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ABSTRACT 
 

System identification from flight data is an essential task in aerospace field, both for research 

and industrial activities. Indeed, ground based tests are not fully exhaustive of the vehicle 

behaviour and in-flight experimentation is often mandatory. In particular, there is a specific 

interest in obtaining vehicle model characteristics from flight data, in order to better understand 

theoretical predictions of physical phenomena, to validate wind-tunnel test results and to get 

more accurate and reliable mathematical models of the vehicle. The availability of these models 

is one of the critical items in order to guarantee the competitiveness of the aerospace industry, 

because it allows designing flight control law, evaluating vehicle performance and handling 

qualities, performing fault diagnosis and reconfiguration, developing high fidelity simulators, 

while reducing the flight test time and therefore reducing cost, risks and time to market of new 

products.  

Although in the last decades several methodologies have been developed and many applications 

have been successful demonstrated, there are still open problems and challenges in system 

identification, mainly related to model complexity, high bandwidth requirements, constraints on 

flight test manoeuvres due to safety reason, dynamically unstable response, accurate 

characterisation of model uncertainties.  

In the present work an innovative system identification methodology is described, which is 

suitable for dealing with some of the above listed challenges. The proposed methodology is 

implemented in the framework of a multi-step approach, which decomposes the complex starting 

identification problem in simplified sub-problems and allows specifying a suitable estimation 

technique compliant with each sub-problem objective, exploiting the advantage of both time-

domain and frequency-domain methods. The straightforward combination of several estimation 

techniques brings to an identified model which is applicable in a wide frequency range. 

Furthermore, the proposed methodology is suitable to deal with problems where identification 

manoeuvres are minimised, indeed the identification can be executed only for the sub-model 

which is in fact identifiable. Another relevant peculiarity of the proposed approach concerns the 

exploitation of all the available a priori information and the rigorous management of all the 

uncertainties involved in the system identification procedure. As a result, a reliable, complete, 

and structured statistical characterisation of the identified model could be obtained.  
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Proposed methodology is applied in this thesis to determine the dynamical characteristics of 

rotorcraft vehicles and the transonic aerodynamic model of an atmospheric re-entry space 

demonstrator. Its effectiveness is demonstrated through numerical assessments, which enhanced 

the capability to catch the true values of the model parameters and to reproduce the phenomena 

of interest. Moreover, the application to actual flight data of the CIRA FTB1 re-entry 

demonstrator allowed to validate and refine the available pre-flight aerodynamic model of the 

vehicle, in terms of nominal values update and significant reduction on model uncertainties. 

These results justifies the importance of flight tests and, in particular, of system identification 

from flight data. The availability of an updated aerodynamic model represents a fundamental 

step for the development of the upgraded version of the Guidance, Navigation and Control 

system for the next missions of the same configuration, where the accuracy of estimates and the 

reliability of the model over an expanded flight envelope will be carefully analysed and assessed. 

All the activities hereafter reported have been basically performed at the Italian Aerospace 

Research Centre (CIRA), where the author is the scientific coordinator of the Modelling and 

Simulation Laboratory, with the collaboration, advice and support of University “Federico II” 

that hosted the PhD period.  
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l
θ   Vector of unknown parameters related to aerodynamic roll moment 

coefficient 
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m
θ   Vector of unknown parameters related to aerodynamic pitch moment 

coefficient 
n

θ   Vector of unknown parameters related to aerodynamic yaw moment 
coefficient 

Y
θ   Vector of unknown parameters related to aerodynamic lateral force 

coefficient 

ϑ Unknown aerodynamic gain 

( TRcs ϑϑϑϑ ,,, 011 )  Rotorcraft commands: longitudinal cyclic [deg], lateral cyclic [deg], main 

rotor collective [deg] and tail rotor collective [deg], respectively 

ψ  Blade Azimuth Angle [rad] 

(Φ, Θ, Ψ) BFR Euler angles (roll, pitch and yaw, respectively) with respect to NED 
reference frame [rad, rad, rad] 

RΩ  Main rotor angular speed [rad·s-1] 

ω Vehicle angular velocity [rad·s-1] 

ω  Pulsation [Hz] 

 

 

Subscript 

0 Initial time 

ADB Pre-flight aerodynamic database 

B Body reference frame 

BAS Baseline 

clean Clean configuration 

F Filter 

MC Monte Carlo 

NED NED reference frame 

sub Subsonic 

sup Supersonic 

W Wind reference frame 

∞ Free stream 

 

 

Superscript 

.
 Time derivative 
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^ Dimensionless 

−
 Estimation 

~

 Fourier transform 
a Augmented 
T Transpose 
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2 INTRODUCTION 

Flight data analyses are essential tasks in aerospace field, both for research and industrial 

activities. Indeed, ground based experiments are not fully exhaustive of the vehicle behaviour 

and in-flight experimentation is often mandatory. In particular, there is a specific interest in 

obtaining vehicle model characteristics from flight data, in order to better understand theoretical 

predictions of physical phenomena, to validate wind-tunnel test results and to get more accurate 

and reliable mathematical models of the vehicle. These objectives can be reached by performing 

vehicle’s model identification from flight data. In fact, system identification is the process of 

determining an adequate mathematical model structure, usually containing differential equations, 

which includes unknown parameters to be estimated from flight measurements. The process 

comprehends not only the model postulating and parameters value determining, but also 

performing suitable flight tests, and gathering system inputs and outputs measurements [B1].  

The availability of an accurate model of the vehicle is required to design flight control law, 

evaluate vehicle performance and handling qualities, perform fault diagnosis and 

reconfiguration, develop high fidelity simulators [B2], [B3], while reducing the flight test time 

and therefore reducing cost, risks and time to market of new products [B1]: hence system 

identification from flight data is one of the critical items in order to guarantee the 

competitiveness of the aerospace industry. 

Flight vehicle system identification has been pursued by almost every organization dealing with 

the subject of atmospheric flight. The first attempt to apply parameters estimation principle to a 

flight vehicle was performed by Norton and Warner in 1919 [B4]. The scope of their 

investigation was the determination of aerodynamic parameters from various flight manoeuvres, 

flown at certain airspeeds. They utilized a basic idea of equating the lift force to the weight of the 

test aircraft and drag to the thrust force, assuming that weight and thrust were known for the test 

aircraft. The evolution of system identification applied to flight vehicles has been continuously 

expanding, developing several methodologies and applications. The major contributions in the 

last decades have resulted from NASA Dryden [B3] and Langley [B5] research centres, US army 

Aeroflight-dynamics at NASA Ames [B2], Institute of Flight Systems at DLR [B1], [B6], 

Technical University of Delft [B7] and NLR [B8], [B9].  
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2.1 Survey of System Identification Techniques from Flight Data  

System Identification techniques can be classified according to several criteria, one of them 

being the domain in which the estimation is performed. Therefore we can distinguish between 

frequency domain and time domain techniques.  

Frequency domain identification uses spectral methods to determine frequency responses 

between selected input and output pairs. The MIMO frequency response matrix constitutes a 

nonparametric model of the aircraft response, since it fully characterises the input-to-output 

behaviour without the need for defining a priori the model structure or determining the model 

parameters. An important by-product of this analysis is the coherence function, which provides 

key information about the frequency response accuracy [B2]. The nonparametric modelling 

results support many direct applications, including the design and analysis of flight control 

systems, stability margin determination, piloted handling-qualities analysis, and the validation 

and improvement of simulation models. When the dynamics contain nonlinear behaviour, the 

identified frequency response function represents the linear model that best approximates the 

nonlinear behaviour of the system [B10]. To obtain analytical model of linear input to output 

transfer function, least squares fitting techniques are used in the frequency domain to match the 

Bode plot of the frequency response. Since this fitting procedure is carried out after the 

frequency response is extracted, the order of the model transfer function can be carefully selected 

to avoid an over-parameterised model. The semi-logarithm frequency format of the Bode plot 

presentation, and subsequent transfer function fit, makes the identified models most accurate at 

mid and high frequency. The low frequency and steady state response prediction is generally not 

very good [B11]. Frequency domain techniques are also suitable for unstable model 

identification [B12]. In recent years, frequency domain estimation techniques, such as the 

Fourier Transform Regression (FTR) [B13], have been introduced to directly identify parametric 

model, too. They are also applicable to real-time estimation problems.  

In the past decades however, with the increased computation capability of modern computers, 

the focus has changed from frequency domain to time domain analysis [B14]. Time domain 

identification first requires the definition of a model, which may be linear or nonlinear. Model 

formulation involves considerations about the model structure, selection of significant 

parameters and inclusion of important nonlinearities [B1]. Time domain techniques yield a 

MIMO model that is appropriate for application in stability and control analysis, simulation and 
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control system design. Moreover if the identified model is represented in the state space form, 

then stability and control derivatives are explicitly estimated. Time domain identification 

inherently weights low frequency dynamics much greater than high frequency ones [B11], for 

that reason the identified model is accurate at low and mid frequency.  

Much of the published works on rotorcraft system identification, which is one of the application 

presented in this thesis, deals primarily with frequency domain methods [B2], although some 

relevant works used time-domain techniques, too [B15].  

Concerning re-entry vehicle model identification, which is also faced in the thesis, the few 

published works exploit time domain methods. The Maximum Likelihood Estimation (MLE) 

[B16] technique, which is by far the most commonly used technique for estimating parameters 

from flight data, was applied to identify the model of the Space Shuttle [B17] and of the Phoenix 

re-entry demonstrator [B1], whereas the aerodynamics in subsonic regime of the Japanese 

ALFLEX re-entry demonstrator was identified by means of the Least Square (LS) estimation 

techniques [B18]. The latter was historically the first method used for parameters estimation, 

introduced more than 200 years ago [B19]. In recent years, for aerospace applications, system 

identification has been also formulated and solved in the time domain as filtering problem [B20], 

[B21], [B22], [B23], [B24], mainly using the Kalman filter. 

The above mentioned techniques, that is, FTR, MLE, LS, together with a nonlinear 

implementation of the Kalman filter, are detailed described in section 4.2. A multitude of other 

different techniques for flight vehicle model identification are proposed in the literature [B1]. 

They are not discussed here for the sake of brevity. The huge amount of publications on system 

identification confirms that it is still a challenging topic for research activities. 

Whatever the applied estimation methodology is, if parametric identification is performed, then 

the Quad-M approach can be used to carry out the identification process. This approach, 

proposed some years ago by DLR [B1], is represented in Figure 2.1. It is related to the four basic 

elements of system identification, namely:  

• Manoeuvres: to design a suitable flight test, selecting the manoeuvres that provide 

maximum sensitivities of the vehicle reactions with respect to the unknown parameters 
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[B25], [B26]. A basic and obvious principle is “if a particular dynamic characteristic is 

not in the data, don’t expect to be able to identify it in the model” [B1]. 

• Measurements: to acquire, by means of flight test instrumentations [B27], both the input 

controls and the vehicle’s reaction on the given input; the quality of the overall 

identification process is strongly influenced by the accuracy of the measurement 

equipment [B28]. 

• Models: to define a suitable parametric model structure, based on physical consideration 

and other a priori information (such as wind tunnel tests for the aerodynamic model), and 

to select the identifiable parameters. The model selection plays a central role in the flight 

vehicle system identification [B1].  

• Methods: to develop or select one or more methodologies in order to fulfil model 

identification. Every estimation method has particular advantages and disadvantages over 

the others. There is no direct answer to the best method, its choice is dictated by the 

engineering anticipation of the problem. 

 

Figure 2.1 – Schematic representation of the Quad-M identification approach [B1] 



Multi-Step Estimation Approach for Aerospace Vehicle System Identification from Flight Data  

Antonio Vitale 28

Finally, the identified model must be validated in order to test whether it is sufficiently accurate 

for the intended purposes of its use. The last two points listed above, as well as the model 

validation, are dealt with in this thesis. 

2.2 Motivation and Objectives of the Work 

Although many methodologies have been developed and applications have been successful 

demonstrated, there are still special problems and challenges in system identification. Prime 

areas of research are related to: 

• Model complexity, [B1], [B29], [B30], which could be needed to describe flexible 

aircraft behaviour, highly nonlinear coupled multi-body vehicle, nonlinear aerodynamic 

effects. 

• High bandwidth requirements [B2], related to coupled slow flight mechanics scales and 

faster aero-elastic ones. 

• Constraints on flight test manoeuvres due to safety reason [AR1], [AR2], which are 

typical of re-entry missions and vehicle in ground proximity, or low manoeuvrable 

vehicles [AR3]. 

• Dynamically unstable response [B15], which characterises rotorcraft vehicles. 

• Accurate characterisation of model uncertainties [B29], [B31], which is needed to design 

robust flight control system and evaluate vehicle performance in off-nominal conditions 

[AR4], [AR5], [AR6]. 

Other challenges are not strictly related to system identification, but they affect the quality of 

identification results. An example is the reduced signal to noise ratio in the flight data, which is 

generally exhibited by rotorcraft data gathered at low speed or hover [B1], [B2]. The problem 

often affects the air data measurements [B29], and can be solved through specific advances on 

data acquisition and processing systems [AR7]. 

The objective of this thesis is to develop an innovative identification approach suitable for 

dealing with some of the above listed system identification challenges. To this end, the following 

problems are formulated and solved: system identification strategy definition, model structure 
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selection, flight path reconstruction and optimal vehicle state estimation based on the available 

sensors set, parameters estimation, model uncertainty characterisation. The proposed approach is 

applied to: 

• Model Identification of an atmospheric re-entry space demonstrator in the TAEM 

trajectory phase, that is in subsonic, transonic and low supersonic regimes, without 

performing specific identification manoeuvres. 

• Identification of highly nonlinear coupled multi-body rotorcraft model, applicable for 

simulation in wide frequency range. 

The thesis also presents the results of numerical assessment of the proposed system identification 

methodology, performed through simulated flight data, and its application to actual flight data of 

the CIRA FTB1 re-entry demonstrator.  

All the activities hereafter reported have been basically performed at the Italian Aerospace 

Research Centre (CIRA), where the author is the scientific coordinator of the Modelling and 

Simulation Laboratory, with the collaboration, advice and support of University “Federico II” 

that hosted the PhD period.  

2.3 Structure of the Thesis 

The thesis is structured as follows. After the present introductive chapter, which also includes a 

short overview on system identification state of the art, the system identification problem is 

mathematically formulated in chapter 3. The proposed system identification methodology is 

presented in chapter 4, where the applied estimation techniques are also described. Chapters 5 

and 6 describe the customisation of the proposed methodology to two specific aerospace 

applications, that is, the aerodynamic model identification of an atmospheric re-entry space 

demonstrator and the identification of a rotorcraft model. Next, the identification methodology is 

validated through simulated data for the selected applications, and the numerical assessment 

results are presented and discussed in chapter 7. Finally, the aerodynamic model identification 

from actual flight data of the CIRA FTB1 re-entry demonstrator is reported in chapter 8. The last 

chapter contains a summary of results and some concluding remarks. 
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3 PROBLEM FORMULATION 

In the context of system identification, vehicle dynamics can be represented as a stochastic 

process in continuous state space form. The time evolution of the vehicle state vector XV, 

together with the time history of output vector Y, could be computed through the follows 

equations [B1]  

Eq. 1 ( ) ( ) ( ) ( )( )tttft ηΘUXX pVV ,,,=&  

Eq. 2 ( ) 0VV XX =0t  

Eq. 3 ( ) ( ) ( )( )ttht νXY V ,=  

where f and h are generic nonlinear real-valued vectorial functions; t0 and XV0 are the initial 

mission time and the initial state vector value, respectively; U is the control input vector, the 

elements of which depend on the vehicle type and configuration; η and ν are process and 

measurement noises, respectively, which are usually assumed zero mean Gaussian noise 

characterised by their covariance matrices; finally Θp is a vector of model parameters, which are 

unknown or affected by wide uncertainties. 

Unknown or uncertain parameters could concern several characteristics of the vehicle such as, 

for example, mass, inertia, centre of mass location, or be related to specific dynamic phenomena 

of vehicle subsystems, as it happens for the flap and lag dynamics of the rotor blade of a 

rotorcraft. However, the most relevant model uncertainty is usually associated to aerodynamic 

phenomena. Indeed, aerodynamic parameters are evaluated before flight using CFD analysis and 

wind tunnel tests, but their values are affected by wide uncertainty ranges (especially in some 

flight regimes, such as transonic), which should be reduced analysing flight data. In some cases 

the structure of the model is not completely known, too, and it should be determined and 

validated through the flight tests. 

System Identification aims at determining the structure of the model represented by the function 

f, if it is unknown, and the values of the parameters Θp (parameters estimation) from the analysis 

of measurements of control inputs U and model outputs Y, which are gathered in flight during 
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specific tests. Although the state vector is not mentioned explicitly, it appears in the above 

description implicitly, because the outputs are function of internal system state variables.  
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4 PROPOSED SYSTEM IDENTIFICATION METHODOLOGY 

4.1 Multi-Step Estimation Approach  

In order to solve the system identification problem in the cases of high model complexity and/or 

strong constraints on flight test manoeuvres, the application of the classical decomposition 

approach is proposed in this thesis [AR1]. The starting complex problem is decomposed in 

simplified sub-problems, with the aim to firstly isolate the part of the model which is affected by 

uncertain structure and/or parameters (the uncertain sub-model), next to estimate the input and 

output of this sub-model, and finally to perform system identification limited to the uncertain 

sub-model. This strategy is denoted as multi-step estimation approach for system identification 

and the estimation sub-problems are denoted as identification steps.  

Further than reducing the complexity of the starting problem, the main advantages of the 

proposed approach are: 

• It permits to select a suitable estimation methodology to solve each sub-problem, 

exploiting in such a way the advantages of several identification techniques, which can 

also work in different domain (time and frequency) [AR8]. 

• It is specifically suited to deal with problems where identification manoeuvres are 

minimised and dynamic excitation is poor, indeed the identification can be carried out 

only for the sub-model which is in fact identifiable [AR9]. 

Moreover, if the estimation uncertainties related to each identification step are rigorously 

managed and propagated, then a reliable, complete, and structured statistical characterisation of 

the identified model could be obtained [AR1]. 

The proposed multi-step approach could be mathematically detailed starting from and Eq. 1 to 

Eq. 3, which could be re-arranged in the following form  

Eq. 4 ( ) ( ) ( ) ( )( )tttft 1 1VV ηCXX ,,11 =&  

Eq. 5 ( ) ( ) ( ) ( ) ( )( )ttttft 2 2P1VVV ηΘUXXX ,,, 212 =&  
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Eq. 7 ( ) ( ) ( ) ( )( )tttht νXXY VV ,, 21=  

Eq. 8 ( ) ( ) ( ) ( )( )P2VV ΘUXXC ,,, 21 tttlt =  

The vehicle state vector XV is partitioned in two subset: XV1 and XV2. The dynamics of XV1 are 

defined by equations which don’t include explicitly any unknown parameters, but they depend 

on unknown input vector C. Typically, these equations derive from the principles of the 

Newtonian mechanics for the description of the body motion. Instead, the XV2 dynamic equations 

are affected by the unknown parameters ΘP1. Eq. 8 represents a static sub-model, whose output 

C depends on the complete vehicle state vector, the control inputs and the uncertain parameters 

ΘP2. Usually C is the vector of force and moment acting on the vehicle, the unknowns are force 

and moment parameters, and the nonlinear real-valued function l translates the force and moment 

model. The uncertain sub-model is then defined by Eq. 5 and Eq. 8. 

In the present thesis the models of two different vehicles are identified. In the case of re-entry 

space vehicle, the identification only concerns the aerodynamic model, whose structure 

(represented by the function l) should be defined before performing the estimation of the 

unknown parameters. Therefore the subset XV2 is empty, as well as ΘP1, and Eq. 5 is not taken 

into account. On the contrary, the rotorcraft model also includes uncertain parameters which 

affect the dynamics of the vehicle states. Therefore the complete formulation of Eq. 4 to Eq. 8 

should be adopted and both the structure of functions f2 and l should be determined before 

carrying out the evaluation of the parameters. In both cases, the definition or selection of a 

suitable model structure is an extremely important stage in the overall system identification 

approach from flight data. A good model, at the minimum, would give insight into the applicable 

physical phenomena, explain the force and moment coefficients on the trajectory, have a 

capability to predict the vehicle behaviour in the neighbourhood of the flight trajectory. The 

model structure selection is of course strictly related to the vehicle characteristic but it also 

depends on the model purpose. For example, rotorcraft is generally modelled for simulation 

purposes as nonlinear multi-body dynamic system, characterised by strong coupling between the 

dynamics of rotor blades and air flow passing through the rotor (inflow) with those of the 
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fuselage, control system and engine [B2]. Therefore, rotorcraft simulation models are built by 

means of a component by component detailed physical description of main rotor, tail rotor, 

fuselage, empennage-horizontal stabilizer and fin-vertical stabilizer. In contrast to the simulation 

approach, FCS design and validation requires simplified global model, characterised by lumped 

parameters, and details about individual rotorcraft components are not relevant. 

After the determination of the models structures, which are based on physical principles and 

engineering judgement, the multi-step approach performs system identification through the 

following steps, in each of them the best suitable estimation methodology is applied: 

• Flight path reconstruction, that is, the estimation of the time histories of state vector 

subset XV1 and of the input C along the whole flight test. This step is carried out without 

using Eq. 5 and Eq. 8, and it usually also allows obtaining information on some relevant 

environmental parameters (such as wind velocity, air temperature and pressure) 

experienced by the vehicle during the flight test. The flight path reconstruction is 

formulated as a nonlinear filtering problem and solved by using the Unscented Kalman 

Filter methodology. 

• Estimation of the identifiable parameters values and of the related estimation 

uncertainties. It is executed using the models represented by Eq. 5 and Eq. 8, the flight 

measurements and the results of the flight path reconstruction. This step could be further 

decomposed in sub-steps, which carry out independent estimation of unknown 

parameters related to state vehicle dynamics and/or of each component of the force 

model. Several estimation methodologies can be applied to this step, working both in the 

time domain (such as Unscented Kalman Filter, Maximum Likelihood Estimation, Least 

Squares) and in the frequency domain (such as Fourier Transform Regression). 

4.2 Estimation Techniques 

As discussed in chapter 2, several estimation methodologies are reported in the literature for 

aeronautical applications. Few of them have been selected to be integrated in the proposed multi-

step approach for the examined system identification problems. A short description of these 

methodologies is presented in this section, further details could be found in the listed references. 
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4.2.1 Unscented Kalman Filter 

The Unscented Kalman Filter (UKF) [B32] is a nonlinear filtering technique based on the 

concept of Unscented Transformation (UT), which is an analytical method for propagating a 

probability distribution through a nonlinear transformation. In more details, the UT allows 

estimating the mean and the covariance of the nonlinear function by computing the weighted 

mean and covariance of a discrete set of function values, obtained propagating through the 

function a set of points (named sigma points) deterministically chosen in the domain of the 

function. Based on the UT, the UKF provides at least second order accurate evaluations of the 

first two statistical moments of the unknowns [B32], enabling a complete and structured 

statistical characterisation of the estimated variables and leading to a reliable evaluation of the 

uncertainties on the estimations. In recent times, UKF has been proposed as a valid alternative to 

the Extended Kalman Filter (EKF) for nonlinear filtering, receiving great attention in navigation, 

parameter estimation, and dual estimation problems [B24]. Like all the Kalman filters, the UKF 

performs the estimation in two sequential phases: first a dynamic model is used for time 

propagation of the estimation (prediction phase); next, at each time step, the available flight 

measurements are compared with the prediction (that is, the dynamic model outputs) to refine the 

estimation (correction phase).  

The UT is applied in the prediction phase of the filter. Several implementation of the UT, and 

consequently of the UKF are available in the literature [B24], [B33], [B34], characterised by 

different number of sigma points, weights and free parameters, with the aim to limit the 

spreading of sigma points in high order systems, or to provide improved accuracy in the 

evaluation of higher order statistical moments. In this thesis a non-augmented version of the 

UKF algorithm with additive process and measurements noises is adopted [AR8], [AR9], 

[AR10], in order to reduce the number of sigma points [B24]. Different formulations are not 

expected to introduce significant improvements in the algorithm performance, while they could 

increase the computational effort. In order to avoid losing information on the effect of process 

noise on the outputs, two concatenated Unscented Transformations are performed during the 

prediction phase, to account for the propagation throughout the nonlinear process and 

measurement equations [B35], [B36].  
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Since flight measurements are available at discrete sampling time, the discrete formulation of the 

UKF is used. The process and measurement noises are assumed additive. The generic filter 

model is expressed through 

Eq. 9 ( ) ( ) ( )( ) ηUXX +=+ kFkFFkF ttft ,1  

Eq. 10 ( ) ( )( ) νXY += kFFkF tht
 

where XF, YF and UF are filter model state vector, output vector and input vector, respectively, 

and tk is discrete time, η and ν are process and measurement noises. Eq. 9 represent the dynamic 

equation, whereas Eq. 10 is the output or measurement equation. The filter state vector should 

include all the unknowns to be estimated. Let’s denote with NF the filter state vector dimension, 

with −
kx  the predicted estimation based on the filter model, and with +

kx  the estimation corrected 

by using the available measurements. 

The prediction phase is composed of the following steps [AR11], [B36]: 

1P. First generation of 2*NF+1 sigma points ( iχ ) and related weights (Wi), based on the 

current estimate of the filter state vector and related covariance matrix 

Eq. 11  
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where +
−1kP  is the available estimation of the state vector covariance matrix and λ is a 

scale factor which can be tuned to capture high order statistics. 

2P. Propagation of the sigma points through the process equation 

Eq. 13  ( )( )kFiFFi tf UχX ,=  
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3P. Prediction of the filter state vector, computed as weighted mean of the propagated sigma 

points 

Eq. 14 ∑ ⋅=−

i Fiik W Xx  

4P. Prediction of the covariance matrix of the filter state. It is computed as summation of two 

terms: the first one is the weighted variance of the propagated sigma points (step 2P) with 

respect to the state vector prediction (step 3P); the second term is the process noise 

covariance matrix Q (because additive process noise is assumed) 

Eq. 15  ( ) ( )∑ +−⋅−⋅= −−−

i

T

kFikFiik W QxXxXP  

5P. Second generation of sigma points and related weights, based on the predicted filter state 

vector (step 3P) and covariance matrix (step 4P). Eq. 11 and Eq. 12 are used again where 

+
−1kx  and +

−1kP  are replaced by −
kx  and −

kP , respectively. 

6P. Propagation of the sigma points through the measurement equation 

Eq. 16  ( )iFFi h χY =  

7P. Prediction of the filter outputs, computed as weighted mean of the propagated sigma 

points 

Eq. 17  ∑ ⋅=
i Fiik W Yy  

8P. Prediction of the covariance matrix of the filter outputs. It is computed as summation of 

two terms: the first one is the weighted variance of the propagated sigma points (step 6P) 

with respect to the filter outputs prediction (step 7P); the second term is the 

measurements noise covariance matrix R (because additive measurement noise is 

assumed) 

Eq. 18  ( ) ( ) RyYyYP +−⋅−⋅=∑i

T

kFikFiiyy W  

9P. Prediction of the state-output correlation matrix. It is computed as the weighted deviation 

of the sigma points propagated through the process equation (step 2P) with respect to the 



Multi-Step Estimation Approach for Aerospace Vehicle System Identification from Flight Data  

Antonio Vitale 38

predicted state vector (step 3P) times the deviation of the sigma points propagated 

through the measurement equation (step 6P) with respect to the predicted filter outputs 

(step 7P) 

Eq. 19  ( ) ( )∑ −⋅−⋅= −

i

T

kFikFiixy W yYxXP  

The correction phase requires in input the measurements, denoted by zk, and is carried out as 

follows: 

1C. Computation of the Kalman filter gain. It depends on filter output covariance matrix (step 

8P) and state-output correlation matrix (step 9P) 

Eq. 20  ( )
yyxyF inv PPK ⋅=  

2C. Correction of the predicted filter state 

Eq. 21  ( )kkFkk yzKxx −⋅+= −+  

3C. Correction of the predicted covariance matrix of the filter state.  

Eq. 22  T

FyyFkk KPKPP ⋅⋅−= −+  

It is worthy to note that since the unknown to be estimated by the UKF should be included in the 

filter state vector XF, then the dynamics of each unknown should be modelled and included into 

the model filter represented by Eq. 9. 

4.2.2 Least Square 

The Least Square (LS) technique provides the estimation of unknown parameters by minimizing 

the sum of square differences between measured data and corresponding values provided by the 

parametric model, which includes the uncertainties [B37]. The technique has the advantage to be 

simple and it doesn’t require a starting guess for the unknowns. Moreover, measured data 

gathered during different tests can be concatenated and managed as a unique data set to be 

processed.  
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LS is usually applied in the time domain to static model which are linear with respect to the 

unknown parameters, such as 

Eq. 23 ΘAZ ⋅=  

In the above relation, the terms of the regressors matrix A and the vector Z are directly measured 

at different time instants or computed from the available measurements. If the examined time 

frame is long enough, the number of equations is bigger than the number of the unknowns, and 

the least square solution can be computed in closed form by minimisation of following cost 

function: 

Eq. 24 ( ) ( )AΘZAΘZ −−=
T

J
2

1
 

The estimation which minimize J is 

Eq. 25 [ ] ( )ZAAAΘ
TT 1−

=
)

 

4.2.3 Maximum Likelihood Estimation 

Maximum Likelihood Estimation (MLE) [B38] is by far the most commonly used technique for 

estimating parameters from flight data. It works in the time domain and computes the values of 

the unknowns by optimising a cost function called likelihood function.  

Let’s represent the stochastic dynamic system through Eq. 1 to Eq. 3. Therefore Y is the 

predicted output vector of the model. Let’s further denote with z a vector of independent flight 

measurements gathered in NT time instants tk. The likelihood function is defined as [B31] 

Eq. 26 ( ) zY|Pr)(
=

= PP ΘYΘL  

where ( ) zY|Pr
=PΘY  is the probability to realize the measurements vector z given the value ΘP 

of the parameters vector. The likelihood function is thus a measurement of the relative 

plausibility of the measured response for each value of ΘP; it represents the probability density 

function of the measured variables and not of the parameters. The maximum likelihood estimate 

MLEPΘ  of ΘP is defined as the value of the parameters that maximizes the likelihood function; in 

other words it is the value that makes the measured data most plausible. 
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Because of the exponential nature of many density functions, the logarithm of the likelihood 

function is generally optimized, obtaining the same optimal solution, that is [B1] 

Eq. 27 ( )( )[ ]








−= P
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P ΘΘ
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L
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logminarg  

In order to apply this estimation method to the vehicle dynamic model, the likelihood function 

should be defined. Let’s assume the following hypotheses: 

• the input U to the system is generated independently of the system output; 

• the measurement error is Gaussian, zero mean, statistically independent at different time 

instant, and characterised by known covariance matrix R; 

• the process noise is negligible. 

In these hypotheses the following cost function should be minimised to obtain the MLE 

estimation [B1] 
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There isn’t any closed form analytical solution for this optimisation problem, therefore numerical 

methods are applied. Usually, second order optimisation methods are exploited to solve 

unconstrained or constrained optimisation problem [B1], [B16], [B31]. An initial guess for the 

unknown parameters is requested in this formulation to perform the estimation. 

Concerning the accuracy of the estimation, the MLE is asymptotically efficient in the sense of 

achieving the Cramer-Rao lower bound. It follows that the parameter error covariance matrix is 

given by the inverse of the Fisher information matrix FM [B1] 
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Eq. 31 
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where PΘ∈kϑ ,
 
DM ( k, j ) is the generic element of the dispersion matrix DM, 

kϑσ and 
jkϑϑρ
 
are 

the standard deviations and the correlation coefficients of the estimates, respectively. 

It is worthy to note that the MLE could be applied also if the process noise is not negligible or 

the measurement noise covariance matrix is not known [B1]. 

4.2.4 Fourier Transform Regression 

The Fourier Transform Regression (FTR) is a LS technique in the frequency domain, which 

estimates the unknown parameters by minimizing the sum of square differences between 

measured data and corresponding values provided by the model on a selected frequency range 

[B39]. This technique is applicable to linear and nonlinear system, however linear in the 

unknown parameters, and to static and dynamic model. It doesn’t require an initial guess for the 

unknown parameters. Moreover, since the method is not iterative and the estimation 

computational burden is low, it can also be used for real-time estimation [B40], [B41], [B42]. 

The technique is based on the optimisation of a cost function defined in the frequency domain. 

Let’s define the finite Fourier transform of generic a signal s(t) 
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where ∆t is the sampling time step and the subscript i denotes that the variable is evaluated at the 

time i·∆t. Next NT is the total number of measurements available in the examined time interval, 

that is [0, T], and ω denotes the pulsation. The discrete Fourier transform is defined as: 

Eq. 33 ( ) ∑
−

=

−≡
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tj

iesS
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and consequently 

Eq. 34 ( ) ( ) tSs ∆≈ ωω~  
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If a nonlinear dynamic system is linear with respect to the unknown parameters Θ, then it can be 

put in the form 

Eq. 35 ),(),( 21 UXΘUXX ff +⋅=&  

If the measurements of input vector U and state vector X are available, then the function f1 and f2 

can also be considered as measurements (because they are computed from the measurements), 

and their discrete Fourier transforms F1(ω) and F2(ω) can be computed. Equations (33) can be 

rewritten in the frequency domain 

Eq. 36 ( ) ( ) ( )ωωωω 21 FΘFX +⋅=j  

and rearranged in the form 

Eq. 37 ( ) ( ) ΘAZ ⋅= ωω  

The above relation can be sampled in the frequency domain in nf points, with nz· nf >NP, where 

nz and NP are Z and Θ dimensions, respectively. In such a way, a linear system in nz· nf equations 

and NP unknowns is obtained, which can be solved in closed form by minimisation of following 

cost function (least square solution): 

Eq. 38 ( ) ( )AΘZAΘZ −−=
T

J
2

1
 

where apex T indicates a complex conjugate transpose. The estimation which minimize J is 

Eq. 39 ( )[ ] ( )ZAAAΘ
TT ReRe

1−
=  

where Re indicates the real part of the complex number.  

An estimation error associated to Θ  can be also computed through 
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4.3 Validation Methodologies  

Model validation is the process of testing whether the identified model is sufficiently accurate 

for the intended purposes. Several methodologies can be used for the validation of the model 

obtained from the analysis of flight data, and for the assessment of the applied estimation 

strategy and techniques. 

It is useful to distinguish if model identification is carried out analysing simulated flight data or 

actual flight measurements. In the first case the validation can be executed in order to assess the 

identification techniques performance, whereas in the latter case the validation is needed to 

evaluate the identified model quality.  

If simulated flight data are examined, the true values of the model parameters and the true time 

histories of model inputs and outputs are known. The assessment of the estimation techniques 

can be carried out as follows: 

1.V The estimated parameters are compared with their true values, in order to check the 

estimation accuracy [AR12]. 

2.V The estimation error on the parameters (that is, the difference between estimated and 

true parameters) is compared with the uncertainty on the estimation, which is also 

provided by the identification process, in order to ascertain the reliability of the 

estimation stochastic characterisation [AR12]. 

3.V The flight mission is simulated twice using the true model and the identified one. In 

both cases the same inputs and disturbances are provided to the models. The outputs 

obtained in these two simulations are compared in order to evaluate the capability of 

the identified model to reproduce the phenomena of interest and to provide an 

acceptable fit in experiments [AR13]. The comparison can be qualitative or 

quantitative and it can be performed along the flight trajectory whose data are used for 

the identification of the model (internal validation) or along a different trajectory 

(cross validation or acid test) [B1], [B43]. The Theil’s Inequality Coefficient (TIC) is 

used as quantitative metric for the comparison [AR2]. The TIC associated to the ith 

model outputs is defined as [B1] 
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 Eq. 41 
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where Yi is the identified model output and zi the corresponding flight measurement 

(actual or simulated). TIC = 0 means perfect fit, whereas TIC = 1 corresponds to the 

case of maximum inequality. In general TIC < 0.25 indicates that the identified model 

is able to fit the experiments. 

In case of actual flight data, the true values of parameters are not known, and the methodology 

3.V is only applicable for the validation of the model, where the identified model outputs are 

compared with the corresponding flight measurements. 
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5 MODEL IDENTIFICATION OF AN ATMOSPHERIC RE-ENTRY SPACE 

VEHICLE 

In this chapter the methodology proposed in this thesis is customized for model identification of 

an atmospheric re-entry space vehicle in the terminal area energy management (TAEM) phase of 

its trajectory, that is in subsonic, transonic and supersonic flight regimes. System identification 

of an atmospheric re-entry space vehicle is very challenging, mainly because [AR9]: 

1. The aerodynamic behaviour of a re-entry vehicle is characterised by a complex flow 

structure that produces significant variations of all the aerodynamic coefficients 

depending on Mach number and angle of attack. It makes it difficult to model the vehicle 

aerodynamics, particularly in transonic regime. 

2. Experimental re-entry missions are typically performed once, providing a limited number 

of suitable data, and the experiment cannot be repeated in the short term. Therefore, it is 

difficult to refine the vehicle model in the whole flight envelope. 

3. Due to safety constraints, manoeuvres specifically suited to the purpose of model 

identification are minimised. 

The first two issues call for structured parametric models, where the flow field characteristics in 

the regimes of interest are represented with adequate accuracy. The selected aerodynamic model 

structure [AR14] is presented in section 5.1.2. On the other hand, the third topic above requires 

that as much as possible information is extracted from low excitation inputs, and it is thus related 

to the effectiveness of the adopted identification methodology. The multi-step estimation 

approach is well suited to face this problem due to its peculiarities.  

5.1 Flight Mechanics Model 

The classical laws of Newtonian mechanics are utilized to describe the equations of motion of a 

re-entry vehicle, assuming the following hypotheses: 

1. The vehicle is a 6 degrees of freedom rigid body. 

2. The mass and inertia of the vehicle are constant.  
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Since we are only interested to the last phase of the re-entry (from Mach number about 3 to 0.2), 

which lasts few minutes, the hypothesis of flat non-rotating Earth could also be assumed and the 

NED reference system could be considered an inertial reference frame. The motion of a rigid 

body with respect to an inertial reference frame is characterised by the action of external forces 

and moments. Both the equations of motion and the expression of the external forces and 

moments are described in this section. 

5.1.1 Rigid Body Dynamics 

The equations of motion can be established in terms of translational and angular accelerations as 

a consequence of the external forces F and moments M applied to the centre of mass, by 

applying Newton’s Second Law 

Eq. 42 VF &m=  

Eq. 43 ωIM &=  

where m and I are the vehicle mass and inertial matrix, respectively; V is the CoM inertial 

velocity and ω the vehicle angular velocity with respect to the inertial reference frame. 

The dynamic equations can be written in Body reference frame as follows 

Eq. 44 VωVF && mm ×+=  

Eq. 45 IωωωIM ×+= &  

Let’s introduce the following symbols: 

� u, v, w are the components of the velocity V with respect to the NED reference frame, 

and expressed in the Body reference Frame; 

� p, q, r are the components of the angular velocity ω with respect to the NED 

reference frame, and expressed in the Body reference frame; 

� ΨΘΦ ,,  are the Euler angles which define the vehicle altitude with respect to the 

NED reference frame; 
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� FX, FY, FZ are the components in Body reference frame of the resultant force applied 

on the vehicle; 

� MX, MY, MZ are the components in Body reference frame of the resultant moment 

applied on the vehicle. 

The equations or motion in body axes are [B16], [B44], [B45], [B46], [B47]: 

Eq. 46 rvqw
m

F
u X +−=&  

Eq. 47 pwru
m

F
v Y +−=&  

Eq. 48 qupv
m

F
w Z +−=&  

Eq. 49 ( ) ( ) XYXZYZZYXXZXYX rpIpqIIrqIIqrMIrIqIp −+−+−+=−− 22
&&&  

Eq. 50 ( ) ( ) YZXYXZXZYYZYXY pqIqrIIprIIrpMIrIqIp −+−+−+=−+− 22
&&&  

Eq. 51 ( ) ( ) XZYZXYYXZZYZXZ qrIrpIIqpIIpqMIrIqIp −+−+−+=+−− 22
&&&  

The external forces and moments are modelled as follows [AR15] 

Eq. 52 ΘmgSCqF XX sin−=  

Eq. 53 ΘΦmgSCqF YY cossin+=  

Eq. 54 ΘΦmgSCqF ZZ coscos+=   

Eq. 55 lX SbCqM =  

Eq. 56 mY ScCqM =  

Eq. 57 nZ SbCqM =  
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where S, c and b are the reference aerodynamic area, longitudinal length and lateral length, 

respectively; g is the gravitational acceleration and q is the dynamic pressure; (CX, CY, CZ) and 

(Cl, Cm, Cn) are the dimensionless aerodynamic force and moment coefficients, respectively, 

expressed in body axes. 

Eq. 46 to Eq. 51 represent the explicit formulation of Eq. 4. Concerning Eq. 52 to Eq. 57, some 

considerations are worthy to note: 

• The thrust force is not explicitly mentioned, because in the case of re-entry vehicle, the 

vehicle is not propelled. 

• The absence of an engine or other rotating mass allows neglecting the gyroscopic 

moments. 

• The aerodynamic coefficients are expressed in body axes, whereas the aerodynamic 

model usually provides them in wind axes. The reference system transformation can be 

performed by using the rotation matrix defined by Eq. 132 in Appendix A. 

• The aerodynamic coefficients are computed by means of the aerodynamic model, which 

should be identified from flight data. The structure of this model is described in details in 

the next section. 

Eq. 46 - Eq. 51 are coupled to the following kinematic relations, which allows computing the 

vehicle position (x, y, z) and attitude with respect to the NED reference frame 

Eq. 58 ΦΘrΦΘqpΦ costansintan ++=&  

Eq. 59 ΦrΦqΘ sincos −=&  

Eq. 60 ΦΘqΦΘrΨ sinseccossec +=&  

Eq. 61 ( ) ( )ΦΨΦΘΨwΦΨΦΘΨvΘΨux sinsincossincoscossinsinsincoscoscos ++−+=&  

Eq. 62 ( ) ( )ΦΨΦΘΨwΦΨΦΘΨvΘΨuy sincoscossinsincoscossinsinsincossin −+++=&  

Eq. 63 ΦΘwΦΘΨvΘuz coscossincoscossin ++−=&  
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Finally, the flight mechanics model is completed by some static relations introduced to compute 

relevant air data which are needed to evaluate the aerodynamic coefficient along the trajectory 

Eq. 64 windTAS VVV −=  

Eq. 65 
S
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⋅
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Eq. 68 
s

TAS

T

V
M

20.0468
=  

where M is the Mach number, Ts and Ps are the static temperature and pressure, respectively, 

VTAS and Vwind ≡ (uwind, vwind, wwind) are true air speed and wind speed. 

5.1.2 Aerodynamic Model 

The expression of the aerodynamic coefficients present in Eq. 52 to Eq. 57 should be defined 

before performing parameters estimation. 

Structured models, where the aerodynamic coefficients are expressed using polynomial functions 

of Mach number, aerodynamic angles and control surfaces deflection, are usually proposed in the 

literature for the purpose of re-entry vehicle system identification [B48], [B49]. In some cases, 

this polynomial functions are used to correct tabular aerodynamic database computed through 

CFD analysis or wind tunnel tests, by means of flight data analysis [B1]. These corrections can 

be incremental deltas on aerodynamic derivatives already included into the database [B17] or 

new additive terms, which make the aerodynamic coefficients dependent from new variables or 

combination of variables [B50]. Statistical methods are applied to identify which are the relevant 

terms to be included in the model [B49], [B51]. Since these models are not based upon first 
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principles, they cannot, in general, be applied outside of the region of the flight envelope where 

flight trials are undertaken. 

A different approach is based on the definition of a structure of the aerodynamic model based on 

physical principles. In this case several challenging problems have to be faced [AR1]. The first 

of them arises from the variations of the flow structure about the vehicle, which depends on the 

current vehicle state variables and on some of their time derivatives. The simultaneous effect of 

all these quantities produces a pressure distribution on the aircraft surface, which depends on 

such variables in a complex fashion [B52]. Because of this complexity, the determination of 

reasonable expressions of the aerodynamic coefficients, in terms of the state variables, can be 

very difficult. Although the aerodynamic performances of several lifting vehicles, such as HL-

10, HL-20, X-33, and X-38, have only recently been analysed [B53], [B54], the methodologies 

for calculating the aerodynamic characteristics of lifting bodies in subsonic, transonic, and 

supersonic regimes do not provide the same level of accuracy that is obtained for the classical 

wing-body configurations. This is apparent, in particular, for what concerns the variations of the 

lateral and directional coefficients with respect to aerodynamic angles and Mach number [B55]. 

In fact, the simultaneous effects of lateral flow, body angular rates, and fluid compressibility can 

determine complex situations, where these coefficients exhibit nontrivial, non-monotonic 

variations. The second problem is of a mathematical nature and regards the use of a tabular 

aerodynamic coefficients database. If the aerodynamic coefficients are known for assigned 

values of the state variables, the accuracy of the coefficient values out of the data points 

(calculated through an interpolation procedure) depends on the adopted interpolation method and 

on the number of independent variables. Because these coefficients depend on quite a large 

number of state variables, the interpolation provides in general poor accuracy [B56], especially 

for the transonic variations of the lateral and directional coefficients at null sideslip angle, roll 

and yaw rates. Last, but not least, the aerodynamic controls, which influence the aerodynamic 

coefficients in conjunction with all the variables, determine a further difficulty for the 

determination of the aerodynamic coefficients of a lifting body.  

The model used in the present work provides a continuous and regular analytical representation 

of dimensionless aerodynamic force and moment coefficients acting on the vehicle in the three 

regimes of subsonic, transonic and supersonic flow. The detailed definition of this model, firstly 

proposed by de Divitiis, is reported in [AR14]. It is based on the Kirchoff theorem, which in 
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origin was formulated for incompressible streams and is based on the linear property of the 

continuity equation. This theorem states that, for an incompressible flow, the local fluid velocity 

around an obstacle is a linear function of the characteristic velocities of the problem. To study 

the vehicle aerodynamics in the compressible regimes, the Kirchoff theorem is properly extended 

to the compressible streams, taking into account that the local velocity depends on the fluid 

compressibility through the von Kármán equation. The model allows expressing each 

aerodynamic coefficient as nonlinear function of Mach number, aerodynamic angles, control 

effectors deflections, angular rates, and a set of constant aerodynamic parameters. The nonlinear 

behaviour stems from the effect of Mach number in the transonic regime and from the 

aerodynamic characteristics of the examined vehicle, which is characterised by low aspect ratio 

lifting-body configuration.  

Each aerodynamic coefficient is expressed as summation of the clean configuration contribution 

and the effects of the controls. The unsteady effects are assumed negligible. The expressions for 

clean configuration aerodynamic force coefficients in wind axes and moment coefficients in the 

body frame are [AR1] 
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where ( ) Vcrqp ωω =≡ ˆ,ˆ,ˆ)
 is the dimensionless angular velocity. It is worthy to note that since 

the examined vehicle is symmetric with respect to the longitudinal plane, each longitudinal 

aerodynamic coefficient is an even function of β, whereas the lateral-directional coefficients are 

odd functions of β. i

hkF  and i

hkG  are called static and rotational characteristic functions, 

respectively. They are the second-order derivatives of the generic aerodynamic coefficient and 

depend on free stream Mach number (M∞) as follows 

Eq. 75 ( )
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where the indexes i, h and k have been omitted, and the same structure holds for i

hkG , too. 

91sup ...,,,, kksub ϑϑ  are aerodynamic constant parameters. Hsub and Hsup are two sigmoidal 

functions of free stream Mach number  

Eq. 76 ( )
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Eq. 77 ( )
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Eq. 75 incorporates two addends: the first one gives the variation of the aerodynamic coefficients 

in the subsonic regime, whereas the second one describes the supersonic region. Indeed, Hsub is 1 

if M∞ ≤ 0.95 and 0 if M∞ ≥ 1.05, whereas Hsup is 0 if M∞ ≤ 0.95 and 1 if M∞ ≥ 1.05. In transonic 

regime both the sigmoidal functions assume values between 0 and 1 and the combination of the 

subsonic and the supersonic contributions provides the aerodynamic coefficients in the transonic 

regime.  

The examined re-entry vehicle has two sets of aerodynamic effectors: the elevons, that provide 

both pitch control when deflected symmetrically ( eδ ) and roll control when deflected 

asymmetrically ( aδ ), and the rudders, that deflect only symmetrically ( rδ ) to allow yaw control. 

The rotation of the aerodynamic control surfaces modifies the vehicle geometry, which in turn 

determines a variation of the aerodynamic force and moment coefficients. The coefficients 

variations are [AR14] 
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where i = D, L, m, and j = Y, l, n. Indeed, the effects of the elevator on the lateral aerodynamic 

coefficients, which can occur for 0≠β , are not taken into account in the present analysis. 

Similarly, the effects of the ailerons and of the rudders on the longitudinal aerodynamic 

coefficients are considered negligible. In the above equations, the first and the second terms on 

the right hand sides represent, respectively, the linear effect of the control and the combined 

effect of control and angle of attack, whereas the third addend is the nonlinear term. In Eq. 78 the 

exponent n varies, depending on the coefficient: it is assumed equal to 2 for CD, whereas it 

values 3 for CL and Cm. The functions ( )∞MF i

e1 , ( )∞MF i

e2 , ( )∞MF i

e3 , ( )∞MF j

a1 , ( )∞MF j

a2 , 

( )∞MF j

a3 , ( )∞MF
j

r1 , ( )∞MF
j

r 2 , ( )∞MF j

r3  are called elevator, ailerons and rudder characteristic 

functions. Their analytical structure is assumed to be described by equation Eq. 75. 

In conclusion the following relations hold for the aerodynamic longitudinal coefficients Ci, 
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and for the lateral aerodynamic coefficients Ci, { }nlYi ,,=  
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Each addendum in these equations contains a function of M∞ expressed through Eq. 75, which 

also depends on a vector of free model parameters  

Eq. 83 [ ]91sup ...,,,, kksub

i ϑϑ=lθ
  

and 
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Eq. 84 ( )[ ]i

CQ

ii

i
θθθ ,...,1=

 

with ( )[ ]iCQl ,...,1= , being ( )iCQ  the total number of addends for the coefficient Ci (i = D, Y, L, 

l, m, n).  

Eq. 81 and Eq. 82 represent the explicit form of Eq. 8 and the unknown parameters vector ΘP2 to 

be estimated from flight data is a subset of Θ = ( )nmlLYD
θθθθθθ ,,,,, . The subset is determined 

on the basis of an identifiability analysis. 

All the parameters of the aerodynamic model are firstly determined before flight, fitting a pre-

flight tabular aerodynamic database (ADB), built upon wind-tunnel test data and computational 

fluid dynamics analysis [B57]. This ADB covers a wide envelope of flight conditions and 

provides aerodynamic coefficients in tabular form. Uncertainty of predictions was also 

estimated, taking into consideration random experimental errors (repeatability), systematic 

experimental errors (known and not removable errors) and CFD errors (effect of computational 

grid, convergence, level of turbulence modelling, boundary conditions, etc.).  

The pre-flight estimation is carried out through a least square (LS) method, which for each 

aerodynamic coefficient, is applied to the following optimisation problem: 

Eq. 85 ( )[ ] nmlLYDiCCJ
p

ii

M

i

i

kADB

i

ki ,,,,,,minmin
1

2
=−= ∑

=
ϑϑ  

where Cik and (Cik)ADB are the aerodynamic coefficients calculated in Mp points of the flight 

envelope, with the proposed model and the pre-flight aerodynamic database, respectively. Ji is 

the goal function, defined for each aerodynamic coefficient, for which the arguments are the free 

parameters i
θ  given by Eq. 84. To take into account the combined effects of all the vehicle state 

variables and those of the controls, the coefficients Cik and (Cik)ADB are calculated in a wide 

range of variation of these variables.  

In the following of the thesis, the model obtained through pre-flight estimation is called pre-

flight analytical aerodynamic model 
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5.2 Identification Strategy and Techniques 

A two-step estimation strategy [AR9], [B58] is applied to solve the re-entry vehicle model 

identification problem, as illustrated in Figure 5.1 [AR1].  

 

Figure 5.1 - Identification strategy 

The first step is formulated as a nonlinear filtering problem and provides the estimation of 

vehicle state vector, aerodynamic coefficients and some atmospheric properties (such as local 

wind experienced during the mission). The nonlinearity stems from the vehicle nonlinear 

equations of motion. It is worthy to remark that in this step the time histories of global 

aerodynamic coefficients along the flight trajectory are only estimated and not the aerodynamic 

model. These time histories have a twofold role, being necessary both as input for the second 

identification step and for the validation of the available pre-flight aerodynamic database.  

The second step receives in input the vehicle filtered state vector, the aerodynamic coefficients 

and related uncertainties calculated in the previous step, and delivers an estimation for the subset 

of the identifiable parameters of the aerodynamic model, that is selected using a sensitivity 

analysis. When the estimation is carried out, the uncertainties on vehicle state and aerodynamic 

coefficients computed in the first estimation step are treated as measurement noise and they are 

rigorously propagated through the second step. In this way, the identification process provides 

the nominal value and the related estimation uncertainty of the aerodynamic parameters, and 
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guarantees an accurate and reliable characterisation of the identified aerodynamic model, by 

using all the available pre-flight information and in-flight gathered data. 

Before starting the first identification step, a compatibility check is performed using kinematic 

relations [B1], in order to check the flight measurements consistency and the correctness of the 

measurement errors characterisation. To this end, Eq. 46 to Eq. 48 are recast in the form: 

Eq. 86 rvqwau X +−=&  

Eq. 87 pwruav Y +−=&  

Eq. 88 qupvaw Z +−=&  

where ax, ay, az are the CoM acceleration components in body axes. Next, time integration of Eq. 

86 to Eq. 88 and Eq. 58 to Eq. 60 is carried out. The flight measurements of acceleration and 

angular rate components are provided in input to the integration, together with the starting values 

of velocity and Euler angles. In output the integrator delivers the time histories of velocity and 

Euler angles, which are compared to their flight measurements. Each flight measurement is 

characterised by an uncertainty, defined by the technical specification of the sensors. If the 

difference between integration output and related flight measurement is lower than the 

measurement uncertainty along the considered flight segment and for all the considered 

variables, then the measurements set is considered consistent and it can be used for system 

identification, according to the identification step described in details in the following sub-

sections. 

5.2.1 First Identification Step 

First identification step is solved using the Unscented Kalman Filter according to the hypotheses 

and implementation described in section 4.2.1.  

The prediction phase of the estimation requires the definition of the filter dynamic model, whose 

state vector should include all the unknowns to be estimated. This model is stochastic and should 

be suitably characterised through the definition of some properties, such as model order, 

correlation time, process and measurements noises variance, that could affect the filter 

convergence. Most of them are specified in a rigorous way, as shown in this section. The 
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remaining parameters are considered as free variables for the filter design, and they are tuned 

when the identification procedure is preliminarily carried out on simulated data. The adopted 

filter’s model is sketched in Figure 5.2.  

 

Figure 5.2 – Filter’s model 

The model is composed of four main blocks: Vehicle model, Environment model, Aerodynamic 

model, Sensor model. 

The Vehicle model is based on the classical 6 DoF rigid body nonlinear equations of motion (Eq. 

46 to Eq. 51), therefore its state vector is composed of CoM position and velocity components, 

attitude angles, and angular rates. The model is characterised by an additive process noise, whose 

variance is a free design parameter of the filter. However its value is set very low, due to high 

confidence in the vehicle model. 

The Aerodynamic model provides force (CF) and moment (CM) coefficients in body axes. They 

are transformed in dimensional force and moment and sent in input to the vehicle equations of 

motion. More in detail, the aerodynamic coefficients are computed as summation of baseline 

deterministic components (CF-BAS, CM-BAS) and corrections ( MF ∆C∆C , ) resulting from 

stochastic processes [AR1], [AR9], [AR16]: 

Eq. 89 FBAS ∆CCC FF += −  

Eq. 90 MMM ∆CCC += −BAS  
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The former are evaluated from the in-flight measurements of load factors n, angular rates ω, and 

dynamic pressure q , namely 

Eq. 91 
( )

Sq

m
BAS

gn
CF

⋅
−=−

 

Eq. 92 
SLq

BAS

IωωωI
CM

×+
=−

&
 

where ω&  is obtained by numerical differentiation of ω and L represents the aerodynamic 

reference length, which coincides with c for the pitching moment coefficient and with b for the 

lateral-directional moment coefficients.  

The corrections to the baseline aerodynamic coefficients are the unknowns to be estimated by the 

filter, therefore they are included into the filter state vector and their dynamics are modelled 

through Gauss-Markov (GM) stochastic processes. GM models are introduced [AR1], [AR9], 

because they fit a large number of physical processes with reasonable accuracy and simple 

mathematical description [B59]. The model’s order and parameters could be evaluated for each 

unknown variable by analysing the autocorrelation function of a realization of the variable along 

the mission trajectory [B60]. This analysis is performed in simulation before flight, taking 

advantage of the a priori information provided by the available pre-flight aerodynamic database. 

For the re-entry mission identification problem, as many as 2,000 Monte Carlo simulations were 

carried out considering uncertainties on aerodynamics, inertia, vehicle initial state, sensors and 

actuators characteristics, and environmental disturbances. For each simulation, the aerodynamic 

corrections are evaluated as differences between true aerodynamics (known in simulation) and 

baseline aerodynamic terms, provided by Eq. 91 and Eq. 92, and the related autocorrelation 

functions are computed. Finally, for each aerodynamic coefficient a mean normalized 

autocorrelation function is evaluated.  

Figure 5.3 shows the normalized mean autocorrelation for lateral force correction, the other force 

corrections have similar behaviour. This autocorrelation is typical of first-order GM process, 

therefore first order GM model is selected for the correction to force coefficients. They are 

modelled through the following equation [B60]  
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Eq. 93 
FFF w∆CC∆ +−=

τ

1
&  

where τ is the correlation time, computed as 1/3 of the time delay where the normalized 

autocorrelation function has a value of 0.05 [B59]. wF is the process noise, with standard 

deviation σWF. The ith component of σWF, denoted with σWFi, is computed as [B59] 

Eq. 94 
iMCFiWFi τσσ 22 2 −=  

where σFi-MC is the standard deviation of the simulated trajectories of the correction to the ith 

aerodynamic force coefficient, computed in the aforementioned Monte Carlo analysis, and τi is 

the related correlation time. 

 

Figure 5.3 – Mean normalized autocorrelation for the correction to the baseline lateral force aerodynamic 
coefficient 

The autocorrelation functions of the pitching moment correction is presented in Figure 5.4. It has 

an impulsive shape, typical of a zero-order GM processes. Similar results hold for the other 

moment coefficients. Accordingly, we get [B60] 

Eq. 95 MM wC∆ =&

 

-10 -8 -6 -4 -2 0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time shift [s]

∆
C

Y



Multi-Step Estimation Approach for Aerospace Vehicle System Identification from Flight Data  

Antonio Vitale 60

where wM is the process noise, whose standard deviation coincides with the standard deviation of 

the simulated trajectories of the corrections to the aerodynamic moment coefficients computed in 

the aforementioned Monte Carlo analysis [B59], namely 

Eq. 96 MCMWM −= σσ  

 

Figure 5.4 – Mean normalized autocorrelation for the correction to the baseline pitching moment 
aerodynamic coefficient 

The Environment model is composed of the gravitational model and the atmospheric model. The 

first one is based on the WGS84 (World Geodetic System) [B61] and it is used to compute the 

gravitational acceleration as a function of vehicle position. The latter is based on the 

meteorological forecast data of the European Centre for Medium-Range Weather Forecasts 

(ECMWF) [B62], that provides, for a selected location and date, the baseline profiles for wind 

velocity, air temperature and pressure. High frequency corrections to these baseline trajectories 

are estimated by the filter and their dynamic behaviour is again modelled by means of Gauss-

Markov models.  

For the examined case study, which is described in details in sections 7.1 and 8, the order and 

statistical characterisation of the GM models adopted for the wind correction are assessed 
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through the analysis of flight data collected during the ascent phase of the experimental CIRA 

Dropped Transonic Flight Test missions, when the vehicle is carried by a balloon at the release 

altitude. We assume that, in the ascent phase, the horizontal components of wind velocity in the 

NED reference frame are almost coincident with the corresponding components of the CoM 

measured velocity (balloon transported by the wind) and that the wind does not change in the 

time frame between ascent and descent phases. Under these hypotheses, the high frequency 

correction versus altitude is determined (and stored in a lookup table) as the difference between 

the CoM velocity measured during the ascent phase and the wind speed given by the ECMWF. 

Then the table is queried with the altitude trajectory of the missions descent phase to get the 

correction time history during mission flight. The autocorrelation function of the correction is 

then evaluated. The normalized autocorrelation of the North component of wind correction for 

DTFT1 is shown in Figure 5.5 [AR12]; similar plot is obtained for the East component, too. The 

autocorrelation is typical of a first-order process, described by the model 

Eq. 97 { }NorthEastiVV iwndiwnd

iwnd

iwind ,,
1

=+∆−=∆ η
τ

&  

where τwind and ηwind are correlation time and process noise, respectively. The correlation time is 

equal to 1/3 of the time delay, where the normalized autocorrelation function has a value of 0.05. 

The process noise, characterised by its variance, is a free parameter for the UKF design. The 

obtained model has also been applied to the Down component of wind correction, where no 

information can be extracted from the ascent phase data. Since no a priori information was 

available on the high frequency corrections of static temperature (TS) and pressure (PS) with 

respect to ECMWF, we assume they can be described by a zero-order GM model  

Eq. 98 TsST η=∆ &  

Eq. 99 PsSP η=∆ &  

where the process noises Tsη  and Psη  are again design parameter for the filter. The initial value 

of all the GM state is set to zero. 

Concerning the wind velocity, the high frequency corrections are low pass filtered in order to 

compute their low frequency content. Since we assume that the low frequency content is 



Multi-Step Estimation Approach for Aerospace Vehicle System Identification from Flight Data  

Antonio Vitale 62

correctly provided by the ECMWF (that is, the low frequency component of wind velocity 

coincides with the baseline profile), the output of the low pass filter should be null, therefore it 

could be compared with a zero virtual measurement in the correction phase of the UKF. The 

variance of the process noise for the low pass filter model is set to very low value (with respect 

to the other process noises variance) due to the reliability of the model. 

 

Figure 5.5 – Normalized autocorrelation function of correction on the North component of wind 

Finally, the Sensor model is implemented to match the specifications of the actual on board 

sensors. It is composed of the measurements equations (Eq. 64 to Eq. 68) for the computation of 

aerodynamic angles, Mach number and dynamic pressure. 

Globally the filter model has 25 states, that is, 12 states for the rigid vehicle, 6 from the 

aerodynamic coefficients (corrections to the six baseline trajectories) and 7 from the 

Environment model (corrections to the baseline trajectories of three wind components, 

atmospheric temperature and pressure, plus two states related to the low-pass filter).  

Concerning the UKF correction phase, the predictions are updated using the flight measurements 

of CoM accelerations, angular rates, Euler angles, angles of attack and sideslip, Mach number. 
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Moreover, three null virtual measurements are considered. They are compared with the low pass 

filtered wind velocity corrections, as previously described. Flight measurements are defined by 

nominal values and uncertainty characterisations (measurement noise covariance matrix), which 

are provided by the sensors datasheet. The covariance matrix of the virtual null measurements 

coincides with the noise covariance matrix given by the ECMWF for the baseline low-frequency 

profiles of wind velocity. 

It is worthy to note that the GM models, which describe the correction to the baseline 

aerodynamic coefficients trajectories, are only introduced to estimate the time histories of global 

aerodynamic coefficients along the mission trajectory. They do not represent the aerodynamic 

model to be identified, whose structure is instead defined in section 5.1.2. 

In conclusion, the output of the first identification step is the estimation of the filter state vector 

time history and the related uncertainty characterisation, that is the nominal trajectories and 

uncertainty bounds of vehicle state, aerodynamic coefficients, and environment parameters 

(wind components, atmospheric temperature and pressure). All these estimation are provided in 

input to the second identification step. 

5.2.2 Second Identification Step 

The second identification step aims at identifying from flight data the aerodynamic model, 

whose structure is defined in section 5.1.2. This model includes many parameters and, taking 

into account the limited amount of available flight data, not all of them can be updated in post 

flight analysis. Therefore the attention is focused on a subset of those parameters, composed of 

all the gains ϑsub and ϑsup which are defined in Eq. 75. They appear in each addend on the right 

hand side of equations Eq. 81 and Eq. 82. Some of these gains, denoted as subset ΘP2, is 

identifiable from the available flight measurements and then they are estimated. The other gains, 

as well as all the other parameters of the model, are kept equal to the pre-flight identified values. 

The selection of the identifiable gains is performed considering the Cramer–Rao bounds (CRBs) 

[B1], [B31]. The CRB indicates the theoretically maximum accuracy of the estimate for an 

unknown parameter achievable from the analysis of flight data along an assigned trajectory. It 

can be considered as a measurement of the sensitivity of system outputs along a flight trajectory 

with respect to parameter variation. The CRBs can be used both for the optimisation of the 
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identification manoeuvres to be performed during flight test [B26], in order to increase the 

information content of the flight data, or for the selection of the identifiable parameters along a 

fixed trajectory [B31], [B63]. The last one is the application used in this thesis.  

Let’s denote with ΘG the set composed of all the of gains ϑsub and ϑsup included in the 

aerodynamic model. The CRB related to the generic gain Gk Θ∈ϑ , indicated with 
kϑσ , is 

computed through: 

Eq. 100 
( ) ( )
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Eq. 101 ( )kkDMk
,=ϑσ  

where Y is the output vector of the system to be identified, recorded in NT time instants, denoted 

as ti. R is the covariance matrix of measurement error on Y. FM represents the information matrix 

(also named Fisher matrix), DM is the dispersion matrix and DM(k,k) is the kth element on the 

main diagonal of DM. Concerning the computation of the information matrix, in the examined 

case the output Y coincides with the vector composed by the aerodynamic coefficients. Since 

they are expressed by regular analytical functions, their derivatives with respect to each gain 

(that is, ( ) Git ΘY ∂∂ ) can be analytically computed. These derivatives can be evaluated along the 

flight trajectories using the flight measurements of Mach number, aerodynamic angles, control 

effectors deflections and vehicle angular rate. The matrix R is composed of the aerodynamic 

coefficients variances, which are provided by the first estimation step. After the computation of 

DM, all the parameters which have 
kϑσ lower than a pre-fixed threshold are included in the 

identifiable subset, denoted as ΘP2.  

Once the set of identifiable unknown parameters has been selected, their values can be estimated.  

Two different estimation methodologies can be applied in this identification step. Due to the 

structure of the aerodynamic model, in both cases parameters estimation is performed 

independently for each global aerodynamic coefficient and for subsonic and supersonic regime.  
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The first approach is based on the UKF [AR9]. It requires the definition of a model for the 

unknown parameters, to be used in the prediction phase of the filter. Let’s denote with 

• i

P2Θ  the vector of identifiable parameters related to the ith aerodynamic coefficient; 

• Ci-step1 and PCiCi the ith aerodynamic coefficient and the related variance estimated along 

the mission trajectory in the first identification step; 

• E and PEE the vector composed of estimation of aerodynamic angles, Mach number and 

angular velocity provided by the first identification step and the related covariance 

matrix; 

• [ ]rae δδδ ,,=δ  and Pδδ the vector of aerodynamic effector deflections, measured in flight, 

and the related covariance matrix. 

The following filter model equations are used 

Eq. 102 ii

Θ= ηΘP2
&

 

Eq. 103 ( )δEΘP2 ,,1 istepii CCres −= −  

Since the unknown parameters are constant, their dynamic equation (Eq. 102) is described by 

zero order GM process. The initial condition of this equation is the pre-flight value of the 

parameters. Covariance matrices of initial condition and process noise i

Θη  are design parameters 

to tune the filter.  

Eq. 103 represents the filter output equation, which is based on the analytical aerodynamic 

model equations. In particular, Ci is computed through Eq. 81 and Eq. 82, and its difference with 

respect to first identification step of the coefficient along the trajectory is denoted as residual 

(resi).  

The UKF implementation presented in section 4.2.1 is adopted, with only one change: an 

augmented Unscented Transformation is applied only for the propagation of mean and 

covariance of the residual through the nonlinear output equation, that is step 5P of the prediction 

phase. In particular Eq. 11 is reformulated as follows 
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Eq. 104 
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where ( )−k

i

P t2Θ  is the filter prediction of the unknown parameters at time tk, and the other 

symbols represent the evaluation of the variables previously defined at time tk. The prediction of 

the augmented covariance matrix is defined as 

Eq. 105 
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with −
kP  given by Eq. 15, in which ( )−

− = k

i

Pk t2Θx  and Q is the covariance matrix of dynamic 

equation process noise i

Θη . 

The augmented formulation allows properly managing the stochastic characterisation of the 

estimation. Indeed the first identification step results are treated as input to the second step and 

the uncertainty on the first step estimation is taken into account as measurement noise. 

Eq. 109 and Eq. 110 are used in the prediction phase of the filter, whereas in the correction phase 

a virtual null measurement of the residual (resi) is used.  

The virtual measurement should be stochastically characterised in terms of measurement noise 

covariance matrix R. This matrix is evaluated before flight using the available information. To 

this end, a Monte Carlo analysis of the mission is carried out, and for each simulation the 
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residual is computed as difference between the tabular pre-flight ADB and the pre-flight 

analytical aerodynamic model, that is, the analytical model error. Next the statistics of the Monte 

Carlo analysis can be evaluated and the matrix R can be computed. 

The second approach is based on the Least Square estimation methodology [AR17], described in 

section 4.2.2. In contrast to UKF, LS only requires measurements equations, that is the analytical 

model, and does not need any initial guess or dynamic model describing the dynamics of the 

unknowns, which could eventually influence the convergence of the estimations. Since the 

aerodynamic model is linear with respect to the selected identifiable unknown parameters, in 

order to perform the estimation, the expression of the ith aerodynamic coefficient (Eq. 81 for the 

force coefficients and Eq. 82 for the moment coefficients) is rearranged in the form of Eq. 23, 

which is reported here 

Eq. 106 i

Pii 2ΘAz ⋅=  

where zi is given by the difference, evaluated in NT time instants, between the global 

aerodynamic coefficient Ci-step1 and the summation of all the additive terms on the right hand side 

of Eq. 81 or Eq. 82 (depending on the coefficient) that are related to non-identifiable gains. 

These additive terms are evaluated using Mach number, aerodynamic angles and angular rate 

estimated in the first step, and the flight measurements of aerodynamic effectors. The matrix of 

the regressors Ai is composed of the additive terms on the right hand side of Eq. 81 or Eq. 82 

(depending on the coefficient) related to the identifiable gains divided by the gains themselves, 

which are included in 
i

P2Θ .  

Finally the uncertainties on the estimated parameters are evaluated through a Monte Carlo 

analysis. To this end, many estimations of the same unknown parameters are carried out by using 

in input flight measurements and global aerodynamic coefficients randomly selected in their 

range of uncertainty. The statistics of the estimated parameters are then evaluated and used to 

define the estimation uncertainty on each of the evaluated aerodynamic parameters. 

In conclusion, when the second step identification is carried out, the uncertainties on the results 

of the first identification step are treated as measurement noise and they are rigorously 

propagated through the second step, whatever the applied estimation methodology is. Therefore, 

the identification process provides the nominal value and the related estimation uncertainty of 
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the aerodynamic parameters, and guarantees an accurate and reliable characterisation of the 

identified aerodynamic model, by using all the available pre-flight information and in-flight 

gathered data.  
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6 MODEL IDENTIFICATION OF A ROTORCRAFT VEHICLE 

Rotorcraft system identification is a challenging task, mainly due to the complexity of the model 

used to describe the vehicle dynamics. In fact, rotorcraft aeromechanical analyses are usually 

based on highly nonlinear coupled multi-body models [B2], which include both slow flight 

mechanics scales and faster aero-elastic ones. Furthermore the rotorcraft models are typically 

unstable, at least in certain flight conditions [B15]. For those reasons, suitable identification 

techniques have to be developed to get high fidelity simulation models of rotorcraft dynamics.  

The multi-step estimation approach, proposed in this thesis, allows exploiting the advantage of 

both time and frequency domains methods and, together with the selection of a suitable vehicle 

model structure, permits to obtain an identified model applicable in the whole frequency range of 

interest (from low to high frequencies). The model structure and the identification strategy and 

techniques are presented in the next sub-sections. 

6.1 Flight Mechanics Model 

A rotorcraft is generally modelled for simulation purposes as nonlinear multi-body dynamic 

system, characterised by strong coupling between the dynamics of rotor blades and air flow 

passing through the rotor (inflow) with those of the fuselage, control system and engine [B2]. 

The structure of this model is very complex and could include a huge number of uncertain 

parameters, which leads to identifiability issue: the model has too many parameters (over 

parameterisation) and then too many degrees of freedom with respect to the available flight 

measurements [B1]. Therefore simplified model structure should be introduced for identification 

purpose. A literature analysis has enhanced that several model structures are proposed to this 

aim.  

The simplest model is based on the classical rigid body 6 DoF equation of motion [B64]. It can 

be used in the nonlinear form (incorporating nonlinear aerodynamics) or can be linearised with 

respect to a trim flight condition [B65], limiting its applicability to a small operative range. Such 

so called low frequency rigid body 6 DoF models are generally adequate for flying qualities 

investigations and less demanding control system design [B66]. 
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In order to take into account unmodelled high frequency dynamics, the Quasi-Steady 6 DoF 

models are introduced, based on the assumptions that transient rotor dynamics are modelled as 

equivalent time delays on control inputs, and rotor steady state response is modelled as 

equivalent quasi-steady fuselage derivatives [B2]. The use of equivalent time delays stems from 

the observation that flight measurements show a delay between control inputs and rotational 

accelerations, caused by the dynamic characteristics of the main rotor, which are neglected in the 

rigid body 6 DoF models. However, it has been shown that in some cases Quasi-Steady models 

couldn’t be able to match flight data on-axis responses at higher frequencies [B67]. In general 

Quasi-Steady models are appropriate for applications in the lower and mid frequency range 

[B68]. 

High bandwidth models require a more complex modelling approach, named hybrid modelling, 

based on the augmentation of the 6 DoF rigid body model with rotor degrees of freedom, in 

order to meet high bandwidth requirements and to capture the rotor dynamics and the rotor 

fuselage interactions [B66]. Several hybrid models are proposed in the rotorcraft identification 

literature, with different complexity depending on the considered rotor dynamics: 

• 10th order model: longitudinal and lateral flapping dynamics are modelled through first order 

equations. The obtained system is able to capture the majority of the rotor dynamics and 

rotor fuselage interactions [AR11], [AR13], [B1], [B69], [B70]. 

• 11th order model: the above model is augmented with the main rotor RPM dynamic, 

described by a first order equation [AR8], [B69], [B70]. 

• 16th order model: longitudinal and lateral flapping, coning and lead-lag dynamics are 

modelled as second order systems. This model can provide a more detailed insight into the 

helicopter dynamics. However system identification needs complete measurements of blade 

motions (both flap and lag angles) [B1], [B68]. 

• Inflow dynamics: the above model is augmented with a parametric Pitt and Peter inflow 

model, to describe the inflow dynamics [B68], [B71]. The number of model parameters to be 

estimated increases significantly. In this case a classical system identification problem can 

occur: the estimation can provide parameter values that don’t represent the phenomena of 
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interest, to which they are related, rather they can account for some other unmodelled effects 

[B1]. 

• Hybrid fully coupled model: 13 DoF model, with coupled fuselage-regressive flap dynamics 

(8 DoF), coupled coning-inflow dynamics (2 DoF), lead-lag dynamics (2 DoF) and Engine 

torque response (1 DoF) [B2]. 

Hybrid models are suitable for higher frequency applications, that are high fidelity simulation, 

high precision fly by wire control law design and flight comfort evaluation. 

The selection of model structure is performed considering the desired frequency range of 

application of the identified model, the dynamics to be reproduced by the model and the 

available flight measurements. For example, rotor dynamic modes are often important; however, 

in practice, the complete rotor dynamics measurements are difficult to obtain and with the 

fuselage based measurements only, rotor modes are difficult to be identified.  

The model adopted in this thesis belongs to the hybrid model class, and it is composed of 

classical nonlinear rigid body 6 degrees of freedom equations of motion, to describe fuselage 

dynamics; main rotor first order nonlinear differential model, to simulate rotor blades flap angle 

and shaft angular position; static nonlinear model to evaluate the global force and moment acting 

on the fuselage during flight. Figure 6.1 presents the functional blocks of the model to be 

identified, these blocks are described in the following subsections. 

 

Figure 6.1 – Rotorcraft model functional blocks 
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6.1.1 Fuselage Model 

As already said, the fuselage is modelled as a 6 DoF rigid body, whose equations are assembled 

by applying Newton’s laws of motion, which relate the applied forces and moments to the 

resulting translational and rotational accelerations. The equations of motion for the fuselage are 

then Eq. 46 to Eq. 51, described in section 5.1.1. The model of external forces and moments, 

which represent the input to these equations, is presented in section 6.1.3.  

6.1.2 Main Rotor Model 

The main rotor model simulates coning, longitudinal and lateral flapping dynamics in multi-

blade coordinates. The dynamics are modelled through coupled first order nonlinear system, 

which includes unknown parameters to be estimated from flight data.  

Inputs to the rotor model are the rotorcraft control inputs and the fuselage velocity and angular 

rate, which are introduced to take into account the effect of the fuselage on the main rotor. The 

set of inputs, as well as the nonlinear terms included in the model, are selected on the basis of 

physical meaning and engineering judgment. Outputs of the model are coning angle, longitudinal 

and lateral flapping deflections and the angular position of the shaft.  

The rotor model equations are then the following [AR8]:  

Eq. 107 
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Eq. 108 

( ) ( )ψψ

ϑϑϑϑ

ϑϑϑϑϑϑ

4sin4cos 18,217,2

0
2

16,20
2

15,21
2

14,2113,2

1112,211,2010,219,218,2

7,26,25,24,23,22,211,2121

⋅+⋅+

+⋅⋅+⋅⋅+⋅⋅+⋅⋅+

+⋅⋅+⋅+⋅+⋅+⋅+

+⋅+⋅+⋅+⋅+⋅+⋅+⋅+⋅=

BB

wBuBvBuB

BBBBB

rBqBpBwBvBuBbBaAa

cs

csTRcs

&

 
 

Eq. 109 
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where  

• (a0, a1, b1) are coning, longitudinal and lateral flap deflection, respectively; 

• ( TRcs ϑϑϑϑ ,,, 011 ) are longitudinal cyclic, lateral cyclic, main rotor collective and tail rotor 

collective command, respectively; 

• ψ is the angular position of the shaft 

• Ai and Bi,j are the unknown parameters to be estimated from flight data. 

The coning is decoupled from the other flapping dynamics, whereas the longitudinal and lateral 

flapping are coupled. It is worthy to note that depending on the flight condition (hover or 

forward flight) some of the independent variables in the right hand side of the above equations 

could be neglected, thus reducing the number of unknowns to be estimated.  

In order to estimate independently the unknown parameters in each equation, Eq. 107 to Eq. 109 

are rearranged in the form  

Eq. 110 11 UB ⋅+⋅= 010 aAa&  

Eq. 111 22 UB ⋅+⋅= 121 aAa&  

Eq. 112 33 UB ⋅+⋅= 131 bAb&  

where U1, U2 and U3 are input vectors, defined as: 

Eq. 113 
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Eq. 114 
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Eq. 115 
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The rotor model also provides the angular position of the shaft through the following equation: 
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Eq. 116 RΩ=ψ&  

where RΩ is the main rotor angular speed. 

6.1.3 Forces and Moments Model 

The external forces and moments acting on the fuselage during flight are classified as 

gravitational, aerodynamic and inertial. Inertial forces and moments (essentially due to the main 

rotor) and aerodynamic forces and moments (to which fuselage, main rotor and tail rotor 

contribute) are subject to identification, whereas the gravitational force is assumed to be known 

with good accuracy. In fact, also the inertial contribution could be analytically computed 

[AR18], but actually uncertainties are present, especially on the transmission chain of forces and 

moments from the blades to the fuselage CoM, therefore, differently from fixed wing case, their 

model is identified from flight data. 

The global force and moment are computed through a lumped parametric model, in which each 

force or moment component is expressed as parametric function of the vehicle state vector 

(fuselage plus main rotor), the control inputs and the controls derivatives. This formulation 

doesn’t allow to distinguish the physical source of the aerodynamic term (if it is due to main 

rotor, fuselage or tail rotor), but it will identify a global vehicle model. For what concerns the 

inertial contribution, the model assumes that blades are rigid and main rotor inertial forces and 

moments are not dependent on lag dynamics. 

The proposed model structure is based on physical considerations and sensitivities analysis. The 

force and moment components in fuselage body axes are expressed by: 

Eq. 117 Θ−⋅= sinmgFX FXFX Aθ  

Eq. 118 ΘΦ+⋅= cossinmgFY FYFY Aθ  

Eq. 119 ΘΦ+⋅= coscosmgFZ FZFZ Aθ  

Eq. 120 MXMX Aθ ⋅=XM  

Eq. 121 MYMY Aθ ⋅=YM  
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Eq. 122 MZMZ Aθ ⋅=ZM  

The gravitational force components are shown explicitly. θIJ (I = F, M, and J = X, Y, Z) are the 

vectors of unknown parameters, whereas the signals on the right hand side of the equations, 

denoted with AIJ, are called regressors and are defined as follows: 

Eq. 123 
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Eq. 124 
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Eq. 125 
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Eq. 126 [ ( ) ( ) ]1,4sin,4cos,,,,,,,,,,,,, 110011 ψψϑϑϑϑ baarqpwvu TRcs=MXA  

Eq. 127 [ ( ) ( ) ]1,,4sin,4cos,,,,,,,,,,,,, 1110011 apbaarqpwvu TRcs ⋅= ψψϑϑϑϑMYA
 

Eq. 128 [ ( ) ( ) ]1,,4sin,4cos,,,,,,,,,,,,,, 2
1100011 TRTRcs ubaarqpwvu ϑψψϑϑϑϑϑ ⋅= &

MZA  

Such as in the rotor model, depending on the flight condition (hover or forward flight) some of 

the above functional dependences can be neglected, in order to reduce the number of the 

unknowns to be estimated. The main rotor model receives in input the fuselage state vector while 

its outputs are used for the computation of the force and moment acting on the fuselage. In this 

way the fuselage main rotor coupling is correctly taken into account by the model.  

In the literature, it has been shown that this model has good predictive capability for both 

aerodynamic [B1], [B24], and inertial forces [B72]. 

6.2 Identification Strategy and Techniques 

The rotorcraft model identification is performed in the framework of a three-step approach, 

which allows specifying a suitable methodology compliant with each step objective and to 

exploit the advantage of both time-domain and frequency-domain methods. Indeed a hybrid 
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time-frequency estimation strategy is applied. Before starting the first identification step, a 

compatibility check is performed using kinematic relations, in order to check the flight 

measurements consistency and the correctness of the measurement errors characterisation. 

The first identification step reconstructs the vehicle flight path by using the Unscented Kalman 

Filter. This is a preliminary step because it computes data (the time histories) needed by the 

following identification steps but it doesn’t provide an estimation of unknown parameters 

included into the model. The second identification step aims at estimating all the unknown 

parameters of the rotor model. It is carried out in the frequency domain, because rotor dynamics 

are usually characterised by wide frequency range and frequency identification techniques allow 

defining the frequency range where the model should be identified. Finally, the estimation of all 

the unknown parameters of the forces and moments model is carried out in the third 

identification step. This step is performed in the time domain.  

 

Figure 6.2 – Flowchart of the rotorcraft identification process 
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The Flow-chart of identification process is shown in Figure 6.2 and the methodologies applied in 

each identification step are detailed described in the following sections. 

It is worth noting that, differently from the re-entry vehicle case, optimal flight tests can be 

designed and performed for gathering experimental data to be used for rotorcraft model 

identification. 

6.2.1 First Identification Step 

The first identification step is carried out in the time domain solving a nonlinear filtering 

problem by means of the Unscented Kalman Filter. The filtering is performed using a non-

augmented algorithm for the UKF, according to the description provided in section 4.2.1, in 

order to reduce the filter state vector dimension [AR9]. It provides the estimation of the flight 

trajectories of fuselage state vector and global external forces (except for weight, which is 

assumed known) and moments acting on the vehicle’s fuselage during the test. The associated 

estimation errors characterisation is also evaluated. 

The prediction phase of the filter requires the definition of the filter model, which includes the 

six degrees of freedom rigid body equations of motion (Eq. 46 to Eq. 51), to predict the time 

evolution of the fuselage state vector. All the states of the fuselage are measured. Process and 

measurement noises for the fuselage model are assumed additive. The covariance matrix of 

process noise is a design parameter of the filter, whereas the covariance matrix of measurement 

noise is defined by the datasheet of the on board sensors.  

The UKF considers the unknowns as augmented states of the model, therefore the dynamic 

behaviour of the external forces and moments has to be modelled, too, in order to complete the 

filter state equations. To this aim, periodic random models [B60] are introduced, considering that 

the main relevant force acting on the fuselage during the flight is produced by the rotor and is 

periodic. Order of the periodic model, values of characteristic parameters and process noise 

covariance matrix are determined before flight, performing Monte Carlo simulations of the 

mission and analysing the autocorrelation function of simulated force and moment [AR12]. For 

the examined rotorcraft mission, second order periodic random processes are selected to model 

force and moment components in body axes. The mathematical representation of the model in 

the state space for the ith unknown is: 
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Eq. 129 121 ixii xx η+=&  

Eq. 130 ( ) 2212 22 ixipipiipiipi xxx ηβαβα −+−−=&  

where xi1 is the unknown (force or moment component), xi2 is an auxiliary state, αip and βip are 

characteristic parameters of the model and ηix1 and ηix2 are process noises.  

The parameters of the model are tuned in order to fit the mean autocorrelation computed 

numerically from the simulated flight data provided by the Monte Carlo analysis. An example of 

this result is shown in Figure 6.3 for the X-axis force component and the pitching moment 

component during a typical identification manoeuvre.  

It is worth noting again that the above described forces and moments model selection is executed 

in pre-processing, before analysing the flight data; it isn’t a result of the first identification step. 

In fact the outputs of this step are the time histories of external forces and moments and not their 

model. Eq. 129 and Eq. 130 are only introduced to allow the UKF correctly works.  

 

Figure 6.3 – Comparison between the modelled autocorrelation and the one computed from simulated flight 
data for FX and MY components acting on the vehicle during a tail rotor 3-2-1-1 manoeuvre from hover 
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In the correction phase of the filter, the flight measurements of fuselage CoM acceleration and 

velocity, and fuselage angular rates and attitude are used to correct the predicted estimations.  

The time histories estimated in the first step and the characterisation of the estimations errors are 

provided in input to the following steps. 

6.2.2 Second Identification Step 

Second identification step is performed in the frequency domain using the methodology 

proposed in [B39] and described in section 4.2.4. This technique estimates the unknown 

parameters by minimizing the sum of square differences between measured data and 

corresponding values provided by the model on a selected frequency range. The choice of the 

frequency range allows focusing on the estimation of the parameters associated to the desired 

dynamics.  

The proposed approach applies this technique to Eq. 110, Eq. 111 and Eq. 112, in order to 

estimate all the parameters of the rotor dynamics model. Inputs to the second identification step 

are the estimation results of the first identification step, plus the flight measurements of control 

inputs, main rotor coning, longitudinal and lateral flapping angles.  

Finally, Eq. 40 allows computing the estimation error and therefore characterizing the identified 

model uncertainty. 

6.2.3 Third Identification Step 

The estimation of the unknown parameters of the forces and moments model, described by Eq. 

117 to Eq. 122, is performed in this identification step. The estimation is carried out 

independently for each force or moment component equation. Since the model is static, the LS 

estimation methodology is applied, according to the description provided in section 4.2.2. 

Alternatively, if the model is dynamic, the UKF could be applied, or other time domain 

methodology for the estimation of constant unknown parameters, such as the Maximum 

Likelihood Estimation (MLE) technique [AR13], [B1].  

Inputs to this step are the time histories of forces, moments and filtered flight measurements 

estimated in the first identification step and measured flight data of vehicle control inputs, main 



Multi-Step Estimation Approach for Aerospace Vehicle System Identification from Flight Data  

Antonio Vitale 80

rotor coning and flapping angles. Data gathered during different flight tests can be concatenated 

and provided in input as a unique data set to be processed.  

The uncertainties on the inputs, provided by the first identification step or from the sensors 

datasheet, are also taken into account in order to evaluate the uncertainty on the identified model. 

To this end, many estimations of the same unknown parameters are carried out in a Monte Carlo 

analysis, by using in input flight measurements and global aerodynamic coefficients randomly 

selected in their range of uncertainty. The statistics of the estimated parameters are then 

evaluated and used to define the estimation uncertainty on each of the evaluated parameters. 
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7 NUMERICAL ASSESSMENTS 

Before applying the proposed methodology to actual flight data, it was validated in simulation, 

for both the examined vehicles. This chapter presents the numerical assessment results. 

7.1 Re-entry Space Vehicle Identification 

7.1.1 Simulation Model for Flight Data Generation 

Simulated flight data, provided in input to the identification process, were generated using a 

complete model of the CIRA FTB1 vehicle, also featuring a detailed description of flight control 

system, vehicle aerodynamics, actuators, sensors, and environmental disturbances. The vehicle 

model is based on the classical rigid body nonlinear equations of motion, in agreement with the 

relations introduced in section 5.1.1. Vehicle state vector is composed of Centre of Mass position 

and velocity components, attitude angles, and angular rates. Algebraic expressions for the 

computation of aerodynamic angles, Mach number and dynamic pressure, are also included in 

the model. Vehicle aerodynamic behaviour is modelled using the tabular pre-flight database, 

obtained by means of wind tunnel tests and computational fluid dynamics analyses [B57]. It is 

worthwhile to note that the structure of model to be identified is different from the one used in 

simulation. It introduces a modelling error that is present also when actual flight data are 

examined. The detailed description of the CIRA FTB1 vehicle is reported in section 8.1. 

The atmospheric model is based on the meteorological data of the European Centre for Medium-

Range Weather Forecasts, that provides baseline profiles for wind velocity, air temperature and 

pressure during the mission. These profiles are corrected by means of Gauss-Markov processes 

[B59], introduced to simulate high frequency variations.  

The sensors measure load factors, attitude angles, angular rate, aerodynamic angles, Mach 

number and aerodynamic effectors deflections. All data are sampled at 100 Hz and are affected 

by additive measurements Gaussian noise, characterised by the sensors datasheets as reported in 

Table 7.1.  

The simulation model was implemented in MATLAB/SIMULINK environment. Its first level 

block diagram is shown in Figure 7.1. 
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Measurement 
Load 

factor 

Angular 

rate 

Roll and 

Pitch Euler 

angles 

Yaw Euler 

angle 

Aerodynamic 

angles 

Mach 

number 

Noise standard 
deviation 

0.025 
m/s2 

0.015 
deg/s 

0.1 deg 1deg 1 deg 0.004 

Table 7.1 – Standard deviations of measurement noises 

 

 

Figure 7.1 – First level block diagram of SIMULINK simulation model used for flight data generation 

Before providing the flight measurements as input to the identification process, a compatibility 

check based on kinematic relations was carried out on the data [B1], in order to check their 

consistency. 

7.1.2 Flight Tests Design 

The CIRA Dropped Transonic Flight Test 2 (DTFT2) mission was simulated in order to collect 

flight data for the numerical validation of the proposed system identification methodology.  

The DTFT2 mission operations are detailed described in section 8.2. In simulation, the 

controlled gliding flight phase is only reproduced. The simulated profiles of flight 

measurements, that is, load factors, angular rates, aerodynamic angles, Mach number and 

aerodynamic effectors deflections are shown in Figure 7.2 to Figure 7.5 for the nominal 

trajectory. Besides the nominal trajectory, other trajectories were randomly generated, varying 

the aerodynamic parameters, the measurement noises and the environmental disturbances within 

their uncertainty ranges. The obtained angle of attack time histories and Mach-altitude plots are 

presented in Figure 7.6 and Figure 7.7, respectively.  
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Figure 7.2 – Nominal trajectories of load factors for DTFT2 mission 

 

 

Figure 7.3 – Nominal trajectories of angular rate components for DTFT2 mission 
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Figure 7.4 – Nominal trajectories of aerodynamic angles and Mach number for DTFT2 mission 

 

 

Figure 7.5 – Nominal trajectories of aerodynamic effectors deflections for DTFT2 mission 
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Figure 7.6 – Dispersed trajectories of angle of attack for DTFT2 mission 

 

Figure 7.7 – Dispersed profiles of Mach number versus altitude for DTFT2 mission 
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It is worthy to note that due to safety reason, specific manoeuvres aimed at system identification 

purpose were not executed during the flight test. 

7.1.3 Model Identification Results 

The analysis of the model identification results from simulated flight data allows evaluating the 

effectiveness of the proposed methodology, because the knowledge of the true values of time 

histories and model parameters can be exploited. 

7.1.3.1 First Identification Step Results 

The first identification step provides the estimation of flight trajectory for global aerodynamic 

coefficients, wind velocity, atmospheric pressure and temperature, filtered vehicle state vector 

and measurements. These estimations for the nominal trajectory are shown from Figure 7.8 to 

Figure 7.12 [AR12].  

The estimated trajectories of the aerodynamic coefficients are presented in Figure 7.8, where 

they are compared with the corresponding true trajectories. Estimated and true trajectories are 

practically indistinguishable. In Figure 7.9 the estimation error trajectories are reported for each 

aerodynamic coefficient, together with the trajectories of the uncertainty on the estimation, 

provided by the UKF, too. The error is almost always consistent with the uncertainty, confirming 

that the UKF provides reliable value for the accuracy of the estimation. Finally the identified 

uncertainty is significantly lower than the pre-flight one, as shown in Figure 7.10, where pre and 

post identification uncertainties are compared.  

The estimated trajectories of horizontal components of the wind speed are presented in Figure 

7.11. They are compared with the true trajectories and the with the meteorological data, which 

are affected by error. The estimations match the true values and extend the frequency content of 

the wind speed trajectories with respect to the meteorological information. Also the estimations 

of air pressure and temperature fit the true values, which does not differ significantly with 

respect to the meteorological data. They are not presented here for the sake of brevity.  

Finally, Figure 7.12 presents the aerodynamic angles, which are the most noisy measured data. 

The UKF estimations are compared with the simulated flight measurements (affected by noise) 

and the corresponding true values. Only a short part of the trajectories is shown, in order to 
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reduce the plot scale and to enhance the effects of the filter. Indeed, the UKF is able to filter out 

the noise and to reconstruct the true behaviour of the examined variables. Similar results are 

obtained along the whole trajectory and for all the flight measurements.  

The simulated flight data of 100 trajectories, obtained through the Monte Carlo simulations 

described in section 7.1.2, were also examined, in order to further assess the UKF estimation 

capability. The main statistics of the UKF error on the aerodynamic coefficients estimation are 

listed in Table 7.2. These results confirm the reliability of first identification step output. 

 

Aerodynamic coefficient CL CD CY Cl Cm Cn 

RMS 
Mean 0.00013 7.93e-5 8.24e-5 8.61e-8 8.09e-5 6.51e-6 

Standard 
deviation 

8.63e-5 6.60e-5 6.50e-5 8.81e-9 6.13e-6 5.06e-7 

Table 7.2 – Error statistics on UKF estimation for 100 flight trajectories 

 

 

Figure 7.8 – Comparison between estimated and true trajectories of the aerodynamic coefficients 
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Figure 7.9 – Comparison between estimation error and uncertainties on the estimation provided by the UKF 

 

 

Figure 7.10 – Comparison between pre-flight and estimated aerodynamic uncertainties 
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Figure 7.11 – Comparison among estimated, true and ECMWF trajectories of wind speed  

 

 

Figure 7.12 – Comparison among noisy, true and estimated flight measurements of aerodynamic angles  
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7.1.3.2 Second Identification Step Results 

The subset of the aerodynamic model parameters to be estimated in the second step were 

selected through an identifiability analysis based on Cramer-Rao bounds. 21 parameters were 

identified from the simulated flight data by using the UKF, following the first approach 

described in section 5.2.2 [AR12].  

The estimated values are listed in Table 7.3 and Table 7.4 (for subsonic and supersonic flight 

regimes, respectively), together with the corresponding true values and the estimation 

uncertainties. It is worthy to note that the structure of the aerodynamic model used for simulated 

flight data generation, that is the pre-flight aerodynamic database, is different from the structure 

of the identified aerodynamic model, which is the analytical model presented in section 5.1.2. 

The true values of the aerodynamic parameters reported in the tables are computed before 

performing the identification from flight data, by minimizing the error between pre-flight 

database and analytical model on the whole flight envelope. However this error, denoted as 

modelling error, is not zero everywhere also if the true values of the parameters are used, 

because it depends on the structure of the analytical model. 

The initial guesses for the identification from flight data are set equal to 1.3 times the true values. 

The UKF converges to a constant value, as shown in Figure 7.13 for two of the unknowns, 

namely the gains related to the derivatives Cnβ and Clδa, in subsonic and supersonic regime, 

respectively. The estimated values of the gains associated to all the main longitudinal and some 

lateral-directional aerodynamic derivatives are very good, whereas the estimation of the gains 

related to the subsonic zero-order terms of lift and pitch moment coefficients is good. The 

estimates of standard deviations, a measure of estimation uncertainty, are in general very low 

and coherent with the estimation error, but for some parameters related to lift coefficient 

derivatives (in particular, only the standard deviation of CLδe is unacceptable, maybe due to 

identifiability problem). The computed standard deviations are in general lower than their pre-

identification values, showing an improvement varying between 34% and 90%. Better results, in 

terms of uncertainty reduction and increased number of estimated parameters, could be obtained 

if specific identification manoeuvres are performed during the mission to improve the 

identifiability of the aerodynamic model. 
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Figure 7.13 – UKF estimations of constant aerodynamic parameters 

 
Gain 

related to 
True 
value 

Estimation 
Standard 
deviation 

CL 0 0.038 0.057 9.7e-3 
CL α 4.29 4.244 0.132 
CL δe 1.55 1.67 9.99 
CD 0 0.062 0.062 2.8e-3 
CD α

2 4.078 3.828 0.090 
Cm 0 -0.0421 -0.052 1.6e-3 
Cm α 0.144 0.137 7.2e-3 
Cm δe -1.391 -1.382 0.024 
CY β -2.05 -2.119 0.015 
Cl β -0.049 -0.044 6.3e-4 
Cl p -0.405 -0.370 4.2e-3 
Cn β 0.0656 0.0651 7.5e-4 

Table 7.3 – Subsonic aerodynamic parameters estimated in the second identification step 

 
Gain 

related to 
True 
value 

Estimation 
Standard 
deviation 

CL 0 -0.29 -0.267 0.208 
CL α 7.98 8.095 0.196 
CL δe 0.803 0.788 0.375 
CD 0 -1.30 -1.31 3.5e-3 
CD α

2 4.75 4.86 0.040 
Cm α -0.23 -0.23 1.7e-3 
Cl δa 0.30 0.30 6.9e-3 
Cl δr 0.66 0.58 0.016 
Cn δa 0.13 0.12 1.8e-3 

Table 7.4 - Supersonic aerodynamic parameters estimated in the second identification step 
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It is worth to note that the estimation results could significantly vary, depending on initial trial of 

the unknowns and filter tuning parameters, therefore they should be selected carefully. The Least 

Square estimation is not affected by this problem, therefore both the estimation techniques are 

applied to actual flight data. 

7.1.4 Model Validation 

In simulation, the assessment of the results could be performed comparing the estimated values 

and trajectories with the true ones, which are known. This approach has already been presented 

in the previous section. A further validation of the identified model was performed following the 

procedure described at point 3.V of section 4.3. 

The identified analytical aerodynamic model was integrated into the simulation model shown in 

Figure 7.1, replacing the pre-flight aerodynamic database. The control system was removed and 

open loop simulations were carried out, using as input the aerodynamic effectors deflections. The 

outputs of the simulations were compared with the simulated flight data, in order to assess the 

capability of the identified model to reproduce the phenomena experimented by the vehicle in 

flight. This type of validation is very critical because small identification errors can lead to the 

divergence of the simulation, due to the absence of a flight control system which allows tracking 

the reference trajectory. 

Three types of simulations were performed: 

1. The identified model was used to compute all the aerodynamic force and moment 

coefficients. 

2. The identified model was used to compute only the aerodynamic force coefficients (lift, 

drag and side force); the aerodynamic moment coefficients were provided as input to the 

model using the time histories estimated by the UKF in the first identification step. 

3. The identified model was used to compute the lateral-directional aerodynamic force and 

moment coefficients (side force, roll and yaw moments); the longitudinal aerodynamic 

coefficients were provided as input to the model using the time histories estimated by the 

UKF in the first identification step. 
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In the first case the model outputs diverged from the flight measurements, whereas very good 

matching of the flight measurements were obtained in the other two cases. Model outputs and 

corresponding flight measurements for case 2 are presented from Figure 7.14 to Figure 7.17, 

similar results are obtained for case 3 (not reported for the sake of brevity). Table 7.5 shows the 

Theil’s coefficients for cases 2 and 3. These coefficients are used to assess quantitatively the 

fitting of the flight measurements. For all the considered variables, the coefficients are 

significantly lower than 0.25, which represents the threshold corresponding to good matching of 

the data.  

The obtained results enhance that the identified pitching moment coefficient was mainly 

responsible for the simulation divergence in case 1, although the estimation errors on the related 

parameters were small, as shown in Table 7.3 and Table 7.4. It means that the modelling error on 

this aerodynamic coefficient is not negligible along the DTFT2 trajectory and/or the sensitivity 

of the model outputs with respect to this error is very high. It was taken into account when actual 

flight data were examined to identify the aerodynamic model. 

 

Figure 7.14 – Comparison between identified model outputs and simulated flight measurements of Euler 
angles along the DTFT2 trajectory 
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Figure 7.15 - Comparison between identified model outputs and simulated flight measurements of angular 
rate components (in body axes) along the DTFT2 trajectory 

 

 

Figure 7.16 - Comparison between identified model outputs and simulated flight measurements of CoM 
velocity components (in NED reference frame) along the DTFT2 trajectory 
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Figure 7.17 - Comparison between identified model outputs and simulated flight measurements of 
aerodynamic angles along the DTFT2 trajectory 

 
Measurement Theil’s Coefficients 

Validation case 2 Validation case 3 
roll angle 0.013 0.013 

pitch angle 0.004 0.004 

yaw angle 0.004 0.004 

roll rate 0.060 0.059 

pitch rate 0.017 0.017 

yaw rate 0.039 0.039 

north velocity 0,018 0.026 

east velocity 0.001 0.005 

down velocity 0.003 0.006 

angle of attack 0,022 0.079 

angle of sideslip 0,111 0.137 

Table 7.5 – Theil’s coefficients  

20 30 40 50 60 70 80 90 100 110 120 130
-2

0

2

4

6

8

10

α
 [
d

e
g

]

 

 
Flight measurement

Identified model output

20 30 40 50 60 70 80 90 100 110 120 130
-1

-0.5

0

0.5

1

1.5

Time [s]

β
 [
d

e
g

]

 

 



Multi-Step Estimation Approach for Aerospace Vehicle System Identification from Flight Data  

Antonio Vitale 96

7.2 Rotorcraft Model Identification 

7.2.1 Simulation Model for Flight Data Generation 

The simulation model of the UH60 Black Hawk [B73] was implemented in the FLIGHTLAB 

Software Environment and used for simulated flight data generation. The rotorcraft model is 

nonlinear and includes detailed description of main rotor, tail rotor and fuselage. The main rotor 

is four-bladed with flap and lag articulation provided at the blade root by electrometric bearings. 

The rotor blade elastic characteristics are introduced via nonlinear flexible beam elements and 

the rotor aerodynamic model includes a 2D indicial formulation to account for the blade 

sectional air loads unsteadiness. The rotor induced flow dynamics is modelled using the Peters-

He finite state wake model with 15 state variables [B74]. Pertinent rotor parameters are listed in 

Table 7.6, together with the inertial properties of the fuselage. The tail rotor is modelled as a four 

bladed Bailey rotor with radius of 5.5 feet and angular speed of 124.62 rad/s. The simulation 

model only describes the vehicle dynamics, wind and turbulence are not modelled. It is worthy to 

note that the model used for data generation is significantly more complex with respect to the 

one adopted for identification purpose and described in section 6.1, in particular for what 

concern the rotor dynamics and external force.  

 

 

Figure 7.18 – UH60 Black Hawk 
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Parameter Value 
Number of Blades 4 

Radius 27.0 ft (8.23 m) 
Chord 1.73 ft (0.53 m) 

Rotor Disk Area 2290.2 ft2 (212.77 m2) 
Rotor Blade Area 186.8 ft2 (17.35 m2) 

Solidity Ratio 0.0816 
Main Rotor Speed 27 rad/s 
Nominal Tip Speed 729 ft/s (222.2 m/s) 

Blade Airfoils NACA0012 
Feathering hinge offset 1.2 ft (0.36 m) 

Flap hinge offset 1.2 ft (0.36 m) 
Lag hinge offset 1.3 ft (0.39 m) 
Fuselage weight 16434 lbf (7554 Kg) 

Ixx 10037 slug·ft2 (13608 Kg m) 
Iyy 44565 slug·ft2 (60422 Kg m) 
Izz 44183 slug·ft2 (59904 Kg m) 
Ixy 0 slug·ft2 
Ixz -1497 slug·ft2 (-2030 Kg m) 
Iyz 0 slug·ft2 

Table 7.6 – Rotorcraft data  

The simulation model was used to generate the flight measurements of: 

• fuselage CoM acceleration and velocity, in body reference frame; 

• fuselage angular acceleration, angular rates and attitude; 

• actual control inputs (collective pitch, longitudinal and lateral cyclic pitch, tail rotor 

collective pitch); 

• main rotor rotational frequency and flapping angles (expressed in multi-blade 

coordinates). 

A white zero mean Gaussian noise was added to the fuselage measurements provided by the 

model, in order to simulate the sensors measurement errors. The standard deviations of Gaussian 

measurements noises are shown in Table 7.7, derived from a typical COTS inertial systems. 

Measurement noise is supposed negligible for the input controls and the rotor measurements.  

Furthermore the true measurements of external forces and moments acting on the fuselage during 

the flight tests were recorded. Although these measurements were not provided as input to the 
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identification process, they were required in order to perform a validation of the first step 

identification results. 

The data were originally sampled at 1538 Hz, that is 360 sampling instants each main rotor 

rotation. A preliminary analysis enhanced that the frequency band of interest for flight 

mechanics is well beyond 1500 Hz, then, in order to reduce the computational burden of the 

identification process, the original signals were resampled at 153.8 Hz (36 sampling instant each 

main rotor rotation), which correctly represents the signals dynamics. 

Before starting the identification process, data consistency for all the performed flight tests was 

verified through a compatibility check on the flight measurements based on kinematics relations. 

Measurement 
CoM 

acceleration 

CoM  

velocity 

Angular  

acceleration 

Angular  

rates 
Attitude 

Noise standard 
deviation 

0.0492  
ft/s2 

0.32808  
ft/s 

0.00025  
rad/s2 

0.0035  
rad/s 

0.00035  
rad 

Table 7.7 – Standard deviations of inertial measurement noises 

7.2.2 Flight Tests Design 

Optimal flight test design can be performed for rotorcraft model identification, since stringent 

safety constraints on flight trajectory dictated for re-entry vehicle are not applicable in this case.  

The classical excitation inputs can be used for rotorcraft identification, obviously they should be 

applied to the specific rotorcraft primary commands. A peculiar characteristic of rotorcraft is that 

they generally exhibit dynamically unstable response . As a consequence, the flight tests have to 

be completed with feedback by the pilot or with the automatic flight control system active 

(closed loop testing) to keep the response within a reasonable range of amplitude. For example, 

while test is going on using on-axis control input, pilot can regulate off-axis controls to keep 

aircraft near the flight condition test point. However this strategy must not mask or suppress 

important aspects of the relevant dynamic, introducing collinearity into the flight data, otherwise 

flight data information will be poor.  

Several flight tests were performed in simulation for the identification of the UH60 rotorcraft 

model. For each of them, flight data were gathered over a time range of 15s. Two flight test 

conditions were considered, that is, hover at 90 ft altitude above ground level and forward flight 

condition at 60 knots. In each flight condition, several identification manoeuvres were carried 
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out, perturbing the starting trimmed condition. The first one was a 3-2-1-1 perturbation applied 

to one of the four rotorcraft controls, that is, longitudinal cyclic pitch, lateral cyclic pitch, main 

and tail rotor collective pitch; these manoeuvres were repeated for each control and used for 

model identification purpose. The second manoeuvre type was a doublet perturbation applied to 

one of the four rotorcraft controls; also these manoeuvres were repeated for each control and 

used for the validation of partial results after each step of the identification strategy, as described 

in the following. Finally, other two tests were executed and used for the final validation of the 

global identified model: collective sweep perturbation starting from hover; doublet perturbations 

applied in sequence to all the four rotorcraft control, starting from the forward flight condition. 

In total 18 manoeuvres were executed. For all the manoeuvre types, the amplitude of the 

perturbation was equal to 10% of the maximum control deflection, whereas the duration of the 

manoeuvre was 7s for the 3-2-1-1 command input, 2s for the single doublet, 6s for the sweep and 

8s for the sequence of doublets. Due to the possible instability of the vehicle, identification test 

manoeuvres were performed while flight control system was active (closed loop test), degrading 

the optimality of the flight test. Indeed the commanded input was modified by the flight control 

system, as shown in Figure 7.19 for a specific identification manoeuvre. However the 

measurement of the actual control applied by the flight control system was recorded and system 

identification was performed relating these measurements (open loop inputs) with the vehicle’s 

dynamics. 

 

Figure 7.19 - Commanded identification test manoeuvres and actual commands for a 3-2-1-1 perturbation on 
the collective starting from trimmed forward flight at 60 knots 
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7.2.3 Model Identification Results 

The model identification results for the rotorcraft test case are presented and discussed in this 

section [AR8]. The three-step methodology described in section 6.2 was applied.  

7.2.3.1 First Identification Step Results 

The main aim of this step is the estimation of the trajectories of external forces and moments 

acting on the fuselage of the vehicle. A by-product of this step is the estimation of filtered state 

vector of the vehicle dynamics. 

First identification step was performed independently on each flight test. Only the 3-2-1-1 

manoeuvres were used for identification purpose. Considering that the test should be repeated for 

each of the 4 commands (longitudinal cyclic, lateral cyclic, main rotor collective and tail rotor 

collective) and for each of the 2 examined flight conditions (hover and forward flight), in total 8 

flight tests were analysed and 8 time histories were estimated for each force or moment 

components. For the sake of brevity, only the results of 2 tests are presented, that is, 3-2-1-1 

longitudinal cyclic manoeuvre starting from trimmed hover and 3-2-1-1 lateral cyclic manoeuvre 

starting from trimmed forward flight. However analogous results were obtained for all the 

analysed flight tests. 

Force and moment components provided by the UKF for the longitudinal perturbation of hover 

are presented from Figure 7.20 to Figure 7.25. In each figure the upper plot compares the 

estimated trajectory with the true one (known in simulation) and the lower plot shows the 

estimation error, which is compared with the 3σ uncertainty on the estimation, also provided by 

the UFK. True and estimated time histories are in practice undistinguishable, confirming that the 

estimation results are excellent. Estimation error is zero mean noise, confirming the estimation 

doesn’t include any erroneous trend. Moreover the estimation error uncertainty is always 

consistent with the actual estimation error. It means that the stochastic characterisation of the 

estimation error provided by the filter is very reliable, too. 
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Figure 7.20 - Comparison between true and estimated FX for longitudinal cyclic perturbation of hover 
condition 

 

 

Figure 7.21 - Comparison between true and estimated FY for longitudinal cyclic perturbation of hover 
condition 
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Figure 7.22 - Comparison between true and estimated FZ for longitudinal cyclic perturbation of hover 
condition  

 

 

Figure 7.23 - Comparison between true and estimated MX for longitudinal cyclic perturbation of hover 
condition 
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Figure 7.24 - Comparison between true and estimated MY for longitudinal cyclic perturbation of hover 
condition 

 

 

Figure 7.25 - Comparison between true and estimated MZ for longitudinal cyclic perturbation of hover 
condition 
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Concerning lateral perturbation of forward flight condition, results are presented from Figure 

7.26 to Figure 7.31. The above considerations related to the hover identification results still hold. 

Moreover, in the forward flight condition force and moment components oscillate at 4 times the 

main rotor frequency, because the main rotor is four bladed. The oscillations are correctly caught 

by the UKF, as enhanced in Figure 7.32, where a zoom of Figure 7.26 is presented. These 

oscillations are not relevant in hover condition. 

Another product of the UKF is the estimation of fuselage state vector, that is, position, velocity, 

attitude and angular rate of the fuselage. Figure 7.33 to Figure 7.35 show the results for angular 

rate components estimation from flight data of the 3-2-1-1 lateral cyclic manoeuvre perturbing 

forward flight condition. The figures enhance that the UKF estimations are in practice 

overlapped to the true time histories. Moreover the estimation uncertainty is lower than 

measurement uncertainty (lower plot of the figures) and the estimation error is consistent with 

the UKF estimated uncertainty. Similar results are obtained for all the flight measurements and 

all the examined flight tests. 

 

Figure 7.26 - Comparison between true and estimated FX for lateral cyclic perturbation of forward flight 
condition 
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Figure 7.27 - Comparison between true and estimated FY for lateral cyclic perturbation of forward flight 
condition 

 
 

 

Figure 7.28 - Comparison between true and estimated FZ for lateral cyclic perturbation of forward flight 
condition  
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Figure 7.29 - Comparison between true and estimated MX for lateral cyclic perturbation of forward flight 
condition 

 

 

Figure 7.30 - Comparison between true and estimated MY for lateral cyclic perturbation of forward flight 
condition 
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Figure 7.31 - Comparison between true and estimated MZ for lateral cyclic perturbation of forward flight 
condition 

 

 

Figure 7.32 - Zoom of Figure 7.26: the UKF catches the high frequency oscillations 
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Figure 7.33 - Comparison between true and estimated X-axis component of angular rate for lateral cyclic 
perturbation of forward flight condition 

 

 

Figure 7.34 - Comparison between true and estimated Y-axis component of angular rate for lateral cyclic 
perturbation of forward flight condition 
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Figure 7.35 - Comparison between true and estimated Z-axis component of angular rate for lateral cyclic 
perturbation of forward flight condition 
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system. Generally, the model is able to reproduce the measured coning dynamics along all the 

examined manoeuvres and for both the flight conditions, except for the spikes which follow a 

step command. This problem may be due to the structure of the model used which could be 

further optimized. 

The acid tests for longitudinal flapping dynamic model in hover and forward flight conditions 

are shown in Figure 7.38 and Figure 7.39, respectively. The model works very well in all the 

performed tests. 

The acid tests for lateral flapping dynamic model in hover and forward flight conditions are 

presented in Figure 7.40 and Figure 7.41, respectively. Again the model works very well in all 

the performed validation tests. It is worthy to note that in forward flight the flap angles oscillate 

at a frequency equal to 4 times the main rotor frequency. The model is able to catch this dynamic 

as enhanced in Figure 7.42 where a zoom of Figure 7.41 is shown. Similar results are obtained 

for the coning and longitudinal flapping models, too. 

 

Figure 7.36 - Comparison between true coning angle and the ones provided by the identified model in 
hover condition along four manoeuvres which were not used for the identification 
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Figure 7.37 - Comparison between true coning angle and the ones provided by the identified model in 
forward flight along four manoeuvres which were not used for the identification 

 

 

Figure 7.38 - Comparison between true longitudinal flap angle and the ones provided by the identified 
model in hover condition along four manoeuvres which were not used for the identification 
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Figure 7.39 - Comparison between true longitudinal flap angle and the ones provided by the identified 
model in forward flight along four manoeuvres which were not used for the identification 

 

 

Figure 7.40 - Comparison between true lateral flap angle and the ones provided by the identified model 
in hover condition along four manoeuvres which were not used for the identification 

0 5 10 15

-4

-2

0

2

Time [s]

a
1
 [
d

e
g

]
 Longitudinal cyclic doublet 

0 5 10 15
-1

-0.5

0

0.5

Time [s]

a
1
 [
d

e
g

]

   Lateral cyclic doublet    

0 5 10 15
-1.5

-1

-0.5

0

0.5

Time [s]

a
1
 [
d

e
g

]

Main rotor collective doublet

0 5 10 15
-2

0

2

Time [s]

a
1
 [
d

e
g

]

Tail rotor collective doublet

 

 

True Estimated

0 5 10 15
-4

-2

0

2

Time [s]

b
1
 [
d

e
g

]

 Longitudinal cyclic doublet 

0 5 10 15
-4

-2

0

2

Time [s]

b
1
 [
d

e
g

]

   Lateral cyclic doublet    

0 5 10 15
-4

-2

0

2

Time [s]

b
1
 [
d

e
g

]

Main rotor collective doublet

0 5 10 15
-4

-2

0

2

Time [s]

b
1
 [
d

e
g

]

Tail rotor collective doublet

 

 

True Estimated



Multi-Step Estimation Approach for Aerospace Vehicle System Identification from Flight Data  

Antonio Vitale 113

 

Figure 7.41 - Comparison between true lateral flap angle and the ones provided by the identified model 
in forward flight along four manoeuvres which were not used for the identification 

 

 

Figure 7.42 - Zoom of Figure 7.41: the lateral flapping model catches the high frequency oscillations 
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7.2.3.3 Third Identification Step Results 

In order to estimate the unknown parameters of the force model, the data of all the 3-2-1-1 

manoeuvres were concatenated and provided as input to the identification process as one single 

test. Also in this case, since the structure of the identified model was completely different from 

the one used for flight data generation, the true values of the estimated parameters were not 

available. Therefore the quality of the estimation was evaluated through the comparison of the 

true force and moment components time histories with the ones provided by the model. This 

comparison was executed both on the data of the 3-2-1-1 manoeuvres used for the identification 

and on the data of the doublet manoeuvres, which were not used for identification (acid test). 

Since the last test results are more significant, they are only shown for the sake of brevity. 

Identification results for the hover conditions are presented from Figure 7.43 to Figure 7.48. 

Identification results for the forward flight are presented from Figure 7.49 to Figure 7.54. In both 

flight conditions, the estimation of FZ and MY components are excellent. For the other 

components the identified model is able in mean to reproduce the true time histories but it 

doesn’t catch some high amplitude oscillations at frequency of about 4 Hz, which are mainly 

present during the execution of the longitudinal cyclic manoeuvre. The current structure of the 

identified model does not allow a satisfactory capturing of the phenomenon. For what concern 

the FX and FY components, a preliminary analysis shown that these oscillations are correlated to 

the main rotor single blade lead-lag angle, which oscillates at a frequency slightly greater than 

the main rotor one (about 4 Hz). The introduction of this variable into the model structure could 

solve the problem, but it requires the identification of the lead-lag dynamic model, increasing the 

complexity of the overall identification process. However, these oscillations are filtered out by 

the fuselage dynamics, therefore their effect on the vehicle dynamics is negligible. 

On the other side, the model is able to match the oscillations in forward flight at about 16 Hz (4 

times the main rotor frequency). They are due to the periodic behaviour of the four bladed main 

rotor, which is taken into account considering the 4/rev force and moment components 

associated with the rotor angular position. The described oscillation phenomena are enhanced in 

Figure 7.55, which is a zoom of Figure 7.49. The figure shows the high amplitude oscillations, 

which are not fitted by the model in the first 0.5 seconds of the plot, and the high frequency 

oscillation, fitted by the model in the following 1 second. 



Multi-Step Estimation Approach for Aerospace Vehicle System Identification from Flight Data  

Antonio Vitale 115

 

Figure 7.43 - FX component in hover: comparison between the true time histories and the ones provided by 
the model along four manoeuvres which were not used for the model identification (acid test) 

 

Figure 7.44 - FY component in hover: comparison between the true time histories and the ones provided by 
the model along four manoeuvres which were not used for the model identification (acid test) 
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Figure 7.45 - FZ component in hover: comparison between the true time histories and the ones provided by 
the model along four manoeuvres which were not used for the model identification (acid test) 

 

Figure 7.46 - MX component in hover: comparison between the true time histories and the ones provided by 
the model along four manoeuvres which were not used for the model identification (acid test) 
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Figure 7.47 - MY component in hover: comparison between the true time histories and the ones provided by 
the model along four manoeuvres which were not used for the model identification (acid test) 

 

Figure 7.48 - MZ component in hover: comparison between the true time histories and the ones provided by 
the model along four manoeuvres which were not used for the model identification (acid test) 
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Figure 7.49 - FX component in forward flight: comparison between the true time histories and the ones 
provided by the model along four manoeuvres which were not used for the model identification (acid test) 

 

Figure 7.50 - FY component in forward flight: comparison between the true time histories and the ones 
provided by the model along four manoeuvres which were not used for the model identification (acid test) 
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Figure 7.51 - FZ component in forward flight: comparison between the true time histories and the ones 
provided by the model along four manoeuvres which were not used for the model identification (acid test) 

 

Figure 7.52 - MX component in forward flight: comparison between the true time histories and the ones 
provided by the model along four manoeuvres which were not used for the model identification (acid test) 
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Figure 7.53 - MY component in forward flight: comparison between the true time histories and the ones 
provided by the model along four manoeuvres which were not used for the model identification (acid test) 

 

Figure 7.54 - MZ component in forward flight: comparison between the true time histories and the ones 
provided by the model along four manoeuvres which were not used for the model identification (acid test) 
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Figure 7.55 - Zoom of the first plot in Figure 7.49: the FX model fits the high frequency oscillations but not 
the high amplitude low frequency ones 

7.2.4 Model Validation 

The complete simulation model of the rotorcraft was obtained by assembling the whole set of 

estimation results. It was implemented in MATLAB/SIMULINK environment, as shown in 

Figure 7.56 

 

Figure 7.56 – First level block diagram of the identified rotorcraft model implemented in SIMULINK 
environment 
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1), and a sequence of doublets applied to the four commands starting from trimmed forward 

flight at 60knots (test 2). When generating the simulated flight data in FLIGHTLAB, the flight 

control system was active and modifies the ideal test manoeuvres. The time histories of the 

actual vehicle commands, that are recorded and provided as input to the identified model, are 

presented in Figure 7.57 and Figure 7.61. Each simulation lasted 8 seconds and the simulation 

outputs were compared with the corresponding flight measurements provided by FLIGHTLAB. 

As already said, this type of validation is very critical because small identification errors could 

translate in dramatic differences in the simulation outputs till to the divergence, due to the 

absence of a flight control system which allows tracking the reference trajectory, that is, the 

measured one.  

The acid test validation results are shown from Figure 7.58 to Figure 7.60 for test 1 and from 

Figure 7.62 to Figure 7.64 for test 2. The fitting of the flight data is good for the perturbed hover 

test and it is excellent for the forward flight condition, both for fuselage dynamics and rotor 

dynamics. The high amplitude force and moment oscillations described in the previous section, 

which the force model isn’t able to reproduce, have negligible effect on the vehicle dynamics. 

Concerning main rotor coning, although the model generally works well, it is still not able to 

catch the spikes which follow the step command (see Figure 7.64).  

 

Figure 7.57 - Commands time histories (test 1) 
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Figure 7.58 - Comparison between the true time histories of the velocity and the corresponding time histories 
provided by the identified model (test 1) 

 

Figure 7.59 - Comparison between the true time histories of the angular rate and the corresponding time 
histories provided by the identified model (test 1) 
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Figure 7.60 - Comparison between the true time histories of the rotor dynamics and the corresponding time 
histories provided by the identified model (test 1) 

 

Figure 7.61 - Commands time histories (test 2) 
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Figure 7.62 - Comparison between the true time histories of the velocity and the corresponding time histories 
provided by the identified model (test 2) 

 

Figure 7.63 - Comparison between the true time histories of the angular rate and the corresponding time 
histories provided by the identified model (test 2) 
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Figure 7.64 - Comparison between the true time histories of the rotor dynamics and the corresponding time 
histories provided by the identified model (test 2) 
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8 EXPERIMENTAL ASSESSMENTS 

The proposed identification methodology was applied to actual flight data of the CIRA FTB1 

vehicle, in order to identify the nominal aerodynamic model and reduce the related pre-flight 

uncertainties. Before describing the identification results, the FTB1 vehicle and the performed 

flight tests are introduced. 

8.1 CIRA FTB1 Vehicle 

In the framework of the Unmanned Space Vehicle (USV) program, the Italian Aerospace 

Research Centre developed two identical autonomous Flying Test Beds (called FTB1 but 

nicknamed Castore and Polluce), in order to perform flight missions for investigation of 

subsonic, transonic and low supersonic regimes. The FTB1 vehicles are unmanned and un-

powered. They are winged slender configurations, with two sets of aerodynamic effectors: the 

elevons, that provide both pitch control when deflected symmetrically and roll control when 

deflected asymmetrically, and the rudders, that deflect only symmetrically to allow yaw control. 

Lateral-directional stability is enhanced by means of two ventral fins. A Hydraulic Actuator 

System controls the aerodynamic effectors. The on-board computers host the software that 

implements the guidance, navigation and control algorithms and manages subsystems and 

experimental payloads. One of the FTB1 vehicles is shown in Figure 8.1, while Figure 8.2 

presents its three-view [AR1]. 

 

Figure 8.1 - FTB1 vehicle  
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Figure 8.2 - FTB1 three-view 

The navigation sensors suite of the FTB1 vehicles is composed of 

• Commercial-Off-the-Shelf Inertial Measurement Unit (IMU), which uses three 

accelerometers, three fibres optic gyroscopes and a GPS unit to provide the inertial 

navigation measurements, that is, vehicle attitude and angular rate, CoM acceleration, 

velocity and position. 

• Three-axial Magnetometer (MAG), which measures the magnetic field in order to 

compute the magnetic heading. 

• Air Data System (ADS), composed of Air Data Computer (ADC) and air data boom, 

located on the nose of the vehicle; the ADS provides measurements of aerodynamic 

angles, static, impact and total pressure, static and total temperature, altitude, rate of 

climb, IAS, TAS, Mach number. 

• Hydraulic System, which is the FTB1 actuation system and also performs the 

measurements of the angular deflections of the aerodynamic surfaces. 

All the measurements gathered by the navigation suite during the FTB1 flight tests were low-

pass filtered prior to recording, in order to reduce the noise. Moreover after the flight they were 

pre-processed to check calibration and synchronisation and to remove biases, in order to get the 

best estimation of navigation data [AR19]. 
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8.2 DTFT Missions 

The FTB1 vehicles performed two test missions in winter 2007 [AR20], [AR21] and in spring 

2010 [AR19], [AR22], named Dropped Transonic Flight Test 1 and 2 (DTFT1 and DTFT2). 

Both mission profiles consisted of three main phases 

- the ascent phase during which the carrier brought the vehicle at the release altitude (about 

20 km for the first mission and 24 km for the second one) by means of a stratospheric 

balloon; 

- the flight phase where the vehicle left the carrier and started a free flight accelerating to 

achieve the maximum Mach number; 

- the deceleration phase where the vehicle opened a parachute system and ended its 

mission by water splash down. 

Key mission phases of DTFT missions are shown from Figure 8.3 to Figure 8.5, whereas the 

time histories of Mach number and angle of attack for the two missions are presented in Figure 

8.6. For both missions, the examined time frame starts 17 seconds after the vehicle drop, when 

the air data measurement noise was suitably low. 

 

Figure 8.3 - Pictorial representation of the DTFT1 Missions Profile 
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Figure 8.4 - Pictorial representation of the DTFT2 Missions Profile 

 

Figure 8.5 - DTFT2 Altitude vs. Mach profile (relevant phases are highlighted in the textboxes) 

For DTFT1 Mach number varied from 0.57 to about 1.08, whereas the angle of attack was held 

nearly constant at about 7 degrees until 39 s. Transonic regime started about 31 s after the drop, 

where the displacement of the aerodynamic centre created a large perturbation in the pitch 

moment. At t = 39 s, due to a problem concerning the parachute deployment system, the flight 

control system switched into a safety mode. Consequently the aerodynamic control surfaces were 

brought to the neutral position, leading to the variations of α visible in the figure at t > 39 s that 
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resulted from the excitation of the short period dynamics of the vehicle. For the whole flight, the 

vehicle trajectory was basically longitudinal with the sideslip angle accurately tracking the 0 

degree reference value. The flight was very short, lasting only about 44 seconds. 

 

Figure 8.6 - Angle of attack and Mach number time histories for DTFT1 and DTFT2 

Based on first mission experience, second mission was more complex. After release, the vehicle 

performed a pitch-up manoeuvre to reach and hold the specified value of the angle of attack 

while accelerating up to Mach 1.2 at about 15 km altitude; then a pull down manoeuvre was 

performed to keep the Mach number constant while a sweep in angle of attack was executed. The 

manoeuvre allowed the verification of the aerodynamic behaviour of the vehicle at constant 

Mach and variable angle of attack in full transonic regime as it would happen in a wind tunnel 

facility. At the end of this manoeuvre the vehicle began a pull up manoeuvre to decelerate to 

very low speeds (below Mach 0.2) and reached an altitude lower than 5 km where a subsonic 

parachute was opened, allowing a safe splash down of the vehicle. Transonic regime started 

about 30 s after the drop, while after 77 s the regime was again subsonic. The vehicle performed 

another sweep in angle of attack in subsonic regime at the end of the mission. The sideslip angle 

was almost always close to 0 degree reference value.  

8.3 Model Identification Results and Discussion 
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pressure, total temperature and aerodynamic effectors deflections were provided as input to the 

identification process. During DTFT1, these data were recorded at different sampling rates 

(10Hz and 100Hz). They were re-sampled and synchronized at 100Hz prior to perform further 

analyses [AR23]. In the DTFT2 mission all the data were gathered at 100Hz. A compatibility 

check on the available measurements was also performed, by using kinematic relations [B1], in 

order to check the measurements consistency and the correctness of the measurement error 

characterisation. 

Post-flight meteorological data, namely, static pressure, static temperature and mean wind 

velocity, provided by the European Centre for Medium-Range Weather Forecasts were also 

collected for identification purpose. 

8.3.1 DTFT1 Data Analysis 

Model identification was carried out using the flight data collected in the time interval [17, 44] 

seconds after the drop. Aerodynamic force and moment coefficients, wind velocity, static 

temperature and pressure, and vehicle state were estimated in the first identification step. 

In Figure 8.7 the identified aerodynamic coefficients are compared with the ones provided by the 

pre-flight ADB along the DTFT1 trajectory. Although the coefficients returned by the pre-flight 

ADB were not far from the estimated values, an update of the pre-flight database appeared 

necessary. In particular, CL was over predicted as well as CD in the first 10 seconds of the 

considered time frame. The estimated values of Cm were very close to zero up to 39s flight time, 

whereas the same coefficient computed using the pre-flight ADB assumed negative values. 

Significant discrepancies between predicted and estimated values were also apparent in the plot 

of Cn versus time. Finally, the UKF notably reduced the uncertainties with respect to pre-flight 

ADB, as shown in Figure 8.8.  

Figure 8.9 presents the comparison between the horizontal components of wind velocity 

estimated by UKF and computed through ECMWF. The UKF, extending the frequency content 

of wind velocity with respect to ECMWF, improved the evaluation of the wind field experienced 

by the vehicle during the flight which, in turn, had a positive effect on the filtering of the 

aerodynamic angles.  
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Figure 8.7 – Aerodynamic coefficients time histories estimated by UKF and provided by the pre-flight ADB 

 

 

Figure 8.8 – Comparison between pre-flight and UKF estimation of the uncertainties on the aerodynamic 
coefficients along the DTFT1 trajectory 

0 10 20

-0.5

0

0.5
C

L

0 10 20
-5

0

5
x 10

-3

C
l

0 10 20
0.05

0.1

0.15

0.2

C
D

0 10 20

-0.2

0

0.2

C
m

0 10 20
-0.1

0

0.1

Time [s]

C
Y

0 10 20
-0.02

-0.01

0

0.01

Time [s]

C
n

 

 

UKF pre-flight ADB

20 25 30 35 40
0

0.05

0.1

C
L

20 25 30 35 40
0

2

4
x 10

-3

C
l

 

 

20 25 30 35 40
0

0.02

0.04

C
D

20 25 30 35 40
0

0.05

0.1

C
m

20 25 30 35 40
0

0.02

0.04

Time [s]

C
Y

20 25 30 35 40
0

0.005

0.01

Time [s]

C
n

 

 

3σ unc UKF 3σ unc ADB



Multi-Step Estimation Approach for Aerospace Vehicle System Identification from Flight Data  

Antonio Vitale 134

 

Figure 8.9 – Horizontal components of wind velocity (in NED reference frame) estimated by UKF and 
provided by ECMWF 
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respect to α and δe. Each longitudinal coefficient was analysed independently and parameter 

estimation in subsonic and supersonic regimes was also carried out independently. Figure 8.10 

shows the convergence characteristics of the UFK estimation of the parameters related to the lift 

coefficient in subsonic regime. Similar plots were obtained for the other coefficients.  

 

Figure 8.10 - Estimation of the subsonic lift parameters 

The estimated parameters are listed in Table 8.1 and Table 8.2 for subsonic and supersonic 

regimes, respectively. The tables also show the pre-flight values of the parameters and the 

estimation uncertainties evaluated by the UKF. LS and UKF estimations are always very close. 

All the analytical model parameters which are not listed in the table were held constant to their 

pre-flight values. 

Gain 
related to 

Pre-flight 
value 

UKF 
Estimation 

LS 
Estimation 

UKF Standard 
deviation 

CL 0 0.04 5e-4 5e-4 1e-4 
CL α 4.41 4.04 4.04 1e-3 
CL δe 1.59 1.23 1.23 1e-3 
CD 0 0.059 0.048 0.051 1e-3 
CD α -6e-5 2e-4 3e-4 1e-5 
CD α

2 4.12 3.11 2.81 0.05 
Table 8.1 – Estimated aerodynamic parameters in subsonic regime 

20 25 30 35
-0.2

-0.1

0

0.1

0.2

Time [s]

θ
 L s

u
b
 1

 

 

20 25 30 35
1

2

3

4

5

Time [s]

θ
 L s

u
b
 2

20 25 30 35
-5

0

5

10

Time [s]

θ
 L s

u
b
 9 Pre-flight value

UKF estimation

LMS estimation



Multi-Step Estimation Approach for Aerospace Vehicle System Identification from Flight Data  

Antonio Vitale 136

 
Gain 

related to 
Pre-flight 

value 
UKF 

Estimation 
LS 

Estimation 
UKF Standard 

deviation 
CL 0 -0.32 0.19 0.19 3e-3 
CL α 8.14 7.97 7.97 0.015 
CL δe 0.86 0.70 0.69 6e-3 
CD 0 -1.29 -1.18 -1.18 5e-3 
CD α -0.13 -0.30 -0.22 0.02 
CD α

2 4.81 6.32 7.16 0.11 
Cm 0 -0.06 4e-3 4e-3 7e-3 
Cm α -0.22 -0.17 -0.17 0.01 
Cm q -4.15 -6.79 -6.67 4.56 
Cm δe -1.49 -0.98 -0.98 0.07 

Table 8.2 - Estimated aerodynamic parameters in supersonic regime 

8.3.2 DTFT2 Data Analysis 

The DTFT2 mission allowed to validate on a different trajectory the post flight results of DTFT1 

and to further refine the aerodynamic model by estimating also several lateral-directional 

parameters. 

The time histories of longitudinal global aerodynamic coefficients estimated in the first 

identification step are plotted in Figure 8.11, denoted as UKF coefficients. In the same figure, the 

analogous trajectories provided by the analytical aerodynamic model identified from the DTFT1 

data, denoted in the following as PFA1 model, are reported. For lift and drag coefficients the 

matching between UKF and PFA1 was very good in the time frames [30, 70] seconds and after 

120 seconds. Instead, the PFA1 was not able to fit the UKF estimation between 70 and 120 

seconds (especially for CL). The PFA1 model was identified using the data of DTFT1. In that 

mission, the vehicle flew at an angle of attack of about 7 degrees in subsonic regime and for few 

seconds at angle of attack varying between about -5 and 7 degrees in supersonic regime. The 

PFA1 model was able to match the UKF estimation along the DTFT2 trajectory when the flight 

conditions were similar to the one experienced in DTFT1. When an extrapolation to other flight 

envelope points was requested, the model did not work very well, as it happened between 70 and 

120 seconds. Concerning the pitching moment coefficient, PFA1 was very close to UKF 

estimation, but it was not able to reproduce exactly the about zero mean trajectory experienced in 

flight. In conclusion, the PFA1 model could be improved if more test points were used for the 

identification of its parameters. 
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The estimated trajectories of aerodynamic coefficients are also compared in Figure 8.12 with the 

one provided by the pre-flight ADB. Matching between ADB and UKF was generally good, but 

for Cm in most of the trajectory, CD in the very last part of the trajectory and lateral directional 

coefficients in the time interval from 60s to 80s. Since in transonic regime the sideslip angle was 

always null, except for the interval from 60s to 80s, where it varies between 2 degrees and -2 

degrees, it could be argued that ADB lateral directional coefficients seem to be too sensitive to 

sideslip angle variations in transonic regime. As for the pitching moment coefficient, the 

trajectory trends of the ADB was completely different from the UKF. The vehicle performed the 

mission in conditions very close to rotational equilibrium with respect to pitch, indeed the 

estimated pitch moment was about zero. On the contrary, the Cm profile provided by the ADB 

varied significantly and it was most of the time different from zero.  

Based on these considerations, a refinement of the model was performed in the second 

identification step. 71 aerodynamic parameters were estimated (31 longitudinal and 40 lateral-

directional) using the LS technique, and the obtained values are listed in Table 8.3 and Table 8.4. 

The analytical aerodynamic model identified from DTFT2 data was used to compute the 

aerodynamic coefficients time histories along the DTFT2 trajectory. The obtained results are 

shown in Figure 8.13 (for the force coefficients) and Figure 8.14 (for the moment coefficients), 

where they are compared with the time histories estimated by the UKF in the first identification 

step. The matching was generally very good, both in subsonic and in supersonic regimes, for all 

the coefficients but the pitching moment, the mean value of which was different from zero in 

some parts of the trajectory. This problem could be due to some of the parameters which were 

not updated using the flight data. However also for this coefficient the identified model worked 

notably better than the pre-flight ADB. Moreover, model identification allowed to significantly 

reduce the aerodynamic uncertainties, thus supporting the development of enhanced flight 

control algorithms suited to reliably and accurately manage the vehicle trajectories in an 

extended flight envelope. 
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Figure 8.11 - Comparison between longitudinal coefficients estimated in the first step (UKF) and provided by 
the analytical aerodynamic model identified from DTFT1 data (PFA1) 

 
 

 

Figure 8.12 - Pre-flight ADB and estimated aerodynamic coefficients versus time 
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Aerodynamic 
Coefficient 

Subsonic Supersonic 

Gain of 
Function 

Estimated 
Value 

Uncertainty 
Range (1σ) 

Gain of 
Function 

Estimated 
Value 

Uncertainty 
Range (1σ) 

CL 

L

sub 1ϑ  0.08618 0.001593 L

sup 1ϑ  -0.00169 0.0043904 

L

sub 2ϑ  2.763 0.020501 L

sup 2ϑ  8.1499 0.045735 

L

sub 3ϑ  3.1858 0.053243 L

sup 3ϑ  -23.482 0.64417 

L

sub 4ϑ  -14.909 0.72507 - - - 

L

sub 9ϑ  1.4244 0.001593 L

sup 9ϑ  0.7604 0.014162 
L

sub 10ϑ  2.9644 0.020501 - - - 

CD 

D

sub 1ϑ  0.05962 0.00085754 D

sup 1ϑ  -1.3624 0.005843 

D

sub 2ϑ  0.00049 2.328e-005 D

sup 2ϑ  -1.4503 0.093297 

D

sub 3ϑ  2.2953 0.025972 D

sup 3ϑ  7.9961 0.10558 

D

sub 4ϑ  0.7757 0.31419 - - - 

D

sub 9ϑ  0.01161 0.02735 D

sup 9ϑ  0.2377 0.02958 

D

sub 10ϑ  3.7754 0.34646 - - - 

Cm 

m

sub 1ϑ  -0.01048 0.002284 m

sup 1ϑ  0.000974 0.0042446 

m

sub 2ϑ  -0.01081 0.003891 m

sup 2ϑ  -0.01824 0.0034904 

m

sub 3ϑ  0.2852 0.062878 m

sup 3ϑ  1.983 0.46174 

m

sub 5ϑ  -10.073 4.9619 - - - 

m

sub 6ϑ  1.5538 1.0268 - - - 
m

sub 9ϑ  -0.2610 0.035673 m

sup 9ϑ  -0.1207 0.017268 
m

sub 10ϑ  -2.4723 0.31154 - - - 

Table 8.3 – Estimated longitudinal aerodynamic parameters 
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Aerodynamic 
Coefficient 

Subsonic Supersonic 

Gain of 
Function 

Estimated 
Value 

Uncertainty 
Range (1σ) 

Gain of 
Function 

Estimated 
Value 

Uncertainty 
Range (1σ) 

CY 

Y

sub 1ϑ  -1.4926 0.028766 Y

sup 1ϑ  0.5956 0.039792 

Y

sub 2ϑ  0.00045 0.00016305 Y

sup 2ϑ  -50.557 2.9226 

Y

sub 6ϑ  -14.469 1.0317 - - - 

Y

sub 12ϑ  0.5394 0.033496 Y

sup 12ϑ  145.6 2.517 

Y

sub 13ϑ  -2.4808 0.097419 Y

sup 13ϑ  1.9208 0.056646 

Y

sub 15ϑ  1.4136 0.03013 Y

sup 15ϑ  36.236 0.85527 

Y

sub 16ϑ  -9.4546 0.31564 - - - 

Cl 

l

sub 1ϑ  0.01149 0.004649 l

sup 1ϑ  0.04745 0.003043 

l

sub 2ϑ  -0.2928 0.056071 l

sup 2ϑ  -17.483 1.0451 

l

sub 3ϑ  -0.6212 0.054896 l

sup 3ϑ  -2.1736 0.193 

l

sub 4ϑ  -1.1229 0.5649 - - - 

- - 0.003207 l

sup 7ϑ  -0.8424 0.15954 

l

sub 12ϑ  0.1267 0.006955 l

sup 12ϑ  -0.2850 0.014899 

- - 0.010674 l

sup 13ϑ  
0.03483 0.002209 

l

sub 15ϑ  -0.05158 0.004649 - - - 

l

sub 17ϑ  0.03185 0.056071 l

sup 17ϑ  0.9995 0.021953 

Cn 

n

sub 1ϑ  -0.01527 0.003319 n

sup 1ϑ  -0.1036 0.0055153 

n

sub 2ϑ  0.6422 0.053631 n

sup 2ϑ  0.01066 0.0004218 

n

sub 3ϑ  -0.9100 0.24872 - - - 

n

sub 4ϑ  5.4934 0.63716 - - - 

n

sub 6ϑ  12.454 1.4386 n

sup 6ϑ  -400.95 12.479 

n

sub 12ϑ  0.1141 0.008945 n

sup 12ϑ  0.1061 0.003373 

n

sub 13ϑ  -0.3344 0.066093 n

sup 13ϑ  -9.4601 0.28657 

n

sub 15ϑ  -0.03538 0.004323 n

sup 15ϑ  -1.1273 0.027418 

Table 8.4 - Estimated lateral-directional aerodynamic parameters 
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Figure 8.13 - Comparison between aerodynamic force coefficients estimated in first identification step and 
provided by the identified model 

 

Figure 8.14 - Comparison between aerodynamic moment coefficients estimated in first identification step and 
provided by the identified model 
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8.4 Model Validation 

For both the examined missions, the identification results were validated through an open loop 

simulation (that is, without considering the action of the flight control system). The in-flight 

measurements of aerodynamic effectors deflections, together with the estimated wind velocity, 

were provided as input to the vehicle simulation model, which also included the identified 

analytical aerodynamic model, and the simulation outputs were compared with the 

corresponding flight measurements.  

The aerodynamic model identified from the DTFT1 data only provided lift and drag coefficients 

along the whole trajectory and pitch moment coefficient in supersonic regime. The coefficients 

which cannot be computed by the aerodynamic model, that is the subsonic pitch moment and the 

lateral-directional aerodynamic coefficients, were replaced by the time histories estimated in the 

first identification step. The output of the simulation for the DTFT1 mission are shown in Figure 

8.15, where excellent agreement between flight data and simulation output is apparent. It is 

worth noting that, if the same verification was performed with the pre-flight ADB, the simulation 

results showed an unsteady behaviour of the vehicle, which is totally in disagreement with the 

actual flight measurement. 

The aerodynamic model identified from the DTFT2 data allowed computing all the aerodynamic 

coefficients. If the complete aerodynamic model was used in the open loop simulation, the 

simulation outputs diverged from the flight measurements. If the aerodynamic force coefficients 

were computed through the identified model, whereas the moment coefficients were replaced by 

their time histories estimated in the first identification step, then simulation results were very 

close to the flight measurements, as shown in Figure 8.16 and Figure 8.17 and in Table 8.5, 

where the Theil’s coefficients for this simulation are reported. Theil’s coefficients are lower than 

0.25 for all the measurements, confirming the good quality of the matching. These results 

corroborate the reliability of the estimated force model, whereas some more investigations are 

required on the aerodynamic moments model. It is worthy to note that the difficulty to validate 

the model for the aerodynamic moments (in particular the pitching moment) was already 

enhanced when simulated flight data were used to assess the identification methodology, as 

described in section 7.1.4. 
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Figure 8.15 – Time histories comparison of flight measurements and estimated model responses for DTFT1 
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Figure 8.16 - Time histories comparison of flight measurements and estimated model responses for DTFT2 

(Euler angles and angular rate) 

 
 
 
 

 

20 30 40 50 60 70 80 90 100 110 120 130
-100

0

100

φ
 [
d

e
g

]

 

 

20 30 40 50 60 70 80 90 100 110 120 130
-100

0

100

θ
 [
d

e
g

]

 

 

20 30 40 50 60 70 80 90 100 110 120 130
-50

0

50

p
 [
d

e
g

/s
]

 

 

20 30 40 50 60 70 80 90 100 110 120 130
-10

0

10

q
 [
d

e
g

/s
]

 

 

20 30 40 50 60 70 80 90 100 110 120 130
-5

0

5

Time [s]

r 
[d

e
g

/s
]

 

 

Flight measurements Identified model output

20 30 40 50 60 70 80 90 100 110 120 130
-150

-100

-50

ψ
 [
d

e
g

]

 

 



Multi-Step Estimation Approach for Aerospace Vehicle System Identification from Flight Data  

Antonio Vitale 145

 
Figure 8.17 - Time histories comparison of flight measurements and estimated model responses for DTFT2 

(velocity and aerodynamic angles) 
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Measurement Theil’s Coefficient 

roll angle 0.0423 

pitch angle 0.0202 

yaw angle 0.0052 

roll rate 0.0073 

pitch rate 0.0141 

yaw rate 0.0204 

north velocity 0.0235 

east velocity 0.0067 

down velocity 0.0164 

angle of attack 0.0369 

angle of sideslip 0.2277 

Table 8.5 – Theil’s coefficients for the DTFT2 mission 
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9 CONCLUSIONS 

An innovative methodology was presented in this thesis, which is able to face some of the open 

issues and challenges of aerospace vehicle system identification from flight data. The 

methodology was applied to determine the dynamical characteristics of a rotorcraft vehicle and 

the transonic aerodynamic model of an atmospheric re-entry space demonstrator. In the latter 

application, specific identification manoeuvres were not performed, due to safety constraints. 

Proposed system identification methodology is carried out in the framework of a multi-step 

approach, which allows to decompose the complex starting problem in simplified sub-problems 

and to specify a suitable estimation technique compliant with each sub-problem objective, 

exploiting the advantage of both time-domain and frequency-domain methods. The 

straightforward combination of several consolidated estimation techniques brings to an identified 

model which is applicable in a wide frequency range. Furthermore, the proposed methodology is 

suitable to deal with problems where identification manoeuvres are minimised, indeed the 

identification can be executed only for the sub-model which is in fact identifiable. 

The definition of the model structure is a critical task in system identification process. Indeed in 

the present thesis the selection of suitable models was performed for both the examined test 

cases, based on physical considerations and engineering judgment. 

Another relevant peculiarity of the proposed approach concerns the exploitation of all the 

available a priori information and the rigorous management of all the uncertainties involved in 

the system identification procedure. As a result, a reliable, complete, and structured statistical 

characterisation of the identified model could be obtained. 

The effectiveness of the system identification methodology was demonstrated through numerical 

assessments, which enhanced the capability to catch the true values of the model parameters and 

to reproduce the phenomena of interest. Moreover, the application to actual flight data of the 

CIRA FTB1 re-entry demonstrator allowed to validate and refine the available pre-flight 

aerodynamic model of the vehicle, in terms of nominal values update and significant reduction 

on model uncertainties.  

Although more investigations are still needed, in particular concerning the identification of the 

nominal values for the aerodynamic moments, the obtained results are very promising and justify 
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the importance of flight tests and, in particular, of system identification from flight data. Indeed, 

the availability of an updated aerodynamic model represents a fundamental step for the 

development of the upgraded version of the Guidance, Navigation and Control system for the 

next missions of the same configuration, where the accuracy of estimates and the reliability of 

the model over an expanded flight envelope will be carefully analysed and assessed. 
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10 APPENDIX A: REFERENCE FRAMES 

The following reference frames are used for modelling purposes in the present thesis [B30], 

[B47], [AR18]. 

• NED Reference Frame 

The North-East-Down (NED) coordinate system is used in combination with flat non rotating 

Earth assumption in order to be considered an inertial reference system. This orthogonal 

reference frame has its origin on a point of the Earth surface, typically assumed to be 0m altitude 

with a vertical axis (z) directed positively towards the Earth centre and the horizontal plane with 

x axis directed through the North and y axis directed to East.  

• Body Reference Frame 

The Body-fixed Reference (BFR), indicated with the subscript B, is a right-handed triad, fixed 

with the vehicle, with the origin in its Centre of Mass. The longitudinal axis XB is placed in the 

vehicle plane of symmetry, with its positive direction toward the nose, the ZB axis is normal to 

XB, placed in the same plane of symmetry, and direct positively downward, and the YB axis 

completes the triad, resulting positively oriented toward the right side. The vehicle attitude with 

respect to the Inertial Reference Frame is defined by three Euler angles: 

� Ψ (Yaw Angle), the first rotation around the z-axis of the Inertial Reference Frame; 

� Θ (Pitch Angle), the second rotation, around the y-axis of the Reference Frame 

obtained after the first rotation; 

� Φ (Roll Angle), the last rotation, around the x-axis of the Reference Frame obtained 

after the second rotation. 

The rotation matrix that allows to pass from the Inertial Reference Frame to the Body Reference 

Frame is the following: 
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Figure 10.1 – NED and Body Reference Frames 

Eq. 131 
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• Wind Reference Frame 

The Wind Reference Frame, indicated with the subscript W, presents the XW directed oppositely 

to the free-stream velocity, the z-axis perpendicular to XW, in the plane of symmetry of the 

vehicle, and the YW axis completing the triad in a right-handed way. In Figure 10.2 the 

aerodynamic angles are also indicated, that is, the Angle of Attack of the vehicle (α), defined as 

the angle between the projection of the direction of the free-stream velocity on the xz plane of 

the body frame, and the XB axis itself, and the Angle of Sideslip (β), defined as the angle 

between the free-stream velocity and the xz plane of the body frame. α is positive when the 

vehicle noses-up, whereas β is positive when the free-stream comes from the right side of the 

pilot. 

The rotation matrix that allows to pass from the Wind Reference Frame to the Body Reference 

Frame is the following: 
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Figure 10.2 – Wind Reference Frame 

Eq. 132 
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• Non-Rotating Shaft Reference Frame 

This Reference Frame is indicated with the subscript S and used for rotorcraft, only. Its centre is 

in the rotor hub, and can be obtained from the Body Reference Frame with a rotation iθ around 

YB, followed by a rotation iφ around the x-axis of the Reference Frame obtained after the first 

rotation, where iθ and iφ define the longitudinal and lateral tilt of the shaft with respect to the 

vehicle body axes. 

The rotation matrix that allows to pass from the Body Reference Frame to the Non-Rotating 

Shaft Frame is the following: 

Eq. 133 
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Figure 10.3 – Non-Rotating Shaft Reference Frame 

• Rotating Shaft Reference Frame 

This Reference Frame is indicated with the subscript r and used for rotorcraft, only. It is obtained 

starting from the Non-Rotating Shaft one with a π/2-ψ rotation around YS, where ψ is the Blade 

Azimuth Angle, conventionally considered 0° when the blade is parallel to the tail of the vehicle, 

and measured in the direction of rotation. 

The rotation matrix that allows to pass from the Non-Rotating Shaft Reference Frame to the 

Rotating Shaft Frame is the following: 

Eq. 134 
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• Multi-Blade Coordinates 

This coordinates system is introduced to compute the aerodynamic force produced by the rotor 

blades, consequently they are used for rotorcraft, only. The dynamics of a rotor system are 

periodic, using multi-blade coordinates an LTI approximation of these dynamics can be derived. 
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A periodic function can be fitted at several discrete points by using the discrete Fourier series. In 

the case of a helicopter rotor, these points are the azimuthal blade locations. Multi-blade 

coordinates use the Nb lowest Fourier coefficients, where Nb is the rotor’s number of blades, to 

transform from rotor blade degrees of freedom in the rotating shaft reference frame to rotor disk 

modes in the non-rotating reference frame, while maintaining the total number of degrees of 

freedom. For example, the flap angle of the rotor blades are βf1, βf2, …, βfN. The blade angles are 

transformed by the discrete Fourier series to the Nb non-rotating frame coefficients β0, β1c, β1s …, 

β0d, which represent the flapping modes of the rotor disk and are denoted as multi-blade 

coordinates. For Nb = 4, the following relation holds: 

Eq. 135 
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The differential term β0d only exists when there is an even number of blades. The multi-blade 

coordinates expansion of the flapping angle βf will be given by 

Eq. 136 ( ) ψβψββψβ sincos 110 scf ++=  

It is assumed that all of the rotor blades behave identically. Figure 10.4 illustrates the meaning of 

the multi-blade coordinates. The coning mode is represented by the collective coordinate β0, 

whereas the longitudinal and lateral tilt modes are represented by the cyclic coordinates β1c and 

β1s, respectively. 
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Figure 10.4 – Multi-blade coordinates system 
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