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Abstract

This thesis describes the main research activity developed in a three years PhD
program on flight dynamics. Optimization and UAVs flight control have been the
main focus with methodological contributions on optimization, numerical and ex-
perimental work.

Unmanned Aerial Vehicles (UAV) captured the attention of both research and
industrial worlds as a replacement for expensive human-piloted vehicles. In the last
decade, they became widely used for several applications in which humans could
be unnecessary or in some cases too in danger.

Many laboratories in the area of flight control, but also in the areas of robotics
and control engineering in general, made significant research experiences on quadro-
tors.

A collaboration between University of Naples ”Parthenope” and the Second
University of Naples is aimed at designing and using UAVs for educational and
research purposes. More than one quadrotor was built, tested in flight and used as
a platform for testing flight control and navigation systems.

Several optimization problems may be encountered in the design of an UAV.

During the design phase, they arise from the choice of the hardware, the design
and layout of the structure, the aerodynamics. On the other hand, for the Guid-
ance Navigation and Control system, the management of single or fleets of UAVs
requires the solution of many non-linear optimization problems. For this reason
a multi-objective general purpose optimization software has been developed, in-
tegrating evolutionary methods, as genetic algorithm and ant colony, with game
theory paradigms, as Nash and Stackelberg equilibria.

These methods have been primarily used to solve trajectory optimization prob-
lems with the scope of searching efficient flight trajectories in the presence of con-
straints.
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The thesis is developed around the flight control of a quadrotor UAV. The
following are the main steps of the work described in this thesis:

• dynamic and aerodynamic modelling oriented to flight control design;

• development of a distributed general purpose optimization software imple-
menting Game Theory based paradigms and Ant Colony algorithm hybridiza-
tion;

• Application of the above optimization methods to trajectory planning;

• Numerical simulations and flight experiments.

In Chapter 2, the quadrotor platform is described, together with the mathe-
matical modelling and the design of the low level flight control system (attitude
and speed control). In Chapter 3 the structure of the general purpose optimization
software, mainly focused on the game theory layer and the ant colony algorithm is
presented. In Chapter 4 the objectives of the optimization software are described
and solved. Finally, in the Chapter 5, numerical simulations and flight tests are
are shown.



Acknowledgments
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Chapter 1
Introduction

The Unmanned Aerial Systems (UAS) have always captured the attention of both

research and industrial worlds as a replacement for expensive human-piloted vehi-

cles. In the last decade, they have become widely used for several applications in

which humans could be unnecessary or in some cases too in danger.

Thanks to the lack of dimensional specifications for human transport, these

vehicles have extremely varying application domains in both indoor and outdoor

environments. A specimen list may be:

• military patrol,

• civilian aerial surveillance,

• photogrammetry and professional photography and video making,

• low cost advertising,

• traffic monitoring,

• educational learning.

Obviously each application requires a specified UAS with different levels of con-

trol and manoeuvrability, may be needing high precision and/or high reliability.



Chapter 1 - Introduction

1.1 History

The history of unmanned aircraft may be reduced to the history of all aircraft. In

the past centuries there exist a lot of examples more or less creative of unmanned

systems. One of the first users of a UAS could be the Chinese Genereal Zhuge

Liang (180-234 AD) who used paper balloons fitted with oil-burning lamps to heat

the air and to make enemies think there was a divine force at work. However, this

is a very first and raw example not belonging to the modern era.

Historically unmanned aircraft followed an operational pattern described as the

three D’s: Dangerous, Dirty and Dull [1]. Dangerous where the life of the pilot

may be at risk. Dirty where the environment may be contaminated by chemical,

biological or radiological hazards. Dull where the task requires long hours, making

the flight stressful and not desirable.

The first modern unmanned vehicle is the aerial torpedo. In 1916 the U.S.

Navy funded Elmer Sperry to begin the development of an unmanned aerial tor-

pedo. Sperry built a small, lightweight airplane that could be self-launched with-

out a pilot, fly unmanned out to 1000 yards guided to a target and detonate its

warhead at a point close enough to be effective against a warship. This idea, con-

sidering that the airplane had been just invented, was an incredible step ahead,

because included battery-powered radio, electrical actuators and mechanical three-

axis gyro-stabilization, all primitive technologies in that epoch. However Sperry’s

aerial torpedo was never put in service production, while another the following

aerial bomb, thanks to Charles Kettering, was the first mass-produced unmanned

aircraft. This demonstrated impressive distance and altitude performance and the

validity of the airframe was proved with a manned model in a piloted flight.

After World War I, most of the work focused primarily on employing target

drones as anti-aircraft weaponry. Unmanned aircraft technology played a key role

in formulating air power doctrine and provided key data that contributed to Amer-

ica, England, and Japan concluding that aircraft carriers, which played such vital

a role in upcoming World War II, were a good investment.

After the two World Wars, in Cold War years, unmanned aircraft development

shifted toward reconnaissance and decoy missions. This trend has continued today

where the most part of UAS are involved in data gathering. One of the first re-
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1.1 History

connaissance high performance unmanned airplane was the Radio Plane YQ-1B, a

high altitude target drone, modified to carry cameras. However, poor range and

high cost were the reasons for cancellation of this program.

The U.S. Air Force pioneered the first mass-produced, long-range, high-speed

unmanned aircraft designed to conduct primarily reconnaissance missions but evolved

into a wide array of tasks from suppression of enemy air defenses to weapons deliv-

ery. The AQM-34 Lightning Bug has the longest service record for an unmanned

aircraft. Designed as an initiative of the Ryan Aircraft Company in the late 1950s,

the aircraft was powered by a turbojet, employed low drag wing and fuselage con-

figuration and could reach altitudes in excess of 50,000 ft and speeds of 600 knots.

In the same years, the first VTOL UAS was developed: the Drone Anti-

Submarine Helicopter (DASH) of U.S. Navy, born to extend the delivery range

of antisubmarine homing torpedoes. The DASH used remote control via a pilot

on the ship to take off and land, and then employed a gyro-stabilizer autopilot to

reach a location.

From the very first unmanned aircraft, researchers have spent a lot of effort to

gain independent flight operation. Requirements for maximum standoff distance,

long endurance, and significant data streams from onboard sensors have followed

technology improvements. With the advent of small, lightweight digital comput-

ers, inertia navigation technology, and finally the global positioning system (GPS)

satellite network, UAS operation gained flight autonomy on par with a human-

piloted vehicle.

Lightweight computer technology developed in the 1970s, which led to the

worldwide explosion in computer science and digitalization, played the most signif-

icant role in UAS autonomy. With each advance in computing power unmanned

aircraft gained great flexibility to weather conditions as well as new variables af-

fecting the mission equipment payloads. Mapping data can be stored on-board,

not only to improve navigation but also to enable a more accurate sensor camera

imagery.
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Chapter 1 - Introduction

1.2 State of the Art

An Unmanned Aerial System (or Vehicle) is built on top of several elements that

characterize its own features. The central part is the aircraft that permits to

distinguish three first families of UAS based on fixed wing, rotor-wing (usually

VTOL-Vertical TakeOff and Landing) or lighter-than-air vehicles.

Another kind of distinction may be done for the remotely piloted (called also

Remotely Piloted Vehicle RPV) and auto-piloted UAS. The concept of autonomy

is the ability for an unmanned system to execute its mission following a set of

preprogrammed instructions without operator intervention from takeoff to touch-

down. It’s possible to find in literature the concept of aerobot to merge the concept

of UAS and robot. This merging of two different worlds is due to an increasing

research in autonomy for UAS and the great development of robotics in the last

years. Furthermore, they share electronic hardware, software and control methods,

thanks to the improves in reliability of robotics and more relaxed constraints typ-

ically requested for manned vehicles.

In the last decade many laboratories in the area of flight control, but also in the

areas of robotics and control engineering in general, made significant research expe-

riences on quadrotors, i.e. four rotor VTOL UAVs (Vertical Take-Off and Landing

Unmanned Aerial Vehicles) also called quadcopters [2, 3, 4, 5, 6, 7]. Due to the

cost reduction of components for propulsion and control, it is nowadays affordable

to build a significant number of such flying platforms also for educational purposes.

The present thesis describes a quadrotor flight control design project born to

build a new line of research of the Department of Industrial and Information En-

gineering (DIII) of the Second University of Naples (SUN) in collaboration with

”Parthenope” University of Naples.

This experience clearly demonstrates that the development of a robotic platform

[8] as the quadrotor can be a good starting point to improve laboratory facilities, to

practically experience several aspects of flight control design and implementation:

hardware and software design, model identification and validation, ground testing,

control algorithms design, sensors integration, control algorithms implementation

on embedded electronics, flight tests, and to get a proprietary platform for auto-

matic control and flight dynamics researches.
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1.2 State of the Art

In the last years many research group are working on this kind of vehicle as

UAS testbeds for control algorithms [9, 10, 11, 12, 13].

Quadrotor aerial robotic vehicles have become a standard platform for robotics

research worldwide. Low dimension, good maneuverability, simple mechanics and

payload capability support a number of indoor and outdoor applications. As main

drawback, the high power consumption can be mentioned. However, the trade-off

is very positive and the improvements on battery technology will increase commer-

cial opportunities.

Thanks to their features, as the high maneuverability, they enable safe and

low-cost experimentation in mapping, navigation and control strategies for UAS

moving in a three-dimensional space. From a robotic point of view, the ability to

move in a 3D contex brings new research challenges compared to terrestrial robots.

Recently, there has been increasing interest in quadrotor. In literature there

exists a lot of works on this kind of UAS, based on publicly available open-source

projects or commercial ones. The relatively simple structure has attracted interest

from accademia, industries and hobbyists. Unlike conventional helicopters, the lack

of swashplates and the presence of four actuators, with reduced diameter of rotor,

permits an easy building and doesn’t need a constant maintenance.

Many research groups have designed their own quadrotors to suit particular

specifications. X4-flyer, OS4, STARMAC, Pixhawk are some successful academic

experiments. In the commercial world, Draganflyer, Gaui Quad flyer, X-UFO,

Parrot AR-Drone and ASCTEC Firefly are very famous and the most used. Fur-

thermore, open source quadrotors are emerging with contributions from academia,

hobbyists and corporations. The open source code shared on the web allows very

fast development process, because debug and new features can be tested by other

people in the community. Some important examples are Arducopter, Openpilot,

Paparazzi and Mikrokopter.

From a control point of view, several control techniques are used for quadrotor

UAS. In particular in [14, 15, 16, 17] thanks to Lyapunov Theory, it is possible to

ensure, under certain condition, the asymptotical stability of the helicopter. The

classic PID structures [17, 18, 19] doesn’t require specific model parameters and the
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Chapter 1 - Introduction

control law is simpler to implement. To improve performance under uncertainties

and unmodelled dynamics adaptive techniques can be implemented as in [20, 21].

Linear Quadratic Regulator (LQR) in [16, 17] shows that the main advantage of

this technique is that the optimal input signal turns out tobe obtainable from full

state feedback (by solving the Riccati equation). On the other hand the analytical

solution to the Riccati equation is difficult to compute. Backstepping control tech-

nique [22, 22, 23] guarantee the convergence of the quadrotor internal states but at

a great computational cost. Furthermore other new control algorithms done with

fuzzy techniques [24, 25], neural networks [26] and reinforcement learning [27] can

be used.

Another scope of quadrotor design may be the building of multi-agent systems,

to increase robustness and flexibility, typical of multiple-robot systems. The use of

multiple unmanned aerial vehicles combines these benefits with agility and perva-

siveness of aerial platforms.

The degree of autonomy of a multi-UAV system should be tuned according to

the specificities of environment and objective of mission. Fully autonomous UAV

systems are not often appropriate, because, in general, the use of semi autonomous

groups of UAVs, supervised or partially controlled by human operators, is the only

feasible solution to deal with the complexity and unpredictability of real-world sce-

narios, for instance search and rescue missions, exploration of large environments

and those high-risk situations in which only a human can take the responsibility of

a critical decision.
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Chapter 2
Quadrotor Dynamic Modelling

and Flight Control Design

2.1 Introduction

In this chapter, the non-linear dynamic system equations are derived. The used

modelling approach consists in writing mathematical equations that describe the

movements and dynamics of a quadrotor UAS as derived from the governing laws

and principals of classical physics. The set of non-linear dynamic system equa-

tions that describe the physical behaviour of the quadrotor are implemented in a

simulated environment to design the flight control system and test it before the

implementation on the embedded hardware.

2.2 Basic concepts

Quadrotor is propelled by four rotors in a cross configuration. The cross structure

is quite thin and light, but it shows robustness by linking mechanically the motors.

In the configuration used in this thesis, each propeller is connected directly to the

motor shaft, without using reduction gears. All the propellers axes of rotation are

fixed and parallel, with fixed-pitch blades.

Consider a rigid model composed of a thin cross structure with four propellers

on its tips. The front and the rear propellers rotate counter-clockwise, while the
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left and the right ones turn clockwise. This configuration of opposite pairs direc-

tions removes the need for a tail rotor (needed instead in the standard helicopter

structure). Figure 2.1 shows the structure model in hovering condition, where all

the propellers have the same speed.

Left Front

RightRear

W1

W2

W4

W3

zB

xByB

Figure 2.1: Hovering quadrotor scheme

The fixed-body reference system is represented in red colour. For each rotor,

two arrows are drawn: one for the thrust and the curved one for the direction of

rotation. In the model of figure 2.1 all the propellers rotate at the same speed,

counterbalancing the weight of the UAV. Thus, the quadrotor performs a steady-

state flight called hovering.

The quadrotor is an under-actuated force-controlled vehicle with six DoF, in-

volving strong nonlinear dynamics and coupling. However, thanks to its structure,

it is quite easy to choose the four best controllable variables and to decouple them

to make the controller easier. The four basic movements, targets of the control

system, are related to its altitude and attitude as shown in figure 2.2:

• throttle command is provided by increasing (or decreasing) all the propeller

speeds by the same amount. It leads to a vertical force in the body-fixed

frame;

• roll command is provided by an increase (decrease) of the left propeller speed

and a decrease (increase) of right one. It leads to a torque around the xB

axis which makes the queadrotor turn;

• pitch command is similar to the roll one but acts on front and rear rotors. It

leads to a torque around the yB axis;

• yaw command is provided by increasing (or decreasing) the front-rear couple

of propellers and by decreasing (or increasing) simultaneously the lef-right

one. It provides a torque with respect to the zB axis.

8
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Left Front

RightRear

W +H DT

W +H DT

W +H DT

W +DH T

az

(a) Throttle

Left Front

RightRear

WH

WH-Dj

WH+Dj

WH

aj

(b) Roll
Left Front

RightRear

W +H DJ

WH

WH

W -H DJ

aJ

(c) Pitch

Left Front

RightRear

WH-Dy

W +H Dy

W +H Dy

WH-Dy

ay

(d) Yaw

Figure 2.2: Quadrotor basic movements

2.3 Quadrotor hardware design

In this section, the on-board system architecture and the structural layout of the

quadrotor are shown.

2.3.1 Quadrotor structure

Two structural layout have been designed, built and developed, for flight tests.

The first design is the simplest, only made by two orthogonal aluminium arms

using rectangular cross-section beams and a central aluminium plate for placing

electronics. Based on this design two prototypes were built; the first is constrained

to ground, having only three DoF: roll, pitch and yaw; the motion is guaranteed by

an universal joint plus a bearing to join the vehicle to a fixed ground base. It was a

test-bench for hardware and software implementation and for a first identification

of the model.

In Table 2.1 physical characteristics of first quadrotor designs (constrained and

not) are shown.

The second structure was designed to strengthen several wake points of the first

design: weight, little and unsecured place for electronics, landing gear. In figure

2.4 the cad drawing and the photo of the first prototype are shown and in table

2.2 physical characteristics of the second design are summarized.

9
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(a) CAD Drawings

(b) Constrained test-bench

(c) Free flying

Figure 2.3: First quadrotor layout

2.3.2 On-board and ground systems

The electronic hardware was split in two parts: an on-board embedded electronics

and a ground guidance system for telemetry and safety controls.

The on-board electronics is one of the most important components of the quad-

copter and there is no way that the quadcopter can even be flown steadily without

it. It is responsible for attitude control system and for autopilot tasks.

It is itself divided into a low-level integrated electronics, with sensors for attitude

control, that provides stability to the vehicle, and a high level CPU implementing

the autopilot and communication functions with the ground station. The main

guidance functions are implemented on the ground station. In Figure 2.5 a scheme

10
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l 0.33m distance between thrust axis and center of gravity
m 2.50kg Quadrotor mass
Ixx 0.077kgm2 Inertial moment with respect to the center of gravity
Iyy 0.077kgm2 Inertial moment with respect to the center of gravity
Izz 1.012kgm2 Inertial moment with respect to the center of gravity
Ixy ∼ 0kgm2 Inertial product with respect to the center of gravity
Ixz ∼ 0kgm2 Inertial product with respect to the center of gravity
Iyz ∼ 0kgm2 Inertial product with respect to the center of gravity
d 0.045m Distance between center of gravity and center of rotation

for constrained quadrotor
I ′xx 0.077kgm2 Inertial moment with respect to the center of gravity

for constrained quadrotor
I ′yy 0.077kgm2 Inertial moment with respect to the center of gravity

for constrained quadrotor
I ′zz 1.012kgm2 Inertial moment with respect to the center of gravity

for constrained quadrotor

Table 2.1: Quadrotor characteristics

l 0.30m distance between thrust axis and center of gravity
m 2.10kg Quadrotor mass
Ixx 0.020kgm2 Inertial moment with respect to the center of gravity
Iyy 0.020kgm2 Inertial moment with respect to the center of gravity
Izz 0.330kgm2 Inertial moment with respect to the center of gravity
Ixy ∼ 0kgm2 Inertial product with respect to the center of gravity
Ixz ∼ 0kgm2 Inertial product with respect to the center of gravity
Iyz ∼ 0kgm2 Inertial product with respect to the center of gravity
d −0.040m Distance between center of gravity and center of rotation

Table 2.2: Second quadrotor design characteristics

of the electronic architecture is presented.

Due to low-cost objectives, the on-board hardware target should be cheap and

largely available on the market. In this thesis, a dsPIC33 was used as CPU for the

low-level electronics. Thanks to its DSP (Digital Signal Processor) integrated ca-

pabilities, sensor integration and filtering can implemented in a very efficiently way.

To speed-up the first development, filtering and sensor fusion are based on

DCM algorithm. All the mathematical principles involved have been studied and

developed in Mahonyś papers [28] and [29]. The draft paper by William Premerlani

DCM Imu Theory [30] has been used as a basis for the Sensor Fusion Module DCM

implementation.

11
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(a) CAD drawings

(b) Prototype photo

Figure 2.4: Second quadrotor design

Cheap MEMS inertial sensors turn out to be appropriate to the attitude con-

trol purposes [31]. A three axis accelerometer, MMA7361L, a two axes gyroscope

(for roll and pitch), IDG500, and a single axis gyroscope (for yaw), ISZ500, plus a

three axes magnetometer, HMC5843 were used. An EM-406 GPS was also used to

implement autopilot functions on-board.

The high level part of embedded electronics, used for navigation purposes, was

assigned to an ARM9 CPU board. In particular the Pandaboard open source hard-

ware was used which is equipped with an OMAP4430 dual core ARM Cortex A9

CPU, 1GB of system RAM, integrated Wi-Fi and bluetooth.

12
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Ground Guidance System

Onboard Embedded Electronics

IMU

GPS

...

Navigation

Stability and Control

Waypoints or 
mission parameters

Guidance

AirData Engine …

Actuators

Pilot Remote Control PC Communications

Low-Level Electronics

High-Level CPU

Figure 2.5: Electronic architecture design

The use of an higher level control layer, with this plenty of peripherals, and the

use of a complete operating system, based on a linux1 distribution, also allowed to

easily implement communication functions with the ground station using WI-FI in-

tegrated hardware and already available operating system protocols. Furthermore

it makes the UAV easily ready for further expansions.

2.3.3 Actuation System

Vehicle actuation system is derived by aero-modeling typical hardware. 20A-11.1V

brushless motors with 12 inches rotors were used. Tests on the motor-rotor couple

have guaranteed a fixed-point maximum thrust for a single axis of about 2 kg. This

kind of motors needs a regulator to operate. Four 30A regulators connected to a

3-cell 5000 mAh Lipo battery were mounted on board to feed motors. With such

a quadrotor configuration a flight of about 10 minutes with a take off weight of

about 2 kg is guaranteed. For on-ground test bench, two power supplies were used

to feed motors to avoid stressing batteries during tests.

A static motor+rotor model identification was performed to find the link be-

tween input and output of the actuation system. Neglecting rotor dynamics, the

expression of the force and axial momentum generated by each motor depends on

1Ubuntu server 12.04 was used

13
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the square of the propeller angular speed via aerodynamic coefficients, but to lin-

earize the system and make it directly linked to the hardware platform, it’s possible

to relate thrust and momentum of each motor with the input signal of brushless

motor regulator as following:

Fi = kTPWMi + c0 (2.1)

Mi = kRPWMi + c1 (2.2)

The coefficients kT and kR may be extracted by performing a load test using a

calibrated balance. In this thesis a three axes strain gauge balance was used. In

Figures 2.6, 2.7 and 2.8 the scheme, the test-bench and the results of the motor

tests are shown.

Computer

Arduino 
board

ESC 
regulator

Motor + 
rotor

Strain gauge 
balance

Data acquisition 
control unit

RS232

RS232

Figure 2.6: Motor tests scheme

Figure 2.7: Motor tests results
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Figure 2.8: Thrust-PWM and Torque-PWM relationships

2.4 System Modelling

In this paragraph physical the six DoF motion equations are described, where the

main physical quadrotor properties are extracted from the CAD model. An open-

cycle identification of an unstable system is very difficult, so the system was divided

in several sub-models to design a preliminary stabilization system.

The model developed is based on a rigid and symmetrical structure, with a

standard aerodynamic model.

2.4.1 Reference Systems

If we think at the six DoF motion, the quadrotor can be modelled as a rigid body

built on two orthogonal arms, with four independent rotors at their tips. Each

couple of rotors rotates in the opposite direction to each other, in order to reduce

the gyroscopic actions and the aerodynamic counter-torque around the z-body axis.

In order to establish the dynamic model of the quadrotor two reference frames

have to be defined, which are the earth inertial frame (OXY Z)1 and the body-fixed

frame (Oxyz)B [32] respectively. Due to the low speed of the flight, the absence

of wings, and the small dimension of rotors, the use of a wind-axes frame can be

avoided.
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o X

Y

Z

x
B

z
B

y
B

Center of gravity

Φ,p

θ,q

Ψ,r

Figure 2.9: Reference systems

The origin of quadrotor coordinate system is its center of gravity, with xB coin-

ciding with one of the arms, yB with the other and zB perpendicular to the plane

OxByB and directed downwards.

The inertial frame, with origin coincident to the center of gravity of the vehicle

at start, Z1 axis opposite to the acceleration of gravity, X1 in the direction of the

initial heading, and Y1 perpendicular to the plane OX1Z1, can be used.

The attitude of the vehicle refers to the inertial frame and it is defined by a set

of three rotations, called Euler’s angles (ψ, θ, ψ), to make the body frame parallel

to the inertial reference system.

The rotation matrix is:

R321 = RψRθRφ =

cθcψ sφsθcψ − cφsψ cφsθcψ + sφsψ

cθsψ sφsθsψ − cφcψ cφsθsψ − sφcψ
−sθ sφcθ cφcθ

 (2.3)

where c(·) and s(·) are respectively the trigonometric functions cos and sin.

2.4.2 Rigid body equations

Consider FX , FY , FZ components of force vector F , MX , MY , MZ components

of momentum vector M , U , V , W components of speed vector v, in the inertial

frame; p, q, r are components of the angular velocity vector Ω of the body reference

16
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system with respect to the inertial frame. Newton’s second law can be written as:

F =
d(mv)

dt
= m

dv

dt
(2.4)

M =
dh

dt
=
d(IΩ)

dt
(2.5)

where d/dt is the time derivative with respect to the inertial reference frame, tha

angular momentum is h = IΩ, the inertial matrix is:

I =

Ixx Ixy Ixz

Iyx Iyy Iyz

Izx Izy Izz

 (2.6)

Euler’s equation of motion expressed in the body reference system are given by 2.7.

Fx = m(U̇ + qW − rV )

Fy = m(V̇ + rU − pW )

Fz = m(Ẇ + pV − qU)

L = Ixxṗ− Iyz(q2 − r2)− Ixz(ṙ + pq)− Ixy(q̇ − rp)− (Iyy − Izz)qr
M = Iyy q̇ − Izx(r2 − p2)− Ixz(ṗ+ qr)− Iyz(ṙ − pq)− (Izz − Ixx)rp

N = Izz ṙ − Ixy(p2 − q2)− Iyz(q̇ + rp)− Izx(ṗ− qr)− (Ixx − Iyy)pq

(2.7)

Finally the kinematic equations to derive the trajectory of the quadrotor in the

inertial frame can be determined starting from u, v, w components of speed vector

in the body reference system (2.8).
u

v

w

 = RψRθRφ


U

V

W

 = R321


U

V

W

 (2.8)

In particular:

u = dx
dt = Ucψcθ + V (cψsθsφ− sψcθ) +W (cψsθcφ+ sψsφ)

v = dy
dt = Usψcθ + V (sψsθsφ− cψcθ) +W (sψsθcφ− cψsφ)

w = dz
dt = −Usθ + V (cθsφ) +W (cθcφ)

(2.9)

According to the kinematic relationship between Euler angles and angular ve-

locity, the equations 2.10 complete the set of twelve needed to describe the rigid

body motion in space.

17
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φ̇ = P +Q sinφ tan θ +R cosφ tan θ

θ̇ = Q cosφ+R sinφ

ψ̇ = (Q sinφ+R cosφ) sec θ

(2.10)

External forces and moments are generated by gravity, aerodynamics and propul-

sion. In first approximation, the expression of the force and axial momentum gen-

erated by each motor depends on the square of the propeller angular speed via

aerodynamic coefficients. Considering kT and kR respectively force and axial mo-

mentum coefficients and l the distance between rotors axes, applied forces and

moments on quadrotor can be modelled as in 2.11.

Fz =
∑4
i=1 Fi =

∑4
i=1 kTω

2
i = 4kTω

2
i

Mx = (ω2
2 − ω2

4)kT l

My = (ω2
3 − ω2

1)kT l

Mz =
∑4
i=1Mi(−1)i+1 =

∑4
i=1 ω

2
i kR(−1)i+1

(2.11)

In matrix notation:
F

Mx

My

Mz

 =


kT kT kT kT

0 kT l 0 −kT l
−kT l 0 kT l 0

kR −kR kR −kR



ω2
1

ω2
2

ω2
3

ω2
4

 (2.12)

Gravitational force acts on the center of gravity and it’s defined in the body-

fixed frame by:

Fg =


Fgx

Fgy

Fgz

 =

1 0 0

0 cosφ − sinφ

0 sinφ cosφ



=

 cos θ 0 sin θ

0 1 0

− sin θ 0 cos θ




0

0

mg


=


−mg sin θ

mg cos θ sinφ

mg cos θ cosφ



(2.13)

As for the aerodynamic forces and moments, drag is opposite to the speed

vector and depends on the dynamic pressure and the shape of the structure. The

18



2.4 System Modelling

aerodynamic drag can be considered focused on the center of gravity of the quadro-

tor and it depends on Cd and S, related to the quadrotor geometry. However in

a first approximation it can be neglected if low speed manoeuvres are requested

to the vehicle. This is a conservative assumption due to the damping nature of

aerodynamic forces and moments: 2

D = −0.5ρ |V |2 SCdv (2.14)

2.4.3 Simulator Implementation

The mathematical model of the aerial vehicle is very useful to study the dynamical

response and to design the control system. Euler’s equations, summarized in 2.15,

can be implemented in a simulation environment and numerically solved. For this

purpose, it’s been used the software Simulink c© part of Matlab c© suite.

Fx = m(U̇ + qW − rV )

Fy = m(V̇ + rU − pW )

Fz = m(Ẇ + pV − qU)

L = Ixxṗ− Iyz(q2 − r2)− Ixz(ṙ + pq)− Ixy(q̇ − rp)− (Iyy − Izz)qr
M = Iyy q̇ − Izx(r2 − p2)− Ixz(ṗ+ qr)− Iyz(ṙ − pq)− (Izz − Ixx)rp

N = Izz ṙ − Ixy(p2 − q2)− Iyz(q̇ + rp)− Izx(ṗ− qr)− (Ixx − Iyy)pq

φ̇ = P +Q sinφ tan θ +R cosφ tan θ

θ̇ = Q cosφ+R sinφ

ψ̇ = (Q sinφ+R cosφ) sec θ

u = dx
dt = Ucψcθ + V (cψsθsφ− sψcθ) +W (cψsθcφ+ sψsφ)

v = dy
dt = Usψcθ + V (sψsθsφ− cψcθ) +W (sψsθcφ− cψsφ)

w = dz
dt = −Usθ + V (cθsφ) +W (cθcφ)

(2.15)

The mathematical model in the state-space form can be formulated in the fol-

lowing way:

ẋ = f(x, u)

y = g(x, u)
(2.16)

Assuming the following vectors of states x, inputs u and outputs y:

2In this thesis, aerodynamic drag is considered only in the full simulator implementation
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x =
[
P Q R φ θ ψ U V W X Y Z

]T
(2.17)

u =
[
Uz Uφ Uθ Uψ

]T
(2.18)

y = [x]T (2.19)

In figure 2.10 is presented the Simulink quadrotor control block.

Uz

Uϕ 

Uθ 

Uψ 

U->PWM

Motor1

Quadrotor
Motor2

Motor3

Motor4

Vb

ωb

V

x

θ 

F1,M1

F2,M2

F3,M3

F4,M4

Figure 2.10: Quadrotor Mask

This is built on the quadrotor physics block that presents rotor forces and

torques as inputs.

Motor blocks include actuator dynamics, so they have PWM signal as input

and rotor force and torque as output. The link between themselves is due to kT

and kR coefficient (as in par.2.3.3), using a first order transfer function with time

constant τA:

F =
kT l

τAs+ 1
(2.20)

Furthermore, ESC regulators, needed to drive brushless motors, show a delay

to read PWM input signal.

Forces and moments on the quadrotor can be evaluated through the following

relationships: 
Fz

Mx

My

Mz

 = FG


PWM1

PWM2

PWM3

PWM4

 = F


Uz

Uφ

Uθ

Uψ

 (2.21)

Where:
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F =


kT 0 0 0

0 kT l 0 0

0 0 kT l 0

0 0 0 kR

 (2.22)

G =


1 1 1 1

0 1 0 −1

−1 0 1 0

1 −1 1 −1

 (2.23)

However, to use a physical block with explicit forces and torques for each rotor,

the following relationship is needed:


Fz

Mx

My

Mz

 = F ∗



F1

F2

F3

F4

M1

M2

M3

M4



= F ∗G∗


PWM1

PWM2

PWM3

PWM4

 = F ∗G∗F−1


Uz

Uφ

Uθ

Uψ

 (2.24)

Where:

F ∗ =


1 1 1 1 0 0 0 0

0 l 0 −l 0 0 0 0

−l 0 l 0 0 0 0 0

0 0 0 0 1 −1 1 −1

 (2.25)

G∗ =



kT 0 0 0

0 kT 0 0

0 0 kT 0

0 0 0 kT

kR 0 0 0

0 kR 0 0

0 0 kR 0

0 0 0 kR


(2.26)
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2.4.4 Model Identification

The model identification activities can be divided in three groups:

• measurements of the measurable parameters, weight, inertia matrix, aerody-

namic coefficient in a wind tunnel, thrust coefficients;

• on ground dynamic model identification;

• In flight dynamic model identification.

Dynamic models can be of different types depending on their use. Among

parameters measurement activities, weight is easy to extract by weighing the hard-

ware. Inertia matrix may be computed using a geometric model of quadrotor with

the weight of each component and its distance from the center of gravity. The

throttle and torque coefficients are extracted using a strain gauge balance (see

par.2.3.3), considering the relationship between PWM and applied forces as shown

in eq.2.1, 2.2 and Figure 2.8.

The open loop instability of the vehicle requires to design a preliminary stabi-

lization system prior to flight tests for the complete model calibration. Assuming

that this stabilization system can be designed with SISO actions on the three axes

the first step is to identify the two rotational dynamics around xB (yB being equiv-

alent) and zB body axes. A ground test facility was used for this purpose.

The on ground experimental platform shown in figure 2.3b has got three ro-

tational DoF, namely roll, pitch and yaw [33]. In this on ground constrained

configuration, the quadrotor rotates around a point which is on the Z axis below

the center of gravity. For this reason it behaves as an inverse pendulum. Equations

for pitch, roll and yaw motion become:

φ̈ = kT l
Ixx

Uφ − cdp
Ixx

φ̇+ mgd
Ixx

sinφ

= k1xUφ − k2xφ̇+ k3x sinφ
(2.27)

θ̈ = kT l
Iyy

Uθ − cdq
Iyy
θ̇ + mgd

Ixx
sin θ

= k1yUθ − k2y θ̇ + k3y sin θ
(2.28)

ψ̈ = kR
Izz
Uψ − cdr

Izz
ψ̇

= k1zUψ − k2yψ̇
(2.29)

The three equations turn out to be decoupled and, if rotation on all the axes

except one are locked, experiments can be made to identify the model parameters
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on the axis free to rotate.

Open loop experiments consist in assuming a certain initial attitude angle, and

giving a momentum step to force a rotation. Having a certain number of exper-

imental traces and parameters ki[x,y,z] to identify, these are found, as usual in

parametric identification [34] minimizing the mean squared difference between the

model response and experimental values of the output.
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Figure 2.11: Open-loop identification on angular velocity

Figure 2.11 shows a family of experimental responses on the roll angular speed

that are used to tune the model giving the response marked in yellow. However the

unstable nature of the quadrotor makes very difficult to have a precise evaluation of

the model parameters. Furthermore, the use of joints and bearings causes frictional

forces that are dominant over the low speed aerodynamics.

2.5 Control system design

2.5.1 Introduction

The main objectives of a basic quadrotor flight control system are the stabilization

of the platform, the attitude control and the autopilot. A good control system

must ensure in all operating conditions:

• closed-loop stability,

• regime good performance,

• dynamical good performance,
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• robustness to system and environment uncertainty,

• bounded control signals.

The model developed in Section 2.4 describes the differential equations of the

system. The aim is to supply the motors in such a way to manage the quad in

the desired position. This process is also known as inverse kinematics and inverse

dynamics. The quadrotor dynamics must be simplified to provide an easy inverse

model which can be implemented in the control algorithms.

In particular:

• most of the angular contributes come from cross coupling of angular speeds

(gyroscopic effects). Since the motion of the quadrotor can be assumed close

to hovering, small angular changes occur and so they can be neglected;

• angular accelerations are referred to the angles of the quadrotor in the body-

fixed reference system. In the hovering condition, the transfer matrix to

determine the attitude in the inertial frame is close to the identity matrix

and so the acceleration equations can be referred directly to the Euler angle

accelerations;

• aerodynamic drag is a damping term and in a first control design may be

neglected.

In this thesis a model-based design of the control system was built, starting from

the decoupled mathematical model. The first step was to design a PID controller

to stabilize the on-ground constrained platform and to perform a first closed-loop

fine tuning of the model. After this step, the developed 3 DoF PID controller was

ported on the flying structure and expanded with the autopilot part of the control

system.

2.5.2 PID controller

PID is surely one of the most used linear regulator in the industrial area. Some

reasons of this success are:

• dimple structure,

• good performance,

• easy tuning also without a specific model of the target system.
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2.5 Control system design

There are several approaches to control such a quadrotor, from the classical sys-

tem based on a standard PID controller to very complex techniques. In this work

a feedback PID control approach was used, because it’s strictly physics-related and

easy to fine tune.

The standard PID algorithm may be described by the following equation:

u(t) = kP (e(t) +
1

Ti

∫ t

0

e(τ) + dτ + Td
de(t)

dt
) (2.30)

Where y is the measured process variable, r the reference, u is the control signal

and e is the measured error. As summarized in figure 2.13 the control signal is the

sum of three terms: the P-term (proportional to the error), the I-term (proportional

to the integral of the error) and the D-term (proportional to the integral of the

error).

+
+
+

kI

kP

kD

1/s

s

Ref

y

e u
+-

Figure 2.12: Traditional PID structure

The transfer function from measurement y to controller output u of a PID

controller is:

C(s) = −kP (1 +
1

sTI
+ sTD) = −kP (1 +

kI
s

+ skD) (2.31)

The controller parameters, to tune during the controller design, are the propor-

tional, integral and derivative gains, kP , kI and kD.

In figure 2.14 the implemented quadrotor PID algorithm is shown. According

to hardware definition (see 2.3.2), it’s divided in two layers: the low-level control

system to perform attitude stabilization and the high level control system to act

as autopilot. It’s important to underline that the low level control system may
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+
+
+
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1/s
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e u
+-

Figure 2.13: Traditional PID structure

be considered with four DoF, attitude and altitude, because, in the U → PWM

transformation, Fz is needed. In our implementation, the low level hardware acts

as a radiocontrolled quadrotor, in which altitude is pilot controlled by a throttle

command.

Ref Position
(x, y, z)

Hardware 
dependent 

scaling

Attitude 
3DoF PID 
Control 

Algorithm

U -> PWM
Quadrotor 
Simulator

Sensors
Hardware 
dependent 

scaling

Position 
3DoF PID 
Control 

Algorithm

Low Level Hardware (dsPIC + IMU & GPS 
Sensors)

High Level Hardware (ARM9)

j’, q’, y’, Uz

p, q, r, j, q, y, 

x, y, z, u, v, w

Uj, Uq, Uy, Uz

Figure 2.14: Two-layers PID control algorithm

To make accurate simulation of overall system, the simulator needs a block

(Hardware dependent scaling) where taking into account electronics delays and

sensor dynamics. This may be modelled by a first order filter with a time constant

τB :

u =
1

τBs+ 1
(2.32)

Furthermore, a conversion of state variables in integer notation is needed to use

DSP embedded functions of dsPIC33 CPU.

2.5.2.1 dsPIC33 fractional type

In the Microchip c© development kit for dsPIC33, all present functions are imple-

mented to take advantage of the entire set of embedded DSP instructions. By
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this way, the functions are computed using a fractional datatype, starting from

the definition of the integer datatype, using the 1.15 format. The notation used

to describe a format consists of two numbers separated by a period (.): the first

number is the number of bits to the left of radix point, the second is the number of

bits to the right of the radix point. For example, 16.0 format is an integer format;

all bits lie to the left of the radix point. The 1.15 format is a fractional format

with one bit for sign and the remaining ones for the fractional part of the number,

so it’s possible to represent values within the range [−1, 1[.

2.5.3 Roll and pitch channels

Pitch and roll channels have the same transfer functions due to the symmetry of the

vehicle. In a linearized approach the transfer function between Uθ (pitch control)

and θ (pitch angle) is derived by 2.28 and 2.27 equations:

Gθ =
θ

uθ
= G′q

1

s
=

k1y
s2 + k2ys− k3y

(2.33)

Where k1y is found previously by a static motor model identification in par.

2.3.3, k2y can be neglected in a first approximation, as it is related to aerodynamic

drag, and k3y depends on the distance between the center of gravity and the center

of rotation. This term is positive for the constrained quadrotor, but it can be

negative or negligible for a free-flying quadrotor. So in the simplest form, the

equation 2.33 becomes:

Gθ =
k1y
s2

(2.34)

Considering the PD controller scheme as in figure 2.15, a simple analytic cali-

bration was made imposing a damping coefficient ζ = 0.7 and a cutoff frequency

ωn = 10Hz to the closed-loop transfer function.

θref
+

- kP

kI/s

kDs

Actuators 
dynamics

Plant 1/s θout

Noise 
Generator

+
+

Figure 2.15: PD controller scheme for pitch and roll channels
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Figure 2.16: Diagrams for roll and pitch channel

This first calibration was useful to perform experimental tests on the attitude

controller of the constrained quadrotor.
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Figure 2.17: System response to step input for pitch channel

However, on the free-flying quadrotor a PID controller is needed to avoid at-

titude errors in hovering conditions. Considering the PID controller scheme as in

figure 2.18, the tuning of the control system was made by an optimization algo-
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rithm.
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Figure 2.18: PID controller scheme for pitch and roll channels

In particular, a genetic algorithm was configured as in (2.35), to minimize the

squared mean error of the plant output.

fOBJ(kP , kI , kD) = RMS(θ − θref ) (2.35)

The design variables to optimize are the coefficients kP , kI , kD of the PID con-

troller. To guarantee performance and robustness, several constraints on gain mar-

gin, phase margin and cutoff frequency were used.

GM > 6dB

GP > 70deg

fcutoff > 10rad/s

(2.36)

2.5.4 Yaw channel

The same procedure can be applied to the Uψ − ψ yaw transfer function:

Gψ =
ψ

uz
=

k1z
s2 + k2zs

(2.37)

Where k1z depends on motor characteristics (as par. 2.3.3) and k2z on aerody-

namical or mechanical (for the constrained quadrotor) damping. However it has

to be considered that the friction of the mechanical bearings introduce an effect

which has to be neglected for the flying quadrotor. Due to the strong influence of

frictional torque of bearing used in the constrained platform for yaw system, this

controller was hard to fine tune on the on-ground facility and an additional in-flight

tuning was needed.
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Neglecting the aerodynamic coefficient, equation 2.37 becomes:

Gψ =
k1z

s2
(2.38)

The low torque coefficient implies a slow response time for this channel. For

this reason a PD scheme (as in figure 2.19) was considered for both constrained

and free-flying model.
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Figure 2.19: PD controller scheme for yaw channel

−140

−120

−100

−80

−60

M
ag

ni
tu

de
 (

dB
)

10
−1

10
0

10
1

10
2

10
3

−180

−135

−90

−45

0

P
ha

se
 (

de
g)

Bode Diagram

Frequency  (rad/s)

(a) Bode diagram

−8 −6 −4 −2 0 2 4 6 8 10 12

x 10
−4

−4

−3

−2

−1

0

1

2

3

4

x 10
−4 Nyquist Diagram

Real Axis

Im
ag

in
ar

y 
A

xi
s

(b) Nyquist diagram

−180 −135 −90 −45 0 45 90 135 180
−140

−120

−100

−80

−60

−40

−20

0

20

40

 6 dB
 3 dB

 1 dB
 0.5 dB

 0.25 dB
 0 dB

 −1 dB

 −3 dB
 −6 dB

 −12 dB

 −20 dB

 −40 dB

 −60 dB

 −80 dB

 −100 dB

 −120 dB

 −140 dB

Nichols Chart

Open−Loop Phase (deg)

O
pe

n−
Lo

op
 G

ai
n 

(d
B

)

(c) Nichols diagram

Figure 2.20: Diagrams for yaw channel
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2.6 Autopilot controller

A simple analytic calibration can be made imposing a damping coefficient ζ =

0.7 and a cutoff frequency ωn = 10Hz to the closed-loop transfer function.
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Figure 2.21: System response to step input for yaw channel

2.6 Autopilot controller

Before introducing the autopilot controller, the attitude control system was im-

plemented on the on-board hardware. This system was tested on the constrained

platform and on the free flying quadrotor to check the proper working in a real en-

vironment. Furthermore to check model identification the implemented simulator

was compared to the real platform using the same input commands and analyzing

flight test logs.

The autopilot controller as shown in figure 2.10, is implemented on a different

electronic board and it acts passing attitude references to the low level processor.

2.6.1 Altitude channel

To control altitude, an altimeter sensor is needed. In this thesis, a sensor fusion

between GPS, barometer and dead reckoning using accelerometers was used. This

system can be modelled by a filter with a time constant τsz as in equation 2.39.

S =
1

1 + sτsz
(2.39)

The SISO channel, Fz − z can be described by the following transfer function:

Gz =
uz
z

=
4kT
m

s(pz + s)
(2.40)

At zero speed, the system is a double integrator, but aerodynamic drag, due
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to the increasing speed, move a pole on the negative part of the real axis. In this

case, aerodynamics cannot be neglected, but an in-flight identification is needed

to fine tune the controller. Using a simplified aerodynamic model a first PID has

been implemented.
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Figure 2.22: Pole position moving due to aerodynamic drag

The cut-off frequency of the transfer function involves in the searching of a

slow control system with respect to the attitude controller. A genetic algorithm

was configured for an automated tuning of the controller as in (2.41). The objec-

tive of the optimization procedure is to minimize the squared mean error between

measured altitude and reference.

fOBJ = RMS(y − yref )

V P = {kP , kI , kD}
GM > 6dB

GP > 70deg

fcutoff > 10rad/s

(2.41)
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2.6 Autopilot controller

2.6.2 Position controller

Analyzing simulator tests, the system Ux → x was modeled as a first order sys-

tem with τ = 0.3 as time constant. For the trajectory tracking control system a

PD controller was implemented (as in figure 2.23 for x axis) and tuned using an

optimization procedure, configured similarly to the previous controllers.
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Figure 2.23: PD controller scheme for trajectory tracking
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Chapter 3
Optimization

3.1 Introduction

Optimization is the process of making something better. Optimization consists in

trying variations on an initial concept and using the information gained to improve

on the idea. A computer is the perfect tool for optimization as long as the idea or

variable influencing the idea can be input in electronic format.

Optimization algorithms may be divided in two big families:

• traditional optimization methods take the basic approach of heading downhill

from an arbitrary starting point then successive improvements increase the

speed of the downhill algorithms but do not add to the algorithm ability to

find a global minimum instead of a local minimum;

• natural methods generate new points in the search space by applying oper-

ators to current points and statistically moving toward more optimal places

in the search space. They rely on an intelligent search of a large but finite

solution space using statistical methods. The algorithms do not require tak-

ing cost function derivatives and can thus deal with discrete variables and

discontinuous cost functions. They represent processes in nature that are

remarkably successful at optimizing natural phenomena.

In the design of an UAV several optimization problems may be encountered.

The first ones are related to the choice of hardware, the design and layout of the

structure. Then, during the controller design, an optimization algorithm able to

automatically tune the PID controller is useful to automate the tuning procedure
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[35, 36].

Finally in the ground guidance system (see 2.3.2) there is the necessity to im-

plement algorithms able to manage the UAV or a fleet of UAVs, automatically

optimizing their paths to achieve a target [37].

In this thesis a general purpose optimization software developed during the PhD

project is described. This software is based on two well-known natural evolutionary

algorithms each one with their own features: genetic and ant colony optimization

algorithms. The software is able to solve single and multi-objectives problems.

In particular for multi-objectives implementation two models of solution are

proposed: the first based on classic Pareto, the second based on Game Theory. In

the following sections, algorithms implementation is described, focusing attention

on several original points.

3.2 General Purpose Optimization Software for

Engineering Multiobjective Problems

A general multi-objective optimization problem can be described as a vector func-

tion f that maps a tuple of m parameters (decision variables) to a tuple of n

objectives to maximize (or minimize).

max y = max f(x) = max(f1(x), f2(x), ..., fn(x))

subject to x = (x1, x2, ..., xm) ∈ X
y = (y1, y2, ..., yn) ∈ Y

(3.1)

where x is called decision vector (and its components decision variables) defined

in X, called search space, and y is the objective vector (and its components are

objective functions) defined in Y , called objective space.

A typical solution to this problem is the research of the Pareto optimal decision

vector. Mathematically, considering a maximization problem (as in 3.1), solution
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a is said to dominate b (written as a � b) if [38]:

a, b ∈ X
∀i ∈ 1, 2, ..., n : fi(a) ≥ fi(b)

∧
∃j ∈ 1, 2, ..., n : fj(a) > fj(b)

(3.2)

In a given set of solutions, all decision vectors which are not dominated by any

other one are called nondominated solutions. These are denoted as Pareto optimal

and constitute the Pareto front. However, Pareto front is a set of solutions, every

one with the same ”optimality”.

Another concept inherited by game theory branch may be used to solve multi-

objective problems.

A normal form game

Γ =< n;X1, ..., Xn; f1, ..., fn > (3.3)

is a strategic interaction problem, based on a set of n ∈ N players, each one

choosing simultaneously a strategy in the set of strategies Xi. We denote X =

X1 ×X2 × ...×Xn. Player i links each strategy profile s = (x1, ..., xn) (solution of

the problem) to a profit (or payoff) function fi(x) : X → R. Every player wants to

maximize his profit. In this thesis two solutions to this problem have been used:

Nash and Stackelberg equilibria.

3.2.1 Nash equilibrium algorithm

In the Nash equilibrium solution concept no player has anything to gain by chang-

ing only his own strategy unilaterally [39].

Considering the game Γ (3.3), a strategy set (x∗1, ..., x
∗
n) ∈ X is called Nash

equilibrium if:

∀i = 1, ..., n : ∀xi ∈ Xi :

fi(x
∗
1, ..., x

∗
n) ≥ fi(x∗1, ..., x∗i−1, xi, x∗i+1, ..., x

∗
n)

(3.4)

That is:

max
xi∈X

fi(x
∗
1, ..., x

∗
i−1, xi, x

∗
i+1, ..., x

∗
n) (3.5)

According to this definition, the algorithm for a n players Nash equilibrium

37



Chapter 3 - Optimization

game is presented [40, 41, 42, 43, 44].

The algorithm is based on the Nash adjustment process [45], where players take

turns setting their outputs, and each player’s chosen output is a best response to

the output that his opponent chose the period before. If the process does converge,

the solution is an optimization of the game.

Let x = x1, ..., xn be a feasible solution for the n player Nash problem. Then

xi denotes the subset of variables handled by player i, belonging to a metric space

Xi, and optimized by an objective function called fi. Player i search the optimal

solution with respect to his objective function by modifying xi.

At each step k of the optimization algorithm, player i optimizes xki using xk−1(−i) =

xk−11 , ..., xk−1i−1 , x
k−1
i+1 , ...x

k−1
n . This process exits when all players converge to the

same solution. In figure 3.1 the generic Nash co-evolution algorithm for two players

is shown.

Player 1 Player 2

Evolution

Start

Initialization
(x1, x2)

Initialization
(x1, x2)

Sort

x1 variable 
exchange

Evolution

Sort

x2 variable 
exchange

Termination 
Criterion

Nash Equilibrium

Figure 3.1: Generic Nash co-evolution algorithm
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3.2.2 Hierarchical Stackelberg-Nash equilibrium algorithm

In a two-players based Stackelberg game, actors doesn’t move simultaneously, but

a player, called leader, moves as first, the other one observes and after player 1

moves itself.

Consider a n+1 player game, where one player is the leader and the rest of them

are followers in a two-level Stackelberg game. Any player is assumed to maximize

his own profit called objective function. The followers act in a noncooperative way

and play a Nash equilibrium game [39]. The leader takes into account the follow-

ers Nash equilibrium, that we assume to be unique, and solve a Nash equilibrium

problem in a backward induction scheme. Let X,Y1, ..., Yn be compact, nonempty

and convex subsets of an Euclidean space that are the leader’s and the follow-

ers’ strategy sets, respectively. Let l, f1, ..., fn be real valued functions defined on

X × Y1 × ... × Yn representing the leader’s and the followers’ cost functions. We

also assume that l, f1, ..., fn are continuous in (x, y1, ..., yn) and that fi is strictly

convex in yi for any i = 1, ..., n.

For each x ∈ X, that is the leader’s decisions, the followers solve the following

lower level Nash equilibrium problem N(x)
find (ȳ1, ..., ȳn) ∈ Y1 × ...× Yn such that

f1(x, ȳ1, ..., ȳn) = maxy1∈Y1 f1(x, y1, ..., ȳn)

...

fn(x, ȳ1, ..., ȳn) = maxyn∈Yn f1(x, ȳ1, ..., yn)

(3.6)

Let (ỹ1(x), ..., x̃n(x)) ∈ Y1× ...×Yn be the unique solution of the problem N(x).

The leader has to compute a solution of the following upper level problem:{
find x̄ ∈ Xsuch that

l(x̄, ỹ1(x̄), ..., ỹn(x̄)) = maxx∈X l(x, ỹ1(x), ..., ỹn(x))
(3.7)

Any solution x̄ ∈ X to this problem is called a Stackelberg-Nash strategy, while

any vector (x̄, ỹ1(x), ..., ỹn(x)) ∈ X × Y1 × ... × Yn is called a Stackelberg-Nash

equilibrium.

The given solution for n = 1 is the classical Stackelberg problem solution [39].

This model, for n > 1 has been intensively studied and used in different applicative

contexts, as in [46, 47, 48, 49].
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Upper Level Problem Lower Level Problem

Leader

Evolution

Start

Initialization
(x1, ?, ?)

Sort

Termination 
Criterion

Stackelberg-Nash 
Equilibrium

Best Replies 
on 2nd level

Follower 1

Initialization
(y1, y2)

EvolutionSort
y1 variable 
exchange

Nash Equilibrium

Follower 2

Initialization
(y1, y2)

EvolutionSort
y2 variable 
exchange

Termination 
Criterion

Figure 3.2: Generic Hierarchical Stackelberg-Nash Algorithm

The algorithm is divided in two stages:

• an upper level problem, in which the goal is to maximize the objective func-

tion of the leader,

• at each step of the upper level layer, a lower level problem has to be solved,

in which the goal is to maximize the objective function of the follower (or

find the Nash equilibrium between followers), as the best reply to the leader

choice.

3.2.3 Multiobjective Software Implementation

In this thesis the implementation of these methods is organized in two layers via

software interfaces:

• IGame: this interface represents the problem to solve. It may be a Stackel-

berg, Nash equilibrium problem or multiobjective with Pareto front,

• IPlayer: this interface represents the optimization method to use. It may be

Genetic or Ant Colony Algorithm. Furthermore, it’s possible to use a game
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as IPlayer. In this way, a two or more levels Stackelberg-Nash equilibrium

can be modelled, but also other hybrid problems may be created.

In the following sections optimization methods are introduced, with several

details on the software architecture.

3.3 Genetic Algorithm

3.3.1 Basic concepts

The genetic algorithm (GA) is an optimization and search technique based on the

principles of genetics and natural selection. A GA allows a population composed of

many individuals to evolve under specified selection rules to a state that maximizes

the ”fitness” (i.e., minimizes the cost function). The method was developed by John

Holland (1975) over the course of the 1960s and 1970s and finally popularized by

one of his students, David Goldberg, who was able to solve a difficult problem

involving the control of gas-pipeline transmission for his dissertation (Goldberg,

1989). Hollands original work was summarized in his book. He was the first to

try to develop a theoretical basis for GAs through his schema theorem. The work

of De Jong (1975) showed the usefulness of the GA for function optimization and

made the first concerted effort to find optimized GA parameters. Goldberg has

probably contributed the most fuel to the GA fire with his successful applications

and excellent book (1989). Since then, many versions of evolutionary programming

have been tried with varying degrees of success. Some of the advantages of a GA

are:

• optimizes with continuous or discrete variables,

• doesn’t require derivative information,

• simultaneously searches from a wide sampling of the cost surface,

• deals with a large number of variables,

• is well suited for parallel computers,

• optimizes variables with extremely complex cost surfaces (they can jump out

of a local minimum),

• provides a list of optimum variables, not just a single solution,
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• may encode the variables so that the optimization is done with the encoded

variables,

• works with numerically generated data, experimental data, or analytical func-

tions.

These advantages are intriguing and produce stunning results when traditional

optimization approaches fail miserably.

Of course, the GA is not the best way to solve every problem. For instance,

the traditional methods have been tuned to quickly find the solution of a well-

behaved convex analytical function of only a few variables. For such cases the

calculus-based methods outperform the GA, quickly finding the minimum while

the GA is still analyzing the costs of the initial population. For these problems the

optimizer should use the experience of the past and employ these quick methods.

However, many realistic problems do not fall into this category. In addition, for

problems that are not overly difficult, other methods may find the solution faster

than the GA. The large population of solutions that gives the GA its power is also

its bane when it comes to speed on a serial computer the cost function of each of

those solutions must be evaluated. However, if a parallel computer is available,

each processor can evaluate a separate function at the same time. Thus the GA is

optimally suited for such parallel computations.

3.3.2 Binary GA for continuous problems

A genetic algorithm is built on a multi-objective optimization problem, defining

a finite population of l chromosomes, several genetic operators, such as crossover

and mutation, that move the population to the next state and a termination crite-

rion. The data structure of a GA is principally based on a population of individuals.

Let X1, X2, ..., Xn be compact subsets of an Euclidean spaces, denoted as search

space. Let f1, f2, ..., fn be real valued functions, defined on X1 × X2 × ... × Xn,

representing the objective functions to be maximized.

Let s = x1, x2, ..., xn be the individual (or chromosome) representing a feasible

solution in the search space. As in nature an individual is different from another

one thanks to own DNA, in the algorithmic counterpart it’s made by a string of

bits, called chromosome, that may be divided in several genes, one for each problem

variable or property. It’s possible to see an individual in two ways: a phenotypic
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one, linked to the physic problem and a genotypic one, related to the algorithm.

A finite set of chromosomes make up a population. It can be viewed as a sam-

pling of the problem domain that generation by generation maps zones with an

higher probability of presence of the optimum.

GA

Initialize 
Population

Compute 
Fitness

Termination 
Criterion

Selection

Crossover/
Mutation

Solution End

Figure 3.3: Genetic Algorithm flowchart

As shown in figure 3.3, a typical genetic algorithm consists of several steps:

• Population initialization: a set of solutions are randomly generated in the

search space. In a binary GA, each chromosome is represented by a fixed-

length string of bits, called genotype.

Population

Chromosome/Individual

Gene 10010111000

Chromosome/Individual

Chromosome/Individual

Objectives Constraints Fitness

Figure 3.4: Population in a GA

• Fitness computation: at this step function object and constraints are evalu-
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ated to sort individuals and get the best solution. In Pareto-front optimiza-

tions, chromosomes are sorted by using a ranking method based on domina-

tion.

• Termination criterion: usually two criteria are defined in a GA, one on the

maximum number of total generations and one on the maximum number of

total generations without improvements on the best chromosome.

• Selection: on the sorted population, a probabilistic based selection of par-

ents is made to permit coupling of best individuals without wasting worst

chromosomes that may be useful to move towards unexplored zones of search

space. Two selection methods have been implemented: roulette wheel and

tournament based. In the roulette wheel selection, each chromosome has a

probability to be chosen proportional to its fitness (or rank). In the tourna-

ment based selection, the same idea is applied on subsets of population in a

sort of knockout tournament.

• Crossover: on selected parents, a binary crossover operator is applied to

create two new individuals. This operator may be applied in several forms:

– single-cut: parents chromosomes are mixed using only a single cut;

– multi-cut: parents chromosomes are mixed using a cut for each gene

(property);

– bit-by-bit: parents chromosomes are mixed considering for each bit the

crossover probability. This is the option with most entropy and it’s

suggested only in few cases.

Single-Cut Crossover
1 1 1 1 111 1 1 0 0 0 0 1 0 0 0 0 0

0 0 0 0 010 0 0 1 1 1 1 0 1 1 1 1 1

Parent1

Parent2

Child1

Child2

1 1 1 0 011 1 1 0 0 0 0 1 1 1 1 1 1

0 0 0 1 110 0 0 1 1 1 1 0 0 0 0 0 0

Multi-Cut Crossover
1 1 1 1 111 1 1 0 0 0 0 1 0 0 0 0 0

0 0 0 0 010 0 0 1 1 1 1 0 1 1 1 1 1

Parent1

Parent2

Child1

Child2

1 1 1 1 111 1 1 0 1 1 0 0 0 1 1 1 1

0 0 0 0 010 0 0 1 0 0 1 1 1 0 0 0 0

Bit-by-Bit Crossover
1 1 1 1 111 1 1 0 0 0 0 1 0 0 0 0 0

0 0 0 0 010 0 0 1 1 1 1 0 1 1 1 1 1

Parent1

Parent2

Child1

Child2

1 0 0 1 011 1 0 0 1 0 1 0 0 0 1 0 0

0 1 1 0 110 0 1 1 0 1 0 1 1 1 0 1 1

Figure 3.5: Crossover types

44



3.4 Ant Colony

• Mutation: to avoid premature stagnation of the algorithm a mutation oper-

ator is used, randomly changing a bit of the just created chromosomes. The

probability of this operator may be linked to the evolution of the algorithm.

3.4 Ant Colony

3.4.1 Basic concepts

Ants behaviour has always captured the attention of naturalists and ethologists,

as they are organized in systems (colonies) that, in despite of the simplicity of

constitutive individuals, show a surprising ability to manage very complex tasks.

One of the most astonishing capabilities shown by ant colonies is the dynamic

finding for the shortest path between nest and food. Once the food source is found,

ants line up in a long, two-way single column, having the ability to dynamically

redefine a new best path if a accidental obstacle blocks the actual one.

This efficient colony organization is obtained through the so-called stigmercy,

that is a form of indirect communication induced by chemical changes applied to

the environment. An ant searching for food releases an amount of pheromone on

the ground; the perception of this agent by other ants increases the probability

that they also follow the same path or a considerable portion of it, but also trying

some deviations that could be more effective than the original route.

3.4.2 Ant Colony in graph-based combinatorial problems

A simulated artificial version of this social behaviour is synthesized in the Ant

System (AS) metaphor. Ant organization and related interaction rules are replied

in a computer system, and the ability to find shortest paths (or equivalent cost

functions) in a well-defined environment is exploited in a general way.

Let us consider the minimization of a typical N-P hard combinatorial problem

Π(S, f,Ω) (e.g. a Generalized Travelling Salesman Problem, or GTSP)[50, 51],

where S is the set of solutions, f(S) the objective function and Ω the set of con-

straints (if any). Aim of the problem is the finding for a feasible, globally optimal

solution. This problem is modelled through the following objects: i) a finite set

C = [c1, c2, ..., cn] of project parameters; ii) a complete list of possible states of

the system, defined as finite length sequences of elements ci, x = {ci, cj , ...ck, ...} .
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The collection of the all possible states is denoted with X, and |X| represents the

length of X, being the maximum sequence length limited by a positive constant

n ∈ N) a set S of candidate solutions, with S ⊆ X; iv) a set of possible states

X̂ ⊆ X, defined with a problem-dependent function that verifies it is not impossible

to complete a sequence x ∈ X̂ in a feasible solution; v) a non-void set S∗ of optimal

solutions with S∗ ⊆ X̂ ⊂ X; vi) a cost function g(s) associated to each candidate

solution s ∈ S. Artificial ants will construct solutions making random steps on a

complete graph GC = (C,L) where C represents the set of nodes and L the set of

edges. Constraints can be managed in two alternative ways: intrinsically treated

at the construction phase (hard way), allowing the ants to built feasible solutions

only, or subsequently the construction phase, with infeasible solutions allowed, but

treated with penalty functions.

A pheromone trail τi[τij ] and a heuristics ηi[ηij ] can be associated to the node ci

[the edge lij ]. The pheromone trail represents a sort of shared memory for the ant

colony, spread over the chosen paths, while the heuristics ηi or ηij is an immutable

information. In most cases ηi and ηij are strictly connected to the cost function,

giving to the ants a valuable support in choosing the best component routes.

The AC algorithm can be seen as a succession of several procedures. Analo-

gously to other natural algorithms, epochs represent the time-base of evolution.

For each epoch, ants concurrently build solutions moving themselves on the con-

struction graph, on the basis of the pheromone trails and heuristic information. At

each construction step, the ants choose the nodes to switch on, via a probabilistic

choice biased on a proportional-random rule:

pkij =
[τij ]

α[ηij ]
β∑

l∈N [τij ]α[ηij ]β
(3.8)

where pkij is the probability of transition ij for the k-th ant; τ is the pheromone

matrix; η is the heuristic information matrix that depends on the specific problem;

exponents α and β are parameters used to bias the influence of pheromone trail,

and l is the generic edge not yet visited.

An artificial ant should be equipped with the following abilities/features:

• path exploration in searching for the best solution,

• a general-purpose local memory mk used for: i) partial route storage, ii) fea-
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sible solutions construction, iii) heuristics and objective function evaluation

support, iv) reverse path reconstruction,

• an initial state xk and one or more termination rules ek. Typically, an initial

state consists of a void or a single element array.

When set in the state xr = {xr−1, i}, the ant should move to a node j of its

neighbourhood Nk(xr) if none of termination rules is verified. When one of ter-

mination criteria is meet, the ant stops. This rule may be varied if a different

behaviour is preferred for the ant,i.e. the construction of infeasible solutions is

allowed or not. This is simply obtained modifying heuristics and using properly

the ant local memory.

The ant should choose a move using either heuristics and pheromone informa-

tion previously deposited onto the tracks by the colony.

When a component Ci is added to the current state, the ant should be able to

upgrade the pheromone track associated to the component or connection edge.

Once a solution is built, the ant should be able to retrace it in the opposite

way, releasing the pheromone on the involved edges.

It should be remarked that all the ants move in parallel and independently of

one another except for the pheromone tracking phase, that is performed in a syn-

chronous mode. This circumstance can be seen as a sort of shared learning, where

each ant does not adapt itself, but adapt the representation of the problem for the

other ones.

3.4.3 Ant System

Colony object is the core of a Ant System algorithm (AS). It contains all the

artificial agents, properties and the environment where the ants are allowed to in-

teract, making the stigmercy. Several variants of AS system have been proposed

in the literature; the most relevant implementations are: ant-sensity, ant-quantity

and ant-cycle, respectively introduced by Dorigo et al.[52], Colorni et al.[53] and

Dorigo [54].

Ant-density and ant-quantity paradigms make a pheromone update after each

node-to-node move. On the contrary, ant-cycle performs the update only when
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run(nEpochs)

i=0...nEpochs-1

end(i)

j=1...nAnts UpdatePheromone

end(j)

Ants[j].buildSolution

end buildSolution

ComputeObjective

Figure 3.6: Flow-chart of ColonyAS execute function

every ant has completed a loop on the graph; the pheromone quantity released by

each ant is proportional to the solution quality (e.g. the shortness of the route in

a TSP). This variant is the most used because of its superior performance.

The two main stages of an AC algorithm are the solution construction and

pheromone update. At the start, the pheromone is slightly overdosed, if compared

to the typical amount released by ants during their moves. An evaluation on initial

pheromone can be performed with the following expression:

∀(i, j), τij = τ0 =
m

Cnn
(3.9)

where m and Cnm represent respectively the number of ants and the length of cir-

cuit generated by employing a nearest-neighbourhood heuristic information only.

This initial dosage is made to prevent, on one hand, a premature convergence in

initial phases (that would take place with a lower amount), and to avoid, on the

other hand, a long preliminary exploration on the graph if a higher amount would

be released.

In Fig.3.6, the flow-chart of a ColonyAS with main components is shown. The

ComputeObjective function is external to the ant cycle i to allow an asynchronous

I/O port with external programs and calculus engines.

The pheromone update is performed by theUpdatePheromone function that pre-

liminary provides for a reduction of the overall pheromone intensity via an evapo-

ration factor, and subsequently increases the amount on each track proportionally

to the quality of the solution expressed by each travelling ant. The evaporation is
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controlled by the following expression:

τij = (1− ρ)τij∀(i, j) ∈ L (3.10)

where ρ ∈ [0, 1] denotes the pheromone evaporation rate. This parameter should

be set to avoid a monotonic growth of the pheromone, allowing the system to forget

bad choices and weak solutions.

After the evaporation reduction, ants update the pheromone level according to

the following relation:

τij = τij +

m∑
k=1

∆τkij ,∀(i, j) ∈ L (3.11)

where ∆τkij is the pheromone amount the ant k releases on the travelled arc ij.

This quantity is set as:

∆τkij =

1/Ck

0
if

(i, j) ∈ T k

otherwise
(3.12)

where Ck is the length of tour T k assembled by the k-th ant.

3.4.4 Elitist Ant System Colony

The elitist ant system strategy, originally introduced by Dorigo [54], represents a

remarkable improvement of the previously described AS. The basic idea is to fur-

nish an increased value, in terms of pheromone track, to the arcs of the best-so-far

route on the graph.

This is done by a special ant (the so-called best-so-far ant) that releases an

extra amount of pheromone. This behaviour can be seen as example of daemon

action working on the ant colony.

The elitist implementation is realised adding to the arcs of the best-so-far tour

T bsf a quantity e/Cbs , where e is the assigned weight to the best-so-far solution

and Cbs is its length.
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run(nEpochs)

i=0...nEpochs-1

end(i)

j=1...nAnts

UpdatePheromone

end(j)

Ants[j].buildSolution

end buildSolution

ComputeObjective

SearchOptimum

Figure 3.7: Flow-chart of ColonyEAS execute function

Therefore the pheromone upgrade equation becomes:

τij = τij +

m∑
k=1

∆τkij + e∆τ bsfij , ∀(i, j) ∈ L (3.13)

where ∆τ bsfij is the pheromone amount released by the best-so-far ant on the trav-

elled edges:

∆τ bsfij =

1/Cbs

0
if

(i, j) ∈ T bsf

otherwise
(3.14)

To avoid a premature convergence, it is preferable to increase the pheromone

initially distributed on all the edges:

τ0 =
e+m

ρCnm
(3.15)

In Fig.3.7 the general flow-chart of a ColonyEAS is shown with main compo-

nents.

3.4.5 Colony ASRANK: a rank-based Ant System

A further improvement of the basic AS is the rank-based version ASRANK , pro-

posed by Bullnheimer et al.[55]. In the ASRANK metaphor, each artificial ant re-

leases an amount of pheromone proportional to its own rank. Furthermore, as for

EAS, the best-so-far ant is also allowed to deposit an extra-amount of pheromone.

At every iteration, only the (w− 1) rank-ordered ants, plus the best-so-far one

(not necessarily belonging to the actual epoch), are allowed to deposit pheromone.
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The best-so-far ant will furnish the greatest feedback, expressed by the weight

w, while the rank-based ants will contribute with a rank-weighted amount of

pheromone, as expressed by the following expression:

τij = τij +

w−1∑
r=1

(w − r)∆τ rij + w∆τ bsfij (3.16)

with ∆τkij = 1/Cr and ∆τ bsfij . At start, the pheromone is initialized as:

τ0 =
0.5r(r − 1)

ρCnn
(3.17)

3.4.6 Colony MMAS: a Max-Min Ant System

The Max-Min Ant System (MMAS), suggested by Stützle et al.[56], introduces

several changes to the standard AS:

• the shortest loop found is greatly set off: only the best ant in the actual

epoch (or the best-so-far ant) is allowed to deposit pheromone;

• to avoid a premature convergence caused by the extreme elitist strategy im-

plied by the previous statement, a range of achievable pheromone [τmin, τmax]

values is introduced;

• at start, the pheromone is initialized to τmax and a low rate of evaporation

is adopted to favour the domain exploration during the initial epochs;

• every time the algorithm enters in a stagnation phase, or no improvement for

the best loop occurs for many consecutive epochs, the pheromone tracks are

re-initialized.

Similarly to the ASR, the pheromone update requires a preliminary sorting of

the ants with respect to their loop performance (e.g. the loop length for TSP).

The upgrade is therefore executed according to the following expression:

τij = τij + ∆τ bestij (3.18)

where ∆τ bestij is the best ant allowed to deposit pheromone; it can be either the

best-so-far ant or the best ant in the epoch (iteration-best ant). The pheromone

variation will be set respectively to ∆τ bestij = 1/Cbsf or ∆τ bestij = 1/Cib where Cib

is the length of the best loop at the current epoch.
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Generally, MMAS implementations alternate both update techniques. The

choice of the frequency the two update modes are alternated influences the domain

search. When the pheromone upgrade is due to the best-so-far ant, the searching

for optimum is quickly biased on the best-so-far loop. On the other hand, an up-

grade based on the iteration-best ant, will distribute pheromone in a less biased

fashion, as much more connections will receive it.

From testing, as the order of graph increases, an upgrade carried out via the

best-so-far ant is more and more required. Therefore, in the present context a

feature that considers this eventuality has been implemented. Up to a fifty-node

full graph, the probability of choice between the two upgrade modes is set to 50%.

This selection is performed extracting a random number k in the range [1, 350+n];

if k ≤ 200, then the iteration-best rule is used; the best-so-far rule otherwise.

According to Stützle et al.[57], the pheromone track limits are set to:

τmax = 1/ρCbs

τmin = τmax(1− n
√

0.05)/(avg − 1) n
√

0.05

(3.19)

where avg represents the mean of possible choices for each ant at each step of the

solution assembly.

In Fig.3.8 A standard TSP test case performed with different ACO (AS, eAS,

ASrank and MMAS) is shown for comparison. MMAS algorithm is the best in

terms of result quality, but with a slow initial exploration of the graph. ASR

algorithm highlights a better convergence speed, but the result shows a slightly

reduced quality.

3.5 Parameters Envelope Control System and Hy-

bridization

To increase the flexibility and efficiency of the optimization process, all the pre-

viously described algorithms have been slightly modified and predisposed to be

dynamically regulated via an Envelope Control System (ECS).

This software structure allows the choice of the working parameters and algo-

rithm type during the simulation. Several control points can be defined by the
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Figure 3.8: TSP test case (kroA100); AC algorithms comparison

user on the overall epochs. At each control point, the preferred AC algorithm and

the related working parameters can be chosen. A ramped/stepped option is also

available to give a better control over continuous/discrete quantities.

A dynamic choice of algorithms and parameters during an AC run can be useful

to test more complex strategies that take advantage by the hybridization of meth-

ods to obtain an improved efficiency in terms of an higher convergence speed and

a more robust domain exploration. To allow the correct working of two (or more)

sequential AC algorithms, an implicit parameter exchange is required. Continuity
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Table 3.1: Test results on hybrid algorithms

Test ACO Epochs Ants ρ α β % Error @Epoch

1
MMAS 50 100 0.02 1 3

1.23 97
ASrank 950 100 0.2 1 3

2
ASrank 50 100 0.2 1 3

3.67 48
MMAS 950 100 0.02 1 3

3
MMAS 20 100 0.01 1 3

1.00 89MMAS 30 100 0.1 1 3
ASrank 950 100 0.2 1 3

is mainly assured by the sharing of the pheromone matrix and the best-so-far ant

structure.

In Fig.3.9 an example of hybridization via envelope controls is shown with a

hybrid MMAS-ASR algorithm. In the first test, initial epochs are processed with

a Min-Max AS, while remaining iterations are performed with a rank-based AS.

In the second test, the sequence of algorithms is inverted. In the third test two

MMAS with different evaporation rates plus ASR are performed.

These tests were employed to find the best balance between major features of

both methods.

Considering a virtual finishing line at 100 epochs, the results in Tab.3.1 show

that the use of MMAS as first method assures a good optimum quality, mainly

because of the intrinsic feature of this algorithm to perform a large exploration in

initial phases. For this reason, the second test has obviously returned a weak result.

The last test shows the importance of parameters also in a hybrid algorithm. A

step increment on evaporation further improves the performance of the procedure.

3.6 Distributed Ant Colony

Natural optimization methods as Ant Colony, Genetic Algorithms or Swarm Op-

timization, produce a large number of candidate solutions at each iteration step

(generations or epochs). For each solution, one or more objective functions, if a

multi-criterion problem is considered, and one or more state functions, if constrains

are present, have to be computed.
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Figure 3.9: Hybrid MMAS/ASRANK algorithms comparison

In many research and engineering contexts, as for structural optimization, some

of these functions can be very expensive in terms of computational effort.

Two alternative ways can be followed to counteract this problem: i) to increase

considerably the power of the computer running the overall optimization process;

ii) to use more computing units, arranged in networks, to perform a distributed

optimization task[58].

55



Chapter 3 - Optimization

Generally, first solution only gives a limited improvement rate, as an appreciable

increase of elaboration speed requires very expensive high-performance multi-core

computers.

On the other hand, a distributed computational layout is very effective because

of the intrinsic parallelism of all natural methods. For the GA or ACO concept,

each agent (individual or ant) performs its solution independently from each other.

Therefore, objective and state functions can be easily evaluated in asynchronous

mode on several computers interconnected in a typical master-slave architecture.

Furthermore, many standard up-to-date computers result less expensive than a

single high-performance supercomputer, and for distributable algorithms the over-

all computational power simply increases with the number of computers connected

into the network.

Grid and distributed computing has been developed in deep in the last years,

and actually many research centers uses large clusters to carry out highly demand-

ing computations. In the present work an effective, low-cost Distributed General

Purpose Optimization (DGPO) procedure has been developed to speed-up the over-

all optimization process.

The proposed DGPO is based on local and remote networks constituted by het-

erogeneous hardware, made available by cooperative users. This solution allows the

reuse of underexploited computers on the network. A well-known similar example

is the Seti@Home project, that uses computers offered by volunteers on Internet

when not engaged in elaborations (e.g. in screensaver mode), to process raw data

coming from deep-space scanning radio-telescopes[59].

In Fig. 3.10 a conceptual map of DGPO, illustrating the main features of the

network, is shown.

The core of DGPO is the Remote Method Injection of the Java Development

Kit that allows the distribution on network computers (also on Internet) of some

user-defined code able to compute objective and state functions in straight mode,

or via external engines (stand-alone commercial codes).

The only mandatory implementation requirement is a network connection and
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Figure 3.10: DGPO network structure

a small server application enabled on every computer. This distributed method

not only allows a virtually unlimited number of connected computers, but it is also

extremely versatile as it permits dynamic connection or disconnection of computers

during the optimization task.

To obtain these features in the proposed implementation, a non-canonical dec-

laration of server and client roles has been given. Here, the server is just a service

furnished to the user; therefore it may be physically remote. The client is the main

computer where the Optimization is running. Computers on the network involved

in the optimization have been divided in the following categories:

• Client : the main computer where ant colony resides;

• Registry : an intermediate server that interfaces Client with Server. It is

useful as a log of all associated Servers;

• Server : the generic remote computer where objective and state functions are

computed.

In a conventional Local Area Network, Registry and Client may be overlapped,

but Registries are needed to show the local networks of Servers over Internet across

the Network Address Translator (NAT).
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In a heterogeneous grid, a balanced load, according to the processing power

of each computer, is a desirable feature. To accomplish it in DGPO, in the early

stages of connection with Registry, Servers are sorted executing a simple bench-

mark on the processor. In the beginning of the optimization task, Client queries

Registries to create a sorted list of Servers. Then each ant sends the solution by

choosing the most ”powerful” computer available (not running) in the list.

If a previously running Server is disconnected or a new Server is connected,

the related Registry notifies it to Client that makes a list refresh. If no Servers

are available, the current ant switch itself on waiting mode, until it is advised of a

change. In this way, the distribution of computing load is implicitly balanced, so

faster computers on faster network connections will be the mostly used.

Before proceeding with application examples, the computers involved in the

grid were preliminarily tested with a performance benchmark. In Tab.3.2, the

resulting processing power of each computer present in a local net performing the

BURMA-14 test-case (a 14-node full graph TSP) using ACO is shown. Besides

the connection type, two main performance indexes are reported: CPUIndex, that

depends on pure CPU speed (floating point benchmark) and LinkIndex, measuring

the speed of the specific connection with the Client server.

Table 3.2: DGPO Auto-benchmark capability on Burma14 ACO (14-node TSP
with dummy cycle)

ID CPU Network CPUIndex LinkIndex Time (ms)

PC1 Intel Core 2 E6300 AntClient 72 - 111605

PC2 AMD Turion 64 X2 TL-52 100Mbit/s LAN 68 231 173634

PC3 AMD Sempron 64 2600+ 11Mbit/s WiFi 44 43 179408

PC4 AMD Athlon 2400+ ADSL 6Mb/s-512Kb/s 70 2 274078

Preliminary tests performed on a simple TSP (using ACO) have shown a rel-

atively poor efficiency, due to an unbalanced ratio between the objective function

cost and the local network speed (”light” objective function versus slow networks).

This typically occurs with very simple objective functions, as the CPUs take much

less time to compute than to send data over the network.
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Table 3.3: Simple DGPO runs on Burma14 ACO (14-node TSP with dummy cycle)

PCs Threads Time (ms) Speed-up

PC1 1 111605 -

PC1+PC2 2 39407 1.40x

PC1+PC2+PC3 3 54915 2.03x

PC1+PC4 2 99848 1.12x

To simulate a ”heavier” objective function, a dummy cycle was added to the

TSP. In Tab. 3.3 the results of several DGPO runs with different net compositions

is shown. First column reports the IDs of computers actually connected for testing,

while in columns 3 and 4 the elapsed time and the speed-up factor are respectively

reported. In Tab. 3.4 the previous BURMA 14 is finally processed on a unique

network layout (formed by PC1 and PC2) with different colony sizes to show the

DGPO auto-balancing capability. In the second and third row of the Table 3.4

apparently the same ant colony size is reported. The difference between the two

runs is that in the first case a ”virtual” 100-ant colony (a 10-ant colony restarted 10

times) is evaluated, while in the latter case a full 100-ant colony is considered. The

computational load is automatically redistributed on the basis of PC performance

index, as clearly shown in the last two columns.

To obtain a more efficient load balancing, an increased number of ants in the

colony is obviously preferred, because they are concurrently sent in exploration.

Table 3.4: DGPO Auto-balancing capability on Burma14 ACO (14-node TSP with
dummy cycle)

PCs Ants Time (ms) Variation % PC1 load % PC2 load %

PC1+PC2 10 79407 - 55 45

PC1+PC2 (virtual colony) 100* 794070 900.0 55 45

PC1+PC2 100 583259 634,5 65 35
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Optimization applications

The general purpose Optimization software described in the previous chapter has

been used in several phases of this project. The main application is based on the

trajectory optimization and here the development of several optimization models

is presented.

4.1 Trajectory Optimization

Trajectory optimization problems have been widely considered in aerospace engi-

neering fields [60, 61, 62, 37] due to the importance of the defining an optimal flight

trajectory that takes into account mission objectives, environment constraints, ve-

hicle capabilities and performance. Mission objectives are usually set in terms of

destination and zones to fly over. The constraints can take into account opera-

tional limits of the aircraft, as minimum and maximum speed, minimum turning

radius, endurance, etc., or the environment in terms of no-fly (or high risk) zones

and flight conditions.

The variational formulation is the most rigorous approach. However, since it is

difficult to completely solve a real world problem in a closed form by using a vari-

ational approach, numerical approaches with direct or indirect methods are often

preferred [63, 64, 65, 66, 67, 60, 63, 68, 64, 65, 69, 70]. The latter try to fulfill

necessary conditions for optimality resulting from the application of Pontryagin

maximum principle, while the former are mainly based on the discretization of the

state space and/or of the control variables, and on the translation of the functional
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problem into a nonlinear programming problem (NLP) [71, 72].

The widespread use of indirect methods relies on the simplicity of their formula-

tion and on the possibility to easily take into account constraints on state variables

and control inputs. On the other side, the use of indirect methods results into more

accurate and (at least locally) optimal solutions.

A first rough approach is to generate the trajectory resorting to topological

techniques that define a suitable sequence of way points [73, 74, 75, 61]. Never-

theless, whatever sophisticated the interpolation of the way points, the generated

trajectories is not guaranteed to be compliant with the aircraft flight envelope. A

flight envelope protection system is in charge to control that this holds true [76].

An original approach, employing graph theory and a suitable parameterization

of trajectories is proposed in [77]. Probabilistic or potential based methodologies

[78, 79, 80] have also been successfully applied to the trajectory generation problem

in the field of mobile robotics.

More sophisticated approaches also take into account the vehicle dynamics

[81, 82, 83, 84, 85, 86]. Among them, in [83] the trajectory is defined as a se-

quence of trim conditions and maneuvers (motion primitives), compatibly with

vehicle dynamics. The selection of such maneuvers can be done on-line by solv-

ing integer programming optimization problems, that however may require a high

computational burden.

At the price of a higher computational burden predictive model-based tech-

niques either linear or constrained, can be used [81, 87, 85, 86].

By using a simplified description of the vehicle dynamics, and a reduced set of

decision variables, an approach to predictive problems employing both continuous

and integer variables can be used. In particular when the objective function and

constraints are assumed linear the problem is formulated as a MILP-Mixed Integer

Linear Programming. This formulation enables the use of logic expressions model-

ing decisions in the optimization [72, 88, 89, 90].

The joint presence of both a high number of constraints and of mixed-type

variables makes appealing the use of nonconventional optimization techniques, e.g.,

evolutionary algorithms. Such methods are based on the definition of a population
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of potential solutions to the problem, that evolve towards the optimum by using

a probabilistic approach. They do not need any information about the function

to be optimized, but the possibility to numerically evaluate it, thus overcoming

the limitations of the purely deterministic approaches. The research units has a

previous experience in the usage of evolutionary techniques in trajectory design

problems in the presence of operational and functional constraints associated to

the vehicle and the environment [91].

In this thesis numerical methods based on evolutionary optimization algorithm

to solve trajectory optimization problems are shown. These problems have the

scope of searching efficient flight trajectories to minimize a performance index with

specified constraints. During the design phase of ground station for the UAV, sev-

eral approaches have been considered, using different algorithms and/or combining

them.

4.1.1 Spline based trajectory approach

To find feasible trajectories, through a geometrical approach based on topological

techniques, a set of n way points may be defined on the scenario space. These

points have to be interpolated to generate a trajectory curve such that objective

function and constraints may be evaluated. One of the most used interpolating

function is the spline, a smooth polynomial function, piecewise-defined:

S : [a, b]→ R (4.1)

Where n− 1 ordered disjoint subintervals [ti−1, ti] are defined on the interval [a, b]:

a = t0 < t1 < ... < tn−2 < tn−1 = b (4.2)

The spline can be divided in n− 1 parts, each one for a subinterval:

Pi : [ti−1, ti]→ R (4.3)

Such that:
S(t) = P1(t), t0 ≤ t < t1,

S(t) = P2(t), t1 ≤ t < t2,

...

S(t) = Pn−1(t), tn−2 ≤ t < tn−1

(4.4)
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Now, consider a and b the starting point and the destination of the aircraft. Let

n− 2 intermediate way points (x̃1, ..., x̃n−2) be the design variables to optimize, a

uniform cubic spline curve can be defined on these way points using the parametric

form:

x(t) = ai + bit+ cit
2 + dit

3

such that for i = 1, ..., n− 2

x(ti) = x̃i

(4.5)

In the next paragraphs several methods to generate waypoints for the construc-

tion of an optimized spline based trajectory are shown and compared, rebuilding

all implementation steps from the starting point of this research.

4.1.2 Genetic Algorithm absolute position model

The first step in the research of an algorithm for the optimization of the trajecto-

ries of an UAS, was the implementation of a simple objective function to build the

spline, starting from the absolute position of a set of waypoints.

Let A = (xA, yA) and B = (xB , yB) be the position of starting point and

objective. The optimization algorithm must look for the minimum path to reach

B starting from A. Consider X × Y = [xA, xB ] × [yA, yB ] the search space, pi =

(xi, yi) ∈ (X × Y ) as the design variables, such that p0 = A and pend = B, and

fobj the objective function to minimize:

fobj =

∫ 1

0

S(p, t)dt (4.6)

Where S(p, t) is the parametric spline built on pi.

This objective function is quite good for the validation of spline construction

and the first approach, but the results on a simple scenario without any constraint

show (see Figure 4.1) several problems increasing the number of waypoints.
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Figure 4.1: GA Absolute position model Scenario 1

4.1.3 Genetic Algorithm relative position model

Waypoints generated in the previous method are not related between themselves,

so the optimization algorithm must be spend a lot of time to compute the objec-

tive function for unfeasible overlapped trajectories. To overcome this problem, it’s

needed a way to generate relative waypoints with respect to the trajectory building.

Let M × Φ = [0, 1] × [0, π] be the search space and pi = (mi, φi) ∈ (M × Φ)

the design variables. The position of the waypoint i is computed starting from the

(i− 1)th one such that:

xi = xi−1 +mi

{
cosαi

sinαi

}
(xend − x0)

with αi = αmin + φi(αmax − αmin)

(4.7)

Where αmin and αmax are computed starting from the joining line between

xi−1 and the destination point xend (as in Fig.4.2).

xend

xi-1
amin

amax

Figure 4.2: Waypoint position computing
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Once the functionality of the algorithm has been validated, constraints due to

environment and vehicle have been added to check results in presence of complex

scenarios.

In particular, constraints on curvature of the trajectory and avoiding obstacles

are considered. These constraints are modelled as penalty functions that worse the

fitness of unfeasible solutions.

fobj = fobjp

(
gmax − gmin
g(x)− gmin

)γ
(4.8)

Where g(x) is the constraint function, gmax and gmin are respectively the min-

imum and maximum allowed value of the function. p is a coefficient to increase

the initial weight of penalty function and γ represents an exponent to have an

exponential trend away from imposed limits.

A realistic scenario was built with several features:

• take-off point A = (1.5, 1.5);

• landing point B = (5.0, 5.0);

• starting slope s1 = π/4;

• ending slope send = π/4;

• length(p) = 8;

• X × Y = [0, 5]× [0, 5];

• ∀i = 1...5xobs = i, yobs = i;

• maximum curvature 3max= 10;

In Figure 4.3 results of this model for a complex scenario with several obstacles

are shown. Thanks to the change on the search space, the new algorithm shows an

improved robustness increasing the number of design variables.
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Figure 4.3: GA Relative position model Scenario 2

4.1.4 Ant Colony Regression model

ACO algorithms described in Chapter 3 mainly provide for a great efficiency and

robustness (par.3.4.2) in combinatorial and graph-oriented problems. This ability

has been conveniently adapted to find the shortest path between two points in a

complex scenario with several constraints.

Starting from a topology optimization approach using an Ant Colony algorithm

[92], the search space of this optimization consists of a rectangular region defined

between take-off point A and a landing point B.

This domain is discretized with quadrangular elements and a boolean matrix,

associated to the mesh, keeps track of active elements to reach the destination point.

On this space an ant colony is sent in exploration to find optimal solutions.

During its journey, each ant must start from the take-off point, may walk through

some defined waypoints and must reach the landing point. The activated elements

are used to build a regression spline, useful to smooth the piecewise linear solution.

The first step of the algorithm consists of heuristic matrix and pheromone trail

initialization, using an analysis of the full domain and computing a potential field

where destination represents an attractive point and obstacles are the rejecting

ones. In this way, ants trend is to avoid obstacles and moving towards the desti-

nation (see Fig. 4.4).
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Figure 4.4: Heuristic and pheromone matrix initialization
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Figure 4.5: ACO Best path

Figure 4.5 shows the best solution for ACO regression model for a complex

scenario. As in GA optimization, obstacles and curvature are handled as penalty

functions on ant fitness. In Figure 4.6 pheromone matrices in several epochs are

shown.

(a) Epoch 2 (b) Epoch 3 (c) Epoch 6 (d) Epoch 14

(e) Epoch 22 (f) Epoch 78 (g) Epoch 118 (h) Epoch 150

Figure 4.6: Pheromone matrix at particular epochs
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4.1.5 Ant Colony interpolated spline model

The previous model showed good but sub-optimal solutions and a lack of speed

performance and robustness due to the not fixed number of steps for the ant path

to reach destination. This behavior is the cause of the generation of very long or

not feasible trajectories, at the initial steps of the optimization, making a single

ant slow to find the way and releasing pheromone on useless zones of the domain.

To overcome these problems, the ability to skip elements was given to ants.

In this model, ants have a fixed number of steps to reach destination and a fixed

maximum number of elements on which they can walk without activating the un-

derlying elements.

So the solution have always the same number of active elements, speeding up

spline building and increasing algorithm robustness.
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Figure 4.7: ACO Best path

Figure 4.7 shows the best solution for ACO spline model for a complex scenario.

As in GA and in ACO regression optimization, obstacles and curvature are handled

as penalty functions on ant fitness. In Figure 4.8 pheromone matrices in several

epochs are shown. Heuristic and pheromone matrix have been initialized using the

same method as in ACO regression model.
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(a) Epoch 2 (b) Epoch 7 (c) Epoch 9 (d) Epoch 31

(e) Epoch 39 (f) Epoch 47 (g) Epoch 63 (h) Epoch 111

Figure 4.8: Pheromone matrix at particular epochs

4.1.6 Multiobjective Genetic Algorithm for coverage prob-

lems

A surveillance UAV mission planning, to be complete, needs the definition of a

coverage area to explore or supervise. In this paragraph, a full scenario is provided

with obstacles (no-fly zones) and a coverage area on which the UAV will use a

camera to watch it.

The GA relative position model has been modified to deal with one or more

coverage area. At the beginning of the optimization phase, a potential field is built

taking into account only coverage areas. This works as a modifier in the construc-

tion of spline control points.

As in 4.1.3, let M × Φ = [0, 1] × [0, π] be the search space and pi = (mi, φi) ∈
(M × Φ) the design variables. Consider F (x, y) the potential field associated to a

circular coverage area such that:

F (x, y) = 1/(1 + (r ∗ d(x, y))2)2 (4.9)

Where d(x, y) =
√

(x− xc)2 + (y − yc)2 is the distance of the arbitrary point

(x, y) from the center (xc, yc) of the circular coverage area and r is the radius.

Considering a simple scenario with only one obstacle in (xobs = 2, yobs = 2) and
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one coverage area (xcov = 3, ycov = 4) as in figure 4.9a, the figure 4.9b shows the

potential field.
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Figure 4.9: Scenario and potential field for the first multiobjective example

The position of the waypoint i is computed starting from the (i−1)th one such

that:

xi = xi−1 +mi

{
cosαi

sinαi

}
(xend − x0)

with αi = αmin + φi(αmax − αmin)
∆xF
∆yF

(4.10)

Where αmin and αmax are computed starting from the joining line between

xi−1 and the destination point xend.

Two objective functions are considered, one on the length of trajectory and one

on the coverage of the target area:

f1(x) = (areatot − area)/areatot

f2(x) = length(S(x))
(4.11)

Where areatot is the total coverage area, area is the supervised area, taking

into account the on-board camera cone of vision.

The following results have been obtained using all multiobjective paradigms of

the optimization software described in Chapter 3 for the scenario in figure 4.9.

The first result has been achieved using the scalarization technique and so it’s a

single-objective optimization, where the two objective functions are combined into

a unique fitness.
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Figure 4.10: Single objective results for Scenario 3

The second result has been obtained using the Pareto front paradigm. In figures

4.11 the two ends of the front are shown.
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Figure 4.11: Multi objective results for Scenario 3

Being unable to divide variables for each player in a Nash Equilibrium game,

several tests have been run with different assignments. This is a so-called Virtual

Nash Equilibrium Game [93]. In the first instance, all the phases are assigned to

player1 and all modules to player2.
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Figure 4.12: Nash Equilibrium results #1 for Scenario 3

The second has been run assigning points alternatively to player1 and player2.

In the second test:

p1 = (m1, φ1,m3, φ3,m5, φ5)

p2 = (m2, φ2,m4, φ4,m6, φ6)
(4.12)
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Figure 4.13: Nash Equilibrium results #2 for Scenario 3

The third and fourth tests have been run assigning the first points to one player

and the second ones to the other.
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In the third test:
p1 = (m1, φ1,m2, φ2,m3, φ3)

p2 = (m4, φ4,m5, φ5,m6, φ6)
(4.13)
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Figure 4.14: Nash Equilibrium results #3 for Scenario 3

In the fourth test:

p1 = (m4, φ4,m5, φ5,m6, φ6)

p2 = (m1, φ1,m2, φ2,m3, φ3)
(4.14)
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Figure 4.15: Nash Equilibrium results #4 for Scenario 3

In figure 4.18 the objective functions of all results are compared to the pareto
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Figure 4.16: Single-objective vs Nash Equilibrium vs Pareto Front

4.1.7 Multi-trajectory Genetic Algorithm for coverage prob-

lems

The coverage problem may be achieved using two or more UAV aircrafts. The

last step of this trajectory optimization research is to enlarge the fleet of available

UAV. In this paragraph only a test case with two aircrafts is shown because the

algorithm is still in the development phase. First results are about the multi-

objective optimization using pareto front paradigm.
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Figure 4.17: Multi-trajectory, Multi-objective results for Scenario 3

The second result is obtained assigning the control points of trajectory #1 to

player1 and the control points of trajectory #2 to player2.
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Figure 4.18: Multi-trajectory Nash Equilibrium result for Scenario 3

The algorithm is still in an alpha stage of development, but results are good

and must be analysed for a complex scenario with more than two aircrafts.
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Chapter 5
Trajectory tracking and Flight

tests

In Chapter 2, a quadrotor simulator able to follow a planned path has been devel-

oped and thanks to the optimization software built in the ground guidance system

(Chapter 3), an optimal trajectory planning has been achieved for an arbitrary sce-

nario with obstacles and constraints on dynamic specifications of the UAV aircraft.

In this chapter, several test cases to validate the coupling of these methodologies

are shown. In particular there are results on:

• tests on the low-level control system, using simple reference signals,

• test on the high-level control system, using the planned trajectory for a given

scenario.

After these results obtained from the simulator developed in Chapter 2, some

flight tests to analyse the electronic implementation of the three DoF control system

have been conducted and here are described.

5.1 Tests on three DoF control system

Using a step as reference signal for pitch, the following figures show the results of

simulations.



Chapter 5 - Trajectory tracking and Flight tests

0 10 20 30 40 50 60 70
0

0.2

0.4

0.6

0.8

1

t [s]

θ 
[r

ad
]

 

 

θ reference
θ

0 10 20 30 40 50 60 70
0

0.2

0.4

0.6

0.8

1

t [s]

θ 
[r

ad
]

 

 

θ reference
θ

Figure 5.1: Pitch tracking with and without noise
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Figure 5.2: PWM signals in pitch tracking with and without noise
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Figure 5.3: Altitude and attitude with and without noise

In figure 5.1 it’s possible to note a low response time to follow the reference

signal. The control system shows a good robustness to the noise that will be very

important in flight tests.

Using a step as reference signal for yaw, the following figures show the results

of simulations.
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Figure 5.4: Yaw tracking with and without noise
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Figure 5.5: PWM signals in yaw tracking with and without noise
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Figure 5.6: Altitude and attitude with and without noise

The response time is slower than other channels because the structure has got

more inertia around z axis and the torque coefficient kR of motors is low, needing

more power to obtain a perceptible variation of the yaw angle.
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5.2 Flight Tests

In this section the results on the quadrotor flight tests are shown. The on-board

telemetry is set to write data at 50 Hz speed. The three DoF control system is

tested, using reference signals on pitch and yaw coming from an RC transmitter.

This data is used to compare and validate the simulator with the real aerial plat-

form.

In the first flight test two manoeuvres have been performed, one for pitch

and one for roll. The first four seconds are needed for the boot phase (for auto-

calibrating and auto-testing) of the IMU.

The take-off phase is particularly difficult due to the unsteady aerodynamics

and the presence of ground effect. Reached at least an altitude of two meters, the

quadrotor can make any maneuver. At t = 15s a pitch command has been given.
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Figure 5.7: Pitch angle, reference and control signal
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Figure 5.8: Pitch angle, reference and control signal zoom on the manoeuvre
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Figure 5.9: PWM signals and power reference

To validate the dynamic simulator, the same input references are used for both

quadrotor (real and simulated). In figures 5.10 and 5.12 the comparison is shown,

highlighting a quite good identification of the model. Differences are due to the

presence of wind and, at the beginning of flight test, in the take-off phase, to the

ground effect.
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Figure 5.10: Simulator vs Quadrotor pitch angle
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Figure 5.11: Simulator vs Quadrotor pitch angle zoom on the manoeuvre
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Figure 5.12: Simulator vs Quadrotor roll angle
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Figure 5.13: Simulator vs Quadrotor roll angle zoom on the manoeuvre

5.3 Tests on six DoF control system

For the trajectory tracking the autopilot control system has been adapted using

only reference signals on pitch and roll channels. The yaw angle has been locked

at 0deg. To validate the system, with and without noise, several paths generated

in the trajectory optimization phase have been used.

The first test has been conducted on the simplest scenario, without obstacles,

to verify the correct working of the autopilot.
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Figure 5.14: Trajectory tracking test #1
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Figure 5.15: Zoom on Trajectory tracking test #1
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Figure 5.16: Pitch and roll trends

The second test has been conducted on a more complex scenario with two large

obstacles. In following figures, trajectory tracking and angle trends are shown.
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Figure 5.17: Trajectory tracking test #2
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Figure 5.18: Zoom on Trajectory tracking test #2
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Figure 5.19: Pitch and roll trends

The third test has been conducted on a complex scenario with more obstacles.

In following figures, trajectory tracking and angle trends are shown.
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Figure 5.20: Trajectory tracking test #3
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Figure 5.21: Pitch and roll trends
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Chapter 6
Conclusions

A prototype of a quadrotor UAV has been built and used to develop and test an

automatic navigation and guidance system.

A dynamic simulator has been implemented in Matlab/Simulink to design the

control system. Its tuning has been made using optimization algorithms with both

SISO and MIMO approaches.

The main scientific contribution of this work is the development of hybrid nature

inspired optimization algorithms and their application to the trajectory planning

of the UAV.

A general purpose optimization software has been developed and implemented

on java platform to be used on a wide range of processors and ready to exploit

multithreading capabilities. Furthermore, for large problems, also a grid comput-

ing extension to the software has been implemented. This software is based on two

largely-known evolutionary algorithms: Genetic algorithm and Ant Colony.

Genetic algorithm is implemented in a classic binary form with several features

and options on evolution, crossover and mutation. The Ant Colony is implemented

using four different algorithms present in the literature, adding hybridization and

dynamic parametrization features.

Another contribution was the implementation of some game theory paradigms

(as Nash Equilibrium and Stackelberg Equilibrium) as a software layer over the op-
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timization algorithms such that it’s possible to combine different paradigms with

several algorithms. The validation of this software has not been detailed for the

sake of brevity.

In Chapter 4 two possible applications of the developed optimization algorithms

has been shown. In particular it was shown how the proposed algorithms can be

implemented on the ground station of the UAS to make a trajectory planning which

accounts for several environmental constraints, as obstacles and flight mechanics

constraints. A multiobjective problem has also been solved, where the aircraft

must minimize trajectory length and maximize the supervision of a coverage area

in the chosen scenario.

In Chapter 5 the first flight tests for the tuning of the flight control algorithms

are shown. The trajectory tracking performance on the flight paths generated with

the proposed optimization algorithms are evaluated on the numerical simulator.

Open problems and possible developments originates from this PhD thesis. In

particular the mathematical modeling of the UAV requires wind tunnel testing

and/or flight experiments, the on board system requires a more appropriate filter-

ing and data fusion to provide a reliable absolute position in the 3D space.

Also the possibility to apply the proposed results to real world problems with

acceptable computational burden must be better explored. From this point of view

the work done on algorithms and software implementation already allows to think

at an efficient implement on GPU architectures and distributed systems.
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