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Summary

SUMMARY

The relaxin (RLN) peptides exert different biological effects ranging

from reproduction to regulating central nervous processes. Until now,

few studies have been performed in embryonic development and in

vertebrate models beyond mammals. I used zebrafish, as experimental

model, to characterize the spatial and temporal expression pattern of

the relaxin/receptor system in vertebrate embryogenesis. In previous

analysis,  the  expression  pattern  of  the  zebrafish  rln3a  and  rln3b

paralogue  genes  was  characterized.  These  paralogue  genes  are

expressed  in  periaqueductal  gray  and  nucleus  incertus,  showing  a

conserved  expression  pattern  during  vertebrate  evolution.  In  this

thesis,  I  demonstrated  that  another  member  of  zebrafish  relaxin

family, the rln, is express in many brain areas of zebrafish embryo. In

particular, I showed that the  rln  transcript co-localized with  rln3a  in

the putative nucleus incertus (NI).  The  rln  gene expression in many

developing  brain  regions  is  in  line  with  the  phylogenetic  analysis,

which  suggests  that  teleost  rln gene  is  closely related  to  rln3-like

ancestor gene.  The  insl-5a and  insl-5b paralogue genes showed their

expression  localized  in  two  distinct  cellular  types  of  intestinal

epithelium.  My  data  showed  that  the  insl5 expression  pattern  is

conserved  from fish  to  mammals,  since  the  human INSL5  gene  is

expressed in the intestinal tissue; in addition, they showed that a sub-

functionalization  event  likely  differentiated  the  gene  expression

regulation of the two zebrafish paralogue genes. Beyond the ligands, I

extend the gene expression characterization to the relaxins receptors

encoding genes. I demonstrated that the zebrafish rxfp1 gene has the

same  syntenic  genomic  organization,  and  a  similar  exon-intron

structure  to  the  human homologue  gene.  Furthermore,  the  deduced

Rxfp1 protein sequence shows a high degree of amino acid similarity

when compared with the human protein and the conservation of all

amino acid identity necessary for the binding with relaxin. The rxfp1

expression  pattern  in  Danio  rerio embryos  is  very  similar  to  that

reported in the adult mammalian brain, suggesting a pivotal role of

this receptor in the neurophysiology processes already at very early

developmental  stages.  Only  one  of  three  rxfp2 paralogue  gene  is

expressed during embryonic developmental stage and its transcript is

localized in pineal gland, habenula and preoptic area. The analysis of
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rxfp3  paralogue  genes  expression  pattern  showed  that  they  are

differentially  expressed  both  in  neural  tissues  and  non-neural

territories.  I  showed  that,  in  embryonic  development,  the  different

expression areas of relaxin receptors and probably their function are

conserved between mammals and fishes. Overall,  my data provided

evidence  that  the  relaxin/receptor  system is  active during zebrafish

embryogenesis, and that their expression territories and probably their

function are conserved between mammals and fishes. 
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Riassunto

RIASSUNTO

Le relassine  sono  ormoni  peptidici  che  esercitano  svariati  effetti

biologici  sulla  riproduzione  e  sui  processi  neurali.  Lo  studio  della

famiglia  delle  relassine  e  dei  rispettivi  recettori  si  è  incentrato

principalmente su organismi adulti e su modelli sperimentali  di specie

mammifere. Al contrario, pochi dati sono disponibili sul ruolo svolto

durante l’embriogenesi ed in organismi diversi dai mammiferi. Per il

mio progetto di dottorato, ho usato come modello sperimentale Danio

rerio,  comunemente  noto  come pesce  zebra,  al  fine  di  allargare  la

conoscenza sul sistema relassina/recettore durante l’embriogenesi dei

vertebrati. 

Analisi  precedenti  effettuate  nel  laboratorio  dove  ho  svolto  il  mio

lavoro  di  ricerca,  hanno  dimostrato  che,  durante  lo  sviluppo

embrionale, i geni paraloghi di uno dei membri della famiglia delle

relassine,  rln3a e rln3b,  sono  entrambi  espressi  nel  cervello  di

zebrafish, in una regione omologa al nucleo incerto dei mammiferi.

Nel mio lavoro di tesi, ho ampliato l’analisi agli altri membri della

famiglia delle relassine ed ai rispettivi recettori. La caratterizzazione

del gene  rln ha mostrato che,  la  sequenza  amminoacidica possiede

un'elevata percentuale d'identità con i due paraloghi rln3a e rln3b del

pesce zebra, avvalorando l'ipotesi che l'intera famiglia delle relassine

si sia evoluta da un unico gene ancestrale  rln3-simile. Il  gene  rln è

espresso nel sistema nervoso centrale ed il suo trascritto co-localizza

con il gene rln3a nel putativo nucleo incerto. Nell'insieme i territori di

espressione del gene rln nel pesce zebra, comparati a quelli del ratto,

fanno  ipotizzare  un  ruolo  nei  processi  neuroendocrini  e  sensoriali,

conservato  nell'evoluzione  dei  vertebrati.  Inoltre,  la  presenza  del

trascritto a livello della regione pancreatica e della tiroide, fa supporre

una funzione di Rln come ormone endocrino e paracrino. I territori di

espressione dei due paraloghi insl5a e insl5b sono anch'essi conservati

durante l’evoluzione, essendo entrambi espressi a livello dell’intestino

come per i mammiferi. Inoltre, data la loro espressione in tipi cellulari

differenti,  si  è ipotizzato un processo di  sub-funzionalizzazione dei

due  geni  paraloghi.  Le  relassine  interagiscono  con  una  classe  di

recettori accoppiati a proteine G (GPCR), noti come RXFP. In seconda

analisi, la mia attività di ricerca si è focalizzata sulla caratterizzazione

dei profili di espressione genica di tali recettori. L’omologo nel pesce
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zebra del recettore RXFP1 mostra un elevato livello di conservazione

sia nella struttura del gene che nella sequenza amminoacidica. Anche i

territori  di  espressione  risultano  conservati  nell'evoluzione  dei

vertebrati,  suggerendo  un  ruolo  centrale  di  questo  recettore  nei

processi neurali già nelle prime fasi di vita di un organismo. RXFP2

presenta  3  omologhi  nel  pesce  zebra,  ma  solo  uno  di  essi  risulta

espresso durante lo sviluppo embrionale, a partire dallo stadio larvale.

L'espressione genica è stata rivelata in territori come l'epifisi, l'abenula

e l'area preottica, strutture correlate al controllo degli stati emotivi ed

al ritmo circadiano. RXFP3 e RXFP4 sono i recettori che presentano

una situazione più complessa nel pesce zebra, infatti nel suo genoma

sono presenti 7 geni omologhi, di cui solo alcuni di essi sono espressi

durante  lo  sviluppo  embrionale.  L'analisi  di  localizzazione  dei

rispettivi mRNA, ha mostrato che l'espressione di tali geni riguarda

strutture nervose coinvolte nell’elaborazione somato-sensoriale e nella

regolazione  neuroendocrina,  come già  noto  per  il  cervello  di  ratto

adulto. Presi nel loro insieme i dati di espressione degli omologhi di

RXFP3 e RXFP4 nel pesce zebra, fanno ipotizzare che probabilmente

i meccanismi di regolazione dell' espressione genica e la loro funzione

ricapitolano i territori di espressione e la funzione dei soli due geni

presenti nel genoma dei mammiferi. Nel complesso, i dati ottenuti nel

mio  lavoro  di  tesi  mostrano  che  il  sistema  ligando/recettore  delle

relassine  è  attivo  durante  l'embriogenesi,  e  che  i  loro  territori  di

espressione  e,  probabilmente,  la  loro  funzione  nell'embrione  sono

conservati tra mammiferi e pesci.
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Introduction

2.0 INTRODUCTION

2.1 The relaxin family: structure and evolution

The members  of  relaxin/insulin-like peptide family are encoded  by

seven genes in humans and are all structurally related to insulin. In

particular, the peptide family is made of three relaxin genes (RLN1,

RLN2 and RLN3) and four insulin-like (INSL) peptide genes (INSL3,

INSL4,  INSL5  and  INSL6).  Relaxin  (RLN2),  the  first  identified

family  member  (Hisaw,  1926),  was  recognized  as  a  hormone

influencing the reproduction during normal pregnancy and parturition

in  many  mammalian  species  (reviewed  in  Bathgate  et  al.,  2006).

Currently,  it  is  known  that  RLN  is  involved  in  a  broad  range  of

reproductive  and  neuroendocrine  functions  (Bathgate  et  al.,  2006).

The relaxin family and  insulin  family belong  to  the insulin/relaxin

superfamily. The two families diverged early in vertebrate evolution

to form the relaxin peptide family, which includes several signalling

molecules that share similar secondary structures (Olinski et al., 2006

a/b). All members are synthesized as a pre-prohormone consisting of a

signal  peptide,  B-domain,  C-peptide,  and  A-domain  (Ivell  and

Einspainer,  2002).  In  particular,  like  all  other  secreted  peptide

hormones, relaxin is synthesized first as a pre-pro-peptide, with the N-

terminal pre- or signal sequence useful for the hormone secretion. The

nascent  pro-polypeptide  is  sequestered  into  the  lumen  of  the

endoplasmic reticulum of the hormone producing cells.  The cleavage

of the C peptide in vivo produces a mature peptide heterodimer of A-

and B-chains linked by two inter-chain and one intra-chain disulphide

bonds, between the six highly conserved cysteine residues in the A

and B chains (Marriott et al., 1992). The C-chain facilitates the folding

of the protein and the formation of the three disulphide bridges and it

is biologically active in the rat  central  nervous system acting as an

independent  signalling molecule  (Brailoiu et  al.,  2009) (Figure.  1).

Although they are structurally related  to  insulin,  the relaxin family

peptides produce their physiological effects by activating a group of

four  G  protein  coupled  receptors  (GPCRs),  relaxin  family  peptide

receptors 1–4 (RXFP1–4).
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Figure.  1:   Diagrammatic  structure  of  the  precursor  protein

generated  from  the  transcript  of  relaxin. Scheme  shows  the

intracellular  enzymatic  processing  of  pre-pro-relaxin  into  its  final

products.

The relaxin ligands and their receptors  were also analysed from an

evolutionary perspective,  in order  to understand how this signalling

system evolved in vertebrates.  Relaxins form together with insulins a

unique superfamily, whose members arose from a single ancestor gene

in  chordate  lineage  (Olinski  et  al.,  2006a;  Olinski  et  al.,  2006b).

Although  these  ligands  display  relatively  low  primary  amino-acid

sequence  identity,  phylogenetic  analyses  indicate  that  they  evolved

from a common ancestor RLN3-like gene (Hsu et al., 2003; Hsu et al.,

2005;  Wilkinson  et  al.,  2005b;  Good  et  al.,  2012).  After  the  two

rounds of whole genome duplications occurred in vertebrate lineage,

one single ancestor generated three relaxin genes (a fourth was lost).

One of these copies underwent a further duplication leading to a total

of four gene copies before tetrapods and teleosts divergence (Olinski

et al.,  2006a;  Good-Avila et al.,  2009).  Analyses  of whole genome

sequence  data  have  confirmed  that  three  rounds  of  whole  genome

duplication (WGD) have contributed immensely to the diversification

of  vertebrates  (Abi-Rached  et  al.,  2002;  Dehal  et  al.,  2005);  two

rounds of WGD (2R) occurred in early vertebrate evolution, while the

third round (3R) occurred at the base of the teleostean lineage. It has

been  proposed  that  the  major  vertebrate  novelties,  such  as  their

structurally  complex  nervous,  immune  and  reproductive  systems,

arose as a result of the massive amplification of genes that occurred

during  WGD. Indeed,  the  diversification  of  RLN/INSL  and  RXFP
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(Relaxin Family Peptide Receptors) genes was coincidental with 2R

events, suggesting that they probably played an important role in the

establishment of neuroendocrine and reproductive regulation in early

vertebrate evolution. In addition, it has been observed that the teleost-

specific 3R, strongly contributed to the genetic richness of teleosts and

their  biological  success  (Hoegg  et  al.,  2004;  Mayer  et  al.,  2005;

Yegorov et Good., 2012). The syntenic data analysis showed that in

teleost species, the six copies of relaxin family sequences are linked to

four loci: two loci are syntenic to human INSL5 (Park  et al., 2008),

and harbour teleost  insl5a  and insl5b; a locus syntenic to the human

relaxin cluster contains teleost rln; the locus syntenic to human RLN3

contains  rln3a  and  rln3b,  and the  locus  syntenic  to  human INSL3

contains teleost insl3 (Figure. 2). Thus, four genes were present in the

common ancestor of humans and teleosts. Of the six relaxin family

genes in teleosts, two arose as a result of the fish specific WGD. On

the contrary, in mammals, the RLN gene duplicated to give rise to two

additional members of the family, INSL4 and INSL6. In addition, in a

more  recent  duplication  of  the  RLN  gene,  specific  to  humans  and

anthropoid apes,  resulted in two copies  of RLN in primates,  called

RLN1 and RLN2,  with  RLN2 being functionally  equivalent  to  the

RLN in other mammals (Good Avila et al., 2009).
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Figure.  2:  Evolutionary  model  of  vertebrate  relaxin  genes  in

relation to the three rounds of whole genome duplication events

(R1-3). X  indicate pseudogenes or lost genes.

On the basis of ligand/receptor co-evolution, it was initially expected

that relaxin receptors should have been tyrosine kinase receptors as for

insulins, but, surprisingly,  they belonged to two unrelated and large

evolutionarily distant groups of GPCRs, the RXFP1/2 and RXFP3/4.

It was proposed that the signalling of the ancestral RLN/INSL peptide

in the chordate ancestor occurred via RXFP1/2-type receptors. Only at

the onset of 2R, the RXFP3/4-type receptor was recruited to produce a

signalling  system  encoded  by  3  genes  (2  receptors  and  a  single

ligand).  It  is  tempting  to  hypothesize  that  this  ancestral  2-receptor

system  had  a  dual  function  and  played  roles  in  both  reproductive

(using  RXFP1/2-type  receptor)  and  neuroendocrine  processes  (via

RXFP3/4-type  receptor)  (Yegorov  et  al.,  2012).  Then,  during

evolution,  only  those  genes  potentially  involved  in  neuroendocrine
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regulation  (as  rln3,  insl5  and  half  of  the  rxfp3/4-type  cognate

receptors) were retained after 3R in teleosts. The post-3R retention of

rln3 and insl5 paralogues was paralleled by the retention of duplicates

of  rxfp3-2  and  rxfp3-3,  suggesting  both  co-functioning  and  sub-

functionalization  of  their  neuroendocrine  roles  (Good  et  al.,  2012)

(Figure. 3).  

Figure.  3:  Evolutionary  model  of  vertebrate  receptor  genes  in

relation to the three rounds of whole genome duplication events

(R1-3).  X  indicate pseudogenes or lost genes.

2.2  The ligands

Only for a limited number of these peptides their physiological effects

have  been  defined.  Although  RLN  was  initially  identified  for  its

influence  on  parturition,  its  roles  has  now  been  recognized  in  a

number of physiological systems including cardiovascular, renal and

reproductive  systems,  in  fibrosis  and  allergic  responses  (Schwabe,

2000; Bathgate et al., 2002a, 2006a). 
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Relaxin-3 emerged prior to the divergence of fish and it is considered

as the ‘ancestral’ member of the relaxin peptide family. The relaxin-3

gene  is  highly  conserved  across  fish,  frogs,  rodents  and  primates,

suggesting that the peptide performs important physiological functions

(Bathgate  et  al.,  2002b;  Wilkinson  et  al.,  2005a;  Callander  and

Bathgate, 2010).  The RLN3 gene is mainly expressed in a restricted

area of rat,  mouse and monkey brain,  known as “nucleus  incertus”

(NI),  although  some  scattered  RLN3-expressing  cells  in  different

brain areas were also revealed (Bathgate et al., 2002a; Burazin et al.,

2002; Tanaka et al., 2005; Ma et al., 2007; Smith et al., 2010). Several

functions  of  RLN3  have  been  suggested  by  studies  on nucleus

incertus. This neural cell cluster has been emerging as a key element

of neural circuits regulating different processes such as arousal, stress

and  memory,  exploratory  navigation,  defensive  and  ingestive

behaviors,  and responses to neurogenic stressors (Goto et al.,  2001,

2005; Ryan et al., 2011; Olucha-Bordonau et al., 2011). In rodents, it

has been shown that RLN3 is involved in food intake, stress responses

and spatial memory (McGowan et al., 2005, 2006; Tanaka et al., 2005;

Hida  et  al.,  2006;  Ma  et  al.,  2009).  Interestingly,  the  expression

pattern of the RLN-3 gene is conserved during vertebrate evolution.

Indeed,  analysis  of  rln3a  gene  expression  during  zebrafish

embryogenesis showed that the gene is expressed in a region likely

homologous  to  the  mammalian  NI  (Donizetti  et  al.,  2008).  The

analysis  of the zebrafish paralogue gene  rln3b, evidenced that  both

genes were actively transcribed during embryogenesis and in the adult

tissues.  In  addition,  the  expression  pattern  analysis  evidenced

remarkable  differences  between  the  two  genes,  likely  as  a

consequence  of  a  sub-fuctionalization  process,  where  the  ancestral

expression  pattern  was  partitioned  between  the  two  paralogues

(Donizetti et al., 2009). For instance, during embryogenesis only rln3b

is expressed during gastrulation, while only rln3a is expressed in the

NI  at  the  larval  stage;  in  the  adult  organs,  both  genes  are  highly

expressed in the brain but only rln3b showed remarkable expression in

the testis (Donizetti et al., 2009). 

INSL-3 function has been strictly linked to reproduction, in fact, in

females, it has been shown to be involved in oocyte maturation and

germ cells survivor, while in male, is involved in descentus scrotalis

process (Nef et al., 1999; Zimmermman et al., 1999). 
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INSL-5 is expressed in human rectal and colon tissues and is likely

involved in both appetite stimulation and colon motility (Conklin et

al., 1999). 

Very little information are available regarding INSL4–6. 

2.3 The relaxin receptors

RLN/INSL peptides  interact  with two very  dissimilar  classes  of  G

protein-coupled receptors (GPCRs), named RXFP1, RXFP2, RXFP3

and  RXFP4.  Two  receptors,  LGR7  (renamed  RXFP1,  Hsu  et  al.,

2002)  and  LGR8  (renamed  RXFP2,  Kumagai  et  al.,  2002),  are

leucine-rich-repeat  containing  GPCRs  (LGR)  and  belong  to  the

glycoprotein receptor cluster. This cluster of receptors contains three

distinct LGR subgroups (type A, B and C), which have been defined

based on different number of LRR motifs, the absence or presence of

a  LDLa  motif  (low  density  lipoprotein  receptor  like  cysteine-rich

motif)  and the type-specific  hinge  region.  The RXFP1 and RXFP2

belongs  to  the  LGR  family  class  C  and  are  characterized  by  the

presence of a LDLa motif at protein N-terminus followed by a very

short  hinge region  and 10 LRR regions  (Hsu et  al.,  2002).  On the

contrary,  RXFP3 and RXFP4  (also known as SALPR or GPCR135

and GPCR142) are typical class A neuropeptide receptors and belong

to the chemokine receptor cluster of the  γ Group Rhodopsin family

(based on GRAFS classification, Fredrikkson et al., 2003). Signalling

pathways  of  RXFP3/RXFP4  result  in  the  inhibition  of  adenylate

cyclase  and  decrease  in  cAMP  accumulation  (Liu  et  al.,  2003a/b,

2005b). In contrast, the stimulation of RXFP1 and RXFP2  results in

the activation of adenylate cyclase and increase in cAMP level. 

Currently, it is known that there is cross-reactivity between the relaxin

peptides  and  their  receptors (Good,  2012), with  the  exception  of

INSL3 and RXFP2, which  in vivo represent  an exclusive hormone-

receptor pair  (Bogatcheva et al., 2003; Bathgate  et al, 2006; Halls  et

al., 2007). RXFP1 can be activated by both human RLN and H1-RLN,

as well as by RLN3. Similarly, RXFP3 can be activated by both RLN3

and RLN, and to a lesser extent by INSL5. RXFP4 is activated mainly

by INSL5,  although  can  also  cross-react  with  RLN3,  but  not  with

RLN,  nor,  of  course,  with  INSL3  (Figure.  4)  (Liu  et  al.,  2005;

Haugaard-Jonsson et al., 2009; Hossain et al., 2008).
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Figure.  4: Ligand–receptor  relationships  for  the  relaxin-family

peptides and their cognate receptors in Mammals. The thickness of

the arrows reflects the affinity and specificity of the interaction and

their secondary response.

RXFP1 has been shown to be expressed in the reproductive organs,

paralleling its  role as the receptor for relaxin.  In  humans, RXFP1

mRNA has been found in the ovary (Hsu et al., 2002), uterus (Hsu et

al., 2002; Luna et al., 2004; Mazella et al., 2004), placenta, testis and

prostate (Hsu et al., 2002). A similar distribution has been shown in

rodents (Hsu et al., 2000; Scott et al., 2004; Krajnc-Franken et al.,

2004;  Kubota  et  al.,  2004).  In  addition,  in  relation  to  relaxin’s

autocrine/paracrine  roles,  RXFP1  mRNA  has  been  found  in  the

brain, kidney, heart, lung, liver, adrenal, thyroid and salivary glands,

muscle, peripheral blood cells (Hsu et al., 2002). 

As expected, RXFP2 is expressed in the fetal gubernaculum of male

rats  (Kubota  et  al.,  2002)  and  mice  (Overbeek  et  al.,  2001)  in

accordance with its function as the receptor for INSL3. Additionally,

RXFP2-KO mice (Gorlov et al.,  2002) share the same cryptorchid

phenotype  as  the  INSL3-KO  mice  (Nef  and  Parada,  1999;

Zimmermann et al., 1999). In the adult, RXFP2 is expressed in post-

mitotic male germ cells,  where it  may have a role as a germ cell
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survival  factor  (Kawamura  et  al.,  2004; Anand-Ivell  et  al.,  2006),

and  in  Leydig  cells  and  epididymis  (Anand-Ivell  et  al.,  2006).

Additionally,  in  humans,  RXFP2  mRNA  has  been  shown  to  be

expressed  in  the kidney,  thyroid  gland,  muscle,  uterus,  peripheral

blood cells, testis, brain and bone marrow (Hsu et al., 2002). 

The RXFP3 gene expression was analysed by reverse transcriptase-

PCR in different tissues. The expression is restricted to the brain and

testis  of  rodents,  which  is  very  similar  to  the  tissue  expression

pattern of the human RXFP3, which is also expressed in thymus, and

adrenal gland (Liu et al., 2003). In rodents brain, the RXFP3 receptor

has been localized in some sensory areas of the brain as the olfactory

bulb,  sensory  cortex,  amygdale,  thalamus,  inferior  and  superior

colliculus, supraoptic nucleus, thalamic nuclei (paraventricular and

centromedial), the dentate gyrus of the hippocampus, dorsal raphe,

medial habenula and cortical  fields (Boels et al.,  2004; Liu et  al.,

2004;  Smith et al., 2010).  This RXFP3 neural network overlapped

the regional distribution of RLN3. This is a further evidence for the

interaction  between  RLN3  and  RXFP3  and  for  the  ability  of

RLN3/RXFP3 signaling to modulate “behavioral state” and an array

of circuits involved in arousal, stress responses, affective state, and

cognition (Smith et al., 2010).

RXFP4 gene is expressed in the mouse brain and testis, similarly to

the  human  homologue,  while  in  rats  and  dogs  both  RXFP4  and

INSL5  are  pseudogenes.  In  addition,  in  humans,  the  RXFP4

transcript has been detected in a broader range of tissues as kidney,

lung, and spleen (Liu et al., 2005). 
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In teleosts, many more genes have been identified for both ligands

and their receptors. It  has been supposed that Rln3b  is the cognate

ligand of Rxfp3-1, while Rln3a has specialized to function with two

receptors,  namely,  Rxfp3-2a  and  Rxfp3-2b.  Rxfp3-3a1,  Rxfp3-3a2,

and Rxfp3-3b are candidate receptors for insl5a, while Rxfp3-4 is the

receptor for insl5b; in zebrafish, the loss of rxfp4 was compensated

by the gain of  rxfp3-3a3,  which could interact with  insl-5b; rxfp2a

and  rxfp2b are  considered  the  receptors  for  insl-3; rxfp2-like  and

rxfp1 are  considered  the  receptors  for rln.  Although  for  the

circulating hormones we can, probably,  disregard the promiscuous

activation of other receptors at high ligand concentration, this may

not  be true  for  autocrine/paracrine  relationships  in  the vicinity of

sites of local synthesis, where local hormone concentrations can be

very  high.  It  is  also  important  to  recognize  that  although  some

circulating hormone concentrations can be quite low, most of these

receptors  can  be  activated,  although  briefly,  by concentrations  of

ligand  as  low  as  that  of  their  specific  ligand,  or  even  by

concentrations in the subpicomolar range (Halls and Cooper, 2010;

Ivell et al., 2009). 
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1.4  Aim

Studies  in  mammals  evidenced  an  intricate  ligand-receptor

relationship for relaxins system. Great advantages might result from

studies  on  relaxin  system  in  non-mammalian  model  organisms.

Moreover,  most  of  relaxin/receptor  system  studies  have  been

performed  in  adult  mammalian  organisms,  whereas  little  is  known

about relaxin function during vertebrate embryogenesis. 

Among experimental models, the  Danio rerio, also called zebrafish,

has emerged as one of the most useful  in many research areas and

particularly  for  embryonic  development.  By  using  zebrafish  as

experimental model, previous studies carried out in the laboratory of

Prof. Aniello, provided several interesting insights on relaxin system.

In  particular,  they  showed  that  the  rln3a/b  paralogue  genes,  are

differentially expressed in two territories of the developing zebrafish

brain. In addition, these data provided, for the first time, the evidence

of the nucleus incertus existence in fish, and supported the idea of an

ancestral function for Rln3 peptide as a neurotransmitter. (Donizetti et

al., 2008, 2009). 

Recent  phylogenetic  analysis  showed  that  the  numerous  vertebrate

RLN/INSL and RXFP genes are the consequence of  three rounds of

whole  genome  duplication  (WGD).  Diversification  of  the  relaxin

system was driven primarily by whole genome duplications (WGD,

2R  and  3R)  followed  by  almost  complete  retention  of  the  ligand

duplicates in most vertebrates but massive loss of receptor genes in

tetrapods.  For receptor,  the same phylogenetic  reconstruction led to

hypothesize that there was one ancestral gene for rxfp3/4 and one for

rxfp1/2, with differential reduction and expansion of gene repertoire

occurred independently in the tetrapod and teleost lineages (Yegorov

and Good, 2012). 

In  order  to obtain more data on relaxin/receptor system function in

vertebrate, and in particular, during embryonic development, the aim

of  this  dissertation  is  the  temporal  and  spatial  characterization  of

relaxin ligand  receptor  gene  expression during zebrafish embryonic

development. The experimental data will be discussed in comparison

with  the  data  reported  in  literature  for  the  mammalian  relaxin

ligand/receptor system. This will provide new insights into the roles of
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the relaxins and cognate receptor during zebrafish embryogenesis and

in the vertebrate evolution.
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3.0 MATERIALS AND METHODS

3.1 Experimental model

I use as experimental model the zebrafish (Danio rerio). It is a small

tropical fresh-water fish belonging to the  family Cyprinidae of  order

Cypriniformes. Due to its small size and ease of culture, the zebrafish

has  become  a  favourite  model  organism  for  biologists  studying

embryonic  development.  The development  of  the  zebrafish  is  very

similar  to  the  higher  vertebrates  embryogenesis,  including humans.

Moreover,  during  the  first  days  of  their  lives,  the  embryos  are

transparent.  The  zebrafish  model  organism  database  ZFIN

(http://zfin.org/) contains all the information about this experimental

model to develop and support integrated zebrafish genetic,  genomic

and  developmental  information.  The  zebrafish  embryonic

development is very rapid: at the first 24 hours after fertilization (hpf),

all major organs are formed and within 2 days the fish hatch and start

looking for food, after 3/4 months zebrafish are sexually mature and

can generate  new offspring.  In  particular:  there  are some landmark

stages: 

1-cell  (0-0.7  h):  newly  fertilized  egg.  The  nonyolky  blastodisc

segregates towards the animal pole. 

Cleavage (1-2.5 h): rapid divisions of the blastodisc that occur without

cell growth. 

Midblastula transition (3 h): division rate begins to slow and genes

begin to be transcribed. 

Epiboly (4-10 h): the blastodisc flattens into a blastoderm and spreads

to cover the yolk. Gastrulation (5-10 h): the blastoderm develops two

layers  (outer  ectoderm,  inner  mesendoderm)  by  involution.

Segmentation  (10-24  h):  somite  pairs  form  sequentially,  the  tail

develops and primary organ rudiments begin to form. 

Pharyngula  (from  1  day):  the  body  plan  characteristic  of  all

vertebrates  is  present  and  functionally  differentiated  cells

characterizing  the  nervous,  muscular,  and  circulatory  systems.

Hatching (from 3 days): embryonic development is complete. 

Feeding (from 4 days): The swim bladder fills and the larva actively

begins to seek prey (Kimmel, 1995). 
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3.2   Animals

Zebrafish were purchased from a local pet shop and housed in mixed-

sex groups in static tanks (approximately 20 L each) with airlift-driven

photoperiod  14h light/10h  dark  as  described  (Kimmel  et  al.,  1995;

Westerfield,  1995).  All  zebrafish  were  feeded  twice  a  day  with

tetrafood and artemia.  They were  treated with specific  protocol for

euthanasia methods and anaesthetized with tricaine  MS-222 (tricaine

methanesulfonate)  0.16mg/mL  in  Embryo  medium  (Westerfield,

1995).

3.3  Database search and sequence analysis

To identify the zebrafish rln gene, we used the amino acid sequence of

Anguilla japonica Rln  (BAJ22076.1) for a tblastn search in  D. rerio

nucleotide  National  Center  for  Biotechnology  Information  (NCBI)

database.  Amino acid sequence comparison of  D. rerio and various

teleost  Rln,  and  of  D. rerio Rln/Rln3 and  human  RLN/RLN3  was

carried  out  by  ClustalW  alignment  program  (Larkin  et  al.,  2007;

Goujon et al., 2010).  Instead, to obtain the exon and intron length and

the exon-intron organization of zebrafish and human  rxfp1 gene, we

used  Sequence  Viewer  function  of  the  National  Center  for

Biotechnology  Information  (NCBI)  web  site

(http://www.ncbi.nlm.nih.gov). The Map Viewer function of the same

web site  was  used  to  identify neighborhood genes  of  rxfp1 on the

zebrafish and human chromosomes.

3.4  RNA extraction and clean up 

Total  RNA from embryos and adult tissues were isolated using the

Trizol reagent (Invitrogen). RNA clean up was performed by using the

Qiagen  RNeasy  Mini  Kit  as  recommended  by  the  manufacturer.

Quantification  of  the samples  was  performed  by   nanodrop  2000c

(Thermo  Scientific).  RNA  quality  analysis  was  carried  out  on

electrophoretic gel agarose. For the preparation of the agarose gel, the

electophoretic apparatus was treated with NaOH 0.2M for 20 min and

washed with sterile double distilled water (ddH2O). 

3.5  cDNA synthesis.

First strand cDNA was synthesized from 3 �g of  total RNA in a final

volume  of  20  �L  by  reverse  transcriptase  Superscript  III  as
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recommended  by  the  manufacturer (Invitrogen,  Milan,  Italy).  In

particular, both for cloning and expression pattern analysis, RNA from

2 to 72 hpf whole embryos and from different adult tissues was used.

After cDNA synthesis, the volume was brought to 50  �L by adding

sterile ddH2O.

3.6  Polymerase chain reaction (PCR) and quantitative Real Time

PCR (qPCR) 

We performed PCR in 25 �L reaction volume containing 0.2 mmol⁄

�L dNTPs, 10 pmol of each nucleotide, 2.5 �L buffer (10 mmol⁄�L

Tris–HCl,  1.5  mmo⁄�L  MgCl2,  50  mmol⁄�L  KCl,  pH  8.3),  7%

dimethylsulfoxide (DMSO),  1.5  U TAQ DNA polymerase  (Sigma)

and X �L of cDNA template.  PCR was carried out in a GeneAmp

PCR System 9700 (Applied Biosystems) and consisted of an initial

step at 95 °C for 3 min, followed by 38/40 cycles at 95°C for 1 min,

54⁄58 °C (depending on the primers pairs) for 1 min, 72 °C for 1 min

and a final cycle of extension at 72 °C for 10 min. In order to clone

specific sequences we used 7µL of cDNA as a template and 40 cycles

of amplification. To analyse the expression pattern of the relaxins and

receptors  transcripts,  we  used  4�L  of  cDNA  and  38  cycles  of

amplification, whereas, 1 �L of cDNA and 36 cycles of amplification

for the rplp0 transcript. 

To perform qPCR, we designed specific primer sets for each gene by

using  the  Primer3  program  (Untergasser  et  al.,  2007

(http://www.bioinformatics.nl/cgibin/primer3plus/primer3pl

us.cgi). The  primers,  spanning  an  exon–exon  boundary,  amplify

products of about 100 bp in length. Blast searches were used to ensure

that  primers  were  specific  for  each  individual  gene.  The  real-time

PCR efficiency was calculated from the slope in the 7500 Software

v.2.0.1  (Applied  Biosystem).  The  relative  quantification  of  gene

expression was performed by real-time PCR using the SYBR Green

JumpStart  Taq  ReadyMix  (Sigma),  in  the Applied  Biosystem 7500

Fast  real-time  PCR  System.  The  following  conditions  were  used:

holding stage at 95 °C for 10 min, 40 cycles of 95 °C for 15 s and 60

°C for 1 min, followed by melt curve analysis to ensure that only a

single  PCR  product  was  amplified.  The  specificity  of  real-time

product amplification was also checked each time with high resolution
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gel  electrophoresis.  Each  25 µL reaction contained  12.5 µL SYBR

Green reagent ready mix 2X (Sigma), 0.25 µL ROX 100X (Sigma),

2.5 µL forward and reverse primer mix (4 mM) and 1 µL cDNA. To

confirm accuracy and reproducibility of real-time PCR the intra-assay

precision  was determined in  three repeats  within each run.  Control

reactions (without template) were run for each sample in triplicate.

��Ct-Method was used for relative quantification. The relative gene

expression  levels  were  normalized  to  the  rplpo transcript  in  the

respective sample. The �Ct was calculated by subtraction of the Ct

value of the gene of interest from the Ct value of the reference gene

(rplpo).  ��Ct  was  calculated  by  subtracting  the  sample  �Ct  to

calibrator �Ct. As a calibrator, we used the sample that showed the

lowest level of transcript, (heart), 24 hpf for  rln transcript and 0 hpf

for insl-5a and insl-5b. The fold difference was calculated as 2-��Ct,

as  described  in  the  “Guide  to  Performing  Relative  Quantitation  of

Gene  Expression  Using  Real-Time  Quantitative  PCR”  (Applied

Biosystems).  The PCR products  obtained from different  stages  and

tissues  were  electrophoresed  on  1%-1.5%-2%  (depending  on  the

product  length)  agarose  gel  in  Tris-Acetate-EDTA (TAE)  1X with

EtBr 10 �g/mL.

Table  1:  Primers  for  RT-PCR  with  relative  accession  number  of

genes:

gene Accession

number

Primers sequence

rln JN215212 For  5′GAGTGTAGCTCTGTCTGTCT-3′

Rev  5-TCAGACTCAGCGCAGCTC- 3′

For qRT 5′-GCGGAGAGCGGACACA-3′

Rev qRT 5′-CAGGAGAACCGACTTCAGGA-3’

rxfp1 NM_001190934 For 5’ TGTGAATGTTCCCAATTTCG 3’

Rev 5’ TTTGACCTTCTCGGGTCTTC 3’

rxfp3-1 NM_001128788 For 5’  AGCGACGATTTTATCCAAGG 3’ 

Rev 5’ CACTTTGGAGCGCCTTTTAG 3’

For 1 5’  AACGCGATTTTCTCAACGAC 3’

Rev1 5’ CCGTTCTGTTTGGAATCTGG 3’

rxfp3-2a XM_001346785  For 5’ AACATCTCTGTAGCGCATG 3’

Rev 5’ CGCGGAGCAGAGGTATAC 3’

For1 5’ GCTCTCTGTCCTCTTCTTTGC 3’

Rev1 5’ CCCAAACTAGCCCACTTGAC 3’ 

rxfp3-2b NM_001083879  For 5’ CTCCGTTTACATCCTTTGAC 3’ 
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Rev1 5’ TGCTTCGTCCTGTCAATC 3’ 

For1 5’ GCGTGGCAAGGTACTACTCC 3’ 

Rev1 5’ GCTGCTGCTCTGCGACG 3’ 

rxfp3-

3a1

ENSDARG000000

69028

For 5’ CATTTAACACTATCGCAGAGAG 3’ 

Rev 5’ CAGTCCACTGTCCAATTTGG 3’

For1 5’ CCCTTCCAGAAAGAAGTCTGTG 3’ 

Rev1 5’ GTCGCCAGGATCCACAAC

rxfp3-

3a2

ENSDARG000000

62111

For 5’ TCAACAACAGTTTGGTAGAATG 3’ 

Rev 5’ AACCCATTAATCACGGAAAG 3’ 

For1 5’ CAGAGGCTGTCAATGAGG 3’

Rev1 5’ TGACGGCGATGAGTATTACG 3’ 

rxfp3-

3a3

ENSDARG000000

69246

For 5’ CTTCAACACGGGCTTTGC 3’ 

Rev15’AAACAATACATCATCGTGTGAT 3’

For1 5’ GTGGGTGCTCGCTACAGTC 3’

Rev1 5’ AGACTTCTCTCCGACCACAC 3’ 

rxfp3-3b ENSDARG000000

59348

For 5’ AGGATCGCACGCGGTATAAGC 3’

Rev 5’ GTTCAGGCAGCTGTTGGAGTG 3’

rln3a NM_001037803.1 For 5’ AAAGCACAGGTAGACCATCGG 3’

Rev1 5’ TGCAGCCCCATTTGCAGCAGG 3’

ff1b NM_131794 For 5’ ACGGTGATGGACTTCAGAGC 3’

Rev 5’ ATCGCCCACCTTTAGTTCCT 3’

Rxfp2-

like

ENSDARG000000

68731

For 5’ TGGCCAGTTTATCTGTTAGAAGG 3’

Rev 5’ TGATGCCCAGAGAGATGAAA 3’

Rxfp2a ENSDARG000000

32820

For 5’ AATACAGCAAACGCGCATC 3’

Rev 5’ TCTACTGAAGGCTCGGCTTG 3’

Rxfp2b NM_200443.1 For 5’ CAGGATTTTTAGGAACCCAGTG 3’

REV 5’TCCACTGAAAGCCTGAATGG 3’

Insl5a NM_001037669 For 5’ GATCCAGAAGACCCGAGAGA 3’

Rev 5’ TGATTACTGCCTTCCACCAAC 3’

For qRT5’TCAACTCTCTCCGAGATCCTCAAC3’

RevqRT 5’ GTGCGGCAGAGAGTTTATCC-3’

Insl5b NM_001128556  For 5’ GAAGACATTCTGAGGTCAG 3’

Rev 5’ CGACGTTTGAACATTTCTCAT 3’

Rev qRT CCAAACTGAAGACCCCGTAA-3’

rplpo NM_131580 For 5’ CAAGGCCGTCGTGCTCA 3’

Rev 5’ CAGCGTGGCCTCGCTG 3’

For qRT 5’CTGGAAAACAACCCAGCTCT-3’

Rev qRT 5’ CGGACCTCAGTCAGATCCTC-3′

3.7  Cloning in pGEM®-T Easy Vector

Amplicons  were  cloned  into  pGEM®-T  Easy  Vector  (Promega)  as

recommended  by  instruction  manual.  The  reaction  have  been

optimized using a 3:1 molar ratio of the insert DNA to the vectors. 

17



Materials and Methods

3.8  RNA Probes for in situ hybridization experiments

All  solutions  were  prepared  with  DEPC  water  and  RNase-free

chemicals.  RNA probes  were  obtained  by  in  vitro  transcription  of

inserted DNA into pGEM®-T Easy Vector,  the linearized rln cDNA-

containing  plasmid,  using  DIG  RNA  Labeling Kit  (Roche

Diagnostics)  as  recommended  by  the  manufacturer.  The  RNA

riboprobe was precipitated by adding 5 �L of LiCl 4 M and 150 �L

absolute ethanol and incubation at −20 °C over night. The pellet was

washed with ice cold 70% ethanol and allowed to air-dry. The probe

was resuspended in 50 �L of DEPC water.

3.9  Whole mount embryo in situ hybridization

The  embryos  were  grown  in  embryo  medium at  28.5  ºC  until  the

desired  developmental  stage.  After  chorion  removal,  the  embryos

were fixed in   4% paraformaldehyde  for two hours. When required,

the pigmentation was removed by photobleaching. After dehydration

with progressive passages in MeOH, the embryos were stored at -20

ºC.

For  the  in  situ hybridization  experiments,  we  used  an  antisense

digoxigenin  (DIG)-labeled  RNA  probe.  The  corresponding  sense

RNA probe was used as a control for the specificity of hybridization

signals.  Whole  mount  in  situ hybridizations  were  carried  out  as

reported in Thisse et al, (2004) with the following modifications: after

the protease K digestion and fixing in paraformaldehyde, the embryos

were incubated in triethanolamine (0.1 mmol/L pH 7.0) for 5 min and

twice  in  triethanolamine-acetic  anhydride  solution  for  5  min;  the

embryos  were  hybridized  at  60  °C  for  40  hr  in  the  following

hybridization mix: HM [50% formammide, 5X saline sodium citrate

(SSC),  0.1%  Tween  20,  citric  acid  to  pH  6.0,  5  mmol/L

ethylenediaminetetraacetic acid (EDTA), 1X Denhardt’s solution and

Heparin  50  µg/mL,  tRNA  500  µg/mL];  after  hybridization,  the

following washes were performed: 15 min in 75% HM/25% 2X SSC

at 60 °C, 15 min in 50% HM/50% 2X SSC at 60 °C, 15 min in 25%

HM/75% 2X SSC at 60 °C, two washes of 10 min in 2X SSC at 65

°C, four washes of 10 min in 0.2X SSC at 65 °C; the incubation with

anti-DIG  antiserum  was  performed  overnight  at  +4  °C  in  the

following  antibody  solution:  100  mmol/L  Tris–HCl  pH  7.5,  150

mmol/L NaCl, 2% blocking reagent  (Roche),  2 mg/mL BSA, 0.1%
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Tween, 5% lamb serum. Finally, the digoxigenin-labeled cRNA probe

was detected using anti-DIG-conjugated alkaline phosphatase activity

and  4-nitroblue  tetrazolium  chloride/5-bromo-4-chloro-3-indolyl-

phosphate  (NBT/BCIP)  (Roche)  as  substrate.  For  double  in  situ

hybridization experiments, an rln3a fluoresceine-labeled RNA probe

was  used.  The  detection  was  performed  by  anti-FLUO-conjugated

alkaline phosphatase activity and INT/BCIP (Roche) as described in

Donizetti  et  al,  (2009).  In  situ hybridization  experiments  were

performed  at  least  in  triplicate  for  each  embryonic  developmental

stage. 

For transversal sections (3 �m) via ultramicrotome, the embryos were

washed  in  PBT for  10  min  (2  times)  and  were  dehydrated  by  the

following  solutions:  EtOH  25%/PBT  75%,  EtOH  50%/PBT  50%,

EtOH 75%/PBT 25%,  EtOH 80%/PBT 20%,  EtOH 95%/PBT 5%,

EtOH 100%. After dehydration, the embryos were treated by 100%

propylene oxide (4 times for 5 min), propylene oxide 75%/epon 25%

(30 min), propylene oxide 50%/epon 50% (30 min), propylene oxide

25%/epon 75% (30 min), epon 100% (30 min), epon 100% (overnight

at 70 °C).

Table 2: Proteinase K times for each zebrafish embryonic stage.

Embryonic stages times for protease K

8     hpf 1’ 

16   hpf 5’ 

20   hpf 7’ 

24   hpf 10’ 

36   hpf 15’ 

40   hpf 17’ 

48   hpf 20’ 

72   hpf 25’ 

96   hpf 30' 

120 hpf 35' 
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3.10  In situ hybridization on zebrafish adult tissues.

Danio rerio tissues were treated according to the following protocol:

fix in Bouin 72h, wash in 70% EtOH 30 min, 4 times, washed in 80%

EtOH 1h, dryed in 95% EtOH 30 min for 8 times, 100% EtOH 15 min

for 4 times, Xylene 10 min for 4 times, paraffin embedding 42h. The

slides were treated in xylene 10 min two washes, in 100% EtOH for 5

min,  95% EtOH,  80% EtOH,  70% EtOH,  50% EtOH EtOH,  30%

EtOH 2 min each step in DEPC H2O. The slides were incubated in

Proteinase K 10 mg/ml in 20 mM Tris-HCl pH 7.2, 1 mM EDTA 20

min  at  RT  or  10  min  at  37  ºC.  After,  the  slides  were  fixed  in

paraformaldehyde in 0.5 M NaCl, 0.1 M MOPS pH 7.5, 30 min RT,

after they were washed in tris-glycine 5 min. Then, the slides were

refixed in paraformaldehyde and treated with 10 mM triethanolamine

in PBS 1X in DEPC and acetic anhydride. The tissues were washed in

2X SSC 2 min and in Tris-glycine 30 min at RT. The tissues were

hybridized for 3 h at 50 ºC as follow: 40% formamide, SSC 5X, 1X

Denhardt, Testis salm 100 µg/mL with the probe: 80 ng probe to slide.

The hybridization solution is denatured at 95 ºC for 2 min, then kept

on ice until hybridization at 50 ºC. The slides were washed in 2X SSC

20 min at RT, washed in 1X SSC and 20% Formamide at 60 ºC for 40

min and washed in 0.5 X SSC and 20% Formamide at 60 ºC 40 min.

After, the slides were washed in NTE buffer 0.5 M NaCl, 10 mM Tris-

HCl pH 7.0, 0,5 mM EDTA for 15 min at 37 ºC. The tissues were

washed in  NTE buffer  + 10�g/ml RNase  A,  at  37 ºC 30 min and

washed in NTE buffer at 37 ºC 15 min. The tissues were washed in

0.5X SSC and 20% Formamide for 30 min at 60 ºC and washed in 1X

SSC for  30  min  at  RT.  The  slides  were  incubated  with  100  mM

Tris/HCl  pH  7.5,  150  mM  NaCl  and  Ab  (diluted  1:2000  anti-

digoxigenin Ab, and anti-fluorescein Ab 1:1000 Roche). For detection

the  slides  were  washed  in  TBS  after  in  Tween  20  and  10  min

Levamisole. The slides were washed with NMT detection buffer for 5

min at RT, incubated in NMT, NBT/BCIP (Roche). Wash slides in 1X

PBS and 1 mM EDTA, 30 minutes. the slides were dehydrated with

50% EtOH, 70% EtOH, 80% EtOH, 90% EtOH, 100% EtOH, after

washes in xylene. Close the slide through clearing agents to a point at

which a permanent resinous substance beneath the glass coverslip, or

a plastic film, can be placed over the section.
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4.0  RESULTS

4.1 RELAXIN LIGANDS

4.1a  Relaxin

We  started  with  searching  for  the  rln coding  region  in  D.  rerio

genome. We  used  the  amino  acid  sequence  of  A.  japonica  Rln

(BAJ22076.1) as a bait for a tblastn search in the D. rerio nucleotide

collection database of the NCBI website. We found a genomic region

containing the putative  rln coding region  that  we used to  design a

couple of primers in the 5′UTR and 3′UTR of zebrafish rln transcript.

For the RT-PCR amplification, we used the corresponding cDNA of

RNA extracted from embryos at 48 hpf (hours post fertilization) and

adult  brain.  The  resulting  amplicon  (575  bp)  was  cloned  and

sequenced  (AC:  JN215212)  to  confirm  the  specificity  of  the

amplification  reaction.  The  corresponding  translated  amino  acid

sequence was used to retrieve orthologue Rln sequence in other fish

species  by  a  tBLASTn  search  in  the  NCBI  database

(http://blast.ncbi.nlm.nih.gov/Blast.cgi). In Figure 5A, it is shown the

overall  amino acid sequence alignment  of  zebrafish Rln with some

orthologue sequences found in different fish species. As expected, the

B and A domains, which should be retained in the mature molecule,

showed higher amino acid sequence conservation than the C domain.

In  the  Figure  5B,  we reported  the  B and  A domains  alignment  of

zebrafish  Rln,  Rln3a  and  Rln3b, and  human  RLN1/2  and  RLN3

proteins.  The B domain of  zebrafish  Rln  sequence  showed greater

similarity to  the  corresponding domain of  zebrafish  Rln3a/b (80%)

and human RLN3 (76%) than to  the B domain  of  human RLN1/2

(44%). Differently, the zebrafish Rln A domain showed relatively low

amino acid sequence similarity when compared to the corresponding

sequence  of  the  other  aligned  proteins  (≤  45%)  (Figure.  5B).  The

greater  diversity of the A domain respect  to B domain may reflect

different  binding  specificity  for  the  relaxin  receptors  compared  to

Rln3 peptides. The identification of zebrafish rln orthologue gene was

further  supported  by  the  exon-intron  organization  and  the  syntenic

analysis. In particular, the analysis of genomic sequence showed that

rln gene is split into two exons by an intron sequence of 2845 base

pairs length (Figure. 5C). In line with data reported by Good-Avila et
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al.  (2009),  the  rln gene was found on the chromosome 21 between

Jak2 and  C9orf46 genes  (Figure.  5C),  showing conserved  syntenic

organization compared to other teleost orthologues. 

Figure. 5.  Comparative analysis of Rln amino acid sequence and

gene structure. Amino acid sequence alignment of the zebrafish  rln

with the ortologue sequence of other teleost species (in panel A). The

number on the right indicates the amino acid sequence length. Amino

acid sequence alignment of B and A domain of zebrafish Rln, Rln3a/b

and human RLN3 and RLN1/2 (in panel B).  Genomic organization

and syntenic analysis of the zebrafish rln gene (in panel C). Identical

amino acids are indicated by asterisks, conservative substitutions are

shown by colons and semiconservative substitutions by dots. Gaps in

the sequence are represented by dashes. The alignments  in A and B

were carried out by ClustalW software with default parameters. OlRln,

Oryzias  latipes Relaxin  (NP_001098341.1);  GaRln,  Gasterosteus

aculeatus Relaxin (ENSGACG00000017364);  TnRln,  Tetraodon

nigroviridis Relaxin (ACA13590.1); TrRln, Takifugu rubripes Relaxin

(NP_001092113.1);  DrRln,  Danio  rerio Relaxin  (JN215212);

DrRln3a,  D.  rerio  Relaxin3a  (NP_001032892);  DrRln3b,  D.  rerio

Relaxin3b  (NP_001108535);  AjRln,  Anguilla  japonica  Relaxin

(AB576118);  HsRLN1,  Homo  sapiens  Relaxin1  (NP_008842);

HsRLN2, Homo sapiens Relaxin2 (NP_604390); HsRLN3, H. sapiens
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Relaxin3 (AAQ88548). The percentage value indicates the amino acid

sequence similarity. 

To evaluate the  rln transcript level during embryogenesis and in the

adult  tissues,  we  carried  out  RT-qPCR  experiments.  During

embryogenesis,  the  rln transcript  was  revealed  in  all  the  analysed

stages, including cleavage stage (2 hpf), suggesting a maternal origin

of  the  transcript  (Figure.  6A).  The  transcript  level  decreased  from

cleavage  (2  hpf)  to  the  sphere  stage  (4  hpf),  whereas  it  newly

increased  at  the  blastula  stage  (8  hpf)  (Figure.  6A).  Subsequently,

from  the  low  level  detected  during  somitogenesis  (16  hpf),  a

progressive increase in the transcript  amount was revealed until the

larval stage (72 hpf) (Figure. 6A). In the adult, the rln transcript was

detected in all the analysed tissues; in particular, a relatively higher

transcript amount was evidenced in the brain than in the other tissues

(Figure. 6B). 
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Figure. 6.  Expression pattern of the  rln gene by RT-qPCR. Fold

difference  of  relaxin gene  expression  at  indicated  stages  as  hours

postfertilization (hpf) (A). Fold difference of relaxin gene expression

in  various  tissues  of  adult  zebrafish  (B).  Relaxin expression  levels

were  normalized  against rplpo transcript.  Black  bars  represent  the

standard deviation.
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Moreover,  in  order  to  identify  embryonic  territories  of  rln gene

expression,  we  carried  out  whole  mount  in  situ hybridization

experiments on zebrafish embryos at different developmental stages.

In particular, to detect  rln mRNA, we used a DIG-labeled antisense

riboprobe, and, to control the specificity of the hybridization signals,

we used the corresponding DIG-labeled sense riboprobe. Likely as a

consequence  of  low  transcript  amount,  the  appearance  of  specific

hybridization signals required relatively long staining reaction time.

That determined the appearance of aspecific background staining. In

light of that, we only took into account hybridization signals that were

clearly evidenced by comparison between sense (Figure. 7A, C, F, H,

J, L, P) and antisense riboprobe experiments (Figure. 7B, D, E, G, I,

K, M, Q, R, S, T). From fertilized eggs to somitogenesis, we revealed

broadly distributed hybridization signal (data not shown). Starting at

pharyngula stage (24 hpf), we detected restricted rln-expressing cells

in the olfactory placodes (Figure.  7B). At late pharyngula stage (48

hpf)  rln transcript continued to be detected in the olfactory placodes

(Figure. 7G). Later, the transcript was still revealed in the same cell

groups  at  the larval  stage  (72 hpf)  (Figure.  7I),  whereas  it  was no

longer detected in that region at the post-embryonic analysed stages

(data not shown). At the 24 hpf embryonic stage, rln gene expression

was also revealed in the posterior branchial arch region (Figure. 7D).

This  hybridization signal  was  evident  until  30  hpf,  when new  rln-

expression territory was revealed close to the otic vescicle (Figure.

7E). At larval and post-embryonic stages, new expression territories

were  detected.  In  particular,  the  gene  expression  was  revealed  in

restricted  brain  regions,  such  as  preoptic  area  (Figure.  7K)  and,

posteriorly, in some scattered hindbrain cells (blue arrowheads) and in

a bilateral  cell cluster  in the pons region, as shown by dorsal  view

(Figure. 7M). The same hybridization signals were also revealed at 96

hpf and 120 hpf  (data not shown). The bilateral  cell cluster in the

pons region appeared similar to that previously described by our group

for the rln3a expression pattern analysis (Donizetti et al., 2008; 2009).

By  double  in  situ hybridization  experiments,  we  showed

colocalization  of  rln and  rln3a  transcripts.  In  this  regard,  we  used

antisense rln DIG-labeled and rln3a fluorescein-labeled cRNA probe.

The  rln3a  riboprobe  marked  the  anterior  cell  cluster  in  the central

midbrain  tegmentum  (orange  arrow),  that  we  hypothesized  as  a

homologous region of mammalian periaqueductal gray (Donizetti et
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al. 2008; 2009), whereas  rln riboprobe marked scattered cells in the

hindbrain  region  (blue  arrowheads)  (Figure.  7N).  In  addition,  both

riboprobes  co-localized  in  the  cell  cluster  of  the  pons  region

(blue/orange  arrowhead  in  Figure.  7N),  as  better  evidenced  by the

magnification  (Figure.  7O).  At  96  hpf,  a  new signal  was  revealed

around the anterior commissure (Figure. 7S). Starting at larval stage

(72 hpf), the rln transcript was also detected in the pancreatic region,

as shown in a lateral view of the embryo (Figure. 7Q). Later, rln gene

expression  persisted  in  the  pancreatic  region  at  96  hpf  (data  not

shown)  and  120  hpf,  when  rln transcript-positive  cells  appeared

circularly  distributed  (Figure.  7T).  An  additional  signal  was  also

revealed in thyroid gland at 96 hpf (Figure. 7R) and 120 hpf (data not

shown).
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Figure. 7. Localization of the rln transcript by whole mount in situ

hybridization  at  indicated  stages  of  zebrafish  embryogenesis.

Control experiments with rln sense riboprobe (A, C, F, H, J, L, P). In

situ hybridization experiments with rln antisense riboprobe (B, D, E,

G, I, K, M, Q, R, S, T). Double in situ hybridization experiments with

rln and rln3a antisense riboprobes (N, O). Lateral view of embryo at

early pharyngula stage, head region (A, B). Lateral view of embryo at

early pharyngula stage, particular of pharyngeal arches region (C–E).

Ventral view of embryo at late pharyngula stage, head region (F, G);

Magnification of the olfactory placode region at larval stage (H, I).

Lateral (J, K) and dorsal view (L, M, N, O) of brain embryo at larval

stage; (N) double in situ hybridization for rln transcript (blue signal)

and  rln3a transcript (orange signal) at larval stage; magnification of

rhombencephalic  region where  rln and  rln3a transcripts colocalized
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(O). Particular of anterior trunk region (P, Q). Lateral view of head

region of post-embryonic zebrafish (R). Lateral view of anterior brain

region of post-embryonic zebrafish (S). Magnification of pancreatic

region  of  post-embryonic  zebrafish  (T).  Black  arrowhead  indicates

rln-expressing  cells  near  otic  vescicles;  blue  arrows  indicate

rhombencephalic  cells.  Blue/orange  arrowhead  indicates

colocalization of rln and rln3a transcripts. ac, anterior commissure; br,

branchial  region;  e,  eye;  op, olfactory placode;  ov, otic vescicle;  p,

pancreas  region;  po,  preoptic  region;  pt,  prethalamus;  r,

rhombencephalon; t, telencephalon; ty, thyroid.

4.1b INSL-5a and INSL-5b

Furthermore, we analyzed the two zebrafish  insl-5 paralogues genes,

insl-5a  and  insl-5b.  To  have information  on the  insl-5a  and insl5b

transcript  level  during  embryogenesis,  we  carried  out  RT-qPCR

experiments on total RNA extracted at various developmental stages.

The  insl-5a and  insl-5b transcripts are present in all the embryonic

stages, including cleavage stage (2 hpf), suggesting a maternal origin

(Figure. 8A). The insl-5a transcript amount increased at sphere (4 hpf)

stage,  and  resulted  at  similar  level  at  blastula  (8  hpf)  and  the

somitogenesis  stage  (16  hpf).  Subsequently,  the  transcript  level

decreased  from early  pharyngula  (24  hpf)  to  larval  stage  (72  hpf).

insl-5b showed a different expression pattern compared to insl-5a. We

observed the highest transcript level at cleavage stage (2 hpf) (Figure.

8).  The RNA amount  decreased  until  blastula  stage  (8  hpf)  to  re-

increase at somitogenesis stage (16 hpf). At early and late pharyngula

stage  (24  hpf and 48 hpf),  we observed  a relatively low transcript

level,  while  at  larval  stage  (72  hpf),  a  new increase  was  revealed

(Figure. 8).
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Figure. 8. Expression pattern of the paralog gene insl-5a and insl-

5b RT-qPCR. Fold difference of insl-5a and insl-5b gene expression

at  indicated  stages  as  hours  post-fertilization (hpf).  The expression

levels were normalized against  rplpo transcript. Black bars represent

the standard deviation.

To  localize  the  expression  territories,  we  carried  out  in  situ

hybridization  on  insl-5a  and  insl-5b  paralogues  genes  at  different

zebrafish development stages. We observed a restricted hybridization

signal for  insl-5a starting from 72 hpf (larval stage) until 96 hpf. In

particular,  gene  expression  was  revealed  in  intestinal  cells  and

pancreatic region (Figure. 9).  On the contrary,  insl-5b showed a very

faint hybridization signal and only at 96 hpf, we were able to detect a

specific and restricted signal in intestinal cells (Figure. 9).  To better

characterize the intestinal cell  types  where  the two paralogue genes

are  expressed,  we  performed in  situ hybridization  experiments  on

sections of  adult zebrafish intestine  tissue (Figure. 10 and 11). As a

control,  we carried out hybridization experiments using RNA sense

probe (Figure.  10A and 11A). The two genes showed expression in

two different cell types. In particular, insl-5a is expressed in the goblet
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series of primers to amplify (by RT–PCR experiments) and clone the

full-length cDNA coding region of the zebrafish Rxfp1 receptor. The

PCR products were cloned and sequenced to confirm the full-length

cDNA  coding  region  sequence  (HM135955).  The  alignment  of

deduced zebrafish and human RXFP1 protein showed 76% amino acid

sequence similarity (Figure. 12). All of the characterizing extracellular

domains of the RXFP1 receptor are present in the zebrafish sequence.

As displayed  in Figure  12,  the high degree  of  conservation is  also

reflected  in  potential  N-glycosylation  sites,  in  potential

phosphorylation  sites and in  key amino acid residues  important for

receptor  activation  and  interaction  with  RLN2  (Bullesbach  &

Schwabe 2005; Halls et al.,  2007; Hopkins et al.,  2007; Yan et al.,

2008). 
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Figure.  12. Amino  acid  alignment  of  the  human  RXFP1

(HsRXFP1;  NP_067647)  and  zebrafish Rxfp1  (DrRxfp1;

HM135955)  proteins  using  ClustalW. The  amino  acid  residues

important  for  receptor  activation  are  in  green.  The  potential  N-
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glycosilation sites are indicated in blue. The putative phosphorylation

sites  are  indicated in  pink.  The circles  indicate  the residues  of  the

relaxin binding site  in the leucine-repeats  of  the receptor.  Identical

amino acids are indicated by asterisks (*), conservative substitutions

are shown by colons (:),  and semiconservative substitutions by full

points (.). Gaps in the sequence are represented by dashes. LDLa is the

low density lipoprotein module; LRR indicates the leucin rich region;

TM is the transmembrane region.

In addition, we compared the genomic sequences of the zebrafish and

human  RXFP1  genes.  The  comparison  of  the  gene  order  in  the

neighborhood  of  the  rxfp1 in  the  zebrafish  and  human  genome

supported  the  idea  that  the  identified  zebrafish  sequence  is  the

homologue of the human RXFP1 receptor (Figure. 13b). The human

RXFP1 gene is made up of 18 exons, where the first and second exons

are separated by 50.6 kb. The zebrafish rxfp1 gene is organized in 17

exons and, similarly to the human gene, the first exon is far from the

second, being separated by 58.2 kb (Figure. 13a). The first exon of the

zebrafish gene contains the coding region for both the signal peptide

and LDLa module, whereas in the human genome the sequences for

the  two domains  are  split  into  two exons  (Figure.  13a).  The other

exons  of  the  human  and  zebrafish  gene  are  highly  conserved  and

encode for the same amino acid region (Figure. 13a). 
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Figure.  13.  Schematic representation of  the human RXFP1 and

zebrafish rxfp1. Exon⁄intron organization  of the human RXFP1 and

zebrafish rxfp1 on the corresponding chromosomal region (a). The red

lines indicate the difference in the first zebrafish rxfp1 exon, which is

split into two exons in the homologue human gene.  The blue lines

indicate the correspondence of the remaining exons in the two genes.

Analysis of the neighborhood of the rxfp1 gene in the zebrafish and in

the human genome (b). The homologue genes are indicated with the

same colours.

To look into the temporal  expression pattern of the zebrafish  rxfp1

gene during embryogenesis, we carried out RT–PCR experiments on

total RNA from different developmental stages. As shown in Figure

14a, the rxfp1 transcript is present in all analysed stages with higher

level  at  the  blastula  (4  hpf)  and  late  pharyngula  stages  (48  hpf)

(Figure. 14). The same RT–PCR analysis was carried out for the adult
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organism,  by using RNA extracted  from different  zebrafish  tissues

(Figure. 14b). Results of PCR amplification showed that the gene is

broadly  expressed,  being  actively  transcribed  in  all  the  analysed

tissues. 

                    

Figure. 14. Temporal expression pattern of zebrafish rxfp1 by RT-

PCR  experiments. Analysis  of rxfp1 gene  at  different  embryonic

stages,  indicated  on top as  hours  post  fertilization  (a).  Analysis  of

rxfp1 gene expression in the adult zebrafish tissues (b). The control

PCR reaction without cDNA template are indicated as C in (a) and (b).

Amplification  of  rplp0 cDNA fragment  was  a  control  of  RT–PCR

sensitivity in the assays.

We carried  out  whole  mount  in  situ hybridization  experiments,  in

order  to analyse  the embryonic territories of  rxfp1 gene expression.

During the early developmental stages (4 hpf), the transcript appeared

widely  distributed  in  embryos  (Figure.  15a),  whereas  during

somitogenesis (16 hpf) the expression was restricted in the brain with

a  strongest  hybridization  signal  in  the  diencephalic  region  (Figure.

15b, c). Starting from the pharyngula stage (24 hpf), the expression

was evidenced in the epiphysis and in the branchial arch region, as
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clearly shown by a lateral view of the embryo (Figure. 15d). A dorsal

view of the head showed that the rxfp1 transcript was also present in

the  diencephalic  region  and  in  the  terminal  nerve  (Figure.  15e)  as

better shown in the magnification (Figure. 15f). At the late pharyngula

stage  (48  hpf),  the  rxfp1 gene  expression was  still  detected  in  the

terminal nerve and in the epiphysis but not in the first branchial arch

(Figure. 15g). In addition, a new expression territory was apparent in

the postoptic region and in the hypothalamic region (Figure. 15g). A

ventral view of the embryo highlighted the signal in the terminal nerve

between the olfactory bulb and olfactory placode, and in two distinct

cell groups in the postoptic region and, more caudally, in the ventral

hypothalamic  region  (Figure.  15h).  At  this  stage,  other  new  rxfp1-

expressing  cells  were  detectable  in  the  rhombencephalic  region

(Figure. 15i). At larval stage (72 hpf), the rxfp1 expression persisted in

the terminal nerve (Figure. 15j, k). The lateral and dorsal view of the

brain clearly  showed  rxfp1-expressing cells  in  the epiphysis  (better

shown  in  the  inset  of  Figure  15j),  in  the  postoptic  region,  in  the

posterior  tuberculum,  in  the  hypothalamus,  in  the  optic  tectum,

tegmentum ⁄ pons region and medulla region (Figure. 15j, l, m).
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Figure.  15.  In  situ localization  of  rxfp1 transcript. Embryo  at

blastula stage (a).  Embryo at somitogenesis stage (b, c).  Embryo at

early pharyngula stage (d–f). Embryo at late pharyngula stage (g–i).

Embryo  at  larval  stage  (j–m).  The  black  arrowhead  indicates  the

terminal nerve. The red arrowheads indicate cells in the optic tectum.

The  red  arrows  indicate  cells  in  the  rombencephalic  region.  ba,

branchial arch; d, diencephalic region; e, epiphysis; hy, hypothalamic

region; ob, olfactory bulb; op, olfactory placode; ot, optic tectum; ov,

otic  vescicle;  po,  preoptic  region;  pt,  posterior  tuberculum;  t⁄p,

tegmentum ⁄pons region.

4.2b  rxfp2

To analyze  the temporal expression pattern of  rxfp2 paralogue genes

during  embryo  development,  we carried  out  RT–PCR experiments.

We observed that only one of the three rxfp2 paralogue genes, rxfp2-

like,  was expressed during zebrafish development.  In  particular,  we

detected the transcript at late pharyngula and larval stage (Figure. 16). 
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transcript  amount,  we  were  unable  to  obtain  specific  hybridization

signal.

For  rxfp3-1 gene,  at  24  and  48  hpf,  the  expression  was  clearly

evidenced in a cell group in the middle/ventral region of the zebrafish

trunk (Figure. 19). The dorsal view of the embryo showed that the cell

cluster was located asymmetrically to the right of the notochord, in a

position compatible with interrenal gland (Figure. 19).   Moreover, at

larval stage, we observed that the gene expression is localized in the

rhombencephalic region (Figure. 19D, E). 

Figure.  19.  Whole  mount  in  situ hybridization  experiments  for

rxfp3-1  transcript. Lateral  view  (A),  dorsal  view  of  embryo  at

pharyngula stage (B). Embryo at 48 hpf (C). Lateral view of embryo
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(D) and dorsal view of embryo at larval stage (E). Black arrowhead

indicates interrenal gland, red arrowhead indicates rhomboencephalon

nuclei,  Black  arrow  indicates  otic  vescicle.  OV:  otic  vescicle,  r:

rhomboencephalon, y: yolk.

 

Concerning  rxfp3-2a, we essentially found that the gene was mainly

expressed in the developing brain,  and, in addition, in the eyes and

thymus. At somitogenesis stage (16 hpf), the  rxfp3-2a transcript was

revealed in the diencephalic region, as evidenced by a lateral view of

the embryo (Figure. 20A). At the onset of pharyngula stage (24 hpf),

rxfp3-2a gene expression persisted in the diencephalon region and a

new transcript site was present in the ventral retina of the developing

eye  (Figure.  20B,  C)  and  in  the  rhombencephalic  region  (Figure.

20D). At late pharyngula stage (48 hpf), the expression of  rxfp3-2a

gene  was  revealed  in  the  ganglion  cell  layer  of  the  retina  (Figure.

20E). At this stage, the expression pattern showed a wide distribution

throughout  different  developing  brain  areas.  In  particular,  the

transcript was detected in the epiphysis,  diencephalon, optic tectum

and rhombencephalic  region  (Figure.  20F).  The transcript  was  also

evidenced  in  the  telencephalic  region  (Figure.  20F).  Moreover,  the

rxfp3-2a  expression  was  revealed  in  extraneural  territories,  in

particular, the hybridization signal marked bilateral cell groups in the

pharyngeal  arch  region  corresponding to  the thymus  (Figure.  20F).

We also  analysed  the rxfp3-2a  gene  expression  at  72  and  96  hpf,

essentially  revealing  similar  expression  pattern  at  both  stages.  In

particular, rxfp3-2a expression persisted in the ganglion cell layer and

in the thymus as well as in different cell clusters widely distributed in

the  brain  (Figure.  20G).  To  better  characterize  the  topographical

distribution of the  rxfp-2a transcript, we carried out serial transverse

sections of the hybridized zebrafish larvae. Sections led us to reveal

many cell clusters distributed in various regions of the larval brain,

and, in addition in the ganglion cell layer and thymus (Figure. 21). In

the forebrain, the expression of rxfp3-2a was evidenced in the pallium

(Figure. 21a). In addition, in the transverse section, the transcript was

also evident in a restricted cell cluster, which could represent either

the  telencephalic  migrated  area  or  the  migrated  entopeduncular

complex (Figure. 21a). A staining was revealed in the epyphisis and
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more laterally in a cell cluster located in the habenula (Figure. 21b).

Different positive cell clusters were also present in the thalamic region

and optic tectum, as evidenced by several transverse sections (Figure.

21b-k).  The  rxfp3-2a  transcript  were  revealed  in  migrated  pretectal

area  and  in  migrated  posterior  tuberculum  area  (Figure.  21C,  h).

Sections also revealed staining in cell groups which could represent,

nuclei of various cranial nerve, as oculomotor, trigeminal, abducens,

vagus  and  spinal  motor  nuclei  (Figure.  21k,  q-t).  Finally,  the

expression was  detected  in  cell  clusters  belonging  to  the region  of

nucleus  of  medial  longitudinal  fascicle,  superior  raphè,  and  in  cell

rows in the medulla oblongata (Figure. 21i, m-p, v-z). The analysis of

rxfp3-2b transcript at larval stages (72 and 96 hpf) makes not possible

the identification of specific signal, due to a faint hybridization signal

with  high  interfering  background  (data  not  shown).  This  was  in

agreement with the transcript level revealed by RT-PCR experiments,

which  showed  that  the  rxfp3-2b  transcript  was  undetectable

throughout the embryonic development and was revealed only starting

at larval stages at a very low level in comparison to rxfp3-2a.
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Figure.  20.  Whole  mount  in  situ hybridization  on  zebrafish

embryo for  rxfp3-2a transcript during embryogenesis. Embryo at

different developmental stage detected with  rxfp3-2a riboprobes (A-

G). Lateral  view of somitogenesis stage (A). Lateral (B) and dorsal

view (C) of early pharyngula stage. Lateral view of magnification of

rhomboencephalic region at early pharyngula stage (D). Magnification

of  zebrafish  eye  at  late  pharyngula  stage  (E).  Lateral  view of  flat

mounted brain region at pharyngula stage (F). Black arrow indicates e:

epiphysis and Th: thymus. lateral view of flat mounted brain region at

larva stage (G). Black arrow indicates e: epiphysis. D: diencephalon;

e:  epiphysis;  Hy:  hypothalamus;  OT:  optic  tectum;  R:

rhomboencephalon; T: telencephalon.
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Figure.  21.  Whole mount  in situ hybridization at 96 hpf lateral

view (α), dorsal view (β). Trasversal section of whole mount in situ

hybridization at 96 hpf zebrafish embryo. Red arrow indicates a cell

cluster likely representing M3 (entopeduncular migrated complex) or

M4 (telencephalic migrated area). Red arrowheads indicate row cells

in the medulla oblongata; CeP, cerebellar plate; DT, dorsal thalamus;

E,  ephiphysis;  Ha,  habenula;  Hc,  caudal  hypothalamus;  Hi,

intermediate  hypothalamus;  lfb,  lateral  forebrain  bundle;  IMR,

intermediate  raphè;  M1,  migrated  pretectal  area;  M2,  migrated

posterior  tuberculum  area;  M4,  telencephalic  migrated  area;  mlf,

medial longitudinal fascicle; MN, spinal motor neurons; MO, medulla

oblongata;  N, region of the nucleus of medial  longitudinal  fascicle;

NIII,  oculomotor  nerve  nucleus;  NV,  NVI,  NX,  nuclei  of  cranial

nerves; P, motor nuclei of pallium; Po, preoptic region; Pr, pretectum;

PT, posterior tuberculum; SCO, subcommissural organ; SR, superior
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raphè; T, midbrain tegmentum; TeO, optic tectum; Th, thymus; TVe,

telencephalic ventricle; Va, valvula cerebelli; VT, ventral thalamus.   

Regarding  to  rxfp3-3b,  from  fertilized  eggs  to  somitogenesis,  we

revealed faint  and broadly distributed hybridization signal  (data not

shown).  At early pharyngula stage (24 hpf), we observed a restricted

signal  in  ventral  retina  (Figure.  22A).  Lately,  at  48 hpf,  a  specific

signal was revealed in the mesencephalic region (Figure. 22B, C). At

early larval stage (72 hpf), the gene expression was observed in the

epiphysis  (Figure  22D)  and  in  some  scattered  cells  in  the

rhomboencephalon  (Figure.  22I).  Moreover,  at  larval  stage,  other

expression  territories  were  localized  in  the  raphè,  hypothalamus

(Figure.  22C,  E).  In  order  to  better  characterize   the  expression

territories,  we  performed  transverse  sections  of  the  hybridized

embryos  at  96  hpf  (Figure.  23A).  Sections  of  the  head  region

evidenced  the  expression  in  the  retinal  cells,  in  particular,  in  the

ganglion  cell  layer  (Figure.  23B).  In  the  brain  region,  particularly

evident is the expression in the ventral thalamus, optic tectum, M2,

(Figure  23B,  C)  and  more  caudally,  in  the  putative  periaqueductal

gray  (PAG),  the  putative  nucleus  incertus,  the  raphè  and

hyphothalamus (Figure. 23D, E, F.). In addiction, transverse sections

evidenced rxfp3-3b expression in the pancreas (Figure. 23I). 
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Figure.  22.  Whole  mount  in  situ hybridization  for  rxfp3-3b  at

different  developmental  stage  as  indicated  in  the  panel.  Lateral

view of embryo at early pharyngula stage (A). Dorsal lateral view of

embryo at late pharyngula stage (B). Embryo at early larval stage (C).

Magnification of epiphysis region of embryo at  early larval stage (D).

Ventral  view  of  embryo  at  early  larval  stage  (E).  Double  in  situ

hybridization for rln3a transcript (blue signal) and rxfp3-2b  transcript

(orange  signal)  dorsal  view  at  late  larval  stage  (F).  Black  arrow

indicates retina, black arrowhead indicates periacqueductal gray,  red

arrowhead indicates romboencephalic region. In the red rectangle is

indicated the nucleus incertus. e, epiphysis; Hc, caudal hypothalamus;

R, raphè.
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Figure. 23.  Whole mount  in situ hybridization at 96 hpf. Lateral

view (A), dorsal view for rxfp3-3b transcript (H) of embryo at 96 hpf.

The trasversal  section along the  embryo  at  96 hpf is  indicated  (A,

whole brain lateral view) and lateral view of 96 hpf zebrafish embryo

trunck region (H).  Blue arrowhead indicates nucleus incertus,  green

arrowhead  indicates  DT,  dorsal  thalamus;  H:  hypothalamus;  Hc,

caudal hypothalamus; M2, migrated posterior tuberculum area;  MO,

medulla  oblongata;  NI,  nucleus  incertus;  p,  pancreas;  PAG,

periaqueductal gray; po, preoptic area; R, raphè; T, tegmental nucleus;

TeO, optic tectum; VT, ventral thalamus.
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5.0 CONCLUSION

Relaxin ligand/receptor system has been widely studied in mammalian

adult  organisms.  This  molecular  system  is  involved  in  many

physiological functions ranging from reproduction to neuroendocrine

system. In  particular,  RLN has been mainly linked to reproduction,

although  many  studies  evidenced  its  involvement  in  other

physiological contexts since, among the expression and target tissues,

there are the brain, kidney, heart, liver, and pancreas. For INSL3 and

INSL5,  it  has  been  clearly  defined  their  roles  in  reproduction  and

gastrointestinal system respectively (Adham et al.,  1993, Conklin et

al., 1999). The most recently identified family member, the RLN3, has

been characterized as a neuropeptide involved in stress and metabolic

control  (Bathgate et  al.,  2002; 2013).  All the relaxin peptides exert

their  physiological  effects  by  interacting  and  activating  4  GPCR

receptors  [relaxin  family  peptide  receptors  1–4  (RXFP1–4)].  Few

studies  have  been  performed  on  the  relaxin/receptor  system during

embryonic development and in vertebrate models beyond mammals.

In  the  present  thesis,  I  reported,  the  identification,  cloning  and

characterization  of  relaxin  ligand/receptor  genes  in  the  zebrafish

experimental  model.  In  particular,  my  experimental  analysis  was

carried  out  during  embryonic  development.  Recent  evolutionary

analyses revealed that vertebrate RLN/INSL genes and their receptors

primarily diversified through the two rounds (2R) of whole genome

duplication (WGD), that occurred in early vertebrate evolution (Good

et al., 2012). In addition, the third whole teleost fish-specific WGD

(3R), further contributed to the current number of fish genes (Good et

al., 2012). As I reported in the introduction section, zebrafish genome

contains 6 relaxin ligand and 11 relaxin receptor genes (Figure. 2, 3).

Our  previous  results  already  highlighted  the  powerful  of  zebrafish

model for the relaxin ligand/receptor molecular characterization. The

rln3a/b gene expression pattern analysis showed both conserved and

divergent  features  compared  to  the  corresponding  mammalian

homologues. Taken overall, the experimental data supported the idea

of an ancestral  function of  Rln3  peptide as  a  neurotransmitter,  and

provided  the  first  evidence  of  the  existence  of  the  neural  territory

known as nucleus incertus (NI) in fish (Donizetti et al., 2008, 2009).

In order to extend the knowledge on relaxin system, in particular on
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its involvement in embryonic development, the present thesis focused

on the other zebrafish relaxin ligands and the cognate receptors. In the

present work, a preliminary analysis was performed to identify coding

region for two genes,  rln and rxfp1, which lacked in literature and in

public nucleotide databases.  Analysis  of the identified  rln sequence

showed  interesting  evolutionary  features.  Overall,  the  zebrafish

mature Rln amino acid sequence (made of B and A peptides) showed

higher similarity to the zebrafish Rln3a, Rln3b and human RLN3, than

to  the  homologue  mammalian  RLN.  This  reflects  the  common

evolutionary origin of that gene from a common ancestral RLN3-like

gene.  In  addition, the comparison highlighted that  during evolution

zebrafish  rln and  rln3 sequences  remained  more  similar than

mammalian  RLN  and  RLN3,  which  showed  greater  sequence

divergence (Hsu et al., 2003; Wilkinson et al., 2005; Wilkinson and

Bathgate 2007). In more detail, B and A domains of zebrafish relaxin

peptide evolved differently, in fact, B domain is more conserved than

A domain. Taking into account that the A domain might contribute to

ligand binding by orienting the B domain (Hossain et al., 2008; Park

et al., 2008), the dissimilarity of zebrafish Rln A domain could reflect

different binding specificity for the various relaxin receptors. My data

corroborates  the  idea  of  a  more  complex  ligand/receptor  pairing

scenario than previously imagined, in accordance with the data on the

ability of the mammalian RXFP3 to interact with H3, H2 and INSL3

ligands transducing different metabolic pathways (van der Westhuizen

et  al.,  2010).  For  what  concerns  the  rxfp1 gene,  the  general

conservation of syntenic genomic organization, exon-intron structure,

and of many amino acid residues important for ligand interaction and

receptor functioning supported the hypothesis of the identification of

the mammalian homologue of the zebrafish rxfp1.

The  analysis  of  expression  profile  of  relaxin  ligands  and receptors

genes was initially performed by PCR analysis. Results (summarized

in Table 3) showed that the relaxin/receptor system is active during

zebrafish  embryonic  development.  It  is  note  of  worth  that  some

receptor  genes  are  not  expressed  during embryogenesis,  suggesting

that  they  likely  are  required  later  in  organism's  life.  Another

interesting  insight  is  that,  when  duplicated,  the  paralogue  genes

showed  a  different  expression  pattern,  likely  reflecting  a

diversification of their function after their separation during evolution.
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Table  3.  Summary  of  relaxin  ligands  and receptors  embryonic

expression  pattern  analysed  by  RT-PCR  and  qRT-PCR

experiments. The  same  colour  indicates  the  paralogue  genes.  (the

rln3a and rln3b expression data are provided by Donizetti et al., 2008,

2009).
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Gene expression localization analysis was performed by means of in

situ  hybridization  experiments  and  summarized  in  Table  4.  Taken

overall, my data show that relaxin peptides and their cognate receptors

are  mainly  expressed  in  neuronal  territories.  These  data  further

corroborate the hypothesis of an ancestral neuroendocrine function for

the  relaxin  system.  In  addition,  several  non-neural  territories  are

shown to express relaxin ligand and receptor genes.

The zebrafish rln gene expression pattern, in part, reflects the common

evolutionary  origin  with  rln3a.  In  fact,  both  are  expressed  in  the

putative  zebrafish  nucleus  incertus,  as  a  consequence  of  common

inherited regulatory pathway.  Differently,  new expression territories

have  likely  been  acquired  in  rln expression  pattern  during

evolutionary diversification of relaxin genes. Among these territories,

the  olfactory  placode  cells  expressed  the  rln gene  throughout

embryogenesis. No expression in this territory was revealed in post-

embryonic larvae, leading to the hypothesis of a function for the Rln

in olfactory placode development. The rln gene expression was also

revealed in the preoptic area and around the anterior commissure of

the  telencephalon,  providing  evidence  of  an  involvement  in  the

development and functioning of the visual system. Moreover the  rln

gene expression was also detected in thyroid and pancreas  regions,

which  highlights  a  possible  role  as  a  paracrine  and  endocrine

hormone.  The  expression  pattern  of  zebrafish  rln revealed  that  in

comparison  to  rodents  there  are  some  expression  territories  in

common  between  fish  and  mammals,  both  in  the  brain  and  in

extraneural  territories such as  liver and pancreas   (Ma et  al.,  2006;

Halls et al., 2009; Burazin et al., 2005; Gunnersen et al., 1995).  The

insl-5a and  insl-5b paralogue genes are expressed in intestine tissue

during  embryonic  development.  I  demonstrated  that  in  the  adult

zebrafish,  these  two  genes  specialized  their  expression  pattern  in

different intestinal cell types. In particular, I revealed insl-5a transcript

in the goblet  cells,  whose function is to secrete mucus. Differently,

insl-5b  is  expressed  in  enteroendocrine  cells  (that  are  specialized

endocrine cells of the gastrointestinal tract),  which play critical roles

in regulating gastrointestinal secreting hormones. Taken into account

that in mouse and human, the INSL5 gene is expressed in the colon

and is likely involved in the intestinal motility (Conklin et al., 1999),
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my results show that this function has likely been established early in

vertebrate evolution.

In order to understand the role of relaxins during embryogenesis, my

analysis  included gene expression pattern of  their  receptors.  Rxfp1,

which in  mammals  is  the cognate  receptor  for  RLN, is  essentially

expressed in the neural territories. Among them, branchial arch region

and terminal  nerve,  which  share  a  common origin  from the neural

crests.  This might reflect  a function of  rxfp1 in the early phases of

development of such structures. The expression in the terminal nerve

involves all the embryonic stages, reflecting, more probably, a role for

the  rxfp1 receptor  in  the  neuromodulatory function  of  the  terminal

nerve.  I  found  gene  expression  in  the  epiphysis,  or  pineal  gland,

which,  in  non-mammalian  vertebrates  including  zebrafish,  contains

light-sensitive photoreceptor and all the elements required for photic

entrainment  and  circadian  rhythm  generation  (Vatine,  2011).  The

expression  of  the  rxfp1 gene  extends  in  other  territories  such  as

posterior  tuberculum,  preoptic  region,  optic  tectum,  involved  in

sensory process  of  the visual  system.  In  addition the  rxfp1  gene is

expressed  in  tegmentum⁄pons  region,  hindbrain  and  hypothalamus.

The expression of Rxfp1 receptor in all such neural territories suggests

a  role  in  different  neural  mechanisms  such  as  somatosensory

processing, neuroendocrine and autonomic regulation, as proposed for

the  homologue  receptor  in  the  adult  rat  brain  (Ma  et  al.,  2006).

Zebrafish  rxfp2-like gene (the mammalian homologue is considered

the  cognate  receptor  for  INSL3)  is  the  only  rxfp2 paralogue  gene

expressed  during  embryonic  development.  The  corresponding

transcript  is  localized in  the epiphysis,  habenula  and preoptic  area.

Also in rat brain there is high RXFP2 expression in the habenula and

other territories such as thalamic nuclei,  olfactory tubercle signalling

system,  which  are  involved  in  sensorimotor,  limbic  and  cognitive

functions (Sedaghat et al., 2008). 

Among relaxins receptors, teleost rxfp3s show the greatest expansion

in terms of orthologs and paralogs, since zebrafish genome possess 7

rxfp3 genes.  The  rxfp3-1 gene  is  expressed  in  the  developing

interrenal gland, the homologue of mammalian adrenocortical gland,

where  the  mammalian  RXFP3  gene  is  expressed.  The

interrenal/adrenal  gland  is  a  key  element  of  the  hypothalamic-

pituitary-adrenal/interrenal  axis that controls the stress response and

regulates  many  body  processes,  including  digestion,  the  immune
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system, mood and emotions, sexuality and energy storage (Chan et al.,

2008).  In  addition,  zebrafish  rxfp3-1  is  expressed  in  the

rhombencephalic region of larval brain. 

The  rxfp3-2a has  shown  the  most  complex  expression  pattern,  in

particular  in  the  developing  brain.  The  expression  territories  of

zebrafish  rxfp3-2a  relates  to  neural  structure  involved  in  visual

sensory perception and signal elaboration, leading to the idea of an

involvement  in  the  entire  visual-motor  system.  Another  interesting

feature of the rxfp3-2a gene is the expression in habenular cells. The

habenula is a neural structure involved in emotional behaviours which

conveys neural information from the limbic forebrain to the nuclei in

the ventral midbrain and hindbrain (such as raphè and nucleus incertus

in mammals and griseum centrale in fishes)  in a pathway which is

conserved  throughout  the  vertebrate  evolution  (Okamoto,  2012).

Moreover,  we observed the  rxfp3-2a expression in the pineal gland.

The  rxfp3-3b  gene  expression  pattern  also  offers  some  interesting

discussion items. In fact, zebrafish  rxfp3-3b shares with mammalian

RXFP3  the  expression  in  some  brain  areas.  Among  them,  the

periaqueductal gray, which is involved in pain analgesia, fear, anxiety,

vocalization (Olango et al., 2012; Sugiyama et al., 2010., Smith et al.,

2011);  in raphè,  which is  involved  in  the control  of  chronic  social

defeat  stress  (CSDS),  depression,  and  anxiety   (Boyarskikh  et  al.,

2013; Rozeske et al., 2011; Smith et al., 2011); in the hypothalamus,

which  is  involved  in  different  neural  processes,  among  them  the

control of sleep and social behaviour. In addition, among other neural

territories, I revealed the expression in the putative zebrafish nucleus

incertus,  which,  as  aforementioned  is  a  key  element  for  arousal

(sleep/wakefulness), stress reponses, and learning and memory; and is

involved  in  the  pathology  of  related  psychiatric  diseases  such  as

insomnia, anxiety and depression, and cognitive deficits (Ryan et al.,

2011). The  rxfp3-3b expression  was also revealed in the pancreatic

region.  Overall,  the  regions  where  we  detected  zebrafish  rxfp3

paralogue genes expression (both neural and non-neural) are mostly

overlapping with the mammalian homologue gene.  It has often been

argued that gene-duplication events are more commonly followed by

subfunctionalization  than  neofunctionalization  event  leading  to  the

duplicate-genes preservation. Indeed, the subfunctionalization process

may  facilitate  such  evolution  by  preserving  gene  duplicates  and

maintaining their  exposure  to natural  selection and/or  by removing
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pleiotropic  constraints  (Lynch  and Force.,  2000).  My data  seem in

agreement with such hypothesis where the subfunctionalization events

for the zebrafish rxfp3 genes in part recapitulated the expression, and

probably the function, of the mammalian RXFP3 and RXFP4 genes.  

In  conclusion, taken into account that  several  territories  of relaxins

and  receptors  gene  expression  are  shared  between  mammals  and

zebrafish, it is possible to hypothesize that also in fish they may have

many physiological effects involving olfactory system, vision system,

arousal  system,  circadian  rhythm,  fear,  learning,  memory,  feeding,

stress and metabolism. In addition, it is worth of note that, since that

genes  are expressed during embryonic  development,  their  functions

are established very early in the organism's life. 
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