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An outline 

 

In this section I am giving a brief account of thesis structure. This thesis 

represents a culmination of work and learning that has  taken place over a 

period of three years at the Istitute of Biostructure and Bioimaging of Naples. 

In my Ph.D. project I focus my attention on proteins involved in cell wall division 

and regulation of revival from dormancy in different kind of bacteria. 

In the following section of this thesis there is a part dedicated to A GENERAL 

OVERVIEW on bacterial cell wall composition and biosyntesis. In this context, I 

also introduce the main molecular players in bacterial cell wall division and 

resuscitation from dormancy. Following the general overview, this thesis consists 

of two parts, PART I and PART II, describing two different aspects of cell division 

that have been investigated during my Ph.D. work. 

PART I describes structural and functional studies of RipA, an enzyme essential 

for cell division in Mycobacterium tuberculosis, and of its inactive mutants. 

PART II describes structural and functional investigations on two proteins 

involved in regulation of cell wall division and resuscitation form dormancy, the 

serine/threonine kinases PrkC from Staphylococcus aureus and Bacillus subtilis 

and the Penicillin Binding Protein PonA2 from Mycobacterium tuberculosis. 

I would like to take this opportunity to thank my supervisors, Prof. Gabriella 

D’Auria and Dr. Rita Berisio and the other members of the Istitute of Biostructure 

and Bioimaging of Naples for providing an extremely stimulating atmosphere 

to work in. 
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A GENERAL OVERVIEW: Bacterial cell wall 

composition and modeling 

 Bacterial cell wall 

The bacterial cell wall is an elastic macromolecule that defines the shape of 

bacteria and enables them to resist lysis (Johnson et al., 2013). Despite an 

essential structural role, the bacterial cell wall is highly dynamic and intimately 

involved in a broad range of cellular processes, including growth and division, 

chromosome segregation, morphogenesis, interaction between the bacterium 

and its environment, biofilm formation, pathogenesis, homeostasis of the 

membrane-proximal ionic environment and movement of material in and out 

of the cell (Archibald et al., 1993). These dynamic processes must occur 

without compromising cell wall integrity, which would lead to lysis and death. 

Cell wall containing bacteria fall into two groups, Gram-positive and Gram-

negative, based on fundamental difference in the cell envelope structure. A 

few species, such as Mycobacteria, are difficult to classify as they have a 

unique envelope composition. Peptidoglycan (PG) is a key structural 

constituent of bacterial cell walls. It is present in all bacteria with the exception 

of Mycoplasma, Planctomyces and a few other bacterial species that lack a 

cell wall (Moulder, 1993; Seltmann and Holst, 2002). The chemical composition 

of PG in Gram-negative and Gram-positive bacteria is similar, with a few 

differences which will be described below. 

 Gram-negative cell wall 

In electron micrographs, the gram-negative cell wall appears multilayered. It 

consists of an outer membrane (OM) that surrounds a thin PG layer of a few 

nanometers (2-3nm) embedded in a periplasmic space between the plasma 

membrane (PM) and the OM (Figure 1). Chemically, only 10 to 20% of the 

gram-negative cell wall is PG. The PG layer is covalently attached to the OM 

by the lipoprotein called Lpp or Braun´s lipoprotein (Braun, 1975). The OM of 

the gram-negative cell wall appears as a lipid bilayer which is composed of 

phospholipids, lipoproteins, lipopolysaccharides (LPS), and proteins. In addition, 

pore-forming proteins called porins span the OM (Figure 1). Porins function as 

channels for the entry and exit of solutes through the outer membrane of the 

gram-negative cell wall.  
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 Gram-positive cell wall 

A gram-positive cell wall is primarily composed of a thick layer PG which 

accounts for 30-70% of the total cell wall mass, compared with just 10-20% in 

Gram-negatives (Shockman and Barrett, 1983). It does not possess an OM and 

it contains large amounts of anionic polymers called teichoic acids (TAs) 

(Figure 1), which confer them a negative charge.  TAs are covalently attached 

to the PG layer (wall teichoic acids, WTAs) or anchored to the cytoplasmic 

membrane (lipoteichoic acids, LTAs). Additional surface structures may also be 

present in both Gram-positive and Gram-negative species. These structures 

include pili, capsulae, fimbriae and flagella (Beveridge and Graham, 1991). 

 

Figure 1. General structure of the Gram-positive and Gram-negative cell wall 

 Chemical composition of peptidoglycan  

PG is a complex heteropolymer which consists of long glycan strands cross-

linked by short peptide bridges, to form a large molecule of strong but elastic 

nature (Höltje, 1998; Park, 1996; Weidel and Pelzer, 1964). The glycan strands 

are formed by N-acetylmuramic acid (MurNAc) and N-acetylglucosamine 

(GlcNAc) linked by β-1,4 glycosidic bonds. Glycan chain length varies 

considerably between organisms, from about 6 disaccharides (e.g. in 

Staphylococcus aureus) to a maximum length of 500 disaccharides (e.g. in 

Bacillus subtilis) (Ward, 1973; Hayhurst et al., 2008). The peptide stems are much 

less conserved than the glycan strands and are composed of tetrapeptides (L-

Ala, γ D-Glu, diamino (DA), D-Ala) covalently attached to the lactyl group of 

MurNAc by L-alanine N-terminus (Figure 2). The presence of D-amino acids is 
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an almost unique feature of bacteria and plays a role in conferring resistance 

against host proteases. 

PG tetrapeptides are linked together by covalent bonds between the DA 

group of one stem and the D-Ala residue of the crosslinking stem (Figure 2). The 

DA residue is commonly a meso-diaminopimelic acid (m-DAP), a dibasic 

amino acid, or an L-Lys residue. Most Gram-positive bacteria (e.g. S. aureus) 

contain an L-lysine residue at the third position of the stem peptide, whereas 

Gram-negative bacteria (e.g. Bacillus species) and most endospore formers 

have an m-DAP residue at this position (Shah et al., 2008). 

 

Figure 2. The chemical structure of peptidoglycan. A typical PG disaccharide 

pentapeptide. The glycan strand is composed of a repeating disaccharide of the amino 

sugars GlcNAc and MurNAc (Yellow) linked by β-1,4 glycosidic bonds (green). The 

pentapeptide is covalently linked to the glycan strand via the lactyl group of MurNAc (pink). A 

typical pentapeptide stem composition is shown, although the precise composition is variable. 

 Peptidoglycan turnover, bacterial cell wall growth and division 

The process of PG cell wall turnover was discovered fifty years ago, when DAP 

was found to be released from the cell wall of the bacterium Bacillus 

megaterium during exponential growth (Chaloupka, 1962a, 1962b). Later on, 

pulse-chase experiments with radioactively labeled cell wall precursors such as 

GlcNAc or D-glutamic acid revealed that Gram-positive species turn over up 

to 50% of their PG in each generation during vegetative growth (Rogers 1967; 

Mauck et al., 1971; Boothby et al., 1973; Doyle et al., 1988). Based on the 

“inside-to-outside” growth model of Gram-positive bacteria, new PG cell wall 

are laid down along the cytoplasmic membrane and, at the end of the 
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turnover cycle, removed from the exterior by autolysins (Merad et al., 1989; 

Pooley, 1976). Therefore, inner regions of the cell wall contain newly 

synthesized, unstressed PG. As the cell elongates, this material passes outward 

and stretches, becoming the middle, stress-bearing zone. The outer zone may 

thus consist of old, partially hydrolysed PG awaiting solubilization (Graham & 

Beveridge, 1994). This “inside-to-outside” model of wall structural dynamics 

suggests that autolysins are necessary for hydrolysis of older PG to allow newer 

PG to expand and become stress-bearing as the cell elongates. The “inside-to-

outside” model for cell-wall growth suggests that breakage of covalent bonds 

within the PG is essential for cell growth.  

Bacterial cell growth and cell wall division are mediated by a collection of 

proteins whose action is tightly coordinated at the level of the septal ring 

(Nanninga 1998). In E. coli, cell division takes place at the mid-cell after the 

chromosomal replication and segregation into two daughter nucleoids. After 

the completion of chromosome segregation, the division process begins with 

the formation of the septal ring, called Z-ring, a polymer of the tubulin-like 

protein FtsZ (Dajkovic et al., 2006; Lutkenhaus et al., 1980). FtsZ is almost 

universally conserved and has also been identified in Mycobacterium 

tuberculosis (MTB) as one of the major cytoskeletal organizers of the 

mycobacterial divisome (Hett and Rubin, 2008; Dziadek et al., 2003). The 

depletion of FtsZ from bacteria results in long filamentous cells (Lutkenhaus et 

al., 1980). The ring formed by FtsZ involves the highly ordered recruitment of 

both structural and enzymatic proteins involved in PG synthesis and thus in the 

formation of the septum (Margolin, 2005).  

 Molecular players in bacterial cell division and exit from 

dormant state 

Septal PG  is initially shared between daughter cells and must be degraded by 

PG hydrolases to complete the division process. Although as many as 18 

hydrolases are known to be involved in septum cleavage of E. coli, only few of 

them are known in mycobacteria, which possess a unique envelope structure 

with additional layers of arabinogalactan and mycolic acids (Hett et al., 2008; 

Brennan, 2003). Cell separation is mediated in MTB by the essential NlpC/P60 

endopeptidase Resuscitation Promoting factor Interacting Protein A (RipA), 

which cleaves peptidoglycan peptide crosslinks  (Hett et al., 2008), similar to 

other cell separating endopeptidases, like CwlT from B. subtilis (Fukushima et 

al., 2008) and Spr from E. coli (Aramini et al., 2008). RipA has a remarkable 
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effect on the bacterial phenotype, since ripA depletion strains in M. smegmatis 

exhibit a decreasing growth and an abnormal phenotype, consisting of 

branching and chaining bacteria (Hett et al., 2008). Interestingly, RipA co-

localizes at bacterial septa with the Resuscitation Promoting Factor RpfB 

(Ruggiero et al., 2010), a key cell wall hydrolase involved in MTB resuscitation 

from a state of low metabolism denoted as dormancy (Mukamolova et al., 

2002; Kaprelyants et al., 2012; Ruggiero et al., 2012; Ruggiero et al., 2011). The 

combined action of RpfB and RipA seems to enhance PG hydrolysis, this 

suggesting that an interaction between the two molecules may positively 

regulate their catalytic functions. 

 Bacterial Serine/Threonine Protein Kinases and Penicillin 

Binding Proteins: Regulation of cell division 

Protein kinases are classified into two families based on their similarities and 

enzymatic specifications, including the histidine kinase superfamily (Stock et al., 

1989), the serine/threonine and tyrosine kinase superfamilies (Hanks et al., 

1988). Histidine kinases represent the classical prokaryotic mechanism for 

detection and response to environmental changes, whereas the 

serine/threonine and tyrosine protein kinases have recently emerged as 

important regulatory systems (Shah et al., 2010; Pereira, S.F., 2011; Wehenkel et 

al., 2008). 

Serine/threonine protein kinases (STPKs) have been shown to regulate process 

of cell division (Shah et al., 2010); Their wide distribution in bacterial genomes 

suggests that STPKs regulatory function in cell shape and division is widely 

preserved among prokaryotes. Recent progress has been made to elucidate 

the biological function of StkP in S. pneumoniae and B. subtilis cell division. The 

kinase StkP from S. pneumoniae is essential for bacteria survival and virulence 

(Echenique et al., 2004) and it localizes at the cell division sites. In B. subtilis, the 

kinase PrkC is responsible for resuscitation from dormancy induced by the 

presence of PG fragments in the bacterial milieu (Shah et al., 2008). Similarly, 

bacterial resuscitation has also been shown to be regulated in MTB by PonA2, 

a protein belonging to the Penicillin Binding Protein (PBP) family and classically 

associated to PG synthesis (Patru et al., 2010). 
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PART I - Structure and Functional Regulation of RipA, 

a Mycobacterial enzyme essential for cell division 

I.1 AIM OF THE STUDY 

The final stage of bacterial cell division depends on cell-wall hydrolases that 

cleave the PG layer connecting daughter cells. In MTB, this process is governed 

by the predicted endopeptidase RipA. In the absence of this enzyme, the 

bacterium is unable to divide and exhibits an abnormal phenotype. This makes 

RipA an excellent candidate as a drug target against Tuberculosis (TB). We 

here report the crystal structure of a relevant portion of RipA, containing its 

catalytic-domain and an extra-domain of hitherto unknown function. The 

structure clearly demonstrates that RipA is produced as a zymogen, which 

needs to be activated to achieve cell-division. Bacterial cell-wall degradation 

assays and proteolysis experiments strongly suggest that activation occurs via 

proteolytic processing of a fully solvent exposed loop identified in the crystal 

structure. Indeed, proteolytic cleavage at this loop produces an activated 

form, consisting of the sole catalytic domain. This work provides the first 

evidence of self-inhibition in cell-disconnecting enzymes and opens a field for 

the design of novel anti-tubercular therapeutics. The aim of this study was to 

clone, express, purify and characterize the predicted endopeptidase RipA 

from MTB. We have investigated RipA function both structurally and 

biochemically by combining atomic structure characterization, circular 

dichroism (CD), fluorescence spectroscopy and  mass spectroscopy. 

Broken down, the aims were: 

 Identification of well-structured RipA variants by a combination of 

different bioinformatic investigations; 

 Establishing purification protocols for different RipA variants; 

 Identify of best crystallization conditions by robotic procedure; 

 Optimizing the crystallization conditions by manual procedure; 

 Optimizing cell wall degrading assay; 
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I.2 BACKGROUND - Tuberculosis, old disease, new danger 

TB is more prevalent in the world today than at any other time in human history. 

This kind of infectious bacterial disease is caused by MTB. Each year, 

approximately 2 million persons worldwide die of TB and 9 million become 

infected. TB remains a leading cause of mortality worldwide due to the ability 

of MTB to survive in a dormant status for extended periods of time in humans 

without producing symptoms for subsequently reviving into an active state. 

(Yukari C. et al., 2000). This apparent dormancy can develop into active 

disease even decades after initial infection, when the immune response 

diminishes, as in the case of TB-HIV co-infection (Yukari C. et al., 2000, Nancy 

A., Knechel, 2009).  

MTB is a rod-shaped, non-spore forming, aerobic bacterium which typically 

measure 0.5µm by 3µm (Figure 3). It is classified as acid-fast bacillus and have a 

unique cell wall structure crucial to its survival. The cell wall complex contains 

PG, but otherwise it is composed of complex lipids. Over 60% of the MTB cell 

wall is lipid. The cell wall contains also mycolic acid, covalently attached to the 

underlying PG-bound polysaccharide arabinogalactan, providing an 

extraordinary lipid barrier. This barrier is responsible for many of the medically 

challenging physiological characteristics of TB, including resistance to 

antibiotics and host defense mechanisms. 

 

Figure 3. Mycobacterium tuberculosis scanning electron micrograph 

Approximately 30% of exposed people become infected; 60-90% of these 

people will have an effective immune response allowing the successful 

containment of the infection. As more T cells, monocyte and macrophages 

are recruited to the area surrounding the bacilli, the bacilli slow replication and 

wait patiently, unable to transmit infection. During this phase the MTB survives in 

a state of minimum metabolism that allows it to escape the immune system 
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attacks and traditional drug therapy (Yukari C. et al., 2000). It is estimated that 

approximately one-third of the world’s population is infected with MTB (WHO, 

Global Tuberculosis Control, 2010). TB in a latent state is very dangerous 

because persons with latent TB have no signs or symptoms and diagnosis is 

difficult. The reactivation of latent TB depends on many factors such as the 

virulence of the organism, the competence of host defenses and the presence 

of other diseases (diabetes, HIV infection) or immunosuppressive therapy 

(Kaufmann SH., 2008; Keep NH et al., 2006). 

Treatment for active TB usually combines several different antibiotic drugs that 

are given for at least six months, sometimes for as long as 12 months. The 

principal drugs are: Rifampicin, Isoniazid, Pyrazinamide, Ethambutol. 

Associations of three drugs of first-line (Rifampicin, Isoniazid and Pyrazinamide) 

are recommended for the treatment of the intensive phase of TB, whereas 

associations of Rifampicin and Isoniazid are recommended for the 

continuation phase of the disease. Unfortunately, however, the treatments 

incomplete or inadequate has led to the emergence of strains resistant to 

antibiotics. Multidrug-resistant TB (MDR-TB) is defined by resistance to the two 

most commonly used drugs in the current four-drugs (or first-line) regimen, 

Isoniazid and Rifampin. MDR-TB must be treated necessarily with second-line 

drugs (Ethionamide, Cycloserine, Capreomycin). According to the WHO, 

Eastern Europe's rates of MDR-TB are the highest, where MDR-TB makes up 20 

percent of all new TB cases. In some parts of the former Soviet Union, up to 28 

percent of new TB cases are Multidrug-resistant (http://www.tballiance.org). 

Complications due to prolonged treatment with antibiotics, as well as the 

emergence of MDR-TB and the inability to treat latent TB gave a strong impetus 

to research and design of novel anti-tubercular drugs. In this contest, RipA 

would be an excellent new candidate as a drug target against TB. 

I.3 EXPERIMENTAL PROCEDURES 

Here, we report the cloning, expression, purification, crystallization, 

crystallographic and functional investigations of a relevant portion of RipA 

(RipA263-472), containing its predicted catalytic domain (residues 355-471) and 

the PB015164 domain (residues 265-354), as identified in the Protein Families 

(PFAM) database (Finn R.D. et al., 2008). 

I.3.1 Cloning and expression of RipA variants 
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Oligonucleotide primers were synthesized by Primm (Milano, Italy) and were 

designed to amplify the nucleotide sequence corresponding to the three 

variants of RipA by Polymerase Chain Reaction (PCR) using genomic DNA of 

MTB as a template (H37Rv strain) (Figure 4A). NcoI/HindIII-digested fragments 

were cloned into the pETM-11 (Figure 4B), pETM-30 (Figure 4D) and pETM-20 

(Figure 4C) expression vectors (Novagen, Wisconsin, USA) for RipA40–472, RipA263-

472 and RipA332–472, respectively. The pETM20 vector contains the stabilising TRX 

fusion tag, whereas the pETM30 vector allows the expression of GST-fusion 

proteins1. The resulting positive plasmids of RipA40–472 and of RipA263-472 were 

used to transform E. coli BL21(DE3) strain (Invitrogen, California, USA) while the 

resulting positive plasmid of RipA332–472 was used to transform BL21 Star(DE3) 

strain2. The expression of RipA variants were carried out using the transformed 

cells grown overnight at 37°C in Luria-Bertani (LB) media containing the 

opportune antibiotics and then inducing them overnight with 1 mM Isopropil β-

D-1-tiogalattopiranoside (IPTG) at 22°C. 

 

A B 

                                            
1 Novagen pET expression system is the most popular commercial expression system for E. coli 

and is based on the T7 promoter (Yin et al., 2007). It represents more than 90% of the 2003 PDB 

protein preparation systems (Sørensen and Mortensen 2005). The pET system was first described 

in 1990, and has been developed for a variety of expression applications (Studier et al., 1990; 

Dubendorff and Studier 1991). 

2 Escherichia coli represents the ideal expression system of choice for the majority of 

laboratories engaged in high-throughput cloning, expression and purification of proteins for 

structural genomics (Goulding, C.W., Perry, L.J., 2003). 
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Figure 4. Genome of H37Rv strain and pETM vectors maps. A) Genomic DNA of MTB; 

B) pETM11 vector map; C) pETM20 vector map; D) pETM30 vector map; 

I.3.2 Purification of RipA variants 

The same procedure of purification was applied to all RipA variants. A 1 Liter 

expression cell pellet of each RipA variants was re-suspended in 30 mL of 

binding buffer (10 mM imidazole, 150 mM NaCl, 50 mM TrisHCl, pH 8.0), 

containing a protease-inhibitor cocktail (Roche Diagnostic), and sonicated for 

10 minutes with intervals during the procedure in order to avoid protein 

degradation due to heat produced by the sonicator’s sound waves. The 

lysates were cleared by centrifugation at 18,000 rpm for 40 minutes at 4°C. The 

supernatants were loaded on a 5-mL Ni2+-nitriloacetic acid (NTA) column 

(Pharmacia), equilibrated with binding buffer, and purified by immobilized 

metal affinity chromatography (IMAC). After washing with 10 volumes of 

binding buffer, a linear gradient of imidazole (5-300 mM) was applied to elute 

the proteins (Figure 5). 

 

Figure 5. Affinity chromatography chromatogram of RipA 
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The 2 mL fractions containing RipA variants were brougth to a final volume of 

20 mL with a buffer containing 50mM Tris-HCl, 150 mM NaCl (pH 8.0) and kept 

under TEV protease digestion at 20°C overnight. After removal of tag, RipA40-472 

and RipA263-472 were further purified by size exclusion chromatography on 

Superdex 200 (Pharmacia) (Figure 6) with a buffer containing 50 mM TrisHCl, 

150 mM NaCl, 5% glycerol (pH 8.0), whereas RipA332-472 was purified on 

Superdex 75 (Pharmacia) with the same buffer. The proteins eluted in a single 

peak and were homogeneous as judged by SDS–PAGE analysis. The molecular 

mass were checked by mass-spectroscopy. Fresh concentrated proteins, 

usually 7-10 mg/mL, were used for crystallization experiments. 

 

Figure 6. Gel filtration chromatogram of RipA263-472 

I.3.3 Crystallization experiments 

We used high-throughput robotic systems to screen and optimise crystallisation 

conditions of RipA variants. The initial screening involves the high throughput 

crystallization screening robot (Hampton) and commercially available sparse-

matrix kits (Crystal Screen kits I and II, Hampton Research) and utilizing the 

hanging-drop vapor diffusion technique. The Hampton robot was utilized to 

create the hanging drops containing the protein solution and crystallizing 

buffer in 1:1 ratio. After protein and buffer administration, the plates were 

sealed and stored at 20°C. Crystal formation was observed with a light 

microscope. 

The initial screenings revealed several promising conditions for crystallization of 

RipA263-472 variant. All favourable conditions were characterized by the 

presence of PEG4000 as precipitating agent. The quality of the crystals was 

improved by fine-tuning the concentration of the protein and of the 

precipitants. 
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I.3.4 Production of selenomethionine-labeled RipA263-472 

A SeMet derivative of the protein was prepared to perform Multi-wavelength 

Anomalous Diffraction (MAD) experiments. Seven methionines are present in 

the sequence, which consists of 210 residues. For the preparation of labeled 

protein of RipA (SeMetRipA263-472), the E. coli BL21(DE3) cells expressing the 

recombinant enzyme were grown in 1 L of minimal media (M9) containing 0.4% 

Glucose, 1 mM MgSO4, 0.1 mM CaCl2, 50 ugL-1 kanamycin, 100 ugL-1 thiamine 

at 37°C. After reaching the OD600 of 0.7, an aminoacid mix (50 mg L-1 Ile, Leu 

and Val and 100 mg L-1 of Phe, Thr, and Lys) was added to the culture to inhibit 

methionine biosynthesis in E. coli then shifted to 22°C. After about 15 minutes, 

60 mg L-1 of seleno-L-methionine were added and the induction was 

performed. The same purification protocol as for the native protein was used 

for the labeled protein. Crystals of SeMetRipA263-472 grew in similar conditions as 

the native protein. 

I.3.5 RipA mutants preparation 

The expression vectors encoding the C383A, H432A, E444H mutations were 

generated by site-directed mutagenesis of wild-type plasmids pETM20-RipA263-

472 and pETM-20-RipA332–472 using the Stratagene QuikChange kit and the 

mutagenic primers reported below. 

 

 

C383A 

 

5'-CCGTCGGCTTCGACGCCTCAGGCCTGGTGTTG-3' 

5'-CAACACCAGGCCTGAGGCGTCGAAGCCGACGG-3' 

 

H432A 

 

5'-CCGAACGGTAGCCAGGCCGTGACGATCTACCTC-3'  

5'-GAGGTAGATCGTCACGGCCTGGCTACCGTTCGG-3' 

 

E444A 

 

5'-CAACGGCCAGATGCTCGCGGCGCCCGACGTCGG-3' 

5'-CCGACGTCGGGCGCCGCGAGCATCTGGCCGTTG-3’ 

 

Introduction of the expected mutations was confirmed by DNA sequencing. 

Expression and purification of the mutants were carried out in the same 

conditions as for their unmutated enzyme. 
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I.3.6 Data collection and processing of RipA263-472 

Preliminary diffraction data were collected in-house at 100K using a Rigaku 

Micromax 007 HF generator producing Cu Kα radiation and equipped with a 

Saturn944 CCD detector. Higher diffraction data for both native RipA263-472 

(Figure 7) and SeMetRipA263-472 were collected at the synchrotron beamline BM14 

at the ESRF (Grenoble, France) at 100 K. Cryoprotection of the crystals was 

achieved by a fast soaking in a solution containing glycerol to a final 

concentration of 30% (v/v). MAD was carried out using three different 

wavelengths determined from the selenium absorption spectrum. A native 

dataset was also recorded. The data sets were scaled and merged using 

HKL2000 program package (Otwinowski, Z. et al., 1997). 

 

Figure 7. Diffraction pattern of native RipA crystal. Diffraction data are detectable to 

0.95 resolution. 

I.3.7 Crystallization, data collection and processing of RipA263-472 

mutants 

Crystallization trials were performed at 293 K using the hanging-drop vapor-

diffusion method. Best crystals were obtained using 5–10 mgxmL-1 protein 

solution and 8% (v/v) 2-Propanol, 16% (w/v) PEG4000 in 60 mM sodium citrate 

trihydrate buffer, pH 5.6. Diffraction data of the H432A mutant were recorded 

inhouse at 100K using a Rigaku Micromax 007 HF generator producing Cu Kα 

radiation and equipped with a Saturn944 CCD detector whereas diffraction 

data of the C383A mutant were collected at the synchrotron beamline BM14 

at the ESRF (Grenoble, France). Cryoprotection of the crystals was achieved by 

a fast soaking in a solution containing glycerol to a final concentration of 30% 

(v/v). The data sets were scaled and merged using HKL2000 program package 

(Otwinowski and Minor, 1997). 
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I.3.8 Structure determination of RipA263-472 

The structure of the enzyme was solved by MAD methods using the anomalous 

signal from the Se atoms of selenomethionine-labeled protein. In order to 

determine the peak and the inflection wavelengths, a fluorescence scan was 

recorded on a single SeMet-labeled RipA263-472 crystal. Using data sets 

collected at wavelengths optimized for SeMet, the program SOLVE (Terwilliger, 

T.C., Berendzen, 1999) identified five selenium sites in the asymmetric unit of the 

protein. The program SOLVE provided a set of initial phases, which were 

improved using the solvent flattening methods implemented in the program 

RESOLVE (Terwilliger, T.C., 2003) and wARP (Langer, G. et al., 2008). Using these 

phases and atomic resolution data from a native crystal (1.0 Å, Figure 7), nearly 

90% of the residues present in the asymmetric unit could be automatically 

modeled using the program wARP. Model building was optimized using both 

automatic and manual approaches (Jones, T.A., 2004). Crystallographic 

refinement was first carried out against 95% of the measured data using the 

CCP4 program suite (Potterton et al., 2003). The remaining 5% of the observed 

data, which was randomly selected, was used in Rfree calculations to monitor 

the progress of refinement. The refinement in Refmac was started using data 

up to 1.7Ă resolution and gradually increased in subsequent rounds of 

refinement to the highest resolutions (Murshudov et al., 1997). At this stage, 

water molecules were incorporated into the structure in several rounds of 

successive refinement. This refined model was used to carry out CGLS 

refinement using SHELXL97 (Sheldrick, 2008), where X-ray intensities were used in 

refinement calculations. Structures were validated using the program 

PROCHECK (Laskowski et al., 1996). 

I.3.9 Structure refinement of mutants 

The structures of RipA263-472C383A and RipA263-472H432A were refined against the 

structure of RipA263-472. Crystallographic refinement was carried out against 95% 

of the measured data using the CCP4 program suite (Potterton et al., 2003). 

The remaining 5% of the observed data, which was randomly selected, was 

used in Rfree calculations to monitor the progress of refinement. The refinement 

in Refmac was started with rigid body refinement, followed by restrained 

refinement (Murshudov et al., 1997). Water molecules were incorporated into 

the structure in several rounds of successive refinement. In the case of the 

C383A mutant, whose crystals diffracted at atomic resolution, CGLS refinement 
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cycles were performed using SHELXL97 (Sheldrick, 2008). Initial rounds of 

restrained CGLS refinement were carried out by keeping all atomic 

displacement parameters (ADPs) isotropic. Subsequently, the ADPs were 

converted to anisotropic values, leading to improved Fourier maps. The bulk 

solvent was modeled based on Babinet’s principle, as implemented in the 

SWAT option in the SHELXL program. An approximate isotropic behaviour was 

attributed to solvent atoms (ISOR restraint). The final round of refinement was 

carried out with the inclusion of riding H atoms for protein residues. The positions 

of H atoms assigned based on the known geometrical criteria were not 

refined. Structures of C383A and H432A were validated using the program 

PROCHECK (Laskowski et al., 1996). 

I.3.10 Circular Dichroism studies 

All CD spectra were recorded with a Jasco J-810 spectropolarimeter equipped 

with a Peltier temperature control system (Model PTC-423-S). Molar ellipticity 

per mean residue, [θ] in deg cm2 x dmol-1, was calculated from the equation: 

[θ] = [θ]obs x mrw x (10 x l x C)-1, where [θ]obs is the ellipticity measured in 

degrees, mrw is the mean residue molecular mass, C is the protein 

concentration in g x L-1, and l is the optical path length of the cell in cm. Far-UV 

measurements (183–250 nm) were carried out at 20°C using a 0.1 cm optical 

path length cell and a protein concentration of 0.2 mgxmL-1. 

I.3.11 Limited proteolysis experiments 

RipA263–472 variant was incubated at room temperature with trypsin, thermolysin, 

and pronase at various protease/enzyme ratios (1:50, 1:100, 1:200, and 1:500) in 

a suitable buffer containing 50 mM Tris/HCl pH 8 and 10 mM CaCl2. Samples 

were taken after 30 and 90 minutes and the reactions stopped by adding SDS- 

PAGE sample buffer. The reaction products were analyzed by SDS-PAGE. 

Samples were also analyzed by mass spectrometry, after trypsin (1:50 ratio), 

thermolysin (1:100 ratio), and pronase (1:500 ratio) digestion. 

I.3.12 Mass spectrometry studies 

Mass Spectrometry (MS) analysis was carried out on an LCQ DECA XP Ion Trap 

mass spectrometer (ThermoElectron, Milan, Italy) equipped with an OPTON ESI 

source (operating at 4.2-kV needle voltage and 320°C), and with a complete 

Surveyor HPLC system. Narrow bore 50 x 2 mm C18 BioBasic Liquid 
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Chromatography-Mass Spectrometry (LC-MS) columns from Thermo- Electron 

were used for the analyses. LC binary gradient was from 5% to 70% of B (where 

B was CH3CN 0.05% TFA, and A H2O 0.08% TFA) in 45 minutes. Initial protein 

concentration was 22 µM (0.5 mgxmL-1). Three microliters of this solution were 

injected for all analyses. Mass spectra were recorded continuously between 

the mass range 400–2000 Da in positive mode. Multicharge spectra were 

deconvoluted using the BioMass program implemented in the Bioworks 3.1 

package provided by the manufacturer. 

I.3.13 Cell wall degradation assays 

Inactivated lyophilized cells of M. lysodeikticus (ATCC No. 4698) were labeled 

with fluorescein isothiocyanate (FITC) by covalently linking FITC to amine 

groups in the cell wall. In this reaction, 40 mg cells were incubated at 20°C with 

20 mg FITC (50 mgxmL-1) in 100 mM NaCO3, pH 8.5, protected from light. After 

16 hours incubation, the reaction mixture was centrifuged; the insoluble 

material was washed until the supernatant was completely colorless, to 

eliminate unreacted fluorochrome. The labeled insoluble material was re-

suspended and stored at -20°C in a 4X reaction buffer (50 mM Tris-HCl, 10 mM 

MgCl2, 2 mM MnCl2, 100 mM NaH2PO4, 50 mM KCl, 0.01% (v/v) CHAPS). RipA263–

472, RipA332–472 and RipA332–472C383A, RipA332–472H432A, RipA332–472E444H mutants 

were incubated with FITC-labeled cells at 30°C in the reaction buffer; the 

insoluble substrate was centrifuged (16,000 x g) and soluble FITC conjugates 

were measured in triplicate with filters for excitation at 492 nm and emission at 

518 nm. The buffer alone was used to correct for background release of FITC. 

I.3.14 Modeling studies and bioinformatics analyses 

The conformation of the muropeptide GlcNAc-MurNAc-L-Ala-γ-D-Glu-

mesoDAP-D-Ala was modeled in the RipA binding cleft using the program 

INSIGHT. The position of L-Ala-γ-D-Glu moieties of the muropeptide was locked 

to that observed in the structure of its complex with endopeptidase YkfC from 

Bacillus cereus (28.6% identity with RipA catalytic domain) (Xu, acta 2010). The 

resulting model was energy minimized using GROMACS (Lindahl et al., 2001). 

Sequence conservation studies were carried out using the software ConSurf. 

The homologue search algorithm CSI-BLAST was used to retrieve sequences 

from the UNIREF-90 sequence database (150 sequences). Sequences were 
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aligned using MAFFT-L-INS-I alignment method (minimal and maximal 

sequence identities were 35 and 95%, respectively). 
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I.4 - RESULTS AND DISCUSSION 

I.4.1 Structural studies 

In RipA sequence, four distinct regions can be identified (Figure 8): a signal 

peptide (orange) at its N terminus, two domains of unknown function denoted 

in PFAM-B as PB07342 (red) and PB015164 (green), which are mainly distributed 

in mycobacteria, and a predicted catalytic domain of the NlpC/P60 family at 

its C-terminus (purple). RipA catalytic domain contains a core of about 70 

amino-acid residues (residues 385-445) which shares a sequence identity of 

about 35% with cysteine proteases of the NlpC/P60 family. The PB010495 is 

instead both of unknown structure and function. 

 

Figure 8. Modular structure of RipA: PFAM prediction 

To reduce the overall complexity of the RipA protein, a systematic approach 

allowed the expression and purification of different RipA variants. In particular, 

selective domain truncation performed using a combination of different 

bioinformatic investigations like the prediction of secondary structure elements 

(PSIPRED, Jpred) (McGuffin et al., 2000; Cuff, J.A. et al., 1998), disordered 

regions (DISOPRED, PONDR) (Ward, J.J. et al., 2004; Xue, B. et al., 2010), coiled-

coils (PCOILS) (Gruber M. et al., 2006) and transmembrane regions (TMMHM) 

(Krogh, A., et al., 2001) or signal peptides (Bendtsen, J.D. et al., 2004). Based on 

these sequence analysis we have cloned and expressed three variants of RipA 

including: RipA deprived of its signal peptide (RipA40–472), a shorter variant 

containing both the PB015164 and the catalytic domains (RipA263–472), and the 

sole C-terminal catalytic domain (RipA332–472) (Figure 9). 
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Figure 9. RipA variants. RipA40–472 (red, green and purple domains), RipA263-472) (green and 

purple domains) and RipA332-472 containing the sole catalytic domain (purple domain). 

Crystals (Figure 10) suitable for X-ray diffraction data collection (0.2 x 0.2 x 0.4 

mm) were obtained for RipA263-472 and SeMetRipA263-472 using 7 mgxmL-1 protein 

solution and 8% (v/v) 2-Propanol, 16% (w/v) PEG4000, in 60 mM Sodium citrate 

trihydrate buffer, pH 5.6. 

 

Figure 10. Image of typical RipA crystals 

Statistics of data collection for RipA263-472 and SeMetRipA263-472 are reported in 

Table 1(pag. 66). Matthews coefficient calculations (Matthews, B.W., 1968) 

suggested the presence of one molecule per asymmetric unit (VM =1.77, with 

30.4% solvent content). The structure of the enzyme was solved by MAD 

methods using the anomalous signal from the Se atoms of selenomethionine-

labeled and refined at 1.1 Å resolution (Table 2, pag. 67). 

The overall crystal structure shows that its two domains, the catalytic NlpC/P60 

domain and the PB015164 domains identified in the PFAM database, are tightly 

bound (Figure 11). Surprisingly, we found that the catalytic site cleft of the 

enzyme is physically blocked by the PB015164 domain. This finding strongly 

suggests functional inactivity of the enzyme in this form and reveals a 

zymogenic nature for RipA. 

The structure of RipA catalytic domain comprises a central β sheet of six 

antiparallel β strands, a small two-stranded β sheet and six helices, arranged in 

a αββααββββββ topology. Its putative catalytic cysteine (Cys383) is located at 

the N-terminal end of a helix (a2) and is packed against the sixstranded β 

sheet core (Figure 12). At this location, Cys383 facets another conserved 

residue, His432, belonging to the β strand β3 (Figure 12). This histidine is 
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hydrogen bonded to the side chain of Glu444, which is in turn tightly anchored 

to Arg453 and Arg458 (Figure 12). Notably, the crystal structure shows that RipA 

contains a Cys-His-Glu catalytic triad, which is unusual in NlpC/P60 domains 

(Figure 13). A similar triad (Cys-His-Asp) characterizes another class of cysteine 

proteases involved in cell separation, denoted as Cysteine Histidine Amino 

Peptidase (CHAP) domain containing proteases (Bateman and Rawlings, 2003; 

Rossi et al., 2009). 

 

Figure 11. The crystal structure of RipA263–472 shows self-inactivation 

 

Figure 12. Topology of RipA catalytic domain and zoom of the catalytic site 
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Figure 13. Multiple Sequence Alignment of NlpC/P60 Domains Identified by 

CONSURF Conserved Cys and His are highlighted in dark grey, the third catalytic residue is 

shown in light grey. 

As mentioned above, the crystal structure shows that RipA catalytic residues 

are not accessible to potential substrates (Figure 11), as they are locked by the 

PB015164 domain, here denominated pro-domain. A tight interaction between 

the catalytic domain and the pro-domain is observed, with a total interaction 

surface area of 1809 Å. Whereas the β hairpin is nearly completely solvent 

exposed (Figure 11), both the catalytic-cleftblocking loop region and the a 

helix, hereafter denoted as pro-a, establish several interactions with the main 

core of the RipA mature enzyme (Figure 11). Besides providing the first 

structural description of the pro-domain, our results elucidate its functional role. 

Using CD spectroscopy, we observed that the recombinant RipA332–472, lacking 

the pro-domain, is still able to fold (Figure 14). 

This finding suggests that the pro-domain is not needed for enzyme folding, as 

observed for proteases of the cathepsin family (Menard et al.,1998). Instead, 

the X-ray structure reported here highlights a role of the pro-domain as a 

regulator of the enzyme catalytic activity. With this concept in mind, we 

explored the possible mechanism that activates the zymogenic form of RipA 

and unlocks the catalytic site. A suggestion comes from the X-ray structure, 
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which displays a peculiarly long and fully solvent exposed loop connecting the 

catalytic- and the pro-domain. 

 

Figure 14. CD spectra of RipA263-472 (red) and of RipA332-472 (black) 

To investigate RipA vulnerability to proteases, we carried out limited proteolysis 

experiments by trypsin, thermolysin, and pronase whereas to investigate RipA 

activity we carried out cell wall degradation experiments using fluorescence 

spectroscopy. To elucidate the role of the putative catalytic triad in catalysis, 

we produced several mutants of RipA to repeat functional studies on bacterial 

cell wall and to investigate their crystal structure. 

I.4.2 Limited proteolysis experiments 

Using protease/enzyme concentration ratios of 1:500, these proteases were 

able to degrade RipA263–472 variant to fragments of about 15 kDa (Figure 15A) 

(see experimental procedures). This molecular weight, also checked by mass 

spectrometry, corresponded to the catalytic domain (RipA332–472 variant). 

Cleavage sites by these proteases were identified using LC-MS analysis. As 

shown in Figure 15A, all cleavage sites are located in the large and fully solvent 

exposed loop, which connects the catalytic NlpC/P60 domain and the pro-

domain. This shows that the connecting loop is a vulnerability point for the 

enzyme, as it is highly sensitive to proteolytic degradation (Figure 15B). In 

addition, LC-MS analysis shows that, after proteolysis at the connecting loop, 

the pro-domain is released and further proteolyzed. 
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Figure 15. Limited proteolisys studies and location of proteolytic cleavage sites 
A) Schematic representation of RipA domains, as defined by PFAM. The region that was found 

to be sensitive to degradation is indicated by a black box. The figure shows the mass spectra 

of main RP HPLC peaks after limited proteolysis of RipA263–472 with trypsin, themolysin, and 

pronase (cleavage sites are indicated) and the coomassie stained SDS-PAGE after limited 

proteolysis of RipA263–472 with trypsin, themolysin, and pronase. Molecular mass markers (Sigma, 

Low range) from the top to bottom: 45, 36, 29, 24, 20, 14.2, 6.5 kDa; B) Ribbon structure of 

RipA263–472 with proteolytic cleavage sites highlighted. 

I.4.3 Cell wall degradation experiments 

Cell wall degrading experiments were carried out using lyophilized cells of 

Micrococcus lysodeikticus labeled with FITC (see experimental procedures). 

Both recombinant RipA263–472 and RipA332–472 were incubated with the FITC-

labeled cells. PG hydrolyzing activity of RipA forms was evaluated by 

fluorescence spectroscopy as the amount of FITC-labeled cell wall released in 

solution. Fluorescence measurements of supernatants at time intervals allowed 

us to characterize the time course of cell degrading reaction. The most evident 

result is that RipA332–472 is able to degrade FITC-labeled cell wall because early 

incubation time intervals and its kinetics reaches a plateau after 20 hours 

(Figure 16A). By contrast, RipA263–472 displayed hardly any activity after 20 hours 

(Figure 16B). To investigate the role of the putative catalytic Cys383 in catalysis, 

we used mutant of RipA332–472C383A in the cell degrading experiments and we 

observed that its hydrolytic activity was completely suppressed (Figure 16C). 

The same suppression of RipA activity was observed on treatment of the 

enzyme with the sulfhydryl-alkylating reagent iodoacetamide (data not 

shown). 

B A 
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A B 

C 

Figure 16. Cell wall degrading activity of: A)RipA332–472, B) RipA263–472 and C) 

RipA332-472C383A. Values were measured as the amount of FITC-labeled cell wall released in 

solution on incubation with the enzymes. 

These results experimentally prove that RipA is a cysteine protease, as they 

demonstrate the fundamental role of Cys383 in catalysis. Furthermore, they 

confirm the result we derived from the X-ray structure that RipA exists as an 

inactive zymogen, and that removal of the pro-domain activates the enzyme. 

Because we observed some level of instability to proteolytic degradation of 

RipA variants produced, in particular on storage, we checked whether enzyme 

processing is an autocatalytic event, as observed for the lysosomal cysteine 

proteases cathepsins (Menard et al., 1998; Rozman et al., 1999; Wittlin et al., 

1999). To this aim, we carried out a typical assay for the assessment of self-

processing (Rozman et al., 1999), where the inactive mutant RipA263–472 (C383A) 

was incubated with the activated Rip332–472 form at room temperature. After 16 

hours, SDS-PAGE analysis showed that RipA332–472 is unable to process RipA263–

472C383A. This result unambiguously showed that RipA is not self-activated, but 
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it needs an activating mechanism. Thus far, it is unclear which mechanism is 

able to activate RipA. The strong susceptibility of the loop connecting the 

catalytic and prodomains to proteolytic degradation, as well as the tight 

interdomain interactions observed in the X-ray structure (Figure 11) strongly 

suggests that activation proceeds via proteolytic cleavage. However, 

because RipA is able to interact with RpfB (Hett et al., 2008; Hett et al. 2007), 

we cannot exclude a possible alternative activation mechanism during 

resuscitation from latency, which involves a conformational change of RipA on 

RpfB binding and a consequent unlock of RipA catalytic site. It should be 

noted, however, that RipA has a fundamental role in cell disconnection of 

actively growing bacteria. The collective dispensability of all five Rpfs in in vitro 

bacterial growth (Kana et al., 2008) makes an activation mechanism via 

proteolytic processing more plausible, at least during bacterial active growth. 

Consistent with this observation, activation via proteolytic maturation is the 

typical activation mechanism of cysteine proteases (Schroder and Tschopp, 

2010; Sripa et al., 2010). 

Our results provide a step forward in the molecular knowledge of the structural 

and functional properties of RipA in the PG degradation process. We 

demonstrate that this enzyme, vital to MTB, exists in a zymogenic form that 

needs to be activated. This evidences a regulation mechanism that is likely 

precious for a fundamental process like daughter cells separation. Finally, RipA 

is a secreted enzyme and easily accessible to drugs. 

I.4.4 Functional studies of RipA332-472 mutants 

To evaluate the impact of the other two putative catalytic residues His432 and 

Glu444 on the enzyme catalytic function, we measured the cell wall 

degradation ability of these mutants. Results show that these mutations have 

the same dramatic effect on the enzyme functionality observed for C383A 

mutant, with a complete loss of PG degradation activity (Figure 17). 

Intriguingly, despite the lower sequence conservation of Glu444, we observe 

this residue is fundamental for RipA catalysis. 
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Figure 17. Cell wall degrading activity of RipA332–472 and RipA332–472C383A, 

H432A, E444H mutants. 

Using CD spectroscopy, we checked conformational properties of all RipA332-472 

mutants, to exclude that the loss of activity was due to a decrease of the 

structural content of the enzyme upon mutation. Results show that all mutations 

do not affect RipA structural integrity, since CD spectra of mutants are 

superimposable to that of the un-mutated form (Figure 18). 

 

Figure 18. CD spectra of RipA332-472 mutants 

I.4.5 Crystal structures of RipA mutants 

To evaluate the effect of catalytic site mutation on the architecture of RipA 

catalytic site, we determined crystal structures of the two mutants, RipA263-

472C383A and RipA263-472H432A. Atomic resolution data were collected for both 

mutants (Table 3, pag.68). Differently, despite a complete conservation of 

protein secondary structure, we were unable to crystallize the E444H mutant, 
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likely due to a destructuration of the locking peptide induced by the +2 

charge difference. An analysis of electron density maps for RipA263-472C383A 

showed that the catalytic site of RipA remains virtually identical in the presence 

of the cysteine mutation. Indeed, the cavity formed by the lack of the Cys side 

chain is filled by a water molecule and the conformation of all residues of the 

catalytic side cleft is fully preserved (Figure 19A). Similarly, His mutation has 

marginal effect on RipA structure. In this case, the cavity formed by the lack of 

His side chain is filled by two water molecules (Figure 19B). 

 

 A                   B 

 

Figure 19. Comparison of the RipA crystal structure with mutants crystal 

structures.A) RipA catalytic site (indigo) vs RipA263-472C383A catalytic site (orange). B) RipA 

catalytic site (indigo) vs RipA263-472H432A (magenta). 

I.4.6 Modeling of substrate in RipA catalytic site 

Compared to NlpC/P60 containing enzymes, RipA structure is unique in 

possessing a domain (Aramini et al., 2008; Xu et al., 2009), the PB015164 

domain, that physically blocks the enzyme substrate binding cleft. The 

inaccessibility of catalytic residues to potential substrates in RipA structure 

makes experimental techniques to investigate enzyme-substrate interactions 

difficult to be carried out. On the other hand, no information on either the 

cleavage site on the substrate or the set of interactions between RipA binding 

cleft and its substrate is hitherto known. Therefore, we adopted modeling 

techniques to investigate interactions of the muropeptide GlcNAc-MurNAc-L-

Ala-γ-D-Glu-mesoDAP-D-Ala (Figure 20) with RipA catalytic domain. 
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Figure 20. Muropeptide GlcNAc-MurNAc-L-

Ala-γ-D-Glu-mesoDAP-D-Ala 

Molecular modeling, followed by energy 

minimization with GROMACS (Lindahl et al., 

2001), produced key information on the 

interaction mode of muropeptides in RipA 

binding cleft. Notably, the shape of RipA 

catalytic site cleft well accounts for the 

branched nature of PG. Consistently, the 

conformation of GlcNAc-MurNAc-L-Ala-γ-D-

Glu-mesoDAP-D-Ala is well locked by the catalytic site cleft. Both the carbonyl 

group and the side chain of DAP are tightly bound to the enzyme, through 

hydrogen bonding interactions with Gln431 and His432 (Figure 21). Also, the 

side chain of γ-D-Glu is h-bonded to the side chain of Ser384. Notably, the 

peptide group between γ-D-Glu and DAP forms several h-bonding interactions 

with the enzyme and directly contacts the catalytic residues Cys383 and 

His432. Beside h-bonding interaction with Gln431, the backbone N of DAP forms 

an h-bond with the nd1 atom of His432 side chain (Figure 21). Also, the 

carbonyl group of γ-D-Glu forms h-bonds with both the backbone nitrogen 

and the side chain of Cys383. 

Differently, Glu444 does not 

establish interactions with the 

substrate, but it hydrogen bonds 

His432. This feature confirms, as 

previously proposed that the role 

of Glu444 is to the properly orient 

the side chain of His432 (Ruggiero 

et al., 2010). By h-bonding the Ne2 

atom of His432, Glu444 locks His432 

in an orientation suitable to form 

an h-bond, through its Nd1 atom, 

with the backbone nitrogen of the 

DAP moiety. The observed 

conformation brings the peptide 

group linking γ-D-Glu to DAP in 

close vicinity to Cys383/His432 

C383 

H432 Q431 

S384 

H400 

Figure 21. Muropeptide in RipA 

binding cleft 
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catalytic dyad, a finding which suggests that RipA acts by cleaving the 

peptide bond between γ-D-Glu and DAP. The identified set of interactions is 

currently being used for the design of RipA inhibitors. 

I.5 CONCLUSION 

The process of daughter cell separation requires a delicate balance of cell wall 

hydrolases that cleave the septa connecting daughter cells. Cell-separating 

enzymes usually contain endopeptidase domains like CHAP or NLPC/P60 

domains, and/or Glucosaminidase domains (Layec et al., 2008; Layec et al., 

2009; Rossi et al., 2009).  RipA has a remarkable effect on the bacterial 

phenotype, since ripA depletion strains in M. smegmatis exhibit a decreasing 

growth and an abnormal phenotype, consisting in branching and chaining 

bacteria (Hett and Rubin, 2008). This enzyme is believed to cleave PG peptide 

crosslinks (Hett et al., 2008), similar to other cell separating endo-peptidases, 

like LytE, LytF, CwlS from B. subtilis (Fukushima et al., 2008; Margot et al., 1999; 

Margot et al., 1998) and Spr from E. coli (Aramini et al., 2008). 

RipA was cloned, expressed and purified in native conditions. Crystals were 

obtained using vapor diffusion techniques. The structure of RipA was solved by 

MAD using the anomalous signal from the Se atoms of labeled enzyme. 

Crystallographic studies of RipA have yielded new insights in the functional 

regulation of this enzyme. Indeed, the crystal structure clearly reveals a 

zymogenic nature of RipA, a finding which is confirmed by cell wall 

degradation assays (Ruggiero et al., 2010). Furthermore bacterial cell-wall 

degradation assays with mutated forms of RipA clearly identify the key 

catalytic triad of this enzyme. Finally, modeling of a PG fragment in the 

catalytic site of RipA has provided a key set of interactions, which will be 

exploited for the design of novel anti-tubercular therapeutics. 
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PARTII - Regulation of resuscitation from dormancy 

by STPK kinases and Penicillin Binding Proteins: the 

role of PASTA domains 

II.1 AIM OF THE STUDY 

Bacterial resuscitation from dormancy is a complex mechanism associated to 

stress and nutritional limitation and involves the recognition by bacteria that 

external conditions are optimal for growth. As such, this phenomenon requires 

a fine regulation which involves several molecular players active in 

muropeptide modeling and recognition.  

Among those, eukaryotic-type STPK PrkC have been shown to be essential for 

resuscitation of dormant B. subtilis (Shah and Dworkin, 2010; Shah et al., 2008). 

Generally, growing bacteria release muropeptides in the surrounding 

environment, due to cell wall PG remodeling associated to cell growth and 

division (Shah and Dworkin, 2010; Shah et al., 2008; Ruggiero et al., 2010). 

Therefore, the presence of muropeptides in the close environment of dormant 

spores is a clear signal that conditions are optimal for growth. Interestingly, B. 

subtilis spores germinate in response to m-DAP containing muropeptide, which 

constitutes B. subtilis cell wall (Shah et al., 2008). 

In order to understand the molecular mechanism allows PrkC to sense 

muropeptides in the bacterial milieu, we undertook a structural study of the 

extracellular region (EC) of PrkC from B. subtilis and S. aureus. Furthermore, by 

coupling crystallographic studies with bioinformatic analyses, calorimetric and 

spectroscopic studies we exploited the structural requirements necessary for 

recognition and binding and proved that m-DAP containing muropeptide 

physically binds to a specific PASTA domain of EC-PrkC from B. subtilis.  

Based on these results, we carried out structural studies of the PASTA domain of 

another protein from MTB, PonA2, which was shown to play an important role 

for the adaptation to dormancy of MTB (Patru et al., 2010). We hypothesized 

that the PASTA domain of PonA2 could act in a similar fashion as that of PrkC. 

Therefore, we applied NMR, calorimetric and computational methods to unveil 

structural and dynamic properties of PonA2 PASTA domain. 
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II.2 - BACKGROUND 

 
Eukaryotic-type STPK are expressed in many prokaryotes including a broad 

range of pathogens. Proteins of this class are known to regulate various cellular 

functions, such as developmental processes, secondary metabolism, stress 

response, biofilm formation, antibiotic resistance, virulence, cell wall biogenesis, 

cell division, and central metabolism (Madec et al., 2002; Fiuza et al., 2008). 

The first reported eukaryotic-type STPK, Pkn1 from Myxococcus xanthus, was 

found to be required for normal bacterial development (Mu˜noz-Dorado et al., 

1991). The advance of genome sequencing has prompted the identification of 

similar kinases in many bacteria. 

Previous studies have found that the eukaryotic-type STPK PrkC from Bacillus 

subtilis is also involved in bacterial exit from dormancy (Shah, 2008; Shah and 

Dworkin, 2010). Under conditions of nutritional limitation, B. subtilis produces 

spores which are resistant to harsh environmental conditions and can survive in 

a dormant state for years (Shah, 2008; Kana et al., 2010; Keep et al., 2006). The 

process of resuscitation is called, in these sporulating bacteria, germination 

(Shah, 2008; Shah and Dworkin, 2010).Generally, growing bacteria release 

muropeptides into the surrounding environment, owing to cell wall PG 

remodeling associated with cell growth and division (Hett et al., 2008; Ruggiero 

et al., 2010). Therefore the presence of muropeptides in the close environment 

of dormant spores is a clear signal that the conditions are optimal for growth. 

Consistently, Shah et al. (2008) reported that m-DAP-containing muropeptides 

are powerful germinants of B. subtilis spores. Notably, other authors have 

proposed independently the idea that the activating ligand of PrkC could be 

a component or a degradation product of the cell wall PG (Absalon et al., 

2009). These authors also showed that, once activated, PrkC is able to 

phosphorylate the small-ribosome-associated GTPase CpgA, the translation 

factor EF-Tu (elongation factor thermo-unstable) and a component of the 

bacterial stressosome, denoted YezB (Absalon et al., 2009). On the other hand, 

the possible involvement of EF-G (elongation factor G) as a substrate of PrkC is 

controversial (Absalon et al., 2009; Shah et al., 2008; Gaidenko et al., 2002). A 

close homologue of PrkC exists in Staphylococcus aureus, a significant human 

pathogen that causes a number of infections ranging from skin infections to 

toxic shock syndrome, osteomyelitis and myocarditis (McGahee et al., 2000; 

Ohlsen et al., 2010). PrkC from S. aureus is predicted to be a membrane 

protein, similar to its homologue from B. subtilis. The two kinases present the 
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same domain organizations, with an intracellular serine/threonine kinase 

domain, a transmembrane region and an extracellular portion that contains 

three domains known as Penicillin binding Associated and Serine/Threonine 

kinase-Associated (PASTA) domains. According to Shah et al. (2008), B. subtilis 

spores germinate in response to m-DAP-containing muropeptide, which 

constitutes the B. subtilis cell wall, but not in response to L-lysine-containing 

muropeptide. Moreover, when the PrkC from B. subtilis is replaced by PrkC from 

S. aureus, which is characterized by L-lysine-containing cell walls, germination is 

observed both in response to m-DAP and L-lysine-containing muropeptide. This 

finding has shown that the source of PrkC determines the bacterial ability to 

respond to muropeptides and has suggested that PrkC extracellular domains 

exhibit specificity of muropeptide binding (Shah et al. 2008). 

PASTA domains also exist in PBP (Patru et al., 2010). The crystal structure of the 

PBP2x from Streptococcus pneumoniae, which contains two C-terminal PASTA 

domains, was solved in complex with cefuroxime, a β-lactam antibiotic 

mimicking the unlinked PG (Gordon et al., 2000; Dessen et al., 2001). 

Interestingly, the PBP PonA2 from MTB contains one PASTA domain and has 

been associated with regulation of bacterial resuscitation from dormancy. 

These findings suggest that PASTA domains can sense muropeptides. Despite 

these hypotheses, structural results are still needed to help the understanding 

of the function of extracellular PASTA domains. 

 

II.3 - EXPERIMENTAL PROCEDURES 

II.3.1 Expression and purification of Extra Cellular region of PrkC from 

S. aureus and B. subtilis 

The plasmidic constructs corresponding to the EC region of S. aureus PrkC (EC-

PrkC S.a, residues  378- 664) and of B. subtilis (EC-PrkC B.s, residues 356-648) 

have been prepared as previously described by Shah et al. (2008). The 

overexpression of EC-PrkC S.a and  of EC-PrkC B.s , containing an N-terminal 

histidine tag (His6) were carried using E. coli DH5a cells (Invitrogen). Briefly, an 

overnight starting culture of 100 mL were prepared to grow 1 L of LB containing 

100 μg/mL ampicillin. Induction was performed at OD 600=0.6 with 0.02% (w/v) 

L-arabinose and harvested after four hours. The proteins were isolated by 

sonicating resuspended cells in a binding buffer (10 mM imidazole, 200 mM 

NaCl, 20 mM TrisHCl, 5%(v/v) glycerol pH 8.0) containing a protease inhibitor 
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cocktail (Roche Diagnostic). The lysate were cleared by centrifugation at 

18,000 rpm, and the supernatants loaded on a 5-mL Ni2+-NTA column 

(GEHelthcare), equilibrated with binding buffer. After washing with 10 volumes 

of binding buffer, a linear gradient of imidazole (10-300 mM) was applied to 

elute the proteins. Fractions containing the proteins were pooled and loaded 

on a gel filtration column (Superdex 200, GeHelthcare), equilibrated in 150 mM 

NaCl, 20 mM TrisHCl buffer at pH 8.0 and 5% (v/v) glycerol, for a further 

purification step. The proteins eluted in a single peak and were homogeneous, 

as judged by SDS–PAGE analysis. All the purification steps were carried out at 

4°C. The proteins were concentrated using a centrifugal filter device (Millipore), 

and the concentration were determined by Bradford protein assay (Biorad). 

Fresh concentrated proteins at 10 mgxmL-1, were used for crystallization 

experiments. 

II.3.2 Cloning, expression and purification of 15N/13C labeled PONA2 

PASTA domain from M. tuberculosis 

The region encoding amino acids G700 to I764 of PONA2 was amplified by PCR 

using genomic DNA of MTB as template (H37Rv strain, Figure 4A) and the 

following oligonucleotides as primers (ponA2 forward: 

CATGCCATGGGCTCACGGGTACCAAGC; ponA2 reverse: 

CCCAAGCTTATCAGATGCCGTTGCTGATCTGG). NcoI/HindIII-digested 

fragments were cloned into the pETM-11 (Figure 4B) with N-Terminal Histag 6xHis 

tag for metal-affinity purification. The resulting positive plasmid was used to 

transform E. coli Star BL21(DE3) competent cells. Transformed cells were 

cultured overnight in LB broth with 50 µg ml−1 kanamycin at 37°C . For the 

production of isotope labeled sample (15N/13C ) the culture was seeded in 

1:100 volume ratio either in 1 L of minimal media (M9) containing (422mM of 

Na2HPO4, 220mM of KH2PO4, 85,5 mM NaCl, 186,7 mM of 15N ammonium 

chloride, 1mM MgSO4 , 0.2mM CaCl2, 1 mL of Thiamine 40 mgxml-1 and 0.3% 

final of 13C-glucose. Culture was grown at 37° C in a shacking incubator, 

induced with 0.7 mM IPTG, and further grown at 22°C for 18 hours for protein 

production. E. coli cells were harvested by centrifugation at 6000 rpm for 20 

min, and the bacterial pellet re-suspended in a buffer containing 300 mM 

NaCl, 50mM Tris-HCl, 10mM m imidazole, 5% (v/v) glycerol and complete 

protease inhibitor cocktail (Roche) pH 8 and lysed by sonication on ice to 

release recombinant protein. The cell lysate was centrifuged at 16500 rpm at 

4°C for 30 min and the surnatant loaded on Ni2+-derivatized HisTrap columns 
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(GE Healthcare). After washing with 10 volumes of binding buffer, a linear 

gradient of imidazole (5-300 mM) was applied to elute the protein. Eluted 

protein was dialyzed against buffer without imidazole containing 150 mM NaCl, 

50 mM Tris-HCl, 5% glycerol pH 8.0 at 4°C for 4 hours and after was digested 

with TEV pretease to remove the 6xHis tag. The protein was further purified by a 

second Ni2+ affinity chromatography and by a gel filtration on Superdex75 (GE 

Healthcare) with a buffer containing 150mM NaCl, 50mM Tris-HCl, pH 8. The 

protein, which eluted in a single peak, was concentrated using a centrifugal 

filter device (Millipore) with a cut-off of 3KDa, and the concentration was 

determined using the Pierce BCA Protein Assay Kit. The fresh concentrated 

protein (1mM) was dialyzed against the NMR buffer containing 30mM sodium 

phosphate buffer pH 6.5. 15N/13C labeled protein was prepared with 5% of 

sodium azide and 10% of deuterated water for NMR experiments. 

II.3.3 Circular dichroism experiments 

CD spectra were recorded with a Jasco J-810 spectropolarimeter equipped 

with a Peltier temperature control system (Model PTC-423-S). Molar ellipticity 

per mean residue, [] in deg cm2·dmol-1, was calculated from the equation: [] 

= []obs·mrw·(10·l·C)-1, where []obs is the ellipticity measured in degrees, mrw 

is the mean residue molecular mass (111.17 Da for EC-PrkC S.a, 110.11 Da for 

EC-PrkC B.s and 102 Da for PonA2-PASTA, respectively), C is the protein 

concentration in g·L-1 and l is the optical path length of the cell in cm. Far-UV 

measurements (190-260 nm) were carried out at 20 °C using a 0.1 cm optical 

path length cell and protein concentration of 0.2 mgxmL-1. 

II.3.4 Crystallization experiments 

Crystallization trials were performed at 293 K using the hanging-drop vapor-

diffusion method. Preliminary crystallization conditions were set up using a 

robot station for high throughput crystallization screening (Hamilton STARlet 

NanoJet 8+1) and commercially available sparse-matrix kits (Crystal Screen kits 

I and II, Hampton Research, Index).  

The initial screenings revealed several promising conditions for crystallization of 

EC-PrkC S.a. Optimization of the crystallization conditions was performed 

manually both using the vapor-diffusion and the macroseeding technique. 

After optimization of the crystallization conditions, only tiny needles could be 

obtained. Best crystals of EC-PrkC S.a were obtained using the macro-seeding 
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technique. Needles were partially dissolved in their mother liquor and 

transferred to solutions containing mixtures, at 1:1 ratio, of 10 mgxmL-1 EC-PrkC 

S.a and dilutions of commercially available solutions (Hampton Research). 

LuCl3-derivative crystals were prepared by soaking a native crystal in a solution 

containing 1–3 mM EuCl3, 25% (w/v) MPEG 2000 [methoxypoly(ethylene glycol) 

2000 kDa], 160 mM (NH4)2SO4 and 60 mM sodium acetate trihydrate buffer for 

3 hours at pH 4.6. 

II.3.5 Data collection and processing of EC-PrkC from S. aureus 

A MAD experiment was carried out on a crystal derivatized with 2 mM LuCl3 at 

the X12 synchrotron beamline, DORIS storage ring, DESY (Deutsches Elektronen 

Synchrotron; Hamburg, Germany), at 100 K (Table 4, pag 69). Cryoprotection 

of the crystals was achieved by a fast soaking in a solution containing glycerol 

to a final concentration of 10% (v/v). These data, extending to 3.0 Å (1Å=0.1 

nm) resolution, allowed us to build a part of the molecule. Derivatization by 

overnight soaking in a solution containing 2 mM EuCl3 provided higher 

resolution X-ray data, at 2.15 Å (Table 3, pag. 68). Data collection was 

performed in-house at 100 K using a Rigaku Micromax 007 HF generator 

producing Cu Kα radiation and equipped with a Saturn944 CCD (charge-

coupled device) detector. The datasets were scaled and merged using the 

HKL2000 program package (Otwinowski et al., 1997)(Table 3, pag. 68). 

II.3.6 Structure determination of EC-PrkC from S. aureus 

Phasing was achieved using in-house SAD (Single-wavelength Anomalous 

Diffraction) data, collected on a crystal soaked overnight in a solution 

containing 2 mM EuCl3. These data provided structural factor phases to 2.2Å 

resolution. Both SHELXD (Sheldrick  et al., 2008) and SOLVE (Terwilliger, 2004) 

identified five Eu3+ ions. Phases, improved by phase extension and density 

modification by RESOLVE (Terwilliger, 2004) and wARP (Langer e al., 2008), 

allowed us to trace nearly the entire molecule structure. Crystallographic 

refinement was carried out against 95% of the measured data using the CCP4 

program suite (Potterton et al., 2003) . The remaining 5% of the observed data, 

which was randomly selected, was used in Rfree calculations to monitor the 

progress of refinement. Structures were validated using the program 

PROCHECK (Laskowski et al., 1996). 

II.3.7 Homology modeling of EC-PrkC from B.subtilis 
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The three-dimensional structure of EC-PrkC was modeled by comparative 

protein modeling methods using the MODELLER workspace. The model was 

built using the 2.2 Å resolution structure of the EC region of PrkC from S. aureus 

(Protein Data Bank (PDB) entry 3py9) as a template. The degree of sequence 

identity between the template (residues 377-660) and EC-PrkC (residues 361-

643) is 28.7%, which enabled a preliminary model to be generated. This model 

was energetically minimized using GROMACS (Lindahl E. et al., 2001). 

II.3.8 Sequence alignments and mutants design 

For sequence conservativeness studies, residue conservation scores were 

obtained using the program CONSURF. Homologous sequences were 

collected using PSI-BLAST heuristic algorithm with default parameters (Kaushik 

S., et al., 2013).  The search was carried out in the full UNI-PROT knowledgebase 

(SWISS-PROT + TrEMBL) database, using an E-value cutoff of 0.001. The program 

MUSCLE was used to align the homologues extracted from the PSI-BLAST output 

file. 

For the identification of the DAP interaction site on the protein, a statistical 

survey was carried out by searching all structures containing DAP in the PDB. 

This analysis was conducted using the Application Programming Interface 

implemented in the PDB server. 

II.3.9 EC-PrkC from B. subtilis mutants production 

R500E and R500A mutations were generated by site-directed mutagenesis of 

wild-type recombinant plasmid pBAD24/EC-PrkC using the Stratagene 

QuikChange kit. Mutagenic primers for R500E were 5'-

CCGAAGACATTACGCTTGAAGACTTGAAAACCTACAG-3' and 5'-CTGTAGGT 

TTTCAAGTCTTCAAGCGTAATGTCTTCGG-3'. Primers for R500A were 5'-

CCGAAGACATTACGCTTGCAGACTTGAAAACCTACAG-3' and 5'-

CTGTAGGTTTTCAAGTCTGCAAGCGTAATGTCTTCGG-3'. Introduction of the 

expected mutations was confirmed by DNA sequencing. Expression and 

purification of the two mutants were performed using the same conditions 

used for the wild-type form. 

II.3.10 Isotermal titration calorimetry experiments 

The interactions of EC-PrkC from B. subtilis with natural muropeptides from 

Bacillus subtilis were investigated at 298K by Isothermal Titration Calorimetry 
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(ITC) using a MicroCal ITC200 calorimeter (GEHelthcare Milan) calibrated with  

standard electrical pulses. All solutions were degassed by stirring under 

vacuum before use. 18 consecutive injections of 2 µL aliquots of a 20 mM 

solution of muropeptides (the molecular weight was calculated based on the 

3:1 molar ratio between muropeptides B and A, Figure 27) were added to the 

calorimeter cell (0.280 mL) containing 0.05 mM of EC-PrkC at intervals of 150. 

Similarly, interactions of ponA2-PASTA with synthetic mur-TriDAP (InvivoGen) 

were checked using a protein concentration of 0.15 mM, which were titrated 

with 15 mM mur-TriDAP. 

In all experiments, proteins and titrants were prepared in the same buffer (PBS 

1X) to minimize the contribution of the dilution heat. In order to ensure proper 

mixing after each injection, a constant stirring speed of 1000 rpm was 

maintained during the experiments. Data were analyzed using a ‘one set of 

sites’ binding model. 

II.3.11 NMR experiments of ponA2-PASTA domain from M. 

tuberculosis 

All NMR experiments were recorded at 298 K on Inova 600 MHz spectrometer 

(1H-15N experiments), equipped with a cryogenic probe optimized for 1H 

detection, or Varian Inova 500 MHz (1H-13C-15N triple resonance experiments), 

using the standard pulse sequences. NMR samples consisted of approximately 

1.4-1.8 mM unlabeled or uniformly 15N or 15N-13C doubly labeled protein 

dissolved in 30 mM sodium phosphate (pH 6.4), 0.02% sodium azide and 10% 

2H2O. 1H chemical shifts were directly referenced to the methyl resonance of 

TSP, while 13C and 15N chemical shifts were referenced indirectly to the 

absolute 13C/1H or 15N/1H frequency ratios. 

The 1H-15N- Heteronuclear Single Quantum Coherence (HSQC) spectra were 

recorded with a number of complex points (cp) and acquisition times equal to 

128 cp and 64 ms for 15N (F1 dimension) and 1024 cp and 146 ms for 1H (F2 

dimension). The assignment of 1H and 15N resonances was achieved using a 

suite of heteronuclear 2D and 3D spectra: 1H-15N-HSQC, 3D [1H, 15NH]-TOCSY-

HSQC and, 3D [1H, 15NH]-NOESY-HSQC. The assignment was extended to 13C 

resonances and globally assessed by analyzing HCCH-TOCSY and triple 

resonance (HNCO, HNCACN, CBCA(CO)NH) experiments. NMR experiments 

were processed using the software Varian (VNMR 6.1B). The program CARA 

was used to analyze and assign the spectra. The assignments of the aliphatic 
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side-chain 1H resonances remain in some cases ambiguous due to cross peaks 

overlapping. Globally, the NMR analysis of the double label-ed (15N-13C) 

PonA2-PASTA allowed us to confidently assign 98 % of the resonances. 

The structure calculation was performed by program CYANA 2.1 starting from 

150 random conformers. 3D structure of PonA2-PASTA domain was determined 

based on 465 experimental NOE constraints and 87 constraints on Ф and φ 

torsion angles as obtained on the basis of backbone (HN, 15N, 13Cα, 13C’, 13Cβ) 

chemical shifts using TALOS+. The 40 conformers with the lowest final CYANA 

target function values (TF average value= 1.68 ± 0.19 Å2) showed an average 

backbone RMSD = 0.62 ± 0.31 Å and an average heavy atom 1.02 ± 0.29 Å. 

Validation procedure using PROCHECK-NMR (Laskowskiet al., 1993) program 

demonstrated that the final family of 3D structures is in agreement with the 

distance restraints. The molecular graphics program MOLMOL (Koradi et al., 

1996). was employed to perform the structural statistics analysis. 

II.3.12 Relaxation measurements 

Backbone 15N relaxation parameters (R1, R2 and hetero-nuclear NOE) were 

obtained for 15N-labeled PASTA sample at the concentration of 200 µM by NMR 

experiments recorded at 298 K and 600 MHz. Seven relaxation delays were 

used both for R1 (0.01, 0.05, 0.1, 0.3, 0.6, 0.8, 1s ) and R2 (0.01, 0.03, 0.07, 0.09, 

0.13, 0.15, 0.19 s) measurements. 15N-{1H} hetero-nuclear steady state NOEs 

were measured with recycling time of 5 s and 3 s of proton saturation period. 

The rotational correlation time was determined by using the average R2/R1 

values. 
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II.4 RESUSTS 

II.4.1 Structural studies of EC-PrkC from S. aureus 

PrkC from S.a is a 664-residue-long multidomain protein. Using sequence 

analysis tools, the PrkC sequence is predicted to embed a serine/threonine 

kinase domain (residues 1–270), a region of unknown structure and function 

(residues 271–377) that includes a transmembrane helix (residues 349–373) and 

an extracellular region, denoted EC-PrkC (residues 378–664) (Figure 22).  

 

Figure 22. Domain prediction of PrkC, according to the Pfam database 

We determined the crystal structure of EC-PrkC S.a, which is predicted to 

contain three successive PASTA domains (Figure 22). We overexpressed this 

fragment of PkrC in E. coli and obtained a soluble form that was amenable for 

crystallization. Since a sole methionine residue is present in the sequence of EC-

PrkC, we tackled structure factor phasing by preparing derivatives of EC-PrkC 

crystals with several heavy metals. The best results were obtained with 

lanthanides. Indeed, MAD data collection using a LuCl3-derivatized crystal was 

performed at DESY. Diffraction data, at 2.9Å resolution, allowed us to trace a 

significant part of the molecule. Higher diffraction data (2.2Å resolution) were 

collected in-house on a EuCl3-derivatized crystal. Using the SAD method, these 

data produced a readily interpretable electron density throughout the entire 

structure. The final model contained 285 residues, five Eu3+ ions and 125 water 

molecules.  

Data collection, refinement and model statistics are summarized in the Table 4 

(pag. 69). 
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II.4.2 EC-PrkC from S. aureus has the 

shape of a golf club 

The crystal structure of EC-PrkC revealed 

that it consists of four consecutive 

domains. The four domains are arranged 

sequentially in a golf-club shape, such 

that only neighbouring domains interact 

with each other (Figure 23). Three of the 

four domains are, as predicted, PASTA 

domains (Figure 22). The structure shows 

that the three PASTA domains display a 

linear and regular organization. Indeed, 

each domain exhibits a two-fold 

symmetry with respect to its neighbouring 

domains (Figure 23). In this organization, 

the sole α-helix of each domain is 

alternatively located on the two sides of 

the golf club. Interestingly, the structure 

reveals the existence of a fourth domain, 

at the C-terminal end of the molecule, 

not predicted by searches in the PFAM 

database (Finn et al., 2008). Furthermore, 

sequence analyses against the PDB do 

not identify any significant homologue for 

this domain.  

Figure 23. Ribbon representation of EC-PrkC S.a. Helices and β-strands are 

shown in orange and blue respectively. 

II.4.3 Features of PASTA domains 

The present study provides the highest-resolution study of PASTA domains, 

which are arranged in βαββββ motifs (Figure 23). Despite moderate sequence 

identity between EC-PrkC PASTA domains (from 21 to 27%), the structures of 

these domains are well conserved. PASTA domains are also constituents of the 

PBP2x protein from S. pneumoniae (PDB code 1QME) (Gordon et al., 2000). The 

crystal structure of PBP2x shows that its two PASTA domains form a compact 

structure with a pronounced interdomain bending (Figure 24A). In this 
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arrangement, each PASTA domain is involved in interactions with both the 

other PASTA domain and with the dimerization and transpeptidase domains of 

PBP2x (Gordon et al., 2000). In contrast, in the structure of EC-PrkC, the three 

PASTA domains are arranged linearly, with a limited number of interdomain 

interactions. This finding suggests a high flexibility of the EC-PrkC. The structural 

comparison of PrkC PASTA domains with those of PBP2x shows a significant 

conservation of the PASTA fold, despite the low sequence identities, ranging 

from 5 to 28%, between domains. All secondary-structure elements are 

conserved, although β-strands β4 and β5 do not appear in lower resolution 

PBP2x structures (Figure 24B) (Pares et al.,1996). 

                             A)                                                                        B) 

 

Figure24. A) Superposition of the PASTA domain 1 of PBP2x (PBP2x-1, orange) 

with the PASTA domain 2 of PrkC (purple). B) Top view of PBP2x structure. The 

ribbon and surface representations of PASTA domains are coloured orange, 

whereas representations of the rest of the molecule are shown in green. 

Superpositon of EC-PrkC structure with the Small Angle X-ray Scattering (SAXS) 

structure of the extracellular portion of its homologue PKnB from MTB (four 

PASTA domains) shows that, similar to PrkC, the organization of PASTA domains 

in the PknB  is nearly linear (Figure 25B) (Gordon et al., 2000; Barthe et al., 2010). 

However, the overall Root Mean Square Deviation (RMSD) calculated on Cα 

atoms after superposition of the three PASTA domains of EC-PrkC from S.a with 

those of PknB is as high as 9.5Å (after superposition with PknB PASTA domains 2, 

3 and 4) and 14.4Å (after superposition with PknB PASTA domains 1, 2 and 3). 
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This is mainly due to different arrangements of PASTA domains in PrkC and PknB 

(Figure 25A, B). Indeed, when single PASTA domains of EC-PrkC and PknB are 

superposed, a strong conservation of the domain fold is observed, even in 

cases when sequence identities are as low as 2–5%. On the basis of the 

observation that the two PASTA domains of PBP2x interact with each other 

(Figure 25A) (Gordon et al., 2000), the authors proposed that extracellular 

regions of PknB dimerize to activate the kinase, since only dimerization would 

bring two PASTA domains in close contact (Barthe et al., 2010). However, it 

should be noted that the two PASTA domains of PBP2x are oriented in opposite 

directions (Figure 25B). Therefore similar interactions would produce PrkC 

dimers that would not allow the catalytic domains to interact. 

 

Figure 25. Comparison of EC-PrkC S.a with PknB from MTB. A) Ribbon representation 

of the X-ray structure of EC-PrkC. B) Ribbon representation of PASTA domains arrangement in 

PknB, as derived by SAXS studies; PDB code 1KUI. C) Superposition of PknB PASTA domain 1 

(light grey) with PrkC PASTA domain 2 (dark grey). 

II.4.4 Features of the Immunoglobulin (IG)-like domain 

The crystal structure shows of EC-PrkC S.a contains a C-terminal domain which 

was not predicted by searches in the PFAM database (Figure 22). This latter 

domain (residues 577–664), exhibits an all-β structure, which contains six β-

strands arranged in a β-sandwich. Sequence alignment analyses do not 
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identify any structure in the PDB with significant sequence identity. However, a 

DALI (Holm and Sander, 1995) search of the PDB reveals that PrkC C-terminal 

domain structurally resembles a set of IG domains. The canonical structure of 

IG domains is formed by a three-stranded and a four-stranded β-sheet packed 

in β-sandwich arrangement (Bork et al., 1994). Like canonical IG domains, PrkC-

IG domain (PrkC-IG) presents a hydrophobic core formed by both β-sheets, 

whereas residues pointing to the solvent are mainly hydrophilic; this results in 

alternating polar/non-polar sequence patterns of the β-strands. The topology 

of PrkC-IG can be classified as belonging to the s-type IG domains (Bork et al., 

1994). However, superposition of PrkC-IG to those identified with DALI (Table 5) 

shows that this domain lacks the N-terminal strand (β-strand β* of the canonical 

IG domain; Figure 26).  

 

The sole identified protein that shares a similar feature is a type III domain of 

human fibronectin (PDB code 2H41; Table 5). In EC-PrkC, the N-terminal lacking 

strand of PrkC-IG forms the linker with the PASTA3 domain (Figure 23). Different 

from typical IG folds, where hydrophobic residues in the β* strand pack against 

the hydrophobic core, the PrkC linker is highly hydrophilic. The volume 

occupied by hydrophobic residues of the β* strand in canonical IG domains is 

filled by bulky hydrophilic residues of β-strands β1 and β6 in EC-PrkC S.a (results 

not shown). It is worth noting that IG domains similar to PrkC-IG are usually 

involved in cell–cell interactions and cell signalling (Lemmon and Schlessinger, 

2010). Their adhesive properties are exploited both by bacterial (Bowden et al., 

2008; Ganesh et al., 2008) and eukaryotic cells (Carafoli et al., 2008) and are 

typically due to the exposure of an anomalously large number of backbone β-
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strand hydrogenbond donors and acceptors (Richardson et al., 2002). This is 

particularly true when IG folds are not complete and lack one β-strand (as in 

PrkC-IG), since this feature leads in extreme cases to IG polymerization (Kline et 

al., 2010; Vitagliano et al., 2007). These properties of PrkC-IG S.a suggest that 

this domain may also play a role in peptidoglycan binding, in a fashion similar 

to the E. coli adhesin PapG with host glycolipids (Dodson et al., 2001; Imberty et 

al., 2005). Consistently, we noted that PrkC from B. subtilis, which shares similar 

properties in inducing bacterial sporulation, also contains a similar domain at its 

C-terminus. 

 

Figure 26. Schematic diagram of canonical IG domain topology. The grey strand 

in the topology sketch (strand β*) is lacking in PrkC-IG. 

II.4.5 Binding studies of PrkC from B. subtilis to muropeptides 

B. subtilis spores germinate in response to DAP-type muropeptides but not in 

response to L-Lys-type muropeptides. This finding suggests that PrkC 

extracellular domains exhibit specificity of muropeptide sensing. However, 

whether muropeptides are able to bind the protein physically and how the 

extracellular region is able to distinguish the two types of muropeptides was 

hitherto unknown. 

To explore the structural requirements necessary for recognition and binding of 

muropeptides to PrkC from B. subtilis, we expressed and purified the extra-

cellular portion of the protein and performed binding studies with m-DAP 

containing muropeptide blend (GlcNAcMurNAcAla2GluDAP, 

GlcNAc2MurNAc2Ala4Glu2DAP2: Figure 27), purified in the group of Prof. 

Molinaro from the University of Naples. 
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                                             A                                           B 

 
 

Figure 27. Chemical structures of typical constituents of a muropeptide blend, 

composed of monomers A) and dimers B). 

 

Using ITC technique we proved that muropeptides are able to bind EC-PrkC 

from B. subtilis and measured their binding affinity to the protein. Using the 

typical blend of muropeptides released during cell wall remodeling (Figure 27), 

we observed a low-millimolar protein−ligand affinity, with Kd = 1.2 mM (Ka = 

801.0 ± 33.3 M−1, ΔH = −14.7 ± 0.4 kcal · mol−1) (Figure 28). 

 

Figure 28. Muropeptide binding with EC-PrkC. Raw data for the titration of 50 µM 

protein with 20 mM muropeptide blend (muropeptides B and A in 3:1 ratio) at 25°C. Integrated 

heats of binding obtained from the raw data, after subtracting the heat of dilution, are shown 

in the inset. The red line represents the best curve fit to the experimental data, using the ‘one 

set of sites’ model from MicroCal Origin Software. 

 

Saturation Transfer NMR data obtained in the group of Prof. Molinaro from the 

University of Naples, revealed the binding epitope of the muropeptide, by 

measuring relative STD effects from the STD amplification factors. These studies 

showed that strongest STD NMR signals involve the DAP residue whereas low-
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intensity STD signals were recorded for the carbohydrate moieties. The key 

involvement of the DAP residue in protein recognition well agrees with the 

previous finding that only muropeptides containing DAP in their peptide stem 

resuscitate B. subtilis, whereas L-Lys-type muropeptides do not (Shah et al., 

2008). The NMR binding data also showed that EC-PrkC B.s is unable to bind 

Lys-type peptides.  

II.4.6 Bioinformatic studies: Statistical survey and homology 

modeling 

Prompted by the observed binding of muropeptides to EC-PrkC B.s, we 

focused on the identification of their interaction site on the protein surface. We 

attempted crystallization of EC-PrkC B.s with no success. Therefore, we 

determined the three-dimensional model of EC-PrkC from B.subtilis using 

homology modeling (Figure 29).  Modeling was carried out using the software 

MODELLER and the structure of EC-PrkC from S.aureus as a template (28.7% 

sequence identity).  

Analysis of sequence conservation on the model surface did not suggest any 

obvious conserved patch of residues which could play a role in muropeptide 

binding. Therefore, the key role of DAP in protein recognition revealed by STD 

NMR studies prompted us to perform a statistical survey PDB to identify the 

structural determinants responsible for DAP binding to proteins. Notably, in all 

structures of protein complexes with DAP, the carboxylate end of DAP forms a 

salt bridge with an arginine side chain (Figure 29). This finding suggested us that 

muropeptide binding occurs mainly through the interaction of DAP with an 

arginine residue of EC-PrkC from B. subtilis.  

The homology model of EC-PrkC from B. subtilis shows the location of the two 

arginine residues in the protein structure (Figure 29). Arg614 is located in the IG-

like domain and is involved in a salt bridge with Glu604 (Figure 29A). On the 

other hand, Arg500 in located the PASTA3 domain and is fully solvent-exposed 

(Figure 29B). These considerations led us to hypothesize that Arg500 is involved 

in muropeptide binding in a fashion similar to those observed in the PDB (Figure 

30). To corroborate this hypothesis, we produced mutants of EC-PrkC B.s in 

which Arg500 was changed to alanine (R500A) and to glutamic acid (R500E), 

two residues which we predicted to be more disruptive of the Arg−DAP 

interaction.  
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Figure 29. Structure of EC-PrkC from B. subtilis derived by homology modeling. 
The two insets show enlargements of A) the salt bridge between Arg614 and Glu604 in the IG-

like domain and B) the location of Arg500 in PASTA3. 

 

STD experiments unequivocally showed that neither R500E nor R500A are able 

to bind muropeptides, as no STD signals were observed in either case (data not 

shown). To exclude that the inability of mutants to bind muropeptides was due 

to alterations of their structure, we carried out CD spectroscopy studies. These 

studies showed CD spectra of mutants were superimposable to that of the 

unmutated structure and excluded the possibility of defects in protein folding 
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induced by the mutations (Figure 31). The inability of the R500E and R500A 

mutants to bind muropeptides shows that Arg500 is the primary site of 

interaction with muropeptides. Therefore, we were able to map the site of 

interaction both on the muropeptides and on EC-PrkC B.s and could conclude 

that PrkC senses muropeptides through interactions of the negatively charged 

DAP side chain of the muropeptide with the side chain of Arg500. 

 

Figure 30. Interaction of DAP with protein structures available in the Protein Data 

Bank. The four panels represent the binding of DAP to (a,b) Corynebacterium glutamicum 

diaminopimelate dehydrogenase (PDB codes 2DAP and 1F06, respectively), (c) UDP-N-

acetylmuramoyl-L-alanyl-D-glutamate: meso-diaminopimelate ligase from Escherichia coli 

(PDB code 1E8C), (d) Drosophila peptidoglycan recognition protein (PGRP)-LE (PDB code 

2CB3). 

 

Figure 31. CD spectra of R500A (black) and R500E (red) mutants of EC-PrkC 

from B.subtilis compared to the CD spectrum of EC-PrkC not mutated (green). 
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II.4.7 Structural features of the PASTA domain of PonA2 from M. 

tuberculosis 

We coupled CD and NMR spectroscopy studies with computational 

approaches to gather insights into the structure and binding properties of the 

PASTA domain of the PBP PonA2 from M. tuberculosis.  

The PASTA domain (PonA2-PASTA, residues 700-764) of PonA2 was produced as 

isotope labeled (15N/13C ) for NMR experiments. Prior to these studies, PonA2-

PASTA fold and stability were evaluated using UV circular dichroism (CD) 

spectroscopy (Figure 32). CD spectra are characterised by two minima at 208 

nm and 222 nm and witness a good degree of structural integrity of the 

domain (Figure 32). The analysis of thermal denaturation curves evidences that 

PonA2-PASTA is a stable module with a melting temperature (Tm) of 42°C 

(Figure 32) and a fully reversible denaturation process (Figure 32). 

 

 

 

 

 

 

Figure 32. CD studies of ponA2-PASTA. Left) Superposition of CD spectra at 20°C and 

after refolding from 70°C to 20°C. Right) Thermal denaturation curve. A red arrow locates the 

melting T. 

The 1H–15N heteronuclear single quantum coherence (HSQC) spectrum of 15N–

labeled PonA2-PASTA domain shows a good dispersion of signals indicative of 

a well-folded structure (Figure 33). The 3D model (Figure 34), calculated by 

CYANA program, shows a global topology consisting of a α-helical segment 

approaching a three stranded β-sheet. The N-terminal helix, which involves 

about 10 residues, from Val12 to Ala22, is well defined by a dense set of NOE 

effects (RMSD= 0.05 ± 0.02 Å). Extended conformation is found in the traits 

Ala27-Ser32 (β1), Gly40-Thr45 (β2) and, Val57-Ser62 (β3). The RMSD values 

measured on backbone atoms (20 structures) of β1, β2 and β3 strands are all < 

0.11 ± 0.06 Å. The inter-strands NOEs (particularly dense between the anti-

parallel β2 and β3) used as constraints in the structure calculation gave back 
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the β1-β3-β2 expected arrangement for PASTA PonA2-PASTA sheet. The helix 

orientation is defined by NOE contacts between side chains from pre-helix 

residues (Ala8-Gly9) and β2 ones (Val42-Val43). Phe24 and Tyr39, the only two 

aromatic residues own by the sequence, are both localized in loop regions. 

Phe24 side chain, in particular, participates to the hydrophobic core. The 

numerous unambiguous long range NOEs involving Phe24 aromatic protons 

and Val4, Leu19, Gly39 and Val57 side chains define the structure of the 

hydrophobic core. N- and C-terminus residues Ser2 and Asn63 participate to 

the long range NOEs network with loop nuclei. The backbone flexibility was 

tested by analyzing relaxation measurements performed on 15N backbone 

nuclei. The values of R2/R1 relaxation rate ratios as well as 15N-{1H} hetero-

nuclear NOEs are quite uniform along the sequence except for the more 

flexible very N-terminal residues. Globally, the domain appears compact. 

Relevant structural parameters and statistics are given in Table 6 (pag. 70). 

 

 

Figure 33. [1H, 15N]-HSQC spectrum of 

ponA2-PASTA 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 34. Solution structure of ponA2-PASTA (20 structures) 
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The 3D structure of PonA2-PASTA exhibits the typical PASTA topology, consisting 

of a N-terminal α-helix followed by a three strand β-sheet with β1β2β3 

arrangement. Interestingly, superposition of the NMR structure of PonA2-PASTA 

with other available structures shows a higher structural similarity with PASTA 

domains of STPKs than to that of PBP2x. This finding well correlates with the 

lower sequence identity with PBP2x than with PASTA domains belonging to 

STPKs. Despite this, PonA2-PASTA holds a characteristic feature of PBPs. Namely, 

like in PBPs the loop region between β1 and β2 strands is 4-5 residue shorter 

than in STPKs. 

II.4.8 Binding studies of ponA2-PASTA to muropeptides and β-

lactam antibiotics 

It is well known that the cross peaks distribution in protein [1H-15N] HSQC maps 

(Figure 32) represents an efficient way to detect structural changes in response 

to various phenomena such as molecular binding. In order to test the possible 

ability of PonA2-PASTA to interact with antibiotic molecules and/or PG 

fragments, we performed titrations with 

the two β-lactam antibiotics cefuroxime 

and cefotaxime (Sigma-Aldrich) and 

with synthetic Tri-DAP (InvivoGen), a 

molecule typically used to mimic the PG 

peptide stem. In all cases, we observed 

no significant chemical shift 

perturbations in the [1H-15N]-HSQC 

spectra upon ligand addition, this 

indicating that PonA2-PASTA is unable to 

bind either β-lactam antibiotics, or Tri-

DAP (data not shown). The same 

conclusions were drawn using ITC 

experiments. An example is reported in 

Figure 35, which shows that no heat 

changes are observed upon titration of 

ponA2-PASTA with mur-TriDAP. 

 

 

Figure 35. ITC experiment of 

ponA2-PASTA (0.15mM) with 

mur-TriDAP (15mM) 
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II.5 CONCLUSION 

Muropeptides are a clear molecular signal that growing conditions are 

promising, since they are produced during cell wall PG remodeling associated 

with cell growth and division of neighboring bacteria. However, whether 

muropeptides are able to bind the protein physically and how the extracellular 

region is able to distinguish between different muropeptide types was unclear. 

We focused our attention on STPK PrkC from Staphylococcus aureus and from 

Bacillus subtilis and on a PBP from MTB, denominated ponA2. The fil rouge 

between these proteins is that they are all involved in regulation of 

resuscitation from bacterial dormancy and they all contain PASTA domains. 

To this end, we conducted structural studies on PrkC from Staphylococcus 

aureus and from its homologue Bacillus subtilis. Furthermore, here we tackled 

the important question of how the extracellular region of PrkC from B. subtilis 

senses muropeptides. By coupling crystallography, bioinformatic, protein 

mutagenesis and ITC we proved that EC-PrkC B.s is able to bind DAP-type 

muropeptides and investigated the structural requirements necessary for 

recognition and binding. We have also shown that this recognition occurs 

through interactions of DAP with Arg500, as a mutation of this amino acid in 

EC-PrkC completely impaired muropeptide binding. This finding well agrees 

with the key role played by arginine in the specific recognition of DAP-type 

muropeptides by PG recognition proteins (Shah and Dworkin J., 2010; Shah et 

al., 2008). In this scenario, the key role of Arg500 in binding provides a clear 

explanation for the ability of EC-PrkC from B. subtilis to discriminate between 

DAP- and Lys-type muropeptides in bacterial revival. Using this mechanism, B. 

subtilis bacteria, which possess a DAP-type PG, can cross-talk and trigger 

resuscitation by its own cell wall turnover. Our data provide the first molecular 

clues into the mechanism of sensing of muropeptides by PrkC. These findings 

opened a novel and more complex scenario in the interpretation of the 

mechanism of bacterial revival from dormancy. In this scenario, hydrolysis of 

the cell wall by hydrolases (like RipA in MTB) is only the first step, that has the 

twofold effect to alter the mechanical properties of the cell wall and produce 

specific PG fragments.  

With the aim of investigating whether a similar muropeptide sensing 

mechanism is mediated by the PBP PonA2, we determined the NMR structure 

of its PASTA domain. Beside elucidating the structural properties of this domain, 

our main interest was to understand if this domain may be a possible target for 
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muropeptides or β-lactam antibiotics. Indeed, it was previously shown that the 

the β-lactam antibiotic cefuxomine binds a PASTA domain of the PBP2x from S. 

pneumoniae, which contains two C-terminal PASTA domains (Gordon et al., 

2000; Dessen et al., 2001). Using NMR titration and ITC experiments, we show 

that PonA2-PASTA is unable to bind the PG fragment mur-TriDAP, different than 

what we observed for PrkC. Similarly, we found that PonA2-PASTA does not 

bind the β-lactam antibiotics cefuxomine and cefatoxime. Although the 

importance of this domain in PonA2 function is still to be clarified, our results 

point to a structural role and not necessarily a muropeptide sensing role. 

Consistent with our findings, we observed that only one PASTA domain of PrkC 

is involved in muropeptide binding. 

PASTA-containing proteins have been often proposed as interesting targets for 

β-lactam antibiotics, to be considered in the future for the design of new 

antimicrobials as well as anchors for muropeptides. Our work shows that this 

role of PASTA domains, which were considered as ‘β-lactam binding domains’ 

(Yeats et al., 2002) cannot be generalized. Although our NMR structure 

confirms that the PASTA fold is highly conserved (Figure 33), sequence identities 

among PASTA domains can be as low as 5%. Therefore, specific properties of 

PASTA domains as β-lactam or muropeptide binders strongly depend on 

surface residues, which are widely variable.  
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Table 1. Statistics of data collection for RipA263-472 and SeMetRipA263-472 

 

 SeMet derivative  Native 

 Peak 

 

Inflection point 

 

Remote 

 

 

Beamline BM14 BM14 BM14 BM14 

Space group P212121 P212121 P212121 P212121 

Unit cell parameters (Å)   

a 36.83 36.83 36.83 36.77 

b 65.84 65.76 65.77 65.41 

c 67.84 67.86 67.87 67.79 

Resolution (Å) 1.35 1.35 1.52 1.00 

Wavelength (Å) 0.979 0.979 0.946 0.974 

Average  

Redundancy 

11.6 (4.0) 10.7 (7.0) 4.6 (4.3) 12.2 

 

Unique reflections 35146 35658 26106 85882 

Completeness 95.3 

(73.0) 

96.4 (75.9) 99.9 (100.0) 96.5 

(72.6) 

Rmerge (%) 7.5 (17.1) 5.9 (16.3) 5.0 (10.1) 8.0 

(29.2) 

Average I/σ(I) 58.7 (7.4) 54.5 (9.2) 55.8 (21.3) 19.7 

(3.0) 
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Table 2. Data Collection and Rifinement statistics of RipA263-472 
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Table 3. Data collection and refinement statistics. Values in parentheses are for 

the highest resolution shells (1.00-0.97 Å and 1.43-1.39 Å for C383A and H432A 

mutants, respectively) 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 RipA263-472C383A RipA263-472H432A  

 

A. Data collection 

  

Space group P212121 P212121 

Cell parameters a,b,c (Å);  36.76,  65.51, 67.98   36.70, 65.49, 68.33 

Resolution range (Å) 30-0.97 30-1.39 

N. of unique reflections 97211 32925 

Average redundancy 8.9 (6.4) 5.0 (3.5) 

Rmerge (%) 5.4 (45.0) 4.8 (9.0) 

Completeness (%) 99.4 (99.9) 98.8 (90.0) 

Mean I/σ(I) 43.8 (2.9) 61.0 (15.1) 

   

B. Refinement   

Rwork / Rfree (%) 14.4/18.2 16.9/18.5 

   

Bond lengths (Å) 0.01 0.01 
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Table 4. Data collection and refinement statistic of EC-PrkC from S.aureus 

 

 



 

 

70 

 

Table 6. Protein Structure Violation Suite Statistics for the ensemble of 10 

structures calculated for ponA2-PASTA (residues 703-764) 

 

NOE based distance constraints 

 

Totala 465 

intra-residue [i = j] 189 

sequential [│i - j│ = 1] 133 

medium range [1 <│i - j│ < 5] 38 

long range [│i - j│ ≥ 5] 105 

 

Backbone dihedral angle constraints 87 

 

Total number of constraints 552 

 

Residual constraint violations 

Distance violations/structure  

0.1-0.2 Å 26.4 

0.2-0.5 Å 7.8 

> 0.5 Å 13.3 

RMS of distance violation/constraint 0.13 Å 

Maximum  distance  violation 1.17 Å 

Dihedral angle violations/structure 

1-10° 10.8 

>10° 0 

RMS of dihedral angle violation/constraint 0.74° 

Maximum dihedral angle violation 4.70° 

RMSD Values 

All backbone atoms  0.4 Å 

All heavy atoms 0.8 Å 

Ramachandran plot(%) 

Most favored region 89 

Additionally allowed region 11 

Generously allowed region 0 

Disallowed region 0 

 
aDistance constraints which excluded fixed intra-residue distances. 
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Abbreviations 

CD Circular Dichroism 

CHAP Cysteine Histidine Amino Peptidase 

DA Diamino 

EC Extra Cellular 

EF-G Elongation Factor G 

EF-Tu Elongation Factor Thermo-unstable 

ESRF European Synchrotron Radiation Facility 

FITC fluorescein isothiocyanate 

GlcNAc N-acetylglucosamine 

GST Glutatione S-Transferase 

HSQC Heteronuclear Single Quantum Coherence 

IG Immunoglobulin 

IMAC Immobilized Metal Affinity Chromatography 

IPTG Isopropil β-D-1-tiogalattopiranoside 

ITC Isotermal Titration Calorimetry 

KDa KiloDalton 

LB Luria Broth 

LC-MS Liquid Chromatography-Mass Spectrometry 

LPS Lipopolysaccharides 

LTAs Lipoteichoic acids 

m/z Mass-to-charge ratio 

MAD Multi-wavelength Anomalous Diffraction 

m-DAP meso-diaminopimelic acid 

MDR-TB Multidrug-resistant TB 

MS Mass Spectrometry 

MTB Mycobacterium tuberculosis 

MurNAc N-acetylmuramic acid 

NMR Nuclear Magnetic Resonance 
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NOE Nuclear Overhauser Effect 

NOESY Nuclear Overhauser Effect Spectroscopy 

NTA Nitriloacetic Acid 

OD Optical Density 

OM Outer Membrane 

PASTA PBP and Serine/Threonine kinase Associated 

PBP Penicillin Binding Protein 

PCR Polymerase Chain Reaction 

PDB Protein Data Bank 

PEG Polyethylene glycol 

PFAM Protein Families 

PG Peptidoglycan 

RipA Resuscitation promoting factor Interacting Protein A 

RMSD Root Mean Square Deviation 

RpfB Resuscitation Promoting Factor 

rpm revolutions per minute 

SAD Single-wavelength Anomalous Diffraction 

SAXS Small Angle X-ray Scattering 

SDS Sodium Dodeciyl Sulfate 

STD Saturation Tranfer Difference 

STPKs Ser/Thr protein kinases 

TAs Teichoic Acids 

TB Tuberculosis 

TEV protease Tobacco Etch virus protease 

TFA Trifluoroacetic Acid 

Tm melting temperature 

TOCSY Total Correlation Spectroscopy 

TRX Tioredossina 

WHO World Health Organization 

WTAs Wall Teichoic Acids 
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Standard amino acid abbreviations 

Alanine Ala (A) 

Arginine Arg (R) 

Asparagine Asn (N) 

Aspartic Acid Asp (D) 

Cysteine Cys (C) 

Glutamine Gln (Q) 

Glutamic Acid Glu (E) 

Glycine Gly (G) 

Histidine His (H) 

Isoleucine Ile (I) 

Leucine Leu (L) 

Lysine Lys (K) 

Methionine Met (M) 

Phenylalanine Phe (F) 

Proline Pro (P) 

Serine Ser (S) 

Threonine Thr (T) 

Tryptophan Trp (W) 

Tyrosine Tyr (Y) 

Valine Val (V) 
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