transforms according

to Eq. (A.11).
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A.3.3 Tensor transformation

Tensors are geometrical objects that describe linear relations between scalar, vectors or other

tensors. Second order tensors can be represented by a matrix (i.e. a two dimensional array), whose

elements vary with the chosen coordinate system in the following way (see e.g. Arfken and Weber,

2005)

T =
∑
i, j

T ijei ⊗ ej =
∑
m,n

T ∗mngm ⊗ gn

in which T i, j and T ∗m,n are the generic elements of the matrices representing the tensor T with

respect to the canonical Cartesian basis, (e1, e2), and the local covariant basis, (g1, g2), respec-

tively.

It directly follows that the matrix T , representing a given tensor with respect to the canonical

Cartesian basis and the matrix T ∗, representing the same tensor with respect to the local basis

T ∗, are related by the following equation

T = ΩT ∗ΩT . (A.12)
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Mathematical methods

B.1 The Unified Coordinate system

Here, we briefly describe the key points of the Unified Coordinate theory (also referred to

as UC theory), proposed by Hui et al. (1999) and applied successfully to several fluid dynamic

problems (for more details see Hui and Koudriakov, 2002; Hui, 2004, 2007). The main purpose

of this approach is to develop a mathematical tool for modelling fluid mechanics problems in a

moving arbitrary curvilinear coordinate system, so as to overcome the typical shortcomings of the

classical Eulerian and Lagrangian approaches. The main advantage of the UC theory consists of

a reformulation of the model equations, so that more reliable numerical schemes can be employed.

Recently, the UC theory, together with the approach proposed by Bouchut and Westdickenberg

(2004) for the geometrical description of the basal topography of shallow granular avalanches, has

been applied to the context of geophysical granular flows by Tai and Kuo (2008). The extension

to three-dimensions of this model is presented by Tai et al. (2012).

The present appendix does not claim to be complete. By following the approach proposed in

Tai and Kuo (2008), we simply report the main findings of the UC theory that are required for

the derivation of the two-layer model, written in curvilinear coordinates and reported in Chapter

6. In the followings, we will only refer to two-dimensional problems. A more detailed description

of the transformation relations in UI theory can be found in Hui (2004) or Hui (2007).

Sometimes, it is useful to define a curvilinear coordinate system associated with a manifold,

i.e. a plane curve in two-dimensional spaces. Let ξ ∈ R be a curvilinear coordinate that follows

the curve and ζ be the other curvilinear coordinate locally normal to the curve. We assume that

ξ is linked to the Cartesian coordinate x by the bijection

x → ξ(x) ∈ R.

It is also assumed that ξ and ζ are time varying because the curve with which the coordinate

system is associated is moving.

In UC theory the following relations hold between differential quantities, written in Cartesian
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and curvilinear coordinates
dt = dλ

dx = U dλ+ Adξ + P dζ

dz = W dλ+ C dξ +Rdζ

⇒ dx = q dλ+ Ω dξ

in which

x =

(
x

z

)
, q =

(
U

W

)
, Ω =

(
a p

)
=

(
A P

C R

)
=

(
∂ξx ∂ζx

∂ξz ∂ζz

)
.

The vector q can be regarded as the velocity of the moving mesh ξ with respect to the Cartesian

coordinate system, namely the velocity of a pseudo-particle whose coordinates are (ξ, ζ). In fact,

dq
dt
ξ =

dq
dt

(
ξ

ζ

)
= 0 (B.1)

where the operator
dq
dt represents the total derivative ∂t + q · ∇x.

Proof of Eq (B.1). By considering the matrices of the total transformation (including the time variables t and λ)

ΩT =

∂λt ��∂ξt ��∂ζt∂λx ∂ξx ∂ζx

∂λz ∂ξz ∂ζz

 =

 1 0 0

U ∂ξx ∂ζx

W ∂ξz ∂ζz



Ω−1
T =

∂tλ ��∂xλ ��∂zλ
∂tξ ∂xξ ∂zξ

∂tζ ∂xζ ∂zζ

 =

 1 0 0

∂tξ ∂xξ ∂zξ

∂tζ ∂xζ ∂zζ


so that

dx = ΩT dξ.

Since

Ω−1
T ΩT = I,

we can write

I (2, 1) = 0 ⇒ (∂tξ, ∂xξ, ∂zξ)
T (∂λt, ∂λx, ∂λz) = ∂tξ + U ∂xξ +W ∂zξ = 0 ⇒

Dq

Dt
ξ = 0.

Analogously,

I (3, 1) = 0 ⇒ (∂tζ, ∂xζ, ∂zζ)
T (∂λt, ∂λx, ∂λz) = ∂tζ + U ∂xζ +W ∂zζ = 0 ⇒

Dq

Dt
ζ = 0.

Since the inverse relation holds

ξ = Ω−1 (dx− qdt) , (B.2)

it follows that
∂ξ

∂t
≡ ∂ξ

∂t

∣∣∣∣
dx=0

= −Ω−1q = −q∗ (B.3)

where q∗ is the velocity of the mesh, written in curvilinear coordinates. Note that the contravariant

transformation rule has been used (cf. Eq. (A.9)).

Apparently there are 6 degrees of freedom to choose these parameters (i.e. U , W , A, P , C,

R) but, in fact, in order dx and dξ to be total differentials, the following compatibility conditions

have to be fulfilled 
∂ξq = ∂λa,

∂ζq = ∂λp,

∂ζa = ∂ξp.

(B.4)

(B.5)

(B.6)
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These conditions have been obtained by simply applying the Schwartz’s theorem about mixed

partial derivatives.

A more general explanation of the compatibility conditions in three dimensions can be found

in Hui (2007).

B.1.1 Useful relations

In the UC theory some useful relations can be obtained. These formulae have been widely used

in Tai and Kuo (2008); Tai et al. (2012) and are needed for the derivation of the two-layer model

equations, presented in Chapter (6) of the present dissertation. In this section, we introduce and

demonstrate these formulae.

Transformation formula no. 1

∂J

∂λ
= ∇ξ ·

(
JΩ−1q

)
= ∇ξ · (Jq∗) (B.7)

where J = det(Ω). This formula relates the temporal partial derivative of the determinant of

the transformation matrix Ω to the spatial divergence of Jq∗.

Proof of Eq. (B.7). By using the adjoint formula, the inverse of the transformation matrix Ω can be calculated as

follows

Ω−1 =
1

J

(
Ω22 −Ω12

−Ω21 Ω11

)
=

1

J

(
dT1
dT2

)
where

dT1 = (d11, d12) = (Ω22, −Ω12), dT2 = (d21, d22) = (−Ω21, Ω11). (B.8)

Please note that d1 does not depend on a and d2 does not depend on p. By virtue of the condition ((B.6)), it can

be shown that
∂d11

∂ξ
+
∂d21

∂ζ
= 0,

∂d12

∂ξ
+
∂d22

∂ζ
= 0,

thus, it follows that

∀a ≡ (a1, a2)T , a1
∂d11

∂ξ
+ a2

∂d12

∂ξ
+ a1

∂d21

∂ζ
+ a2

∂d22

∂ζ
= a ·

∂d1

∂ξ
+ a ·

∂d2

∂ξ
= 0. (B.9)

Since the determinant J is function of all the elements of the matrix Ω, by applying the chain rule for partial

derivatives (e.g. Arfken and Weber, 2005), we can write

∂J

∂λ
=
∑
ij

(
∂J

∂Ωij

∂Ωij

∂λ

)
= tr

[(
∂J

∂ΩT

)T ∂Ω

∂λ

]
= tr

[(
d11 d12

d21 d22

)(
∂a

∂λ
,
∂p

∂λ

)]
,

then, with the help of Eqs. (B.4), (B.5) and (B.9), finally we get

∂J

∂λ
= d1 ·

∂a

∂λ
+ d2 ·

∂p

∂λ
= d1 ·

∂q

∂ξ
+ d2 ·

∂q

∂ζ

=
∂

∂ξ
(d1 · q) +

∂

∂ζ
(d2 · q) = ∇ξ ·

(
J Ω−1q

)
= ∇ξ · (J q∗) .

Transformation formula no. 2

∂f

∂t
=

1

J

[
∂(Jf)

∂λ
−∇ξ ·

(
JfΩ−1q

)]
=

1

J

[
∂(Jf)

∂λ
−∇ξ · (Jfq∗)

]
(B.10)



APPENDIX B. MATHEMATICAL METHODS 177

Proof of Eq. (B.10). By applying the chain rule and the eq ((B.3)), we get

∂f

∂t
=
∂f

∂λ

∂λ

∂t
+
∂f

∂ξ

∂ξ

∂t
+
∂f

∂ζ

∂ζ

∂t
=
∂f

∂λ
− qξ

∂f

∂ξ
− qζ

∂f

∂ζ
=
∂f

∂λ
− q∗ · ∇ξf. (B.11)

By virtue of eq (B.7), we can write

J
∂f

∂λ
=

∂

∂λ
(Jf)− f

∂J

∂λ
=

∂

∂λ
(Jf)− f ∇ξ ·

(
J Ω−1 q

)
=

∂

∂λ
(Jf)− f ∇ξ · (J q∗) . (B.12)

Therefore, by substituting Expr. (B.12) into Eq. (B.11) we get

∂f

∂t
=

1

J

[
∂

∂λ
(Jf)− f ∇ξ · (J q∗)

]
− q∗ · ∇ξf

=
1

J

[
∂

∂λ
(Jf)− f ∇ξ · (J q∗)− J q∗ · ∇ξf

]
=

1

J

[
∂

∂λ
(Jf)− ∇ξ · (J f q∗)

]
.

Transformation formula no. 3

∀f, ∇xf = Ω−T∇ξf (B.13)

Proof of Eq. (B.13). Eq. (B.13) can be easily demonstrated, since the gradient of a scalar function is a covariant vector

(e.g. Arfken and Weber, 2005).

Transformation formula no. 4

∇x · v =
1

J
∇ξ ·

(
JΩ−1v

)
=

1

J
∇ξ · (Jv∗) (B.14)

Proof of Eq. (B.14). Let v be a vector field whose Cartesian components are (u, w). By applying the chain rule of partial

differentiation and thanks to Defs. (B.8), we get

∇xv =
∂u

∂x
+
∂w

∂z
=
∂u

∂ξ

∂ξ

∂x
+
∂u

∂ζ

∂ζ

∂x
+
∂w

∂ξ

∂ξ

∂z
+
∂w

∂ζ

∂ζ

∂z
=

1

J

(
d1 ·

∂v

∂ξ
+ d2 ·

∂v

∂ζ

)
.

Then, by means of Eq. (B.9), the previous equation can be recast into the following form

∇xv =
1

J

[
∂

∂ξ
(d1 · v) +

∂

∂ζ
(d2 · v)

]
=

1

J
∇ξ ·

(
JΩ
−1
v
)

=
1

J
∇ξ ·

(
J v

∗)
.

Transformation formula no. 5

∇x · T =
1

J
∇ξ ·

(
JTΩ−T

)
=

1

J
∇ξ · (JΣ) (B.15)

in which Σ represents the mixed tensor TΩ−T .

Proof. As we consider the elements of the tensor matrix T as tij = f(x(ξ, ζ), z(ξ, ζ)) by using the chain rule and the

divergence formula for matrices (Def. (A.1)), we obtain

∇x · T =

(
∂xtxx + ∂ztxz
∂xtzx + ∂ztzz

)
=

(
∂ξtxx∂xξ + ∂ζtxx∂xζ + ∂ξtxz∂zξ + ∂ζtxz∂zζ

∂ξtzx∂xξ + ∂ζtzx∂xζ + ∂ξtzz∂zξ + ∂ζtzz∂zζ

)
.

Let t1 = (txx, txz)T and t2 = (tzx, tzz)T , by using Defs. (B.8) and by means of Eq. (B.9), we finally get

=

(
1/J (∂ξt1 · d1 + ∂ζt1 · d2)

1/J (∂ξt2 · d1 + ∂ζt2 · d2)

)
=

1

J

(
∂ξ (t1 · d1) + ∂ζ (t1 · d2)

∂ξ (t2 · d1) + ∂ζ (t2 · d2)

)
=

1

J

∇ξ · (J t1 Ω−T
)

∇ξ ·
(
J t2 Ω−T

) =
1

J
∇ξ ·

(
J T Ω

−T
)
.
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B.2 Coordinate transformation

In this section, we report the main features of the coordinate transformation, used in Chapter

6. In particular, we are going to tell how to factorize the Jacobian matrix of the transformation

Ω. The following approach is analogous to that used in Tai and Kuo (2008). An extension to the

three-dimensional case, can be found in Tai et al. (2012).

We refer to an orthogonal curvilinear two-dimensional coordinate system, such that ξ axis is

parallel to the interface Γ, that separates the two layers, and ζ is perpendicular to it everywhere. We

call ϑ the local inclination angle of the reference surface Γ with respect to the reference Cartesian

axis x. The convention that ϑ > 0 in case of positive slope is assumed.

Let the metric tensor of the curvilinear coordinate system be defined as follows

G =

(
(∂ξx)

2
+ (∂ξz)

2
(∂ξx ∂ζx) + (∂ξz ∂ζz)

(∂ζx ∂ξx) + (∂ζz ∂ξz) (∂ζx)
2

+ (∂ζz)
2

)
=

(
1/cos2ϑ 0

0 1

)
(B.16)

so that the scale factor for lengths measured on ξ coordinate is

hξ =
√
G11 = 1/ cosϑ. (B.17)

Namely, it is like imposing a unit length on the curvilinear coordinate ξ that is 1/ cosϑ times bigger

than that used in Cartesian coordinates.

Once the curvilinear system is chosen, in any point of the Euclidean plane it is possible to

define a set of two vectors, that are tangent to the curvilinear coordinates. This set is usually

called local covariant tangent basis (e.g. Arfken and Weber, 2005).

For any point P on the reference surface Γ, the tangent basis vectors can be written as follows

gξ, 0 =
∂r0
∂ξ

, gζ, 0 =
∂r0
∂ζ

(B.18)

in which r0 is the position vector of the point P , i.e. the displacement from the reference origin O

to P , written in Cartesian coordinates. Please, note that vectors in (B.18) have the components

in Cartesian coordinates. In curvilinear coordinates the components of the local basis vectors are

simply (1, 0)
T

and (0, 1)
T

, respectively.

Besides, it should be pointed out that, while the vector gζ, 0 is a unit vector, ‖gξ, 0‖ 6= 1, as it

follows directly from the chosen metric (B.16).

Provided that the upper flowing layer is thin (i.e. everywhere the flow depth is locally smaller

than the radius of curvature), the Cartesian coordinates of any point P , which is above the interface

Γ and placed inside the upper flowing layer, can be uniquely decomposed as follows

r = (x, z)
T

= (x0, z0)
T

+ ζn (B.19)

where (x0, z0) are the coordinates of the point P0 on the reference surface Γ, that is on the normal

line to Γ passing through the point P , and n is the normal unit vector to Γ in P0 (i.e. gζ, 0).

Therefore, the covariant tangent basis vectors at any point inside the flow can be written as

follows

gξ =
∂r

∂ξ
= gξ, 0 + ζ

∂n

∂ξ
, gζ =

∂r

∂ζ
=

(
gζ, 0 + ζ

∂n

∂ζ

)
. (B.20)
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According to the Eq. (B.16), it can be shown that

gξ, 0 = (1, − tanϑ)
T
, gζ, 0 = (sinϑ, cosϑ)

T
. (B.21)

The Jacobian matrix of the transformation is the following

Ω = ∂ξx =

(
∂ξx ∂ζx

∂ξz ∂ζz

)
, (B.22)

such that dx = Ωdξ, as required by the chain rule of partial differentiation, since x (ξ, ζ) and

z (ξ, ζ). Analogously, the inverse Jacobian matrix can be written as

Ω−1 = ∂xξ =

(
∂xξ ∂zξ

∂xζ ∂zζ

)
. (B.23)

Moreover, thanks to Eq. (A.5), it is possible to write Ω and, in particular, Ω0, as function of

the covariant basis vectors

Ω =
(
gξ gζ

)
, Ω0 =

(
gξ, 0 gζ, 0

)
=

(
1 sinϑ

− tanϑ cosϑ

)
. (B.24)

These relations hold for any point in the upper layer and on the reference surface Γ, respectively.

Let Fi (x, z, t) = z − zi (x, t) = 0 be the equation representing the reference curve Γ. The

normal unit vector can be written as

n =
∇xFi
‖∇xFi‖

= (−s, c)T , (B.25)

where

c = 1/‖∇xFi‖ =
[
1 + (∂xzi)

2
]−1/2

, s = c ∂xzi. (B.26)

Please note that c = cosϑ, ∂zi = − tanϑ and, so, s = − sinϑ.

B.2.1 The factorization of the Jacobian matrix

By following the same approach of Tai and Kuo (2008), the Jacobian matrix Ω can be usefully

factorised as follows

Ω =

(
(1− ζ∂xs) −s
s
c (1− ζ∂xs) c

)
=

(
1 −s
s
c c

)(
(1− ζ∂xs) 0

0 1

)
=(

1 sinϑ

− tanϑ cosϑ

)(
(1− ζ∂xs) 0

0 1

)
. (B.27)

This factorization will be particularly useful for the further scaling simplifications.

Proof of Eq. (B.27). From the Eqs. (B.26), it follows that

s
2

+ c
2

= 1.

Because of ∂x
(
s2 + c2

)
= 0,

∂xs = −c/s∂xc.
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Moreover, by using the definition of s it turns out that

∂xs = c
3
∂xxzi.

Now, thanks to Eqs. (B.19) and (B.25), it is possible to express the elements of Ω as follows

∂ξx = ∂ξx0 − ∂ξ (ζs) = (∂ξx0 − ζ ∂xs ∂ξx0) = (1− ζ ∂xs) ∂ξx0 (B.28)

∂ζx = ∂ζx0 − ∂ζ (ζs) = 0− s = −s (B.29)

∂ξz = ∂ξz0 + ∂ξ (ζc) = (∂xz0 + ζ ∂xc) ∂ξx0 (B.30)

∂ζz = ∂ζz0 + ∂ζ (ζc) = 0 + c = c. (B.31)

With the help of Eqs. (B.26) and (B.2.1), Eq. (B.30) can be further recast as follows

∂ξz = (∂xz0 + ζ ∂xc) ∂ξx0 = s/c (1− ζ ∂xs) ∂ξx0 = s/c ∂ξx

and finally, we are allowed to write

Ω =

(
∂ξx −s

s/c ∂ξx c

)
=

(
(1− ζ∂xs) −s

s/c (1− ζ∂xs) c

)
. (B.32)

Thus, Eq. (B.27) can be easily obtained.

Then, by using the adjoint formula, Ω−1 yields

Ω−1 =
1

det Ω
adj (Ω) =

c

1− ζ∂xs

(
c s

−s/c (1− ζ∂xs) 1− ζ∂xs

)
. (B.33)

Eq. (B.33) can be easily factorised as follows

Ω−1 =
c

1− ζ∂xs

(
1 0

0 1− ζ∂xs

)(
c s

−s/c 1

)

=

(
1− ζ∂xs 0

0 1

)(
cos2ϑ − sinϑ cosϑ

sinϑ cosϑ

)
. (B.34)

The Ω−1
0 at the reference interface Γ, obviously is a particular case of (B.34), and, thus, it can be

written as follows

Ω−1
0 = c

(
c s

−s/c 1

)
=

(
cos2ϑ

sinϑ

− sinϑ cosϑ

cosϑ

)
. (B.35)

Local curvature

The local curvature k′ of Γ is equal to ∂xs (Tai and Kuo, 2008). Owing to the metric of the

curvilinear coordinate system, it follows that

k′ = ∂xs = ∂x (− sinϑ) = − cosϑ∂xϑ = − cosϑ
(
∂ξϑ∂xξ +�

�∂ζϑ∂xζ
)

= −cosϑ∂ξϑ. (B.36)

Norms

In general ‖v‖ 6= ‖v∗‖ because of the different metric. It is useful to specify how the Euclidean

norm (calculated according to the norm of Cartesian coordinate system) of an arbitrary contravari-

ant vector v can be calculated form its curvilinear coordinates. More precisely, it can be shown

that the following relations holds

‖v‖ =
√
v2
x + v2

z =

√(√
G11vξ

)2

+ v2
ζ , (B.37)
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where (vx, vz) are the Cartesian components of the vector v, while (vξ, vζ) are its components

with respect to the covariant local basis. Besides, G11 = 1/ cos2 ϑ is the first element of the

metric tensor G. The multiplication of the ξ component by
√
G11 is required to counterbalance

the measure along ξ axis that are reduced by a factor 1/
√
G11 in curvilinear coordinates.

Conversely, the following relation relates the Euclidean norm of any covariant vector n with its

components in curvilinear coordinates

‖n‖ =
√
n2
x + n2

z =

√(
nξ√
G11

)2

+ n2
ζ . (B.38)

It is interesting to note that in this case the ξ component requires to be normalized by a factor

1/
√
G11 in order to counterbalance the measures along ξ axis that are magnified by a factor

√
G11.
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Appendix C

Big O notation

In this appendix a short description of the Big O notation is given.

This notation, which describes the behaviour of a given function around a particular value

or infinity, belongs to the wide family of symbols called Bachmann-Landau notations, after the

mathematicians P. Bachmann and E. Landau who introduced them at the end of the 19th century.

It is commonly used in mathematics in order to describe the error magnitude of finite series

approximations of a given function (i.e. truncated Taylor series). In a more engineering context,

such a notation is useful in numerical analysis to describe the rate of convergence of a numerical

scheme. As well, it is employed in asymptotic analysis of mathematical models.

Let f and g be two functions, defined in X ∈ R. It is said that f(x) = O(g(x)) in a neighbour-

hood of x0 ∈ X if and only if

∃δ > 0,K > 0 : |f(x)| ≤ K |g(x)| for |x− x0| < δ. (C.1)

Analogously, if g(x) is non-zero around x0, this alternative definition holds

f(x) = O(g(x))⇐⇒ lim
x→x0

∣∣∣∣f(x)

g(x)

∣∣∣∣ ∈ R <∞. (C.2)

This notation provides an upper bound on the growth rate of the function f around x0, by using

a simpler function g. Strictly speaking, it should be written f ∈ O(g) instead of f = O(g) because

O(g) is, in fact, a class of functions. However, in the present dissertation we always make use

of the equal sign instead of ∈ for the sake of simplicity. In practical cases, the point to which

the behaviour of f is evaluated is often x0 = ∞ or x0 = 0: these kinds of analysis are called

infinite asymptotic and infinitesimal asymptotic, respectively. Sometimes, it is useful to simplify

a mathematical equation, representing a physical phenomenon, by omitting the terms with smaller

growth rates. In these problems it is crucial to express the various terms of the equation as Big O

of different power functions of the same infinitesimal function g. It should be noted that the big

O notation does not mean “of order of” in an engineering sense. In fact, the constant factor K in

Def. (C.1) could be bigger than 1.

Properties

There are some properties of the Big O notation that are very useful in calculations. In the

following they are briefly reported.
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Product rule

f1(x) = O(g1(x)), f2(x) = O(g2(x))⇒ f1(x)f2(x) = O(g1(x)g2(x)). (C.3)

Sum rule

f1(x) = O(g1(x)), f2(x) = O(g2(x))⇒ f1(x) + f2(x) = O(|g1(x)|+ |g2(x)|). (C.4)

Multiplication by a constant

Let c be a non-zero constant.

f(x) = O(cg(x))⇒ f(x) = O(g(x)). (C.5)

Analogously,

f(x) = O(g(x))⇒ cf(x) = O(g(x)). (C.6)

Note. Any function which is continuous in a given point x0 is O(1) there, since

lim
x→x0

f(x) ∈ R <∞.

Difference between Big O and Small o notations

Now, it could be useful also to recall the small o notation which has a different meaning.

Let f and g be two functions defined in X ∈ R. It is said that f ∈ o(g) in a neighbourhood of

x0 ∈ X if and only if

∀ε > 0, ∃ δ > 0 : |f(x)| ≤ ε |g(x)| for |x− x0| < δ. (C.7)

In this case the function g grows by far faster than f around x0. Hence, this condition is stronger

than f(x) = O(g(x)). It is important to stress that, although f = o(g)⇒ f = O(g), the opposite

implication is not necessarily true.
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