Universita degli Studi di Napoli

Dipartimento di Ingegneria Industriale

Scuola di dottorato in Ingegneria Aerospaziale,
Navale e della Qualita - XXV ciclo

Tesi di dottorato in
Ingegneria Aerospaziale

INTERFACIAL INSTABILITIES
OF TWO-FLUID FLOWS

ANNAGRAZIA ORAZZO
Tutor: Coordinatore:
Prof. Ing. Luigi de Luca Prof. Ing. Luigi de Luca

Prof. Ing. Gennaro Coppola

Aprile 2013






ANNAGRAZIA ORAZZO

INTERFACIAL INSTABILITIES
OF TWO-FLUID FLOWS






Tornano in alto ad ardere le favole.
Cadranno colle foglie al primo vento.
Ma venga un altro soffio,
ritornera scintillamento nuovo.

— Giuseppe Ungaretti

Dedicato a colui che mi ha insegnato a guardare le stelle ...






ABSTRACT

Many flows in industry and in nature are two-fluid flows of im-
miscible fluids. Among them, the cases of parallel flowing gas-
liquid layers in plane geometry and of oil-water arranged as Core-
Annular Flow (CAF) in circular pipe are deeply investigated here.
These are significant configurations, respectively, for the atomiza-
tion of fuel in thermal engine and for the lubricated pipelining in
petroleum industry.

Two-fluid flows are often unstable. Aim of this thesis is to
analyze the development of instability taking into account all the
typical features associated with two-fluid flows: large density and
viscosity ratios, surface tension acting on the interface separating
the different fluids and the different spatial scales interested by the
evolution of the interface.

This analysis is very complex because it is necessary to dis-
tinguish between linear and nonlinear effects, normal mode and
transient growth and delicate effects of viscosity even at high
Reynolds numbers. Both linear stability theory and direct numeri-
cal simulations have been used.

A linear stability analysis of these flows has been worked out
only recently (see [1], [2], etc ...). It has let to verify that interfacial
modes are the most unstable ones and represent the leading
mechanism of primary instability.

Numerical simulations, based on Volume of Fluid (VOF)
method, have allowed to investigate the nonlinear development of
this interfacial instability that, for gas-liquid flows characterizing
the atomization process, is the main responsible of breakup and
droplets formation. These simulations have displayed the forma-
tion and the evolution of a new type of instability: a nonlinear
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single wave Kelvin-Helmholtz instability. This structure has been
extensively discussed and characterized.

Two different codes have been used: an in-house modified
version of SURFER [3] and GERRIS flow solver, a new generation
VOF code coupling classical VOF algorithms with the adaptive
mesh refinement [4].

Regarding CAF, in order to explain the disagreement between
classic results of linear modal stability analysis and some exper-
imental findings [5], a nonmodal analysis has been performed.

It has highlighted how the instability of this flow is governed by
transient energy amplification of infinitesimal three-dimensional
disturbances that lead to particular flow patterns, such as emul-
sifications or water drops in oil, and play an important role in
transition to turbulence.

KEY WORDS: gas-liquid flows, interfacial instability, VOF sim-
ulations, single Kelvin-Helmholtz wave, linear stability analysis,
CAF, transient growth.
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INTRODUCTION

Bicomponent flows are coupled flows of a fluid and another con-
stituent, either solid or another fluid, with different material prop-
erties. The examples that will be treated in this thesis are the flow
of two immiscible liquids and the gas-liquid flow, called two-phase
flow.

Two-fluid flows play an essential role in many natural phenom-
ena (geophysics, meteorology...), fig. 1.1, and human enterprises.
We come across examples of these flows, in particular of gas-
liquid flows, in our everyday life, such as in the kitchen (drinking,
washing, cooking...), taking a shower, using pharmaceutical sprays
and cosmetics. They are also used for our entertainment, just
think about water games of fountains, and for our security, for
example to help firemen. Similarly these flows are present in
abundance in industrial applications: lubricated transports, sprays,
jet engine technology (fig. 1.2), manufacturing, etc...

Understanding the dynamics of two-fluid flows is a challenging
subject of both engineering and scientific importance and the
literature is very extensive. From a mathematical point of view,
multifluid problems are notoriously difficult: not only the govern-
ing equations are highly nonlinear, but the position of the fluid
boundary must generally be found as a part of the solution. The
basic analytical tool used is the linear stability analysis which does
not allow to investigate the effects of nonlinear mechanisms, dom-
inant in the break-up and instability process. On the experimental
side, the phenomena characterizing these flows often happen on
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Figure 1.1: Waves on the
sea. From flickr.com.

scales of space and time where the visualization is difficult or im-
possible. For all these reasons numerical simulations seem to be
the most valuable means to treat these problems.

F | Figure 1.2: Destabilization

of slow water jet by a fast
coaxial air stream. From

[6].

1.1 BASIC EQUATIONS

The derivation of the equations governing the flows where an
interface separates the fluids is based on three general hypothesis:
the continuum hypothesis, the hypothesis of a sharp interface and
the consideration of only the intermolecular forces (the van der
Waals forces) that play an important role in the interface physics
and are modeled as surface tension.

Although real fluids are made by atoms and molecules, the
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assumption that they can be treated as a continuum is usually an
excellent approximation. In fact, molecular simulations, where the
motion of many individual molecules is followed for long times,
show that the fluid behaves as a continuum for a surprisingly
small number of molecules (see [13]). The assumption of a sharp
interface is justified by considering that the transition from one
fluid to another, and thus the change of density, viscosity, and all
the material properties of fluids, occurs on very small scales that
allow us to assume the interface with a vanishing thickness.

Beyond these three hypothesis, we mostly deal with incom-
pressible flows and Newtonian fluids.

The basic principles to obtain the governing equations of
two-fluid flows are the same used for the single-fluid flows: the
conservation of mass, momentum and energy (the latter will be
not considered here because for the flow configurations investi-
gated the variations of energy are neglected). Of course, after the
derivation of the governing equations for each fluid in play, it is
necessary to discuss the mathematical representation of a moving
interface and the appropriate jump conditions needed to couple
the equations across the interface.

The principle of conservation of mass states that mass cannot
be created or destroyed. Therefore, if we considered a volume V,
fixed in the space, the mass inside this volume can only change
if mass flows in or out through its boundary S. Similarly, the
momentum conservation principle states that the rate of change
of fluid momentum in the fixed volume V is the difference in
momentum flux across the boundary S plus the forces acting on
the volume (the gravitational force, f = pg). The equations of fluid
motion for incompressible Newtonian flow in convective form
are:

V-V=0
\V4 (1.1)

pﬁ =-Vp+f+V-(2uD)

where the last term in the momentum equation, D, represents
the deformation part of the symmetric stress tensor T, which
for Newtonian fluids is expressed by the following constitutive
relation:

T=(-p+AV-V)I+2uD (1.2)



4 INTERFACIAL INSTABILITIES OF TWO-FLUID FLOWS

Here, I is the unit tensor, p is the pressure, y the viscosity, D =
%(VV +VVT) and A is the second coefficient of viscosity, usually
negligible.

The second of equations 1.1 is the Navier-Stokes equation.

1.2  INTERFACE DESCRIPTION

Following the motion in time of a deformable interface separating
different fluids or phases is the central point of analyzing multi-
fluid flows. There are several different ways in which the interface
can be described geometrically. All the possible representations
can be divided in two groups: explicit representations and implicit
representations.

Belonging to the first group is the description of the location
of the interface by a single-valued function of one (in two dimen-
sions) or two (in three dimensions) coordinates. For example, for
a thin liquid layer in two dimensions, it is possible to define the
height function h

y=hx1 (1.3)

h(x.0)

The fig. 1.3 shows the limitation of this approach: if part of the
interface overhangs, h becomes a multivalued function.

To handle interfaces of arbitrary shape it is possible to parametrize

them by introducing, in two dimensions, a new coordinate u, such
that the location of the interface is given by

x = (x(w), y(u)) (1.4)

Figure 1.3: The simplest
way to parametrize an
interface through the heigh
function y = h(x, t). From
[7].
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(for three-dimensional space we need to take two independent co-
ordinates). Fig. 1.4 shows a closed contour separating fluid 1 from
fluid 2 described in this way. Although u can be any parametriza-
tion of the curve shown, the simplest case is to choose the arc
length s, where ds? = dx? + dy?.

Figure 1.4: Parametric rep-
resentation of the interface

Fluid 2 where the coordinate u
follows the interface. From
t (7].
y
n

u

x(u)=(x () ,y(u))

Implicit representations of the interface are the ones in which
the interface is not described by identifying the location of every
point belonging to it but by a marker function defined in the
whole domain. These marker function may assume many forms.
For example, we can use a characteristic discontinuous functions,
also know as the step function or the Heaviside function, defined
by:

1 fluid1
H(x) = { . (1.5)
0 fluid2

Given H, the interface is identified with the sharp change from
one value to the other (fig. 1.5).

The interface can be described also by a a smooth function F
and, in this case, its position is identified with a particular value
of this function, say F = 0 (fig. 1.6). Obviously, on one side of
the interface we have F < 0 and on the other side F > 0. This
representation as a contour line with a specific value is used in
level set methods.
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Figure 1.5: Implicit repre-
sentation of the interface
where a step function iden-
tify the region occupied by
a specific fluid. From [7].

dv'=dx'dy’
AN

Figure 1.6: Identification of
the interface by a level-set
function. From [7].
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SURFACE TENSION

A liquid flows readly and yet it can adopt extremely stable shapes,
for istance a drop of oil in water forms a perfect sphere that is
smooth on an atomic scale and is hardly deformable (fig. 1.7).
Here we summarize the physical origin of the phenomenon of

surface tension.

Figure 1.7: Oil bubbles

in a glass of water. From
- — the album of m_elam,
flickr.com.

At the interface between two different fluids all the material
properties change rapidly over distances comparable to the molec-
ular separation scale. Since a molecule at the interface is exposed
to a different environment than inside the material, it will also
have a different binding energy (the boundary molecules have a
higher energy). In the continuum limit this difference in molecu-
lar binding energy manifests itself as a macroscopic surface energy
density. To reduce the energy state of a fluid, it is necessary to have
less high energy molecules: this results into a minimized surface
area. Consequently, a surface will assume the smoothest shape it
can. The excess of energy at the interface is expressed as

dE? = ods (1.6)

where ds is the infinitesimal interface (or, in three dimensions,
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surface) area and o is a material property, usually referred to as
surface tension.

In fluid mechanics the surface tension is not defined in terms
of a surface energy, but rather as a force per unit of length acting
perpendicularly on any segment of the interface. Suppose we want
to increase the surface area by an amount dA. The work required
is proportional to the number of molecules that must be brought
up to the surface:

SW =odA (1.7)

where dimensionally [0] = N/m.

As explained in the work of Laplace [14], surface tension is at
the origin of a jump in pressure which occurs passing through a
curved interface. We take the example of a drop of oil (o) in water
(w), fig. 1.7. In order to lower its surface energy, the drop adopts a
spherical shape of radius R. If the oil-water interface is displaced
by an amount dR, the work done by the pressure and capillary

force can be written as
W =—podV,— ppdVy + 04y dA (1.8)

where dV, = 4mrR?dR = —dV,, and dA = 87 RdR are the increase in

volume and surface, p, and p,, are the pressure in the oil and the

water, and 0, is the interfacial tension between oil and water.
The condition for a mechanical equilibrium is W = 0, which

amounts to
20 wo

R

It is possible to generalize this law to a generic interface con-

Ap=po—Ppw= (1.9)

sidering that the increase in hydrostatic pressure Ap that occurs
upon traversing the boundary between two fluids is equal to the
product of the surface tension o and the curvature of the surface

c= % + %, where R and R’ are the curvature radii.

Ap=o0c (1.10)

Capillary effects may be represented numerically by a tensor T?
tangent to the interface and given by

T’ =o(I-nn) (1.11)



where I'is the Kronecker symbol tensor, 6;;, and n is the unit
vector normal to the interface.

The force on a surface element of area S, bounded by a contour
L, is the integral of T? on its edges:

6F(,=7§T”~ndl=fv-T“ds (1.12)
L S

Taking the limit of eq. 1.12 as the surface area shrinks to a point,
we define the surface force per unit of area as

f,=V-T°=V.gl=0V-1+1-Vo (1.13)

The first term can be shown to be o¢cn and the second term is
simply Vo. Thus,

fy =ocn+Vo (1.14)

where ¢ represents the curvature of the interface and the last
term, the surface gradient of o, is obviously zero for constant
surface tension (the case considered in this thesis).

“TWO-FLUID FORMUIATION”: JUMP CONDITIONS

The two-fluid formulation of the flow of two immiscible fluids is
based on the decomposition of the domain into two subdomains
filled with an individual fluid. The usual Navier-Stokes equations
have to be written for any subdomain and, to unify the flow field,
we need to derive some interface conditions. These conditions are
derived using the mass and momentum conservation, introducing
an additional term for surface tension.

The jump condition for normal velocity is derived applying the
conservation principle to the control volume dV shown in fig. 1.8.
Since the thickness is taken to zero, the mass flow into the control
volume must be equal to the flow out. If the velocity on the two
side are V; and V3 and the normal velocity of the interface is V,
we have

P1(V1-n=V)=pa(Va-n-V) =i (1.15)

This is the Rankine-Hugoniot condition. If there is no change of
phase, then riz = 0. For incompressible flow this condition must

INTRODUCTION

Figure 1.8: A thin control
volume dV with boundary
dS including a portion of
the interface S. From [7].

9
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hold for arbitrary density ratio, thus

V=V1'1’1=V2'n (116)

Mass conservation does not impose restriction on the tan-
gential velocity components. Indeed, inviscid fluids are usually
assumed to slip at the interface, while, for viscous fluid it is experi-
mentally observed that no slip takes place.

In conclusion, without phase change and with incompressible
fluids, the interfacial condition for viscous fluid is simply Vi =V,
or

Vy=0 (1.17)

where the symbol (-) represents the jump of a quantity across the
interface.

Applying the conservation of the momentum (the second eq.
of 1.1), including the surface force f;, to the control volume of fig.
1.8, we obtain a jump of the stress tensor T across the interface

—(T)-n=o0cn (1.18)

This condition may be split into a normal and tangential stress

components

—(=p+2un-D-n)=oc
—Q2ut-D-n)=0

(1.19)

where t is the unit tangent vector to the interface for the two-
dimensional case.

The jump conditions and the partial differential equations
for a Newtonian, incompressible fluid without phase change are
summarized in the following system

Vy=0
—(—p+2un-D-n)=0c
—(2ut-D-n)=0 (1.20)
V-Vv=0
bV_ —Vp+f+uv?Vv

Pbr ™
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The first three jump conditions are applied on the interface while
the last two in the bulk of each fluid. Together with boundary
conditions on the wall and exit and entry conditions, the eqs. 1.20
form a complete set for flows with interfaces.

1.3 LINEAR STABILITY ANALYSIS

The “two-fluid” formulation is used to perform the linear stability
analysis of two-fluid flows.

Investigations on linear stability for a single fluid date back to
Kelvin and Helmholtz in the 19th century, but only in the early
20th century, Heisenberg, Lin, Tollmien and Schlicting found that
viscosity may produce or contribute to the instability by modifying
the inviscid perturbations, [15].

Viscosity effects are even more significant for two-fluid flows:
the viscosity difference at the interface can give rise to instabilities
neither inviscid nor Tollmien-Schlichting type. The first who
studied this instability was Yih [16]. Subsequent works on this
subject were made by Ozgen [17], Renardy [18], as well as Hooper
and Boyd [19].

The huge amount of literature on the stability of parallel two-
fluid flows, both in the context of liquid-liquid as well of gas-liquid
flows, shows that this type of flow is susceptible to instabilities of
various kinds. Besides instability caused by viscosity stratification,
mentioned above, instability can results from density stratifica-
tion, velocity profile curvature or from shear effects in one of the
constitutive phases. In fact, unlike for the single-fluid case stability
problem where the Reynolds number is the only parameter in
play, the formulations of two-fluid stability problem requires at
least six dimensionless parameters: the viscosity, the density and
the thickness ratio between the two fluids, the Reynolds number,
the Froud number and a parameter taking into account the effects
of surface tension, the Weber number.

The purpose of this section is to give a brief overview of the
metology used to analyze the instability of a two-fluid flow, so the
formulation of the stability problem reported here is very general
and it is possible to apply it to widely divergent flow systems like,
for instance, wind over a the surface of the ocean, liquid-liquid

11



12 INTERFACIAL INSTABILITIES OF TWO-FLUID FLOWS

flow in a channel and thin liquid films.

Fluid 2 U2 P2 d>

Fluid 1 1 P dy

The flow of interest is a parallel flow of two immiscible fluids
having different densities, p; and p», and different viscosities, p;
and p, found in two layers of depths d; and d, as depicted in
fig. 1.9. It is possible to obtain a steady solution of the Navier-
Stokes equations by solving each layer and matching the stress and
the velocity on the interface. Using the fluid 1 as reference, the
dimensionless parameters governing the problem are d = dy/d,

r = p2/p1, m = pp/p, the Reynolds number of each layer, Re; =

%?dj and the Weber number, We = %gdl. Normally for plane
problem it is possible to neglect the effects of buoyancy, thus the
Froud number is not introduced.

Following the classical steps of linear stability analysis, the base
state (a steady solution of governing equations) is perturbed by
adding an infinitesimal disturbance obtained by means of Fourier

decomposition along the directions x and z
WV, pj) =V, 0, pj(y, 0)eEx+h2) (121)

where V = (u, v, w), p is the pressure and the subscript j = 1,2
identifies the layer. k and f are two real numbers representing re-
spectively the wavenumber along x direction and the wavenumber
along z direction. We are considering three-dimensional pertur-
bations for which it is possible to define the wavenumber vector,

k, whose components are k and §, k* = k? + 2. Imposing this dis-
turbance to the the base flow it is possible to linearize the govern-
ing equations, the boundary and the jump conditions, neglecting

Figure 1.9: Flow configura-
tion and parameters used
for the stability study.



all the quadratic perturbation terms. These linear equations gov-
erning the behavior of the perturbations can be written in terms of

normal velocity #; and normal vorticity fj; = if#i; —ikW;

0 1
E(Dz—kz)ﬁj +ikU;(D* - K*) )} — ikD*U; —R—ej(Dz—kz)Zﬁj =0

o_ o _ 1 _
Enj+lkUj17+lﬁDUjl}j—R—ej(DZ_l(Z)nj:0
(1.22)

where D = % These equations represent the well-know Orr-
Sommerfeld and Squire equations. The scalar displacement & of the
interface can be defined by the kinematic condition
D6 o o
Ez(a +1kU]’)5= Vj (123)
On the interface, y = 0, the normal velocity 7, the streamwise
velocity &i; = ik (kD 7j — B j) and the spanwise velocity w; =
ik"2(BD#; — k7 ;) must satisfy respectively the following matching
conditions
Uy =11,
(D2 — D) = B(ij2 — 1) = ik* (DU, — DUY)S, (1.24)
B(Dv2 - D11) = k(f2 —1)-
Similarly the tangential stress components, Ty and 7., must
satisfy

mlk(D? +k?) i, — BDij — ik’ D? U, 8]
= k(D? + k%) 0, — DRy —ik* D*U, 6, (1.25)
mlB(D? + k) 0y — kDRl = B(D*+k?) ) — kD71,
while the normal stress 7, condition is

0 __ - 0 _ -
I’(&sz + kDU, 7,) — (EDvl + kDU, 71)+
1.26
m(D*0, -3k’Di,) (D39, -3k°Doy) k! 5 (1:26)
iRe iRe Ciwe
The system 1.22 - 1.26, with the suitable boundary conditions,

can be considered in operator form

4
—Mg=A 1.27
5 Ma=4q (1.27)

INTRODUCTION
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14 INTERFACIAL INSTABILITIES OF TWO-FLUID FLOWS

where M and A are, respectively, the unsteady and the convective-
diffusive operator. It is possible to define a new matrix operator
£, the operator of the linearized problem, as # = M~'A. In this
way the operator form of the previous problem becomes

oq
—=Z 1.28
5~ 24 (1.28)
This is an abstract Cauchy problem with solution
q(t) = q(0)e'* (1.29)

where q(0) is an initial disturbance propagated forward in time by

the exponential operator /%,

MODAL ANALYSIS

—iwt

Introducing q = §e!, where q = (911,71, 2,72, 0), the 1.28 can be

written as a generalized eigenvalue problem
—iwq =29 (1.30)

where w is a complex number representing the eigenvalue of the
linearized problem.

Modal instability is identified with the presence in the spec-
trum of £ of at least one eigenvalue in the upper half complex
plane, w; > 0. The spectrum thus determines the behavior of the
disturbances, and therefore the stability of the system, at large
times.

As shown by Squire (1933), it is possible to restrict the modal
analysis to the behavior of only two-dimensional disturbances,
since the most unstable disturbances are the ones in the stream-

wise direction, thus f=0and k = k.

NONMODAL ANALYSIS

For most shear flows the spectrum is a poor proxy for the distur-
bance behavior as it only describes the asymptotic (f — oo) fate
of the perturbation and fails to capture short-term characteristics
([20]). This is due to the non-normality of the linearized operator
% that have a set of nonorthogonal eigenfunction, g. Systems
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governed by non-normal matrices can exhibit a large transient
amplification of energy contained in the initial condition.

In recent years, indeed, the focus of flow stability study has
shifted to also consider the transient growth of disturbances and
it has been shown that, like for single-fluid shear flows, also for
two-fluid flows, even though the leading eigenmode is stable,
it is possible for the energy of certain mode combinations to
grow transiently before decaying to zero (see [2] and [1]) and,
moreover, the disturbances that reach the highest level of energy
amplification are three-dimensional.

To capture the transient behavior of infinitesimal disturbances
we have to solve the initial value problem 1.28 and to fix an ap-
propriate measure of the disturbance size. A natural measure is
provided by energy that allow to define an energy norm:

1
212
.
212

0
IqI2 = [1(|D171|2+1<2|171I2+|f11I2)dy+

i (1.31)

We

d
f(IDﬁzlz+1<2|172|2+|T72|2)dy+
0

where the two integrals represent the kinetic energy of the distur-
bance in the two layer and last term characterizes the contribution
of interfacial capillary energy. Following the approach of Schmid
and Henningson [20], we use this norm to measure the transient
growth of an initial disturbance, G(¢), defined as

(G
G(t) = e |12 = max ——E

1 - (1.32)
a#0 |g(0) 1

In computing transient growth, an arbitrary disturbance is
expressed as an expansion in the eigenfunctions of £, q =
25:1 Hnq,,. G(2) is then computed approximately not in the
full space of £ but in the subspace defined by the K least-stable
eigenfunctions. The value of K is selected large enough to achieve
convergence of the approximated G(#). It has been noted, see
[2], that when in a two-fluid flow the interfacial energy term is
not present (We — oo or the surface tension vanishes) the com-
putation of G(t) in the reduced subspace of the K least-stable
eigenfunctions does not converge to a limit as K is increased. The
reason is that the displacement of the interface 8 is an essential

15



16 INTERFACIAL INSTABILITIES OF TWO-FLUID FLOWS

part of the disturbance eigenfunction and must be included in the
energy norm. Thus, in these cases, the solution found by South
and Hooper [2] and Malik and Hooper [21] is to introduce in the
norm a term of the form |§|2 but with a constant coefficient that
should be much smaller than unity to work well.

It is important to highlight that the curve given by G(t) repre-
sents the maximum possible energy amplification, which for each
instant of time is optimized over all possible initial conditions
with unit energy norm. The initial condition that optimizes the
amplification factor might be different for different times, so G()
curve should be thought as the envelope of the energy evolution
of individual initial conditions with unit energy norm. However it
is not difficult to determine the initial condition that will reach the
maximum possible amplification at a given time fy and that will be
tangent to G(#) at fp by means of the Singular Value Decomposi-
tion (SVD) of the matrix exponential G(#) = et II%, as described
in [20].

Another useful tool to analyze the behavior of non-normal
operators is the e-pseudospectrum introduced by Trefethen [22].
A complex number z lies in the e-pseudospectrum of the oper-
ator £, denoted by A(%2), if either of the following equivalent
condition is satisfied:

1. zisan eigenvalue of £ = £ + E, for some perturbation matrix
E with |E|l <€;

2. zisacomplex number and H (zI- N1 || <¢ !

The most basic role of plots of pseudospectra is to define the
situation in which eigenvalues are likely to be of limited physical
significance.

DESCRIPTION OF PSEUDOSPECTRAL CODE

The generalized eigenvalue problem 1.30 has been discretized
separately for each fluid by means of a Chebyshev pseudospectral
code written in MATLAB programming language. For both
fluids, the finite domain is mapped to the standard interval [—1,1]
via a linear transformation. The DMSuite package of [23] has
been used in order to obtain the discretized differential operators.
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Boundary conditions are enforced by the technique of replacing
rows and interface conditions are treated as boundary conditions
for each phase.

A procedure to eliminate the spurious eigenvalues has been
implemented in the code. As reported by Boyd [24] it is possible
to distinguish between two different types of spurious eigenvalue:
the physically spurious eigenvalues (numerically-computed eigen-
values which are in error because of misapplication of boundary
conditions or some other misrepresentation of the physics) and
the numerically spurious eigenvalues (approximations to exact
eigenvalues because the mode is oscillating too rapidly to be re-
solved by N degrees of freedom). A given numerically spurious
eigenvalue can always be computed accurately by using suffi-
ciently large number of degrees of freedom N.

In the used code each calculation is repeated twice with dif-
ferent number of collocation points N to verify that the solution
is well-resolved. To know how many modes are “good” the lists
of eigenvalues for two different N are compared and only those
which are the same (within some user-set tolerance) on both lists
are accepted. For separating “good” eigenvalues from trash we use
a simple numerical method which yields to a plot on a logarithmic
scale of the reciprocal of the difference between corresponding
eigenvalues as calculated at different resolutions N, scaled by
some measure of the size of the eigenvalues. The reciprocal of
the difference is plotted so that the “good” eigenvalues are at the
top of the graph. The obvious scaling for the j-th eigenvalue is
|A | itself, anyway, since an eigenvalue may accidentally be very
close to zero, it is convenient to use a different scaling defining the
intermodal separation

01=0 -2l
1 (1.33)
UjEE(Mj_lj71|+mj+1_/1j|)r j>1
In many problems, the eigenvalue ordering is invariant when the
resolution is changed, thus it is sufficient to compare with the set
tolerance and to plot the reciprocal of the ordinal difference

5j,ordinal£|/1j(NI)_Aj(NH)|/Uj (1.34)

where Nj and Ny denote the collocation points in the low and

17
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high resolution computation. The parameter 1/4 j, as shown in fig.
1.10, is many order of magnitude larger for the good modes that
for the bad ones.

Figure 1.10: The reciprocal

10 ordinal difference 1/6; are
plotted on a logarithmic
107 @ | scale versus mode number
&, j- The continuous blue
®8 .
. g@%ﬁ line represent the value of
10"° 38 %% 1 the set tolerance (in this
g & 6 case, referred to a typical
10° s | configuration of Core-
& Annular Flow, see chapter
B % 3, the value of the tolerance
10 ‘ 1 is 50). The eigenvalue are
% o ordered by imaginary part
10* 8 1 being j = 1 the bigger.
®@ o N =150 and Nj; =170.
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mode number j

The spectral discretization of the spatial operator has been
used also to compute the transient growth function G(¢). The Ma-
trix Exponential technique of [20] has been employed by adapting
their schemes to the two-fluid flow case. The matrix exponential
of eq. 1.32 is approximated using the first K least-stable eigen-
modes sufficient to assure the convergence. The energy norm
is calculated by transforming it into a standard 2-norm by em-
ploying an SVD decomposition of the matrix of inner products
between the eigenvectors (see [20]).

The so called optimal perturbation, the initial condition tan-
gent to the maximum of the curve G(¢) at ¢ = tg,,,,, has been
calculated via the SVD of the transformed matrix exponential,
modifying the classical procedure reported in [20] for the two-
fluid case.

Standard algorithm to compute the e-pseudospectrum, adapted



from routine of Trefethen [25], is implemented in the code.
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1.4  DIRECT NUMERICAL SIMULATION

Numerical simulations may improve our understanding of two-
fluid flow dynamics, above all the origins of the instabilities ruled
especially by nonlinear effects, of course not explained by linear
theory. Moreover, it has been noticed that agreement between
linear theory and numerical simulation is particularly difficult

to obtain because of the complex effect of viscosity on the base
profile and on the instability growth rates and modes.

The simulation of Navier-Stokes equation with interfaces, on
one hand uses numerical methods analogous to otherwise well-
known methods in the bulk of the phases, such as finite volumes,
finite elements and finite differences; on the other hand, presents
specific problems due to the presence of the interface: location
of the discontinuity and computation of surface stresses. Most
of two-fluid flow problems exhibit all or several of the following
characteristics: high surface tension, low viscosity, high density

ratio, complex and evolving interface topologies and spatial scales

ranging over several orders of magnitude. In this context, an

Figure 1.11: The described
pseudpsectral code has
been used to compute

the e-pseudospectrum

of a typical configuration
of Hagen-Poiseuille flow
(see fig. 3 in [8]). Two
representations of the
e-pseudospectrum are
reported: on the left su-
perposition of a perturbed
matrix of energy norm
1073 to the spectrum of
the linearized operator; on
the right the boundaries
of the e-pseudospectrum
(from outside in, the
curves correspond to
e=10"1,10"2,1073,107%).
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ideal numerical method for the solution of two-fluid Navier-
Stokes equations with surface tension should have the following

properties:
« robust representation of evolving, complex interfaces;
« accurate representation of surface tension;

« robust and accurate handling of large density and viscosity
ratio;

« efficient representation of the flow features on the different

characteristics spatial scales.

“ONE-FLUID" FORMULATION

In contrast to the approach described in section 1.3, where the
governing equations are written separately for each phase and
jump conditions are used to couple the solutions at the fluid
interface, it is possible to write one set of governing equations for
the whole flow domain occupied by the various phases, without
resorting to jump conditions. The various phases are treated as
one fluid with variable material properties that change abruptly
at the phases boundary. To account for the effects of surface
tension at the interface it is necessary to add a singular term to the
Navier-Stokes equation. This term is the counterpart of the jump
condition for the normal stress, first of egs. 1.19.

This form of equations is often referred to as the “one-fluid”
approach. Since the solution can change discontinuously across
the interface, we have to admit solution of governing equations
that include generalized functions, such as delta functions or
step functions. This formulation is the starter point for several
numerical methods.

The formulation of the equations is the same of section 1.1
except that we need to add the surface tension as a body force
to the momentum equation. For a control volume including an
interface, the surface tension force f;; is given by integrating over
S, the part of the surface enclosed in the control volume. It is
possible to convert the surface integral to a volume integral

f f,dS = / f,85dV (1.35)
S 14
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where 05 = §5(x —xs). Adding this force to the integral form of
the momentum equation we obtain the one-fluid version of the
Navier-Stokes equation for incompressible Newtonian flows with
sharp interfaces:

M T
pE:—Vp+pg+V-p(VV+VV )+£,:0s (1.36)
For constant surface tension, the surface force is ;65 = ocndg.
Using one set of equations for the whole flow field, the different
fluids must be identified in some way. This is generally done by
means of a marker function that takes different values in the dif-
ferent fluids. As the fluids move, and the boundary between them
changes location, the marker function must be updated. Updating
marker function accurately is critical for the success of the sim-
ulations of multiphase flows and is surprisingly difficult. Various
methods have been developed to overcome these difficulties and
it is possible to divide them into two groups: methods that advect
directly the marker function (“front-capturing” methods) and
methods that track the boundary between different fluids using
marker points and then the marker function is reconstructed from
the location of the interface (“front-tracking method”). In addi-
tion to the possible ways to update the marker function, surface
tension can be included in disparate modes.

VoruME OF FLUID METHOD

The Volume Of Fluid (VOF) method is the oldest method (see
[26]) to advect a marker function and, after many improvements
and innovations, continues to be widely used. Historically it
was adopted for free surface flows with only one fluid, now it
is routinely used for two-fluid flows. In the VOF method the
marker function used is the characteristic discrete function H
(see formula 1.5). The direct advection of this function is based
on a simple state: as the interface moves, the shape of the region
occupied by each fluid changes, but each fluid particle retains its
identity. Thus the material derivate (following the motion of a
fluid particle) of H is zero

DH 0H

—=—+V-VH=0 1.37
Dt ady (1.37)
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Following the flow computationally, we have to work with an
approximation of H. Several approximations are possible: in

VOF method the color function C (or volume fraction) is used.
This function represents the fraction of a computational grid cell
which is occupied by the fluid assumed to be the reference one.
Considering a Cartesian grid with square cells of side h = Ax=Ay

1
Cij= ﬁva(x,y)dxdy (1.38)

The function C varies between the constant value of one in full
cells to zero in empty cells, while mixed cells with an intermediate
value of C define the transition region where the interface is
localized (0< C < 1).

The use and the effectiveness of VOF methods are widespread

for several reasons:

+ they preserve mass in a natural way, as a direct consequence of
the advection algorithm based on a discrete representation of
the conservation law (eq. 1.37);

« the change of topology of the interface (reconnection or
breakup) are implicit in the algorithm;

+ they can be relatively simply extended from two-dimensional to

three-dimensional domains;

+ since only the values of C of the neighboring cells are needed
to update C value in the cell (i, j), it is relatively simple to
implement these algorithms in parallel.

In general, the VOF algorithm solves the problem of updating
the volume fraction field C given the fixed grid, the velocity field
and the field of C at the previous step. In low-order VOF methods,
the interface line in each mixed cell, in the two dimensions case,
is represented by a segment parallel to one of the two coordinate
axes. The interface is clearly not continuous across the cell bound-
ary, and the jump is usually of order h, ©'(h). High-order methods
reconstruct the interface in various ways. The standard one is the
PLIC (Piecewise Linear Interface Calculation) reconstruction (see
[27]), where the interface in each mixed cell is represented by a
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segment perpendicular to the local gradient of C, m = —=VC. How-
ever, there is still no requirement to the continuity of the interface
at the cell boundary, but now the discontinuity is usually smaller
and it is function of the grid spacing and of the local curvature, c,
thus whenever the curvature is small (i.e. the curvature radius is
large with respect to the grid size) the method will be accurate.
However PLIC is a quite robust: it does not have catastrophic
behavior when the curvature increases.

COLOR FUNCTION LOW-ORDER RECONSTRUCTION PLIC RECONSTRUCTION Figure 1.12: (a) a portion
of the interface line and

00 002 | 0.1 Jj+l the value of color function
— L} E— in each cell; (b) a low-

02 08 10 J order reconstruction of

m the interface; (c) PLIC
reconstruction of the
interface with unconnected
segments in each cell.

07 | 10 | 10 J-1

(@) (b) () i-1 i i+1

Thus, a VOF/PLIC algorithm proceeds in two steps:

1. reconstruction of the interface shape from the knowledge of
volume fraction in each cell;

2. advection of the reconstructed interface in a given velocity
field.

For PLIC method the reconstruction is basically a two-step pro-
cedure. In any given cell the normal m is first determined from
knowledge of the color function in this cell and in the neighboring
ones. Several algorithms have been developed for the calculation
of the normal vector: they can be based on a finite-difference
approximation of the volume fraction gradient VC (see [28]) or
satisfy some other minimizing criteria (see [29]). Most of these
algorithms uses a 3 x 3 block of cells (remember that we are con-
sidering the two-dimensional case) to determine the approximate
interface in the central cell of the block, in fig. 1.12-(c) this central
cell in denoted by the two indices (i, j).

In the second part of the reconstruction, a linear interface, that
divides the cell into two parts containing the proper area of each
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fluid, must be found. In two dimensions, given a square cell of
side h and a straight line (HE of fig. 1.13) with normal vector m,
we have to find the area of the region below this line and that also
lies within the square cell: we have to find the area of the polygon
ABFGD of fig. 1.13. The most general equation for a straight line
in the (x, y) plane with normal m is

m-X=myX+myy=a (1.39)

where «a is a parameter to be adjusted until the difference be-
tween the area of the gray region in fig. 1.13 and the value of
AxAyC(i, j) is below a prescribed tolerance.

y
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The second step of VOF algorithm is propagation of the in-
terface. Once the interface has been reconstructed, its motion by
the underlying flow field must be modeled by a suitable advection
algorithm. The most used is the fractional step (or operator split)
method, which updates the volume fraction C by advecting the in-
terface along one spatial direction at a time. Intermediate C values
are calculated during this process and the final C field is obtained
only after advection of the interface along all the coordinate di-
rections. In these calculations it is used a Lagrangian approach, i.
e. the motion of the interface segments is computed directly (see
[30]). Because in practice the time-stepping is performed sepa-
rately in each spatial direction, it is possible to only described the
advection of the interface just along x-direction.

For each cell, three contributions are calculated: the area fluxes

Figure 1.13: Geometrical
basis for the expression
1.39.
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¢~ and ¢* entering the cell (i, j), respectively, from the cells
(i—1,j) and (i + 1, j) and the area ([)O of the fluid contained at the
beginning of the step in control cell. The updated volume fraction
in each cell after the fraction step along the x-direction is then
given by

Ciy= 191y + 40, + 97 (1.40)

The Lagrangian advection method allows to take into account
the stretching or compression of the interface during each single
fractional step. The procedure can be made second-order accurate
by alternating the advection directions at each time.

One of the most critical aspect of the VOF methods is the ac-
curate computation of the surface tension. The surface tension
term in the Navier-Stokes equation creates a most obvious diffi-
culty since it is a singular term. In several implementations of the
method, this difficulty is manifested in both numerical instabilities
and in poor accuracy of capillary effects.

A whole family of methods for surface tension have been devel-
oped for the use of the marker function; the standard approaches
are the Continuous Surface Tension (CSF) and the Continuous Sur-
face Stress (CSS).

The surface tension is added as a body force to the discrete
version of the Navier-Stokes equation in the form f; = ocnds. In
the CSF method (see [31]) the §s distribution is approximated by
IVC|. This approximation seems to be natural since the marker
function C approximates the Heaviside function H. Thus, to the
interface cells is added the following force f; ;

f;j=0oclVCn (1.41)

Sometimes it is necessary to smooth this approximation of 65
using a filter for the color function. Anyway, the unsmoothed
version allows a remarkable exact balance between pressure and
surface tension, —Vp + ;05 =0.

Very important in this algorithm is to find an approximation
of the curvature c¢. There are many suggestions, but a particularly
simple one consists into using the curvature-divergence relation
V-n = —c. Thus, the force to add to the cells where the interface is
localized is

f;j=0(V-n)|VCn (1.42)
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where the approximation of the unit normal vector is n = %.
In the CSS, instead of discretizing the force representation of
the surface tension, one may start from eq. 1.11

fe65=V-T65=V-[oc(I-nn)ds] (1.43)
The discretization of eq. 1.43 without any smoothing is
fij =V-(TSIVC]) = V- [oc(I-nn)|VC]] (1.44)

These two methods give unsatisfactory results, to improve
them it is convenient to smooth the color function taking into
account other neighbor cells (the use of a filtered surface tension
is connected with the idea of an interface with a finite thickness).
One of the most common filter is the “five-point smoothing”:

~ 1 1
Cij= Eci,j + g(ci,j—l +Cijr1+Cio1,j+Ciy1,j) (1.45)

1.5 SURFER vs. GERRIS copEe

Two different numerical codes have been used to perform the
numerical simulation reported in this thesis: an “ad-hoc” version
of SURFER and GERRIS, a new generation VOF code. Both are
open-source flow solvers.

SURFER is a fixed-grid numerical code developed in the 90s by
Lafaurie et al. [3] for the simulation of two and three-dimensional
flows with several fluid phases and free interfaces between them.
It is based on the VOF/PLIC method and its two essential features
are the ability to capture the interface and a computationally effi-
cient algorithm for surface tension. The initial idea for SURFER,
and in particular for the 2D version of the code, was developed by
Zaleski.

The governing equations are solved trough a projection
method using staggered finite difference on a MAC grid and a
split-explicit first-order accurate time differencing scheme. The
velocity is first updated with the viscous and capillary tensors,
then with the advection term. In this way it is computed a provi-
sional velocity field V* that have to be projected on a divergence
free field (in this way incompressibility is enforced). The velocity
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field at time step 5,41

VL Z v %Vp (1.46)

where T = t,,41 — t;, is the time step and p is the solution of Poisson
problem with homogeneous Neumann boundary conditions

1 1. .,
V-(=Vp)==-V-V (1.47)
0 T

Thus the velocity field V**1 has to verify the incompressibility
equation
v.vitl =g (1.48)
Using an explicit-in-time, centered-in-space finite-difference
scheme introduces classical limitations on the time step and on
the mesh Reynolds number, see [32].
The estimation of density and viscosity is made trough a simple

volume average over the cell

p=p1C+p2(1-C)

(1.49)

In this way both the viscous term in Navier-Stokes equation and
the Poisson problem depend implicitly on the color function. In
particular the first term of eq. 1.47 may be singular for two differ-
ent reason, first because the pressure p jumps across the interface,
and second because also p jumps. For these reason, although

a sharp interface is more accurate and somewhat prevents the
diffusion of density and momentum, sometimes gets a slower
convergences of the SOR algorithm (that we have implemented
in the “in-house” modified SURFER to solve the Poisson problem,
in spite of its slow convergence, because of its extreme simplicity)
and does not allow to obtain a second-order spatial accuracy for
the solution of pressure field.

In the used version of SURFER the surface tension is computed
trough the CSF algorithm.

This code is stable in an appreciable range of parameters, al-
though it appears difficult to treat large density ratios and large
surface tensions simultaneously. Especially linked to the surface
tension algorithm, all long a weak point of method using an im-
plicit representing of the interface, is the presence of “parasite”
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or “spurious “currents. These currents are vortices appearing

in numerical simulations in the neighborhood of the interfaces
despite the absence of any external forcing. It is difficult to give
a systematic expression for the amplitude of spurious currents
because they often fluctuate in time, but direct measurements
have shown that it depends on parameters such as the viscosity,
the density and the time step. At worst these parasitic currents
can be strong enough to dominate the solution. A not perfect
equilibrium between the pressure jump across the interface and
the surface tension force (Laplace’s law 1.10) is also due to the
presence of these currents.

GERRIS Flow Solver is successful to overcome the problem
of spurious flows and allows to have more accurate simulation
reducing the computational time. This code, developed by Popinet
(see [33] and [4]), presents the current advances in the numerical
simulations of two-fluid flows combining two classical methods,
namely the VOF method and the Adaptive Mesh Refinement
(AMR) method, that lead to an optimization of numerical calcula-
tions.

Dynamic mesh-adaptive methods can deal efficiently with the
phenomena involving a wide range of spatial scales, typical of two-
fluid flows. Simulations with AMR are extremely efficient both
in term of resolution and in term of CPU time, because we have
fewer cells and smaller CPU time than an uniform mesh with the
highest resolution. The AMR implemented in GERRIS is based on
a discretization using square (cube in in three dimensions) finite
volumes organized hierarchically as quadtree (octree in three di-
mensions). In this organization each cell may be the parent of up
to four children (eight in 3D). The root cell is the base of the tree
and a leaf cell is a cell without any child. One of the advantage of
this spatial discretization is that mesh refinement, or coarsening,
can be performed at every time-step if necessary by means of dif-
ferent several refinement criteria that can be used simultaneously.
For example, the criteria that have been used in our simulation
are based on the vorticity V x V and on the gradient of the color
function VC: in this way a finer resolution has been ensured in
areas of high vorticity and around the interface.
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Figure 1.14: Example of
AMR of the simulation
domain. The case reported
S o e e e is discussed in chapter 2,
section 2.1.

All the variables are collocated at the center of each cell (a
collocated grid makes momentum conservation simpler when
dealing with mesh adaptation) and a staggered second-order
accurate time discretization is considered.

In SURFER, such as in almost all the previous VOF based code,
obtaining accurate values for useful geometrical properties, i. e.
interface normal direction and curvature, has traditionally been
the Achille’s heel. Besides the original curvature estimation of
[31], already discussed at the beginning of this section, several
methods have been proposed for estimating curvature from vol-
ume fraction field. The “Heigh-Function” (HF) scheme, developed
by Francois et al. [34], is simpler to implement than other high-
order methods, but it is limited when the interface is bad-resolved
and the curvature becomes comparable to mesh-size. In GER-
RIS we find a new generalized to quad/octree discretization HF
method which assures consistent second-order convergence even
for low resolutions, [4].

Although computing accurate curvature is an essential step to
obtain an accurate surface tension formulation, it is not sufficient.
For this reason in GERRIS is implemented a method that stresses
the importance of the concept of “balance-force” continuum
formulation [35] to be coupled with the generalized HF. This
method uses the standard CSF and is characterized by a pressure
correction algorithm that leads to an exact balance between Vp
and surface tension force.

Another classical difficulty of methods with an implicit rep-
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resentation of the interfaces is to handle large density ratios. It is
tempting, and often necessary, to smooth the jumps in physical
properties, but, in this way, the resulting numerical approach can
lead to physical inconsistent results. A related problem for large
density ratio is that the Poisson equation 1.47 becomes stiffer.
GERRIS uses the multigrid Poisson solver presented by Popinet
[33] for single-fluid flows that fits nicely with the quad/octree
discretization and works well also for two-fluid flows, [4]. Its
performance, in terms of convergence speed, depends on the
consistency of the representation of the domain topology ( i.e.
interface) on successively coarser grids.

All the presented advances in numerical simulation are allow-
ing to go deep into the understanding of the physical processes
underlying multifluid flows. The accurate schemes described, in-
deed, have made possible to perform simulation even in critical
regimes of two-fluid systems, for example the ones found in the
atomization process, and, the adaptive mesh has shown to pro-
vide a gain of about three order of magnitude in simulation size
compared to an equivalent regular-Cartesian-grid simulation.
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The incompressible flow made by two horizontal parallel infinite
streams of different velocities, densities and viscosity represents a
classical stability problem. We find many realizations of such flow
in geophysics: thermally stratified layers in oceans, for instance, or
in the atmosphere. This is also the case at the surface of the sea:
the wind blowing destabilizes the surface of the sea generating
waves that may propagate and grow. This mechanism is a shear-
layer instability and was initially studied by Helmholtz [36] who
described it as the evolution of a localized irregularity on a thin
shear layer. Few years later, Kelvin [37] gave a description of

this instability using the powerful mathematical framework of
low-amplitude sinusoidal perturbations. Therefore this shear
instability is generally referred to as Kelvin-Helmholtz instability
(KH).

Two-phases flows of immiscible fluids are found also in indus-
trial applications. For example, the case of parallel flowing layers is
one prototypical and important configuration for the atomization
of fuels in thermal engines. In the atomization process the flow is
unstable due to the exponential growth of small perturbations to
the base flow. This primary shear instability, a typical KH mech-
anism, produces waves formation at the gas-liquid interface and
represents the first of several processes on increasingly smaller
length scales which leads to the eventual production of droplets.

Linear stability theory is the first method used to examine
this phenomenon, but to understand the effects of the nonlinear
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disturbances amplitude growth and to study their subsequent
breakup into drops, numerical simulations are indispensable.
These are the two tools that will be used in this chapter to analyze
some examples of gas-liquid flows.

2.1 THE EVOLUTION OF A LOCALIZED NONLINEAR KELVIN-
HELMHOLTZ WAVE WITH GRAVITY

In this section it is highlighted how the approaches of Helmholtz
and Kelvin are critically opposed: the one considers the nonlinear
evolution of a localized perturbation, and the other considers the
linear evolution of a periodic wave. This critical opposition was
the central topic of a recent article [38]. In this paper, numerical
simulations of a shear layer was performed and the differences
between a weak sinusoidal initial condition (Kelvin) and a strong
localized initial condition (Helmholtz) were studied. In the case
of a localized initial condition of amplitude sufficient to create
immediately a nonlinear wave, a self similar growth of the wave
can be observed. The localized and nonlinear wave grows alge-
braically in time without changing its shape. This self-similar
growth can be understood from the fact that the Euler equations
have no intrinsic length scale, thus the only length scale is inertial
L = Ut, with U the velocity jump across the shear layer and ¢ the
time. The wave grows self-similarly according to the growth of this
inertial length-scale. In the case of a sinusoidal initial condition,
on the other hand, like the classical case of Kelvin’s analysis, the
self-similar growth cannot be observed since the periodic initial
condition pollutes the dynamics with the scale of its wavelength:
the dynamical structures appearing during the natural evolution of
the instability (rolled-up vortices, also known as Kelvin-Helmholtz
billows) are locked at this externally imposed wavelength.

The aim of this section is to pursue the analysis of the self-
similar solution observed in [38] with direct numerical simula-
tions. The self-similar solution is possible only when there is no
intrinsic length scale in the problem, so, if we chose to consider
the effect of viscosity and surface tension, we would add a viscous
length scale and a capillary length scale. We can consider these
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scales as small length scales. Nevertheless, when the instability
is initiated locally, the wave may grow quickly beyond these two
small length scales toward its self similar regime: the bigger the
wave, the lesser the impact of viscosity and capillarity; these two
effects will play their role during the initial transient from the
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Figure 2.1: a) Evolution in
time of the wave interface
for a gas (fluid over the
shear layer) ten times
lighter than the liquid (the
fluid below the shear layer)
for a weightless wave g =0
(light gray interface) and for
g =0.007 (black interface).
b) Evolution in time of

the size of the wave while
varying the intensity of the
gravity. (From [9].)

initial condition. In the case of a shear layer between two fluids

of different densities and in the presence of gravity, there is yet

another length scale, which is a large length scale: the bigger the

wave the larger the impact of its weight. Basically in this section

the study of the self-similar wave is extended to the case where

gravity is present.

Numerical experiments of a shear layer initially perturbed at a

given location with an initial force large enough to create a wave

immediately nonlinear are reported. After a short initial transient,

the wave tends to its self-similar algebraic growth, but once the

wave becomes large, the volume force of its weight starts to play

its role against instability and against self-similarity as shown in

fig. 2.1.
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MODEL

The wave is considered as an obstacle to the gas stream such that
the flow above its head is accelerated. This acceleration induces a
pressure drop which is the driving force for the vertical growth of
the wave. The intensity of this pressure drop does not depend on
the size of the wave: this is the main ingredient for self similarity.
Since the wave grows, it will eventually reach a size at which vol-
ume forces like gravity become comparable to the aerodynamic
surface forces. Once the hydrostatic pressure drop in the liquid
body of the wave equals the aerodynamic pressure drop, there

is no longer a driving power and the wave has reached its maxi-
mum size. Fig. 2.1 displays the archetypal configurations: in gray
the evolution of the weightless wave, that grows in size without
changing shape; in black the wave with gravity, that reaches a
stationary height after an initial transient. These simulations cor-
respond precisely to the case and parameters of [38], except that a
vertical acceleration is included to model gravity.

The main parameters are U the velocity difference between
the gas and liquid, g the acceleration of gravity, pgas and pj;q the
densities of the gas and liquid (respectively above and below the
shear layer). Dimensional analysis tells that the wave should reach
its maximum size Lapex o< U?/ g inatime Typex ox U/g. Once
time and space are made nondimensional using these relevant
scales, the remaining parameters are the Reynolds and the We-
ber number (quantifying respectively the effect of viscosity and
surface tension), the ratio of the shear layer thickness and wave
height 6/ Lapex and the density ratio r = pgas/ p1iq- Considering
the ideal limit in which Reynolds and Weber numbers are large
and the mixing layer is thin, the only remaining parameter is the
density ratio r.

It is possible to inspect the wave growth using a simple analysis
based on the Bernoulli equation. See fig. 2.2 for a sketch of the
wave configuration. The aerodynamic pressure drop due to the
narrowing of the streamlines above the liquid obstacle is Apgas o
PgasU?. In parallel, the pressure drop in the liquid due to the
acceleration of the liquid sucked from its bottom at speed v and
the gravity is Apyiq o phq(v2 + gL). Since in the region of the wave
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head the pressure is the same in the liquid and in the gas, these
two terms are equal yielding the suction velocity at the bottom of
the wave

v? rU2—CgL (2.1)

with C a geometrical constant. This expression is characteristic

of the counteracting effects of inertia and weigh. Now, the law
describing the evolution of the wave size can be simply obtained:
considering that the wave area grows in time proportionally to the
amount of the liquid sucked at speed v from the bottom section of
the wave of length L, we get L o< v, which yields upon integration

Weightless law

——
L=avrUt-bgt*, < Tapex (2.2)
L= Lapex, r= Tapex-

The weightless algebraic growth is recognisable for short times,
with the constant a, which is counteracted by a gravity term
growing like the square of time, until # = T,pex when it forbids
any more growth, after this threshold time, our simple analysis
predicts that the wave keeps its maximum size Lapex

U? U
Lapex = ar?; Tapex = 'B\/?E (2.3)

with @ = a®/4b, B = al4b.

This law of growth and saturation of the wave under the com-
bined action of wind and weight is compared to computed data
in fig. 2.1b). We show the evolution in time of the wave size while
varying g from 0 (the self similar evolution) up to g = 0.02. The
equation (2.2) has been drawn superimposed to the numerical
data with constant a adjusted on the weightless algebraic law,
and b such as to fit best the data for all shown values of g. Indeed
all curves start with the same slope as the weightless case, and
saturate at a height compatible with the scaling on U?/g from
(2.3).

The integration in (2.3) predicts an evolution of the wave
in two sequences, first a growth where the algebraic law of the
weightless wave is progressively compensated with a gravity term
growing like the square of time, followed by a state with a wave of
constant size.
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Center
of mass o

Zone |
Gas has replaced the liquid

This quantitative model only describes the global behavior of
the liquid structure, we thus need to chose an observable that
overlooks the small scale details. Since the wave with gravity is
characterized by a strong anisotropy that prevents the wave from
growing in vertical direction, to measure the height of the wave
we use a devise inspired by considerations of gravity potential
energy of the liquid system.

The gravity potential energy of a fluid element at altitude y is
dE, = pgydS. Thus the variation of total gravity potential energy

from initial time to time  is
AE, = gf [o(x,y, ) - p(x,y,0)]ydS.
xy

The density p in this equation can be either that of the liquid or
that of the gas. Considering an arbitrary point x, y in space, the
contribution of this point to the integral is zero if the fluid has not
changed from time 0 to time . We may thus define two zones
which contribute to this variation of energy: zone 1 where gas has
replaced the liquid, and zone 2 where liquid has replaced the gas,
see fig. 2.2. The change of potential energy is thus

AE,=g fl (Pgas — Pliqg) ydS+ g fz (Plig — Pgas) ydS
which we can rewrite

AE)p = g(pliq — Pgas)( fz ydS— fl ydS) = g(piiq — Pgas) AR (24)
N~ N —

Ahy Ahy

Center Q
of mass

Zone 2
Liquid has replaced the gas

Figure 2.2: Schematic rep-
resentation of the growing
wave. a) [llustration of the
streamline and pressure
relevant to the dynamic
model of the wave (2.1),
and b) wave structure used
to define the height of the
wave from consideration of
its gravity potential energy
in (2.4). (From [9].)
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where A is the surface of the zones (the two surfaces are equal due
to conservation of volume) and h; and hy are the altitudes of the
center of mass of zone 1 and 2. This last expression shows that

h = hy — h; is a measure of the wave height relevant in terms of the
potential energy related to gravity. This is the measure that we will
use to test our theory for the plateau induced by gravity.

NUMERICAL EXPERIMENTS

The tool of experimentation is numerical simulations of the
Navier-Stokes equations for a system of two interacting fluids.
Memory and computation time limitations impose moderate val-
ues of the Reynolds, Weber and 8. We have chosen U?/g and U/g
as reference length and time, and to vary the density ratio r while
keeping the Reynolds and Weber fixed. Also the value of the ini-
tial mixing layer thickness is given in proportion of the predicted
maximum wave size.

We use the open source software Gerris Flow Solver [4] to per-
form numerical simulations. Sizes are made nondimensional using
the reference size U?/ g and times with U/g; this is equivalent to
taking U = g = 1 in our simulations. In preliminary computations
it was found that the top of the liquid wave reaches approximately
the height Lapex = 0.7rU?/g in time Typex = 517U/ g, s0 we set
the parameters in proportion to these references. The box height
is 8 Lapex to avoid confinement from the boundary conditions,
while retaining the resolution of the wave when it reaches its
plateau. The box is four time longer than high. The initial shear
layer thickness & is set to Lapex/20. The viscous law of diffusion
of the error function velocity profile is erf(y/2v(t — ty)) with v the
kinematic viscosity of each fluid. The viscosity is set in each fluid
such that the mixing layer thickness is multiplied by 3 by viscous
growth at time Typex

Vv = 46%/ Tapex

This choice of viscosity gives a Reynolds based on § and propor-
tional to 11/7, thus = 110 for r = 0.1 and =~ 360 for r = 0.01. The
Reynolds based on Lypex is twenty times these values: 2200 and
7200. Surface tension ¢ is chosen such that the Weber number
We = pgasU? Lapex /0 is 500.
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The software affords adaptive grid refinement based on vor-
ticity and interface curvature. Here the smallest mesh size is 2710
times the box height, amounting to 128 mesh cells in the wave
height Lapex.

The initial condition is a parallel mixing layer satisfying the
continuity of velocity and shear strain at the interface location
y=0

u(y) = { ﬁrr(erf(y/é‘) +r), y>0
(erf(y/6)+1), y<O.

T+

This velocity field is initially disturbed by a local vertical accelera-
tion
floyn= K¢(t)e(—(xlf)2—(y/€)2)

with its amplitude quickly fading

o) = Cos(mt/2tstop) < Istop
0, t> tstop-

We took ¢ = 6, a forcing patch of the size of the mixing layer, and
Lstop = Tapex/100. The amplitude of the forcing is x = 0.1/ f5top.

REsuLTs

The evolution of the wave interface is shown in fig. 2.3 for four
successive times. The first one is Typex/10 where we can see the
start of the wave as the result of the initial localized impulse. The
wave has not taken yet its own distinctive shape. This is a time
of the initial transient, where the cause of the wave is not yet
forgotten. The second interface corresponds to Typex/2, half way
on the growth of the wave to reaching its peak height. Already at
this time, we can observe the flapping of the wave’s tongue and
shedding of a liquid film. At # = Typex, the wave has reached its
maximum height, with a value corresponding approximately to
Lapex = 0.7rU?/ g, materialized on the four graphs as a horizontal
dashed line. At this time of largest size, we see that there has
already been a strong activity of shedding liquid films and drops,
some of which have free-fallen down to the original interface
height. The last displayed interface position corresponds to ¢ =
1.5Typex: after reaching its maximum size, the wave collapses
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progressively, losing its impetus into an intricate organization of
vortices and drops.

The graphs for the four values of the density ratio r are dis-
played scaled such as to emphasize the theoretical scaling law. We
can observe that the shape and behavior does not change signif-
icantly once properly scaled, at least for the values of r which we
were able to simulate. The most significant difference comes from
the behavior of shed drops downstream of the wave. Indeed, the
present choice of the Weber number based on the gas speed U
does not account for the fact that the wave has a slower speed as r
is lowered. Thus the shearing power of the free-stream upon the
tensed interface is larger for the lower gas densities. The second
reason for difference in the drop behavior comes from the fact
that once the drops have left the liquid wave, they are advected at
the free-stream velocity while free-falling with little or no influ-
ence from the density ratio.

The effect of the density ratio on the wave height is displayed
in fig. 2.4. The size of the wave is quantified using the measure
inspired from the variation of the gravity potential energy h.
Looking at the initial growth of the wave height, we would have
expected initially different slopes, in agreement with the algebraic

Figure 2.3: Position of the
interface from numerical
simulations at four instants
of time and for four values
of the density ratio. Relative
sizes are scaled such as to
emphasize the theoretical
prediction.The positions of
the center of mass of zones
1 and 2 at time Typex are
drawn as red dots. (From

[91)
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law for the self-similar growth as shown on fig. 2.1. This is not
observed here since with the present choice of parameters due
to mesh size limitations, the wave unfortunately does not have
time to realize its self-similar regime before reaching the size at
which volume forces start to act. After this initial growth, the
height shows a peak and subsequent decay as expected from the
progressive collapse seen in fig. 2.3 after the apex. The simulation
performed for the smallest value of the density ratio r = 0.01,
a gas hundred times lighter than the liquid, could not complete
to time Typex and does not show the peak. The computation is
characterized by an increasing difficulty as the the fluids have
strongly different physical properties.

The test of the model for the wave growth is shown in fig.
2.4b); the scaling of the time as

t
t =
Vrulg

and height as
,_h
= T0g
yields a gathering of the time evolution of the wave height for the
five values of the density ratio, showing a coordinated behavior
of the physical system as the density of the gas is progressively
lowered. The plateau value for /' is about 0.45, and the peak is

observed at a time ¢’ of about 5.

2.2 SINGLE-WAVE KELVIN-HELMHOLTZ INSTABILITY IN CHAN-
NEL FLOW

Contrary to the previous section in which we have studied the
evolution of an isolated KH wave produced by a localized im-
pulse force, here a more physical situation is considered. The
configuration presented refers to an initially stratified two-phase
gas-liquid flow confined in an horizontal channel. This kind of
flow has just been analyzed theoretically from the point of view
of the linear theory of temporal normal modes in the paper of Fu-
nada and Joseph [39], on the ground of viscous-potential theory.
They obtained an explicit dispersion relation including the effects
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lution of the height of the

of surface tension and viscosity (which is taken into account in wave. Inset: height and
time are scaled with their

the normal stress boundary condition only). Funada and Joseph theoretical values for the
[39] derived formulas for the growth rate and the wave speed, and plateau. (From [9].)
employed neutral stability curves in order to compare their find-
ings to experimental data referring to air-water flows. In general
the critical value of velocity of stratified KH instability appears
to be well predicted when the liquid layer is thin, otherwise it is
overpredicted. The major reason of the disagreement between
theory and experiments is that nonlinear effects play a major in-
fluence in the process of transition from stratified to slug flow,
and therefore the finite-amplitude of the instability wave has to be
taken into account starting from the early instants. As observed
by Varga et al. [40], the treatment of the interface as an infinitely
thin mixing layer (discontinuous interface) yields wavelengths
which are incongruous with the experimental measurements. The
inconsistency lies in the fact that in practical devices the shear be-
tween parallel flowing streams is produced by merging them from
separate channels divided by a rigid boundary. This leads to the
formation of a mixing layer having a continuous velocity profile,
hence introducing a finite length scale.

A major difference from the theoretical work of [39] is that,
while they considered a parallel flow configuration, with plug-
velocity profile in both the fluids, here the flow is spatially devel-
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oping, starting from a plug-plug profile at the channel entrance. In
other terms, a physical situation analogous to that discussed in the
experimental investigation of a round liquid jet by [40] is numer-
ically analyzed. The sudden change of interface boundary condi-
tion produces the shear flow development and the emergence of

a related finite-amplitude KH single wave, whose formation and
break-up are studied in detail.

MoDEL

A two-phase flow within a plane two-dimensional channel of
height H and length L is analyzed by considering incompressible,
immiscible and newtonian flow regimes. At the domain entrance
boundary (left side), where the plug velocities of liquid and gas
phases are denoted by U; and Uy, respectively, the liquid oc-
cupies the region 0 < y < hy, while the gas is within the region

hy <y < H. Density and viscosity of liquid and gas are denoted by
p1 and p; and by pg and pg, respectively. The non-dimensional
parameters governing the problem are Reynolds and Weber num-
bers of gaseous phase, defined as:

2
_ PgUghyg we o PeUss
Hg o

Re

(where o is the gas-liquid surface tension, and hy is the height

of the gas region), the gas fraction @ = hg/H and density and
viscosity ratios, r = pg/p; and m = pg/y;. As an additional
independent parameter one can consider the Reynolds number
based on liquid phase or the velocity difference AU = Ug - U;.

A sketch of the problem is shown in fig. 2.5, where the physical
dimensions of the channel considered in the present investigation
are also reported. No-slip boundary conditions are enforced at the
channel walls, y=0and y = H.

NUMERICAL EXPERIMENTS

Also in this case, the tool of numerical experimentation is the
numerical simulation of Navier-Stokes equations for a system of
two fluids. The code used is the plane two-dimensional version of
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an ad hoc in-house derived version of the popular public-domain
SUREER code.

All the computations start assuming as initial condition plug
velocity profiles in the gas and liquid phases separated by an
undisturbed plane interface whose location is defined by the gas
fraction a. All over the field the initial pressure is equal to the
atmospheric value of 101.3 kPa, which is used also as constant
outlet pressure.

The results hereafter presented refer to @ = 0.5, r = 0.1, m =
0.018. The physical domain is a channel having length L = 5 x
1072 m and height H = 2.5 x 1072 m. The influence of the surface
tension was also investigated by varying the Weber number in
the range from oo to 1 x 10%, whilst gas Reynolds number is kept
constant and equal to 5 x 103, and liquid Reynolds number is
equal to 76.2. These values correspond to a velocity difference

AU =5.5 m/s. In most cases a uniform 800 x 400 mesh (the length

of 1 x 1072 m is resolved by 160 grid cells) was sufficient in order
to obtain convergent results as well as to simulate the very small
droplets emerging from the film break-up. Numerical accuracy
of the results was carefully estimated and a grid independence
study was performed referring to the basic features (e.g. space-

time evolution and interface shape) characterizing the single wave

dynamics.

Figure 2.5: Schematic
representation of the
numerical domain. Both
gas and liquid phases have
a plug-velocity profile

at channel entrance and
the exit pressure is the
atmospheric one. (From
[10].)
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Figure 2.6: Neutral stability

1 > ‘q‘ curves for the studied gas-
o xz : ;S 23 | liquid flow with a density
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As a preliminary consideration fig. 2.6 shows the neutral stability
curves calculated using the viscous potential flow analysis ex-
plained in [39], and obtained for a = 0.5 and four different Weber
numbers. AV = U — U; denotes the velocity difference between
the two phases and k is the disturbance wavenumber. Note that
when the surface tension is absent the flow is unstable for all
wavenumbers. As expected, surface tension introduces a stability
margin clearly evident at the higher We numbers, whereas for
We = 1 x 10? the stability margin is influenced by viscosity. In
any case, since all the present flow conditions refer to a velocity
difference AV =5.5 m/s, the flow is expected to be unstable to any
infinitesimal small disturbances. However, the flow configuration
analyzed by [39] is parallel, whereas the present case features an
intrinsic spatial development. As already mentioned in the intro-
duction, this last occurrence is typical of practical devices where
the mixing produces a continuous velocity profile relaxation

that introduces in its turn a finite length scale. Hence, numerical
computations have been carried out to simulate the appropriate
unsteady free-interface flow field.

Fig. 2.7 shows typical colour maps of spatial distribution of
pressure (relative to the atmospheric one) at the four Weber num-
bers considered before (We = oo; 1 x 10%; 5 x 10%; 1 x 10?), in
order to illustrate the stabilizing effect of the surface tension. The
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interface shape, clearly depicted at the same early time instant

of t = 3 x 10735, highlights the initial formation of a single trav-
eling wave, which is much less pronounced at the lowest Weber
number. It is evident that the emergence of the wave is due to

the nonlinear amplification of finite-amplitude disturbances pro-
duced by the sudden change of inlet boundary condition. In more
detail, just downstream of the channel inlet, merging of the two
interacting currents produces a slow-down of the faster one (here
the gas) and a speed-up of the slower one (the liquid). As a first
consequence, in order to fulfill mass continuity requirement, the
interface has to move towards the liquid, thus creating a wave
valley. However, the normal stress balance, associated to this in-
terface displacement, is not initially satisfied and the interface is
pushed towards the faster gas, thus creating the wave crest. This
mechanism is inherently nonlinear in the sense that the crest de-
termines a local depression in the gas flowing over it (as can be
predicted by means of the inviscid theory of small disturbances)
which is transmitted to the liquid. As a final consequence, liquid is
sucked into the crest giving rise to the nonlinear amplification oc-
currence. The standard KH mechanism, generating a wave train,
is different because the flow remains parallel and the interface
perturbation does not infer a suction mechanism. In fact, as will
be discussed later on, the propagation velocity of the single wave
may be evaluated by the equilibrium of the total pressure at the
stagnation point located on the interface, whereas the velocity of
the traveling waves of the classical KH comes out just from the
mass continuity requirement.

45
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Figure 2.7: Color maps of
relative pressure, measured
in Pascal, for various
Weber numbers at the time

As may be appreciated by looking at fig. 2.8, referring to ¢ = £=3x10-3s, (From [10].)

8 x 1073 5, later on such a wave propagates downstream towards
the not yet physically perturbed interface. Note also that its end
rim breaks-up forming a certain number of small droplets. The
maps reported in figs. 2.7 and 2.8 are reminiscent of the scenario
illustrated by the experimental findings of [40] who proposed
that the droplets are produced by a secondary Rayleigh-Taylor
instability originating on the wave crests generated by a primary
finite-amplitude KH instability.

The color maps reported depict clearly, especially for the higher
time instant (fig. 2.8) quasi-periodic corrugations of the interface,
which appear in the region not yet reached by the single-wave.
The presence of such perturbations will be discussed later, in
connection with the emergence of numerical errors leading to the
formation of spurious flows of relatively small magnitude already
mentioned above.

In regards to the basic characteristics of the single-wave, it is
found that its propagation velocity, Uy, is constant when vary-
ing the Weber number. It is possible to estimate this velocity by
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Figure 2.8: Color maps of
relative pressure, measured
in Pascal, for various
Weber numbers at the time
map depicted in fig. 2.9, where the streamlines are reported in a r=8x10"3s. (From [10].)

means of a simple model. On the ground of the pressure color

reference frame that moves with the wave, the balance of forces
normal to the interface can be written:

1 2 1 2
Pg+50g(Ug —Uw)” = Pi+ 5 p1(Ur = Un) (2.5)

where Pg and P; are the gas and the liquid-side pressure respec-
tively.

Figure 2.9: Color map of
relative pressure, measured
in Pascal, and streamlines
for We=oc at t=1x10"4s,
(From [10].)
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By assuming U; < Uy, < Ug and by imposing local normal
stress balance, Py = P; (the effect of the surface tension can be
neglected because the curvature is nearly null at the stagnation
point A depicted in fig. 2.9, at least in the early instants), one
obtains:

_ U1+Ug\/7

w= T\/F . (26)

Thus, a valuable reference velocity coincides with the so called
Dimotakis speed, i.e. the velocity of a generic vortex appearing in
the two-dimensional fully developed mixing layer of two currents
flowing with different velocities, [41]. For the present values of
U;=0.5m/sand Ug =6 m/s,and r = 0.1, it is Uy, = 1.8 m/s. This
value is very close to the velocity observed for the numerically
computed single wave at early times measured by following in
time the movement of the first point of intersection between the
wave and the position of the unperturbed interface (point A in fig.
2.9). The mean value of this velocity, calculated for £ <5x 1073 s,
is 1.9 m/s. At later time instants we observed that the single

wave accelerates and the Dimotakis velocity underestimates the
propagation velocity. A representation of the movement of the
reference point A for the wave is reported in fig. 2.10. Indeed, the
very crude model employed in order to estimate the wave velocity
can be applied just to early instants, when the shape of the wave
is “bump-like” Afterwards, when nonlinear effects fully rule and
the wave interface assumes the typical blunt shape depicted in the
frames reported in fig. 2.8, separation of the gas stream past the
wave renders reasonable the prediction of an acceleration.

The present results broaden the analysis of Hoepftner et al. [38]
first of all because in the cited paper the wave is produced by an
impulse force normal to the interface, whilst here it is generated
by the sudden change of inlet boundary condition; furthermore,
the Heepfiner’s model is self-similar and the wave propagation
velocity is constant, whereas we observed a wave acceleration. In
the present contest the use of the Dimotakis formula is proved as

well.
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REMARKS

In section 1.1 the theory for a self-similar behavior of the KH
instability has been extended to the case where gravity is present
and a model for a nonlinear wave of gravity and wind has been
elaborated. This wave initially grows until reaching a size at which
the hydrostatic pressure drop balances the aerodynamic pressure
drop. At this time, Typex, a progressive collapse follows the apex
of the growth preventing the emergence of a dissipative soliton
that the idealized model (2.2) had left us to hope for. The model
nevertheless provides insight into the growth process itself since
the data for varying density ratio is reasonably gathered by the
scaling of time as the square root of the density ratio and height as
the density ratio in fig. 2.4.

The structure described can be identified with particular sea
waves generated by wind, in other words we have studied the
emergence and the evolution of very small waves resembling more
to the process of the atomization, being no danger for the sailors,
but playing an important role by creating much droplets: this
wave, indeed, ejects much of its liquid body into airborne droplets
as shown in fig. 2.3.

In section 1.2 a more physical configuration (considering the
effects of both viscosity and surface tension) has been analyzed,
always by means of numerical simulations based on VOF tech-
nique: the instability of a stratified two-phase gas-liquid flow in a
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two-dimensional channel. In this case the emergence of the single
KH wave is due to the sudden change of boundary condition at
the channel entrance, from the discontinuous plug-plug velocity
profile to the continuous one due to the formation of a mixing
layer.

The propagation velocity of the wave has been numerically
characterized and it has been theoretically analysed by a simple
physical model, in order to highlight the differences from the
classic KH wave velocity reported by Drazin [15].

The effects of the surface tension on the emergence of the
single wave was studied by varying the Weber number from co
to 1 x 102, Moreover it was observed that the surface tension is
the cause of small numerical errors, the spurious flows, in the
region downstream of the single wave. Such spurious currents
can be strongly reduced, or eliminated, by using more accurate
numerical modelings, as shown by the results obtained by means
of Gerris code, fig. 2.11. However, Gerris simulations confirm the
emergence of a wavy behaviour of the interface downstream of the
main single-wave (i.e., the still unperturbed part of the interface)
which in the present problem is produced by a KH mechanism.
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Figure 2.11: At the top

a frame from the Gerris
simulation and at the
bottom a frame from our
simulation for We =1 x 10°.
Color-maps represent

the velocity magnitude,
measured in m/s, at the
time ¢ = 8 x 103s. (From
[10].)

Neglecting the problem of spurious flows, a “grid indepen-

dence” study demonstrates that the Gerris code and our “in-house
code” are in agreement with describing the basic features of the
wave, i.e. the wave speed and its evolution in time. In fig.2.12

the space-time diagram of the wave position is reported as it is
computed by the two different codes employed and with different
grid refinements. The two “in-house code” executions discretize
the whole domain by employing grids constituted by 600 x 300
and 800 x 400 nodes, to which a mesh spacing of respectively
8.47 x 107° m and 6.35 x 10> m corresponds. The Gerris simu-
lations are carried out with three different levels of mesh refine-
ment, namely Level 6, Level 8 and Level 9, corresponding to a
minimum mesh spacing of respectively 3.97 x 10™* m, 9.90 x 107>
m and 4.90 x 107° m. The inset presents a zoom between the time
instants 0.006-0.008 s showing a good agreement between the
different simulations with a maximum dispersion of computed
values of x(f) equals to about 2 x 107 m.
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In regard to the atomization problem, the evolution of this
nonlinear wave is important to understand the mechanism of
droplets formation. It is fair clarifying that, of course, the cre-
ation of droplets is a three dimensional phenomenon, but the
KH primary instability of a liquid film under gravity is mainly
two dimensional in short time. Moreover the main goal was only
to study how this instability lead to the formation of a localized
wave with a flapping tongue at the tip. This tongue is very fragile,
weakly maintained by surface tension and it is stretched by the air
flow away from the body of the wave and shaken and broken by
the vortices that are shed periodically from the liquid obstacle.

2.3  LINEAR MODAL STABILITY OF VISCOUS PLANE TWO-
FLUID POISEUILLE FLOW

In this section we revisit the classical linear stability problem

of two-fluid Poiseuille flow in a planar channel. Hydrodynamic
stability of a thin layer of liquid bounded by a wall and sheared by
gas plays an important role in many industrial processes such as
lubrication system, atomization process, coating technology and

Figure 2.12: Space-time
diagram of the wave
position computed by
the two different codes
employed with different
grid refinements.
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aviation applications, as the de-icing technology.

A pioneering analysis of the linear stability of two superim-
posed fluids of different viscosities in a channel was performed by
Yih [16] who showed that viscosity stratification can induce insta-
bility in plane Couette-Poiseuille flow. The further huge amount of
literature on the stability of two-phase flow shows that this type of
flow is susceptible to instabilities of various kinds which have their
origin in viscosity stratification, as demonstrated by Yih, density
stratification, velocity profile curvature or shear effects. Indeed,
unlike for the single-phase stability problem, where the Reynolds
number is the only parameter, the formulation of two-phase sta-
bility problem requires at least six dimensionless parameters:
viscosity, density and depth ratio, two Reynolds number and the
Weber number.

In this section, considering the classification of instabilities
made by Boomkamp and Miesen [42], we analyze the stability of a
gas-liquid Poiseuille flow through an extensive parametric study,
focalizing the attention on the occurrence of a mode coalescence
phenomena between the interfacial mode, typical of two different
fluids separated by an interface, and Tollmien-Schlichting mode,
found in the classical hydrodynamic stability theory.

MoDEL

The analyzed flow can be solved in cylindrical geometry, but
because of its assumed symmetry, and especially if the liquid film
is sufficiently thin, it can be considered two-dimensional.

Flow geometry is shown in fig. 2.13. Subscripts 1 and 2 denote
the upper and the lower Newtonian fluid layer. Density, viscosity
and thickness of the two fluids are expressed by p;, 1; and d;,
where i = 1,2. The flow is bounded by the wall of the channel
and it is limited at the top by the axis of symmetry. The two layer
are separated by an interface at y = 0 (note that in the reference
system chosen, x denotes the streamwise direction and y the
direction normal to the motion). Gravity effects are neglected.

The problem is non-dimensionalized with respect to the fluid 1.

53
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It is possible to find out five dimensionless parameters

d UMAX 5. d UMAX 2 d
de__z _sz 17p1 1}We:(1 ) p1d1
1 i’ p T o
which are respectively the viscosity, the thickness and the density

ratio, the Reynolds and the Weber numbers.
The base flow is a two-phase Poiseuille flow. The adimensional-

ized velocity profiles of the two layers are

Uiy 3 -y- G+
Upyax 1+4diy

U(y) w3y +y+d§+D)]
o 2+ (E+ D

STABILITY PROBLEM

As in [16], the linear stability problem is formulated in two-
dimensional cartesian reference system. We assume perturbations
about the basic flow in the form of the non dimensional stream
functions ¥, and y,. The streamwise and cross-stream velocity
components u and v are defined in both phase by

ui = aywi
vi=—0xYi

(2.7)

Figure 2.13: Base flow
varying the viscosity ratio.
d; is the thickness of the
gas layer, d is the thickness
of the liquid layer.
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The unsteady infinitesimal disturbance can be expressed as

il y, 1) = Fi(y)e e (2.8)

k is the streamwise wavenumber and c is a complex number,
its real part represent the wave velocity while the imaginary part
is the growth rate (kc = w, see section 1.3). A disturbance is un-
stable, stable and neutrally stable when the amplification factor is
positive, negative and zero, respectively.

Substituting the 2.7 into the Navier-Stokes equations, elim-
inating the pressure terms and linearizing, we obtain the Orr-
Sommerfeld equation for each layer

I - "o 1 o I -
(U1 =@ = kK §1) = Uy 1 = () =25, + k')
m
ikrRe
The equations 2.9, together with the the boundary conditions,

n " (2‘9)
Wy =2k, + k2

Uz — ¢) @y — KP4r2) =

govern the stability problem.
The boundary condition at the wall, y = —d, are the classical no
slip condition
Wa(—d) = y(~d) =0 (2.10)
at y = 1 there is the condition of symmetry

1 () =9,(1) =0 (2.11)

and at the interface, y = 0, we have to assure the continuity of
the velocity

¥1(0) = 2(0)

N N B (2.12)
¥, (0) =9, (0) = 5(U; (0) — U5(0))
the kinematic condition
100 = (U — )b (2.13)

and the continuity of stress components
1(0) = K1(0) = m(@r, 0) - K72(0))
—ikRe(c'§y + Uyiin) — (§y — k*,) +ikRer (', + Uyiia) (2,14

m@ — ") —z;&%w’z - ikﬁ‘Res%
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where § is the perturbed interface, ¢/ = ¢c— U(0) and S = ﬁ
Writing the governing equations into a matrix form, we obtain

a generalized eigenvalue problem
¢Mq =Ag (2.15)

introducing the perturbation vector q = [1,"U1,1ﬁ2,5], the un-
steady operator M and the advection-diffusion operator A.

This problem has been discretized separately for each fluid by
means of a Chebyshev pseudospectral code written in MATLAB
programming language.

RESULTS

We consider a gas-liquid flow with r = 10 and m = 40. These
parameters are different from the air-water ones, but have how-
ever direct applications to liquid-gas atomization at high pres-
sure. The other parameters varied are the Reynolds number,

Re = [100 — 5000], the Weber number and the depth ration,
d=10.15,0.2,1,8].

We start analyzing the effects of the increasing of n. In fig. 2.14
are reported the colour maps of the maximum growth rate and
the neutral stability curves for the considered values of n and for
We = oo. For d = 0.15 the flow is unstable, while increasing the
thickness of the lower fluid, already at d = 0.2, a neutral stability
appears. With further increases of d the area of stability extends,
but for d > 1, this trend inverts.

For Re = 4000 and k = 1, fig. 2.15 shows how the spectrum of
the linearized Orr-Sommerfeld operator varies increasing d. As
d increases, the the position of the leading eigenvalue shifts from
the left to the right branch and for d = 0.2 the growth rate, c;, is of
one order of magnitude higher, as reported in fig. 2.16.

These data highlight that varying the thickness of the lower
fluid, the nature of the leading eigenvalue changes. For d < 0.2,
the most unstable mode is an interfacial mode (I) typical instabil-
ity mechanism of thin liquid film injected into a fast gas stream.
When the thickness of the lower fluid is slightly increased a new
mechanism of instability due to a mode coalescence can be ob-
served. This phenomenon occurs between the Tollmien-Schlichting
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Figure 2.14: Colour maps
of maximum growth rate
varying d as a function of
the axial wavenumbers k
and Re for m =40, r = 10
and We = oco. The black
lines represent the neutral
stability curves.

Figure 2.15: Spectrum

of the linearized Orr-
Sommerfeld operator for
k=1, Re = 4000, We = oo
and varying the value of
the thickness ratio d. The
leading eigenvalue is circled
in red.
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modes (TS) and the previous mentioned interfacial modes. The
physics driving these two modes are quite different. The TS mode
is caused by a combination of the vorticity production at the wall,
the no-slip condition, and the viscous effect within the critycal
layers and hence is also present in single-phase flows, while the

I mode is driven by vorticity production at the interface due to a

viscosity jump between the two fluids in play. As reported by [17],

the critical parameter which introduces modes interaction is the
film thickness.

Cohen and Hanratty [43] found experimentally some charac-
teristics to identify an interfacial modes: the wavelength is from
one to ten times the thickness of the liquid film and the wave
speed is greater than the velocity at the interface. Analyzing the
results obtained for d = 0.2, we find that the maximum growth
rate, kc; = 0.039, is riched by a disturbance characterized by
k = 1.33. Thus the adimensional wavelength is of one order of
magnitude greater than the liquid film thickness, A =2n/k ~ 4.72,
and the adimensional disturbance speed is ¢, = 0.95, while the
velocity at the interface, adimensionalized respect to U{VIAX, is
U(0) = 0.01. These characteristics identify the leading eigenvalue
as an interfacial mode.

For d = 1 the leading eigenvalue preserves the same wave
velocity and wavelenght of an interfacial mode, ¢, = 0.95 and
k = 1.54, but the growth rate grows of one order of magnitude,
kc; = 0.188. Comparing the maximum growth rate as a function
of k for d = 1 with the one reported in fig. 2.18, relative to a

Figure 2.16: Maximum
growth rate as a function of
the streamwise wavenum-
ber k for r = 10, m = 40,
Re =4000, We = oo and for
two values of the thickness
ratio d =0.2,1.

Figure 2.17: Hyperbolic
tangent velocity profile of a
mixing layer.
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mixing layer with an hyperbolic tangent velocity profile, fig. 2.17,
and for Re = 4000, governed only by the shear instability, we can
note some similarities in the trend and in the order of magnitude.

Figure 2.18: Growth
rate as a function of the
streamwise wavenumber
0.5 1 k of the mixing layer for
Re =4000.
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Indeed it is possible to deduce that when the thickness of the
lower layer begins to grow, the mechanism of flow instability is
due to a mode coalescence between I mode and TS mode.

It is interesting to investigate briefly the effects of surface
tension on the stability of the studied flow. Varying the Weber
number and fixing all the other parameters, m = 40, r =10, d =
0.2, we obtain the neutral stability curves in fig. 2.19. The increase
of surface tension has, as expected, a stabilizing effect, indeed for
We <1000 is possible to identify clearly a cutoff wavenumber k
which divides the k-Re plane in two regions: the area above the
cutoff wavenumber is stable, the one remaining below is unstable.
Since the surface tension force is proportional to the curvature of
the interface, and because the curvature is greater for short waves,

its effects influence more the short waves modes, k= 1.
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REMARKS

Unlike the single fluid problem, which results in a single unsta-
ble solution (Tollmien-Schlichting mode), the two-fluid problem
has multiple unstable solutions (Tollmien-Schlichting and Inter-
facial modes). The parameters that influence the stability of the
presented problem are the viscosity and density ratios of the two
fluids, thickness of the sheared fluid layer and surface tension.
For certain combinations of viscosity ratio and fluid thickness the
Tollmien-Schlichting mode and the Interfacial modes interact
resulting in a composite mode, that has the properties of both
parent modes. A parametric study based on the different values
of the thickness ratio and surface tension has been presented
which has brought out some details of the mode coalescence and
a parameters combination at which it occurs. In particular has
been observed that for sufficiently thick sheared fluid layer, mode
coalescence occurs between TS and I modes and when the lower
fluid thickness increases, is not longer possible to distinguish the
two separate modes and the composite mode dominates the insta-
bility problem. Another interesting feature is the increase of the
amplification factors as the the thickness ration increases.

Figure 2.19: Effects of
surface tension on the
neutral curves for d = 0.2,
m=40and r =10.
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2.4 CONCLUDING REMARKS

In this chapter we have analyzed the development of the instability
of shear flows made up of two distinct immiscible fluids taking
into account their different densities, viscosities and the tension
acting at the interface that separates them. We have seen that
when two immiscible fluids are flowing in parallel is common to
witness the development of interfacial waves or even, for more
rapid flows, the mixing of the two fluids as the surface eventually
breaks into drops.

In industry such kind of flow forms the basis for the study of
atomization. This has provided the motivation for the present
work. The atomization process is characterized by the growth
of initially wavy perturbations at the gas-liquid interface due to
the classical KH mechanism, into more elongated liquid sheets.
Three-dimensional destabilization of these sheets turns them
into ligaments which could breakup into droplets. To describe
the development of these structures, generated by the growth of
nonlinear disturbances, direct numerical simulations are essential.

Our numerical results have revealed that the simple linear
formulation of the KH theory, the mechanism that, as we have
highlighted, sets the primary instability of a liquid film, cannot
take into account many important real effects such as the finite
thickness of the shear layer, the viscosity of the fluids and the
nonlinear saturation of the initial disturbances.

Linear stability analysis, on the other hand, has allowed us
to understand the physical character of the modes that govern
primary instability. In particular it has been demonstrated that
the viscosity ratio is the dominant factor of the instability: the
viscosity jump at the interface produces the vorticity that drives
the so called interfacial modes.

It has been possible to deduce how the linear stability problem
of a two-phase flow is complicated considering all the parameters
in play. Actually this has brought to the analysis of new and inter-
esting phenomena such as the mode coalescence illustrated in the
previous section. We have seen that, increasing the thickness of
heavier fluid, I mode can have point of coalescence with TS mode
generating a new mode that preserves some characteristics of the
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typical instability mechanism of single-phase flow.



STABILITY OF TWO-FLUID FLOWS IN PIPES

In this chapter we consider the dynamics of two immiscible fluids
with different viscosities in circular pipes. Typical of these flows is
the strong tendency to arrange themselves so that the low-viscous
fluid is in the region of high shear. This has been explained by

the viscous-dissipation principle, which postulates that the flow
chooses an interface that could minimize viscous dissipation for

a given flow rate, or, equivalently, maximize the volume flux for

a given pressure gradient [44]. This “gift of nature” opens up very
interesting possibilities for technological applications in which
one fluid is used to lubricate another. An example is the lubricated
pipelining in petroleum industries.

Water is often produced in large quantities with crude oil and
the characteristics of this two-fluid flow are of great interest in
horizontal pipelines transporting the crude oil to field treating
facilities. The major beneficial effect of the introduction of water
is the reduction of the pressure gradient along the pipeline and
thus of the power necessary to pump a given quantity of oil [45].

Various arrangements of oil and water occur in experiments ([12],
[46]):

+ stratified flow with heavy fluid below;
+ oil bubbles and slugs in water;

« a concentric oil core in an annulus of water (this is called Core-
Annular Flow);



64 INTERFACIAL INSTABILITIES OF TWO-FLUID FLOWS

+ wavy core flows;
+ water in oil.

Of course, the flow pattern which appears most attractive from
the viewpoint of pressure gradient reduction is the Core-Annular
Flow (CAF).

0 ©
°© c0 .+ %0 °© ©0 05000,
° °s ° 0 , o0 )
o - ®o o © *o

6 0,20° 90 o % © o o ) .

The science behind the technology of CAF has given rise to a
large literature, in particular on stability studies. The flow types
presented in fig. 3.1 are defined by stability, thus the theory of
stability is the natural way to analyze the transition between them.
Unfortunately most of the studies in literature are confined to
“perfect” core-Annular flow (PCAF) only possible in horizontal
pipes when the two fluids have the same density, such as to nullify
gravity effects, and of interest in lubricated pipelining, for which
linear stability analysis is reduced by normal mode to eigenvalue
problem for ordinary differential equations. Studies on linear
stability of PCAF were done by Hickox [47], Joseph et al. [48],
Preziosi et al. [5], Joseph & Renardy [49] and many others. These
stability analyses showed that this configuration is stable only
when the more viscous fluid occupies most of the pipe, so the
volume ration between the two fluids is a crucial factor. Actually,
even in the case of a thin lubricating layer, the stability depends
on flow conditions. For example, if the flow is slow, capillary
instability is induced by interfacial tension. Inertia has a stabilizing
effect [50] and the capillary instability can be completely stabilized
by increasing the Reynolds number [5]. In general, the parameter
range for which CAF is stable is very small.

Anyway the linear modal stability analysis cannot explain the
transition to some flow types, like the emulsification of water in

Figure 3.1: Flow types in
horizontal oil-water flow in

a pipe.
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oil, thus, looking at the comparison between theory and exper-
iments, it is possible to see how the modal theory fails in some
conditions. For this reason, in the present study we try to go be-
yond the classical results of modal stability analysis by carrying
out nonmodal stability analysis of CAF taking into account three-
dimensional perturbations, in light of the substantial transient
growth found in the single-fluid pipe flow, [8].

3.1  GOVERNING EQUATIONS AND PARAMETERS

Two liquids flowing in a cylindrical pipe of radius R, and infinite
length are considered. The interface between the two liquids is
given by r = R(6, x, t), where ¢ is time, (1,0, x) are the cylindrical
polar coordinates, and the corresponding components of velocity
are denoted by U = (U, V, W). The region 0 < r < Ry, where R;

is a constant radius determined by the prescribed volumes of the
two liquids in the unperturbed configuration, is occupied by the
first liquid of viscosity and density p; and pi, respectively, while
the second liquid (whose properties are denoted by p» and p2) is
located in the region R} <7 < R».

Figure 3.2: Geometry of

Core-Annular Flow and
base flow.

The equations of motion for an incompressible, Newtonian
flow are:

DY _vpipviu
pi Dt i (3.1)

divU=0

inwhichi =1when0<r<Rjyandi=2whenR; =1 < R,.

Gravity term is neglected because we are considering two fluids
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with the same density. Velocity have to satisfy the classical no slip
condition at the pipe wall, r = Ry

U=0

and it is bounded at r = 0 by the regularity conditions. The equa-
tions on the interface, r = R, are

_OR . OR VOR

ot dx R a0
Uy=0

—({(P)+cT)-n+2(uVU)% n=0

U

in which the symbol (-) represents the jump of a variable across
the interface, c is the sum of the principal curvatures, T is the
surface tension, n = njy is the normal to r — R = 0 from liquid
1 to 2. The first equation is the kinematic condition expressing
as usual that the interface is a material surface; the other two
equations represents six matching conditions corresponding to
the continuity of three velocity components and the three stress
components, the tangential stresses along axial and azimuthal
directions and the normal stress along radial direction. Note that
for the unperturbed flow the position of the interface corresponds
to the radius of the core, R = R;.

The base flow is modeled as Hagen-Poiseuille (HP) flow, driven
by a prescribed pressure gradient, the velocity field being U =
(0,0, W). Following [5], we have scaled the lengths with R; and
the velocity with the centreline velocity, W (0) = Wj, obtaining the
following dimensionless velocity W (r):

212t
W(r):{ 1-mr2l@+m-1), 0<r<l 52)

(@-r3/@+m-1), l<r<a

where m = pp/p; is the viscosity ratio, and @ = Ro/R; is the
dimensionless outer radius of the pipe. Note that for the sake of
simplicity the symbol r will denote hereafter the dimensionless
radial coordinate. Equation 3.2 shows that W (r) is continuous
across r = 1, but, because of the continuity of the shear stress
across the interface, the derivatives of W (r) are different on the
two sides of the domain at r = 1. Fig. 3.2 shows the base flow for
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different values of m starting from the classic parabolic HP flow
form=1.

LINEARIZED EQUATIONS AND MODAL ANALYSIS

In order to perform the linear stability analysis, we classically
perturb the base flow, so that the total velocity components,

pressure and interface position are
U=wv,W+w), P=P+p, R=R +560,x,1) (3.3)

where capital letters denote (total) perturbed quantities, small let-
ters disturbances and bar refers to the base flow. § is the interface
disturbance.

After substituting the previous positions into the governing
equations and the boundary conditions, it is possible to linearize
them, following the classical steps of linear modal analysis, by
assuming that quadratic perturbation terms are negligibly small. A
further simplification is made by invoking quasi-cylindrical base
flow assumption which means that the axial gradient are small,
%—VX, and the general base flow can be approximated by W = W (r).
Thus the dimensionless linearized perturbation equations can be
written:

CONTINUITY

10(ru) 10v 6w_

-—+—=0 3.4
r or " r 00 - 0x (34)
F-MOMENTUM
ou —ou op 1 2 u 2 61/]
— 4+ W—=-—=+—|Vu-—-—— 3.5
ot 0x 0r Re; “ r2 r2o0 (3:5)

O0-MOMENTUM

@+Wa_v__la_p+i[v2 _l_ia_u (3.6)
ot dx ro0 Re; 2 1200 ’
X-MOMENTUM

ow —ow op 1 _,

— tW—=-—+—V 3.7

ot 0x 0x Re; w (37)

These equations have to be solved for both the inner and the outer
field, occupied respectively by the the oil and the water. Re;, in
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fact, denotes the Reynolds number of each phase, Re; = WVOI& . The

corresponding variable’s index (1 and 2) has been dropped just for

simplicity.

The velocity components u, v, w have to respect the boundary
condition u = v = w = 0 on r = a and have to be bounded
on r = 0. The conditions on the interface of the perturbation
components have to be enforced always on the position of the
unperturbed interface, r = 1 = Ry /Ry, due to the linearization
process.

KINEMATIC CONDITION

u= 9 +W@ (3.8)
ot 0x ‘
CONTINUITY OF VELOCITY COMPONENTS
u=v=0
=—(—)
w ¢ or )
CONTINUITY OF TANGENTIAL STRESS
¢ [1 (61/ ou )]
(=|s|l=+=-v||)=0
Re [2\0or 00 (3.10)
< { [ow N ou Y20 )
Re|dor ox|
CONTINUITY OF NORMAL STRESS
{ ou J (626 9%6 )
- +2{=——)=—|=—=+=—+0 3.11
p) <Re 6r> Rej \06?  0x? (311)

where {; = p;/p; is the density ratio, and J is the Chandrasekhar
LR Note that the left side of

apivi
eq. 3.11 involves jump terms whilst on the right hand side the

surface tension parameter, J =

Reynolds number is just Re;. From these equations we obtain that
the disturbance velocity component w is not continuous across
the interface, second equation of 3.9, and its jump is proportional
to the first derivative of the base flow W (r), different on the two
side of the domain because of the continuity of shear stress for the
base flow.

Fourier decomposition in azimuthal and axial direction, and
temporal normal mode position, leads to the following distur-
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bance quantities:

[w, v, w, pI(1,0, x, t) = [id, D, W, p)(r) - el "0 +kx=wD) (3.12)

50,x,1) = 5 - elnf+kx-owi)

where n € Z and k € R are the azimuthal and the axial wave
numbers, while w is a complex number representing the temporal
eigenvalue. The amplitude functions (eigenfucntions) are denoted

by the symbol “~".
The dimensionless disturbances equations, 3.4-3.7, become

0 1\_. n._ B
O=|—+—-|a+—-0+kw
or r r
op i 1 2
wi=kwi- 2L+ |[v2, - = |a-"5
or Rel[\ ™k r2 r2
n i 1 2n (3.13)
~ _ ~ - - 2 I I T
a)v—ka+rp+Re (Vn,k rz)v rzu

0= KW+ kp+——V2 0
The boundary conditions for the outer field at the pipe wall are
a)=v(a)=w(a =0 (3.14)

while at the axis of the pipe the amplitude functions have to satisfy
the following regularity conditions (Ash and Khorrami [51])

5
5, 2% ~0, pfinite if n=0

o, 0,—

ol or (3.15)
_ O . 3.15

—,id+nv,w,p=0 f =1

ar no,w,p it |n

i, v, w,p=0 if |n|>1
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On the interface the conditions 3.8-3.11 become
(i) =Dy =0

<w>+<a—w>5=0
or

u—(kW-w)d=0
(2o na=o 516
Re \ Or
{ (0w A
(E(E—ku) =0
R & LN TR
<(p>+21<Rear>_Re§(1 k°-n")o

The governing equations 3.13, together with the boundary condi-
tions, can be written into matrix form representing the following
generalized eigenvalue problem

i
Mg = |L+ —V|§ 3.17
wMg ( Re )q (3.17)

where § contains inner and outer velocity and pressure variables,
plus the displacement disturbance of the interface. M is the un-
steady operator, L is the convection operator and V is the diffusive
one.

To summarize, the problem 3.17 is characterized by five in-
dependent dimensionless parameters: m, a,{, J, Re; because the
two Reynolds number are related by Re;/Rez = m/{. For sake of
simplicity, according to [5], hereafter the two fluids are assumed
to have the same density (thus {2=1) and the parameter J will be
taken fixed to the value J = 2102. The analysis hence has been
made by varying m, a and the Reynolds numbers.

NUMERICAL TREATMENT

The generalized eigenvalue problem 3.17 has been discretized
separately for each fluid phase by means of a Chebyshev pseu-
dospectral code written in MATLAB programming language. For
both fluids, the finite domain is mapped to the standard interval
[—1,1] via a linear transformation. The DMSuite package of [23]
has been used in order to obtain the discretized differential op-
erators. Boundary conditions on pipe wall and axis are enforced
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by the technique of replacing rows and interface conditions are
treated as boundary conditions for each phase.

The spectral discretization of the spatial operator in equations
has been used also to compute the transient growth function G(t).
The Matrix Exponential technique of [20] has been employed by
adapting their schemes to the two-fluid flow case. Whereas the
long-term behaviour is dominated by the least-stable eigenmode
only, a set of eigenmodes is involved in the initial increase of en-
ergy density. To be sure of get the real value of this amplification,
a convergence check based on the value of Gyax, the maximum
value of the transient growth curve, has been implemented in the
used code. The number of the eigenfunctions taken to compute
G(1), Ny, increases till the difference between the value of Gyax of
the previous and the last calculation is less than a fixed tolerance
value, (Gyax (mew) — Gyax(0ld)) < 0.00001. The convergence is
always reached with Ny < 80. The eigenfunctions are sorted with
respect to the imaginary part of the associated eigenvalue. An
example of the dependence of Gyax on Ny is shown in fig. 3.3.

Figure 3.3: Dependence
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The so called optimal perturbation has been calculated via
Singular Value Decomposition (SVD) procedure (see [20]).

Three different versions of the code have been developed by
modifying the system of equation 3.13. The first version of the
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code (4 x 4 version) resolves the previous system of equations in
the variable &, 7, W, p; the second version (3 x 3) is obtained elimi-
nating the variable p by means of the x-Momentum equation; the
last version (2 x 2) is obtained eliminating the two variable p and
W using respectively x-Momentum and the Continuity equations.
A convergence study has been performed for these codes: for
most of the computations a total number of 170 collocation points
has been adopted and an ad hoc procedure has been developed in
order to split the total number of collocation points between the
two phases, depending on the values of a and m.

Figure 3.4: Growth Rate as
function of the wavenum-
ber k for a=1.43, m=0.5,
Rey = 26.42, ] = 0. The
three curves have been
computed by means of
different versions of the
used code. In the inset a
zoom of the area 0 < k<1 is
reported.
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The validation of each code has been carried out reproducing
the maximum growth rate curve reported in fig. 2 of Preziosi
etal. [5]. In fig. 3.4 it is possible to notice that the 3 x 3 version
of the code is the one that best fit the results of both the others
two: the 2 x 2 achieves reliable results for k > 1, while the 4 x
4 is of high accuracy for k — 0. This is due to the maximum
order of derivative present in the system of equations used in the
codes: the more the derivative order is high, the more significant
accuracy errors may appear. For example in the 2 x 2 code we find
forth-degree derivatives and for this reason, although this code is
the best one in terms of computation time, the 3 x 3 is the more
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convenient concerning accuracy.

3.2 NONMODAL INSTABILITY OF CORE-ANNULAR FLOW

In order to compare the results of this section with the standard
single fluid flow in a pipe, we use a mean Reynolds number de-
fined as Rey, = ﬁWﬁORZ where i = w
holds for p. ’

Firstly some illustrative example of eigenvalue stability analysis

. A similar relation

are considered for two typical configurations.

The most unstable growth rate is reported in figs. 3.5 and 3.6
as a function of axial wavenumber k and of Reynolds number, for
the cases m = 0.5 and a = 1.15 (fig. 3.5) and m = 0.75 and a = V2
(fig. 3.6) and for the first four azimuthal modes n = 0,1,2,3.
These figs. show the maximum growth rate in function of both
the external Reynolds number Re; (right vertical scale) and of the
mean Reynolds number Re,, (left vertical scale). The continuous
black line corresponds to the marginal stability. The case relative
to fig. 3.5 is representative of a narrow gap physical situation, while
that of fig. 3.6 is relative to an equal volume flux configuration.

One may see that passing from the narrow gap to the wide
gap case produces a remarkable change in the topology of the
unstable region. The narrow gap case is more stable in the sense
that there are ranges of low Reynolds numbers in which the flow is
stable for all wavenumbers, while in the wide gap case a Reynolds
independent instability is detected, which is confined only to
axisymmetric disturbances (n = 0) and affects long waves (k <1).

Note that in both cases the maximum growth rate (related to
the so-called interfacial mode, at least in the unstable regions) is
quite small in the dimensionless units employed here, scaled by
Woy/Ry. For this type of flow a generalized capillary instability
(i.e. a capillary instability modified by shear) affecting very low
Reynolds numbers and long waves, is already documented by pre-
vious researcher (for example figs. 8-15 of [5]). In the presented
computations this instability is out of the range of Reynolds num-
ber discussed in fig. 3.5, while in fig. 3.6 it merges with the upper
branch of unstable modes.

The results of non-modal analysis of the case relative to fig. 3.5
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are reported for azimuthal wavenumbers n = 1 and 2 in fig. 3.7.
The color-map is relative to the natural logarithm of the maximum
value Gyax attained by the growth function over different values
of k and of Reynolds number. The blank areas in this figure, and
in the subsequent fig. 3.9, are relative to regions in which an
exponential instability is present, for which Gyax is infinite. For
this particular narrow gap case the level of energy amplification
of axisymmetric disturbances (n = 0), as well as of disturbances
having higher azimuthal wavenumbers (not shown herein) is
quite small and hence the cases n = 1 and 2 have been selected
as the most dangerous from the point of view of the transient
amplification of disturbances.
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It is evident that long waves are affected by significant transient
amplification, which increases by increasing Reynolds number;
however, the regions in which the transient growth is higher are
also regions of eigenvalue instability at different axial wavenum-
bers. As already discussed, the growth rates of these exponential
instability is quite low, and hence one may conjecture that in some
situations the algebraic growth of asymptotically stable long waves
disturbances can be fast enough to overcome the slow exponential
growth of energy of unstable disturbances at short times. More-
over, a third effect should be considered: nonmodal mechanisms
can affect also the evolution of exponentially unstable modes at
short times, enhancing their growth in a transient period before
the exponential growth sets in. In this situation the physical rel-

and of Reynolds number.
m = 0.5, a=1.15. (From

75

non-modal amplification of
energy Gyuax as a function
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evance of transient growth effects has to be carefully discussed
and hereafter a comparison of energy evolution between different
perturbations, obtained under the combined effect of modal and

nonmetal mechanism is shown in fig. 3.8.

m = 0.25 m = 0.5

EnergyAmplification
N
N
3

0 50 100 150 0 50 100 150

In this figure two typical situations, relative to Re;,; = 2000 and
m = 0.25 and m = 0.5, are depicted. In the lower viscosity ratio
case (left figure) although the exponential instability of k=2 n=1
disturbance (blue line) has a quite low growth rate (w; = 0.025) it
is affected by non normality of the governing operator in such a
way that at short times it reaches higher levels of energy which are
comparable to purely algebraically growth of asymptotically stable
disturbances for k = 0.001 n = 1 (black line) and for k = 0.001
n = 2 (red line). In the right figure the effects of non normality
on the unstable disturbance k = 0.01 n = 1 are less pronounced
and asymptotically stable long wave disturbances are able to
accumulate energy more efficiently at short times are observed.

The results of non-modal analysis for the case of fig. 3.6 are
reported in fig. 3.9. Significant transient growths occur for all he-
lical modes (n = 1) and affect long and mid-range wavenumbers,
while for axisymmetric disturbances the non modal amplification
is practically negligible. This situation is different from the previ-
ous one, since the region of exponential instability is now present
only for axisymmentric disturbances, for which Gyax levels are
quite low (the maximum being around 10). Hence the exponen-
tial instability is expected to play a minor influence at short time
instants, when higher levels of amplification should be reached by

Figure 3.8: Energy ampli-
fications of different per-
turbation for Rey; = 2000,

a =1.15 and two different
viscosity ratios: m = 0.25
and m =0.5. In both figures
the solid blue line repre-
sents the transient energy
growth of two asymptoti-
cally unstable disturbance
(k=2 n=1), whose growth
rate is reported as a dotted
line. Black and red lines
represent the transient
growth of two asymptot-
ically stable disturbances:
for m=0.25, k=0.001 n=1
(black line) and k = 0.001

n =2 (red line); for m=0.5,
k =0.01 n=1 (black line)
and k=0.01 n=2 (red line).
(From [11]).
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non-symmetric disturbances, for which non-modal mechanisms
are effective.

The main question arising in this situation is if the nonmodal
mechanism of non axisymmetric azimuthal wavenumbers is
able to yield levels of energy amplification sufficiently high to
break up the flow before the slow exponential instability, affecting
axisymmetric disturbances, sets in. This question cannot be
answered by considering the values of Gyax alone, as it is done
in figs. 3.7 and 3.9, because they do not give any information on
the times at which the maximum energy amplification occurs.

The values of the energy amplification G(#) as a function of
time t are reported in fig. 3.10 for the usual azimuthal and axial
wavenumbers and the same parameters of fig. 3.9, at the fixed
value of Reynolds number Rey, = 3000. The horizontal line de-
picted in the upper left panel of the figure (relative to n = 0)
indicates the critical wavenumber separating exponentially stable
and unstable disturbances. The region below this line represents
energy amplifications due to unstable disturbances which are
going to grow monotonically in time. In all the other cases the
energy amplifies trough a transient nonmodal mechanism and

Figure 3.9: Natural loga-
rithm of maximum amplifi-
cation of energy Gmax as a
function of axial wavenum-
ber k and of Reynolds
number. m =0.75, a = V2.
(From [11]).
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hence the growth function is going to decay as time increases. In
fact, fig. 3.10 shows that at intermediate times the highest levels
of energy amplification (up to 400) are reached by stable spiral
disturbances having long waves (k < 1), well before the slow
exponentially unstable axisymmetric disturbances reach a suffi-
ciently high amplitude. This situation has been encountered also
at different values of Reynolds number and m.

In order to give some insights on the observable structures in
real flows, the analysis of the so-called optimal perturbations is
considered. It is worth to recall that the optimal perturbations are
defined as the initial perturbations, of velocity and displacement
variables, that undergo the maximum value of the gain function
G(2) and hence experience the maximum energy amplification
during their time evolution. Our analysis focuses on the particular
case of radius ratio @ = v/2 and mean Reynolds number of 2500.
The structures of the optimal perturbation in the r-0 plane are
reported in fig. 3.11 for the case n = 1 and for two values of the

Figure 3.10: Natural
logarithm of energy am-
plification G as a function
of non-dimensional time t
and of axial wavenumber
k. m =0.75, a = /2 and
Rey, = 3000. The solid
line for n = 0 indicates the
critical wavenumber sepa-
rating exponentially stable
and unstable disturbances.
(From [11]).
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viscosity ratio (m = 0.9 and m = 0.3) and of the axial wavenumber
(k =0.01 and k = 1). The red circumferences show the location
of the unperturbed interface. The values of m and k have been
chosen with the following motivations. The two cases m = 0.9
and m = 0.3 highlight the differences between present results

and the classical results of non-modal instability of the HP flow

of a single fluid in a pipe (m = 1). The structure of the optimal
perturbations in this particular single phase configuration ( see
Schmid and Henningson [20]) is very similar to the case m = 0.9
illustrated in the left column of fig. 3.11. On the other hand, the
two values k = 0.01 and k = 1 are relative to two different ampli-
fication mechanisms; the former (k = 0.01) is pertinent to planar
disturbances and is already present in the single fluid (planar
disturbances have been shown to be the most dangerous perturba-
tions in the nonmodal amplification for HP flow), while the latter
(k = 1) is relative to a new mechanism of energy amplification
which is peculiar of two-fluid flows, as will be briefly discussed
hereafter.

The optimal perturbation for k = 0.01 remains basically un-
changed both in the “almost-single-fluid” case m = 0.9 and in
the full two-fluid case m = 0.3. This indicates that the long-wave
mechanism of energy amplification encountered in the two-fluid
system is basically the same as the typical one present in the
single-fluid flow, namely a “lift-up” mechanism of streamwise vor-
tices generating streamwise streaks. On the contrary, the optimal
perturbation relative to k = 1 for the case m = 0.9 has a different
nature since it dramatically changes when the viscosity ratio is
reduced to the value m = 0.3. Thus, the energy amplification due
to the nonnormal character of the linearized two-fluid operator
at moderate wavenumbers (e.g., the case n =1 k = 1) is peculiar
of the two-fluid system and the perturbations that experience the
maximum transient amplifications are of ‘ring’ type, with most
of the structure confined within the annular region of the less
viscous fluid.

In order to highlight the differences and the similarities be-
tween the CAF and the Hagean-Poiseuille flow, the effect of
viscosity ratio on Gyax are show in fig. 3.12. The viscosity ratio
is increased from 0.1 (black line) to 0.7 (red line). The presence

79
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n=1, k=0.01, m=0.9

of two zones of high transient growth is clearly visible especially
for the smaller values of m at n = 1 (remember that small m im-
plies a strong discontinuity in first derivative of the base flow): the
first one is characterized by long waves, typical transient growth
found in single-fluid pipe flow ( as just said referred to fig. 3.11),
the second one is characterized by k > 1. These latter transient
phenomena are peculiar of two-fluid pipe flow, and, in effect,
increasing m the values of the energy amplification of these dis-
turbances decrease. Anyway also for CAF the highest level of
energy are reached by the long wave mechanisms for n = 1.

To support the similarities between two-fluid and single fluid
flow in pipes, the distribution and the relative fractions of total
energy among streamwise, radial and azimuthal velocity com-
ponents of the two optimal perturbations shown in fig. 3.11 for
m = 0.3 have been computed and reported in fig. 3.13. As shown
by Bergstrom [52] for the single-phase flow (his results are repre-

Figure 3.11: Selected
optimal perturbations in
the r — 0 plane. a =+/2 and
Rej, = 2500. Left column
m = 0.9, right column
m=0.3. (From [11]).
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n=1 n=2 Figure 3.12: Logarithm

: in base ten of maximum
nonmodal amplification
energy Guax as a function
of the axial wavenumber, k,
for Rey, = 2500, two values
of n and four different
viscosity ratios: m = 0.1
(black line), m = 0.3 (blue
line), m = 0.5 (green line)
and m = 0.7 (red line).

sented by the dotted lines), for k = 0.01 at ¢ = 0 almost all energy
is in the azimuthal and radial components (respectively the read
and blue lines) while negligible energy is in the streamwise com-
ponent. When ¢ is increased, the streamwise component starts to
dominate rapidly: this is the only component that grows for small
k. For k = 1 almost all the amplification is related to the stream-
wise component too, but here also the other components exhibit
an amplification from their initial values, especially the azimuthal
one. These results show that the energy distribution between the
velocity components has basically the same behavior both in CAF
and in HP flow.

To investigate the dependence on the time at which a pertur-
bation achieves its maximum possible energy amplification, initial
disturbances reaching their optimal amplification at chosen times,
to, have been computed (fy are different from fy,x, the time char-
acterizing Gyax ). Recall that at time ¢ = £y the curves displaying
the energy density of these particular initial disturbances are tan-
gent to the maximum growth curve. In fig. 3.14 the maximum
growth curve for Re,, = 2500, m = 0.3, a = V2, n = 1 and two
different values of k, k = 0.01 and k = 1 (see the optimal pertur-
bation in the right column of fig. 3.11) are reported by the black
dashed lines, while the blue lines represent the energy evolution of
some initial perturbations tangent at the maximum growth curve
in the points marked by the red dots. The results shown in this fig.
lead to the conclusion, already discussed for HP flow in [8], that
for a disturbance almost two-dimensional (7 = 1 and k = 0.01) the
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Figure 3.13: Relative
— fractions of total energy
- for different components
‘ of velocity for CAF at
06f ! * Rey, = 2500, m = 0.3
) and a = v/2 (solid line)
sof and for Hagen-Poiseuille
o B flow at Re = 2500. The
~ computation refers to two
0 5 10 15 2 % 30 different disturbance at
n=1:k=0.01and k=1.
The black line represents
the axial component of
velocity and the red and
the blue lines represent
respectively the azimuthal
and radial ones. The energy
associated to surface
tension is not reported,
since it is negligible.

Fractions of Total Energy

Fractions of Total Energy

shape of any initial perturbations is very similar to the one of the
optimal perturbation, for which ty = fj;ax. On the other hand, for
a three-dimensional disturbance (n = 1 and k = 1) the choice of
tp influences much the evolution of the initial perturbations: the
curves representing their energy density in fig. 3.14 have indeed a
shape different from the maximum growth curve.
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3.3  COMPARISON WITH EXPERIMENTS

In light of the results on transient growth in CAF discussed in the
previous section, a review of the stability analysis made by Preziosi
et al. [5] (PCJ), based on the experimental paper of [12], (CGH),
is presented here. CGH identified a window of parameters that
assure the stability of CAF to small disturbances, but they also
observed two different type of flow instability: some situations in
which the interface of CAF breaks up into bubble and slugs and
others characterized by emulsifications or water drops in the oil.
The analysis of PC]J can explain the first kind of the observed flow
pattern as a result of a long wave instability due to surface tension
(capillary instability) and the size of bubbles and slugs are given
by the wavelength of the fastest growing wave. The second type
of CAF instability, visible in the experiments 1,5,6,9 and 10 of
CGH, is unexplained by PC]J, as they state in their paper: “[...]The
smaller water bubbles shown in Experiments 6 and 9 and the oil
bubbles in Experiment 10 are unexplained by this analysis. They
could arise as a reaction to turbulence in the water, or as kind of
secondary instability of slugs.

The attention is focused in particular on the experiments 6, 9
and 10. These experiments are asymptotically unstable only for

60 80 100

Figure 3.14: Maximum
growth curve (dashed black
line) and energy amplifi-
cation of different initial
disturbances (blue lines)
tangent at the maximum
growth curve at times
marked by the red dots
for Rep, = 2500, m = 0.3,
a=+v2,n=1and k=0.01
(on the left) and k =1 (on
the right).
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Table 3.1: Comparison

a Rey lexp ln wiP;IAX Wi MmAX between the experiments
1.5 406.90 >15.75 12.1856  5.8597x107%  5.9524x1073 of [12] here considered
181 79597 6o0rl575 663405 5.3989x107%  5.3848x107*  and the theory. 0%
10 | 2.65 433.70 2.70 4.4199 1.8272x107%2  9.7256x107% is the maximum growth
rate reported by [5] while
Wi max 1s the maximum
growth rate calculated with

. . . o our pseucospectral code
is reported as a function of the axial wavenumber k: it is clearly using the Golden Section

O O\ =

axisymmetric modes, n = 0. In fig. 3.15 the maximum growth rate

visible that the maximum growth rates, in particular concerning Search technique, with a
1074 tolerance, to find the

maximum and with N =170
units employed here, @(107%), so these disturbances need a very allocation points.

the experiments 9 and 10, are very small in the dimensionless

long time to grow significantly.

Figure 3.15: Maximum
growth rate of the most
unstable axisymmetric
modes as a function of
axial wavenumber k for the
considered experiments of
[12].

Winrax

The color-map in fig. 3.16 reports the most unstable growth
rate as a function of axial wavenumber and of Reynolds number
of the core for the exp. 6. The continuous black line corresponds
to the marginal stability curve computed with the used pseu-
dospectral code (the 3 x 3 version), while the continuous blue line
corresponds to the marginal stability calculated by PC]J. Their
spectral code, based on a 3 x 3 system and on N = 14 allocation
points, seems to fail at higher Reynolds number and at k = 1, but it
is able to catch the disturbance that leads to the asymptotic insta-
bility. The values of the maximum growth rate found by PC]J are
compared with the ones calculated by the 3 x 3 in table 3.1: there
is a good agreement for exp. 6 and 9, but not for the exp. 10.
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EXPERIMENT 6

The fig. 3.16 highlights that this flow is affected, for n = 0, by a
Reynolds independent long-wave (k < 1) instability. The highest
values of the maximum growth rate are concentrated in the low
Re; region and are related to the so-called interfacial mode. As
already discussed in section 2.3, this long-wave instability is in-
duced by surface tension and represents a generalized capillary
instability. PCJ conjectured that it is this instability to lead to the
formation of oil slugs and bubbles in water.

Figure 3.16: Maximum
growth rate of the most
unstable axisymmetric
disturbances as a function
of axial wavenumber k

and Reynolds number of
the core Re; for a = 1.5.
The continuous black line
correspond to the marginal
stability curve obtained
using our pseudospectral
code while the continuous
blue line correspond to the
marginal stability curve
reported by [5]. The dashed
black line marks the Re; of
exp. 6, Re; =406.9.

The results of nonmodal analysis for the exp. 6 are reported in
fig. 3.17. The color-maps in fig. 3.17-(a) represent the logarithm
in base ten of the maximum value reached by the growth func-
tion, Gyuax, over different values of k and Re;. For all the cases
studied, long waves are affected by significant transient amplifi-
cations which increase with increasing Re; for non-axisymmetric
disturbances. The maximum transient growth at the experiment
conditions are reported in fig. 3.17-(b).

On the left of fig. 3.18 there is a comparison between the en-
ergy amplification of the disturbances that reach the maximum
Gumax at 1 = 1,2,3 and the most unstable axisymmetric mode.
As just seen in fig. 3.8, one can observe that nonmodal mecha-
nisms affect also the evolution of exponentially unstable modes
at short times before the exponential growth sets in. Of course
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the effects on nonnormality mark more strongly the disturbances
asymptotically stable that accumulate greater amounts of energy
in a transient period. It is evident that for n > 1 the maximum of
the growth function decreases, but these disturbances grow more
rapidly in the initial stage of the amplification ([52], [8]).

Considering the optimal perturbation relative to the distur-
bance that reaches the highest level of energy in the shortest time,
k = 0.86242 and n = 2, the evolution of the kinetic energy of
the annulus and of the kinetic energy of the core are reported
separately on the right of fig. 3.18: all the energy amplification is
clearly related to the annulus. The energy associated to surface
tension has not been reported since it is negligible.

As a further proof that the nonmodal energy amplifications are
due to the water in the annulus, in fig. 3.19, on the left, is repre-
sented the e-pseudospectrum at the conditions of exp. 6 for the
k =0.86242 n = 2 disturbance. The transient effects due to non-
normality can be better inferred from the pseudospectrum of the
operator (see [53]): the figure clearly shows that the left branch
of the spectrum, the one referred to the annulus, is affected by
the more striking nonnormality. In particular this branch show
the typical three-branch structure of the HP flow spectrum [20]
and, as for HP flow, the eigenvalues at the intersection point of the

Figure 3.17: Fig.(a): Log-
arithm in base ten of
maximum nonmodal am-
plification energy Gumax as a
function of axial wavenum-
ber k and the Reynolds
number Re; for a = 1.5.
The blank areas represent
the region of modal insta-
bility. Fig.(b): Logarithm
in base ten of maximum
nonmodal amplification
energy Guax as a function
of axial wavenumber k for
the considered Reynolds
number, Re; = 406.9,
marked by a dashed black
line in the fig.(a).
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— n=2 k=0.86242 Figure 3.18: On the left:
energy amplification of the
perturbations that reach
the highest value of Gyax
for n > 0 and of the most
unstable mode for n =0
at the condition of exp. 6:
Rej =406.9, a=1.5. On
the right: components of
the energy amplification
of the disturbance n =2
) k = 0.86242 (red line in
0 50 100 150 0 50 100 150 ﬁg‘ on the left). All the
amplification is related to
the kinetic energy, Ex, of
the annulus.

Core
Annulus

n=0k =0.22658
n=1k=0

n=2k=086242
n=3k=0.16552 1074

three eigenvalue branch are the more sensible to nonnormality.
On the right of fig. 3.19 there is an example of eigenvectors of the
three velocity components related to the mode marked in blue.

® Annular mode Figure 3.19: On the left:
x10° sigenvalue 18 = 0.4536 ~0.2363 boundaries for the e-
) ]
o * .o = BN 5)(: ARYS pseudospectrum of the
P S . -2 / 8 linearized operator for
® 0.2 0.4 0.6 0.8 1 12 1.4
-03 . eigenvalue 18 = 0.4536 -0.2363) Rel =406.9, k =0.86242
04 . o and n = 2. From outside in,
3 s - . iy the curves correspond to
08 . . 0z o+ o6 08 1 €=1072,10"3,107* It is
-07 ° eigenvalue 18 = 0.4536 ~0.2363] evident how the nonnor-
-0.8 » 1 3 PV .
. 2 mality is concentrated in
-0.9 -1
* = . . . . ; the branch of the spectrum
-1 0.2 0.4 0.6 0.8 1

s e e e or e S r S representing the annulus.
On the right: from top to
bottom, the eigenfunctions
correspond to the three ve-
locity components, i#i, 7, i,
referred to the eigenvalue

EXPERIMENT 9 marked in blue.

The color-maps in fig. 3.20-(a) report the values of G as a function
of the non dimensional time ¢ and k for the conditions of the ex-
periment 9. At short times the highest levels of energy amplifica-
tion are reached by modal stable spiral disturbances characterized
by long and mid-range wave, k < 1, while no relevant growth are
present for n = 0 even at long times. Comparing this experimental
situation with exp. 6, the Reynolds number and annulus radius are
increased, Re; =795.97, a = 1.81: these two parameters are there-
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fore both responsible for the higher values of nonmodal energy
amplification.

The transient growth of the perturbations that reach the max-
imum Gyax are reported in fig. 3.20-(b) in which they are also
compared with the most unstable mode, k = 0.024685 n = 0,
whose level of energy is of two order smaller than the ones of
spiral modes.

In fig.3.22 there is the e-pseudospectrum of the disturbance
that reaches the highest amplification of nonmodal energy at
shortest time, n =2 k = 0.27987, the red line in fig.3.20. As in the
exp.6, the essence of nonnormality is localized in the left branch
of the spectrum. The eigenvectors of the velocity components for
three different modes are reported in the subsequent three images
in fig. 3.22: clockwise we have the eigenvectors of the interfacial
mode which leads to the asympotical instability, the eigenvectors
of a core mode and the eigenvectors of an annular mode.

Also for the exp.9, both the separation of kinetic energy into
the annulus and the core components in fig. 3.21, and the e-
pseudospectrum in fig. 3.22, show that the nonmodal instability is
governed by the annulus.

200 300 400
t

Figure 3.20: Fig.(a): Log-
arithm in base ten of
energy amplification G
as a function of non-
dimensional time ¢ and
of axial wavenumber k at
Re; =795.97 and a = 1.81
(exp. 9). Fig.(b): Energy
amplification of the per-
turbations that reach the
highest value of Gyax
for n > 0 and of the most
unstable mode for n =0
at the condition of exp.9:
Rey =795.97, a=1.81.

— n=2 k=0.27987

0 100 200 300 400
t

Figure 3.21: Components
of the energy amplification
of the disturbance n =2

k =0.27987 (the red line on
the right of fig. 3.20).
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EXPERIMENT 10

The same situation is observed for the conditions of exp. 10.
Transient growth of different disturbances are compared on
the left side of fig. 3.23. The maximum value of G is reached
by n = 1 k = 0 disturbance; the components of its kinetic en-
ergy are reported on the right side of fig. 3.23 and in fig. 3.24
the e-pseudospectrum linked to it. In this case the spectrum is
markedly different from the previous, showing just one branch,
and the e-pseudospectrum extends into the unstable half-plane
even for moderate contour levels.

For all the experimental conditions analyzed the largest ampli-
fication of nonmodal energy is for n = 1 and k = 0. The optimal
perturbations obtained for this disturbance are shown in fig. 3.25.
The perturbations reach their maximum intensity in the annulus
region and increasing this area they tends to the classical struc-
ture found in HP flow: a pair of strong counter-rotating vortices.
The longwave mechanism of energy growth in two-fluid system
is hence the lift-up mechanism present in the single-fluid flow, as

89

Figure 3.22: Boundaries for
the e-pseudospectrum of
the linearized operator for
Rey =795.97,k = 0.27987
and n = 2. From outside in,
the curves correspond to
€=1072,1073,107%. It is
evident how the nonnor-
mality is concentrated in
the branch of the spectrum
representing the annulus.
Clockwise: eigenfunctions
of the three velocity com-
ponents, i, U, , referred
to the eigenvalue | marked
in green, interfacial mode;
eigenfunctions of the three
velocity components re-
ferred to the eigenvalue C
marked in red, core mode;
eigenfunctions of the three
velocity components re-
ferred to the eigenvalue A
marked in blue, annular
mode.
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—n=1k=0 Figure 3.23: On the left:
s energy amplification of the
perturbations that reach
the highest value of Gyax
for n > 0 and of the most
unstable mode for n =0
at the condition of exp.10:
Rey =433.7, a=2.65. On
— the right: components of
—n=1k=0 the energy amplification

o 10 : E :
n=2k=0.012459 _/—\ of the disturbance n =1
n=3k=0.0088144 : :

k = 0 (the blue line on the

n=0k=0.095753

0 200 400 600 800 0 200 400 600 800 left). All the amplification
t is related to the kinetic
energy, Ex, of the annulus.
© Annular mode Figure 3.24: On the left:
ol T D x10” ___soenvale 7= 00000 00040 boundaries for the e-
000 =, S pseudospectrum of the
0 ° = . = . = linearized operator for
~0.02 Y eigenvalue 7 = 0.0000 ~0.0040] Rey =433.7, k=0and
. 004 S 001 n = 1. From outside in,
3 \\\\ . ) w0
0061y ] [ o0t the curves correspond to
P . o s o2 €=1072,1073,107* and the
o H o 0s e dashed line represents the
oz \\\ . /! 2 e — % boundary of the numerical
- '1‘ o ! - . 0s 1 15 2 25 range. On the right:
o, r eigenfunctions of the three

velocity components,
idl, U, 1w, referred to the
eigenvalue marked in blue.
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reported into commenting fig. 3.11, in which it has been showed
that the amplification of this kind of disturbances is overall due to
the growth of the streamwise velocity component.

Exp. 9

Figure 3.25: Optimal
perturbations for n =1
and k = 0 for the three

experimental conditions

3.4 CONCLUDING REMARKS considered.

In this chapter the problem of the linear stability of the horizontal
pipe flow of an equal density oil-water mixture, arranged as a
Core-Annular Flow, has been reconsidered from the point of view
of nonmodal analysis in order to asses the effects of nonnormality
of the linearized Navier-Stokes operator on transient evolution

of small perturbations. The aim of this investigation has been to
analyze the cases in which poor agreement occurs between the
predictions of linear modal theory and the classical experiments of
CGH.

The presence of remarkable levels of transient growth has
been found for both asymptotically stable and unstable config-
urations. In particular the parameter studies have revealed that
the maximum amplification of initial energy is experienced by
disturbances with no streamwise dependence (n =1 and k =0,
two-dimensional planar disturbances) in analogy with HP flow.

As demonstrated by analyzing both the e-pseudospectrum
and the division of kinetic energy into the core and the annulus
components, the energy growth is correlated to the water in the
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annulus and it reaches higher values increasing the radius and/or
the Reynolds number of this region.

The viscosity ratios used for the present analysis are not very
relevant for lubricated pipelining applications (m in practice is less
than 0.002, as showed in the more recent experiments of Sotgia
et al. [54]), anyway, from fig. 3.26, it is possible to see how the
present analysis is conservative since Gyax increases decreasing
the value of m .

Figure 3.26: Curves of
Gumax as a function of

the viscosity ratio m

for different Rej and

for a = 1.81. The curve

in red corresponds to

Rej =795.97 and the point
starred in blue represents
the conditions of exp.9.
Decreasing the value of
m, and so increasing the
value of the Reynolds
number of the annulus,
Rey, Guax scales perfectly
with m™2 ~ Reg.

Gumax

Moreover in this fig. the classic quadratic scaling of Gyax
with 1/m ~ Rey, typical of shear flows close to the transition,
is clearly visible. Therefore these linear transient mechanisms
may have significant implications to explain the transition to
turbulence of CAF, and, stated their nature, they allow to reinforce
the conjecture of PCJ that in CAF the transition to turbulence is
due to the water in the annulus.



CONCLUSIONS

A concluding summary is proposed as an overview of the main
results reported in this thesis.

Accurately predicting and understanding the behavior of two-
fluid flows is a problem of great industrial and scientific interest.
In this thesis an analysis of instabilities affecting these flows has
been carried out with particular attention to atomization process
and lubricating pipelining.

IN cHAPTER 2 gas-liquid flows have been investigated by means
of both VOF simulations and linear stability theory in conditions
very close to those of atomization experiments. Actually, only a
part of the atomization process has been considered: the forma-
tion of a liquid film and its primary breakup.

Generally a liquid film of fuel is exposed to an high-velocity gas
flow that induces perturbations at the interface. These perturba-
tions quickly grow becoming nonlinear and producing ligaments
that eventually break into drops. The instability governing this
mechanism is a Kelvin-Helmholtz (KH) instability modfied by
viscous and nonlinear effects, as proved by VOF simulations. They
have shown the emergence and the evolution of a single nonlin-
ear KH wave in two different flow configurations. This structure
is fundamental to understand how drops are produced, because
allows to analyze the behavior of a single ligament. The KH sin-
gle wave has been deeply characterized in terms of propagation
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velocity and amplification law through simple analytical models.
An useful tool to figure out the physical properties of the lead-
ing primary instability mechanisms is the linear stability analy-
sis. Its results usually display a good agreement with numerical
simulations at early times, before that nonlinear effects take the
control. Indeed, linear theory has allowed to verify that the insta-
bility emerging in simulations is mainly due to the viscosity jump
at the interface. This jump produces the vorticity at the base of the
so-called interfacial mode. It has been seen that in particular flow
conditions an interfacial mode may be combined with a Tollmien-
Schlichting mode, present also in single-fluid flows, giving rise to a
new mode, peculiar of two-fluid flows.

IN CHAPTER 3 an oil-water flow in a horizontal circular pipe,
arranged as Core-Annular Flow (CAF), has been analyzed using
linear nonmodal theory.

This flow is of importance in petroleum industry since signif-
icant savings in pumping power can be derived from the water-
lubricated transportation of crude oil. Therefore, in order to iden-
tify the range of parameters suitable for application, the physical
understanding of the phenomena that could bring to an instability
of CAF is of great interest.

A linear nonmodal analysis has let go beyond the results al-
ready present in literature and figure out the mechanisms that
lead to particular flow configurations. Linear modal analysis is
only able to justify the formation of regular structures, such as oil
bubbles and slugs, due to axisymmetric disturbances, but it cannot
explain some irregular flow patterns characterized by emulsifica-
tion or water drops in oil.

A detailed investigation, conducted in wide regions of parame-
ters space, has highlighted the occurrence of remarkable transient
growth for both asymptotically stable and unstable configura-
tions. A study of characteristic times of modal and nonmodal
mechanisms has demonstrated that at intermediate times the
highest levels of energy amplification are reached by stable spi-
ral disturbances well before that the slow exponentially unstable
axisymmetric disturbances reach a sufficiently high amplitude.

It has been verified that the range of physical parameters in
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which such temporal separation between exponentially stable and
unstable disturbances occurs, correspond to the experimental
findings unexplained by modal analysis.

Optimal perturbations have been determined. Their structure
exhibits many analogies with the ones typical of Hagen-Poiseuille
flow. In particular they are characterized by a streamwise inde-
pendence and almost all the energy amplification is related to the
streamwise component of the perturbation velocity.

At last, regarding the e-pseudospectra, the structure of optimal
perturbations and the different amounts of kinetic energy referred
to the core and to the annulus of the spiral disturbances with the
highest transient growth, it is clear that the transient mechanisms
of energy amplification are correlated to the annulus. Moreover,
the quadratic dependence of the maximum of transient growth
on the Reynolds number of the annulus may represent a further
proof that the water plays an important role in the transition to
turbulence.
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