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A B S T R A C T

In the present Thesis, the electromagnetic properties of metal nanos-
tructures are theoretically and experimentally investigated, for appli-
cations ranging from chemical sensing to integrated optical devices.
Collective resonances of the conduction electrons occur on the sur-
face of metal particles with nanoscale sizes, if visible or infrared light
interacts with them. These resonances, usually referred to as Local-
ized Surface Plasmons (LSPs), are able to confine the incident light
into regions of sub-wavelength dimensions. The electric field in prox-
imity of the metal surface can be orders of magnitude higher than
the incident field. This effect, usually known as field enhancement, is
traditionally used to increase the cross-section of optical phenomena,
for instance the Raman scattering and the harmonic generation, by
means of specific planar aggregates of metal nanoparticles, such as
arrays and nanolenses.

In the first part of this Thesis, novel configurations of plas-
monic nanolenses are engineered in order to optimize the field

enhancement and the spectral response of the metal nanopar-
ticles, and general design rules are derived. Specifically, metal
nanostructures composed by two different interacting metals, such as
gold and silver, are studied. These devices, usually called heterostruc-
tures, feature very specific spectral properties, derived from the dif-
ferent LSP frequencies of the two metals. Their properties in pla-
nar arrangement for sensing applications are studied. Furthermore,
an optimization method is applied to the engineering of plasmonic
nanolenses. As a result, novel configurations are found that maximize
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the field enhancement in a selected probing point. The radiative cou-
pling between the metal nanoparticles is found to be under-estimated
in comparison with the near-field coupling, that was traditionally
studied in the literature. These results are experimentally validated
by surface-enhanced Raman scattering measurements.

In the second part of the Thesis, the nonlinear optical prop-
erties of metal nanoparticles are investigated, for both funda-
mental and practical purposes. Nonlinear Plasmonics is a promis-
ing field for the realization of integrated optical devices, but the
origin of the second-order nonlinearities from metal nanostructures
is not completely understood. Consequently, the relative contribu-
tions of the two main sources of nonlinearities, namely the metal
surface and the bulk, are here investigated with the main goal to
accurately design novel devices based on plasmonic nonlinear ef-
fects. First, the analytical solution of second-harmonic scattering from
metal nanospheres is developed, by expanding the fields and the
sources in vector spherical wavefunctions. For the first time, both
the bulk and surface sources are considered in a full-wave approach.
Then, second-harmonic generation measurements are performed on
gold colloids, and multipolar contributions are found to be signifi-
cant for large-size particles. The experimental results are combined
with numerical calculations, and the relative contributions of surface
and bulk sources are estimated for gold nanoparticles. Eventually,
second-harmonic generation experiments are performed on planar
arrays of gold nanoparticles, demonstrating the significant contribu-
tions of multipolar sources. In particular, their relative magnitude is
found to be extremely sensitive to the array geometry and the particle
distance.

In conclusion, in the present Thesis linear and nonlinear optical pro-
cesses from plasmonic nanostructures are investigated. General prin-
ciples for the design of plasmonic nanolenses are found. Moreover,
the relative contributions of surface and bulk second-order sources
are investigated for gold nanoparticles. Planar nanolenses and arrays
are experimentally and theoretically investigated, for both linear and
nonlinear photonic applications.
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Part I

I N T R O D U C T I O N A N D G E N E R A L F R A M E W O R K



1
B E Y O N D N AT U R A L M E D I A

Artificial media showing physical properties not found in natural
ones are generally referred to as metamaterials. In principle, a large va-
riety of physical properties can be artificially tuned, e. g. mechanical
and acoustical [1, 2]. However, the most explored metamaterials are
those involving electromagnetic properties [3, 4], ranging from the
UV to the microwave electromagnetic spectrum. The onset of meta-
materials in the scientific scenario has been catalyzed by a significant
improvement of fabrication techniques. Nowadays, a large-scale ac-
curate and reproducible patterning of a variety of materials at micro-
and nano- scale is allowed [5, 6].

In the last decades, novel chemical techniques have been proposed,
based on the spontaneous organization of elementary components
(i. e. , atoms, molecules or more complex structures) into ordered pat-
terns, by minimizing the total free energy of the system [7]. These
self-assembly processes are usually led by weak interactions (e. g. , Van
der Waals, hydrogen bonds, etc.), with respect to the the ones prevail-
ing in solid crystals (e. g. , ionic, covalent, etc.). For instance, Block
CoPolymers (BCPs) and DeoxyRibonucleic Acid (DNA) provide pow-
erful technologies for realizing regular and programmable nanostruc-
tures [8, 9, 10].

Moreover, the lithography process has been recently brought to
unexperienced levels by using electrons, instead of light, to impress
nano-patterns over a resist [11]. The typical electron energy used in
the Electron Beam Lithography (EBL) guarantees a much smaller def-
inition than that provided by traditional lithography, affected by the
optical diffraction limit. As a matter of fact, the EBL allows for the
fabrication of nano-structures with features as small as ∼ 5 nm, and
this limit is overcome year after year [12, 13].

Eventually, the discovery of novel materials has enriched the va-
riety of basic materials from which is possible to design complex
nanoscale systems. For instance, highly ordered monodimensional
(C60 fullerene), bidimensional (graphene) and tridimensional (nan-
otubes) structures based on carbon, have been shown to provide unique
mechanical and electromagnetic properties [14, 15, 16]. Researchers
are working worldwide to find the right spot for these new elements
in current technological applications [17].

In conclusion, the improvement of micro-technology and the rise
of nano-technology in the very last decades has allowed unforeseen
opportunities for the fabrication of metamaterials with engineered
properties[18, 19]. In particular, the electromagnetic response of a
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beyond natural media 3

traditional material can be changed if its structure is regularly pat-
terned with features much smaller than the incident electromagnetic
wavelength. These considerations imply that the major applications
for metamaterials are relevant at the optical, infrared and microwave
wavelengths, with engineered material structures ranging from 10 nm

to 10 cm. Therefore, a large variety of metamaterials have been de-
signed with unconventional electromagnetic properties, ranging from
negative refractive index to enhanced nonlinear response [3, 20].

One of the most impressive achievement of the metamaterial re-
search field is the control of the sign of the electromagnetic permit-
tivity and permeability, in specific spectral ranges. In 1968 V. G. Vese-
lago was the first to envision the relevance of fabricating materials
with such optical properties, and he predicted the most relevant fea-
tures [21]. In particular, for a isotropic lossless medium with electrical
permittivity ε and magnetic permeability µ, four circumstances can
happen, in relation with the signs of ε and µ, respectively: (I) ε,µ > 0,
(II) ε < 0,µ > 0, (III) ε,µ < 0 and (IV) ε > 0,µ < 0, as shown in Fig.
1.1.

Figure 1.1: V. G. Veselago’s partition of isotropic lossless media, depending
on the signs of the permittivity ε and the permeability µ.

The case (I) in Fig. 1.1 is typical of almost all naturally-occurring
materials. If we consider an e.m. plane wave traveling in these me-
dia, then the wavevector k̂, the electric field E and the magnetic field
M form a right-handed triplet. For this reason, these substances are
called Right Handed Materials (RHMs). Light reflection, refraction and
propagation in RHMs follow the well-known rules of optics, i. e. the
Snell’s law, that basically agree with the common sense. On the con-
trary, the optical response of substances falling in the cases (II),(III)
and (IV) is far from the common behavior of natural materials, and
will be described in the next paragraphs.
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1.1 plasmonic metamaterials

The substances in the quadrant (II) of Fig. 1.1 display a negative elec-
tric permittivity ε and a positive magnetic permeability µ. These ma-
terials show a plasma-like response to an e.m. field . As a matter of
fact, a plasma is a gas of charged particles, whose electric permittivity
can be expressed, under opportune hypotheses, as ε(ω) = 1−ω2

p/ω
2,

whereωp is a characteristic angular frequency called plasma frequency.
Therefore, ε < 0 for ω < ωp.

Historically, the first observation of the plasma response to an e.m.
field , was the reflection of radio waves from the ionosphere of Earth.
As a matter of fact, the ionosphere is a plasma constituted by at-
mospherical particles ionized by the sun radiation, characterized by
ωp ≈ 5 · 107rad s−1. A radio wave with lower ω than ωp, propa-
gating from the earth ground, experiences the total reflection from
ionosphere, due to the negative permittivity at those frequencies [22].

Plasma-like systems are common also in solid state physics, and
their study is called Plasmonics. In particular, it is well known [23, 24]
that the conduction electrons in metals act as charges of a plasma.
Consequently, metals display negative permittivity in a selected spec-
tral range, mostly in the visible, conferring peculiar optical behav-
ior. The main properties of electrons in metals will be rigorously dis-
cussed in Chapter 2.

The modeling and design of plasmonic metamaterials will be

the subject of the present thesis. Their application to the linear
and nonlinear optical regimes will be discussed in Parts (ii) and (iii),
respectively. The basic electromagnetic properties of plasmonic meta-
materials are now briefly introduced, and they will be examined in
depth in the next Chapters.
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Although plasmonic metamaterials can be made of a variety of ma-
terials, such as graphene [17], they are most commonly produced by
manufacturing metals at nanoscale. Metal nano-structures are vari-
ously shaped objects (e. g. spheres, rods, gratings, etc. ) with size as
small as few tens of nm, typically made of noble metals, such as gold
and silver.

Metal-dielectric interfaces can support evanescent waves (see Chap-
ter 2), propagating along the surface [22, 25, 26]. Consequently, metal
nano-structures with one dimension much larger than the incident
wavelength λ, such as nano-wires, can be coupled with these evanes-
cent fields for waveguiding applications. These wave modes, called
Surface Plasmon Polariton (SPP), are characterized by an electric field
strongly localized within a short distance from the surface, much
smaller than the wavelength. The electromagnetic properties of metal
nanostructures are strongly affected by plasmonic resonances, i. e. col-
lective oscillation of conduction electrons, occurring in the visible
spectrum. In metal nano-particles with all dimensions comparable or
smaller than λ, the electron resonances couple with the the structure
shape and the surface properties, as rigorously described in Chapter
3. In this case, the collective resonances of conduction electrons in
metal nano-structured are called Localized Surface Plasmons (LSPs).

LSPs and SPPs have gathered enormous attention from the scien-
tific community, due to the large variety of optical properties that
they confer to the metal nanostructures sustaining them. These pro-
cesses will be described more in detail in Chapter 3. In particular,
plasmonic metamaterials are used to realize super-lenses operating in
the optical spectrum. Several configuration of plasmonic nano-lenses
have been proposed, which are able to focus an incident electromag-
netic radiation far below the diffraction limit, in engineered spectral
bands. Moreover the electric field magnitude in proximity of a metal
nano-structure is higher than that of the incident radiation. The elec-
tromagnetic interaction of closed-spaced metal nano-structures leads
to extremely high values for the electric field magnitude in the gap
between them. This region is referred to as hot spot.

This effect, generally known as field enhancement, is able to boost
physical, and in particular optical, phenomena such as absorption
and scattering [27], Raman scattering [28], harmonic generation [29],
etc. . In Part ii we propose, as part of the present Thesis, novel

configurations for plasmonic nanolenses with high field en-
hancement, while in Part iii we study its effects on the second-
harmonic generation from metal nanoparticles.
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1.2 negative permeability and refractive index

1.2.1 Negative magnetic permeability

In order to hold a full control over the design of metamaterials, it
would be desirable to have a magnetic analogue of good electric con-
ductors like metals. The magnetic behavior of this ideal substance
would be similar to a magnetic plasma, with a magnetic permeabil-
ity µ(ω) = 1−ω2

mp/ω
2, with ωmp being the magnetic plasma fre-

quency. Moreover, this ideal substance should be easy to introduce in
the fabrication techniques of nanotechnology.

Unfortunately, it is not possible to find in nature a good magnetic
conductor with these ideal properties, but in 1999 Pendry et al.[30]
predicted that a splitted cylindrical structure made of an electrical
conductor media could exhibit the following magnetic permeability:

µ = 1−
fω2

ω2 −ω2
0 + iΓω

, (1.1)

where f is a geometrical parameter, Γ is related to the losses, and ω0

is the resonance frequency. In 2000, it was demonstrated that the
Split Ring Resonator (SRR) could be the basic element for these mag-
netic metamaterials, in the microwave regime [31]. In particular a SRR,
displayed in Fig. 1.2(a), consists of a ring, or loop, of a conductive non-
magnetic material, with an open end. A very common configuration
is represented in 1.2(b), with two embraced loops.

(a) (b) (c)

Figure 1.2: Split Ring Resonator with one (a) and two loops (b). Equivalent
LC-circuit (c).

The SRR can be described as a small LC-oscillator circuit shown in
Fig. 1.2(c), where the ring split is responsible for the capacitance C,
while the wire is a fraction of a magnetic coil with inductance L.

In a SRR cell, the external electromagnetic field induces rotating
currents in the loops, which in turn produce their own magnetic flux.
Since the dimensions of the structure are small compared to the reso-
nant wavelength, the response is well described by a magnetic dipole
oriented perpendicular to the plane of the SRR. Depending on the SRR

resonance properties, the induced magnetic dipole can enhance or
oppose the external field.

It has been shown that this configuration results in materials with
negative permeability, having place in quadrant (IV) of Fig. 1.1 [30].
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1.2.2 Negative refractive index

For the substances in quadrant (III) of Fig. 1.1, Maxwell’s equations
imply that the wavevector k̂ and the Poynting vector S for a propagat-
ing plane-wave are anti-parallel. This uncommon effect is equivalent
to the fact that the flow of energy and the phase velocity are directed
one opposite to the other.

It can be easily shown that, in order to take into account for this
in the definition of the refractive index n2 = εµ, where ε and µ are
the relative permittivity and permeability, it is necessary to select the
negative root of n. For this reason, the substances falling in the case
(III) are called Negative Index Materials (NIMs) [32, 4].

In NIMs the wavevector k̂, the electric field E and the magnetic field
M form a left-handed set, instead of a right-handed one, occurring
in natural materials, as shown in Fig. 1.3(b). For this reason, NIMs are
also known as Left Handed Materials (LHMs), in opposition to RHMs,
e. g. the natural ones.

E 0

H0

k 0
^

(a)

E

0H
0

k 0
^

(b)

Figure 1.3: The Electric Field, Magnetic Field and Wavevector in Right
Handed Materials (a) and Left Handed Materials (b).

Since NIMs have n < 0, the phase velocity is directed against the
flow of light, resulting in anomalous optical properties. For example,
unconventional reflection and refraction at an interface with a NIM

occur. In particular, a ray incident on an LHM from an RHM refracts
to the same side as the incident beam, with respect to the interface
normal, as shown in Fig. 1.4.

RHM LHM

Figure 1.4: Refraction of a ray from Right Handed Materials (a) and from
Left Handed Materials (b).
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NIMs allow for the realization of super-lenses. As a matter of fact,
the diffraction limit always affects the resolution of a classical lens,
through Abbe’s law d = λ/2 ·NA−1, where λ is the ray wavelength,
NA is the lens Numerical Aperture, and d is the size of the best fo-
cused spot. On the contrary, a super-lens has the power to focus far
below the diffraction limit, due to the combined effects of propagat-
ing and evanescent modes.

The simplest configuration for a super-lens is a slab of a NIM. It
is predicted that the rays from a point source in a RHM would be
focused to a point on the opposite side of a LHM slab. In particular, if
the LHM has a suitable refractive index, then it can produce a focus
with subwavelength resolution.

Super-lenses can be realized in the microwave band with standard
lithography, or in the visible spectrum with nanotechnology, allowing
the resolution of objects only a few nanometers across [33].

In the microwave regime, the elementary artificial ’molecule’ for
NIMs is the SRR coupled with a conductive wire. In fact, it has been
shown that a wire element behaves as a plasma in the microwave
frequency range. The combination of the two elements provide the
basic element for a NIM, as demonstrated in Ref. [31].
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1.3 applications

1.3.1 Optical integration at nanoscale

The telecommunication industry requires ultra-compact photonic in-
tegrated circuits in order to fulfill its strict roadmap. The photonic
devices are called to meet the requirements of their electronic coun-
terparts, and in particular the possibility to create, guide, modulate,
and detect deep-subwavelength optical fields.

Metamaterials have an enormous potential in integrated optics for
improving the performance of a variety of devices, such as modula-
tors, switches and sensors. An integrated circuit contains, on a single
compact substrate, a variety of functional components (filters, cou-
plers, modulators) that are connected with integrated waveguides.

Plasmonic metamaterials emerged in this context for the opportu-
nity to combine operational speeds and ultra-compact architectures,
rivaling electronics in both speed and critical feature sizes.

1.3.2 Enhanced Nonlinear optical properties

Metamaterials can provide optical nonlinearities far more intense then
those of natural substances. This property is accomplished mainly
because of two effects, the local electric field enhancement and the
magnetic dipole resonance, respectively.

In particular, plasmonic metamaterials are able to strongly boost
the Raman scattering (see Appendix A.7), due to the local electric
field enhancement. For instance, the adsorption of a molecule onto
a metal surface has been shown to enhance the Raman signal up
to 14 orders of magnitude [34]. In this process, called Surface En-
hanced Raman Scattering (SERS), the local field Eloc in proximity of
the metal surface is larger than the incident field Einc, by the factor
Near Field Enhancement (NFE): Eloc = NFE · Einc. Efficient SERS sig-
nals are obtained if strong NFE is excited at both the incident and
Raman-scattered wavelengths. The quality of a metamaterial as sub-
strate for SERS can be evaluated as the ratio of the SERS signal divided
by the Raman signal of the bulk molecule.

Magnetic metamaterials have been shown to provide enhanced non-
linear effects such as harmonic generation. In this case, the material
is engineered to provide a strong magnetic response due to magnetic
dipole resonance. For instance, in a SRR the unusual magnetic dipolar
mechanism becomes relevant as a result of the enhancement and the
orientation of the local magnetic fields associated with the magnetic-
dipole resonances of the SRR. Eventually, metamaterials can be used
to fabricate nonlinear-optical mirrors, in which a nonlinear negative-
index medium emits the generated frequency towards the source of
the pump [35].
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1.3.3 Imaging and lithography

In optics, the unique properties of surface plasmons can control the
light transmission through sub-wavelength apertures. The size of cer-
tain SPP configurations can be smaller than the operation wavelength,
thus offering a path to decrease the size of optical components be-
yond the diffraction limit.

1.3.4 Biology and Medicine

In chemistry and biology, plasmonic metamaterials are already used
for their sensitivity to the embedding environment. Chemical and bio-
chemical sensors based on surface plasmons are used to monitor, for
example, molecular binding events. Moreover, it has been proposed
a cancer treatment based on plasmonic effects to destroy tumors. It
is possible to inject into the bloodstream nanoparticles, with the pro-
priety to embed themselves in a tumor. If laser light is pointed at
the interested area, it would induce electron resonances. The heating
would kill tumor cells without damaging the surrounding healthy
tissue.

1.3.5 Solar cells

Plasmonic nanostructures have been demonstrated to increase the ef-
ficiency of solar cells. In particular, two main basic mechanisms have
been proposed to explain the photocurrent enhancement. The first is
the light scattering of metal nanoparticles incorporated in the cells.
The second is the local electric field enhancement, In general, plas-
monic nanostructured films can be used to confine and guide inci-
dent sunlight into the absorbing layer of solar cells. The contribution
of each mechanism depends mostly on the particle size, how strongly
the semiconductor absorbs and the electrical design of the solar cell.

1.3.6 Cloaking

Metamaterials have been theorized to produce invisibility cloak. For
instance, a cloaking device would be a thick shell constructed of
metamaterials, bending the electromagnetic radiation around its cen-
tral cavity, in which an object can be hidden. Metamaterials direct
and control the propagation and transmission of specified parts of
the light spectrum and demonstrate the potential to render an object
seemingly invisible. Metamaterial cloaking, based on transformation
optics, describes the process of shielding something from view by
controlling electromagnetic radiation. Objects in the defined location
are still present, but incident waves are guided around them without
being affected by the object.



2
E L E C T R O M A G N E T I C R E S P O N S E O F M E TA L S

The electromagnetic force is one of the four fundamental interactions
in nature. The e.m. field in vacuum is completely specified in classical
electrodynamics by the electric field e = e(r, t) [Vm−1] and magnetic
induction b = b(r, t) [T ], defined by the Lorentz’s law and satisfying
the Maxwell’s equations in empty space [22, 26]. The electromagnetic
field can propagate at a constant velocity called light speed c [ms−1],
whose value is a universal constant. For this reason, it is common the
term electromagnetic wave.

The Fourier analysis of a physically real e.m. field reveals that it
is composed by an infinity of spectral components, with diverse in-
tensity. Each component is characterized by the angular frequency
ω [rad s−1] at which e and b oscillate in time. The wavelength, de-
fined as λ = 2πc/ω [m], is the spatial period of the propagating wave.

An e.m. field composed by one single spectral component is called
monochromatic wave. An e.m. field composed by all the spectral com-
ponents in a range with the same intensity is called white light (in that
range).

104 108 1012 1015 1016 1018 1020

103 10−2 10−5  0.5×10−6 10−8 10−10 10−12Wavelength (m)

Frequency (Hz)

Radio Microwave Infrared Visible Ultraviolet X-ray Gamma rayRadiation Type

Figure 2.1: Electromagnetic spectrum from the radio-waves to the Gamma
rays. The frequency and the wavelength are specified for each
regime.

The electromagnetic spectrum is represented in Fig. 2.1. The spec-
trum of interest of the present Thesis ranges from the near Infrared
to the near UV light, where metal nanostructures show a rich set of
electromagnetic phenomena, as already introduced in Chapter 1.

11
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2.1 electromagnetism in the matter

In the present Chapter, we will consider the electromagnetic response
of metals to an e.m. field . Let us start considering the linear response
in the frequency domain of a general material to an electric field
E = E(r,ω) and magnetic induction B = B(r,ω). Then, the po-
larization P = P (r,ω) [Cm−2] (electric dipole per unit volume) and
magnetization M = M(r,ω) [Am−1] (magnetic dipole per unit vol-
ume) are induced [22, 26, 25]. Let us define the electric induction
D = D(r,ω) [Cm−2] and the magnetic field H = H(r,ω) [Am−1]

as:

D = ϵ0E +P (2.1)

H = B/µ0 −M , (2.2)

where ϵ0 [Fm−1] and µ0 [Hm−1] are the universal constant called
permittivity and permeability of empty space, respectively. For linear
achiral space-non-dispersive media:

P = P (E) = ϵ0χeE (2.3)

M = M(H) = χmH , (2.4)

where χe = χe(ω) and χb = χb(ω) are the electric and magnetic
susceptibilities. They are tensors of rank 2 and reduce to scalars for
isotropic materials.

The hypothesis of non-dispersivity in space implies that P (r)and
M(r) depend on the values of E and H only at the point in space r.
This assumption is also called local approximation.

Consequently, we can define the following constitutive relations:

D = ϵ0E +P = ϵ0ϵE (2.5)

B = µ0H + µ0M = µ0µH , (2.6)

where ϵ = ϵ(ω) and µ = µ(ω) are the relative permittivity and per-
meability of the medium, defined as ϵ = I + χe and µ = I + χm,
describing the polarization and the magnetization response (I is the
identity tensor).

With this assumptions, the differential form of Maxwell’s equations
in the frequency domain is:

∇×E = −iωB

∇×H = iωD+ J

∇ ·D = ρ

∇ ·B = 0

, (2.7)

where, J [Am−2] is the possible source current density and ρ [C−3] is
the possible source charge density. They are related by the continuity
equation:

∇ · J + iωρ = 0. (2.8)
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For the subject of interest of the present thesis, we deal with material
with negligible magnetization response M ≈ 0, resulting in µ = 1

and B = µ0H . Therefore, we can write χe = χ for the clearness of
notation.

2.1.1 Electromagnetic nonlinearities

The previous analysis is valid to describe the linear material response
to an e.m. field in the local approximation. In real circumstances, the
time-dependent polarization p(r, t) can display significant nonlineari-
ties if the amplitude of e(r, t) is high, for instance in materials excited
by laser beams. In these cases, the time-domain constitutive relation
p = p(e) is a nonlinear functional, and it is possible to expand it in
Volterra’s series [36]. In the simplifying hypothesis that the material
response is instantaneous, i. e. non-dispersive in time, we can write:

p = ϵ0(χ
(1)e+ χ(2) : ee+ χ(3) : eee+ · · ·+ χ(l) : e...e) , (2.9)

where χ(l) is a tensor of rank l + 1, called l-th order susceptibil-
ity. For the cases of interest of the present thesis, we will only dis-
cuss electromagnetic nonlinearities when the electric field e = e(r, t)
is monochromatic at frequency ω. Let us consider an electric field
e(r, t) = E(ω)(r)eiωt (a real-valued field can be obtained as Re{e(t)}
), then we can write from Eq. 2.9:

p = ϵ0(χ
(1)E(ω)eiωt

+χ(2) : E(ω)E(ω)ei2ωt

+χ(3) : E(ω)E(ω)E(ω)ei3ωt + . . .

+χ(l) : E(ω)...E(ω)eilωt)

, (2.10)

It is easy to see that each term χ(l) contributes to specific harmonic
components of p. In particular, the term χ(1) is responsible for the
linear response of the material. In general, the term χ(l) is responsible
for the response of the media at the l-th harmonic lω. These processes
are indeed referred to harmonic generation.

It is important to remark that harmonic generation is not the only
nonlinear process occurring in materials. First of all, by considering
a real-valued electric field, it is possible to demonstrate that the term
χ(2) determines a static (ω = 0) contribution to the polarization. This
process is called optical rectification. Similarly, the term χ(3) determines
a contribution to the polarization at the frequency ω. This process
is called intensity-dependent refractive index, because it modulates the
medium refractive index by the intensity of the electric field e(r, t).

Other nonlinear processes can occur in materials when the e.m.
field is not monochromatic, such as the wave-mixing. Eventually, the
electromagnetic nonlinearities can involve other physical processes,
such as a vibrational mode of a molecule in the Raman scattering.
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2.2 conduction and bound electrons

The electromagnetic response of solid conductors is generally gov-
erned by the electrons from the UV to the Infrared spectrum. If we
consider an isolated atom, the valence electrons are those in the outer-
most atomic shell, involved in the interactions with other atoms. The
valence electrons in solids satisfy the Shroedinger’s equation with
potential energy U(r) given by the interaction with the ions.

In crystals, such as ideal metals, insulator and semiconductors, the
regular arrangement of the lattice ions makes U(r) periodic. The
Shroedinger’s equation with a periodic potential energy implies that
not all the electron states, characterized by energy E and momen-
tum k, are allowed. In particular, the allowed states are arranged into
bands of energy separated by energy gaps [23, 24].

In metals, such as alkali (Li, Na) or noble metals (Cu, Ag, Au), the
highest energy band partially occupied by electrons is called conduc-
tion band. These conduction electrons are easily moved by an external
e.m. field , because in their energy band there is a high number of
available states with close values of E and k. For this reason, conduc-
tion electrons are often referred to as free.

The electrons in fully occupied energy bands are barely moved to
other states. For this reason, these are often referred to as bound elec-
trons. A bound electron can be excited from his ground state with
energy Em to an available state with energy En > Em through the in-
teraction with a photon with energy En−Em. Similarly, the relaxation
from the level En to the energy level Em occurs with the emission of
a photon with the same energy En − Em. These processes are called
interband transitions.

This Chapter describes the conduction and the bound electron con-
tributions to the electromagnetic response of media within a classical
approach.
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2.2.1 Drude-Sommerfeld model

Conduction electrons can be treated as a plasma of non-interacting
particles freely moving in the ion lattice, as done by Drude and Som-
merfeld. The case of a plasma with interactions will be rigorously
discussed later in the Chapter, with a hydrodynamic approach.

Let us consider the motion of an electron with coordinate r = r(t),
characterized by the average collision frequency ν with the ion lattice.
The second Newton’s law gives:

d2r

dt2
+ ν

dr

dt
= −

e

m
e . (2.11)

If we consider an elementary domain where n0 is the number of free
electrons per unit volume, then its net polarization is p = (−e)n0r.
In the frequency domain this leads to the following relation:

P = −
ω2

p

ω2 − iνω
ϵ0E , (2.12)

with ωp =

n0e2/mϵ0. Therefore the free electrons permittivity is:

ϵ(ω) = 1−
ωp

2

ω2 − iνω
. (2.13)

The real end imaginary parts of the permittivity of gold, according to
the Drude-Sommerfeld model, are plotted in Fig. 2.2(a), with interpo-
lated values of ωp and ν [37].
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Figure 2.2: Real and imaginary parts of the permittivity ϵ(ω) of gold, ac-
cording to the Drude-Sommerfeld (a) and the Lorentz (b) mod-
els.

According to this model, at large frequencies the gold is transpar-
ent to the radiation. For low frequencies the real part of the permit-
tivity becomes negative and losses significantly increase.

In the case where the damping effect due to the lattice is neglected,
i. e. the average collision frequency is sufficiently low, then we can
write ϵ(ω) = 1−ω2

p/ω
2, corresponding to a pure Drude model.
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2.2.2 Lorentz’s model

Bound electrons can be classically treated as damped harmonic os-
cillators around the ions, as done by Lorentz. Let us call x = x(t)

the electron displacement from the oscillator center, induced by an
external electric field e = e(t). Then, Newton’s second law gives:

d2x

dt2
+ ν

dx

dt
+ω2

0x = −
e

m
e , (2.14)

where ν is a characteristic damping frequency, and ω0 is an angu-
lar frequency related to the oscillator restoring force. If e is time-
harmonic at angular frequency ω and nL is the number density of
oscillating electrons, then the bound electron contribution to the po-
larization in the frequency-domain is:

P = nL(−e)X =
ω2

L

ω2
0 −ω

2 + iνω
ϵ0E , (2.15)

with ωL =

nLe2/mϵ0. Hence, the bound electron susceptibility is:

χ(ω) =
ωL

2

ω2
0 −ω

2 + iνω
(2.16)

Figure 2.2(b) plots the real and imaginary parts of the permittivity
ϵ(ω) of gold, with interpolated values of ωL, ω0 and ν [37]. It is
shown that the range in which the real part can assume negative
values is limited to ω0 < ω < ωL. Moreover, it doesn’t assume as
large negative values as the case of free electrons.

The bound electron permittivity would diverge for ω = ω0 if the
damping were absent, i. e. if ν = 0. Consequently, ω0 can be seen as
the angular frequency associated to the transition to an electron state
with higher energy.

From this point of view, Eq. 2.15 is unable to fully account for the
response of bound electrons, that can undergo several transition be-
tween energy levels. Consequently it is necessary to introduce one
contribution of kind 2.15 for each allowed transition:

χ(ω) =

i

ωLi
2

ω2
0i −ω

2 + iνiω
(2.17)

where the summation is over the i electron states.
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2.2.3 The Drude-Sommerfeld-Lorentz model

The permittivity of media, including the effects of both bound and
conduction electrons, can be expressed by summing the effects of
both contributions. As already noticed, one Lorentzian term is unable
to describe the correct behavior of bound electrons, and it is necessary
to consider several contributions with the Lorentzian form, one for
each transition.

Consequently, under the Lorentz’s model for bound electrons and
the Drude-Sommerfeld model for conducting electrons, we can write
the permittivity ϵ of metals as:

ϵ(ω) = 1−
ωp

2

ω2 + iνω
+

i

ωLi
2

ω2
0i −ω

2 + iνiω
. (2.18)

A comparison between the Drude-Sommerfeld-Lorentz model [37]
and experimental measurements by Johnson and Christy [38] for Gold
is shown in Fig. 2.3.
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Figure 2.3: Gold permittivity calculated with the Drude-Sommerfeld-
Lorentz model (a) and measured by Johnson and Christy (b)

The Drude-Sommerfeld-Lorentz model in unable to realistically
predict the permittivity of media at high frequencies, approximately
from the blue visible spectrum to the UV. This circumstance is due to
the fact that the bound electron response to an e.m. field is not well
accounted by a classical treatment. In particular, interband transition
needs to be taken into account in a more realistic way than a classical
oscillator.

It is necessary to extend the classical treatment by modeling the
bound electrons as quantum oscillators, in order to fully account for
the quantum mechanical effects of the energy levels discretization
[39]. However, it is worth to stress that the free electron model is
a good approximation for conductive media such as metals for low
frequencies, i. e. from the red visible spectrum to the microwave.
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2.3 metal-dielectric interface

The interface between two different media can support evanescent
waves propagating along the interface. They are longitudinal waves,
i. e. the electric or the magnetic fields have non-zero components
along the direction of propagation. Evanescent waves can be repre-
sented in the frequency-domain as Ee−ikr, where at least one of k

components is purely imaginary [40, 41]. For instance, let us consider
the configuration represented in 2.4(a). In this case the z-component
of k is purely imaginary, and the electric field E exponentially decays
along the z-direction. The wave does not propagate in the z-direction,
but along the interface, i. e. along the x-axis in the schematic.

|E(z)|

z

x

1

2

kx
+++--- +++---

(a) (b) E

1

2H kx

Figure 2.4: Evanescent wave at the interface between two different media (a).
Surface Plasmon Polariton at a metal-dielectric interface (b).

Evanescent waves propagating along an interface can result from
two main circumstances, with respect to Fig. 2.4(a):

1. Total internal reflection: the medium 1 has higher refractive in-
dex than medium 2, and a wave is impinging on the interface
from medium 1 with a higher angle of incident than the critical
angle [22, 25].

2. Negative refractive index: the medium 2 has a negative refrac-
tive index, and a wave incoming from medium 1 is coupled to
the interface by means of specific geometries, such as Kretschmann’s
or Otto’s configurations [40, 41].

The latter case describes the propagation of an evanescent wave
along the interface between a metal and a dielectric, at frequencies
below ωp. This wave is called Surface Plasmon Polariton (SPP), and it
is supported by the resonance of the conduction electrons at the metal-
dielectric interface, as illustrated in Fig. 2.4(b). SPPs are are Transverse
Magnetic waves, and they are strictly related to the possibility to con-
fine the electromagnetic radiation in subwavelength dimensions.
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Let us consider the geometry of Fig. 2.4. The electric field Ei in
both media i = 1, 2 must satisfy Helmholtz’s equation:

∇2Ei + k
2
0εiEi = 0 (2.19)

where εi is the permittivity of the medium i and k0 is the wavevector
in empty space. A similar equation must be satisfied by the magnetic
field Hi. If we assume a solution of the kind Ei(x,y, z) = Ei(z)e

−ikxx

with no spatial variations along y, then Eq. 2.19 becomes:

∂2Ei

∂z2
+ (k20εi − k

2
x)Ei = 0 (2.20)

This problem presents two sets of self-consistent solutions, namely
the Transverse Magnetic modes and the Transverse Electric modes.
It can be shown that, in the case of SPP resonances, no Transverse
Electric modes can exist [40]. For Transverse Magnetic modes, the
solution of Eq. 2.20 can be written as:

Hy = Ae−ikxxe−kzz

Ex =
−kzi

ωε0ε1
Ae−ikxxe−kzz

Ez =
−kx
ωε0ε1

Ae−ikxxe−kzz

(2.21)

for z > 0 and

Hy = Ae−ikxxekzz

Ex =
kzi

ωε0ε1
Ae−ikxxekzz

Ez =
−kx
ωε0ε1

Ae−ikxxekzz

(2.22)

for z < 0, whereA is the magnetic field amplitude and kz is a measure
of the field confinement near the interface. The following condition is
also verified:

k2x =
ε1ε2
ε1 + ε2

k20 (2.23)

From the dispersion relation in Eq. 2.23 it is possible to demonstrate
that SPPs can be induced along metal-dielectric interfaces by means of
spacial phase-matching techniques with an external excitation. For a
more detailed description of the SPPs and the coupling configurations
we refer to Ref. [40].
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2.4 electron fluid

The Drude-Sommerfeld model is able to predict important features
about the electromagnetic response of conduction electrons in met-
als. However, this model is physically unreasonable at the boundary
of a metal domain with an embedding medium, as pointed out by
Rudnick and Stern [42].

The electrons in the conduction band are more accurately described
by a hydrodynamic approach [43, 44], in which they are modeled as a
fluid of interacting charged particles. Let us assume a jellium model
for the background positive ion lattice, making the effective mass of
the electrons meff slightly different from the nonrelativistic mass in
empty space.

Let us define an elementary volume ∆Ω of an electron fluid, com-
prising ∆N electrons. Consequently, the electron number density is a
function of space r and time t: n(r, t) = ∆N/∆Ω Let us consider the
eulerian velocity field v(r, t) =


h=1 vh(t)/∆N , where the summa-

tion is over the electrons contained in ∆Ω at position r. Therefore, we
can write Euler’s equation as:

∂

∂t
(nmeffv) = −∇ · (nmeffvv) +nf , (2.24)

where f is the force field per unit volume, composed by three contri-
butions: f = fem + fd + fq. In particular:

1. fem = −e(e+ v × b) is the Lorentz’s force, where e = e(r, t)
and b = b(r, t) are the external electric field and magnetic in-
duction, respectively.

2. fd = −meffνv is a frictional force, where ν is the average col-
lision frequency of conduction electrons with the metal lattice
ions.

3. fq = −∇µ is a short-range force of quantum origin, described
by the chemical potential µ. For analogy with a classical fluid,
this term is often referred to as quantum pressure. It comprises
two contributions, one from the Thomas-Fermi theory, and one
introduced by Dirac [45].

Equation 2.24 has to be solved along with the charge continuity
equation and Maxwell’s equations in empty space to calculate the
dynamic of the electron fluid system [22, 25, 26].
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2.4.1 Steady-state solution

First, let us consider the case of an electron fluid at equilibrium (i. e.
v = 0), immersed in a homogeneous medium Ωe, as illustrated in
Fig. 2.5. The electrons are kept inside Ωi by the ion lattice, in the case
of a metal domain. In these circumstances, f = 0 is zero and e = e0
is a static field, hence e0 = −∇φ. The scalar potential is φ = 0 in Ωe

because the net charge is null. In Ωi, f = 0 implies −ee0 −∇µ = 0,
therefore φ = µ/e ̸= 0.

Ωe

Ωi

Ωe

Ωi

δ+

(a) (b)

Figure 2.5: Metal domain immersed in an embedding medium (a) and
selvedge-bulk regions near the metal domain boundary (b).

The discontinuity of the electric potential across the boundary Σ
with the embedding medium implies the presence of a charge double
layer at Σ. This double layer, extending over an infinitesimal length δ,
is generated by the metal ion lattice (discontinuous at Σ), and by the
number density of conduction electrons.

In the hypothesis that δ is not negligible with respect to the Fermi
wavelength λF, he charge double layer partially extends in Ωi. There-
fore, Ωi is divided into a domain, called bulk, where the net charge is
zero, and a domain near the boundary, with a variable charge density.
This domain in proximity of Σ, where the net charge is not zero, is
called selvedge region.

Ultimately, the bulk is the domain where quantum interactions be-
tween the electrons are negligible. The selvedge is the domain, near
the boundary, where quantum effects are significant.

The electromagnetic properties of the selvedge region are different
from the bulk region. Consequently, the electromagnetic response of
the electron fluid is strongly modified in proximity of the boundary
with an external medium, as we shall see in the next.
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2.4.2 First- and second- order response

In order to determine the system response to an external time-harmonic
e.m. field at angular frequency ω, it is convenient to expand the in-
volved scalar and vector fields as:

a(t) = a0 +

∞
i=1

ai(t) , (2.25)

where the 0-th term is the steady state solution and the generic i-th
term is the harmonic contribution at frequency iω. Therefore,given an
external field e = e1, we can determine the Eq. 2.24 for each harmonic
iω.

Let us consider the unknown p = p(t) defined by ∂p/∂t = −env,
representing the electric polarization in the electron fluid. In partic-
ular, let us derive from Eq. 2.24 the expression for the fields at fre-
quency ω, i. e. with subscript 1 of the decomposition 2.25:

∂2p1

∂t2
+ ν

∂p1

∂t
+L · p1 = ω2

pϵ0e1 , (2.26)

where ωp =


n0e2

ϵ0meff
and L is a functional depending on the quan-

tum pressure µ, as defined in Ref. [43]. Similarly, we can derive from
Eq. 2.24 the expression for the fields at frequency 2ω, i. e. with sub-
script 2 of the decomposition 2.25. Following Sipe et al.[43], we can
write:

∂2p2

∂t2
+ ν

∂p2

∂t
+L · p2 = Sp +Sf , (2.27)

where Sp = Sp(µ1) is the contribution related to the quantum pres-
sure at ω, and Sf = Sf(e1, b1) is the contribution due to the electric
and magnetic fields at ω [43, 44].

Equations 2.26 and 2.27 describe the electron fluid polarization re-
spectively at the first and at the second order in ω. They are valid
both in the metal bulk and in the selvedge region.

In particular, the electron interactions due to quantum effects are
negligible in the metal bulk (i. e. if µ = 0). Consequently, the term
L · p1 is zero and the Eq. 2.26 leads to the Drude-Sommerfeld disper-
sion relation of Eq. 2.13. On the contrary, in the selvedge region the
quantum pressure effects are significant. However, it has be shown
that the selvedge effects can be neglected when calculating the solu-
tion at the first order in ω [43].
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2.5 second-order effects in metals

2.5.1 Non-local effects: bulk nonlinearity

The interaction of a time-harmonic e.m. field E1 at frequency ω with
a metal produces a second-order polarization field P2 = P2(E1) due
to nonlinear effects. It is possible to express this dependence in mul-
tipole expansion [46, 47]:

P2 = ε0

←→χ (2ω)
d : E1E1 +

←→χ (2ω)
q : E1 (∇E1) + . . .


, (2.28)

where ←→χ (2ω)
d is a third-rank tensor describing the dipolar response

to E1, ←→χ (2ω)
q is a fourth-rank tensor describing the quadrupolar re-

sponse, and so on.
Noble metals such as gold and silver are centrosymmetric media,

and therefore the dipolar response is zero, i. e. ←→χ (2ω)
d = 0 due to in-

version symmetry. Consequently, they cannot produce second-order
nonlinear processes in the local approximation [39, 46]. In fact, they
can actually produce second-order effects because of nonlocal effects
[48]. As a matter of fact, the lowest-order nonlocal contribute is the
quadrupolar one:

P2 = ε0
←→χ (2ω)

q : E1 (∇E1) . (2.29)

For isotropic media, relation 2.29 can be expressed as [49]:

P2 = ε0

βE1∇ ·E1 + γ∇ (E1 ·E1) + δ

′ (E1 · ∇)E1


, (2.30)

where β, γ and δ ′ are phenomenological parameters depending on
the material. The first contribution in the second member of Eq. 2.30

is zero for homogeneous media (∇ ·E1 = 0).
In the framework of the fluid model of Ref. [43], the frequency-

domain solution of Eq. 2.27 in the metal bulk (where the quantum
pressure effects are negligible) is:

P2(2ω) = γ∇(E1 ·E1) , (2.31)

where

γ =
1

8

ω4
p

ω4

ϵ0
n0e

. , (2.32)

in agreement with the expression provided by Rudnick and Stern
[42]. In conclusion, it turns out that δ ′ = 0. However, δ ′ can assume
non-zero values if the collision frequency ν is not negligible.
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2.5.2 Broken symmetry: surface nonlinearity

The second-order nonlinear response of a metal has also a significant
contribution from the selvedge region, where the centrosymmetry of
the lattice is broken [42]. It is possible to phenomenologically express
the second-harmonic surface polarization as:

P2s = ε0
←→χ (2ω)

s : E1E1 on Σ , (2.33)

where ↔
χ
(2ω)

s is the surface second-order susceptibility. In the hypoth-
esis that the metal surface has an isotropic symmetry with a mir-
ror plane perpendicular to it, then the surface susceptibility tensor
←→χ (2ω)

s has only three non-vanishing and independent elements:

χ⊥⊥⊥, χ⊥∥∥ and χ∥⊥∥ = χ∥∥⊥ , (2.34)

where ⊥ and ∥ refer to the orthogonal and tangential components to
the surface (see Fig. 6.1). It is generally considered that the component
χ⊥∥∥ can be neglected [42, 50, 51, 52], therefore:

P2s∥ ∼= ϵ0χ∥⊥∥E1⊥E1∥ (2.35)

P2s⊥ ∼= ϵ0χ⊥⊥⊥E1⊥E1⊥ , (2.36)

where the subscripts ∥ and ⊥ denote respectively the parallel and
perpendicular components of the fields. The estimation of the sur-
face second-order susceptibility was phenomenologically conducted
in the 1971 by Rudnick and Stern [42], who expressed the elements
of χ⊥⊥⊥ and χ∥⊥∥ = χ∥∥⊥ as:

χ∥⊥∥ =
b

2

ϵ0
en

ω4
p

ω4

χ⊥⊥⊥ =
a

4

ϵ0
en

ω4
p

ω4
,

where a and b are phenomenological coefficients that are usually re-
ferred to as Rudnick-Stern parameters.

In 1980, the same analysis was extended to the electron fluid model
by Sipe et al.[43]. In particular, in the frame of the hydrodynamic
model, we can decompose the linear electric field in the selvedge
region as:

E1(z) = E1b +E1s(z) , (2.37)

where E1b is the sum of the incident field and the linear field due to
the currents in the bulk, while E1s is the field due to the currents in
the selvedge, depending on the distance from the metal boundary z.
We can write:

E1s(z) =

δ
0

←→
G (z− z ′) ·P1(z

′)dz ′ , (2.38)
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where
←→
G (z− z ′) is the tensor Green function of the Maxwell’s equa-

tions in empty space [22, 25, 26]. As long as the incident wavelength
λ is much larger than the Fermi wavelength λF, it is a good approxi-
mation to consider the lowest term in δ/λ in the expansion in series
of the operators L,Sf,Sp and of

←→
G (z− z ′). Moreover, it is possible

to consider only the dipole moment per unit area of the second-order
nonlinear polarization P2s in the selvedge.

As a result of the previous approximations, P2s can be written as:

P2s∥ = −
1

2

ϵ0
en

ω4
p

ω4
E1∥E1⊥

P2s⊥ =


−2
ω2

p − (2ω)2

ω2
0 − (2ω)2


1

4

ϵ0
en

ω4
p

ω4
E1⊥E1⊥

where ω0 is an effective plasma frequency in the selvedge for the
second-harmonic sources. In conclusion, following the hydrodynamic
model by Sipe et al., the Rudnick-Stern parameters are predicted to
be:

b = −1

a = −2
ω2

p − (2ω)2

ω2
0 − (2ω)2

.

Consequently, is it clear that Sipe et al.predicted a negative value for
b, while b > 0 in the discussion conducted by Rudnick and Stern.
Moreover, the model proposed by Sipe et al.predicts that the value of
a is driven by resonance effects in proximity of the selvedge plasma
frequency ω0. It is worth noticing that the calculations of the hydro-
dynamic model by Sipe et al. were confirmed by similar calculations
by Corvi and Schaich [44].



3
M E TA L N A N O PA RT I C L E S

Nanoparticles are three-dimensional structures with maximum size
less than ∼ 1 µm. They can present several shapes, such as spheri-
cal, cylindrical, triangular, etc. If one dimension much larger than the
others, they are usually called nanowires or nanorods. Nanoparticles
can be made of several materials, including dielectrics and conduc-
tors. In the present Chapter we describe the response of noble metal
nanoparticles (i. e. gold, silver, copper) to an external e.m. field .

The electromagnetic properties of noble metal nanoparticles are
strongly affected by plasmonic resonances, i. e. collective oscillation
of the conduction electrons, typically occurring in the optical range,
as described in Chapter 2. In metal nano-structures, whose dimen-
sions are comparable with the incident wavelength λ, the plasmon
resonances are affected by the shape and the surface properties of the
nano-object, as we will show later in this Chapter. For this reason, a
collective resonance of conduction electrons in metal nano-structured
is called Localized Surface Plasmon (LSP). In metal nanostructures
with one dimension larger than λ, such as nano-wires, the conduc-
tion electron resonances can propagate, resulting in a different ef-
fect called Surface Plasmon Polariton (SPP), associated to evanescent
waves propagating along a metal surface. The electric field is local-
ized within a short distance from the surface, much smaller than the
wavelength. LSPs and SPPs confer very special optical properties to the
metal nano-structure sustaining them.

In this Chapter, we first describe the electromagnetic response of
noble metal nanoparticles in the framework of the electrostatic ap-
proximation, i. e. the Rayleigh scattering, in which the incident wave-
length is assumed to be much larger than the particle size (R << λ).
Then, we introduce Mie’s theory of light scattering by spherical par-
ticle, which takes into account the effects of particle size, i. e. the re-
tardation effects of the e.m. field inside the particle. The resonance
conditions of the field are presented, along with the main optical
properties.

Eventually, the second-harmonic Rayleigh scattering of light is in-
troduced at the end of the present Chapter. The second-order non-
linear response of metal nanoparticles will be discussed in

Section iii, where a complete Mie-theory-based formulation of

second-harmonic light scattering is introduced, as fundamen-
tal part of the present Thesis. This nonlinear optical process will
be described for the first time by taking into account all the relevant
sources of nonlinearity.

26
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3.1 rayleigh theory

Let us consider the problem of scattering of a monochromatic light
from a spherical metal particle with radius R and permittivity εi(ω),
embedded in a medium with permittivity εe(ω). Let the radius be
small compared to the incident wavelength λ. Then, we can decom-
pose the incident field Einc in Taylor’s series at the particle center r0
as:

Einc(r) = Einc(r = r0) + r · ∇r′Einc|r ′=r0 +O(r
2) . (3.1)

If the particle is homogeneous, then Equation 3.1 can be rewritten as:

Einc(r) = E0
inc +

1

2
C0

incr− i
1

2
ωB0

inc × r+O(r2) , (3.2)

where C0
inc = ∇r ′Einc|r ′=r0 +(∇r ′Einc|r ′=r0)

T − 2
3(∇r ′ ·Einc|r ′=r0)I ,

I is the identity tensor, ∇×Einc = −iωBinc and E0
inc = Einc(r =

r0).
The incident field and the field inside the particle can be linked by

the electric and magnetic screening factors LEi(ω) and LMi(ω):

Eint(r) = LE1E
0
inc+

LE2
2

C0
incr− iω

LM1

2
B0

inc× r+O(r2) , (3.3)

where LEl(ω) =
(2l+1)εe(ω)

lεi(ω)+(l+1)εe(ω) for l = 1, 2 and LM1 = 1 for a dia-
magnetic particle in empty space. In particular, the screening factor
for metal particles in empty space can be found by using the permit-
tivity ε(ω) derived from the Drude-Sommerfeld model:

LEl(ω) =
(2l+ 1)(ω2 − iνω)

(2l+ 1)ω2 − lω2
p − i(2l+ 1)νω

. (3.4)

The induced electric dipole p, magnetic dipole m and the electric
quadrupole Q in the particle, as defined in Appendix A.2, are then:

p = ε0Vχ(ω)L1E
0
inc ,

m = ε0
1

10
VR2χ(ω)ω2B0

inc ,

Q = ε0
1

5
VR2χ(ω)L2C

0
inc .

The scattered electric field can be expressed as:

Escat = k
2 e

−ikr

4πε0r
[r̂× peff]× r̂ , (3.5)

where

peff = p−
1

c
r̂×m(2ω) +

ik

6
Q(2ω)r̂ . (3.6)
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The condition R << λ/2π defines the Rayleigh regime, in which
the electric field Eint can be considered as constant overall the parti-
cle volume. In this case, only the electric dipole p contributes to the
scattering of an external electric field by the particle.

The scattered electric field in the Rayleigh approximation is repre-
sented in Fig. 3.1(a), for the case of an external plane-wave linearly
polarized along the x-axis and propagating in the positive direction
of the z-axis. The particle size is R = 10 nm and the wavelength is
λ = 800 nm. A typical dipolar pattern is produced.
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Figure 3.1: Scattered electric field, normalized to its maximum, by a metal
particle with R = 10 nm (a) and R = 150 nm (b). The incident
field is a plane wave propagating in the positive direction of the
z-axis and linearly polarized along the x-axis. The wavelength is
λ = 800 nm (a) and λ = 550 nm (b).

The scattering properties of particles with comparable size to the
incident wavelength cannot be examined in the Rayleigh approxi-
mation, and higher order multipoles must be taken into account to
express the internal and scattered fields. This approach will be dis-
cussed in the next Section.
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3.2 mie theory

The theory of interaction between spherical particles and light with
comparable wavelength to the radius was studied at the beginning
of the 20th century by Gustav Mie [53]. In particular, the problem of
scattering was solved in 1908 by expanding the incident, internal and
scattered fields in series of Spherical Vector WaveFunctions (SVWFs)
(see Appendix A.6).

The electromagnetic field must satisfy the Maxwell’s equations:∇× E(ω)
i = −iωµiH

(ω)
i

∇×H(ω)
i = +iωεi (ω)E(ω)

i

in Ωi , (3.7a)

n×


H(ω)
i − H(ω)

sc


= n×H(ω)

0

n×


E(ω)
i − E(ω)

sc


= n× E(ω)

0

on Σ , (3.7b)

∇× E(ω)
sc = −iωµeH(ω)

sc

∇×H(ω)
sc = +iωεeE(ω)

sc

in Ωe , (3.7c)

where


E(ω)
i , H(ω)

i


denote the fields in Ω̇i and


E(ω)
sc , H(ω)

sc


denote

the scattered fields in Ω̇e, namely E(ω)
sc = E(ω)

e − E(ω)
0 and H(ω)

sc =

H(ω)
e − H(ω)

0 . Equations (3.7) have to be solved with the radiation
condition at infinity for the scattered fields.

Due to the symmetry of the problem, the general solution of the
source-free Maxwell equations can be expressed in each homoge-
neous region through the SVWFs M(J)

mn and N(J)
mn. The incident plane-

wave


E(ω)
0 , H(ω)

0


can be decomposed in Eq. (3.8a) through the reg-

ular SVWFs, non-singular in the center of the sphere (J = 1), where
E0 = |E0|. Also the unknown fields


E(ω)
i , H(ω)

i


in Ωi (0 6 r <

R), are decomposed through the regular SVWFs in Eq. (3.8b), where
ζi (ω) =


µi/εi (ω), ki (ω) = ω


εi (ω)µi. The unknown scattered

fields


E(ω)
sc , H(ω)

sc


in Ω̇e ( for R < r) are instead decomposed in Eq.

(3.8c) through the radiative SVWFs, satisfying the radiation condition
at infinity (J = 3).

E(ω)
0 (r, θ,φ) = −E0

∞
n=1

n
m=−n


q
(ω)
mnM(1)

mn [ke (ω) r, θ,φ]

+p
(ω)
mnN(1)

mn [ke (ω) r, θ,φ]


H(ω)
0 (r, θ,φ) =

E0
iζe

∞
n=1

n
m=−n


p
(ω)
mnM(1)

mn [ke (ω) r, θ,φ]

+q
(ω)
mnN(1)

mn [ke (ω) r, θ,φ]


,

(3.8a)
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E(ω)
i (r, θ,φ) = −E0

∞
n=1

n
m=−n


c
(ω)
mnM(1)

mn [ki (ω) r, θ,φ]


+d
(ω)
mnN(1)

mn [ki (ω) r, θ,φ]


H(ω)
i (r, θ,φ) =

E0
iζi (ω)

∞
n=1

n
m=−n


d
(ω)
mnM(1)

mn [ki (ω) r, θ,φ]

+c
(ω)
mnN(1)

mn [ki (ω) r, θ,φ]


,

(3.8b)

E(ω)
sc (r, θ,φ) = E0

∞
n=1

n
m=−n


b
(ω)
mnM(3)

mn [ke (ω) r, θ,φ]

+a
(ω)
mnN(3)

mn [ke (ω) r, θ,φ]


H(ω)
sc (r, θ,φ) = −

E0
iζe

∞
n=1

n
m=−n


a
(ω)
mnM(1)

mn [ke (ω) r, θ,φ]

+b
(ω)
mnN(1)

mn [ke (ω) r, θ,φ]


.

(3.8c)

The decomposition (3.8c) of


E(ω)
sc , H(ω)

sc


satisfy Eq. (3.7c), and the

decomposition (3.8b) of


E(ω)
i , H(ω)

i


satisfy Eq. (3.7a). The unknown

coefficients

a
(ω)
mn ,b(ω)

mn


and


c
(ω)
mn ,d(ω)

mn


are determined by requir-

ing that the decompositions (3.8b,3.8c) also satisfy the boundary con-
ditions (3.7b). The analytical expressions of


a
(ω)
mn ,b(ω)

mn


and


c
(ω)
mn ,d(ω)

mn


as functions of {pmn,qmn} are:

a
(ω)
mn

p
(ω)
mn

=

ζe

ζi(ω) ψn(x
(ω)
i ) ψ̇n(x

(ω)
e ) − ψn(x

(ω)
e ) ψ̇n(x

(ω)
i )

ζe

ζi(ω) ψn(x
(ω)
i ) ξ̇n(x

(ω)
e ) − ξn(x

(ω)
e ) ψ̇n(x

(ω)
i )

b
(ω)
mn

q
(ω)
mn

=
ψn(x

(ω)
i ) ψ̇n(x

(ω)
e ) − ζe

ζi(ω) ψn(x
(ω)
e ) ψ̇n(x

(ω)
i )

ψn(x
(ω)
i ) ξ̇n(x

(ω)
e ) − ζe

ζi(ω) ξn(x
(ω)
e ) ψ̇n(x

(ω)
i )

c
(ω)
mn

q
(ω)
mn

=
i
ki(ω)
ke(ω)

ψn(x
(ω)
i ) ξ̇n(x

(ω)
e ) − ζe

ζi(ω) ξn(x
(ω)
e ) ψ̇n(x

(ω)
i )

d
(ω)
mn

p
(ω)
mn

=
i
ki(ω)
ke(ω)

ζe

ζi(ω) ψn(x
(ω)
i ) ξ̇n(x

(ω)
e ) − ξn(x

(ω)
e ) ψ̇n(x

(ω)
i )

(3.9)

where x(ω)
e = k

(ω)
e R, x

(ω)
i = k

(ω)
i and ψn = ψn (ρ) , ξn = ξn (ρ)

are the Riccati-Bessel functions defined as ψn(ρ) = ρ jn(ρ), ξn =

ρ h
(1)
n (ρ). ζ̇ denotes the first derivative of ζ = ζ(ρ) with respect to ρ.
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The expansion coefficients in Eq. (3.8a), for a linearly polarized
plane-wave propagating along the z−axis with the electric field paral-
lel to the x−axis (Fig. 6.1a), are:

p
(ω)
mn = q

(ω)
mn = 0, for |m| ̸= 1

p
(ω)
1n = q

(ω)
1n = −p

(ω)
−1n = q

(ω)
−1n =

1

2
(−i)n


4π(2n+ 1)

In the Mie theory, all the SVWF multipoles are involved in the cal-
culation of the internal and scattered fields. In a numerical imple-
mentation, the multipoles are considered up to an arbitrary order
n = Nmax The scattered intensity is represented in Fig. 3.1 for the
case of an external plane-wave linearly polarized along the x-axis and
propagating along the positive direction of the z-axis. The particle
size is R = 150 nm and the wavelength is λ = 550 nm. The pattern is
mostly produced by the interference of the dipolar and quadrupolar
SVWFs, i. e. n = 1 and n = 2.

3.2.1 Multiparticle Mie theory

Mie’s analytical approach was extended about 100 years later [54], in
order to account for the scattering from a set of interacting spheres,
i. e. for the multiparticle scattering. The semi-analytical approach to
the multiparticle-particle light scattering will be briefly introduced
here, as it is of interest for the present Thesis. In particular, in Chap-
ters 4 and 5, the design of innovative nanolens systems will be per-
formed by means of a rigorous electromagnetic solver based on the
multiparticle Mie theory.

Given a set of N spherical particles, we can consider N reference
systems having origin in each particle center. The field scattered by
the j − th particle can be expressed as in Eq. 3.8c, in the reference
system of the j− th particle itself (rj, θj,φj) :

Ejj(ω)
sc


rj, θj,φj


= E0

∞
n=1

n
m=−n


b
jj(ω)
mn M(3)

mn


ke (ω) rj, θj,φj


+a

jj(ω)
mn N(3)

mn


ke (ω) rj, θj,φj


Hjj(ω)

sc


rj, θj,φj


= −

E0
iζe

∞
n=1

n
m=−n


a
jj(ω)
mn M(1)

mn


ke (ω) rj, θj,φj


+b

jj(ω)
mn N(1)

mn


ke (ω) rj, θj,φj


.
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The same field can be expanded with respect of the i− th particle
reference system (ri, θi,φi):

Eji(ω)
sc


ri, θi,φi


= E0

∞
n=1

n
m=−n


b
ji(ω)
mn M(3)

mn


ke (ω) ri, θi,φi


+a

ji(ω)
mn N(3)

mn


ke (ω) ri, θi,φi


Hji(ω)

sc


ri, θi,φi


= −

E0
iζe

∞
n=1

n
m=−n


a
ji(ω)
mn M(1)

mn


ke (ω) ri, θi,φi


+b

ji(ω)
mn N(1)

mn


ke (ω) ri, θi,φi


.

where the coefficients

a
ji(ω)
mn ,bji(ω)

mn


are linearly related to the co-

efficients

a
jj(ω)
mn ,bjj(ω)

mn


, through the translation addition theorem

[54].
In the multiparticle scattering problem, the total field incident upon

the i− th particle is the sum of the incident wave E
(ω)
0 and the field

scattered by all the other particle in the system:

E
i(ω)
inc = E

i(ω)
0 +


j̸=i

E
ji(ω)
sc (3.10)

By using the single particle Mie solution and the translation ad-
dition theorem, it is possible to determine the unknown coefficients
a
ii(ω)
mn ,bii(ω)

mn


, by means of an iterative method:

1. At the beginning, the incident field on the i− th particle is as-
sumed to be solely due to E

(ω)
0 .

2. The field scattered on the i− th particle by all the others j ̸= i

is calculated

3. The total incident field on the j− th particle is calculated as the
sum in Eq. 3.10

4. The scattered field by the i− th particle is calculated

The last three steps are iterated until the unknown fields converge
with a given criterion.
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3.3 surface plasmon resonances

The interaction of light with metal nanoparticles is of extreme inter-
est due to the combination of the metal microscopic response, de-
scribed by the permittivity ε(ω) (see Chapter 2), and the size effects,
accounted for by the Rayleigh theory or by the Mie theory, in the case
of spherical shape. Metal nanoparticles show special electromagnetic
properties, as demonstrated by analyzing optical parameters, such
as the light absorption, scattering and the field amplitude near the
surface.

For instance, let us consider the scattering cross-section of the parti-
cle, which represents the area of a scatter of an equal power under
the hypothesis of ray-propagation [27], defined as:

Csca = lim
ρ→∞


Σρ

|Esc|
2 · n̂dΣ

E0
2

, (3.11)

Figure 3.2 represents Csca as a function of the incident wavelength,
for gold particles of different sizes. For small sizes, i. e. in the Rayleigh
regime, Csca is mostly due to the dipolar SVWF. It decreases with the
wavelength and presents a peak in the wavelength range 500 nm−

600 nm. This peak corresponds to a dipolar resonance of the metal
conduction electrons with the particle shape(Fig.3.2a). In the frame of
the Rayleigh theory, the dipolar resonance is obtained if the denomi-
nator of Eq. 3.4 tends to zero. If the collision frequency ν is neglected,
this condition is verified at ω ≈ ωp/

√
3.
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Figure 3.2: Scattering cross-section of gold nano-spheres as function of the
incident wavelength λ, for R = 10 nm (a), R = 100 nm (b), R =

150 nm (c), R = 200 nm (d).

The dipolar resonance red-shifts when the particle size increases,
and a broadening can be observed (Fig.3.2b). For very large particles
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(Fig.3.2c and d), higher order resonances of the conduction electrons
take place and govern the electromagnetic response of the particle. In
the frame of the Mie theory, the resonance condition for the general
multipole of order n is obtained if the denominator of the coefficients
in Eq. 3.9 tends to zero.

Figure 3.3 represents Csca as function of the metal particle radius,
for three incident wavelength λ. For small sizes, the Mie theory con-
firms the Rayleigh theory prediction of the scaling Csca ∝ r4. As
the particle increases in size, small modulations of Csca occur until a
saturation value is reached.
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Figure 3.3: (Left) Scattering cross-section of metal nano-spheres as function
of the radius R, for λ = 520 nm, λ = 780 nm, λ = 1040 nm.
(Right) Electric field amplitude in proximity of a gold nano-
sphere with R = 150 nm, normalized to the amplitude of the
incident plane-wave with λ = 550 nm.

The multipolar resonances in metal nanoparticles are due to the
collective oscillation of the conduction electrons, and they are gen-
erally known as Localized Surface Plasmon (LSP) resonances, for the
property of being strictly related to the particle geometry. The scatter-
ing cross-section can reach very high values compared to the surface
extension of the particle itself, due to the LSP resonances. This char-
acteristic enhancement involves also other properties of the particle
electromagnetic response, like the absorption of light and the local
field near the particle surface. In particular, the Near Field Enhance-
ment (NFE) of a metal nanoparticles gathers enormous attention in
the scientific community, due to the possibility to increase the cross-
sections of optical processes occurring in proximity of the particle,
such as the SERS. Figure 3.3 clearly shows the near-field enhance-
ment in proximity of a Au nano-sphere exponentially decaying from
the particle surface. The enhancement distribution over the particle
surface depends on the multipolar order of the excited resonance.
The near-field enhancement can be more strongly boosted in clusters
and arrays of nanoparticles, that will be investigated in Part ii of the
present Thesis.
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3.4 second-harmonic rayleigh theory

The optical nonlinear properties of metal particles have been widely
investigated in the last decades [55, 56, 57, 58, 59, 60]. As already
pointed out in the Section 2.4, both the bulk and selvedge significantly
contribute to the second-order nonlinear response of a metal domain.

From a phenomenological point of view [48], the second-order bulk
and surface polarizations can be respectively expressed as:

P
(2ω)
b = ε0γ∇(E(ω) ·E(ω)) + ε0δ

′(E(ω) · ∇)E(ω) [Cm−2]

P
(2ω)
s = ε0

←→χ (2)
s : E(ω)E(ω) [Cm−1] ,

where γ, δ ′ and the elements of ←→χ (2)
s are in units of [m2V−1], and

quantify the contribution of each nonlinear source to the second-order
polarization. In the hypothesis that the surface is isotropic and it has
a mirror plane perpendicular to it, the only allowed elements of←→χ (2)

s

are χ⊥⊥⊥, χ∥∥⊥ = χ∥⊥∥ and χ⊥∥∥.
Let us examine the second-order nonlinear scattering from a spher-

ical metal particle in the Rayleigh regime, following the analysis con-
ducted by Dadap et al.[61]. We consider the external field expansion
in 3.2, then the electric dipole p(2ω) and quadrupole Q(2ω) at angular
frequency 2ω are:

p(2ω) = γedC
0
incE

0
inc + iωγmdE

0
inc ×B0

inc

Q(2ω) = γq[E
0
incE

0
inc −

1

3
(E0

inc ·E0
inc)

TI] ,

and the magnetic dipole m(2ω) is zero because of the axial symme-
try of the problem. The coefficients γed, γmd and γq are the weight
coefficients for the electric dipole, electric quadrupole and magnetic
dipole, and their expression is provided in [61]. They depend on the
screening factors and the permittivity at frequencies ω and 2ω.

It is important to remark that the second-order bulk and surface
sources contribute only to specific electric and magnetic multipoles,
due to the selection rules governing the process [62]. In particular, in
the frame of the second-harmonic Rayleigh scattering theory:

• all the sources contribute to the electric dipole

• only the surface sources contribute to the electric quadrupole

• all the sources but χ⊥⊥⊥ contribute to the magnetic dipole

An analysis of the second-harmonic Rayleigh scattering will be con-
ducted in Part iii, where it will be compared to the more complete
second-harmonic Mie scattering, which has been developed as signifi-
cant part of the present Thesis.
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P L A S M O N I C H E T E R O D I M E R S

An increasing interest has recently raised on nanostructures com-
posed by different metals, known as plasmonic heterostructures, for the
design of photonic devices [63, 64, 65, 66]. The specific case of two
nanoparticles, called heterodimer, features a strong coupling between
the LSPs in the two elements, allowing for the tunability of their opti-
cal properties. Let us begin considering the dipolar resonance modes
ψ1 and ψ2 of the two compounding elements. Their coupling is usu-
ally studied in the framework of molecular hybridization [67, 68, 69].

(a)

ψ1
ψ2

(b)

ψ1
ψ2

Figure 4.1: Hybridization model for two different interacting nanoparticles,
in the case of transverse (a) and longitudinal (b) polarization,
with respect to the dimer axis. The dipolar modes ψ1 and ψ2

give rise to bounding (red) and antibonding (blue) modes.

The interaction between the heterodimer and an incident light gives
rise to two hybrid modes at different energy. If the light polariza-
tion is transverse to the dimer axis, as shown in Fig. 4.1(a), then the
’bounding’ mode (red), is characterized by parallel dipolar moments
in phase opposition, while the ’antibonding’ mode (blue) is character-
ized by in-phase parallel dipolar moments. The case of incident light
polarized parallel to the dimer axis is shown in Fig. 4.1(b). The bound-
ing mode (red) is characterized by in-phase dipole moments, while
the anti-bounding mode (blue) is characterized by dipole moments
in phase opposition. In both cases, the bounding mode resonates at
lower frequencies than the ’anti-bounding’ mode. Consequently, the
LSP exhibits a red-shift in case of the bounding mode, and a blue-shift
for the antibonding one, with respect to the case of isolated particles.

This hybridization model can be extended to consider higher order
multipolar interactions between the two metal nanoparticles. How-
ever, this approach is not numerically efficient to study the optical
properties of metal nanoparticles with arbitrary size and with non-
trivial dispersion relations.

In this Chapter, we perform a numerical analysis of the optical
properties of plasmonic heterodimers composed by spherical parti-
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cles made of silver (Ag) and gold (Au), by means of the multiparticle
Mie theory, introduced in Chapter 3. The optical response of these
heterostructures is investigated in the wavelength range 300 nm −

900 nm in terms of the scattering efficiency and of the NFE, calcu-
lated on the particle surfaces and outside it. Johnson and Christie’s
dispersion relations are adopted for the two considered metals.

First, we investigate heterodimers composed by particles with the
same size, i. e. symmetric heterodimers, and then we study the effects
of the size asymmetry. Eventually, we consider the response of arrays
of plasmonic heterodimers, both in the symmetric and asymmetric
cases.
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4.1 symmetric heterodimers

In this Section, we investigate the optical response of plasmonic het-
erodimers composed by particles of equal radii, for the two cases
R = 25 nm and R = 50 nm. The scattering efficiency spectra are rep-
resented in Fig. 4.2(a) for heterodimers with radii R = 25 nm, excited
by a transverse polarized plane wave, with an edge-to-edge distance
varying in the range 5 nm− 25 nm.

Two distinct resonance peaks appear at the typical wavelengths of
isolated Ag (≈ 370 nm) and Au (≈ 520 nm) particles, for any values
of the inter-particle distance. The peak amplitude corresponding to
the Ag particle is much higher then the one corresponding to the Au
particle, because of lower losses in the first metal. A weak near-field
coupling between the two particles composing the heterodimer can
be detected: the peak amplitude associated to the Ag decreases for
small interparticle distances. As a matter of fact, the shorter is the
heterodimer gap, the more electromagnetic power scattered by the
Ag particle is dissipated in the Au particle.

The scattering efficiency is represented in Fig. 4.2(b) in the case of
incident light with longitudinal polarization. In this situation, stronger
effects of near-field coupling can be detected than the case of trans-
verse polarized light. As a matter of fact, the scattering efficiency as-
sociated to the Au particle is higher than the previous case, and it
further increases as the interparticle distance decreases. Moreover, a
substantial red-shift can be observed in both peaks for decreasing
interparticle distances.
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Figure 4.2: Scattering efficiency for symmetric heterodimers with R =

25 nm, in case of incident light with transverse (left) and longi-
tudinal (right) polarizations. The interparticle edge-to-edge dis-
tance is D = 5 nm (red), D = 10 nm (green), D = 25 nm (blue).

The spectral shifts of the resonance peaks corresponding to Ag and
Au are summarized in Fig. 4.3, for both transverse and longitudinal
polarizations. A red-shift is observed for both peaks if the interparti-
cle distances decrease, in the case of longitudinal polarization. This
trend is interrupted only for the Ag peak for distances lower then
2 nm, where a blue shift takes place.
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Figure 4.3: Spectral position of the Ag and Au scattering peaks, in case of
transverse (t) and longitudinal (l) polarization of the incident
light, for a symmetric heterodimer with R = 25 nm.

The maximum NFE probed on the particle surface is represented in
Fig. 4.4(a) in the spectral range 300 nm− 900 nm, in the case of inci-
dent light with longitudinal polarization. High values of NFE can be
observed at typical resonance wavelengths for Ag and Au, as well as
at intermediate wavelengths, because of the effects of electromagnetic
coupling. For longitudinal polarization of the incident light, the NFE

peaks undergo a red-shift if the interparticle distance is decreased,
as shown in Fig. 4.4(b). This result confirms the trend previously ob-
served for the scattering efficiency.
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Figure 4.4: (Left) NFE of a symmetric heterodimer with R = 25 nm as func-
tion of the interparticle edge-to-edge distance, in case of incident
light with longitudinal polarization. (Right) NFE peak spectral po-
sitions, for both transverse (t) and longitudinal (l) polarizations.

Figure 4.5: NFE pattern in proximity of a symmetric heterodimer with R =

25 nm, and on its surfaces (insets). The incident light has lon-
gitudinal polarization and wavelength λ = 366 nm (left) and
λ = 528 nm (right).
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These results on the strong near-field coupling in case of incident
light with longitudinal polarization are supported by NFE calculations
over the particle surfaces and in their proximity, as shown in Fig. 4.5.
In particular the panel (a) represents the NFE pattern at the incident
wavelength λ = 366 nm. In this case the Ag particle resonates as if
it were isolated. Panel (b) represents the NFE pattern at the incident
wavelength λ = 528 nm, typical of the Au LSPs. In this case the res-
onance involves also the Ag particle. This circumstance explains the
higher NFE with respect to the isolated Au particle.

A similar analysis is conducted for an heterodimer composed by
two particles with equal radius R = 50 nm. The same remarks of the
previous case are valid now, in terms of peak amplitude and posi-
tion, as plotted in Fig. 4.6(a) and 4.7(a), respectively for the scattering
efficiency and NFE with longitudinally polarized incoming field. The
spectral positions of the resonance peaks, shown in Fig. 4.6(b) and
4.7(b) for the scattering efficiency and NFE respectively, reveal a mod-
ulation for distances comparable with the incident wavelength. This
effect is due to the far-field radiative coupling between the two parti-
cles compounding the heterodimer.
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Figure 4.6: (Left) Scattering efficiency of a symmetric heterodimer with R =

50 nm as function of the interparticle edge-to-edge distance, in
the case of longitudinal polarization. (Right) Spectral position of
the scattering peaks, for both transverse (t) and longitudinal (l)
polarization.
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As conclusion of this Section, we now illustrate the results of the
quasistatic point-dipole approximation to the symmetric heterodimer.
From the system of two linear algebraic equations governing the
dipole moments, by imposing the Drude model for both metals, we
obtain that the eigenfrequencies ω of the heterodimer modes are the
roots of the following equation:

9ω4 − 9i(νAg + νAu)ω
3 − [9νAgνAu + 3(ω2

p,Ag +ω2
p,Au)]ω

2+

3i(ω2
p,Ag +ω2

p,Au)ω+ (1−β)ω2
p,Agω

2
p,Au = 0

where β =

R
d

6
and β = 4


R
d

6
respectively for transverse and

longitudinal polarization.
Two roots of the former equation are purely imaginary, while the

other two are real and their analytical value is:

ω =


νAgνAu

2
+
ω2

p,Ag +ω2
p,Au

6

1±

1−

1−β

9

ω2
p,Agω

2
p,Au

ω2
p,Ag+ω2

p,Au

6

2
The eigenfrequencies values as function of the interparticle dis-

tance d are plotted in Fig. 4.8, for the two cases of transverse and
longitudinal polarization. The point-dipole approximation predicts a
red-shift for both transverse and longitudinal modes of the Au par-
ticle, and a blue-shift for both transverse and longitudinal modes of
the Ag particle.
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Figure 4.8: Eigenfrequencies of symmetric heterodimers in the quasistatic
approximation, as function of the interparticle edge-to-edge dis-
tance, for longitudinal and transverse polarization of the incom-
ing field.
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4.2 asymmetric heterodimers

We also investigate the optical response of heterodimers composed
by particles with different radii. We fix the radius of the Ag particle
at 25 nm, because for this size we observed the higher Ag resonances.
For the same reason, we fix the radius of the Au particle to 50 nm,
in order to achieve higher scattering and field-enhancement peaks
associated also to this particle.
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Figure 4.9: NFE for an asymmetric heterodimer composed by particles with
radius R = 25 nm for Ag and R = 50 nm for Au, in case of incom-
ing field with longitudinal polarization, for varying interparticle
edge-to-edge distance in the range 5 nm− 100 nm.

The NFE for the asymmetric heterodimer is shown in Fig. 4.9, which
differs from the symmetric case in the lower values of enhancement.
This is mainly due to higher losses in the Au particle of larger size.
The NFE pattern is represented in Fig. 4.10(a) at incident wavelength
λ = 366 nm. The Ag particle still resonates as if it were isolated, and
the NFE is only slightly reduced. The NFE pattern for λ = 528 nm

is represented in Fig. 4.10(b). Also in the asymmetric case, the Au
particle resonates involving the Ag particle, which in turns boost the
LSP by increasing the enhancement value.

Figure 4.10: NFE pattern for an asymmetric heterodimer composed by par-
ticles with radius R = 25 nm for Ag and R = 50 nm for Au ,
outside the particles and on their surfaces ( insets ), in the cases
of incoming field with longitudinal polarization, at wavelength
λ = 366 nm (left) and λ = 528 nm (right).



4.3 arrays of heterodimers 44

4.3 arrays of heterodimers

We conclude this analysis by investigating the optical response of
plasmonic heterodimer arrays. The NFE of rectangular arrays of 3x3
heterodimers is shown in Fig. 4.11 in the case of incident light with
longitudinal polarization. Panels (a) and (b) are relative to symmet-
ric and asymmetric heterodimers, respectively. The NFE spectra are
represented for arrays of different period a, which is defined as the
distance between two adjacent particles of the same metal. The dis-
tance d between the two particles composing the dimer is fixed to
25 nm, a reasonable length for EBL fabrication technique.

For particles with the same radius R = 50 nm, a varies in the range
250 nm − 600 nm. The case a = 250 nm (red line) consists of eq-
uispaced particles composing linear chains of total length 725 nm.
As a result, we observe the rise of a third NFE peak centered at that
wavelength, which is due to a photonic resonance along the chain.
The case a = 275 nm provides the maximum amplitude for the peak
corresponding to the Ag particle. As a matter of fact, the radiative
coupling between the Ag particles is in resonance for this array pe-
riod. The maximum in the second peak amplitude occurs for a period
a = 400 nm, corresponding to a resonances between the Au particles.

For asymmetric dimers (25 nm for Ag and 50 nm for Au), a is
varies in the range 200 nm − 500 nm, as shown in 4.11. The case
a = 200 nm (red line) consists of equispaced particles composing
linear chains of total length 575 nm, providing a peak centered at a
wavelength of equal value. As before, the peak maxima for Ag and
Au peaks can be observed at special array periods, respectively a =

250 nm and a = 400 nm, due to far-field coupling between particles
of the same metal.
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Figure 4.11: NFE for a 3x3 array, in case of incoming field with longitudi-
nal polarization. (Left) Particles with radius R = 50 nm for Ag
and R = 50 nm for Au, for varying array period in the range
250 nm− 600 nm. (Right) Particles with radius R = 25 nm for
Ag and R = 50 nm for Au, for varying array period in the range
200 nm− 500 nm.

These NFE spectral features do not change passing from 3x3 to 7x7
arrays, as it can be observed in Fig. 4.11 and 4.12. In Fig. 4.13 the NFE
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pattern on particle surfaces is plotted for a 7x7 array composed by
particles with the same radius R = 25 nm, in the cases of incoming
field with longitudinal polarization, at wavelength λ = 366 nm (a)
and λ = 528 nm (b).
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Figure 4.12: NFE for a 7x7 array, in case of incoming field with longitudi-
nal polarization. (Left) Particles with radius R = 50 nm for Ag
and R = 50 nm for Au, for varying array period in the range
250 nm− 600 nm. (Right) Particles with radius R = 25 nm for
Ag and R = 50 nm for Au, for varying array period in the range
200 nm− 500 nm.

4.4 conclusion

In conclusion, in the present Chapter we investigated the optical
response of plasmonic heterostructures composed by gold and sil-
ver nanoparticles. We demonstrated that the elementary heterodimer
block can support hybrid LSPs at two specific spectral positions. This
property can be tuned by changing the interparticle separation and
the particle size. Moreover, we demonstrated that asymmetric het-
erodimers can be employed to obtain NFE peaks with equal intensity,
both for the gold and the silver wavelengths. Eventually, we demon-
strated that these heterostructures can be organized in planar arrays
for realizing a plasmonic substrates. The array period is a further pa-
rameter to tune the optical response of the investigated heterostruc-
tures.
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Figure 4.13: NFE pattern for a 7x7 array composed by particles with the same
radius r =25 for Ag and Au, in the cases of incoming field with
longitudinal polarization, at wavelength λ = 366 nm (upper
panel) and λ = 528 nm (lower panel).
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O P T I M I Z E D N A N O L E N S E S

Nanolenses are nanostructured devices able to efficiently collect an
incident radiation and concentrate its power in small regions in their
proximity. These novel devices are in some cases able to overcome the
diffraction limits of geometrical Optics, concentrating light in spatial
regions with smaller size than the incident wavelength, commonly
referred to as hot-spots [40, 41]. For this reason, they are called super-
lenses. Nanolenses are often made of metal nanostructures, for their
ability to support SPPs and LSPs. These plasmonic effects allow for the
concentration of light in subwavelength regions, as already discussed
in Chapter 2.

Plasmonic concentrators of light are playing a key role for the im-
provement of several devices, such as solar cells [70] , photodetectors
[71], optical manipulators [72], modulators [73] thermal emitters [74],
SERS substrates [75] , near-field scanning optical microscopes [76] ,
magnetic recorders [77], and they are also ideal to enhance nonlin-
ear optical effects [78]. Consequently, it is of fundamental importance
to design efficient and reproducible plasmonic nanolenses, providing
high electric field at defined spatial locations and frequencies.

Several metal nanoparticle configurations have been studied in the
last decades for these purposes, and their performance is commonly
quantified in term of NFE, defined as:

NFE =
Emax

Einc
(5.1)

where Einc is the electric field amplitude of the incident light, and
Emax is the maximum electric field amplitude, measured in the hot-
spot. A very interesting nanolens has been proposed, consisting of a
chain of metal nano-particles with s self-similar geometrical configu-
ration, given by the ratios between the particle sizes and their distance
[79]. After that, accurate studies including fully retarded electromag-
netic interactions demonstrated large electric field enhancement in
silver spheres [80]. More recently, Zou and Schatz [81] highlighted
the importance of long-range diffractive coupling in nanoparticle ar-
rays for the enhancement of the electric field in the subwavelength
hot-spot of a plasmonic dimer.

However, the use of multi-parametric optimization for the design
of nanoplasmonic structures has been very limited so far. In particu-
lar, recent studies have focused on the optimization of nanoparticle
shapes and geometrical arrangements for the control of plasmonic
resonances [82] and broadband field enhancement [83], respectively.

47



optimized nanolenses 48

In the present Chapter, we optimize plasmonic nanolenses with
high NFE. In particular, we propose a general procedure for the de-
sign of plasmonic nanolenses, that combines an optimization method
and an electromagnetic solver based on the analytical multiparticle
Mie theory, that has been described in Chapter 3. This approach se-
lects the optimal particle arrangements for light concentration, and
it also unveils the most general criteria for the engineering of plas-
monic nanolenses. As a result, we obtain some general design criteria
for plasmonic nanolenses. In particular, we unveil important proper-
ties of the interplay between the near-field and the far-field coupling
occurring in the interaction of several metal nano-particles 1 .

Eventually, we validate the optimized nanolens configurations by
performing SERS experiments, for probing the NFE. These novel nanolens
configurations lead to order of ten improvement of Raman enhance-
ment over nanoparticle dimer antennas, and order of one hundred im-
provement over optimal nanoparticle gratings. A rigorous design of
nanoparticle arrays with optimal field enhancement is essential to the
engineering of numerous nanoscale optical devices such as plasmon-
enhanced biosensors, photodetectors, light sources and more efficient
nonlinear optical elements for on chip integration.

1 The figures in the present Section have been adapted with permission from Ref. [85].
Copyright (2012) American Chemical Society.
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5.1 genetic optimization

In the present Section, we propose a general method for the design of
plasmonic nanolenses, based on the combination of an optimization
algorithm and an electromagnetic solver. The following nanoparticle
properties can be engineered for the efficient design of nanolenses:

1. Shape; it can be the same for each nanoparticle, or different.

2. Size; it can be the same for each nanoparticle, or different.

3. Position; it includes monodimensional (chain), bidimensional
(planar arrays) or three-dimensional spatial configurations.

4. Material; it determines the particle electromagnetic dispersion
properties.

In general, all the above properties can be considered as degrees of
freedom in the optimization process. However, the range in which
they can vary is strictly imposed by technological limits. In the pro-
posed optimization approach, several constraints are enforced to guar-
antee the physical realizability of the targeted nanostructures within
the limitations of the available fabrication techniques, such as requir-
ing minimum and maximum particle size or minimum interparticle
separation. Several objective functions can be chosen, for instance the
most important for plasmonic applications are:

1. NFE at a specific probing point;

2. Average NFE over a spatial region of interest;

3. Scattered power within a prescribed angular cone.

Moreover, the spectral properties of the nanolens are of primary im-
portance, and consequently the selected objective function can be
maximized for a single frequency (i. e. narrow band optimization) or
for multiple frequencies (i. e. broad band optimization).

In the study presented in this Chapter, our aim is to maximize the
NFE at a specific wavelength, by considering a single probing point.
This choice responds to the technology requirement of concentrating
the incident light power in a subwavelength hot spot. The NFE is eval-
uated through a full-wave electromagnetic solver based on the multi-
particle Mie theory. As a matter of fact, the electromagnetic response
of aggregates of spherical particles with different radii can be rigor-
ously treated with the semi-analytical method described in Chapter
3, and based on a multipolar expansion of the scattered field in terms
of SVWFs.

In particular, we aim at finding both the radii {R1, . . . ,RN} and
the spatial arrangement {r1, . . . , rN} of an optimized aggregate of N
nano-spheres. The nanoparticles can be placed within predetermined
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boundaries (either one- or two-dimensional) with constraints on the
edge-to-edge distance δ between any pair of particles, the minimum
Rmin and maximum Rmax particle radius, as well as constraints pre-
venting particles from overlapping with the probing point r0 (even
if they can be in contact with it). Both gold and silver nanoparticles
have been investigated using experimentally derived dispersion data
[38]. The objective function is the NFE at the probing point r0.

In our study, we impose δ = 3 nm, Rmin = 5 nm as lower size
bounds of our search algorithm. Moreover, Rmax = 150 nm has been
set as an upper size bound. The particle arrays are illuminated by a
linearly polarized plane wave at the plasmonic resonance wavelength,
i. e. λAg = 370 nm for silver and λAu = 535 nm for gold, propagating
orthogonally to the plane of the array. The corresponding refractive
index, namely nAg(λAg) = 0.068 − i 1.68 and nAu(λAu) = 0.52 −
i 2.28, has been obtained from experimental data [38]. Eventually, we
design a plasmonic array for SERS sensing compatible with practical
fabrication constraints, as a proof of concept device to experimentally
validate the optimization approach.

The objective function is maximized through a Genetic Algorithm
(GA) (or evolutionary algorithm), which is inspired by biological con-
cepts such as natural selection and survival of the fittest. Evolutionary
algorithms are among the most efficient methods for treating prob-
lems with a large number of unknowns. They also have the valuable
property of avoiding local maxima, which is the main disadvantage
of deterministic algorithms [84]. In particular, the GA [85] is very well
established in radio-frequency antenna engineering [86, 87] and it has
found some application in the field of nano-optics [82, 83].

In the framework of the GA, a solution of the optimization problem,
usually referred to as an individual, is represented by a binary string,
namely a chromosome. Each chromosome is divided into N genes;
the j-th gene represents, through an appropriate coding, the j-th de-
gree of freedom of the problem. We choose a Gray coding because
it guarantees that two consecutive values of a degree of freedom are
represented by genes differing only in one digit. A fitness value is de-
termined for each individual, by means of the electromagnetic solver
in our case. We implemented a GA consisting of the following steps:

1. The population, which consists of W individuals, is randomly
initialized.

2. The fitness of each individual is evaluated and the selection of
the mating pool among the population is performed. The imple-
mented selection criterion is the roulette wheel selection: each
wheel’s slot is proportional to the individual fitness. Indeed, a
fit individual has a better probability of being selected for mat-
ing.
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3. Once the mating has been performed, the crossover process be-
tween two chromosomes takes place. The two mating chromo-
somes are cut at the same randomly selected point and the re-
sulting strings are swapped between them.

4. In order to prevent the GA from becoming trapped in local mini
ma and to preserve the genetic diversity of the population, the
chromosomes are subject to mutation. The implemented muta-
tion consists of inverting the value of one bit along the chromo-
some, with a given probability.

5. Eventually the old generation is removed and replaced by the
new individuals, providing that the best individual in the old
population is maintained (elitism).

The iterative process restarts from step 2. Once the iteration number
reaches the maximum value Niter, the GA stops. We have assumed in
the present optimization a population W = 48 individuals, a number
of iterations Niter = 10000, and a probability of mutation of Pm =

0.1.
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5.2 nanoparticle chains

In this Section, we optimize plasmonic nanolenses composed by metal
nanoparticles aligned in one direction, i. e. nanoparticle chains. Specif-
ically, we engineer the radii and the positions of particles with their
centers constrained to be on the the polarization direction of the inci-
dent plane wave, i. e. the x-axis. Our approach consists of optimizing
one single particle’s size and position, and successively of adding a
second particle and optimize it. We iterate this method up to N = 6

particles. The optimized particle positions and radii and the corre-
sponding values of NFE are given in Table 5.1. Here we describe the
most significant results.

n xAg[nm] RAg[nm] NFEAg xAu[nm] RAu[nm] NFEAu

1 36 33 16.2 64 61 4.9

2 -6.5 6.5 248 -29 29 63

3 470 150 301 -491 103 70

4 -431 150 333 511 107 76

5 -215 46 341 1070 99 78

6 250 49 364 -138 45 80

Table 5.1: Particle coordinates, radii, and NFE for silver and gold linear
nanolenses

N = 1. For the single isolated particle, we find the optimized solu-
tion consisting of the particle in direct contact with the probing point
r0, i. e. the maximum of NFE is on the particle surface. The optimized
radius turns out to be RAu = 57 nm for the gold and RAg = 26.6 nm
for the silver. With these sizes, the coupling of the incoming radia-
tion into the particle dipolar mode is maximized. It is worth to notice
that this goal is achieved by balancing two different needs. First, high-
order modes and total losses have to be minimized, hence the particle
has to be small. Second, the particle’s dipole moment has to be maxi-
mized. It is proportional to the particle volume, and therefore the size
has to be large enough. We also notice that the ratio between the op-
timized radius and the wavelength turns out to be of the same order
of magnitude for both materials, this being a clear fingerprint of the
quasi-static character of the electromagnetic interaction.
N = 2. The optimum solution for both silver and gold is an asym-

metric dimer, i. e. the particles have two different radii, with an edge-
to-edge spacing as small as allowed by the constraint δ = 3 nm. An
hot-spot is located in the dimer gap, as shown in Fig. 5.1(a) and (b).
Since the dimer features high ratio between the radii of the two par-
ticles, that is R1/R2 = 2.1 for gold and R1/R2 = 5.1 for silver, the
local field around the larger particle is only weakly modified by the
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smaller one, and the resulting NFE is approximately the product of
the enhancement factors of the two isolated particles, in agreement
with the results of Ref. [79].

Figure 5.1: Electric field magnitude on the equatorial plane of the optimized
linear nanolenses composed of (a,b) N = 2, (c,d) N = 3, and (e,f)
N = 4 spheres for Au and Ag, respectively. The obtained values
of field enhancement at the probing point are (a) 63, (b) 248, (c)
70, (d) 301, 76 (e), and (f) 333. The color maps are in log scale.

N = 3. The GA places the center of the third particle such that the
in-phase coupling with the dimer is maximized at the probing point.
The distance between the third particle and the central dimer pro-
duces an in-phase radiative coupling with the external excitation in
each particle of the dimer, as well-depicted in Fig. 5.2. This Figure
plots the phase difference between the incident electric field (polar-
ized along the x-axis) and the x-component of the electric field scat-
tered by the third particle as if it were isolated, on the z = 0 plane,
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for gold (a) and silver (b). For both Au and Ag particles, we notice
that the third particle radiates an electric field whose x-component is
in-phase with the external field in the proximity of particles 1 and 2.
Therefore, the central dimer experiences a total incident field that is
the in-phase superposition of the external field and the field radiated
by the third particle. Furthermore, we observe in Figure 5.1(c) and (d)
that the third particle in the linear array assumes the maximum al-
lowed radius in order to maximize the radiative coupling within the
limits of inherent material losses.

Figure 5.2: Phase difference between the incident electric field (oriented
along the x-axis) and the x-component of the electric field scat-
tered by the 3rd particle in the absence of the first two parti-
cles on the z = 0 plane, for gold (a) and silver (b) particles. The
contours of the 1st and 2nd particles have been also plotted for
convenience. The phase is shown in radiant.

N = 4 The GA places the fourth particle on the opposite side, sym-
metrically with respect to the third in order to further boost radiative
coupling, as is shown in Fig. 5.1, for both gold and silver. However,
adding further particles to the linear chain causes a saturation of the
field intensity value and additional particles only contribute with a
negligible increase to the NFE, as can be seen in Table 5.1.
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5.3 planar nanolenses

In the present Section, we apply the GA to the design of planar ar-
rays of gold and silver nanoparticles, excited by a linearly polarized
plane wave propagating orthogonally to the array plane. In this case,
the design is carried out by keeping all the particle radii fixed to
R0 = 50 nm, and only their positions are optimized. In particular,
the particles can be placed within a square of length L = 2 µm. The
resulting coordinates are listed in Table 5.2. In the following, we will
describe the most significant cases.

n xAg[nm] yAg[nm] NFEAg xAu[nm] yAu[nm] NFEAu

1 -50 0 - -50 0 -

2 53 0 120 53 0 62

3 124 -215 - -55 -359 -

4 -134 -205 - 58 -359 -

5 123 215 - -52 370 -

6 -133 205 234 61 370 87

7 326 0 - 200 394 -

8 -332 0 276 -191 393 -

9 -180 -550 - 183 -392 -

10 123 -550 - -180 -390 98

11 -160 540 - 56 -870 -

12 144 540 306 -56 -870 -

13 - - - 56 870 -

14 - - - -56 870 107

Table 5.2: Particle coordinates and NFE for silver and gold planar
nanolenses with fixed radius.

In agreement with the previous Section, the optimized configura-
tion is a dimer aligned along the polarization direction of the incident
light, with shortest edge-to-edge separation, as shown in Fig. 5.3(a)
and 5.3(e), for gold and silver respectively.

The case of N = 6 for gold is shown in Fig. 5.3(b). It turns out
that the particles assemble to form dimers, placed symmetrically with
respect to the probing point along the vertical direction. In such a
configuration, the particles provide a radiative contribution in-phase
with the external excitation, in correspondence of the central dimer.
For the case of silver, shown in Fig. 5.3(f), the radiative contribution
is equally significant. However, in this case individual particles are
placed in a circumference of radius RC = 250 nm centered at r0. In
order to understand this optimized configuration, it is convenient to
remind that two electric dipoles lying on a circle, radiate electromag-
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Figure 5.3: Electric field magnitude on the equatorial plane of planar
nanolenses composed of (a) N = 2, (b) N = 6, (c) N = 10, and
(d) N = 14 Au particles and by (e) N = 2, (f) N = 6, (g) N = 8, and
(h) N = 12 Ag particles. The color maps are in log scale.

netic fields with the same phase at the circle center if they are excited
by the same time-harmonic field. Also the radius RC is optimized
to achieve an in-phase coupling between the fields radiated by these
particles and the external excitation at the central dimer. Furthermore,
the particles are not randomly placed along this circle; the distance
between two neighbors is approximately equal to the radius RC of the
circle. As a result, the optimization has also maximized the in phase
coupling among the external particles.

Similar results occur in the case N = 10 for gold, as shown in Fig.
5.3(c) and in the case N = 8 for silver, as shown in Fig. 5.3(g).

In conclusion, this analysis demonstrated that, in order to maxi-
mize the radiative contribution in metal particle nanolenses, the fun-
damental units are the isolated particle in the case of silver and the
dimer for gold. This difference is due to the fact that the radiative
contribution to the localized near field of an isolated silver particle
is much greater than an equivalent size gold particle. Therefore two
particles are needed for gold. However, in both cases the distance
between the radiative units and the probing point r0 matches the ex-
ternal field phase at the central dimer’s position for the optimization
wavelength.
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5.4 experimental validation

In this Section, we experimentally validate the results of the optimiza-
tion method previously described. In particular, we design a SERS sub-
strate to increase the Raman scattering signals (see Appendix A.7),
as a proof of concept to demonstrate the effectiveness of the opti-
mized nanolenses. Typical SERS substrates are random aggregates of
particles [88], periodic gratings [89], dimers [90, 91, 92, 93], bowties
[94, 95], deterministic aperiodic arrays [96, 97], or nanoparticle clus-
ters [98, 99], to name just a few possible geometries. Raman enhance-
ments have been shown to scale to the fourth power of local electro-
magnetic fields [90]:

ISERS ∝ |E(λex)|
2|E(λs)|

2 , (5.2)

where λex and λs are the pump and the Stokes-shifted wavelengths,
respectively. Consequently, SERS represents a valid experimental method
to determine the NFE of plasmonic substrates.

5.4.1 Multi-objective optimization

In order to design a SERS substrate, we performed a multi-objective
optimization, i. e. the NFE at the probing point has been simultane-
ously maximized at the two wavelengths λex = 785 nm and λS =

858 nm, corresponding to the laser pump and the Stokes peak of a
pMA molecule, as described with more details in the next. In this
optimization process, the gold nanoparticles can be placed within a
square of L = 2 µm edge, and the minimum allowed edge-to-edge
distance between them is δ = 25 nm. The radius is optimized in the
interval [50 nm, 150 nm], as convenient for the EBL fabrication con-
straints.

n x[nm] y[nm] R

1 -97 0 72

2 75 0 75

3 -230 460 125

4 206 460 125

5 -230 -460 125

6 206 -460 125

7 -260 1000 125

8 250 1000 125

n x[nm] y[nm] R

9 -260 -1000 125

10 250 -1000 125

11 0 380 70

12 0 175 70

13 0 -380 70

14 0 -175 70

15 631 0 125

16 -650 0 125

Table 5.3: Particle coordinates and radii of the planar substrate optimized
for SERS.
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However, a SERS device with arbitrarily shaped particles over a sub-
strate cannot be modeled by means of the multiparticle Mie theory.
Consequently, we use the GA approach to obtain an initial solution,
and then it is refined by using a Finite Difference Time Domain (FDTD)
solver. In this refinement step, all the nanoparticles are assumed to be
cylinders with a height of 30 nm, that it has been found optimal for
near-infrared sensing [96, 97], and they are on top of a glass substrate
of refractive index n = 1.45. The resulting particle coordinates are
listed in Table 5.3, for a number of particles N up to 8.

The calculated values of the field enhancement intensity NFE2 are
shown in Fig. 5.4(a) for λex = 785 nm, as function of N. As more
particles are added to the substrate, the intensity boosting begins to
saturate for N = 14. The optimal configuration for N = 16 is schemat-
ically represented in the inset. This analysis confirms that the field
intensity increases dramatically with N, due to the radiative contribu-
tion introduced by the additional particles.

Figure 5.4: (a) Field enhancement intensity of the optimized SERS substrate
at λex = 785 nm as function of the number of particles. The op-
timal configuration is represented in the inset. (b) Field enhance-
ment intensity spectra, parametrized for the number of particles.

The NFE spectra are represented in panel Fig. 5.4(b), showing that
the enhancement peak is preserved at the center of the prescribed val-
ues of the optimization (the pump and Stokes-shifted wavelengths of
pMA), for any value of N. These spectra confirm that, by optimizing
the focusing of the radiative contribution of large Au nanoparticles
into the central dimer, we are able to increase the values of near-field
enhancement by a factor of 6 with respect to the isolated optimized
dimer.
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5.4.2 Sample fabrication and SEM characterization

We fabricated the optimized array with N = 16 and repeated it in
a periodic tiling on the chip. The periodic tiling was accomplished
by stepping-and-repeating the genetic pattern as a base, overlapping
the six outer particles. We also fabricated reference arrays of dimers
and periodic gratings with optimized particle spacing as a reference.
All these structures exhibit strong plasmonic resonance in an overlap-
ping spectral region. All of the patterns were fabricated with the EBL

process described in Appendix A.8, using a Zeiss SUPRA 40VP SEM
equipped with a Raith beam blanker.

Figure 5.5: SEM micrographs of SERS substrates. Genetically optimized ar-
ray (a) and its close-up (b). Dimers (c) (left particle diameter
72.5 nm, right particle diameter 74 nm) spaced 1.5µm apart.
Monomers (d) with 150 nm diameter in a 540 nm lattice. All
scale bars correspond to 1 µm.

The representative Scanning Electron Microscopy (SEM) images of
the fabricated arrays are shown in Fig. 5.5. We show the optimized
nanoarray in panel (a), and a close-up in panel (b), confirming the cen-
tral dimer separation of 25 nm. We show in panel (c) dimers with the
same diameters as the central dimer of the optimized array, spaced
1.5 µm apart to avoid diffractive coupling. In panel (d) we show a
periodic array designed to enhance near-fields at 785 nm, with a par-
ticle diameter of 150 nm and lattice constant of 540 nm. The scale
bars all correspond to 1 µm. These SEM micrographs show almost
ideal agreement with our design parameters over a large pattern area.
Each pattern was spaced by 100 µm to avoid undesired electromag-
netic coupling.
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5.4.3 SERS characterization

In this Section, a rigorous analysis of the near-field properties of
genetically optimized, dimer and periodic plasmonic arrays is per-
formed. The calculated near-field intensity supported by each pat-
tern is shown in Fig. 5.6(a) as function of the wavelength. The inci-
dent light is a plane wave polarized along the dimer axis. It is clearly
shown that the maximum near-field spectra of the optimized array
is greatly enhanced over isolated dimers and the periodic arrays. The
optimized array supports the strongest fields due to the optimal inter-
play between the near-field coupling at the gap of the central dimer
and the radiative contribution of the surrounding particles.

Figure 5.6: Experimental and theoretical analysis of the near-field proper-
ties: (a) Maximum near-field intensity spectra of the optimized
array, dimers, and a periodic array. Dashed vertical lines indicate
the pump wavelength λex = 785 nm, and the wavelengths of the
two Stokes modes 1077 cm−1 and 1590 cm−1. Near-field inten-
sity distribution in logarithmic scale on the equatorial plane at
λex of the (b1) optimized array, (b2) dimer, and (b3) periodic grat-
ing. The scale bars correspond to 300 nm. (c) Measured Raman
spectra of the optimized, dimer and periodic arrays. (d) Raman
enhancements for the 1077 cm−1 (red) and 1590 cm−1 (black)
modes of pMA, as measured (open circles) and calculated (solid
circles).

The spatial distributions of the calculated near-field intensity are
shown (in logarithmic scale) in Fig. 5.6(b1) for the optimized array,
5.6(b2) for the individual dimer, and 5.6(b3) for the periodic array
at 785 nm, normalized to their maximum field values, with the scale
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bars corresponding to 300 nm. The genetic patterns exhibit the strongest
near-fields in the gap between the two dimer particles, while rather
weak near-fields are present around the other particles.

In order to experimentally validate our design procedure, we mea-
sured the SERS signal as described in Appendix A.7. The intensity
of the raw Raman signals is shown for comparison in Fig. 5.6(c) for
the optimized array, dimers, and periodic array. The genetic pattern
shows the strongest Raman signals, while the periodic array has a
larger intensity at all Raman modes than the dimers. It is impor-
tant to notice that there is also more gold in the periodic structure,
which will be corrected for below. We only consider the two domi-
nant Stokes modes, i. e. the Raman shifts 1077 cm−1 and 1590 cm−1.

It is worth to notice that a normalization to the active area of the
specific SERS pattern is required to obtain a correct estimation of the
NFE. In order to take into account the different amount of Au which
contribute to the Raman signal in the different arrays, we calculate Ra-
man enhancement values for each pattern, as previously described in
the literature [88, 100]. Unlike periodic and dimer structures, where
the field enhancement is uniformly distributed around all the par-
ticles within the array, in the case of the genetically optimized pat-
tern only the central dimer contributes to the SERS signal. All other
particles in the pattern support very weak electromagnetic fields and
would lead to an underestimation of our Raman enhancement. There-
fore we have considered only the Au surface area of the central dimer
in our calculations of the number of excited pMA molecules for the
optimized array.

By performing the Raman enhancement calculations on the 1077 cm−1

(black circles) and 1590 cm−1 (red circles) modes on each sample
type, we show in Fig. 5.6(d) the corresponding measured Raman en-
hancement factors for each geometry (open circles) and a compari-
son with our FDTD calculations (solid circles). Since unpolarized light
was used to experimentally excite the Raman spectrum, in our FDTD

calculations of Raman enhancement we considered the enhancement
averaged over two orthogonal polarization states. The FDTD calcula-
tions predict a logarithmic scaling of enhancement factors for each
geometry, which is followed by the experimental data. The optimized
array exhibits a calculated Raman enhancement of 105, followed by
the dimers with 104 and the periodic grating with 103 enhancement.
Experimentally, the periodic structure exhibits an enhancement factor
in the low 103 range for both modes, which very closely follows our
theoretical prediction. The 1077 cm−1 and 1590 cm−1 modes of the
dimers were measured to have a Raman enhancement of 7.9x103 and
1.3x104. The measured enhancement factors of the optimized array
are 4.4x104 and 1.2x105 for the two Raman modes. All these values
are in reasonably good agreement with the FDTD calculations.
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The data shown in Fig. 5.6 demonstrate the effectiveness of the GA

optimization approach and demonstrate the essential role played by
the radiative coupling to enhance near-field strength in the central
dimer region of the genetically optimized structures with a large im-
provement of Raman signals over patterns optimized using conven-
tional dimer or periodic grating geometries.

5.5 conclusion

In this Chapter, we have shown that we can achieve order of ten
improvement over dimers and order of one hundred improvement
over periodic gratings in Raman enhancement by genetically opti-
mizing a nanoparticle array. This is essentially accomplished by an
optimum interplay between the plasmonic near-field interaction in
a dimer and the far-field radiative contributions of the surrounding
particles placed at genetically optimized locations.

We have shown that the design of metallic nanoparticles clusters
for obtaining a very large field enhancement can be performed us-
ing the basic paradigm of engineering, namely the optimization of
a well-defined objective function. The investigated scenarios demon-
strate that two different mechanisms are at the origin of high field en-
hancement and need to be simultaneously optimized: the near-field
coupling between closely spaced particles and the far-field radiative
coupling of the surrounding particles. We have unveiled general rules
behind the maximization of the radiative coupling. In particular, the
building blocks for best electric field enhancement should be isolated
particles and dimers for Ag and Au aggregates respectively, and the
distances between these building blocks should be optimized to ob-
tain constructive interference with the external field excitation at the
probing point. Our optimization approach is validated by SERS mea-
surements performed on fabricated devices using pMA monolayers,
demonstrating that genetically optimized arrays lead to order of ten
improvement over dimers, and order of one hundred improvement
over periodic gratings in Raman enhancement. A careful design of
nanoparticle light concentrators can have a large impact in numerous
nano-optics applications including solar cells, optical manipulators,
plasmon enhanced photodetectors, modulators, and nonlinear opti-
cal devices.
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H A R M O N I C G E N E R AT I O N I N M E TA L S AT
N A N O S C A L E



5.5 conclusion 64

Nonlinear phenomena in metal nanostructures are gathering much
attention due to their potential application in novel components for
integrated optics [101, 102, 103, 104, 105]. Metal nanoparticles have
been employed for decades to enhance the efficiency of optical pro-
cesses, including Raman scattering, fluorescence, and multiphoton ab-
sorption because they support LSPs. When LSPs are resonantly excited,
the local electromagnetic field is significantly enhanced in the parti-
cle, enabling the generation of nonlinear optical effects, such as har-
monic generation, at relatively low excitation powers. This enables
strong nonlinear optical effects at relatively low excitation powers,
such as harmonic generation and the Kerr effect. In particular, the
Second Harmonic (SH) generation is a nonlinear optical process in
which a medium excited by two photons at a fundamental frequency
ω0 emits one photon at twice that frequency 2ω0. SH generation from
metal nanostructures provides a powerful tool for probing physical
and chemical properties of material surfaces [106, 107].

As already discussed in Chapter 2, the SH radiation from metal
nanostructures originates from two contributions, the bulk and the
surface. In noble metal, the local-bulk source is absent because of
the material centrosymmetry, and only the nonlocal-bulk contribu-
tion needs to be considered [108]. On the contrary, the local-surface
contribution to SH radiation is allowed due to the symmetry breaking
at the interface with the embedding medium [109, 110]. The magni-
tudes of the nonlocal-bulk and surface SH contributions depend on
the shape of the nanoparticle and on the optical properties of the
metal at the fundamental and second-harmonic frequencies [55, 56,
57, 58, 59, 60, 111, 112].

Several theoretical approaches have been proposed in the last two
decades, for modeling second-order nonlinear effects from metal nanos-
tructures. In 1999, Dadap et al. studied the SH radiation generated
from the surface of a sphere in the Rayleigh regime, i. e. if the par-
ticle radius R is much smaller than the wavelength of the incident
light λ [110], as already discussed in Chapter 3. It is shown that
the leading-order contributions to SH radiation arise from the electric-
dipole p(2ω) and the electric-quadrupole

←→
Q (2ω) moments, and the

main selection rules for the SH scattering from a sphere are outlined.
In Refs. [113] and [61], the Rayleigh limit is analyzed by taking into
account both the bulk and the surfaces polarization sources, showing
that the SH field is radiated by an effective electric dipole moment
p(2ω)
eff (r̂) ∼= p(2ω) + i k0

←→
Q (2ω)r̂/3 (the SH magnetic dipole emission

is forbidden because of the axial symmetry of the system). In the
Rayleigh limit, both the nonlocal-bulk and the surface SH sources
contribute to the induced electric dipole moment, while only the lo-
cal surface sources contribute to the induced electric quadrupole mo-
ment. The presence of distinct SH sources with their own radiation
patterns causes the SH Rayleigh scattering process to differ signifi-
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cantly from the linear Rayleigh scattering. In particular, the theory
predicts the absence of the SH signal in the forward direction and the
(k0R)

6 scaling of the SH scattering cross-section.
The SH Rayleigh scattering model is inaccurate if the particle size

is comparable with the wavelength, because the contributions of SH
multipolar orders higher than 2 are not negligible. A full-wave anal-
ysis of the SH scattering from spherical particles of arbitrary size is
developed in Ref. [114], but only the surface SH source was taken into
account. Moreover, the enforced boundary conditions are incorrect,
[108] resulting in zero SH radiation from the radial component of the
source. Recently, a full wave theory of the SH radiation generated by
a chain of parallel infinitely long cylinders, including both the bulk
and surface nonlinear sources, has been developed in Ref. [104]. A
full-wave theory of the SH radiation generated in three-dimensional
structures consisting of metal spheres made of centrosymmetric ma-
terials has been proposed in Ref. [115], but here again the treatment
is limited to the surface source. A full-wave analysis of the SH scat-
tering from particle of arbitrary shape can be numerically performed
by using numerical integral methods. In particular, the Surface Inte-
gral Equation (SIE) and Volume Integral Equation (VIE) approaches
have been developed and used to calculate the SH response of metal
nanoantennas [116, 55].

The analytical solution to the problem of SH scattering

from a spherical particle made of noble metal will be pre-
sented in the next Chapter, as fundamental part of the present

Thesis. For the first time, we consider all the relevant sources

to the SH generation process, namely the nonlocal bulk and

the local surface.
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In this Chapter, we present a full-wave analytical solution for the
problem of second-harmonic generation from spherical particles made
of lossy centrosymmetric materials. Both the bulk and surface SH

sources contribute significantly to the SH scattering response of a
spherical nanoparticle, as already demonstrated in approximated an-
alytical models developed to describe the SH generation from noble
metal nanostructures with simple geometries, such as spheres and
cylinders. Therefore, both the local-surface and nonlocal-bulk nonlin-
ear sources are included in the generation process by means of an
effective nonlinear polarization, under the undepleted-pump approx-
imation.

The solution is derived in the framework of the Mie theory by
expanding the pump field, the non-linear sources and the second-
harmonic fields in series of SVWFs. We use a spherical coordinate sys-
tem (O, r, θ,φ) with the origin O in the center of the sphere, as in
Fig. 6.1(a); we denote with


r̂, θ̂, φ̂


the unit vectors of the spherical

coordinate system. The domain of the electromagnetic field is the en-
tire space R3, divided into the interior part of the metal domain Ω̇i,
the embedding medium Ω̇e and the metal surface Σ. The surface Σ is
oriented in such a way that its normal n̂ points outward, n̂ = r̂ |Σ .

We apply this solution to study the second-harmonic generation
properties of noble metal nano-spheres as function of the polarization,
the pump wavelength and the particle size.

Figure 6.1: (a) Scheme of the spherical particle and coordinate system
(O, r, θ,φ). (b) Elementary closed curve ∆l across the selvedge re-
gion at the particle boundary.
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6.1 sources of second-harmonic radiation in metals

The SH sources in metal nanoparticles can be represented by an ef-
fective nonlinear polarization induced by the electromagnetic field
at the fundamental frequency ω. As already introduced in Chapter
2, the bulk contribution P

(2ω)

b to the nonlinear polarization is of the
form [48]:

P
(2ω)

b =ε0 βE(ω)∇ · E(ω) + ε0 γ∇


E(ω) · E(ω)

+

ε0 δ
′


E(ω) · ∇


E(ω) in Ωi ,
(6.1)

where β, γ and δ ′ are material parameters, ε0 is the vacuum permit-
tivity, E(ω) is the electric field at the fundamental frequency and Ωi

denotes the region occupied by the particle. Due to the homogeneity
of the material we also have ∇ ·E(ω) = 0 in Ωi, therefore the first
term on the right hand side of Eq. (6.1) vanishes and the expression
of P(2ω)

b reduces to:

P
(2ω)

b = ε0 γ∇


E(ω) · E(ω)

+ ε0 δ

′


E(ω) · ∇


E(ω). (6.2)

The surface contribution P
(2ω)

s can be expressed in the form [108]:

P(2ω)
s = ε0

↔
χ
(2ω)

s : E(ω)E(ω)

Σi

on Σ , (6.3)

where ↔
χ
(2ω)

s is the second-order surface nonlinear susceptibility ten-
sor of the metal, and Σ denotes the particle boundary. The normal
component of E(ω) is evaluated on the internal page of Σ, which
we have indicated with Σi; there is no ambiguity relevant to the tan-
gential components of E(ω) because they are continuous across Σ.
Since the nanoparticle surface possesses isotropic symmetry with a

mirror plane perpendicular to it, the tensor ↔
χ
(2ω)

s has only three non-
vanishing and independent elements, χ⊥⊥⊥, χ⊥∥∥ and χ∥⊥∥ = χ∥∥⊥,
where ⊥ and ∥ refer to the orthogonal and tangential components to
the particle surface.[108] Therefore Eq. (6.3) reduces to:

P(2ω)
s

∼= ε0 [χ⊥⊥⊥n̂n̂n̂+ χ⊥∥∥

n̂t̂1t̂1 + n̂t̂2t̂2


+

χ∥⊥∥

t̂1n̂t̂1 + t̂2n̂t̂2


:E(ω)E(ω) ,

(6.4)

where n̂ is the normal to the particle surface pointing outward and
t̂1,t̂2 are two orthonormal vectors defining the plane tangent to the
particle surface, such that (n̂, t̂1,t̂2) is a counterclockwise triplet.

It is interesting to note that, although the the relation between
P(2ω)
s and E(ω) is of local character, the contribution of the normal

component (P(2ω)
s · n̂) to the SH radiation depends on the surface gra-

dient ∇S(P
(2ω)
s · n̂). In fact in the selvedge region (Fig. 6.1b) at the

metal-vacuum interface, there is a volumetric current density:

J(2ω)
s⊥ = i2ω


P(2ω)
s · n̂/δ


n̂,
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which is exactly compensated by the normal component of the dis-
placement current density:

J
(2ω)
s⊥ + i2ωD

(2ω)
⊥ = 0,

otherwise there would be an unbounded magnetic field. Therefore,
in the selvedge region:

D
(2ω)
⊥ = −


P

(2ω)
s · n̂/δ


n̂.

From the Faraday-Neumann’s law, applied to the elementary curve
∆l shown in Fig. 6.1(b), we have:

E(2ω)
i − E(2ω)

e


|Σ ·∆l∥ = u2 − u1,

where u(α) =

∆l

(α)
⊥

E(2ω) · dl = (P(2ω)
s · n̂)


Q(α)

and α = 1, 2. By

combining these relations we obtain:

n̂×


E(2ω)
i − E(2ω)

e

Σ = n̂×∇S


P(2ω)
s · n̂


/ε ′.

The theoretical and experimental determination of the parameters
γ, δ ′, χ⊥⊥⊥, χ⊥∥∥ and χ⊥∥⊥ has been a long-standing problem in
Nonlinear Optics, and it is still an open issue [43, 50, 51, 52].

The source of the nonlinearity in metals results from the response
of both bound and free electrons. In particular, for the visible/near-
IR part of the light spectrum, the nonlinear response of thick metal
particles may be attributed mostly to the free electrons [48, 43, 57, 56].
They behave as an isotropic electron gas with effective mass meff, re-
laxation time τ (due to the collisions with the ion lattice) and a quan-
tum pressure. The electron gas dynamics are governed by the Euler’s
equation. This is the so-called hydrodynamic model. Within it, the bulk
contribution to the nonlinear polarization arises from both the con-
vective term and the Lorentz’s force term, while the surface contribu-
tions are strictly related to the response of the electrons within the
Thomas-Fermi screening length (λTF ≈ 1Å for gold) from the surface
[43, 117]. Since in our case ωτ >> 1, the hydrodynamic model gives
the following expressions for the bulk parameters γ and δ ′ [118, 51]:

γ = −
1

8
χb (ω)

ω2
p

ω2

ε0
en0

(6.5a)

δ ′ ∼= i
2γ

ωτ
(6.5b)

where χb(ω) = εi(ω)/ε0 − 1 is the linear bulk permittivity of the
metal, n0 is the equilibrium number density of the free electrons,
ωp =


n0e2/meffε0 is the free electron plasma frequency and −e is

the electron charge.
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In the same limit ωτ >> 1, the hydrodynamic model also gives the
following estimation for the surface parameters χ⊥⊥⊥ and χ∥⊥∥, that
has been already introduced in Chapter 2 [43, 50]:

χ⊥⊥⊥ = −
1

4
χb (ω)

ω2
p

ω2

ε0
en0

, (6.6a)

χ∥⊥∥ =
1

2
χb (ω)

ω2
p

ω2

ε0
en0

, (6.6b)

Furthermore, the contribution of the term χ⊥∥∥ is generally consid-
ered negligible [42, 43, 51, 52].

Alternatively, the parameters of the SH sources may be identified
experimentally. This would allow to account for phenomena that are
disregarded in the hydrodynamic model, as the interband transitions.
Nevertheless, an identification of the parameters γ, δ ′, χ⊥⊥⊥, χ⊥∥∥
and χ∥⊥∥ through measurements of the SH radiation has an intrinsic
limit. In fact, the parameter γ cannot be separated from the surface
terms χ⊥⊥⊥ and χ⊥∥∥, through measurements of the SH field outside
the metal. An equivalent surface nonlinear polarization with surface
susceptibility:

χsurf,eff = χeff

n̂n̂n̂+ n̂(t̂1t̂1 + t̂2t̂2)


, (6.7)

where χeff = γ(ω)ε0/εi(2ω), generates outside the metal the same
electromagnetic field generated by the γ term. For this reason the
contribution of the γ term is called surface-like bulk term [51].

This is an ancient problem in Nonlinear Optics. Sipe et al. pointed
out this ambiguity for the first time by analyzing the SH radiation gen-
erated by a planar slab [50]. Moreover, they inferred that this property
holds true for any material and shape. In this Chapter we also pro-
vide a very simple demonstration of this general property, following
Ref. [108].

On the contrary, Wang et al. unambiguously determined the δ ′ bulk
term in the SH radiation generated from a gold film, by using a two-
beam SH generation measurement technique [51]. However, the Au-
thors conclude ". . . that the surface-like contributions dominate and
that the pure bulk component makes only a minor contribution" to
the SH radiation generated from a planar slab. Since the contribution
of the δ ′ term depends on the spatial derivatives of E(ω), its mag-
nitude may be significant when E(ω) is rapidly varying in the bulk
of the metal [51]. The importance of the δ ′ contribution to the SH

radiation from non-planar geometries is still an open problem.
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6.2 second-harmonic scattering from spheres

Let us consider the electromagnetic field at frequency 2ω generated
from a metal sphere of radius R, when illuminated by a time-harmonic
electromagnetic plane-wave at frequency ω incoming from infinity.
We use the convention a (r, t) = Re


A(Ω) (r) exp (iΩt)


for represent-

ing a time harmonic electromagnetic field at angular frequency Ω,
where r = rr̂.

The SH generation problem involves two electromagnetic fields os-
cillating at different frequencies: the electromagnetic field


E(ω), H(ω)


at fundamental frequency ω and the second-harmonic electromagnetic
field


E(2ω), H(2ω)


at frequency 2ω. We denote with


E(ω)
0 , H(ω)

0


the incident (pump) electromagnetic field:

E(ω)
0 = E0ε̂0e

−ik(ω)
0 ·r

H(ω)
0 =

E0
ζe


k̂0 × ε̂0


e−ik(ω)

0 ·r ,
(6.8)

where E0 is the electric field amplitude of the linearly-polarized pump
beam, ε̂0 is its polarization direction, k̂0 is its propagation direction,
k(ω)
0 = k̂0ke(ω), ke(ω) = ω

√
µeεe and ζe =


µe/εe. The param-

eters εe and µe are the permittivity and the permeability of the em-
bedding medium.

Since the intensities of the SH fields generated by noble metals are
always orders of magnitude weaker than the intensities of the pump
fields, the SH fields do not significantly couple back to the fundamen-
tal fields (undepleted-pump approximation). As a result, the electromag-
netic scattering problems at the fundamental frequency and at the SH

frequency are both linear. The linear electromagnetic response of the
metal is characterized by the permittivity εi, which depends on the
frequency, and by the permeability µi, that we assume independent
of the frequency.

In order to calculate the SH radiation generated by the metal sphere,
we have to evaluate:

1. the electric field E(ω) in Ω̇i and on the inner page of Σ (that we
have denoted with Σi), induced by the pump electromagnetic
field


E(ω)
0 , H(ω)

0


;

2. the SH nonlinear polarization sources generated by E(ω);

3. the electromagnetic fields

E(2ω), H(2ω)


radiated by the SH

nonlinear polarization fields.

Both problems 1) and 3) are solved by expressing the unknown fields
in terms of SVWFs.

The electromagnetic fields at the pump frequency are solved by
means of the well-known Mie theory, which has been already de-
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scribed in Chapter 3. The SH electromagnetic field satisfies the Maxwell’s
equations:∇× E(2ω)

i = −2iωµiH
(2ω)
i

∇×H(2ω)
i = 2iωεi (2ω)E(2ω)

i + J(2ω)
b

in Ω̂i, (6.9a)

n̂×


H(2ω)
i − H(2ω)

e


= −j(2ω)

elet

n̂×


E(2ω)
i − E(2ω)

e


= j(2ω)

mag

on Σ , (6.9b)

∇× E(2ω)
e = −2iωµeH(2ω)

e

∇×H(2ω)
e = 2iωεeE(2ω)

e

in Ω̂e , (6.9c)

where

J(2ω)
b = 2iωP(2ω)

b , (6.10a)

j(2ω)
elet = −2iωn̂×


n̂× P(2ω)

s


, (6.10b)

j(2ω)
mag=

1

ε ′
n̂×∇s


n̂ · P(2ω)

s


, (6.10c)

the operator ∇s denotes the surface gradient,


E(2ω)
i , H(2ω)

i


denote

the SH fields in Ω̇i,


E(2ω)
e , H(2ω)

e


denote the SH fields in Ω̇e and ε ′

is the selvedge region permittivity [43], which we assumed equal to ε0.
The sources of the SH radiation, therefore, are of three types. The

volume current density field J(2ω)
b given by Eq. (6.10a), takes into

account the contribution of the SH bulk nonlinear polarization. The
surface electric current density j(2ω)

elet given by Eq. (6.10b), takes into
account the contribution of the SH tangent surface nonlinear polar-
ization. The surface magnetic current density j(2ω)

mag given by (6.10c),
takes into account the contribution of the SH normal surface nonlin-
ear polarization. The systems of Eq. (6.9a) have to be solved with the
radiation condition at infinity for


E(2ω)
e , H(2ω)

e


.

The SH field equations are formally the same of the fundamental
field equations except for the bulk source term J(2ω)

b in the Maxwell-
Ampere equation and the substitutions ω → 2ω. Consequently, the
problem is reduced to that already solved for the fundamental fields,
by expressing the electromagnetic field inside the nanoparticle (Ωi)
as: E(2ω)

i = E(2ω)
hom + E(2ω)

par

H(2ω)
i = H(2ω)

hom + H(2ω)
par

, (6.11)
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where


E(2ω)
hom , H(2ω)

hom


is the general solution of Eq. (6.9a) in absence

of the source term, and


E(2ω)
par , H(2ω)

par


is a particular solution of

the complete system of Eq. (6.9a). The contribution


E(2ω)
hom , H(2ω)

hom


will be represented as the electromagnetic field at the fundamental
frequency. The particular solution


E(2ω)
par , H(2ω)

par


contains two con-

tributions, one takes into account the γ term


E(2ω)
γ , H(2ω)

γ


and

the other takes into account the δ ′ term


E(2ω)
δ ′ , H(2ω)

δ ′


. The term

E(2ω)
γ , H(2ω)

γ


is given by the simple expression [61]:E(2ω)

γ = − ε0

εi(2ω)γ∇

E(ω) · E(ω)


H(2ω)

γ = 0
(6.12)

Instead, the term


E(2ω)
δ ′ , H(2ω)

δ ′


can be evaluated by using the ex-

pansion in SVWFs or the Green’s function for a medium with electric
permittivity εi and magnetic permeability µi.

Therefore, the fields


E(2ω)
hom , H(2ω)

hom


and


E(2ω)
e , H(2ω)

e


are solu-

tions of the homogeneous Maxwell’s equations at frequency 2ω and
have to satisfy on Σ the boundary equations:r̂×


H(2ω)

hom − H(2ω)
e


= −j(2ω)

elet − r̂×H(2ω)
δ ′

r̂×


E(2ω)
hom − E(2ω)

e


= (j(2ω)

mag − r̂× E(2ω)
γ ) − r̂× E(2ω)

δ ′

(6.13)

By combining Equations (6.10c), (6.12) and (6.13), it results that the
contribution of the term γ to the SH electromagnetic field at the exter-
nal of the particle may be described by the equivalent surface sources
of Eq. 6.7.

The unknown fields


E(2ω)
hom , H(2ω)

hom


and


E(2ω)
e , H(2ω)

e


are repre-

sented as:

E(2ω)
hom (r, θ,φ) = −E

(2ω)
c

∞
n=1

n
m=−n

c
(2ω)
mn M(1)

mn [ki (2ω) r, θ,φ]

+d
(2ω)
mn N(1)

mn [ki (2ω) r, θ,φ]

H(2ω)
hom (r, θ,φ) =

E
(2ω)
c

iζi (2ω)

∞
n=1

n
m=−n

d
(2ω)
mn M(1)

mn [ki (2ω) r, θ,φ]

+c
(2ω)
mn N(1)

mn [ki (2ω) r, θ,φ]
(6.14a)
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for r < R , and

E(2ω)
e (r, θ,φ) = E(2ω)

c

∞
n=1

n
m=−n

b
(2ω)
mn M(3)

mn [ke (2ω) r, θ,φ]

+a
(2ω)
mn N(3)

mn [ke (2ω) r, θ,φ]

H(2ω)
e (r, θ,φ) = −

E
(2ω)
c

iζe

∞
n=1

n
m=−n

a
(2ω)
mn M(1)

mn [ke (2ω) r, θ,φ]

+b
(2ω)
mn N(1)

mn [ke (2ω) r, θ,φ]
(6.14b)

for r > R, where E(2ω)
c = E0

2/Eb is a characteristic electric field ex-
pressing the order of magnitude of the SH electric field in the nanopar-
ticle, and Eb = ωc0meff/(χb(ω)e).

Both the expressions of


E(2ω)
hom , H(2ω)

hom


and


E(2ω)
e , H(2ω)

e


sat-

isfy the homogeneous Maxwell’s equations at frequency 2ω. The un-
known coefficients


a
(2ω)
mn ,b(2ω)

mn


and


c
(2ω)
mn ,d(2ω)

mn


are evaluated

by imposing the boundary equations (6.13).
When the contribution of the δ ′ term is negligible, the right-hand

sides of Eq. (6.13) are given, in terms of SVWFs, by:

−j(2ω)
elet (θ,φ) =

E
(2ω)
c

iζe

∞
n=1

n
m=−n


v ′

(2ω)
mn Xmn (θ,φ) + u ′(2ω)

mn r̂×Xmn (θ,φ)


,

j(2ω)
mag (θ,φ) − r̂× E(2ω)

part (r = R, θ,φ) =

− E
(2ω)
c

∞
n=1

n
m=−n


u ′′(2ω)

mn r̂× [r̂×Xmn (θ,φ)]

.

(6.15)

The coefficients

u ′(2ω)

mn , v ′(2ω)
mn


for the surface tangential source

can be expressed as:

u ′(2ω)
mn = i2


−
b

2


ζe

ζ0

∞
n1

n1
m1=−n1

∞
n2

n2
m2=−n2

A
(1)
m1n1

A
(−1)
m2n2

C
(1,0,−1)
n1m1n2m2nm

+A
(0)
m1n1

A
(−1)
m2n2

C
(1,1,−1)
n1m1n2m2nm

v ′
(2ω)
mn = −2


−
b

2


ζe

ζ0

∞
n1

n1
m1=−n1

∞
n2

n2
m2=−n2

A
(1)
m1n1

A
(−1)
m2n2

C
(0,0,−1)
n1m1n2m2nm

+A
(0)
m1n1

A
(−1)
m2n2

C
(0,1,−1)
n1m1n2m2nm
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where the coefficients C(p,q,r)
J1M1J2M2JM

are defined in Appendix A.5.

The coefficients

u ′′(2ω)

mn , v ′′(2ω)
mn


for both the γ bulk and the sur-

face normal polarization source can be expressed as:

u ′′(2ω)
mn =


−
a

4


i

n(n+ 1)

gmn(ki(ω)R)

k0(ω)R

+


−
d

8


ε0

εi(2ω)
i

n(n+ 1)

fmn(ki(ω)R) + gmn(ki(ω)R)

k0(ω)R

v ′′
(2ω)
mn =0

where

gmn(ki(ω)R) =

n1m1


n2m2


A

(−1)
m1n1

A
(−1)
m2n2

W
(−1,−1)
n1m1n2m2nm



fmn(ki(ω)R) =

n1m1


n2m2


A

(0)
m1n1

A
(0)
m2n2

W
(0,0)
n1m1n2m2nm


+

A

(0)
m1n1

A
(1)
m2n2

W
(0,1)
n1m1n2m2nm


+

A

(1)
m1n1

A
(0)
m2n2

W
(1,0)
n1m1n2m2nm


+

A

(1)
m1n1

A
(1)
m2n2

W
(1,1)
n1m1n2m2nm


and the coefficients W(p,q)

J1M1J2M2JM
are defined in Appendix A.4. The

formulas of the unknown coefficients

a
(2ω)
mn ,b(2ω)

mn


and


c
(2ω)
mn ,d(2ω)

mn


are then:

a
(2ω)
mn = a ′(2ω)

mn + a ′′(2ω)
mn , b

(2ω)
mn = b ′(2ω)

mn + b ′′(2ω)
mn ,

c
(2ω)
mn = c ′

(2ω)
mn + c ′′

(2ω)
mn , d

(2ω)
mn = d ′(2ω)

mn + d ′′(2ω)
mn ,

where with one apex we denote the contribution due to the tangential
surface SH sources and with two apices we denote the contributions
of both the normal surface SH sources and the γ bulk SH sources. For
the contribution of the tangential surface SH sources we have:

a ′(2ω)
mn

u ′(2ω)
mn

=
x
(2ω)
e ψ̇n(x

(2ω)
i )

ξn(x
(2ω)
e )ψ̇n(x

(2ω)
i ) − ζe

ζi(2ω)ψn(x
(2ω)
i )ξ̇n(x

(2ω)
e )

b ′(2ω)
mn

v ′
(2ω)
mn

=
x
(2ω)
e ψn(x

(2ω)
i )

ζe

ζi(2ω)ξn(x
(2ω)
e )ψ̇n(x

(2ω)
i ) −ψn(x

(2ω)
i )ξ̇n(x

(2ω)
e )

c ′(2ω)
mn

v ′
(2ω)
mn

=
x
(2ω)
i ξn(x

(2ω)
e )

ψn(x
(2ω)
i )ξ̇n(x

(2ω)
e ) − ζe

ζi(2ω)ξn(x
(2ω)
e )ψ̇n(x

(2ω)
i )

d ′(2ω)
mn

u ′(2ω)
mn

=
x
(2ω)
i ξ̇n(x

(2ω)
e )

ζe

ζi(2ω)ψn(x
(2ω)
i )ξ̇n(x

(2ω)
e ) − ξn(x

(2ω)
e )ψ̇n(x

(2ω)
i )
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where x(2ω)
e = k

(2ω)
e R, x

(2ω)
i = k

(2ω)
i R, ψn = ψn (ρ) , ξn = ξn (ρ)

are the Riccati-Bessel functions. For the contribution of both the nor-
mal surface SH sources and the γ bulk SH sources we have:

a ′′(2ω)
mn

u ′′(2ω)
mn

=

ζe

ζi(2ω)x
(2ω)
e ψn(x

(2ω)
i )

ζe

ζi(2ω)ψn(x
(2ω)
i )ξ̇n(x

(2ω)
e ) − ξn(x

(2ω)
e )ψ̇n(x

(2ω)
i )

b ′′(2ω)
mn = 0

c ′′
(2ω)
mn = 0

d ′′(2ω)
mn

u ′′(2ω)
mn

=
x
(2ω)
i ξn(x

(2ω)
e )

ξn(x
(2ω)
e )ψ̇n(x

(2ω)
i ) − ζe

ζi(2ω)ψn(x
(2ω)
i )ξ̇n(x

(2ω)
e )
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6.3 gold nanospheres

In the present Section, by using the analytical solution derived in the
previous one, we analyze the SH generation from an isolated gold
nanosphere in vacuum, as the radius, the pump wavelength and po-
larization vary. Specifically, we study the SH radiation generated at
pump wavelengths of λ = 780 nm (Ti:sapphire laser) and λ = 520 nm

(gold plasmon resonance). Particular care has been devoted to the
comparison with the existing theories in the Rayleigh regime. In or-
der to model the bulk linear susceptibility of gold, we interpolated
Johnson and Christy’s experimental data [38].

In order to adequately represent the electromagnetic fields at the
fundamental and the second-harmonic frequencies, it has been suffi-
cient to consider the degree n up to 10, for the cases of our interest.
Only the first 3 and the first 6multipoles have significant amplitude at
the fundamental and the second-harmonic frequencies, respectively.

Following Ref. [52], we express χ⊥⊥⊥, χ∥⊥∥ and γ in terms of the
Rudnick-Stern (R-S) parameters (a,b,d) [42, 43]:

χ⊥⊥⊥ = −
a

4
χb (ω)

ω2
p

ω2

ε0
en0

, (6.16a)

χ∥⊥∥ = −
b

2
χb (ω)

ω2
p

ω2

ε0
en0

, (6.16b)

γ = −
d

8
χb (ω)

ω2
p

ω2

ε0
en0

, (6.16c)

where χb is the bulk linear susceptibility of the metal. By choosing
(a = 1, b = −1, d = 1), we obtain the Sipe’s hydrodynamic model.[43]
By measuring the SH generated by gold spherical nanoparticles with
R = 150 nm at λ = 800 nm, Bachelier et al. have found that an opti-
mal choice for the phenomenological parameters a, b and d should
be (a = 0.5− i0.25, b = 0.1, d = 1) [52]. We discuss the solutions ob-
tained by using both sets of values.

The pump electromagnetic field is a plane-wave propagating along
the positive direction of the z−axis, and linearly polarized in the xy
plane, with a polarization direction ε̂0. We indicate with α the angle
between the unit vector ε̂0 and x−axis (the reference versus is counter-
clockwise, seen from the half-space z > 0), as shown in Fig. 6.2.

In order to characterize the SH radiation, we consider both the SH

power per unit solid angle and the SH scattering cross-section. The SH

power per unit solid angle dP(2ω)
ε̂∗


K̂

/dΩ, radiated in the farfield

along the direction K̂ and collected by an analyzer with polarization
state ε̂∗ is defined as:

dP
(2ω)
ε̂∗


K̂


dΩ
= lim

r→∞

r2

2ζe

ε̂∗ · E(2ω)
e


K̂
2 . (6.17)
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Figure 6.2: SH scattering geometry. The pump electromagnetic field prop-
agates along the positive direction of the z−axis and is linearly
polarized along ε̂0. The SH scattered field is observed along the
direction K̂ = x̂ (the scattering plane is xOz). The z− and y−

components of the SH field are considered, respectively parallel
(∥) and orthogonal (⊥) with respect to the scattering plane.

The SH scattering cross-section C(2ω)
sca is given by:

C
(2ω)
sca = lim

ρ→∞

Σρ

E(2ω)
e

2 · n̂ dΣE(ω)
0

2 , (6.18)

where Σρ is a spherical surface with radius ρ, centered at the origin of
the coordinate system. dP(2ω)

ε̂∗

K̂

/dΩ depends on the collection di-

rection K̂ of the scattered SH light. C(2ω)
sca has the physical dimensions

of an area, and it is proportional to the SH generation efficiency.
In order to analyze the SH radiation polarization state, the analyzer

can be polarized either parallel (∥) or perpendicular (⊥) to the SH

scattering plane, defined by the propagation direction k̂0 of the pump
wave, and the collection direction K̂. We denote with dP(2ω)

∥ /dΩ and

dP
(2ω)
⊥ /dΩ the radiated powers per unit solid angle associated to

the ∥ and ⊥ components. The analysis of the polarization state of
SH radiation collected at right angle from the pump beam, i.e. K̂ =

x̂, is very important because it allows to discriminate the radiation
generated by even and odd SH multipole sources. Indeed, only the SH

N(3)
mn multipoles with odd n contribute to the ∥ component and only

the SH N(3)
mn multipoles with even n contribute to the ⊥ component.

These behaviors are reversed for the SH M(3)
mn multipoles.



6.3 gold nanospheres 78

6.3.1 SH source currents: Rayleigh and Mie regimes

Here we analyze the SH radiation generated from the single nonlinear
sources, acting as if they were radiating independently. Fig. 6.3 shows
the magnitude of each SH source current density, namely J(2ω)

b , j(2ω)
elet ,

j(2ω)
mag , normalized to their own maxima, and computed for the two

pump wavelengths λ = 520 nm and λ = 780 nm, corresponding to
resonance and off-resonance conditions, respectively. Two nanopar-
ticle radii have been considered, namely a particle with small size
(R = 10 nm) and a particle comparable in size to the pump wave-
length (R = 150 nm). The pump field is linearly polarized along the
x−axis (α = 0). In particular, the first column (panels a-d) shows
the magnitude of the electric current density J(2ω)

b in the xOz plane,
while the second and third columns (panels e-h,i-l), show the magni-
tude of the surface electric j(2ω)

elet and magnetic j(2ω)
mag current densities,

respectively.

Figure 6.3: SH source current distribution excited by a pump field linearly
polarized along x. The nanosphere size is R = 10 nm (first and
second row)and R = 150 nm (third and fourth row), the pump
wavelength is λ = 520 nm (first and third rows) and λ = 780 nm

(second and fourth rows). Panels (a,b,c,d) are relative to the bulk
current density cut in the xOz plane, panels (e,f,g,h) are relative
to the surface electric current density and panels (i,j,k,l) are rel-
ative to the surface magnetic current density. Each panel shows
the current magnitude normalized to its own maximum.

For small particles, J(2ω)
b is significant across the entire particle

volume (panel a, b). In particular, while for λ = 520 nm (panel a)
J(2ω)
b decreases along the direction of forward scattering, for λ =
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Figure 6.4: SH power per unit solid angle collected at right angle from the
pump beam (Fig. 6.2) as function of the pump polarization angle
α, for a nanosphere with R = 10 nm. The pump wavelength
is 780 nm. The blue line corresponds to the ∥ component and
the red line to the ⊥ component with respect to the scattering
plane. All the graphs are normalized to the maximum of the most
intense component. Panel (a) is relative to the bulk current, panel
(b) to the surface electric current, panel (c) to the the surface
magnetic current, as if they acted separately.

780 nm it is almost uniform. For particles with larger size (panels c,d),
the skin effect appears, i.e. the current J(2ω)

b is strongly confined near
the particle surface. The intensity distribution of both j(2ω)

elet and j(2ω)
mag

(e,f,i,j) is symmetric around the polarization direction of the pump
field for small particles. As the radius increases, this holds no longer
true due to the onset of higher order multipoles (panels g,h,k,l). It is
worth noting that the surface electric current density j(2ω)

elet vanishes
on a circle lying in the yOz plane, for any particle size and pump
wavelength, as shown in panels (e-h), due to the rotational symmetry
of the particle. Similarly, the surface magnetic current density j(2ω)

mag

displays a circle with a constant magnitude for every particle size, as
shown in panels (i-l).

In Fig. 6.4 the SH power per unit solid angle collected at right angle
from the pump direction is shown for a nanosphere with R = 10 nm.
Panels (a), (b) and (c) are relevant to the SH radiation generated by the
bulk, surface electric and surface magnetic SH source currents, respec-
tively, as if they acted separately. The blue and red lines correspond
respectively to dP(2ω)

∥ /dΩ and dP(2ω)
⊥ /dΩ , and for each panel both

the components are normalized to the maximum of the most intense.
These results agree with those obtained analyzing the SH radia-

tion from a metal nanosphere in the Rayleigh limit. [110, 61] In this
regime, the SH radiation coincides with the electromagnetic field radi-
ated by a fictitious electric dipole with effective moment p(2ω)

eff (r̂) ∼=

p(2ω) + i k0
←→
Q (2ω)r̂/3, where p(2ω) is the induced SH electric dipole

moment (n = 1) and
←→
Q (2ω) is the induced SH electric quadrupole

moment (n = 2). Depending on the component of the SH intensity,
two different shapes of the polarization diagrams arise. For each SH

source, dP(2ω)
∥ /dΩ is due to a SH dipolar electric mode aligned along

the propagation direction of the pump, [110, 61] therefore its value
is independent of the polarization angle of the pump. On the other
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hand, the four lobe pattern observed for dP(2ω)
⊥ /dΩ is due to a SH

quadrupolar mode. Furthermore, dP(2ω)
⊥ /dΩ is negligible for both

J(2ω)
b and j(2ω)

elet , while it is comparable with dP
(2ω)
∥ /dΩ for j(2ω)

mag .
For larger particles, higher order SH multipoles arise due to larger
retardation effects, significantly modifying the SH radiation character-
istics, as we shall see in the next Section.
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6.3.2 SH scattering cross-section

In this Section, we study the SH scattering cross-section C(2ω)
sca for a

gold nanosphere, using as R-S parameters the values (a = 1,b = −1,d = 1).
All the results are relative to the case of a pump plane-wave with elec-
tric field of unitary magnitude, i.e. |E0| = 1 Vm−1 . Figure 6.5 shows
C
(2ω)
sca as function of the pump wavelength (black lines), for four par-

ticle sizes. For all the investigated sizes, C(2ω)
sca shows a maximum

at λ ≈ 520 nm, when the pump wavelength matches the plasmonic
resonance of the particle. Another local maximum is also observed
at λ ≈ 1040 nm. At this wavelength the SH fields resonate in the
gold nanosphere. The relative intensity of C(2ω)

sca at λ ≈ 1040 nm in-
creases as the particle size increases. A third local maximum can be
observed at λ ≈ 700 nm, for certain particle sizes (e.g. R = 100 nm

and R = 200 nm). Similar trends, not shown here, have been found
with the set of values (a = 0.5− i0.25,b = 0.1,d = 1) for the R-S pa-
rameters.
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Figure 6.5: SH scattering cross-section (black line) as function of the pump
wavelength for nanospheres with R = 10 nm (a), R = 100 nm

(b), R = 150 nm (c), R = 200 nm (d), with (a = 1,b = −1,d = 1).
The contribution of each multipolar order to the total radiation
cross-section is shown up to the 6th: n = 1 (green), n = 2 (blue),
n = 3 (violet), n = 4 (cyan), n = 5 (red), n = 6 (yellow).

In order to unveil the multipolar origin of the SH radiation in the
Rudnick-Stern model, the contributions of each multipole are shown,
up to the 6th order. For R = 10 nm (panel a), C(2ω)

sca is mostly due to
the SH dipolar source, and only for short wavelengths the SH quadrupo-
lar source begins to be significant. As we increase the radius R to
100 nm (panel b), we can identify three different regimes: for short
wavelengths λ < 550 nm, C(2ω)

sca is dominated by the octupolar source,
the quadrupolar one prevails in the range 550 nm < λ < 950 nm,
while the dipolar source is the most intense for large wavelengths.
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Figure 6.6: SH scattering cross-section as function of the nanosphere radius
R at pump wavelengths λ = 520 nm (red), λ = 780 nm (green),
λ = 1040 nm (blue), obtained with (a = 1,b = −1,d = 1).

For a particle with R = 150 nm (panel c), the dipolar source is negligi-
ble regardless of the pump wavelength, and the main contributions to
C
(2ω)
sca arise from the multipoles with n = 2, 3, 4. Similarly, the main

contributions for a particle with R = 200 nm arise from n = 2, 3, 4 for
large wavelength, and from the multipoles n = 5, 6 for short wave-
lengths.

Figure 6.6 shows the SH scattering cross-section as function of the
nanoparticle radius, for three values of the pump wavelength (λ =

520 nm, 780 nm, 1040 nm). The SH scattering cross-section increases
more than 4 orders of magnitude when the particle size increases up
to R = 100 nm. For larger radii, the SH scattering cross-section satu-
rates and a small modulation takes place. For small particle size, the
highest cross-section is shown when the particle is in plasmonic reso-
nance (i.e., red curve). For larger particle size, the magnitude of C(2ω)

sca

is comparable for all the investigated pump wavelengths. Also in this
case, similar trends have been found using the set of R-S parameters
(a = 0.5− i0.25,b = 0.1,d = 1).
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6.3.3 SH power dependence on the pump polarization

The SH power radiated at right angle from the propagation direction
of the pump allows for the recognition of even- and odd-order multi-
polar contributions to the SH generation process, as already pointed
out. Figure 6.7 shows dP(2ω)

∥ /dΩ and dP(2ω)
⊥ /dΩ as function of the

polarization angle α of the pump, for two different choices of R-S
parameters. The first row (a-d) is relative to the R-S parameter set
(a = 1,b = −1,d = 1), while the second row (e-h) is relative to the
set (a = 0.5− i0.25,b = 0.1,d = 1). Four different values of particle
size are presented: R = 10 nm (a,e), R = 100 nm (b,f), R = 150 nm

(c,g), R = 200 nm (d,h). Both dP(2ω)
∥ /dΩ and dP(2ω)

⊥ /dΩ are normal-
ized to the maximum of the most intense component. For small (a,e)

 1

 0.5

 0

 0.5

 1

 1  0.75  0.5  0.25  0  0.25  0.5  0.75  1

  0°180°

-90°

 90°

 1

 0.5

 0

 0.5

 1

 1  0.75  0.5  0.25  0  0.25  0.5  0.75  1

 1

 0.5

 0

 0.5

 1

 1  0.75  0.5  0.25  0  0.25  0.5  0.75  1

 1

 0.5

 0

 0.5

 1

 1  0.75  0.5  0.25  0  0.25  0.5  0.75  1

 1

 0.5

 0

 0.5

 1

 1  0.75  0.5  0.25  0  0.25  0.5  0.75  1

  0°180°

-90°

 90°

 1

 0.5

 0

 0.5

 1

 1  0.75  0.5  0.25  0  0.25  0.5  0.75  1

 1

 0.5

 0

 0.5

 1

 1  0.75  0.5  0.25  0  0.25  0.5  0.75  1

 1

 0.5

 0

 0.5

 1

 1  0.75  0.5  0.25  0  0.25  0.5  0.75  1

(a) (b)

(e) (f)

(c) (d)

(g) (h)

Figure 6.7: SH power per unit solid angle collected at right angle from the
pump beam (Fig. 6.2) as function of the pump polarization an-
gle α, for nanosphere with R = 10 nm (a,e), R = 100 nm (b,f),
R = 150 nm (c,g), R = 200 nm (d,h), obtained by using (a-d)
(a = 1,b = −1,d = 1) and (e-h) (a = 0.5− i0.25,b = 0.1,d = 1).
The pump wavelength is λ = 780 nm. The blue line corresponds
to the ∥ component and the red line to the ⊥ component with
respect to the scattering plane. All the graphs are normalized to
the maximum of the most intense component.

and very large (d,h) radii, dP(2ω)
∥ /dΩ prevails over the dP(2ω)

⊥ /dΩ

for both sets of the R-S parameters. For intermediate sizes (b,c,f,g),
dP

(2ω)
∥ /dΩ and dP(2ω)

⊥ /dΩ are comparable, and their relative inten-
sities strongly depend on the particular choice of the R-S parameters.
For small particles, dP(2ω)

∥ /dΩ is independent of the polarization an-
gle α (panels a,e), while up to 4 lobes can appear for larger particles,
as it will be shown more in detail in Fig. 6.8. The graphs of the com-
ponent dP(2ω)

⊥ /dΩ feature four lobes oriented along the bisectors of
the 4 quadrants, in each of the investigated case.

The appearance of an octupolar SH source significantly modifies
the shape of dP(2ω)

∥ /dΩ. In the Rayleigh limit the ∥ component gen-
erated by the SH dipolar source fully prevails over the ⊥ component
generated by the SH quadrupolar source. As the radius increases, the
intensity of the SH octupolar source increases due to the retardation
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Figure 6.8: SH power per unit solid angle of the ∥ component collected at
right angle from the pump beam (Fig. 6.2), as function of the
pump polarization angle α, for nanospheres of size R = 80 nm

(green), R = 120 nm (red), R = 140 nm (black), R = 150 nm(blue)
and (a = 1,b = −1,d = 1). The pump wavelength is λ = 780 nm,
all the curves are normalized to their own maximum.

effects, as pointed out in the previous Section. Due to the interference
in the far field of the SH dipolar and octupolar fields, the dP(2ω)

∥ /dΩ

reduces significantly until it becomes smaller than dP(2ω)
⊥ /dΩ (b,c).

As the radius further increases, the SH octupolar source prevails over
the SH dipolar source, and the shape of dP(2ω)

∥ /dΩ gets close to that
of an octupole (d,e).

The details of the transition from the dipole to the octupole pattern
as the radius increases are shown in Fig. 6.8. First, the circular shape
of dP(2ω)

∥ /dΩ is shrunk along the directions α = 0◦, 180◦, until the
amplitude reaches a null (green and red curves). Then, two lobes arise
along these directions (black curve), forming a four-lobe pattern. As
the radius further increases, the intensities of the two lobes along the
directions at α = 0◦, 180◦ prevail over the intensities of the lobes
along the directions at α = 90◦, 270◦ (blue curve). In conclusion we
found that, if either the SH dipole or the SH octupole prevail, the
polarization properties of the SH radiation obtained by the two sets
of R-S parameters are similar. Otherwise, the interference between
the two SH multipoles introduces significant differences. This may
provide a fingerprint to evaluate the parameters in the framework of
the R-S model.



6.3 gold nanospheres 85

6.3.4 SH radiation diagrams

Figure 6.9 shows the angular distribution of the SH radiation gener-
ated by gold nanospheres, obtained by means of the R-S parameters
(a = 1, b = −1, d = 1). The first row (a,b) is relative to a small sphere
(R = 10 nm) and the second row (c,d) to a large sphere (R = 150 nm).
In the first column (a,c) the pump wavelength is λ = 520 nm, while
in the second column (b,d) λ = 780 nm.

Figure 6.9: SH radiation diagrams for nanospheres of size R = 10 nm

(panels a,b), R = 150 nm (panel c, d), obtained by using
(a = 1,b = −1,d = 1). Panels (a, c) are relative to the pump wave-
length λ = 520 nm, and panels (b,d) to λ = 780 nm. All the
intensities are normalized to their own maximum.

For particles with R = 10 nm, the dipolar and quadrupolar SH

sources dominate the response, in agreement with the Rayleigh limit.
In particular, we notice that the quadrupolar SH source is more im-
portant at λ = 520 nm, while at λ = 780 nm the dipolar mode fully
dominates the response. As the particle radius increases, higher order
modes come into play, resulting in an higher number of secondary
lobes. For particles with R = 150 nm, the octupolar mode dominates
the angular distribution of the SH radiation at λ = 780 nm. Moreover,
for each particle size and pump wavelength, the lobes display a pref-
erential alignment along the polarization direction of the pump field.
Figure 6.10 shows the two cuts of the 3D radiation diagram along the
xOz, and yOz plane. It is worth noting that the SH power vanishes
in both the forward- and backward-scattering directions, regardless
of R. This selection rule is a direct consequence of the rotational sym-
metry of the sphere around the propagation direction of the pump.
Two lobes, directed orthogonally to the pump propagation direction,
characterize the radiation diagrams of small particles. As the particle
size increases, the lobes with higher power tend to come closer to the
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Figure 6.10: SH radiation diagrams as function of θ angle, at ϕ = 0◦ (blue)
and ϕ = 90◦ (red), for nanospheres of size R = 10 nm (a),
R = 100 nm (b), R = 150 nm (c), and R = 200 nm (d) and
(a = 1,b = −1,d = 1). The pump wavelength is λ = 780 nm,
for each panel the curves are normalized to the maximum of
the most intense one.

forward direction, while the lobes in the backward direction decrease
in amplitude. The same trend is observed if the particle size is fixed
and the pump wavelength decreases. This behavior has been already
observed experimentally for silver nanoparticles in Ref. [119].
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6.4 conclusion

We have developed a full-wave analytical solution for the second-
harmonic generation from a metal spherical particle of arbitrary size.
This approach extends the existing theories, enabling a rigorous treat-
ment of all the sources of SH radiation, located both on the surface
and in the bulk of the particle.

The solution of the problem is derived in the framework of the
Mie theory by expanding the pump field, the nonlinear polarization
sources and the second-harmonic fields in series of spherical vector
wave functions, and enforcing the boundary conditions at the sphere
surface.

We investigated the SH radiation of gold nanospheres by using the
Rudnick-Stern model for the SH sources. In particular, we studied
the spatial distributions of the nonlinear polarization sources, which
display significant symmetries due to the spherical geometry. We in-
vestigated the SH cross-section dependence on the pump wavelength,
demonstrating the contribution of SH multipoles up to the order
N = 6, as the particle radius increases up to ∼ 200 nm. Similarly,
we studied the multipolar origin of the SH radiation diagrams, and
showed significant analogies with experimental works in literature.
Eventually, we investigated the SH radiated power as function of the
pump polarization angle. In particular, we compared the solutions ob-
tained by using as Rudnick-Stern parameters both the Sipe’s model
values and the values proposed in Ref. [52]. It resulted that the SH
radiation dependence on the pump polarization significantly varies
with these parameters, and the shape and the relative intensities of
the SH p- and s- components are function of them.

The application of the proposed method in combination with ex-
perimental observation, can improve the general understanding of
nonlinear processes in metals, and can lead to an accurate evaluation
of weights for the different SH sources. The theory of SH scattering
can be easily extended to the multiparticle case. This approach can
also guide the design of novel nanoplasmonic devices with enhanced
SH emission for a wide range of applications,[120] including sensors
for probing physical and chemical properties of material surfaces.



7
G O L D C O L L O I D S

In recent years, several experiments were performed on the SH gener-
ation from noble metal surfaces and colloids [51, 52, 121], confirming
the comparable magnitude of the nonlocal bulk and local surface SH

sources. In the present Chapter, we estimate the relative contributions
of the SH sources, by combining SH generation experiments on a set
of differently-sized gold colloids and theoretical data of the SH scat-
tering from gold nano-spheres.

SH-intensity measurements are performed on colloidal gold as func-
tion of the polarization state of the pump beam, in order to separate
the contributions of even- and odd-order multipoles. The experimen-
tal data are analyzed in the framework of the hydrodynamic model
combined with a full-wave electromagnetic solver for the SH scatter-
ing from spherical particles. Since the experimental setup allows for
the selection of even- and odd-order SH multipoles, the natural choice
for our calculation is the analytical solution of the problem of SH gen-
eration based on the expansion of the fields and the sources in SVWFs

developed in the previous Chapter, taking into account both the non-
local bulk and the local surface SH sources [122]. We observe a depen-
dence of the surface contribution to the SH radiation on the particle
size, and we measure the detailed transition in the SH dipolar and
octupolar interference patterns.

An estimation of the relative weights of the bulk and the surface
nonlinear sources has been proposed for single-sized gold nanopar-
ticles in Ref. [52], by using a Finite Element Method (FEM) for the
calculations, where the second-order bulk polarization P

(2ω)

b has been
expressed as:

P
(2ω)

b = ε0γ∇


E(ω) · E(ω)


, (7.1)

and the surface polarization has been expressed as:

P(2ω)
s = ε0

↔
χ
(2ω)

s :E(ω)E(ω) , (7.2)

The parameters χ⊥⊥⊥, χ∥⊥∥ and γ have been expressed as:

χ⊥⊥⊥ = −
a

4
χb (ω)

ω2
p

ω2

ε0
en0

, (7.3a)

χ∥⊥∥ = −
b

2
χb (ω)

ω2
p

ω2

ε0
en0

, (7.3b)

γ = −
d

8
χb (ω)

ω2
p

ω2

ε0
en0

, (7.3c)
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where χb(ω) is the metal linear susceptibility. The coefficients (a,b,d),
usually referred to as Rudnick-Stern (R-S) parameters [42], represent
the weight of the SH sources, respectively normal and tangent to the
surface, and bulk, as previously discussed in the Thesis.

7.1 pump-polarization measurements

We perform SH generation experiments in the configuration repre-
sented in Fig. 7.1. The gold colloid, symbolically represented as a
spherical particle, is excited by a pulsed Ti:Sapphire laser (Mai Tai
HP, Spectra Physics), propagating along the z-axis. The pulse width
is 120 fs, with a repetition rate of 80 MHz. We perform the experi-
ments at the two incident wavelengths λ = 800 nm and λ = 840 nm,
with linearly-polarized light. The pump beam polarization E

(ω)
0 is

rotated in the xOy plane, where α is the angle formed with the x-axis.
The beam is focused onto the colloidal solution through a 20x micro-
scope objective. We measure the SH intensity along the x-axis, i. e. the
excitation and the collection directions are at right angle. The signal
is collected by a 30 mm lens and it is filtered by a 650 nm short-pass
filter to reduce the intensity of the scattered pump frequency. Eventu-
ally, it passes through a monochromator and is detected by a photo-
multiplier tube. A lock-in amplifier extracts the signal modulated by a
mechanical chopper. This excitation-collection configuration has the
remarkable property to allow for the separation of the SH intensity
generated from different SH multipoles. In particular, the collected
SH intensity is analyzed in its p- and s-components with respect to
the xOz scattering plane, respectively along the z-axis and the y-axis.
The odd-order multipoles only contribute to the p-component (along
the y-axis) of the SH signal, whereas the even-order multipoles only
contribute to the s-component (along the z-axis) [122].

We perform SH intensity measurements on a set of gold colloids
(BBI Life Sciences) with average radii ranging from R = 40 nm to
R = 100 nm, by varying the polarization angle α of the pump beam.
The pump-polarization dependence of the SH p- and s-components
are represented in Fig. 7.2 for two pump wavelengths, respectively
λ = 800 nm and λ = 840 nm. For the cases of interest of the present
work, it turns out that the non-negligible SH multipoles are the dipole
(n = 1) and octupole (n = 3) for the SH p-component, and the
quadrupole (n = 2) for the s-component. The SH radiation from
higher-order multipole is negligible, as demonstrated by rigorous an-
alytical calculations in the following.

The pump-polarization dependence of the SH p-component is deter-
mined by the interference between the SH dipole and octupole. On the
contrary, the pump-polarization dependence of the SH s-component
is only dominated by the SH quadrupole, and no interference ap-
pears. The relative intensity between the maxima of the p- and s-
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Figure 7.1: Schematic of the experimental setup. The pump beam k
(ω)
0 prop-

agates along the z-axis, and it is linearly-polarized in the xOy
plane (α is the angle between the x-axis and the electric field
E

(ω)
0 . The signal is collected along the x-axis and its p- and s-

components, with respect to the scattering plane xOz, are ana-
lyzed.

components are function of the particle size. For R = 40 nm, the
p-component prevails over the s-component for λ = 840 nm, and
they are of comparable magnitude for λ = 800 nm. For R = 50 nm,
the destructive interference between the SH dipole and octupole re-
duces the intensity of the p-component with respect to the previous
particle size. The minimum of SH intensity for the p-component oc-
curs for R = 75 nm, where the s-component prevails for both pump
wavelengths. Eventually for R = 100 nm, the SH octupole begins
to prevail over the dipole. The interference between the two multi-
poles still occurs, and the p-component has it maxima for α = 0 and
α = π/2 (p- and s-polarized pump). For both cases λ = 800 nm and
λ = 840 nm, the shape of the SH p-component as function of the
pump-polarization angle α is given by the interference between the
SH dipole and octupole. Moreover, the relative intensities of the p-
and s-components significantly vary with λ.

In the small-particle limit (i. e. R << λ/2π), the p-component is
governed by the SH dipole, resulting in a SH intensity independent of
the pump-polarization angle α [61]. In 2010 Bachelier et al.observed
the interference between the SH dipole and octupole for particles of
size R = 150 nm [123]. In the previous Chapter we predicted, by using
the R-S parameters derived from the hydrodynamic model, that the
SH dipole-octupole interference would provide a variety of patterns in
the p-component α-dependence, strongly depending on the particle
size. In particular, we guessed the appearance of two maxima at α = 0

and α = π/2. In the present Chapter, we show a significant part of
the transition between the pure dipolar and octupolar α-dependence
in Fig. 7.4, and we confirm the previous predictions about the SH

p-component maxima located at α = 0 and α = π/2.
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Figure 7.2: Intensity of the SH p- (blue) and s- (red) components as function
of the angle of polarization of the pump beam α, for R = 40 nm

(a,e), R = 50 nm (b,f), R = 75 nm (c,g) and R = 100 nm (d,h). The
pump wavelengths are λ = 800 nm (left column) and λ = 840 nm

(right column). The curves in each panel are normalized to the
maximum of the most intense component. Points are experimen-
tal acquisition and lines are numerical data.
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7.2 numerical analysis

In order to estimate the relative contributions of the SH nonlinear
sources, we study the pump-polarization dependence of the SH in-
tensity in the framework of the full-wave analytical solution for the
problem of SH generation from gold nano-spheres, developed in the
previous Chapter. In particular, this approach allows us to calculate

the SH power per unit solid angle dP
(2ω)
ε̂∗ (x̂)

dΩ , radiated along the x-axis
and collected through an analyzer with polarization state ε̂∗ = ẑ (SH

p-component) and ε̂∗ = ŷ (SH s-component):

dP
(2ω)
ε̂∗ (x̂)

dΩ
= lim

r→∞
rE(2ω)

c


2ζe

2 ε̂∗ ·
N

n=1

n
m=−n

b
(2ω)
mn M(3)

mn


k
(2ω)
e r, θ =

π

2
,φ = 0


+ a

(2ω)
mn N(3)

mn


k
(2ω)
e r, θ =

π

2
,φ = 0

2 ,

where (r, θ,φ) are spherical coordinates having origin in the sphere
center, k(2ω)

e and ζe respectively are the wavevector and the impedance
of the external medium, E(2ω)

c is a characteristic electric field express-
ing the order of magnitude of the SH electric field in the nanoparticle,
and N is the maximum order of SVWF used.

Our calculations are done by setting N = 10, but it turns out that
only the SVWFs with n = 1, 2, 3 are significant for the investigated
particle size and incident wavelength. The SH scattering coefficients
a
(2ω)
mn ,b(2ω)

mn are function of the incident field wavelength λ and polar-
ization angle α, and of the particle size and permittivity, as discussed
in the previous Chapter.

The combination of the SH generation experiments and calculations
allows us to evaluate the R-S parameters. Specifically, we proceed by
minimizing the Root-Mean-Square Deviation (RMSD) between exper-
imental and theoretical curves of the pump-polarization dependence
in the configuration described in Fig. 7.1. Numerical data are shown
in Fig. 7.2 with solid lines. The experimental setup allows for the mea-
surement of the relative intensities of the two SH components, but not
their absolute values. Consequently, the constraints for the minimiza-
tion problem are two, while the degrees of freedom are the three real
parameters (a,b,d). For the sake of the well-conditioning of the prob-
lem, we fix one of the R-S coefficients to an arbitrary value. In partic-
ular, we lead our analysis by imposing d = 1 for each particle size.
As a matter of fact, d is predicted to be unitary in the hydrodynamic
model that we adopt for the expression of the nonlocal bulk and local
surface susceptibilities. This choice allows for the parameters a and b
to vary with the particle size.

The estimation of the R-S parameters given by Bachelier et al.with
FEM calculations, by considering the SH p-component of gold parti-
cles with radius R = 75 nm and an incident wavelength λ = 800 nm



7.2 numerical analysis 93

 1

 0.5

 0

 0.5

 1

 1  0.5  0  0.5  1

(a) (b)

(c) (d)
 1

 0.5

 0

 0.5

 1

 1  0.5  0  0.5  1

(a) (b)

(c) (d)

 1

 0.5

 0

 0.5

 1

 1  0.5  0  0.5  1

(a) (b)

(c) (d)

 1

 0.5

 0

 0.5

 1

 1  0.5  0  0.5  1

(a) (b)

(c) (d)

Figure 7.3: Intensity of the SH p-component as function of the angle of po-
larization of the pump beam α, for R = 40 nm (a), R = 50 nm

(b), R = 75 nm (c) and R = 100 nm (d). The pump wavelength is
λ = 800 nm. Curves are not to scale.
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The pump wavelengths are λ = 800 nm (a) and λ = 840 nm (b).

[52], provided the optimal set of values (d = 1, b = 0.1,a = 0.5+ i0.2).
Our works are in agreement on the observation that the R-S parame-
ters related to Sipe’s model are unable to predict the experimental SH

dependence on the pump-polarization. However, their estimated val-
ues of the R-S parameters are different from the results derived here.
In particular, in our work we use real-valued R-S parameters for the
sake of the well-conditioning of the problem, as previously discussed.
Moreover, our estimation of the relative weights of the SH sources
is done by minimizing the RMSD of both the p- and s-components.
Therefore, we account for both the p- and s-components with the
same R-S parameter set, for each particle size. Eventually, we believe
that the SH experiments, allowing for the separation of the SH multi-
poles, are more accurately described by numerical calculations based
in a multipole expansion of the fields and the sources, rather than
other approaches.

Figure 7.5 shows the calculated R-S parameters as function of the
particle size, and a clear trend for their relative contributions can be
observed. The parameters a and b, representing the weights of the
surface contributions respectively normal and tangent to the surface
with respect to the bulk source, vary with the particle radius R. This
result is expected since the surface condition also varies with the par-
ticle size. For the smallest investigated size R = 40 nm, the R-S pa-
rameters are approximately of unitary amplitude. As the particle size
increases, a increases whereas b decreases. Eventually, for the largest
investigated size R = 100 nm, b is almost zero for both wavelengths.
On the contrary, at λ = 800 nm a as slightly increased its value. At
λ = 800 nm, a is almost the double of d. These results are a confirma-
tions of the strong dependence of the selvedge effects on the surface
conditions [42]. It is clear that the expression for the R-S parameters
derived in the hypothesis of translational symmetry are not able to
account for effects taking place in the selvedge region due to the finite
size of the particle. Our experiments suggest that multipolar effects
in the selvedge neglected so far are responsible for the variation of
the SH sources relative magnitude.
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7.3 conclusion

In conclusion, we evaluated the relative magnitude of the nonlocal
bulk and local surface contributions to the SH generation from differently-
sized gold colloids, in the framework of the hydrodynamic model for
the conduction electrons. Both surface terms, normal and tangent to
the surface, are found to be strongly dependent on the particle size.
We measured novel interference patterns between the SH dipole and
octupole in the SH intensity. This study has explored the possibil-
ity to model the nonlinear response of metal nanostructures in the
framework of the hydrodynamic model. It indicates the need for a
proper treatment of nonlinear effects from curved surfaces, in order
to rigorously understand second-order nonlinear effects from metal
nanostructures.
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P L A N A R A R R AY S O F A U N A N O PA RT I C L E S

In the last decade, the SH generation from planar arrays of metal
nanoparticles has been investigated for a variety of particle shapes,
sizes, and under different excitation-collection and polarization con-
ditions [124, 125, 126, 127, 128, 29]. In order to maximize the intensity
of the SH generation from a planar array, the particle shape, the in-
terparticle separations and the array geometry must be designed to
excite the LSPs at the fundamental wavelength, producing strong near-
field enhancement. This is due to the fact that the intensity of the SH

generation signal grows with the square of the intensity of the local
electric field at the pump wavelength.

In addition, the particle shape plays a fundamental role due to sym-
metry selection rules governing the SH generation [39]. For example,
L-shaped particles have been specifically studied to remove single
particle centrosymmetry. In this case, the linear and nonlinear opti-
cal behavior is strongly dependent on the polarization state of the
excitation [124, 125].

In 1999 Lamprecht et al. demonstrated that the SH generation sig-
nal from arrays of L-shaped particles can be greatly increased if the
particles are oriented in such a way that the overall array is non-
centrosymmetric [124]. Canfield et al.investigated SH generation from
non-centrosymmetric dimers, demonstrating that the asymmetry of
the local electric field distribution over the entire array plays a role
in SH generation as important as the enhancement of the near-field
intensity at the pump frequency [29]. Angularly resolved studies of
the SH generation from discontinuous metal percolation films also
featured strong peaks of SH signal in the direction of specular reflec-
tion, as well as a diffuse scattering background [129]. However, the
role of the planar array geometry on the SH generation from metal
nanoparticles is not yet fully understood.

Deterministic aperiodic nanostructures (DANS) have been shown
to exhibit distinctive scattering properties associated to the increased
localization of photonic-plasmonic modes, such as broadband scatter-
ing resonances, enhanced near-field intensities, largely controllable
angular scattering, enhanced colorimetric responses and Raman cross-
sections employed for biosensing applications [130, 131, 132, 133].
Recently, DANS lacking both translational and rotational symmetry,
consisting of aperiodic Vogel spirals of metal nanoparticles, have also
been demonstrated to exhibit polarization-insensitive light diffraction
and distinctive photonic modes carrying discrete values of optical an-
gular momentum [134, 135, 136].

96
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In this Chapter, we investigate the role of the array geometry on
the intensity and on the polarization properties of the SH genera-
tion from metal nano-cylinders arranged in planar structures of pro-
gressively increasing complexity. In particular we focus on periodic,
quasi-periodic Fibonacci and aperiodic golden angle spiral arrays in
the nonlinear optical regime. Detailed studies on the Fibonacci and
golden angle spiral geometries as well as their linear scattering prop-
erties have been discussed in literature [130, 131, 132, 133, 134, 135,
136].

We demonstrate optical SH generation in planar arrays of cylindri-
cal Au nanoparticles arranged in periodic and deterministic aperi-
odic geometries. In order to understand the respective roles of near-
field plasmonic coupling and long-range photonic interactions on the
SH generation signal, we systematically vary the interparticle sepa-
ration from 60 nm to distances comparable to the incident pump
wavelength. Using polarization-resolved measurements under fem-
tosecond pumping, we demonstrate multipolar SH generation signal
largely tunable by the array geometry. Moreover, we show that the SH

generation signal intensity is maximized by arranging Au nanoparti-
cles in aperiodic spiral arrays1 .

The possibility to engineer multipolar SH generation in planar ar-
rays of metal nanoparticles paves the way to the development of novel
optical elements for Nanophotonics, such as nonlinear optical sen-
sors, compact frequency converters, optical mixers, and broadband
harmonic generators on a chip.

1 The figures in the present Section have been adapted with permission from Ref. [105].
Copyright (2012) Optical Society of America
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8.1 array design and fabrication

We investigate SH generation in periodic, Fibonacci and golden angle
spiral arrays of cylindrical gold nanoparticles with a height of 30 nm
and a diameter of 200 nm. The dimensions of the gold nanocylin-
ders have been chosen in such a way that the peak of the scattered
pump signal is overlapping the pump wavelength (i.e., 780 nm) in
the absence of interactions among cylinders. The T-matrix numeri-
cal method has been employed for electromagnetic scattering calcula-
tions [137, 138], assuming a perfect cylindrical shape.

We fabricate a set of samples on a transparent fused silica sub-
strate by EBL (see Appendix A.8). For each sample, a 180 nm-thick
PMMA (poly(methyl methacrylate)) film is first spin-coated onto the
substrate, and then soft-baked at 180◦C for 20 minutes. The PMMA
film is nanopatterned by EBL. A 2 nm Cr adhesion layer and a 30 nm
gold layer are deposited over the PMMA film by electron beam evap-
oration. Finally the sample is immersed in heated acetone for the lift-
off process. Each array has a circular shape with a diameter of 50 µm.
In order to explore both the short-range plasmonic and long-range
photonic coupling regimes, we consider arrays with edge-to-edge in-
terparticle separations L ranging from 60 nm to 650 nm. For periodic
and Fibonacci arrays the interparticle separation is defined as the min-
imum edge-to-edge particle separation, while for the golden angle
spirals it is defined as the average nearest neighbor edge-to-edge sep-
aration, as discussed in Ref. [134, 135]. In Fig. 8.1 we show the SEMs

of periodic (a), Fibonacci (b) and golden angle spiral (c) arrays with
an interparticle separation of 60 nm.

Figure 8.1: SEM micrographs of periodic (a), Fibonacci (b) and golden angle
spiral (c) arrays of 200− nm-diameter cylindrical gold nanopar-
ticles with a separation of 60 nm.
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8.2 dark-field characterization

Prior to the SH generation experiments, we characterize the linear
behavior of each fabricated array by measuring their dark-field scat-
tering spectra over the wavelength range λ = 400 nm− 900 nm.

Dark-field spectroscopy consist of illuminating a sample with vis-
ible light and of collecting the scattered light only. The transmitted
light is not involved in the collection. This can be accomplished both
in transmission and reflection configurations, and it makes use of
a high NA condenser and a pinhole for the excitation. An index-
matching fluid can be possibly used to couple the condenser to the
sample substrate. This configuration avoids low k-vectors to illumi-
nate the sample, and only high k-vectors pass through. A low NA

(high magnification) objective is used in the collection. The back-
ground scattering spectra of an unpatterned area is subtracted by the
measured spectra. Then, the resulting spectra are normalized to the
emission line shape of the excitation lamp.

In our experiments, we use a broadband halogen lamp, a 50x ob-
jective with 0.5 NA and a fiber coupled CCD spectrometer (Ocean
Optics QE65000). Dark-field scattering spectra are plotted in Fig. 8.2
for the three array geometries and for different interparticle separa-
tions L. In periodic arrays (Fig. 8.2(a)) we notice that for values of L
larger than the particle size (yellow, cyan, magenta and blue curves)
the scattering resonance peak blue-shifts if L decreases due to pho-
tonic (i.e., diffractive) coupling among the nanoparticles. Conversely,
for values of L comparable to the particle size (green and red curves),
the quasi-static near-field interaction among closely spaced particles
prevails over the photonic one, and a broad resonance towards the
near-infrared is observed. We refer to this regime as plasmonic cou-
pling. In contrast, Fibonacci arrays (Fig. 8.2(b)) exhibit a broader scat-
tering peak around 800 nm with no remarkable shift as the interpar-
ticle separation L is varied. This scattering behavior is consistent with
the inhomogeneous spatial distribution of nanoparticle dimers in Fi-
bonacci arrays, that leads to a more incoherent scattering response
largely insensitive to L [130, 131, 132, 133]. Interestingly, the scatter-
ing behavior of the golden angle spiral arrays (Fig. 8.2(c)) is similar
to the one of periodic structures. In particular, the golden angle spiral
array features well distinct photonic and plasmonic resonances, sim-
ilar to periodic arrays. In fact it has recently been shown that these
structures display local order, captured by oscillations in the particles
radial correlation function and by a well-defined scattering ring in
Fourier space [135]. In Fig. 8.2(d) we show the behavior of the scat-
tered intensity at 780 nm, later utilized as the pump wavelength in
the pulsed SH generation experiments, versus the interparticle sepa-
ration for the different array geometries. In the case of periodic ar-
rays (red squares), the highest value of the scattered intensity occurs
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at L = 611 nm, corresponding to a center-to-center interparticle dis-
tance of 811 nm. This resonance may be associated with surface plas-
mon coupling with the grating periodicity [139, 140]. Golden angle
spiral arrays (blue circles) show a trend similar to that observed for
periodic arrays. On the contrary, the linear scattering from Fibonacci
arrays (green triangles) is almost insensitive to variations in L, con-
sistently with its more incoherent nature. The increase in scattering
signal when decreasing the interparticle separations in a Fibonacci
arrays reflects the increase in the particle number.

Figure 8.2: Dark-field scattering spectra for periodic (a), Fibonacci (b) and
golden angle spiral (c) arrays with different interparticle separa-
tion L: 60 nm (red), 200 nm (green), 436 nm (blue), 523 nm (ma-
genta), 567 nm (cyan), 653 nm (yellow). (d) Dark-field scattering
intensity at λ = 780 nm for periodic (red squares), Fibonacci
(green triangles) and golden angle Spiral (blue circles) arrays, as
function of the particle separation L.
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8.3 pump power dependence

The SH generation from the three array geometries is studied by ex-
citing the samples at 780 nm with a femtosecond Ti:Sapphire pulsed
laser (Mai Tai HP, Spectra Physics), with a pulse width of 120 fs and
repetition rate of 80 MHz, which is reduced to 10 MHz by an electro-
optic pulse picker (Conoptics 360-80l). The laser beam is filtered by a
700 nm long-pass filter and has an average power of 40 mW. We uti-
lize the specular reflection configuration shown schematically in Fig.
8.3(a). The excitation is obliquely incident on the sample surface at an
angle φ = 45◦ and the reflected SH generation signal is collected. The
beam is focused onto the array by an 85 mm focal length spherical
lens. The signal is collected through a 50x microscope objective with
a numerical aperture NA = 0.5 and is detected by a Newport 77348

photomultiplier tube (PMT) after passing through a monochromator
(Cornerstone 260 1/4 m Triple Grating, Ruled, 1200 l/mm, 500 nm
Blaze, 280 nm− 1600 nm Primar). A lock-in amplifier (Oriel Merlin)
extracts the signal modulated by a mechanical chopper. The collected
signal is filtered by a 650 nm short-pass filter before the PMT in order
to reduce the intensity of the pump component at the detector.

Figure 8.3: Schematics of the excitation-collection configuration (a). Spectra
of SH generation (b) from arrays with interparticle separation
of 60 nm, for several pump power densities W/Wmax: 1 (red),
0.821 (green), 0.654 (blue), 0.525 (magenta), 0.402 (cyan), 0.290

(yellow), 0.213 (black). Collected intensities at pump wavelength
(c, λ = 780nm) and SH generation wavelength (d, λ = 390nm), as
function of the pump power intensity, for periodic (red squares),
Fibonacci (green triangles) and golden angle spiral (blue circles)
arrays with interparticle separation of 60 nm. Scales are logarith-
mic.
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We measure the intensity of the collected signal both at the pump
wavelength and at the SH generation wavelength (i.e., 390 nm). Fig.
8.3(b) shows representative SH generation spectra from arrays with
interparticle separation L = 60 nm, as a function of the pump power
density W normalized to the maximum pump power (Wmax). We op-
erate with Wmax ≈ 2kWcm2 in order to preserve the particle struc-
ture and to avoid sample damaging. Fig. 8.3(c) and 8.3(d) show the
intensity of the collected signals, at the pump and at the SH gener-
ation wavelength respectively, versus the pump power intensity for
periodic (red squares), Fibonacci (green triangles) and golden angle
spiral (blue circles) arrays with interparticle separation of 60 nm. A
linear fit in a log-log scale indicates a slope ≈ 1 for the scaling of the
fundamental signal and ≈ 1.8 scaling for the SH generation signal. A
quadratic dependence of the SH generation signal on the pump power
is the hallmark of a second order nonlinear process. We attribute the
small discrepancy from the expected quadratic dependence to ther-
mal effects in gold nanoparticles well below the melting point [127].



8.4 polarization dependence of the sh generation 103

8.4 polarization dependence of the sh generation

The contribution of multipolar sources to SH generation can be rec-
ognized by their far-field emission. In what follows, we investigate
the polarization properties of the second harmonic radiation with the
aim of demonstrating its multipolar nature for the three planar array
geometries [110, 141, 142, 123, 143, 59]. It was recently predicted that
multipolar SH generation signal is more sensitive than the fundamen-
tal one for sensing applications [143]. We consider the components of
the collected signal that are parallel and orthogonal to the scattering
plane, defined by the directions of excitation and collection (inset of
Fig. 8.3(a)). We measure the intensities of the two polarization com-
ponents at the SH generation wavelength as a function of the input
polarization angle of the pump beam through a polarizer/analyzer
pair. A zero angle corresponds to a polarization parallel to the scat-
tering plane. Following Brevet et al. [141, 142, 123], the experimental
data are fitted using Eq. (8.1), where a, b and c are real parameters.

I(γ) = a cos4(γ) + b cos2(γ) sin2(γ) + c sin4(γ) (8.1)

In Fig. 8.4(a) and 8.4(b) we show the intensities of the parallel and
orthogonal components for the SH generation signal of periodic and
golden angle spiral arrays, while Fig. 8.4(c) and 8.4(d) display the re-
sults of the Fibonacci array. We notice in Fig. 8.4(a) and 8.4(c) that
the polar plots of each parallel component do not exhibit the typical
patterns of a dipolar source, which is insensitive to the angle of po-
larization of the pump [110, 141, 142, 123]. This can be more clearly
appreciated by the fact that, if using 2a = 2c = b in Eq. (8.1) as
required for the parallel component of a dipolar source, we cannot
fit the experimental data in Fig. 8.4. Hence, higher order multipolar
contributions need to be considered due to symmetry breaking and
retardation effects, which are particularly relevant for non-spherical
particles in the investigated size regime.

On the other hand, a quadrupolar SH generation behavior is dis-
played by the orthogonal component for the Fibonacci array in Fig.
8.4(d), which can only be fitted when a, c << b. This is expected
since for a pure quadrupolar source a = c = 0. To the best of our
knowledge, this is the first time that a quadrupolar radiation pat-
terns has been directly measured in the SH generation signal from
planar arrays of metal nanoparticles. The polar plot in Fig. 8.4(d) is
similar to the behavior of the orthogonal component of the SH gener-
ation measured in systems of non-interacting spherical nanoparticles
[110, 141, 142, 123]. On the contrary, the photonic interactions among
particles radically modify the SH generation radiated from periodic
and golden angle spiral arrays. For these array geometries, the polar-
ization patterns of the orthogonal components (Fig. 8.4(b)) are differ-
ent from a pure quadrupole, and high order multipolar SH generation
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Figure 8.4: Parallel (a) and orthogonal (b) components of the SH generation
for periodic (red) and spiral (blue) arrays. Parallel (c) and or-
thogonal (d) components of the SH generation for the Fibonacci
array (green). Experimental data is with scattered symbols, least-
squares fit is with continuous lines. The intensities in the plots
of panel (a) have been reduced of the factor 11/4 for the sake of
clearness.

is observed [142, 123]. In fact, Eq. (8.1) does not fit the experimental
data for any value of the parameters, and a modified version must be
introduced as in Ref. [141, 142]:

I(γ) = a cos4(γ) + b cos2(γ) sin2(γ) + c sin4(γ)+

d cos3(γ) sin(γ) + e cos(γ) sin3(γ)
(8.2)

The quadrupolar SH generation polarization dependence displayed
by Fibonacci quasi-periodic arrays with respect to periodic ones and
golden angle spiral structures may reflect the different linear scatter-
ing behavior displayed at the fundamental frequency, as discussed in
the previous Section. The values of the parameters a, b, c, d and e
utilized to fit the experimental data are displayed in Table 8.1.
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geometry component a b c d e

Periodic parallel 0.210 0.622 2.371 - -

Fibonacci parallel 0.206 -0.025 0.957 - -

Spiral parallel 0.371 0.501 2.610 - -

Periodic orthogonal 0.228 1.219 0.035 0.587 0.040

Fibonacci orthogonal 0.252 1.642 0.038 - -

Spiral orthogonal 0.184 0.660 0.073 0.181 0.095

Table 8.1: Fitting Parameters.

8.5 dependence on the interparticle separation

The intensity of the SH generation is plotted as a function of the in-
terparticle separation L for all the arrays in Fig. 8.5(a). A clear de-
pendence of the SH generation signal on the interparticle distance L
is observed, and the largest L produces the weakest SH generation
response for each array geometry.

Moreover, we notice that golden angle spirals give rise to the most
intense SH generation signals for all the investigated values of inter-
particle separations. On the other hand, for Fibonacci arrays the SH

generation is the lowest for all separations. This can be attributed to
the lower particle filling fraction of Fibonacci arrays. The variation in
the particle filling fraction of all the arrays as a function of the inter-
particle separation is shown in the inset of Fig. 8.5(a). Furthermore,
we notice that the superior performances of golden angle spirals over
periodic arrays cannot simply be explained by the difference in par-
ticle filling fractions, as these are comparable across the investigated
range of separations. Therefore, we attribute the enhanced SH genera-
tion to the asymmetric spatial near-field distribution in golden angle
spiral arrays, which is a consequence of their distinctive spiral ape-
riodic order. The importance of the near-field intensity distribution
at the pump wavelength for the SH generation optimization was al-
ready pointed out by Canfield et al. in the case of asymmetric metal
nanoparticles [29].

In Fig. 8.5(b) we show a correlation between the intensities of the
SH generation signal and of the scattered pump at 780 nm. A direct
dependence of SH generation signal on the fundamental is demon-
strated, showing that the SH generation is mainly driven by the opti-
cal behavior of the particle arrays at the pump frequency. In general,
the SH generation process depends also on the particle array field dis-
tribution at the harmonic frequency, but in this case the strong absorp-
tion of gold at the SH generation frequency makes this dependence
negligible. In order to better understand the role of the asymmetry of
the spatial distributions of the pump field over the nanoparticle, we
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Figure 8.5: SH generation intensity (a) as a function of the interparticle sep-
aration L, for periodic (red squares), Fibonacci (green triangles)
and golden angle Spiral (blue circles) arrays; (a inset) filling frac-
tion of gold for periodic (red squares), Fibonacci (green trian-
gles) and golden angle Spiral (blue circles) arrays. Correlation
diagram between SH generation and pump collected signals (b).

show in Fig. 8.6 the calculated near-field patterns at 780 nm, obtained
by the multiparticle Mie theory, introduced in Chapter 3 [54].

Figure 8.6: Near-field distribution at the pump frequency over periodic (a)
and golden angle spiral (b) arrays with interparticle separation
L = 60 nm. Near-field distribution at the fundamental frequency
over periodic (c) and golden angle spiral (d) arrays with interpar-
ticle separation L = 611 nm. All the near-field maps are plotted
in logscale.

The pump fields are calculated in the plane of the arrays for all the
array geometries and for two particle separations (60 nm, 611 nm)
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characteristic of plasmonic near-field coupling and photonic coupling,
respectively.

Fig. 8.6(a) and 8.6(c) show that periodic arrays display a very regu-
lar distribution of near-field around each nanoparticle, and the local
field intensity is reduced as the particles are separated. Moreover, we
notice that the field is strongly oriented along the direction of po-
larization of the pump beam. The highly symmetric nature of the
near-field pump distribution in periodic plasmonic arrays reduces
the SH generation signal due to destructive interference [144, 124]. In
Fig. 8.6(b) and 8.6(d), we show the near-field distributions in golden
angle spiral arrays for the photonic and plasmonic coupling regimes,
respectively. The golden angle spiral geometry couples all the par-
ticles in the array but, differently from periodic structures, a very
asymmetric near-field distribution results from the distinctive aperi-
odic order. This asymmetry of the pump fields in the golden angle
spirals prevents destructive interference effects in the SH generation
for all interparticle separations, resulting in a stronger SH generation
signal, as we experimentally demonstrated over a large range of par-
ticle separations.

8.6 conclusion

In conclusion, in this Chapter we studied the role of the planar ar-
ray geometry on the SH generation from gold nanoparticles. In par-
ticular we investigated periodic arrays, quasi-periodic and aperiodic
arrays. We demonstrated quadrupolar SH generation from planar ar-
rays of metal nanoparticles and its tunability with the array geometry.
Moreover, we demonstrated more intense SH generation in aperiodic
golden angle spiral geometry compared to the periodic one, and over
a large range of particle separations. We explain this behavior by the
asymmetric near-field distribution of aperiodic golden angle spiral at
the pump wavelength. These results are important for the develop-
ment of novel optical elements for nonlinear Nanophotonics applica-
tions, such as switchers, frequency converters and nonlinear optical
sensors on a planar chip.
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This Thesis presents novel results in the design of plasmonic nanos-
tructures, both in the linear and the nonlinear optical regimes.

In particular, plasmonic heterostructures composed by gold and
silver nanoparticles have been investigated. It has been shown that
the hybrid LSPs can be tuned by changing the interparticle separation
and the particle size of the elementary heterodimer. Moreover, it has
been demonstrated that asymmetric heterodimers can be employed to
obtain NFE peaks with equal intensity, both for the gold and the silver
wavelengths. Eventually, these heterostructures can be organized in
planar arrays for realizing a plasmonic substrates, and it has been
shown that the array period is a further parameter to tune the optical
response of the investigated heterostructures.

It has been also shown that the design of plasmonic nanostruc-
tures can be performed by using the optimization of a well-defined
objective function, such as the NFE. As a result, it has been demon-
strated that two different mechanisms need to be simultaneously op-
timized: the near-field coupling between closely spaced particles and
the far-field radiative coupling of far-spaced particles. It also turned
out that the building blocks for the highest NFE are isolated parti-
cles and dimers for silver and gold aggregates, respectively. The dis-
tances between these building blocks needs to be optimized to obtain
constructive interference with the external field excitation. With this
method, order of ten improvement over dimers and order of one hun-
dred improvement over periodic gratings in Raman enhancement are
achieved.

Importantly, in the present Thesis a full-wave analytical solution
for the second-harmonic generation from a metal spherical particle of
arbitrary size has been developed, extending the theories already ex-
isting in literature. In this way, a rigorous treatment of all the sources
of SH radiation, located both on the surface and in the bulk of the
particle is enabled. As a result, the SH radiation of gold nanospheres
by using the Rudnick-Stern model for the SH sources has been in-
vestigated. In particular, the spatial distributions of the nonlinear po-
larization sources has been studied, which display significant sym-
metries due to the spherical geometry. The SH cross-section depen-
dence on the pump wavelength demonstrates the contribution of SH
multipoles up to the order N = 6, as the particle radius increases
up to ∼ 200 nm. Eventually, the investigated SH radiated power as
function of the pump polarization angle has showed a significantly
dependence on the Rudnick-Stern parameters. The application of the
proposed method in combination with experimental observation, can
improve the general understanding of nonlinear processes in metals,
and can lead to an accurate evaluation of the weights for the different
SH sources.

The relative magnitude of the nonlocal bulk and local surface con-
tributions to the SH generation from differently-sized gold colloids
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has been experimentally investigated. Both surface terms, normal and
tangent to the surface, are found to be strongly dependent on the
particle size. Novel interference patterns between the SH dipole and
octupole in the SH intensity have been shown.

Eventually, the role of the planar array geometry on the SH genera-
tion from gold nanoparticles has been investigated. A quadrupolar SH

generation from planar arrays of metal nanoparticles has been shown,
along with its tunability with the array geometry. A more intense SH

generation in aperiodic golden angle spiral geometry compared to
the periodic one has been found, due to the asymmetric near-field
distribution of aperiodic golden angle spiral at the pump wavelength.

These results clearly promise the possibility to realize nanoscale
photonic devices working at optical wavelengths, based on the plas-
monic resonances. As a matter of fact, the LSPs in metal nanoparticles
have the sufficient degree of tunability for designing real devices for
applications ranging from sensing to light control. In particular, the
study of the nonlinear optical effects in the metal nanostructures will
enable applications of fundamental importance for the telecommuni-
cation industry.

It is worth noticing that the results obtained in the present Thesis
also indicate the need for a more deep understanding of the Physics
beyond light-matter interactions at nanoscale. In particular, the effects
at curved metal surfaces seem to have great relevance in the opti-
cal response of plasmonic nanostructures, especially in the nonlinear
regime. Moreover, a realistic design of plasmonic devices cannot dis-
regard quantum effects of the electron-photon interaction, both in the
metal bulk and at the surface.
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a.1 formalism

The International System of Units (SI) is coherently used in the present
Thesis. An effort has been made to convert all the physical quantities
expressed from the literature in other systems, into the SI.

All the time-domain quantities are expressed in lowercase, whereas
all the frequency-domain quantities are expressed in uppercase.

All the quantities in plaintext are scalars, while all the quantities in
boldtext are vectors. Occasionally, tensorial quantities are expressed
with an upper double arrow

←→
t .

a.2 electric and magnetic multipoles

Given a time-harmonic polarization volume density Pb = Pb(ω, r)
inside a domain Ω, the electric dipole p, the magnetic dipole m and
the electric quadrupole

←→
Q are defined as:

p =


Ω

PbdV

m =
iω

2


Ω

r×PbdV

←→
Q = 3


Ω

[Pbr+ rPb]dV − tr


Ω

[Pbr+ rPb]dV


I

Given a time-harmonic polarization surface density Ps = Ps(ω, r)
over the boundary of Ω, the electric dipole p, the magnetic dipole m

and the electric quadrupole
←→
Q are:

p =


∂Ω

PsdS

m =
iω

2


∂Ω

r×PsdS

Q = 3


∂Ω

[Psr+ rPs]dS− tr


∂Ω

[Psr+ rPs]dS


I

The domain Ω irradiates the electric field E = E(r) given by:

E(r) = k2
e−ikr

4πϵ0r
[r̂× peff(r̂)]× r̂

where r̂ = r
|r| is a unit vector and peff(r̂) = p− 1

c0
r̂×m+ ik

6

←→
Q r̂.
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a.3 scalar and vector spherical harmonics

The scalar spherical harmonics Ylm(θ,φ) [22, 145] are defined as:

Ylm(θ,φ) =


2l+ 1

4π

(l−m)!
(l+m)!

Pml (cos θ)eimφ

where −1 6 cos θ 6 1, 0 6 φ 6 2π and Pml = Pml (x) are associ-
ated Legendre function of degree l and order m. They represent an
orthonormal basis in C.

The vector spherical harmonics Xmn = Xmn(θ,φ) [22] are:

Xlm (θ,φ) = i
1

l (l+ 1)


2l+ 1

4π

(l−m)!
(l+m)!

·
iπml (cos θ) θ̂− τml (cos θ) φ̂


eimφ ,

where πmn = πmn(x) and τmn = τmn(x) are angular functions [54]
defined as:

πmn (cos θ) =
m

sin θ
Pmn (cos θ)

τmn (cos θ) =
d

dθ
Pmn (cos θ) .

The vector spherical harmonics (Y (1)
JM ,Y (0)

JM ,Y (−1)
JM , ) defined in Ref.

[145] are an orthonormal basis in C3, and they have the following
relations with Ylm(θ,φ) and Xlm(θ,φ):

Y
(1)
JM (θ,φ) = −ir̂× X̂JM(θ,φ)

Y
(0)
JM (θ,φ) = X̂JM(θ,φ)

Y
(−1)
JM (θ,φ) = r̂YJM(θ,φ)

They are suitably oriented with respect to the unit vector r̂, specified
by the spherical coordinate system.
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a.4 scalar product of spherical harmonics

In the following, some useful properties of the scalar products of the
vector spherical harmonics (Y

(1)
JM ,Y (0)

JM ,Y (−1)
JM , ) are listed:

Y
(0)
J1M1

·Y (0)
J2M2

=

J

W
(0,0)
J1M1J2M2JM

Y
(1)
J1M1

·Y (1)
J2M2

=

J

W
(1,1)
J1M1J2M2JM

Y
(0)
J1M1

·Y (1)
J2M2

=

J

W
(0,1)
J1M1J2M2JM

Y
(−1)
J1M1

·Y (−1)
J2M2

=

J

W
(−1,−1)
J1M1J2M2JM

where

W
(0,0)
J1M1J2M2JM

=Wn1,n1,m1,n2,n2,m2
nm

W
(0,1)
J1M1J2M2JM

=


n2 + 1

2n2 + 1
Wn1,n1,m1,n2−1,n2,m2

nm

+


n2

2n2 + 1
Wn1,n1,m1,n2+1,n2,m2

nm

W
(1,1)
J1M1J2M2JM

=


n1 + 1

2n1 + 1


n2 + 1

2n2 + 1
Wn1−1,n1,m1,n2−1,n2,m2

nm

+


n1

2n1 + 1


n2

2n2 + 1
Wn1+1,n1,m1,n2+1,n2,m2

nm

+


n1 + 1

2n1 + 1


n2

2n2 + 1
Wn1−1,n1,m1,n2+1,n2,m2

nm

+


n1

2n1 + 1


n2 + 1

2n2 + 1
Wn1+1,n1,m1,n2−1,n2,m2

nm

W
(−1,−1)
J1M1J2M2JM

=


n1

2n1 + 1


n2

2n2 + 1
Wn1−1,n1,m1,n2−1,n2,m2

nm

+


n1 + 1

2n1 + 1


n2 + 1

2n2 + 1
Wn1+1,n1,m1,n2+1,n2,m2

nm

−


n1

2n1 + 1


n2 + 1

2n2 + 1
Wn1−1,n1,m1,n2+1,n2,m2

nm

−


n1 + 1

2n1 + 1


n2

2n2 + 1
Wn1+1,n1,m1,n2−1,n2,m2

nm
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WL1,J1,M1,L2,J2,M2
LM = (−1)J2+L1+L


(2J1 + 1)(2J2 + 1)(2L1 + 1)(2L2 + 1)

4π(2L+ 1)
·

L1 L2 L

J2 J1 1


CL0
L10L20

CLM
J1M1J2M2

and CJM
J1M1J2M2

are the Clebsch-Gordan coefficients (Chapter 8 in Ref.
[145]), and the quantities in braces are Wigner 6j and 9j symbols
(Chapters 9 and 10 in Ref. [145]).

a.5 vector product of spherical harmonics

In the following, some useful properties of the vector products of the
vector spherical harmonics (Y

(1)
JM ,Y (0)

JM ,Y (−1)
JM , ) are listed:

Y
(0)
J1M1

×Y
(−1)
J2M2

=

J

i

C
(0,0,−1)
J1M1J2M2JM

Y
(0)
JM +C

(1,0,−1)
J1M1J2M2JM

Y
(1)
JM


Y

(1)
J1M1

×Y
(−1)
J2M2

=

J

i

C
(0,1,−1)
J1M1J2M2JM

Y
(0)
JM +C

(1,1,−1)
J1M1J2M2JM

Y
(1)
JM


where

C
(0,0,−1)
J1M1J2M2JM

=


3

2π
(2J1 + 1)C

JM
J1M1J2M2

·(J2)(2J2 − 1)


J1 J1 1

J2 J2 − 1 1

J J 1

CJ0
(J1)(0)(J2−1)(0)

−

(J2 + 1)(2J2 + 3)


J1 J1 1

J2 J2 + 1 1

J J 1

CJ0
(J1)(0)(J2+1)(0)
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C
(1,0,−1)
J1M1J2M2JM

=


3

2π
(2J1 + 1)C

JM
J1M1J2M2

·(J2)(2J2 − 1)


J1 J1 1

J2 J2 − 1 1

J J+ 1 1

C(J+1)0
(J1)(0)(J2−1)(0)


J

2J+ 1

−

(J2 + 1)(2J2 + 3)


J1 J1 1

J2 J2 + 1 1

J J+ 1 1

C(J+1)0
(J1)(0)(J2+1)(0)


J

2J+ 1

+

(J2)(2J2 − 1)


J1 J1 1

J2 J2 − 1 1

J J− 1 1

C(J−1)0
(J1)(0)(J2−1)(0)


J+ 1

2J+ 1

−


(J2 + 1)(2J2 + 3)


J1 J1 1

J2 J2 + 1 1

J J− 1 1

C(J−1)0
(J1)(0)(J2+1)(0)


J+ 1

2J+ 1



C
(0,1,−1)
J1M1J2M2JM

=


3

2π
CJM
J1M1J2M2

·(J1 + 1)(J2)(2J1 − 1)(2J2 − 1)


J1 J1 − 1 1

J2 J2 − 1 1

J J 1

CJ0
(J1−1)(0)(J2−1)(0)

−

(J1 + 1)(J2 + 1)(2J1 − 1)(2J2 + 3)


J1 J1 − 1 1

J2 J2 + 1 1

J J 1

CJ0
(J1−1)(0)(J2+1)(0)

+


(J1)(J2)(2J1 + 3)(2J2 − 1)


J1 J1 + 1 1

J2 J2 − 1 1

J J 1

CJ0
(J1+1)(0)(J2−1)(0)

−

(J1)(J2 + 1)(2J1 + 3)(2J2 + 3)


J1 J1 + 1 1

J2 J2 + 1 1

J J 1

CJ0
(J1+1)(0)(J2+1)(0)
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C
(1,1,−1)
J1M1J2M2JM

=


3

2π
CJM
J1M1J2M2

·(J1 + 1)(J2)(2J1 − 1)(2J2 − 1)


J1 J1 − 1 1

J2 J2 − 1 1

J J+ 1 1

C(J+1)0
(J1−1)(0)(J2−1)(0)


J

2J+ 1

−

(J1 + 1)(J2 + 1)(2J1 − 1)(2J2 + 3)


J1 J1 − 1 1

J2 J2 + 1 1

J J+ 1 1

C(J+1)0
(J1−1)(0)(J2+1)(0)


J

2J+ 1

+


(J1)(J2)(2J1 + 3)(2J2 − 1)


J1 J1 + 1 1

J2 J2 − 1 1

J J+ 1 1

C(J+1)0
(J1+1)(0)(J2−1)(0)


J

2J+ 1

−

(J1)(J2 + 1)(2J1 + 3)(2J2 + 3)


J1 J1 + 1 1

J2 J2 + 1 1

J J+ 1 1

C(J+1)0
(J1+1)(0)(J2+1)(0)


J

2J+ 1

+

(J1 + 1)(J2)(2J1 − 1)(2J2 − 1)


J1 J1 − 1 1

J2 J2 − 1 1

J J− 1 1

C(J−1)0
(J1−1)(0)(J2−1)(0)


J+ 1

2J+ 1

−

(J1 + 1)(J2 + 1)(2J1 − 1)(2J2 + 3)


J1 J1 − 1 1

J2 J2 + 1 1

J J− 1 1

C(J−1)0
(J1−1)(0)(J2+1)(0)


J+ 1

2J+ 1

+


(J1)(J2)(2J1 + 3)(2J2 − 1)


J1 J1 + 1 1

J2 J2 − 1 1

J J− 1 1

C(J−1)0
(J1+1)(0)(J2−1)(0)


J+ 1

2J+ 1

−


(J1)(J2 + 1)(2J1 + 3)(2J2 + 3)


J1 J1 + 1 1

J2 J2 + 1 1

J J− 1 1

C(J−1)0
(J1+1)(0)(J2+1)(0)


J+ 1

2J+ 1


where CJM

J1M1J2M2
are the Clebsch-Gordan coefficients (Chapter 8 in

Ref. [145]), and the quantities in braces are Wigner 6j and 9j symbols
(Chapters 9 and 10 in Ref. [145]).
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a.6 spherical vector wavefunctions

The spherical vector wavefunctions


M(J)
mn, N(J)

mn


[22, 54] are:

M(J)
mn (kr, θ,φ) = z(J)n (kr)Xnm (θ,φ)

N(J)
mn (kr, θ,φ) =

1

k
∇×M(J)

mn

where z(J)n = z
(J)
n (kr),with the apices J = 1, 2, 3, 4, is one of the four

kinds of the spherical Bessel functions, namely:

• z
(1)
n Bessel functions of the first kind: jn = jn (kr)

• z
(2)
n Bessel functions of the second kind: yn = yn (kr)

• z
(3)
n Hankel functions of the first kind: h(1)n = h

(1)
n (kr)

• z
(4)
n Hankel functions of the second kind: h(2)n = h

(2)
n (kr)

Xnm = Xnm (θ,φ) are vector spherical harmonics (see Appendix A.3).
The spherical vector wavefunctions are indexed by the order m and
the degree n of the vector spherical harmonics.

It is worth noticing that


M(J)
mn, N(J)

mn


are slightly different from

those


M(J)
mn, N(J)

mn

Xu
defined by Xu in Ref. [54], and in particular

the following relations hold:

M(J)
mn (θ,φ) = i

1
l (l+ 1)


2l+ 1

4π

(l−m)!
(l+m)!

M(J)
mn (θ,φ)Xu

N(J)
mn (θ,φ) = i

1
l (l+ 1)


2l+ 1

4π

(l−m)!
(l+m)!

N(J)
mn (θ,φ)Xu ,
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a.7 surface enhanced raman scattering

The Raman scattering is the inelastic scattering of light with the vibra-
tional states of an object, such as a molecule or a crystal. The scattered
light is shifted in frequency to lower energy (Stokes-shifted compo-
nent) and to higher energy (anti-Stokes-shifted component) with re-
spect to the elastic component.

The scattering of a photon having energy hωinc, with a phonon
having energy hωv can result (Stokes shift) in a photon with lower
energy h(ωinc −ωv) or (anti-Stokes shift) in a photon with higher
energy h(ωinc +ωv) with respect to the incident photon, as shown
in the diagram in Fig. A.1. The power PRS of the Raman scattering

ωinc-ωv

ωinc ωinc

ωinc+ωv

Figure A.1: An incident photon of energy hωinc interacts with a vibrational
mode of energy hωv, resulting in (a) Stokes and (b) anti-Stokes
scattering.

signal is proportional to the intensity Iinc of the incident light:

PRS = σIinc

where σ is the Raman scattering cross section. It depends on the
molecule and it is typically in the range≈ 10−33−10−29m2, resulting
in a very inefficient process.

The Raman scattering signal can be largely amplified by surface
effects, for instance in proximity of plasmonic nanostructures. In fact,
it has been demonstrated that the Raman scattering power depends
on the local electric field Eloc in proximity of the vibrating molecule
[90]:

PRS ∝ |Eloc(ωinc)|
2|Eloc(ωinc ±ωv)|

2

In the approximation |Eloc(ωinc ±ωv)| ≈ |Eloc(ωinc)|, the Raman
scattering signal grows with the fourth power of the local electric
field at the incident frequency ωinc.

Since the vibrational modes of molecules are unique, the Surface
Enhanced Raman Scattering (SERS) is an outstanding technique for
chemical fingerprinting, and for label-free chemical and biological
sensing. SERS signals have been detected down to the single molecule
limit.

The SERS technique has been used in Chapter 5 to probe the near
field properties of plasmonic arrays. In particular, each pattern has
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been excited by a 785 nm unpolarized diode laser that was fiber cou-
pled to a 40x objective (NA = 0.65) through an upright Olympus
(BX51 WI) microscope. The laser power focused through the objective
was 20.5 mW. The back-scattered signal was sent to an electrically
cooled (−75C) CCD (Andor DU401-BR-DD) via an Andor Shamrock
303i grating spectrometer. The grating used had 600 lines/mm blazed
at 750 nm. All spectra were averaged over 10 measurements using a
0.1 s integration time. Prior to taking measurements on any enhanced
substrates, the grating spectrometer was first calibrated by referenc-
ing the 520 cm−1 line of silicon.

a.8 electron-beam lithography

The Electron Beam Lithography (EBL) has been used to fabricate the
metal nanostructures investigated in Chapters 5 and 8. Oppositely to
chemical fabrication processes, the EBL method is used to obtain re-
producible arrays of well-defined size and shape. Although feature
sizes down to 7 nm have been reported in literature, the devices dis-
cussed in the present Thesis require particle with a minimum edge-
to-edge separation of 25 nm and larger diameters than 100 nm.

EBL uses a raster scanned electron beam to pattern a resist mask
with sub-micron sized features. The process flow used to fabricate
samples is described in the following:

1. Sample cleaning. A quartz wafer is cleaned using an RCA clean
and solvent wash. The RCA cleaning consists of two cleaning so-
lutions, each followed by a thorough rinse in deionized (DI) wa-
ter. The first solution contains ammonium hydroxide (NH4OH)
to remove organic contaminants as well as a few metals such
as titanium and silver. The second solution contains hydrogen
chloride (HCl) to remove many ionic contaminants such as alu-
minum and other metals. The solvent wash removes any re-
maining organic contaminants, and consists of sonication in ace-
tone, methanol and IPA. The sample is blown dry with N2 and
baked on a hot-plate at 115circC to evaporate any remaining
liquid.

2. Spin coating. The samples is coated with 950 PMMA A3 resist
and spun at 2500 RPM. Then it is baked in an oven at 180◦C for
20 minutes to evaporate out the anisole solvent in the PMMA
resist, providing an even coating of resist 180 nm-thick.

3. Sacrificial metal film deposition. A sacrificial 5 nm− thick layer
of Au is sputtered to promote conductivity between the electron-
beam and the isolating SiO2 substrate, to prevent charging.

4. Lithography. The EBL system consists of a Zeiss SUPRA 40VP
SEM equipped with a Raith beam blanker and NPGS nanopat-
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terning software. The 30kV electron beam is raster scanned over
the resist by using a CAD file to determine the coordinates. The
separation between the electron-beam gun and sample surface
(working distance) is 6 mm. The measured current is in the
range 35 pA − 40 pA. The area dosage is in the range 250 −
400µC/cm2.

5. Sacrificial metal film etch. The sacrificial Au layer is selectively
removed using Gold Etchant TFA.

6. Development. The sample is developed in a 3 : 1 solution of
IPA : MIBK for 70 seconds. Then it is rinsed in neat IPA and
blown dry with N2.

7. Metal deposition. The sample is ashed in O2 flow at 200sccm
for 25 seconds using a PVA TePla America M4L plasma asher
at 200W RF power. A 2 nm Ti adhesion layer and a 28 nm Au
film are evaporated using the electron-beam evaporation with a
CHA Solution controlled by a Sycon STC-2000A deposition rate
controller. This evaporation method makes use of an electron-
beam focused onto a metal-filled crucible under very low pres-
sure (around 1 x 10-6 torr), which heats up to the evaporation
temperature and deposits on the substrate. The sample mount
rotates to ensure a uniform coverage of metal across the planar
surface of the samples. i

8. Liftoff. The sample is agitated in acetone to dissolve the PMMA
for 2 minutes. Then it is sonicated for 30 seconds to remove the
PMMA and it is dried in N2.
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