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Abstract

The work described in this Ph.D. thesis deals with the evolution of the cur-
rent Internet architecture towards a communication model suited for dealing
with services rather then with nodes and processes. The work introduces
some practical use cases to describe the current “as a service“ orientation of
many network applications, and the required new degrees of flexibility in the
resources management and deployment. Several solutions to this aim are de-
signed, implemented and evaluated when integrated in the legacy network
infrastructure. Furthermore, the thesis explores the concepts of network vir-
tualization and software defined networking, both in practical and theoretical
aspects, applying them to the concrete design of a networking architecture
that enables the split of network identifier and locator concepts. The pro-
posed architecture is a first step towards an implementation of a service
oriented architecture on top of the current Internet. At the same time, the
thesis provides an example on how network protocols can be used in a new
way without changing their dynamics, or using a term familiar to software
engineer, how they can be “overloaded“, to create new functions provided
that the network control plane is correctly designed to handle them.
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Introduction

“Ignoranti quem portum petat nullus suus ventus est”[133]. The aim of tech-

nology is to help the human life in everyday activities, providing the basis for

the next enhancement in the life-style and enabling unforeseen possibilities.

In the iterative process of building technologies to support ideas, gathered

from the features provided by new technologies, it usually happens that a

technology is used in way it was not designed for, to temporary fulfill the

emerging needs while waiting for the deployment of a new technology, tai-

lored for the purpose. The technological evolution is, hence, an inherently

iterative process in which a technology builds on the outcome of a previ-

ously developed technology, sometimes precisely using the existing technol-

ogy, sometimes forcing the existing technology in working in an unoptimized

way to provide new unforeseen features. While this process is usually highly

desirable to foster fast technological evolution, it can be, on the other hand,

a limitation as well. In some cases, the link among technologies is so tight

that the change of a well-established and wide-spread technology would cost

enough to discourage the change of such technology toward a more promising

one. Understanding the point in which a technology turns from an enabling

factor to a limiting one is usually a hard task: the legacy technology is still

providing the required features, while the new one, altough promising, has

no chance to be proven as effective without affording the risks and costs of

a major change. A great example in this sense is the Internet, that is a

collection of well established technologies on top of which several other tech-

nologies are relying on. Considering the impressive boost the Internet gave

to many fields, providing an high number of improvements and new possibil-
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ities in a short time-span, such as the Web, video, audio streaming services,

converged telephony, data and video services, just to cite some of them, it

sounds somewhat surprisingly that all these innovative applications are sup-

ported by a substantially unchanged set of core technologies. The core of the

Internet protocol suite, that is constituted by the protocols of the network

and transport layers, was designed in the early 1980s: the Internet Proto-

col (IP)[119] and the Transmission Control Protocol (TCP)[120] were both

defined as standards in September 1981 and they are still used mainly un-

changed. Despite the clear success of the original design, many of the actual

applications were just unforeseen in the original architecture, which, ignoring

them, is unable to provide proper technological support. Hence, the ability

to support new applications was provided mainly by the addition of new pro-

tocols that on one hand solve the limitations of the architecture, while on the

other hand they introduce some complexity and/or force the design to work

in an unexpected way. An example of such an approach is the Mobile IP

(MIP) protocol[111], which was designed to introduce the support for mobile

end-points in an IP network, and which requires the use of inefficient “tri-

angular routing” to provide mobility overcoming the inherited limitations of

IP. Content Delivery Networks[109] are another example of a technological

workaround used to provide a service, which the current Internet architecture

is not able to support, fulfilling all the requirements in terms of cost and effi-

ciency: to provide users with the requested content, a set of content replicas

is distributed in several locations, and the location that serves a particular

user requesting that content is decided using a strategy based, e.g., on the

requesting user location, using protocols that were born with other purposes,

like DNS, to gather indirectly the required user’s location information.

With the evolution of the network applications, asking for more and more

complex features, over the years, a strong interest growth in developing a

new Internet architecture able to support emerging applications. There are

several proposals for network architectures based on new paradigms and ab-

stractions, such as Content-Centric Networking [65] or Service-Centric Net-
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working [26] [98]. Nevertheless, the scientific and industrial communities

involved in the Internet enhancement had to recognize that supporting the

evolution in the Internet is becoming more challenging over time, because

of the difficulty in combining the need to keep a critical infrastructure reli-

able, as the Internet became in past decades, with the need of making such

infrastructure able to support new requirements in an efficient way. This

problem, also known as the Internet “ossification” problem, is mainly related

to the ability of supporting changing requirements instead of a set of already

clear requirements mandated by applications. The current Internet, despite

its flexibility, is considered unable to efficiently support evolution, hence, the

scientific community recently proposed a pluralist approach to the network

architecture[11]. In this approach, the network is able to support a plural-

ity of architectures in a concurrent manner. The main motivation for the

pluralist theory comes from the observation that the Internet is already sup-

porting an high number of heterogeneous applications, with a broad set of

requirements. It’s rather intuitive that a telephony application like a Voice-

over-IP application has different requirements from a file-sharing one. Given

this heterogeneity of requirements it’s hard to design a one-size-fits-all ar-

chitecture. One of the aim of the pluralist approach is to avoid that a new

ossification affects the new Internet architecture. Hence, an architecture that

is able to support flexibility and extensibility is actually considered the best

solution for the future Internet. The outcome of these research efforts is that

the network view is changing, since the network itself is seen as something

that can be flexibly configured to support different architectures[47], pro-

vided that some basic interface are well-defined[73], to allow interoperability

in a world composed by several heterogeneous networks. Unsurprisingly, a

strong interest in this direction was firstly shown by the community involved

into network testbed designs, whose purpose is to enable the share of a net-

work testbed among several experiments, enabling at the same time each

experiment to provide its, potentially novel, own network architecture and

protocols.
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To this aim, the effort of the scientific community in defining new Internet

architectures splits among substrate architectures and application oriented

architectures, where the former ones are used to host the latter ones.

A first step into the direction of supporting several network architectures

over the same substrate has been network virtualization. Network virtualiza-

tion architectures [35] provide a mean to virtualize network links and nodes,

by enabling the creation of virtual links and nodes on top of the physical

ones. Virtualized components can be used to create virtual networks, that

can implement their own architectures and protocol stacks. The main dif-

ference with previous network slicing approaches, such as the ones based on

light paths provisioning, is the dynamic creation and management of the vir-

tual networks, and the higher level of abstraction, e.g., a virtual link can be

actually mapped onto a physical path.

Together with the efforts in defining network virtualization infrastruc-

tures, a new research area for providing network flexibility has been recently

explored: Software Defined Networking (SDN)[104]. SDN is a new approach

that tries to bring software applications in a world actually dominated by

hardware applications. To this aim, SDN provides an architectural view in

which the control and data planes of the network are separated, in order

to make their evolution simpler and decoupled from each other, moreover,

this way the network behaviour can be defined through software applications

that are easier to extend and evolve, which, being decoupled by the limita-

tions of hardware devices, can provide powerful control logics to be hosted

on (clusters of) general purpose servers.

While in network virtualization a substrate network is able to host several

independent virtual networks, in SDN an open interface provides the ability

to support custom control logics on network devices. In both cases, the

most important provided feature is the ability to roll-back changes in a fast

and simple way, overcoming the limitation in supporting evolution of the

current internet: the ability to roll-back changes ensures limited impact on

costs of the new technology, since it is always possible to re-establish the
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proven legacy technologies. The combination of the two approaches has been

quite natural considering the context and the purposes in which they were

developed: network virtualization is one of the methods applicable by means

of SDN to provide the co-existence of different network architectures over

the same substrate. Network virtualization is hence a feature, or from a

perspective an application, that runs on top of a network whose management

is performed through an SDN approach. Unsurprisingly, one of the way

of implementing network virtualization in a SDN network corresponds in

enhancing the abstraction level of the network, by running the control logics

for virtualized networks on top of a low-level control logic that takes care of

sharing the substrate network among the virtual networks[134].

The network as shaped by both network virtualization and in particular

SDN, is actually not providing a set of specific features anymore, but it is

able to adapt to several purposes its operations. Like in the past happened

with special purpose hardware that evolved into nowadays general purpose

computers, the network is moving towards a general purpose network: the

same network can be reprogrammed to enhance/change the provided services.

Given the new tools and methods we can use to provide network services,

some questions still need an answer to validate the suitability of the approach

to non trivial applications, e.g., can we evolve from the current network to

an SDN one transparently? How can we handle already deployed technology

and protocols? In this work we try to answer these questions and others,

with the aim of understanding advantages, issues, problems in several fields,

when applying network virtualization and SDN approaches in a traditional

network, in order to change the way in which the the network operates to

provide a networking paradigm closer to the semantic of services rather than

to the one of hosts as it used to happen in Internet.

This thesis summarizes the outcomes of several works related to the afore-

mentioned topics, targeting at several specific research problems that need to

be solved in order to provide a service oriented network architecture on top

of a traditional TCP/IP network enhanced with SDN devices. The thesis is
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organized as follows:

• Chapter 1 - Describes trends in offering resources and applications

as a service, analyzing two practical examples: a system for provid-

ing GRID infrastructure and a system for providing Network Testbeds.

The aim of the chapter is to introduce the different approach in access-

ing resources when the provisioning systems uses a “service model”.

• Chapter 2 - In this chapter the problem of making traditional net-

work infrastructure flexible by means of virtualization is described, and

solutions for both nodes and links virtualization are presented. The

advantages of contextualizing the virtualization solution to specific ap-

plications are explored, as well as problems and algorithms to optimize

the management of virtualized resources and their allocation on the

physical infrastructure.

• Chapter 3 - The decoupling from the physical infrastructure provided

by virtualization enables the mobility of virtual resources. Since the

operations are still performed relying on the traditional TCP/IP net-

work architecture, solutions to enable seamless and transparent mo-

bility both in local and geographical boundaries are required. This

chapter presents solutions for the two cases, relying on the TCP/IP

network architecture and provides a reference comparison point for the

next chapters, in which similar features are provided by means of an

SDN devices enhanced network.

• Chapter 4 - This chapter analyzes and provides solution to the prob-

lems of managing access to flexible resources and monitoring them for

security purposes. The studies are conducted in already in-production

environment such as a distributed network testbed and a cloud com-

puting system.

• Chapter 5 - When the network uses the SDN paradigm, new issues

arises. In this chapter we provide an extensive study on the scalability
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issues and viable solutions for the SDN control plane design. Moreover,

exploiting the software orientation of the network control logic, we in-

troduce an algorithm for analyzing/debug and optimize the operations

in an SDN network.

• Chapter 6 - In the last chapter we show how a traditional network

enhanced with SDN devices can provide a service-oriented networking

paradigm, overloading the meaning of the protocol headers fields used

in the legacy TCP/IP network. The designed architecture is analyzed

both in terms of scalability and performace, the analysis results, the

design decisions and the implementation solutions are included in this

chapter.



Chapter 1

Everything as a Service

In the beginning, the Internet was built to solve the problem of establish-

ing a communication channel between two hosts, or, more precisely, between

two processes distributed over the network. After years of evolution, a com-

mon Internet user is currently rarely accessing a given host or process: the

user is actually asking for a service. The service can be the view of a video

stream, the provisioning of a given web page, the access to the bank account

management, and so on. In 2006 Amazon started a service called Elastic

Compute Cloud[6] in which even an IT infrastructure was provided as a ser-

vice. To identify this trend of providing everything as a service, the research

community uses the umbrella term Cloud Computing. Cloud Computing as-

sumes different names depending on the provided resources. When provided

resources are computing nodes and storage, Cloud Computing is called In-

frastructure as a Service (IaaS). Other resources types include application

frameworks (Platform as a Service, PaaS in short) and specific software ap-

plications (Software as a Service, SaaS). The different embodiments of Cloud

Computing target different customers as well. For instance, while IaaS and

PaaS target service providers, developers and engineers, SaaS is targeted to

a broader audience, since the offered services are mainly specialized appli-

cations, built to address one purpose. In this chapter we describe the work

done in providing in a “as a service“ manner a Grid Environment and a

Network Testbed, describing both the usage model and the underlying sys-
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tems design and issues. Even if the presented case studies refer to particular

fields, the theoretical and technological finding can be extended to more gen-

eral applications, in particular in the fields of IaaS and PaaS provisioning

systems. This chapter shows, presenting two practical use cases, the possi-

bility of providing even complex infrastructures, such as GRID and network

testbed ones, “as a service”, abstracting the way users access the given in-

frastructure. At the same time, the network that connects users to these

infrastructures is still based on a process-based model, even if such a model

is completely different from the one used by the presented systems, high-

lighting the gap in the current network architecture in properly supporting

systems based. for instance, on service abstractions.

1.1 Grid as a Service

1.1.1 Context and motivations

On-demand computing is a model in which computing resources are made

available to users as needed. It could be considered a valid solution for people

who need a huge amount of resources, to reduce the Total Time to Solution,

and cannot bear the costs of systems. In particular, these costs grow up

when the needed resources are provided by specialized systems, e.g., HPC

ones.

The scientific community developed the Grid Computing paradigm to

enable the sharing of huge amount of resources through a well-defined dis-

tributed infrastructure model, in order to solve large scale problems in a

collaborative manner. The Grid Computing resources aggregation model

is rather “static”: a group of organizations set up several Grid manage-

ment services and computing resources in a layered structure that separates

the management responsibilities (and corresponding management services)

among the organizations involved in the Grid.

Users belonging to the organizations forming the Grid can retrieve in-

formation on resources (e.g., their number, status, configuration, etc.) and
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access them, but can neither change the topology of the grid (e.g., by in-

creasing the number of resources) or manage resources configuration and

composition. It would be desirable to have a more “elastic” infrastructure in

which users can ask for resources on-demand, to suit their needs in terms of

resources type and configuration (i.e compilers, scientific libraries, problem

solving environments, etc.).

With the advent of new applications and the pervasiveness of IT into

everyday activities, also the industrial and private sectors have developed a

need for fast access to high demanding IT infrastructures at low costs. The

industry answer to these needs has been the Cloud Computing model.

According to the official NIST definition, “Cloud Computing is a model

for enabling ubiquitous, convenient, on-demand network access to a shared

pool of configurable computing resources ... that can be rapidly provisioned

and released with minimal management effort or service provider interaction”

[90].

Given the flexibility in resources management through the Cloud Com-

puting paradigm, it seems a promising approach to provide flexible Grid

Computing infrastructures through the combination of the Grid and Cloud

paradigms.

Some interest has been already shown in this direction [91]. So far, the

proposed approaches may be labeled as either “Grid over Cloud” or “Cloud

over Grid”, since the composition of the two paradigms may be performed

through either the exploitation of IaaS-provided resources to build Grid in-

frastructures or through the use of Grid-provided computing resources to

create IaaS clouds.

In this section we describe our experience in designing and implementing

a solution that creates more flexible Grid infrastructures, by exploiting IaaS-

provided resources, in a novel way resembling the PaaS paradigm. We call

our solution Grid as a Service (GaaS).
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1.1.2 Grid Computing reference architecture

We assume as Grid reference architecture the one implemented by the middle-

ware gLite-EMI, developed in the context of EGI (European Grid Infrastruc-

ture). The gLite-EMI middleware provides a Grid infrastructure that is ac-

cessible to community members organized into Virtual Organizations (VO).

A VO is defined in [48], as “a set of individuals and/or institutions defined

by such sharing rules...“. “VOs vary tremendously in their purpose, scope,

size, duration, structure, community and sociology”. In particular, people

from a scientific community, sharing the same “experiment”/applications,

can constitute a VO.

VO “managers” make available all the software needed to run the appli-

cations of interest of the community on computing resources (the applicative

level of the middleware).

The Grid infrastructure is a distributed infrastructure whose manage-

ment is centralized, while the computation functions are distributed among

several sites. The infrastructure provides users with high level services for

scheduling and running computational jobs, accessing and moving data, and

obtaining information on the infrastructure itself. Services are embedded

into a consistent security framework [76]. Those provided are services for

authentication/authorization (e.g. VOMS - Virtual Organization Manage-

ment System), resources allocation and discovery (e.g. LB/WMS - Logging

& Bookiping and Wokload Management System), infrastructure Information

System (IS). Computing resources (WNs - Worker Nodes) are provided by

means of CE (Computing Element) that is an endpoint with a set of queues

handled by an LRMS (Local Resource Management System). User can access

these services from a User Interface (UI).

Management services (UI, VOMS, WMS) are instantiated only once and

shared among all the sites, while computing-related services (IS, CE) are

replicated in each site. A graphical representation of a minimal gLite-based

Grid infrastructure is presented in figure 1.1.

To use the Grid infrastructure, the user has to (1) authenticate himself
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Figure 1.1: A gLite-based infrastructure with some central services (UI, VOMS, WMS,
IS) and three grid sites (with a CE and several WN).

on the infrastructure; (2) define a job in terms of resources requirements and

tasks to be performed; (3) submit the job to the infrastructure by selecting

the appropriate resource queue; (4) monitor the job status; (5) retrieve the

job execution results. The resource queue is an abstraction provided by the

Grid architecture to either group resources based on their properties and to

share such resources among several users.

The typical Grid usage model described so far does not allow the user

in customizing the grid environment. Users cannot change the Grid infras-

tructure that runs their experiment, in particular, a user cannot create a

new Grid site nor add an existing site for his VO. Also the Grid sites are

static and cannot be customized by users, hence, it is not possible to add new

worker nodes to a site to extend its capabilities, and it is also not allowed to

organize resources into customized queues to shape them in accordance to

the computation needs. Finally, even the configuration of the worker nodes

cannot be changed.

1.1.3 Related works

Related works about the Cloud and Grid integration can be classified either

as “Cloud-over-Grid” or “Grid-over-Cloud” approaches.

An example implementation of the “Cloud-over-Grid” is presented in
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[143], where CLEVER, a cloud management system, is used to provide an

IaaS system over Grid. The solution requires the installation of both a spe-

cialized CLEVER’s management software and a virtual machine monitor (e.g.

VirtualBox) into Grid worker nodes. When the CLEVER cloud requires more

resources, new worker nodes can be assigned to it, to dynamically extend the

resources available to the cloud.

WNoDeS [131] applies a “Cloud-over-Grid” approach as well. WNoDeS

(Worker Nodes on Demand Service), developed by the Italian National In-

stitute for Nuclear Physics (INFN), is a solution to virtualize computing

resources and to make them available through local, Grid or Cloud inter-

faces. The Grid infrastructure is exploited through the use of a “special”

gLite job: the “power on”. Users define “Power on” jobs selecting tailored

virtual machine images to be lunched on computational resources managed

by the CE.

In [34] is described an example of “Grid-over-Cloud”, that transparently

provides dynamically-instantiated VM-based worker nodes, in an EGEE pro-

duction grid.

StratusLab [80] is applying a “Grid-over-Cloud” approach as well. The

StratusLab project aims at developing a complete, open-source cloud distri-

bution that can be deployed in production in both academic and industrial

environments. StratusLab provides Grid services using StratusLabs IaaS

system resources. The provided Grid infrastructure can exploit the dynamic

nature of the cloud, provisioning resources as needed and running user-level

(and community level) services using pre-packaged appliances, selected by

users and made available by a “marketplace”.

In [15] we presented the design and implementation of an on demand

computing service, which is able to obtain a right trade-off among manage-

ment cost reduction, environmental sustainability and user satisfaction. In

particular, the work described an experience in designing and implementing

a flexible infrastructure, built on the basis of local or remote cloud resources,

with the aim of saving energy to reduce the overall operational cost and to
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improve environmental sustainability.

Recently, also commercial Cloud Providers are trying to explore the HPC

market, by providing resources for, e.g., scientific computations. Most no-

tably, Amazon, is offering “cluster compute” instances, through its Elastic

Compute Cloud service, whose resources are tailored for HPC, i.e., they are

provided with huge amounts of RAM, processing power, and are deployed on

a 10 Gigabit Ethernet network with low delay[8].

To ease the execution of specific workloads, some tools provide auto-

matic configuration of Amazon resources. An example in such sense is

CloudFlu[39], that allows the easy execution of OpenFOAM[103] jobs on

an automatically configured cluster of Amazon EC2 HPC resources.

1.1.4 GaaS: Grid as a Service

In 2012, the European Middleware Initiative (EMI, http://www.eu-emi.eu)

has published a report in which they describe four possible integration sce-

narios of virtualized infrastructures in the Grid computing architecture [91].

In this paper, we present Grid-as-a-Service (GaaS), a service model designed

according to the Dynamic Grid Services scenario described in that report:

[Dynamic Grid Services] utilizes the cloud infrastructure to

provision grid services using IaaS/PaaS/SaaS models. The grid

services, or suitable subsets of the current grid services, can there-

fore be instantiated on demand ... by deploying and configuring

the services on base virtual machines according to specific user

community requirements and then disposed of when not needed

anymore.

The GaaS model combines the advantage of providing users with an usage

model that is familiar to the traditional Grid, with the possibility of flexi-

ble management of computational resources in a IaaS-like manner. Hence,

our model can be classified as a Platform-as-a-Service for extending Grid
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environments with elastic (e.g., virtual) resources. By using GaaS, “privi-

leged” grid users, e.g. the VO administrator, can define new Grid Sites, add

computational resources to existing Grid Sites and modify the resources ag-

gregation scheme, e.g., site queues. In particular, GaaS provides privileged

users with the following functions:

1. WNs management (fig. 1.2.a): definition, addition and deletion of WN

to be used by the Grid infrastructure;

2. Queues management (fig. 1.2.b): dynamic management of resources in

queues, and queues policies configuration;

3. Sites management (fig. 1.2.c): creation and management of new Grid

Sites;

GaaS flexibility provides several advantages to traditional Grid infras-

tructures, e.g., WNs can be customized with software tailored to a given set

of users, as well as queues can be configured to fulfill a specific computa-

tion needs. Moreover, GaaS support the creation of complete Grid sites in

order to, e.g., enable a community that has to share resources for the life

time of a project, to avoid the burden of configuring from scratch all the re-

quired services and resources. Computational resources can be both virtual

and physical. The use of virtual resources is not denied to HPC users but,

if virtual resources are chosen, users are notified by IS, about the possible

performance limitations.

Even if our approach is based on a Grid-over-Cloud model similar to the

StratusLab one, in GaaS resources are made available through their config-

uration in Grid abstractions, e.g., queues. Hence, provided resources can be

reconfigured or differently aggregated on the basis of users needs (in a way

resembling the PaaS paradigm). Moreover, GaaS enables the provisioning

of several high level functions: from queues creation/reconfiguration to the

instantiation and configuration of whole grid sites.
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(a) WNs management

(b) Queues management

(c) Site management

Figure 1.2: The GaaS solution.
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1.1.5 The SCoPE case study

For the validation of the proposed model we implemented a prototype and

integrated it into the context of the S.Co.P.E. Datacenter at University of

Naples Federico II, a self contained grid infrastructure that offers storage and

computational resources and all the high level core services for infrastructure

management (VOMS, WMS, IS, etc.). Moreover S.Co.P.E. resources are in-

tegrated also into national IGI and international EGI relevant distributed

computational infrastructures and used from people belonging to different

scientific reserach fields and to VOs from very rilevant international exper-

iments (e.g. LHC, ATLAS, Super-B, etc.). Thus S.Co.P.E. is a suitable

context to validate effectively our approach by means of a prototype.

Our prototype is based on the gLite-EMI [76] Grid middleware and on the

OpenNebula [12] cloud management system. The modularity of OpenNeb-

ula allows for fast introduction of new features to the management system,

hence, it allows the easy integration of the Cloud-provided resources into the

Grid infrastructure. A subset of the S.Co.P.E. resources are assigned to the

OpenNebula managed resources pool. Such resources host an hypervisor,

currently Xen [14], to create virtual machines (VM), that are then used as

dynamically provided resources for the Grid infrastructure. VMs are used to

both create Grid’s WNs and management services such as CE, IS, etc.

The main efforts in the prototype development were (i) the definition of

templates for gLite-EMI services configuration, and (ii) the enabling of their

fast provisioning. A detailed descripion and an evaluation of the designed

solution is presented in chaper 2.

1.1.6 Outcomes and Future Work

In this section we presented GaaS, a PaaS model for Grid Computing sys-

tems, that lets VO administrartors to dynamically customize the grid envi-

ronment they are offering to VO’s unprivileged members. VO administra-

tors can define new Grid Sites, add computational resources to Grid Sites

and modify the resources aggregation scheme (queues). A prototype of GaaS
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model has been implemented and deployed in a real-world Grid Datacenter.

Even if the presented work is a successful proof-of-concept, many issues

still have to be solved. In particular there is a need to assess the applica-

bility of virtualized resources in HPC contexts, the payed overhead, and the

possibility to extend the model to a mix of virtualized and physical resources

according to the users needs.

Moreover, an evaluation of the impact on management operations and

costs of GaaS approach is needed as well, in order to integrate a smart

management of resources with the aim of providing, e.g., energy savings.

1.2 Testbed as a Service

1.2.1 Context and motivations

In the last few years, network emulation has gained interest in the community

of network researchers, being considered an important technique to evaluate

the effectiveness of new protocols and applications in heterogeneous, control-

lable and realistic network scenarios. Today’s most complex network emula-

tion systems are cluster-based. These systems are made of a large number

of hardware components arranged in a common facility that can be remotely

accessed by users through a web interface. In a typical cluster-based network

emulation system, users submit to the system an experiment request. An ex-

periment request contains a “virtual” network description to be reproduced

with the available cluster resources.

Most of existing emulation systems concentrate on the provisioning of

resources but lack of procedures which would automatize the execution of

experiments and the collection of results. These features are some of the

main characteristics of OMF, a testbed cOntrol and Management Frame-

work originally developed for the ORBIT testbed. Leveraging OMF, these

important capabilities were added to the NEPTUNE network emulation sys-

tem. The outcome is a system that allows the fast and automatic creation of

“virtual OMF testbeds” on-demand. As in the case of GaaS (cfr. Â§1.1.4),



Testbed as a Service 19

Figure 1.3: Virtual network topology on a cluster of PCs.

the combination of OMF and NEPTUNE provides a PaaS-like paradigm for

network testbeds.

1.2.2 OMF architecture

OMF is a platform supporting the management and the automatic execution

of experiments on a networking testbed. Currently OMF is being developed

by NICTA [123].

OMF supports all the phases of an experiment lifecycle, from the provi-

sioning of resources to the collection of experimental data. The most impor-

tant component is the Experiment Controller (EC), which is also the interface

to the user. It accepts as input an experiment description and takes care of

orchestrating the testbed resources in order to accomplish the required exper-

iment steps. It interacts with the AggregateManager, the entity responsible

of the resources of the testbed as a whole, and provides some basic services

to the EC, such as checking the status of a node, rebooting a node, etc.

The EC also interacts with the Resource Controllers (RCs) installed on the

testbed nodes, that are responsible of performing local configuration steps

and of controlling the applications, e.g. a traffic generator.
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1.2.3 NEPTUNE

NEPTUNE [52] is an open-source cluster-based network emulation system

developed at University of Napoli “Federico II” that can be used to assess

new networking technologies and protocols (e.g. new QoS routing protocols

and Traffic Engineering schemes in MPLS-based networks), as well as new

distributed applications and architectures (e.g. multimedia peer-to-peer ap-

plications). NEPTUNE provides researchers with the ability of interactively

designing multiple virtual network topologies, which are then deployed onto a

cluster of real machines and used as if they were dedicated physical testbeds.

NEPTUNE was designed with two goals in mind: manageability and porta-

bility. Manageability, because a requirement was that NEPTUNE could

have been easily deployed and managed by system administrators. Porta-

bility, since NEPTUNE is not linked to specific hardware solutions, but it

can be installed on general purpose machines and its features can be con-

veniently extended by software developers. In NEPTUNE, an experiment

is a collection of virtual nodes deployed on a subset of a cluster’s physical

nodes, each running a virtualization layer, and properly configured in order

to reproduce a user-defined virtual network topology. To achieve higher de-

grees of scalability, complex systems are reproduced by allocating multiple

virtual network nodes onto each of the cluster’s real nodes (node multiplex-

ing). Likewise, multiple virtual links are multiplexed onto the same shared

physical link by associating each virtual link endpoint to a different virtual

NIC (link multiplexing). Multiple fully isolated experiments can be run by

NEPTUNE at the the same time, while providing users with the illusion of

having allocated a dedicated infrastructure (virtual cluster). A role-based

authentication system allows flexible definition of roles and actions allowed

to each role. Roles and permissions are stored in XML files for simple editing,

to allow system administrators modify policies even at run-time.
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Figure 1.4: VM instantiation in NEPTUNE.

NEPTUNE Architecture

NEPTUNE’s physical architecture (Figure 1.5) is composed of three parts:

i) a set of worker nodes providing computational resources used to reproduce

emulated networks, ii) a centralized repository providing storage space to

worker nodes and iii) a front-end node, NeptuneManager, hosting system

management software. All these physical components are connected by a

switched LAN, carrying what we call “control traffic”. Worker nodes are also

connected by a second high-performance LAN, carrying traffic generated by

users’ experiments. All users (both normal users and administrators) access

the system through the NeptuneManager web interface. All system functions

are exposed by this interface, so users can set up and execute their emulation

experiments by means of a user-friendly AJAX web-interface.

For testing purposes, NEPTUNE runs on a cluster of 28 HP ProLiant

DL380 servers, each equipped with two Intel Pentium IV Xeon 2.8 GHz

CPUs, 5 GB of PC-2100 RAM, one 100 Mbps Ethernet NIC, one Gigabit

Ethernet NIC. Each node is equipped with a 34.6 GB SCSI disk. A 700GB

centralized disk array is also available to the whole cluster. The cluster nodes

are connected each other through a set of 100/1000 Ethernet switches.

Usage Model

An experiment life-cycle begins with the definition of a virtual network topol-

ogy. Once the topology is defined, an experiment can be allocated onto the

cluster’s physical nodes. A running experiment can be either suspended
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Figure 1.5: NEPTUNE architecture.

for future reallocation or definitively terminated. Allocation of experiments

onto the cluster is made under control of system administrators, who need

to explicitly accept users requests. Once accepted, experiment’s topology al-

location process starts. Such allocation process is automatic, involving tasks

like virtual nodes mapping on cluster’s physical nodes and IP addresses as-

signments.

To define virtual topologies, users can both write a topology description

in a custom XML format or use an interactive graphic tool embedded into

the web user interface. It is also possible to select pre-defined topologies for

fast experiment definition, modify and in case save them as new topology

templates.

To define virtual nodes software configuration, users can access via the

Neptune web interface a ”Virtual Nodes Template Images Repository” and

select a VM template for each of the emulated nodes. VM templates, which

enclose OS filesystem and in case other software, can be modified and saved

as new templates for reuse.

Furthermore, users can control an experiment status and can execute

actions to terminate that experiment or save it. Our current implementation
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Figure 1.6: Neptune Manager screenshot.

of experiment status saving only creates copies of virtual nodes file systems,

as saving the whole status of a running experiment is a distributed snapshot

problem [28] which is actually out of the scope of our system. Commands

and tools to manage and monitor virtual nodes and links are provided too.

Finally, remote access is made available to each of the experiment nodes

through a VPN tunnel.

1.2.4 Automatic deployment of a OMF virtual testbed

To allow the fast and automatic execution of experiments on user-defined

emulated virtual networks, we decided to extend our NEPTUNE platform

by giving to it the ability to instantiate OMF-ready virtual testbeds.

The integration of the two platforms comprised two steps:

1. Configuration of two VM templates: i) one preconfigured with OMF

EC and AG instances and ii) another one preconfigured with a OMF

RC.

2. Creation of a set of scripts for automatically configuring OMF compo-

nents using NEPTUNE’s virtual topology description.

To automatically deploy an OMF virtual testbed, a user describes the

testbed’s topology he/she needs to perform experiments, by means of the
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NEPTUNE GUI. The defined virtual testbed must use virtual nodes tem-

plates that include OMF components. A typical virtual testbed setup could

be composed of a single virtual node hosting OMF EC and OMF AG, and

several virtual nodes hosting OMF RCs. Once the virtual topology has been

defined in NEPTUNE, our scripts automatically configure the OMF com-

ponents according to the provided virtual topology. Once this last step is

completed, the virtual testbed is ready to be used. User can then access

the nodes through secure ssh connection or supply an experiment descrip-

tion to the OMF EC, which will execute the experiment. At the end of the

experiment execution, the experimental results will be available on a MySql

database.



Chapter 2

Providing flexible
infrastructures

In the previous chapter we introduced the recent trend in providing every-

thing applying an “as a service” model, as well as the findings in adapting

some specific applications to such a model. Nevertheless, even if the user ac-

cess model follows an “as a service” approach, as already pointed out, the

underlying infrastructure, in most of the cases, is still a traditional TCP/IP

network. Introducing flexibility in the traditional network infrastructure be-

comes a stringent requirement to support the highly dynamic service pro-

visioning model, ensuring at the same time a small operational cost. In

this chapter we will focus on issues we faced while designing both GaaS and

NEPTUNE (both introduced in the previous chapter). In particular, we

will explain how a common network substrate can be virtualized to provide

virtual links, how to exploit the knowledge of the provided application to op-

timize the infrastructure provisioning time, and, finally, how to automatically

optimize the resources usage in the substrate infrastructure.

2.1 Virtual links

2.1.1 Context and motivation

Network emulation is an experimental methodology that is widely adopted

to test innovative protocols and distributed applications in realistic and con-



Virtual links 26

trollable scenarios. Unlike simulation, which reproduces a system’s behavior

by modeling all the interacting components of the system, emulation allows

researchers to test a real implementation of a system component, by mak-

ing it interact in real-time with other real world or modeled components of

the system [27]. In the specific case of networked systems, emulation consists

in reproducing a “virtual” network setup on top of a collection of physical

devices. In particular, one of the issues of network emulation is the ability

of reproducing the behavior of different communication links (such as geo-

graphic point-to-point links, shared LANs, wireless LANs, and so on) on top

of a general purpose facility. One of the first emulation tools was dummynet

[128], a software system developed by Luigi Rizzo as an extension of the

FreeBSD kernel. Dummynet makes a FreeBSD system able to shape and de-

lay the traffic flowing through it. Due to the ease of deployment, dummynet

is often used in small scale testbeds to emulate the behavior of congested

wide area networks for testing of protocols and applications. A modified

version of dummynet has also been recently deployed in PlanetLab Europe

[118], where FreeBSD “Dummynet Boxes” have been deployed in front of

a subset of PlanetLab Europe nodes. Dummynet Box can be dynamically

configured, so that individual users (slivers) can independently and concur-

rently set up the characteristics of an emulated link for their experiments

[81]. Modern network emulation systems are able to reproduce in a virtual

environment the behavior of complex network topologies, and let these vir-

tual networks interact with real applications under test. The architectures of

these emulation systems are extremely different, ranging from centralized im-

plementations, reproducing the emulated network within a single computer,

to distributed emulation facilities, usually relying on clusters of PCs inter-

connected by programmable networking devices. We call this latter kind of

systems “cluster-based network emulation systems”. Since realistic evalua-

tion scenarios often require thousands of nodes, scalability is a key require-

ment for network emulation systems. Different solutions have been proposed

in the literature to scale-up the maximum size of emulated networks. Grau
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et. al classify them into parallelization, abstraction, node virtualization, and

time virtualization [53]. Node virtualization has been used in several cluster-

based network emulation systems, such as University of Utah’s EmuLab [62]

and University of Stuttgart’s NET [60] [84]. NEPTUNE (see chapter 1)is a

cluster based network emulation system that makes use of Xen for node vir-

tualization [41],[40]. Besides node multiplexing, a network emulation system

needs proper techniques to emulate the behavior of different point-to-point

links on top of a shared networking infrastructure. This latter problem is

usually referred to as link multiplexing. In this section we present and ex-

perimentally evaluate the “One Link per Virtual Interface” technique (OLVI

in short) we use in NEPTUNE as the basis for link multiplexing. OLVI

combines Xen bridging with the emulation features provided by the NetEm

extension of the Linux kernel [59] to multiplex several point-to-point com-

munication links, each of which with its own bandwidth and delay, on top of

a single high-performance LAN.

2.1.2 Virtualization in Network Emulation Systems

A typical network emulation system is composed of a set of physical resources

(links, LAN switches, PCs) that are used to reproduce an emulated network-

ing environment. Several strategies can be adopted to map the emulated

scenarios on top of the available physical resources. While conservative allo-

cation policies may easily lead to underutilization, better resource utilization

might be achieved if they could be decomposed in many “virtual resources”,

each appearing as a separate physical resource. Such a technique is usually

referred to as resource multiplexing. In the context of network emulation we

are interested in two particular forms of resource multiplexing: node mul-

tiplexing and link multiplexing [31]. Node multiplexing is the problem of

emulating more than a network node on the same physical node, while link

multiplexing focuses on emulating multiple point-to-point connections on top

of one or more shared links.

Virtualization technologies are a widely used solution for resource mul-
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tiplexing problems. In general terms, virtualization is a technique in which

a software layer multiplexes lower-level resources for the benefit of higher

level software programs and systems. Virtualization can be applied to ei-

ther single physical resources of a computing system (e.g. a single device) or

to a complete computing system. When applied in this latter sense, (a.k.a.

Platform Virtualization), it allows the coexistence of multiple “Virtual Ma-

chines” in the same computing host. Platform virtualization is implemented

by means of an additional software layer, called Virtual Machine Monitor

(VMM) (or hypervisor), that acts as an intermediary between the system

hardware resources and the Operating System. There are many approaches

to platform virtualization: Full Virtualization implements in software a full

virtual replica of the emulated system’s hardware, so that the operating sys-

tem and user applications may run on the virtual hardware exactly as they

would in the original system. Paravirtualization, instead, makes available a

software interface to virtual machines that is similar but not identical to the

underlying hardware in order to improve scalability and performance over

full virtualization, at the cost of requiring the guest operating system to be

explicitly ported for the para-API. Finally, Operating system-level virtualiza-

tion further improves scalability allowing a physical server to run multiple

isolated operating system instances sharing the same kernel with little over-

head, but at the cost of a reduced flexibility.

While node multiplexing is inherently a problem of platform virtualiza-

tion, link multiplexing is a more specific problem that can be solved in dif-

ferent ways, at different layers of the communications stack. Several network

emulation systems have been designed (or re-designed) in order to use virtu-

alization techniques for efficient resource multiplexing. University of Utah’s

Emulab, as first example, implements node multiplexing by means of a mod-

ified version of FreeBSD Jail. ModelNet [144] implements node multiplexing

by means of so called Virtual Nodes (VNs) which is just a process level iso-

lation approach, while link multiplexing is implemented by combining IP

aliasing, a socket interposition library and centralized Core Nodes running
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dummynet. University of Stuttgart’s NET implements link multiplexing by

combining the use of VLANs and a virtual device driver, NETShaper, which

allows to dynamically configure bandwidth, delay and loss rate [61]. Besides

network emulation systems, virtualization techniques have also been used for

resource multiplexing in large scale distributed testbeds. The VINI project

has created a virtual network infrastructure allowing experimental evalua-

tion of protocols and services under real traffic loads, in controllable network

conditions [16]. VINI uses two container based virtualization technologies

for node multiplexing, VServer and NetNS, in addition to Ethernet EGRE

tunneling [19] for layer 2 encapsulation.

The use of virtualization techniques is also at the basis of NEPTUNE.

NEPTUNE relies on Xen [14] for node multiplexing, which implements par-

avirtualization by means of an hypervisor and several domains, running on

top of that hypervisor. The hypervisor controls guest domains access to the

physical machine’s hardware resources, while for the sake of reliability and

efficiency, device drivers are kept in an isolated “driver domain” (Domain

0, or dom0) with special privileges. Domain0 is created at boot time and,

through it, users may create and terminate other unprivileged domains (do-

mUs), control CPU scheduling parameters and resource allocation policies.

Node multiplexing in NEPTUNE

Node multiplexing is implemented in NEPTUNE by means of Xen, using

virtual machines as network nodes. Our current implementation relies on

libvirt virtualization APIs [125], making it feasible supporting different vir-

tualization technologies in the future. Mapping of virtual nodes onto the

cluster physical nodes is described by an allocation map which can be gener-

ated either manually by a system administrator or automatically, by means

of a software module implementing a Lin-Kernighan derived optimization

algorithm [126]. When a virtual network is to be deployed on the physi-

cal cluster, NeptuneManager distributes Virtual Machine template instances

to the physical cluster nodes. This distribution process is composed of two
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phases for each virtual node: 1) raw copy of the virtual machine image file

containing VM template, and 2) VM creation on the target virtual machine

monitor. During this last phase, virtual hardware resources are provided to

the virtual node according to node definition provided by the experiment

topology description. Use of Xen for node multiplexing provides a totally

virtualized environment to test applications. Xen isolates virtual machines

from each other and guarantees them the availability of resources assigned at

VM creation time. Because of the total isolation between VMs, it is possibile

to run custom operating systems on each VM and, hence, custom network

stacks. This allows us to correctly emulate different network devices, e.g.

routers, within a single physical host.

Link Multiplexing in NEPTUNE

In several network emulation systems, link multiplexing is performed by

means of Virtual LANs (VLANs). Such a solution is implemented by prop-

erly configuring the Ethernet switches and does not require any configuration

and processing in the cluster nodes. This makes, however, the system config-

uration software extremely dependent on the characteristics of the network

switches. For the above reason, we decided not to use VLANs in NEPTUNE

and we adopted a network device independent solution for link multiplexing

that we call “One Link per Virtual Interface” (OLVI in short). The OLVI

technique is implemented by exploiting the network virtualization mecha-

nisms implemented in Xen. Every time a new virtual machine is instanti-

ated, Xen creates a new pair of “connected virtual ethernet interfaces”, with

one end of each pair within the virtual machine and the other end within

the virtual machine monitor. Virtualised network interfaces have their own

ethernet MAC addresses, whose values can be assigned at virtual machine

creation time [151][92]. When using OLVI technique, each point-to-point

link is identified by its end points, which are virtual NICs in virtual nodes.

Since a unique MAC address is assigned to each virtual NIC, virtual links are

uniquely identifiable within NEPTUNE. To completely implement link em-
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Figure 2.1: Link multiplexing in NEPTUNE.

ulation, virtual links need to be configured according to specific user-defined

properties. Such properties are assigned to emulated links through the use of

a queuing discipline and a traffic shaper that are associated to both ends of

an emulated link. Queuing discipline are enforced through the traffic control

module of the Linux kernel, while traffic shaping is done through NetEm,

another Linux kernel module, provided by default from kernel2.6 distribu-

tions, that gives the possibility to emulate delay, loss rate, re-ordering and

duplication over a link.

A major problem when dealing with the creation of virtual links is the

need to assign IP addresses to both ends of virtual links, according to a

general IP addressing scheme. In NEPTUNE users can manually define IP

addresses for a link’s end-point, but such a task is tedious, error prone and

not viable when dealing with big topologies. For these reasons NEPTUNE

also provides an algorithm that automatically assigns subnets to links and

IP addresses to their end-points. Furthermore, since several experiments can

be running on the same shared infrastructure, the algorithm also ensures

non overlapping of address spaces used by different experiments. This latter

requirement is also enforced when experiments use manual allocation of IP
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addresses.

2.1.3 Experimental Evaluation

The need to create repeatable experimental scenarios to test network appli-

cations and protocols is the main reason for the adoption of simulation and

emulation techniques. Node and link virtualization in network emulation

testbeds provide users with the possibility of trading off the amount of phys-

ical resources to be allocated to a given experiment for emulation accuracy.

First target of our experimental evaluation is to identify limits of proposed

multiplexing techniques and in particular the maximum network through-

put a NEPTUNE’s virtual node can achieve. Here we discuss experimental

results demonstrating the maximum throughput obtainable when one VM

is running on top of the hypervisor: these performance values are an upper

bound for the case of multiple concurrent VMs running on top of the same

physical hardware. To assess performance levels of NEPTUNE, first of all

we need to find a reference performance value. To this end, we set up a pre-

liminary experimental scenario (Setup #0), in which two identical machines

are connected by a point-to-point 1Gbps Ethernet cable. Both nodes are HP

ProLiant DL380 servers, each equipped with two Intel Pentium IV Xeon 2.8

GHz CPUs, 5 GB of PC-2100 RAM, one 100 Mbps Ethernet NIC and one

Gigabit Ethernet NIC. The adopted CPUs support the Hyper-Threading In-

tel technology. Both hosts run native GNU/Linux (CentOS5.3) with a 2.6.18

Linux kernel.

In such a scenario, we run the D-ITG suite [25] to generate network traffic

and measure effective throughput in terms of generated/received packets per

second (pkt/s). We used D-ITG to generate UDP constant bit rate traffic,

at different rates, with packets size of 1042 bytes “on wire”.

Similar experiments were repeated among the same pair of physical ma-

chines, but in a different experimental scenario (Setup #1 shown in Fig-

ure 2.2): one of the two hosts runs a Xen Virtual Machine Monitor (Xen

version 3.1.2) with a 2.6.18 Linux kernel plus a single domU virtual machine.
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Figure 2.2: Experimental setup #1.

Two different experiments were run in this configuration: Experiment 1.1,

where domU node acted as CBR traffic generator, and Experiment 1.2, where

domU acted as receiver. Due to the use of Hyper-Threading, our systems

appear having four “logical” CPUs, numbered as CPU0, CPU1, CPU2 anc

CPU3. The CPU enumeration order used by Xen is: hyperthreads, cores,

sockets. On our system, the four CPUs are then mapped as follows:

• cpu 0 : socket 0, [core 0], hyperthread 0;

• cpu 1 : socket 0, [core 0], hyperthread 1;

• cpu 2 : socket 1, [core 0], hyperthread 0;

• cpu 3 : socket 1, [core 0], hyperthread 1.

We configured Xen by constraining domUs to use no more than one CPU at

a time.

Experiment run in Setup #0 provides us with the maximum number of

packets per second that our Linux-based hosts are able to receive. Since

experiments run in Setup #1 show a lower throughput, we are confident that

this performance penalty is caused by the use of Xen.

Figure 2.3 shows achieved throughput for Experiment 1.1, compared to

throughput measured in Setup #0. This graph demonstrated that domU per-

formance is about 75% of the native GNU/Linux host, providing ourself with
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Figure 2.3: DomU transmission performance.

Figure 2.4: DomU reception performance.
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Figure 2.5: DomU transmission performance.

an upper bound for transmission capabilities of a NEPTUNE virtual node.

Figure 2.4 shows achieved throughput for Experiment 1.2, again compared

to throughput measured in Setup #0. This graph shows that, as receiver,

domU performance is 65% of native GNU/Linux.

Figures 2.5 and 2.6 show the average CPU load measured during Exper-

iments 1.1 and 1.2, as reported by the virt-top monitoring tool. The overall

CPU capacity refers to the whole set of four logical CPUs, hence, due to the

configuration of domUs, each domU may consume as much as 25% of the

overall CPU capacity. Figure 2.5 shows that the traffic generating domU

consumes as much CPU as possible even at low packet rates, while dom0 in-

creases the CPU utilization as the packet rate increases. Figure 2.6 shows

that a Xen domU acting as a packet receiver linearly increases its CPU uti-

lization with the packet arrival rate up to a given threshold. Since incoming

packets are first processed by dom0, the domU CPU load reflects the dom0

curve up to a threshold value (50 kpacket/s in Figure 2.6). For packet rates

above this latter threshold, domU saturates its CPU utilization curve.

We also carried out an experimental evaluation of the impact of NetEm

on performance of the emulation layer. These experiments were performed
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Figure 2.6: DomU reception performance.

using the same pair of physical machines as for previous experiments, but

engaging a different scenario (Setup #2 shown in Figure 2.7). Since our tests

were unidirectional, we only configured NetEm on the transmitting side.

Again, we performed two experiments. In both of them, we configured

the emulation layer to emulate a virtual link of limited bandwidth, by means

of a token bucket filter (TBF). Our goal was to evaluate if the combination

of bandwidth limitation mechanisms and virtualization layer (Xen) produced

any unexpected effects on the throughput and jitter experienced by packets

carried by the emulated link. Figure 2.8 shows traffic received by the native

GNU/Linux host, for several TBF limits applied at the sender side, when

the rate of generated traffic was progressively increased. This graph demon-

strates that traffic rate has been correctly shaped, delivering the expected

bandwidth.

In Figure 2.9 we compare jitter values experienced on link when using

two different configurations: in the fist one, traffic sender run on native

GNU/Linux (no virtualization layer here), while in the second one a Virtual

Machine worked as sender (Figure 2.5). In both cases we generated 25 Mbps

of UDP costant bit rate traffic over a virtual link tailored at 20 Mbps by
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Figure 2.7: Experimental setup #2.

Figure 2.8: Token Bucket bw limita-
tion.

Figure 2.9: Jitter.

applying a TBF shaper. Results show that the virtualization layer has no

significative effects on the jitter, that maintained similar properties.

2.1.4 Conclusions

Several papers presented performance evaluation analysis of Xen networking.

Our work is not specifically aimed at evaluating Xen performance. Nonethe-

less, since Virtual Machine Monitor layer is a major component of our net-

work emulator architecture, experiments we presented in this section are

strongly related to those presented in other works. In [43], packet forward-
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ing performance of Xen’s dom0 and domUs are evaluated and compared to

native GNU/Linux. Results show that dom0, in the absence of concurrent

domUs, has comparable performance (within 5%) of native GNU/Linux. On

the other hand, a remarkable performance drop is experienced by domUs,

especially in the case of multiple concurrently active domUs running on top

of the VMM. This paper also compares performance of Xen’s bridging and

routing configurations in terms of packet forwarding within domUs. This

last work is of less interest for our purposes, since we assumed the use of

bridging configuration for Xen in the NEPTUNE architecture. Other papers

([93][33]) have evaluated overhead caused by the VMM layer, for previous

versions of Xen (v2.x). In [93] a detailed profiling of Xen shows that the ex-

ecution of I/O operations in a domU has a higher instructions count with

respect to both native GNU/Linux and dom0, which explains throughput

degradation. Here, authors also examine how performance can be negatively

affected by the use of a general virtual NIC driver that causes domUs to ex-

ecute operations like TCP segmentation in software, ignoring physical NIC

TCO (TCP segmentation offload) capabilities, which are instead used by na-

tive GNU/Linux and dom0. Our experiments show similar results to those

presented in previous papers. The relevance of results we provide is mainly

to identify an upper bound to the capabilities of our emulation system, in

order to guarantee correctness of the emulation.

2.2 Fast provisioning of virtual nodes

In many IaaS management system, VM templates are usually stored in a

“template repository”. A new VM is created copying the selected template

to the running location of the VM. The duration of this process is the main

factor in the resources deployment time. Since the copy process involves

the storage infrastructures that are hosting the template repository and the

newly created VMs disks, assuming that a minimal VM template is several

hundreds of megabytes big, the process, for each VM creation, takes a time

in the order of dozens of seconds.
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During the design and development of the GaaS system (see chapter 1),

to optimize the infrastructural resources used during the provisioning pro-

cess, and to reduce the overall provisioning time, we took into account the

peculiarities of the GaaS system. In particular, we made the following ob-

servations:

1. all the VMs are prescribed to host the same operating system, which

is imposed by the gLite-EMI middleware;

2. all the VMs hosting the Grid services (e.g., WN, CE, etc.) can be

produced by customizing the configuration of a single VM template;

We designed our VM disk provisioning system in order to provide fast VM

creation and avoid as much data copy as possible. Our solution is based on

the GNU/Linux’s Logical Volume Manager (LVM). LVM allows the creation

of logical volumes (LV) and the creation of snapshots starting from a refer-

ence LV. Snapshots can be read and written, since their creation is performed

through the use of a “delta meta-data”, that contains all the differences with

the original LV. This approach makes the creation of a snapshot really fast (a

few milliseconds) since it involves no copy of data. Once the snapshot is cre-

ated, following observation 2, a configuration script is executed to customize

the virtual resource according to its functional destination. Since both read

and write actions involve an a read/update of the delta meta-data, the oper-

ating performance of the snapshot could be compromised in particular con-

ditions. In our case, we are mainly interested into reading performance, and,

moreover, we assume that the majority of reads happen in the bootstrapping

process of a VM (e.g., for the loading of the required applications).

In figure 2.10 is presented a performance comparison of read and write

operations on 64 KBs data blocks. These tests were executed on an HP

DL380 Proliant server equipped with two Intel Pentium IV Xeon 2.8 GHz

CPUs, 5 GB of PC-2100 RAM. The server was running a Debian Linux with

the OS kernel configured to use only 1 GB of RAM. We compare the results

obtained by operating on both a raw partition (labeled as “normal”) and on a
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LVM snapshot (labeled as “snapshot”). For various amounts of read/written

data (ranging from 512 bytes up to 8 GBytes), we compare the throughput

achieved for write (left graphs) and read (right graphs) operations. Figure

2.10 shows the results of six series of experiments. On the left hand of

the figure, graphs a), c) and e) present the throughput obtained by write

operations performed in the following cases: graph a) refers to operations

performed on freshly mounted disks, with no OS caching effects, graph c)

refers to sequential write operations performed several times on the same

data, in order to maximize the OS caching effects, graph e) refers to random

write operations. On the right hand of the figure, graphs b), d) and f) present

the results for similar experiments involving read operations.

From the graphs it can be easily observed the effect of caches on per-

formance, when data size is bigger than the available filesystem cache (our

system had about 512 MBs of cache space). What is of particular interest for

us, is that the performance drop when snapshots are used is marginal, since

the delta meta-data is likely stored in the system cache anyway, hence, we

can fast provision resources to the grid, without paying any sensible penalty

on disk performance. Moreover, performance drops are visible when the writ-

ten/read data size is bigger than the filesystem cache, in particular for write

operations. Since snapshots are just used to create VMs’ OS bootable disks,

i.e., disks that contains the OS and the applications code but that are not

meant to be used as data storage, they are mainly involved in read opera-

tions, and the dimension of read data is likely to be smaller or comparable

with the dimension of the filesystem cache. Hence, we expect little or no

performance drop in the VM operations.

2.3 Resource allocation problem

One of the key steps in the Virtual Infrastructure deployment process is the

mapping of Virtual Machines onto the physical resources of the target data-

center. This problem is known in literature as the network testbed mapping

problem[126]. Due to its complexity, the challenge is to find a good solu-
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Figure 2.10: Storage write (left column) and read (right column) performance. The y axis
shows the read and write throughput (bytes/sec), while the x axis shows the amount of
data read/written. Graphs a, b refer to sequential operations with no OS caching effects.
Graphs c, d refer to sequential repeated operations to maximize OS caching effects. Graphs
e, f refer to random operations.

tion in acceptable computational times. Our approach to manage complexity

consists in splitting the mapping problem in two sub-problems: topology par-

titioning and a partition mapping.

Several graph partitioning algorithms have been proposed in the liter-

ature. An algorithm that provides good results with reasonable times of

calculation is the Lin-Kernighan (LK) heuristic algorithm [70]. Theoretical

complexity of LK is O(n2 log n). We implemented this algorithm in JAVA

to evaluate its applicability to cluster environments and to assess its per-
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Figure 2.11: LK best mapping solution times

formance. A first test was performed to estimate the solver execution time

while varying number of nodes in the graph. Size of the matrix was var-

ied between 100x100 and 1000x1000 with steps of 100. The graph was been

partitioned into subsets of cardinality equal to 5 while non-zero elements in-

cidence for considered matrix were 2%. Computational times represented in

Figure 2.11 were calculated by using a system equipped with 2 GB of RAM

and an Intel CPU T2250 running at 1.73 GHz.

Our algorithm implementation requires that once found a minimum cost

solution, the procedure is restarted with a new initial solution. After running

5 iterations the algorithm stops and returns the minimum cost solution. This

test highlights the relationship between the iteration i* at which the optimal

solution is found with the size and density (arcs/nodes ratio) of the matrix.

arc/nodes=4 arc/nodes=6 arc/nodes=8

Matrix 20x20 100run 100run 100run

Matrix 100x100 100run 100run 100run

Matrix 400x400 100run 100run 100run

Table 2.1: Tests organization

Virtual links and physical links bandwidths have been respectively fixed
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Figure 2.12: Four-arcs/node case Figure 2.13: Six-arcs/node case

at 10 and 100. Matrices are generated randomly and before subjecting a

matrix to the solver, it is verified that each node has at least one connection

and that the sum of the costs associated to all the outgoing arcs from one

same node does not exceed 90% of the physical connections bandwidth. Tests

organization is shown in Table 2.1, while tests results are shown in Table 2.2.

i*=1 i*=2 i*=3 i*=4 i*=5

Matrix 20x20 arc/nodes=4 47 21 18 7 7

Matrix 20x20 arc/nodes=6 52 21 13 8 6

Matrix 20x20 arc/nodes=8 43 27 14 6 10

Matrix 100x100 arc/nodes=4 23 21 21 23 12

Matrix 100x100 arc/nodes=6 23 21 28 20 8

Matrix 100x100 arc/nodes=8 18 16 26 18 22

Matrix 400x400 arc/nodes=4 18 24 16 18 24

Matrix 400x400 arc/nodes=6 20 24 18 16 22

Matrix 400x400 arc/nodes=8 22 28 14 12 24

Table 2.2: Tests results

Results for the case 4 arcs/node and 6 arcs/node are further shown in

Figure 2.12 and in Figure 2.13.

This test demonstrates that for matrices of small size (20x20), our solver

returns in almost 50% of the cases the least-cost solution at the first iteration.

When the matrix increases in size (100x100 and 400x400), the probability of

finding good solutions at the first iteration is lower. In these cases, better re-
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sults could be obtained by running more iterations, but the rapid increase of

computational times does not encourage this approach. The Lin-Kernighan

algorithm does not guarantee that it is always possible to find an admissible

solution, so it could happen that the found solution does not meet the ad-

missibility constraints. However, in our tests, the solver always returned an

acceptable solution.



Chapter 3

Introducing mobility in virtual
infrastructures

The adoption of flexible infrastructures provides a complete set of new fea-

tures to IT and networks. The introduction of virtualized infrastructures

allows the decoupling of services from their physical location. Unfortunately,

one of the assumption on which the current Internet is built is that the net-

work nodes do not change their points of attachment to the network. This

is an already well-known limitation of TCP/IP networks, that has been ex-

plored in past years, mainly to provide the ability to change network to

mobile nodes, such as the ones equipped with a Wi-Fi device. The just cited

virtualized infrastructures may take advantage of such a feature as well, since

they can move from one physical location to another, through a process com-

monly called migration. Even if the migration of a virtualized infrastructure

is first of all a technological problem related to the virtualization technol-

ogy, the migrated virtual infrastructure still has the need to maintain the

Internet connectivity to keep on providing the given services. In this chapter

we present some solutions to provide mobility to virtualized infrastructures

when deployed in a traditional TCP/IP network, both in the context of a

datacenter and on a geographical scale.
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3.1 Local mobility

3.1.1 Context and motivation

Cloud Computing is “a model for enabling convenient, on-demand network

access to a shared pool of configurable computing resources (e.g., networks,

servers, storage, applications, and services) that can be rapidly provisioned

and released with minimal management effort or service provider interac-

tion” [97]. Customers find this paradigm convenient as it relieves them from

the responsibility of buying and managing a dedicated computing infrastruc-

ture, since resources may be dynamically acquired and released, according

to their actual needs. Cloud Providers, on the other hand, can take ad-

vantage of scale economies to organize and manage large datacenters, whose

resources can be efficiently utilized by partitioning and renting them to a

number of customers. In this section we focus on the IaaS model, which

provides users with the ability to obtain a set of common fundamental com-

puting resources (e.g., Virtual Machines, storage and networking services)

that can be composed to create a customized virtual infrastructure. Despite

its success, the IaaS paradigm poses new challenges in terms of management

of the computing infrastructure: Cloud Providers have the responsibility to

manage a large infrastructure that hosts a number of highly dynamic virtual

infrastructures operated by different users. A typical commercial IaaS offer-

ing provides virtual infrastructures composed by a predefined set of VMs.

A customer’s virtual infrastructure may comprise groups of VMs. For in-

stance, Amazon EC2 [7] allows users to define so-called “security groups”.

Each VM in a security group can directly communicate with all other VMs

in the same security group, while traffic coming from external sources or des-

tined to external hosts must pass through a firewall managed by the Cloud

management system.

Modern virtualization technologies play a key role in modern datacen-

ters for Cloud Computing, as they allow an efficient utilization of physical

resources. Server virtualization technologies based on Virtual Machines are
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able to flexibly consolidate the computing workload of a datacenter over a set

of available physical servers, through migration of running VMs from a phys-

ical server to another. This feature is particularly useful when the number of

managed VMs is high, as it provides the ability to dynamically redistribute

the computing workload for both load balancing and hardware maintenance.

Current virtualization technologies, however, only support live migration of

running VMs within a single IP subnet. The networking infrastructure of

large-scale datacenters is implemented according to redundant multi-tiered

architectures, comprising a number of different IP subnets. Splitting the

network infrastructure in several IP subnets limits the scope of migration of

VMs to portions of the datacenter, and reduces the possibility for adminis-

trators to efficiently balance the load and reduce the energy consumption of

the whole infrastructure.

In this section we describe a solution that allows transparent migration

of VMs across the whole datacenter by adapting the novel Service Switching

paradigm, originally proposed for supporting geographic migration of net-

work services [86]. Our solution is based on the coordinated use of NAT rules

and ARP proxying that needs to be consistently managed across the layers

of the datacenter networking infrastructure. We describe in details how our

approach can be easily implemented with current network devices without

any modification to their hardware and present an experimental evaluation

of an early prototype of our solution.

The rest of this section is organized as follows. Section 3.1.2 illustrates

the hierarchical networking infrastructure of modern large scale datacenters.

Section 3.1.3 presents the role of virtualization and how live migration of

Virtual Machines can be used for an efficient management of physical re-

sources in Cloud-enabled datacenters. Section 3.1.4 illustrates our solution

for transparent migration of VMs across different IP subnets. We discuss all

the possible communication patterns and how they are preserved in case of

migration of one or more Virtual Machines of the same group. Section 3.1.5

illustrates a prototype of our solution using Xen-based Virtual Machines and
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Figure 3.1: Datacenter layered architecture

Linux-based software routers. Our evaluation demonstrates the feasibility of

our approach and its correct behaviour in all the scenarios presented in the

previous section. In Section 3.1.6 we compare our solution against similar

works that have been recently published in the literature. Finally, we draw

our conclusions and illustrate our future developments.

3.1.2 Datacenter networking

Due to the large numbers of connected devices and the huge aggregated

communication requirements, the networking infrastructure of a datacenter

providing IaaS services is necessarily organized according to a hierarchical

design. Figure 3.1 shows a typical network architecture for a large scale dat-

acenter (adapted from [37]). Commercial datacenter networking solutions

typically identify at least three levels of network devices, commonly referred

to as Access, Aggregation, and Core. Core level devices connect the datacen-

ter with the Internet, through one or more geographic links.

While the upper levels usually operate at layer 3 of the networking stack,

i.e., they act as routers, Access layer devices may be configured to operate at

either L2 or L3. The use of L2 devices at all layers of the infrastructure has

proven to be unfeasible due to scalability problems deriving from too large

broadcast domains. Spanning Tree Protocol (STP), in fact, can take up to

50 seconds to converge in a large network, while the Rapid Spanning Tree
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Protocol (RTSP) still requires tens of seconds to converge in some topologies

[67]. Hence, L3 solutions at the Access layer are recently preferred for large

scale datacenters, as they provide faster routing convergence, contain broad-

cast domains to a limited size, and simplify troubleshooting and management

procedures.

In the context of a datacenter for IaaS services it is common practice to use

private IP addresses for internal networks. To guarantee public accessibility

of services from the Internet, front-end nodes are associated to a limited

set of public IP addresses, which are NAT-ted at the datacenter edge. For

the purposes of this work, we do not consider such public IP addresses, and

assume that, within the datacenter infrastructure, a VM is uniquely identified

by one or more private IP addresses.

3.1.3 Virtualization

Virtualization is a widely adopted solution for resource multiplexing prob-

lems. In general terms, virtualization is a technique in which a software

layer multiplexes lower-level resources for the benefit of higher level software

programs and systems. Virtualization can be applied to either single physi-

cal resources of a computing system (e.g. a single device) or to a complete

computing system. When applied in this latter sense, (a.k.a. Platform Vir-

tualization), it allows the coexistence of multiple “Virtual Machines” in the

same computing host. Platform virtualization is implemented by means of an

additional software layer, called Virtual Machine Monitor (VMM) (or hyper-

visor), that acts as an intermediary between the system hardware resources

and the Operating System. Modern VMMs (such as Xen, KVM, VMware

vSphere) add support for live migration of Virtual Machines. Live migration

is a feature that allows the migration of a running VM from one physical host

to another, with a downtime limited to a few dozens of milliseconds. Live

migration allows Cloud Providers to dynamically reconfigure the allocation

of VMs over the available physical resources, so enabling advanced strategies

for workload distribution and energy savings in the datacenter [132].
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Figure 3.2: NAT-based Service Switching

A VM migration process basically consists in suspending the running

VM, copying the status from the source VMM to the destination VMM, and

finally resuming the VM at its destination. This process may be optimized

with several techniques. Xen, for instance, uses an iterative pre-copy strategy,

as described in [38].

The Xen live migration process described in [38] assumes that (i) source

and destination VMMs both reside in the same LAN, and that (ii) a network-

attacched storage (NAS) provides a shared storage to VMs, which do not rely

on local storage resources.

The problem of migrating virtual machines across the boundaries of a sin-

gle IP network (or sub-network) is not considered in [38]. Similar constraints

also exist for other virtualization technologies [146].

3.1.4 Our solution

In this section we illustrate a novel solution that allows transparent live

migration of Virtual Machines within a large scale datacenter infrastructure

comprising different IP subnets. Our solution is based on a modification of

the Service Switching paradigm, a technique originally proposed in [86] with

the aim of supporting geographic migration of virtualized network services.
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Our datacenter-oriented implementation of Service Switching relies on a

combination of live migration mechanisms [38], of the Mobile IP model [112],

and of the Network Address Translation (NAT) technique.

IP version 4 assumes that a node’s IP address uniquely identifies its point

of attachment to the Internet: a node must be located on the network in-

dicated by its IP address in order to receive datagrams which are destined

to it. IP Mobility Support (or Mobile IP) provides a mechanism that allows

Mobile Hosts to change their point of attachment to the Internet without

changing their IP address. This mechanism relies on two intermediary enti-

ties: the Home Agent and the Foreign Agent. The role of the Home Agent

is to maintain current location information of the mobile node, and to re-

transmit all the packets addressed to the Mobile Host through a tunnel to

the Foreign Agent to which the Mobile Host is currently registered. The role

of the Foreign Agent, in turn, is to deliver datagrams to the Mobile Host.

In Mobile IP, a Mobile Host interacts with the Foreign Agent to obtain the

Care of Address (CoA), that is, the Foreign Agent’s IP address. This address

is notified by the Mobile Host to its own Home Agent, which, in turn, uses

this piece of information to establish a tunnel to the Foreign Agent. Hence,

the standard Mobile IP model, as described in [112], is not transparent to the

Mobile Host, which is required to actively interact with the agents. Mobile

Hosts, in fact, need to be able to discover agents and register with them.

Agent discovery is performed through special ICMP messages, while host

registration is based on the exchange of UDP datagrams sent to a well-known

port (434).

As we mentioned before, the Service Switching paradigm is based on a

few basic ideas taken from Mobile IP. In our context, a migrated Virtual

Machine plays the role of a Mobile Host. However, the standard Mobile IP

cannot be taken as-is, since one of the requirements for Service Switching is

to make the VM migration process completely transparent to the migrated

VM, which should be not aware of its migration. The Service Switching

paradigm assumes that the VM migration procedure is managed by an ex-
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ternal entity that is responsible of orchestrating the live VM migration with

an IP address migration process. While the live VM migration process is

strictly dependent on the adopted virtualization technology, the IP address

migration process consists in properly configuring the devices forming the

datacenter networking infrastructure in order to preserve the reachability of

the migrated VM.

Figure 3.3: Transparent VM migration cases

In the following we describe the Service Switching IP address migration

process in the context of a hierarchically organized large scale datacenter. We

assume a datacenter with a Top-of-Rack layout, in which the access layer of

the networking infrastructure is formed by one single switch per rack. A Top-

of-Rack switch usually connects 20-40 servers per rack, typically with 1 Gbps

links. The same model, however, can be easily adapted to datacenters with

a End-of-Row layout. We also assume that access switches are configured

to behave as Layer 3 devices, acting as IP routers and interacting with the

upper layers of the networking infrastructure through an Interior Gateway

Protocol, such as OSPF, RIP or IS-IS.

In order to solve the transparent live migration problem among IP sub-

nets within a datacenter, we must operate at both layer 3 and layer 2 of the

networking stack. Layer 3 operations enable the reachability of the migrated

VM through plain IP routing and forwarding. Layer 2 operations are neces-

sary to ensure that the migrated VM is reachable from any other host in the
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datacenter, regardless of its location, and to avoid any reconfiguration of the

VM’s network settings (e.g., the default gateway address).

When a Virtual Machine is deployed for the first time, it is allocated in

one of the available physical servers in a specific rack. This allocation choice

assigns one or more IP addresses to the VM. These IP addresses will be kept

for the entire VM lifecycle, even in case of migration. Such IP addresses are

referred to as the VM’s Home Addresses, and the Home Addresses’ subnet

is referred to as the VM’s Home Network.

Each router involved in the IP address migration process is called a Service

Switch. In particular, for a given VM, we refer to the router located at the

edge of the rack in which resides the physical server where the VM is initially

deployed as to the VM’s Home Service Switch. Likewise, the router located at

the edge of the rack hosting the server where the VM is going to be migrated,

will be referred to as the VM’s Foreign Service Switch.

By analogy with Mobile IP, a generic host communicating with a VM

will be referred to as Correspondent Node. Making the simplistic assumption

that a Virtual Machine presents a unique IP address, in order to access a

given service implemented by the VM, a Correspondent Node sends packets

to the VM’s Home Address.

When the IP address migration process starts, a Care-of Address is gen-

erated in order to identify the new location of the migrated VM. Such Care-of

Address is a new IP address that is assigned to the VM on the new IP subnet

(the Foreign Network). Notice that this new address is not directly known

by the VM, but only the datacenter’s Service Switches are aware of it. Mak-

ing the VM unaware of the Care-of Address enables the services on that VM

to run without interruptions and without the need for reconfiguration even

in case of migrations among different IP subnets.

Because we consider the problem of VM migration only within the limited

scope of a single datacenter, where VMs are identified by private IP addresses,

we do not concern about using an additional IP address for a migrated VM. In

fact, the use of a whole class-A private IP network (10.0.0.0), combined with



Local mobility 54

subnetting, is largely sufficient even for large scale datacenters. Moreover, by

using a VM-specific Care-of Address, we are also able to avoid the use of a

tunneling layer to forward network traffic to migrated VMs, by implementing

NAT functions at Service Switches level. In the following two subsections we

describe in details how a Service Switch should operate at both L2 and L3

in order to guarantee a seamless connectivity for migrated Virtual Machines.

Layer 3 operations

In figure 3.2 we show an example of IP address migration using NAT functions

in Service Switches: an external node with IP address E sends packets to the

datacenter’s VM with IP address M, which is in the VM’s Home Network

(HN). Once the migration happens, the Care-of Address M* is assigned to the

migrated VM. This new address belongs to the VM’s Foreign Network (FN),

and is only used at the datacenter’s Service Switches level, while the VM is

totally unaware of it. Simultaneously, NAT rules are added to the R1 (Edge

Service Switch), R2 (Foreign Service Switch), and R3 (Home Service Switch)

Service Switches: R1 and R3 are instructed to transform M address into M*

address, so that packets destined to M are routed into the datacenter using

the Care-of Address. When packets reach R2, a dual NAT rule is applied,

transforming M* again in M, hence the packet can be put on the FN and

the migrated VM can take it, being unaware of the changed IP network. In

addition to NAT rules, the R2 routing table is also updated to take into

account the new location of the migrated VM, that is now directly reachable

from one of its own interfaces.

Layer 2 operations

To provide migration transparency we need to take into account both the

VM’s IP address migration and the VM’s network configuration. Layer 3 op-

erations for transparent address migration have been presented in the previ-

ous paragragh. Here we present operations needed at layer 2. Assuming that

each VM knows its own Home Network (as this can be derived by combin-
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ing the VM’s IP address with the netmask) and knows its default gateway’s

IP address, we have to solve the connectivity cases shown in figure 3.3.

In the following we consider eight different communication cases. Each

case is identified by a subsection number, that is consistently used in Fig-

ure 3.3 to illustrate the corresponding exchange of packets.

C* to E To enable the communication of a migrated VM (C* in figure 3.3)

with a host E sitting in another subnet (that is different from C*’s Home and

Foreign networks), we have to consider the regular IP behaviour in the case

of a communication between two hosts living in different IP subnets. The

external node resides on a subnet that is different from the VM’s one, so the

VM’s OS, looking at the subnet mask, realizes that the communication must

happen through the default gateway. Because of the migration, the VM’s

default gateway (R2) is actually on a different subnet, and hence unreachable.

To solve this problem in a transparent way, we enable the router on the

foreign network (R1) to act as Proxy ARP, so that it responds to ARP

request on behalf of R2. Hence, packets generated by the migrated VM

destined to R2 are taken by R1, that in turn is able to correctly route them.

E to C* The reverse path of the previous case is enabled using layer 3

operations at R3 and R1 as previously described.

C* to D To allow the communication of the migrated VM with an host on

the home network, we need again proxy ARP functionalities. The migrated

VM tries to send packets destined to home network directly, because it con-

siders home network’s hosts as neighbours at layer 2. R1, in this case, must

act as proxy ARP for the entire Home Network: each packet destined to the

Home Network is taken by R1 and forwarded to the Home Network, using

IP routing, where R2 can correctly perform the delivery.

D to C* The communication from an host on the home network with the

migrated VM (case 4) is performed configuring R2 to work as proxy ARP for
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the migrated VM’s home address. Because R2 is aware of the VM’s Care-

of Address, it performs NAT on the packets and send them to R1 using IP

routing.

C* to B Because the migrated VM is able to estabilish a communication

with a Generic Host as of case 1, it is also able to communicate with a Host

on the Foreign Netwok. If desired, the Service Switch R1 can use ICMP

Redirect messages to allow the direct communication of the VM with the

host on the foreign network.

B to C* The communication of a foreign network’s host with the migrated

VM happens as in case 2. Once again, the Service Switch R1 can use ICMP

Redirect messages to optimize the communication.

C* to D* Because both VMs are configured to talk directly to each other,

the only operation needed at the Service Switch is to avoid its ARP proxying

for the migrated VMs’addresses.

C* to D** This case can be resolved as a simple combination of the pre-

vious cases.

3.1.5 Evaluation

To evaluate the feasibility of our solution, we realized a software implementa-

tion using standard GNU/Linux tools such as NetFilter/iptables and Linux

Kernel 2.6’s proxy ARP support. The implementation has been evaluated

on the testbed shown in figure 3.4, comprising four physical servers, one act-

ing as external host, one acting as datacenter edge-router, and two playing

the role of virtualization containers. Virtualization containers are physical

servers configured with the Xen Hypervisor [14]. Each virtualization con-

tainer is able to host one or more VMs. One of these VMs acts as a router,

with one interface connected to the edge-router and another connected to a
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Figure 3.4: Testbed

virtual LAN. Virtual LANs are realized by means of the GNU/Linux software

bridge, and connect all VMs hosted by a physical server.

In order to obtain the transparent migration of the “mobile VM”, as

shown in Figure 3.4, from the Home Network 192.168.11.0/24 to the Foreign

Network 192.168.10.0/24, we need to configure the testbed with 6 NetFilter

rules, (two rules for each of the three routers R1, R2, and R3), and 2 addi-

tional IP routes, (one in R2, and another in R3). More precisely, R1 and R3

are instructed to perform:

• destination NAT translating 192.168.11.3 in 192.168.10.3;

• source NAT translating 192.168.10.3 in 192.168.11.3.

R2 is instructed to perform the opposite translations, with the rules:

• destination NAT translating 192.168.10.3 in 192.168.11.3;

• source NAT translating 192.168.11.3 in 192.168.10.3.
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By applying these rules, a migrated IP address totally disappears from packet

headers when packets traverse the datacenter’s network on the path between

access and core layers. It is worth noting that NAT rules applied at R1 are

not strictly necessary: applying rules to just R2 and R3 resembles the plain

Mobile IP operations (apart from the use of tunnels). Anyhow, by exploit-

ing the full control of the whole datacenter’s network, we can optimize the

network traffic flow, performing an early redirection of packets, so to avoid

packets go firstly to R3 and then to R2. Notice also that because the mi-

grated VM must discover the “new” MAC address for its default gateway,

communications may not work until the VM’s ARP cache is renewed. (The

same happens for hosts on the VM’s Home Network, with the VM’s MAC

address). To make this process faster, i.e., not to wait for ARP cache expira-

tion, one can force the renewal of the ARP cache entries by using gratuitous

ARP messages.

To further evaluate our design, we performed two simple tests. In the

first one we used ping to measure the mean roud trip time (RTT) between

an “external” host and the migrated VM, in three different scenarios: i)

before migration; ii) after migration, without configuration of the core layer

router (i.e. resembling the “classical” mobile IP configuration); iii) after

migration, with core layer router configuration, as previously explained in

this paper.

In the second test the migrated VM runs a web server. We measured the

response time before and after the migration. We performed 10 http GET

requests per second, for a period of 100 seconds, downloading a 1 MB file.

Results for both tests are shown in table 3.1.

Notice that due to some configuration bias among machines used to per-

form our tests, response times are even better after the migration process.

More complex migration scenarios, e.g. involving multiple migrated VMs,

also were tested in our prototype, but cannot be described here in more

details due to space contraints.
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Ping test Mean RTT

non migrated 2.573ms

migrated (scenario ii) 3.192ms

migrated (scenario iii) 2.034ms

Web Server test Mean Response Time

non migrated 3.4ms

migrated (scenario iii) 3.1ms

Table 3.1: Tests results

3.1.6 Related work

The problem of properly re-designing the networking infrastructure of mod-

ern datacenters is today under the spotlight of several research groups and

big companies. The main challenge and goal is to achieve the ability to assign

any server to any service, a property called agility in [54]. To this purpose,

a few papers have proposed innovative solutions aimed at radically chang-

ing the way the network infrastructure of a datacenter is built. For instance,

Greenberg et al. propose in [54] an innovative architecture, called VL2, that

is organized in a flat scheme and operates like a very large switch. VL2 claims

to be able to organize any set of servers in the datacenter in a virtual layer 2

isolated LAN. VL2 can be implemented with commodity switches with layer

3 functionality, but it requires modification to the end-system networking

stack and a flat addressing scheme, supported by a directory service.

The potential and the costs of live migration of Virtual Machines in

Cloud-enabled large scale datacenters has been investigated in [149]. The

experimental evaluation conducted by the authors of this paper shows that

live migration needs to be carefully managed in SLA-oriented environments

requiring more demanding service levels.

In the last few years, other papers have presented similar techniques

aimed at allowing live migration of Virtual Machines across different IP sub-

nets [86], [136], [68]. The solution presented in this paper applies to migration

within a single datacenter and does not require any modification to the pub-

lic Internet. Moreover, it does not pose any requirement on the addressing
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scheme to be used in the datacenter, and does not require the establishment

of IP tunnels.

As we pointed out in section 3.1.5, our solution can be easily implemented

with current devices, as it employs standard layer 2 and layer 3 functions,

such as IP NAT-ting and ARP proxying. For an efficient implementation of

the required behaviour and an easier configuration management of the de-

vices, OpenFlow, a newly proposed open standard API for datacenter devices

[102][88], is an useful tool for the actual deployment of our solutions in real

large-scale datacenters.

3.1.7 Conclusion

Engineering the networking infrastructure of modern datacenters for Cloud

Computing is today a very important problem. Cloud-enabled datacenters,

in fact, need advanced support for an integrated management of Virtual

Machines. In this paper we propose an innovative solution, based on the co-

ordinated use of NAT rules and ARP proxying, for the problem of transpar-

ently migrating Virtual Machines across multiple IP subnets within a single

datacenter. Our approach can be easily implemented with current network

devices without any modification to their hardware. Our initial prototype is

completely implemented in software and makes use of standard layer 2 and

layer 3 functions.

3.2 Global mobility

3.2.1 Context and motivation

Originally born as a cluster based network emulation system [41], as de-

scribed already in section 1.2, NEPTUNE-IaaS is a software system devel-

oped at University of Napoli Federico II that allows interactive design of

networked virtual infrastructures on geographically distributed datacenters,

to help provisioning of “Infrastructures as a Service”. Our system consists

of an interactive client/server software system used to provide users with the
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possibility of describing and designing the desired virtual infrastructure and

of a set of other components that make it possible for services deployed at a

given datacenter to be transparently migrated in remote datacenters for load

balancing or fault/disaster recovery. NEPTUNE-IaaS is based on the use of

Xen for virtualization of computing elements. Xen features are also used to

multiplex the communication resources (e.g. network interfaces) available in

the cluster nodes among several logically distinct virtualized nodes. Trans-

parent migration of Virtual Machines in NEPTUNE-IaaS is implemented

through the adoption of Service Switching, a novel paradigm that aims at

extending the concept of virtualization to network services, by decoupling

service execution environments and their physical location.

3.2.2 NEPTUNE-IaaS

NEPTUNE-IaaS is a software system for provisioning of IaaS services. In the

context of NEPTUNE-IaaS, a Virtual Infrastructure is a collection of Virtual

Machines provided as a service to an end-user. Virtual Machines are deployed

on a subset of a cluster’s physical nodes and properly configured according

to the user requirements in terms of computational resources, software con-

figuration, virtual network topology, and so on. A Virtual Infrastructure

presents at least one public IP address, that is used to make the infrastruc-

ture accessible from the public Internet (Entry Point). In general, public

IP addresses are assigned only to a subset of the nodes of a Virtual Infras-

tructure. Other nodes are assigned private IP addresses and can be reached

only through the Entry Point nodes. A typical Virtual Infrastructure com-

prises a NAT/firewall node and a set of backend service nodes, whose NICs

are assigned private IP addresses. We will describe later in this paper that

the necessity of supporting transparent migration of Virtual Infrastructures

across geographically distributed datacenters calls for unique assignment of

private IP addresses within a Service Switching domain.

To achieve higher degrees of scalability and resource efficiency, Virtual In-

frastructures are instantiated by allocating multiple Virtual Machines onto
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Figure 3.5: NEPTUNE architecture.

each of the cluster’s real nodes (node multiplexing). Likewise, multiple vir-

tual links are multiplexed onto the same shared physical link by associat-

ing each virtual link endpoint to a different virtual NIC (link multiplexing).

Multiple fully isolated Virtual Infrastructures can be concurrently hosted by

NEPTUNE-IaaS in the same datacenter, providing users with the illusion of

having allocated a dedicated infrastructure.

NEPTUNE-IaaS Architecture

A cluster managed by NEPTUNE-IaaS (Figure 3.5) is composed of three

components: i) a set of worker nodes providing computational resources used

to reproduce emulated networks, ii) a centralized repository providing storage

space to worker nodes and iii) a front-end node, Neptune Manager. By

NEPTUNE-IaaS we intend the whole collection of system software, of which

the management software running in the Neptune Manager front-end is the

most relevant part. All the physical components of the cluster are connected

by two switched LANs, one for “control traffic” (e.g. node configuration) and

another for “operational traffic” (i.e. traffic generated by users’ applications).

Virtual Infrastructure life-cycle

A Virtual Infrastructure life-cycle can be described by a Finite State Machine

(Figure 3.6). A Virtual Infrastructure life-cycle begins with the definition of

a virtual network topology. Once the topology is defined, the infrastructure

can be allocated onto the cluster’s physical nodes. On user demand, a run-
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Figure 3.6: Virtual Infrastructure lifecycle.

Figure 3.7: Interactive editor.

ning Virtual Infrastructure can be either suspended for future reallocation

or definitively terminated. Allocation of infrastructures onto the cluster is

made under control of system administrators, who need to explicitly accept

users requests. Once accepted, an infrastructure’s topology allocation pro-

cess starts. Such allocation process is automatic, involving tasks like virtual

nodes mapping on cluster’s physical nodes and IP addresses assignments.

To define a Virtual Infrastructure, users can either write a topology de-

scription in a custom XML format, defining nodes’properties (NICs, RAM,

software configuration, etc.) and links’properties (bandwidth, end points,

etc.) or use an interactive graphic tool embedded into the web user interface

(Figure 3.7). The tool assists the description of any node or link property

suggesting available choices to the user. It is also possible for users to se-

lect pre-defined topologies for fast infrastructure definition. To define virtual

nodes software configuration, users can access a “Virtual Nodes Template

Images Repository” and select a VM template for each of the virtual nodes.

VM templates can be modified and saved as new templates for reuse.
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Implementation details

Node multiplexing is implemented in NEPTUNE-IaaS by means of Xen [14].

Our current implementation relies on the libvirt virtualization API [125],

making it feasible supporting different virtualization technologies in the fu-

ture. The NEPTUNE-IaaS Management Node is responsible of managing

Virtual Machines lifecycle.

Mapping of virtual nodes onto the cluster physical nodes is described

by an allocation map which can be generated either manually by a system

administrator or automatically, by means of a software module implementing

a Lin-Kernighan derived optimization algorithm (described in Section 2.3).

When a virtual network is to be deployed on the physical cluster, Nep-

tune Manager distributes Virtual Machine template instances to the physical

cluster nodes. This distribution process is composed of two phases for each

virtual node: 1) raw copy of the virtual machine image file containing VM

template, and 2) VM creation on the target virtual machine monitor. During

this last phase, virtual hardware resources are provided to the virtual node

according to node definition provided by the Virtual Infrastructure topology

description.

A major problem when dealing with the creation of virtual links is the

need to assign IP addresses to both ends of virtual links, according to a

general IP addressing scheme. NEPTUNE-IaaS provides an algorithm that

automatically assigns subnets to links and IP addresses to their end-points.

Furthermore, since several infrastructures can be running on the same shared

infrastructure, this algorithm also ensures non overlapping of address spaces

used by different infrastructures.

3.2.3 The Service Switching Paradigm

Service mobility is a key feature for new generation networks. In distributed

service hosting environments, service mobility allows satisfaction of require-

ments like: efficient management of available resources, computational load

balancing, service continuity even in presence of critical conditions. Service
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Switching aims at extending the concept of virtualization to network services

by decoupling service execution environments and their physical location

[87]. Service instances in a Service Switching environment may be dynami-

cally migrated across geographically dispersed datacenters, to achieve more

efficient utilization of both network and computing resources. The Service

Switching paradigm allows creation and management of Service Execution

Environments across different datacenters with minimal impact on service

continuity.

The architectural implementation of the Service Switching paradigm is

centered around a main component, that we call Service Switch. Such a

component is a network node that, in addition to the plain packet and/or flow

switching capabilities, has more advanced features, including the ability to

forward packets towards migrated Service Execution Environments. Service

Switches can be located both at the edges of a network and in its core.

Deployment of Service Switches in the core of the network of course requires

cooperation of Internet Service Providers, but allows faster reconfiguration

and migration of services.

Our current implementation of the Service Switching model relies on a

combination of system-level virtualization technologies and of the Mobile IP

model. In the following we firstly introduce a brief description of Mobile IP,

and then the Service Switching architecture customized for the NEPTUNE-

IaaS context.

IP version 4 assumes that the IP address of a node uniquely identifies its

point of attachment to the Internet: a node must be located on the network

indicated by its IP address in order to receive datagrams which are destined

to it. IP Mobility Support (or Mobile IP) provides a mechanism which allows

Mobile Nodes to change their point of attachment to the Internet without

changing their IP address [114]. This mechanism relies on two intermediary

entities: the Home Agent and the Foreign Agent. The role of the Home

Agent is to maintain current location information of the mobile node, and to

re-transmit all the packets addressed to the Mobile Node through a tunnel to
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the Foreign Agent to which the Mobile Node is currently registered. The role

of the Foreign Agent, in turn, is to deliver datagrams to the Mobile Node.

Service Switching allows services to be deployed at different geographic

locations, each of which hosts a cluster of physical machines. A physical

cluster is connected to the Internet through a special router, that we call

Edge Service Switch. In the context of NEPTUNE-IaaS we are interested in

transparently migrate a collection of related Virtual Machines (a Virtual In-

frastructure, according to the definition we gave in Section 3.2.2). When a

Virtual Infrastructure is deployed for the first time, it is associated to one of

the available datacenters. This allocation choice assigns one or more public

IP addresses to the Entry Points of the Virtual Infrastructures. These IP ad-

dresses will be kept for the entire lifecycle of the Virtual Infrastructure, even

in case of migration. Such IP addresses are referred to as the Virtual Infras-

tructure’s Home Addresses. The Edge Service Switch located at the edge of

the datacenter in which the Virtual Infrastructure is initially deployed, will

be referred to as the Virtual Infrastructure’s Home Service Switch. An Edge

Service Switch not only behaves as a normal IP edge router, forwarding in-

coming packets to the VMs hosted in the cluster and outgoing packets to a

next hop router according to its current routing table, but it also implements

specific traffic flow readdressing mechanisms to support service migration.

Such mechanisms have been derived as extensions of the classical Mobile IP

model. A generic end user terminal accessing a service will be referred to as

Correspondent Node.

Making the simplistic assumption that a Virtual Infrastructure presents a

unique Entry Point, in order to access a given service, a Correspondent Node

sends packets to this latter, using the VI’s Home Address as IP Destination

Address. Incoming packets will be processed by the VM’s Home Service

Switch. In case a Virtual Infrastructure had to be migrated to a different

datacenter, the Virtual Infrastructure’s Home Service Switch creates an entry

in itsMobility Binding Table (MBT in short) that contains information about

the Entry Point of the migrated Virtual Infrastructure. The MBT keeps the
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Figure 3.8: Tunneling mechanism implemented on the edge.

association between the VI’s Home Address and the corresponding Care-of

Address. Such Care-of Address is the IP address of the Edge Service Switch

associated to the datacenter hosting the migrated Virtual Infrastructure, that

we may call the Virtual Infrastructure’s Foreign Service Switch. Migration

of a Virtual Infrastructure is performed through a procedure that consists

in updating the Home Network’s MBT and in managing the migration of all

the VMs belonging to the Virtual Infrastructure. Concerning the dataceneter

that hosts the migrated Virtual Infrastructure, apart from the configuration

of the Foreign Service Switch, no other settings are needed. Migrated VMs

keep using their own VI’s Home Address as IP source address for outgoing

packets, and Correspondent Nodes, being unaware of the migration, keep

sending packets to the Virtual Infrastructure’s Home Address. Once these

packets reach the Home Service Switch, this latter forwards them to the

Foreign Service Switch, by encapsulating such packets in a point-to-point

tunnel (figure 3.8). The Foreign Service Switch, in turn, de-tunnels the

incoming packets and delivers them to the migrated VM. As it happens in

the Mobile IP scheme, reverse traffic is sent by the migrated VM directly to

the Correspondent Nodes.
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3.2.4 Related Work and Conclusions

In the last few months the term “Cloud computing” is transforming from a

buzzword into real world engineering solutions and commercial products. In

this paper we mention two established solutions that have some features in

common with NEPTUNE-IaaS: Amazon EC2 and Eucalyptus.

Amazon’s Elastic Compute Cloud (EC2) [6] is an IaaS commercial sys-

tem that first introduced the utility computing model, where computation,

storage and bandwidth resources are rent on an as-needed basis. As well as

NEPTUNE-IaaS, EC2 is based on Xen. Users select an Amazon Machine

Image (AMI), including the machine’s software configuration from a set of

AMIs proposed by Amazon, or create a new one from scratch. To each AMI

instance (i.e. a Xen Virtual Machine) is associated an “instance type” that

defines the resources of the machine in terms of CPU, RAM, HD. Resources

are paid on a consumption basis: a machine is paid for each hour of activity,

bandwidth is paid per-gigabyte of traffic and so on. Amazon provides two

ways to access EC2 services: via a web interface or through web services. A

complete set of tools and programming libraries are provided to access these

service.

Eucalyptus [99] is an open-source cloud-computing framework, built to be

interface-compatible with Amazon EC2: users can interact with Eucalyptus

using same tools and interfaces that they use with Amazon EC2. Because

the main goal of Eucalyptus is to provide a common open-source framework

that enables researchers to do experiments and studies, even by replacing

or modifying the implementation of system modules, the system is based

on three components, each with a well defined Web-service interface. The

software architecture is hierarchical: the base level is composed by Instance

Managers (IM), responsible to manage virtual machines running on top of a

physical machines, the middle layer contains Group Managers (GM), each of

which manages a set of IMs residing on the same physical subnet. The top

layer is the Cloud Manager (CM), that manages all the GM making high-

level scheduling decisions and represents the entry-point to Eucalyptus for
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users as well as for administrators.

NEPTUNE-IaaS has some features in common with both EC2 and Eu-

calyptus, but also some important differences. In particular, we want to

highlight that NEPTUNE-IaaS provides tools to interactively design virtual

networked infrastructures and supports transparent and efficient migration

of infrastructures across geographically dispersed datacenters. NEPTUNE-

IaaS is an ongoing project, whose future development include more complex

management procedure to handle migration of complex virtual infrastruc-

tures in a reliable way. Integration of NEPTUNE-IaaS with storage services,

such as those provided by Amazon’s S3 are also being investigated.



Chapter 4

Issues in managing flexible
resources

Flexible infrastructures provide several advantages and new features, but at

the same time raise new challenges and issues. In this chapter we try to

investigate two issues related to security and management of the flexible re-

sources. In particular, we first try to understand how to monitor a cloud

computing system to guarantee that the users are not exploiting the system

to e.g., perform denial of service attacks. We try to apply well-known tools in

the new context looking for possible shortcomings and opportunities and de-

signing possible approaches. Moreover, we present a solution to manage the

access to heterogeneous resources geographically distributed and managed

by different authorities. This second study was conducted in the context of

planetary network testbed provisioning, but we believe the findings are appli-

cable to any other distributed system that manage geographically dispersed

resources.

4.1 Security Issues

4.1.1 Context and motivation

Cloud Computing is experiencing an impressive market growth, which could

be indeed jeopardized by concerns about the risks related to potential misuse

of this model aimed at conducting illegal activities. In fact, the cheap avail-



Security Issues 71

ability of significant amounts of computational resources can be regarded as

a means for easily perpetrating distributed attacks, as it has recently been

observed in several security incidents involving Amazon’s EC2 cloud infras-

tructure [148], moreover, as it has been evidenced by recent issues related

to Wikileaks [5], Cloud providers need also to take the issue of network

neutrality into account, keeping provided services and distributed content

on different layers. The sheer power of attacks from EC2 is indeed rais-

ing serious concerns in the community of system administrators and security

experts [147]. Furthermore, evidences in recent research works have shown

how it is possible to exploit some properties and features of a common cloud

computing infrastructure, in order to perform attacks against competitors in

an industrial scenario [127]. From the Cloud provider’s perspective, threats

should be faced, in order to protect Cloud customers, so, strategies for pro-

tecting the assets of customers must be designed, in order to grant the service

level agreed upon. A Cloud provider should be able to face external threats,

as well as internal attacks; he should protect its customers from attacks com-

ing from the outside, and prevent its customers from damaging other network

users.

Among the fundamental tools for defending computational and network-

ing infrastructures from malicious behavior are Intrusion Detection Systems

(IDS). In classical enterprise settings, an IDS is normally deployed on ded-

icated hardware at the edge of the defended networking infrastructure, in

order to protect it from external attacks. In a cloud computing environment,

where computing and communication resources are shared among several

users on an on-demand, pay-per-use basis, such strategy is not effective: at-

tacks may be originated within the infrastructure and also be directed against

resources located within the cloud infrastructure itself. Hence, a proper de-

fense strategy needs to be distributed. More generally, we envision a simple

attack taxonomy based on the attack’s source and target location. We define

three attack types:

1. From “outside” to “inside” - the target of the attack is the Cloud
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provider or one of its customers, and the source is outside the Cloud [5];

2. From “inside” to “outside” - Cloud resources are exploited to attack

an external target [148];

3. From “inside” to “inside” - The attack is generated by a Cloud’s cus-

tomer, and the target is the Cloud provider itself or another cus-

tomer [127] of the same Cloud provider.

In this paper, we study the performance and impact of lightweight Net-

work IDSs, with the aim of being able to detect each of the aforementioned

attack types. We address the issue of detecting Denial of Service attacks

targeting SIP-based systems; more in detail, we will address the issue of de-

tecting SIP (Session Initiation Protocol) flooding attack instances targeting

services hosted within a cloud. To this purpose, we study the impact of se-

curity tools deployment in different locations of the cloud, trying to expose

the peculiarities of their employment in a cloud infrastructure. In partic-

ular, we will evaluate the discrepancies in management cost overhead, due

to the employment of one among the possible deployment strategies for the

selected security tools. We investigate the usage of both centralized and dis-

tributed strategies to detect and block attacks, or other malicious activities,

originated by misbehaving customers of a Cloud Computing provider or by

external nodes attacking cloud machines and services.

4.1.2 Cloud computing

Despite its success, the Cloud Computing paradigm poses new challenges in

terms of security of the computing infrastructure: cloud providers have the

responsibility to manage a large infrastructure that hosts a number of highly

dynamic virtual infrastructures operated by different users. Technologies

like system virtualization have become for the first time widely adopted to

offer computing resources as a service, allowing the dynamic spawn of virtual

machines in the datacenter’s networking infrastructure.
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Security Issues

Resource rental on a per-usage basis shifts the responsibility of system man-

agement and administration towards specialized teams of experts, virtu-

ally reducing security risks typically due to system misconfiguration, lack

of proper updates, or unwise user behavior. Despite that, the cloud com-

puting paradigm introduces novel risks due to its inherent resource sharing

requirement. Peculiar vulnerabilities, indeed, are introduced by the employ-

ment of virtualized host machines sharing common physical resources, by the

availability of cheap large scale computation/communication/storage facili-

ties and by the dynamicity of the cloud computing environment. Further-

more, misconfigured remote data storage can expose users’ private data and

information to unwanted access, or privacy infringement. Each of the security

risks enumerated before needs to be dealt with by using a specific technique,

trying to respond to the manifold known threats, as well as to the novel chal-

lenges which will emerge in the future. That is why an integrated approach,

taking different aspects of security-related issues into account, is necessary

in order to protect user data and preventing malicious actions both targeting

cloud users and originating from within the cloud from being performed.

In the following, we will describe the Eucalyptus cloud computing archi-

tecture, trying to expose the security risks related to its employment. The

deployment of an intrusion detection system in such a scenario will be de-

scribed in details, and the resulting performance and computational overhead

will be evaluated experimentally.

4.1.3 The Eucalyptus Cloud Computing System

Eucalyptus [64] is an open-source framework for cloud computing that im-

plements the paradigm commonly referred to as Infrastructure as a Service

(IaaS) [99]. Eucalyptus has been designed to be interface-compatible with

one of the most popular commercial cloud service, namely Amazon EC2 [7].

The system is based on three components, each with a well defined Web-

service interface. The software architecture has been organized according to
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a three-level hierarchy. The bottom layer consists of Node Controllers (NC),

responsible of managing virtual machines running on top of a physical ma-

chine. The middle layer contains Cluster Controllers (CC). Each CC manages

a set of NCs residing on the same physical subnet. The topmost layer is the

Cloud Manager (CM), that manages all the CCs and takes care of high-level

resource scheduling. The Cloud Manager is the entry-point to the whole Eu-

calyptus system for end users as well as administrators. To create instances

(the name given to virtual machines in the Eucalyptus and Amazon EC2

terminology) Eucalyptus supports both KVM [78] and Xen [14] virtualiza-

tion technologies. In this work we will just take Xen into account, since it is

the reference technology used also in Amazon EC2. Eucalyptus allows four

different networking configurations, but among others, that are mainly tar-

geted for testing environments or small installations, the most interesting for

our purposes is the ”Managed Mode”. In managed mode Eucalyptus provides

all the functionality present in Amazon EC2, including istances’ subnetworks

isolation. Network isolation is obtained through the use of VLANs [63], which

impose appropriate configurations in data center’s switches. Following the

Eucalyptus terminology, each instance’s network is referred to as a security

group. Each user is bound to at least one security group, but association to

multiple groups can be defined as well if needed. When configuring Eucalyp-

tus for managed mode, the administrator must define an IP subnet entirely

dedicated to the cloud. Moreover, the administrator must define the number

of IP addresses available for each security group, actually defining how sub-

netting is performed. To guarantee access to external networks, each security

group includes the cluster controller among its hosts. Instances are config-

ured to use the CC as default gateway (Figure 4.1). The CC provides both

DHCP and NAT services. NAT is realized using standard GNU/Linux’s net-

filter functionality. Features like elastic IPs are provided by means of rules

configured on the CC’s configured as a NAT. Eucalyptus exploits software

bridges and Xen’s virtual Network Interface Cards (NIC) to build virtual net-

works: when a security group is firstly created, i.e. when the first instance
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Figure 4.1: Eucalyptus managed mode networking: lv3 view

of a security group is allocated, Eucalyptus tags the physical NIC with the

security group’s VLAN tag and creates a software bridge for each physical

machine; the bridge is actually created in the management virtual machine

which starts at the boot of a physical machine. Such machine is usually

named Dom0 in Xen context. The tagging process creates an abstract NIC

to which tagged traffic is forwarded; such interface is then attached to the

software bridge. Since Xen creates a new pair of “connected virtual ethernet

interfaces”, with one end of each pair in the virtual machine and the other

end within Dom0, each newly created instance’s virtual NIC that resides in

Dom0 is attached to the corresponding security group’s bridge (Figure 4.2).

Access to security groups is controlled by the CC’s firewall. By default, a

security group is not accessible from external networks, and allowed traf-

fic must be specified in terms of source network/address and port number

through the Eucalyptus’ API. E.g., in order to host a public web server in

a security group, a rule to allow HTTP traffic from any network must be

specified and added to the security group.

4.1.4 Detecting Attacks in a Cloud Computing System

As stated earlier, cloud computing infrastructures have recently been the

subject of technical news reports about severe attacks to several SIP-based

communication infrastructures. What emerged by such reports about recent
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Figure 4.2: Eucalyptus managed mode networking: infrastructure view

security incidents is the lack of a structured and well organized security sys-

tem deployment in cloud computing infrastructures. The aim of this paper

is to present the deployment experience of a production level, state of the art

solution for intrusion detection (Intrusion Detection System - IDS). Accord-

ing to the analyzed data source, IDS can be classified in network and host

based. Network based IDS analyze traffic flowing through a network seg-

ment, by capturing packets in real time, and analyzing and checking them

against some “classification” criteria. IDS can be further characterized with

respect to the type of detection mechanism implemented. Namely, IDS can

explicitly model attacks, anomalies and unwanted behavior, thus implement-

ing the misuse-based detection paradigm, or conversely model normal and

expected events, consequently detecting as anomalous what doesn’t conform

to such “normality” model.

We have tried different deployment schemes, trying to exploit the ad-

vantages of distributed systems, and the inherent characteristics of a cloud
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computing architecture. We used a network based, signature based IDS. The

employed IDS is network based since we want to deal with network-based at-

tacks, and try to detect them by observing network, transport and application

layer activity of cloud customers and external users. Furthermore, we use

a signature based IDS in order to show how the careful deployment of well

known, already available solutions could mitigate a severe problem in such

a distributed computing framework as cloud computing. We will evaluate

the tradeoffs between computational overhead and granularity of analysis, in

terms of detection capabilities, percentage of total traffic analyzed, and cpu

and memory consumption, as well as packet loss.

Building the proposed architecture

In this paper we will address the problem of deploying multiple instances

of an IDS within a cloud computing system, allowing to rely on multiple

security observation points. Eucalyptus, the cloud computing system used

for the implementation of the experimental scenario, is characterized by the

presence of a frontend, which also operates as a NAT, traversed by all traffic

flowing to, and coming from, virtual hosts inside the cloud. Therefore, it is

reasonable to think of an IDS installation which only relies on a single IDS

installed near the frontend. Such an IDS would be able to see all the traffic

related to virtual hosts hosted in the cloud, and provide a very good point of

observation. The availability of such a large and significant amount of data,

indeed, is obtained at the cost of high computational resources consumption.

In fact, by forcing the analysis of all traffic to be performed at a single

point, the machine physically hosting the IDS can be easily overloaded, losing

packets, and producing inaccurate detection results. On the other hand, it is

possible to deploy a network based IDS close to each of the physical machines.

This configuration helps in reducing the load each IDS is subject to, thus

helping to overcome the issue of packet loss. In fact, even though a virtual

host can be subject to a Denial of Service attack, IDS’s installed on other

physical machines will not be affected, therefore preserving their detection
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power intact.

Snort

The IDS we chose to deploy in the proposed architecture is Snort [129]. Snort

is a popular signature-based network intrusion detection system, mainly im-

plementing the misuse based detection paradigm. Its modular architecture

makes it easily extendable, and has fostered the integration of anomaly based

detection plugins as well. In general, Snort’s behavior is determined by rules,

describing significant characteristics of events or specific attack signatures.

Snort rules are organized in several groups, trying to separate them both in

terms of the targeted attack type or application scenario. For the sake of ef-

ficiency, rules are mainly structured in two parts: a header part, and a body

part. The rule header contains information about the type of action to per-

form when the rule is matched. Such actions include, but are not limited

to, the possibility of generating an alert. Furthermore, the header contains

information about source and destination IP addresses and ports, thus allow-

ing to apply each rule to restricted subsets of the analyzed traffic flows. The

rule body, instead, contains information about the type of action to perform

on packets in order to check whether they match the rule; furthermore, it

can also contain byte sequences to check against the packet’s payload. Typ-

ically, attack signatures are searched for in the payload of packets, and rules

matching the content of such payloads are logged using one of the many avail-

able logging facilities, alongside with information allowing the identification

of the traffic flow transporting attack-related traffic.

In order to identify which rules have to be evaluated for a packet, a fast

multi-pattern search for the longest content string of each rule of a packetâs

port group is performed on the packetâs payload. If this initial string match-

ing algorithm finds a potentially matching rule, other mandatory fields of

the rule (e.g., source and destination IP addresses) are checked and, upon

success, the optional conditions of that rule are validated. This processing

can include an expensive pattern matching operation which uses all the key-
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words of a rule and also validates their position. This two-phase approach

has the advantage that not all rules need to be fully evaluated. Therefore,

any deployment strategy allowing to reduce the load of each instance of the

IDS, yet preserving the overall detection capabilities of the IDS ensemble,

is worth investigating, since it can allow for a more effective detection of

ongoing attacks.

4.1.5 Experimental evaluation

The reference testbed

In order to perform the experimental evaluation of the proposed attack de-

tection scenario, we installed a testbed, depicted in figure 4.3 simulating the

complete scenario for effective detection of SIP flooding attacks targeting

hosts in a cloud computing environment. The testbed consists of six phys-

ical machines, two of these host a total of eight virtual machines, managed

by Eucalyptus. The Eucalyptus controller plays the role of both a NAT tra-

versed by traffic flowing to and from virtual hosts within the cloud, and as a

cloud management station, controlling virtual hosts deployment and working

as a concentration node for traffic on the configured VLAN’s. In particular,

in our experiments, we used two VLAN’s, or in Eucalyptus’ jargon two “se-

curity groups”. As depicted in figure 4.3, we deployed two Asterisk [13] SIP

Figure 4.3: Experimental testbed - deployed services
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servers, one for each security group, several RTP-using agents, as well as sev-

eral attack instances generating SIP flooding traffic, implemented by using

the “inviteflood” [57] tool. The aforementioned machines and services con-

veniently emulate the attack scenario, but are not realistic enough in them-

selves. For this reason we also deployed one Apache web server per security

group, stressed by the hammerhead web stresser. This was useful for recre-

ating a more realistic cloud scenario, where different services are likely to be

hosted. In order to further differentiate traffic properties, we also installed

D-ITG [74] as a background traffic generator. D-ITG inject traffic with spe-

cific properties in communication channels between a sender and multiple

receivers; traffic can be of different types, and several properties such as

inter packet time and packet size distribution can be configured. The im-

plemented cloud consists of a machine implementing the frontend, and two

physical machines implementing the physical nodes. Each of the physical

nodes hosts four virtual machines, each hosting one testbed component, as

represented in figure 4.4.

Figure 4.4: Distribution of services in nodes

Experimental evaluation

In order to evaluate the dependency of IDS performance on its position in

the network, we imagined two different test scenario. In the former, we in-

stalled the IDS close to the Cloud Controller, thereby allowing it to sniff

and analyze all the traffic flowing to and coming from virtual hosts. At the

Cloud Controller’s side, VLAN tags are removed by the virtual bridge, as
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Figure 4.5: Attacked physical machine CPU load

discussed in previous sections. Therefore, all traffic is visible and the corre-

spondent VLAN is indistinguishable. In the latter, instead, a Network IDS

has been installed close to each of the two physical machines. Since each

physical cloud node can potentially host virtual hosts belonging to different

security groups, the IDS has to perform VLAN tag stripping, before being

able to correctly analyze each packet. For each configuration, we evaluated

the detection capabilities of the IDS with respect to the selected INVITE

flooding attack. In both cases, the IDS’s were able to correctly detect at-

tack instances, issuing alerts communicating the result of packet analysis.

Yet, it is interesting to point out how “expensive” such detection process is,

showing some interesting properties and giving some insight. In particular,

we observed CPU usage, in order to show whether the system hosting the

IDS still has some resources to dedicate to detection during a flooding at-

tack. Such an evaluation is useful since modern attacks consist very often

in coordinated actions aimed at hitting big targets and totally disrupting

networks and services. Furthermore, in the case of cloud computing, where

the typical customer can be a company outsourcing service hosting, unfair

competition between enterprises can become a good motivation for perpe-

trating dramatically effective attack campaigns. The first thing to point out

in the tests’ result discussion is that in both scenarios we were able to detect
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that a SIP flooding attack was in act. We are confident that such a result is

caused by the relatively small impact of the attack itself, which was indeed

able to saturate the resources of the SIP server, but not our cloud’s physical

resources. In figure 4.5 we show the CPU load of the physical machine host-

ing the virtual machine containing the SIP server under attack. The graph

clearly shows a significant increment in CPU usage due to both the pres-

ence of the virtual machine and of the administrative domain (Dom0). This

remains true until the Dom0 is able to perform both packet forwarding ac-

tions (i.e. forwarding packets from the physical NIC to the virtual machine’s

virtual NIC) and packet analysis through the IDS. When Dom0 reaches its

physical performance limit, it is no more able to forward packets to the at-

tacked virtual machine, and that’s why such machine’s CPU load decreases

significantly. Clearly, the shown Dom0 performance pattern is caused by

the absence of countermeasures subsequent to attack detection. It is worth

pointing out that during the attack, other virtual machines running concur-

rently with the attacked one underwent a performance degradation, because

of the Dom0’s overload. On the other hand, the second physical machine

was totally unaffected by the attack. Looking at the second scenario, where

the IDS is deployed close to the Cluster Controller, we must take into ac-

count that each performance degradation is reflected on the entire cloud.

Figure 4.6 shows the impact of running Snort co-located with the Cluster

Controller. The CPU “system-level” load is caused by the packet forwarding

activity, while the “user-level” load is mainly caused by the IDS’s activity.

During the attack the IDS uses a double amount of CPU time with respect

to the system’s CPU time, even though our attack instance is not very pow-

erful. Since an overloaded Cluster Controller is a bottle-neck for the cluster,

we should avoid to add such big load on it. Even installing the IDS on a sep-

arate machine next to the Cluster Controller would result in an overloaded

machine, since it should analyze all the traffic, therefore being prevented

from operating properly.
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Figure 4.6: Cluster Controller CPU load

4.1.6 Related works and Conclusions

The application of IDS in cloud systems is a new research field that is gaining

interest due the spread use of cloud computing services and the increasing

number of both attacks targeting cloud services and originating from inside a

cloud computing infrastructure, exploiting it as an infrastructure for deploy-

ing attacks. Due to the young age of this research field there a few papers

on the topic. Current researches are mainly targeted at defining a new IDS

model that can take advantage from additional information provided by the

Cloud Infrastructure itself. In [145] an example of a distributed IDS for cloud

environments is presented. The proposed IDS is designed to work in a Cloud

system providing services according to the Platform as a Service paradigm,

and is structured as an added service of the cloud system’s infrastructure.

Further works can be found as applied at computational GRIDs. In these

works the reference system architecture is somewhat different from Cloud,

but there are also some similarities, and hence there are solutions that could

be applied in the cloud context as well. E.g., in [140] a solution based on the

analysis of data gathered from traditional IDS and monitoring systems (e.g.

Snort) deployed in the GRID’s network is described.
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In this paper we have shown the practical implementation experience of

different deployment strategies of a well known IDS in a cloud computing sys-

tem, in order to provide a fast and cheap solution to the intrusion detection

problem in cloud environments. Depending on the deployment choice, several

benefits and shortcomings have been pointed out and discussed. A single IDS

could be placed close to the Cluster Controller, being able to monitor all traf-

fic flowing to and from the cloud computing infrastructure. In this scenario,

the single IDS is heavily overloaded, thus allowing for coordinated attack ac-

tions to disrupt the IDS’s functionality by means of specifically crafted traffic

before starting the real attack. On the other hand, by deploying IDS’s next

to the physical machines, each IDS would be able to control a smaller por-

tion of traffic, thus being hardly overloaded. This deployment scenario needs

a properly designed correlation phase in order to gather meaningful informa-

tion from different security tools spread across the monitored network, which

will be the subject of future work. The choice of the best deployment strat-

egy, obviously, depends on the characteristics of the application scenario, and

on the administrator’s and users’ requirements.

4.2 Resources access management

4.2.1 Context and motivation

The ultimate success of the Wireless Mesh Network paradigm (WMN) in

large scale deployments depends on the ability to test it in real world sce-

narios [2]. Due to the inherent difficulty of capturing all the relevant aspects

of the real behavior of these systems in analytical or simulation models, re-

search on WMNs has always heavily relied on experimental testbeds. In fact,

the creation of such experimental testbeds has been an active area of research

in wireless mesh networking over the last ten years [23]. However, it is diffi-

cult (and costly) to setup a large-scale wireless mesh testbed to experiment

with new applications, services and protocols. Also, wireless mesh networks

are usually employed as access networks to the Internet, hence testing new
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solutions thoroughly requires to take the complexity of the real Internet into

account.

To allow for a realistic evaluation of new applications, services and proto-

cols specifically designed for wireless mesh networks, we analyzed the existing

projects that enable to share and manage testbeds and resources over a large

geographic area. On the one hand, PlanetLab is universally known to be

an open platform to conduct realistic experiments on a planetary scale [36].

On the other hand, OMF (cOntrol and Management Framework) is a well-

established software platform that supports the management and automatic

execution of experiments on a networking testbed. Originally developed for

the ORBIT wireless testbed at Winlab, Rutgers University [124],[108], OMF

is now deployed in several testbeds in Australia, Europe, and in the U.S.

[123].

In this section we present a contribution towards the interconnection of

geographically distributed OMF-based wireless testbeds through PlanetLab.

Our approach allows the making of experiments involving the use of resources

provided by a local wireless testbed in combination with other resources

provided by other remote sites connected to the PlanetLab planetary-scale

testbed. This allows running experiments on wide-area infrastructures, in-

volving several kinds of technologies, both in the core of the network, where

they cannot be controlled by experimenters, and at the edges, where they

can be selected to compare several kinds of access networking technologies,

such as WiFi, WiMAX, UMTS, Wireless Mesh Networks.

Heterogeneous testbed infrastructures have many similarities with other

systems e.g., cloud computing ones, since they provide flexible infrastructures

with an on-demand access paradigm. The set of issues and problems that

have to be solved in this context are, hence, quite similar to the ones faced

for providing more general flexible infrastructures.

The contribution we present into this section is in line with current on-

going efforts towards the so called “federation” of experimental infrastruc-

tures. A testbed federation has been recently defined as the interconnection
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Figure 4.7: Hierarchical federation of heterogeneous testbeds.

of two or more independent testbeds for the creation of a richer environment

for experimentation and testing, and for the increased multilateral benefit

of the users of the individual independent testbeds [82] and it currently ap-

pears as the most reasonable way to build large-scale heterogeneous testbeds.

Roadmaps envisioned by the most significative research initiatives focusing

on future research infrastructures, such as GENI [51], [44] and FIRE [50],

assign a key role to federation of existing testbeds. Actually, we envision a

hierarchical federation model, as depicted in Figure 4.7, in which global scale

Tier-1 testbeds, federated among them in a peer-to-peer way, act as “ag-

gregators” of local Tier-2 testbeds. In this view, we assume PlanetLab and

PlanetLab Europe as existing Tier-1 testbeds, whose federation is already in

place and operational since 2008.

Federation of heterogeneous testbeds involves a number of both technical

and organizational issues. With regards to the technical challenges, they
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comprise the problem of sharing user credentials, as well as armonising usage

models and resource management policies among testbeds. Our contribution

accounts for such problems and we will describe hereinafter how we dealt

with them. Thus, our contribution can be viewed as a preliminary effort in

the direction of the federation of two different kinds of testbeds that we feel

are of extreme importance for researchers working on wireless mesh networks.

In particular, in this section we present how we integrated some basic

mechanisms for accessing the resources provided by a OMF-based wireless

testbed from a PlanetLab node co-located with the OMF-testbed. Our sys-

tem allows the seamless integration of the OMF-resources into the global scale

PlanetLab infrastructure, creating a synergic interaction between the two en-

vironments. In particular, thanks to our contribution PlanetLab users may

run experiments involving resources provided and controlled by the OMF

wireless testbed.

The rest of the section is organized as follows. In paragraph 4.2.2 we

briefly describe the architecture of PlanetLab, its usage model and resource

management techniques. Likewise, in section 4.2.3 we briefly describe the

architecture of OMF, its usage model and resource management techniques.

In paragraph 4.2.4 we describe the integration steps that we developed

to allow for distributed experiments running at two PlanetLab sites and

involving two wireless mesh testbeds, both based on OMF. In particular, we

describe a software system that is able to manage resource scheduling for

both resources included in the OMF-based testbeds and in the PlanetLab

nodes.

In paragraph 4.2.5 we describe the two OMF-based testbeds involved

in our validation experiments: the NITOS wireless testbed located at the

University of Thessaly and the WILEE testbed located at Univ. of Napoli

in Italy.

In paragraph 4.2.6 we illustrate how we used the integrated testbed setup

to conduct an experiment aimed at evaluating a peer-to-peer traffic optimiza-

tion technique. This is a typical distributed experiment in the PlanetLab
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wired environment, but in our case it involves the usage of a wireless mesh

as an access network, which would not be possible by means of the resources

made available in PlanetLab.

In paragraph 6.2.5 we compare our contribution against similar integra-

tion efforts that have been proposed in the past years.

4.2.2 PlanetLab: architecture, usage model and re-
source management

The most relevant large scale distributed testbed for networking research as

of today is PlanetLab [36]. PlanetLab is a geographically distributed testbed

for deploying and evaluating planetary-scale network applications in a highly

realistic context. Nowadays the testbed is composed of more than 1000 com-

puters, hosted by about 500 academic institutions and industrial research

laboratories. One of the main limitations of PlanetLab, however, is its lack

of heterogeneity. Nearly all PlanetLab nodes are server-class computers con-

nected to the Internet through high-speed wired research or corporate net-

works. As a consequence, it has also been noted that the behavior of some

applications on PlanetLab can be considerably different from that on the In-

ternet [77], [122]. Several efforts have been done in the last few years to add

different kinds of networking technologies to PlanetLab (e.g. UMTS integra-

tion in PlanetLab is described in [24]) or to integrate new kind of terminals

(e.g. the integration of non-dedicated devices made available by residen-

tial users is described in [42]). However, it is now clear that PlanetLab can

be usefully complemented by a variety of other testbeds, in particular when

experimentation with wireless technologies is required.

Architecture

Figure 4.8 shows a conceptual view of the current architecture of the Plan-

etLab testbed, whose node set is the union of disjoint subsets, each of which

is managed by a separate authority. As of today, two such authorities exist:

one is located at Princeton University (PLC) and the other is located at Uni-
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versité Pierre et Marie Curie UPMC in Paris, France (PLE). An experiment

in PlanetLab is associated to a so-called slice, i.e. a collection of virtual ma-

chines (VMs) instantiated on a defined subset of all the testbed nodes. Each

testbed authority hosts an entity called Slice Authority (SA), which main-

tains state for the set of system-wide slices for which it is responsible. The

slice authority includes a database that records the persistent state of each

registered slice, including information about every user that has access to the

slice [116].

Testbed authorities also include a so called Management Authority (MA),

which is responsible of installing and managing the updates of software run-

ning on the nodes it manages. It also monitors these nodes for correct behav-

ior, and takes appropriate action when anomalies and failures are detected.

The MA maintains a database of registered nodes at each site. Each node is

affiliated with an organization (owner) and is located at a site belonging to

the organization.

Usage model

To run a distributed experiment over PlanetLab, users need to be associated

with a slice. Slices run concurrently on PlanetLab, acting as network-wide

containers that isolate services from each other. An instantiation of a slice

in a particular node is called a sliver. Slivers are Virtual Machines created

in a Linux-based environment by means of the VServer virtualization tech-

nology. By means of so-called contexts, VServer hides all processes outside

of a given scope, and prohibits any unwanted interaction between a process

inside a context and all the processes belonging to other contexts. VServer

is able to isolate services with respect to the filesystem, memory, CPU and

bandwidth. However, it does not provide complete virtualization of the net-

working stack since all slivers in a node share the same IP address and port

space. The adoption of VServer in PlanetLab is mainly motivated by the

need of scalability, since up to hundreds of slivers may need to be instanti-

ated on the same physical server [138]. Figure 4.9 shows the internal view of
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Figure 4.10: OMF architecture overview.

a PlanetLab node.

Resource management

In PlanetLab, slice creation and resource allocation are decoupled. When a

slice is first created, a best effort service is associated with it and resources

are acquired and released by the slice during its entire lifetime. Therefore,

slices are not bound to sets of guaranteed resources. Such an approach has

been deliberately chosen in the original PlanetLab design. PlanetLab, in

fact, has not been designed for controlled experiments, but to test services

in real world conditions [110], [117].

4.2.3 OMF: architecture, usage model and resource
management

OMF (cOntrol and Management Framework) is a Testbed Control, Measure-

ment and Management Framework. In the following of this section we will

briefly describe OMF architecture, usage model and resource management.

We also describe how experiments may coexist in the same OMF testbed,

thanks to the NITOS scheduler.

Architecture

The components of OMF (Fig. 4.10) work together to automatically perform

all the phases needed to execute the experiment, from the provisioning of
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resources to the collection of experimental data. The most important com-

ponent is the Experiment Controller (EC), which is also the interface to the

user. It accepts as input an experiment description and takes care of orches-

trating the testbed resources in order to accomplish the required experiment

steps. It interacts with the AggregateManager, the entity responsible of the

resources of the testbed as a whole, and provides some basic services to the

EC, such as checking the status of a node, rebooting a node, etc.

The EC also interacts with the Resource Controllers (RCs) installed on

the testbed nodes. These latter entities are responsible of performing local

configuration steps, e.g. configuring the channels on the WiFi interfaces, and

of controlling the applications, e.g. the traffic generator. The communication

between the EC and the RCs is based on a publish/subscribe paradigm, where

the EC publishes the messages on a XMPP server [130] and the RCs pick

the messages addressed to them.

An important companion library of OMF is OML (OMF Measurement

Library), which is used to automatically filter and collect experiment data

on one or more measurement servers. OMF is able to instrument the OML

library, in order to configure and guide the collection of experiment data.

Usage model

In order to perform an experiment, users have to gain access to the machine

hosting the Experiment Controller (EC). The execution of an experiment

can be requested to the EC by submitting an experiment description in the

domain-specific OEDL language, which is derived from Ruby. The experi-

ment description usually consists of two parts: i) a declarative part, where the

set of required resources and applications, with their configuration, are given

; ii) an imperative part, where the actions to be performed on the testbed are

stated, e.g. the starting of an application. Execution of actions can depend

on events which are defined by the platform, e.g. all the nodes are up and

running.



Resources access management 93

Figure 4.11: Link Quality for node 4.

Resource management

OMF, in its basic form, assigns resources to users following a FCFS strategy:

the user supplies an experiment description and the system tries to assign

the resources requested by the experiment if they are available.

OMF can be customized, though, to support some kind of reservation

of resources. In ORBIT a Scheduler interface is provided to support the

reservation of the entire testbed. The user books the testbed in advance and

during the reserved time slot is the only one allowed to log into the testbed

console, i.e. the machine which hosts the Experiment Controller, and run

his/her experiments.

In the NITOS and WILEE testbeds a different Scheduler, i.e. the NITOS

Scheduler, is employed. Differently from ORBIT, different users can perform

experiments in parallel on the same testbed. This is achieved by assigning a

different subset of nodes and wireless channels to each user. These subsets
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are reserved in advance through the Scheduler and the access to them is

enforced during experiment time so that users can have access only to the

resources, i.e. nodes and wireless channels, they had previously booked.

To achieve that, modifications to OMF were required, as explained in the

following section.

The NITOS scheduler

Currently OMF does not include any scheduling algorithm to synchronize the

execution of experiments. Also, permissions to access the testbed resources

are not checked. However, in a public, multiuser environment, we need a

system that is able to assign resources only to the users that have the right

to use them, while providing the experimenters with a way to specify the

resources that they need for their experiments. In our work, resources are

divided in two categories: nodes and spectrum. Thus, we provide a tool which

is used by the experimenters to reserve nodes and spectrum for a specified

time interval (whose duration must not exceed some limit). By slicing, we

mean the partitioning of the testbed based on some criteria. With spectrum

slicing, we aim to partition the testbed into smaller, virtual, testbeds which

are using different spectrum and, hence, they do not interfere with each

other in the entire testbed infrastructure. Using spectrum slicing, our tool

makes the testbed available to users who would like to use different resources

(spectrum, nodes) at the same time [10]. For example, many users can use the

testbed simultaneously since we can allocate a particular group of channels

to a group of nodes that can be assigned to one user.

The NITOS Connectivity Tool

Before describing the NITOS Scheduler and how users select nodes and fre-

quencies, we briefly present a NITOS tool that provides updated information

on the channel link quality in order to help users decide which nodes are the

most appropriate for their experiments. Since the NITOS testbed deploy-

ment is not RF isolated, the link quality between any pair of nodes may
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(a) Fill in date and time

(b) Resources Availability

Figure 4.12: Resources Reservations

unexpectedly vary at any point in time due to external interference. For this

reason, the static distribution approach, that is used in RF isolated wireless

testbeds [107], is not efficient for these deployments. Therefore, there is the

need for updated information in terms of measurements of link quality, that

will bring a more accurate channel quality estimation.

A management tool called NITOS connectivity tool has been developed

for assessing channel quality information and measuring channel connectiv-

ity among Wi-Fi interfaces. We have implemented the NITOS connectivity

tool based on TLQAP [See [9]], which is a protocol used to assess the con-
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nectivity and the quality of a link by estimating the packet delivery ratio

(PDR) for all requested channel, rate and transmission power combinations.

Specifically, TLQAP builds a measurement history log, creates a channel uti-

lization profile and stores that information in a database that is used for link

quality information retrieval by the NITOS connectivity tool.

The NITOS Connectivity Tool is comprised of three entities: a web in-

terface, a database and a set of .dot scripts. Through the web interface, the

user selects a node he/she wants to use in the experiment, an operating fre-

quency (among those specified by the IEEE 802.11a/b/g standards) and a

transmission rate. The database storing the information on the channel link

quality (that is periodically updated by running TLQAP) is queried to re-

trieve the requested information. The result (a set .dot files) is presented to

the user through a set of graphs, each of which is related to a Wi-Fi inter-

face of the selected node. Fig. 4.11 shows the graphs corresponding to the

two wireless interfaces of node 4. Each graph shows the links between a wire-

less interface on the selected node and the interfaces of the neighbor nodes.

Upon each link, the MAC address of the neighbor’s interface and the PDR

of the link are reported.

Scheduler Scheme

Slices are dynamically created on the testbed upon the user reservation. A

user first reserves nodes and channels for a specified time range and then

logins to the testbed and executes his experiments. Once the reservation

procedure is concluded, the system is aware of the resources that the user

needs and the time range that he will keep them. During this time range, no

other user can use any of the reserved nodes or the reserved channels.

Existing Wi-Fi testbeds open to the public only allow exclusive reserva-

tions in a given time period, i.e., only one user can use the whole testbed.

Our scheduler instead allows multiple users to share the testbed at the same

time. Indeed, the scheduler guarantees that they use distinct nodes and dis-

tinct frequencies, so that their experiments do not interfere with each other.
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We now describe the reservation procedure. First of all, the user has to

set the date and time that he would like to reserve a slice. The time is slotted

with each slot duration set to 30 minutes. Then, he checks for the available

resources in terms of nodes and channels. Fig. 4.12(a) shows a user checking

for available nodes on May 30, 2010 for 2 hours starting at 12:00 pm. Also,

a map of the building is shown, in order to give the user a better perspective

of his reservation.

The scheduler keeps all reservations in a database. A reservation is a set

of nodes, channels and a time range. When a user checks for available nodes,

the scheduler searches its database for any possible record in the time range

that the user specified. Then, it only returns the available set of nodes and

channels, i.e., the nodes and channels that have not been selected by any

other user in the specified time range (Fig. 4.12(b)). In this way, the system

ensures that both the time and the frequency division requirements will be

met. After the user has made and confirmed its selection, the scheduler

database is updated. From this point on, the scheduler is responsible for

ensuring that the user will only use the reserved slice for the specified time

period.

OMF extension to support NITOS scheduler slicing features

The scheduler mainly consists of two parts: a user interface, which is respon-

sible for guiding the user through the reservation process making sure that

he does not make a reservation conflicting with reservations made by other

users, and a system component, which controls the slices by ensuring that

this user’s experiments will only use the reserved resources. The user inter-

face role has been illustrated in the previous subsection, while the system

encapsulation of the scheduler will be illustrated in this subsection.

So far we have described the part of the scheduler which is focused on the

experimenter and his choices at reservation. However, we also need to ensure

that the experimenters will stick on their choices and, even if they try, the

system will not allow them to use any resources that they have not reserved.
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For this purpose, we have chosen to extend OMF. Here, we give a detailed

description of the additions and the extensions we had to make inside this

framework to integrate spectrum slicing support.

Firstly, we need a way for OMF and the scheduler’s database to com-

municate. For this purpose, we have added one more service group to the

Aggregate Manager named scheduler and one more service to the inventory

service group. Next, we show what these services are responsible for. First of

all, the inventory service group is developed inside OMF and provides a set of

webservices that provide general information about the testbed (such as node

names, IP addresses, etc). This information is stored in a database residing

on the testbed server and the inventory service group reads this database to

return the proper response. Our addition here is a service which gets a node

location (i.e., its coordinates) based on its IP address. Note here that the in-

formation on the node location is the same on both the scheduler’s and the

testbed’s database and, thus, we can use it to do the matching (coordinates

do not refer to real data, but on an internal mapping that helps partitioning

the testbed into groups while also allowing the identification of each node by

OMF). We have added this service because, when an experiment is executed,

OMF does not know a node’s location, but only its IP address.

Now that scheduler knows the exact location of the node, it can use the

scheduler service group to get any information needed from the scheduler’s

database. Namely, the services provided by this group provide functionality

to get a node reservations based on its coordinates, the spectrum that this

reservation contains and the user that owns it. Furthermore, it provides ser-

vices that can do the matching between a channel or a frequency number and

the respective spectrum identification number as it is stored in the database.

All this information will be used by the Resource Controller, which decides

whether to allow the user to use the channel or not.

Thus, RC is responsible for deciding whether the resources declared in the

experiment should be allocated to the experimenter. In order to decide, the

RC has to ask the scheduler’s database if the specified resources have been
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reserved by the experimenter. So, when the experiment sets the wireless card

channel, this information is passed to the RC, which now knows the channel

along with its own IP address. All he needs is the user identification to check

with the scheduler’s database if this channel (and, of course, node) should

be allocated to that user.

However, this is not straightforward, since the user usually logs into the

node as root (keep in mind that the experiment loads his own image to

the nodes, so he has full privileges on them). So, we need to track where

did he use the username that he also used for registering. The scheduler is

designed in such a manner that, when a user registers to the system, then

an account with the same username and password is automatically created

to the testbedâs server. The user uses this account to both access the user

interface and the testbed server (using secure shell connection). This can

solve our problem, since we can say for sure that the user that is running the

experiment is logged into the console with the same username that he has

made his reservation.

This information, though, relies on the testbed server, while the RC runs

on the client side, i.e., on the nodes. We need to pass that information

from the server to the clients. This is done by the Experiment Controller,

the OMF service that is running on the server side and is responsible for

controlling the experiment execution. Using its built-in message passing

mechanism, EC tells the RC the username of the experimenter and now the

last one has almost everything he needs to do the matching, except the date.

The system should not rely on the experimenter to keep the clock of his

clients synchronized with the testbed. This is why, EC sends, along with

the username, the current date and the RC adjusts its clock to match the

server’s clock.

At this point, RC has all the information needed to check with the sched-

uler if the requested resources should be allocated to the experimenter. Using

the web services we described above, the RC checks if there is a reservation

at that time for that user and if the spectrum reserved at this reservation
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matches the channel that the experimenter has requested to assign to the

network card through his experiment.

If all data match, then the RC lets the experiment execution move on.

Otherwise, it notifies the EC that a resource violation has taken place and

stops its execution (without assigning the channel to the node network card).

When the EC receives that message, the execution is terminated immediately

and an ERROR message is thrown back to the experimenter describing the

resource violation. Then the user is prompted to reconfigure its experiment

with the permitted frequencies that he is allowed to use and he has already

reserved during the scheduling process (see 4.2.3).

NITOS scheduler advantages

NITOS scheduler provides all the appropriate tools to allow slicing to its

resources. Because of the external deployment of NITOS testbed, interfer-

ence from external WMN links cannot be avoided. For that reason, NITOS

Connectivity tool aids in identifying resources that best fit to the users ex-

periment requirements. Moreover, NITOS Scheduler and its tools can be

modified with minor changes and adapted to any wireless testbed that needs

usage efficiency no matter if it is located in an isolated environment or it

is located among external WMNs. In this way, NITOS scheduler aims to

achieve better utilization of testbed resources, while also enables users to

deploy their experiments in a more efficient way.

4.2.4 PlanetLab and OMF integration

Our main goal is to integrate a global scale PlanetLab infrastructure with a

local OMF-based wireless testbed. In particular, we aim at using the OMF-

based testbed as an access wireless mesh network for a set of PlanetLab nodes

co-located (i.e. in range of wireless transmission) with it.

As described in the introduction, we recognize a value in this integration,

as a first necessary step for the federation of these two kinds of infrastructures,

and because it adds new capabilities to the PlanetLab environment. Our
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Figure 4.13: OMF-PlanetLab integrated architecture.

system allows the seamless integration of the OMF-resources into the global

scale PlanetLab infrastructure, creating a synergic interaction between the

two environments.

Integrated architecture

The architecture we propose is depicted in Fig. 4.13. It consists of the

following elements:

• A PlanetLab site S whose nodes are equipped with one ore more WiFi

interfaces that allow them to be connected to a local wireless OMF

testbed. In the following these nodes are called PlanetLab Edge Nodes

(PL-Edge Nodes).

• The PlanetLab Europe Central server (PLE), which hosts the informa-
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tion on the PlanetLab Europe testbed, e.g. user accounts, slices.

• The OMF testbed and its components: the Aggregate Manager, the

Experiment Controller and the Gateway Service.

• The extended NITOS Scheduler, used to manage the reservation of

resources shared through booking.

The Gateway Service is implemented in a Linux box and acts as a Network

Address Translator (NAT). It is needed for enabling Internet access to the

OMF testbed’s nodes, whose NICs are assigned private IP addresses.

The PL-Edge nodes are multi-homed PlanetLab nodes which can act

as clients for the OMF wireless testbed. The lack of proper support for

multihoming in PlanetLab led us to the developement of sliceip, a tool for

allowing the definition of slice-specific routing tables that will be presented

later.

The purpose of the extended NITOS scheduler is to allow the reservation

of bookable resources in the integrated scenario. These resources comprises

both OMF wireless nodes and channels, and PlanetLab non-virtualized re-

sources, i.e. the WiFI interfaces. To do that, the extended NITOS sched-

uler interacts with the OMF Console, in order to enable or disable access

to slices to the Experiment Controller, and with the PlanetLab nodes, in

order to enable or disable the access to specific slices to the wireless inter-

faces. The communication with the PlanetLab nodes is performed by means

of a management sliver, called SM Sliver (Scheduler Management Sliver),

which accepts requests by the Scheduler through a secure ssh connection and

performs the association between the slices and the wireless interfaces. We

remember that we allow only one slice at a time to have access to a wireless

interface, in order to limit interferences among experiments.

The Scheduler performs authentication of the user on the PLE, thus al-

lowing access to the Tier-2 OMF wireless testbed to PlanetLab Europe users.

Local users, i.e. users of the wireless testbed, are supported and their cre-

dential are stored on the Scheduler. These class of users however, i.e. users
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of the Tier-2 testbed, have not access to the global infrastructure, i.e. the

Tier 1 testbed.

In the OMF wireless testbed private IP addressing is used. Therefore, in

order to allow experiments involving nodes located elsewhere on the public

Internet, a node acting as a NAT router is needed. This function is performed

by the Gateway Service. In the case of experiments involving OMF nodes

located at different PL-OMF sites, site-to-site IP tunnels might be established

between PL-OMF Edge Nodes. This process would be easy to be managed

if these nodes were VINI nodes.

After user authentication the OMF Scheduler, by means of cron scripts,

enables/disables access to OMF testbed nodes from the user’s slice.

Usage model

In the following we list the sequence of steps needed to execute an exper-

iment using an OMF testbed at site S as access network for PlanetLab.

The experiment is going to be executed over a specific time interval T=

[T START, T END].

1. PlanetLab user U adds one or more PL-OMF Edge Nodes (OP) to

his/her slice;

2. U logs into the Scheduler at site S and books the resources (nodes,

channels, WiFi interfaces of OP nodes) he needs for his/her experi-

ment over time interval T, providing the slice identifier. According to

PlanetLab’s resource management scheme, booked resources are actu-

ally associated with such slice rather than with the user that performed

the reservation;

3. While time is in T, each slice’s user is allowed to access the OMF EC

(Experiment Controller) to perform his/her experiment involving the

OMF resources assigned to him/her.
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Multihoming support in PlanetLab

While trying to support the proposed usage model, we run across a serious

limitation of the PlanetLab management software. Such a limitation is about

the correct managing of multi-homed nodes, i.e. nodes connected to more

than one access network. This has not been a problem for a long time,

as PlanetLab mainly consisted of just a set of hosts connected to Internet

through a single, high speed corporate connection. In such a scenario, there

is no need for users to be able to modify the routing table, as the route

for the Internet is only one. In recent times, though, some attempts to

enhance the heterogeneity of PlanetLab have been made. In the context

of the OneLab European research project, different kinds of wireless access

technologies (such as UMTS, WiMAX andWiFi) have been made available to

a subset of nodes connected to PlanetLab Europe, in addition to the default

wired connection to the Internet. In [24], the software tools that have been

developed to manage a UMTS connection in that context are described.

In this paper we describe a generalization of that software, allowing it to

work with any kind of network interface.

The sliceip tool

In order to fully exploit the possibility of multi-homed PlanetLab nodes we

developed a tool called sliceip. The purpose of this tool is to enable slice-

specific routing tables in PlanetLab. Using this tool, the user is able to

define routing rules which apply only to traffic belonging to his/her slice.

This is required for users to be able to choose which interface to use for

their experiments. For instance, a user can specify that he or she wants to

reach a certain destination on the Internet, e.g. another PlanetLab node,

through the WiFi interface. For achieving this result, he or she would add a

routing rule in his/her own routing table by means of our tool, in the same

way he or she would do with conventional tools like ip of route. This is not

possible in PlanetLab, because PlanetLab users do not have the superuser

privileges required to modify the routing table of the node. Even if they had
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such privileges, any modification they performed on the routing table would

interfere with all the experiments running on that node, thus breaking the

isolation among experiments. With sliceip, instead, we give to the user the

ability to define his/her own routing table, with no effects on experiments

performed by other users.

sliceip enables slice-specific routing tables by leveraging a feature of the

Linux kernel and a feature of the VNET+ subsystem of PlanetLab [121]. The

Linux kernel has the ability to define up to 255 routing tables. To have some

traffic routed with a particular routing table, it is necessary to associate that

traffic to it by means of rules applied with iproute2. The rules can specify

packets in terms of the destination address, the netfilter mark, etc. In our

case, we set the netfilter mark of packets belonging to the user’s slice (i.e.

the packets that are generated or are going to be received by an application

running on that slice) by exploiting a feature of the VNET+ subsystem of

PlanetLab. By means of an iptables rule, we instruct VNET+ to set the

netfilter mark equal to the slice id to which they belong. We then add an

iproute2 rule to associate packets belonging to the slice to the slice-specific

routing table. We also set an iptables SNAT rule (Source Network Address

Translation) in order to set the source IP addresses of packets that are going

out through a non-primary interface (the primary interface is the one the

default routing rule points to). This rule is required because the source ip

addresses of packets are set after the first routing process happens. In fact,

in case more than a routing table is used, the routing process follows these

steps: 1) the interface for sending the packets is decided following the rules of

the main routing table and the source ip addresses are set accordingly (this

is the first routing process); 2) if the user changes the mark of the packets in

the mangle chain of iptables and a rule is defined for routing those packets

with a different routing table, a rerouting process is triggered. This rerouting

process follows the rules of the selected (i.e. the slice-specific) routing table

and the interface to be used is set accordingly; 3) the packet is sent out using

the selected interface. During the step 2, the source ip addresses of packets
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are left unchanged, so we need to change them explicitely before the packets

are sent during the step 3.

The user interacts with sliceip by means of a frontend that resides in the

slice. This frontend extends the syntax of the ip command of the iproute2

suite with the following two commands:

• enable <interface>: initialise the routing table for the user’s slice, set

the rule to mark packets belonging to the user’s slice, add a rule to

associate those packets with the routing table of the slice and add the

SNAT rule for <interface>;

• disable <interface>: remove the SNAT rule for <interface>, remove

the rule to associate the packets to the routing table of the slice and

remove the rule that marks the packets of the user’s slice.

Extension of the NITOS scheduler to manage PlanetLab resources

In order to support the reservation of bookable Planetlab resources, i.e. the

WiFi interfaces of the PL-edge nodes, we had to extend the NITOS Scheduler

and make some additions to the management software of the PL-edge nodes.

The Scheduler has been extended to show among the available resources

also the WiFi interfaces of the PL-Edge Nodes and to allow the user to

reserve them. Reservation records are kept in the Scheduler database and it

is Scheduler responsibility to make sure that reservations made by two users

do not overlap.

In order to enforce the assignment of the interface to the slice, when the

reservation time starts, the Scheduler interacts with the Scheduler Manage-

ment Sliver allocated on the PL-edge node. Such interaction is performed

through a secure ssh connection. By means of vsys [18], the Scheduler Man-

agement Sliver is able to execute a script in the root context. This script

makes the actual assignment of the WiFi interface to the slice by setting

some iptables rules which block all packets that are about to go out through

the WiFi interface and do not belong to the slice for which the WiFi interface

has been reserved.
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The Scheduler checks the user’s credentials by means of the PLC API and

enables/disables access to OMF testbed nodes from the user’s slice for the

specific time and duration. In particular, the Scheduler interface is extended

to support authentication of users by means of PLC managed usernames

and passwords, while access to the OMF EC is performed by means of users’

public keys linked to the slice, retrieved using the PLC API.

4.2.5 Experimental setup

The NITOS testbed

It is important to give an overview of the hardware facilities that comprise

the heterogeneous profile of NITOS testbed. NITOS is a wireless testbed

located in the University of Thessaly campus. NITOS as the main wireless

testbed in the Onelab2 project, aims to provide all the software and hardware

facilities that can gather multiple wireless communication technologies under

a common structure. The main technology that is available in NITOS for

implementation and testing is WiFi. Large scale testbeds are likely to feature

hardware of different architecture and performance. NITOS testbed features

3 different types of computer main boards, 2 types of wireless media as well as

2 other types of peripherals. More specifically the NITOS testbed features 10

Alix embedded PoE nodes with 500Mhz i386 CPUs, which are primarily used

for development of networking systems, 10 Orbit AC powered nodes (1 Ghz

i386 CPUs and 1 Gb ram) and 20 Commel AC powered nodes that feature

2.4 GHz core duo CPUs (x86 64). Wireless media includes 50 Atheros 5212

interfaces and 10 Atheros 5001 interfaces. Orbit nodes are equipped with

high quality USB cameras that can be used for video enabled experiments

and 6 commel nodes are attached with GNU Radio peripherals that support

PHY layer experimentation.

The WILEE testbed

The WILEE (WIreLEss Experimental) WiFi Mesh Testbed is located in

the Computing Department of University of Napoli Federico II. It consists of
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Figure 4.14: Experiments setup.

three Soekris net4826-48 Single Board Computers and eigth Netgear WG302Uv1

access points. It also features a node belonging to a private PlanetLab de-

ployment which acts as the PlanetLab Edge node and a Linux machine acting

as gateway towards the Internet.

The Soekris net4826-50 SBC is based on the AMD Geode SC1100 CPU

(at 266Mhz), has 128 Mbyte DRAM memory, a 128 Mbyte Flash disk, a

FastEthernet interface and two 802.11a/g Atheros wireless cards. The Net-

gear WG302Uv1 access point features on an Intel XScale IXP422B network

processor (at 266Mhz), has 32 Mbyte DRAM memory, a 16 Mbyte flash disk,

a FastEthernet interface and two 802.11a/g Atheros wireless cards.

4.2.6 Experiments

In this paragraph we describe an experiment aimed at investigating a prob-

lem that is frequently studied on top of PlanetLab, i.e. peer-to-peer traffic

optimization. The peculiarity, in our case, is that we create a distributed

setup for our experiment involving the use of our wireless mesh testbeds

as access networks to the Internet. In fact, we intend to investigate this

problem, and compare its solutions, in the specific context of WMNs, where
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specific cross-layer approaches can be part of the solution.

Testing overlay routing strategies in WMN-based access networks

An increasing number of popular Internet applications, such as Bittorrent,

Skype, GoogleTalk, and P2P-TV relies on the peer-to-peer paradigm. These

applications produce more than 50 percent of the overall Internet traffic. One

of the inherent characteristics of peer-to-peer systems is that they build net-

work overlays among their peers, and route traffic among them along the

virtual links of such an overlay. Peer-to-peer routing decisions are made at

the application layer, independently of Internet routing and ISP topologies.

Hence, overlay routing decisions collide with those made by underlay rout-

ing, i.e. ISP routing decisions [79]. As a consequence of such a dichotomy,

several inefficiencies may result. For instance, it is not uncommon that ad-

jacent nodes of an overlay network are in different ASes. Such a topology

arrangement leads to traffic crossing network boundaries multiple times, thus

overloading links which are frequently subject to congestion, while an equiv-

alent overlay topology with nodes located inside the same AS could have

had same performance. Such a behavior is undesirable for ISPs, also because

their mutual economic agreements take into account the volume of traffic

crossing the ISP boundaries.

From what we described above, it emerges that overlay routing, and peer-

to-peer applications, may benefit from some form of underlay information

recovery, or in general from cross-layer information exchange. Aggarval et

al. in [1] suggest that such a cooperation would be beneficial for both ISPs

and users. When creating an overlay network, the choice of the nodes to be

connected, i.e. the network topology, can be done by taking advantage of

information from the underlay network. Different strategies have been pro-

posed recently in the literature that attempt to introduce some cooperation

between the two routing layers [1][152]. Given the role of access networks

played by wireless mesh networks, it is interesting to experiment with such

techniques when peers are attached to different WMNs connected to the In-
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ternet. Our contribution in this section makes such experiments possible.

In the next subsection, we report the results of experiments carried out to

show that our approach makes it very simple to perform realistic experi-

ments to test overlay ro we describe an experiment aimed at evaluating a

traffic optimization solution for a BitTorrent file-sharing peer-to-peer sys-

tem. BitTorrent is used to efficiently distribute files of large size from one or

more initial seeds to a population of large numbers of downloaders, forming

what is referred to as a swarm. Files are exchanged in smaller chunks that

can be individually retrieved. One of the peculiarities of BitTorrent is that

downloaders, a.k.a. leechers in BitTorrent terminology, also contribute to

spread the content to other peers. As soon as a peer obtain all the chuncks

of the desired file, it becomes a seed on its own. We have designed and imple-

mented a solution that aims at incentivating traffic exchange in a BitTorrent

system between peers that are located within the same Autonomous System.

Our solution does not require any modification to the BitTorrent protocols,

nor to the application used by end users. The only modified component of

a typical BitTorrent system is the Tracker, i.e. the system that is contacted

by peers to obtain a list of other peers to contact, in order to retrieve chunks

of the file to download. In our system, the tracker returns to peers a sorted

list of peers to be contacted, where the sorting criterion is by-increasing-AS-

distance. In other terms, as soon as a peer contacts the tracker, the tracker

determines the AS-number associated with the IP address of that peer, and

returns a list of peers whose first items are the closest peers in the swarm

(in terms of AS distance), while the last items are the furthest peers. Our

experiment is aimed at evaluating our tracker-based solution when a signifi-

cant fraction of peers are connected to the Internet through the same wireless

mesh network. Our objective is to show that in this case, by adopting our

strategy, a substantial amount of traffic is reduced through the wireless mesh

gateway, i.e. the node connecting the wireless mesh to the wired Internet. To

this purpose we created a slice involving ten PlanetLab Europe nodes and

the PlanetLab edge node situated at the edge of the WILEE testbed. To
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Figure 4.15: Experiments: internal vs. cross traffic (percentage of total traffic) on the left;
cross traffic volume on the rigth.

this slice, some bookable resources, i.e. four wireless nodes from the WILEE

testbed and the WiFi interface of the PL-edge node, were added to the slice

by using the extended NITOS Scheduler at the WILEE site. In the same

way, other four nodes belonging to the NITOS testbed were added by using

the exented NITOS Scheduler at the NITOS site.

The wireless nodes were configured by using the facility offered by OMF to

form two single-channel WMNs and, in case of WILEE nodes, also to provide

Internet access to the PL-edge node. A Bittorrent client (TransmissionBT )

was installed on the PlanetLab Europe nodes, on the PL-edge node and on

the wireless nodes. One of the PlanetLab Europe nodes was chosen as the

seeder of the Bittorrent swarm, which consisted of a file of approximately 50

megabytes. The scenario of the experiments is illustrated in Fig. 4.14.

We performed a set of experiments by employing alternatively a standard

Bittorrent tracker (Quash) and the same tracker modified by us in order to

take into account the distance between peers in terms of ASes.

At the end of each experiment we measured the traffic belonging to con-

nections which were either originated or destined to nodes located behind the

OMF gateways, i.e. the NITOS and WILEE wireless nodes and the PL-Edge
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Table 4.1: Traffic matrix for an experiment with the modified Tracker.

N1 N2 N3 N4 PL-Edge N5 N6 N7 N8 PlanetLab
N1 0 2.34 1 0 0.44 0 0 0.81 0 41.03
N2 0 39.77 0.06 0.06 1.39 0 0 0 0 5.69
N3 13.99 3.9 0 1.89 27.19 0 0 0 0 0
N4 13.36 3.61 5.27 0 26.45 0 0 0 0 0
PL-Edge 40.7 4.23 0.64 0.09 0 0 0 0 0 0
N5 0 0 0 0 0 0 0.13 0.09 0 45.03
N6 0 0 0 13.2 0 29.79 0 0 3.55 0
N7 0 0 0 0 0 20.12 23.91 0 2.29 0
N8 0 0 0 0 0 8.17 1.95 0.5 0 37.05

Table 4.2: Traffic matrix for an experiment with the standard Quash Tracker.

N1 N2 N3 N4 PL-Edge N5 N6 N7 N8 PlanetLab
N1 0 0 0 2.88 0 0 0 0 0 43.37
N2 0 0 0 5.5 62.3 0 0 0 0 4.38
N3 0 0 0 0 4.73 0 0 0 0 48.84
N4 44.43 7.52 0 0 0 0 0 0 0 0
PL-Edge 0 0 7.88 0 0 0 0 0 0 46.88
N5 0 0 0 0 0 0 0 0 22.97 24.29
N6 0 0 0 0 0 0 5.31 0 0 40.82
N7 0 0 0 0 13.65 0 0 0 0 37.53
N8 0 0 0 0 10.82 19.88 0 0 0 16.14

node. Our objective was to demonstrate that the traffic crossing the WMNs

boundaries was minimized by using our modified tracker. In Fig. 4.15 we re-

port the results averaged on 10 repetitions. The figure shows that the amount

of traffic flowing through the OMF Gateways was significantly lower in case

the modified tracker was used. If we compare the overall amount of bytes ex-

changed by peers, the results show that, in case the modified tracker was used,

the file was downloaded in average from the outside slightly more than once

for each WMN, and then disseminated in the WMNs among nearby nodes.

In case the unmodified tracker was employed, instead, it is as though the file

was retrieved almost three times by each WMN (about 280 Mbytes down-

loaded from the outside by the two WMNs), thus indicating a non-optimum

peer selection strategy. Tables 4.1 and 4.2 report the traffic matrices for two

experiments. On the rows are the receiving nodes, while on the columns are

the sending nodes. N1, N2, etc. stand for Node1, Node2, etc., while Planet-
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Lab is a meta node which comprises all the PlanetLab nodes. All the values

are in Mbytes. It can be seen that, in case the modified tracker is used (Ta-

ble 4.1), traffic is exchanged mainly between nodes located inside the same

WMN, while in case the standard tracker is used (Table 4.2), wireless nodes

often download from nodes which are outside their WMN.

While conducting the experiment, some real world issues arised and made

evident the usefulness of having such an heterogeneous network scenario.

The first problem was about the private addressing of the WMN and the

need to NAT the traffic generated from the wireless nodes and destined to the

Internet. This was, however, not sufficient, as the Bittorrent protocol requires

that the clients be reachable from the outside on public IP-port pairs. For

this reason, we had to setup a NAT-PMP service on the gateway node [139].

Through this protocol, clients are able to request a port to be forwarded from

the gateway node, so that they can accept incoming connections from other

peers on the gateway IP and the assigned port.

Clients, therefore, announce themselves to the Tracker with their public

IP-port pair. This requires, in turn, that the connections between two wire-

less nodes go through the gateway machine and be source NATted, at the

gateway node, even if they do not involve a node on the Internet. Solutions

to this problem require modification to the Bittorrent client, e.g. in order to

implement a local peer discovery process.

4.2.7 Related work

In this section we have presented an architectural solution to integrate a

number of local OMF-based wireless testbeds with the global-scale Planet-

Lab environment. Our solution is a first technical solution towards the feder-

ation of these two kinds of testbeds. The problem of heterogeneous testbeds

federation is under investigations of both the GENI initiative in the US and

the FIRE initiative in Europe. For instance, federation between PlanetLab

and EMULAB is currently being investigated in the context of the GENI ini-

tiative, as reported in [100]. An attempt to add heterogeinity in PlanetLab
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by integration of ORBIT testbeds is in [83]. In this paper, the authors pro-

pose two models of integration. The first model (PDIE, PlanetLab Driven

Integrated Experimentation) is intended to serve PlanetLab users who want

to extend their experiments to include wireless networks at the edge without

changing the PlanetLab interface, while the second model (ODIE, ORBIT

Driven Integrated Experimentation) is intended to serve ORBIT wireless net-

work experimenters who want to augment their experiments by adding wired

network features without major changes to their code.

Our proposed model of integration is more similar to the PDIE model,

with a difference with regard to the connectivity model between the two en-

vironments. In order to integrate an OMF-testbed in PlanetLab, the authors

propose the use of a gateway PlanetLab node, whose function is to open tun-

nels between itself and the selected nodes in the OMF testbed. Differently

from our approach, the gateway node is not a client of the OMF testbed, but

merely creates the tunnels. Our approach does not employ tunnels. A sim-

ilar approach was taken in [58]. The authors aimed at integrating the VINI

virtual network infrastructure [17] with OMF-based testbeds. The inten-

tion was to enable Layer 3 experimentations by allowing users create virtual

topologies spanning both wired and wireless links. Also this approach relies

on the use of tunnels.

Our approach intends to recreate in the testbed the same operational

situation that exists in real networks, in which a private addresses mesh is

connected to the Internet through NATing gateways. Our integrated exper-

imental facility allows experimentation of low level mechanisms within the

wireless mesh environment provided by the OMF testbed, and end-to-end

mechanisms and applications in the global hybrid integrated environment.

These features create a synergy between the two kinds of facilities. As we

mentioned in the introduction of the paper, for achieveing a full-fledged fed-

eration of the two environments, other issues need to be fully solved, such as

the creation of a single sign-on mechanisms for the two environments.
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4.2.8 Conclusions

The availability of large scale testbeds integrating several local wireless mesh

testbed in a realistic global-scale environment is necessary to test WMNs in

the wild. In this section we present an integration architecture for experi-

menting with local OMF-based wireless testbeds in the context of PlanetLab.

We also present some test case experiments we run on our initial implementa-

tion of the integrated architecture. In particular, we describe an experiment

aimed at evaluating a BitTorrent traffic optimization system. Our experi-

ment combines both wireless nodes of two OMF based testbeds and Plan-

etLab nodes located across Europe. The possibility of running this kind of

experiments in such a hybrid experimental scenario highlighted several real-

world issues, such as the impact on performance of NAT traversal systems,

that are worth to be further investigated and that could only be reproduced

thanks to our integrated environment.



Chapter 5

Programmable networks

The need for the flexible handling of networking infrastructures is recognized

by both academy and industry: on one hand researchers need flexibility in

order to prove new ideas through real deployments, on the other hand com-

panies need flexibility to better manage the infrastructure to reduce the costs

and to enable new business opportunities. This shared need made the de-

velopment of Software Defined Networking (SDN) surprisingly fast in first

instance, starting a technology hype that is still growing at the time of read-

ing. The mutual effort in developing this approach materializes into the

OpenFlow technology[101], that was born in an academic context to be then

embraced by industry. SDN suggest an approach in managing the network

that separates the network control plane from the data plane, enabling dif-

ferent path of evolution for the two planes. Differently from what happen

with legacy network devices, whose behavior is defined by the control plane

implemented in the device itself, in SDN the device behavior is programmed

through a well defined interface, used by the control plane that can be im-

plemented in a separated entity. The main outcome of this architecture is

that the network behavior can be defined by software programs, providing

a shift in the way network are designed and managed similar in the way it

happened with electronics when general purpose computers were introduced.

In this chapter we further extend this concept analysing the scalability is-

sues in SDN control plane, introducing an approach similar to the one used
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to characterize general purpose computer programs. Then, we introduce an

algorithm and a tool to help the task of network programming, providing at

the same time an example of the new fields opened by the SDN architectures.

5.1 SDN’s control plane scalability

5.1.1 Introduction

The emerging Software Defined Networking paradigm promises to unleash

new opportunities for building and managing future networks. The basic

SDN concept is as simple as powerful and relies on separating the network

control plane from the data plane with the purpose of gaining in flexibil-

ity in the infrastructure management. In a computer network, the control

plane is responsible of defining how data traffic is handled and resources are

used at a global level, while the data plane is in charge of actually forward-

ing network packets within each device. In traditional network architectures,

devices have to play a role in both planes. For instance, an Ethernet switch

forwards packets to a given port based on a forwarding table that is cre-

ated by learning source MAC addresses and VLAN settings; an IP router

participates into routing decisions and, at the same time, forwards packets

to adjacent routers or end-systems. The impressive growth of the Internet

in the last decades proves that the traditional approach could scale to a

very large extent. Nonetheless, many researchers have pointed out that the

traditional networking model is exhibiting symptoms of a progressive “ossi-

fication”, that is a strong difficulty in accommodating architectural changes

and in supporting new applications. Since applications are experiencing a

much faster evolution, Internet capabilities have been extended, from time

to time, by means of patches and work-arounds, that usually aim at solving

a single application-specific issue. This way of proceeding inevitably leads to

great complexity of network management operations, with the consequently

growth of operational costs.

In an SDN architecture, control and data plane are decoupled. Network
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switches are not involved in control plane operations anymore. Control plane

functions are assigned to “Controller” entities, communicating with network

switches through well-established interfaces and protocols. By doing so, the

operation of the whole network may be completely re-programmed by sim-

ply modifying the software control logic implemented in Controllers. Hence,

“network intelligence and state are logically centralized, and the underlying

network infrastructure is abstracted from the applications. As a result, en-

terprises and carriers gain unprecedented programmability, automation, and

network control, enabling them to build highly scalable, flexible networks that

readily adapt to changing business needs and open the field to new applica-

tions and communication paradigms”[106]. Programmability is actually one

of the most important properties of SDN: the control plane behavior can be

defined by writing “network programs” that manage a set of switches, pro-

viding rich network applications and features. In some way, SDN is bringing

into computer networks the same shift that in past decades has transformed

many consumer electronic devices from special purpose appliances into gen-

eral purpose machines. With the advent of cloud computing, the need for

affordable, flexible and scalable management procedures is becoming an ur-

gent need. The great potential of SDN appears appealing to most device

manufacturers. For the final success of this approach, however, it still has to

prove its robustness and scalability in real world scenarios.

OpenFlow is one of the most popular SDN-enabling technologies. Open-

Flow was born as a mean to enable network experiments on campus networks[89],

and its first deployments were actually universities’ networks. Over time, the

advantages of an SDN approach to networks have been explored, leading to

applications of OpenFlow to other environments, such as enterprise networks,

as in the OpenFlow implementation of the Ethane architecture for network

security[32]. More recently, OpenFlow has been also applied to challenging

scenarios like datacenter networks[141] and wide-area networks[69], as well as

for providing new features, such as mobility support, in traditional TCP/IP

networks[22]. The Open Networking Foudation [104] (ONF), that is respon-
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Figure 5.1: OpenFlow architecture

sible for the OpenFlow specification, currently involves a number of academic

and industrial partners. An increasing number of device manufacturers have

implemented OpenFlow in their products and Google recently declared the

adoption of OpenFlow in its networks[150].

In this section we discuss in depth the scalability issues of OpenFlow and

present possible solutions.

5.1.2 OpenFlow

The OpenFlow specification defines the behavior of an “OpenFlow switch”,

as well as the programming interface and the protocol used to interact with

such switches [104]. Switches are connected to an external Controller through

a communication channel. How this channel is implemented is out of the

scope of the OpenFlow specification. Usually, it is implemented as a TLS
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secure channel established on top of a dedicated “control network” relying

on TCP/IP. OpenFlow (OF) provides Controllers with two features, i.e. the

ability of programming and inspecting switches. An OF switch program-

ming is performed using a rule-based approach. The role of a Controller is

to provide a set of rules to be installed at different switches by means of the

OpenFlow protocol. In the OpenFlow terminology, the rules used to pro-

gram a switch are called flow table entries (FTE). An FTE is defined by the

match set, that defines to which network flows the entry is applied, the ac-

tion set, that defines the elaborations and the forwarding decision that must

be applied to the matched flows, a priority, to relatively order the entries in-

stalled in a switch, and an expiration time, specified as a timeout. A typical

FTE provides a semantic like “forward network flows with network destina-

tion address 1.1.1.1 to switch port 3”. By means of rules, an OF switch may

be instructed to forward packets to a special “controller port” for allowing

the Controller to inspect packet headers. For instance, an OF switch may be

configured to forward to the Controller any packet that is not handled by an

installed FTE, so that appropriate entries can be devised and installed on

the switch to handle subsequent packets of the same flow. When an FTE is

installed in a switch, it is also associated with a set of counters that measure

some statistics, e.g. the number of packets or bytes processed by that entry.

By gathering switch statistics and FTEs counters, the Controller is able to

collect data on network status.

Hence, the typical operations of an OpenFlow network may be simply

described as follows. When a new flow is initiated by a network end-point,

the first packet of the flow is intercepted by the OpenFlow switch to which

the end-point is connected. If no flow table entries are found in the switch

to handle the packet, the switch forwards the packet to the Controller. The

Controller processes the packet and decides what table entries need to be

installed in the controlled switches to correctly handle the flow. Of course,

a proactive approach may be pursued by the Controller to install flow table

entries.
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Figure 5.2: OpenFlow network flow handling example: a just started flow is handled
through the reactive programming of switches

5.1.3 OpenFlow Scalability

Scalability is the ability of a system to handle an increasing workload. Since

the system we are analyzing is a network, the workload is mainly represented

by network traffic, even if some operations may provide additional workload

not directly related to data traffic, e.g., in a network that supports mobility,

the number of end-point movements is part of the overall workload. The aim

of this section is to understand what are the factors that have an influence

on the scalability of the OpenFlow architecture, and what are the scalabil-

ity issues that arise because of such factors. In the OpenFlow architecture

scalability is influenced by three factors:

• Network topology: like in traditional networks, the topology dic-

tates physical limits to the ability of the network to sustain network

traffic. Since the network topology design for scalability is a well-

explored topic, from the OpenFlow perspective we are interested just

in the total number of OF switches in the network;

• Control Network: it defines the way the Controller communicates

with OF switches. The control network can be realized either in-band or
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Figure 5.3: OpenFlow scalability issues

out-of-band. Usually it uses a traditional out-of-band TCP/IP network

to connect switches to the Controller;

• Control Logic: that is the control program implemented by the Con-

troller. OpenFlow scalability is greatly influenced by the way the con-

trol logic stresses the OF architecture. Some insights on control logic

factors are presented in next sections.

Scalability issues are the architectural limits that make a system unable

to support an increased workload. The above three factors may raise one

ore more scalability issues. A few specific scalability issues of the Open-

Flow architecture have been already investigated by some recent papers with

the aim of identifying potential bottlenecks. In the OpenFlow architecture

the control plane, i.e. the Controller, and the data plane have to interact

more frequently than in traditional networks, and their communications take

place through a control link. Hence, scalability bottlenecks can be: i) the

Controller ability to handle network events on time, ii) the switch ability to

send and receive OpenFlow control messages and iii) the control link itself,

whose bandwidth and delay must be taken into account[94]. Moreover, the

peculiar role of the control plane in the OpenFlow operations is to be taken
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Figure 5.4: OpenFlow scalability factors, issues and their relationships

into account by network performance models, which need to consider that a

variable number of network packets could be processed at the Controller[66].

Also the data-path itself, i.e., the part of the switches that handle traffic us-

ing flow table entries, requires a careful analysis, since flow table entries are

much more flexible than traditional switches and routers data structures, at

the cost of an increased complexity in their management[20].

To simplify the study of the issues presented so far, we can split the

overall scalability problem into two sub-problems of data plane scalability

and control plane scalability, following the architectural split between data

plane and control plane. The former is related to the OF switches, the latter

includes the Controller and the control network.

Data plane scalability

Data plane scalability is related to OF switches and their interconnections.

We already stated that we will not take into account the network topology in

details here, since the scalability of a network from the topology perspective

is a well-known and deeply explored field. We are actually reducing the scope

to OF switches considered one by one, that makes the data plane scalability

problem easier to understand and to analyze. An OpenFlow switch has

limited resources that can limit its functions. Each switch could experience

different issues depending on the way it is designed and implemented.
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• Data-path performance: it is the ability of the switch to fast for-

ward network packets. For simplicity, we can think of it as the time the

switch takes to move a packet from one port to another, but, actually,

since the switch could perform more complex actions than just forward-

ing (e.g., header rewriting), we can generalize it defining the data-path

performance as the time the switch takes to process a network packet.

OpenFlow increases the complexity of the packets handling, since the

way a packet is handled is specified through flow table entries. When

a packet is processed by a switch, a lookup action is performed to find

the table entry that has to be applied. Entries could have wildcard in

their match sets, making not always possible the use of hash algorithms

or other search optimizations [20].

• Signalling: OpenFlow switches are programmed through the Open-

Flow protocol. The number of signalling messages exchanged among

the switch and the Controller is mainly dependent on the control logic.

Anyway, the ability of the switch to handle such messages in an efficient

way is one of the enabling factors for advanced network applications

[94].

• Network state: the network state in an OpenFlow switch is actually

represented by flow table entries. Depending on the implementation,

the switch can host a fixed number of flow entries. In some hardware

implementations, the flow entries are managed through several flow ta-

bles with different capabilities, both in terms of match set, e.g., support

for wildcards, and actions set, e.g., support for rewriting actions.

Control plane scalability

Control plane scalability is related to the Controller and to the control net-

work. The Controller is in charge of: managing a set of switches through

the installation of flow table entries; gathering traffic information; processing

network packets coming from switches.
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• Processing Performance: the Controller is usually implemented as

a software application. Like any other software application, there are

plenty different strategies to implement it and to provide peculiar per-

formance characteristics. The most important properties for an Open-

Flow Controller are the ability to respond to many requests at the same

time and the time it takes to answer each request[66];

• Signalling: the control network has to transport all the signalling

traffic of the network. Bandwidth and delay provided by such network

assume a big importance in the overall architecture scalability as well

as the relative location of the Controller in respect to the location of

the switches it controls[94];

• Network state: the Controller has to manage the network state re-

lated to the implemented control logic. Since the Controller is logically

centralized, and it could manage a big number of switches, the dimen-

sion of the network state could be a scalability limiting factor[22].

5.1.4 Control logic dimensions

To understand the scalability problems of an OpenFlow network, we have to

analyze the possible OpenFlow control plane behaviors. Since in OpenFlow

the actual control plane behavior is defined by the Controller, OpenFlow net-

works scalability is greatly influenced by the way the control logic stresses

the architecture. Using again the general purpose computer metaphor, in a

general purpose computer scalability depends both on the hardware archi-

tecture and on the software running on top of such architecture, likewise in

OpenFlow, it depends both on the network architecture and on the control

logic implemented by the Controller. Given the flexibility of the OpenFlow

approach, we can try to perform an high level classification of the charac-

teristics of different control logics, identifying coarse-grained dimensions to

classify such applications, the same way computers’ programs are classified

as CPU-bound, I/O bound and so on.
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• Flows Granularity: defines the granularity of the network flows man-

aged by the control logic. The granularity is defined after the header

fields of current data packets. For example, a flow identified by the

solely destination MAC address is coarse grained, while a flow iden-

tified by the combination of IP addresses and port numbers is much

more fine grained;

• Network Visibility: an OF application may need detailed network

traffic information or links statuses, for, e.g., load balancing or route

reconfiguration. Depending on the control logic, the quantity and fre-

quency of switches status update may vary;

• Network state: network state is related to the information the control

logic has to manage, in order to provide its functions. Typical examples

of network state are routing tables, end-points identity information,

etc.;

• Reactivity: OpenFlow provides a mean to reactively program switches,

through the forwarding of network packets to the controller. A control

plane can range from being fully reactive, when each OF table entry

is installed in response to a packet coming to the controller, to proac-

tive, when all entries are installed before network traffic arrives to the

switch.

5.1.5 Scalability solutions

To provide scalability to OpenFlow networks it is necessary to solve both data

plane and control plane scalability issues. Data plane scalability solutions are

related to the application of techniques aimed at increasing the capabilities of

switches, such as the application of optimized algorithms for the flow tables

memory management and lookup operations. Such solutions are not much

different from the ones used in traditional network devices, even if OpenFlow

data structures, i.e., flow table entries, are more flexible and complicated

than traditional network devices ones. However, the main issue for OpenFlow
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devices is about the need to move data between the data-path and the control

plane, e.g., to send the new flow’s first packet to the Controller or to answer

with flows statistics information. How to handle this issue is still an open

research field, in particular for the hardware implementations, and no specific

solutions have been already presented.

Data plane scalability issues can be solved, or at least masqueraded,

though a smart use of the network devices in combination with a control

logic that takes into account the scalability issues of the data plane. Hence,

scalability of the data plane could be traded with an increased complexity of

the control logic. In the end, the control plane scalability is the core element

in the overall scalability of the OpenFlow architecture.

OpenFlow control plane is logically centralized in the Controller entity

whose implementation is usually a software based system. As explained in

previous sections, the Controller implements a control logic that can vary

significantly depending on the provided network functions and the way they

are implemented, so, scalability solutions are closely related to the particular

application. For instance, depending on the implementation, the Controller

could be either a centralized or a distributed system. However, some opera-

tions are common to all Controllers, since they are all involved in the han-

dling of the OpenFlow protocol, that includes: handling of network events

like switches and links status updates, handling of network packets forwarded

from the switches, delivery of OpenFlow messages to the switches, etc.. These

operations have to be handled by any OpenFlow Controller implementation

in a scalable way, and their scalability is closely related to the overall Con-

troller scalability. Hence, to ease the development of the Controller, there

are a lot of OpenFlow Controller Frameworks to handle such common opera-

tions in an efficient way. Control logic developers can access such operations

through an easy-to-use application programming interfaces (API). Examples

of such frameworks are NOX, Beacon, Floodlight, Trema, Maestro just to

cite some of them. An OpenFlow Controller, hence, is usually implemented

as a program running in the context of the chosen framework.
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Taking into account this split between OpenFlow Controller Frameworks

and actual control logic, we organize control plane scalability solutions in on

two logical layers: Scalable Controllers and Scalable Architectures.

The Scalable Controller layer is about optimizing the handling of opera-

tions that are common to all the Controllers, independently from the actual

control logic. In this layer scalability is mainly implemented at the OpenFlow

Controller Framework (OCF) level. Scalable OCFs are either centralized or

distributed systems, in both cases the control logic could be involved into the

scalability issues handling, by providing some insight through configurations

or through an appropriate use of the exposed OCF’s API. In the central-

ized case, that is a common deployment scenario, the majority of OCFs try

to optimize the handling of the OpenFlow protocol with advanced optimiza-

tion techniques based on work batching, scheduling and multi-threading[29],

[141]. To further scale the Controller to handle heavier workloads, it is pos-

sible to use several machines to run the Controller in a distributed way.

Some OpenFlow Control Frameworks are providing such an approach using

different strategies, with different involvement of the control logic into the

distribution of the Controller operations. For example, Hyperflow[142] pro-

vides a Distributed OpenFlow Controller Framework that separates the net-

work in partitions. Each partition is assigned to a controller instance and all

the instances are synchronized by means of a publish/subscribe mechanism.

In this approach each controller instance runs the same control logic, while

the framework distributes the network events and OpenFlow messages to

the appropriate controller instance. Hence, HyperFlow provides transparent

scalability of the Controller. To provide its features, Hyperflow distributes

consistently the network state updates and OpenFlow messages. Other ap-

proaches, such as Onix[72], require a direct involvement of the control logic in

the scalability issues handling, in order to use the mechanisms the framework

realizes to scale the system. Onix defines a Network Information Base (NIB)

that is read and written by the control logic. The NIB is actually distributed

using different strategies defined by the developers, that choose the storage
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system type for the NIB data, according to their needs in terms of speed,

consistency and reliability. All the state synchronizations and operations on

the physical network are performed through the NIB, so, by partitioning the

NIB among several controller instances, it is possible to share the overall

load. A third approach is based on a service view of the Controller: the con-

trol logic is implemented as a collection of services that collaborate among

them. Each service is able to run on a separate controller instance, hence,

several instances can be used to share the workload. Clearly this approach

requires a careful design of the control logic, whose implementation as a col-

lection of services, and the way such services are distributed, dictates the

actual scalability of the system, i.e., services should be able to be executed

as much as possible in a parallel manner[135].

While the Scalable Controller layer is mainly related to the design of

OCFs, the Scalable Architectures layer is about the design of the control

logic. The two layers are complementary: scalable controller layer provides

efficient building blocks for scalable architectures. There are no general solu-

tions for scalable architectures, since they are related to the specific control

logic, nonetheless, there are some high-level approaches that can be applied

in different contexts. The aim of a scalable architecture is identifying the

functions provided by the control logic and separate responsibilities for the

provisioning of such functions among different controller instances. In any

case, the final outcome is actually a partitioning of the controlled network, so

that several controller instances can cooperate to provide the control logic.

For example, in a geographical deployment, edge networks could be under the

control of dedicated controllers, whose coordination is assigned to a “main”

controller that has only a global view of the network. Such a hierarchical or-

ganization of controllers is based on a principle of aggregation: the network

is partitioned, each partition is assigned to a controller instance, each con-

troller instance presents an aggregated view of the partition to the higher level

controller[72]. Another approach is the selective distribution of the network

information through the use of federated controller instances. This architec-
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Figure 5.5: Scalability solutions

tural approach is based on the observation that, in order to provide some

functions, not all the state information in a network partition is needed to

orchestrate network-wide operations. The identification of the solely needed

information in combination with the orchestration of collaborating controller

instances, for the proper exchange of such information, can provide a better

usage of the control plane resources and increase the scalability[22].

5.1.6 Conclusions

Software Defined Networking is a promising paradigm for future networks

management, and OpenFlow is emerging as a successful industry-supported

SDN implementation. Scalability is one of the enabling factor for new tech-

nologies successful application, and OpenFlow scalability is still an open

research field. This section presented the OpenFlow architecture, its scala-

bility issues and currently used approaches to overcome such issues. Open-

Flow scalability problem can be divided into two separated problems of data

plane scalability and control plane scalability. In both problems, scalability

is highly influenced by the way the control logic is implemented, that can be

classified according to some high-level dimensions, the same way it happens

for computer programs, in order to understand the effects on the underlying

infrastructure. Currently adopted solutions vary according to the application

context. They can be categorized in two different layers: Scalable Controller

layer provides solutions to optimize the OpenFlow protocol operations han-
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dling, that is a common function realized by all Controllers, while Scalable

Architecture layer provides solutions for designing the control logic. In both

cases the applicability to real-world applications still needs to be evaluated in

details. What is clear so far is that the potentialities of the OpenFlow archi-

tecture can be exploited in different contexts, but the way they are exploited,

and the corresponding design challenges, may vary considerably, making the

solutions highly related to the application context.

5.2 Network programming

5.2.1 Introduction

Software Defined Networking (SDN) introduces a new architecture that sep-

arates the network control-plane from the network data-plane. Traditional

network equipment, i.e., network switches, is not involved in control-plane

operations anymore: the control-plane can be executed on separated devices

that communicate with network switches through well-established interfaces

and protocols, introducing greater flexibility in the network, e.g., allowing the

programmability of the control-plane. Programmability is actually one of the

most important properties of SDN: the control-plane behavior can be de-

fined writing “network programs” that manage a set of switches, providing

rich network applications and features. Programming the network, instead

of configuring it, on one hand gives a powerful tool to develop revolutionary

applications, but on the other, it also increases the difficulty of providing ef-

ficient and reliable networks: the flexibility of a program, like in the case of

classical computer software, can lead to errors that are even more complex to

handle, given the ineherently distributed and asynchronous nature of a net-

work. In some way, SDN is bringing into computer networks the same shift

that in past decades electronic devices had from special purpose machines,

to general purpose ones. With SDN, the current special purpose network can

become a general purpose, hence programmable, network. Programmability,

in a new context like computer networks, calls for new programming mod-
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els, tools and languages. In this sense, to continue with the general purpose

computer metaphor, SDN are still in the “machine language” phase, where

the programming languages are rudimentary, strictly connected to the hard-

ware, and the main part of network programming is still performed manually,

without the aid of any tool. In last years, OpenFlow [101] has been a success-

ful SDN implementation. The Open Networking Foudation 1 (ONF), that is

responsible for the OpenFlow specification, currently involves a number of

academic and industrial partners, making OpenFlow a promising technology,

with a good number of industrial players already implementing the specifica-

tion in their products. OpenFlow network switches configuration is executed

using a rule-based approach: control-plane programs are written in a tradi-

tional high-level programming language, e.g., Python or Java, to provide a

set of rules to be installed at different switches as output. In this paper we

present a set of definitions to characterize the interactions of rules installed

in an OpenFlow switch, and an algorithm to automatically detect such inter-

actions, with the aim of aiding the development and debugging of OpenFlow

network applications.

5.2.2 Related work

OpenFlow network programming is a problem addressed in some other works.

Frenetic [49] is a high-level language based on the functional programming

paradigm, that provides the programmer with an omniscient, centralized

view of the network. A run-time system, linked to the language, “trans-

lates” the high-level instructions in a set of low-level packet processing rules,

and manages them interacting with network equipments. NetCore [95] is

an evolution of Frenetic, that extends the high-level language and provides

some improvement in the compilation algorithms and run-time system, try-

ing to speed up the network performance. To test the correctness of Open-

Flow applications, NICE was proposed in [30]. NICE is a tool for automatic

OpenFlow applications testing, that combines model checking and concolic

1https://www.opennetworking.org/
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execution to explore the state space of OpenFlow programs written for the

NOX [55] controller platform. FlowChecker [3] uses manually built binary

decision diagrams to encode OpenFlow rules and then applies model check-

ing in order to detect OpenFlow switches misconfigurations. The definitions

and the algorithm we present in this paper are targeted at identify and auto-

matically detect OpenFlow rules interaction in a single switch, so our work

can be seen as a basis for new OpenFlow tools targeted at applications devel-

opment and debugging, that, differently from [3], requires no representation

conversion of the rules.

5.2.3 Rule-based programming

OpenFlow-enabled Switches (OFS) behavior is configured using OpenFlow

Rules (OFR), installed by means of the OpenFlow (OF) protocol [101]. An

OFR is defined by the match set, that defines to which network flows the rule

is applied, the action set, that defines the elaborations and the forwarding

decision that must be applied to the matched flows, a priority, to relatively

order among them the rules installed in a switch, and an expiration time,

specified through the use of timeouts. According to the OF specification

[105], only the highest priority OFR that matches a packet is applied to that

packet.

Because of this definition, to define a switch behavior it is necessary to

look at the whole set of installed rules. In fact, looking at a single rule

does not suffice to understand the behavior of the switch in respect to the

flow identified by the match set of such rule, since other rules, with higher

priorities, can introduce a different behavior.

The problem is usually raised up in the process of developing an OF ap-

plication, that is basically the process of defining when, where and what

OFRs have to be installed at managed OFSes. This issue can be even more

problematic if we are trying to extend an already developed OpenFlow ap-

plication, or if we are combining several applications at the same time.
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5.2.4 Interactions definition

To characterize the behavior of an OFS, we define OpenFlow rules inter-

actions extending the work presented in [4]. An interaction is a particular

relation between two OpenFlow rules. An interaction may be expected, i.e.,

the network programmer is aware that rules are interacting, or it may be

raised by unexpected relations between rules, e.g., as result of a program-

ming error. To define the possible interactions that can occur between two

rules, we firstly define the relations that can be in place among match sets

and among action sets. Then, based on such relations combination, we define

rules interaction types.

Match sets relations

A match set is composed by a number of match fields. Typical match fields

are l2 source [destination] address, l2 protocol type, l3 protocol type, l3 source

[destination] address, etc. All match fields can have a wildcard as value, that

means any value. Some match fields can have partially wildcarded values,

e.g., an l3 address can be associated with a bitmask to specify which bits

are wildcard. Because of the presence of wildcards, there are four different

relations among two match fields of the same type. The relation between

match field f0 and match field f1 can be one of the following: disjoint, when

match fields have different values (f0 ̸= f1); equal, if f0 value is the same of

f1 (f0 = f1); subset, if f0 value is a subset of the value of f1 (f0 ⊂ f1), e.g, f0

has a defined value, while f1 value is a wildcard; superset, when f0 value is

a superset of the value of f1 (f0 ⊃ f1), e.g., f0 value is an IP address in the

form 192.168.0.0/16, while f1 value is 192.168.1.0/24.

Using the defined match fields relations, we are now able to define the

relations between two match sets. The relation between match set M0 and

match set M1 can be one of the following:

Disjoint : M0 and M1 are disjoint if every field i in M0 is disjoint with

the correspondent field in M1 (M0 ̸= M1);

M0 ̸= M1 if ∀ i f 0
i ̸= f 1

i , f
0
i ∈ M0 ∧ f 1

i ∈ M1
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Exactly matching : M0 and M1 are exactly matching if every field i in M0

is equal to the correspondent field in M1 (M0 = M1);

M0 = M1 if ∀ i f 0
i = f 1

i , f
0
i ∈ M0 ∧ f 1

i ∈ M1

Subset : M0 is a subset of M1 if one field j of M0 is subset of the corre-

spondent field of M1 and any other field i in M0 is equal or subset of the

correspondent field in M1 (M0 ⊂ M1);

M0 ⊂ M1 if (∃j|f 0
j ⊂ f 1

j ) ∧ [∀ i (f 0
i = f 1

i ) ∨ (f 0
i ⊂ f 1

i )] ,

i ̸= j ∧ f 0
i , f

0
j ∈ M0 ∧ f 1

i , f
1
j ∈ M1

Superset : M0 is a superset of M1 if one field j of M0 is superset of the

correspondent field of M1 and any other field i in M0 is equal or superset of

the correspondent field in M1 (M0 ⊃ M1);

M0 ⊃ M1 if (∃j|f 0
j ⊃ f 1

j ) ∧ [∀ i (f 0
i = f 1

i ) ∨ (f 0
i ⊃ f 1

i )] ,

i ̸= j ∧ f 0
i , f

0
j ∈ M0 ∧ f 1

i , f
1
j ∈ M1

Correlated : M0 is correlated with M1 at least one field j of M0 is superset

of the correspondent field of M1 and any other field i in M0 is equal or subset

of the correspondent field in M1 (M0 ∼ M1);

M0 ∼ M1 if ∃j|f 0
j ⊃ f 1

j ∧ ∃i|f 0
i ⊂ f 1

i , i ̸= j ∧ f 0
i , f

0
j ∈ M0 ∧ f 1

i , f
1
j ∈ M1

Action sets relations

An action set contains zero or more actions. An action has a type and a

value, typical action types are forward to port X, rewrite network source

[destination] address, pop [push] VLAN tag, etc. An action can be equal,

related or disjoint in respect to an other action. An action a0 is equal to

an action a1 (a0 = a1) only if they have the same types and values, if the

types are equal but values are different, the actions are related (a0 ∼ a1).

An action a0 is disjoint from action a1 (a0 ̸= a1), if their types are different.

Depending on the relations of the contained actions, the relation between

action set A0 and action set A1 can be one of the following:
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Disjoint : A0 is disjoint from A1 if for any action in A0, such an action is

dijoint from any action in A1 (A0 ̸= A1);

A0 ̸= A1 if ∀ i,j a0i ̸= a1j , a
0
i ∈ A0 ∧ a1j ∈ M1

Related : A0 is related to A1 if there is at least one action from A0 that is

related to an action of A1 (A0 ∼ A1);

A0 ∼ A1 if ∃i, j|a0i ∼ a1j , a
0
i ∈ A0 ∧ a1j ∈ M1

Subset : A0 is a subset of A1 if all the actions contained in A0 are equal

to actions contained in A1, and A1 contains more action than A0 (A0 ⊂ A1);

A0 ⊂ A1 if ∀ i,j a0i = a1j ∧ |A0| < |A1|, a0i ∈ A0 ∧ a1j ∈ M1

Superset : A0 is a superset of A1 if all the actions contained in A0 are equal

to actions contained in A1, and A0 contains more action than A1 (A0 ⊃ A1);

A0 ⊃ A1 if ∀ i,j a0i = a1j ∧ |A0| > |A1|, a0i ∈ A0 ∧ a1j ∈ M1

Equal : A0 is equal to A1 if all the actions contained in A0 are equal to

actions contained in A1, and A1 and A0 contains the same number of actions

(A0 = A1);

A0 = A1 if ∀ i,j a0i = a1j ∧ |A0| = |A1|, a0i ∈ A0 ∧ a1j ∈ M1

Interaction types

To define interactions between two OFRs we look at rules’ priorities, match

sets relations and action sets relations. Considering an OFR Rx, with match

set Mx and action set Ax, and an OFR Ry, with match set My and action

set Ay, assuming that Rx priority is always smaller than Ry priority (If it

is not the case we will explicitly point it out), The interaction between Rx

and Ry can be of one of the types listed in table 5.1. Here we provide a brief

description of them:

Duplication : assuming that the priorities of two rules are equal, they

are duplicated if they have the same match and action sets.
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Table 5.1: OpenFlow Rules interactions

MATCH SET ACTION SET PRIORITY
Duplication

Mx = My Ax = Ay prio(Rx) = prio(Ry)
Redundancy

Mx ⊂ My Ax = Ay prio(Rx) < prio(Ry)
Mx ⊃ My Ax = Ay prio(Rx) < prio(Ry)
Mx ∼ My Ax = Ay prio(Rx) < prio(Ry)
Mx = My Ax = Ay prio(Rx) < prio(Ry)

Generalization
Mx ⊃ My Ax ̸= Ay prio(Rx) < prio(Ry)
Mx ⊃ My Ax ∼ Ay prio(Rx) < prio(Ry)
Mx ⊃ My Ax ⊂ Ay prio(Rx) < prio(Ry)

Shadowing
Mx ⊂ My Ax ̸= Ay prio(Rx) < prio(Ry)
Mx ⊂ My Ax ∼ Ay prio(Rx) < prio(Ry)
Mx ⊂ My Ax ⊃ Ay prio(Rx) < prio(Ry)
Mx = My Ax ̸= Ay prio(Rx) < prio(Ry)
Mx = My Ax ∼ Ay prio(Rx) < prio(Ry)
Mx = My Ax ⊃ Ay prio(Rx) < prio(Ry)

Correlation
Mx ∼ My Ax ̸= Ay prio(Rx) < prio(Ry)
Mx ∼ My Ax ∼ Ay prio(Rx) < prio(Ry)
Mx ∼ My Ax ⊂ Ay prio(Rx) < prio(Ry)
Mx ∼ My Ax ⊃ Ay prio(Rx) < prio(Ry)

Inclusion
Mx = My Ax ⊂ Ay prio(Rx) < prio(Ry)
Mx ⊂ My Ax ⊂ Ay prio(Rx) < prio(Ry)

Extension
Mx ⊃ My Ax ⊃ Ay prio(Rx) < prio(Ry)

Redundancy : redundant rules have the same effect on the subset of

flows matched by both rules, hence, in some conditions (e.g., no interactions

with third rules), depending on the rules priorities, one of the rules could

be deleted without affecting the datapath behavior, or the rules could be

aggregated.

Generalization : rules have different actions, but Rx matches a superset
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of the flows matched by Ry. So, action set Ay will be applied to flows matched

by Mx ∩My, while to the flows matched by Mx −My the action set Ax will

be applied.

Shadowing : if Rx is shadowed by Ry, then Rx is never applied, since all

the flows are matched by Ry before that Rx is examined.

Correlation : the rules have different match sets, but the intersection

of these match sets is not void, so, to flows that are in the intersection only

higher priority rule’s action set (Ay) will be applied. Note that this anomaly

is different from the shadowing interaction, since for some flows the lower

priority rule (Rx) is still applied.

Inclusion : inclusion interaction is similar to shadowing. The lower pri-

ority rule is never applied “as is”, but its actions are still applied in combi-

nation with the actions of another rule (of higher priority). I.e., Rx is never

applied, but, since the action set Ax is a subset of the action set Ay, the

actions of Ax are still applied, but only in combination with the actions of

Ay.

Extension : extension interaction is similar to generalization. A rule

with lower priority is extending the action set applied by another rule, adding

more actions. Only to the flows matched by Mx −My the extended actions

are applied.

5.2.5 Interactions detection

To detect the interactions presented in previous sections, we designed an in-

teractions detection algorithm (IDA). The algorithm takes two rules, Rx and

Ry, assuming prio(Rx) ≤ prio(Ry), and detects the interaction generated by

the composition of the rules. We assume that Rx and Ry are data struc-

tures containing all the information we need regarding an OpenFlow rule,

i.e., match set, action set and priority. The algorithm uses two auxiliary

algorithms to find match sets and action sets relations, respectively, these

algorithms are represented by the functions matchset relation(Rx, Ry) and

actionset relation(Rx, Ry).
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Algorithm 1 matchset relation(Rx, Ry)
relation← undetermined
field relations← compare fields(Rx, Ry)

for field in match fields do

if field relations[field] = equal then
if relation = undetermined then

relation← exact
end if

else if field relations[field] = superset then

if relation = subset or relation = correlated then
relation← correlated

else if relation ̸= disjoint then
relation← superset

end if

else if field relations[field] = subset then

if relation = superset or relation = correlated then
relation← correlated

else if relation ̸= disjoint then
relation← subset

end if

else
relation← disjoint

end if

end for

return relation

Algorithm matchset relation(Rx, Ry) finds the relation between match

sets, by firstly comparing match fields one by one, using the compare fields(Rx, Ry)

function. Then it cycles among the fields’ relations to evaluate the match sets

relation, by applying a state machine where each state corresponds to one of

the match sets relation (plus “undetermined”) and transitions corresponds

to match fields relations 2.

Algorithm actionset relation(Rx, Ry) is not presented in these pages,

since its implementation is simpler and can be easily derived by the defi-

nitions of action sets relations presented in previous sections.

Algorithm interaction detection(Rx, Ry) uses the just defined functions

to apply the interaction types definitions in order to find if the rules generate

an interaction and, in that case, which type of interaction. We implemented

a prototype of our algorithm in Python, integrating it into the NOX con-

troller platform [55]. We performed a first evaluation of our implementation

2We are using a “foreach” notation in this for cycle, putting in the field variable, one
by one, any value found in the match fields variable, that contains a list of the all possible
fields name
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Algorithm 2 interactions detection(Rx, Ry)
interaction← None

ms relation← matchset relation(Rx, Ry)
as relation← actionset relation(Rx, Ry)

if priority(Rx) = priority(Ry) and ms relation = exact and as relation = equal then
interaction← duplication

else if ms relation ̸= disjoint then

if ms relation = correlated then
if as relation = equal then

interaction← redundancy
else

interaction← correlation
end if

else if ms relation = superset then
if as relation = equal then

interaction← redundancy
else if as relation = superset then

interaction← extension
else

interaction← generalization
end if

else if ms relation = exact then
if as relation = equal then

interaction← redundancy
else if as relation = subset then

interaction← inclusion
else

interaction← shadowing
end if

else if ms relation = subset then
if as relation = equal then

interaction← redundancy
else if as relation = subset then

interaction← inclusion
else

interaction← shadowing
end if

end if
end if

return interaction

using randomly generated rule sets. We generated rule sets defining three pa-

rameters: (i) number of rules in the set, (ii) number of non-wildcard match

fields, (iii) probability of generating the same value for match fields belong-

ing to different rules. This last parameter provides a mean to set the number

of interactions in the rule set, e.g., a low probability corresponds to fewer

interactions in the rule set. Action sets were also generated randomly, se-

lecting from 1 to 3 actions per action set. For each rule set, we run the

algorithm several times to extract a mean of the running times. The testbed

machine is an Ubuntu Linux virtual machine, equipped with 2 GB of RAM

and running on a dedicated cpu-core of an Intel CPU E7600 @ 3.06GHz.

The execution times are shown in figure 5.6: our first implementation is pro-
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Figure 5.6: Interactions detection algorithm performance with low (left) and high (right)
match sets overlapping values probability. Rules in rule set have from 1 to 10 non-widlcard
fields.

viding a linear increasing of the execution time with the growing of the rule

set dimension. Moreover, the greater is the number of wildcard match fields,

the lower is the execution time. Interestingly, the current implementation

provides better performance when the number of anomalies in the rule set is

bigger (Right graph of figure 5.6).

5.2.6 Use cases

The algorithm and the interactions definition we provided in this paper can

be used as a basis for OpenFlow network development methodologies and for

tools targeted at aiding OpenFlow network programming, analysis, switches

management and optimization, etc.. In this section we briefly describe some

possible applications, then, we present a concrete use case. During the de-

velopment of an OpenFlow application, the IDA can be used as debug tool

to verify the interactions among rules installed in a switch. In the sim-

plest cases, it can point out rules duplications and redundancies, reducing

any overhead in the developed application, or it can detect unexpected rules

interactions that would lead to the wrong handling of some traffic flows.

IDA could be also integrated in advanced controller platforms as a mean to

analyze rules in order to provide some forms of automation in rules man-

agement. E.g., rejecting duplicated rules, reordering rule priorities to avoid
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Table 5.2: OF-Switch installed rules

# Matching criteria Priority Actions
DL DST DL TYPE NW SRC NW DST

1 MACrouterA IP * identifier 200 set NW DST: locator; out: PORTrouterA
2 MACx IP locator * 200 set NW SRC: identifier; out: PORTx

3 MACrouterA * * * 100 out: PORTrouterA
4 MACx * * * 100 out: PORTx

shadowing, rule splitting to avoid redundancy and correlation, etc.. An ad-

vanced controller would require more work on the semantic part of the rules

management, but the interactions detection algorithm is the enabling tech-

nology to analyze rule interactions. A different application would be the use

of IDA to compare a rule against a set of rules that is used as an admis-

sion control policy. Specifying the allowed interactions with the given policy

rule set, a rule can be checked to be admitted or not. Complex policies can

specify which operations are allowed on which flows, using properly speci-

fied rules set and allowed interactions. As last application example, the IDA

can be used to optimize the rules installed in a switch. Rules can be checked

against other rules to find interactions, and, in case, they can be rewritten

to split or aggregate them for a better use of the switch hardware resources

(E.g., some switches have multiple tables with different properties to install

rules). Clearly, we presented only a few examples of possible IDA exploita-

tions. In the following part of this section we briefly introduce a concrete

application for the development of a real OpenFlow network application.

Extending an OpenFlow application

Follow-Me Cloud (FMC) is a technology, developed at NEC Laboratories Eu-

rope, that provides mobility features in a TCP/IP network for both users and

services, maintaining all the ongoing network connections active. FMC is ap-

plied to a TCP/IP network in which L2 access networks are connected to a

“core” network, that provides connectivity among them, through OpenFlow-

enabled switches (OFS). To provide mobility to a mobile node (MN) that is

changing its access network from an “home” to a “foreign” network, FMC

requires that a new IP address, belonging to the foreign network, is assigned

to MN to work as “locator”. The original IP address of MN, that belongs to
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the home network, is still used by MN itself and by any node that is commu-

nicating with MN, since it works as “identifier”. When a network node (we

call such a node correspondent node or CN in short) sends a packet to MN,

it uses the identifier address as destination address. The OFS connecting

the CN’s network (CNet) to the core network performs an address transla-

tion, to substitute the identifier with the locator address. When the packet

reaches the foreign network, the OFS at the edge of such network performs

a new translation, substituting the locator with the identifier, in order to

deliver the original packet to the MN.

The current FMC implementation uses NOX [55] as controller platform.

To make deployment of FMC in a TCP/IP network as easy as the place-

ment of OFSes at the edge of L2 access networks, we decided to extend an

OpenFlow learning switch application with FMC functionalities. A learning

switch (LS) application provides Ethernet Switch functionalities, by learning

MAC addresses and associating them with switch ports. LS installs proper

OFRs to forward to the correct port a packet with a given destination MAC

address. Rules 3 and 4 from table 5.2 are a typical example of two rules in-

stalled by the LS application, to provide connectivity among a node X and

the gateway of the X ’s network (routerA). OFSes are controlled by the learn-

ing switch application, ensuring traditional TCP/IP operations, while only

the flows directed to mobile nodes are handled by FMC-related OFRs. As

an example, the addition of FMC to a CNet’s OFS requires that a destina-

tion address translation is performed on any flow destined to an identifier

address. At the same time, a source address translation must be performed

on any flow with locator as source network address (See rules 1 and 2 from

table 5.2). We have to ensure that FMC-related OFRs are not shadowed by

LS-related OFRs. Our FMC implementation uses the interactions detection

algorithm to guarantee that newly installed rules are always involved in a

generalization interactions with LS-related OFRs, i.e., LS-related OFRs are

generalizing FMC-related OFRs. The algorithm has been integrated into the

FMC OpenFlow Controller and it is used as a runtime tool, to define the re-
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quired priority value to assign to newly generated OFRs, and as debug and

validation tool, to check the absence of shadowing interactions into switches.

5.2.7 Conclusions and future work

In this section we presented a formal definition for the interactions of Open-

Flow rules installed in a OpenFlow Switch, an algorithm for the automatic

detection of such interactions and we showed how the algorithm has been used

to develop a real OpenFlow application. Furthermore, we evaluated our pro-

totype implementation of the proposed algorithm to understand the actual

applicability in other real-word scenarios. Our evaluation shows that the di-

mension of the managed rule set can limit the applicability of the algorithm

as a runtime tool for the definition of a complex management policy, since

the execution times, when the number of rules is in the order of thousands,

can negatively affects the network performance. Anyway, the algorithm is

well suited for the development phase of OpenFlow applications, e.g., as de-

bug tool, or in applications where the number of managed rules per switch

is no more than a few hundreds. In future work we plan to improve the al-

gorithm execution times by exploiting, e.g., smart ordering of rules or rule

set reduction strategies. Moreover, we are looking for the application of the

algorithm to real-world applications in order to validate and extend the rule

interactions definition we provided.



Chapter 6

Towards service oriented
networks

With networks mainly used to access services, the current Internet model

based on communicating processes could be limiting and not efficient. In

this chapter, we introduce how to build a network oriented to services with-

out changing the current networking infrastructure. The approach is based

on the simple concept of separation of network identifiers from network lo-

cators: the concept is well applied to network nodes, but it is actually also

the first step needed to decouple network nodes from the services they are

implementing, making the network identifier to be related to a service name,

whose implementation can be realized in several network nodes. The work

presented in this chapter provides the identifier and locator separation with-

out changing the current network protocol stack, by introducing SDN devices

in the network in strategic locations. Using SDN, the operations realized by

the presented solution are actually providing an overloading of the network

protocols semantic, for instance, changing the meaning of the IP addresses

fields. We present both the architecture and its design together with a scala-

bility analysis, moreover, we introduce the implementation details and a first

performance evaluation of sensible metrics.
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6.1 Follow-Me Cloud

6.1.1 Introduction

Rich media services that may be accessed anywhere are expected to play a

significant role in the mobile apps environment in the next few years, due

to their ability to generate significant revenues. These applications have be-

come technically feasible thanks to the ubiquitous availability of multimedia

devices and broadband connectivity. Nonetheless, the ability of provisioning

such services to large numbers of mobile users is still a technical challenge for

service providers. Service provisioning, today, finds in the emerging Cloud

Computing paradigm a flexible and economically efficient solution, in par-

ticular for small and medium enterprises that do not want to invest huge

capitals for creating and managing their own IT infrastructures.

The basic tenet of cloud computing is that end users do not need to

care about where a service is actually hosted, while service providers may

dynamically acquire the resources they need for service provisioning in a

pay-per-use model. While for most of elastic web applications the relative

position of client and server end-systems does not affect the perceived Quality

of Experience, provided enough bandwidth is available in the end-to-end path

connecting clients with servers, rich interactive applications are sensible to

other communication metrics, such as delay and jitter. In the absence of

explicit QoS control mechanisms in the network, the only way to improve

Quality of Experience is to locate servers as close as possible to user terminals.

Such an approach, largely exploited by Content Delivery Networks, can be

further advanced in the era of Cloud Computing. Assuming that several

cloud-enabled datacenters are made available at the edges of the Internet,

service providers may take advantage of them for optimally locating service

instances as close as possible to their users. In such a context, mobility of

user terminals makes such location decisions even more difficult.

In this section, we present Follow-Me Cloud (FMC), a technology devel-

oped at NEC Laboratories Europe to overcome the current TCP/IP archi-
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Figure 6.1: Follow-Me Cloud Use Case

tecture mobility limitations and to support novel Mobile Cloud Computing

applications, by providing both the ability to migrate network end-points and

to reactively relocate network services depending on users’ locations, in order

to guarantee adequate performance for the client-server communication and,

at the same time, have a precise control on the use of network resources by lo-

calizing network traffic generated by applications. The FMC architecture is

based on cooperating FMC controllers located in the networks of collaborat-

ing operators. FMC controllers modify packet forwarding in such a way that

location changes of users and of services (e.g., through migration of Virtual

Machines) are transparently managed by the network infrastructure, without

any need of reconfiguring the end systems. Depending on the users’ mobil-

ity patterns, FMC control-plane decide if, when and where network services

have to be migrated.

The coarse flow of actions performed by FMC to manage a migrating

service is shown in figure 6.1. In this simplified use case, initially, a user ac-

cesses a dedicated service, e.g., a remote desktop application, in the “home”

environment (i.e., usually, his/her office or home). He/She then goes on a

trip and, while on the move, accesses the service through an app running

in a smartphone. Over time, the smartphone gets connected to the Internet

through different mobile network operators. After a change of the termi-

nal’s network attachment point, FMC may decide to trigger migration of the

service instance to a different network location, e.g. a data center, closer
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to the new network attachment point. As shown in step 3, the application

migrated to the new data center, providing the user with improved Quality

of Experience and/or reducing the service provisioning cost for the network

operator.

Follow-Me Cloud is implemented using OpenFlow (OF) [101]. It uses the

packet filtering and rewriting capabilities of OpenFlow to achieve the seam-

lessness of migration, and configures network equipment through OpenFlow

rules (OFR). OF-enabled networking equipments (i.e., switches) are there-

fore needed in the network for FMC to work. Nevertheless, OF equipments

are only needed at the edges of the network.

In this section we present how FMC achieves network end-points mobility

and our solution to solve scalability issues. Cloud services reactive relocation

strategies are not discussed here, and will be the topic of future work.

6.1.2 Related work

The idea of exploiting the live migration capabilities of modern virtualization

technologies for dynamically changing the position of a service instance on a

geographic basis has been alredy proposed in the past (e.g. in [85]). Live mi-

gration of Virtual Machines is a common practice in virtualized data centers,

in which the internal networking infrastructure may be designed as a large

single IP subnet. Migration of VMs across the boundaries of a single IP sub-

net, on the other hand, is not straightforward, as the TCP/IP protocol stack

does not provide the needed flexibility in terms of mobility support for net-

work end-points. A technique for the migration of network end-points in a

data-center environment by means of a coordinated set of agents is presented

in [21]. A first example of the application of OpenFlow to solve network mo-

bility issues is presented in [45], where OpenFlow is used to migrate VMs

among different IP subnets, using a network fully composed of OpenFlow

switches.

None of these papers present solutions to the control-plane scalability

problems that derive from the application of these techniques in large scale
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Figure 6.2: a. End-points mobility reference scenario; b. FMC distributed architecture

networks.

Other approaches, like the Locator/Identifier Separation Protocol [46]

(LISP), are based on the concept of separation among locator and identi-

fier addresses. The LISP architecture uses an “alternate topology” to dis-

tribute ID/LOC mapping information among routers in the network. LISP

does not provide mobility support natively, while it is added in its “mobility

extensions” that need direct involvement of mobile devices in the ID/LOC

mapping.

MobileIP and MobileIPv6 both enable end-point mobility, but require

direct involvement of the moving entities. On the other end, Proxy MobileIP

provides mobility without involving end-points, by placing mobility aware

proxy devices in the network. In any case, in MobileIP the forwarding of the

data packets is usually performed through tunnels and/or triangular routing

that are far less efficient in comparison to the FMC solution.

6.1.3 End-Points Mobility

Follow-Me Cloud (FMC) enables mobility of network end-points among dif-

ferent IP subnets in a TCP/IP network, both in closed environments, such as

data-centers, and on a geographic scale, maintaining all the ongoing network

communications of the moving entity active and requiring no modifications to

the involved end-points. FMC is applied to a TCP/IP network in which ac-
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cess networks are connected to a “core” network, that provides connectivity

among them, through OpenFlow-enabled switches (OFS). Current TCP/IP

network architecture uses a single address to both identify and locate a de-

vice on the network, making the network unable to support mobility natively.

FMC realizes the split of identifier and locator concepts in the edge network,

using the OFSes to enforce the splitting in a transparent manner for network

end-points. Figure 6.2.a shows a typical application scenario, with three ac-

cess networks, and explains also the names used to identify all the network

devices involved. Names are assigned from the perspective of a particular

migrating node (MN).

Using FMC, the MN can migrate from an access network A, to an ac-

cess network B, without changing it’s network configuration (e.g., IP address,

Gateway Address). From a network perspective, MN is totally unaware that

the access network on which it is residing is changed. All the ongoing commu-

nications are kept active, e.g., TCP sessions are not lost. Any correspondent

node, i.e., any node that is on an access network different from A or B and

that is communicating with MN, is unaware of the MN location change as

well. To provide this result, FMC requires that a new IP address, belonging

to the B network, is assigned to MN to work as “locator”. The original IP

address of MN is still used by MN itself and by any node that is communi-

cating with MN, since it works as “identifier”. For any migrated node, the

FMC controller (FMC-C) stores the identifier/locator mapping information,

that is used to configure involved OFSes with proper OpenFlow rules. The

outcome of FMC operations is that each packet destined to a migrated end-

point, before traversing the core of the network, is processed to substitute

the identifier address with the locator address. Then, the locator address is

substituted again with the identifier address, before the packet is delivered

to MN. A similar address translation is performed on the source address of

packets sent by MN. Hence, the identifier address is used to send/receive

packets in the edges of the network, while the locator address is used in

the core of the network, to forward packets to the correct location. Border
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devices, i.e., OFSes, are in charge of performing the identifier/locator and

locator/identifier translations.

6.1.4 Scalability

FMC uses OpenFlow to provide transparent identifier/locator (ID/LOC in

short) splitting, introducing some OFRs to support the redirection of pack-

ets to the new location of a migrated node. Even though the used approach

is trying to be lightweight, requiring no modifications to the traditional IP

routing, when a migration happens, several entities are involved in commu-

nication at the network control plane. In particular, FMC controllers need

to coordinate their activities, and various OFSes need updated forwarding

rules.

In this section we are aiming at assessing the scalability of FMC. Our

work is mainly focused on evaluating scalability from the perspective of the

number of managed OFRs. We see two main issues: (i) how many rules

need to be installed on a particular OFS, and (ii) how many rules must

be managed by the FMC controllers. We define the former as a data-plane

scalability issue and the latter as a control-plane scalability issue. Data-plane

scalability affects the ability of applying FMC when an OFS is involved in

many IP address migrations, i.e., when a large number of rules must be

installed. An OFS has limited capacity in the number of rules it is able

to support, that means, from FMC perspective, that there is a limit on the

number of concurrent migrations that can be provided for the network served

by that switch. Even if this issue can be a serious problem, and it is worth

to be investigated, for the purpose of FMC we assume that it is solvable

using a careful partitioning of the network, i.e., reducing the dimension of

the network served by a single switch. Clearly, using this scale-out approach,

we are adding more network devices, hence, we are potentially increasing the

work load on the control-plane.

Control-plane scalability is, in fact, related to the number of devices and

to the total number of OFRs that must be managed by FMC controllers. The
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number of devices is strictly dependent on the network dimension and on the

partitioning level we are applying, e.g., to solve the data-plane scalability

issue. The total number of rules is instead directly dependent on the total

number of concurrent IP address migrations. To evaluate the total number

of generated rules we use the simplistic assumption that there is only one

centralized FMC controller1. Moreover, we assume that this controller knows

in advance on which OFSes rule installation is needed. This way we are able

to evaluate the number of rules needed for the packet forwarding redirection,

without taking into account implementation-dependent rules. The number

of generated rules for the i-th IP address migration is:

(6.1) Ri = rhsi + rfsi +

j

rcsij

where rhsi and rfsi are the number of rules installed at the home switch (HS)

and foreign switch (FS) for the i-th IP address migration, and rcsij is the

number of rules installed at the j-th correspondent switch that is exchanging

packets with the i-th migrated IP address. The number of rules for each

migrated IP address is given by the following formulas:

(6.2) rhsi = α +Hi

(6.3) rfsi = β + Fi

(6.4) rcsij = γ + Cij

The variables Hi, Fi and Cij represent the number of nodes from home,

foreign and j-th correspondent networks that are exchanging packets with

the i-th migrated IP address. The constants α, β and γ are the fixed number

of rules required by FMC for packet redirection per migration2. The total

1The OpenFlow architecture actually suggests a centralized approach to the network
control-plane development, through the use of a centralized OpenFlow controller that is
connected to a number of OFSes.

2In the current implementation α = 3, β = 6 and γ = 3
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number of OFRs managed by the FMC controller is the sum over i of the

rules as expressed in (6.1), plus some rules installed once for each HS or FS:

(6.5) R = 2N +

i

Ri

where N is the total number of HSes (and since one FS corresponds to each

HS, it is also the total number of FSes) involved in IP addresses migrations.

From equations (6.1) and (6.5) it is clear that the number of rules is directly

proportional to the number of concurrent migrations, and to the number of

nodes on the HN, FN and CNs that are exchanging packets with migrated

addresses.

6.1.5 Distributed Controller

Providing scalability at the control-plane is a key requirement to make FMC

usable in large-scale networks and it is the focus of the work presented in

this section. Our aim is to enable the balancing of the FMC operations

load among a number of FMC controllers, actually building a FMC dis-

tributed controller. Building a distributed controller provides a twofold out-

come: apart from scalability, it adds also the flexibility and the distribution

of responsibilities required to enable the use of FMC functionalities across

administrative boundaries.

The design of the distributed controller follows the principle of distribut-

ing knowledge to where it is actually needed. In our case, the needed infor-

mation at a particular controller is the identifier/locator mapping for a given

network entity, while the controllers that need to know about this mapping

are the ones that are controlling the HS, the FS and CSes. To manage this

information and to distribute it among controllers, we designed the archi-

tecture depicted in Figure 6.2.b. With respect to the migrating node, we

identify three different roles among FMC controllers: Home Controller (HC)

that controls the network to which the identifier address belongs to; For-

eign Controller (FC) that controls the network to which the locator address

belongs to; Correspondent Controller (CC) that controls one or more CSes.
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The architecture is flexible enough to enable a single controller to play

one, two or all the roles for the same migrating node, e.g., because the same

controller is in charge of managing multiple networks. This approach also

offers the possibility to adapt the number of controllers used in the network,

in order to tackle the actual network load: it is possible to use a scale-

out approach, increasing the number of access networks, and consequently

reducing the number of nodes per access network. Then, each controller is

assigned a number of access networks to manage (the range is from one to

all the access networks), with the aim of sharing the overall load.

Since the MN’s identifier address belongs to a network managed by HC,

this controller is always involved in any MN migration, making it a good can-

didate to be an “authoritative” repository for the MN mapping information.

HC has therefore been selected to be in charge of managing the mapping

information for the MN while it is away from its home location.

When MN migrates to a foreign network (FN), the HC is notified about

the migration and informs the FC that MN is migrating to a network that

FC itself is managing. Since FC is in charge of managing the network to

which the locator belongs to, we leave to FC the responsibility to generate

the locator address for MN3. Once the locator is defined, it is sent back to the

HC so that both FMC-Cs have the complete information about the ID/LOC

mapping to perform the required configurations.

So far, just HC and FC are informed and configured to support the mi-

gration. Eventually, a CC will need the information about the ID/LOC

mapping, because some end-points connected to CSes are trying to establish

communication with MN. While in the case of HC and FC we know which

are the HS and FS, since they are source and destination of the migration, we

do not have this information for the CSes. At any point in time, a network

entity can be involved in a communication session with MN, and, differently

from what we did in section 6.1.4, we are not assuming to know in advance

3How the locator address is actually obtained is out of the scope of this work, anyway,
it is possible to interact with a network management system, or with a DHCP server to
easily generate it.
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Figure 6.3: Overviuew of the eactive update of the identifier/locator mapping at the CC.

who is going to start this communication. To handle this issue, our archi-

tecture uses a reactive approach: once a new communication with a CN is

established, the involved CC is updated properly. We have to distinguish

two cases: (i) the correspondent node starts the communication, and (ii) the

migrating node starts the communication.

In the first case, when the CN sends a packet to MN, it always uses the

identifier address as the packet’s destination. Since the CS does not know

yet about the updated ID/LOC mapping, it performs no rewriting on the

packet, which is therefore forwarded along the route to MN’s home network.

Once the packet reaches the HS, it is intercepted and a message to update

the ID/LOC mapping at the CC is sent. The packet is then forwarded by

substituting the identifier with the locator, using triangular routing. Figure

6.3 shows an overview of the operations, while figure 6.4 shows the details of

the interactions among HC and CC.
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Figure 6.4: Reactive update of the identifier/locator mapping at the CC.

We point out here that it is necessary to store the information of which CC

has been updated with the ID/LOC mapping information, since subsequent

migrations will trigger an update for all the stored CCs. Otherwise, packets

generated by CNs will continue to be directed to the old MN’s location.

In the second case, when MN starts the communication with a CN, we

have to take into account that the FS is already applying the ID/LOC map-

ping. Since, on the other hand, the CS does not know yet about the ID/LOC

mapping, the packet would reach the CN using the locator address as source,

then, CN would use the locator address to talk with the migrated node. If

no more migrations happen for MN, there are no problems with this behav-

ior, but, if a new migration happens, then the locator changes, hence, the

communication with CN is lost.

Because of this issue, we should ensure that any entity always uses the

identifier as destination address. To provide the afore mentioned property,

FC has to intercept any packet that is sent by the migrated node and is

destined to a CN, whose network’s FMC controller is still not updated about

the ID/LOC mapping for MN. This way, FC is able to send updated ID/LOC
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information for MN to CC. It is worth to note that the FC does not inform

HC about updated CC while MN is still located in its administrative domain.

Instead, FC maintains a local list of updated CCs that is sent back to HC

when a new MN migration happens.

When MN migrates back to its home network, or to a new network, all the

ID/LOC mapping information distributed at different FMC controllers are

no longer valid. As for any other MN migration, when HC is informed that

MN is migrating, it updates the “old” FC about the MN location change.

During this interaction, FC sends its local list of updated CC to HC. Then,

HC updates the ID/LOC mapping information on any previously updated

CC.

6.1.6 Evaluation

We tested our prototype implementation both on a Mininet[75] testbed and

on a physical testbed equipped with NEC OpenFlow switches. With regard

to the scalability of the distributed architecture, to evaluate the total number

of rules we have to modify the rfsi expression, substituting the definition given

in (6.3) with the following formula, to take into account the reactive update

of ID/LOC mapping information:

(6.6) rfsi = δ + Fi + Ji

where Ji is the number of CNets exchanging packets with the i-th migrated

node, and δ is a fixed number of OFRs.

In figure 6.5 a comparison of the number of rules managed in the case of

a centralized FMC controller is compared to the number of rules managed by

the most loaded FMC controller of the distributed architecture, i.e., the FC.

The number of rules is evaluated for one migration, with a linearly increasing

number of nodes that are exchanging packets with MN and that are located at

home networks (HNs), foreign networks (FNs), and correspondent networks

(CNets).
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Figure 6.5: Number of rules managed by centralized FMC-C and FC, for one migration.

Figure 6.6: Number of “long distance” messages sent or received, for one migration.

Taking into account also the OFRs installation time, we have to consider

the issue that arises when an FMC controller is located far away from the

switch it is controlling, since the network delay has to be added to the instal-

lation time. Distributing the architecture enables a better and faster handling

of rules installation: even if FMC-related rule installation still needs to face

some network delays because of the coordination among the controllers, the

majority of actions are performed locally at the controller, that is typically
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placed close to the network it is controlling.

Assume a scenario in which managed networks are far apart and further

assume that a single centralized controller is placed near the FS which is the

switch that requires the most rule installation messages. With this deploy-

ment, any message exchanged between the controller and HSes/CSes expe-

riences high delay. In the distributed architecture, instead, only inter-FMC

controllers messages experience high delay. The number of required “long

distance” messages is linearly increasing with the number of nodes in HN,

FN and the number of CNets, as shown in figure 6.6. The figure compares

the centralized FMC controller case to the FC of the distributed architecture,

in the worst case (i.e., when FC is in charge of updating CCs).

6.1.7 Conclusions and future work

In this section we introduced Follow-Me Cloud, a technology that provides

mobility features in a TCP/IP network for both users and services, using

OpenFlow-enabled equipment at the edges of the network. We presented

the implemented mobility technique, the distributed architecture used to

support the operations and an early scalability evaluation of the developed

prototype. The current implementation and developed test-beds provide a

solid base for further research and development. In particular, the logic for

deciding when and where to migrate services to needs to be realized. In

addition to the original use case of supporting mobile users, it turned out

that FMC technology can be used for other scenarios as well, including the

general problem of cross-operator service migration and the migration of core

mobile network components. These are just two examples of potential use

cases for Follow-Me Cloud technology, highlighting its applicability in many

domains.
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6.2 Implementing FMC

6.2.1 Introduction

Software Defined Networking (SDN) suggests the separation of control and

data planes, providing well defined interfaces among them, in order to enable

flexible configurability and programmability of the network. Programmabil-

ity is one of the characterizing properties of Software Defined Networks: the

control-plane behavior can be defined writing “network programs” that man-

age a set of switches, providing rich network applications and features. In

some way, SDN is bringing into computer networks the same shift that in

past decades electronic devices had from special purpose machines, to general

purpose ones. With SDN, the current special purpose network can become a

general purpose, hence programmable, network. Programmability, in a new

context like computer networks, calls for new programming models, tools

and languages. In this sense, to continue with the general purpose com-

puter metaphor, SDN are still in the “machine language” phase, where the

programming languages are rudimentary, strictly connected to the hardware,

and the main part of network programming is still performed manually, with-

out the aid of any tool. The potentially increased complexity, paid to gain

in flexibility, can be tamed by using appropriate abstractions and method-

ologies, as it happens in the software engineering field. Methodologies, ab-

stractions and tools have to address the complexity taking into account, at

the same time, classical networks issues, such as scalability.

OpenFlow is one of the most popular SDN-enabling technologies. Open-

Flow was born as a means to enable network experiments on campus networks[89],

and its first deployments were actually universities’ networks. Over time, the

advantages of an SDN approach to networks have been explored, leading to

applications of OpenFlow to other environments, such as enterprise networks,

as in the OpenFlow implementation of the Ethane architecture for network

security[32]. More recently, OpenFlow has been also applied to challeng-

ing scenarios like datacenter networks[141] and wide-area networks[69]. The
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Open Networking Foudation [104] (ONF), that is responsible for the Open-

Flow specification, currently involves a number of academic and industrial

partners. An increasing number of device manufacturers have implemented

OpenFlow in their products and Google recently declared the adoption of

OpenFlow in its networks[150].

This work presents a practical experience in developing the distributed

OpenFlow controller for supporting Follow-Me Cloud (FMC)[22]. We intro-

duce the problems we faced in developing the FMC controller and the solu-

tions we adopted in terms of programming methodology and abstractions. In

particular, we highlight the scalability issues to be taken into account while

developing a controller, how our design describes the network through an ob-

ject model and handles operations to provide scalability and extendability.

6.2.2 Follow-Me Cloud

There are several issues to be solved in order to make FMC usable. In

particular, (i) FMC must scale with the number of users and migrations4,

and (ii) must be easily deployable in traditional networks.

Scalability is provided by a distributed architecture. The design of the

distributed architecture follows the principle of distributing knowledge to

where it is actually needed. The needed information at a particular network

is the identifier/locator mapping for a given network entity, while the net-

works that need to know about this mapping are the ones that are connected

to the core network through the Home Switch (HS), the Foreign Switch (FS)

or Correspondent Switches (CS). To manage this information and to dis-

tribute it among networks, FMC uses the architecture depicted in Figure

6.2.b and described in paragraph 6.2.2. With respect to the migrating node,

we recall that the FMC architecture comprises three different roles: Home

Controller (HC) that controls the network to which the identifier address

belongs to; Foreign Controller (FC) that controls the network to which the

locator address belongs to; Correspondent Controller (CC) that controls one

4Scalability of FMC is discussed in [22]
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or more CSes. The architecture is flexible enough to enable a single controller

to play one, two or all the roles for the same migrating node, e.g., because

the same controller is in charge of managing multiple networks. This ap-

proach also offers the possibility to adapt the number of controllers used in

the network, in order to tackle the actual network load.

To make deployment of FMC in a TCP/IP network as easy as the place-

ment of OFSes at the edge of L2 access networks, FMC managed OFSes pro-

vides traditional switching functions in addition to FMC ones. E.g., OFSes

work as Learning Switches (LS), i.e., they learn MAC addresses and asso-

ciate them with switch ports. When a node migration has to be handled, the

switch extends the packet handling with FMC functions.

6.2.3 Controller design

The presented logical architecture has been implemented as a distributed

OpenFlow controller on top of the NOX[55] OpenFlow Controller Framework

(OCF), even if we believe that all the concepts can be ported to any other

OCF. In this paper, we are are referring to NOX as an OCF, even if its authors

define it as a Network Operating System (NOS) in [55]. NOX provides a set

of helper methods and APIs to interact with OpenFlow switches, while we

assume that a NOS should also provide advanced hardware and programming

abstractions. Moreover, we use the term “OpenFlow controller” to identify

the combination of an OCF with the OF applications running on top of it.

From a programming perspective, to support FMC operations, the con-

troller has to provide these features:

1. it should easily become a distributed application if needed, i.e., dif-

ferent parts of the controller should be able to be moved to different

computing nodes (in a different network location);

2. it must be extensible, providing the ability to combine different network

functions, even not FMC related;

The raw outcomes of an OpenFlow controller are Flow Table Entries (FTE)
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to be installed at switches, and network packets to be forwarded by switches,

both generated in response to network events and/or in response to high level

control operations. To accomplish such tasks providing the aforementioned

features, efficient models and abstractions must be provided. In particular,

controller design has to provide both a data model to describe the network

and its state, and a control logic programming model to interact with such

data model. The design phase has to address also the so called non-functional

requirements, e.g., performance and scalability of the implemented system.

Using again the general purpose computer metaphor, in a general purpose

computer the system behavior depends both on the hardware architecture

and on the software running on top of such architecture, likewise in Open-

Flow, it depends both on the network architecture and on the control logic

implemented by the controller. Understanding the effects brought by dif-

ferent ways of interacting with the OpenFlow network is an important step

to drive the design decisions. Hence, during the development of the FMC

OpenFlow controller, we performed a preliminary analysis of the different

dimensions that characterize an OpenFlow controller. We refer to this di-

mensions as “Control Logic Dimensions”.

Control logic dimensions

In OpenFlow the actual control plane behavior is defined by the Controller.

Given the flexibility of the OpenFlow approach, we can try to perform an

high level classification of the characteristics of different control logics, iden-

tifying coarse-grained dimensions to classify such applications, the same way

computers’ programs are classified as CPU-bound, I/O bound and so on.

• Flows Granularity: defines the granularity of the network flows man-

aged by the control logic. The granularity is defined after the header

fields of current data packets. For example, a flow identified by the

solely destination MAC address is coarse grained, while a flow iden-

tified by the combination of IP addresses and port numbers is much

more fine grained;
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• Network Visibility: an OF application may need detailed network

traffic information or links statuses, for, e.g., load balancing or route

reconfiguration. Depending on the control logic, the quantity and fre-

quency of switches status update may vary;

• Network state: network state is related to the information the control

logic has to manage, in order to provide its functions. Typical examples

of network state are routing tables, end-points identity information,

etc.;

• Reactivity: OpenFlow provides a mean to reactively program switches,

through the forwarding of network packets to the controller. A control

plane can range from being fully reactive, when each OF table entry

is installed in response to a packet coming to the controller, to proac-

tive, when all entries are installed before network traffic arrives to the

switch.

In designing the FMC controller, some dimensions where dictated by the

mobility technique adopted in FMC, e.g., the flows granularity. The other

dimensions may vary according to the taken implementation decisions. In

particular, in the FMC implementation, we decided that we can tolerate an

increased network state to maintain at controllers, instead of increasing the

number of OpenFlow messages exchanged to retrieve the switches’ status.

At the same time, we adopted a control logic as much proactive as possible,

i.e., pre-installing FTEs when it is possible.

Hierarchical control

FMC architecture suggests a hierarchical controller organization. In FMC

the hierarchy is mainly related to the geographic locations, and, in particu-

lar, there are two hierarchical levels. A (i) local level, related to the handling

of the Learning Switch functions and low level FMC mobility technique op-

erations, and a (ii) global level, that provides a global view of the network
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and that coordinates the local levels to provide FMC functions on a geo-

graphic scale. The two levels differ for both the performed operations and

the processed data. The local level handles OFSes directly, providing FTEs

and handling network events. The global level task is to coordinate the local

levels to provide the required network functions, i.e., in the FMC case the

network addresses mobility. Hence, the global level is also the place in which

the controller north-bound interface is implemented. The north-bound inter-

face, in the FMC example, provides methods to, e.g., define identifier/locator

mappings or to request a node migration5.

Data model

The controller is built around an easily accessible view of the switches, so

that advanced functions can be defined using a common network model. We

defined the network model using an object-oriented (OO in short) approach.

The decision is motivated by the suitability of the OO paradigm for the de-

scription of network devices like OF-switches, and by the deep understanding

of the OO model by programmers, that are highly involved in the design and

management of a Software Defined Network.

The object-oriented network model is composed of the following base

classes:

• Network : contains a globally unique identifier and a set of OFSwitch

objects. It works mainly as a container for OFSwitch objects and for

network state that is related to the whole network, i.e., it is part of the

global level of the hierarchy;

• OFSwitch: is the base class used to represent and manage an OpenFlow

switch. It includes both the state of the switch, that can be used

programmatically by controller functions, and a set of methods used to

handle network events.

5In the current implementation the north-bound interface is implemented as a REST
interface that exchanges JSON serialized data.
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The network model is dynamic, OFSwitch objects are added or removed

in response to the connections initiated by corresponding switch devices.

The model is dynamic also in the sense that an OFSwitch object contains

information about the switch current internal state, such as the installed

FTEs. The implementation of the described classes can be tuned according to

the desired impact on the different Control Logic Dimensions. For example,

the OFSwitch can be designed to cache FTEs installed at the represented

switch, but can also dynamically retrieve the FTEs from the switch, i.e.,

sending OpenFlow messages.

Scalability

To provide scalability, the controller uses several Controller nodes to execute

the network control logic. At this aim, the network model is extended to in-

clude in each OFSwitch class, in addition to switch related network state,

also the related control logic. The control logic implemented in an OFSwitch

object can operate only on the switch represented by the object itself. The

network control logic, hence, belongs to the OFSwitch instances and not to

the controller as a whole. Since each OFSwitch instance contains also all the

data related to the represented switch (as explained in sec. 6.2.3), each in-

stance can be moved among controller nodes when needed. Each controller

node contains at least a Network object, that is in charge of dispatching

network events it receives from controlled switches: each event is forwarded

to the corresponding OFSwitch object, that executes proper algorithms to

handle it (See Figure 6.7). Using this programming model, distributing the

controller application becomes a problem of partitioning the OFSwitch ob-

jects among different controller nodes. The controller nodes are assumed to

be placed in locations that are near the switches they are controlling (from

the network perspective), in order to reduce the delay of controller-switch

communication. The current FMC controller implementation takes care also

of the distribution of messages destined to OFSwitch instances, that are used

to develop control algorithms that involve more than one switch, i.e., algo-
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Figure 6.7: FMC controller architecture and deployment example: network OFSes are
distributed among two OF Controller Nodes. OFSes are managed through OFSwitch
objects. The Network object dispatches events coming from switches to the correspondent
OFSwitch objects, and implements transparent communication among OFSwitch objects
hosted at different controller nodes.

rithms belonging to the global level of the hierarchy. Such communications

are handled in a way that is transparent to the programmer, using a “proxy”

object in case the OFSwitch object is located on a different OFC node. The

model provides the programmer with a clear separation of the control de-

cisions that could be taken at the single switch level (local level), from the

ones that need a broader view of the network (global level).

Extensibility

Extensibility is provided using OO paradigm characteristics, like inheritance

(See Figure 6.8.a). The OFSwitch class can be extended to provide new or en-

hanced functions, e.g, by overriding and extending methods. For example, it

is possible to provide a LearningSwitch implementation, that resembles clas-

sical L2 switches functions, and then, extending this class, other functions can

be added (e.g., the FMCSwitch class implements the FMC functions). The

main issue in providing extendability through an OO model is the paradigm

mismatch between OO programming and OF switches programming, since

the switches programming is performed by means of FTEs. Because of this,

the OO paradigm is not used to program the network itself, but to interact
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with the network devices in a (hopefully) simplified way.

The final outcomes of the execution of methods from OFSwitch class and

derivatives are a set of FTEs to be installed on the switch, and a set of packets

to be sent by the switch. The extended classes and methods, hence, are in

charge of providing a set of FTEs and network packets modified accordingly

to the desired result. This process is tricky: the addition of a FTE can

have unexpected effects on the behavior of the switch, that is defined by

the combination of all the FTEs installed on that switch. Moreover, some

packets coming from a super-class’s methods may not be sent anymore in

the extended function, and so on. We are actually handling a two levels

programming problem:

1. high-level programming is performed by using API provided by OF-

Switch classes and derivates. Programmers are in charge of defining

convenient APIs to allow the extensions of the functions they are pro-

viding in a given class;

2. low-level programming is performed by means of FTEs and packets sent

through the switch. All the high-level functions are finally translated

in FTEs and packets to be sent.

Our purpose is to provide extendability in any case, so, also when the devel-

oper of an OFSwitch sub-class is not providing methods to easily modify its

application behavior before the FTEs and network packets are generated.

To this end, the OFSwitch class provides convenient methods to perform

network events handling. For example, when a packet is forwarded from a

switch to the controller, a packet in network event is generated. The event

is handled by a specific method in the OFSwitch class, that implements the

control logic to handle the packet, and provides (i) an ordered list of FTEs to

install at switches, and (ii) an ordered list of network packets that must be

sent by the selected switches. This approach allows for the extension of the

OFSwitch class: a subclass that inherits from the OFSwitch can still use the

methods from the superclass, to get the lists of FTEs and packets to send,
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Figure 6.8: a. FMC controller object model: the basic OFSwitch class is extended to
introduce LearningSwitch functions and, then, it is further extended to introduce FMC
functions. b. FMC controller operations sequence diagram, when an Home Switch re-
ceives a packet from a not updated correspondent network: the Network object contains
information about the location of the correspondent node, hance, the related CC can be
updated with the identifier/locator mapping information.

and adjust them according to the extended control logic.

In addition to this feature, the OFSwitch class provides a dedicated

method to install rules on the corresponding OF-switch, in order to intercept

all the FTE installation requests (and network packets sending requests) be-

fore actually issuing them at the corresponding switch. Using this approach,

it is possible to introduce some extended logic that, before the actual switch

programming happens.

6.2.4 Discussion

In this section we discuss how the design we made helped us in developing

the FMC distributed controller. As stated in section 6.2.3, FMC is well

suited to use a hierarchical organization of the control logic, with a good

separation between local and global operations. The Object Oriented model

used to describe switches and networks is particularly useful at this aim.

The Network class, working as a container for a set of OFSwitch objects,

is a good place to implement the global control logic, while the OFSwitch

objects, being closely related to the network device, are in charge of handling

the local control logic. If necessary it could be possible also to provide more
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intermediate levels in the hierarchy, but for our purposes it was not the case.

Local control logic includes also the handling of local network events,

generated by switches, that are actually handled at corresponding OFSwitch

objects. This approach helped in the distributed controller implementation,

since all the local events are kept local, requiring no interactions among dif-

ferent Controller nodes. The OFSwitch class (and its sub-classes), in this

context is used both as an aggregation and filtering point for local network

events, that then are passed up in the hierarchy shaped as “high-level events”.

The implementation of such filtering and aggregation functions , i.e., the

shape of “high-level events“, is tightly coupled to the required global con-

trol logic. E.g., in figure 6.8.b the event linked to the reception, at the home

network, of a packet destined to a migrated MN is handled locally by the

HC and then translated into a high-level event, that is implemented through

the call of the set locator addr() method on the (proxy) of the FMCSwitch

object representing the CC. Using OO inheritance, The OFSwitch class can

be extended by a sub-class that implements the required filtering and aggre-

gation logic, then, the sub-class is associated with the switches that require

the application of such logic. The final outcome is the association of differ-

ent OFSwitch classes to different switches, according to the control logic we

have to implement at such switches, in an elegant and easy way.

The combination of OFSwitch sub-classes that expose an interface and

network events related to the global control logic, with the presence of global-

level Network objects made the implementation of the north-bound interface

functions straight forward. The Network object is a good place to expose

the north-bound interface, while the mapping of this interface to the low

level FTEs is made easy using OFSwitch sub-classes, that translate a set of

high-level methods in corresponding FTEs. Hence, the north-bound interface

interacts with OFSwitch sub-classes instead of having to take care of low-

level FTEs, separating the development of low level FTEs programming from

the development of high-level network functions.

While OO paradigm is really useful in providing separation of concerns
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and scalability, it does not help in providing extensibility, that still requires a

direct handling of FTEs, i.e., the function that is going to be extended must

be well known by the programmer, to correctly handle the provided FTEs.

Our design helped the extensibility by providing a mean to manipulate FTEs

before they are installed at switches. In particular, the abilities to intercept

FTEs that are going to be installed and network packets that are going to

be sent are crucial to this end. Moreover, the use of FTEs caching at OF-

Switch objects made the analysis of the actual switches behavior much easier,

simplifying both the network functions extension and controller debugging.

6.2.5 Related Work

The design of an OpenFlow controller, like the design of any software ap-

plication, requires the application of languages, methodologies/abstractions

and tools. In this section we provide an overview of available network lan-

guages, models and abstractions as implemented by OFCs, and tools to aid

OpenFlow controller development.

Programming languages

Frenetic [49] is a high-level language based on the functional programming

paradigm, that provides the programmer with an omniscient, centralized

view of the network. A run-time system, linked to the language, “translates”

the high-level instructions to a set of low-level packet processing rules, and

manages them interacting with network equipment. NetCore [95] is an evo-

lution of Frenetic, that extends the high-level language and provides some

improvement in the compilation algorithms and run-time system, trying to

speed up the network performance.

Programming Frameworks

Hyperflow[142] provides a Distributed OpenFlow Controller Framework that

separates the network in partitions. Each partition is assigned to a con-

troller instance and all the instances are synchronized by means of a pub-
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lish/subscribe mechanism. In this approach each controller instance runs

the same control logic, while the framework distributes the network events

and OpenFlow messages to the appropriate controller instance. Hence, Hy-

perFlow provides transparent scalability of the Controller. To provide its

features, Hyperflow distributes consistently the network state updates and

OpenFlow messages. Onix[72] defines a Network Information Base (NIB)

that is read and written by the control logic. The NIB is actually distributed

using different strategies defined by the developer, that chooses the storage

system type for the NIB data, according to their needs in terms of speed,

consistency and reliability. All the synchronizations and operations on the

physical network are performed through the NIB, so, by partitioning the NIB

among several controller instances, it is possible to share the overall load and

distribute responsibilities. A third approach is based on a service view of the

Controller: the control logic is implemented as a collection of services that

collaborate among them. Each service is able to run on a separate controller

instance, hence, several instances can be used to share the workload. Clearly

this approach requires a careful design of the control logic, whose implemen-

tation as a collection of services, and the way such services are distributed,

dictates the actual shape of the system[135].

Tools

To test the correctness of OpenFlow applications, NICE was proposed in [30].

NICE is a tool for automatic OpenFlow applications testing, that combines

model checking and concolic execution to explore the state space of OpenFlow

programs written for the NOX controller platform. In FlowChecker [3] the

aim is to detect OFS misconfigurations. FlowChecker uses manually built

binary decision diagrams to encode OpenFlow rules and then applies model

checking in order to detect OpenFlow switches misconfigurations.
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6.2.6 Conclusions

Software Defined Networking is a promising paradigm for future network

management, and OpenFlow is emerging as a successful industry-supported

SDN building block. In this paper we presented the design decisions and

the experience we made in developing a distributed OpenFlow controller for

supporting the Follow-Me Cloud technology. We introduced a hierarchical

view of the control operations, as well as a network model based on the Ob-

ject Oriented paradigm. Furthermore we introduced a first coarse-grained

classification of OpenFlow controller behavior in respect to a few parame-

ters, and explained how the OO paradigm can be exploited to support both

scalability and extendability of the OpenFlow controller, taking into account

the paradigm mismatch among OO model and the OpenFlow programming

model.

6.3 Handover handling

6.3.1 Introduction

In this section we present the details of the FMC handover procedure. We

perform an analytical analysis of the FMC handover operations compared to

other mobility technologies and identify key criticalities and issues.

6.3.2 Related Work

Adding mobility support to TCP/IP networks is a widely addressed research

problem. MobileIP (MIP), available for both IPv4 (MIPv4) [113] and IPv6

(MIPv6) [115] enables end-points mobility by introducing a network stack

extension for mobility in the end-points and adding two network entities:

the home agent (HA) and the foreign agent (FA). A mobile node (MN)

that changes its network attachment point, in addition to its original IP ad-

dress (called the home address), acquires a new address, the Care-of Address

(CoA), and registers this address to the HA through a binding update (BU)

message, that actually binds the home address with the CoA. The HA builds
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a tunnel to the CoA, so that any packet sent by a Correspondent Node (CN)

and destined to the home address is tunneled at HA and forwarded to the

CoA. The FA is used in MN network change detection, moreover, the CoA

can actually be the FA’s address. The HA, in this case, builds a tunnel to

the FA, that in turn decapsulates packets and send them to the MN. Mobile

IP introduces some inefficiencies in network routing, since it realizes the so-

called triangular routing, i.e., packets follow a suboptimal route when the CN

sends them, since they have to pass through the HA, while they follow a di-

rect route in the MN-CN direction. To handle such issue, Mobile IP may use

a route optimizations scheme, that sends a BU also to CNs, so that a CN can

switch the home address with the CoA before actually sending a packet to

the MN, without involving the HA anymore. In order to reduce the connec-

tivity downtime for MN during network changes, Fast-handover MIP (FMIP)

[71] has been developed. FMIP reduces handover time by pre-configuring the

involved network entities, e.g., by acquiring the CoA in advance, before the

network change happens. Hierarchical MIP (HMIP) [137] further extends

MIP to reduce the required signalling, by introducing a hierarchy in MIP.

A new network entity, the mobility anchor point (MAP), manages MN mo-

bility in a local domain. Each MAP is associated with a local domain, that

comprises several networks. In HMIP, a MN is actually associated with two

CoA, the Regional CoA (RCoA), that identifies the current MN’s MAP and

the Local CoA (LCoA), that locates the MN in the local domain. When the

MN changes a network inside a local domain, it just sends a BU message to

the MAP to update the LCoA. When the MN changes the local domain, it

first acquires the RCoA and LCoA, then it sends a BU with the LCoA to

the MAP and a BU with the RCoA to the HA. The final outcome of the

hierarchy is a reduced signalling traffic when the MN moves inside a local

domain. It is also possible to combine FMIP and HMIP to further opti-

mize MIP. Proxy MIP (PMIP)[56] avoid the direct involvement of the MN

in local mobility operations, i.e., to allow transparent MN migrations among

networks in the same local domain. PMIP uses a network entity called Mo-
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bility Access Gateway (MAG) that performs MIP interactions on behalf of

the MN, hence, the MN is unaware of the CoA, that is instead acquired by

the MAG. In case the MN migrates over local domain boundaries, it has to

be still involved in mobility handling operations.

MIP supports end-points mobility by providing identifier/locator con-

cepts split, i.e., the home address works as identifier (ID) for the MN while

the CoA works as locator (LOC). Other approaches provide ether end-points

mobility or ID/LOC split. Locator/Identifier Separation Protocol [46] (LISP)

provides separation among locator and identifier addresses, using an “alter-

nate topology” to distribute ID/LOC mapping information among routers

in the network. LISP does not provide mobility support natively, while it

is added in its “mobility extensions” that need direct involvement of mobile

devices in the ID/LOC mapping. The Host Identity Protocol (HIP) [96] pro-

vides a similar splitting of ID and LOC concepts, but instead of reusing the

already defined IP address space, it defines a new address space for identifiers,

based on cryptographic (asymmetric) keys. Also in the HIP case mobility is

provided as an extension to the base architecture. Interactive Protocol for

Mobile Networks (IPMN) [153] provides mobility support without defining

identifier addresses, changing transparently MN’s address on-the-fly at nodes

involved in the network communications. IPMN uses a paradigm called In-

teractive Transparent Networking to hook into the TCP stack of network

end-points, in order to define a new TCP connection message that informs

the correspondent node about address changes, and to transparently substi-

tute IP addresses used by TCP into operating system’s network sockets.

6.3.3 Follow-Me Cloud

FMC services are implemented through a distributed architecture of network

entities called Controllers. To manage ID/LOC mapping information and to

distribute it among networks, FMC uses the architecture depicted in Figure

6.2.b. When a MN changes its network attachment point, an external entity
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Figure 6.9: FMC Handover Procedure

detect the movement6 and triggers the HC to start an handover procedure

(Fig. 6.9). HC is provided with information about current MN’s IP address,

i.e., the ID, and on which network MN is moving to (we call such a network

nFN). HC sends a message to the FC in charge of managing nFN (the nFC),

in order to obtain a LOC address to create a new ID/LOC mapping. nFC

sends the generated LOC address back to HC, so that both controllers can

configure the OpenFlow Switch (OFS) located at respective networks. If the

MN was already migrated to a FN (the oFN), the controller in charge of

managing such network (the oFC) is informed by HC of the new migration.

oFC answers HC sending a list of the CCs that requires updated ID/LOC

mapping information as well. In the last step, HC informs CCs, that in turn

set up OFSes located at their networks.

6The definition of such a service is out of the scope of this paper. It could be, e.g., a
network stack’s layer 2 service
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Table 6.1: Delay Variables

Variable Description Expression Default Val. (ms)
TL Local delay 1

THN−oFN HN < − > oFN 10
THN−nFN HN < − > nFN 15
THN−CNet HN < − > CNet 20
TnFN−CNet nFN < − > CNet 20
THC−oFC HC < − > oFC THN−oFN 10
THC−nFC HC < − > nFC THN−nFN 15
THC−CC HC < − > CC THN−CNet 20
TMN−HA MN < − > HA TL + THN−nFN 16
TMN−CN MN < − > CN 2TL + TnFN−CNet 22

TMN−MAP MN < − > MAP 2TL 2

6.3.4 Handover analysis

To analyze handover performance and compare it with other mobility tech-

nologies, we considered the case of a Mobile Node (MN) moving from a

Foreign Network (called oFN) to a new FN (called nFN). Our evaluation

assumes that the time to exchange messages among different entities is the

characterizing factor for handover performance. It is worth to note that we

are not taking into account other factors, e.g., movement detection time or

IP addresses acquisition time, since we consider such times not being part of

the core mobility technique, i.e., some approaches can be applied to different

technologies, e.g., FMIP concepts can be easily ported to FMC. Since the

mobility technologies presented in section 6.3.2 behaves differently in local

and global mobility cases, we perform our analytical evaluation separating

the global case from the local one. Fig. 6.10 presents a simplified view of the

network that includes the entities adopted by considered technologies to pro-

vide mobility, and introduces variables names used to identify the network

delays among the different entities. Network delays experienced by messages

exchanged in the network, for the considered technologies, can be obtained

summing the presented variables, as explained in table 6.1. Our evaluation

has been performed considering 5 different scenarios. In each scenario a sin-

gle variable changes its value in a given range, as shown in table 6.2, while

the other variables remains fixed to the default values presented in table 6.1.

We compared FMC to MIP, HMIP and IPMN. MIP and HMIP are taken

into account being standard technologies to provide mobility that do not re-

quire significant modifications to the current network architecture (e.g., LISP
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Figure 6.10: Graphical representation of delay variables presented in Table 6.1

Table 6.2: Analysis Scenarios

Local HN-oFN HN-nFN HN-CNet nFN-CNet
Range 1-10 10-55 15-60 20-65 20-65

Scenario # 0 1 2 3 4

would require an “alternate topology“), while IPMN was selected since it is

a technology that provides mobility without requiring intermediate network

entities. We computed handover times summing the delays of the messages

sequence required by each technology to perform the process (See table 6.3).

The results of our performance comparison are presented in figure 6.11. The

graphs show that technologies are not homogeneous in the way they perform

in respect to changing network delays. FMC is less influenced by local delays

(TL), since only controllers, that are placed at the edge of access networks,

are involved into the handover, but it shows poor performance when the de-

lay between HN and oFN, or the delay between HN and CNet increases. In

scenario 2 it behaves like MIP and HMIP (actually it is slightly faster), while

it is unaffected by the increasing of nFN-CNet delay.

For the local mobility case, we compared FMC only against HMIP, since

other technologies does not provide any enhancement for this specific case.

FMC architecture is flexible enough to allow a Controller to play more roles,



Handover handling 179

Table 6.3: Handover delays

Solution Formula
FMC 2THC−nFC + 2THC−oFC + THC−CC + TL

MIP 2TMN−HA + 2TMN−CN

HMIP (local) 2TMN−MAP

HMIP (global) 2TMN−MAP + 2TMN−HA + 2TMN−CN

IPMN 3TMN−CN

Table 6.4: FMC configurations

# Controller Joint Networks Formula
a HN, oFN 2THC−nFC + THC−CC + TL

b HN, nFN 2THC−oFC + THC−CC + TL

c HN, CNet 2THC−nFC + 2THC−oFC + TL

d HN, oFN, nFN THC−CC + TL

e HN, oFN, CNet 2THC−nFC + TL

f HN, nFN, CNet 2THC−oFC + TL

g All TL

hence, we assume that, in a local mobility case, the same Controller could

be in charge of managing more than one network. In FMC we will call ”local

domain“ the set of networks controlled by the same Controller. We consid-

ered the configurations presented in table 6.4. Each configuration involves

the HC, since the current FMC architecture mandates that the HC has to

orchestrate the handover. Because of this, with the exception of FMC-g,

all the FMC configurations require at least a message that passes the local

domain boundaries, hence HMIP usually performs better, since it requires

message exchanges only among MAP and MN (See figure 6.12). The sole

case in which FMC can compete with HMIP is when all the involved net-

works are under the management of a single Controller, i.e., when all the

involved end-points are in same local domain.

6.3.5 Discussion and Conclusions

FMC is a novel technology that, among other features not discussed in this

paper, adds support to mobility and ID/LOC concepts splitting in TCP/IP
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Figure 6.11: Handover delays evaluation for global mobility

Figure 6.12: Handover delays evaluation for local mobility

networks, requiring no involvement of end-points both in the global and local

cases. Other technologies we cited in this paper mandates end-points modi-

fications to provide such a feature. Since MN is not aware of its movement,

FMC requires that the HC orchestrates the movement on behalf of MN. This

architectural choice provides a different behavior in handover performance in

respect to MIP technologies. FMC uses the HC as the entity in charge of

managing the handover, in MIP and HMIP the handover is managed through

the help of the HA, while in IPMN the MN manages the handover on its own.

In particular, FMC performs better than any other technology when (i) the

local delay is big, since it does not need to directly exchange signalling traffic
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with MN. and (ii) when MN is moving to networks that are far from CNets

and the HC to CNets delay remains unchanged. On the contrary, FMC per-

formance is poor when a MN is moving far from its HN, e.g., a mobile user is

travelling, traversing several FNs. In this case, a technology that reduces or

does not require signalling messages with the HN, i.e., IPMN, outperforms

FMC. Nevertheless, handover procedure optimization strategies can be ex-

plored to improve performance, e.g., dynamically delegating some handover

operations to oFC or nFC in order to reduce signalling messages delay.

An advantage of FMC is the ability to support local mobility optimiza-

tions in a straightforward manner: FMC does not require the definition of

new network entities like in HMIP, since each Controller can play more than

one role in the architecture. In this case, all the signalling messages ex-

changed among the roles played by the same Controller are avoided, speeding

up the process. Anyway, HMIP still performs better since it avoids non-local

signalling by using multiple IP addresses. Hence, the complexity of HMIP

in managing more IP addresses is traded with better handover performance

in local domains. In one case FMC shows better performance than HMIP,

when all the roles are played by a single Controller. This property is use-

ful when FMC is applied to closed or small networks, e.g., in a datacenter

network to support Virtual Machines migrations.

In conclusion, FMC provides several features that other technologies pro-

vide in a separately, e.g., end-point transparency, ID/LOC splitting, local

mobility optimizations, avoiding, at the same time, the use of tunneling to

reduce the overhead caused by encapsulation. Moreover, the FMC handover

process still shows performance that in many cases are comparable or bet-

ter than the one experienced by other technologies. Nevertheless, there are

rooms for optimizations and enhancements, both in the global and local mo-

bility cases, that should be taken into account in FMC future developments.



Conclusions

The big number of different applications supported by the Internet makes the

design of a proper network architecture an hard task. The heterogeneity and

the fast evolution of network-related technologies require an architecture that

supports flexibility. Nevertheless, the Internet was born several decades ago,

when many requirements were unforeseen: even if the success of the original

design enabled the fast growth of the network, at the same time it has been

unable to support evolution, making the Internet an “ossified“ technology.

In this Ph.D. thesis we highlighted an evolution in the Internet commu-

nication model, from a process-oriented to a service-oriented communication

model. To this end we shown how applications can be provided using a

service-oriented model and how they, at the same time, require and enable

the use of flexible virtualized infrastructures. Based on this use case, we

solved several issues in the provisioning and management of such infrastruc-

tures, both in local and geographical contexts. Finally, using a software-

defined networking approach, we implemented and evaluated an architecture

for separating the network identifier and locator concepts in order to provide

flexible network identifiers that can be applied both to nodes and in par-

ticular to services, decoupling routing in the network form identification of

the communicating entities, and enabling the implementation of a service-

oriented communication model. In particular, we provided the following

contributions:

• We implemented two different applications following an “as a service“

model: (i) a testbed as a service system to execute automatic network-

ing experiments in network testbeds provided on demand; (ii) a GRID
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as a Service system to create and manage either GRID resources or

completely new GRID sites on demand. The two use cases show how

the network, using a service model, can be used to access even complex

infrastructures composed of several network devices. We designed and

implemented both use cases, defining the usage model and the required

abstractions.

• We defined methodologies to create and manage virtual infrastructures

composed of virtual links and virtual nodes. Three different contribu-

tions were provided in this field: (i) we designed a system for providing

isolated virtual links on top of a shared medium, supporting Quality of

Service for each virtual link, as well as emulated link properties (e.g.,

delay, loss rate), in order to enable experimentation of network applica-

tions and protocols under different network conditions; (ii) we adapted

the Lin-Kernighan heuristic to the solution of a network testbed map-

ping problem, we implemented it and evaluated our implementation,

in order to assign virtual nodes and virtual links to resources belonging

to the physical substrate; (iii) we designed a system for the fast pro-

visioning of virtual nodes using a copy-on-write method, which takes

advantage of the characteristics of the particular application, showing

how sensible improvements can be obtained when the knowledge of the

specific application is exploited.

• In order to be able to support mobility in a traditional IP network, we

designed and implemented two different methods, one that makes use

of a centralized controller entity, suitable for datacenters and localized

networks, and one that uses distributed entities exploiting a model

similar to the Mobile IP one, targeted at geographical deployments.

We applied both models to the case of virtual infrastructures mobility.

• Flexible virtualized infrastructure raise new challanges when managing

resources access and security. We provided a first study on the ap-

plicability of traditional techniques for network intrusion detection to
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highly virtualized environments like cloud datacenters, evaluating dif-

ferent architectural approaches. Moreover, we present a solution for

the management of the access to resources geographically distributed

and belonging to different authorities.

• To enable an higher degree of flexibility in the network architecture, we

explored software-defined networking solutions, providing a first coarse-

grained mean to characterize the behavior of the control logic in a

software-defined network, highlighting the effect on the scalability of

the system and introducing viable architectural solutions. Moreover,

we provided an algortihm and a tool to ease the programming of the

network, by automatically detecting interacting control actions oper-

ated on network devices.

• Finally we designed, implemented and evaluated an architecture for

the split of the network identifier and locator concepts. In addition, we

provided a control plane scalability analysis, a programming method-

ology for the network control plane, and a comparison of the imple-

mented technique in regard to the handover performance in case of

identifier/locator mapping change (e.g., in case of a network node mi-

gration).

The provided contributions show a clear path towards a new way of han-

dling network protocols and architectures: one of the aim of this work is to

provide a practical example of a design that, using the same network proto-

cols already deployed, is able to overload the meaning of the protocol fields to

provide a new semantic and to introduce a new communication model. Chap-

ter 6 accomplishes this purpose by using minor modifications in the current

network infrastructure, in order to overload of the IP address meaning, en-

abling, this way, a new communication paradigm in which the IP address

could be used as an immutable identifier, regardless of the position or of the

entity to which it is actually bond to. For instance, an IP address, when

working as an identifier, could be associated to a “service entity“, then, us-
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ing the architecture described in chapter 6, a dynamic binding to a proper

service implementation could be defined to support, e.g., dynamic service

selection or load balancing.

The presented architecture, together with the introduced studies, is a first

step towards the implementation of a service oriented networking. Future

work include the assessment of the impact of such an architecture on already

deployed protocols, such as DNS, but also the development of applications

targeted specifically to the new communication paradigm, to highlight the

benefits. Moreover, in this thesis we introduced the concept of network iden-

tifier looking at the sole IP address. We believe that extending the concept

including other fields, such as the TCP/UDP port number, requires a lit-

tle effort, but could provide even more benefits (e.g., it could partially solve

the IPv4 addresses exhaustion). Furthermore, other effects of such an archi-

tecture on more complex network dynamics, like routing table dimensions in

the core networks, are worth to be explored. For instance, we believe that

the provided separation of identifiers from locators could enable little or no

fragmentation of routes in routing tables, reducing both devices and their

management costs.

This thesis also contributed to the definition of flexible network infrastruc-

tures (see chapters 2, 4, 5), nevertheless, the path towards a flexible network

architecture is still long. In this thesis we presented the promising concept of

software-defined networking (chapter 5), but we also pointed out some of the

main concerns regarding its scalability. To be completely successful, SDN

still requires several research efforts: moving the concept of network con-

troller towards a concept of network operating system is, among the others,

one of the most interesting future works in this context. A network operat-

ing system could enable the same fast evolution we had for general purpose

computer also for networks. The creation of programming/runtime tools like

the one presented in this thesis is actually pushing into this direction.



Bibliography

[1] Vinay Aggarwal, Anja Feldmann, and Christian Scheideler. Can ISPs
and P2P systems co-operate for improved performance? ACM SIG-
COMM Computer Communications Review (CCR), 37(3):29–40, July
2007.

[2] I.F. Akyildiz, X. Wang, and W. Wang. Wireless mesh networks: a
survey. Computer Networks,, 47(4):445–487, 2005.

[3] Ehab Al-Shaer and Saeed Al-Haj. Flowchecker: configuration analysis
and verification of federated openflow infrastructures. In Proceedings of
the 3rd ACM workshop on Assurable and usable security configuration,
SafeConfig ’10, pages 37–44, New York, NY, USA, 2010. ACM.

[4] E.S. Al-Shaer and H.H. Hamed. Modeling and management of firewall
policies. Network and Service Management, IEEE Transactions on,
1(1):2 –10, april 2004.

[5] Amazon.com Inc. Amazon.com reports ddos attacks on wikileaks. http:
//aws.amazon.com/message/65348/.

[6] Amazon.com Inc. EC2 web site. http://aws.amazon.com/ec2/.

[7] Amazon.com Inc. EC2 web site. http://aws.amazon.com/ec2/.

[8] Amazon.com Inc. High Performance Computinig (HPC) on AWS. http:
//aws.amazon.com/hpc-applications/.

[9] A. Anadiotis, A. Apostolaras, D. Syrivelis, T. Korakis, L. Tassiulas,
L. Rodriguez, and M. Ott. A new slicing scheme for efficient use of
wireless testbeds. In Proceedings of the 4th ACM International Work-
shop on Experimental Evaluation and Characterization, WINTECH
’09, pages 83–84, 2009.

http://aws.amazon.com/message/65348/
http://aws.amazon.com/message/65348/
http://aws.amazon.com/ec2/
http://aws.amazon.com/ec2/
http://aws.amazon.com/hpc-applications/
http://aws.amazon.com/hpc-applications/


BIBLIOGRAPHY 187

[10] A. Anadiotis, A. Apostolaras, D. Syrivelis, T. Korakis, L. Tassiulas,
L. Rodriguez, I. Seskar, and M. Ott. Towards maximizing wireless
testbed utilization using spectrum slicing. In Proceedings of Trident-
Com 2010, Berlin (Germany), May 2010.

[11] T. Anderson, L. Peterson, S. Shenker, and J. Turner. Overcoming the
internet impasse through virtualization. Computer, 38(4):34 – 41, april
2005.

[12] M. Andic, Dejan, Ignacio M. Llorente, and Ruben S. Montero. Open-
nebula: A cloud management tool. Internet Computing, IEEE,
15(2):11 –14, march-april 2011.

[13] asterisk.org. Asterisk open source telephony project. http://www.
asterisk.org/.

[14] P. Barham, B. Dragovic, K. Fraser, S. Hand, A. Harris, T.and Ho,
R. Neugebauer, I. Pratt, and A. Warfield. Xen and the art of vir-
tualization. volume 37, pages 164–177. ACM New York, NY, USA,
2003.

[15] G.B. Barone, R. Bifulco, V. Boccia, D. Bottalico, and L. Carracciuolo.
Toward a flexible, environmentally conscious, on demand high perfor-
mance computing service. In Data Compression, Communications and
Processing (CCP), 2011 First International Conference on, pages 136
–138, june 2011.

[16] Andy Bavier, Nick Feamster, Mark Huang, Larry Peterson, and Jen-
nifer Rexford. In vini veritas: realistic and controlled network experi-
mentation. SIGCOMM Comput. Commun. Rev., 36(4):3–14, 2006.

[17] Andy Bavier, Nick Feamster, Mark Huang, Larry Peterson, and Jen-
nifer Rexford. In VINI veritas: Realistic and controlled network ex-
perimentation. In Proceedings of ACM SIGCOMM 2006, Pisa (Italy),
September 2006.

[18] Sapan Bhatia. VSys: A Privilege Allocation Tool. Technical report,
Princeton university, September 2008.

[19] Sapan Bhatia, Murtaza Motiwala, Wolfgang Mı̈¿1
2
hlbauer, Yogesh

Mundada, Vytautas Valancius, Andy Bavier, Nick Feamster, Larry
Peterson, and Jennifer Rexford. Trellis: A platform for building flex-
ible, fast virtual networks on commodity hardware. In Proceedings of
ROADS 2008, 2008.

http://www.asterisk.org/
http://www.asterisk.org/


BIBLIOGRAPHY 188

[20] A. Bianco, R. Birke, L. Giraudo, and M. Palacin. Openflow switch-
ing: Data plane performance. In Communications (ICC), 2010 IEEE
International Conference on, pages 1 –5, may 2010.

[21] R. Bifulco, R. Canonico, G. Ventre, and V. Manetti. Transparent mi-
gration of virtual infrastructures in large datacenters for cloud com-
puting. In Computers and Communications (ISCC), 2011 IEEE Sym-
posium on, pages 179 –184, 28 2011-july 1 2011.

[22] Roberto Bifulco, Marcus Brunner, Roberto Canonico, Peer Has-
selmeyer, and Faisal Mir. Scalability of a mobile cloud management
system. In To appear in Proc. of SIGCOMM workshop on Mobile Cloud
Computing (MCC-2012), 2012.
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