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RIASSUNTO 

 
 

Base scientifica del progetto di ricerca. 

Le amiloidosi costituiscono un ampio gruppo di patologie di tipo degenerativo che 
nascono dall’incapacità di alcune proteine, o peptidi, di assumere o di conservare la 
loro conformazione nativa, ciò che porta alla formazione di aggregati fibrillari 
altamente ordinati ed elevato contenuto di struttura β. Queste strutture, generalmente 
descritte come fibre o placche amiloidi, si accumulano in vari tessuti ed organi 
causandone il progressivo malfunzionamento. 
Tra le patologie amiloidi ad elevato impatto sociale si annoverano il morbo di 
Parkinson, di Alzheimer e le encefalopatie spongiformi. 
Diverse forme di amiloidosi sono indotte da mutazioni del gene codificante 
l’apolipoproteina A-I (ApoA-I). ApoA-I è la componente proteica più abbondante nelle 
lipoproteine plasmatiche ad alta densità (HDL), le quali svolgono un ruolo molto 
importante nel trasporto dei lipidi tra gli organi di sintesi (fegato e intestino) e i tessuti 
periferici. Oltre a possedere un ruolo strutturale, ApoA-I interagisce con specifici 
recettori di membrana, al fine di mediare l’attivazione degli enzimi coinvolti nel 
metabolismo dei lipidi, in particolare del colesterolo. 
Le amiloidosi ereditarie associate ad ApoA-I, a carattere autosomico dominante, 
sono causate da specifiche mutazioni del gene codificante la proteina. Le 19 
mutazioni del gene di ApoA-I riscontrate finora nei pazienti affetti da amiloidosi sono 
tutte presenti su un solo allele (eterozigosi). Si ritiene che tali mutazioni, che si 
presentano come sostituzioni amminoacidiche, delezioni o frameshift, alterino la 
struttura tridimensionale della proteina, favorendone il distacco dalle HDL e 
aumentando la flessibilità della regione 80-100, che in assenza di lipidi è esposta al 
solvente. Ciò rende la proteina mutata suscettibile all’attacco di una proteasi, tuttora 
non identificata, che determina il rilascio di un polipeptide corrispondente alla regione 
N-terminale della proteina di lunghezza pari a 90-100 residui amminoacidici. Tale 
polipeptide, altamente destrutturato, tende ad aggregare portando alla formazione di 
fibrille amiloidi che si accumulano in maniera preferenziale in alcuni organi e tessuti, 
secondo il tipo di mutazione presente. La sostituzione del residuo di leucina in 
posizione 174 con una serina determina una grave forma di amiloidosi localizzata 
soprattutto a livello cardiaco. Il principale costituente delle fibrille amiloidi estratte dal 
cuore dei pazienti è il polipeptide corrispondente alla regione 1-93 della proteina.  
Gli eventi che portano alla formazione del peptide  amiloidogenico e il meccanismo 
attraverso il quale si generano le fibrille amiloidi sono tutt’oggi sconosciuti. La 
mancanza di un efficiente sistema di produzione del polipeptide fibrillogenico in 
forma ricombinante ha reso impossibili per molti anni studi strutturali e funzionali volti 
all’analisi del meccanismo molecolare della patologia. I molteplici tentativi effettuati in 
diversi laboratori sono falliti presumibilmente sia per l’elevata destrutturazione del 
polipeptide, che lo rende bersaglio di proteasi endogene, sia per la sua propensione 
all’aggregazione. Nel laboratorio dove ho svolto il mio lavoro di dottorato è stato 
messo a punto un sistema per l’espressione e l’isolamento della forma ricombinante 
del polipeptide amiloidogenico corrispondente alla regione 1-93 della proteina, 
denominato [1-93]ApoA-I. Il polipeptide ricombinante è risultato avere le stesse 
caratteristiche della sua controparte naturale estratta dalle fibrille di un cuore 
trapiantato: come quello isolato ex vivo, il polipeptide ricombinante subisce 
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transizioni conformazionali verso strutture ricche in α-elica e ha elevata propensione 
all’aggregazione in tipiche fibrille a struttura β. La disponibilità di un sistema 
sperimentale utile alla produzione ricombinante del polipeptide fibrillogenico ha 
aperto la strada all’analisi delle basi molecolari delle amiloidosi da ApoA-I. 
 
Il progetto di ricerca. 

Il mio progetto di ricerca si propone come obiettivo l’analisi del meccanismo d’azione 
delle varianti amiloidogeniche di ApoA-I e del suo polipeptide fibrillogenico, nonché  
l’analisi dei processi cellulari coinvolti nella patologia e l’identificazione di potenziali 
interattori intracellulari del polipeptide, quali potenziali bersagli per future strategie 
terapeutiche direzionate.  
 
Il percorso e il destino intracellulare del polipeptide fibrillogenico.  

Durante la mia attività di dottorato mi sono occupata dell’analisi del meccanismo di 
internalizzazione e del percorso intracellulare del polipeptide fibrillogenico [1-
93]ApoA-I in cellule cardiache (linea H9c2). 
Il percorso intracellulare del polipeptide [1-93]ApoA-I, in confronto con la proteina 
ApoA-I nativa, è stato analizzato in cardiomioblasti, dal momento che il cuore 
costituisce uno degli organi in cui si osserva l’accumulo progressivo degli aggregati 
fibrillari. Studi di legame ci hanno consentito di dimostrare la presenza sulla 
membrana di cardiomioblasti di siti specifici di legame per il polipeptide [1-93]ApoA-I, 
con una costante di affinità pari a 5.9 ± 0.7x10-7M. Mediante esperimenti di 
microscopia in fluorescenza abbiamo dimostrato che il polipeptide fibrillogenico co-
localizza in maniera significativa, seppure parzialmente, con il trasportatore ABCA1, 
presente sulla membrana dei cardiomioblasti. Risultati analoghi sono stati ottenuti 
per ApoA-I, ciò che è in accordo con dati recenti che indicano che, nonostante 
l’associazione parziale della proteina con ABCA1, tale interazione è essenziale per 
l’internalizzazione della proteina. In seguito al legame con siti specifici sulla 
membrana cellulare, il polipeptide [1-93]ApoA-I è internalizzato nelle cellule 
cardiache mediante i processi di endocitosi clatrina-dipendente ed endocitosi 
mediata dai lipid rafts, mentre sembra essere escluso un coinvolgimento della 
macropinocitosi. Tali vie di internalizzazione sono solo parzialmente coincidenti con 
quelle seguite dalla proteina nativa ApoA-I, dal momento che quest’ultima è 
internalizzata mediante endocitosi clatrina-dipendente e macropinocitosi, ma non 
attraverso endocitosi mediata dai lipid rafts. 
Una volta internalizzato, il polipeptide fibrillogenico, a differenza di quanto osservato 
per la proteina nativa, non segue il percorso della retro-endocitosi per essere riciclato 
sulla membrana cellulare, ma è indirizzato al proteosoma e ai lisosomi per la sua 
degradazione, dal momento che, dopo una incubazione di 24 ore delle cellule con il 
polipeptide marcato in fluorescenza, si osserva la totale scomparsa del segnale 
fluorescente. La rapida degradazione del polipeptide è in accordo con l’assenza di un 
effetto citotossico del polipeptide sui cardiomioblasti. Per quanto riguarda ApoA-I, la 
persistenza del segnale fluorescente ad essa associata indica che la proteina non 
subisce una massiva degradazione, sebbene si osservi un forte segnale di co-
localizzazione con in lisosomi. Quest’ultimi, ricchi di colesterolo, potrebbero costituire 
una stazione intracellulare in cui le lipoproteine si caricano di lipidi prima di essere 
secrete. Infine, abbiamo dimostrato che, a differenza di quanto osservato per [1-
93]ApoA-I in forma non aggregata, le fibrille ottenute in vitro non sono in grado di 
essere internalizzate nel compartimento intracellulare.  
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Questi risultati permettono di ipotizzare che l’internalizzazione del polipeptide 
fibrillogenico da parte delle cellule bersaglio e la successiva degradazione 
intracellulare siano un meccanismo di difesa della cellula volto a rallentare il 
progressivo accumulo extracellulare del polipeptide fibrillogenico, ciò che è in 
accordo con l’esordio tardivo della patologia. 
 
La ricerca di partner intracellulari del polipeptide fibrillogenico. 

Al fine di identificare gli interattori molecolari del polipeptide fibrillogenico [1-93]ApoA-
I è stata utilizzata la strategia del fishing for partners, in collaborazione con il gruppo 
di ricerca del Prof. P. Pucci del Dipartimento di Scienze Chimiche. Esperimenti di 
GST-pull down su estratti di proteine di membrana di cardiomioblasti e analisi di 
spettrometria di massa hanno portato all’identificazione di putativi interattori del 
polipeptide [1-93]ApoA-I con diversa localizzazione cellulare e diverse funzioni 
biologiche . Tra esse la catena beta dell’ATP sintasi e la proteina nicastrin sono state 
scelte per analisi più approfondite, considerando il loro ruolo fisiologico. La catena 
beta dell’ATP sintasi, una subunità del complesso multi-enzimatico dell’ATP sintasi, è 
stata infatti recentemente identificata sulla membrana degli epatociti come recettore 
ad alta affinità di ApoA-I in complesso con le HDL; in particolare, il legame di ApoA-I 
con tale proteina stimolerebbe l’endocitosi delle HDL nelle cellule bersaglio. 
Nicastrin costituisce una subunità essenziale del complesso della γ-secretasi. E’ 
l’endopeptidasi che catalizza la proteolisi di proteine integrali di membrana, quali il 
recettore notch e la proteina precursore del peptide β-amiloide, per cui è stato 
ipotizzato avere un ruolo attivo nella formazione del peptide β-amiloide, responsabile 
del morbo di Alzheimer. 
La validazione dei putativi interattori identificati mediante l’approccio di proteomica 
funzionale è stata eseguita mediante esperimenti di co-immunoprecipitazione e 
analisi di microscopia in fluorescenza.  
L’esperimento di co-immunoprecipitazione è stato effettuato incubando un estratto di 
proteine di membrana di cardiomioblasti con il polipeptide marcato con la sonda 
FITC. Le specie proteiche co-immunoprecipitate in presenza di un anticorpo anti-
FITC sono state analizzate mediante Western blotting utilizzando, separatamente, 
anticorpi diretti contro ciascuno dei due putativi interattori del polipeptide 
fibrillogenico precedentemente selezionati. L’analisi delle specie co-
immunoprecipitate con il polipeptide ha rivelato la presenza sia della catena beta 
dell’ATP sintasi che della proteina nicastrin, indicando che entrambe le proteine sono 
interattori del polipeptide [1-93]ApoA-I. 
Analisi di microscopia confocale in fluorescenza ci hanno permesso di dimostrare la 
presenza della forma ectopica della catena beta dell’ATP sintasi sulla membrana dei 
cardiomioblasti e di rivelare una significativa co-localizzazione tra tale proteina e il 
polipeptide fibrillogenico. Utilizzando la medesima tecnica, abbiamo dimostrato la co-
localizzazione di [1-93]ApoA-I con nicastrin. Tali risultati confermano che la catena 
beta dell’ATP sintasi e nicastrin, localizzati sulla membrana cellulare dei 
cardiomioblasti, sono interattori molecolari del polipeptide fibrillogenico [1-93]ApoA-I, 
e rappresentano il punto di partenza per la progettazione di future strategie 
terapeutiche direzionate verso specifici bersagli.  
 
Un modello cellulare per la produzione delle varianti patogeniche di ApoA-I. 

Le analisi strutturali e funzionali delle varianti amiloidogeniche di ApoA-I, in confronto 
con la proteina nativa, costituiscono un passo fondamentale verso la comprensione 
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delle basi molecolari della patogenesi. Tuttavia, data l’impossibilità dell’isolamento 
delle forme mutate di ApoA-I dai pazienti affetti da amiloidosi, dovuta alla presenza, 
nei tessuti e in circolo, sia della proteina mutata che di quella nativa, risulta 
necessaria la messa a punto di efficienti sistemi di espressione eterologa. 
La mia attività di dottorato ha previsto l’espressione ricombinate della variante 
amiloidogenica L174S in cellule di mammifero. Cellule di ovario di criceto (CHO-K1) 
sono state trasfettate stabilmente con il plasmide recante la sequenza codificante la 
variante L174S, o la proteina ApoA-I nativa, ciascuna delle due clonata a valle della 
sequenza codificante il peptide segnale per la secrezione. Una volta ottenuti i cloni 
stabili, si è analizzata la cinetica di espressione e secrezione delle proteine 
ricombinanti. Entrambe le proteine sono efficientemente secrete nel terreno di 
crescita dalle cellule, ma si differenziano per la cinetica di secrezione. Si è poi 
proceduto all’isolamento della variante L174S e della proteina nativa dal terreno di 
coltura, mediante un solo passaggio di purificazione, adoperando una cromatografia 
ad interazione idrofobica. Dal momento che ApoA-I lega con elevata affinità lipidi, in 
collaborazione con la Dott.ssa A. Amoresano del Dipartimento di Scienze Chimiche, 
si è analizzato il contenuto lipidico dei campioni isolati. I risultati hanno rivelato per 
entrambe le specie proteiche la presenza di due tipi di acidi grassi (uno saturo e uno 
monoinsaturo) legati alle proteine ricombinanti. Sebbene entrambe le proteine 
risultino essere associate agli stessi acidi grassi, il rapporto molare lipidi:proteina è 
più elevato nel caso della variante amiloidogenica L174S. E’ ipotizzabile che tale 
differenza possa avere un significato fisiologico nello sviluppo della patologia. 
La bassa resa delle proteine ricombinanti prodotte in cellule di mammifero non ha 
però consentito l’ottenimento di quantità adeguate di proteina per studi funzionali e 
strutturali. Di conseguenza stiamo attualmente approntando un diverso sistema di 
espressione delle varianti amiloidogeniche di ApoA-I utilizzando ospiti procariotici.  
 
L’effetto di varianti amiloidogeniche di ApoA-I sulla risposta cellulare allo stress e 
ruolo dell’angiogenina. 

Infine, la mia attività di ricerca ha previsto lo studio degli effetti di una variante 
amiloidogenica di ApoA-I, recante la mutazione L75P, sulla fisiologia cellulare e del 
ruolo dell’angiogenina (ANG) nelle amiloidosi da ApoA-I. Questa parte del mio 
progetto di dottorato è stata condotta durante il mio soggiorno presso il Molecular 
Oncology Research Institute (MORI), Tufts Medical Center di Boston, presso il 
laboratorio del Prof G. F. Hu. 
Tale studio parte dall’osservazione che ANG sembra avere un ruolo in alcune 
malattie neurodegenerative, quali la sclerosi laterale amiotrofica, il morbo di 
Parkinson e di Alzheimer, caratterizzate dall’accumulo nel sistema nervoso di fibrille 
amiloidi. Questa osservazione ci ha spinti ad indagare se ANG svolge una funzione 
chiave anche nelle patologie amiloidi sistemiche e in particolare in quelle associate 
alle varianti di ApoA-I. 
ANG è una ribonucleasi la cui funzione principale è la stimolazione dell’angiogenesi 
nelle cellule endoteliali. Essa esplica la sua attività angiogenica promuovendo la 
trascrizione degli rRNA, grazie al legame con le regioni promotrici del DNA 
ribosomale. Recentemente è stato dimostrato che ANG è in grado, in caso di stress, 
di attivare un meccanismo di difesa della cellula. 
Cellule epatiche (HepG2), deputate fisiologicamente alla produzione di ApoA-I, sono 
state trasfettate stabilmente con il plasmide recante la sequenza codificante la 
variante  L75P o la proteina ApoA-I nativa, ciascuna delle due clonata a valle della 
sequenza codificante il peptide segnale per la secrezione. Ottenuti cloni stabili di tali 
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cellule, l’analisi dell’espressione e della secrezione delle due proteine ricombinanti ha 
portato all’osservazione che la variante amiloidogenica L75P, a differenza della 
proteina nativa, si accumula prevalentemente nel compartimento intracellulare, 
suggerendo che, probabilmente a causa della parziale destrutturazione della 
proteina, il processo di secrezione sia in parte compromesso. Inoltre, le cellule 
esprimenti la variante amiloidogenica hanno mostrato una ridotta vitalità cellulare e 
livelli intracellulari di ANG inferiori rispetto alle cellule non trasfettate e a quelle 
esprimenti ApoA-I nativa.  
Abbiamo quindi analizzato la risposta cellulare allo stress in seguito a deprivazione di 
siero. In cellule che esprimono la variante L75P la vitalità cellulare è risultata essere 
gravemente compromessa; inoltre, si è osservata una significativa differenza nella 
localizzazione subcellulare di ANG tra cellule esprimenti ApoA-I nativa o la sua 
variante L75P. Quando le cellule sono cresciute in assenza di siero, infatti, si osserva 
che ANG è localizzata prevalentemente nel citosol sia nelle cellule non trasfettate 
che in quelle esprimenti ApoA-I nativa, in accordo con il suo ruolo nella risposta allo 
stress. Inaspettatamente, nelle cellule esprimenti la variante amiloidogenica, ANG è 
risultata essere localizzata prevalentemente nel nucleo. Inoltre, esperimenti di qRT-
PCR hanno indicato che la deprivazione di siero causa un significativo aumento 
nell’espressione di ANG nelle cellule epatiche non trasfettate o esprimenti ApoA-I 
nativa, mentre si è osservato solo un lieve incremento nel caso delle cellule 
esprimenti la variante amiloidogenica. 
Queste osservazioni rafforzano l’idea che ANG possa svolgere un ruolo nelle 
amiloidosi da ApoA-I. Per tale motivo sono stati condotti esperimenti finalizzati alla 
valutazione della vitalità cellulare in presenza di ANG esogena, aggiunta al terreno 
privo di siero. Tali esperimenti ci hanno consentito di dimostrare che ANG esplica un 
forte effetto anti-apoptotico su cellule epatiche esprimenti la variante amiloidogenica 
L75P, mentre non si osservano effetti significativi sulle cellule non trasfettate e su 
quelle esprimenti ApoA-I nativa.  
Allo scopo di comprendere il meccanismo secondo cui ANG esplica il suo ruolo 
protettivo nei confronti delle cellule epatiche esprimenti la variante amiloidogenica, 
sono stati condotti esperimenti utilizzando tre mutanti di ANG, ognuno difettivo per 
una sola delle funzioni associate ad ANG. Il mutante R33A non è in grado di 
traslocare al nucleo, K40Q non è enzimaticamente attivo, mentre il mutante R66A  è 
difettivo per il legame al recettore. L’analisi degli effetti di tali mutanti sulla vitalità 
cellulare suggerisce che per esercitare il suo ruolo protettivo contro lo stress ANG 
deve aver accesso al citosol, dal momento che l’unico mutante incapace di 
ripristinare la funzionalità cellulare compromessa dall’assenza di siero è risultato 
essere quello difettivo nel legame al recettore. Il ruolo protettivo di ANG sembra 
invece essere indipendente dalla sua attività enzimatica.  
Ulteriori esperimenti saranno necessari per chiarire lo basi molecolari con cui ANG 
esplica il suo ruolo protettivo nelle amiloidosi da ApoA-I.  
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SUMMARY 
 

An increasing number of human diseases is linked to protein misfolding and aggregation in 
amyloid fibrils. In spite of the extensive research during the last decade, much remains to be 
learnt on the basis of the molecular mechanism responsible for cell damage. Among the 
amyloidogenic proteins, 19 mutated versions of apolipoprotein A-I (ApoA-I) have been 
associated to amyloid diseases. Fibrils are mainly constituted by N-terminal fragments of 
ApoA-I, about 90-100 residue long. The 93-residue polypeptide, [1-93]ApoA-I, is the main 
constituent of extracellular cardiac amyloid fibrils. My research activity was aimed at 
inspecting the molecular mechanisms of the pathology. Therefore, we analyzed binding and 
intracellular pathway of recombinant [1-93]ApoA-I in cardiac target cells, we identified 
potential partners and studied the effects of endogenous amyloidogenic variants of ApoA-I 
on cell physiology. We demonstrated that the fibrillogenic polypeptide recognizes specific 
binding sites on target cell membranes and partially co-localizes with ABCA1 transporter. 
Following binding, the polypeptide is internalized mostly by chlatrin-mediated endocytosis 
and by lipid rafts, whereas a macropinocytosis involvement is excluded. Upon internalization, 
no retro-endocytosis is observed, while the polypeptide is massively degraded by 
proteasomal and lysosomal machineries. The rapid degradation of the polypeptide, together 
with the finding that fibrils obtained in vitro have no access to the intracellular compartment, 
are consistent with the absence of cytotoxic effects on cardiac cells. The identification of the 
molecular partners of a pathogenic protein is a central issue in the comprehension of the 
molecular bases of the disease. GST pull-down experiments, and protein identification by 
mass spectrometry, were performed on cardiomyoblasts membrane extracts. This 
experimental approach provided a list of about 100 potential interactors of the fibrillogenic 
polypeptide and, among these, the β-chain of ectopic ATP synthase and nicastrin were 
selected to be analyzed in detail. By co-immunoprecipitation and fluorescent microscopy 
experiments both proteins were found to interact with the fibrillogenic polypeptide. 
Interestingly, the former protein is an ApoA-I receptor, the latter has a role in the production 
of amyloid β peptide, responsible for Alzheimer’s disease. Since patients are heterozygous 
for the mutated ApoA-I gene, the isolation of amyloidogenic variants from sera is 
impracticable. Thus, we set up a suitable cellular model, consisting in stably transfected 
CHO-K1 cells, to express ApoA-I amyloidogenic variant L174S. The recombinant protein, 
efficiently secreted in the culture medium, was isolated following a one-step purification 
procedure and found to be associated to fatty acids, for which a role in trafficking and 
secretion may be hypothesized. Finally, we analyzed the effects of an amyloidogenic ApoA-I 
variant on cell physiology. We obtained hepatic cells stably over-expressing amyloidogenic 
ApoA-I variant L75P and found that the protein is mostly retained within the cells, rather than 
secreted, probably because of its partial unfolding. Moreover, reduced cell viability and 
decreased angiogenin (ANG) levels were detected. When cells were exposed to stress 
conditions (e.g. serum starvation), cell viability was more severely affected than cells 
expressing the wild-type protein. Furthermore, ANG levels and its subcellular localization 
were altered. ANG is known to play a role in cell recovery from stress and, more recently, it 
has been associated to neurodegenerative diseases, such as Parkinson’s, Alzheimer’s and 
Amyotrophic Lateral Sclerosis. Our data suggest a possible role of ANG in ApoA-I related 
amyloidosis. According to these observations, the addition of exogenous ANG to our cell 
model was able to restore cell viability. The analysis of a set of ANG loss-of-function mutants 
allowed us to demonstrate that ANG needs to be internalized into the cells to elicit its 
protective action against stress.  
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ABBREVIATIONS 

 

 

ApoA-I Apolipoprotein A-I 
[1-93]ApoA-I The fibrillogenic N-terminal 93-residue polypeptide of ApoA-I 
ABCA1 Membrane transporter ATP-binding cassette A1 

HDL High density lipoprotein 

ANG Angiogenin 
BSA Bovine serum albumin 
SDS-PAGE Gel-acrylamide electrophoresys in denaturing conditions 

FITC Fluorescein isothiocyanate 

TFE Trifluoroethanol 
MTT 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide 
Co-IP Co-Immunoprecipitation  
AFM Atomic Force Microscopy 

qRT-PCR Quantitative Real Time PCR 
EB/AO staining Ethidium bromide and acridine orange staining  
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INRODUCTION 
 
 

1. Protein misfolding and diseases 

According to the Anfinsen’s principle [1], a polypeptide achieves its biologically active 
native state by descending to the thermodynamically most favorable conformation, 
which corresponds to one of thousands of possible conformers. 
From this principle derived the structure-function paradigm, claiming that a specific 
function of a protein is determined by its unique and rigid three-dimensional structure. 
Although basically correct, recent data indicate that this empirical rule needs to be 
adapted, as a growing number of proteins adopt, under native conditions and for the 
same amino acid sequence, different conformations that exist in a dynamic 
equilibrium [2]. 
The folding process is subjected to a strict quality control by molecular chaperones 
and protease machinery. Misfolded proteins are either rescued by chaperones or 
eliminated by the ubiquitin-proteasome system or lysosome-mediated autophagy [3]. 
These mechanisms are normally sufficient to prevent the accumulation of misfolded 
proteins. However, under certain pathological conditions, the capacity of this protein 
control machinery is exceeded and misfolded proteins accumulate to dangerous 
levels [4]. 
These pathological conditions are generally known as protein misfolding (or protein 
conformational) diseases [5,6] because the pathological protein undergoes structural 
changes that results in self-association, aggregation and tissue deposition, causing 
severe functional impairment. These structures are generally described as amyloid 
fibrils or plaques when they accumulate in the extracellular space, whereas the term 
“intracellular inclusions” has been suggested as more appropriate when fibrils 
accumulate inside the cell [7].  
The diseases can be broadly grouped into neurodegenerative pathologies, in which 
aggregation occurs in the nervous system, non-neuropathic localized amyloidoses, in 
which aggregation occurs in a single type of tissue, and non-neuropathic systemic 
amyloidoses, when aggregation occurs in multiple tissues. 
Examples of amyloid diseases with high social impact are the Alzheimer's and 
Parkinson's diseases, the spongiform encephalopathies, the Huntington's disease, 
and the amyotrophic lateral sclerosis [8].  
To date almost 30 amyloidogenic proteins have been identified [9], some of which 
are shown in Table I. Although these proteins do not show any sequence or structure 
homology, they have a common feature: the ability to give rise to amyloid fibrils 
morphologically identical, characterized by a highly ordered and rigid structure, 
extremely stable and resistant to proteases [10]. Moreover, an increasing number of 
proteins with no link to diseases has been found to form, under some conditions in 
vitro, fibrillar aggregates showing morphological, structural and tinctorial properties 
typical of amyloid fibrils [11]. This finding has led to the idea that the ability to form  
amyloid structures is a generic property of polypeptide chains, even though the 
propensity to form such a structure can vary dramatically with sequence. This generic 
property has been exploited by living systems for specific purposes, as some 
organisms have been found to convert, during their normal physiological life cycle, 
one or more of their endogenous proteins into amyloid fibrils that have functional 
rather than disease-associated properties [12-14]. 
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Disease Precursor protein Fibril component 

Alzheimer’s disease Amyloid precursor protein Aβ-Peptide 1-40 to 1-43 
Spongiform 

encephalopathies Prion Prion or fragments 
thereof 

Parkinson’s Disease α-synuclein α-synuclein 
Primary systemic 

amyloidosis 
Immunoglobulin light 

chain 
Intact light chain or 

fragments 
Secondary systemic 

amyloidosis Serum amyloid A Amyloid A (76-residue 
fragment) 

Senile systemic 
amyloidosis Transthyretin Transthyretin or fragments 

Amyotrophic lateral 
sclerosis Superoxide dismutase 1 Superoxide dismutase 1 

Hereditary cerebral 
amyloid angiopathy Cystatin C Cystatin C minus 10 

residues 
Hemodialysis-related 

amyloidosis β2-Microglobulin β2-Microglobulin 

Type II diabetes Islet amyloid polypeptide 
(IAPP) Fragment of IAPP 

Familial amyloid 
polyneuropathy III Apolipoprotein A-I N-terminal fragments of 

apolipoprotein A-I 
Hereditary non-

neuropathic 
systemic amyloidosis 

Lysozyme Lysozyme or fragments 
thereof 

Injection-localized 
amyloidosis Insulin Insulin 

Hereditary renal 
amyloidosis Fibrinogen Fibrinogen fragments 

 
Table I: The most common amyloidoses, the corresponding pathogenic protein 
precursors and their components detected in the amyloid fibrils. 
 
 
2. Structure of amyloid fibrils 

Despite the large differences in the structures and functions of the proteins and 
peptides responsible for the differing amyloidoses, amyloid fibrils are surprisingly 
similar and share basic structural features.  
Fibrils can be imaged in vitro using transmission electron microscopy (TEM), atomic 
force microscopy (AFM) or solid state NMR (ssNMR). These techniques revealed 
that fibrils appear as rigid structures, extended, unbranched, indefinite in length and 
molecular weight (Fig.1). Fibrils usually consist of a variable number of protofilaments 
(typically 2–6), each about 2–5 nm in diameter [15]. Protofilaments twist together to 
form rope-like fibrils that are typically 7–13 nm wide [16] or associate laterally to form 
long ribbons that are 2–5 nm thick and up to 30 nm wide [17-19]. X-ray fiber  
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Figure 1: Image of fibrils analyzed by atomic force microscopy. 
 
 
 
diffraction has led to the description of the ordered core of the amyloid fibrils as a 
super-secondary cross-beta structure, where each protofilament results from a 
double row of beta sheets provided by each monomer, whose strands run parallel to 
each other and perpendicular to the main fibril axis [20]. Two types of fibrils have 
been described: fibrils of type 1 are very thin and consist of a single strand, while 
those of type 2 consist of several strands reaching a diameter of 80-130 Å [21]. 
Electron microscopy and atomic force analyses have revealed that the amyloidogenic 
protein is the predominant component of amyloid deposits, but not the only one. 
Palmitic acid, oleic acid and linoleic acid have been found to be present as 
constituents of fibrils [22]. Furthermore, amyloid fibrils are often closely associated 
with sulfur proteoglycans of the extracellular matrix, including glycosaminoglycans 
(GAGs), which confer rigidity to the fibril structure [23, 24]. Among GAGs, heparan 
sulphate elicit particular interest as it appears to play an active role in the formation of 
amyloid fibrils. In fact, it has been reported that this compound promotes the 
nucleation of fibrils and fibril-fibril association of amyloidogenic proteins [25]. Another 
ubiquitous component of amyloid deposits is the glycoprotein SAP (serum amyloid P 
component) [26] which protects amyloid fibrils from degradation by phagocytic cells 
and proteolytic enzymes [27]. 
 
 
3. The fibrillogenic process 

The molecular basis of fibrillogenesis, by which normally soluble polypeptide chains 
aggregate into insoluble and stable amyloid structures, is not clear yet. 
The full elucidation of the protein aggregation process requires the identification of all 
the conformational states and oligomeric structures adopted by the polypeptide chain 
during the process and the determination of the thermodynamics and kinetics of all 
the conformational changes that link these different species. It also implies 
characterizing each of the transitions at a molecular level and identifying the residues 
or regions of the sequence that promote the various aggregation steps. The 



 

identification and characterization of oligomers preceding the formation of well 
defined fibrils is of particular interest because of an increasing awareness that these 
species are likely to play a critical role in the pathogenesis of protein deposition 
diseases [28]. 
It is widely established that amyloid fibrils are formed with nucleation
polymerization (Fig. 2), in which the protein monomer is converted into a fibrillar 
structure via a “nucleated growth” mechanism. 
 
 
 

 
Figure 2: Kinetics of amyloid 
curve, typical of nucleation
nucleus formation (lag-phase), aggregate growth proceeds rapidly by further addition 
of monomers (elongation phas
larger polymers (plateau phase).
 
 
 
During the initial lag phase, corresponding to the phase in which nucleation and 
aggregation is not observed, the monomers associate to form the so
[28], oligomeric forms of β 
aggregation process. It was also demonstrated that the duration of the lag phase can 
be greatly reduced by the addition of preformed fibrils or fibril precursors that 
promote nucleation [29, 30
experimental conditions, or certain type of mutations, can also reduce the length of 
the lag phase. The absence of a lag phase, therefore, does not necessarily imply that 
a nucleated growth mechanism is not operating, but it
required for fibril growth is sufficiently slow relative to the
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the latter is no longer the slowest step in the conversion of a soluble protein into the 
amyloid state [28]. 
Once formed, the nucleus grows by extension at one end of the β sheets. This event 
generates ordered oligomers, called protofibrils, up to 200 nm long with a diameter of 
4-10 nm, observable by electron microscopy [31]. The protofibrils grow progressively 
(polymerization) to form mature fibrils. It was also demonstrated the existence of 
metastable oligomers of intermediate size between monomers and protofibrils. These 
protein species have a short half-life and none of them accumulate in significant 
quantities. An example are the protofilaments, a heterogeneous population of 
species with high content of β sheets structures. They are considered the forerunners 
of protofibrils [32].  

Two main classes of fibrillogenic proteins have been identified: those with a compact 
folding in their native state and those that are partially unfolded. In the case of 
amyloidogenic proteins that are natively folded, destabilizing mutations and/or 
changes in solution conditions (changes in pH or temperature, or chemical changes) 
are key factors responsible for the induction of fibrillogenesis, as in the case of β2-
microglobulin (Aβ2M) or the prion protein APrP [28]. In these cases there is an 
alteration of the existing balance between the properly folded polypeptide chain and 
a partially unstructured form, with the increase of the latter protein species 
characterized by a high tendency to aggregation. 
On the other hand, several amyloidogenic proteins or polypeptides are intrinsically 
disordered. Such proteins include the β-Amyloid peptide (Aβ), islet amyloid 
polypeptide (AIAPP) and α-synuclein [33]. These “natively unfolded” [34] proteins 
emerged as proteins lacking of almost any secondary structure and were shown to 
be extremely flexible and disordered under physiological conditions [35]. In some 
cases, natively folded proteins generate unfolded fragments associated to the 
amyloid pathology. This may occur when a specific mutation diverts the fate of a 
globular protein converting it to the precursor of fragments responsible for fibril 
formation. This is the case of Apolipoprotein A-I (ApoA-I) and its amyloidogenic N-
terminal fragment. 
 
 
4. Apolipoprotein A-I 

ApoA-I, the major structural component of high density lipoprotein (HDL), plays a 
critical role in lipid metabolism [36], both in delivering cholesterol to steroidogenic 
tissues and in transporting it from the periphery to the liver for catabolism in the so 
called reverse cholesterol transport. Therefore, ApoA-I plays an antiatherogenic role 
in vivo, with a protecting effect against cardiovascular diseases [37].  
ApoA-I is synthesized by the liver and the intestine as a pre-pro-protein. After the 
cleavage of the pre- and pro- peptides, the mature protein (28 kDa) is secreted in the 
plasma, where it is either associated to lipids, or in a lipid-free state (5-10%) [38]. 
Transcriptional regulation of ApoA-I gene is complex, involving induction by several 
hormones [39] and inhibition by anti-oxidant molecules [40]. No post translational 
modifications, like glycosilation or disulfide bonds formation, occur. 
During HDL biogenesis, the primary acceptor of cholesterol and phospholipids from 
macrophages is lipid-free or lipid-poor ApoA-I, containing up to four phospholipid 
molecules [41]. In this state, ApoA-I is the preferred substrate of the plasma 
membrane transporter ATP-binding cassette A1 (ABCA1) [42-44]. The conversion of 
unesterified cholesterol into cholesteryl ester by the enzyme lecithin:cholesterol 



 

acyltransferase (LCAT) is responsible for the conversion of the nascent, discoidal 
HDL into mature spherical HDL, with ApoA
protein mass. Circulating HDL are remodelled by the action of proteins and enzymes, 
such as cholesteryl ester transfer protein [45], LCAT [46], phospholipid transfer 
protein [47, 48] and hepatic lipase [49]. Plasma HDL remodelling can result in the 
destabilization of HDL and the r
the selective uptake of lipids from HDL through scavenger receptor B type 1 (SRB1) 
can yield lipid-poor ApoA-I [50]. It has been demonstrated that the production of lipid
free/lipid-poor ApoA-I from matu
process in the arterial wall, which is critical in protecting macrophages from 
cholesteryl ester accumulation [51]. Nevertheless, the molecular mechanism of the 
atheroprotective action of ApoA
HDL catabolism requires disassembly of protein and lipid components. While HDL
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protein moiety. Numerous tissue uptake studies suppo
principal site of ApoA-I degradation 
free to the lipid-bound state of ApoA
plasticity of the protein [52]
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the amphipathic α-helices substitute protein
interactions (Fig. 3B). This induces the opening of the helical bundle into an extended 
belt-like α-helix, which wraps around the perimeter of the nascent HDL particle 
Therefore, conformational plasticity of full
feature, strictly related to the complex mechanism of its biological action. 
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acyltransferase (LCAT) is responsible for the conversion of the nascent, discoidal 
HDL into mature spherical HDL, with ApoA-I representing roughly 70% of HDL 
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helix bundle structure (Fig. 3A) [55], while, upon lipidation, 
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helix, which wraps around the perimeter of the nascent HDL particle 
Therefore, conformational plasticity of full-length ApoA-I is a functionally relevant 
feature, strictly related to the complex mechanism of its biological action. 
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4.1. ApoA-I and amyloidosis
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I and amyloidosis  

More than 50 naturally occurring ApoA-I variants have been reported, half of them 
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Mutation Affected organ or tissue Ethnic origin 

Internal mutations   

G26R Kidneys, liver, peripheral 
nerves, GI tract British, Scandinavian 

E34K Kidneys, liver Polish 
W50R Kidneys, liver, GI tract Jewish 

L60R Kidneys, liver, testes, 
heart British 

L64P Kidneys, liver Italian 
∆60-71+ VT ins Liver Spanish 

∆70-72 Kidneys, liver, choroid German 
F71Y Liver, palate British 

N74K frameshift 
Kidneys, uterus,, ovaries, 

pelvic lymph nodes, GI 
tract 

German 

L75P Kidneys, liver, testes Italian, German, other 
L90P Skin, heart, larynx French, American 

Esternal mutations   
∆L107 Circulatory sistem Scandinavian 

A154 frameshift Kidneys German 
H155M frameshift Kidneys German 

L170P Larynx British 
R173P Kidneys, skin, heart, larynx American, British 
L174S Skin, testes, heart, larynx Italian, Dutch 
A175P Larynx, testes British 
L178H Larynx, skin, heart, nerves French 

 
Table II: The mutations occurring in ApoA-I sequence, associated to amyloid 
pathology. The affected organs or tissues and the ethnic origins are also indicated. 
 
 
Acidic conditions (pH 4.0) were able to switch on a complex fibrillogenic pathway, 
consisting of extensive structural rearrangements of the polypeptide, that shifts from 
a random coil structure to an unstable helical conformation, and then aggregates into 
a β-sheet based polymeric structure [63]. Nevertheless, the possibility to analyze the 
complex fibrillogenic pathway of ApoA-I amyloidogenic polypeptide was very limited 
so far, due to the low amount available from in vivo sources. In the laboratory of Prof. 
Piccoli, an effective and reliable expression system was set up to produce a 
recombinant version of 1-93 polypeptide, denoted as [1-93]ApoA-I. The strategy, 
aimed at protecting the recombinant polypeptide from intracellular degradation, 
allowed us to obtain a pure and stable product.  
The elucidation of the structural properties of the fibrillogenic polypeptide is a central 
issue in the comprehension of the pathology. To this regard, the identification of 
structural or environmental factors, able to activate the pathological pathway leading 
to amyloid fibrils, is of enormous importance to pursue strategies aimed at inhibiting 
this process. Conformational analyses of the recombinant polypeptide in solution by 
far-UV CD spectroscopy indicated that in physiological-like conditions the protein is 
largely unfolded. A pH switch from 7.0 to 4.0 induces a predominant α-helical 
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structure, through the conversion of the protein from a random coil to a helical/molten 
globule state. This transition, complete within 2 seconds and fully reversible when the 
pH is returned to 7.0, is followed by the appearance of a significant β-sheet 
component. The helical conformers are thought to be key intermediates in the 
multistep fibrillogenic process. These observations are in good agreement with the 
behavior of the natural polypeptide isolated from ex vivo fibrils [63]. The 
helical/molten globule intermediate displays a strong propensity to oligomerize, as 
demonstrated by AFM analyses. [1–93]ApoA-I, in fact, generates typical amyloid 
fibrils upon incubation at pH 4.0 for lengths of time comparable to those described for 
the natural polypeptide [61].  
Extracellular amyloid deposition in vivo takes place in a heterogeneous environment, 
in which components of the cell membrane and/or the extracellular matrix may have 
a central role. From a general point of view, the interaction of proteins with biological 
superstructures, like membranes, may dramatically affect their structural 
organization. It is known that the interaction of natively folded proteins with groups 
exposed on a membrane surface often modifies their conformational states [64-66]. 
On the other hand, unfolded polypeptide chains can gain ordered structures at the 
membrane surface or inside the bilayer [64]. Conversely, proteins can alter 
membrane fluidity, and/or permeate the membrane bilayer and can even extract 
lipids from it [67]. Moreover, it is known that the hydrophobic interior of the plasma 
membrane can induce structural changes in soluble intrinsically disordered proteins 
and peptides by favouring secondary structures often leading to aggregate nucleation 
[68-70, 65, 66]. The well known stability of protein α-helical structures within a 
membrane lipid bilayer is in line with the concept that the early formation of 
multimeric species is often promoted by the association of polypeptide molecules 
through helix-helix interaction. From this point of view, a general mechanism of 
membrane catalyzed amyloid formation can be envisaged. To this regard, factors 
able to induce α-helical conformers may accelerate amyloid formation. Conversely, 
factors able to bind to, and stabilize, helical regions by entrapping the helical 
intermediates in a minimum energy may slow down the fibrillogenic process.  
It is known that the in vivo role of ApoA-I is mediated by its interactions with lipids, 
that are fundamental in the maintenance of the protein native structure, and that the 
N-terminal region of ApoA-I contributes to lipid binding in the native protein [71, 72]. 
To this regard, recently the effects of lipids on the propensity of [1-93]ApoA-I to 
undergo fibrillogenesis was analyzed. It has been found that a lipid environment 
affects [1-93]ApoA-I aggregation pathway by inducing and stabilizing helical 
intermediates [73]. Using a multidisciplinary approach, including CD, fuorescence, 
electrophoretic, and AFM analyses, the effects of a lipid environment on the 
conformational state and aggregation propensity of [1-93] ApoA-I was investigated. 
Following addition of the lipid-mimicking detergent Triton X-100, the polypeptide was 
found to be in a helical state at both pH 8.0 and 6.4, with no conformational transition 
occurring upon acidification. These helical conformers are stable and do not generate 
aggregated species, as observed by AFM after 21 days. Similarly, analyses of the 
effects of cholesterol demonstrated that this natural ApoA-I ligand induces formation 
of α-helix at physiological concentrations at both pH 8.0 and 6.4 (pathophysiological 
conditions). The behaviour of [1-93]ApoA-I is in line with that of other amyloidogenic 
proteins, whose conformations were reported to be strongly affected by the 
interaction with cholesterol. It is known that cholesterol and sphingolipids are the 
most abundant molecules of lipid rafts. Amyloid protein precursor (APP) and 
secretases preferentially localize into ganglioside and cholesterol-rich membrane 
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microdomains (lipid rafts) [74-76]. Accordingly, it has been proposed that aggregation 
of soluble Aβ peptides and APrP is a raft-associated process [75] and that an 
alteration of cholesterol homeostasis is a shared primary cause of several 
neurodegenerative diseases [77].  
Mechanistic studies with well defined model membranes have shown that natively 
unfolded polypeptides, upon interaction with surfaces, readily adopt helical structures 
that represent key intermediates in amyloid formation process [33]. In particular, 
anionic surfaces and anionic phospholipid-rich membranes can play key roles either 
in triggering protein fibrillogenesis by acting as conformational catalysts for amyloid 
fibrils deposition [64], or as inhibitors of fibrillogenesis [77]. In our laboratory has 
been demonstrated that zwitterionic, positively charged, and negatively charged 
liposomes affect [1-93]ApoA-I conformation, inducing helical species [73]. These data 
support the idea that lipids play a key role in [1-93]ApoA-I aggregation in vivo. 

Nothing is known about the mechanism leading to the release of the fibrillogenic 
polypeptide from a full-length amyloidogenic variant of ApoA-I, nor in which context 
the proteolytic cleavage does occur. Nevertheless, the hypothesis can be raised that 
the fibrillogenic polypeptide is released at the site of fibril deposition, where it 
accumulates in the extracellular space of target tissues.  
Recently, the group of Prof. Piccoli express, isolate and characterize 8 variants of the 
fibrillogenic polypeptide carrying internal mutations associated to amyloid diseases. 
This made possible the analysis of the structural and functional properties of the 
fibrillogenic polypeptides and their relationships, relevant for the comprehension of 
the disease [78]. 
These analyses indicated that an amyloidogenic mutation may, or may not, increase 
the aggregation propensity of the polypeptide. Thus, the paradigm amyloidogenic 
mutation-increased aggregation propensity has not to be taken as a general rule. 
Instead, a different scenario was provided by in silico analyses. Sequence-based 
predictions of aggregation propensity and stability of the pathogenic variants of full-
length ApoA-I revealed in almost all the variants an increase of conformational 
fluctuations and chain flexibility in the proximity of the protein region spanning 
approximately residues 88-110, with the consequent exposure of a putative cleavage 
site to a proteolytic attack that releases the fibrillogenic moiety [78]. Therefore, all the 
amyloidogenic mutations occurring at the N-terminal region of ApoA-I have a 
common feature, that of dramatically affecting the stability of the whole protein, 
favouring the cleavage that generates the N-terminal fibrillogenic fragment. In 
addition, some of the mutations increase the aggregation rate of the fibrillogenic 
polypeptide. 
These results are in line with a recent study on the X-ray crystal structure of a C-
terminal truncated human ApoA-I, ∆(185-243)ApoA-I (Fig. 3B), which provided the 
basis for understanding the impact of amyloidogenic mutations on protein stability 
[79]. In the crystal structure, lipid free ∆(185-243)ApoA-I forms a dimer composed of 
two antiparallel molecules adopting a semi-circular conformation, with a diameter 
comparable to that of HDL particle. The structure is stabilized by two symmetric four-
segment bundles at the opposite ends of the dimer. The Authors propose that the 
amyloidogenic mutations of ApoA-I lead to fibril formation by destabilizing ApoA-I 
interaction with lipids, with the consequent formation of lipid poor/free ApoA-I (Fig. 5). 
Moreover, the presence of a specific amyloidogenic mutation destabilizes the four-
helix bundle and the overall protein conformation. As a consequence, region 80-100 
is exposed to solvent becoming susceptible to proteolytic cleavage. Segment 44-55 
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AIMS 
 
 

My research project is aimed at elucidating the molecular basis of the mechanism of 
action of naturally occurring mutant forms of Apolipoprotein A-I (ApoA-I) associated 
to systemic amyloid diseases. From these pathogenic variants, the N-terminal region 
of the protein (residues 1-93), corresponding to the naturally unfolded polypeptide [1-
93]ApoA-I, is released and aggregates generating amyloid fibrils, which accumulate 
in peripheral tissues (heart, liver) invariably leading to organ failure and death.  
 
The project is aimed at 

• elucidating key steps of the mechanism of action of ApoA-I fibrillogenic 
polypeptide and full-length variants 

• identifying intracellular partners of the fibrillogenic polypeptide and cellular 
processes involved in the development of the disease, as potential 
therapeutic targets. 

 
The research has been conducted using a double approach: 

1. studies on the fibrillogenic polypeptide of ApoA-I 
• elucidation of the mechanism of action of the fibrillogenic polypeptide [1-

93]ApoA-I: binding, internalization and intracellular pathway in cardiac 
target cells 

• search for intracellular partners by a functional proteomic approach 
 

2. studies on the pathogenic variants of ApoA-I 
• setting up of novel cellular models to express ApoA-I pathogenic variants 

and to study their effects on cell physiology and susceptibility to stress 
• role of angiogenin in stress recovery. 

 
The challenge is that of shedding light on a largely unknown mechanism responsible 
for the onset and progression of a hereditary devastating disease. The comparison of 
our results with those reported in the literature for other amyloidogenic proteins or 
peptides might evidence common traits and suggest potential therapeutic 
approaches. 
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Materials and Methods 

 
 
1. Materials  

Anti-human ApoA-I polyclonal antibodies were from DAKO, Denmark. All reagents, 
ApoA-I, FITC-insulin, transferrin (Tf) and anti-actin polyclonal antibodies were 
purchased from Sigma-Aldrich (St. Louis, MO). Protein concentration was 
determined by the BCA assay. LysoTracker Red, goat anti-rabbit and anti-mouse 
antibodies, conjugated with Texas red or with Bodipy FL were from Molecular 
Probes. Anti β-catenin antibody was from Santa-Cruz. Anti FITC polyclonal 
antibodies were from Abcam. 
 
 
2. Expression and isolation of [1-93]ApoA-I 

Recombinant [1-93]ApoA-I, cloned in the expression vector pGEX-4T-3, was 
expressed in BL21DE3 E. coli cells following the procedure described by Di Gaetano 
et al. (2006) with some modifications [61]. Briefly, bacteria were resuspended in 
phosphate-buffered saline (PBS) containing 20% sucrose and protease inhibitors 
(Roche, Germany). Lysates were sonicated, incubated for 30 min at 4°C, and 
centrifuged. GST-containing species, selected by affinity chromatography, were 
digested with thrombin to release [1-93]ApoA-I. The recombinant product was 
isolated by high-performance liquid chromatography (HPLC) reverse phase 
chromatography on a Ultrapure C8 column (Vydac, Grace, IL, USA) with a gradient 
of buffer B [90% acetonitrile in 0.1% trifluoroacetic acid (TFA)] in buffer A (0.1% TFA) 
using a PerkinElmer chromatographic system (Series 200). The final yield of the 
procedure was estimated to be 2.5 mg/l of bacterial culture. Pure [1–93]ApoA-I was 
lyophilized and stored at -70°C until use. For experimental purposes, the polypeptide 
was dissolved in the appropriate buffer and centrifuged before use. 
 

 

3. Fibrillar aggregates  

Fibrillar aggregates were obtained by incubating [1–93]ApoA-I for 2 weeks at 37°C at 
0.3 mg/ml protein concentration in 12 mM sodium phosphate buffer, pH 6.4 
containing 20% (v/v) trifluoroethanol (TFE). By centrifugation, insoluble aggregates of 
[1-93]ApoA-I (pellet) were separated from the unaggregated, soluble polypeptide 
(supernatant). To quantify aggregated [1-93]ApoA-I, the amount of the soluble 
polypeptide was determined spectrophotometrically and subtracted from the total 
amount of [1-93]ApoA-I before aggregation. The pellet was dried under N2 to remove 
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TFE and resuspended in cell medium to reach the appropriate protein concentration. 
The suspension of the aggregated species was tested for cytotoxicity. 
 
 
4. Cloning 

Plasmid pBOShApoAIgIS, encoding human ApoA-I, was kindly provided by Prof. L. 
Pastore [18]. The cDNA encoding ApoA-I variant L174S was obtained by overlap 
extension PCR mutagenesis using pBOShApoAIgIS as a template. Two couples of 
primers, reported in Table III, were used (a-b; c-d). The recombinant plasmid carrying 
the mutated sequence was denoted as pBOSApoAI(L174S). Automated DNA 
sequencing was performed by Eurofins-MWG (Ebersberg, Germany).  
 

 

 Mutagenic oligonucleotide 

a (F) 5’-GGG GTA CCG AAG GAG GTC CCC CAC GG-3’ 

b (R) 5’-CGC GGC GCT GCG CTG GCG CAG CTC-3’ 

c (F) 5’-CAG CGC AGC GCC GCG CGC CTT GAG-3’ 

d (R) 5’-GCT CTA GAT CTG AGC ACC GGG AAG GG-3’ 

 

Table III: oligonucleotides used as primers in the PCR reactions performed to 
generate the L174S ApoA-I variants. (R) and (F) are reverse and forward primers, 
respectively; the mutated nucleotide sequences are underlined.  
 

 

5. Cell culture 

Chinese Hamster Ovary (CHO-K1), rat embryos heart myoblasts (H9c2) and human 
hepatic carcinoma (HepG2) cells were purchased from ATCC. Cells were cultured in 
Dulbecco’s Modified Eagle’s Medium (Sigma-Aldrich), supplemented with 10% foetal 
bovine serum (HyClone) and antibiotics, in a 5% CO2 humidified atmosphere at 37ºC. 
The growth medium of H9c2 cells was implemented with  2 mM L-glutamine and 2 
mM sodium pyruvate. CHO-K1 cells were grown in Dulbecco's modified Eagle's 
medium (DMEM-F12), supplemented with 10% foetal bovine serum and antibiotics.  
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6. Cell transfection and lysates preparation  

Expression vectors for enhanced green fluorescent protein (pEGFP)-tagged Rab4 
[17] and enhanced red fluorescent protein (pmRFP)-tagged Rab5 were kindly 
provided by Dr Marino Zerial (Max-Planck-Institute, Dresden, Germany). H9c2 cells 
were transiently transfected with either expression vector by the use of 
METAFECTENE reagent according to the manufacturer’s instructions (Biontex 
Laboratories GmbH). After 24 h, transfected cells were incubated with the 
appropriate protein and analyzed. To prepare cell lysates, HepG2 and H9c2 cells 
were scraped off in PBS, centrifuged at 1,000 g for 10 min and resuspended in lysis 
buffer (1 mM MgCl2, 0.25% SDS, 1% Triton X-100 in 10 mM Tris-HCl, pH 7) 
containing protease inhibitors. Upon 30 min incubation on ice, lysates were 
centrifuged at 14,000 g for 30 min at 4°C. Supernatants were diluted in loading buffer 
containing 8 M urea and analyzed, without boiling, by 10% polyacrylamide SDS-
PAGE electrophoresis. Protein concentration was determined by BCA assay. 

CHO-K1 cells were plated on 6-well culture dishes (1.5×105 cells/well) in Dulbecco's 
modified Eagle's medium (DMEM-F12), supplemented with 10% foetal bovine serum 
(HyClone) and antibiotics. After 24 h, cells were co-transfected with pSVneo plasmid 
(0.15 µg), conferring neomycin resistance, and the plasmid encoding either ApoA-
I(L174S) or the wild-type protein (1.5 µg). Transfections were performed using 
Lipofectine (Invitrogen) as described by the manufacturer. After 48 h, cells were 
grown in the presence of 0.5 mg/ml G418 to select stably transfected clones. 
HepG2 cells were plated on 6-well culture dishes (2×105 cells/well) in DMEM, 
supplemented with 10% foetal bovine serum and antibiotics. After 24 h, cells were 
transfected with the plasmid pRC-rsv conferring neomycin resistance and encoding 
either wild-type ApoA-I or its amyloidogenic variant carrying the substitution of Leu 75 
for Pro (indicated as L75P-ApoA-I). Transfections were performed using Lipofectine 
as described by the manufacturer. After 48 h, cells were grown in the presence of 0.8 
mg/ml G418 to select stably transfected clones. 
 
 
7. Western blot analyses 

For Western blot analyses, following gel electrophoresis, proteins were transferred 
onto polyvinylidene fluoride (PVDF) membranes (Immobilon-P, Millipore) (25 V, 
overnight, at 4°C). Membranes were then incubated with the blocking solution (5% 
BSA in PBS buffer containing 0.1% Tween-20) at RT for 1 h. Following blocking step, 
membranes were washed with PBS buffer containing 0.1% Tween-20, and incubated 
at RT for 1 h with one of the following antibodies directed towards: human ApoA-I 
(dilution 1:500), ATP synthase β-chain (dilution 1:1,000), nicastrin antibodies (dilution 
1:1,000), angiogenin (ANG) (1 µg/ml), actin (dilution 1:1,000), B23 (0.3 µg/ml). 
Membranes were then washed with PBS buffer containing 0.1% Tween-20 and 
incubated on a shaker for 1 h at RT with goat anti-rabbit or goat anti-mouse 
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secondary antibodies conjugated to horseradish peroxidise enzyme (HRP). 
Membranes were then washed with PBS buffer containing 0.1% Tween-20. 
The detection of immuno-positive species by enzyme-linked chemiluminescence 
(enhanced chemiluminescence: ECL) was performed according to the 
manufacturer’s instructions (Super Signal®West-Pico Chemiluminescent Substrate, 
Pierce), using a Phosphoimager (Biorad). 
 
 
8. Binding assays  

Proteins under test (100 µg) were labelled with 1 mCi carrier-free Na125I (Amersham) 

using Iodobeads (Pierce), according to the manufacturer's instructions. Labelled 
proteins were desalted on PD10 columns (Pharmacia) equilibrated in PBS. The 
specific activity was about 1.5 µCi/µg. Cells were seeded in 24-well plates at a 
density of 5x104/well. After 24 h, 200 µl of binding buffer (25 mM Hepes, pH 7.5, 1 
mg/ml BSA in DMEM), containing increasing concentrations of the labelled protein 
under test, were added to the cells. Following 2 h incubation at 4°C, cells were 
washed three times with PBS containing 0.1% BSA. Bound radioactivity (total 
binding) was removed by treating cells with 0.7 ml of cold 0.6 M NaCl in PBS for 2 
min on ice and measured with a gamma counter (Packard Instrument Co.). Non-
specific binding was determined by incubating the cells with the labelled protein in 
the presence of a 40-fold molar excess of the unlabelled protein. Specific binding 
was calculated by subtracting non-specific binding from total binding. Affinity constant 
values (Kd) were calculated according to the Scatchard equation.  
 

 

9. Cytotoxicity assays 

For [1-93]ApoA-I experiments, cells were seeded in 96-well plates (100 µl/well) at a 
density of 5x103/well. After 24 h, [1-93]ApoA-I, dissolved in 12 mM sodium phosphate 
buffer, pH 6.4 (1 mg/ml) and centrifuged to remove insoluble material, was added to 
the medium to a final concentration of 5 or 10 µM. To test fibrillar aggregates, [1-
93]ApoA-I was incubated as described above, and insoluble species were 
resuspended in cell medium at a final concentration of 5 or 10 µM and added to the 
cells. Cells were then grown for 72 h at 37°C. Cell viability was assessed by the MTT 
assay. MTT reagent, dissolved in DMEM without phenol red (Sigma-Aldrich), was 
added to the cells (100 µl/well) to a final concentration of 0.5 mg/ml. After 4 h at 
37°C, the culture medium was removed and the resulting formazan salts were 
dissolved by the addition of isopropanol containing 0.1 N HCl (100 µl/well). 
Absorbance values of blue formazan were determined at 570 nm using an automatic 
plate reader (Microbeta Wallac 1420, Perkin Elmer).  Cell survival was expressed as 
the percentage of viable cells in the presence of the protein under test, with respect to 
control cells grown in the absence of the protein. Error bars correspond to the s.d. 
values of three independent experiments. 
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For the experiments on cell viability in stress conditions in the presence or absence 
of ANG, cell were seeded in 96-well plates (100 µl/well) at a density of 3x103/well. 
After 24 h, cells were grown in complete or serum free medium in the absence or 
presence of 0.5 µg/ml wt ANG, or its mutants, for different length of time (24, 48, 72, 
96 h). Cell viability was assessed by calculating the number of viable cells by the 
MTT assay. For each cell line, a calibration curve was obtained by plating increasing 
number of cells in a multiwell  plate (from 0.5x103 to 7x103 cells) and performing the 
MTT assay. Error bars correspond to the s.e. values of three independent 
experiments. 
 

 

10. Fluorescence studies 

Immediately prior to be tested, proteins were dissolved or dialyzed in 0.1 M sodium 
carbonate, pH 9.0, to a final concentration of 1 mg/ml. Proteins (500 µg) were 
conjugated to fluorescein isothiocyanate (FITC), following the manufacturer's protocol 
(Sigma-Aldrich). A Sephadex G25 column, equilibrated in PBS, was used to separate 
the unreacted FITC from the conjugate. The same procedure was used to label 
proteins with rhodamine. Fluorescent fibrillar aggregates of [1-93]ApoA-I were 
obtained by incubating the FITC-labelled polypeptide as described for the unlabelled 
polypeptide. Insoluble aggregates were resuspended in cell medium and tested as 
described below. Cells were seeded on glass coverslips in 24-well plates and grown 
to semi-confluency. Cells were incubated for the indicated times in complete medium 
with fluorescent proteins or compounds at the following concentrations: [1-93]ApoA-I 
(3 µM), ApoA-I (1 µM), dextran (5 mg/ml), tranferrin (0.5 mg/ml), insulin (0.1 mg/ml). 
Lysosomes were labelled by adding LysoTracker Red (1:500) to living cells at 37°C. 
After 40 min, cells were treated with 1 µg/ml Hoechst 33342 for 10 min at 37°C and 
washed with PBS. When required, surface bound proteins were stripped with 1 M 
Hepes, pH 7.5, containing 0.5 M NaCl (Hepes/NaCl) for 5 min. Cells were then fixed 
for 10 min at RT with 4% paraformaldehyde in PBS.  

To inhibit clathrin-dependent endocytosis, cells were pre-incubated in the presence 
or in the absence of either 100 µM  monodansylcadaverine (MDC) for 30 min, or with 
300 µM sucrose for 15 min. Cells were then incubated for 6 h with the fluorescent 
protein under test. For immunofluorescence analyses, cells were permeabilized with 
0.5% Triton X-100 in PBS (5 min). Cells were then incubated for 30 min with 3% goat 
serum in PBS to saturate non-specific binding sites. Afterwards, cells were incubated 
overnight at 4°C with anti-ABCA1 antibodies (1:200), or anti-β-catenin antibody 
(1:200), and then rinsed with 0.1% Triton X-100 in PBS. Finally, cells were incubated 
1 h in the darkness with fluorescent goat anti-rabbit or anti-mouse IgG (1:500). Slides 
were washed with 0.1% Triton X-100 in PBS and then with PBS, and mounted in 
50% glycerol in PBS. Samples were examined using a Leica 6000 UV microscope 
and a Leica TCS SP5 confocal microscope, equipped with a Leica application suite 
software. All images were taken under identical conditions.  
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11. Protein degradation analyses 

To inhibit proteasome activity, cells were pre-treated for 4 h at 37°C with 2.5 µM Z-
Leu-Leu-Leu-al (MG132), or with 10 µM N-Ac-Leu-Leu-norleucinal (ALLN). Cells 
were then incubated with the fluorescent protein for the indicated times. 
Intralysosomal catabolism was inhibited by treating cells with 20 mM ammonium 
chloride or 100 µM chloroquine. As a control, cells were incubated under the same 
conditions but in the absence of the inhibitors.   
 
 
12. Analysis of ApoA-I expression and secretion 

Transfected or untransfected CHO-K1 cells were plated on 6-well culture dishes 
(1×105 cells/well) in DMEM-F12. After 24 h, the medium was replaced by 
HyQSFMCHO and cells were grown in the absence of serum for different lengths of 
time (24, 48, 72 h). Cells were then counted using the trypan blue exclusion assay. 
Then, for each sample the cell-conditioned medium and the cell lysate were analysed 
for the presence of the recombinant protein. To analyse intracellular proteins, 20,000 
cells were lysed in 1% NP40 in PBS containing protease inhibitors (Roche, 
Germany). Upon 30 min incubation on ice, lysates were centrifuged at 14,000 g for 
30 min at 4°C. Following the determination of protein content by the BCA assay, 25 
µg of proteins were analysed by 15% polyacrylamide SDS-PAGE electrophoresis, 
followed by Western blotting with anti-ApoA-I antibodies (1:500 dilution). Similarly, 
aliquots of conditioned medium corresponding to 20,000 cells were analysed for the 
presence of the recombinant protein.  
 
 
13. Isolation of the recombinant full-length proteins  

Transfected cells were plated at a density of 8x104 cells/cm2 (corresponding to 2x105 

cells/ml) in HyQSFMCHO serum-free medium for 72 h (serum-free procedure). The 
cell-conditioned medium was collected and centrifuged at 1500 rpm for 15 min at 
room temperature to remove cell debris. Sodium chloride (0.8 M final concentration) 
was added to the supernatant and the sample was centrifuged at 12000 rpm for 15 
min at 4°C to remove insoluble species, filtered and loaded on a hydrophobic 
chromatography column (1 ml, HiTrap Butyl-S FF, GE Healthcare) following the 
manufacturer's instructions. Briefly, after loading, the column was washed with 10 
volumes of washing buffer (0.8 M sodium chloride in 50 mM sodium phosphate buffer 
pH 7) to remove unbound proteins; recombinant ApoA-I was then eluted with 20 
volumes of 20% isopropanol in 10 mM sodium phosphate buffer. Fractions were 
analysed by SDS-PAGE on 15% polyacrylamide gels followed by Coomassie 
staining and Western blotting with anti-ApoA-I antibodies.  

For immuno-affinity chromatography, a matrix was generated by linking anti-ApoA-I 
antibodies to an N-hydroxysuccinimide-activated resin (HiTrap, GE Healthcare) 
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following the manufacturer's instructions. The column (1 ml) was equilibrated in PBS. 
After loading, unbound proteins were removed by extensive washing (PBS, 10 
volumes) and the recombinant protein was eluted in 0.1 M glycine/HCl buffer, pH 2.7.  
Reverse phase high-performance liquid chromatography (RP-HPLC) was performed 
on a Ultrapure C4 column (Vydac, Grace, IL, USA) with a gradient of buffer B (95% 
acetonitrile, 5% formic acid in 0.05% trifluoroacetic acid) in buffer A (5% formic acid 
in 0.05% trifluoroacetic acid) using a PerkinElmer chromatographic system (Series 
200). Proteins were eluted in 100% buffer B. 
 
 
14. Co-immunoprecipitation experimental procedure 

Rat embryos H9c2 cells (2x104/cm2) were scraped off in PBS, centrifuged at 1,000 g 
for 10 min, resuspended in lysis buffer (50 mM Tris-HCl pH 7.4 containing 150 mM 
NaCl, 10% glycerol, 1mM EDTA) containing protease inhibitors and incubated 10 min 
on ice . At the end of incubation, 0.025% Triton X-100 was added to the lysis buffer, 
the sample was incubated at 4°C for 30 min and centrifuged at 3,750 rpm for 30 min. 
The pellet (cell membranes) was resuspended in lysis buffer and, upon incubation on 
ice for 10 min, 0.2% N-dodecil βD-maltoside was added to the sample. After 30 min 
incubation at 4°C, the sample was centrifuged at 3,750 rmp for 20 min. The protein 
content of supernatant containing membrane proteins, was determined by using the 
BCA assay.  

In order to remove components potentially interacting with the resin, prior to the co-
immunoprecipitation step the sample was pre-cleared by incubating 15 µl of protein 
G agarose resin with H9c2 membrane protein extracts (300 µg) for 30 min at RT. 
Following centrifugation at 2,000 g for 5 min, the supernatant (i.e. proteins non 
interacting with the resin) was incubated for 2 h at RT with 15 µg of fluorescent FITC-
labelled [1-93]ApoA-I. A primary antibody, able to specifically recognize FITC 
molecule, was then added to the sample (150 µg). Upon 1.5 h incubation at RT, 60 µl 
of protein G agarose resin were added to the protein mixture. Following an additional 
1.5 h incubation at RT, the sample was centrifuged at 2,000 g for 5 min to remove 
unbound protein species (supernatant). Multiple washes of the pellet with 100 µl of 
PBS were performed in order to remove contaminant protein species. Selected 
protein complexes were then eluted by the addition of 100 µl of SDS-PAGE reducing 
and denaturing loading buffer and analyzed by Western blotting. 
 

 

15. Quantitative RT-PCR (qRT-PCR) analysis of ANG mRNA 

cDNA was synthesized using Quantitect Reverse Transcription kit from 1 µg of 
DNase-treated total RNA. Real-time qRT-PCR on cDNAs  was carried out using a 
Light CyclerO 480 SYBR Green I Master with the Light Cycler 480 Detection System 
(Roche). Cycling conditions were: 95 °C , 5 min; (95 °C, 10 sec; 60 °C, 10 sec) 
repeated for 40 cycles; 72 °C, 15 sec.  
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ANG primers used for the PCR were designed using the PrimerDesigner 2.0 
software with the following sequences: forward primer, 5’-
AGAAGCGGGTGAGAAACAA-3’; reverse primer, 5’-TGTGGCTCGGTACTGGCATG-
3’, which are complementary to the ANG mRNA (GenBank accession number 
NG_008717.2), respectively. Actin primer sequences were: forward primer, 5’-
ATCACTATTGGCAACGAGC-3’; reverse primer, 5’-GGTCTTTACGGATGTCAACG-
3’. The primers were first confirmed for their ability to amplify the correct replicon by 
RT-PCR. qRT-PCR experiments were performed in triplicate and the results were 
analyzed using the comparative Ct method normalized against the housekeeping 
gene ACTIN. The range of ANG expression levels was determined by calculating the 
standard deviation of the ∆Ct. 
 

 

16. Nucleolar fraction preparation 

Nucleolar fraction was prepared following the method described by Muramatsu and 
co-workers [80], upon modifications. Briefly, cells were detached by trpysinization, 
washed extensively with ice-cold PBS and centrifuged at 218 g at 4°C. The cell pellet 
was resuspended in Buffer A (10 mM Hepes, pH 7.9, 10 mM KCl, 1.5 mM MgCl2, 0.5 
mM DTT) and incubated on ice for 5 min. Cells were homogenized using a tight 
pestle, while keeping the homogenizer on ice, and centrifuged at 218 g for 5 min at 
4°C. The pellet was resuspended in S1 solution (0.25 M sucrose, 10 mM MgCl2), 
layered over 3 ml of S2 solution (0.35 M sucrose, 0.5 mM MgCl2) and centrifuged at 
1,430 g for 5 min at 4°C. The pellet was resuspended in S2 solution, sonicated, 
layered over 3 ml of S3 solution (0.88 M sucrose, 0.5 mM MgCl2) and centrifuged at 
3,000 g for 10 min at 4°C. The pellet, containing the nucleoli, was resuspended with 
S2 solution, followed by centrifugation at 1,430 g for 5 min at 4°C. Nucleoli were 
stored at –80°C in S2 solution. To analyse nucleolar proteins, nucleoli were lysed in 
RIPA buffer (150 mM NaCl, 1% NP40, 0.5% deoxycholate, 0.1% SDS, 50 mM Tris 
pH 8.0, protease inhibitor cocktail). Upon 30 min incubation on ice, lysates were 
centrifuged at 1,500 g for 10 min at 4°C. Following the determination of protein 
content by the BCA assay, 50 µg of proteins were analysed by 4-20% polyacrylamide 
SDS-PAGE electrophoresis, followed by Western blotting using specific antibodies. 
 

 

17. EB⁄AO staining of apoptotic cells 

The method described by Ribble et al. [81] was followed. Briefly, cells were detached 
by trypsinization, centrifuged and washed in ice-cold PBS. Cells were resuspended in 
50 µl of PBS containing  the EB–AO dye mixture (5 µg/ml) for 15 min at 37°C. 
Stained cells were placed on a clean microscope slide and covered with coverslips. 
Microscopic images were taken as described above. A total of more than 750 cells 
were counted for each group. 
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RESULTS 

 

 

1. MECHANISTIC STUDIES: Membrane interaction, internalization and 
intracellular pathway of ApoA-I fibrillogenic polypeptide 

The molecular mechanism responsible for ApoA-I associated amyloid diseases 
remains largely unknown. From a general point of view, the elucidation of the 
cascade of biochemical events triggered by the exposure of cells to fibrillogenic 
proteins or polypeptides has a primary importance in the comprehension of amyloid 
diseases. Upon its release, [1-93]ApoA-I is expected to accumulate in the 
extracellular space. Therefore, the possibility that the fibrillogenic polypeptide of 
ApoA-I interacts with membranes of target cells and enters the cell compartment, 
mimicking ApoA-I full-length protein, has to be taken into account. Since in the case 
of ApoA-I associated amyloidoses the heart is a natural target for aggregate 
deposition in vivo, cardiomyoblasts were chosen as an experimental system to 
analyze the intracellular pathway of [1-93]ApoA-I in comparison to full-length ApoA-I. 
 
 
1.1 [1-93]ApoA-I specifically binds to cardiomyoblasts  

Binding assays of 125I-labelled [1-93]ApoA-I to rat cardiomyoblasts (H9c2) and 
human hepatocytes (HepG2) were performed to test the ability of [1-93]ApoA-I to 
recognize and bind specific sites on cell surface. These cell lines are of interest as in 
ApoA-I associated amyloidoses the heart is a natural target for aggregate deposition 
in vivo, while the liver is the major source of ApoA-I. The binding curves and the 
linearization of the binding data, according to the Scatchard equation (Fig. 6A and B), 
indicate that the fibrillogenic fragment is able to bind with high affinity to specific sites 
on cell surface of both cell lines. In particular, the apparent affinity constants were 
5.90 ± 0.70x10-7 M and 1.78 ± 0.26x10-7 M for H9c2 and HepG2 cells, respectively. 
These data are comparable to those previously reported for lipid-free ApoA-I binding 
to other cell lines and are consistent with the finding that region 62-77 of ApoA-I is a 
membrane binding domain of lipid-free ApoA-I, since the corresponding synthetic 
peptide binds with high affinity to HepG2 cells [82]. 
The effects of the fibrillogenic polypeptide on cell viability were then analyzed. H9c2 
cells were incubated for 72 h in the presence of 5 or 10 µM [1-93]ApoA-I and MTT 
reduction assays were performed to test metabolically active cells. No inhibition of 
cell viability was observed in treated cells with respect to untreated cells (Fig. 6C). 
Furthermore, the absence of apoptotic nuclei in treated cells (Fig. 6C) confirmed that 
the fibrillogenic polypeptide, at least in our experimental conditions, is not cytotoxic 
for cardiomyoblasts. 



 

Fig. 6: Binding of [1–93]ApoA
Binding curves were obtained incubating H9c2 cells (
4°C with increasing concentrations of iodinated [1
binding) or in the presence (
unlabelled polypeptide. Specific binding values (
values relative to non-specific binding from those of total binding. The linearization of 
specific binding curves was obtained according to the Scatchard equation (insets of 
A and B). (C) MTT reduction assay and Hoechst staining of 
treated with 5 µM or 10 µM [1
 
 
 
1.2 [1-93]ApoA-I endocytosis in cardiomyoblasts 

To test whether [1-93]ApoA
cardiomyoblasts plasma membrane, the fibrillogenic polypeptide was
fluorescein isothiocyanate (FITC). Parallel experiments were performed using 
labelled full-length ApoA-I. H9c2 cells were incubated for different lengths of time 
either with the polypeptide or with the full
after membrane permeabilization, anti
label the plasma membrane compartment. Analyses by fluorescence microscopy 
after 2 h incubation indicated that the polypeptide is
(Fig. 7A). After 6 h incubation
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93]ApoA-I to cultured cells and its effects on cell viability. 
Binding curves were obtained incubating H9c2 cells (A) or HepG2 cells (
4°C with increasing concentrations of iodinated [1–93]ApoA-I, in the absence (
binding) or in the presence (□, non-specific binding) of a 40-fold molar excess of the 
unlabelled polypeptide. Specific binding values (♦) were obtained by subtracting the 

specific binding from those of total binding. The linearization of 
specific binding curves was obtained according to the Scatchard equation (insets of 

) MTT reduction assay and Hoechst staining of H9c2 cells untreated or 
treated with 5 µM or 10 µM [1–93]ApoA-I. 

I endocytosis in cardiomyoblasts  

93]ApoA-I undergoes endocytosis upon interaction with 
cardiomyoblasts plasma membrane, the fibrillogenic polypeptide was
fluorescein isothiocyanate (FITC). Parallel experiments were performed using 

I. H9c2 cells were incubated for different lengths of time 
either with the polypeptide or with the full-length protein, cells were then fi
after membrane permeabilization, anti-β-catenin antibody was added to the cells to 
label the plasma membrane compartment. Analyses by fluorescence microscopy 
after 2 h incubation indicated that the polypeptide is able to bind plasma membrane

A). After 6 h incubation it was found to have been internalized in target cells
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(Fig. 7B). Similar results were obtained with labelled ApoA-I. Thus, [1-93]ApoA-I and 
the full-length protein are able to enter cardiac cells.  
 
 

 

 

Fig. 7: Endocytosis of [1–93]ApoA-I and full-length ApoA-I in H9c2 cells. Cells were 
grown on cover slips, incubated 2 h (A) or 6 h (B) with 3 µM FITC-[1–93]ApoA-I 
(green) and immuno-fluorescently stained for β-catenin (red). (C) and (D), cells 
incubated 2 or 6 h, respectively, with 1 µM FITC-ApoA-I (green) and immunostained 
for β- catenin (red). Nuclei were stained with Hoechst (blue). Cells were analyzed by 
epifluorescence microscopy. 
 
 
 
It is well known that the plasma membrane is the main site where lipidation of ApoA-I 
occurs. This process is mediated by the ATP-binding cassette trasporter A1 (ABCA1) 
[83], which allows cellular free cholesterol and phospholipids to be transferred to 
ApoA-I, leading to the biogenesis of nascent HDL. As ABCA1 transporter plays a 
central role in ApoA-I membrane binding and lipidation, H9c2 cells were analyzed for 
the presence of this transporter. H9c2 cell lysates were analyzed by Western blotting 
with anti-ABCA1 antibodies. As shown in Fig. 8A, an immuno-positive species, with 
an apparent molecular mass corresponding to that expected for ABCA1 (about 210 
kDa), was found to be present in cell extracts prepared from H9c2 (lane 2) and 
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HepG2 (lane 1) cells, the latter used as a positive control. These results were 
confirmed by immuno-fluorescence analyses of H9c2 and HepG2 cells with anti-
ABCA1 antibodies, that revealed immuno-positive signals in both cell lines (Fig. 8B 
and C). 
Furthermore, to test whether the fibrillogenic polypeptide co-localizes with ABCA1, 
H9c2 cells were incubated with rhodamine-[1-93]ApoA-I for 2 h. Cells were then fixed 
and incubated with anti-ABCA1 antibodies to label the transporter. A little co-
localization between [1-93]ApoA-I (red signal) and ABCA1(green signal) was found 
(Fig. 8D). Similar results were obtained with rhodamine-ApoA-I (Fig. 8E), in 
agreement with recent reports showing that the majority of cell-associated ApoA-I 
does not co-localize with ABCA1 [84].  
 
 

 
 
 
Fig. 8: ABCA1 expression and co-localization with [1–93]ApoA-I and ApoA-I. (A) 
Western blot analysis with anti-ABCA1 antibodies of cell lysates prepared from 
HepG2 cells (25 µg total proteins, lane 1) and from H9c2 cells (50 µg, lane 2). 
Immuno-staining for ABCA1 (green) of HepG2 cells (B) and H9c2 cells (C). Nuclei 
were stained with Hoechst (blue). (D) and (E), co-localization of [1–93]ApoA-I and 
ApoA-I with ABCA1. H9c2 cells were incubated for 2 h either with 3 µM rhodamine-
[1–93]ApoA-I (D), or with 1 µM rhodamine-ApoA-I (E), and immuno-stained for 
ABCA1 (green). Nuclei were stained with Hoechst (blue). Cells were observed by 
confocal microscopy. 
 
 
 
1.2.1 [1-93]ApoA-I internalization pathways  

The mechanism of [1-93]ApoA-I uptake in cardiomyoblasts has been investigated by 
analyzing different routes involved in endocytosis.  
The involvement of clathrin-coated pits was evaluated using Rab5 as a marker, as 
this protein regulates vesicular transport from the plasma membrane to the 
endosomes. H9c2 cells were transiently transfected with Rab5 fused to red 
fluorescent protein (RFP) and, 24 h after transfection, cells were incubated for 6 h 
with the FITC-protein under test, in order to allow protein internalization. Co-
localization of internalized [1-93]ApoA-I (green signal) with RFP-Rab5 (red signal) 
was observed (Fig. 9A), indicating that a fraction of the internalized polypeptide is 
associated to early endosomes. Similar results were obtained when ApoA-I was 
tested (Fig. 9B). To further confirm that both [1-93]ApoA-I and ApoA-I are internalized 
in H9c2 cells by chlatrin-mediated endocytosis, specific inhibitors of this 



37 

 

internalization pathway, such as monodansylcadaverine (MDC) and sucrose, were 
used. Upon incubation of H9c2 cells with either MDC or sucrose, the amount of 
internalized polypeptide, as well as that of the full-length protein, appeared to be 
reduced, although not fully blocked. This might indicate that in these experimental 
conditions the endocytic pathway still functions, or, alternately, that endocytosis of [1-
93]ApoA-I and ApoA-I does not occur solely via chlathrin coated pits. 
The involvement of lipid rafts in [1-93]ApoA-I endocytosis was then analyzed. To 
analyze this route of internalization, FITC-insulin was used as a marker. H9c2 cells 
were incubated with rhodamine-[1-93]ApoA-I in the presence of FITC-insulin for 4 h. 
Analyses by fluorescence microscopy indicated strong signals of co-localization of [1-
93]ApoA-I (red signal) with insulin (green signal), indicating that [1-93]ApoA-I uptake 
occurs also by lipid rafts (Fig. 9C). On the other hand, when the same experiment 
was performed with rhodamine-ApoA-I, little co-localization of the full-length protein 
with FITC-insulin was observed (Fig. 9D) indicating that this route of endocytosis is 
not predominant for ApoA-I internalization in cardiac cells. 
Moreover, since it has been demonstrated that ApoA-I is also internalized by 
macropinocytosis in other cell lines [85], this internalization route was also tested. 
H9c2 cells were incubated with rhodamine-[1-93]ApoA-I in the presence of FITC-
dextran, as a macropinocytosis marker. A little co-localization was observed between 
[1-93]ApoA-I (red signal) and dextran (green signal) (Fig. 9E). On the contrary, clear 
signals of co-localization were detected for ApoA-I (Fig 9F). 
As it has been reported that ApoA-I, once internalized, is recycled back to the cell 
surface [83,86,87], the ability of [1-93]ApoA-I to be recycled to the plasma 
membrane was analyzed.  
To investigate the retroendocytosis pathway, Rab4 was used as a marker, as it 
directs protein recycling from early endosomes to the plasma membrane. H9c2 
cardiomyoblasts were transiently transfected with a vector encoding Rab4 fused to 
the green fluorescent protein (GFP). 24 h after transfection, cells were incubated 
with rhodamine-[1-93]ApoA-I, or ApoA-I, for 6 h at 37°C. As shown in Fig. 10A, [1-
93]ApoA-I does not co-localize with Rab4-positive endosomal compartments, while 
significant signals of co-localization were observed for ApoA-I (Fig. 10B).  
Taken together, these results clearly indicate that the fibrillogenic polypeptide, once 
internalized in cardiomyoblasts, is not recycled to the cell membrane, whereas 
ApoA-I is shuttled back to the plasma membrane to be re-secreted, as described in 
other cell lines [83, 86, 87]. 
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Fig. 9: Analysis of the route of [1–93]ApoA-I and ApoA-I endocytosis in H9c2 cells by 
confocal microscopy. (A) and (B), clathrin-mediated endocytosis. H9c2 cells were 
transiently transfected with an expression vector for RFP-Rab5. After 24 h, cells were 
incubated 6 h at 37°C either with 3 µM FITC-[1–93]ApoA-I (A) or with 1 µM FITC-
ApoA-I (B). (C) and (D), lipid rafts-mediated internalization. Cells were incubated 4 h 
at 37°C either with 3 µM rhodamine-[1–93]ApoA-I (C), or with 1 µM rhodamine-ApoA-
I (D), in the presence of FITC insulin (0.1 mg/ml). (E) and (F), macropinocytosis. 
Cells were incubated 4 h at 37°C either with 3 µM rhodamine- [1–93]ApoA-I (E), or 
with 1 µM rhodamine-ApoA-I (F), in the presence of FITC dextran (5 mg/ml). Nuclei 
were stained with Hoechst (blue). 
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Fig. 10: Co-localization of [1–93]ApoA-I and ApoA-I with Rab4. H9c2 cells were 
transiently transfected with an expression vector for GFP-Rab4. After 24 h, cells were 
incubated 6 h at 37°C either with 3 µM rhodamine-[1–93]ApoA-I (A) or with 1 µM 
rhodamine-ApoA-I (B). Nuclei were stained with Hoechst (blue). Cells were observed 
by confocal microscopy. 
 
 

 
1.3 The intracellular fate of [1-93]ApoA-I: proteasomal and lysosomal 
degradation  

The fate of the internalized polypeptide in cardiomyoblasts was also analyzed. After a 
prolonged exposure of H9c2 cells to FITC-[1-93]ApoA-I (24 h), the complete 
disappearance of the intracellular fluorescent signals associated to the polypeptide 
was observed, suggestive of polypeptide massive degradation (Fig. 11A). 
Specific inhibitors of proteasomal and lysosomal activities were used to investigate 
the degradation pathway of the fibrillogenic polypeptide. When cells were pre-
incubated with the proteasome inhibitor MG132, the persistence of [1-93]ApoA-I 
associated fluorescent signal was observed after 24 h incubation, indicative of 
proteasome involvement in [1-93]ApoA-I degradation (Fig. 11B). To test whether [1-
93]ApoA-I is also targeted to lysosomes, cells were incubated with FITC-[1-93]ApoA-I 
in the presence of ammonium chloride, an inhibitor of intra-lysosomal catabolism. 
Following incubation, lysosomes were labelled with LysoTracker red. After incubation 
for 24 h, a strong fluorescent signal associated to the polypeptide (green signal) was 
found to co-localize with lysosomes (red signal) (Fig. 11C and D), suggesting that 
lysosomes play a role in [1-93]ApoA-I catabolism. Different results were obtained 
instead in the case of full-length ApoA-I, as the protein does not appear to be 
significantly degraded once internalized (Fig. 11E). This is in agreement with recent 
reports indicating that in different cell types ApoA-I is not significantly degraded [85]. 
Moreover, ApoA-I was found to co-localize with lysosomes, in line with reports 
indicating that lysosomes are an intracellular station of ApoA-I (Fig. 11G and H) [85]. 
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Fig. 11: Analysis of the degradation pathway of [1–93]ApoA-I and ApoA-I in H9c2 
cells by epifluorescence microscopy. (A)–(D) [1–93]ApoA-I degradation. Cells were 
incubated 24 h at 37°C with 3 µM FITC-[1–93]ApoA-I in the absence (A, C) or in the 
presence of MG132 (2.5 µM) (B), or ammonium chloride (100 µM) (D). (E)–(H), 
ApoA-I degradation. Cells were incubated for 24 h at 37°C with 1 µM FITC-ApoA-I, in 
the absence (E and G) or in the presence of MG132 (F), or ammonium chloride (H). 
Lysosomes were stained with LysoTracker red. Nuclei were stained with Hoechst 
(blue). 
 
 

Taken together, these results indicate that the inhibition of lysosomal or proteasomal 
activity does not significantly alter the amount of intracellular ApoA-I, whereas both 
pathways seem to be involved in the degradation of the fibrillogenic polypeptide. 
 
 
1.4 Internalization of [1-93]ApoA-I fibrils in cardiomyoblasts 

Relevant results were obtained when the analyses were extended to the polypeptide 
in the fibrillar state. [1-93]ApoA-I fibrils were obtained by incubating the polypeptide 
for 2 weeks at pH 6.4 in the presence of the co-solvent TFE. In collaboration with Dr. 
A. Relini of University of Genoa, incubated samples were analyzed by AFM 
microscopy. These analyses showed the presence of fibrils with height of 2.4 ± 0.1 
nm and length between 0.4 and 1.5 µm (Fig. 12A). Fibrils coexist with prefibrillar 
aggregates, including annular protofibrils and spheroidal aggregates of variable size 
(height between 3 and 15 nm).  
To test the effects of fibrils on cell viability, cardiomyoblasts were incubated for 72 h 
with 5 or 10 µM aggregated [1-93]ApoA-I (insoluble species). No inhibition of cell 
viability was observed by MTT assays in treated cells with respect to untreated cells 
(Fig. 12B). This was confirmed by the absence of apoptotic nuclei in treated cells 
(Fig. 12B). 
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Fig. 12: Analysis of [1–93]ApoA-I fibrils. (A) Tapping mode AFM image of aggregated 
[1–93]ApoA-I. Upon incubation in the aggregating conditions, the whole sample was 
observed. Fibrils coexist with prefibrillar aggregates; spheroidal aggregates are also 
found. Scan size 3.0 µm, Z range 10 nm. (B) Effects of [1–93]ApoA-I fibrils on cell 
viability. MTT reduction assay and Hoechst staining of H9c2 cells, untreated or 
treated with 5 µM or 10 µM [1–93]ApoA-I fibrils, are shown. Error bars indicate 
standard deviations obtained from three independent experiments. Nuclei images 
have been acquired at the same magnification. (C) Analysis of internalization of [1–
93]ApoA-I fibrils in H9c2 cells. Cells were incubated for 6 h with 3 µM FITC-labelled 
[1–93]ApoA-I fibrils and analyzed by epifluorescence microscopy. Nuclei were 
stained with Hoechst (blue). 
 
 
 
To verify whether the fibrillar material is able to enter the cells, fluorescent fibrils were 
obtained by incubating FITC-labelled [1-93]ApoA-I under the conditions previously 
described. H9c2 cells were incubated for 6 h with fluorescent fibrils and then treated 
with Hepes/NaCl buffer in order to remove polypeptide molecules specifically bound 
to the extracellular side of the plasma membrane. No fluorescent signals associated 
to [1-93]ApoA-I fibrils were observed by epifuorescence microscopy analysis (Fig. 
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12C), demonstrating that no significant internalization of fibrils occurs in 
cardiomyoblasts.  
 

*** 
 
2. STUDIES ON MOLECULAR TARGETS: Search for molecular partners of the 
fibrillogenic polypeptide [1-93]ApoA-I 
 
In collaboration with the research group of Prof. P. Pucci, Department of Chemical 
Sciences, a functional proteomic approach [88, 89] was used to shed light on the 
molecular basis of ApoA-I associated amyloidoses. This can be achieved by 
identifying the proteins interacting (interactors) with the fibrillogenic domain of full-
length ApoA-I. In order to identify cellular interactors of the fibrillogenic polypeptide, 
GST pull-down experiments have been conducted by probing proteins extracted from 
cardiomyoblasts (H9c2 cell line) membrane with the fibrillogenic polypeptide fused to 
GST (indicated as GST-[1-93]ApoA-I fusion protein). The proteins selected by the 
bait were identified by mass spectrometry analyses.  
This experimental approach provided about 100 potential interactors of the 
fibrillogenic polypeptide, listed on the basis of their biological function, as well as their 
subcellular localization (Fig. 13).  
 
 

 
 
Fig. 13: Putative molecular partners of [1-93]ApoA-I identified by GST pull-down 
experiments. Classification of proteins on the basis of their biological functions. 
 
 
 
A deep analysis of the data bank indicated the presence of several proteins that 
might play a central role in the mechanism of action of the fibrillogenic polypeptide, 
such as those that may be involved in its internalization and intracellular transport, or 
those acting as membrane receptors. Among these putative interactors we selected 
two proteins to be analyzed in detail: the ATP synthase β-chain and the protein 
nicastrin. 
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2.1 ATP synthase β-chain  

F1Fo ATP synthase, the terminal enzyme of the oxidative phosphorylation pathway, is 
a complex molecular motor responsible for the large majority of ATP synthesis in all 
living beings. It is located in the inner membrane of mitochondria, in the thylakoid 
membrane of chloroplasts in plants, and in the plasma membrane of certain bacteria, 
where it is part of the so-called “ATP synthasome”, in association with an inorganic 
phosphate (Pi) carrier and with the adenine nucleotide translocase (ANT), which 
exchanges ADP and ATP.  
Interestingly, ATP synthase has been recently detected at the surface of different cell 
types, wide variety of tumor as well as normal cells. Nevertheless, there is so far no 
experimental work precisely deciphering the mechanism used by ATP synthase to 
reach the plasma membrane [90]. 
Cell surface ATP synthase (namely ecto-F1-ATPase) expression is related to 
different biological effects, such as regulation of HDL uptake by hepatocytes, 
endothelial cell proliferation or antitumor activity of Vγ9/Vδ2 T lymphocytes [90]. 
An important recent finding is that some components of the F1 catalytic part of the 
ATP synthase (also called F1-ATPase) are expressed as cell surface receptors for 
apparently unrelated ligands found in the course of studies carried out on cholesterol 
metabolism, immune mechanisms and angiogenesis [91]. Among these, ATP 
synthase β-chain was previously identified on the surface of hepatocytes as high-
affinity HDL receptor for ApoA-I (Kd = 10-9 M) [92]. Receptor stimulation by ApoA-I 
triggers the endocytosis of holo-HDL particles (protein plus lipid) by a mechanism 
that depends strictly on the generation of ADP [92-94]. 
Recent results support ApoA-I interaction with endothelial ecto-F1-ATPase to initiate 
a signaling pathway contributing to the anti-apoptotic and proliferative effects 
mediated by HDLs and ApoA-I on endothelial cells [92, 95].  
On the basis of this strict correlation between ecto-F1-ATPase and ApoA-I, it seemed 
very suggestive to select, within the list of potential interactors of the fibrillogenic 
polypeptide of ApoA-I, this membrane receptor for further analyses (see below). 
 
 
2.2 Nicastrin 

Nicastrin is an essential subunit of the γ-secretase complex, an endoprotease 
complex that catalyzes the intramembrane cleavage of integral membrane proteins 
such as Notch receptors and amyloid precursor protein (APP). It probably represents 
a stabilizing cofactor required for the assembly of the γ-secretase complex [70, 71]. 
The complex is composed of a presenilin homodimer (PSEN-1 or PSEN-2), nicastrin 
(NCSTN), APH-1 (APH-1A or APH-1B) and PEN-2 [96, 97]. Such minimal complex is 
sufficient for secretase activity, although other components may exist. This complex 
binds to proteolytic processed C-terminal fragments C83 and C99 of the AD 
associated amyloid β peptide (Aβ) [98]. Nicastrin itself is not catalytically active, 
instead it promotes the maturation and proper trafficking of the other proteins in the 
complex, all of which undergo significant post-translational modification before 
becoming active in the cell. Nicastrin has also been identified as a regulator of 
neprilysin, an enzyme involved in the degradation of Aβ fragment. 
Playing nicastrin an essential role in the mechanism of production of an amyloid 
peptide, it seemed of interest to inspect its possible involvement in ApoA-I 
amyloidosis. 
 



 

2.3 Co-immunoprecipitation as a suitable tool to detect proteins complexes

Co-IP experiments have been 
since ATP synthase and nicastrin are membrane proteins. 
Membrane protein extracts were incubated with FITC
Following incubation, a primary antibody able to specifically recognize the FITC 
moiety was added to the sample. Complexes of the fibrillogenic polypeptide with 
potential partners were selected by a protein G
reducing and denaturing buffer. 
First, we verified the presence of the fibrillogenic polypeptide [1
immunoprecipitated protein sample by Western blot analysis with anti
polyclonal antibodies. As shown in Fig. 14, immuno
detected, with a molecular mass corresponding to that of [1
Protein species co-immunoprecipitated with anti
the fluorescent polypeptide, were then analyzed by Western blotting using antibodies  
directed towards ATP synthase 
Western blot analyses performed with anti
antibody revealed a unique protein band, whose migration cor
with the expected molecular weight of ATP synthase (57 kDa) (Fig. 14, lane 6). A 
very low immuno-positive signal was detected in the case of unbound material. 
These observations clearly indicate that ATP synthase 
of the fibrillogenic polypeptide of ApoA
The same experiment was then repeated using antibodies directed aganst nicastrin. 
First, we analyzed a H9c2 cell lysate for the presence of nicatrin: three immuno
positive protein bands (corresponding 
probably corresponding to three different glycosilated forms. When the co
immunoprecipitad sample was analyzed, the immuno
to 55 and 78 kDa were evidenced (see lane 6). These obser
that nicastrin is an interactor of the fibrillogenic polypeptide of ApoA
 
 

 

Fig. 14: Analysis by Western blotting of [1
Co-IP with anti-FITC antibodies. For Western blot analysis, anti
chain antibody, anti-nicastrin and anti
antibody. Lane 1, 30 µg of membrane proteins extract
3-4, wash in PBS; lane 5, 500ng [1
immunoprecipitation procedure; lane 10, eluate of pre
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immunoprecipitation as a suitable tool to detect proteins complexes

IP experiments have been performed on cardiomyoblasts membrane extracts, 
since ATP synthase and nicastrin are membrane proteins.  
Membrane protein extracts were incubated with FITC-labelled [1
Following incubation, a primary antibody able to specifically recognize the FITC 
moiety was added to the sample. Complexes of the fibrillogenic polypeptide with 

re selected by a protein G-agarose resin and then eluted with a 
reducing and denaturing buffer.  
First, we verified the presence of the fibrillogenic polypeptide [1-93]ApoA
immunoprecipitated protein sample by Western blot analysis with anti
polyclonal antibodies. As shown in Fig. 14, immuno-positive protein species were 
detected, with a molecular mass corresponding to that of [1-93]ApoA

immunoprecipitated with anti-FITC antibodies, which recognize 
lypeptide, were then analyzed by Western blotting using antibodies  

directed towards ATP synthase β-chain or nicastrin. 
Western blot analyses performed with anti-ATP synthase β-chain as a primary 
antibody revealed a unique protein band, whose migration corresponds to a protein 
with the expected molecular weight of ATP synthase (57 kDa) (Fig. 14, lane 6). A 

positive signal was detected in the case of unbound material. 
These observations clearly indicate that ATP synthase β-chain is one of the
of the fibrillogenic polypeptide of ApoA-I.  
The same experiment was then repeated using antibodies directed aganst nicastrin. 
First, we analyzed a H9c2 cell lysate for the presence of nicatrin: three immuno
positive protein bands (corresponding to 55, 78 and 95 kDa) were detected (Fig. 14), 
probably corresponding to three different glycosilated forms. When the co
immunoprecipitad sample was analyzed, the immuno-positive bands corresponding 
to 55 and 78 kDa were evidenced (see lane 6). These observations strongly suggest 
that nicastrin is an interactor of the fibrillogenic polypeptide of ApoA-

Analysis by Western blotting of [1-93]ApoA-I protein complexes selected by 
FITC antibodies. For Western blot analysis, anti-

nicastrin and anti-ApoA-I antibodies were used as the primary 
of membrane proteins extract; lane 2, unbound material; lane 

4, wash in PBS; lane 5, 500ng [1-93]ApoA-I; lane 6, eluate of co
immunoprecipitation procedure; lane 10, eluate of pre-clearing procedure.
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with the expected molecular weight of ATP synthase (57 kDa) (Fig. 14, lane 6). A 
positive signal was detected in the case of unbound material. 

chain is one of the partners 

The same experiment was then repeated using antibodies directed aganst nicastrin. 
First, we analyzed a H9c2 cell lysate for the presence of nicatrin: three immuno-

to 55, 78 and 95 kDa) were detected (Fig. 14), 
probably corresponding to three different glycosilated forms. When the co-

positive bands corresponding 
vations strongly suggest 

-I.  

 

I protein complexes selected by 
-ATP synthase β-

I antibodies were used as the primary 
; lane 2, unbound material; lane 

I; lane 6, eluate of co-
clearing procedure. 
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2.4 Localization of ATP synthase β-chain in H9c2 cells and co-localization with 
[1-93]ApoA-I 

To verify whether ATP synthase β-chain is present at the cell surface of rat embryos 
H9c2 cardiomyoblasts, immuno-fluorescence analyses of H9c2 cells were performed 
with anti-ATP synthase β-chain antibody. To this purpose, permeabilized or not 
permeabilized cells were immuno-stained with anti-ATP synthase β-chain antibody. 
Immuno-positive signals were clearly evidenced at the plasma membrane of non 
permeabilized H9c2 cardiomyoblasts (Fig. 15 upper panel). In these experimental 
conditions, in fact, the primary antibody molecules have no access to the intracellular 
space and the presence of ATP synthase β-chain on the extracellular surface of 
plasma membrane can be demonstrated. In the case of permeabilized cells, instead, 
we found that ATP synthase β-chain was mainly located in the mitochondria (Fig. 15 
lower panel), as expected. 
Once demonstrated the presence of ATP synthase β-chain on cardiomyoblasts cell 
membrane, fluorescence microscopy analyses were performed to verify whether the 
fibrillogenic polypeptide [1-93]ApoA-I co-localizes with ectopic ATP synthase β-chain. 
H9c2 cells were incubated with FITC-[1-93]ApoA-I for 6 h, fixed and incubated with 
anti-ATP synthase β-chain. As shown in Fig. 16A, a significant, albeit partial, co-
localization of cell membrane associated [1-93]ApoA-I (green) with ectopic ATP 
synthase β-chain (red) was observed, suggesting a possible interaction of the 
fibrillogenic polypeptide with the ectopic protein. 
Further experiments will be performed to verify whether the two proteins are able to 
interact directly and to investigate the role of this interaction. 
 
 
2.5 Co-localization of [1-93]ApoA-I and nicastrin  

Fluorescence microscopy analyses were also performed to verify whether the 
fibrillogenic polypeptide [1-93]ApoA-I co-localizes with nicastrin. To this purpose, 
cells were treated with the FITC-[1-93]ApoA-I for 6 h at 37°C and, at the end of the 
incubation, co-localization of the polypeptide and nicastrin was analyzed following a 
procedure similar to that described for ATP synthase β-chain. In this case, we used 
antibodies anti-nicastrin as the primary. As shown in Fig. 16B, a significant co-
localization of nicastrin (red) with [1-93]Apo-I (green) was observed, suggesting an 
interaction of the fibrillogenic polypeptide with nicastrin. Further experiments will be 
performed to verify whether the two proteins are able to interact directly and to 
deeply inspect a possible involvement of nicastrin in the proteolytic release of the 
fibrillogenic polypeptide of ApoA-I.  

 



 

 

Fig.15: Analyses by fluorescence microscopy of the localization of ATP synthase 
chain in H9c2 cells. Cells were grown on cover slips and immuno
synthase β-chain antibody. Non permeabilized (upper panel) and permeabilized 
(lower panel) cells were analyzed. 
 
 
 

 

Fig. 16: Co-localization of the fibrillogenic polypepti
chain or nicastrin in H9c2 cells. H9c2 cells were grown on cover slips, incubated for 2 
h with 3 µM FITC-[1–93]ApoA
(upper panel) or nicastrin (lower panel). Nuclei were stained w
Cells were observed by confocal microscopy.
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Analyses by fluorescence microscopy of the localization of ATP synthase 
chain in H9c2 cells. Cells were grown on cover slips and immuno-

chain antibody. Non permeabilized (upper panel) and permeabilized 
(lower panel) cells were analyzed.  

localization of the fibrillogenic polypeptide with ectopic ATP synthase 
chain or nicastrin in H9c2 cells. H9c2 cells were grown on cover slips, incubated for 2 

93]ApoA-I and immuno-stained for ATP synthase 
(upper panel) or nicastrin (lower panel). Nuclei were stained with Hoechst (blue). 
Cells were observed by confocal microscopy. 

 

Analyses by fluorescence microscopy of the localization of ATP synthase β-
-stained with ATP 

chain antibody. Non permeabilized (upper panel) and permeabilized 

 

de with ectopic ATP synthase β-
chain or nicastrin in H9c2 cells. H9c2 cells were grown on cover slips, incubated for 2 

stained for ATP synthase β-chain 
ith Hoechst (blue). 
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3. STRUCTURE TO FUNCTION RELATIONSHIP STUDIES: Production of 
recombinant wild-type ApoA-I and its amyloidogenic full-length variant L174S  

Structural and functional analyses of the full-length variants of ApoA-I in comparison 
to the wild-type protein will greatly contribute to the understanding of the molecular 
bases of the pathology. Nevertheless, the isolation of the amyloidogenic forms of 
ApoA-I from patients is impracticable, as all the patients analyzed so far were found 
to be heterozygous for the mutated gene, thus expressing both the wild-type and the 
mutated form. Therefore, heterologous expression systems are needed. 
Nevertheless, with the exception of variants G26R and L178H produced in bacterial 
cells [99, 100], no reports are available on the production and isolation of ApoA-I 
amyloidogenic variants.  

We set up a system for recombinant expression of the ApoA-I amyloidogenic variant 
L174S in stably transfected mammalian cells. ApoA-I(L174S) variant carries the 
substitution of Leu 174 for Ser and is responsible for a severe amyloidosis 
predominantly involving the heart [63]. 
Chinese hamster ovary cells (CHO-KI) were stably transfected with a plasmid 
carrying the cDNA encoding either wild-type ApoA-I or the amyloidogenic variant 
ApoA-I(L174S). Both recombinant proteins carried at their N-terminus the ApoA-I 
signal peptide sequence. By growing the cells under antibiotic selection, single, 
stably transfected clones were isolated and, for each recombinant protein, a single 
clone was selected for analysis. 
First, the kinetics of expression and secretion of the recombinant proteins were 
analyzed. To this purpose, time course experiments were performed. Cells were 
grown in complete medium for 24 h, then grown in serum-free medium for up to 72 h. 
After 24, 48 and 72 h growth, cell lysates were analyzed by Western blotting, using 
anti-ApoA-I antibodies (Fig. 17A and B, lanes 5-8). Defined amount of pure ApoA-I 
were analyzed in parallel to generate a reference plot correlating immuno-positive 
signals to protein amount Fig. 17A and B, lane 1-4). Endogenous actin, measured 
with an anti-actin antibody, was used as an internal standard. No significant 
differences in intracellular protein amount during the time course were detected by 
densitometric analyses (Fig. 17C).  
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Fig. 17: Analysis of intra- and extracellular levels of recombinant ApoA-I and ApoA-
I(L174S) variant in CHO-K1 cells. (A) Western blot analysis with anti-ApoA-I 
antibodies of wild-type ApoA-I. Lanes 1–4, increasing amounts of standard ApoA-I 
(25, 50, 100, 200 ng); lane 5, lysate of untransfected cells; lanes 6–8, lysates of 
stably transfected cells at 24, 48, 72 h, respectively; lane 9, cell-conditioned medium 
of untransfected cells; lanes 10–12, cell-conditioned medium of transfected cells at 
24, 48, 72 h, respectively. The upper bands in lanes 5–8 refer to endogenous actin 
used as an internal standard. (B) Western blot analysis with anti-ApoA-I antibodies of 
ApoA-I(L174S) variant. Samples as in A. (C) Quantitative analysis of intra- and 
extracellular recombinant protein levels as a function of time (24 h, black bars; 48 h, 
grey bars; 72 h, white bars). Protein amounts are expressed as µg of protein/1×106 
cells. The data represent the means ± SD of protein amounts determined in three 
independent experiments. 
 
 
Then, the cell conditioned medium of CHO-KI clones was analyzed (Fig. 17A and B, 
lanes 10–12). Densitometric analysis indicated that the maximum level of 
extracellular wild-type ApoA-I was reached at 48 h, while the amount of ApoA-
I(L174S) was found to be increased at 72 h with respect to 48 h (Fig. 17C). 
Interestingly, a comparison between the intra and extracellular amount of the 
recombinant proteins indicated that at any time of cell growth both proteins are 
mostly secreted by CHO-KI cells. 
The overall data indicate that both proteins are efficiently secreted, although following 
different kinetics. We estimated that about 5.4 mg/L of wild-type ApoA-I and 4.5 mg/L 
of the amyloidogenic variant are secreted in 72 h in the culture medium. 
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3.1 Isolation of the recombinant proteins 

To isolate the recombinant proteins, a hydrophobic interaction chromatography was 
performed. Cells were plated and grown in serum-free medium. After 72 h, the 
conditioned medium was centrifuged and loaded on a Butyl-S chromatography 
column, following addition of 0.8 M NaCl. Fractions, eluted with isopropanol 20%, 
were analyzed by SDS gel electrophoresis followed by Coomassie staining and 
Western blotting using anti-ApoA-I antibodies (Fig. 18). These analyses revealed that 
variant L174S was more than 90% pure (Fig. 18C), whereas an additional protein 
species was observed in wild-type ApoA-I sample (Fig. 18A).  

About 0.7 mg of variant ApoA-I(L174S) (≈ 50% yield) and 0.3 mg of wild-type ApoA-I 
(≈ 20% yield) were obtained from 1L of conditioned medium. 
 
 

 
 

Fig. 18: Analysis by SDS PAGE of wild-type ApoA-I and ApoA-I(L174S) after 
hydrophobic interaction chromatography. (A) Coomassie staining of wild-type ApoA-I. 
Lane 1, cell-conditioned medium after 72 h cell growth; lane 2, unbound protein 
species; lane 3, pre-stained markers; lane 4, standard ApoA-I (2 µg); lanes 5–7, 
eluted fractions (2 µg). (B) Western blot analysis of wild-type ApoA-I. Samples as in 
A. (C) Coomassie staining of ApoA-I(L174S). Lane 1, pre-stained markers; lane 2, 
cell-conditioned medium after 72 h cell growth; lane 3, unbound protein species; lane 
4, standard ApoA-I (2 µg); lanes 5–7, eluted fractions (2 µg). (D) Western blot 
analysis of ApoA-I(L174S). Samples as in C. 
 
 
 
3.2 Analysis of lipid content 

Since ApoA-I binds with high affinity lipid molecules, we analyzed the presence of 
lipids in the isolated protein samples in collaboration with Dr. A. Amoresano, 
Department of Chemical Sciences. The procedure used consisted in liquid-liquid 
lipids extraction, lipids derivatization with trimethilsilane, followed by GC-MS analysis 
(Fig. 19A and B). Either for the wild-type protein and for its variant, the presence of 
several analytes was revealed (Fig. 19C). We also identified the analytes present in 
control samples, i.e. an unconditioned medium or a conditioned medium of 
untransfected cells, both after hydrophobic interaction chromatography. Upon 
subtraction of species present in the controls, a list of compounds specifically bound 
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to each recombinant protein was obtained. For both wild-type and mutant proteins, 
four species were found to be present, identified as oleic acid, stearic acid, cis-11-
octadecanoic acid, tetradecanoic acid, with stearic acid as the most abundant (Fig. 
19C). 

 

 
 

Fig.19: Gas chromatograms obtained by monitoring the total ion current as a function 
of time for wild-type ApoA-I (A) and ApoAI(L174S) variant (B). The retention times of 
the four species associated with the recombinant proteins, indicated by an arrow, are 
reported. (C) Semi-quantitative data of the identified lipids are reported as lipid to 
protein molar ratio. The data represent the means ± standard deviation of lipid to 
protein molar ratios determined in three independent experiments. 
 
 
 
To exclude that these lipids were selected by the hydrophobic chromatography 
through unspecific interactions with the resin, alternative procedures to isolate the 
recombinant proteins were used, such as immuno-affinity chromatography, using 
anti-ApoA-I antibodies covalently bound to a resin, and reverse phase 
chromatography. The proteins isolated following these procedures were analyzed as 
previously described. In both cases, no differences in the lipid composition were 
detected with respect to those reported above. Similar results were obtained when 
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the proteins eluted from the hydrophobic chromatography were extensively dialyzed 
prior to be analyzed for the lipid content. 
Interestingly, significant differences were appreciated in the relative amount of fatty 
acids associated to the mutant with respect to the wild-type protein. A semi-
quantitative analysis revealed different lipid-to-protein molar ratios for the two 
proteins, with higher values associated to the variant protein with respect to the wild-
type. With the exception of stearic acid, the lipid-to-protein molar ratios calculated for 
the amyloidogenic variant were significantly higher (1.5 to 2.5-fold) than those 
determined for wild-type ApoA-I (Fig. 19C).  
These findings may be of significance in the development of the pathology. In fact, it 
has been proposed that amyloidogenic mutations reduce the affinity of ApoA-I for 
surface lipids of HDL, promoting a shift from HDL-bound to lipid-poor/free ApoA-I. 
Moreover, other factors have been reported to destabilize HDL assembly, such as an 
increase of fatty acid content on the surface of HDL, or an increase of triacylglycerol 
content in the HDL core [79]. Hence, it is likely that the presence of an amyloidogenic 
mutation in ApoA-I sequence induces a conformational change in the protein 
structure responsible for a reduced affinity for surface phospholipids of HDL. An 
extensive comparative study of a pathogenic versus a natural protein represents a 
key aspect to understand the molecular basis of the pathology. 

 
*** 

 
4. STUDIES ON PROTEINS WITH A POTENTIAL ROLE IN AMYLOID DISEASES: 
Does angiogenin play a role in ApoA-I related amyloidosis? 

4.1 Angiogenin and its role in stress response 

Angiogenin (ANG) is a 14 kDa ribonuclease (RNase) [101] known to induce 
angiogenesis in endothelial cells. Although ANG is a small molecule, three distinct 
function sites including a receptor-binding site, a nuclear localization sequence (NLS) 
and a catalytic site have been identified.  
The growth-stimulating activity of ANG is mediated by its ability to promote rRNA 
transcription [102, 103], by binding to the promoter region of ribosomal DNA [104]. 
rRNA transcription is the rate-limiting step in ribosome biogenesis [105], a process 
required for cell growth as well as maintenance and survival, as proteins are required 
for all cellular activities. Similarly, ANG-mediated rRNA transcription also plays an 
important role for cancer cell proliferation in response to genetic and environmental 
factors [106, 107] 
Recent publications have further extended the biological activities of ANG from 
enabling cell growth and proliferation to sustaining survival under stress conditions 
[108-111]. Usually, in mammalian cells, stress-induced phosphorylation of eIF2α 
inhibits global protein synthesis to conserve anabolic energy for the repair of stress-
induced damage.  
However, stress-induced translational silence is also observed in cells expressing a 
non-phosphorylatable eIF2α mutant (S51A) [112], indicating the existence of a 
phosphor-eIF2α independent pathway of translational control. Yamasaki and 
coworkers demonstrated that this pathway is mediated by a subset of tRNA 
fragments produced by a specific cleavage at the anticodon loop [108]. This class of 
small RNA has been designated as tiRNA (tRNA-derived, stress-induced small RNA) 
and shown to inhibit protein translation in an eIF2α independent manner. ANG was 
found to be the RNase that is responsible for this specific cleavage. The 



 

enzymatically inactive ANG variant H13A lost the ability to
tiRNA, indicating that the ribonucleolytic activity of ANG is fundamental for its role in 
stress response [108]. 
In Fig. 20 the overall mechanism of action of ANG is summarized.
 
 

Fig. 20: Mechanism of action of angiogenin 
translocation of ANG, whereas stress signals direct ANG to stress granules. Both 
pathways are mediated by a cell surface receptor that remains to be identified. 
Nuclear ANG stimulates rRNA transcription, enabling rib
therefore cell growth and proliferation. Under stress conditions, ANG is not 
translocated to the nucleus but it is rather accumulated in cytoplasmic compartments 
such as stress granules, where it mediates the production of tiRNA, repro
protein translation and promoting survival.
 
 
4.2 ANG and ApoA-I associated amiloidosis 

Recently, it has been reported that serum ANG levels are dramatically reduced in a 
transgenic mouse model in which alpha
disease (PD), is over-expressed [113]. Moreover, Kim and co
that ANG plays a major role in 
observed a decrease in serum ANG levels in AD patients [114]. 
Since fibrillogenesis is a common feature of AD and PD, in which a role of ANG has 
been envisaged, we questioned if changes in A
related amyloidosis.  
In this pathology, all the patients analysed so far were found to be heterozygous for 
the mutated gene, as both the wild
latter circulating in plasma 
amyloidogenic variant, responsible for preferential deposition of amyloid fibrils in the 
liver, carries the substitution of Leu 75 for Pro (L75P
variant was used in this study t
amyloidosis.  
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enzymatically inactive ANG variant H13A lost the ability to mediate the production of 
tiRNA, indicating that the ribonucleolytic activity of ANG is fundamental for its role in 

In Fig. 20 the overall mechanism of action of ANG is summarized. 

 
 

Mechanism of action of angiogenin (ANG). Growth signals stimulate nuclear 
translocation of ANG, whereas stress signals direct ANG to stress granules. Both 
pathways are mediated by a cell surface receptor that remains to be identified. 
Nuclear ANG stimulates rRNA transcription, enabling ribosome biogenesis and 
therefore cell growth and proliferation. Under stress conditions, ANG is not 
translocated to the nucleus but it is rather accumulated in cytoplasmic compartments 
such as stress granules, where it mediates the production of tiRNA, repro
protein translation and promoting survival. 

I associated amiloidosis  

Recently, it has been reported that serum ANG levels are dramatically reduced in a 
transgenic mouse model in which alpha-synuclein, responsible for Parkinson’s 

expressed [113]. Moreover, Kim and co-workers demonstrated 
a major role in Alzheimer’s disease (AD) pathogenesis since they 

observed a decrease in serum ANG levels in AD patients [114].  
Since fibrillogenesis is a common feature of AD and PD, in which a role of ANG has 
been envisaged, we questioned if changes in ANG levels may occur also in ApoA

In this pathology, all the patients analysed so far were found to be heterozygous for 
the mutated gene, as both the wild-type and the mutated form is expressed, with the 
latter circulating in plasma at lower levels than the wild-type [52]. An ApoA
amyloidogenic variant, responsible for preferential deposition of amyloid fibrils in the 
liver, carries the substitution of Leu 75 for Pro (L75P-ApoA-I). This fibrillogenic 
variant was used in this study to investigate the role of ANG in ApoA

mediate the production of 
tiRNA, indicating that the ribonucleolytic activity of ANG is fundamental for its role in 

(ANG). Growth signals stimulate nuclear 
translocation of ANG, whereas stress signals direct ANG to stress granules. Both 
pathways are mediated by a cell surface receptor that remains to be identified. 

osome biogenesis and 
therefore cell growth and proliferation. Under stress conditions, ANG is not 
translocated to the nucleus but it is rather accumulated in cytoplasmic compartments 
such as stress granules, where it mediates the production of tiRNA, reprogramming 

Recently, it has been reported that serum ANG levels are dramatically reduced in a 
synuclein, responsible for Parkinson’s 

workers demonstrated 
(AD) pathogenesis since they 

Since fibrillogenesis is a common feature of AD and PD, in which a role of ANG has 
NG levels may occur also in ApoA-I 

In this pathology, all the patients analysed so far were found to be heterozygous for 
type and the mutated form is expressed, with the 

type [52]. An ApoA-I 
amyloidogenic variant, responsible for preferential deposition of amyloid fibrils in the 

I). This fibrillogenic 
o investigate the role of ANG in ApoA-I related 



 

As the liver is the main producer of ApoA
related amyloidosis, human hepatic cells (HepG2) were stably transfected with either 
plasmid pRC-rsv-ApoAI, carryi
plasmid pRC-rsv-L75P-ApoAI, carrying the cDNA encoding the amyloidogenic variant 
L75P-ApoA-I. By this way, this experimental system mimics patient’s heterozygosis 
as both the wild-type and the mutated form are
Both recombinant proteins carried at their N
sequence. By growing the cells under antibiotic selection, single, stably transfected 
clones were isolated; for each recombinant protein a single clone was selected
analyses. Cells stably expressing either recombinant wt
variant L75P are indicated as wt
respectively. Wt-ApoA-I-HepG2 cells were used to mimic healthy condition, whereas 
L75P-ApoA-I-HepG2 cells mimic pathological condition. In all the experiments, 
untransfected HepG2 cells were used as a control.
After 72 h cell growth, conditioned media and cell lysates were analyzed by Western 
blotting with an anti-human ApoA
(wt-ApoA-I) and L75P-ApoA
molecular mass corresponding to that of ApoA
medium as well as in the lysate (Fig. 21A and B, respectively). Endogeneo
measured with an anti-actin antibody, was used as an internal standard (Fig. 21, 
lanes B upper panel). Densitometric analyses (Fig. 21 C) indicated that wt
efficiently secreted, while a significant amount of L75P
cytosol. An immuno-positive band was detected also in untransfected cells (Fig. 21 A 
and B, lanes 1), confirming that endogenous ApoA
 
 

Fig. 21: Analysis of intra-
L75P-ApoA-I variant in stably transfected HepG2 cells after 72h growth. Western blot 
analysis was performed using anti
medium corresponding to 30,000 cells were analyzed for the presence of 
recombinant proteins. Lane 1, cell
wt-ApoA-I-HepG2 cell-conditioned medium; lane 3, L75P
conditioned medium; lane 4, 50ng ApoA
lanes 2, lysate of wt-ApoA-
50ng ApoA-I. The upper panel in Fig. 21B refer to endogenous actin used as an 
internal standard. (C) Quantitative analysis of cytosolic (black bars) and secreted 
(grey bars) ApoA-I. For each sample, cytosol
endogenous actin. Error bars correspond to the SE values of three independent 
experiments.  
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As the liver is the main producer of ApoA-I and the major target of L75P
related amyloidosis, human hepatic cells (HepG2) were stably transfected with either 

ApoAI, carrying the cDNA encoding wild-type ApoA
ApoAI, carrying the cDNA encoding the amyloidogenic variant 

I. By this way, this experimental system mimics patient’s heterozygosis 
type and the mutated form are expressed. 

Both recombinant proteins carried at their N-terminus the ApoA
sequence. By growing the cells under antibiotic selection, single, stably transfected 
clones were isolated; for each recombinant protein a single clone was selected
analyses. Cells stably expressing either recombinant wt-ApoA-I or its amyloidogenic 
variant L75P are indicated as wt-ApoA-I-HepG2 and L75P-ApoA

HepG2 cells were used to mimic healthy condition, whereas 
HepG2 cells mimic pathological condition. In all the experiments, 

untransfected HepG2 cells were used as a control. 
After 72 h cell growth, conditioned media and cell lysates were analyzed by Western 

human ApoA-I polyclonal antibody. For both wild
ApoA-I transfectants, an immunopositive species with a 

molecular mass corresponding to that of ApoA-I was observed in the conditioned 
medium as well as in the lysate (Fig. 21A and B, respectively). Endogeneo

actin antibody, was used as an internal standard (Fig. 21, 
lanes B upper panel). Densitometric analyses (Fig. 21 C) indicated that wt
efficiently secreted, while a significant amount of L75P-ApoA-I was retained in 

positive band was detected also in untransfected cells (Fig. 21 A 
and B, lanes 1), confirming that endogenous ApoA-I is expressed in HepG2 cells.

 
- and extracellular levels of recombinant wt

I variant in stably transfected HepG2 cells after 72h growth. Western blot 
analysis was performed using anti-ApoA-I antibodies. (A) Aliquots of conditioned 
medium corresponding to 30,000 cells were analyzed for the presence of 

Lane 1, cell-conditioned medium of untransfected cells; lane 2, 
conditioned medium; lane 3, L75P-ApoA

conditioned medium; lane 4, 50ng ApoA-I. (B) Lane 1, lysate of untransfected cells; 
-I-HepG2 cells; lane 3, L75P-ApoA-I-HepG2 cells; lane 4, 

I. The upper panel in Fig. 21B refer to endogenous actin used as an 
) Quantitative analysis of cytosolic (black bars) and secreted 

I. For each sample, cytosolic ApoA-I was normalized to 
Error bars correspond to the SE values of three independent 

I and the major target of L75P-ApoA-I 
related amyloidosis, human hepatic cells (HepG2) were stably transfected with either 

type ApoA-I, or with 
ApoAI, carrying the cDNA encoding the amyloidogenic variant 

I. By this way, this experimental system mimics patient’s heterozygosis 

terminus the ApoA-I signal peptide 
sequence. By growing the cells under antibiotic selection, single, stably transfected 
clones were isolated; for each recombinant protein a single clone was selected for 

I or its amyloidogenic 
ApoA-I-HepG2 cells, 

HepG2 cells were used to mimic healthy condition, whereas 
HepG2 cells mimic pathological condition. In all the experiments, 

After 72 h cell growth, conditioned media and cell lysates were analyzed by Western 
. For both wild-type ApoA-I 

I transfectants, an immunopositive species with a 
I was observed in the conditioned 

medium as well as in the lysate (Fig. 21A and B, respectively). Endogeneous actin, 
actin antibody, was used as an internal standard (Fig. 21, 

lanes B upper panel). Densitometric analyses (Fig. 21 C) indicated that wt-ApoA-I is 
I was retained in the 

positive band was detected also in untransfected cells (Fig. 21 A 
I is expressed in HepG2 cells. 

 

and extracellular levels of recombinant wt-ApoA-I and 
I variant in stably transfected HepG2 cells after 72h growth. Western blot 

liquots of conditioned 
medium corresponding to 30,000 cells were analyzed for the presence of 

conditioned medium of untransfected cells; lane 2, 
ApoA-I-HepG2 cell-

) Lane 1, lysate of untransfected cells; 
HepG2 cells; lane 4, 
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I was normalized to 
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As known, serum provides sustenance for cultured cells as it contains trophic factors; 
serum withdrawal induces apoptosis in a variety o
type of stress was extensively used as a model to investigate apoptosis regulation 
[115] It has been also observed that undifferentiated P19 cells have a very low 
endogenous ANG levels and undergo apoptosis in the absen
Therefore, serum starvation was used to analyse a possible involvement of ANG in 
ApoA-I related amyloidosis. 
Cells were grown in complete DMEM medium for 24 h, then grown in serum
medium for 48 h. At the end of incubation, quantita
was performed and subcellular localization of ANG was analyzed in the presence 
(growth condition) and absence of serum (serum starvation). In Fig 22 the result of 
qRT-PCR is shown; the amount of ANG was normalized to the endoge
each ∆Ct was then normalized to untransfected HepG2 cells. We observed that in 
cells expressing the amyloidogenic variant L75P, cultured in growth condition, 
cellular ANG levels were lower than those of untransfected cells as well as of wt
ApoA-I HepG2 cells, for which the total amount of ANG was comparable (Fig. 22, 
black bars). For untransfected and wt
ANG levels occurred when the cells were cultured in serum
very slight increase was observed in the case of L75P
grey bars).  
 
 

Fig. 22: Quantitative RT-PCR analysis. Cells were grown in the presence (black 
bars) or in the absence (grey bars) of serum for 48 h. Total RNA was extracted and 
analyzed with probes specific for ANG and actin mRNAs. Data shown are the mean ± 
SD of triplicate determinations and the results were analyzed using the comparative 
Ct (threshold cycle) method normalized against the housekeeping gene actin. The 
range of expression levels was determined by calculating the standard deviation of 
the ∆Ct (i.e. Ct of the target gene 
 
 
ANG subcellular localization was determined by Western blotting analyses of 
cytosolic and nucleolar extracts. We first examin
of cells grown under growth or stress conditions by using anti
23 A and C). Endogenous actin, measured with anti
internal standard. Western blot analyses showed that
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As known, serum provides sustenance for cultured cells as it contains trophic factors; 
serum withdrawal induces apoptosis in a variety of cells, including HepG2 cells. This 
type of stress was extensively used as a model to investigate apoptosis regulation 
[115] It has been also observed that undifferentiated P19 cells have a very low 
endogenous ANG levels and undergo apoptosis in the absence of serum [116]. 
Therefore, serum starvation was used to analyse a possible involvement of ANG in 

I related amyloidosis.  
Cells were grown in complete DMEM medium for 24 h, then grown in serum
medium for 48 h. At the end of incubation, quantitative Real Time PCR (qRT
was performed and subcellular localization of ANG was analyzed in the presence 
(growth condition) and absence of serum (serum starvation). In Fig 22 the result of 

PCR is shown; the amount of ANG was normalized to the endoge
Ct was then normalized to untransfected HepG2 cells. We observed that in 

cells expressing the amyloidogenic variant L75P, cultured in growth condition, 
cellular ANG levels were lower than those of untransfected cells as well as of wt

I HepG2 cells, for which the total amount of ANG was comparable (Fig. 22, 
black bars). For untransfected and wt-ApoA-I-HepG2 cells, a significant increase in 
ANG levels occurred when the cells were cultured in serum-free medium, while a 

rease was observed in the case of L75P-ApoA-I-HepG2 cells (Fig. 22, 

 
PCR analysis. Cells were grown in the presence (black 

bars) or in the absence (grey bars) of serum for 48 h. Total RNA was extracted and 
with probes specific for ANG and actin mRNAs. Data shown are the mean ± 

SD of triplicate determinations and the results were analyzed using the comparative 
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Fig. 23: Western blot analyses of ANG subcellular localization using anti
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This preferential localization of ANG in the nucleoli or in the cytosol, when cells are 
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was not observed any shift of ANG from nucleoli to the cytosol (Fig. 23 A and B, lane 
7), but ANG level in the nucleoli was found to be dramatically increased (Fig. 23 D). 
Then the effects of serum starvation on cell viability was analyzed by performing the 
MTT reduction assay, as an indicator of metabolically active cells. Cells were grown 
in complete DMEM medium for 24 h, then incubated in serum-free medium for up to 
96 h, in the presence or absence of 0.5 µg/ml ANG. In Fig. 24, the results of time 
course experiments are shown. The values are the average of 3 independent 
experiments carried out with triplicate determinations. In the absence of serum, we 
observed a significant decrease of cell viability in a time-dependent manner, with 
L75P-ApoA-I-HepG2 cells the most sensitive to serum withdrawal (Fig. 24, white 
bars). When ANG was added to the complete culture medium, no significant 
differences in cell viability were observed for the three cell lines (Fig. 24, grey bars) 
with respect to the same cells grown in the absence of ANG. When instead ANG was 
added to the serum-free medium (Fig. 24, panel c, dashed bars), we observed a 
strong protective effect of ANG on L75P-ApoA-I-HepG2 cells, with no significant 
effects on wt-ApoA-I-HepG2 cells and untrasfected cells. 
To confirm the above findings, cells were stained with ethidium bromide (EB) and 
with acridine orange (AO) (Fig. 25). AO permeates intact cells staining all the nuclei 
(green), whereas EB enters cells only when the plasma membrane is damaged, thus 
staining only apoptotic nuclei (red). This method has been widely used to visually 
distinguish apoptotic cells [81].  
Cells were grown in complete medium for 24 h and then grown in serum-free medium 
for 48 h. For untransfected HepG2, the percentage of EB-stained cells was 48.7 ± 
3.40% and 20.7 ± 3.17%, when determined in the absence or presence of serum, 
respectively (Fig. 25). The last percentage did not vary significantly (23.6 ± 0.19%) 
when ANG was added to the complete medium, whereas upon ANG addition to the 
serum-free medium the percentage of apoptotic cells slightly decreased to 41.6 ± 
2.41% (Fig. 25), indicating a slight positive effect of ANG on cell viability. Similar 
results were observed for wt-ApoA-I-HepG2 cells, where the percentage of apoptotic 
nuclei was 49.0 ± 3.03% and 19.9 ± 3.54%, in the absence and presence of serum, 
respectively (Fig. 25), and 17.9 ± 1.44% when ANG was added to the complete 
medium. The addition of ANG to serum-free medium did not change significantly the 
amount of apoptotic cells (44.0 ± 3.09%, Fig. 25). 
Different results were obtained in the case of L75P-ApoA-I-HepG2 cells. A higher 
percentage of apoptotic cells was observed in growth conditions (35.8 ± 3.05%), 
suggesting that the presence of an amyloidogenic protein is harmful. When cells 
were grown in the absence of serum, a very high proportion of EB- stained cells was 
measured (62.5 ± 2.39%). Interestingly, ANG addition to the serum-free medium of 
L75P-ApoA-I-HepG2 cells significantly prevented apoptosis induced by serum 
withdrawal, as the percentage of apoptotic cells was reduced to 44.4 ± 1.24%. On 
the other hand, according to the other two cell lines, when ANG was added to the 
complete medium of L75P-ApoA-I-HepG2 cells, no significant differences were 
observed with respect to cells grown in complete medium but in the absence of ANG 
(29.8 ± 1.46% and 35.8 ± 3.05%, respectively).  
Thus, by two independent aproaches we showed that ANG has an anti-apoptotic 
activity, similarly  to foetal bovine serum, on L75P-ApoA-I-HepG2 cells.  
 
 
 
 



 

 
 

Fig. 24: Time-course of the effects of serum starvation on the viability of HepG2 cells 
in the presence of ANG by the MTT assay. Untransfected HepG2 (
HepG2 (B), L75P-ApoA-I-HepG2 (
absence (black bars) or presence (grey bars) of ANG (0.5 µg/ml), or in serum
medium in the absence (white bars) or presence (dashed bars) of ANG for different 
lengths of time (24, 48, 72, 96 h). Cell number w
curve obtained by counting the number of cells by the MTT assay. Error bars 
correspond to the SE values of three independent experiments. 
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Fig. 25: Serum withdrawal
absence of ANG. Untransfected HepG2, wt
cells were grown in complete or serum
0.5 µg/ml ANG  for 48 h. Cells were collected and stained with ethidium bromide 
(red) and acridine orange (green) and applied to a microscope slide for imaging. 
Ethidium bromide-stained (apoptotic) cells were counted in a total of 750 cells from 
five randomly selected areas of each slide, and the percentage of apoptotic cells is 
shown at the bottom of each picture. The data shown are the means and SE of 
triplicates of a representative experiment of at least three repeats.
 
 
 
For a deeper inspection of the role of ANG in ApoA
mutants were analyzed: R33A, K40Q an
the nucleus, K40Q is not active enzymatically and R66A is defective in binding to the 
receptor [117]. 
The effects of serum starvation on cell viability in the presence of these ANG mutants 
was analyzed by MTT redu
medium for 24 h, then grown in serum
absence of an ANG mutant (0.5 µg/ml). In Figures 26, 27 and 28, the results of time
course experiments are shown. The values
experiments carried out with triplicate determinations. 
When R33A mutant was added to the culture medium (complete or serum
significant differences in cell viability were observed in untransfected, as well as in
wt-ApoA-I-HepG2 cells (Fig. 26 A and B, grey and dashed bars). On the contrary, a 
strong protective effect of on L75P
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significant differences in cell viability were observed in untransfected, as well as in 
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the absence of serum, whereas the effect was not evident in the presence of serum 
(Fig. 26 C, dashed bars). Similar results were obtained with mutant K40Q (Fig. 27). 
When cells were treated with R66A mutant, the protective effect on serum-starved 
L75P-ApoA-I-HepG2 cells was found to be less evident than in the previous cases 
(Fig. 28C, dashed bars). For untransfected and wt-ApoA-I-HepG2 cells, a decrease 
of cell viability in the absence of serum was observed (Fig. 28 A and B, dashed bars).  
In conclusion, these experiments on a panel of ANG mutants, each defective for a 
single, specific ANG activity, add knowledge to the complex role of ANG in stress 
recovery and on its involvement in amyloid diseases. Taken together, our results 
suggest that, to elicit its protective role in cells under stress, ANG needs to be 
internalized into the cells, as the only mutant that fails in the recovery of cell viability 
is defective in binding to the receptor. On the contrary, ANG protective role seems do 
not involve its ribonucleolytic activity, nor its nuclear localization. 
Further experiments will be performed to elucidate the molecular basis of the 
protective role of ANG in ApoA-I related amyloidosis. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 
 
 
 
 

Fig. 26: Time-course of the effects of serum starvation on the viability of HepG2 cells 
in the presence of R33A ANG 
cells stably expressing wt-
medium in the absence (black bars) or presence (grey bars) of ANG (0.5 µg/ml), or in 
serum-free medium in the absence (whit
for different lengths of time (24, 48, 72, 96 h). Cell number was calculated using a 
calibration curve obtained by counting increasing number of cells by the MTT assay. 
Error bars correspond to the SE values of thre
< 0.01. 
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Fig. 27: Time-course of the effects of serum withdrawal on the viability of HepG2 
cells in the presence of K40Q ANG mutant by the MTT assay. Untransfected cells 
(A) and cells stably expressing 
described in the legend of Fig. 26.  Black and white bars represent cells incubated in 
complete or serum free medium, respectively. Grey and dashed bars refer to cells 
treated with of 0.5 µg/ml K40Q ANG mutant in the presence or absence o
respectively. Error bars correspond to the SE values of three independent 
experiments. P values  < 0.01
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Fig. 28: Time-course of the effects of serum withdrawal on the viability of HepG2 
cells in the presence of K40Q ANG mutant by 
(A) and cells stably expressing wt
described in the legend of Fig. 26.  Black and white bars represent cells incubated in 
complete or serum free medium, respectively. Grey and
treated with of 0.5 µg/ml K40Q ANG mutant in the presence or absence of serum, 
respectively. Error bars correspond to the SE values of three independent 
experiments. P values  < 0.01
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DISCUSSION 

 
 

An increasing number of human diseases is linked to protein aggregation and to the 
accumulation of protein deposits in different organs or tissues.  
Almost 30 amyloidogenic proteins have been identified so far [9] and, despite the 
lack of any sequence homology or common structural determinants, they share a 
common fibrillogenic pathway which results in fibrils with the same architectural 
organization [10].  
The elucidation of the cascade of biochemical events triggered by the exposure of 
cells to a fibrillogenic protein is of primary importance in the comprehension of the 
molecular bases of amyloid diseases. To this purpose, we focused our attention on 
ApoA-I related amyloidosis.  
ApoA-I represents an intriguing case of a protein which, in its native form, plays a key 
role in the reverse cholesterol transport, as it acts as an antiatherogenic factor in 
humans. On the other hand, in the presence of one of the nineteen amyloidogenic 
mutations identified so far [58], ApoA-I is converted into the precursor of natively 
unfolded pathogenic fragments associated with familial systemic amyloidoses [52]. 
These fragments, corresponding to the N-terminal region of the native protein, are 
90-100 residue long and accumulate in fibrillar deposits in peripheral organs leading 
to a progressive impairment of organ functions.  
The molecular mechanism responsible for the release of the fibrillogenic polypeptide 
from a full-length amyloidogenic variant of ApoA-I remains largely unknown. 
However, recent findings allowed us to raise the hypothesis that the mutations 
located in ApoA-I N-terminal region are amyloidogenic as they favour from a 
structural point of view the proteolytic cleavage responsible for the release of the 
fibrillogenic polypeptide [78]. 

A general aim of this research project is that of using different cellular models to 
study both ApoA-I and its fibrillogenic polypeptide, non only to understand the 
molecular aspects of ApoA-I related amyloidosis, but also to discover mechanisms of 
action potentially common to different amyloidogenic proteins. 
 
 
1. Studies on the fibrillogenic polypeptide [1-93]ApoA-I 

1.1 The definition of the intracellular pathway of the fibrillogenic polypeptide 

The intracellular pathway of [1-93]ApoA-I was analyzed in comparison to natural full-
length ApoA-I in cardiac cells. Since in the case of ApoA-I associated amyloidoses 
the heart is a natural target for aggregate deposition in vivo, cardiomyoblasts were 
chosen as an experimental system. 
We demonstrated that: 
(i) the polypeptide partially co-localizes with ABCA1 on rat cardiomyoblasts cell 
membranes. By immunofluorescence analyses we demonstrated that this transporter 
is expressed in cardiomyoblasts and that the polypeptide partially co-localizes with 
ABCA1 on rat cardiomyoblasts cell membranes. Similar results were obtained for 
ApoA-I, in agreement with recent reports showing that the majority of cell-associated 
ApoA-I does not co-localize with ABCA1, although no internalization was observed in 
cells ABCA1-/- [118].  
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(ii) We showed that the fibrillogenic polypeptide recognizes specific binding sites on 
cardiac cell membranes and that binding represents a key step for [1-93]ApoA-I 
internalization. The apparent affinity constant (Kd = 5.90 x10-7 M) is similar to those 
previously reported for lipid-free full-length ApoA-I binding to different cell types [119, 
120]. 
(iii) Following binding, the polypeptide is internalized in cardiomyoblasts. A 
comparative analysis of the internalization routes of the polypeptide and the full-
length protein revealed that the polypeptide is internalized mostly by chlatrin-
mediated endocytosis and by lipid rafts, whereas a significant involvement of 
macropinocytosis could be excluded; ApoA-I is internalized via chlatrin-coated pits 
and macropinocytosis, whereas internalization through lipid rafts was not observed.  
Thus, evidence was provided that the pathogenic polypeptide translocates from the 
extracellular space, where fibrils form and grow, to the intracellular space. 
Considering that lipid rafts are rich in cholesterol, which is able to induce and 
stabilize [1-93]ApoA-I helical states [72], the polypeptide internalization mediated by 
lipid rafts may have a key role in the pathogenesis of the disease.  
(iv) Upon internalization, no involvement of the retro-endocytosis pathway was 
observed for the fibrillogenic polypeptide, whereas ApoA-I was found to be 
associated to Rab4-labelled endosomal compartment, a station involved in ApoA-I 
recycling to the cell membrane. 
(v) The fibrillogenic fragment is targeted to proteasomal and lysosomal stations for 
degradation, as at 24 hrs no intracellular fluorescent signals were detected, indicative 
of a massive degradation of [1-93]ApoA-I. The rapid degradation of the polypeptide is 
also in agreement with the absence of cytotoxic effects on cardiomyoblasts, at least 
in the experimental conditions tested. 
Different results were obtained instead in the case of full-length ApoA-I, as the 
protein does not appear to be significantly degraded once internalized. However, we 
observed strong signals of co-localization of ApoA-I with lysosomes. Being these 
stations an intracellular reservoir of cholesterol, nascent lipoprotein particles may be 
formed at this level and then secreted in the extracellular space [121].  
(vi) Unlike the unaggregated polypeptide, fibrils obtained in vitro have no access to 
the intracellular compartment.  

The elucidation of key steps of the intracellular pathway and fate of ApoA-I 
fibrillogenic polypeptide reveals features common to other amyloidogenic proteins. In 
the case of transmissible spongiform encephalopathy, the misfolded form of APrP 
accumulates in the brain. It is known that, after being exported to the plasma 
membrane, PrPc is internalized and recycled back to the surface. It has been 
suggested that raft-enriched lipids represent the site of scrapie formation [122]. On 
the other hand, it is known that APrPsc undergoes proteasomal degradation and 
accumulates in lysosomes. 
In the case of Parkinson’s disease, α-synuclein accumulates inside the cells as 
fibrillar aggregates named Lewy bodies. However, although α-synuclein is a 
cytoplasmic protein, a small amount of the protein is secreted by the cells and is 
present in human body fluids. It has been demonstrated that non-fibrillar oligomeric 
aggregates, as well as fibrils are able to enter the cells through the endosomal 
pathway and to be degraded by lysosomes. This mechanism might protect neurons 
from exposure to potentially toxic α-synuclein [123]. However, it has to be noticed 
that newly synthesized α-synuclein monomers and dimers, but not protofibrils, can be 
degraded by the proteasome [124].  
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Along the internalization and intracellular pathway, common aspects are shared by 
[1-93]ApoA-I and amyloid β peptide (Aβ), responsible for Alzheimer’s disease.  
The most abundant forms of Aβ are 40 and 42 residue long (Aβ40/42), whose 
oligomeric species were found to rapidly bind and internalize in neuronal cells and 
accumulate in lysosomes. In contrast, aggregated polypeptides were found to 
associate with cells only weakly [125]. Furthermore, soluble Aβ oligomers, but not 
monomers, inhibit proteasomal activity in vitro [126]. It has to be noticed that cellular 
mechanisms deputed to protein degradation, i.e. lysosomes, proteasome and 
autophagy, may be important targets for therapeutic approaches against 
amyloidoses. Since in several amyloid diseases the impairment of proteasomal 
activity has been pointed out, a promising therapeutic approach would be that of 
enhancing the activity of cellular mechanisms for protein clearance. 

Based on the experimental data collected so far, a model representing the possible 
fate of [1-93]ApoA-I polypeptide in an in vivo context is proposed. 
The continuous accumulation of the natively unfolded polypeptide in the cardiac 
tissue leads to a progressive, massive occupancy of the extracellular space by 
amyloid deposits, as observed in pathological hearts, from which the natural 
fibrillogenic polypeptide can be isolated. During the fibrillogenic process, a dynamic 
equilibrium between monomeric species and aggregated states has been proposed 
[127]. The results reported in this thesis provided evidence that, besides aggregation 
in the extracellular space, an alternative fate is available to the polypeptide, i.e. the 
interaction with target cells, internalization and subsequent degradation. Since the 
intracellular degradation pathway is precluded to fibrillar aggregates, the hypothesis 
can be raised that internalization and subsequent degradation of the unaggregated 
fibrillogenic polypeptide represent a protective mechanism against fibrillogenesis, 
able to balance [1-93]ApoA-I progressive aggregation and to slow down the 
fibrillogenic process. This phenomenon may be relevant in the slow progression and 
late onset of ApoA-I-associated amyloid pathology. 
 
 
1.2 Towards the definition of two molecular partners of [1-93]ApoA-I 

The definition of the molecular partners of the fibrillogenic polypeptide is a central 
issue in the comprehension of the disease molecular bases.  
In collaboration with the research group of Prof. P. Pucci, Department of Chemical 
Sciences, a functional proteomic aproach was folowed to identify the polypeptide 
interactome. GST pull-down experiments, and protein identification by mass 
spectrometry were performed on cardiomyoblasts membrane extracts. This 
experimental approach provided a list of about 100 potential interactors of the 
fibrillogenic polypeptide and, among these, the ATP synthase β-chain and the protein 
nicastrin  were selected to be analyzed in detail. 
The validation of the selected putative interactors by independent approaches is an 
essential step of any functional proteomic experiment. Thus, co-immunoprecipitation 
(Co-IP) and fluorescent microscopy experiments have been performed.  
Co-IP experiments have been performed using cardiomyoblasts  lysates incubated 
with FITC-labelled [1-93]ApoA-I. The protein species immunoprecipitated with anti-
FITC antibodies were analyzed by Western blotting using antibodies directed towards 
each of the selected interactors of the fibrillogenic polypeptide. Either anti-ATPase 
and anti-nicastrin antibodies recognized their respective antigens in the 
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immunoprecipitated sample, indicating that both proteins do represent cellular 
partners of [1-93]ApoA-I. 
Immunofluorescence analyses performed using antibodies directed towards the β-
chain of the ATP synthase complex allowed us to demonstrate the existence of an 
ectopic form of ATP synthase β-chain on the cell surface of cardiomyoblasts. Then, 
we demonstrated a significant co-localization of ATP synthase β-chain and [1-
93]Apo-I, strengthening the validation of ectopic ATPase as a specific target. 
Similarly, we demonstrated that the polypeptide co-localizes with nicastrin. These 
results indicate that both ATP synthase β-chain and nicastrin interact with the 
fibrillogenic polypeptide at the cell surface. 

ATP synthase has been recently detected at the surface of different cell types, wide 
variety of tumor, as well as normal cells, where it is a high affinity receptor for ApoA-I. 
ApoA-I interacts with the endothelial ecto-F1-ATPase to initiate a signaling pathway 
contributing to the anti-apoptotic and proliferative effects mediated by HDLs and 
ApoA-I on endothelial cells [92, 95]. In this scenario, the identification of ecto-ATP 
synthase as a partner of the fibrillogenic polypeptide of ApoA-I, that accumulates in 
the extracellular space where amyloid fibrils are generated, raises the question on 
which role this interaction may have during the fibrillogenesis, and/or the polypeptide 
internalization in target cells. Starting from these observations, it will be of great 
interest to analyze whether the fibrillogenic polypeptide is able to interfere with ApoA-
I anti-apoptotic activity via ecto-F1-ATPase, and which role the binding of the 
fibrillogenic polypeptide to this protein partner may have on the fate of the 
polypeptide inside or outside the cells. 
Recently, a correlation was evidenced between AD and ectopic ATP synthase. It has 
been demonstrated that ATP synthase subunit α is a binding partner of the 
extracellular domain of APP and Aβ. Thus, modification of ATP synthase activity 
could result from binding of the extracellular domain of APP and Aβ to the α subunit. 
The extracellular domain of APP and Aβ interacts with ATP synthase subunit α and 
partially inhibits the extracellular generation of ATP by the ATP synthase complex. 
These observations demonstrate that Aβ competes with APP for binding to ATP 
synthase subunit α and that APP and Aβ regulate extracellular ATP levels in the 
brain, thus suggesting a novel mechanism in Aβ-mediated AD pathology [69]. 
Analogously, we demonstrated that ApoA-I fibrillogenic polypeptide, [1-93]ApoA-I, 
interacts directly or indirectly with ecto-F1-ATPase. Therefore, we hypothesize a 
more general role played by this protein in amyloid diseases. 

Nicastrin is an essential subunit of the γ-secretase complex, an endoprotease 
complex that catalyzes the intramembrane cleavage of integral membrane proteins 
such as Notch receptors and amyloid precursor protein (APP).  
High levels of plasma cholesterol are known to be a risk factor for AD pathology 
since cholesterol is a well-established modulator of APP processing. The β-secretase 
cleavage of APP, which results in Aβ formation, mainly occurs in cholesterol rich lipid 
rafts, whereas the α-secretase activity seems to be favored in non rafts membranes. 
Cholesterol depletion inhibits the amyloidogenic pathway, leading to reduced Aβ 
levels and, in general, shifts APP processing toward preferential non-amyloidogenic 
pathway [128]. Moreover, it has been demonstrated that Aβ promotes the efflux of 
cellular cholesterol during its secretion. This process is mediated by ABCA1 and is 
accompanied by the formation of high density lipoprotein-like particles. This 
mechanism resembles that of apolipoprotein-mediated cholesterol efflux, although 
apolipoproteins interact with ABCA1 from the extracellular space [129], whereas the 
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Aβ–ABCA1 interaction appeared to occur within the plasma membrane or in the 
intracellular compartment [130].  
Further experiments will be designed to verify whether the amyloidogenic polypeptide 
is able to interact directly with nicastrin and to deeply inspect a possible involvement 
of γ-secretase complex in [1-93]ApoA-I proteolytic release.  

These observations suggest that common tracts are shared by different fibrillogenic 
polypeptides and that common pathways may be discovered. The identification of 
specific targets of a pathological protein or peptide is the pre-requisite to plan site-
directed therapeutic intervention. 
 
 
2. Studies on the full-length ApoA-I pathogenic variants 

2.1. A cell model to produce full-length variants 

Structural and functional analyses of the full-length variants of ApoA-I, in comparison 
to the wild-type protein, will greatly contribute to the understanding of the molecular 
bases of the pathology. 
Nevertheless, all the patients analyzed so far were found to be heterozygous for the 
mutated gene, as both the wild-type and variant proteins are expressed. Moreover 
the variant protein was found in the plasma at lower levels than the wild-type. 
Thus, being impracticable any approach to isolate the ApoA-I variant as a pure 
product from patient’s tissues or plasma, heterologous expression systems are 
needed. With the exception of variants G26R and L178H produced in bacterial cells 
[99, 100], no reports are available to date on the production and isolation of ApoA-I 
amyloidogenic variants.  
We set up a suitable cellular model consisting in stably transfected mammalian cells 
to express recombinant ApoA-I amyloidogenic variant L174S, responsible for amyloid 
deposition preferentially in the heart of patient. Stably transfected CHO-K1 clones 
were obtained to express the ApoA-I amyloidogenic variant, as well as the wild-type 
protein. Both recombinant proteins, efficiently secreted in the culture medium, albeit 
with different kinetics, were isolated from the cell medium following a one-step 
purification procedure. Both proteins were found to be associated to fatty acids, as 
expected for lipid binding proteins, although to our knowledge no evidence of ApoA-I 
interaction with fatty acids has been provided so far. 
Two saturated and two monounsaturated fatty acids were associated to both 
proteins, with a higher lipid-to-protein molar ratio observed for the amyloidogenic 
variant. As it is known that long-chain saturated, monounsaturated and 
polyunsaturated fatty acids have a role in a number of cellular processes, e.g. 
trafficking and secretion of ApoA-I and B [131] and stimulation of triacylglycerol 
synthesis and secretion [132], our findings may have physiological implications. 
Nevertheless, due to the low amount of the recombinant proteins isolated, extensive 
structure to function relationship studies cannot be performed, Thus, an alternative 
expression system is needed. Recently, we started to settle a prokaryotic expression 
system to obtain a higher amount of ApoA-I pathogenic variants, suitable for 
structural and functional analyses. 
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2.2. Effects of endogeneous ApoA-I full-length variants on cell vulnerability to 
stress and stress response  

The survival of mammalian cells exposed to adverse environmental conditions 
requires a radical reprogramming of protein translation [133]. This is part of an 
integrated stress response that promotes survival of cells subjected to adverse 
environmental conditions [134]. Usually, stress-induced translational arrest of 
mRNAs encoding “housekeeping” proteins is triggered by a family of eIF2α kinases 
that reduce the availability of eIF2α –GTP–tRNAi Met ternary complexes required for 
translation initiation [135]. However, low-dose oxidative stress inhibits protein 
translation in cells expressing non-phosphorylatable eIF2α, suggesting the existence 
of a phospho-eIF2α–independent translation control pathway [112]. It has been 
reported that angiogenin (ANG) is involved in stress response by cleaving tRNAs, 
thus inhibiting protein translation and promoting cell survival [108]. ANG is a secreted 
RNase that was first identified as an angiogenic factor found in tumor cell conditioned 
medium [136]. ANG binds to receptors on the surface of endothelial cells that 
facilitate its internalization and transport to the nucleolus [137-139]. Remarkably, 
promotion of new blood vessel growth is dependent on ANG ribonuclease activity 
[140]. Although the RNA targets required for angiogenesis are unknown, in vitro 
studies have shown that tRNAs are preferred targets [141].  
Few years ago, a mutated form of ANG was identified in patients affected by familial 
or sporadic amyotrophic lateral sclerosis (ALS) [116], representing the first loss-of-
function gene mutation associated to the pathology. Later, it was demonstrated that 
ANG is able to protect against hypoxia-induced motor neuron degeneration to 
prevent motor neuron death induced by excitotoxicity and endoplasmic reticulum 
stress [142, 143]. Moreover, it has been observed that the secretion of ANG is 
enhanced by hypoxia, which indicated ANG as a component of a stress response 
program [144, 145]. Recently, ANG levels have been found to be reduced in PD 
transgenic mouse models in which α-syn is over-expressed [113] and in AD patients 
[114], suggesting a more general protective role of ANG in neurodegenerative 
disorders.  
We found that reduced ANG levels occur in hepatic cells over-expressing an 
amyloidogenic variant of ApoA-I, L75P, responsible for systemic amyloidosis 
predominantly involving the liver, with respect to cells over-expressing wt-ApoA-I, or 
to untransfected cells. Interestingly, quantification of intracellular and extracellular 
ApoA-I levels by Western blotting analysis indicated that, differently from wt-ApoA-I, 
the L75P amyloidogenic variant is highly retained within the cells. Moreover, L75P-
ApoA-I cells showed a high number of apoptotic nuclei with respect to wt-ApoA-I or 
untransfected hepatic cells. Similarly, Marchesi and co-workers observed that 
secretion of the amyloid proteins L75P and L174S-ApoA-I is down-regulated in 
transiently transfected cells [146]. Taken together, these results suggest that the 
impairment of ApoA-I variant secretion might be a first line of defence of the 
organism against the disease.   
It has been demonstrated that ANG is able to protect cells from stress factors, such 
as oxidative stress or serum withdrawal [108, 116]. Taking advantage of an 
experimental system in which ANG levels and localization are altered, due to the 
presence of an amyloidogenic protein, we analyzed what happens when cells are 
exposed to stress conditions (serum starvation).  
A significant difference in ANG intracellular localization was observed between wt 
and L75P-ApoA-I hepatic cells. In the absence of serum, ANG was mostly localized 
in the cytosolic compartment of wt-ApoA-I or untransfected cells, according to its role 
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in stress response [108]. Surprisingly, in the presence of the amyloidogenic variant, 
ANG was mostly localized in the nucleus. Moreover, L75P-ApoA-I cells showed a 
higher number of apoptotic nuclei and a significant impairment of cell viability with 
respect to controls. qRT-PCR experiments indicated that serum starvation causes an 
increase in ANG levels in both untransfected and wt-ApoA-I hepatic cells, while only 
a very slight increase was observed in the case of L75P-ApoA-I hepatic cells.  
In conclusion, in the presence of an amyloidogenic variant, cell viability and ANG 
levels and localization are altered, suggesting a possible role of this protein in ApoA-I 
related amyloidosis. We reasoned that, if this hypothesis is correct, addition of 
exogenous ANG should be able to restore cell viability. MTT assays and ethidium 
bromide staining were performed in the presence of exogenous ANG in serum-
starved cells. We found a strong anti-apoptotic effect of ANG on L75P-ApoA-I-HepG2 
cells, with no significant effect on wt-ApoA-I-HepG2 cells or untrasfected cells, 
indicating a protective role of ANG in cells expressing a pathogenic variant.  
To understand how ANG exerts its protective effect, we used three ANG mutants: 
R33A, K40Q and R66A, each defective in one of the activities associated to ANG. 
R33A is not able to translocate to the nucleus, K40Q is not active enzymatically and 
R66A is unable to bind efficiently to the receptor [117]. Three distinct functional sites 
are responsible for ANG activities, all of them essential for ANG to have angiogenic 
and growth stimulating activities [147-149]. The loop region from K60 to N68 is the 
receptor-binding site that interacts with a to-be-identified cell surface receptor [147]; 
upon binding to the cell surface receptor, ANG is internalized and translocated to the 
nucleus [117], a process is mediated by a NLS located between M30 and G34 [148]. 
The ribonucleolytic activity of ANG, executed by the catalytic triad H13, K40, and 
H113 [149], is believed to function in stimulating ribosomal RNA (rRNA) transcription 
after ANG translocation to the nucleus.  
We tested by MTT assays these loss-of-function ANG mutants and observed that the 
only the mutant defective in binding to the receptor (R66A) fails in the recovery of 
L75P-ApoA-I cells viability. On the contrary, ANG protective role seems do not 
involve its ribonucleolytic activity (K40Q), nor its nuclear localization (R33A). From 
the analysis of this set of ANG mutants, we hypothesized that ANG needs to be 
internalized into the cells to elicit its protective role in cells under stress conditions.  
It seems that an alteration in ANG expression is likely a pathological consequence of 
L75P-ApoA-I over-expression, similarly to experimental observations in PD 
transgenic mice. It is still unclear how over-expression of amyloidogenic proteins can 
cause a decrease in ANG expression. In the case of α-synuclein, Kontopoulos 
hypothesized that this protein normally negatively regulates ANG expression in the 
brain, by affecting transcription via inhibition of histone acetylation [150]; therefore, α-
synuclein over-expression could cause a reduction in ANG levels via this 
mechanism. The same mechanism of acetylation inhibition has been described for 
another neurodegenerative disease, involving the fibrillogenic protein ataxin-3 [151].  
In conclusion, regardless whether or not reduced ANG levels play a role in PD or 
ApoA-I pathologies, the ability of exogenous ANG to reduce cell death suggests that 
increasing ANG levels could serve as a means to slow down degenerative processes 
in amyloidosis. 
Further experiments will be performed to elucidate the molecular basis of the 
protective role of ANG in ApoA-I related amyloidosis. 
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Abstract

Apolipoprotein A-I (ApoA-I) is an extracellular lipid acceptor, whose role in cholesterol efflux and high-density lipoprotein formation is

mediated by ATP-binding cassette transporter A1 (ABCA1). Nevertheless, some ApoA-I variants are associated to systemic forms of amy-

loidosis, characterized by extracellular fibril deposition in peripheral organs. Heart amyloid fibrils were found to be mainly constituted by

the 93-residue N-terminal fragment of ApoA-I, named [1–93]ApoA-I. In this paper, rat cardiomyoblasts were used as target cells to analyse

binding, internalization and intracellular fate of the fibrillogenic polypeptide in comparison to full-length ApoA-I. We provide evidence that

the polypeptide: (i) binds to specific sites on cell membrane (Kd 5 5.90 6 0.70 3 10
27 

M), where it partially co-localizes with ABCA1,

as also described for ApoA-I; (ii) is internalized mostly by chlatrin-mediated endocytosis and lipid rafts, whereas ApoA-I is internalized

preferentially by chlatrin-coated pits and macropinocytosis and (iii) is rapidly degraded by proteasome and lysosomes, whereas ApoA-I

partially co-localizes with recycling endosomes. Vice versa, amyloid fibrils, obtained by in vitro aggregation of [1–93]ApoA-I, were found

to be unable to enter the cells. We propose that internalization and intracellular degradation of [1–93]ApoA-I may divert the polypeptide

from amyloid fibril formation and contribute to the slow progression and late onset that characterize this pathology.

Keywords: apolipoprotein A-I • amyloidosis • cardiomyoblasts • binding • internalization
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Introduction

Apolipoprotein A-I (ApoA-I), the major component of high-density

lipoproteins (HDL), is known to play a central role in cholesterol

efflux from cells and transport to the liver [1], a crucial process to

prevent cellular lipid overload as well as atherosclerosis.

Epidemiological studies have demonstrated that plasma levels of

HDL, and their major constituent ApoA-I, are inversely correlated

with the risk of atherosclerosis [2]. Nevertheless, the molecular

mechanism of the atheroprotective action of ApoA-I, as well as

HDL biogenesis, is not fully understood. ApoA-I may act as an

extracellular receptor of cellular cholesterol and phospholipids.

ApoA-I lipidation to form nascent HDL particles is a process that

involves ATP-binding cassette transporter A1 (ABCA1) [3–5], that

mediates cholesterol efflux to ApoA-I. ApoA-I is also known to

internalize to the endosomes, an intracellular reservoir of choles-

terol, to bind lipids and to be resecreted to the medium as HDL

[6]. Despite intense research activity suggesting a direct associa-

tion between ApoA-I and ABCA1 [7], whether or not ABCA1 is to

be considered as an ApoA-I receptor is still ambiguous. ApoA-I

association to cell surface might not involve direct binding to

ABCA1; rather, ABCA1 would induce modifications of lipid distri-

bution at the membrane facilitating ApoA-I docking [3].

Despite its protective role against hypercholesterolemia and

cardiovascular diseases, ApoA-I is associated to systemic
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amyloidoses when specific mutations occur in the 243-residue

sequence of ApoA-I. Amyloidoses, conformational diseases related

to protein misfolding, have been associated to over 40 different

peptides and proteins identified so far [8]. Mutations and/or 

environmental conditions able to destabilize the protein native

conformation kinetically favour aggregate nucleation [9] leading 

to fibrils that accumulate in amyloid deposits in tissues and

organs [8].

Sixteen variants of ApoA-I are responsible for systemic amyloi-

doses characterized by aggregate deposition in peripheral organs,

such as heart, liver or kidneys [1, 10, 11]. Amyloid fibrils isolated ex

vivo were found to be mainly constituted by N-terminal fragments

of ApoA-I, 90–100 residue long, released by a still unidentified pro-

tease. In particular, the fragment corresponding to sequence 1–93

was found to be the main constituent of cardiac fibrils extracted

from patients harbouring variant L174S ApoA-I [10] and affected by

a severe systemic amyloidosis predominantly involving the heart.

The 93-residue fibrillogenic domain of ApoA-I, extracted from

amyloid deposits of a patient who underwent a heart transplant for

end-stage heart failure, was found to be a natively unfolded protein

in water at neutral pH [12]. Acidic conditions (pH 4) were able to

switch on a complex fibrillogenic pathway, consisting of extensive

structural rearrangements of the polypeptide, that shifts from a

random coil structure to an unstable helical conformation, and then

aggregates into a b-sheet based polymeric structure [12].

We produced a recombinant version of ApoA-I 1–93 fragment,

denoted as [1–93]ApoA-I, as a pure and stable product, following

a strategy aimed at protecting the recombinant polypeptide from

intracellular degradation [13]. Conformational analyses revealed

that recombinant [1–93]ApoA-I, as the native polypeptide, under-

goes conformational transitions and fibrillogenesis, leading to the

formation of typical amyloid fibrils on a time scale comparable

with that of the natural polypeptide [13].

Nothing is known about the mechanism leading to the release

of the fibrillogenic polypeptide from a full-length amyloidogenic

variant of ApoA-I, or in which context the proteolytic cleavage

does occur. Nevertheless, the hypothesis can be raised that the

fibrillogenic polypeptide is released at the site of fibrils deposition,

where it accumulates in the extracellular space of target tissues.

Here, aggregation in fibrillar structures occurs favoured by molec-

ular crowding and the unfolded structure of the polypeptide. It has

been demonstrated that the N-terminal region of full-length ApoA-

I is involved in lipid membrane binding [14]. Recently, we sug-

gested that lipids have a key role in [1–93]ApoA-I aggregation

[15], as cholesterol, a natural ApoA-I ligand, was found to induce

and stabilize helical conformers, slowing down the aggregation

process. Moreover, zwitterionic, positively and negatively charged

liposomes were found to affect [1–93]ApoA-I conformation by

inducing the formation of helical species [15]. Hence, it is conceiv-

able that, although the fibrillogenic polypeptide accumulates in the

extracellular space of cardiac cells, it interacts with cell mem-

branes as does the full-length protein.

Here we report binding, internalization and intracellular fate of

[1–93]ApoA-I in cultured cardiomyoblasts, in comparison to the

full-length protein. Our results show for the first time that the

fibrillogenic fragment of ApoA-I is able to recognize specific bind-

ing sites on cell membrane, to be internalized in target cells and to

be degraded following an intracellular route only partially coinci-

dent with that of full-length ApoA-I.

Materials and methods

Proteins and reagents

All reagents, wild-type ApoA-I, fluorescein isothiocyanate (FITC)-insulin 

and transferrin (Tf) were from Sigma-Aldrich (St Louis, MO, USA).

LysoTracker Red was from Molecular Probes (Invitrogen, Carlsbad, CA,

USA). Anti-human ApoA-I polyclonal antibodies were purchased from DAKO

(Glostrup, Denmark); anti-b-catenin antibody from Santa-Cruz Biotecnology

(Heidelberg, Germany); anti-ABCA1 polyclonal antibodies and the chemilu-

minescence detection system (SuperSignal
®

West Pico) from Pierce

Biotechnology (Rockford, IL, USA); goat anti-rabbit and antimouse antibod-

ies, conjugated with Texas red or with Bodipy fluorescein were from

Invitrogen. [1–93]ApoA-I polypeptide was expressed and purified as previ-

ously described [15], omitting the neutralization step with ammonium

hydroxide. Pure [1–93]ApoA-I was lyophilized and stored at –708C until use.

Fibrillar aggregates were obtained by incubating [1–93]ApoA-I for 

2 weeks at 378C at 0.3 mg/ml protein concentration in 12 mM sodium phos-

phate buffer, pH 6.4 containing 20% (v/v) trifluoroethanol (TFE). By centrifu-

gation, insoluble aggregates of [1–93]ApoA-I (pellet) were separated from

the unaggregated, soluble polypeptide (supernatant). To quantify aggregated

[1–93]ApoA-I, the amount of the soluble polypeptide was determined spec-

trophotometrically and subtracted from the total amount of [1–93]ApoA-I

before aggregation. The pellet was dried under N2 to remove TFE and resus-

pended in cell medium to reach the appropriate protein concentration [16].

The suspension of the aggregated species was tested for cytotoxicity.

Cell culture, transfection and Western blot analyses

Rat embryos heart myoblasts H9c2 and human hepatic carcinoma HepG2

cells were purchased from American Type Culture Collection (ATCC).

Cells were cultured in DMEM (Sigma-Aldrich), supplemented with 10%

foetal bovine serum (HyClone; Thermo Scientific, Logan, UT, USA) and

antibiotics, in a 5% CO2 humidified atmosphere at 37°C. The growth

medium of H9c2 cells was implemented with 2 mM L-glutamine and 

2 mM sodium pyruvate. Expression vectors for enhanced green fluores-

cent protein (GFP) tagged Rab4 [17] and enhanced red fluorescent pro-

tein (RFP) tagged Rab5 [18] were kindly provided by Dr Marino Zerial

(Max-Planck-Institute, Dresden, Germany). H9c2 cells were transiently

transfected with either expression vector by the use of METAFECTENE

reagent according to the manufacturer’s instructions (Biontex-USA, San

Diego, CA, USA). After 24 hrs, transfected cells were incubated with the

appropriate protein and analysed. To prepare cell lysates, HepG2 and

H9c2 cells were scraped off in phosphate-buffered saline (PBS), cen-

trifuged at 1000 3 g for 10 min. and resuspended in lysis buffer (1 mM

MgCl2, 0.25% SDS, 1% Triton X-100 in 10 mM Tris-HCl, pH 7) contain-

ing protease inhibitors. After 30 min. incubation on ice, lysates were cen-

trifuged at 14,000 3 g for 30 min. at 48C. Supernatants were diluted in

loading buffer containing 8 M urea and analysed, without boiling, by 10%

polyacrylamide SDS-PAGE electrophoresis. Protein concentration was

determined by Bradford assay.



2654 © 2011 The Authors

Journal of Cellular and Molecular Medicine © 2011 Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd

Atomic force microscopy (AFM) analysis

[1–93]ApoA-I was incubated as described above to generate fibrillar aggre-

gates. Following incubation, the whole sample was diluted 10 times using

Milli-Q water; 10 ml aliquots of the diluted sample were deposited on freshly

cleaved mica and dried under mild vacuum. Tapping mode AFM measure-

ments were performed in air using a Dimension 3100 scanning probe

microscope equipped with a G scanning head (maximum scan size 100 mm)

and driven by a Nanoscope IIIa controller (Digital Instruments-Bruker AXS

GmbH, Karlsruhe, Germany). Images were acquired in tapping mode in air

using single beam uncoated silicon cantilevers (type OMCL-AC160TS,

Olympus, Tokyo, Japan). The drive frequency was typically 300 kHz and the

scan rate was between 0.8 and 1.0 Hz. The size of aggregates was meas-

ured from the heights in cross-section in the topographic AFM images.

Binding assays

Proteins under test (100 mg) were labelled with 1 mCi carrier-free Na
125

I

(Amersham; GE Healthcare Bio-Sciences AB, Uppsala, Sweden) using

Iodobeads (Pierce), according to the manufacturer’s instructions. Labelled

proteins were desalted on PD10 columns (Amersham) equilibrated in PBS.

The specific activity was about 1.5 mCi/mg. Cells were seeded in 24-well

plates at a density of 5 3 10
4
/well. After 24 hrs, 200 ml of binding buffer

(25 mM Hepes, pH 7.5, 1 mg/ml bovine serum albumin in DMEM), con-

taining increasing concentrations of the labelled protein under test, were

added to the cells. Following 2 hrs incubation at 48C, cells were washed

three times with PBS containing 0.1% bovine serum albumin. Bound

radioactivity (total binding) was removed by treating cells with 0.7 ml of

cold 0.6 M NaCl in PBS for 2 min. on ice and measured with a g counter

(Packard Instrument Co. Inc., Meriden, CT, USA). Non-specific binding was

determined by incubating the cells with the labelled protein in the presence

of a 40-fold molar excess of the unlabelled protein. Specific binding was

calculated by subtracting non-specific binding from total binding. Affinity

constant values (Kd) were calculated according to the Scatchard equation.

Cytotoxicity assays

Cells were seeded in 96-well plates (100 ml/well) at a density of 5 3

10
3
/well. After 24 hrs, [1–93]ApoA-I, dissolved in 12 mM sodium phos-

phate buffer, pH 6.4 (1 mg/ml) and centrifuged to remove insoluble mate-

rial, was added to the medium to a final concentration of 5 or 10 mM. To

test fibrillar aggregates, [1–93]ApoA-I was incubated as described above,

and insoluble species were resuspended in cell medium at a final concen-

tration of 5 or 10 mM and added to the cells. Cells were then grown for 

72 hrs at 378C. Cell viability was assessed by the 3-(4,5-dimethylthiazol-2-

yl)-2,5-diphenyltetrazolium bromide (MTT) assay. MTT reagent, dissolved

in DMEM without phenol red (Sigma-Aldrich), was added to the cells 

(100 ml/well) to a final concentration of 0.5 mg/ml. After 4 hrs at 378C, the

culture medium was removed and the resulting formazan salts were dis-

solved by the addition of isopropanol containing 0.1 N HCl (100 ml/well).

Absorbance values of blue formazan were determined at 570 nm using an

automatic plate reader (Microbeta Wallac 1420, Perkin Elmer). Cell survival

was expressed as the percentage of viable cells in the presence of the 

protein under test, with respect to control cells grown in the absence of 

the protein. The occurrence of plasma membrane damage was determined

by measuring the release of lactate dehydrogenase (LDH) in the culture

medium [19].

Fluorescence studies

Immediately prior to be tested, proteins were dissolved or dialysed in 0.1

M sodium carbonate, pH 9.0, to a final concentration of 1 mg/ml. Proteins

(500 mg) were conjugated to FITC, following the manufacturer’s protocol

(Sigma-Aldrich). A Sephadex G25 column, equilibrated in PBS, was used

to separate the unreacted FITC from the conjugate. The same procedure

was used to label proteins with rhodamine. Fluorescent fibrillar aggregates

of [1–93]ApoA-I were obtained by incubating the FITC-labelled polypeptide

as described for the unlabelled polypeptide. Insoluble aggregates were

resuspended in cell medium and tested as described below. Cells were

seeded on glass cover slips in 24-well plates and grown to semi-confluency.

Cells were incubated for the indicated times in complete medium with flu-

orescent proteins or compounds at the following concentrations:

[1–93]ApoA-I (3 mM), ApoA-I (1 mM), dextran (5 mg/ml), Tf (0.5 mg/ml),

insulin (0.1 mg/ml). Lysosomes were labelled by adding LysoTracker Red

(1:500) to living cells at 378C. After 40 min., cells were treated with 1

mg/ml Hoechst 33342 for 10 min. at 378C and washed with PBS. When

required, surface bound proteins were stripped with 1 M Hepes, pH 7.5,

containing 0.5 M NaCl (Hepes/NaCl) for 5 min. Cells were then fixed for 10

min. at RT with 4% paraformaldehyde in PBS.

To inhibit clathrin-dependent endocytosis, cells were pre-incubated with

either 100 mM monodansylcadaverine (MDC) for 30 min. or with 300 mM

sucrose for 15 min. As a control, cells were incubated under the same con-

ditions but in the absence of the inhibitors. Cells were then incubated for 

6 hrs with the fluorescent protein under test. For immunofluorescence analy-

ses, cells were permeabilized with 0.5% Triton X-100 in PBS (5 min.). Cells

were then incubated for 30 min. with 3% goat serum in PBS to saturate non-

specific binding sites. Afterwards, cells were incubated overnight at 48C with

anti-ABCA1 antibodies (1:200), or anti-b-catenin antibody (1:200), and then

rinsed with 0.1% Triton X-100 in PBS. Finally, cells were incubated 1 hr in

the darkness with fluorescent goat anti-rabbit or antimouse IgG (1:500).

Slides were washed with 0.1% Triton X-100 in PBS and then with PBS, and

mounted in 50% glycerol in PBS. Samples were examined using a Leica

6000 UV microscope and a Leica TCS SP5 confocal microscope, equipped

with a Leica application suite software (Leica Microsystems GmbH, Wetzlar,

Germany). All images were taken under identical conditions.

Protein degradation analyses

To inhibit proteasome activity, cells were pre-treated for 4 hrs at 378C with

2.5 mM Z-Leu-Leu-Leu-al (MG132), or with 10 mM N-Ac-Leu-Leu-

norleucinal (ALLN). Cells were then incubated with the fluorescent protein

for the indicated times. Intralysosomal catabolism was inhibited by treat-

ing cells with 20 mM ammonium chloride or 100 mM chloroquine. As a

control, cells were incubated under the same conditions but in the absence

of the inhibitors.

Results

[1–93]ApoA-I binding to cardiomyoblasts

The ability of [1–93]ApoA-I to recognize specific binding sites on

cell surface was investigated by performing binding assays of 
125

I-
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labelled [1–93]ApoA-I to rat cardiomyoblasts (H9c2) and human

hepatocytes (HepG2). These cell lines are of interest, as in ApoA-I

associated amyloidoses the heart is a natural target for aggregate

deposition in vivo, whereas the liver is the major source of ApoA-I.

The binding curves shown in Fig. 1A and B were obtained incubat-

ing cardiomyoblasts or hepatocytes, respectively, for 2 hrs at 48C

with increasing concentrations of the iodinated polypeptide, in the

absence (total binding) or presence (non-specific binding) of a 40-

fold molar excess of the unlabelled polypeptide. Specific binding

was calculated by subtracting the values relative to non-specific

binding from total binding. The data points represent the average

of three independent experiments carried out in triplicate determi-

nations. The linearization of the binding data (specific binding)

was performed according to the Scatchard equation to obtain the

linear plots shown in the insets of Fig. 1. The apparent affinity con-

stants (Kd) were determined and found to be 5.90 6 0.70 3 10
27

M and 1.78 6 0.26 3 10
27

M for H9c2 and HepG2, respectively.

These results indicate that the fibrillogenic fragment is able to bind

with high affinity to specific sites on cell surface of both cell lines.

To test the effects of the fibrillogenic polypeptide on cell viabil-

ity, cardiomyoblasts were incubated for 72 hrs in the presence of

5 or 10 mM freshly prepared [1–93]ApoA-I. MTT reduction assays

were performed to test metabolically active cells. No inhibition of

cell viability was observed in treated cells with respect to

untreated cells (Fig. 1C). Furthermore, we tested membrane

destabilization of treated cells by measuring LDH release into the

culture medium. No significant LDH release was observed upon

treatment with [1–93]ApoA-I (data not shown). Finally, the

absence of apoptotic nuclei in treated cells (Fig. 1C) confirmed

that the fibrillogenic polypeptide, at least in our experimental

conditions, is not cytotoxic for cardiomyoblasts.

Endocytosis of [1–93]ApoA-I in cardiomyoblasts

To test whether the fibrillogenic polypeptide of ApoA-I undergoes

endocytosis upon interaction with cardiomyoblasts plasma mem-

brane, we labelled [1–93]ApoA-I, as well as full-length ApoA-I,

with FITC. H9c2 cells were incubated for different lengths of time

either with the polypeptide or with the full-length protein. Cells

were then treated with high salt buffer (Hepes/NaCl) to remove

proteins specifically bound to the extracellular side of plasma

membrane. Following membrane permeabilization with Triton 

X-100, anti-b-catenin antibody was added to the cells to label the

Fig. 1 Binding of [1–93]ApoA-I to cultured cells and its effects on

cell viability. Binding curves were obtained incubating H9c2 cells

(A) or HepG2 cells (B) for 2 hrs at 48C with increasing concentra-

tions of iodinated [1–93]ApoA-I, in the absence (n, total binding)

or in the presence (h, non-specific binding) of a 40-fold molar

excess of the unlabelled polypeptide. Specific binding values (r)

were obtained by subtracting the values relative to non-specific

binding from those of total binding. The linearization of specific

binding curves was obtained according to the Scatchard equation

(insets of A and B). B: pmoles of protein bound to 1 3 10
6

cells;

F: concentration of the unbound protein. (C) MTT reduction assay

and Hoechst staining of H9c2 cells untreated or treated with 5 mM

or 10 mM [1–93]ApoA-I. Error bars indicate standard deviations

obtained from four independent experiments. All images have

been acquired at the same magnification.
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membrane compartment. As shown in Fig. 2A, after 2 hrs incuba-

tion the polypeptide (green) mostly co-localizes with b-catenin

(red), whereas after 6 hrs the polypeptide fluorescent signal was

found to be mostly intracellular (Fig. 2B). Hence, the polypeptide

binds to the membrane first and then is internalized in target cells.

Similar results were obtained with labelled ApoA-I (Fig. 2C and D).

Immunostaining was specific, as no fluorescent signals were

observed in the absence of primary antibody (data not shown).

It is known that the plasma membrane is the main platform

where lipidation of ApoA-I occurs [4], mediated by the ATP-bind-

ing cassette transporter A1 (ABCA1). This allows cellular free cho-

lesterol and phospholipids to be transferred to ApoA-I leading to

the biogenesis of nascent HDL. It has been demonstrated that

ApoA-I is internalized in an ABCA1-dependent manner, because no

internalization was observed in cells ABCA1
–/–

[20]. To test

whether ABCA1 is expressed in cardiomyoblasts, cell lysates were

analysed by Western blotting with anti-ABCA1 antibodies. HepG2

lysates were used as a positive control, as high levels of this trans-

porter have been found in the liver. As shown in Fig. 3A, an

immuno-positive species, with an apparent molecular mass corre-

sponding to that expected for ABCA1 (about 210 kDa), was pres-

ent in cell extracts prepared from H9c2 (lane 2) and HepG2 (lane

1) cells. These results were confirmed by immuno-fluorescence

analyses of H9c2 and HepG2 cells with anti-ABCA1 antibodies,

which revealed immuno-positive signals in both cell lines (Fig. 3B

and C). We observed that in H9c2 cells ABCA1 is localized both on

the plasma membrane and in intracellular compartments, whereas

in HepG2 cells it is mainly located on the plasma membrane.

Although data reported in the literature indicate that the

transporter is mostly localized on cell plasma membrane [21, 22],

consistently with its role in cellular lipid efflux, ABCA1 has been

also observed in intracellular compartments [5, 23, 24].

Furthermore, to test whether the fibrillogenic polypeptide 

co-localizes with ABCA1, we incubated H9c2 cells with rho-

damine-[1–93]ApoA-I for 2 hrs at 378C. Cells were then fixed and

incubated with anti-ABCA1 antibodies to label the transporter. We

found little co-localization between [1–93]ApoA-I (red) and ABCA1

(green). Representative images are shown in Fig. 3D. Similar

results were obtained with rhodamine-ApoA-I (Fig. 3E), in

agreement with recent reports showing that the majority of cell-

associated ApoA-I does not co-localize with ABCA1 [25].

Immunostaining was specific as no signals were detected in the

absence of primary antibody (data not shown).

Internalization pathway of [1–93]ApoA-I

To learn about the mechanism of [1–93]ApoA-I uptake in car-

diomyoblasts, we analysed different routes of endocytosis. First,

the involvement of chlathrin-coated pits was evaluated using Rab5

as a marker, as this protein regulates vesicular transport from the

plasma membrane to the endosomes. We transiently expressed

Rab5 fused to the RFP in H9c2 cells. Twenty-four hours after

transfection, cells were incubated with the FITC protein under test

Fig. 2 Endocytosis of [1–93]ApoA-I and

full-length ApoA-I in H9c2 cells. Cells

were grown on cover slips, incubated 

2 hrs (A) or 6 hrs (B) with 3 mM FITC-

[1–93]ApoA-I (green) and immunofluo-

rescently stained for b-catenin (red).

(C) and (D), cells incubated 2 or 6 hrs,

respectively, with 1 mM FITC-ApoA-I

(green) and immunostained for b-

catenin (red). Nuclei were stained with

Hoechst (blue). Cells were analysed by

epifluorescence microscopy.
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for 6 hrs at 378C, to allow internalization. As indicated in Fig. 4A,

a significant, albeit partial, co-localization of internalized

[1–93]ApoA-I (green) with RFP-Rab5 (red) was observed, indicat-

ing that a fraction of the internalized polypeptide is associated to

early endosomes. Similar results were obtained when ApoA-I was

tested (Fig. 4B), in line with recent findings [4, 5]. Additional

experiments were performed with labelled transferrin (FITC-Tf), as

a marker of the endocytic pathway. For both proteins we con-

firmed the results obtained with Rab5, because after 6 hrs incuba-

tion partial co-localization with FITC-Tf was observed (data not

shown). To further confirm that both [1–93]ApoA-I and ApoA-I are

internalized in H9c2 cells by chlatrin-mediated endocytosis, we

used specific inhibitors of this internalization pathway, such as

MDC and sucrose. Upon pre-incubation of H9c2 cells with either

MDC or sucrose, we observed that the amount of internalized

polypeptide, and that of the full-length protein, appeared to be

reduced (data not shown). Hence, endocytosis of both proteins is

slowed down, although not fully blocked, by inhibitors of chlatrin-

mediated endocytosis. This indicates either that in our experimen-

tal conditions the endocytic pathway still functions, albeit less effi-

ciently, or that endocytosis of [1–93]ApoA-I and ApoA-I does not

occur solely via chlathrin-coated pits.

Experiments were then performed to test internalization by

lipid rafts. To do so, FITC insulin was used as a marker. H9c2 cells

were incubated with rhodamine-[1–93]ApoA-I in the presence of

FITC insulin for 4 hrs at 378C. As shown in Fig. 4C, strong signals

of co-localization of [1–93]ApoA-I (red) with insulin (green) were

detected, indicating that [1–93]ApoA-I uptake occurs also by lipid

rafts. On the other hand, when the same experiment was per-

formed with rhodamine-ApoA-I, little co-localization was observed

with FITC insulin (Fig. 4D).

As it has been demonstrated that ApoA-I is also internalized by

macropinocytosis [4], we tested this internalization route for

[1–93]ApoA-I. H9c2 cells were incubated with rhodamine-

[1–93]ApoA-I in the presence of FITC dextran, a macropinocytosis

marker, for 4 hrs at 378C. As shown in Fig. 4E, little co-localization

was observed between [1–93]ApoA-I (red) and dextran (green).

On the contrary, clear signals of co-localization were detected for

ApoA-I (Fig. 4F).

According to recent reports, ApoA-I, once internalized, is

recycled back to the cell surface [3–5]. To investigate the retroen-

docytosis pathway, Rab4 was used as a marker, as it is located in

vesicles directing protein recycling from early endosomes to the

plasma membrane. We transiently transfected H9c2 cardiomy-

oblasts with a vector encoding Rab4 fused to the GFP. Twenty-four

hours after transfection, cells were incubated with rhodamine-

[1–93]ApoA-I, or ApoA-I, for 6 hrs at 378C. As shown in Fig. 5A,

[1–93]ApoA-I (red) does not co-localize with Rab4
1

endosomal

compartments (green), whereas significant signals of co-localization

were observed for ApoA-I (Fig. 5B). Taken together, these results

clearly indicate that the fibrillogenic polypeptide, once internalized

in cardiomyoblasts, is not recycled to the cell membrane, whereas

ApoA-I is shuttled back to the plasma membrane to be resecreted,

as described for other cell lines [3–5].

Intracellular fate of [1–93]ApoA-I

Next, we analysed the fate of the internalized polypeptide in car-

diomyoblasts. After a prolonged exposure to FITC-[1–93]ApoA-I

(24 hrs), the complete disappearance of intracellular fluorescent

signals associated to the polypeptide was observed (Fig. 6A and

C), suggestive of polypeptide massive degradation. To investigate

the degradation pathway, we used specific inhibitors of proteaso-

mal and lysosomal activities. When cells were pre-incubated with

the proteasome inhibitor MG132, we observed the persistence 

of [1–93]ApoA-I intracellular fluorescence at 24 hrs (Fig. 6B),

indicative of proteasome involvement in [1–93]ApoA-I degradation.

Fig. 3 ABCA1 expression and co-localization with [1–93]ApoA-I and ApoA-I. (A) Western blot analysis with anti-ABCA1 antibodies of

cell lysates prepared from HepG2 cells (25 mg total proteins, lane 1) and from H9c2 cells (50 mg, lane 2). Immunostaining for ABCA1

(green) of HepG2 cells (B) and H9c2 cells (C). Nuclei were stained with Hoechst (blue). (D) and (E), co-localization of [1–93]ApoA-I and

ApoA-I with ABCA1. H9c2 cells were incubated for 2 hrs either with 3 mM rhodamine-[1–93]ApoA-I (D), or with 1 mM rhodamine-ApoA-I

(E), and immunostained for ABCA1 (green). Nuclei were stained with Hoechst (blue). Cells were observed by confocal microscopy.
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To test whether [1–93]ApoA-I is targeted to lysosomes, we incu-

bated cells with FITC-[1–93]ApoA-I in the presence of ammonium

chloride, an inhibitor of intralysosomal catabolism. Following

incubation, lysosomes were labelled with LysoTracker red. As

shown in Fig. 6D, a strong fluorescence signal associated to the

polypeptide (green) was found to co-localize with lysosomes

(red), suggesting that lysosomes play a role in [1–93]ApoA-I

catabolism. Different results were obtained instead with full-length

ApoA-I, as even at 24 hrs incubation with FITC-ApoA-I, the persis-

tency of protein fluorescence within the cells was observed (Fig.

6E and G). This is in agreement with recent reports indicating that

in different cell types ApoA-I is not significantly degraded [4].

Moreover, as shown in Fig. 6G, ApoA-I was found to co-localize

with lysosomes, in line with reports indicating that lysosomes are

an intracellular station of ApoA-I [3, 4]. In the presence of either

MG132 or ammonium chloride, fluorescence signals associated to

ApoA-I did not significantly increase with respect to cells

untreated with the inhibitors, as shown in Fig. 6F and H, respec-

tively. Furthermore, by using different inhibitors, such as ALLN for

the proteasome, and chloroquine for the lysosomes, we confirmed

the data reported above (data not shown). Taken together, our

results indicate that the inhibition of lysosomal or proteasomal

activity does not significantly alter the amount of intracellular

ApoA-I, whereas both pathways seem to be involved in the degra-

dation of the fibrillogenic polypeptide.

Analysis of the uptake of [1–93]ApoA-I fibrils in
cardiomyoblasts and the effects on cell viability

As it is conceivable that the accumulation of the fibrillogenic

polypeptide in the extracellular space leads to fibrils deposition,

Fig. 4 Analysis of the route of

[1–93]ApoA-I and ApoA-I endocytosis

in H9c2 cells by confocal microscopy.

(A) and (B), clathrin-mediated endocy-

tosis. H9c2 cells were transiently trans-

fected with an expression vector for

RFP-Rab5. After 24 hrs, cells were

incubated 6 hrs at 378C either with 

3 mM FITC-[1–93]ApoA-I (A) or with 1

mM FITC-ApoA-I (B). (C) and (D), lipid

rafts-mediated internalization. Cells

were incubated 4 hrs at 378C either

with 3 mM rhodamine-[1–93]ApoA-I

(C), or with 1 mM rhodamine-ApoA-I

(D), in the presence of FITC insulin 

(0.1 mg/ml). (E) and (F), macropinocy-

tosis. Cells were incubated 4 hrs at

378C either with 3 mM rhodamine-

[1–93]ApoA-I (E), or with 1 mM rho-

damine-ApoA-I (F), in the presence of

FITC dextran (5 mg/ml). Nuclei were

stained with Hoechst (blue).
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[1–93]ApoA-I fibrils were obtained by incubating the polypeptide

for 2 weeks at pH 6.4 in the presence of the co-solvent TFE. AFM

analysis of the incubated sample showed the presence of fibrils

with height of 2.4 6 0.1 nm and length between 0.4 and 1.5 mm

(Fig. 7A). Fibrils coexist with prefibrillar aggregates, including

annular protofibrils, which form a network in the image back-

ground; spheroidal aggregates of variable size (height between 3

and 15 nm) are also present.

To test the effects of fibrils on cell viability, cardiomyoblasts

were incubated for 72 hrs in the presence of 5 or 10 mM aggre-

gated [1–93]ApoA-I (insoluble species). No inhibition of cell via-

bility was observed by MTT assays in treated cells with respect to

untreated cells (Fig. 7B). This was confirmed by the absence of

apoptotic nuclei in treated cells (Fig. 7B).

To verify whether the fibrillar material is able to enter the cells,

we produced fluorescent fibrils by incubating FITC-labelled

[1–93]ApoA-I under the conditions previously described. H9c2

cells were incubated for 6 hrs with fluorescent fibrils (insoluble

species) and then treated with Hepes/NaCl buffer to remove

polypeptide molecules specifically bound to the extracellular 

side of the plasma membrane. No fluorescent signals associated

to [1–93]ApoA-I fibrils were observed by epifluorescence

microscopy analysis, demonstrating that no significant internal-

ization of fibrils occurs in cardiomyoblasts (Fig. 7C).

Fig. 5 Co-localization of [1–93]ApoA-I

and ApoA-I with Rab4. H9c2 cells were

transiently transfected with an expres-

sion vector for GFP-Rab4. After 24 hrs,

cells were incubated 6 hrs at 378C either

with 3 mM rhodamine-[1–93]ApoA-I (A)

or with 1 mM rhodamine-ApoA-I (B).

Nuclei were stained with Hoechst

(blue). Cells were observed by confocal

microscopy.

Fig. 6 Analysis of the degradation pathway of [1–93]ApoA-I and ApoA-I in H9c2 cells by epifluorescence microscopy. (A)–(D)

[1–93]ApoA-I degradation. Cells were incubated 24 hrs at 378C with 3 mM FITC-[1–93]ApoA-I in the absence (A, C) or in the presence

of MG132 (2.5 mM) (B), or ammonium chloride (100 mM) (D). (E)–(H), ApoA-I degradation. Cells were incubated for 24 hrs at 378C

with 1 mM FITC-ApoA-I, in the absence (E and G) or in the presence of MG132 (F), or ammonium chloride (H). Lysosomes were stained

with LysoTracker red. Nuclei were stained with Hoechst (blue).



2660 © 2011 The Authors

Journal of Cellular and Molecular Medicine © 2011 Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd

Discussion

ApoA-I represents the intriguing case of a protein which, in its

native form, plays a key role in cholesterol homeostasis, as it acts

as an extracellular acceptor of lipids. Nevertheless, by specific

mutations ApoA-I is converted into the precursor of natively

unfolded pathogenic fragments associated with familial systemic

amyloidoses [1]. N-terminal fragments of ApoA-I, 90–100 residue

long, accumulate in tissues and organs of patients carrying one of

the 16 amyloidogenic mutations identified so far in ApoA-I gene

[1, 10, 11]. The molecular mechanism responsible for ApoA-I

associated amyloid diseases remains largely unknown. However,

recent findings allowed us to raise the hypothesis that the muta-

tions located in ApoA-I N-terminal region are amyloidogenic as

they favour the proteolytic cleavage responsible for the release of

the fibrillogenic polypeptide [26].

As the heart is one of the targets of ApoA-I amyloid aggregate

deposition in patients affected by the disease, rat cardiomyoblasts

(H9c2 cell line) were selected for in vitro analyses. In this study, we

demonstrated that the fibrillogenic polypeptide is able to specifi-

cally bind to cardiomyoblasts, as well as to human hepatocytes.

The apparent affinity constants (Kd 5 5.90 6 0.70 3 10
27 

M and

1.78 6 0.26 3 10
27

M for H9c2 and HepG2, respectively) were

found to be comparable to those previously reported for lipid-free

ApoA-I binding to HepG2 cells (Kd 5 0.84 3 10
27

M) [27], and to

aortic endothelial cells (Kd 5 0.8 3 10
27 

M) [28]. These results are

also consistent with the finding that region 62–77 of ApoA-I is a

membrane binding domain of lipid-free ApoA-I, because the corre-

sponding synthetic peptide binds with high affinity (Kd ~ 10
27

M)

to HepG2 cells [29]. Our data are also reinforced by the finding that

region 1–43 is involved in ApoA-I lipid binding [14].

As ABCA1 transporter plays a central role in ApoA-I membrane

binding and lipidation [3–5], we analysed the presence of this

transporter in H9c2 cells. Immunofluorescence analyses demon-

strated that ABCA1 is expressed in cardiomyoblasts, where it was

found to partially co-localize with both full-length ApoA-I and its

fibrillogenic polypeptide, supporting the hypothesis that ApoA-I

and [1–93]ApoA-I share common determinants for membrane

association. Low co-localization between ApoA-I and ABCA1 is in

agreement with the general view that only a small fraction of

membrane bound ApoA-I appears to co-localize with ABCA1 [25].

To explain these observations, a model was recently proposed 

[4, 30], in which the interaction of a small fraction of lipid-free 

ApoA-I to ABCA1 is sufficient to activate ABCA1 lipid translocase

activity, which in turn promotes the formation of specialized lipid

domains, acting as high affinity binding sites for ApoA-I [30].

Fig. 7 Analysis of [1–93]ApoA-I fibrils.

(A) Tapping mode AFM image (height

data) of aggregated [1–93]ApoA-I.

Upon incubation in the aggregating

conditions, the whole sample was

observed. Fibrils coexist with prefibrillar

aggregates; spheroidal aggregates are

also found. Scan size 3.0 mm, Z range

10 nm. (B) Effects of [1–93]ApoA-I fib-

rils on cell viability. MTT reduction

assay and Hoechst staining of H9c2

cells, untreated or treated with 5 mM or

10 mM [1–93]ApoA-I fibrils, are shown.

Error bars indicate standard deviations

obtained from three independent exper-

iments. Nuclei images have been

acquired at the same magnification. 

(C) Analysis of internalization of

[1–93]ApoA-I fibrils in H9c2 cells. Cells

were incubated for 6 hrs with 3 mM

FITC-labelled [1–93]ApoA-I fibrils 

and analysed by epifluorescence

microscopy. Nuclei were stained with

Hoechst (blue).
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Therefore, although ApoA-I binding occurs in an ABCA1-dependent

manner, most of ApoA-I molecules bind to lipids rather than to

ABCA1 itself [4].

We demonstrated that ApoA-I fibrillogenic polypeptide is able

to enter cardiac cells, as shown by fluorescence analyses. Our

results support roles for both chlathrin- and lipid raft-mediated

pathways in [1–93]ApoA-I internalization, with very little contri-

bution of macropinocytosis. Upon internalization, no involvement

of the retroendocytosis pathway was observed; rather, the 

fibrillogenic fragment is targeted to proteasomal and lysosomal

stations for degradation, as at 24 hrs no intracellular fluorescent

signals were detected. This is not surprising, considering that the

largely unfolded structure of the fibrillogenic polypeptide is

responsible for its susceptibility to proteolytic cleavages, as 

previously demonstrated by experiments of limited proteolysis

[13]. Accordingly, to produce the recombinant form of the

polypeptide in a prokaryotic expression system, it has been 

necessary to transiently fuse the polypeptide to a stable bacterial

protein to avoid intracellular degradation [13]. The rapid degrada-

tion of the polypeptide is also in agreement with the absence of

cytotoxic effects on cardiomyoblasts, at least in the experimental

conditions tested.

Furthermore, in parallel experiments we provided evidence that

full-length ApoA-I is internalized in cardiomyoblasts via chlatrin-

dependent endocytosis and macropinocytosis as predominant

internalization routes, with very low signals of co-localization with

lipid rafts. To our knowledge, this is the first evidence of ApoA-I

internalization in cardiac cells. Moreover, although ApoA-I is known

to interact with plasma membrane lipid rafts to control cholesterol

export [31], this is the first time that lipid rafts involvement in

ApoA-I internalization has been analysed. Once internalized, ApoA-I

associates to Rab4-labelled endosomal compartment, a station

involved in ApoA-I recycling to the cell membrane in other cell lines

[3–5, 23]. At 24 hrs, ApoA-I associated fluorescent signals are still

observed in cardiomyoblasts and co-localize with lysosomes. It is

noteworthy that lysosomes are best known for their role in degra-

dation, although recent studies have shown that they may also fuse

to the plasma membrane and release their content to the extracel-

lular medium [32]. The question of the physiological role of ApoA-I

in lysosomes remains controversial. In fact, some authors demon-

strated that ApoA-I reaches lysosomes to be degraded [3, 4], but

studies support the idea that ABCA1-bound ApoA-I traffics to late

endosomal vesicles and/or to lysosomes. Being these stations

intracellular cholesterol reservoirs, here nascent lipoprotein parti-

cles are formed and then secreted from the cell [33–35].

In conclusion, the data reported here reveal that ApoA-I fibril-

logenic fragment, the main constituent of amyloid fibrils, binds to

target cells, is internalized and rapidly degraded. The internaliza-

tion routes, intracellular pathways and degradation mechanisms

of full-length ApoA-I and its fibrillogenic polypeptide are not fully

coincident, as schematically depicted in Scheme 1.

We surmise that the intracellular fate of the polypeptide may be

relevant in the development of the pathology. The continuous accu-

mulation of the natively unfolded polypeptide in the cardiac tissue

leads to a progressive, massive occupancy of the extracellular

space by amyloid deposits, as observed in pathological hearts,

from which the natural fibrillogenic polypeptide can be isolated

[10]. During the fibrillogenic process, a dynamic equilibrium

between monomeric species and aggregated states has been pro-

posed [36]. Here we provided evidence that, besides aggregation in

Scheme 1 Schematic representation of

internalization routes and intracellular

fates of [1–93]ApoA-I and ApoA-I in

H9c2 cells. Lipid rafts are coloured in

red; chlatrin-coated pits in green;

macropinocytosis in blue. Rab4 vesicles

are represented by green circles. N:

nucleus; P: proteasome; L: lysosomes.
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Sixteen variants of apolipoprotein A-I (ApoA-I) are associated 

with hereditary systemic amyloidoses, characterized by 

amyloid deposition in peripheral organs of patients. As 

these are heterozygous for the amyloidogenic variants, their 

isolation from plasma is impracticable and recombinant 

expression systems are needed. Here we report the 

expression of recombinant ApoA-I amyloidogenic variant 

Leu174 with Ser (L174S) in stably transfected Chinese 

hamster ovary-K1 cells. ApoA-I variant L174S was found to 

be efficiently secreted in the culture medium, from which 

it was isolated following a one-step purification procedure. 

Mass spectrometry analyses allowed the qualitative and 

quantitative definition of the amyloidogenic variant lipid 

content, which was found to consist of two saturated and 

two monounsaturated fatty acids. Interestingly, the same 

lipid species were found to be associated with the wild-type 

ApoA-I, expressed and isolated using the same cell system, 

with lower values of the lipid to protein molar ratios with 

respect to the amyloidogenic variant. A possible role of fatty 

acids in trafficking and secretion of apolipoproteins may be 

hypothesized.

Keywords: Amyloidosis, ApoA-I variants, apolipoprotein 

A-I, mass spectrometry, recombinant amyloidogenic 

proteins

Abbreviations: ApoA-I, apolipoprotein A-I; AApoA-I(L174S), 

ApoA-I variant carrying the mutation L174S; CAD, coro-

nary artery disease; CHO, Chinese ovary hamster; ES-MS, 

electrospray mass spectrometry; GC-MS, gas chromatog-

raphy mass spectrometry; HDL, high-density lipoproteins; 

RCT, reverse cholesterol transport 

Introduction

 e biological role of apolipoprotein A-I (ApoA-I), the main 
component of high-density lipoproteins (HDL), consists 
mostly in the removal of excess cell cholesterol from periph-
eral tissues and cholesterol transfer via the plasma to the liver, 
where it is either recycled back to plasma as a component of 
newly formed lipoproteins or is excreted from the body via 
bile [1].  is pathway, named reverse cholesterol transport 
(RCT), plays a key role in the prevention of atherosclerosis, so 
that plasma HDL levels correlate inversely with the incidence 
of coronary artery disease (CAD) [2].

ApoA-I is synthesized in the liver and intestine as a pre-pro-
protein.  e 18-residue pre-peptide is cleaved intracellularly 
by a signal peptidase during translocation in the endoplasmic 
reticulum to give a pro-protein, with a hexapeptide amino-
terminal extension.  e mature protein (28 kDa) is secreted 
in the plasma, mostly associated with lipids in spherical 
HDL [3], or in small amount in a lipid-free/lipid-poor state 
(5%−10%) [1,4]. In the RCT pathway, phospholipids and 
unesteri#ed cholesterol bind to lipid-free/lipid-poor ApoA-I. 
At the cell membrane, this complex interacts with the ATP-
binding cassette A1 that promotes HDL biogenesis [5]. 
From mature HDL, lipid-free/lipid-poor ApoA-I is released 
through the action of the scavenger receptor B type 1 [1] and 
triglycerides transferred to other HDL subclasses or degraded 
by speci#c lipases [3].  us, a dynamic process, not yet fully 
understood, consisting of lipidation, delipidation and relipi-
dation of ApoA-I is critical in ApoA-I biological functions. 
To this regard, the conformational plasticity of ApoA-I is a 
functionally relevant feature for the complex mechanism of 
its biological action [6–8].

Apolipoprotein A-I amyloidogenic variant L174S, expressed and isolated 
from stably transfected mammalian cells, is associated with fatty acids
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Besides its biological functions, ApoA-I is also associated 
with hereditary systemic amyloidoses, when speci!c muta-
tions occur in ApoA-I gene. ApoA-I amyloidoses are domi-
nantly inherited diseases characterized by extracellular !brillar 
deposits mainly localized in the heart, liver, kidneys and testis. 
"ere are 16 variants of ApoA-I identi!ed so far associated 
with the disease [1,9,10]. In all cases, amyloid !brils isolated 
ex vivo were found to be mainly constituted by N-terminal 
fragments of ApoA-I, 90–100 residue long. In particular, vari-
ant carrying the substitution of Leu174 with Ser (L174S) is 
responsible for preferential deposition of amyloid !brils in 
the heart. In all the specimens investigated so far, the main 
constituent of !brils was found to be a 93-residue polypeptide 
whose sequence corresponds to the N-terminal region of the 
protein [9]. Nevertheless, the mechanism leading to the release 
of the !brillogenic polypeptide from a full-length amyloido-
genic variant of ApoA-I is still fully unknown. To shed light 
on the disease molecular mechanism, we produced a recom-
binant form of the !brillogenic polypeptide [11–13]. Based on 
experimental and computational data, we recently proposed a 
model [14], suggesting that all ApoA-I mutations associated 
with amyloidoses increase the conformational #exibility of 
the protein chain in the loop region 83–96, thus permitting 
the proteolytic cleavage and the release of the amyloidogenic 
N-terminal polypeptide.

All the patients analyzed so far were found to be heterozy-
gous for the mutated gene, thus expressing both the wild-type 
and the mutated form, with the latter circulating in plasma at 
lower levels than the wild-type [1]. "erefore, being imprac-
ticable any approach to isolate the ApoA-I variant as a pure 
product from patients tissues or plasma, heterologous expres-
sion systems are needed. Whereas a variety of prokaryotic 
and eukaryotic expression systems have been used to produce 
recombinant wild-type ApoA-I [15–17], to date only the amy-
loidogenic variant of ApoA-I carrying the mutation G26R has 
been isolated from bacterial cells [18]. Here, we report the 
expression of ApoA-I amyloidogenic variant L174S in sta-
bly transfected mammalian cells. "e recombinant protein, 
e$ciently secreted in the culture medium, was isolated fol-
lowing a one-step puri!cation procedure. Mass spectrometry 
analyses revealed the association of four lipid species with the 
recombinant protein.

Methods

Materials
Chinese hamster ovary (CHO)-K1 cells were from ATCC 
(Manassas, VA, USA). All reagents, ApoA-I and anti-actin 
polyclonal antibodies were purchased from Sigma-Aldrich 
(St. Louis, MO, USA). Rabbit anti-ApoA-I polyclonal antibod-
ies were purchased from Dako (Glostrup, Denmark). Protein 
concentration was determined by the Bradford assay. "e 
chemiluminescence detection system (SuperSignal  West Pico, 
"ermo Fisher Scienti!c, Rockford, IL, USA) was from Pierce.

Cloning
Plasmid pBOShApoAIgIS, encoding human ApoA-I, was 
kindly provided by Prof. L. Pastore [19]. "e cDNA encoding 

ApoA-I variant L174S was obtained by overlap extension 
polymerase chain reaction mutagenesis using pBOShApoAI-
gIS as a template. Two couples of primers were used (a-b; c-d). 
a: 5 -GGG GTA CCG AAG GAG GTC CCC CAC GG-3 ; b: 
5 -CGC GGC GCT GCG CTG GCG CAG CTC-3 ; c: 5 -CAG 
CGC AGC GCC GCG CGC CTT GAG-3 ; d: 5 -GCT CTA 
GAT CTG AGC ACC GGG AAG GG-3 . "e sequences 
underlined represent the mutagenic codons. "e recombi-
nant plasmid carrying the mutated sequence was denoted as 
pBOSApoAI(L174S). Automated DNA sequencing was per-
formed by Euro!ns-MWG (Bavaria, Germany).

Cell transfection
CHO-K1 cells were plated on 6-well culture dishes (1.5 × 105 
cells/well) in Dulbecco’s modi!ed Eagle’s medium (DMEM-
F12, Sigma-Aldrich, St. Louis, MO, USA), supplemented 
with 10% fetal bovine serum (HyClone, "ermo Fisher 
Scienti!c, Logan, UT, USA) and antibiotics. A*er 24 hours, 
cells were co-transfected with pSVneo plasmid (0.15 µg), 
conferring neomycin resistance, and the plasmid encoding 
either AApoA-I(L174S) or the wild-type protein (1.5 µg). 
Transfections were performed using Lipofectine (Invitrogen, 
Carlsbad, CA, USA) as described by the manufacturer. A*er 
48 hours, cells were grown in the presence of 0.5 mg/ml G418 
to select stably transfected clones.

Analysis of ApoA-I expression and secretion
Transfected or untransfected CHO-K1 cells were plated on 
6-well culture dishes (1 × 105 cells/well) in DMEM-F12. A*er 
24 hours, the medium was replaced by HyQSFMCHO ("ermo 
Fisher Scienti!c) Author: city and country needed and cells 
were grown in the absence of serum for di<erent lengths of time 
(24, 48, 72 hours). Cells were then counted using the trypan 
blue exclusion assay. "en, for each sample the cell-conditioned 
medium and the cell lysate were analyzed for the presence of the 
recombinant protein. To analyze intracellular proteins, 20 000 
cells were lysed in 1% NP40 in phosphate bu!ered saline (PBS) 
containing protease inhibitors (Roche, Mannheim, Germany). 
Upon 30-minute incubation on ice, lysates were centrifuged at 
14 000 g for 30 minutes at 4°C. Following the determination of 
protein content by the Bradford assay, 25 µg of proteins were 
analyzed by 15% sodium dodecyl sulfate polyacrylamide gel 
electrophoresis (SDS-PAGE) followed by western blotting with 
anti-ApoA-I antibodies (1:500 dilution). Similarly, aliquots of 
conditioned medium corresponding to 20 000 cells were ana-
lyzed for the presence of the recombinant protein.

Isolation of the recombinant proteins
Transfected cells were plated at a density of 8 × 104 cells/
cm2 (corresponding to 2 × 105 cells/ml) in HyQSFMCHO 
serum-free medium for 72 hours (serum-free procedure). 
"e cell-conditioned medium was collected and centrifuged 
at 1500 rpm for 15 minutes at room temperature to remove 
cell debris. NaCl (0.8 M !nal concentration) was added to the 
supernatant and the sample was centrifuged at 12 000 rpm 
for 15 minutes at 4°C to remove insoluble species, !ltered 
and loaded on a hydrophobic chromatography column 
(1 ml, HiTrap Butyl-S FF, GE Healthcare, Uppsala, Sweden) 
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following the manufacturer’s instructions. Brie!y, a"er load-
ing, the column was washed with 10 volumes of washing 
bu#er (0.8 M NaCl in 50 mM sodium phosphate bu#er pH 7) 
to remove unbound proteins; recombinant ApoA-I was then 
eluted with 20 volumes of 20% isopropanol in 10 mM sodium 
phosphate bu#er. Fractions were analyzed by SDS-PAGE on 
15% polyacrylamide gels followed by coomassie staining and 
western blotting with anti-ApoA-I antibodies.

For immuno-a$nity chromatography, a matrix was  
generated by linking anti-ApoA-I antibodies to an 
N-hydroxysuccinimide-activated resin (HiTrap, GE Healthcare) 
following the manufacturer’s instructions. &e column (1 ml) 
was equilibrated in PBS. A"er loading, unbound proteins were 
removed by extensive washing (PBS, 10 volumes) and the recom-
binant protein was eluted in 0.1 M glycine/HCl bu#er, pH 2.7.

Reverse phase high-performance liquid chromatography 
was performed on a Ultrapure C4 column (Vydac, Grace, IL) 
with a gradient of bu#er B (95% acetonitrile, 5% formic acid 
in 0.05% tri!uoroacetic acid) in bu#er A (5% formic acid in 
0.05% tri!uoroacetic acid) using a PerkinElmer chromato-
graphic system (Series 200, Shelton, CT, USA). Proteins were 
eluted in 100% bu#er B.

Lipid extraction
Lipids were extracted from protein samples by adding an equal 
volume of chloroform. &e procedure was repeated three times 
and the organic extracts were collected and dried. Lipids were 
then trimethylsilylated in 200 μl of N, O-bis(trimethylsilyl) 
acetamide (TMSA) for 45 minutes at 80°C. Samples were dried 
under nitrogen, dissolved in 50 μl of hexane, centrifuged to 
remove the excess of solid reagents and the supernatants (1/50 
of total volume) analyzed by mass spectrometry.

Mass spectrometry analyses
For lipids determinations, gas chromatography mass spec-
trometry (GC-MS) analyses were performed using a 5390 
MSD quadrupole mass spectrometer (Agilent Technologies, 
Santa Clara, CA, USA) equipped with a gas chromatograph 
by using a SPB-5 fused silica capillary column (30 m, 0.5 mm 
ID, 0.25 μm ") from Supelco (Sigma-Aldrich, St. Louis, MO, 
USA). &e injection temperature was 250°C. &e oven tem-
perature was increased from 25°C to 90°C in 1 minute and 
held at 90°C for 1 minute before increasing to 140°C at 25°C/
minute, to 200°C at 5°C/minute and 6nally to 300°C at 10°C/
minute. Electron ionization mass spectra were recorded by 
continuous quadrupole scanning at 70 eV ionisation energy.

Protein analyses were performed by electrospray mass spec-
trometry (ES-MS) using a Quattro-Micro triple quadrupole  
mass spectrometer (Waters, Micromass, UK) as described in [14].

Results

Expression of the recombinant proteins
CHO-K1 cells were stably transfected either with plasmid 
pBOShApoAIgIS, carrying the cDNA encoding wild-type 
ApoA-I, or with plasmid pBOSApoAI(L174S), carrying the 
cDNA encoding the amyloidogenic variant ApoA-I(L174S). 
Both recombinant proteins carried at their N-terminus the 

ApoA-I signal peptide sequence. By growing the cells under 
antibiotic selection, single, stably transfected clones were iso-
lated; for each recombinant protein a single clone was selected 
for analyses. A"er 72 hours cell growth, the conditioned 
medium was analyzed by western blotting with anti-human 
ApoA-I polyclonal antibodies. For both wild-type ApoA-I 
and AApoA-I(L174S) transfectants an immunopositive spe-
cies with a molecular mass corresponding to that of ApoA-I 
was observed in the cell-conditioned medium (Figure 1A and 
1B, lane 12).

To analyze the kinetics of expression and secretion of 
the recombinant proteins, time-course experiments were 
performed. Cells were grown in complete DMEM-F12 
medium for 24 hours, then grown in serum-free medium 
(HyQSFMCHO) for up to 72 hours. After 24, 48 and 72 
hours growth, cell lysates were prepared and analyzed by 
western blotting using anti-ApoA-I antibodies. Definite 
amounts of pure ApoA-I (from 25 to 200 ng) were analyzed 
by western blotting (Figure 1A and 1B, lane 1–4) to gen-
erate a reference plot correlating immunopositive signals 
to protein amount. As shown in Figure 1A and 1B (lanes 
6–8), an immunopositive species corresponding to ApoA-I 
molecular weight (MW) was detected in the intracellular 

Figure 1. Analysis of intra- and extracellular levels of recombinant 
ApoA-I and AApoA-I(L174S) variant in CHO-K1 cells. A) Western 
blot analysis with anti-ApoA-I antibodies of wild-type ApoA-I. Lanes 
1–4, increasing amounts of standard ApoA-I (25, 50, 100, 200 ng); 
lane 5, lysate of untransfected cells; lanes 6–8, lysates of stably trans-
fected cells at 24, 48, 72 hours, respectively; lane 9, cell-conditioned 
medium of untransfected cells; lanes 10–12, cell-conditioned medium 
of transfected cells at 24, 48, 72 hours, respectively. !e upper bands 
in lanes 5–8 refer to endogenous actin used as an internal standard. B) 
Western blot analysis with anti-ApoA-I antibodies of AApoA-I(L174S) 
variant. Samples as in A. C) Quantitative analysis of intra- and extra-
cellular recombinant protein levels as a function of time (24 hours, 
black bars; 48 hours, grey bars; 72 hours, white bars). Protein amounts 
are expressed as μg of protein/1 × 106 cells. !e data represent the 
means ± standard deviation of protein amounts determined in three 
independent experiments.
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fraction of both transfected clones. Endogeneous actin, 
measured with an anti-actin antibody, was used as an 
internal standard (lanes 5–8). No significant differences 
in protein amount during the time course were detected 
by densitometric analyses (Figure 1C). No immunoposi-
tive bands were detected in untransfected cells (Figure 1A 
and B, lane 5), indicating that no endogenous ApoA-I is 
expressed in CHO-K1 cells.

We then analyzed the cell-conditioned medium of CHO-K1 
cells stably expressing wild-type ApoA-I (Figure 1A, lanes 
10–12) and AApoA-I(L174S) variant (Figure 1B, lanes 10–12). 
Densitometric analyses (Figure 1C) indicated that the maxi-
mum level of extracellular wild-type ApoA-I was reached at 
48 hours, with no signi!cant di"erences at 72 hours. Instead, 
in the case of AApoA-I(L174S) the amount of the secreted 
protein at 72 hours was found to be higher than at 48 hours 
(Figure 1C). #e overall data indicate that both proteins are 
e$ciently secreted, although following di"erent kinetics. We 
estimated that about 5.4 mg/l of wild-type ApoA-I and 4.5 mg/l 
of the amyloidogenic variant were secreted in 72 hours in the 
culture medium.

A comparison of the intra and extracellular amount of the 
recombinant proteins indicated that at any time of cell growth 
both proteins are mostly secreted by CHO-K1 cells. #e 
intracellular amount of wild-type ApoA-I does not change 
signi!cantly overtime, representing about 2%−3% of the total 
amount (inside plus outside). In the case of AApoA-I(L174S), 

instead, the intracellular fraction at 24, 48 and 72 hours repre-
sents about 17%, 8% and 4% of the total recombinant protein, 
respectively, according to the observation that protein secre-
tion increases overtime.

Isolation of the recombinant proteins
In the procedure described above, cells were grown in a com-
plete medium for 24 hours and then in serum-free medium. 
Nevertheless, in these conditions we noticed that traces of 
serum proteins contaminated the recombinant products, even 
a'er extensive cell wash to remove serum (data not shown). 
#erefore, to isolate the recombinant proteins, cells were 
plated in serum-free HyQSFMCHO medium and grown in 
the same medium (serum-free procedure). To evaluate pro-
tein expression levels, aliquots of cell-conditioned medium 
corresponding to 20 000 cells were withdrawn at 24, 48, 72 
hours and analyzed by western blotting. As shown in Figure 2, 
both wild-type ApoA-I and L174S variant were found to be 
expressed and secreted by the cells, with the maximum expres-
sion level reached at 72 hours (lanes 3–5 and 6–8, respec-
tively). We estimated that about 1.4 mg/l of each protein were 
secreted in 72 hours, a value lower than those obtained in the 
presence of serum.

To isolate the recombinant proteins, 72 × 106 cells express-
ing either the wild-type protein or the variant were grown in 
serum-free medium (360 ml). A'er 72 hours, the conditioned 
medium was centrifuged and loaded on a Butyl-S chromato-
graphic column, upon addition of 0.8 M NaCl (!nal concen-
tration). #e eluted fractions were stained by coomassie blue 
(Figure 3A and C) and analyzed by western blotting with 
anti-ApoA-I antibodies (Figure 3B and D). #e results indi-
cated that a protein species, whose migration corresponds to 
that of ApoA-I, was present in both samples and found to be 
recognized by anti-ApoA-I speci!c antibodies (Figure 3B and 
D). #e variant L174S was estimated to be more than 90% 
pure, whereas an additional protein species was observed in 
wild-type ApoA-I sample (Figure 3A). About 0.7 mg of vari-
ant AApoA-I(L174S) (~50% yield) and 0.3 mg of wild-type 
ApoA-I (~20% yield) were obtained from 1 l of cell-condi-
tioned medium.

Figure 2. Western blot analysis of recombinant ApoA-I and AApoA-
I(L174S) levels in the conditioned medium of CHO-K1 cells. Lanes 
1 and 6, standard ApoA-I (25 ng); lanes 2 and 7, cell-conditioned 
medium of untransfected cells; lanes 3–5, cell-conditioned medium of 
cells stably expressing wild-type ApoA-I at 24, 48, 72 hours, respec-
tively; lanes 8–10, cell-conditioned medium of cells stably expressing 
AApoA-I(L174S) at 24, 48, 72 hours, respectively.

Figure 3. Analysis by sodium dodecyl sulfate polyacrylamide gel electrophoresis of wild-type ApoA-I and AApoA-I(L174S) a!er hydrophobic 
interaction chromatography. A) Coomassie staining of wild-type ApoA-I. Lane 1, cell-conditioned medium a!er 72 hours cell growth; lane 2, 
unbound protein species; lane 3, pre-stained markers; lane 4, standard ApoA-I (2 µg); lanes 5–7, eluted fractions (2 µg). B) Western blot analysis of 
wild-type ApoA-I. Samples as in A. C) Coomassie staining of AApoA-I(L174S). Lane 1, pre-stained markers; lane 2, cell-conditioned medium a!er 
72 hours cell growth; lane 3, unbound protein species; lane 4, standard ApoA-I (2 µg); lanes 5–7, eluted fractions (2 µg). D) Western blot analysis 
of AApoA-I(L174S). Samples as in C.
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 e recombinant proteins were analyzed by ES-MS.  e 
analysis of wild-type ApoA-I showed the occurrence of an 
equal amount of two protein components, whose molecular 
masses corresponded to the wild-type mature protein (MW 
28091.8 ± 6.0 Da) and its unprocessed form containing the 
pro-peptide (MW 28 969.6 ± 4.8 Da). Similarly, the molecu-
lar masses of the amyloidogenic variant of ApoA-I were 
28 938.5 ± 2.6 Da and 28 055.4 ± 2.7 Da for the unprocessed 
and mature form, respectively.  e latter values con#rmed the 
presence of substitution of leucine for serine in the amyloido-
genic variant.

Analysis of lipid content
Since ApoA-I has high a$nity for lipid molecules, we analyzed 
the presence of lipids in the isolated recombinant protein 
samples. By GC-MS analysis, the lipid content of wild-type 
ApoA-I and amyloidogenic variant AApoA-I(L174S) was 
evaluated. Following liquid-liquid extraction of the lipid 
fraction, the mixture of lipids was modi#ed to trimethylsilyl 
derivatives and directly analyzed by GC-MS.

Gas chromatograms obtained by monitoring the total 
ion current related to lipids as a function of time are 
shown Figure 4. Either for the wild-type protein (Figure 
4A) and for its variant (Figure 4B), the presence of several 
analytes was revealed. All the analyses were performed as 
triplicates. Similarly, we identified the analytes present in 
control samples (not shown), represented by an uncon-
ditioned medium, as well as a conditioned medium from 
untransfected cells, both after hydrophobic chromatog-
raphy. All the compounds were identified on the basis of 
the electron impact fragmentation spectra (not shown). 
Upon subtraction of species present also in the controls, a 
list of compounds specifically related to each recombinant 
protein was obtained (Figure 4C). Interestingly, for both 
recombinant proteins four species were found to be pres-
ent, identified as: oleic acid (cis-9-octadecanoic acid, 18:1), 
stearic acid (octadecanoic acid, 18:0), cis-11-octadecanoic 
acid (18:1), tetradecanoic acid (14:0), with stearic acid as 
the most abundant.

To exclude that the identi#ed lipids were selected by the 
hydrophobic chromatography through unspeci#c interac-
tions with the resin, alternative procedures to isolate the 
recombinant proteins were used, such as immunoa$nity 
chromatography and reverse phase chromatography.  e 
proteins isolated following these procedures were analyzed as 
described above. No di%erences in the lipid composition were 
detected with respect to those reported above (not shown). 
Similar results were obtained when samples eluted from the 
hydrophobic chromatography were extensively dialyzed (not 
shown).

As shown in Figure 4C, signi#cant di%erences were appre-
ciated in the relative amount of fatty acids in the mutant and 
the wild-type protein. A semiquantitative analysis revealed 
di%erent lipid-to-protein molar ratios for the two proteins, 
with higher values associated with the variant protein with 
respect to the wild-type. Interestingly, the lipid-to-protein 
molar ratios calculated for the amyloidogenic variant were 

signi#cantly higher (1.5- to 2.5-fold) than those deter-
mined for wild-type ApoA-I (Figure 4C). Only in case of 
stearic acid, the values calculated for the two proteins were 
comparable.

Discussion

ApoA-I amyloidogenic variant L174S, as well as the wild-
type protein, were expressed in stably transfected CHO-K1 
cells. Both recombinant proteins were found to be e$ciently 
secreted in the culture medium, but with di%erent kinetics. 
 ese observations are not in line with those reported by 
Marchesi et al. [20], who found that ApoA-I variants L75P and 
L174S were preferentially retained in the cell compartment of 
transiently transfected monkey kidney cells (COS-7), whereas 

Figure 4. Gas chromatograms obtained by monitoring the total ion 
current as a function of time for wild-type ApoA-I (A) and AApoA-
I(L174S) variant (B). !e retention times of the four species associated 
with the recombinant proteins, indicated by an arrow, are reported.  
(C) Semi-quantitative data of the identi"ed lipids are reported as lipid 
to protein molar ratio. !e data represent the means ± standard devia-
tion of lipid to protein molar ratios determined in three independent 
experiments.
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most of wild-type ApoA-I was secreted. !ese discrepancies 
may rely on the di"erent experimental approaches used, as 
we performed a kinetic analysis of the intra and extracellu-
lar distribution of ApoA-I and its variant produced by stably 
transfected cell clones, whereas Marchesi et al. [20] analyzed 
protein distribution at a #xed time interval (48 hours) in tran-
siently transfected cells.

We isolated the wild-type protein and its variant from 
the cell medium following a one-step puri#cation proce-
dure. Mass spectrometry analyses indicated that about 50% 
of both recombinant proteins were correctly processed in 
their mature form upon removal of the pro-peptide. We 
also de#ned the lipid content of the recombinant proteins 
and demonstrated that in both cases two saturated and two 
monounsaturated fatty acids were associated with the pro-
teins. Interestingly, a higher lipid-to-protein molar ratio was 
observed for the amyloidogenic variant. As lipid binding 
proteins, ApoA-I and its amyloidogenic variants are expected 
to interact with a variety of lipids, although to our knowl-
edge no evidence of ApoA-I interaction with fatty acids has 
been provided so far. It is known that long-chain saturated, 
monounsaturated and polyunsaturated fatty acids have a 
role in a number of cellular processes. A saturated fatty acid-
rich diet has been associated with an increased incidence of 
CAD, whereas high intake of monounsaturated fatty acids 
was related to a protective e"ect [21,22]. Depending on fatty 
acids chain length and on degree of saturation, the cellular 
uptake of fatty acids was found to have marked e"ects on 
triacylglycerol and phospholipid tra$cking in cultured 
enterocytes [23] and on tra$cking and secretion of ApoA-I 
and B [24]. Oleic acid was found to be the fatty acid that most 
e$ciently stimulated triacylglycerol synthesis and secretion, 
while in the presence of stearic acid phospholipids synthesis 
is e$ciently induced [23].

Conclusions

!e isolation of amyloidogenic forms of ApoA-I from 
patients is impracticable, as both the wild-type and variant 
proteins are expressed. !erefore, heterologous expression 
systems are needed. Nevertheless, with the exception of vari-
ant G26R, produced in bacterial cells [18], no reports are 
available to date on the production and isolation of ApoA-I 
amyloidogenic variants. Here, a recombinant form of the 
amyloidogenic variant L174S of ApoA-I, responsible for 
amyloid deposition preferentially in the heart of patients, was 
expressed in stably transfected mammalian cells and isolated. 
!e recombinant ApoA-I amyloidogenic variant, as well as 
the wild-type protein, was found to be associated with fatty 
acids, for which a role in tra$cking and secretion may be 
hypothesized.
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