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CHAPTER	1		

INTRODUCTION	

The	increase	in	worldwide	CO2	emissions,	mainly	deriving	from	fossil	fuels,	 is	commonly	

believed	to	be	among	the	main	contributors	to	global	warming	(Metz	et	al.,	2005;	Figueroa	et	

al.,	 2008).	 Currently,	 85%	 of	 the	 global	 energy	 demand	 is	 supplied	 by	 fossil‐fueled	 power	

plants	 accounting	 for	 about	 40%	 of	 total	 CO2	 emissions	 (Yang	 et	 al.,	 2008).	 Nowadays,	

different	 options	 are	 available	 to	 mitigate	 CO2	 emissions	 deriving	 from	 power	 sector,	

including	 higher	 power	 generation	 efficiency,	 use	 of	 non‐carbon	 fuels	 (hydrogen	 and	

renewable	energy),	development	of	new	energy	production	systems,	such	as	oxy‐combustion	

and	chemical‐looping	combustion,	and	the	adoption	of	efficient	technologies	for	CO2	capture	

and	storage	(CCS)	(Metz	et	al.,	2005;	Li	and	Fan,	2008).	

The	 CCS	 approach	 has	 the	 potential	 to	 reduce	 overall	 mitigation	 costs	 and	 increase	

flexibility	in	achieving	a	reduction	in	greenhouse	gas	(GHG)	emissions:	according	to	the	BLUE	

Map	Scenario	of	the	International	Energy	Agency	(IEA),	this	route	could	contribute	to	a	19%	

cut	 in	CO2	 emissions	by	2050	 (International	 Energy	Agency	 (IEA),	 2010).	More	 specifically,	

CCS	 technologies	 involve	 the	 separation	 and	 concentration	 of	 CO2	 produced	 in	 large	 point	

sources,	 the	 transport	of	 the	gas	 to	a	suitable	storage	 location	and	 long	 term	isolation	 from	

atmosphere	 (Metz	 et	 al.,	 2005).	Main	 CO2	 sequestration	 routes	 include	 geological	 injection,	

ocean	dump	and	mineral	carbonation	(Metz	et	al.,	2005).		

Three	 main	 technological	 pathways	 can	 be	 pursued	 for	 CO2	 capture	 from	 fossil‐fueled	

power	 plants:	 post‐combustion	 capture,	 pre‐combustion	 capture	 and	 oxy‐combustion	

(Figueroa	et	al.,	2008;	Li	and	Fan,	2008;	Kanniche	et	al.,	2010).	Among	them,	post‐combustion	

system	has	 the	 greatest	 near‐term	potential	 for	 reducing	GHG	 emissions,	 because	 it	 can	be	

retrofitted	to	existing	units	thus	providing	a	quicker	solution	to	mitigate	CO2	environmental	

impacts	(Figueroa	et	al.,	2008;	Lee	et	al.,	2012).	 	The	main	barrier	 to	 the	 implementation	of	

this	technology	on	industrial	scale	is	related	to	the	low	thermodynamic	driving	force	for	CO2	

capture	from	flue‐gas	(gas	partial	pressure	is	usually	less	than	0.15	bar).	Moreover,	applying	

current	 state‐of‐the‐art	 CO2	 separation	 processes	 (absorption,	 adsorption,	 membrane	

purification	 and	 cryogenic	 distillation)	 to	 existing	 coal‐fired	 power	 plant	would	 reduce	 the	

power	 generation	 capacity	 by	 roughly	 one‐third	 (Figueroa	 et	 al.,	 2008).	 Post‐combustion	

chemical	absorption	of	CO2	in	aqueous	amine	solutions	(mainly	monoethanolamine,	MEA)	is	

the	 most	 widely	 used	 purification	 technology	 (Strube	 and	 Manfrida,	 2011;	 Brúder	 and	
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Svendsen,	 2012).	 The	 MEA	 process	 suffers	 many	 drawbacks	 related	 to	 the	 considerable	

amounts	 of	 thermal	 energy	 required	 for	 absorbent	 regeneration,	 the	 high	 equipment	

corrosion	 rate	 caused	by	 contact	with	MEA	solution	and	 the	 solvent	degradation	caused	by	

oxygen	and	oxygen‐based	compounds	such	as	SO2	and	NOx	present	in	a	typical	flue‐gas	(Kittel	

et	 al.,	 2009;	 Strube	 and	 Manfrida,	 2011).	 As	 a	 consequence	 of	 the	 aforementioned	 issues,	

several	 research	 groups	 are	 making	 great	 efforts	 to	 develop	 high‐performance	 and	 cost‐

effective	 CO2	 advanced	 separation	 processes	 in	 order	 to	 accelerate	 the	 techno‐economic	

feasibility	of	post‐combustion	capture	systems.	

In	this	scenario,	adsorption	seems	to	be	a	very	promising	technology,	widely	used	for	the	

treatment	 of	 gaseous	 and	 liquid	 effluents	 due	 to	 its	 potentially	 high	 removal	 efficiency	 and	

operating	 flexibility,	 general	 low	 maintenance	 costs	 and,	 if	 coupled	 with	 an	 effective	

regeneration	process,	for	the	absence	of	by‐products	(Abanades	et	al.,	2004;	Choi	et	al.,	2009;	

Balsamo	et	al.,	2010;	Sayari	et	al.,	2011;	Sjostorm	et	al.,	2011;	Samanta	et	al.,	2012;	Balsamo	et	

al.,	 2013).	 	 Many	 sorbents	 can	 be	 used	 on	 purpose	 either	 raw	 or	 functionalized.	 Activated	

carbons	show	high	potentiality	for	application	in	CO2	capture	because	they	are	generally	less	

costly	than	other	materials	(e.g.,	ordered	mesoporous	silicas,	metal	organic	frameworks,	etc.)	

and	 have	 a	 complex	 structure	 characterized	 by	 high	 surface	 area	 and	 tunable	 porosity	 and	

surface	 properties	 (Marsh	 and	 Rodrίguez‐Reinoso,	 2006;	 Whaby	 et	 al.,	 2010).	 In	 addition,	

carbon‐based	sorbents	are	easily	regenerable	allowing	their	use	in	processes	such	as	pressure	

swing	adsorption	(PSA),	temperature	swing	adsorption	(TSA)	and	vacuum	swing	adsorption	

(VSA)	 (Gomes	 and	 Yee,	 2002;	 Tlili	 et	 al.,	 2009).	 Despite	 these	 advantages,	 CO2	 removal	

performances	and	 long‐term	stability	of	 activated	carbons	under	 typical	 flue‐gas	 conditions	

(CO2	1‐15%	by	vol.	and	atmospheric	pressure)	have	been	poorly	investigated.	

Another	widespread	research	line	in	the	context	of	post‐combustion	purification	systems	

concerns	 the	 investigation	of	 ionic	 liquids	 (ILs)	 as	 innovative	 solvents	 for	CO2	 capture.	The	

ever‐increasing	 interest	 for	 this	 class	 of	 compounds	 in	 different	 fields	 is	 justified	 by	 their	

unique	characteristics	such	as	extremely	low	vapor	pressure,	high	thermo‐chemical	stability	

and	tunable	chemico‐physical	properties	(Zhang	et	al.,	2006a;	Bourbigou	et	al.,	2010;	Hasib‐

ur‐Rahman	et	al.,	2010).	In	particular,	the	possibility	of	functionalizing	ILs	with	basic	groups	

(like	 amines)	 makes	 them	 very	 attractive	 for	 CO2	 capture	 processes	 (Zhang	 et	 al.,	 2011).	

Numerous	 literature	 studies	 are	 now	 focusing	 on	 the	 use	 of	 ILs	 supported	 on	 porous	

membranes	 in	order	 to	overcome	the	main	 limits	 in	 the	 industrial‐scale	application	of	 ionic	

liquids	for	CO2	capture,	which	are	related	to	their	high	cost	and	viscosity	(Hasib‐ur‐Rahman	et	

al.,	 2010;	 Lemus	 et	 al.,	 2011;	 Kolding	 et	 al.,	 2012).	 Notwithstanding	 a	 huge	 number	 of	
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scientific	papers	deals	with	the	utilization	of	different	classes	of	ILs	in	CCS	field,	the	following	

critical	aspects	can	be	highlighted:	

 CO2	absorption	tests	are	generally	carried	out	at	high	pressure	and	room	temperature	

which	are	experimental	conditions	not	representative	of	a	real	flue‐gas;	

 	There	 is	 fragmentary	 information	 concerning	 the	 effect	 of	 confining	 ILs	 into	

nanoporous	 substrates,	 particularly	 activated	 carbons,	 on	 CO2	 capture	 performances	

with	respect	to	their	bulk	solvent	properties.	

On	 the	 basis	 of	 the	 above‐mentioned	 analysis,	 the	 aim	 of	 this	 work	 is	 to	 provide	 a	

contribution	in	elucidating	CO2	capture	performances	of	ionic	liquids	supported	on	activated	

carbons	 characterized	 by	 different	 porosimetric	 properties.	 Specific	 thermodynamic	 and	

kinetic	adsorption	tests	have	been	carried	out	on	selected	activated	carbons,	both	as	raw	and	

impregnated	with	ILs	at	different	concentrations.	Experimental	tests	have	been	performed	in	

a	lab‐scale	reactor	and	under	realistic	operating	conditions	(e.g.	typical	flue‐gas	compositions	

and	 temperatures).	 Preliminary	 regeneration	 studies	 have	 been	 conducted	 on	 the	 sorbent	

which	 displayed	 the	 highest	 CO2	 capture	 capacity	 in	 order	 to	 determine	 its	 performances	

under	consecutive	adsorption‐desorption	cycles	and	assess	the	optimal	operating	conditions	

for	CO2	storage	after	desorption.	The	intertwining	among	raw	solids	properties‐impregnation	

conditions‐properties	 of	 the	 functionalized	 materials‐solids	 capture	 capacity	 has	 been	

investigated	 by	 comparing	 CO2	 adsorption	 results	 with	 outcomes	 obtained	 from	 sorbents	

CO2/N2	 porosimetric	 and	 thermogravimetric	 analyses.	 Adsorption	 isotherms	 have	 been	

interpreted	 in	 the	 light	of	 theoretical	models	 for	a	 comprehension	of	 the	main	mechanisms	

involved	 in	 the	 capture	 of	 CO2	 by	 the	 investigated	 solids.	 Breakthrough	 data	 have	 been	

modelled	also	in	order	to	identify	the	rate‐determining	step	of	the	adsorption	process	and	the	

effect	of	operating	parameters	on	mass	transfer	phenomena.		

	This	PhD	Dissertation	is	organized	as	follows.		In	Chapter	2	a	literature	survey	is	reported	

in	 order	 to	 analyse	 the	main	 classes	 of	 sorbents	 employed	 for	 CO2	 capture	with	 particular	

emphasis	 on	 activated	 carbons	 together	 with	 the	main	 applications	 of	 ionic	 liquids	 in	 CCS	

field.	Chapter	3	provides	the	main	theoretical	aspects	concerning	both	thermodynamics	and	

kinetics	 of	 the	 adsorption	 phenomenon.	 Chapter	 4	 describes	 the	 experimental	 protocols	

adopted	 for	 activated	 carbons	 impregnation	with	 ionic	 liquids,	 solids	 characterizations	 and	

adsorption/regeneration	experiments;	a	description	of	the	lab‐scale	plant	designed,	built	and	

optimized	for	the	execution	of	adsorption	experiments	is	also	provided.	In	Chapter	5	the	main	

results	 obtained	 from	 adsorbents	 characterizations	 and	 CO2	 capture/regeneration	 tests	 are	
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discussed	 together	 with	 the	 main	 aspects	 derived	 from	 thermodynamics	 and	 kinetics	

modelling.	Finally,	conclusions	and	future	developments	are	reported	in	Chapter	6.	
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CHAPTER	2		

LITERATURE	OVERVIEW	

In	 this	 Chapter	 the	 main	 adsorbent	 materials	 employed	 in	 CCS	 field	 are	 analysed	 with	

particular	emphasis	on	 the	applications	of	activated	carbons	 for	CO2	capture,	as	 they	are	of	

major	interest	for	this	PhD	project.	The	main	applications	of	ionic	liquids	in	this	context	are	

also	discussed.	

2.1 Utilization	of	activated	carbons	in	CCS	field	

Activated	 carbons	 are	 carbonaceous	materials	with	 a	 common	 structure	made	 up	 of	 an	

assembly	of	defective	graphene	layers	that	have	high	potentiality	for	CO2	capture	thanks	to	a	

complex	 structure	 characterized	 by	 micropores	 that	 determine	 high	 surface	 area	 for	

adsorption,	but	also	meso‐	and	macropores	which	can	facilitate	the	diffusion	(fast	kinetics)	of	

the	adsorbate	to	the	inner	porosity	(Marsh	and	Rodrίguez‐Reinoso,	2006;	Whaby	et	al.,	2010;	

Sayari	et	al.,	2011).	Activated	carbons	act	as	physisorbents	towards	CO2,	thus	their	adsorption	

capacity	 decreases	 rapidly	 as	 temperature	 increases	 (Choi	 et	 al.,	 2009;	 Sayari	 et	 al.,	 2011).	

Moreover,	 the	 mild	 adsorption	 strength	 in	 the	 low‐pressure	 regime	 (<0.5	 bar)	 makes	

activated	 carbons	 easily	 regenerable.	 In	 the	 following,	 main	 retrieved	 results	 for	 CO2	

adsorption	 on	 raw	 activated	 carbons	will	 be	 discussed	 (Section	 2.1.1);	moreover,	 the	main	

activation	treatments	aimed	at	the	introduction	of	highly	CO2‐affine	functional	groups	on	the	

carbon	surface	will	be	analysed	(Section	2.1.2).	

2.1.1 CO2	adsorption	onto	as‐synthesized	activated	carbons	

The	use	of	activated	carbons	for	CO2	capture	is	nowadays	considered	a	viable	route	mainly	

for	 storage	 purposes	 because	 they	 can	 be	 efficiently	 used	 in	 pure	 CO2	 streams	 and	 at	 high	

pressures	(Sayari	et	al.,	2011).	Nevertheless,	the	synthesis	of	tailored	microporous	structures	

can	extend	their	use	also	for	separation	and	purification	fields	by	discriminating	molecules	on	

shape	and/or	size	basis	(Whaby	et	al.,	2010).		

Table	2.1	reports	main	literature	data	concerning	CO2	equilibrium	adsorption	capacity	eq	

on	raw	activated	carbons	and	in	pure	CO2	streams	at	different	pressures	and	temperatures;	it	

is	underlined	that	the	sorbent	CO2/N2	selectivity	(S)	is	evaluated	as	the	ratio	of	the	adsorbed	

amounts	of	the	two	gases	obtained	in	single	compound	equilibrium	tests.		
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Table	2.1	CO2	equilibrium	adsorption	capacity	in	pure	streams		
on	as‐synthesized	activated	carbons	at	different	pressures	and	temperatures	

Sorbent	
					T	
			[°C]				

				P			
[bar]	

eq	
[mmol	g‐1]	

S	
(CO2/N2)	

Reference	

F30/470†	 24†	 0.16†	 0.65†	 n.a.†	 (Berlier	and	Frère,	1996)		

Ajax†	 25†	 0.2†	 0.75†	 n.a.†	 (Do	and	Wang,	1998)	

Salnchunri†	
25†	

55†	

0.1†	

0.1†	

0.60†	

0.25†	

1.2†	

1.3†	
(Na	et	al.,	2001)	

Filtrasorb	400†	 25†	 0.1†	 0.57†	 n.a.†	 (Lu	et	al.,	2008)	

pitch‐based	activated†	
carbon	

30†	

90†	

1†	

0.2†	

1.9†	

0.1†	

5†	

4†	
(Shen	et	al.,	2010)	

pitch‐based	VR‐5‐M†	
molecular	sieve	

0†	

25†	

50†	

1†	

1†	

1†	

8.6†	

4.2†	

2.3†	

2.8†	

n.a.†	

n.a.†	

(Whaby	et	al.,	2010)	

Maxsorb	III†	
30†	

50†	

2.86†	

2.57†	

5.4†	

3.4†	

n.a.†	

n.a.†	
(Saha	et	al.,	2011)	

†	not	available	

As	 expected,	 it	 can	 be	 evidenced	 a	 decrease	 of	 CO2	 adsorption	 capacity	 at	 higher	

temperatures.	 Whaby	 et	 al.	 (2010)	 compared	 zeolites	 13X	 and	 5A	 with	 carbon	 molecular	

sieves	 and	 observed	 that	 the	 latter	 show	 higher	 CO2	 adsorption	 capacity	 at	 1	 bar	 and	 0°C.	

They	also	inferred	that	the	presence	of	narrow	micropores	(diameter<0.7	nm)	plays	a	major	

role	 in	determining	the	solid	adsorption	capacity.	Noteworthy,	Silvestre‐Albero	et	al.	 (2011)	

showed	that	CO2	adsorption	on	carbon	molecular	sieve	monoliths	is	highly	reversible,	with	no	

loss	 of	 adsorption	 capacity	 under	 three	 consecutive	 adsorption/desorption	 cycles,	 making	

them	excellent	candidates	for	pressure	swing	adsorption	units.	

An	interesting	experimental	campaign	concerning	CO2	capture	in	CO2/H2/N2	(20/70/10%	

by	 vol.)	 mixtures	 on	 raw	 activated	 carbon	 was	 carried	 out	 by	 García	 et	 al.	 (2011).	 In	

particular,	they	studied	the	removal	of	CO2	in	a	fixed	bed	apparatus	and	analysed	the	effect	of	

the	 temperature	and	CO2	partial	pressures	on	 the	 system	dynamic	performances.	The	main	

results	showed	that	at	each	temperature	and	fixed	carbon	dioxide	concentration,	higher	CO2	

partial	 pressures	 (obtained	 by	 increasing	 the	 system	 total	 gas	 pressure)	 determine	 longer	

breakpoint	time,	and	this	behaviour	was	imputed	to	a	slower	concentration	front	in	the	bed;	

moreover,	 at	 higher	 temperatures	 the	 process	 was	 faster	 but	 a	 parallel	 reduction	 in	

adsorption	capacity	was	observed.	Finally,	Shen	et	al.	(2011)	studied	the	recovery	of	CO2	from	

saturated	pitch‐based	activated	carbon	by	means	of	Vacuum	Pressure	Swing	Adsorption	after	

fixed‐bed	adsorption	in	a	CO2/N2	mixture	(15/85%	by	vol.):	results	showed	that	for	a	N2	feed	

pressure	of	2	bar,	a	CO2	purity	of	94%	and	78%	recovery	could	be	obtained.		
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capacity	for	both	functionalized	sorbents	(1.11	and	0.70	mmol	g‐1	for	MEA‐	and	AMP‐carbon,	

respectively)	with	 respect	 to	 the	 raw	material	 (0.41	mmol	 g‐1);	 the	 higher	 performances	 of	

MEA‐carbon	 was	 ascribed	 to	 a	 more	 efficient	 dispersion	 of	 less	 sterically	 hindered	 MEA	

molecules	over	the	support	surface	with	respect	to	AMP,	thus	creating	more	accessible	sites	

for	CO2	capture.		

Impregnation	with	alkali/alkaline	earth	metals	

Impregnation	of	activated	carbons	with	calcium	and	magnesium	oxide	was	investigated	by	

Yong	et	al.	 (2001),	 since	 these	metals	have	a	high	basic	nature	which	 favors	 the	 interaction	

with	CO2	acidic	molecule.	In	particular,	they	observed	that	at	low	temperature	(28°C)	the	raw	

materials	 exhibited	 higher	 pure‐CO2	 adsorption	 capacity	 with	 respect	 to	 metal‐doped	

materials:	 this	was	ascribed	to	the	reduction	in	surface	area	occurring	during	the	activation	

process.	Conversely,	at	higher	temperature	(300°C)	the	activated	materials	showed	improved	

performances	because	of	the	prevailing	of	chemisorption	effects	over	physisorption,	the	latter	

being	surface	dependent	and	dominant	at	low	temperatures.	

Amination	

Amination	 is	 a	 treatment	 usually	 referred	 to	 the	 reaction	 of	 gaseous	 ammonia	with	 the	

surface	of	 activated	carbons,	performed	at	high	 temperatures	 (ranging	 from	400	 to	900°C),	

aimed	at	increasing	the	solid	nitrogen	content	(Plaza	et	al.,	2009;	Shafeeyan	et	al.,	2010;	Plaza	

et	al.,	2011).	Ammonia	can	react	with	surface	oxides	and	active	sites	present	at	the	edges	of	

the	graphene	layers	to	form	amines,	amides,	imides,	lactams,	nitriles,	pyridine‐	or	pyrrole‐like	

functionalities.	 As	 an	 example	 of	 amination	 effect,	 Plaza	 et	 al.	 (2009)	 observed	 an	

enhancement	 of	 pure	CO2	 adsorption	 capacities	 for	 almond	 shell‐derived	 activated	 carbons	

aminated	 at	 temperatures	 greater	 than	600°C	with	 respect	 to	 the	parent	 carbon;	moreover	

the	 authors	 observed	 that	 in	 the	 range	 400‐900°C	 the	 sample	 aminated	 at	 800°C	 had	 the	

greatest	 CO2	 adsorption	 capacity	 due	 to	 a	 maximum	 nitrogen	 content,	 as	 confirmed	 by	

ultimate	analyses.	Plaza	et	al.	(2011)	investigated	the	use	of	aminated	biomass‐based	carbon	

to	 capture	 CO2	 in	 a	 17%	 by	 vol.	 gaseous	 stream	 (balance	 N2)	 at	 20°C	 and	 atmospheric	

pressure;	in	particular,	they	focused	on	the	solid	regenerability	showing	that	Thermal	Swing	

Adsorption	 carried	 out	 at	 100°C	 allows	 an	 easy	 recovery	 of	 the	pollutant	 and	 that	 after	40	

cycles	the	adsorbent	did	not	display	relevant	deactivation.	
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2.2 Other	classes	of	CO2	sorbents	investigated	

2.2.1 Zeolites	

Zeolites	are	microporous	crystalline	aluminosilicates	built	of	a	periodic	array	of	SiO4	and	

AlO4	tetrahedra	(Ruthven,	1984).	Their	uniform	pore	size	grants	a	unique	ability	as	molecular	

sieves.	 CO2	 is	 captured	 by	 zeolites	 mainly	 via	 electrostatic	 interactions	 generated	 by	 the	

exchangeable	cations	in	the	pores	and	by	hydrogen	bonds	with	surface	silanol	groups	(Choi	et	

al.,	 2009).	 In	 particular,	 zeolites	 characterized	 by	 a	 low	 Si/Al	 ratio	 have	 a	 high	 content	 of	

extra‐framework	 cations	which	 favourably	 interact	with	 CO2	molecule	 (Sayari	 et	 al.,	 2011).	

Generally,	CO2	adsorption	on	zeolites	is	negatively	affected	by	a	temperature	increase	(Sayari	

et	al.,	2011).	Tlili	et	al.	 (2009)	observed	a	six‐times	reduction	in	CO2	adsorption	capacity	on	

5A	zeolite	by	varying	 the	operating	 temperature	 from	25	 to	200°C.	 In	addition,	 these	solids	

show	lower	CO2	adsorption	capacity	under	humid	conditions.	Rege	and	Yang	(2001)	showed	

by	means	 of	 FTIR	 analyses	 that	 there	 is	 a	 competition	 between	water	 vapour	 and	 CO2	 for	

adsorption	sites	on	NaX	zeolite	surface.	It	has	been	highlighted	that	zeolitic	adsorbents	have	a	

stronger	physical	interaction	with	CO2	and	higher	heats	of	adsorption	compared	to	activated	

carbons,	 thus	rendering	the	desorption	process	more	energy	intensive	(Whaby	et	al.,	2010).	

Moreover,	 the	 hydrophobic	 nature	 of	most	 activated	 carbons	makes	 them	 less	 sensitive	 to	

competitive	adsorption	effects	between	CO2	and	water	vapour	with	respect	to	zeolites	(Choi	

et	al.,	2009).	In	general,	it	is	underlined	that	equilibrium	adsorption	experiments	on	zeolites	

are	carried	out	in	pure	CO2	in	most	of	the	cases	investigated	in	the	literature:	typical	reported	

adsorption	capacity	varies	between	0.2‐1.6	mmol	g‐1	in	the	pressure	range	0.1‐0.4	bar	and	at	a	

temperature	of	60°C	(Sayari	et	al.,	2011).	Finally,	CO2	adsorption	kinetics	on	zeolites	can	be	

ranked	among	the	fastest	known,	reaching	an	equilibrium	condition	within	a	few	minutes	in	

most	cases	(Choi	et	al.,	2009).		

2.2.2 Ordered	mesoporous	silicas	(OMS)	

Ordered	mesoporous	 silicas	 (e.g.,	MCM‐41,	 SBA‐15,	 TUD‐1,	 HMM‐33	 and	 FSM‐16)	 are	 a	

class	of	 silica	materials	 characterized	by	different	 cage	structures	 (such	as	hexagonal,	 cubic	

and	lamellar)	that	have	attracted	attention	in	catalysis	and	separation	due	to	their	extremely	

high	surface	area	and	precise	tuning	of	pore	sizes	(Chew	et	al.,	2010).		

Generally,	few	studies	are	retrievable	in	the	pertinent	literature	for	CO2	adsorption	on	as‐

synthesized	 ordered	 mesoporous	 silicas,	 but	 many	 concern	 the	 removal	 of	 carbon	 dioxide	

onto	amine‐modified	OMS	 (Belmabkhout	and	Sayari,	2009;	 Jang	et	al.,	 2009;	Devadas	et	 al.,	
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2010).	As	a	matter	of	fact,	pure	silica	surfaces	contain	residual	hydroxyl	groups	that	are	not	

able	to	interact	strongly	with	CO2	(Chew	et	al.,	2010).	Typical	CO2	adsorption	capacity	in	flue‐

gas	 conditions	 (temperature	 75°C,	 CO2	 5‐10%	 by	 vol.)	 reported	 for	 PEI‐impregnated	 OMS	

varies	 in	 the	 range	 2.1‐3.8	 mmol	 g‐1	 (Sayari	 et	 al.,	 2011).	 Post	 synthesis	 grafting	 is	 a	

functionalization	technique	widely	applied	for	the	modification	of	ordered	mesoporous	silicas	

and	involves	a	reaction	between	surface	hydroxyl	groups	of	OMS	and	the	alkoxy	ligands	of	an	

amino	silane,	determining	a	layer	of	tethered	amine	groups	on	the	support	surface	(Chang	et	

al.,	2009;	Serna‐Guerrero	and	Sayari,	2010;	Sayari	et	al.,	2011).	These	adsorbents	have	a	clear	

advantage	over	amine‐impregnated	silicas	as	 they	do	not	show	any	amines	 leaching	(unless	

conditions	 are	 strong	 enough	 to	 break	 covalent	 bonds),	 thus	 determining	 potentially	 less	

problems	 of	 equipment	 corrosion,	 usually	 associated	 to	 liquid	 amines	 (Choi	 et	 al.,	 2009).	

Finally	grafted	OMS	have	shown	great	 stability	under	 thousands	CO2	adsorption‐desorption	

cycles	(Sayari	et	al.,	2011).	

2.2.3 Calcium	oxide	

Calcium	 minerals	 are	 the	 most	 abundant	 in	 nature	 among	 alkaline	 earth	 metal	 oxides,	

commonly	 found	 in	 the	 form	of	 carbonates	 such	as	 limestone	or	dolomite.	When	 treated	at	

high	temperatures,	calcium	carbonates	liberate	CO2	and	generate	calcium	oxides.	

The	removal	of	CO2	from	flue	gas	by	calcium	oxide	can	be	accomplished	in	two	steps	(see	

eqs.	(2.1)	and	(2.2)):		

Carbonation:															CaO(s)	+	CO2(g)	→	CaCO3(s),	exothermic																																																						(2.1)	

Calcination:																	CaCO3(s)	→	CaO(s)	+	CO2(g),	endothermic																																																				(2.2)	

a	first	reaction	of	the	oxide	with	CO2	to	form	calcium	carbonate,	performed	in	a	carbonator	at	

temperatures	 in	 the	 range	 650‐700°C,	 and	 a	 subsequent	 heating	 of	 the	 carbonate	 at	

temperatures	 higher	 than	 those	 of	 the	 carbonation	 step	 (calcination)	 to	 regenerate	 the	

calcium	oxide	and	release	concentrated	CO2	(Abanades	and	Alvarez,	2003;	Choi	et	al.,	2009;	

Blamey	et	al.,	2010).	

Hughes	et	al.	(2005)	explored	the	in	situ	CO2	capture,	at	700°C	and	atmospheric	pressure,	

in	a	dual	 fluidized	bed	combustion	system.	The	adsorption	kinetics	of	CO2	on	calcium	oxide	

adsorbents	 is	 much	 slower	 than	 on	 physisorbents	 such	 as	 zeolites	 and	 activated	 carbons,	

sometimes	requiring	several	hours	to	achieve	ca.	70%	of	the	total	adsorption	capacity	(Choi	et	

al.,	2009).	Moreover,	calcium	oxide‐based	adsorbents	suffer	from	a	rapid	degradation	of	CO2	

capture	capability	during	the	repetition	of	carbonation/calcination	cycles:	this	reduction	has	
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mainly	been	ascribed	to	pore	blocking	and	adsorbent	sintering	(Abanades	and	Alvarez,	2003).	

Finally,	 material	 loss	 due	 to	 attrition	 and	 fragmentation	 in	 fluidized	 bed	 systems	 together	

with	the	sorbent	deactivation	produced	by	the	sulphation	reaction	with	SO2	(always	present	

in	 a	 typical	 flue‐gas)	 are	 important	 issues	 related	 to	 Ca‐based	 sorbents	 (Montagnaro	 et	 al.,	

2010;	Coppola	et	al.,	2012a	and	2012b).	

2.2.4 Metal‐organic	Frameworks	(MOFs)	

An	emerging	new	class	of	crystalline	solids	called	metal‐organic	frameworks	(MOFs)	has	

recently	been	 investigated	as	sorbents	 for	CO2	capture.	These	materials	generally	consist	of	

three‐dimensional	 organic–inorganic	 hybrid	 networks	 formed	 by	 multiple	 metal–ligand	

bonds	(Eddaoudi	et	al.,	2002;	Choi	et	al.,	2009;	An	and	Rosi,	2010;	Saha	et	al.,	2010;	Sayari	et	

al.,	2011).	These	solids	are	highly	versatile	because	the	pore	spaces	of	MOFs	are	tuneable	over	

a	substantial	range	by	using	ligands	with	different	molecular	dimensions	(An	and	Rosi,	2010):	

with	 some	 of	 the	 larger	 ligands	 the	 materials	 even	 became	 mesoporous.	 MOFs	 have	 been	

developed	for	use	as	CO2	physisorbents	or	storage	materials,	by	optimizing	the	pores	size	for	

the	 carbon	 dioxide	molecule.	 Even	 if	 they	 show	 good	 adsorption	 capacities	 towards	 CO2	 at	

high	pressures	(greater	than	10	bar),	it	has	been	highlighted	that	for	low	pressure	range	(of	

practical	 interest	 for	 post‐combustion	 capture)	 MOFs	 exhibit	 unfavourable	 adsorption	

isotherms	(Sayari	et	al.,	2011).	Additionally,	MOFs	are	usually	unstable	 in	humid	conditions	

and	high	 temperatures	 showing	 low	CO2	 selectivity	with	 respect	 to	N2	 (Sayari	 et	 al.,	 2011).	

Finally,	their	performances	over	multiple	adsorption	and	desorption	cycles	have	to	be	tested	

(Choi	et	al.,	2009).	

In	addition	to	MOFs,	new	type	of	solids	are	currently	being	investigated	as	CO2	adsorbents	

but	 are	 still	 at	 early	 stage	 of	 development:	 poly(ionic	 liquid)s	 (see	 Section	 2.3.1),	 zeolitic	

imidazolate	frameworks	(ZIFs)	and	carbon	nanotubes	(Choi	et	al.,	2009;	Herzog	et	al.,	2009).	

From	the	analysis	of	the	aforementioned	solids	(either	as	synthesized	or	functionalized),	

recently	 reviewed	by	Choi	 et	 al.	 (2009),	 Sayari	 et	 al.	 (2011)	 and	Samanta	 et	 al.	 (2012),	 the	

following	 aspects	 can	be	highlighted:	 i)	 zeolites	 and	activated	 carbons	 are	 characterized	by	

very	 fast	 CO2	 adsorption	 kinetics	 but	 their	 performances	 decrease	 at	 temperatures	 greater	

than	100°C	and	in	the	presence	of	moisture	(always	present	 in	a	 flue	gas);	 ii)	calcium	oxide	

provides	 high	 CO2	 adsorption	 capacities	 but	 requires	 high	 temperatures	 for	 regeneration,	

which	 determine	 structural	 changes	 with	 loss	 of	 activity	 during	 several	

carbonation/calcinations	 cycles;	 iii)	 amine‐functionalized	 solids	 usually	 display	 an	
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enhancement	of	the	CO2	capture	capacity	in	presence	of	moisture	(related	to	the	possibility	of	

forming	 carbonate/bicarbonate),	 but	 their	 application	 at	 high	 temperatures	 is	 limited	 by	

amines	degradability.	

As	a	further	remark,	it	should	be	noted	that	even	if	great	efforts	are	currently	devoted	to	

the	development	of	high‐performance	sorbents	 for	CO2	capture,	 their	use	 in	 typical	 flue‐gas	

conditions	and	for	many	adsorption/desorption	cycles	is	still	limited.	Moreover,	there	is	a	lack	

of	 exhaustive	 information	 concerning	 their	 dynamic	 performances	 in	 different	 reactor	

configurations	(e.g.,	 fixed	bed,	 fluidized‐bed,	circulating‐bed	etc.),	 this	being	a	key	aspect	for	

the	design	of	industrial‐scale	post‐combustion	purification	systems.	

	In	 this	 scenario,	 the	 use	 of	 ionic	 liquids	 for	 porous	 solids	 functionalization	 is	 an	

interesting	although	 limitedly	explored	research	 topic,	 in	order	 to	develop	highly	CO2‐affine	

sorbents.		In	the	following,	a	brief	overview	on	ionic	liquids,	their	application	and	perspectives	

in	CO2	capture	technologies	is	presented.	

2.3 Ionic	liquids	(ILs)	

Ionic	liquids	(ILs)	are	organic	salts	composed	entirely	by	ions	with	melting	point	usually	

lower	 than	 100°C;	 many	 ILs	 are	 liquids	 at	 room	 temperature	 and,	 for	 this	 reason,	 are	

commonly	 referred	 as	 Room	 Temperature	 Ionic	 Liquids	 (RTILs)	 (Zhang	 et	 al.,	 2006a;	

Bourbigou	 et	 al.,	 2010;	 Hasib‐ur‐Rahman	 et	 al.,	 2010).	 ILs	 are	 characterized	 by	 negligible	

vapour	pressure	at	room	temperature,	a	broad	temperature	range	of	liquid	state	(depending	

on	 the	 anionic/cationic	 couple),	 excellent	 thermal	 and	 chemical	 stabilities:	 these	 unique	

properties	make	 them	as	 optimal	 candidates	 as	 solvents	 and	 catalysts	 (Zhang	 et	 al.,	 2006a;	

Boschetti	et	al.,	2007;	Bourbigou	et	al.,	2010).	Their	typical	viscosity	ranges	from	50	to	1000	

cP	 at	 room	 temperature	 (Figueroa	 et	 al.,	 2008).	 Some	 typical	 ILs	 cations	 and	 anions	 are	

reported	 in	 Figure	 2.2:	 cations	 are	 usually	 organics	 such	 as	 imidazolium,	 pyridinium	 or	

ammonium	while	anions	include	halides	and	fluoro‐borate/phosphate/sulphonate	(Hasib‐ur‐

Rahman,	et	al.,	2010).	
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application	(Lemus	et	al.,	2011).	Nevertheless,	the	behaviour	of	ILs	confined	in	nanospaces	in	

the	context	of	CO2	capture	processes	is	only	at	a	preliminary	stage	of	investigation	(Tanaka	et	

al.,	2011;	Kolding	et	al.,	2012).	For	example,	Tanaka	et	al.	(2011)	observed	that	the	dispersion	

of	 1‐hexadecyl‐3‐methylimidazolium	 chloride	 ionic	 liquid	 into	 nanoporous	 silica	

microspheres	 determines	 an	 enhancement	 of	 its	 CO2	 capture	 performances	with	 respect	 to	

the	bulk	solvent	properties.	The	authors	ascribed	this	behaviour	to	the	formation	of	ordered	

molecular	domains,	promoted	by	silica	surface‐IL	interactions,	in	which	CO2	occupies	specific	

positions.	Zhang	et	 al.	 (2006b)	observed	 that	 for	CO2	adsorption	by	amino‐acid	based	 ionic	

liquids	 supported	 on	 porous	 silica	 gel,	 the	 equilibrium	 is	 reached	 faster	 than	 bubbling	 CO2	

through	 bulk	 ILs.	 In	 addition,	 ILs	 can	 be	 supported	 on	 porous	 alumina	 membranes	 or	

adsorbed	on	polymeric	membranes	to	increase	their	selectivity	with	respect	to	CO2	(Hasib‐ur‐

Rahman	 et	 al.,	 2010).	 Finally,	 immobilization	 of	 imidazolium‐type	 ionic	 liquids	 onto	 silica	

supports	 is	 gaining	 great	 interest	 also	 because	 ILs	 act	 as	 high‐activity	 catalysts	 in	 the	

cycloaddition	 reaction	 between	 epoxides	 and	 CO2	 to	 produce	 five‐membered	 cyclic	

carbonates	 (Shim	 et	 al.,	 2009;	 Udayakumar	 et	 al.,	 2009	 and	 2010).	 Cyclic	 carbonates	 are	

excellent	 aprotic	 polar	 solvents	 and	 intermediates	 commonly	 applied	 in	 the	 production	 of	

pharmaceuticals	and	fine	chemicals.		
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CHAPTER	3		

THEORETHICAL	FRAMEWORK	OF	THE	ADSORPTION	PROCESS	

In	this	Chapter	the	main	theoretical	aspects	concerning	both	thermodynamics	and	kinetics	

of	the	adsorption	phenomenon	will	be	discussed	in	order	to	provide	a	useful	basis	for	a	deep	

comprehension	of	 the	main	mechanisms	 involved	 in	 the	 capture	of	 CO2	by	 the	 investigated	

solids.		

3.1 Adsorption	equilibria	

The	thermodynamic	study	of	adsorption	processes	allows	obtaining	adsorption	isotherms,	

i.e.	experimental	curves	which	establish	a	relationship	between	the	solid	specific	adsorption	

capacity	toward	a	target	pollutant	and	the	contaminant	partial	pressure	in	the	gas	phase	at	a	

fixed	 temperature	 and	 under	 equilibrium	 conditions.	 The	 evaluation	 of	 equilibrium	

adsorption	 capacity	 for	 a	 given	 gas‐solid	 system	 is	 of	 great	 importance	not	 only	 because	 it	

provides	information	about	the	amount	of	pollutant	that	can	be	loaded	on	the	sorbent	and	the	

nature	of	 interactions	governing	 the	process:	 the	system	 thermodynamic	behaviour,	 in	 fact,	

affects	 the	dynamic	performances	of	an	adsorption	process	and	consequently	 the	size	of	an	

adsorber	unit.	The	interpretation	of	experimental	equilibrium	adsorption	data	by	means	of	an	

adequate	theoretical	model	allows	to	define	the	solid	affinity	toward	a	specific	pollutant	(by	

evaluating	 the	 interaction	 energy	 between	 the	 sorbent	 and	 each	 gaseous	 species)	 and	 the	

capture	mechanism	involved	in	the	process.		

A	simple	model	used	in	the	literature	for	the	interpretation	of	equilibrium	adsorption	data	

is	Langmuir	model,	which	 is	based	on	the	 following	assumptions:	 i)	each	site	can	guest	one	

adsorbate	molecule	(monolayer);	 ii)	there	is	no	mobility	of	adsorbed	species	on	the	surface;	

iii)	 the	heat	of	 adsorption	 is	 constant	with	 loading;	 iv)	 all	 sites	 are	 energetically	 equivalent	

(Ruthven,	1984).	The	general	form	of	the	Langmuir	isotherm	can	be	expressed	as:	

ωୣ୯ ൌ
னౣ౗౮୏ై୔౛౧
ଵା୏ై୔౛౧

																																																																																																																						(3.1)	

where	eq	[mmol	g‐1]	and	Peq	[bar]	are	the	adsorbent	specific	molar	adsorption	capacity	and	

the	equilibrium	gas	partial	pressure	of	the	adsorbate	respectively;	KL	[bar‐1]	and	max	[mmol	

g‐1]	 represent	 the	 Langmuir	 equilibrium	 constant	 and	 the	maximum	adsorption	 capacity	 of	

the	adsorbed	species	respectively.		
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Alternatively,	 for	 low	adsorbate	partial	pressures,	 the	 solid‐fluid	 adsorption	equilibrium	

can	be	expressed	by	the	Henry’s	law:	

ωୣ୯ ൌ KୌPୣ ୯																																																																																																																	(3.2)	

in	which	KH	[mmol	g‐1	bar‐1]	is	the	Henry	equilibrium	constant.	

The	Freundlich	isotherm	can	be	applied	to	account	for	surface	heterogeneity:	

ωୣ୯ ൌ K୊Pୣ ୯

భ
౤																																																																																																																		(3.3)	

In	 eq.	 (3.3),	 KF	 [mmol	 g‐1	 bar‐1/n]	 and	 1/n	 [‐]	 are	 the	 Freundlich	 constant	 and	 the	

heterogeneity	parameter	respectively	(both	generally	temperature‐dependent)	(Do,	1998).	 

The	potential	 theory	has	been	developed	mainly	by	Dubinin	and	Polanyi	 to	 characterize	

the	 adsorption	 process	 in	 microporous	 solids	 (such	 as	 activated	 carbons)	 (Polanyi,	 1932;	

Dubinin	 and	 Radushkevich,	 1947;	 Ruthven,	 1984;	 Do,	 1998).	 In	 such	 solids,	 the	 pore	

dimension	is	comparable	to	that	of	the	adsorbate	molecule	and	the	adsorption	mechanism	is	

due	to	filling	because	the	adsorption	field	encompasses	the	entire	micropore	volume.	 In	the	

micropore	filling	theory	an	adsorption	potential	A	is	defined	as:	

A ൌ RTln ୔బ
୔౛౧
																																																																																																																	(3.4)	

where	 P0	 and	 Peq	 are	 the	 liquid	 sorbate	 vapour	 pressure	 and	 the	 pressure	 of	 the	 gas	 in	

equilibrium	with	the	adsorbate	phase	respectively,	at	the	same	temperature	T.	An	important	

feature	of	the	micropore	filling	theory	is	that	for	a	given	adsorbent‐adsorbate	system	there	is	

a	 unique	 temperature‐independent	 relationship	 between	 the	 adsorption	 potential	 and	 the	

adsorbate	fractional	loading	referred	as	the	characteristic	curve	(Ruthven,	1984;	Do,	1998).	

Dubinin	 and	 Radushkevich	 suggested	 the	 following	 Gaussian	 expression	 to	 relate	 the	

degree	of	micropore	filling	and	the	adsorption	potential	(Dubinin	and	Radushkevich.,	1947):	

୚

୚బ
ൌ exp ൤െ ቀ

୅

୉
ቁ
ଶ
൨																																																																																																								(3.5)	

in	which	V	is	the	volume	of	adsorbate	in	the	micropores	per	unit	mass	of	the	solid,	V0	is	the	

maximum	 specific	 volume	 that	 the	 adsorbate	 can	 occupy	 (obtainable	 from	 porosimetric	

analyses),	 and	 E	 is	 a	 characteristic	 energy	 (related	 to	 the	 adsorption	 strength	 between	

adsorbate	and	adsorbent).	Once	V	and	V0	are	known,	 the	solid	molar	adsorption	capacity		
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and	 the	 saturation	 uptake	 max	 can	 be	 calculated	 assuming	 a	 liquid‐like	 adsorbed	 phase	

according	to	Gurvitsch	as	(Do,	1998):	

ω ൌ ୚

୚ౣ
																																																																																																																												(3.6)	

ω୫ୟ୶ ൌ
୚బ
୚ౣ
																																																																																																																					(3.7)	

where	Vm	is	the	liquid	molar	volume.	

It	should	be	underlined	that	above	the	adsorbate	critical	temperature	the	concept	of	liquid	

ceases	 to	 exist.	 In	 this	 context,	 different	 methods	 have	 been	 proposed	 to	 evaluate	 Vm	 and	

replace	the	vapour	pressure	with	a	pseudo‐vapour	pressure;	some	of	these	expressions	have	

been	collected	in	(Do,	1998)	and	are	not	reported	here	for	the	sake	of	brevity.			

Finally,	 the	 determination	 of	 the	 adsorption	 isotherms	 at	 different	 temperatures	 allows	

the	estimation	of	the	isosteric	heat	of	adsorption	(qst),	which	is	a	useful	parameter	providing	

information	 on	 the	 degree	 of	 energetic	 heterogeneity	 of	 gas‐solid	 interactions.	 It	 can	 be	

computed	by	applying	the	well‐known	Clausius‐Clapeyron	equation	(Do,	1998):	

qୱ୲ ൌ RTଶ ቀ
ப୪୬୔౛౧
ப୘

ቁ
ன
																																																																																																				(3.8)	

3.2 Dynamics	of	adsorption	columns	

Most	of	the	adsorption	processes	are	carried	out	in	fixed	bed	adsorbers,	typically	tubular	

reactors	 packed	 with	 the	 adsorbent	 material	 which	 is	 contacted	 with	 a	 gaseous	 stream	

containing	 the	pollutant	 to	be	 removed.	 In	 such	systems,	 the	compositions	of	both	 the	 fluid	

and	 solid	 phases	 change	with	 time	 as	 well	 as	 with	 the	 position	 in	 the	 bed	 (McCabe	 et	 al.,	

1993).	 In	 the	 common	practice	of	 adsorption	experiments	 it	 is	difficult	 to	measure	 internal	

composition	profiles	for	evaluating	the	dynamic	performances	of	an	adsorption	column;	thus,	

it	is	more	convenient	to	monitor	the	concentration	of	the	adsorbate	at	the	column	outlet	as	a	

function	of	 time,	 obtaining	 the	 so‐called	breakthrough	 curve	 as	 reported	 in	Figure	3.1.	 It	 is	

highlighted	that	the	time	evolution	of	the	composition	profile	can	be	conveniently	expressed	

in	terms	of	the	ratio	between	the	volumetric	flow	rate	of	the	adsorbed	i	species	at	the	column	

outlet	 and	 the	 correspondent	 value	 of	 the	 feed	 (Qiout(t)/Qiin),	 if	 percentage	 volumetric	

concentrations	can	be	experimentally	obtained	(as	in	the	case	of	the	NDIR	analyzer	adopted	in	

this	project,	cf.	Chapter	4).	
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Figure	3.1	Characteristic	breakthrough	curve	obtained	from	fixed‐bed	adsorption	experiments	

It	 can	 be	 observed	 that	 the	 curve	 is	 S‐shaped:	 initially	 the	 pollutant	 is	 completely	

adsorbed,	then	its	concentration	at	the	outlet	increases	up	to	the	inlet	level	when	the	solid	is	

completely	 saturated.	 In	 general,	 for	 the	 breakthrough	 curve	 it	 is	 possible	 to	 define	 a	

characteristic	 breakpoint	 time	 tb	 for	 which	 Qiout(t)/Qiin=0.05;	 in	 the	 industrial	 practice,	 it	

usually	represents	a	limiting	working	condition	for	the	adsorber	corresponding	to	regulation	

emission	limit	(McCabe	et	al.,	1993).		

It	can	be	demonstrated	that	the	area	above	the	breakthrough	curve	is	proportional	to	the	

total	amount	of	pollutant	captured	by	the	adsorbent;	as	a	matter	of	fact,	in	order	to	evaluate	

the	solid	adsorption	capacity,	a	material	balance	[mg]	on	i	species	over	the	adsorption	column	

is	required	as	reported	in	eq.	(3.9):	

Q୧
୧୬ρ୧dt െ Q୧

୭୳୲ሺtሻρ୧dt ൌ mdω																																																																																																											(3.9)	

in	 which	 Qiin	 and	 Qiout(t)	 [L	 s‐1]	 represent	 again	 the	 column	 inlet	 and	 outlet	 i	 species	

volumetric	 flow	 rates	 respectively,	 i	 [mg	 L‐1]	 is	 the	 pollutant	 density	 at	 the	 operative	

temperature	and	pressure,	m	[g]	is	the	adsorbent	mass		and	d[mg	g‐1]	the	differential	solid	

adsorption	 capacity.	 The	 mass	 balance	 equation	 (3.9)	 takes	 into	 account	 that,	 in	 the	

differential	time	dt,	the	pollutant	mass	adsorbed	on	the	solid	(md)	equals	the	same	quantity	

lost	by	the	gaseous	phase	(LHS	in	eq.	(3.9)).	

By	rearranging	eq.	(3.9)	and	integrating	between	zero	and	time	t*	for	which	Qiout(t)/Qiin	is	

practically	 unitary	 (complete	 solid	 saturation),	 it	 is	 possible	 to	 evaluate	 the	 solid	 total	

tb 

0.05 
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adsorption	capacity	eq,	as	reported	in	eq.	(3.10):	

ωୣ୯ 	ൌ 	
୕౟
౟౤஡౟
	୫

׬ ൬1 െ
୕౟
౥౫౪ሺ୲ሻ

୕౟
౟౤ ൰ dt

୲∗

଴ 																																																																																							(3.10)	

The	 correct	 interpretation	of	 the	 effects	of	 the	 adsorption	kinetics	and	 the	extent	of	 the	

axial	mixing	in	the	column	on	the	adsorbent	dynamic	performances	requires	an	appropriate	

model	that	gives	a	theoretical	breakthrough	curve	matching	the	experimental	data.	Moreover,	

the	 design	 of	 an	 adsorption	 column	 can	 be	 realized	 without	 the	 recourse	 to	 extensive	

experimentation	by	predicting	a	priori	the	kinetic	response	curve	from	equilibrium	data	and	

by	estimating	the	mass	transfer	coefficients	once	the	solid‐sorbate	properties	are	known	and	

the	system	fluid	dynamics	is	fixed.	The	rigorous	mathematical	model	requires	the	solution	of	

equations	deriving	 from	mass,	momentum	and	energy	balances.	The	hypotheses	adopted	 in	

this	 work	 to	 describe	 the	 fixed	 bed	 dynamics	 are	 (Ruthven,	 1984;	 Ding	 and	 Alpay,	 2000;	

Delgado	et	al.,	2006;	Serna‐Guerrero	and	Sayari,	2010;	Shen	et	al.,	2010):		

 the	flow	pattern	is	described	with	the	axially	dispersed	flow	model;	

 the	mass	transfer	rate	is	governed	by	a	linear	driving	force	(LDF);	

 the	gas	phase	behaves	as	an	ideal	gas	mixture;	

 radial	concentration	and	temperature	gradients	are	negligible;	

 the	system	is	isothermal.	

It	 should	 be	 noted	 that	 even	 if	 a	 typical	 industrial‐scale	 adsorption	 column	 is	 operated	

adiabatically,	 lab‐scale	 experiments	 are	 usually	 carried	 out	 in	 a	 temperature‐controlled	

environment	which	 leads	 to	 the	 useful	 approximation	 of	 an	 isothermal	 fixed‐bed	 adsorber	

that	 simplifies	 the	 system	 mathematical	 modelling	 (Serna‐Guerrero	 and	 Sayari,	 2010).	 In	

addition,	typically	employed	physisorbents	(such	as	activated	carbons)	show	low	adsorption	

heat	 which	 determines	 a	 negligible	 effect	 on	 the	 gas	 temperature,	 thus	 supporting	 the	

hypothesis	of	an	isothermal	process.	

Mass	and	momentum	balances	

On	 the	basis	 of	 the	 above‐mentioned	 assumptions,	 the	mass	balance	 for	 the	 adsorbate	 i	

species	in	a	differential	element	of	the	column	dz	(total	length	L)	is	given	by:	

െεDୟ୶
பమେ౟
ப୸మ

൅
ப୳େ౟
ப୸

൅ ε
பେ౟
ப୲
	൅ ሺ1 െ εሻρ୮

பன౟

ப୲
ൌ 0																																																												(3.11) 
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where	Ci	 is	the	adsorbate	concentration	in	the	gaseous	stream,	t	the	time,		 the	bed	voidage	

fraction,	u	the	gas	superficial	velocity,	p	is	the	adsorbent	particle	density	and	Dax	represents	

the	 axial	 dispersion	 coefficient.	 The	 resolution	 of	 the	mass	 balance	 equation	 (3.11)	 can	 be	

obtained	by	fixing	the	following	initial	and	boundary	conditions:	

 t	=	0								i=	0													z																																																																																																																			(3.12a)	

 t	=	0								Ci	=	0										0<z≤L																																																																																																																(3.12b)	

 z=	0								Ci	=	Ciin											t																																																																																																																				(3.12c)	

 	
பେ౟
ப୸
ቚ
୐
=	0																							t																																																																																																																				(3.12d)	

in	which	Ciin	is	the	pollutant	concentration	in	the	gaseous	phase	at	the	column	inlet.	It	should	

be	 noted	 that	 in	 eq.	 (3.12a)	 it	 has	 been	 assumed	 that	 the	 adsorbent	 is	 initially	 free	 of	

adsorbate	(i=0).		

The	rate	of	adsorption	for	the	adsorbate	is	expressed	as:	

ሺ1 െ εሻρ୮
பன౟

ப୲
ൌ ሺ1 െ εሻρ୮kୱ,୧ሺω୧

∗ െ ω୧ሻ																																																																			(3.13)	

where	 ks,i	 is	 a	 lumped	mass	 transfer	 coefficient	 and	i*	 the	 solid	 adsorption	 capacity	 for	 i	

component	which	would	be	in	equilibrium	with	its	concentration	in	the	gaseous	phase	(Ci).	In	

this	 context,	 it	 is	 underlined	 that	 the	 resolution	 of	 eq.	 (3.13)	 requires	 an	 appropriate	

equilibrium	 expression	 i*=f(Ci,T)	 which	 can	 be	 obtained	 from	 one	 of	 the	 adsorption	

isotherms	discussed	in	Section	3.1.		

The	relationship	between	the	total	pressure	gradient	and	the	gas	superficial	velocity	can	

be	derived	from	the	Ergun’s	equation:	

ப୔

ப୸
ൌ

ଵହ଴ஜሺଵିகሻమ

கయୢ౦
మ u ൅

ଵ.଻ହሺଵିகሻ஡ౝ
கయୢ౦

uଶ																																																																																					(3.14)	

where	and	g	are	the	viscosity	and	density	of	the	gas	respectively,	while	dp	represents	the	

mean	Sauter	particle	diameter.	

Evaluation	of	axial	dispersion	and	mass	transfer	coefficients	

The	resolution	of	 the	equations	relative	to	 the	rate	of	adsorption	and	mass	balance	 for	 i	

component	 of	 the	 system	 expressed	 in	 eqs.	 (3.11	 and	 3.13),	 requires	 an	 estimation	 of	 the	

effect	of	the	axial	dispersion	(Dax)	and	the	global	mass	transfer	coefficient	ks,i.		
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In	 general	 for	 a	porous	adsorbent	material	 the	 adsorption	process	 is	 characterized	by	a	

complex	mechanism	which	involves	(Ruthven,	1984;	Perry	and	Green,	1997):	

 external	mass	transfer	of	the	pollutant	in	the	fluid	film	layer	surrounding	the	solid	

particle;	

 macropore	and	micropore	diffusion	of	the	adsorbate	within	the	adsorbent;	

 adsorption	on	the	solid	active	sites.	

The	 pseudo‐reaction	 between	 the	 pollutant	 and	 the	 solid	 sorbent	 is	 usually	 fast	 for	

physical	 adsorption,	 thus	 the	 evaluation	 of	 diffusion	 resistances	 allows	 the	 identification	 of	

the	rate‐determining	step	of	the	process.	

The	global	mass	transfer	resistance	is	commonly	expressed	as	a	linear	combination	of	the	

film,	 macropore	 and	 micropore	 diffusion	 resistances	 as	 (Ruthven,	 1984;	 Perry	 and	 Green,	

1997):	

ଵ

୩౩,౟ୌ౟
ൌ

ୢ౦
଺୩౛౮౪,౟

൅
ୢ౦మ

଺଴க౦ୈౣ౗ౙ౨౥,౟
൅

ୢ౦మ

଺଴ୌ౟ୈౣ౟ౙ౨౥,౟
																																																																								(3.15)	

where	 kext,i	 is	 the	 external	 fluid	 film	 mass	 transfer	 coefficient	 for	 i,	 Dmacro,i	 and	 Dmicro,i	 its	

macropore	 and	 micropore	 diffusivities,	 p	 represents	 the	 particle	 porosity,	 Hi	 is	 the	

dimensionless	 Henry	 constant	 for	 i	 obtained	 from	 the	 slope	 of	 the	 linear	 part	 of	 the	

adsorption	 isotherm	 (by	 expressing	 the	 solid	 adsorption	 capacity	 in	 terms	 of	 volumetric	

concentration	as	a	function	of	the	concentration	of	i	in	the	gaseous	phase).	

In	 order	 to	 evaluate	 the	 film	 mass	 transfer	 coefficient,	 it	 is	 useful	 to	 define	 the	

dimensionless	Reynolds	(Re),	Sherwood	(Sh)	and	Schmidt	(Sc)	numbers	as:	

Re ൌ
ୢ౦஡ౝ୳

ஜ
; 																				Sh ൌ

ୢ౦୩౛౮౪,౟
ୈ౟ౠ

;																				Sc ൌ ஜ

஡ౝୈ౟ౠ
	

in	 which	 Dij	 is	 the	 i	 molecular	 diffusivity	 into	 the	 gas	 matrix	 (i.e.	 CO2/N2	 mixtures	 in	 this	

project),	 which	 can	 be	 evaluated	 according	 to	 the	 Chapman‐Enskog	 equation	 (Perry	 and	

Green,	1997):	

D୧୨ ൌ 1.858 ∗ 10ିଷ
୘భ.ఱቆ

భ
౉౟
ା

భ
౉ౠ
ቇ
బ.ఱ

୔஢౟ౠ
మஐీ

																																																																																																					(3.16)	

where	 Mi	 and	 Mj	 are	 the	 molecular	 weights	 for	 i	 and	 j	 species,	 ij	 the	 average	 collision	
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diameter	and	D	a	temperature‐dependent	collision	integral	(tabulated).		

The	value	of	kext,i	can	be	obtained	according	to	the	Wakao	and	Funazkri	correlation	(Perry	

and	Green,	1997;	Shen	et	al.,	2010):	

Sh ൌ 2 ൅ 1.1Re଴.଺Sc
భ
య																																																																																																									(3.17)	

The	macropore	diffusivity	Dmacro,i	can	be	evaluated	as	(Shen	et	al.,	2010):	

	
ଵ

ୈౣ౗ౙ౨౥,౟
ൌ τ୮ ൬

ଵ

ୈ౟ౠ
൅

ଵ

ୈౡ,౟
൰																																																																																																					(3.18)	

where	p	is	the	pore	tortuosity.	The	Knudsen	diffusivity	Dk,i	is	given	by	(Ruthven,	1984):	

D୩,୧ ൌ 48.50d୮୭୰ୣ ቀ
୘

୑౟
ቁ
଴.ହ
																																																																																																		(3.19)	

with	dpore	[m]	representing	the	mean	pore	diameter.	

The	micropore	 diffusion	 is	 an	 activated	 process	 and	 exhibits	 an	 Arrhenius	 dependence	

from	temperature	(Ruthven,	1984):	

D୫୧ୡ୰୭,୧ ൌ D୫୧ୡ୰୭,୧
଴ exp ቀെ

୉౗
ୖ୘
ቁ																																																																																										(3.20)	

in	which	D0micro,i	is	the	limiting	diffusivity	at	infinite	temperature	and	Ea	the	activation	energy;	

Dmicro,i	 is	 usually	 evaluated	 from	 chromatographic	 and	NMR	 studies	 or	 from	 separate	 batch	

adsorption	experiments	(Ruthven,	1984).	

The	 axial	 dispersion	 in	 packed	 beds	 usually	 derives	 from	 two	 main	 mechanisms:	

molecular	 diffusion	 and	 turbulent	mixing	 arising	 from	 splitting	 and	 recombination	 of	 flows	

around	the	adsorbent	particle	(Ruthven,	1984).	These	effects	can	be	considered	additive,	thus	

the	axial	dispersion	coefficient	can	be	expressed	as:	

Dୟ୶ ൌ γଵD୧୨ ൅
ஓమୢ౦୳

க
																																																																																																												(3.21)	

with	 	 and	 	 constants;	 the	 values	 proposed	 for	 1=0.73	 and	 2	0.5 ቀ1 ൅
ଵଷஓభக

ୖୣୗୡ
ቁ
ିଵ
by	

Edwards	and	Richardson	have	been	used	in	this	work	(Perry	and	Green,	1997).	

Finally,	 the	effect	of	axial	dispersion	can	be	evaluated	by	computing	the	fixed‐bed	Péclet	

number	defined	as:	
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Pe ൌ
uL
εDୟ୶

	

Typically,	 for	 Pe>100	 it	 is	 possible	 to	 consider	 an	 ideal	 plug‐flow	 for	 the	 system	 (i.e.	

negligible	axial	dispersion)	(Inglezakis	and	Poulopoulos,	2006).	

The	 numerical	 resolution	 of	mass	 and	momentum	 balance	 equations	 (3.11),	 (3.13)	 and	

(3.14)	was	obtained	 in	 this	work	with	Aspen	AdsimTM	modelling	 environment	 adopting	 the	

method	of	lines:	a	Taylor‐based	Upwind	Differencing	Scheme	was	used	for	the	discretization	

of	 first‐order	 spatial	 derivatives	 and	 a	 second‐order	 Central	 Differencing	 Scheme	 for	 the	

discretization	 of	 the	 second‐order	 term	 (axial	 dispersion	 in	 eq.	 (3.11)).	 The	 aim	 of	 the	

mathematical	modelling	was	to	provide	an	estimation	of	the	micropore	diffusivity	Dmicro,i	(for	

each	 investigated	 gas‐solid	 adsorption	 system)	 which	 is	 the	 only	 parameter	 not	 directly	

computable	 (kext,i	 and	 Dmacro,i	 values	 can	 be	 determined	 once	 the	 adsorbent	 properties	 are	

known	and	the	system	fluid	dynamics	is	fixed).	To	this	end,	Aspen	AdsimTM	software	enables	

the	 evaluation	 of	 Dmicro,i	 as	 a	 fitting	 parameter	 by	 minimizing	 the	 sum	 of	 the	 squared	

differences	 between	 numerically	 calculated	 and	 experimentally	 observed	 values	 of	 the	

gaseous	phase	composition	at	the	fixed‐bed	outlet	(least	squares	method).	The	comparison	of	

mass	transfer	resistances	in	eq.	(3.15)	allowed	the	determination	of	the	rate‐limiting	step	of	

the	adsorption	process.	
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(flow	rate	equal	 to	60	NL	h‐1,	 for	1	h)	at	180°C	 into	a	column	packed	with	 the	 impregnated	

solid	 while	 in	 the	 case	 of	 [Emim][Gly]	 functionalized	 sorbents,	 methanol	 removal	 was	

achieved	 in	 an	 oven	 at	 100°C	 under	 vacuum	 for	 5	 h.	 It	 is	 underlined	 that	 the	 adopted	

operating	 conditions	 for	 the	 evaporation	 stage	 were	 chosen	 on	 the	 basis	 of	 the	 different	

thermal	 stabilities	 of	 the	 two	 ILs	 (lower	 decomposition	 temperature	 for	 [Emim][Gly],	 cf.	

Chapter	5).	Moreover,	the	effectiveness	of	the	evaporation	step	was	validated	from	previous	

experiments	 in	which	the	solids	were	impregnated	only	with	the	solvents:	complete	solvent	

removal	was	verified	by	weighing	the	sorbent	before	and	after	thermal	treatment.	For	an	easy	

identification,	 the	 functionalized	 solids	 were	 labelled	 according	 to	 the	 adopted	 activated	

carbon,	IL	and	impregnation	concentration	as:		

 F600‐900	and	N.RGC30	for	raw	activated	carbons;	

 F600‐900	[Hmim][BF4]	10‐3	M	and	10‐2	M,	N.RGC30	[Hmim][BF4]	10‐3	M	and	10‐2	M	

for	 activated	 carbons	 impregnated	 with	 [Hmim][BF4]	 and	 adopting	 IL	 initial	

impregnation	concentrations	of		5.6×10‐3	and	2.2×10‐2	M;	

 F600‐900	 [Emim][Gly]	10‐3	M	and	10‐2	M,	N.RGC30	[Emim][Gly]10‐3	M	and	10‐2	M	

for	activated	carbons	functionalized	with	[Emim][Gly]	under	IL	initial	impregnation	

conditions	of		5.6×10‐3	and	2.2×10‐2	M.	

4.2 Solids	characterization	techniques	

The	solids	 tested	 in	 this	work	 for	CO2	capture	experiments	were	characterized	adopting	

the	 following	 techniques:	 i)	 CO2/N2	 porosimetric	 analyses	 to	 determine	 the	 solids	 textural	

parameters;	 ii)	 thermogravimetric	 analyses	 (TGA)	 to	 evaluate	 the	 amount	 of	 ionic	 liquid	

loaded	 on	 each	 sorbent	 after	 the	 impregnation	 treatment	 and	 for	 assessing	 the	 thermal	

stability	 of	 the	 active	 phase	 confined	 in	 the	 porous	 substrates.	 All	 the	 analyses	 have	 been	

carried	 out	 at	 the	 Laboratorio	 de	 Materiales	 Avanzados	 (LMA),	 Department	 of	 Inorganic	

Chemistry	of	Universidad	de	Alicante	(Spain).		

4.2.1 CO2/N2	porosimetric	analyses		

Porosimetric	 analyses	 were	 carried	 out	 in	 a	 home‐made	 fully	 automated	 equipment	

designed	 and	 constructed	by	 the	Advanced	Materials	 group	 (LMA),	 now	 commercialized	 as	

N2Gsorb‐6	(Gas	to	Materials	Technology;	www.g2mtech.com),	working	at	‐196	and	0°C	for	N2	

and	 CO2	 respectively.	 Adsorption	 measurements	 were	 recorded	 in	 the	 relative	 pressure	

(P/P0)	range	of	10‐7‐1	for	nitrogen	and	10‐7‐0.03	for	carbon	dioxide.	Prior	to	adsorption	runs	
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each	 sample	 was	 degassed	 under	 vacuum	 at	 100°C	 in	 order	 to	 remove	 humidity	 or	 other	

volatile	impurities.	Noteworthy,	the	degassing	procedure	did	not	determine	desorption	of	the	

ionic	 liquid	 from	the	substrate,	 as	 confirmed	by	TGA	analyses	carried	out	on	 functionalized	

sorbents	 before	 and	 after	 vacuum	 application.	 Moreover,	 it	 is	 highlighted	 that	 CO2	

measurements	were	conducted	only	 for	 raw	F600‐900	and	N.RGC30	activated	carbons.	The	

reason	 for	 this	 choice	 is	 related	 to	 the	 specific	 interactions	 establishing	between	 the	probe	

CO2	 gaseous	molecules	 and	 the	 ionic	 liquid	 dispersed	 onto	 the	 substrate	 (with	 a	 chemical	

conversion	 into	 carbamate	 occurring	 in	 the	 case	 of	 [Emim][Gly]),	 which	 could	 modify	 the	

distribution	of	the	active	phase	inside	the	sorbent	pores,	thus	leading	to	a	possible	incorrect	

evaluation	of	the	narrow	microporosity	of	the	impregnated	samples.		

The	 raw	 N2/CO2	 adsorption	 data	 were	 processed	 according	 to	 the	 common	 models	

retrievable	from	literature	 in	order	to	evaluate	the	solid	microstructural	parameters,	and	in	

particular:	

 the	sorbents	total	pore	volume	was	derived	from	N2	adsorption	isotherms	by	applying	

the	Gurvitsch	 rule	 for	 the	 volume	of	nitrogen	 adsorbed	 at	P/P0=0.97	 (Leofanti	 et	 al.,	

1998);	

 the	total	micropore	volume	was	evaluated	with	Dubinin‐Radushkevich	(DR)	equation	

(applied	in	the	N2	isotherm	region	P/P0=10‐4‐10‐2)	(Morlay	and	Joly,	2010);	

 the	 apparent	 surface	 area	 was	 obtained	 from	 N2	 adsorption	 data	 by	 means	 of	 BET	

equation	applied	in	the	relative	pressure	range	P/P0=0.01‐0.15,	which	best	agreed	with	

criteria	 proposed	 by	 Roquerol	 et	 al.	 (2007)	 for	 the	 applicability	 of	 BET	 method	 to	

microporous	sorbents;	

 the	volume	of	narrow	micropores	 (pore	diameter	up	 to	0.7	nm)	was	evaluated	 from	

CO2	adsorption	isotherm	at	0°C	using	the	DR	equation;	

 the	 absolute	 pore	 size	 distributions	 were	 obtained	 by	 applying	 the	 Quenched‐Solid	

Density	 Functional	 Theory	 (QSDFT)	 to	 N2	 adsorption	 data	 (Neimark	 et	 al.,	 2009;	

Silvestre‐Albero	et	al.,	2012).	

4.2.2 Thermogravimetric	analyses	(TGA)	

Thermogravimetric	 analyses	 on	 both	 raw	 and	 IL‐impregnated	 solids	 were	 performed	

using	 a	 TA	 Instrument	 SDT	 2960	 operated	 in	 the	 temperature	 range	 25‐400°C	 under	 a	 N2	

inert	atmosphere	(flow	rate	95	mL	min‐1)	at	5°C	min‐1	scan	rate.	TGA	measurements	allowed	

to	follow	the	sample	mass	%	evolution	as	a	 function	of	the	temperature.	The	comparison	of	
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A	by‐pass	line	was	also	implemented	in	the	lab‐scale	apparatus	in	order	to	verify	the	feed	

composition	prior	to	adsorption	experiments:	a	three	way	ball	valve	(V1)	allows	to	adequately	

switch	the	gas	flow	while	two	ball	valves	(V2	and	V3)	are	devoted	to	avoid	back	flow	towards	

the	excluded	line.		

4.4 Experimental	protocols	for	fixed	bed	dynamic	experiments	

In	this	Section	a	description	of	the	experimental	protocols	and	conditions	adopted	for	CO2	

adsorption	 experiments,	 adsorption/desorption	 cycles	 and	 regeneration	 tests	 will	 be	

provided.	

4.4.1 Continuous	CO2	adsorption	tests	

CO2	continuous	adsorption	runs	required	two	different	steps:	a)	plant	preparation;	b)	test	

execution.	A	schematic	description	of	the	experimental	protocol	is	provided	in	the	following.	

a)	Plant	preparation	

 Charge	 of	 reactor	 (column)	 with	 a	 known	 adsorbent	 amount	 previously	 heated	

overnight	at	105°C	to	remove	humidity;	

 Fill	of	the	remaining	part	of	the	column	with	inert	glass	beads	to	uniform	the	gaseous	

flow	at	the	column	inlet;	

 Check	of	the	defined	CO2	concentration	by	NDIR	analyzer,	directing	the	gaseous	stream	

through	the	by‐pass	line	with	valve	V3	closed	to	avoid	back	flow	in	the	adsorber	line;	

 Flush	of	all	plant	pipelines	with	nitrogen	to	eliminate	the	presence	of	atmospheric	air;	

 Check	of	gas	leakage	for	all	pipelines	connections	in	presence	of	a	nitrogen	gas	stream;	

 Check	 of	 column	 leakage	 by	 closing	 the	 solenoid	 valve	 of	 the	 mass	 flow	 controller	

placed	at	the	adsorber	outlet,	pressurizing	with	N2	and	monitoring	the	pressure	with	

pressure	gauges.	

b)	Test	execution	

 Injection	 of	 the	 defined	 N2	 and	 CO2	 volumetric	 flow	 rates	 via	mass	 flow	 controllers	

through	the	by‐pass	line	for	30	s	and	venting	to	the	atmosphere	with	valve	V2	closed	to	

reach	a	stationary	value	of	concentration;	

 Switching	of	the	gaseous	stream	toward	the	adsorber	line	via	three	way	valve	V1	and	

simultaneously	acquiring	the	NDIR	concentration	signal.	
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The	 sorbents	 CO2	 capture	 performances	 have	 been	 investigated	 under	 the	 following	

experimental	conditions	adopted	for	the	fixed‐bed	reactor:	

 Sorbent	 dose:	 15	 g	 for	 F600‐900	 derived	 sorbents	 and	 13	 g	 for	 N.RGC30	 based	

materials;	

 Total	gas	flow	rate:	2.5×10‐2	L	s‐1	(evaluated	at	T=20°C	and	P=1	bar);	

 CO2	initial	concentration:	1‐30%	by	vol.,	balance	N2;	

 Temperature:	30,	50	and	80°C;	

 Total	gas	pressure:	1	bar.	

It	 is	underlined	that	for	N.RGC30	sorbents	(raw	and	ILs‐impregnated)	experiments	were	

conducted	using	a	lower	solid	amount	because	of	the	lower	density	of	this	substrate	(13	g	of	

solid	 completely	 filled	 the	 column).	 In	 addition,	 CO2	 capture	 tests	 at	 initial	 pollutant	

concentrations	 greater	 than	 typical	 15%	 flue‐gas	 (namely	 25	 and	30%)	were	performed	 in	

order	to	better	interpret	the	qualitative	trend	of	the	adsorption	isotherms.	

The	dynamic	behavior	of	the	gas‐solid	adsorption	system	was	followed	by	monitoring	the	

concentration	 of	 the	 adsorbate	 at	 the	 column	 outlet	 as	 a	 function	 of	 time,	 obtaining	 the	

breakthrough	 curves.	 In	 particular	 the	 time	 evolution	 of	 the	 composition	 profile	 was	

expressed	 in	 terms	of	 the	ratio	of	 the	volumetric	 flow	rates	of	CO2	species	at	 the	bed	outlet	

relative	to	that	in	the	feed	Qେ୓మ
୭୳୲ ሺtሻ/Qେ୓మ

୧୬ .		

CO2	 kinetic	 adsorption	 results	 at	 30,	 50	 and	 80°C	 were	 processed	 to	 obtain	 the	

corresponding	 adsorption	 isotherms.	 The	 material	 balance	 on	 CO2	 over	 the	 adsorption	

column,	leads	to	the	following	expression	for	the	equilibrium	CO2	specific	adsorption	capacity 

eq [mmol	g‐1]	(see	Section	3.2):	

ωୣ୯ ൌ 	
୕ిోమ
౟౤ ஡ిోమ
	୫୑ిోమ

׬ ൬1 െ
୕ిోమ
౥౫౪ ሺ୲ሻ

୕ిోమ
౟౤ ൰ dt

୲∗

଴ 																																																																																		(4.2)  

where	CO2	[mg	L‐1]	represents	the	pollutant	density	(evaluated	at	20°C	and	1	bar)	while	MCO2	

[mg	mmol‐1]	is	its	molecular	weight;	m	[g]	is	the	sorbent	dose	and	t*	[s]	represents	the	time	

required	for	reaching	complete	solid	saturation.	The	time	evolution	of	the	CO2	volumetric	flow	

rate	 at	 the	 column	 outlet	 Qେ୓మ
୭୳୲ ሺtሻ	 was	 obtained	 from	 NDIR	 analyzer	 which	 provides	 this	

measure	by	following	the	temporal	variations	of	the	gaseous	composition	as	reported	in	eq.	

(4.3):		
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Qେ୓మ
୭୳୲ ሺtሻ ൌ 	

୕ొమ
ిిోమ
౥౫౪ ሺ౪ሻ

భబబ

ቆଵି	
ిిోమ
౥౫౪ ሺ౪ሻ

భబబ
ቇ

																																																																																																											(4.3) 

in	which	Cେ୓మ
୭୳୲ ሺtሻ	represents	the	CO2	time‐dependent	percentage	volumetric	concentration	in	

the	gaseous	stream	at	the	column	outlet.		

The	resolution	of	the	integral	in	eq.	(4.2)	for	each	investigated	inlet	CO2	concentration,	was	

obtained	by	applying	the	trapezoidal	rule	to	the	experimental	kinetic	data.	

It	should	be	observed	that	in	eq.	(4.3)	it	is	assumed	that	the	N2	volumetric	flow	rate	Q୒మ	is	

practically	constant	during	the	test:	this	means	that	N2	adsorption	on	all	the	tested	sorbents	is	

negligible.	 This	 hypothesis	 was	 experimentally	 verified,	 prior	 to	 CO2	 adsorption	 tests,	 by	

injecting	pure	N2	(2.5×10‐2	L	s‐1)	through	the	adsorber	charged	with	each	investigated	sorbent	

and	measuring	the	gas	flow	rate	at	the	column	outlet	by	means	of	a	mass	flow	meter.		

4.4.2 Adsorption/desorption	cycles	and	regeneration	tests	

Adsorption/desorption	cycles	and	preliminary	regeneration	tests	were	carried	out	on	the	

sorbent	 which	 displayed	 the	 highest	 CO2	 capture	 capacity	 among	 the	 investigated	

experimental	conditions	(namely	raw	F600‐900,	cf.	Chapter	5).	

For	 adsorption/desorption	 cycles	 realization,	 F600‐900	 raw	 was	 first	 saturated	 with	 a	

15%	CO2	 in	N2	 gas	mixture	 under	 the	 same	 conditions	 of	 total	 gas	 flow	 rate,	 pressure	 and	

sorbent	dosage	previously	described	(adsorption	step).	Subsequently,	the	packed	column	was	

flushed	 with	 pure	 N2	 to	 remove	 adsorbed	 CO2	 (desorption	 step),	 until	 its	 concentration	

reached	the	NDIR	analyzer	low	detection	limit	(0.1%	by	vol.).	This	procedure	was	reiterated	

for	10	consecutive	adsorption/desorption	cycles	at	30	°C.		

Regeneration	tests	were	conducted	in	order	to	define	the	optimal	operating	conditions	for	

CO2	recovery	from	the	spent	activated	carbon.	To	this	end,	a	gaseous	stream	containing	CO2	at	

15%	by	 vol.	 (total	 flow	 rate=2.5×10‐2	 L	 s‐1,	 P=1	 bar)	was	 continuously	 fed	 to	 the	 adsorber	

(m=15	 g,	 T=30°C)	 until	 equilibrium	 conditions	 were	 reached.	 After,	 the	 packed	 bed	 was	

heated	up	to	the	defined	temperature	for	the	desorption	step	(approximately	1	h	required	to	

reach	thermal	equilibrium	conditions),	a	fixed	amount	of	pure	N2	as	desorbing	agent	was	sent	

through	 the	 column	and	CO2	 concentration	was	monitored	by	means	of	 the	NDIR	analyzer.	

This	desorption	step	was	carried	out	at	60	and	100°C	and,	for	each	temperature	level,	three	

N2	 flow	 rates	were	 tested	 (6.95×10‐3	 L	 s‐1,	 1.11×10‐2	 L	 s‐1	 and	 1.39×10‐2	 L	 s‐1,	 evaluated	 at	

T=20	°C	and	P=1	bar).	
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The	 regeneration	 profiles	 were	 elaborated	 to	 obtain	 the	 total	 specific	 amount	 of	 CO2	

desorbed	from	the	activated	carbon	des	[mmol	g‐1],	through	a	material	balance	similar	to	that	

reported	in	Eq.	(4.2):	

ωୢୣୱ ൌ 	
஡ిోమ

	୫୑ిోమ
׬ Qେ୓మ

୭୳୲ ሺtሻdt
୲బ.భ
଴ 																																																																																												(4.4)	

in	 which	 t0.1	 is	 the	 time	 required	 to	 complete	 the	 desorption	 process,	 assumed	 as	 the	 one	

corresponding	to	the	NDIR	low	detection	limit	(0.1%	CO2	by	vol.).	

CO2	 concentration	 profiles	 were	 also	 quantitatively	 analysed	 to	 define	 the	 best	

experimental	 conditions	 for	 an	 efficient	 regeneration	 process	 in	 terms	 of	 CO2	 recovery	

amount,	 time	 required	 for	 the	 desorption	 process	 (at	 a	 fixed	 regeneration	 level)	 and	 CO2	

concentration	in	the	desorbing	flow,	the	latter	being	a	critical	aspect	for	CO2	storage	purposes.	

To	 this	 aim,	 four	 different	 characteristic	 desorption	 times	 (t50,	 t70,	 t80,	 t90)	 have	 been	

considered,	each	corresponding	to	a	different	CO2	recovery	percentage	of	the	total	adsorbed	

amount	 (e.g.	 t50	 corresponds	 to	a	50%	of	 total	CO2	 recovered	by	desorption).	Consequently,	

the	mean	CO2	concentration	in	the	desorbing	flow	(
i

2COC )	up	to	the	time	ti	can	be	expressed	

as:	

Cതେ୓మ
୧ ൌ 	

୚ిోమ
౟

	୚ిోమ
౟ ା୚ొమ

౟ ൌ
׬ ୕ిోమ

౥౫౪ ሺ୲ሻୢ୲
౪౟
బ

׬ ୕ిోమ
౥౫౪ ሺ୲ሻୢ୲

౪౟
బ ା୕ొమ

ౚ౛౩୲౟
																																																																								(4.5)	

in	which	 i
2COV and	 i

2NV 	 represent	 the	CO2	 total	volume	desorbed	and	the	purge	gas	volume	

fed	to	the	column	up	to	time	ti,	respectively.	The	values	of	 i
2NV and	

i

2COC 	were	computed	for	

variable	 CO2	 recovery	 percentage	 i.e.	 i=50%,	 70%,	 80%	 and	 90%	 for	 each	 investigated	 N2	

purge	flow	rate	( des
2NQ )	and	desorption	temperature	( des

C60T  	and	 des
C100T  ).	
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CHAPTER	5		

RESULTS	AND	DISCUSSION	

In	 this	 Chapter	 the	 main	 results	 obtained	 from	 solids	 characterization	 techniques	 and	

adsorption/regeneration	 experiments	 will	 be	 discussed	 with	 a	 particular	 emphasis	 on	 the	

intertwining	 among	 adsorbents	 microstructural	 properties	 and	 their	 CO2	 capture	

performances.	Finally,	the	results	derived	from	both	thermodynamic	and	kinetic	modelling	of	

adsorption	data	will	be	analysed.	

5.1 Adsorbents	characterization		

5.1.1 Porosimetric	 analyses	 for	 F600‐900	 raw	 and	 impregnated	 with	

[Hmim][BF4]/[Emim][Gly]		

Figures	5.1	and	5.2	show	the	N2	adsorption‐desorption	isotherms	at	‐196°C	obtained	for	

the	 sorbents	 F600‐900	 raw	 and	 impregnated	 with	 [Hmim][BF4]/[Emim][Gly]	 ILs	 at	 initial	

active	phase	concentrations	C°=5.6×10‐3	and	2.2×10‐2	M.		As	a	general	consideration,	it	can	be	

observed	that	the	isotherms	for	all	the	samples	are	very	similar	and	they	are	type	I	according	

to	 IUPAC	 classification	 (Patrick,	 1995)	 and	 the	 strong	 adsorption	 observed	 at	 very	 low	

relative	 pressures	 (i.e.	 P/P0<10‐3)	 testifies	 the	 presence	 of	 a	 highly	 developed	microporous	

structure	 (Morlay	 and	 Joly,	 2010).	 A	 comparison	 between	 the	 adsorption	 and	 desorption	

branches	 testifies	 the	 non‐negligible	 presence	 of	 mesopores:	 the	 narrow	 hysteresis	 loop	

observed	 from	 isotherms	 is	 of	 type	H4	 according	 to	 IUPAC,	 commonly	 associated	with	 the	

presence	of	slit‐shaped	pores	(Morlay	and	Joly,	2010).	In	addition,	it	can	be	observed	that	the	

volume	of	N2	adsorbed	reduces	as	the	IL	concentration	increases	for	both	active	phases	with	

respect	 to	 the	 parent	 material	 above	 all	 in	 the	 “knee”	 region	 of	 the	 adsorption	 isotherms	

(P/P0<0.1):	 this	 is	 a	 clue	 of	 the	 preferential	 adsorption	 of	 both	 ILs	 in	 the	 substrate	

micropores.		
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Figure	5.1	N2	adsorption‐desorption	isotherms	at	‐196°C	for	F600‐900	raw	and	impregnated	with	

[Hmim][BF4]	at	C°=5.6×10‐3	and	2.2×10‐2	M	

P/P0, -   

0.0 0.2 0.4 0.6 0.8 1.0

V
ad

s S
T

P
, c

m
3 

g-1
  

0

100

200

300

400

F600-900

F600-900 [Emim][Gly] 10-3 M 

F600-900 [Emim][Gly] 10-2 M

 
Figure	5.2	N2	adsorption‐desorption	isotherms	at	‐196°C	for	F600‐900	raw	and	impregnated	with	

[Emim][Gly]	at	C°=5.6×10‐3	and	2.2×10‐2	M	

Table	5.1	reports	the	apparent	surface	area	(SBET),	the	total	specific	pore	volume	(Vt),	the	

specific	micropore	volume	(V0)	and	the	specific	mesopore	volume	(Vmeso=	Vt−V0)	determined	

for	 both	 raw	 and	 [Hmim][BF4]/[Emim][Gly]	 impregnated	 sorbents	 by	 applying	 the	models	
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indicated	in	Section	4.2.1	to	N2	adsorption	data	at	‐196°C.	The	volume	of	narrow	micropores	

(Vn)	derived	for	raw	F600‐900	from	CO2	adsorption	isotherm	at	0°C	is	also	included.	

Table	5.1	Textural	parameters	obtained	for	F600‐900	raw		
and	impregnated	with	[Hmim][BF4]/[Emim][Gly]	ILs	

Sample	
SBET	

[m2	g‐1]	
Vt	

[cm3	g‐1]	
V0	

[cm3	g‐1]	
Vn	

[cm3	g‐1]	
Vmeso	

[cm3	g‐1]	

F600‐900	 1076	 0.58	 0.41	 0.32†	 0.17	

F600‐900	[Hmim][BF4]	10‐3	M	 1018	 0.55	 0.39	 n.a.†	 0.16	

F600‐900	[Hmim][BF4]	10‐2	M	 961	 0.52	 0.36	 n.a.†	 0.16	

F600‐900	[Emim][Gly]	10‐3	M	 1029	 0.55	 0.39	 n.a.†	 0.16	

F600‐900	[Emim][Gly]	10‐2	M	 971	 0.52	 0.36	 n.a.†	 0.16	
†	not	available	

Results	 highlight	 a	 prevailing	microporous	 nature	 for	 all	 the	 investigated	 sorbents	 (for	

F600‐900	 raw	 micropores	 contribute	 to	 a	 nearly	 70%	 of	 the	 total	 pore	 volume),	 thus	

confirming	 the	 observations	 derived	 from	 the	 analysis	 of	 the	 N2	 adsorption	 isotherms.	

Moreover,	 a	 comparison	 between	 the	 microstructural	 parameters	 of	 raw	 and	 ILs	

functionalized	 F600‐900	 shows	 a	 decrease	 of	 both	 SBET	 and	 V0	 values	 when	 the	 initial	

concentration	 of	 each	 ionic	 liquid	 increases,	 while	 the	 mesopore	 volume	 reduction	 is	 not	

significant.	These	observations	confirm	that	both	ILs	partially	obstruct	only	the	micropores	of	

the	raw	material.	Finally,	at	 fixed	 impregnation	condition	 [Hmim][BF4]	and	 [Emim][Gly]	 ILs	

determine	the	same	micropore	volume	reduction.	

Figures	5.3	and	5.4	depict	 the	absolute	pore	size	distributions	 (PSD)	obtained	 for	F600‐

900	 raw	 and	 functionalized	 with	 [Hmim][BF4]/[Emim][Gly]	 ionic	 liquids	 by	 applying	 the	

QSDFT	method	to	N2	adsorption	data	at	‐196°C	and	assuming	a	slit‐shape	geometry	for	pores.	

The	plots	are	expressed	in	terms	of	the	ratio	between	the	differential	variation	of	the	specific	

pore	volume	relative	to	that	of	the	pore	diameter	(dVp(d))	as	a	function	of	the	pore	diameter	

(d).	 Results	 confirm	 the	 highly	 microporous	 nature	 of	 all	 the	 samples	 analysed	 with	 a	

prevailing	 contribution	 of	 pores	 smaller	 than	 10	 Å.	 The	 pore	 size	 distributions	 for	 ILs‐

impregnated	F600‐900	adsorbents	show	similar	qualitative	patterns	with	respect	to	the	raw	

material	 except	 for	 a	 slight	 reduction	 of	 dVp(d)	 values	 in	 the	 pore	 diameter	 region	 smaller	

than	10	Å	and	due	to	the	already	described	partial	micropore	clogging.	
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Figure	5.3	Absolute	pore	size	distributions	for	F600‐900	raw	and	impregnated	with	[Hmim][BF4]	at	
C°=5.6×10‐3	and	2.2×10‐2	M	
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Figure	5.4	Absolute	pore	size	distributions	for	F600‐900	raw	and	impregnated	with	[Emim][Gly]	at	

C°=5.6×10‐3	and	2.2×10‐2	M	
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5.1.2 TGA	 analyses	 for	 F600‐900	 raw	 and	 impregnated	 with	

[Hmim][BF4]/[Emim][Gly]		

Figures	 5.5	 and	5.6	 show	 the	 results	 obtained	 from	 thermogravimetric	 analyses	 carried	

out	on	raw	and	ILs‐impregnated	F600‐900	in	terms	of	sample	mass	percentage	as	a	function	

of	 the	 temperature.	 Thermograms	 show	 for	 all	 materials	 a	 weight	 loss	 (1‐3%)	 for	

temperatures	lower	than	100°C	which	can	be	likely	ascribed	to	the	desorption	of	humidity	or	

other	volatile	impurities.	Moreover,	for	F600‐900	[Hmim][BF4]	solids	the	mass	loss	detectable	

in	 the	 temperature	range	280‐380°C	(clearly	 identifiable	 for	 the	sample	 impregnated	under	

more	 concentrated	 conditions,	 Figure	 5.5)	 can	 be	 ascribed	 to	 the	 IL	 decomposition,	 in	

accordance	 with	 published	 research	 findings	 concerning	 TGA	 analyses	 for	 the	 pure	 ionic	

liquid	 (Crosthwaite	 et	 al.,	 2005).	 Finally,	 for	 [Emim][Gly]	 impregnated	 adsorbents	 the	 ionic	

liquid	decomposition	can	be	approximately	located	in	the	T‐range	170‐330°C	(Muhammad	et	

al.,	2011),	as	confirmed	by	the	different	slopes	of	 the	thermograms	for	these	materials	with	

respect	to	raw	F600‐900	in	the	same	temperature	range.		
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Figure	5.5	Thermogravimetric	analyses	for	F600‐900	raw	and	impregnated	with	[Hmim][BF4]	at	
C°=5.6×10‐3	and	2.2×10‐2	M	
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Figure	5.6	Thermogravimetric	analyses	for	F600‐900	raw	and	impregnated	with	[Emim][Gly]	at	

C°=5.6×10‐3	and	2.2×10‐2	M	

The	 comparison	 of	 the	mass	 loss	 profiles	 for	 each	 impregnated	 sorbent	with	 respect	 to	

raw	 F600‐900	 allowed	 to	 estimate	 the	 amount	 of	 ionic	 liquid	 adsorbed	 on	 the	 substrate	

according	to	the	numerical	procedure	described	in	Section	4.2.2	(eq.	(4.1)).	Table	5.2	reports	

a	comparison	of	the	active	phase	mass	percentage	adsorbed	on	the	substrate	(%wt.IL‐ads)	with	

respect	 to	 the	 one	 initially	 used	 for	 the	 impregnation	 procedure	 (%wt.IL‐load)	 for	 both	

[Hmim][BF4]	 and	 [Emim][Gly]	 ILs.	 Quantitative	 results	 are	 also	 conveniently	 expressed	 in	

terms	 of	 both	 IL	 specific	molar	 amount	 initially	 loaded	 (mmolIL‐load	 g‐1AC)	 and	 the	 IL	molar	

specific	adsorption	capacity	of	F600‐900	(AC)	(mmolIL‐ads	g‐1AC).		

Table	5.2	Quantitative	parameters	derived	from	TGA	analyses	for	F600‐900		
impregnated	with	[Hmim][BF4]	and	[Emim][Gly]	ILs	

Sample	 %wt.IL‐load	 %wt.IL‐ads	 mmolIL‐load	g‐1AC	 mmolIL‐ads	g‐1AC	

F600‐900	[Hmim][BF4]	10‐3	M	 0.76	 0.38	 0.030	 0.015	

F600‐900	[Hmim][BF4]	10‐2	M	 2.98	 1.29	 0.121	 0.052	

F600‐900	[Emim][Gly]	10‐3	M	 0.56	 0.51	 0.030	 0.028	

F600‐900	[Emim][Gly]	10‐2	M	 2.19	 1.04	 0.121	 0.057	

 

Results	evidence	that	for	[Hmim][BF4]‐adsorbents	nearly	50%	and	43%	of	the	initial	amount	

of	IL	used	for	the	impregnation	is	adsorbed	on	the	substrate	for	C°=5.6×10‐3	and	2.2×10‐2	M,	
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respectively.	 The	 estimated	 adsorption	 efficiencies	 are	 93%	 and	 47%	 for	 F600‐900	

[Emim][Gly]	10‐3	M	and	10‐2	M	respectively.	Finally,	under	more	concentrated	conditions	the	

amount	of	[Emim][Gly]	adsorbed	is	slightly	higher	than	in	the	case	of	[Hmim][BF4]	(0.057	vs.	

0.052	mmol	g‐1)	while	it	is	almost	double	for	C°=5.6×10‐3	M	(0.028	vs.	0.015	mmol	g‐1). 

5.1.3 Porosimetric	analyses	for		N.RGC30	 raw	 and	 impregnated	 with	

[Hmim][BF4]/[Emim][Gly]		

N2	porosimetric	results	at	 ‐196°C	for	N.RGC30	raw	and	functionalized	with	[Hmim][BF4]	

and	[Emim][Gly]	ionic	liquids	are	depicted	in	Figures	5.7	and	5.8.		
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Figure	5.7	N2	adsorption‐desorption	isotherms	at	‐196°C	for	N.RGC30	raw	and	impregnated	with	

[Hmim][BF4]	at	C°=5.6×10‐3	and	2.2×10‐2	M	
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Figure	5.8	N2	adsorption‐desorption	isotherms	at	‐196°C	for	N.RGC30	raw	and	impregnated	with	

[Emim][Gly]	at	C°=5.6×10‐3	and	2.2×10‐2	M	

Isotherms	are	mixed	type	I	and	IV	and	in	all	the	cases	with	a	high	adsorption	capacity	at	

low	 relative	 pressures	 which	 testifies	 the	 significant	 presence	 of	 micropores,	 while	 the	

observed	 hysteresis	 loops	 indicate	 a	 well‐developed	 mesoporosity	 for	 all	 the	 investigated	

samples.	 In	addition,	 for	both	 [Hmim][BF4]	adsorbents	 it	 can	be	observed	a	reduction	of	N2	

adsorbed	volume	with	respect	to	the	parent	activated	carbon,	and	their	adsorption	isotherms	

almost	overlap	(a	slightly	higher	adsorption	capacity	for	the	sample	impregnated	under	more	

diluted	 conditions	 is	 detected	 for	 P/P0<10‐3).	 In	 the	 case	 of	 [Emim][Gly]	materials,	 a	more	

marked	 reduction	 of	 N2	 adsorption	 capacity	 is	 observed	 under	 more	 concentrated	

impregnation	conditions,	while	for	the	sample	obtained	at	C°=5.6×10‐3	M	differences	with	raw	

N.RGC30	can	be	detected	only	at	low	relative	pressures	(with	a	slight	decrease	of	N2	adsorbed	

volume	for	the	impregnated	material	at	P/P0<10‐2).	

The	 main	 microstructural	 parameters	 obtained	 from	 CO2	 porosimetric	 analysis	 at	 0°C	

(only	raw	N.RGC30)	and	N2	adsorption	data	at	 ‐196°C	are	summarized	 in	Table	5.3.	Results	

underline	 a	 prevailing	 mesoporous	 nature	 for	 N.RGC30	 activated	 carbon	 with	 a	 57%	

contribution	 to	 the	overall	porosity;	moreover,	 the	significant	difference	between	V0	and	Vn	

values	suggests	the	presence	of	a	broad	micropore	size	distribution	for	this	sample	(Krutyeva	

et	al.,	2009).	A	comparison	between	V0	and	Vmeso	values	indicates	the	preferential	micropore	

occlusion	induced	by	each	IL,	this	being	more	important	as	the	initial	concentration	of	active	
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phase	 used	 for	 the	 impregnation	 process	 increases.	 Finally,	 it	 can	 be	 observed	 that	 under	

more	 diluted	 conditions	 [Hmim][BF4]	 IL	 determines	 a	 higher	micropore	 volume	 reduction,	

while	this	effect	is	comparable	for	both	ionic	liquids	at	C°=2.2x10‐2	M.	

Table	5.3	Textural	parameters	obtained	for	N.RGC30	raw		
and	impregnated	with	[Hmim][BF4]/[Emim][Gly]	ILs	

Sample	
SBET	

[m2	g‐1]	
Vt	

[cm3	g‐1]	
V0	

[cm3	g‐1]	
Vn	

[cm3	g‐1]	
Vmeso	

[cm3	g‐1]	

N.RGC30	 1427	 1.15	 0.50	 0.32	 0.65	

N.RGC30	[Hmim][BF4]	10‐3	M	 1350	 1.12	 0.47	 n.a.†	 0.65	

N.RGC30	[Hmim][BF4]	10‐2	M	 1318	 1.11	 0.46	 n.a.†	 0.65	

N.RGC30	[Emim][Gly]	10‐3	M	 1418	 1.14	 0.49	 n.a.†	 0.65	

N.RGC30	[Emim][Gly]	10‐2	M	 1307	 1.11	 0.46	 n.a.†	 0.65	
†	not	available	

Pore	 size	 distributions	 obtained	 for	 N.RGC30	 raw	 and	 functionalized	 with	

[Hmim][BF4]/[Emim][Gly]	ionic	liquids	are	reported	in	Figures	5.9	and	5.10.	Results	confirm	

the	 presence	 of	 a	 broad	 micropore	 size	 distribution	 and	 a	 significant	 contribution	 of	

mesopores	 with	 a	 mesopores‐peak	 centred	 approximately	 at	 35	 Å.	 In	 addition,	 both	 ionic	

liquids	do	not	affect	remarkably	the	raw	material	PSD,	apart	 from	little	differences	 for	pore	

diameters	 lower	 than	 10	 Å	 which	 can	 be	 ascribed	 to	 the	 already	 observed	 pore	 occlusion	

effect	(Table	5.3).	
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Figure	5.9	Absolute	pore	size	distributions	for	N.RGC30	raw	and	impregnated	with	[Hmim][BF4]	at	

C°=5.6×10‐3	and	2.2×10‐2	M	
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Figure	5.10	Absolute	pore	size	distributions	for	N.RGC30	raw	and	impregnated	with	[Emim][Gly]	at	

C°=5.6×10‐3	and	2.2×10‐2	M	

5.1.4 TGA	 analyses	 for	 N.RGC30	 raw	 and	 impregnated	 with	

[Hmim][BF4]/[Emim][Gly]		

Thermogravimetric	 patterns	 derived	 for	 N.RGC30	 both	 raw	 and	 impregnated	 with	

[Hmim][BF4]	and	[Emim][Gly]	ILs	at	 	C°=5.6×10‐3	and	2.2×10‐2	M	are	shown	in	Figures	5.11	

and	5.12.	Experimental	results	show	that	apart	from	the	desorption	of	humidity	and	volatile	

matter	observed	for	temperature	lower	than	100°C,	the	thermal	decomposition	range	for	each	

ionic	liquid	practically	coincides	with	that	observed	for	F600‐900	functionalized	sorbents	(cf.	

Figures	 5.5	 and	 5.6):	 280‐380°C	 and	 170‐330°C	 for	 [Hmim][BF4]	 and	 [Emim][Gly]	

respectively.	 This	 observation	 leads	 to	 the	 conclusion	 that	 the	 different	 microstructural	

properties	of	F600‐900	and	N.RGC30	activated	carbons	do	not	affect	remarkably	the	thermal	

stability	of	the	ionic	liquids	investigated.	
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Figure	5.11	Thermogravimetric	analyses	for	N.RGC30	raw	and	impregnated	with	[Hmim][BF4]	at	

C°=5.6×10‐3	and	2.2×10‐2	M	
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Figure	5.12	Thermogravimetric	analyses	for	N.RGC30	raw	and	impregnated	with	[Emim][Gly]	at	

C°=5.6×10‐3	and	2.2×10‐2	M	

The	comparison	of	the	mass	loss	profiles	between	the	raw	material	and	the	impregnated	

ones	 allowed	 an	 estimation	 of	 the	 amounts	 of	 each	 ionic	 liquid	 adsorbed	 on	 N.RGC30	

sorbents;	the	main	derived	parameters	are	schematically	reported	in	Table	5.4.	In	general,	it	
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can	be	observed	 that	 the	adsorption	efficiencies	are	higher	 in	 the	case	of	 [Emim][Gly]	 ionic	

liquid	(90%	and	47%	for	C°=5.6×10‐3	and	2.2×10‐2	M,	respectively),	while	similar	active	phase	

uptake	efficiencies	were	recorded	for	N.RGC30	[Hmim][BF4]	10‐3	and	10‐2	M	(43%	and	42%	

under	more	diluted	and	concentrated	impregnation	conditions,	respectively). 

Table	5.4	Quantitative	parameters	derived	from	TGA	analyses	for	N.RGC30		
impregnated	with	[Hmim][BF4]	and	[Emim][Gly]	ILs	

Sample	 %wt.IL‐load	 %wt.IL‐ads	 mmolIL‐load	g‐1AC	 mmolIL‐ads	g‐1AC	

N.RGC30	[Hmim][BF4]	10‐3	M	 0.76	 0.32	 0.030	 0.013	

N.RGC30	[Hmim][BF4]	10‐2	M	 2.98	 1.28	 0.121	 0.051	

N.RGC30	[Emim][Gly]	10‐3	M	 0.56	 0.49	 0.030	 0.027	

N.RGC30	[Emim][Gly]	10‐2	M	 2.19	 1.04	 0.121	 0.057	

 

5.1.5 Comparison	 between	 TGA	 and	 porosimetric	 analyses	 for	 the	

investigated	sorbents		

The	 main	 parameters	 derived	 from	 thermogravimetric	 and	 porosimetric	 analyses	 for	

F600‐900	 and	 N.RGC30	 both	 raw	 and	 impregnated	 with	 [Hmim][BF4]/[Emim][Gly]	 ionic	

liquids	are	summarized	in	Table	5.5.	The	percentage	reduction	of	the	total	micropore	volume	

derived	for	each	impregnated	material	with	respect	to	the	parent	one	(V0‐raw−V0‐impr)/	V0‐raw	

(with	 V0‐raw	 and	 V0‐impr	 representing	 the	 total	 micropore	 volume	 of	 the	 parent	 and	

functionalized	sorbent,	respectively)	is	also	reported	for	a	better	understanding	of	the	effect	

of	 the	 impregnation	 treatment	 conditions	 on	 the	 microstructural	 properties	 of	 each	

investigated	 sorbent.	 The	 most	 interesting	 aspects	 deduced	 from	 the	 data	 analysis	 are	

highlighted	in	the	following.	

 Raw	N.RGC30	is	characterized	by	a	broader	micropore	size	distribution	with	respect	to	

F600‐900,	as	confirmed	by	the	higher	difference	between	V0	and	Vn	values	(Krutyeva	

et	 al.,	 2009),	 and	 displays	 a	 remarkably	 higher	 contribution	 of	 mesopores	 (Vmeso	 is	

nearly	fourfold	the	value	obtained	for	F600‐900).	

 [Hmim][BF4]	 and	 [Emim][Gly]	 ILs	 preferentially	 adsorb	 in	 micropores	 for	 both	

substrates	 and	 in	 general	 the	 higher	 the	 IL	 loading,	 the	 greater	 the	 micropore	

occlusion.	

 For	 F600‐900	 impregnated	 sorbents,	 even	 if	 the	 specific	 amount	 of	 [Emim][Gly]	

adsorbed	on	 the	 substrate	 is	 higher	 than	 in	 the	 case	 of	 [Hmim][BF4]	 (almost	 double	

under	more	diluted	 impregnation	conditions)	 the	micropore	volume	reduction	 is	 the	
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same	at	fixed	initial	active	phase	concentration.	A	similar	situation	occurs	for	N.RGC30	

materials	 functionalized	 at	 C°=2.2×10‐2	 M,	 while	 at	 lower	 initial	 active	 phase	

concentration	(5.6×10‐3	M)	[Emim][Gly]	produces	a	micropore	volume	reduction	that	

is	one‐third	the	one	observed	in	the	case	of	[Hmim][BF4],	despite	of	a	double	specific	

amount	adsorbed.	The	described	trends	can	be	related	to	the	more	branched	shape	of	

[Hmim][BF4]	 imidazolium	 ring	 which	 is	 characterized	 by	 a	 C6	 side	 chain	 (C2	 for	

[Emim][Gly],	 cf.	 Section	4.1):	 the	 larger	cationic	 size	of	 this	 ionic	 liquid	determines	a	

similar	 (or	 even	 higher)	 pore	 occlusion	 effect	with	 respect	 to	 [Emim][Gly]	 for	 lower	

adsorbed	amount.	

 	A	 comparison	 between	 F600‐900	 and	 N.RGC30	 impregnated	 with	 [Hmim][BF4]	

reveals	that	similar	specific	amounts	of	ionic	liquid	are	adsorbed	at	fixed	initial	active	

phase	 concentration:	 under	 more	 diluted	 impregnation	 conditions	 the	 micropore	

volume	 reduction	 is	 comparable	 for	 both	 substrates	 (4.9	 and	 6%	 for	 F600‐900	 and	

N.RGC30	respectively),	while	the	pore	clogging	effect	is	more	significant	for	F600‐900	

at	higher	IL	concentration.	Likewise	for	[Emim][Gly]	adsorbents,	a	similar	IL	adsorbed	

amount	 for	 both	 substrates	 at	 fixed	 impregnation	 condition	 determines	 a	 higher	

micropore	volume	 reduction	 for	F600‐900	activated	 carbon.	These	 results	 should	be	

interpreted	 in	 the	 light	of	 the	different	 textural	properties	of	F600‐900	and	N.RGC30	

activated	 carbons.	 As	 a	 matter	 of	 fact,	 the	 presence	 of	 a	 narrower	 micropore	 size	

distribution	with	a	prevailing	contribution	of	very	small	pore	diameters	(<10	Å,	cf.	also	

Figures	5.3	and	5.4)	for	F600‐900	determines	a	more	relevant	occlusion	effect	for	each	

IL	and	at	 fixed	 impregnation	condition	 than	 in	 the	case	of	N.RGC30	adsorbent	which	

exhibits	a	greater	contribution	of	wider	pores	in	the	micropores	range	(cf.	Figures	5.9	

and	5.10).	

The	 aforementioned	 analysis	 is	 considered	 to	 be	 an	 important	 reference	 for	 the	

subsequent	 discussion	 concerning	 the	 effects	 of	 the	 different	 adsorbents	 microstructural	

properties	on	their	CO2	capture	performances.	
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Table	5.5	Main	parameters	derived	from	porosimetric	and	TGA	analyses	for	F600‐900	and	N.RGC30		
raw	and	impregnated	with	[Hmim][BF4]	and	[Emim][Gly]	ILs	

Sample	
SBET	

[m2	g‐1]	
V0	

[cm3	g‐1]	
Vn	

[cm3	g‐1]	
Vmeso	

[cm3	g‐1]	
(V0‐raw‐	V0‐impr)/	V0‐raw	

%	
mmolIL‐ads	g‐1AC	

(TGA)	

F600‐900	 1076	 0.41	 0.32	 0.17	 	 	

F600‐900	[Hmim][BF4]	10‐3	M	 1018	 0.39	 n.a.†	 0.16	 4.9	 0.015	

F600‐900	[Hmim][BF4]	10‐2	M	 961	 0.36	 n.a.†	 0.16	 12.2	 0.052	

F600‐900	[Emim][Gly]	10‐3	M	 1029	 0.39	 n.a.†	 0.16	 4.9	 0.028	

F600‐900	[Emim][Gly]	10‐2	M	 971	 0.36	 n.a.†	 0.16	 12.2	 0.057	

N.RGC30	 1427	 0.50	 0.32	 0.65	 	 	

N.RGC30	[Hmim][BF4]	10‐3	M	 1350	 0.47	 n.a.†	 0.65	 6	 0.013	

N.RGC30	[Hmim][BF4]	10‐2	M	 1318	 0.46	 n.a.†	 0.65	 8	 0.051	

N.RGC30	[Emim][Gly]	10‐3	M	 1418	 0.49	 n.a.†	 0.65	 2	 0.027	

N.RGC30	[Emim][Gly]	10‐2	M	 1307	 0.46	 n.a.†	 0.65	 8	 0.057	

																											†	not	available	
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5.2 CO2	capture	performances	on	the	investigated	sorbents	

5.2.1 CO2	adsorption	tests	onto	raw	F600‐900	and	N.RGC30	 

Figure	5.13	depicts	CO2	adsorption	isotherms	obtained	for	raw	F600‐900	and	N.RGC30	at	

(a)	30,	(b)	50	and	(c)	80°C	in	terms	of	the	solid	molar	adsorption	capacity	eq	as	a	function	of	

the	pollutant	equilibrium	partial	pressure	 in	the	gaseous	phase	(Peq).	 It	 is	here	recalled	that	

eq	values	were	derived	by	integration	of	the	breakthrough	curves	obtained	from	kinetic	runs	

at	 different	 CO2	 concentrations	 (1‐30%	 by	 vol.)	 according	 to	 the	 procedure	 described	 in	

Section	4.4.1.	Results	evidence	a	reduction	of	CO2	adsorption	capacity	when	the	temperature	

increases	 for	 both	 activated	 carbons,	 as	 a	 consequence	 of	 the	 exothermic	 character	 of	

physisorption	 (Plaza	 et	 al.,	 2007).	 In	 particular,	 under	 typical	 flue	 gas	 conditions	 (Peq=0.15	

bar)	 eq	 is	 0.575	 mmol	 g‐1	 at	 30°C	 for	 F600‐900	 which	 is	 1.8‐	 and	 4.2‐times	 the	 values	

obtained	at	50	and	80°C,	respectively.	Similarly,	eq	for	N.RGC30	at	Peq=0.15	bar	reduces	from	

0.499	mmol	g‐1	at	30°C	to	0.276	and	0.139	mmol	g‐1	at	50	and	80°C,	respectively.	As	a	general	

consideration	CO2	adsorption	performances	obtained	in	this	work	for	F600‐900	and	N.RGC30	

are	comparable	with	those	reported	in	the	literature	for	raw	activated	carbons	tested	under	

similar	experimental	conditions	(cf.	Table	2.1	in	Section	2.1.1).	

A	comparison	of	F600‐900	and	N.RGC30	adsorption	 isotherms	at	 the	different	operating	

temperatures	 reveals	 that	 at	 30°C	 the	 former	 sorbent	 displays	 higher	 CO2	 removal	

performances	 for	 all	 investigated	 pollutant	 equilibrium	 partial	 pressures,	 while	 differences	

reduce	at	50°C	to	become	practically	negligible	at	80°C.	These	results	should	be	 interpreted	

considering	 that	 at	 lower	 temperatures	 physisorption	 plays	 a	 major	 role	 in	 the	 pollutant	

capture	 and	 its	 contribution	 decreases	 at	 higher	 temperatures	 (Plaza	 et	 al.,	 2007).	 In	 this	

context,	 on	 the	 basis	 of	 the	 sorbents	 textural	 properties	 reported	 in	 Section	 5.1	 (with	

particular	reference	to	Table	5.5)	one	would	have	expected	higher	CO2	capture	capacities	for	

N.RGC30	sample	because	of	 its	higher	 surface	area	and	micropore	volume.	Nevertheless,	 as	

recently	highlighted	by	Whaby	et	 al.	 (2010	and	2012),	 the	presence	of	 a	narrow	micropore	

size	distribution	with	well‐defined	pore	size	entrances	(mainly	pore	diameters<5	Å)	seems	to	

be	a	key	factor	in	determining	CO2	adsorption,	because	in	narrow	micropores	the	overlapping	

potential	produces	a	more	effective	packing	of	CO2	molecules.	As	a	consequence,	the	narrower	

micropore	size	distribution	with	a	prevailing	contribution	of	very	small	pore	diameters	(<10	

Å)	observed	for	F600‐900	solid	should	be	responsible	for	its	higher	capture	performances	at	

30°C.	 At	 intermediate	 temperature	 (50°C)	 physisorption	 contribution	 is	 less	 important	 and	
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consequently	differences	in	CO2	sorptive	properties	between	the	two	activated	carbons	tend	

to	reduce	and	become	practically	negligible	at	80°C.		
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Figure	5.13	CO2	adsorption	isotherms	obtained	for	raw	F600‐900	and	N.RGC30	adsorbents	at	(a)	30,	(b)	

50	and	(c)	80°C	

The	raw	adsorbents	dynamic	adsorption	performances	are	compared	in	Figures	5.14	and	

5.15	which	report	the	breakthrough	curves	of	CO2	on	F600‐900	and	N.RGC30,	respectively,	at	

30,	50	and	80°C	adopting	a	15%	by	vol.	CO2‐concentrated	gaseous	stream,	representative	of	a	

typical	flue‐gas	composition.		
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Figure	5.14	Breakthrough	curves	of	CO2	on	raw	F600‐900	at	30,	50	and	80°C	for	a	15%	by	vol.	CO2	

gaseous	stream	
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Figure	5.15	Breakthrough	curves	of	CO2	on	raw	N.RGC30	at	30,	50	and	80°C	for	a	15%	by	vol.	CO2	gaseous	

stream	

As	 a	 general	 consideration,	 it	 can	 be	 observed	 that	 for	 each	 activated	 carbon	 the	

breakthrough	curve	shows	a	monotonic	shift	 towards	 lower	times	as	the	temperature	rises.	

For	instance,	the	breakpoint	time	tb	(Qେ୓మ
୭୳୲ ሺtሻ/Qେ୓మ

୧୬ =0.05)	is	43	s	at	30°C	for	F600‐900,	a	value	

4.8‐times	greater	than	the	one	obtained	at	80°C	(9	s).	In	the	case	of	N.RGC30	tb=32,	18	and	8	s	

for	 adsorption	 temperatures	of	 30,	 50	 and	80°C.	Moreover,	 higher	 temperatures	determine	

faster	adsorption	kinetics	as	testified	by	the	increasing	slope	of	the	sigmoid	and	the	reduction	

of	 the	 equilibrium	 time	 t*	 (for	 which	 CO2	 concentrations	 at	 the	 bed	 inlet	 and	 outlet	 are	

practically	equal).	As	a	matter	of	 fact,	 t*	 is	approximately	2.7‐	and	2.2‐times	greater	at	30°C	

with	respect	to	80°C	for	N.RGC30	(195	vs.	71	s)	and	F600‐900	(293	vs.	131	s),	respectively.	

These	 results	 can	 be	 interpreted	 considering	 that	 two	 factors	 determine	 faster	 adsorption	

kinetics	at	higher	temperatures:	i)	the	reduction	of	the	adsorption	capacity	(lower	number	of	

active	 sites	 to	 be	 occupied)	which	 allows	 higher	 diffusion	 rates;	 ii)	 an	 intrinsic	 increase	 in	

intraparticle	 diffusivity	with	 temperature	 (mainly	 in	micropores,	 cf.	 Sections	 3.2	 and	 5.4.2)	

(Ruthven,	1984).				

Considering	that	different	amounts	of	F600‐900	and	N.RGC30	were	used	for	adsorption	

experiments	 (15	 and	 13	 g	 for	 F600‐900	 and	 N.RGC30	 respectively,	 cf.	 Section	 4.4.1),	 a	

comparison	of	the	dynamic	performances	of	the	two	sorbents	on	the	basis	of	tb	is	not	feasible	

because	 breakthrough	 curves	 translate	 along	 time	 axis	 by	 varying	 the	 sorbent	 dose	 under	
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constant	pattern	conditions	(Ruthven,	1984;	McCabe	et	al.,	1993).	In	this	context,	differences	

in	 mass	 transfer	 rates	 can	 be	 better	 evaluated	 by	 introducing	 a	 time	 parameter	t0.9−tb	

(with	 t0.9	 being	 the	 time	 for	 which	 Qେ୓మ
୭୳୲ ሺtሻ/Qେ୓మ

୧୬ =0.9)	 which	 is	 related	 to	 the	 slope	 of	 the	

linear	part	of	the	sigmoid:	the	smaller	this	parameter	the	steeper	the	breakthrough	curve	and,	

consequently,	 the	 faster	 adsorption	 kinetics.	 The	 values	 of	 derived	 from	 the	 kinetic	

patterns	 for	F600‐900	and	N.RGC30	raw	at	30,	50	and	80°C	are	 listed	 in	Table	5.6	 together	

with	the	sorbents	main	microstructural	parameters.		

Table	5.6	Comparison	between	values	obtained	from	kinetic	adsorption	tests	at	30,	50	and	80°C	and	
the	main	textural	parameters	derived	for	F600‐900	and	N.RGC30	activated	carbons;	۱۱۽૛

	.vol	by	%15=	ܜ܍ܔܖܑ

Sample	


[s]	

Microstructural	parameters	

T=30°C	 T=50°C T=80°C V0	
[cm3	g‐1]

Vn	
[cm3	g‐1]	

Vmeso	
[cm3	g‐1]

F600‐900	 22	 10	 5	 0.41	 0.32	 0.17	

N.RGC30	 15	 8	 5	 0.50	 0.32	 0.65	

 

Results	 show	 that	 for	 each	 adsorbent	value	 decreases	 from	 30	 to	 80°C	 confirming	

faster	adsorption	kinetics	at	higher	temperature;	moreover,	is	generally	higher	for	F600‐

900	sorbent	with	respect	to	N.RGC30	and	differences	reduce	as	the	adsorption	temperature	

rises	 (at	80°C	 the	values	practically	 coincide).	These	outcomes	 suggest	 faster	mass	 transfer	

rates	 for	 N.RGC30	 sorbent	 which	 can	 be	 ascribed	 to	 the	 larger	 contribution	 of	 mesopores	

(Vmeso=0.65	and	0.17	cm3	g‐1	for	N.RGC30	and	F600‐900,	respectively)	and	to	the	presence	of	

wider	micropores	(cf.	V0	and	Vn	values)	with	respect	to	F600‐900	allowing	a	quicker	diffusion	

of	CO2	molecules	inside	the	adsorbent	pores.	The	effect	of	the	different	textural	parameters	on	

the	 adsorbents	 dynamic	 adsorption	performances	 becomes	 less	 important	 from	30	 to	 80°C	

because	 of	 the	 already‐mentioned	 increase	 in	 intraparticle	 diffusion	 rates	 at	 higher	

temperatures.				
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5.2.2 CO2	 adsorption	 tests	 onto	 F600‐900	 raw	 and	 functionalized	 with	

[Hmim][BF4]/[Emim][Gly]	 

Figure	 5.16	 reports	 CO2	 adsorption	 isotherms	 on	 F600‐900	 raw	 and	 impregnated	 with	

[Hmim][BF4]/[Emim][Gly]	 ILs	 at	different	 active	phase	 concentrations	 and	at	 (a)	30,	 (b)	50	

and	(c)	80°C.	 
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Figure	5.16	CO2	adsorption	isotherms	on	F600‐900	raw	and	impregnated	with	[Hmim][BF4]/[Emim][Gly]	

ILs	at	C°=5.6×10‐3	and	2.2×10‐2	M	and	at	a)	30,	(b)	50	and	(c)	80°C	

A	qualitative	analysis	of	the	adsorption	isotherms	denotes	the	following	aspects:	

 At	30°C	F600‐900	raw	shows	the	highest	CO2	capture	performances	among	the	tested	

adsorbents	 in	 the	 whole	 Peq	 range	 investigated.	 Moreover,	 [Emim][Gly]	 sorbents	

display	 higher	 eq	 values	 with	 respect	 to	 [Hmim][BF4]	 materials	 and	 adsorption	

isotherms	at	different	impregnation	conditions	overlap	for	each	ionic	liquid	examined.	

 At	50°C	[Emim][Gly]	 functionalized	sorbents	show	similar	adsorption	capacities	with	

respect	 to	 the	 raw	 material	 up	 to	 Peq=0.15	 bar,	 while	 an	 improving	 of	 the	 parent	

adsorbent	 capture	 performances	 are	 observed	 for	 higher	 pollutant	 concentrations;	

once	 again,	 [Hmim][BF4]	 materials	 are	 characterized	 by	 worse	 adsorption	

performances	which	is	more	evident	for	the	sample	impregnated	at	C°=2.2×10‐2	M.	

 At	 80°C	 the	 eq	 ranking	 is	 F600‐900	 [Emim][Gly]	 10‐3	 M>F600‐900	 raw≈F600‐900	

[Hmim][BF4]10‐3	M>F600‐900	[Emim][Gly]	10‐2	M>F600‐900	[Hmim][BF4]10‐2	M.	

Before	 providing	 a	 quantitative	 correlation	 between	 the	 sorbents	 microstructural	

properties	 and	 their	 sorption	 capacities,	 it	 is	 fundamental	 to	 underline	 that	 many	 factors	

contribute	 in	 determining	 a	 complex	 phenomenology	 in	 CO2	 removal	 for	 the	 investigated	

systems.	In	particular,	in	the	case	of	the	raw	activated	carbon	physisorption	is	the	main	active	

mechanism	 for	 CO2	 capture	 and	 its	 contribution	 decreases	 with	 temperature	 (Plaza	 et	 al.,	
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2007).	Differently,	dealing	with	 impregnated	samples,	the	CO2	capture	determined	by	the	IL	

and	 the	 occlusion	 of	 the	 substrate	 pores	 act	 in	 opposite	 directions,	 the	 latter	 leading	 to	 a	

reduction	 in	 the	 contribution	 of	 the	 raw	material	 adsorption.	 In	 addition,	 for	 both	 ILs	 the	

increase	in	temperature	is	detrimental	for	the	capture	process:	[Hmim][BF4]	acts	as	a	physical	

solvent	 towards	CO2	 (solubility	 is	 typically	 equal	 to	 0.05	molେ୓మ/mol୍୐	 at	 room	T	 and	near	

atmospheric	pressure),	while	[Emim][Gly]	 includes	an	amino‐group	in	its	structure	which	is	

potentially	able	to	form	carbamate	with	carbon	dioxide	via	a	reversible	exothermic	reaction	

following	 the	 same	 scheme	 described	 for	 commonly	 employed	 amine‐based	 solvents	

(theoretical	capture	capacity	under	dry	conditions	0.5	molେ୓మ/mol୍୐)	(Kim	et	al.,	2005;	Plaza	

et	al.,	2007;	Krumdieck	et	al.,	2008;	Zhang	et	al.	2011;	Kasahara	et	al.,	2012).	Moreover,	 the	

less	 sterically‐hindered	 [Emim][Gly]	 molecule	 makes	 the	 access	 of	 CO2	 to	 its	 active	 site	

(amino‐group)	 and	 in	 the	 sorbent	pores	potentially	 easier	 than	 in	 the	 case	of	 [Hmim][BF4].	

Finally,	it	should	be	also	considered	that	the	dispersion	of	the	active	phase	into	the	substrate	

pores	could	be	altered	both	by	temperature	variations	(influencing	for	example	the	IL	surface	

tension	 and	 viscosity)	 and	 by	 interactions	 establishing	with	 CO2	molecules	 (with	 a	 further	

dependence	on	the	amount	of	pollutant	adsorbed).	

In	 light	 of	 the	 aforementioned	 observations,	 Table	 5.7	 reports	 a	 comparison	 of	 the	

adsorption	capacities	obtained	for	the	investigated	sorbents	under	typical	flue‐gas	conditions	

(CO2	15%	by	vol.,	ωୣ୯
ଵହ%)	and	the	main	quantitative	parameters	derived	from	porosimetric	and	

TGA	analyses	(pore	volume	reduction	and	the	specific	amount	of	ionic	liquid	adsorbed	on	the	

substrate,	see	also	Table	5.5).		

Table	5.7	Comparison	among	૑ܙ܍
૚૞%	values	and	the	main	parameters	derived	from	porosimetric	and	TGA	

analyses	for	F600‐900	raw	and	impregnated	with	[Hmim][BF4]	and	[Emim][Gly]	ILs	

Sample	

૑ܙ܍
૚૞%	

[mmol	g‐1]	 (V0‐raw‐	V0‐impr)/	V0‐raw	
%	

mmolIL‐ads	g‐1AC	
(TGA)	

T=30°C	 T=50°C T=80°C	

F600‐900	 0.575	 0.315	 0.137	 	 	

F600‐900		
[Hmim][BF4]	10‐3	M	

0.437	 0.264	 0.139	 4.9	 0.015	

F600‐900		
[Hmim][BF4]	10‐2	M	

0.443	 0.230	 0.101	 12.2	 0.052	

F600‐900		
[Emim][Gly]	10‐3	M	 0.502	 0.324	 0.157	 4.9	 0.028	

F600‐900	
	[Emim][Gly]	10‐2	M	 0.502	 0.317	 0.125	 12.2	 0.057	
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Results	 suggest	 that	 at	 T=30°C	 the	 pores	 blocking	 induced	 by	 the	 presence	 of	 the	 ILs	

prevails	on	their	contribution	to	CO2	capture,	thus	determining	a	reduction	of	the	adsorption	

performances	of	 the	 functionalized	 sorbents	with	 respect	 to	 the	parent	material.	Moreover,	

for	 each	 IL,	 the	 higher	 pore	 volume	 reduction	 experienced	 under	 more	 concentrated	

impregnation	condition	is	counterbalanced	by	the	contribution	to	CO2	capture	determined	by	

a	higher	amount	of	IL	loaded.	The	higher	ωୣ୯
ଵହ%values	obtained	at	30°C	for	[Emim][Gly]	solids	

with	 respect	 to	 [Hmim][BF4]	 ones	 could	 be	 explained	 considering	 that,	 even	 if	 at	 fixed	

impregnation	 condition	 the	pore	 clogging	 is	 the	 same	 for	both	 ILs,	 a	 greater	amount	of	 the	

amino	acid‐based	ionic	liquid	is	adsorbed	on	the	substrate	(almost	double	at	C°=5.6×10‐3	M)	

and	 its	 capture	 capacity	 towards	 CO2	 is	 one	 order	 magnitude	 higher	 than	 in	 the	 case	 of	

[Hmim][BF4]	 (0.05	and	0.5	molେ୓మ/mol୍୐	for	 [Hmim][BF4]	and	[Emim][Gly]	respectively).	At	

50°C	the	pore	blocking	effect	on	the	functionalized	sorbents	adsorption	capacities	is	generally	

reduced	(due	to	the	decreasing	physisorption	of	 the	raw	material)	and	 it	 is	balanced	by	the	

active	 phase	 CO2‐capture	 contribution	 in	 the	 case	 of	 [Emim][Gly],	 while	 it	 persists	 for	 less	

CO2‐affine	[Hmim][BF4]	(to	a	greater	extent	for	the	sample	obtained	under	more	concentrated	

condition	 for	 which	 the	 pore	 volume	 reduction	 is	 higher).	 Finally,	 at	 80°C	 pore	 clogging	

becomes	negligible	for	F600‐900	[Hmim][BF4]	10‐3	M	sample	while	it	is	still	important	for	the	

sample	 obtained	 at	 C°=2.2×10‐2	 M.	 Differences	 between	 [Hmim][BF4]	 adsorbents	 could	 be	

ascribed	to	a	very	 low	CO2	solubility	 in	 the	 IL	at	 this	 temperature	(even	 if	 solubility	data	at	

this	 temperature	are	not	available	 in	 the	 literature),	 thus	under	more	diluted	 impregnation	

condition	the	lower	amount	of	IL	charged	and	the	higher	spreading	of	the	IL	on	the	support	

surface	(induced	by	a	reduction	of	its	surface	tension)	would	make	easier	the	access	to	F600‐

900	 active	 sites	with	 respect	 to	 F600‐900	 [Hmim][BF4]	 10‐2	M	 sample.	 On	 the	 other	 hand,	

[Emim][Gly]	is	able	to	produce	an	increase	in	F600‐900	CO2	capture	capacity	only	under	more	

diluted	 impregnation	 condition	 (ωୣ୯
ଵହ%is	 nearly	 15%	 greater	 with	 respect	 to	 the	 parent	

material),	 thanks	 to	 a	 good	 compromise	 between	 IL	 loading,	 CO2	 affinity	 and	 pore	

accessibility,	 while	 the	 pore	 volume	 reduction	 prevails	 for	 the	 sorbent	 impregnated	 at	

C°=2.2×10‐2	M.	

The	 breakthrough	 curves	 obtained	 for	 F600‐900	 raw	 and	 impregnated	 with	

[Hmim][BF4]/[Emim][Gly]	 ILs	 at	 different	 temperatures	 and	 for	 a	 15%	CO2	 gas	 stream	 are	

reported	in	Figure	5.17	((a)	30°C,	(b)	50°C	and	(c)	80°C).	
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As	 a	 general	 consideration,	 it	 can	 be	 observed	 that,	 as	 expected,	 the	 increase	 in	 the	

operating	temperature	determines	faster	adsorption	kinetics	for	all	the	impregnated	samples	

with	 a	 shift	 of	 the	 breakthrough	 curves	 towards	 lower	 times	 as	 a	 consequence	 of	 higher	

diffusion	 rates	 of	 CO2	molecules	 in	 the	 sorbent	 pores.	Moreover,	 the	 equilibrium	 times	 are	

approximately	 10‐	 and	 3‐times	 lower	 at	 80°C	 with	 respect	 to	 30°C	 for	 [Hmim][BF4]	 and	

[Emim][Gly]	sorbents,	respectively.	
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Figure	5.17	Breakthrough	curves	of	CO2	on	F600‐900	raw	and	impregnated	with	

[Hmim][BF4]/[Emim][Gly]	for	a	15%	by	vol.	CO2	gaseous	stream	at	(a)	30,	(b)	50	and	(c)	80°C	

A	comparison	of	the	adsorbents	dynamic	performances	is	provided	in	Table	5.8	which	lists	

breakpoint	times	tb	and	values	(cf.	Section	5.2.1)	obtained	from	15%	CO2	adsorption	tests	

at	30,	50	and	80°C.	

Table	5.8	Comparison	between	and	tbvalues	obtained	from	kinetic	adsorption	tests	at	30,	50	and	80°C	
for	F600‐900	raw	and	[Hmim][BF4]/[Emim][Gly]‐impregnated;	۱۱۽૛

	.vol	by	%15=ܜ܍ܔܖܑ

Sample	


[s]	

tb	
[s]	

T=30°C T=50°C T=80°C T=30°C	 T=50°C	 T=80°C	

F600‐900	 22	 10	 5	 43	 21	 9	

F600‐900	[Hmim][BF4]	10‐3	M	 16	 9	 6	 31	 20	 10	

F600‐900	[Hmim][BF4]	10‐2	M	 17	 9	 5	 32	 16	 7	

F600‐900	[Emim][Gly]	10‐3	M	 17	 10	 6	 38	 24	 11	

F600‐900	[Emim][Gly]	10‐2	M	 17	 10	 6	 39	 23	 10	

	

Results	 show	 that	 the	 ranking	 observed	 for	 breakpoint	 times	 at	 each	 temperature	

generally	 coincides	 with	 the	 one	 shown	 in	 Table	 5.7	 in	 terms	 of	 equilibrium	 adsorption	

capacities	 (1	 s	 differences	 fall	 within	 the	 experimental	 error).	 In	 the	 case	 of	 F600‐900	
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[Emim][Gly]	10‐2	and	10‐3	M,	tb	values	at	50°C	are	greater	with	respect	to	the	one	obtained	for	

F600‐900	raw	(21,	24	and	23	s	for	F600‐900	raw,	[Emim][Gly]	10‐3	and	10‐2	M	respectively),	

even	if	the	adsorption	capacities	are	practically	equivalent:	obviously,	eq	value	also	depends	

on	 the	 sorbent	 capture	 contribution	 for	 times	 greater	 than	 tb.	 The	 analysis	 of	 data	

highlights	 that	 the	 only	 significant	 difference	 in	 dynamic	 performances	 can	 be	 observed	 at	

30°C	for	which	this	parameter	is	greater	for	F600‐900	raw	(slower	adsorption	kinetic)	with	

respect	 to	 the	 impregnated	 materials	 (which	 display	 similar	 values	 discrepancies	 are	

practically	negligible	at	higher	temperatures.	This	pattern	could	be	explained	considering	that	

at	 lower	 temperature	differences	 in	 adsorption	 capacities	 of	 the	 impregnated	 samples	with	

respect	to	the	parent	one	are	greater,	thus	the	higher	the	number	of	active	sites	to	be	occupied	

(for	F600‐900	raw)	the	slower	the	kinetics.	As	the	temperature	rises,	eq	differences	reduce	

and	intraparticle	diffusivity	is	higher,	determining	similar	CO2	capture	kinetics.	Moreover,	it	is	

here	recalled	that	the	pore	size	distribution	of	the	substrate	is	not	appreciably	influenced	by	

the	 impregnation	process	(cf.	Section	5.1)	and	the	only	observed	effect	 is	a	reduction	 in	the	

total	micropore	volume	(Vmeso	is	practically	constant):	this	parameter	(Vmicro)	itself	is	not	able	

to	 explain	 kinetic	 differences	 between	 the	 raw	 and	 impregnated	 materials.	 Vice	 versa	 the	

distribution	of	both	ILs	in	the	sorbent	micropores	(width	of	the	IL	film,	positioning	at	the	pore	

mouth,	complete	or	partial	pore	filling	etc.),	which	can	be	also	influenced	by	the	temperature	

and	the	capture	process	itself,	 is	likely	a	further	factor	affecting	the	sorption	kinetics	for	the	

impregnated	samples.	
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5.2.3 CO2	 adsorption	 tests	 onto	 N.RGC30	 raw	 and	 functionalized	 with	

[Hmim][BF4]/[Emim][Gly]	 

The	 thermodynamic	 behaviour	 of	 N.RGC30	 raw	 and	 impregnated	 with	

[Hmim][BF4]/[Emim][Gly]	 ILs	 in	 the	 CO2	 capture	 process	 is	 illustrated	 in	 Figure	 5.18	 for	

adsorption	temperatures	of	(a)	30,	(b)	50	and	(c)	80°C.	 
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Figure	5.18	CO2	adsorption	isotherms	on	N.RGC30	raw	and	impregnated	with	[Hmim][BF4]/[Emim][Gly]	

ILs	at	C°=5.6×10‐3	and	2.2×10‐2	M	and	at	a)	30,	(b)	50	and	(c)	80°C	

The	analysis	of	the	adsorption	isotherms	reveals	the	complex	effect	of	the	temperature	on	

CO2	 adsorption	 performances	 of	 the	 investigated	 adsorbents	 and	 the	 main	 aspects	 can	 be	

summarized	as	follows:	

 For	 an	 adsorption	 temperature	 of	 30°C	 the	 eq	 ranking	 is	 N.RGC30	 raw>N.RGC30	

[Emim][Gly]	 10‐3	 M>N.RGC30	 [Emim][Gly]	 10‐2	 M≈N.RGC30	 [Hmim][BF4]	 10‐3	 M≈	

N.RGC30	[Hmim][BF4]10‐2	M.			

 At	 50°C	 N.RGC30	 raw	 and	 impregnated	 with	 [Emim][Gly]	 under	 more	 diluted	

impregnation	conditions	exhibit	the	highest	eq	values	and	their	isotherms	practically	

overlap	 up	 to	 Peq=0.15	 bar,	 while	 for	 higher	 CO2	 concentrations	 the	 active	 phase	

determines	 an	 improvement	 of	 the	 adsorption	 capacity	 with	 respect	 to	 the	 parent	

sorbent.	 The	 other	 functionalized	 materials	 show	 generally	 similar	 adsorption	

performances	except	N.RGC30	impregnated	with	[Hmim][BF4]	at	C°=2.2×10‐2	M	which	

is	characterized	by	worse	capture	capacities	for	Peq>0.15	bar.	

 Finally	at	80°C,	 [Emim][Gly]	 ionic	 liquid	 is	effective	 in	ameliorating	N.RGC30	capture	

capacities	 for	 all	 the	 investigated	 Peq‐range	 under	 more	 diluted	 impregnation	

conditions,	while	eq	is	slightly	greater	for	N.RGC30	[Emim][Gly]	10‐2	M	with	respect	to	

the	raw	activated	carbon	only	for	CO2	equilibrium	partial	pressures	greater	than	those	

of	 a	 typical‐flue	 gas.	Moreover,	 N.RGC30	 [Hmim][BF4]	 10‐2	M	 is	 again	 the	worst	 CO2	
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adsorbent,	 while	 the	 sample	 impregnated	 with	 the	 same	 IL	 at	 C°=5.6×10‐3	 M	 is	

equivalent	to	the	raw	material.	

In	order	to	shed	light	on	the	intertwining	among	the	impregnation	conditions,	the	sorbent	

properties	 and	 their	 CO2	 capture	 capacities,	 Table	 5.9	 reports	 a	 comparison	 of	 the	 main	

parameters	derived	from	TGA	and	porosimetric	analyses	for	N.RGC30	raw	and	impregnated	

with	 [Hmim][BF4]/[Emim][Gly]	 ILs	 and	 their	 adsorption	 capacities	 obtained	 under	 typical	

flue‐gas	conditions	and	for	operating	temperatures	of	30,	50	and	80°C.	

Table	5.9	Comparison	among	૑ܙ܍
૚૞%	values	and	the	main	parameters	derived	from	porosimetric	and	TGA	

analyses	for	N.RGC30	raw	and	impregnated	with	[Hmim][BF4]	and	[Emim][Gly]	ILs	

Sample	

૑ܙ܍
૚૞%	

[mmol	g‐1]	 (V0‐raw‐	V0‐impr)/	V0‐raw	
%	

mmolIL‐ads	g‐1AC	
(TGA)	

T=30°C	 T=50°C T=80°C	

N.RGC30	 0.499	 0.276	 0.139	 	 	

N.RGC30	
[Hmim][BF4]	10‐3	M	

0.391	 0.246	 0.141	 6	 0.013	

N.RGC30	
[Hmim][BF4]	10‐2	M	

0.386	 0.240	 0.122	 8	 0.051	

N.RGC30	
[Emim][Gly]	10‐3	M	

0.426	 0.275	 0.163	 2	 0.027	

N.RGC30	
[Emim][Gly]	10‐2	M	

0.381	 0.238	 0.137	 8	 0.057	

 

Experimental	data	highlight	that	at	30°C	pore	blocking	is	the	ruling	factor	in	determining	a	

reduction	of	the	 impregnated	materials	adsorption	performances	with	respect	to	the	parent	

one.	 In	 particular,	 the	 comparable	 micropore	 volume	 reduction	 observed	 for	 N.RGC30	

[Hmim][BF4]	 10‐2	M	 and	 10‐3	M	 and	N.RGC30	 [Emim][Gly]	 10‐2	M	determines	 similar	ωୣ୯
ଵହ%	

values	 for	these	samples.	Conversely,	 the	 lower	micropore	volume	reduction	determined	by	

[Emim][Gly]	at	10‐3	M	(2%)		produces	a	less	marked	ωୣ୯
ଵହ%decrease	with	respect	to	the	parent	

material	also	for	the	possible	access	of	CO2	molecules	to	the	IL	active	sites,	which	seems	to	be	

hindered	 in	 the	 case	 of	 higher	 IL	 loading.	 	 At	 50°C	 the	 contribution	 of	 [Emim][Gly]	 active	

phase	in	CO2	capture	balances	the	pore	clogging	effect	only	under	more	diluted	impregnation	

conditions	making	ωୣ୯
ଵହ%	values	 similar	 for	 the	 functionalized	and	 raw	activated	 carbon;	 for	

the	 other	 impregnated	 adsorbents	 the	 considerations	 expressed	 for	 an	 adsorption	

temperature	 of	 30°C	 still	 hold	 at	 50°C,	 even	 if	 differences	 in	 capture	 performances	 with	

respect	to	the	parent	material	reduce	for	the	lower	contribution	of	physisorption	of	the	latter	
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as	 the	 temperature	 rises.	 Finally,	 at	 80°C	 the	 pore	 blocking	 is	 negligible	 for	 N.RGC30	

[Hmim][BF4]	 10‐3	M	 and	N.RGC30	 [Emim][Gly]	 10‐2	M	 determining	 equivalent	ωୣ୯
ଵହ%	 values	

with	 respect	 to	 the	 parent	 material,	 while	 this	 effect	 is	 still	 important	 for	 N.RGC30	

[Hmim][BF4]	10‐2	M.	In	the	case	of	N.RGC30	functionalized	with	[Emim][Gly]	at	C°=5.6×10‐3	M,	

the	active	phase	is	able	to	determine	an	increase	in	CO2	adsorption	capacity	when	compared	

to	 the	 raw	 substrate	 (ωୣ୯
ଵହ%	 is	 approximately	 16%	 greater)	 thanks	 to	 stronger	 chemical	

interactions	between	acidic	CO2	molecules	and	basic	amine	groups	and	the	easier	accessibility	

in	the	sorbent	pores	determined	by	the	low	IL	loading.	

The	considerations	concerning	the	correlations	between	sorbent	properties	and	their	CO2	

capture	capacities	under	 typical	 flue‐gas	conditions	can	be	generally	extended	 to	 the	whole	

Peq‐range,	even	if	at	50	and	80°C	and	for	CO2	equilibrium	partial	pressures	greater	than	0.15	

bar,	 the	process	driving	force	exerts	a	 further	role.	For	example,	at	50°C	the	contribution	in	

CO2	capture	exerted	by	[Emim][Gly]	under	more	diluted	conditions	is	prevailing	with	respect	

to	pore	blocking	for	Peq>0.15	bar	(producing	an	increase	in	adsorption	capacities	with	respect	

to	N.RGC30	raw),	while	 they	balance	 for	 lower	process	driving	 force;	similar	arguments	are	

also	valid	for	N.RGC30	[Emim][Gly]	10‐2	M	tested	at	an	adsorption	temperature	of	80°C.	

The	 comparison	 of	 the	 dynamic	 performances	 in	 CO2	 capture	 process	 for	 both	 raw	 and	

ILs‐functionalized	N.RGC30	 sorbents	 under	 typical	 flue‐gas	 conditions	 (CO2	 15%	by	 vol.)	 is	

reported	in	Figure	5.19	for	operating	temperatures	of	(a)	30,	(b)	50	and	(c)	80°C.	Table	5.10	

lists	the	values	of	breakpoint	time	tb	and	of	the	characteristic	parameter	derived	from	the	

kinetic	profiles.	

Results	evidence,	once	again,	that	at	higher	temperatures	the	adsorption	kinetics	is	faster	

for	all	the	investigated	sorbents	with	a	monotonic	decrease	of	characteristic	breakpoint	and	

saturation	 times.	 For	 example,	 N.RGC30	 [Hmim][BF4]	 10‐3	 M	 experiences	 a	 saturation	 3.5‐

times	faster	at	80°C	with	respect	to	30°C	(t*=165	and	47s	at	30	and	80°C),	while	in	the	case	of	

N.RGC30	 [Emim][Gly]	 10‐3	 M,	 t*	 is	 1.6‐times	 lower	 for	 the	 same	 temperature	 increase.	

Moreover	the	ranking	of	 tb	values	obtained	for	 the	different	 investigated	samples	 is	 in	good	

agreement	 with	 the	 one	 derived	 in	 terms	 of	 CO2	 adsorption	 capacities	 (cf.	 Tables	 5.9	 and	

5.10).	 The	 comparison	 of	data	 reveals	 that	main	 kinetic	 differences	 can	 be	 identified	 at	

30°C	 for	which	 this	parameters	 is	higher	 for	 raw	N.RGC30	with	 respect	 to	 the	 impregnated	

ones	indicating	slower	capture	kinetics	for	this	sample.	Moreover,	N.RGC30	[Emim][Gly]	10‐3	

M	displays	a	slightly	higher	value	of	with	respect	to	the	other	functionalized	materials	and	

this	can	be	ascribed	to	its	lower	difference	in	ωୣ୯
ଵହ%		when	compared	to	raw	material	(cf.	Table	
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5.9).	At	higher	temperatures	the	intrinsic	increase	in	intraparticle	diffusivity	and	the	reduced	

differences	 in	 adsorption	 capacity	 contribute	 in	 determining	 similar	 capture	 kinetics	 for	 all	

samples.	Finally,	 the	way	 in	which	 the	 IL	 is	dispersed	 in	 the	 substrate	micropores	 (without	

affecting	remarkably	the	substrate	PSD,	cf.	Section	5.1)	should	also	contribute	in	determining	

different	 adsorption	kinetics	 for	 the	 impregnated	 samples	with	 respect	 to	 the	 raw	material	

especially	at	30°C.	
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Figure	5.19	Breakthrough	curves	of	CO2	on	N.RGC30	raw	and	impregnated	with	

[Hmim][BF4]/[Emim][Gly]	for	a	15%	by	vol.	CO2	gaseous	stream	at	(a)	30,	(b)	50	and	(c)	80°C	

	

Table	5.10	Comparison	between	and	tbvalues	obtained	from	kinetic	adsorption	tests	at	30,	50	and	
80°C	for	N.RGC30	raw	and	[Hmim][BF4]/[Emim][Gly]‐impregnated;	۱۱۽૛

	.vol	by	%15=ܜ܍ܔܖܑ

Sample	


[s]	

tb	
[s]	

T=30°C T=50°C T=80°C T=30°C	 T=50°C	 T=80°C	

N.RGC30	 15	 8	 5	 32	 18	 8	

N.RGC30	[Hmim][BF4]	10‐3	M	 11	 8	 6	 25	 15	 8	

N.RGC30	[Hmim][BF4]	10‐2	M	 11	 8	 5	 25	 15	 7	

N.RGC30	[Emim][Gly]	10‐3	M	 13	 8	 5	 27	 17	 10	

N.RGC30	[Emim][Gly]	10‐2	M	 11	 8	 6	 25	 14	 7	
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5.2.4 Intertwining	among	solids	properties	and	CO2	capture	performances 

Table	5.11	schematically	summarizes	 the	main	results	obtained	 in	 this	work	 in	 terms	of	

both	sorbents	CO2	capture	performances	under	typical	flue‐gas	conditions	(CO2	15%	by	vol.)	

and	main	parameters	derived	from	TGA	and	porosimetric	analyses.		

As	a	general	comment,	 it	can	be	observed	that	for	both	activated	carbons	pores	blocking	

induced	 by	 the	 presence	 of	 the	 ILs	 is	 the	 prevailing	 effect	 at	 30°C	 which	 determines	 a	

worsening	of	CO2	 capture	performances	of	 each	 functionalized	material	with	 respect	 to	 the	

parent	one,	due	to	the	main	contribution	of	physisorption	for	the	latter	at	lower	temperatures.	

Moreover,	 the	 impregnation	 of	 F600‐900	 and	 N.RGC30	 with	 [Hmim][BF4]	 IL	 (a	 physical	

solvent	 for	 CO2)	 appears	 to	 be	 not	 suitable	 (at	 least	 under	 the	 investigated	 experimental	

conditions)	 for	 flue‐gas	 treatment,	 because	 the	 IL	 contribution	 to	 CO2	 capture	 does	 not	

counterbalance	the	reduction	of	the	substrate	adsorption	performances	induced	by	the	pores	

obstruction,	also	at	higher	temperatures.	On	the	other	hand,	the	use	of	more‐chemically	CO2	

affine	 [Emim][Gly]	 IL	 can	 be	 potentially	 apt	 to	 ameliorate	 the	 parent	 carbon	 sorptive	

performances	towards	CO2	at	80°C,	even	if	at	the	current	stage	of	the	research	the	obtained	

adsorption	capacities	are	still	too	low	for	a	technical	applicability	of	these	materials	in	large	

scale	CO2	capture	processes.	

The	 main	 aspects	 derived	 from	 a	 deeper	 analysis	 of	 the	 effects	 of	 the	 impregnation	

conditions	 for	 each	 IL	 on	 the	 activated	 carbons	 capture	 performances	 are	 discussed	 in	 the	

following.	

For	 [Hmim][BF4],	 at	 30°C	 both	 the	 impregnation	 conditions	 determine	 a	 similar	

percentage	reduction	of	the	raw	materials	ωୣ୯
ଵହ%	values	(nearly	23%)	despite	a	slightly	higher	

pore	 volume	 reduction	 for	 F600‐900	 at	 C°=2.2×10‐2	 M.	 Moreover,	 for	 both	 F600‐900	 and	

N.RGC30	 functionalized	 with	 [Hmim][BF4]	 under	 more	 diluted	 impregnation	 conditions	

differences	in	adsorption	capacity	with	respect	to	raw	substrates	reduce	as	the	temperature	

rises	and	the	pores	clogging	effect	becomes	negligible	at	80°C.	The	impregnation	of	F600‐900	

with	[Hmim][BF4]	at	C°=2.2×10‐2	M	determines	a	practically	constant	percentage	reduction	of	

ωୣ୯
ଵହ%	values	with	respect	to	the	raw	material	as	the	temperature	increases,	while	in	the	case	

of	 N.RGC30	 impregnated	with	 the	 same	 IL	 and	 adopting	 the	 same	 initial	 concentration	 the	

pore	blocking	effect	on	the	adsorption	performances	is	less	relevant	at	80°C.	In	this	context,	

differences	 between	 F600‐900	 and	 N.RGC30	 impregnated	 at	 a	 higher	 [Hmim][BF4]	

concentration	 could	 be	 related	 to	 the	 combined	 effects	 of	 a	 larger	 contribution	 of	 wider	

micropores	for	N.RGC30	and	temperature	on	a	more	favourable	IL	dispersion	in	the	sorbent	
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pores.	This	means	that	for	N.RGC30,	as	the	temperature	increases,	a	better	distribution	of	the	

IL	on	the	substrate	pores	surface	makes	the	access	of	CO2	molecules	to	the	adsorbent	active	

sites	easier	than	in	the	case	of	F600‐900.		

For	 both	 F600‐900	 and	 N.RGC30	 impregnated	 with	 [Emim][Gly]	 at	 C°=5.6×10‐3	 M	

comparable	amounts	of	IL	adsorbed	produce	similar	effects	on	the	adsorption	capacity	when	

the	 temperature	 increases.	 In	 particular,	 each	 functionalized	 material	 displays	 similar	

adsorption	capacity	with	respect	to	the	raw	substrate	at	50°C,	while	at	80°C	the	active	phase	

is	 able	 to	 ameliorate	 the	 parent	 activated	 carbons	 capture	 performances	 thanks	 to	 a	 good	

compromise	between	IL	loading	and	pore	accessibility	(i.e.	a	low	pore	volume	reduction).	In	

the	 case	 of	 higher	 [Emim][Gly]	 loading,	 N.RGC30	 functionalized	 material	 displays	 similar	

adsorption	capacity	with	respect	to	the	raw	one	at	80°C,	while	F600‐900	[Emim][Gly]	10‐2	M	

is	equivalent	 to	 the	raw	material	at	50°C	and	slightly	worse	at	80°C.	This	pattern	cannot	be	

directly	justified	on	the	basis	of	the	different	textural	properties	of	the	investigated	activated	

carbons,	but	should	be	somehow	related	to	a	very	complex	effect	of	 the	temperature	on	the	

distribution	 of	 this	 IL	 into	 the	 sorbents	 pores	 (hardly	 explicable	 with	 the	 information	

currently	available).	

As	 an	 additional	 remark,	 it	 should	 be	 considered	 that	 it	 is	 a	 really	 hard	 task	 trying	 to	

discriminate	the	contribution	to	CO2	capture	determined	by	each	IL	with	respect	 to	 the	one	

exerted	by	the	parent	material:	a	better	understanding	of	the	effect	of	the	temperature	on	the	

IL	distribution	on	the	substrate	pores	will	be	helpful	in	this	direction.	

To	the	best	of	our	knowledge,	similar	findings	concerning	the	effects	of	the	impregnation	

conditions	on	CO2	sorptive	properties	of	microporous	activated	carbons	 functionalized	with	

ILs	have	not	yet	been	reported	in	the	literature.	Nevertheless,	it	is	worthy	of	mentioning	the	

work	of	Plaza	et	al.	(2007)	in	which	an	activated	carbon	(Norit	CGP	Super)	impregnated	with	

different	amine‐based	 compounds	was	employed	 for	CO2	 capture.	Authors	observed	 that	 at	

room	 temperature	 the	 active	phases	 are	not	 able	 to	 exert	 their	 peculiar	 capture	properties	

because	of	a	prevailing	pore	blocking	effect;	at	higher	temperature,	this	phenomenon	is	still	

prevailing	 but	 to	 a	 less	 extent	 because	 of	 the	 reduced	 contribution	 of	 physisorption	 of	 the	

parent	material.	Finally,	they	evidenced	an	increase	of	the	raw	material	capture	performances	

only	for	the	activated	carbon	impregnated	with	diethylentriamine	(with	the	highest	nitrogen	

content)	and	tested	at	temperatures	greater	than	60°C.	
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Table	5.11	Comparison	among	૑ܙ܍
૚૞%	values	and	the	main	parameters		

derived	from	porosimetric	and	TGA	analyses	for	the	sorbents	investigated	in	this	work	

Sample	

૑ܙ܍
૚૞%	

[mmol	g‐1]	 V0	
[cm3	g‐1]	

Vn	
[cm3	g‐1]	

(V0‐raw‐	V0‐impr)/	V0‐raw	
%	

mmolIL‐ads	g‐1AC	
(TGA)	

T=30°C	 T=50°C	 T=80°C	

F600‐900	 0.575	 0.315	 0.137	 0.41	 0.32	 	 	

F600‐900	[Hmim][BF4]	10‐3	M 0.437	 0.264	 0.139	 0.39	 n.a.†	 4.9	 0.015	

F600‐900	[Hmim][BF4]	10‐2	M 0.443	 0.230	 0.101	 0.36	 n.a.†	 12.2	 0.052	

F600‐900	[Emim][Gly]	10‐3	M	 0.502	 0.324	 0.157	 0.39	 n.a.†	 4.9	 0.028	

F600‐900	[Emim][Gly]	10‐2	M	 0.502	 0.317	 0.125	 0.36	 n.a.†	 12.2	 0.057	

N.RGC30	 0.499	 0.276	 0.139	 0.50	 0.32	 	 	

N.RGC30	[Hmim][BF4]	10‐3	M	 0.391	 0.246	 0.141	 0.47	 n.a.†	 6	 0.013	

N.RGC30	[Hmim][BF4]	10‐2	M	 0.386	 0.240	 0.122	 0.46	 n.a.†	 8	 0.051	

N.RGC30	[Emim][Gly]	10‐3	M	 0.426	 0.275	 0.163	 0.49	 n.a.†	 2	 0.027	

N.RGC30	[Emim][Gly]	10‐2	M	 0.381	 0.238	 0.137	 0.46	 n.a.†	 8	 0.057	

																	†	not	available	
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Table	 5.12	 reports	 a	 comparison	 of	 the	 adsorbents	 dynamic	 performances	 at	 different	

temperatures	(for	a	15%	CO2	gas	stream)	in	terms	of		analysis	together	with	the	solids	main	

microstructural	parameters.	It	is	once	again	recalled	that	the	different	sorbent	doses	used	for	

adsorption	tests	(15	and	13	g	for	F600‐900	and	N.RGC30	sorbents	series,	respectively)	do	not	

allow	to	define	kinetics	differences	between	N.RGC30	and	F600‐900	materials	on	the	basis	of	

breakpoint	 times.	 Results	 underline	 that	main	 differences	 can	 be	 observed	 at	 30°C,	 where	

generally	 higher	 values	 obtained	 for	 F600‐900	 functionalized	 solids	 suggest	 slower	

kinetics	 for	 these	 sorbents,	 while	 differences	 reduce	 at	 higher	 temperatures	 to	 become	

practically	negligible	at	80°C.	Once	again,	the	occurrence	of	wider	micropores	and	the	greater	

contribution	 of	 mesopores	 for	 N.RGC30	 adsorbents	 should	 determine	 faster	 CO2	 diffusion	

rates	 with	 respect	 to	 F600‐900	 impregnated	 materials.	 Moreover,	 the	 generally	 lower	

adsorption	capacity	observed	for	N.RGC30	impregnated	materials	at	30°C	(cf.	Table	5.11)	also	

contributes	 in	 determining	 faster	 kinetics.	 At	 higher	 temperatures,	 intraparticle	 diffusivity	

increases	 (see	 also	 Section	5.4.2)	 and	differences	 in	 adsorption	 capacity	 reduce	making	 the	

sorbents	kinetically	equivalent	in	the	capture	process	at	80°C.	

Table	5.12	Comparison	between	values	obtained	from	kinetic	adsorption	tests	at	30,	50	and	80°C	and	
the	main	textural	parameters	derived	for	the	sorbents	investigated	in	this	work;	۱۱۽૛

	.vol	by	%15=ܜ܍ܔܖܑ

Sample	


[s]	

Microstructural	parameters	

T=30°C T=50°C T=80°C V0	
[cm3	g‐1]

Vn	
[cm3	g‐1]	

Vmeso	
[cm3	g‐1]

F600‐900	 22	 10	 5	 0.41	 0.32	 0.17	

F600‐900	[Hmim][BF4]	10‐3	M	 16	 9	 6	 0.39	 n.a.†	 0.16	

F600‐900	[Hmim][BF4]	10‐2	M	 17	 9	 5	 0.36	 n.a.†	 0.16	

F600‐900	[Emim][Gly]	10‐3	M	 17	 10	 6	 0.39	 n.a.†	 0.16	

F600‐900	[Emim][Gly]	10‐2	M	 17	 10	 6	 0.36	 n.a.†	 0.16	

N.RGC30	 15	 8	 5	 0.50	 0.32	 0.65	

N.RGC30	[Hmim][BF4]	10‐3	M	 11	 8	 6	 0.47	 n.a.†	 0.65	

N.RGC30	[Hmim][BF4]	10‐2	M	 11	 8	 5	 0.46	 n.a.†	 0.65	

N.RGC30	[Emim][Gly]	10‐3	M	 13	 8	 5	 0.49	 n.a.†	 0.65	

N.RGC30	[Emim][Gly]	10‐2	M	 11	 8	 6	 0.46	 n.a.	†	 0.65	

		†	not	available 
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5.3 Adsorption/desorption	 cycles	 and	 regeneration	 experiments	 for	

F600‐900	raw		

In	this	Section	preliminary	adsorption/desorption	and	regeneration	experiments	carried	

out	on	the	sorbent	which	displayed	the	highest	adsorption	capacity	among	all	the	investigated	

experimental	conditions,	namely	raw	F600‐900	tested	at	30°C	(cf.	Table	5.11),	are	shown.		

It	 is	 worthy	 to	 mention	 that	 exploratory	 CO2	 adsorption/desorption	 tests	 over	 3	

consecutive	 cycles	 at	 30°C	 have	 been	 performed	 on	 [Hmim][BF4]	 and	 [Emim][Gly]	

functionalized	sorbents	(not	shown	here	for	the	sake	of	brevity)	and	results	showed	that	the	

process	is	reversible	for	these	materials.		

In	Figure	5.20	CO2	equilibrium	adsorption	capacity	of	raw	F600‐900	is	reported	over	10	

consecutive	adsorption/desorption	cycles	at	30°C	and	for	a	15%	CO2	gas	stream.	
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Figure	5.20	Equilibrium	adsorption	capacity	of	raw	F600‐900	obtained	over	10	adsorption/desorption	

cycles	at	30°C;	۱۱۽૛
	.vol	by	%15=ܜ܍ܔܖܑ

Results	indicate	that	the	value	of	eq	is	practically	constant	upon	the	number	of	cycles	and	

consequently,	 F600‐900	 can	 be	 completely	 regenerated	 (reversible	 adsorption).	 This	

behaviour	has	been	commonly	observed	in	the	literature	for	activated	carbons	and	is	ascribed	

to	 the	 establishment	 of	 weak	 interactions	 between	 CO2	molecules	 and	 the	 sorbent	 surface	

active	 sites	 (physisorption)	 (Choi	 et	 al.,	 2009;	 Sayari	 et	 al.,	 2011).	 In	 comparison,	 sorbents	

such	as	those	calcium	oxide‐based	suffer	from	a	rapid	degradation	of	CO2	capture	capability	
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during	 multiple	 carbonation/calcination	 cycles	 caused	 by	 pore	 blocking	 and	 adsorbent	

sintering,	 thus	 requiring	 a	 continuous	 make‐up	 of	 fresh	 sorbent	 (Abanades	 and	 Alvarez,	

2003).		

Figure	5.21	reports	the	time‐dependent	CO2	outlet	concentration	profiles	obtained	during	

the	regeneration	of	F600‐900	activated	carbon	(previously	saturated	with	a	15%	CO2	gaseous	

stream	 at	 30°C)	 carried	 out	 with	 desorption	 temperatures	 of	 (a)	 60	 and	 (b)	 100°C	 and	

adopting	three	different	N2	purge	flow	rate	levels	(6.95×10‐3	L	s‐1,	1.11×10‐2	L	s‐1,	1.39×10‐2	L	

s‐1,	evaluated	at	T=20°C	and	P=1	bar).		
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Figure	5.21	CO2	concentration	profiles	obtained	from	regeneration	experiments	of	raw	F600‐900	as	a	
function	of	N2	purge	flow	rate	at	(a)	60	and	(b)	100°C	(adsorption	step:	۱۱۽૛

	(T=30°C	vol.,	by	%15=ܜ܍ܔܖܑ

From	a	qualitative	point	of	view,	experimental	results	evidence	that	for	both	regeneration	

temperatures	all	the	concentration	profiles	reach	a	maximum	in	CO2	outlet	concentration	for	

relatively	 low	 desorption	 times,	 indicating	 that	 most	 of	 the	 adsorbed	 pollutant	 is	 quickly	

removed	 from	 the	 solid.	 The	 regeneration	 curve	 becomes	 narrower	 as	 the	 N2	 flow	 rate	

increases,	 thus	 testifying	 a	 faster	 desorption	 process	 associated	 to	 an	 increase	 in	 the	 gas	

velocity	through	the	packed‐bed	(higher	stripping	rate).	However,	the	concentration	profiles	

show	 quite	 long	 tails	 indicating	 that	 residual	 CO2	 desorption	 takes	 place	 slowly	 when	 the	

driving	 force	 decreases.	 Finally,	 for	 each	 investigated	 purge	 flow	 rate,	 an	 increment	 in	 the	

desorption	temperature	determines	a	positive	effect	on	the	regeneration	kinetic,	which	can	be	

ascribed	 to	 a	 decrease	 of	 CO2	 adsorption	 capacity	 (thermodynamic	 factor)	 coupled	 to	 an	

increase	in	the	pollutant	intraparticle	diffusivity	(kinetic	factor).	

The	main	quantitative	parameters	obtained	from	post‐processing	of	regeneration	profiles	

at	 different	 N2	 purge	 flow	 rates	 ( des
2NQ )	 and	 desorption	 temperatures	 ( des

C60T  	 and des
C100T  ),	

according	 to	 the	 procedure	 described	 in	 Section	 4.4.2,	 are	 listed	 in	 Table	 5.13.	 It	 is	 here	

recalled	 that	
i

2COC ,
i

2COV 	 and	 i
2NV 	 represent	 the	mean	 CO2	 concentration	 in	 the	 desorbing	

flow,	the	total	CO2	volume		desorbed	and	the	purge	gas	volume	fed	to	the	column	up	to	time	ti,	

respectively	(computed	for	recovery	percentages	i=50,	70,	80	and	90%).		
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 Table	5.13	Main	parameters	obtained	from	regeneration	experiments	of	F600‐900	raw	activated	carbon	

 

des
2NQ 	

[L	s‐1]	

eq	
	

[mmol	g‐1]	

des	
	

[mmol	g‐1]

t50	
	

[s]

t70	
	

	[s]	

t80	
	

	[s]	

t90	
	

	[s]	

50
2NV
	

	

[L]	

70
2NV
	

	

[L]	

80
2NV 	

	

[L]	

90
2NV 	

	

[L]	

50

2COC 	

[%	vol.]	

70

2COC 	

[%	vol.]	

80

2COC 	

[%	vol.]	

90

2COC 	

[%	vol.]	
  

des
C60T   

6.95x10‐3	 0.559	 0.569	 33 50	 62	 80	 0.229	 0.348	 0.431	 0.556	 29.5	 28.6	 27.0	 24.5	

1.11x10‐2	 0.565	 0.561	 25 37	 46	 61	 0.278	 0.411	 0.511	 0.677	 25.4	 24.4	 22.8	 19.9	
1.39x10‐2	 0.566	 0.554	 17 25	 32	 44	 0.236	 0.348	 0.445	 0.612	 30.4	 28.6	 26.8	 23.1	

	
	

des
C100T 

 

6.95x10‐3	 0.567	 0.557	 15 22	 28	 37	 0.104	 0.153	 0.195	 0.257	 47.0	 46.4	 43.7	 40	
1.11x10‐2	 0.562	 0.559	 9	 13	 16	 21	 0.100	 0.144	 0.178	 0.233	 49.4	 48.2	 46.2	 42.3	
1.39x10‐2	 0.560	 0.555	 7	 11	 13	 17	 0.097	 0.153	 0.181	 0.236	 47.7	 47.0	 45.7	 42.2	
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It	 is	worthy	 to	observe	 that	 the	comparison	between	eq	and	des	values,	obtained	 from	

the	 integration	 of	 the	 adsorption	 and	 desorption	 kinetic	 profiles	 respectively,	 allows	 the	

verification	of	the	CO2	mass	balance	for	each	test.	Results	confirm	the	positive	effects	on	the	

desorption	 kinetics	 induced	 by	 an	 increase	 of	 both	 des
2NQ 	 and	 desorption	 temperature.	 As	 a	

matter	of	 fact,	 at	a	 fixed	desorption	 temperature,	 the	 time	required	 to	obtain	a	defined	CO2	

recovery	 percentage	monotonically	 decreases	with	 the	 N2	 purge	 flow	 rate:	 for	 example,	 at	

both	temperatures,	t50	and	t90	approximately	double	when	 des
2NQ 	decreases	from	1.39×10‐2	L	s‐1	

to	 6.95×10‐3	 L	 s‐1.	 Moreover,	 a	 similar	 trend	 for	 ti	 is	 observed	 when	 the	 desorption	

temperature	increases:	for	 des
2NQ =1.39×10‐2	L	s‐1,	t50	and	t90	at	 des

C100T  	are	nearly	0.4‐times	the	

corresponding	values	determined	at	 des
C60T  .	The	results	obtained	in	terms	of	

i

2COC 	reveal	even	

more	 interesting	 features.	 For	 each	 des
2NQ 	 and	 for	 each	 temperature,	 when	 the	 desired	 CO2	

recovery	level	is	increased	the	mean	CO2	concentration	in	the	desorbing	stream	decreases.	In	

fact,	 as	 the	 recovery	 percentage	 increases	 the	 time	 required	 for	 desorption	 is	 higher,	 the	

desorption	rate	decreases	with	time	due	to	a	lowering	in	the	driving	force	and,	consequently,	

a	greater	purge	volume	is	required	to	remove	residual	adsorbed	CO2,	determining	a	dilution	

effect.	Differently,	for	each	temperature	and	for	each	fixed	CO2	recovery	level,	
i

2COC does	not	

substantially	vary	when	comparing	the	values	obtained	at	1.39×10‐2	L	s‐1	and	6.95×10‐3	L	s‐1.	

In	 fact,	 from	 eq.	 (4.5)	 (Section	 4.4.2),	 at	 fixed	 regeneration	 level	
i

2COV 	 is	 constant	 but	 i
2NV

depends	 on	 both	 desorption	 time	 and	 purge	 flow	 rate	 ( i
des

2N tQ ,	 in	 eq.	 (4.5)):	 this	 product	 is	

comparable	 at	 the	 highest	 and	 lowest	 purge	 flow	 rate	 investigated	 determining	 equivalent	

concentration	levels.	From	data	reported	in	Table	5.13,	it	can	be	also	highlighted	that	for	 des
C60T  	

a	recovery	level	of	90%	adopting	the	lowest	N2	flow	rate	allows	to	obtain	a	desorbing	gas	with	

i

2COC ≈25%,	 while	 the	 mean	 CO2	 concentration	 only	 slightly	 increases	 for	 a	 50%	 solid	

regeneration	(
i

2COC ≈30%),	but	 this	would	eventually	produce	a	significant	reduction	 in	 the	

sorbent	utilization	time,	if	a	subsequent	adsorption	cycle	has	to	be	performed.	A	regeneration	

temperature	 of	 100°C	 appears	 to	 be	 the	 best	 operating	 condition	 to	 obtain	 higher	
i

2COC

values:	 a	more	 concentrated	 gas	 is	 obtained	 by	 recovering	 90%	 of	 the	 adsorbed	 CO2	 with	

respect	to	 des
C60T  	at	the	same	regeneration	level	and	for	 des

2NQ =6.95×10‐3	L	s‐1	and	with	a	halved	

desorption	 time	 (t90=80	 and	 37	 s	 for	 des
C60T  	 and	

des
C100T  ,	 respectively).	 Finally,	 regeneration	
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levels	of	70%	and	80%,	obtained	at	100°C	and	for	 des
2NQ =1.11×10‐2	L	s‐1,	can	be	 identified	as	

the	optimal	solutions	among	those	investigated,	as	a	compromise	between	the	amount	of	CO2	

recovered,	 its	 concentration	 in	 the	 desorbed	 gas	 (46‐48%	 by	 vol.)	 and	 time	 required	 to	

perform	that	recovery.	
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5.4 Adsorption	thermodynamics	and	kinetics	modelling	

In	 this	 Section,	 modelling	 analysis	 (using	 equations	 described	 in	 Chapter	 3)	 of	 both	

adsorption	isotherms	and	breakthrough	curves,	experimentally	determined	for	all	the	solids	

investigated	in	this	work,	is	presented.	

5.4.1 Thermodynamic	aspects 

Tables	 5.14	 and	 5.15	 list	 the	 main	 parameters	 obtained	 from	 the	 application	 of	

Henry/Langmuir/Freundlich/Dubinin‐Radushkevich	 models	 to	 the	 adsorption	 isotherms	

obtained	at	30,	50	and	80°C	for	F600‐900	and	N.RGC30	both	raw	and	ILs‐functionalized.		

It	 is	highlighted	 that:	 i)	 for	 the	Langmuir	model	a	simultaneous	 fitting	of	 the	adsorption	

isotherms	 at	 different	 temperatures	 was	 performed	 by	 imposing	 a	 unique	 max	 value	

(temperature‐independent)	 according	 to	 the	 recommendation	 provided	 in	Ruthven	 (1984);	

ii)	 for	 Dubinin‐Radushkevich	 model,	 the	 characteristic	 energy	 E	 was	 obtained	 by	

simultaneously	 fitting	 equilibrium	 data	 at	 different	 temperatures	 according	 to	 eq.	 (3.5)	 (cf.	

Chapter	3),	and	for	each	solid	the	micropore	volume	determined	from	N2	porosimetric	data	at	

‐196°C	 (cf.	 Chapter	 5)	 was	 imposed	 as	 a	 constant	 parameter.	 Moreover	 for	 DR	model,	 the	

molar	 volume	 of	 the	 liquid	 adsorbate	 and	 the	 pseudo‐vapor	 pressure	 were	 computed	

according	to	the	expressions	reported	in	Do	(1998)	and	Saha	et	al.	(2011).	

As	a	general	consideration,	it	can	be	observed	that	the	Henry	model	provides	the	poorest	

quality	of	data	 fitting	 for	all	 sorbents	as	 testified	by	 the	 lowest	values	of	 the	determination	

coefficient	 R2	 above	 all	 at	 30°C;	 at	 80°C	 the	 model	 provides	 a	 better	 fitting	 of	 adsorption	

isotherms	due	to	a	more	 linear	trend	of	adsorption	data	(cf.	also	Figure	5.22).	Similarly,	 the	

DR	model	is	not	adequate	to	interpret	satisfactorily	adsorption	isotherms	above	all	at	higher	

temperatures	and	this	is	possibly	related	to	the	absence	of	adsorption	data	at	high	pressures	

for	 a	 proper	 fitting	 of	 the	 characteristic	 curve	 (eq.	 (3.5)).	 Freundlich	 and	 Langmuir	models	

determine	 the	 best	 fitting	 of	 equilibrium	 data	 for	 all	 the	 investigated	 materials	 and	

experimental	conditions	as	testified	by	the	highest	R2	values	(practically	unitary	for	both).	In	

particular,	 for	 each	 sorbent	 KL	 and	 KF	 values	 decrease	 with	 temperature,	 due	 to	 the	

exothermic	nature	of	 the	 adsorption	process	 (Ruthven,	 1984;	Do,	 1998).	 It	 is	 interesting	 to	

observe	that	in	all	the	cases,	the	values	of	the	Freundlich	heterogeneity	parameter	1/n	do	not	

differ	 too	much	 from	unity,	which	clearly	 indicates	 that	 the	sorbent	 surfaces	are	practically	

energetically	 homogeneous	 in	 the	 CO2	 capture	 process,	 also	 in	 the	 case	 of	 functionalized	

sorbents	(vide	infra)	(Do,	1998).		
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Finally,	 in	 the	case	of	Freundlich	model	 it	 is	possible	 to	observe	a	general	better	agreement	

between	the	ranking	derived	 in	terms	of	 the	affinity	parameter	(KF)	and	those	observed	for	

the	 adsorption	 capacities	 of	 the	 investigated	 sorbents	with	 respect	 to	 a	 comparison	 on	 the	

basis	of	the	Langmuir	constant	KL.	For	instance,	when	comparing	the	values	of	this	parameter	

for	the	raw	activated	carbons,	we	obtain	KF=2.45	and	2.03	at	30°C	and	0.80	and	0.81	at	80°C	

for	 F600‐900	 and	 N.RGC30	 respectively,	 which	 agrees	 with	 the	 general	 trend	 of	 the	

adsorption	 isotherms	 with	 temperature	 described	 in	 Section	 5.2.1	 (higher	 CO2	 capture	

capacities	for	F600‐900	at	30°C	while	equivalent	adsorption	performances	at	80°C).	

As	 an	 example,	 Figure	 5.22	 reports	 the	 comparison	 between	 experimental	 adsorption	

isotherms	and	thermodynamic	models	predictions	for	F600‐900	raw	at	(a)	30,	(b)	50	and	(c)	

80°C.	
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Figure	5.22	Comparison	between	experimental	adsorption	isotherms	(symbols)	and	Henry,	Langmuir,	
Freundlich	and	Dubinin‐Radushkevich	models	(lines)	for	F600‐900	raw	at	(a)	30,	(b)	50	and	(c)	80°C	
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Table	5.14	Main	parameters	of	Henry,	Langmuir,	Freundlich	and	Dubinin‐Radushkevich	models		
for	CO2	adsorption	onto	F600‐900	raw	and	impregnated	with	[Hmim][BF4]/[Emim][Gly]	ILs	at	30,	50	and	80°C	

	

	

	 F600‐900	 F600‐900
[Hmim][BF4]	10‐3	M	

F600‐900
[Hmim][BF4]	10‐2	M	

F600‐900
[Emim][Gly]	10‐3	M	

F600‐900	
[Emim][Gly]	10‐2	M	

Henry
 

KH	
[mmol	g‐1	bar‐1]	

T=30°C 3.18 2.38 2.35 2.95 2.87
T=50°C 1.76	 1.63	 1.38	 1.91	 1.89	
T=80°C 0.88 0.92 0.66 1.01 0.83

R2	
T=30°C 0.922 0.969 0.970 0.966 0.951	
T=50°C 0.965 0.989 0.982 0.977 0.983	
T=80°C 0.990 0.994 0.994 0.999 0.996	

Langmuir
 

KL	
[bar‐1]	

T=30°C 2.07 1.31 1.8 1.28 1.49
T=50°C 0.91 0.79 0.87 0.75 0.84
T=80°C 0.40 0.41 0.37 0.34 0.32

max	
[mmol	g‐1]	

2.51	 2.54	 2.01	 3.19	 2.81	

R2	
T=30°C 0.998	 0.998	 0.999	 0.998	 0.999	
T=50°C 0.997	 0.999	 0.999	 0.999	 0.999	
T=80°C 0.998	 0.997	 0.999	 0.999	 0.998	

Freundlich
 

KF	
[mmol	g‐1	bar‐1/n] 

T=30°C 2.45 1.95 1.85 2.45 2.32
T=50°C 1.46 1.46 1.20 1.62 1.65
T=80°C 0.80 0.88 0.61 1.00 0.78

1/n	
T=30°C 0.76 0.82 0.78 0.83 0.81
T=50°C 0.83 0.90 0.88 0.86 0.88
T=80°C 0.91 0.95 0.93 0.99 0.95

R2	
T=30°C 0.999 0.999 0.998 0.996 0.999	
T=50°C 0.999 0.999 0.999 0.999 0.999	
T=80°C 0.999 0.997 0.999 0.997 0.998	

Dubinin	
Radushkevich

max	
[mmol	g‐1]	

T=30°C 8.85 8.42 7.77 8.42 7.77
T=50°C 8.42 8.01 7.39 8.01 7.39
T=80°C 7.81 7.43 6.86 7.43 6.86

E	
[kJ	mol‐1]

9.36	 9.05	 9.09	 9.36	 9.41	

R2	
T=30°C 0.978 0.976 0.972 0.987 0.990	
T=50°C 0.975 0.967 0.977 0.975 0.980	
T=80°C 0.975 0.686 0.898 0.895 0.945	
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Table	5.15	Main	parameters	of	Henry,	Langmuir,	Freundlich	and	Dubinin‐Radushkevich	models		
for	CO2	adsorption	onto	N.RGC30	raw	and	impregnated	with	[Hmim][BF4]/[Emim][Gly]	ILs	at	30,	50	and	80°C	

	

	 N.RGC30	
N.RGC30

[Hmim][BF4]	10‐3	M	
N.RGC30

[Hmim][BF4]	10‐2	M	
N.RGC30

[Emim][Gly]	10‐3	M	
N.RGC30	

[Emim][Gly]	10‐2	M	

Henry
 

KH	
[mmol	g‐1	bar‐1]	

T=30°C 2.64 2.20 2.12 2.48 2.18
T=50°C 1.68	 1.56	 1.48	 1.78	 1.57	
T=80°C 0.88 0.89 0.75 1.05 0.95

R2	
T=30°C 0.921 0.964 0.944 0.967 0.970	
T=50°C 0.981 0.995 0.991 0.996 0.998	
T=80°C 0.990 0.997 0.992 0.998 0.996	

Langmuir
 

KL	
[bar‐1]	

T=30°C 2.04 1.20 1.60 1.06 0.89
T=50°C 1.04 0.74 0.94 0.67 0.57
T=80°C 0.48 0.39 0.43 0.37 0.32

max	
[mmol	g‐1]	

	 2.10	 2.52	 1.98	 3.14	 3.15	

R2	
T=30°C 0.999	 0.999	 0.999	 0.999	 0.997	
T=50°C 0.999	 0.999	 0.999	 0.997	 0.995	
T=80°C 0.998	 0.999	 0.999	 0.999	 0.992	

Freundlich
 

KF	
[mmol	g‐1	bar‐1/n] 

T=30°C 2.03 1.82 1.68 2.07 1.83
T=50°C 1.45 1.44 1.33 1.70 1.53
T=80°C 0.81 0.84 0.68 1.01 1.03

1/n	
T=30°C 0.76 0.83 0.79 0.83 0.84
T=50°C 0.87 0.93 0.91 0.95 0.98
T=80°C 0.92 0.95 0.91 0.96 0.98

R2	
T=30°C 0.998 0.999 0.999 0.999 0.998	
T=50°C 0.999 0.999 0.999 0.999 0.998	
T=80°C 0.999 0.999 0.999 0.999 0.992	

Dubinin	
Radushkevich

max	
[mmol	g‐1]	

T=30°C 10.78 10.15 9.93 10.58 9.93
T=50°C 10.27 9.65 9.45 10.06 9.45
T=80°C 9.53 8.96 8.76 9.34 8.76

E	
[kJ	mol‐1]  8.84	 8.67	 8.64	 8.80	 8.67	

R2	
T=30°C 0.931 0.917 0.910 0.925 0.918	
T=50°C 0.928 0.942 0.933 0.955 0.955	
T=80°C 0.730 0.501 0.616 0.508 0.534	
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The	 energetic	 aspects	 of	 the	 adsorption	 phenomena	 for	 the	 investigated	 systems	 were	

evaluated	by	computing	the	isosteric	heat	of	adsorption	qst	as	a	function	of	the	specific	loading	

	 by	means	 of	 the	Clausius‐Clapeyron	 equation	 applied	 to	 experimental	 adsorption	data	 at	

different	temperatures	(cf.	eq.	(3.8)	in	Section	3.1).	The	qst	vs.		trends	are	reported	in	Figure	

5.23	for	both	(a)	F600‐900	based	and	(b)	N.RGC30	materials.		
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Figure	5.23	Isosteric	heat	of	adsorption	as	a	function	of	the	specific	loading	for	(a)	F600‐900	and	(b)	

N.RGC30	adsorbents	both	raw	and	functionalized	with	[Hmim][BF4]/[Emim][Gly]	ILs	
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As	it	can	be	observed,	the	isosteric	heat	of	adsorption	is	practically	constant	with	loading	

for	all	the	investigated	adsorbents,	indicating	that	the	surfaces	are	energetically	homogeneous	

towards	CO2	capture	(Chakraborty	et	al.,	2006),	 in	agreement	with	the	observations	derived	

from	 thermodynamic	 modelling	 analysis.	 For	 impregnated	 materials,	 the	 low	 amounts	 of	

active	phase	charged	do	not	appreciably	modify	the	overall	surface	energetic	homogeneity	of	

the	parent	substrate	thus	determining	a	constant	qst	value	with	 loading.	 In	this	context,	 it	 is	

hard	at	the	current	stage	of	the	research	to	understand	the	interplay	of	the	contributions	of	

the	 substrate	 active	 sites	 and	 the	 ones	 belonging	 to	 the	 ionic	 liquid	 to	 CO2	 capture,	 and	

consequently	 to	 explain	 the	 trends	 observed	 for	 the	 functionalized	 materials	 in	 terms	 of	

interaction	energies.	On	 the	other	hand,	 the	mean	values	of	 the	 isosteric	heat	of	adsorption	

obtained	for	the	raw	activated	carbons	are	28.8	and	25.5	kJ	mol‐1	for	F600‐900	and	N.RGC30	

respectively:	this	confirms	that	the	presence	of	a	narrower	micropore	size	distribution	with	a	

prevailing	contribution	of	very	small	pore	diameters	(<10	Å)	observed	for	F600‐900	produces	

stronger	 interactions	with	CO2	molecules	with	 respect	 to	N.RGC30	and	consequently	higher	

adsorption	performances	above	all	at	lower	temperatures	(cf.	Section	5.2.1).	
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5.4.2 Kinetic	aspects 

The	 main	 kinetic	 parameters	 determined	 from	 the	 modelling	 analysis	 of	 breakthrough	

curves	 (according	 to	 the	 theoretical	 frameworks	 described	 in	 Section	 3.2)	 obtained	 at	

different	operating	temperatures	and	for	a	15%	CO2	gas	stream	are	reported	 in	Tables	5.16	

and	5.17	for	F600‐900	and	N.RGC30	sorbents	series,	respectively.	It	is	here	recalled	that	mass	

and	 momentum	 balance	 equations	 were	 numerically	 solved	 with	 Aspen	 AdsimTM	 software	

adopting	a	linear	driving	force	approximation	(LDF)	for	the	mass	transfer	rate;	moreover	the	

only	fitting	parameter	of	the	model	was	the	micropore	diffusivity	Dmicro,	whereas	the	external	

and	 macropore	 (Knudsen)	 mass	 transfer	 coefficients	 were	 calculated	 from	 gas/solids	

properties	 (cf.	 Section	 3.2).	 Figure	 5.24	 reports,	 as	 an	 example,	 the	 comparison	 of	 the	

experimental	 and	 theoretical	 breakthrough	 curves	 obtained	 for	 raw	 F600‐900	 for	 a	 typical	

flue‐gas	composition	and	at	(a)	30,	(b)	50	and	(c)	80°C.	

As	a	general	consideration,	it	is	highlighted	that	the	Freundlich	thermodynamic	model	was	

adopted	 as	 equilibrium	 isotherm	 in	 the	 rate	 of	 adsorption	 equation	 (3.13)	 (cf.	 Section	 3.2)	

because	it	supplied	slightly	better	numerical	solutions	with	respect	to	the	Langmuir	isotherm.	

Noteworthy,	the	computed	fixed‐bed	Péclet	number	was	higher	than	100	in	all	cases,	thus	it	

was	 possible	 to	 consider	 a	 plug‐flow	 for	 all	 the	 investigated	 systems	 (Inglezakis	 and	

Poulopoulos,	 2006);	 in	 addition,	 the	 pressure	 drops	 across	 the	 fixed	 bed,	 calculated	 from	

Ergun’s	equation	(3.14),	were	practically	negligible	(order	of	magnitude	10‐3	bar).	

The	general	features	inferable	from	a	comparison	among	film,	macropore	and	micropore	

diffusion	resistances	are	summarized	in	the	following.	

 Micropore	diffusion	mechanism	represents	the	rate‐determining	step	of	the	adsorption	

process	 in	 almost	 all	 the	 investigated	 systems.	 As	 the	 temperature	 increases,	

differences	 between	micropore	 and	macropore	 diffusion	 resistances	 tend	 to	 reduce,	

and	in	any	case	the	CO2	transport	through	the	external	fluid	film	is	very	fast	(negligible	

film‐diffusion	 resistance).	 Dmicro	 is	 generally	 2	 or	 3	 orders	 of	 magnitude	 lower	 than	

Dmacro	at	30°C,	and	while	the	former	has	a	strong	dependence	on	temperature	the	latter	

only	slightly	increases	from	30	to	80°C.	

 When	 comparing	 each	 raw	 activated	 carbon	 with	 the	 corresponding	 functionalized	

materials,	 it	 can	 be	 observed	 that	 micropore	 diffusion	 resistance	 is	 higher	 for	 the	

former	and	differences	diminish	with	temperature	to	become	practically	negligible	at	

80°C.	This	behaviour	should	be	once	again	imputed	to	the	already	described	trends	in	

adsorption	capacity	and	micropore	diffusivity	 together	with	 the	possible	 influence	of	
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the	 temperature	 on	 the	 IL	 distribution	 inside	 the	 sorbent	 pores	 in	 the	 case	 of	

impregnated	 adsorbents	 (cf.	 also	 Sections	 5.2.2	 and	 5.2.3).	 Finally,	 for	 N.RGC30	

sorbents,	the	diffusion	resistances	are	generally	 lower	than	those	observed	for	F600‐

900	 materials	 and	 differences	 reduce	 with	 temperature:	 this	 testifies	 again	 the	

important	 role	 exerted	 by	 both	 the	 occurrence	 of	wider	micropores	 and	 the	 greater	

contribution	of	mesopores	for	N.RGC30	adsorbents	with	respect	to	F600‐900	ones	 in	

determining	 faster	 kinetics	 above	 all	 at	 lower	 temperatures.	 The	 observations	 here	

provided	confirm	the	results	discussed	in	terms	of		analysis	in	the	previous	Sections.		
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Table	5.16	Main	kinetic	parameters	derived	from	mathematical	modelling	of	breakthrough	curves	for	CO2	adsorption		
onto	F600‐900	raw	and	impregnated	with	[Hmim][BF4]/[Emim][Gly]	ILs	at	30,	50	and	80°C;	۱۱۽૛

	.vol	by	%15=ܜ܍ܔܖܑ

	

	

	

	

	

	

	
F600‐900	

F600‐900
[Hmim][BF4]	10‐3	M	

F600‐900
[Hmim][BF4]	10‐2	M	

F600‐900
[Emim][Gly]	10‐3	M	

F600‐900	
[Emim][Gly]	10‐2	M	

Film		
diffusion	

ܘ܌
૟ܜܠ܍ܓ

	
	

[s]	

T=30°C 1.37x10‐3	 1.37x10‐3	 1.37x10‐3	 1.37x10‐3	 1.37x10‐3	

T=50°C 1.23x10‐3	 1.23x10‐3	 1.23x10‐3	 1.23x10‐3	 1.23x10‐3	

T=80°C 1.08x10‐3	 1.08x10‐3	 1.08x10‐3	 1.08x10‐3	 1.08x10‐3	

Macropore	
diffusion	

૛ܘ܌

૟૙ઽܗܚ܋܉ܕ۲ܘ
	

	

[s]	

T=30°C 0.15	 0.16	 0.16	 0.16	 0.16	

T=50°C 0.15	 0.15	 0.15	 0.15	 0.15	

T=80°C 0.14	 0.14	 0.15	 0.14	 0.15	

Dmacro	
	

[m2	s‐1]	

T=30°C 1.13x10‐7	 1.13x10‐7	 1.13x10‐7	 1.13x10‐7	 1.13x10‐7	

T=50°C 1.17x10‐7	 1.17x10‐7	 1.17x10‐7	 1.17x10‐7	 1.17x10‐7	

T=80°C 1.22x10‐7	 1.22x10‐7	 1.22x10‐7	 1.22x10‐7	 1.22x10‐7	

Micropore	
diffusion	

૛ܘ܌

૟૙۶۲ܗܚ܋ܑܕ
 

	

[s]	

T=30°C 3.82	 1.10	 1.21	 1.22	 1.72	

T=50°C 1.08	 0.24	 0.60	 1.20	 0.65	

T=80°C 0.34	 0.22	 0.31	 0.05	 0.40	

Dmicro	
	

[m2	s‐1] 

T=30°C 1.60x10‐10	 8.52x10‐10	 7.32x10‐10	 6.19x10‐10	 4.24x10‐10	

T=50°C 1.15x10‐9	 6.26x10‐9	 2.75x10‐9	 9.76x10‐10	 1.79x10‐9	

T=80°C 7.13x10‐9	 1.15x10‐8	 1.12x10‐8	 5.26x10‐8	 7.06x10‐9	
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Table	5.17	Main	kinetic	parameters	derived	from	mathematical	modelling	of	breakthrough	curves	for	CO2	adsorption		
onto	N.RGC30	raw	and	impregnated	with	[Hmim][BF4]/[Emim][Gly]	ILs	at	30,	50	and	80°C;	۱۱۽૛

	.vol	by	%15=ܜ܍ܔܖܑ

	

	

	

	 N.RGC30	 N.RGC30
[Hmim][BF4]	10‐3	M	

N.RGC30
[Hmim][BF4]	10‐2	M	

N.RGC30
[Emim][Gly]	10‐3	M	

N.RGC30	
[Emim][Gly]	10‐2	M	

Film	diffusion	

ܘ܌
૟ܜܠ܍ܓ

	
	

[s]	

T=30°C 1.60x10‐3	 1.60x10‐3	 1.60x10‐3	 1.60x10‐3	 1.60x10‐3	

T=50°C 1.44x10‐3	 1.44x10‐3	 1.44x10‐3	 1.44x10‐3	 1.44x10‐3	

T=80°C 1.26x10‐3	 1.26x10‐3	 1.26x10‐3	 1.26x10‐3	 1.26x10‐3	

Macropore	
diffusion	

૛ܘ܌

૟૙ઽܗܚ܋܉ܕ۲ܘ
	

	

[s]	

T=30°C 0.09	 0.10	 0.10	 0.09	 0.10	

T=50°C 0.09	 0.10	 0.10	 0.09	 0.10	

T=80°C 0.09	 0.10	 0.10	 0.10	 0.10	

Dmacro	
	

[m2	s‐1]	

T=30°C 2.10x10‐7	 2.10x10‐7	 2.10x10‐7	 2.10x10‐7	 2.10x10‐7	

T=50°C 2.11x10‐7	 2.11x10‐7	 2.11x10‐7	 2.11x10‐7	 2.11x10‐7	

T=80°C 2.12x10‐7	 2.12x10‐7	 2.12x10‐7	 2.12x10‐7	 2.12x10‐7	

Micropore	
diffusion	

૛ܘ܌

૟૙۶۲ܗܚ܋ܑܕ
 

	

[s]	

T=30°C 1.66	 0.54	 0.51	 0.63	 0.61	

T=50°C 0.30	 0.15	 0.15	 0.14	 0.18	

T=80°C 0.15	 0.15	 0.08	 0.07	 0.08	

Dmicro	
	

[m2	s‐1] 

T=30°C 5.89x10‐10	 9.34x10‐10	 9.58x10‐10	 6.95x10‐10	 8.33x10‐10	

T=50°C 2.41x10‐9	 5.89x10‐9	 5.57x10‐9	 5.23x10‐9	 4.46x10‐9	

T=80°C 9.57x10‐9	 2.15x10‐8	 2.02x10‐8	 1.75x10‐8	 2.03x10‐8	
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Figure	5.24	Comparison	between	experimental	(symbols)	and	theoretical	(lines)	breakthrough	curves	

obtained	for	F600‐900	raw	at	(a)	30,	(b)	50	and	(c)	80°C;	CinletCO2=15%	by	vol.	
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CHAPTER	6		

CONCLUSIONS	AND	FUTURE	PERSPECTIVES	

The	need	of	developing	high	performance	and	cost‐effective	post‐combustion	purification	

systems	 for	 CO2	 capture	 has	 recently	 stimulated	 the	 research	 of	 new	 adsorbents	materials	

with	 tailored	 microstructural	 and	 chemical	 properties.	 Contextually,	 the	 use	 of	 supported	

ionic	 liquid	 phase	materials	 (SILP)	 is	 a	 very	 attractive	 but	 limitedly	 explored	 investigation	

area.	 In	 this	 PhD	 project	 the	 effect	 of	 confining	 ionic	 liquids	 (ILs)	 into	 activated	 carbons	

characterized	by	different	porosimetric	structures	on	their	CO2	capture	performances	under	

typical	flue‐gas	conditions	has	been	investigated.	The	obtained	results	have	provided	a	deeper	

understanding	in	this	field	with	respect	to	the	available	scientific	literature.										

CO2	 adsorption	 tests	 have	been	 carried	 in	model	 flue‐gas	 streams	onto	 two	 commercial	

activated	 carbons,	 namely	 Filtrasorb	 400	 and	 Nuchar	 RGC30,	 both	 raw	 and	 functionalized	

with	 either	 1‐hexyl‐3‐methylimidazolium	 tetrafluoroborate	 [Hmim][BF4]	 or	 1‐ethyl‐3‐

methylimidazolium	 glycine	 [Emim][Gly]	 ILs	 adopting	 different	 impregnation	 conditions	

(5.6×10‐3	and	2.2×10‐2	M).		

Results	obtained	for	raw	activated	carbons	have	confirmed,	in	agreement	with	previously	

literature	 findings,	 that	 the	 presence	 of	 a	 narrower	 micropore	 size	 distribution	 with	 a	

prevailing	contribution	of	very	small	pore	diameters	(<10	Å)	observed	for	Filtrasorb	400	is	a	

key	factor	in	determining	higher	CO2	capture	capacities	above	all	at	low	temperature	(30°C);	

on	the	other	hand,	the	sorbents	are	equivalent	in	the	purification	process	at	80°C	because	of	

the	reduced	contribution	of	physisorption	at	higher	temperatures,	as	expected	in	exothermal	

processes.	These	experimental	evidences	have	been	also	corroborated	by	the	higher	value	of	

the	 isosteric	 heat	 derived	 for	 Filtrasorb	400	 solid,	 testifying	 stronger	 interactions	with	CO2	

molecules	with	respect	to	Nuchar	RGC30	activated	carbon.	

Thermodynamic	 adsorption	 results	 onto	 [Hmim][BF4]‐functionalized	 sorbents	 suggest	

that	 the	 impregnation	 of	 micro	 and	 micro‐mesoporous	 activated	 carbons	 with	 this	 IL	 (a	

physical	 solvent	 for	 CO2)	 is	 not	 suitable	 for	 CO2	 removal	 from	 flue‐gas	 (at	 least	 under	 the	

investigated	impregnation	conditions),	because	the	active	phase	contribution	in	the	pollutant	

capture	is	not	able	to	balance	the	reduction	of	the	substrate	adsorption	performances	induced	

by	 the	 pores	 obstruction,	 also	 at	 higher	 temperatures.	 Conversely,	 the	 functionalization	 of	

both	 activated	 carbons	with	 a	more	 CO2	 chemically‐affine	 IL	 (i.e.	 [Emim][Gly])	 under	more	

diluted	 impregnation	 condition	 can	 ameliorate	 the	 parent	 carbons	 CO2	 adsorption	
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performances	 at	 80°C	 and	 for	 a	 typical	 15%	 CO2	 flue‐gas	 stream	 (while	 pores	 blocking	 is	

dominant	 at	 30°C)	 thanks	 to	 a	 good	 compromise	between	 IL	 loading	 and	pore	 accessibility	

(low	 pore	 volume	 reduction).	 Nevertheless,	 the	 improvement	 in	 CO2	 adsorption	 capacity	

determined	 by	 [Emim][Gly]	 is	 still	 not	 adequate	 for	 the	 potential	 application	 of	 these	

materials	in	large‐scale	flue‐gas	purification	systems.	

Dynamic	 adsorption	 results	 on	 the	 investigated	 sorbents	 highlighted	 the	 important	 role	

played	by	both	a	greater	contribution	of	mesopores	and	the	presence	of	wider	micropores	for	

Nuchar	 RGC30‐based	 materials	 in	 determining	 faster	 capture	 kinetics	 with	 respect	 to	

Filtrasorb	400	sorbents,	 in	particular	at	 low	 temperature.	As	 the	 temperature	 increases	 the	

reduced	 differences	 in	 adsorption	 capacity	 coupled	 with	 the	 increase	 in	 intraparticle	

diffusivity	make	the	two	classes	of	sorbents	kinetically	equivalent	in	the	purification	process.	

Furthermore,	 modelling	 analysis	 of	 breakthrough	 curves	 allowed	 identifying	 micropore	

diffusion	as	the	rate‐determining	step	of	CO2	adsorption,	for	almost	all	the	analysed	systems.		

Preliminary	 regeneration	 studies	 on	 raw	 Filtrasorb	 400,	 which	 displayed	 the	 highest	

capture	 performances	 among	 all	 the	 adsorbents	 investigated,	 showed	 a	 complete	

regenerability	 of	 this	 sorbent	 under	 multiple	 adsorption/desorption	 cycles.	 Moreover,	

desorption	experiments	carried	out	on	Filtrasorb	400	(after	a	solid	saturation	with	a	15%	CO2	

gas	stream	at	30°C)	at	different	temperatures	(60	°C	and	100°C)	and	N2	flow	rates	(6.95×10‐3	

L	 s‐1,	 1.11×10‐2	 L	 s‐1,	 1.39×10‐2	 L	 s‐1)	 evidenced	 that	 regeneration	 levels	 of	 70	 and	 80%	

obtained	 at	 100°C	 and	 adopting	 a	 1.11×10‐2	 L	 s‐1	 purge	 flow	 rate	 can	 be	 considered	 as	 the	

optimal	 solutions	 among	 those	 investigated,	 being	 a	 fair	 compromise	 between	 CO2	

concentration	in	the	desorbing	flow	(46‐48%)	and	time	necessary	to	perform	the	recovery.	

As	 a	 general	 consideration,	 the	 results	 obtained	 in	 this	work	 encourage	 future	 research	

efforts	 in	 the	 field	 of	 porous	 activated	 carbons	 functionalization	with	 amine‐based	 ILs	 as	 a	

potential	route	to	improve	their	CO2	capture	performances,	in	particular	at	high	temperatures	

at	which	the	parent	material	contribution	is	quite	low	to	allow	a	cost‐effective	treatment	of	a	

real	 flue‐gas.	 In	 this	 context,	 the	 choice	 of	 activated	 carbons	 characterized	 by	 larger	mean	

pore	 diameters	 (i.e.	mainly	mesoporous)	 could	 be	 apt	 to	 favour	 a	 higher	 dispersion	 of	 the	

ionic	 liquid	 over	 the	 substrate	 surface	 avoiding	 the	 undesired	 pore	 clogging	 effect.	 The	

synergistic	 collaboration	with	 research	 groups	 belonging	 to	 different	 fields	 of	 investigation	

(Chemical	Engineering,	 Inorganic	and	Organic	Chemistry)	could	be	an	 important	strategy	 to	

foster	the	development	of	highly	CO2‐affine	SILP	materials	and	accelerate	their	applicability	in	

post‐combustion	 systems,	 aiming	 at	 the	 following	 goals:	 i)	 synthesis	 of	 amine‐based	 ILs	

characterized	 by	 reduced	 molecular	 sizes	 to	 minimize	 potential	 pore	 blocking;	 ii)	
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development	 of	 new	 functionalization	 protocols,	 e.g.	 covalent	 tethering	 of	 the	 IL	 to	 the	

support	 surface	 which	 could	 be	 an	 interesting	 option	 for	 both	 minimizing	 the	 amount	 of	

active	 phase	 used,	 with	 consequent	 economic	 benefits,	 and	 avoiding	 the	 continuous	

redistribution	of	the	liquid	phase	inside	the	sorbent	pores	induced	by	temperature	variations;	

iii)	adsorption	tests	in	multicomponent	systems	including	the	presence	of	NOx,	SO2	and	water	

vapour;	 iv)	 dedicated	 tests	 using	 different	 reactor	 configurations	 (fluidized‐bed,	 circulating	

fluidized	 beds	 etc.);	 v)	 regeneration	 studies	 aimed	 at	maximizing	 CO2	 concentration	 in	 the	

desorbing	 flow	 (for	 subsequent	 storage	 of	 the	 pollutant)	 while	 minimizing	 energy	

requirements.	
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