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As one of life’s finest pleasures, the alluring aroma, the desirable taste, and the typical color of red wines 

have been attracting consumers for more than 2000 years. 

 

 

 

 

Preface 

Quality of food is not easy to define since different working definitions can be formulated 

depending upon who is defining them and the level at which it is measured. One popular 

definition comes from a USDA Marketing Workshop Report cited by Gould (1977). It 

reads “the  combination  of  attributes  or  characteristics  of  a  product  that have  

significance  in  determining  the  degree  of  acceptability  of  the  product  to  a  user”. 

Introducing the definition of the sensory quality, Galvez and Resurrection (1992) term as: 

“the acceptance of the perceived characteristics of a product by consumers who are the 

regular users of the product category or those who comprise the target market”. The way 

we perceive the characteristics of a food as well as beverage is fundamental not only for 

its conceptual quality but also for its acceptance. Steenkamp’s (1989) concept of 

perceived quality attempts to mediate between objective product characteristics and 

consumer preferences. It stresses that perceived quality may differ from objective quality 

because individual assessments of quality are personal and situational (Holm & 

Kildevang, 1996). Since perceived quality is an abstract construct and is of a multi-

dimensional nature, the development of mesuration tool is a question of vital importance, 

for both researchers and practitioners. 

Astringency is an important sensory characteristic of food and beverages containing 

polyphenols. This mouthfeel is mainly due to the interactions of polyphenols with 

salivary proteins, causing complexes formation and their further precipitation, which 

leads to a reduction of the lubricating properties of saliva. As a consequence, sensations 

of dryness, hardness, and constriction are felt in the mouth. Wine astringency is generally 

estimated by tasting, which shows some difficulties in discerning among tastes, is 

labourious and time-spending and may be restricted to a limited number of samples. 

A method that is more objective as possible and that takes into account the 

multiperceptual phenomenon of astringency is the desired goal for many researchers. In 

addition, the possibility to evaluate the influence of both grape and wine phenolics, as 

well as factors and enological practices on astringency is a great challenge also for 

industry to manage wine quality. 
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Prefazione 

La qualità di un alimento non è semplice da definire in quanto la opportuna formulazione 

di tale concetto dipende sia dal soggetto che lo definisce sia dal metodo di misura 

utilizzato per valutarlo. Una delle definizioni più note è quella riportata da Gould (1977) 

nel report del USDA Marketing Workshop: “la combinazione di attributi e caratteristiche 

di un prodotto che hanno importanza nel determinare il grado di accettabilità del prodotto 

da parte del consumatore”. In seguito, introducendo il concetto di percezione sensoriale, 

Galvez and Resurrection (1992), hanno dato la seguente definizione di qualità: 

“l’accettabilità delle caratteristiche percepite di un prodotto dal consumatore che è un 

utilizzatore regolare di quella categoria di prodotto o di quelle che comprendono la stessa 

fascia di mercato”. Il modo con cui percepiamo le caratteristiche di un cibo o di una 

bevanda è fondamentale non solo per la sua qualità intrinseca ma anche per la sua 

accettabilità. Il concetto di qualità sensoriale di Steenkamp (1989) cerca di mediare tra le 

caratteristiche oggettive del prodotto e le preferenze del consumatore. Esso afferma che la 

qualità percepita può differire da quella oggettiva perché le valutazioni individuali della 

qualità sono personali e situazionali (Holm & Kildevang, 1996). Dato che la qualità 

percepita è un costrutto astratto ed è di natura multi-dimensionale, lo sviluppo di un 

metodo di misurazione è di fondamentale importanza, sia per i ricercatori che per i 

praticanti. 

L’astringenza è una importante caratteristica sensoriale di alimenti e bevande contenenti 

polifenoli. Questa sensazione tattile è dovuta principalmente alla precipitazione delle 

proteine salivari da parte dei polifenoli con derivante riduzione delle proprietà lubrificanti 

della saliva. Come conseguenza sensazioni di secchezza, durezza e costrizione vengono 

avvertite in bocca.  

L’astringenza del vino viene generalmente valutata attraverso la degustazione, che però 

presenta alcune problematiche come la difficoltà di distinguerla dagli altri gusti, la 

laboriosità e la necessità di molto tempo per l’addestramento dei giudici, inoltre soltanto 

un ristretto numero di campioni possono essere valutati contemporaneamente. Un metodo 

che sia il più oggettivo possibile e che tiene in conto il fenomeno multi-percettivo 

dell’astringenza, è un obiettivo che molti ricercatori desiderano raggiungere. Inoltre, la 

possibilità di valutare l’influenza che i fenoli sia dell’uva che del vino, così come i fattori 

e le pratiche enologiche, hanno sull’astringenza è una grande sfida anche per l’industria 

per poter meglio gestire la qualità del vino. 
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Introduction 
 

 

Wine quality ideally should be related to intrinsic visual, taste, or aroma characters which 

are perceived as above average for that type of wine. In particular, the gustative balance is 

fundamental in defining the quality of a red wine that is determined by a fine equilibrium 

among three components: sweetness, acidity and astringency.  

Astringency is a tactile sensation evoked in mouth by plant polyphenols-derived products, 

such as red wine. It is felt as the complex of sensations due to shrinking, drawing or 

puckering of the epithelium as a result of exposure to substances such as alums or 

tannins” (ASTM, 1991).  

Astringency may be considered as a negative attribute by the consumer if wines were 

perceived as harsh and rough, because the gustative balance is shifted toward the tannic 

component. If a good compromise between phenolic quantity and quality was achieved it 

can enhance the complexity and palate length during tasting. As additional values, long-

aging potential and antioxidant capacity of wine depend on the phenolics profiling. 

Therefore, although phenolics are useful to prolong wine shelf-life, they can also 

determine an excessive astringency. 

An objective tool able to measure astringency is not still available. The evaluation of 

astringency by tasting is not easy to achieve since this sensation is subject to a certain 

subjectivity and is difficult to discern. For this reason chemical evaluation of astringency 

shows a high potential of interest both for researchers and winemakers. 

 

In this project the focus of the literature review is on the instrumental methods that have 

been developed to assess wine astringency during last decades. It provides an overview of 

the research concerned with elucidating the definition, perception, physiology and 

mechanism of astringency, the interactions between saliva and polyphenols, the pro et 

contra of different methods and the correlation between instrumental and sensory data. 

In the thesis work an innovative method based on the precipitation of human saliva 

(Saliva Precipitation Index, SPI) with grape and wine polyphenols has been developed in 

order to measure astringency.  

 

The principal aim of this thesis is to develop and improve an analytical method able to 

measure wine astringency based on the physiological phenomenon that happens during 

tasting, the precipitation of salivary proteins by polyphenols. The method based on the 

SDS-PAGE of human saliva furnishes and index named saliva precipitation index (SPI) 

able to evaluate the reactivity of polyphenols toward selected salivary proteins. 

An ulterior aim is the application of the SPI to evaluate factors as different stimuli and 

wine constituents, and enological practices influencing astringency. The focus was on the 

analysis of human saliva by the SDS-PAGE electrophoresis and on the reactivity of some 

salivary proteins with polyphenols. Used materials were commercial tannins, as well as 

grape extracts and wines. The special aim was to study how wine components as pH, 

ethanol, mannoproteins and fructose influenced the binding with salivary proteins and 

then the sensory perception of wine. Additionally, the effects of dealcoholisation and 

fining of wine on the SPI and sensory profiles were studied. One special focus was the 

study of the characterization of Aglianico (Vitis Vinifera L. cv) grapes phenolics by 

HPLC-MS and the correlation of the structural characteristics with SPI in order to better 

define oral astringency. 
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“There are no applied sciences....There are only applications of Science and this is a very different 

matter....The study of the applications of Science is very easy to anyone who is master of the theory of it”  

(Louis Pasteur) 

 

 

Chapter One 

 Literature Review 

 

 

 

1.1 Astringency 

 

1.1.1 Definition of astringency 

The term astringency derives from the Latin verb a-strigo (ad-stringo), strinxi, strictum, 

a-stringere that means tightly bind, strongly join. It refers to the propensity of vegetable 

tannins to complex with macromolecules, such as proteins and polysaccharides, and 

alckaloids. This ability to combine with proteins is the basis of the process known as 

vegetable tannage, by which an animal skin is converted to leather. 

The chemical definition of astringency is solely related to the  ability to bind  proteins, 

whereas it is often described in sensory  terms as a roughing, drying or puckering  

sensation in the mouth (ASTM, 2004). Bate-Smith (1954) first speculated  that  astringent  

sensations  were  caused  by  the  increase  in  friction  between  the  mucosal  surfaces  

which  resulted  from  reduction  in  lubrication  as  salivary  proteins  were  bound  by  

astringent  compounds. Often confused with bitterness, which is the sensation perceived 

at the back of the tongue, astringency was also defined as the “dry-mouth’’ feeling 

thought to be produced by the interaction of polyphenols with the proteins of the mouth 

(Singleton and Esau, 1969). Differently from tastes as bitterness, astringency is a 

mouthfeel sensation felt in the oral cavity after the ingestion of food and beverages 

containing polyphenols due to the precipitation of salivary proteins by polyphenols, 

which determines a lack of lubricity and an increased friction between mouth surfaces. 

Astringency then can be defined as a tactile sensation, because: (i) it is perceived on non-

gustatory surfaces such as on soft palate, gingives, lips, (ii) does not show adaptation but 

also (iii) increases upon repeated ingestion.  

 

1.1.2 Astringency sub-qualities 

The soluble complexes and precipitates formed by polyphenols and salivary proteins 

stimulated and activated mechanoreceptors (MRs) hold in mouth. MRs are nerve endings 

that function like those of the skin, except that they have smaller receptive fields and 

lower activation thresholds (Trulsson and Essick, 1997). They differ in structure and 

distribution in the oral cavity and in their response to static and dynamic mechanical 

events. Oral MRs are selectively sensitive to different stimulus properties, such as particle 

size and/or mouth movements, and project such information to the central nervous system 

(Chen and Engelen, 2012). The sensitivity of MRs to astringents may explain astringency 

as a multiple perceptual phenomenon. Generally, it has been described as a combination 

of three sensations as drying, puckering and roughing. These were defined as (i) 'drying', 

the lack of lubrication or moistness resulting in friction between oral surfaces, (ii) 

'roughing', un-smooth texture in the oral cavity marked by inequalities, ridges and/or 
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projections felt when oral surfaces come in contact with one another, (iii) 'puckery', 

drawing or tightening sensation felt in the mouth, lips and/or cheeks, and (iv) 'astringency' 

being the complex of the other three (Lawless et al., 1994). Other terms such as 

'stickiness' (defined as the sensation of the tongue adhering to the palate), 'oily mouthcoat' 

(slippery oil-like film), 'gritty' (the feeling of minute rough granules) and 'powdery' have 

been used by tasters to describe beer astringency (Meilgaard and Muller 1987, Langstaff 

et al. 1991). Peynaud (1987) also gives a list of astringent qualities in wine including 

'noble', 'vegetal', 'bitter', 'acidic', 'harsh' and 'woody'. Gawel et al. (1998) derived 21 

concrete terms such as 'silk', 'emery paper' and 'chalky', as well as 14 abstract descriptors 

to represent the astringency elicited by red wines. More recently, a wide lexicon (“mouth-

feel wheel”) was developed to assist in identifying and classifying a wide range of oral 

sensations elicited by red wine, which included 33 terms or sub-qualities to define 

astringency (Gawel et al., 2001). Among these harsh, unripe, dynamic, and drying have 

been found to define astringency as a negative sensation, while the complex and 

mouthcoat qualities have been associated to a positive impact. These sub-qualities were 

also associated with touch standards when utilized to describe the tactile astringent 

sensations in the mouth elicited by red wines (De Miglio and Pickering, 2008). The wide 

vocabulary that characterize astringency, reveals that this tactile sensation is not easy to 

define and that the structural composition of an astringent compound may determine a 

different reactivity towards salivary proteins and then a different perception in mouth.  

 

1.1.3 Mechanism of perception 

The perception of astringency is basically a dynamic process, that continuously changes 

and evolves to reach a maximum of intensity once red wine is ingested. Following the 

physiological course, what happens in mouth during wine tasting? When a sip of wine is 

made, a volume of wine is introduced in the oral cavity. According to sensory protocols, 

it is necessary to hold wine in the mouth for almost 8 s, during which wine constituents 

mix with saliva at a temperature of 37 °C. After this time, wine can be expectorated or 

ingested together with saliva. Astringency takes many seconds (15 s) to develop fully 

(Kallithraka et al., 2001). As a dynamic sensation, astringency takes time to develop 

fully. TDS sensory studies on wine stated that after the sweet, sour and bitter tastes, at 

about 35 sec after expectoration or ingestion, astringency takes place (Pessina et al., 

2004). The time dependent evolution of this sensation is consistent with the mechanism of 

perception proposed by Jöbstl et al. in 2004 in which three stages were described: (i) the 

simultaneous binding of the multidentate polyphenols to several sites on the free protein 

whose structure evolves from a loose and extended conformation to a more compact one; 

(ii) as the polyphenol concentration rises, polyphenols cross-link different protein 

molecules leading to dimerization and (iii) aggregation into larger particles that finally 

precipitate.  

 

1.1.4 Stimuli  

Compounds able to elicit sensations as tastes and mouthfeels are called stimuli. Once 

introduced in mouth these compounds activated taste transduction pathways if they 

related to sweet, sour, salty and bitter tastes or mechanoreceptors for tactile sensations if 

the substances are astringent. Astringents commonly defined are tannins, that can be 

classified in condensed tannins, phlorotannins and ellagitannins. Chemically diverse 

astringents such as complex salts such as aluminum sulfate (alum), acids and other 

phenolics, have been also shown to evoke astringency (Lee and Lawless 1991, Lawless et 

al. 1994).  
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1.1.4.1 Tannins 

Wines that are astringent are in common parlance termed “tannic”, as tannins are the main 

polyphenolic compounds involved in the sensation. Swain and Bate-Smith (1962) 

provided the first useful phytochemical definition of tannin, being "water-soluble phenolic 

compounds, having molecular weights lying between 500 and 3000, which have the 

ability to precipitate alkaloids, gelatin and other proteins".  

Tannin is a generic term gathering 3 groups of structurally different molecules: 

phlorotannins, condensed tannins, and hydrolysable tannins. Phlorotannins are found 

mainly in marine organisms such as brown algae (Arnold and Targett, 2002) and they are 

structurally perhaps the most simple tannin group. Individual phlorotannins are composed 

of two or more phloroglucinol (Fig. 1a) units that are attached to each other via C-C or C-

O-C bonds, thus yielding oligomers such as the tetrameric phlorotannin (Fig. 1b). Further 

structural variations may include additional OH-groups in the molecules or additional 

bonds between the monomers. This structure-based definition very clearly differentiates 

phlorotannins from other types of phenolic compounds. 

 

 
 

Fig. 1: Structure of phloroglucinol (a), the phlorotannin unit, and a tetrameric phlorotannin (b) consisting of 

four phlotoglucinol units. 

 

 

Condensed tannins represents a large majority of tannins present in grapes and wines. 

They are polymers with more than three units composed of terminal and extension 

subunits analogous to the flavan-3-ols catechin, epicatechin, epicatechin-gallate, and 

epigallocatechin (Fig. 2). In a hot and acid medium the interflavanic bond breaks down 

releasing an unstable carbocation producing, eventually, an anthocyanin. For this reason 

flavan-3-ol polymers are also called proanthocyanidin (Bate-Smith, 1975).  
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Fig. 2: Common monomeric units of condensed tannins. 

 

 

 

More specifically, procyanidins produce cyanidin from catechin and epicatechin, while 

prodelphinidins produce delphinidin from gallocatechin and epigallocatechin. 

Proanthocyanidins (examples in Fig. 3) can be classified on the basis of the kind of 

chemical bond: 

 Proanthocyanidins A (C30H24O12): dimer proanthocyanidins with two flavan-3-

ols condensed with a C4-C6 or a C4-C8 bond (interflavanic bond) and forming 

an ether between the C2 of the first unit and the C5 and C7 of the terminal 

unit. 

 Proanthocyanidins B (C30H26O12): dimer proanthocyanidins with only a C4-C6 

or C4-C8 interflavanic bond. 

 Proanthocyanidins C: trimer proanthocyanidins with only a C4-C6 or C4-C8 

interflavanic bond. 

 Proanthocyanidins D: trimer proanthocyanidins. In this case the first two 

monomers have the interflavanic bond only, but the central and the terminal 

monomer have both the interflavanic and the ether bond. 
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Fig. 3: Examlpes of condensed tannins.   

 

 

 

Condensed tannins, whose composition is listed in Tab. 1, are extracted from grape seeds, 

skins, and stems during the winemaking process (Ribéreau-Gayon, 1974).  

 

 
Tab. 1: Composition of skins, seeds and stems tannins (from Souquet et al., 2000). 

TANNINS 

SKINS SEEDS STEMS 
(+) catechin (+) catechin (+) catechin 

(-) epicatechin (-) epicatechin (-) epicatechin 

(-)epicatechin-3-O-gallate  (-)epicatechin-3-O-gallate (-)epicatechin-3-O-gallate  

(-) epigallocatechin  (-) epigallocatechin 

mDP* = 30 mDP = 10 mDP = 9 

Galloylation = 3-10% Galloylation = 20-40% Galloylation = 15-20% 

High mDP Oligomers=60% High mDP 

*  mDP= mean degree of polymerization 

 

 

Mouth-feel properties of grape seed and skin proanthocyanidins have been examined 

through many studies (Robichaud and Noble, 2006; Brossaud et al., 2008). A study 

showed that astringency increased with the degree of polymerization and that an 

increasing degree of galloylation was responsible for an increasing coarse perception of 

the proanthocyanidins (Vidal et al., 2003). Increasing the degree of B-ring 

trihydroxylation (given by epigallocatechin content) seemed to decrease astringency. 

Generally, as the degree of polymerization increases, the astringency of the compounds 

increases. Oligomers are more astringent than monomers, but less bitter. Monomer 

epicatechin has been reported as more astringent than catechin (Noble, 1994; Kallithraka 

et al., 1997). The astringency induced by purified grape compounds such as the 

monomeric flavan‐3‐ols, is quite different from that elicited by the total grape extracts and 

by mixtures of phenolic compounds such as tannic acid or hydrolysable tannins. In 

addition, the influence of these compounds in wine depends on many factors such as the 

ratio between the aggressive tannins/soft tannins, grape variety, growing conditions, 
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climate and winemaking practices, comprised the utilization of wood tannins and oxygen 

management.  

Another class of tannin present in wine derived from the use of wood barrels, wood chips 

or oenological tannins (Ribéreau-Gayon 1972, Saucier et al., 2006) is represented by 

hydrolyzable tannins (Fig.4). Hydrolysable tannins include gallotannins and ellagitannins.  

 

 

 

 
 

Fig. 4: Examples of hydrolizable tannins. 

 

 

 

 

Both are derived from galloyl units [(a), Fig.5] esterified to a sugar core (Quideau and 

Feldman, 1997). When one [monogalloylglucose (b), Fig.5] to five [pentagalloylglucose, 

(d) Fig.5] galloyl groups are attached to the central moiety, they are commonly called as 

simple gallic acid derivatives. If six or more galloyl groups are in the structure, the 

compounds are called gallotannins and have one or more digalloyl groups [(e) Fig.5]. The 

most common and complex hydrolysable tannins in plants are ellagitannins (ETs). ETs 

are esters of hexahydroxydiphenic acid and a polyol, usually glucose or quinic acid [(b) 

and (c) in Fig.5]. When exposed to acids or bases, ester bonds are hydrolysed and the 

hexahydroxydiphenic acid spontaneously rearranges into the water-insoluble ellagic acid 

(EA), hence their name. ETs very likely derive from a common gallotannin biosynthetic 

precursor, penta-O-galloyl-β-D-glucose, by the oxidative formation of one or several 

biphenyl bonds between two or more galloyl residues.  
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Fig. 5: Examples of the structures of simple acid gallic derivates (b-d) and gallotannin (e). 

 

 

ET monomers can be further oxidised in plants and form dimers, trimers and tetramers 

with molecular weights up to 4000. Ellagitannin monomers, such as grandinin and 

roburin E were found to mainly contribute in to red wine astringency, and with less 

extend vescalagin and castalagin too. The threshold concentrations for astringency of the 

dimers roburin B and C were significantly high, meaning that the glycosidic moiety may 

interfere with the interaction with salivary proteins (Glabasnia and Hofmann, 2006). 

Using the half-mouth test, the perceived astringencies of oak wood ellagitannins were 

associated to smooth and mouthdrying sensations at low concentrations (Stark et al., 

2010), Flavano‐ellagitannins, such as acutissimins A and B (4a and 4b) and 

epiacutissimins A and B (5a and 5 b) (Fig. 6), were perceived as smooth and in higher 

concentrations as puckering. However, in oak wood matured wines they were found in 

low amounts, indicating a less significant contribution to red wine astringency (Stark et 

al., 2010). 

 

 
 

Fig.6: Chemical structures of acutissimin A (4a) and B (4b) and of epiacutissimin A (5a) and B (5b). 

 



13 

 

Tannic acid, commonly used as a reference compound for astringency in sensory studies, 

is a mixture of gallotannins with impurities, such as gallic acid and various gallic acid 

derivatives (Salminen and Karonen, 2011). It showed a high protein-precipitation 

capacity and a high impact on astringency sensation. The structure of tannic and gallic 

acid are shown in Fig.7. 

 
 

Fig. 7: Structure of tannic acid and gallic acid. 

 

 

1.1.4.2 Acids 

Although sourness is the predominant sensation of organic acids, dryness or astringency 

of acids has also been reported (Lee and Lawless, 1991; Rubico and McDaniel, 1992). 

Astringency of acids is attributed either to the direct contribution of H
+
 ions or to the 

hydrogen bonding capabilities of the hydroxyl groups on the anion or undissociated acid 

(Lawless et al., 1994). Five organic acids and one inorganic elicited astringency and 

astringent subqualities (Thomas and Lawless, 1995). In order to explain the sensory 

properties of organic acids they suggested that acids without hydroxyl groups might act 

by other mechanisms such as the denaturation of proteins in the saliva or direct attack on 

the mucous layer and oral epithelium. 

 

1.1.4.3 Other phenolic compounds  

Besides flavan-3-ols, the building  blocks of grape tannins, anthocyanins, which impart 

color to the grapes and red wine, and flavonols are also present in grapes. There are five 

anthocyanidins (cyanidin, peonidin, delphinidin, petunidin, and malvidin) in grapes. 

Anthocyanin is a glycosylated  anthocyanidin (sugar bound to the anthocyanidin moiety). 

Anthocyanins impart red/purple/black color in grapes. These base compounds also are 

found acylated (acid linked to the 6
th

 position of the sugar) with acetic, coumaric and 

caffeic acids, making them more stable. At the pH of wine, about 10% of wine 

anthocyanins are in colored form. The extraction and management of anthocyanins in 

young wines is vital to red wine quality and style, as evidenced by the positive 

correlations between red wine colour and overall wine quality (Somers and Evans, 1974; 

Mazza and Francis, 1995). Finally, flavonols (kaempferol, quercetin, and  myricetin) are 

present in grapes and  wine as glycosides (sugar attached). Flavonols are important 

cofactors for color enhancement. They also act as a natural sunscreen in the skin of grape 

berries. It has been shown that free anthocyanins, like the coloured tannin-like 

polyphenolic compounds from wine and pomace, do not contribute astringency nor 

bitterness to wine (Vidal et al., 2004). 

Recently, a number of 26 sensory active nonvolatiles comprising hydroxybenzoic acids, 

hydroxycinnamic acids, flavon-3-ol glycosides, and dihydroflavon-3-ol rhamnosides as 

well as a structurally undefined polymeric fraction (>5 kDa) were identified as the key 

inducers of astringent mouthfeel of red wines by means of a molecular sensory science 
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approach (Hufnagel and Hofmann, 2008). Flavonol glycosides, such as 3‐O‐glucosides 

and 3‐O‐galactosides of quercetin, syringetin and isorhamnetin, have been reported to be 

astringent at very low detection threshold levels. The phenolic acids in wines, especially 

hydroxycinnamic and benzoic acid derivatives, have been reported to be more puckering 

astringent, whereas flavonol glycosides were more velvety astringent (Hufnagel and 

Hofmann, 2008).  

 

1.1.5 Balance 

Palate balance is a critical feature influencing wine quality because it contributes to the 

harmony and integration of structural components. The major factors governing palate 

balance in dry wines are the quantity and quality of tannins, concentration of alcohol, and 

concentration and types of acidity. The palate balance formula is functionally analogous 

to the suppleness index described by Peynaud et al., (1980):   

  

Suppleness index = alcohol (vol/vol) - (titratable acidity + tannin) 

 

This formula indicates that perception of sweetness derived from alcohol, polysaccharides 

and sugar (when present), must be in balance with the sum of perceptions of acidity, 

astringency and bitterness. This relationship suggests that wines lower in acidity and/or 

higher in alcohol could require more tannin to be in balance. In reality, wines high in 

ethanol and low in titratable acidity, and without the right amounts of tannins, are often 

described as broad and flabby. 

 

High Et-OH, low TA = Flabby, Broad Wine 

 

The opposite is also possible where wines are described as harsh, even with moderate 

amounts of tannins, when low ethanol and high titratable acidity are the main features of 

the wine. 

Low Et-OH, high TA = Harsh Wine 

 

Wine is a complex matrix and its taste perception is determined by a balance among all of 

the sensory active compounds like acids, sugars, ethanol, and others. All these gustatory 

stimuli have been shown to affect the perception of astringency. Adding acids to wines or 

tannic acid solutions produced an increase in astringency (Guinard et al., 1986). On the 

contrary, the addition of sweeteners was observed to attenuate the mouth dryness typical 

of the astringent sensation both of tannic acid solutions (Lyman and Green, 1990) and red 

wine (Ishikawa and Noble, 1995). The astringent sensation can also be altered by the 

presence of the most important component of wine: the ethanol (Lesschaeve and Noble 

2005). As the ethanol level increased in model solution (Fontoin et al., 2008), a decrease 

in perceived astringency and in some astringent subqualities (Vidal et al., 2004a) was 

observed. In case of red wine, astringency sensation was affected by alcohol reduction 

(Meillon et al.,  2009). Astringency can also be modulated by the presence of some 

polysaccharides, such as mannoproteins, decreasing the intensity of some astringent 

attributes and contributing to the fullness of model wine solutions (Vidal et al., 2004b). 

 

 

1.2 Polyphenols–salivary proteins interactions 

 

1.2.1 Introduction 

The biological activities of tannin are related to its interaction with protein. This 

interaction has some influence on the functional properties of ecological and agricultural 
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systems (Zurker, 1983; Aerts et al., 1999). The importance of tannin-protein interactions 

in ecological systems is illustrated by the reduced palatability of high tannin forages to 

herbivores (Mehansho et al., 1987). This process is believed to be due to the astringent 

sensation experienced when salivary proteins are precipitated by tannins and as a result 

lose their ability to lubricate the epithelial membranes of the mouth (Goldstein and Swain, 

1963). Some of the salivary proteins have the ability to bind the tannins in vegetable 

derivates as red wine, tea and strawberries, which reduces the binding of tannins to the 

oral mucosa and their absorption from the gastrointestinal tract (Austin et al., 1989) 

Tannins have the ability to inhibit several digestive enzymes and to precipitate other 

proteins. The presence of interacting proteins in saliva enables us to avoid most of the 

deleterious effects of tannins (Austin et al., 1989). Saliva is a biological fluid with a 

multifunctional role that makes it interesting in terms of research and diagnostic 

possibilities, because of the great diversity in proteins and peptides. Saliva constituents as 

well tannins composition are of a great importance for establishing protein-tannin 

interactions. Different methods able to measure stimuli, in particular tannins, and protein-

tannin binding were afterwards presented. 

 

1.2.2 Human saliva 

There is evidence that saliva may affect the way we perceive the taste and mouthfeel of 

foods in various ways (Christensen, 1985; Fisher et al., 1994; Spielman, 1990). The 

whole saliva continuously baths the oral cavity, acting as a buffering system. During wine 

tasting, saliva transports and dissolves the stimuli substances (Matsuo, 2000).  

Although saliva is predominantly a watery fluid, it also consists of a complex mixture of 

proteins, ions and other organic compounds produced mostly by the salivary glands. Until 

now, more than 2000 different proteins and peptides have been identified in whole saliva 

and salivary glandular secretions (Bandhakavi et al., 2009). From these, more than 90% 

derive from the secretion of the three pairs of “major” salivary glands (parotid, 

submandibular and sublingual glands). The remaining 10% derives from “minor” salivary 

glands and from extra-glandular sources (Humphrey and Williamson, 2001). 

More than 95 percent of salivary protein is from the major salivary protein families, 

which include acidic and basic proline-rich proteins, amylase, high- and low-molecular-

weight mucous glycoproteins, agglutinins, cystatins, histatins and statherin (Helmerhorst 

and Oppenheim, 2007) After protein synthesis in the salivary glands, many of these 

proteins undergo posttranslational modifications, which include glycosylation, acylation, 

deamidization, sulfation, phosphorylation and proteolysis, before they enter the mouth 

(Dawes, 2008). 

 

1.2.3 Polyphenol-protein interactions  

Nowadays, the interaction between proteins and proanthocyanidins is widely recognised 

to be a combination of hydrogen bonding and hydrophobic effects in the acidic wine 

matrix. Murray et al. (1994) used NMR to identify stacking between the phenolic rings of 

the proanthocyanidins and proline residues with hydrogen bonding between the hydroxyl 

groups on the phenolic B-ring and hydrogen acceptor sites of the peptide bond. Similar 

results were obtained from isothermal calorimetry (ITC) studies based on changes in 

entropy, reflecting the hydrophobicity and conformational changes, and on enthalpy, 

reflecting the consequences of hydrogen bonding (Poncet-Legrand et al., 2007). The 

aggregation of polyphenols with salivary proteins seems to be firstly mediated by 

hydrophobic forces and then hydrogen bonding has been postulated to provide strong and 

directional bonding that stabilizes the complex. The stability of these complexes depend 

on the tannins dimension and on the number of free phenolic groups. 
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1.2.4 Molecular binding 

Some proteins in human saliva chemically interact with polyphenols, leading to the 

formation of protein-polyphenol complexes that are able to stimulate mechanoreceptors 

connected with trigeminal nerve, and thus transmitting to brain the perception of 

astringency (Trulsson and Essick, 1997). 

Given that the carbonyl function of salivary proteins are very effective hydrogen bond 

acceptors (Luck et al., 1994), it would appear that they would play a significant role in 

bonding to polyphenols hydroxyls (Haslam, 1974; Hagerman and Butler, 1981). 

Beyond the physiological, especially the salivary protein composition (Lu and Bennick, 

1998) and psychological factors (Martens, 1999) that mediate its perception, new 

physico-chemical quantities (binding constants, stoichiometry and atomic structure of 

complexes, driving forces for association, etc.) have been utilised recently to better 

understand the multifaceted sensation of astringency. Many techniques including circular 

dichroism (CD) (Jöbstl et al., 2004), fluorescence spectroscopy (Soares et al., 2007), 

dynamic light scattering (DLS) and nuclear magnetic resonance (NMR) (Gonçalves et al., 

2011) have been employed to understand the formation mechanism of protein/polyphenol 

aggregates in solution. Generally, these studies focused on interactions between protein 

segment from human saliva PRPs proteins family and different procyanidins, because it 

represents the easiest way to simulate such a complex phenomenon. The driving factors 

that determine the binding between tannins and salivary proteins were identified to be the 

critical micelle concentration value (CMC), tannin structure preferences and tannin 

colloidal state (Cala et al., 2010). Below this value (from 1.5 to 2.9 mM as observed in 

wine), tannins specifically interacted with proteins through hydrophilic recognition. 

Depending on tannin conformation this can led to the formation of a network of 

interactions and then to the precipitation of the complex, or if a intramolecular staking ∏-

∏ of phenolic groups is preferred the precipitation is not observed. Above this value, 

tannins spontaneously tend to form aggregates that at first through specific interactions 

bind proteins and then surrounded by the hydrophobic residues stabilize the complex by 

hydrophobic bonding. Both hydrophilic and hydrophobic interactions contribute to a more 

complex network, that determines the precipitation of salivary proteins with tannins.  

 

 

1.3 Instrumental analyses for assessing astringency 

 

1.3.1 Introduction 

A method for measuring astringency remains one of the great analytical challenges in 

wine chemistry and practical enology. The interest into investigating on the mechanisms 

and interactions between polyphenols and proteins would help to identify the optimal way 

to simulate and evaluate what happens during red wine tasting. Quite often, the 

sophisticated techniques utilised, the purification of both tannin and protein fractions, the 

extrusion from the wine content, and the omission of matrix components during reactions 

all contribute to send away astringency from the reality that is to say wine polyphenols 

interacting salivary proteins in mouth, causing drying sensations. 

Different procedures have been investigated during last decades for measuring tannins 

and for their exhaustive characterization, the chromatographic and spectrophotometric 

techniques probably offer the best methods currently available. Other ways to approach to 

the phenomenon of astringency, as the precipitation protein assays and the turbidimetric 

analysis have been developed.  

Sensory analysis represents the human response as analytical tool to evaluate wine 

profiles. Many training and tasting sections are necessary over a long period involving a 

high number of tasters, then a statistical analysis provides an objective evaluation of the 
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sensory properties of the wine. In the case of astringency, it is very difficult to discern 

among tastes and brings on fatigue. A method capable of estimating tannin palatability 

has to be the most objective as possible and must correlate with sensory data in order to 

reflect the mechanism of wine tasting. 

 

1.3.2 Stimuli analysis: pro et contra  

Among stimuli able to elicit astringency, tannins are the main compounds responsible for 

this sensation. Tannins are intrinsically amphiphilic molecules with high reactivity, have a 

diverse range of structures, and are often found in matrices with other phenolic molecules 

containing similar functional groups. Besides using sophisticated equipment and 

analytical techniques, there is also a great interest for a relatively simple method.  

A typology of measure is based on colorimetric techniques. The density of color produced 

by various reactions is read spectrophotometrically and compared with a standard. The 

major defect is that every phenolics compound produces a different color yield per unit 

mass in the colorimetric assay. The first method reported in literature was carried out to 

determine all the mixture of phenolics compounds. The oxidative technique for measuring 

total phenols was first described by Folin and Denis (1912). Folin-Denis reagent is an 

aqueous solution of sodium tungstate, phosphomolybdic acid, and phosphoric acid, which 

is reduced to a blue complex of tungsten and molybdenum oxides by phenolics. The 

reagent is added to the sample with an excess of saturated sodium carbonate solution. The 

color is allowed to develop for a constant time period and is read at 725 nm (Swain and 

Hillis, 1959) or at 760 nm (AOAC, 1965; Laurent, 1975). Because of some interferences 

the assay was modified into the Folin-Ciocalteau assay.  

More specific color reactions exist which can be used to measure condensed tannins and 

their precursors. The proanthocyanidin tannins yield small amounts of anthocyanidins 

when treated with hot mineral acid, hence their name (Swain, 1979); anthocyanidins are 

colored compounds and the amount produced can be quantified spectrophotometrically. 

Heating the plant extract with HCl and n-butanol produces a red color which is read at 

530-550 nm (Swain and Hillis, 1959; Feeny and Bostock, 1968; Cooper-Driver et al., 

1977; Balick et al., 1978; Swain, 1979). Also vanillin dissolved in sulfuric acid (Swain 

and Hillis, 1959; Laurent, 1975) or in hydrochloric acid (Burns, 1963) reacts with 

resorcinol-type phenols to produce a rose color. The reagent is added quickly to the 

sample, and the color is read at 500 nm after a constant time period of 15 or 20 min.  

These  analytical  methods  currently  available  for  determining  tannin  have  several  

disadvantages.  The  functional group methods do not have satisfactory  specificity. For 

example, the redox methods such as the Folin-Denis assay (Folin  and Denis,  1915)  are 

not specific for tannin, but detect any phenolic compound. On the other hand, the 

proanthocyanidin and vanillin assays (Bate-Smith, 1975; Price et al., 1978) are too 

selective. The hydrolyzable tannins, which are gallic acid derivatives (Haslam, 1979), do 

not react with acidic butanol or vanillin. Only the flavonoid-based  condensed  tannins  

(Haslam, 1979) can be detected with these reagents. 

Other methods based on the acid cleavage are based on the acid-catalysed condensation 

reactions with benzyl mercaptan and phloroglucinol. The thiolysis and phloroglucinolysis 

analysed condensed tannins determining both the chain length and composition by HPLC. 

Proanthocyanidins become depolymerized, releasing terminal subunits as flavan-3-ol 

monomers and extension subunits as electrophilic flavan-3-ol intermediates. The 

electrophilic intermediates can be trapped by the nucleophilic reagent to generate 

analyzable adducts. Most of our current knowledge about general composition and 

structure of grape and wine tannins has been obtained by depolymerization (Lorrain et al., 

2013). 
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Poor yields due to reaction product instability, reactions with nonproanthocyanidin 

compounds, and side reactions also contribute negatively to the utility of thiolytic 

methods (Matthews et al., 1997). The problem with phloroglucinolysis on the other hand 

is that produces low yields and only a fraction of the tannin is converted to known flavan-

3-ol products (Mc Rae et al., 2010). 

 

1.3.3 Precipitation assays: pro et contra 

An interesting aspect of the protein precipitation assays is that the interaction of proteins 

with tannins can be used to model astringency perception in humans (Bate-Smith, 1973). 

Protein-precipitating capacity has traditionally been measured using hide powder or 

gelatin. Laurent (1975) claims that the results obtained with the hide powder technique 

are variable, and attributes this to the long, involved procedure which may result in tannin 

loss, particularly when dealing with low concentrations. Bate-Smith (1973) also 

comments on the laboriousness of the procedure, and points out that the protein of skin is 

not the same as the protein of saliva, the precipitation of which accounts for the "puckery" 

sensation induced by tannin. The use of gelatin is discussed by Farnsworth (1966) and by 

Nierenstein (1934), who states that gelatin precipitates phenols other than tannins, such as 

hydroxyhydroquinone, gallic acid, and protocatechuic acid. Swain (1979) notes that this 

is also a problem when hide powder or polyvinylpyrrolidone are used in high 

concentrations. Bate-Smith (1973a) has introduced a spectrophotometric technique for 

measuring the relative astringency of tannins which he calls hemanalysis. The plant 

extract is mixed with dilute blood, and the optical density of the hemoglobin is measured 

after the tannin-hemoglobin precipitate has been removed by centrifugation. 

Goldstein and Swain (1965) developed another technique for measuring relative 

astringency spectrophotometrically. They measured the inhibition of enzymes such as β-

glucosidase by tannic acid and condensed tannins through determining the amount of 

residual enzyme activity in the supernatant after centrifugation of the tannin-enzyme 

complex, β-glucosidase acts on the glycoside substrate aesculin to produce an aglycone, 

aesculetin, which forms a colored chelate with aluminum chloride. The reading at 385 nm 

for 10 min of the rise in absorbancy gives the amount of aesculetin produced, and, 

therefore, the activity of the enzyme left in the supernatant, i.e., the amount of enzyme not 

complexed with the tannin. The level of enzyme inhibition is expressed as percentage of 

activity of the control. 

Alternatively, Hagerman and Butler (1978) advocated the addition of bovine serum 

albumin (BSA) as a precipitant to tannin solutions and numerous modifications of this 

principle have been reported, each varying in technical requirements. An expansion of the 

BSA assay has been reported (Harbertson et al., 2003) for use with wine, whereby the 

precipitation step was complemented with the bleaching effect of bisulfite. This 

modification allows additional quantification of small polymeric pigments (non-

bleachable and non-precipitable) and large polymeric pigments (non-bleachable, but 

precipitable). A “gelatin index” has also been proposed (Glories 1984), whereby tannins 

are ranked by their propensity for precipitation of gelatin. Nevertheless, this procedure 

requires proanthocyanidin concentration be determined before and after precipitation with 

an excess of gelatin. Besides, gelatin is a heterogeneous mixture of proteins, and its 

composition may change among the different commercial products. This may also be an 

important source of variability and imprecision. Again, the variability in composition and 

purity of gelatin might have caused problems with the reproducibility between studies, 

and has led some researchers to try ovalbumin instead (Llaudy et al., 2004). Another 

tannin assay was the methylcellulose-precipitable (MCP) tannin assay (Sarneckis et al., 

2008; Mercurio et al., 2007). The MCP tannin assay is based on polymer-tannin 

interactions, resulting in an insoluble polymer-tannin complex, which precipitates and is 
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separated by centrifugation. It is a subtractive measure requiring the preparation of a 

control and treatment sample. The control sample represents the total phenolic 

concentration present in the matrix, whereas the treatment sample represents the phenolic 

concentration remaining in the supernatant solution after the tannin has precipitated. The 

phenolic content is monitored by measuring the absorbance at 280 nm (A280). By 

subtracting the A280 of the treatment sample from the A280 of the control sample, the 

A280 of the tannin in a solution can be determined. The A280 can be either used as an 

arbitrary value or converted to monomer equivalents (epicatechin equivalents, mg/L).  

The use of salivary proteins has been proposed to better represent the model system. In 

precipitation assays, fractionated (Austin, 1989; Yan and Bennick, 1995) or whole (Sarni-

Manchado et al., 1999; Gambuti et al., 2006) human saliva has been used. Mixing whole 

saliva and grape polyphenols gives rise to a “soft cloudy” precipitate, which gathered 

after centrifugation on the bottom of the tube so that the supernatant was easily recovered 

without disturbing this pellet. The binding reaction was performed at 25°C, the complex 

formed was successively precipitated by centrifugation at 4°C in order to stop further 

reactions. The induced precipitation allowed to separate the proteins bound to 

polyphenols from whose remained in solution that not reacted with them. Both the nature 

of condensed tannin (Sarni-Manchado et al., 1999) and salivary proteins (Gambuti et al., 

2006) involved in the precipitation were studied in order to highlight some solutions to 

the astringency problem. In both works, the SDS-PAGE electrophoresis of human saliva 

was carried out, Sarni-Manchado et al., analyzed the supernatant and the pellet together 

with tannins analysis, while Gambuti et al., analyzing the supernatant, revealed the 

proteins mainly reacting after the binding with polyphenols by comparison with the saliva 

control. 

However, the precipitation  assays  also  have  some disadvantages. If the assays utilizes 

protein different from saliva, the binding reaction seems to not reproduce the 

physiological conditions during wine tasting, because the binding affinity of the protein is 

not comparable to that of salivary protein. It has been showed that the salivary protein has 

a higher affinity for tannin than BSA or ribulose bisphosphate carboxylase/oxygenase. In 

fact, in presence of  a  40-fold  weight  excess  (10-fold  molar  excess)  of bovine  serum 

albumin or a fivefold weight excess (equimolar) of the enzyme, the tannin preferentially 

bound the salivary protein. Other proteins, including dietary proteins, may not complex 

any tannin in the presence of the salivary tannin-binding protein (Austin et al., 1989).  

The use of salivary proteins involves the collection of human saliva from different 

volunteers according to a specific protocol and it must take into account the salivary flow 

because it represents an important criterion to consider in order to limit the effect of 

individual differences in astringency perception due to subjects’ saliva characteristics. 

 

1.3.4 Nephelometry: pro et contra  

Nephelometry is a method that allows a direct estimation of the amount of protein/tannin 

complexes by measuring the scattered light in solution that results from the gradual 

formation of a cloudy precipitate corresponding to the aggregate. The basis of this 

technique was proposed by Chapon (1993) on the study of the interactions between beer 

polyphenols and proteins to tackle the problems of colloidal stability of beer. A 

continuous flow method was also used to study the interactions between grape extracts 

and wine with BSA at different concentrations (Carvalho et al., 2004). Globular proteins 

and PRPs were used to measure a relative tannin specific activity of procyanidin 

oligomers from grape seeds (De Freitas and Mateus, 2001). The strongest affinity was 

showed by PRPs.  In contrast with this studies, BSA has been considered as the most 

suitable model protein, besides it is structurally different from human salivary proteins. In 

turbidity measurement, whole human saliva (Horne  et al., 2002) and mucin, a protein 
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present also in human saliva (Monteleone et al., 2004), were used as model proteins for 

astringency assessment. Based on polyphenol/mucin reactivity a micro-plate assay, based 

on the ability of haze particles to screen the radiation emitted by a fluorescent compound 

was also developed (Fia et al., 2009). To the extent that salivary proteins are bound by 

tannins in the initial steps of the development of the astringent sensations, the salivary 

haze development as an indicator of the protein-tannin interactions was negatively 

correlated with astringency. Also in this case salivary flows of donators have to be 

considered. The maximum of the phenolic compounds concentration used in turbidimetry 

measurements was 3.2 g/L for tannic acid, 2.67 (Monteleone et al., 2004) and 2.9 g/L (Fia 

et al., 2009) of grape seed extracts. However, it was also demonstrated that higher 

concentrations of stimuli can be perceived as astringent (Gambuti et al., 2006). 

 

1.3.5 Sensory analysis: pro et contra 

Sensory analysis represents the human response to wine tasting. A sensory panel can 

provide information about the sensory properties of a product, but significant training is 

required before the panel becomes a reliable sensory instrument. Astringency is a difficult 

sensory attribute to evaluate, owing to particular characteristics of the sensation. It is 

usually estimated by tasting and is subject to a certain subjectivity. The feeling can take 

over 15 s to fully develop and is known to build in intensity and become increasingly 

difficult to clear from the mouth over repeated exposures (Guinard et al., 1986; Lyman 

and Green, 1990), so is difficult to reduce the carryover effects. When wines or tannic 

solutions are evaluated by a well-trained panel using established sensory methodologies, 

the panel leader can expect to obtain reliable information about the intensity in perceived 

astringency of the samples. Screening, selection, training, and panel maintenance are 

exercises that help the panel attain proficiency prior to product evaluation. It is also 

important to discuss and familiarize with the terms associated with astringency. A 

vocabulary of 33 terms has been proposed by a limited combined panel of experienced 

tasters and winemakers to describe the mouth-feel characteristics of red wines (Gawel et 

al., 2008). Methodologies widely applicated are descriptive and rating sensory analyses. 

The first helps to distinguish between samples by a qualitative description of their sensory 

properties (Vidal et al., 2004a) and the second permits to scale samples according to the 

intensity of the perception. However, the currently most used sensory analysis temporal 

methodology is time–intensity (TI). This method consists in recording one by one the 

intensity evolution of given attributes (Lee and Pangborn, 1986). According to Pineau et 

al. (2009), TI is interesting but since only one attribute can be evaluated at a time, it is a 

time-consuming method which has to be carried out with a limited number of attributes or 

products. Moreover, the continuous assessment of temporal changes in the perception of a 

single-attribute is known to induce a halodumping effect (Clark and Lawless, 1994) with 

a carryover from perceived attributes to the one being evaluated. To overcome these 

drawbacks, Pineau et al., (2009) developed a new method called Temporal Dominance of 

Sensations which consists in identifying and rating sensations perceived as dominant until 

the perception ends. Before the development of this method, a similar experimental 

approach has been successfully used to describe temporality of sensations in wines by 

Pessina et al., (2004). It has been shown that from these data, astringency takes many 

seconds to develop after the basic tastes, and the duration depends on wine. 

Intense training is necessary to distinguish astringency from other tastes, especially 

bitterness. Fatigue and loss of stimuli memory, particularly with panelists unfamiliar with 

astringency, may occur if an expert panel do not participate to tasting sections. Training is 

also expensive and time-consuming. Sensory analysis is of fundamental importance, but 

the association with an analytical instrument to measure astringency would avoid some of 

these inconvenient.  
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1.4 Correlation between sensory and analytical analysis 

 

Because astringency is a major factor in wine quality, winemakers are interested in an 

analytical and objective method to evaluate it. No method can substitute completely 

sensory analysis, but a method that results a reproducible index has to correlate quite well 

with it. A statistically significant correlation between the sensorial and analytical methods 

is necessary. The gelatin index represents the almost widely analytical method for 

estimating astringency in red wine (Glories, 1984). Besides it gives only an approximate 

result (Llaudy et al., 2004), more recently a correlation with sensory analysis was 

achieved by Goldner and Zamora (2010), utilizing 29 wines judged by ten panelists on a 

9-point intensity scale. A positive correlation (R
2
=0.563) between gelatin index and time-

intensity data was obtained only at low concentration of polyphenols. In alternative to 

gelatin, a method that used as precipitation agent the ovalbumin, was proposed to 

determine astringency (Llaudy et al., 2004). Ten wines were tested by ten expert 

enologists evaluating the astringency on a scale from 1 to 100. The method resulted more 

reproducible than gelatin index and a good correlation (R
2
=0.7737) with sensory analysis 

indicate a high potentiality in assessing astringency. 

Another predictive models for astringency estimation was based on phenolic compounds 

and color analysis of 34 wines by 12 judges on a 9-point intensity scale (Cliff et al., 

2002). Multiple regression generated three possible models to predict astringency from 

analytical values, the most simple depends on total phenolics and on copigmented 

anthocyanins, besides the predicted astringency plotted versus observed astringency 

resulted in low correlation but considered acceptable from a sensory perspective.  

Monteleone et al. (2004) proposed a predictive model by measuring the polyphenol-

mucin reactivity in which the capability of polyphenolic extracts to induce astringency 

can be estimated on the basis of their ability to develop turbidity in the in vitro assay; they 

found a linear relation between astringency perceived by thirty trained judges on 7-point 

category scale (from not astringent to extremely astringent) and the astringency mucin 

index for tannic acid model solutions (R
2
=0.093) and grape seed extracts (R

2
=0.096). 

In a study of Kennedy et al. (2006), forty red wines were evaluated by a panel consisted 

of three winemakers and two enologists for the astringency intensity scored from zero to 

10, with zero values being assigned when there was an absolute absence of astringency 

and an intensity score of 10 representing the highest imaginable astringency. The aim was 

to correlate astringency and tannin concentration measured by different analytical 

methods: absorption at 280 nm, phloroglucinolysis, gel chromatography and BSA protein 

precipitation. The analytical method having the strongest correlations with perceived 

astringency was protein precipitation (R
2
 = 0.82). Because the protein precipitation 

method is similar to the physiological response to astringents, it could become an 

important in vitro tool for understanding how tannin structure modification leads to 

modification in astringency perception.  

Generally, it was assumed that the most suitable proteins for evaluating astringency are 

the salivary proline-rich proteins (PRP). However, it is very difficult to obtain enough 

PRP as their purification is highly complicated. Nevertheless, proteins as gelatin, 

ovalbumin, mucin, whole human saliva have been used in different methods that would 

measure astringency. In order to consider a method as the most objective as possible it 

has to correlate instrumental with sensory data. In all cases a relationship with the human 

evaluation was obtained.  

The great challenge is to avoid the sensory evaluation especially when many wine 

samples are analyzed in winery prior to a fining treatment. This is only an example of the 

future applications that an analytical method may offer to winemakers and enologists to 



22 

 

manage wine style and quality. Further researches will be focused on the possibility to 

create a simple and rapid method based on the SPI, able to measure astringency in winery 

as well in laboratory.  

Under the sensory point of view, it is less important to know whether a given wine 

contains more epicatechin than catechin, or if the polymers are more galloylated than 

monomers, than the knowledge of how whole polyphenolic pattern of wine reacts with 

salivary proteins in mouth to generate astringency and how its characteristics change over 

time. This represents the real tool for help wine producers to improve wine quality.  
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‘‘A man should look for what is, and not for what he thinks should be.’’  

(A. Einstein)  

 

 

 

Chapter Two 

Aims of the thesis 

 

 

 

 

The aims of the thesis were resumed as follows: 

1) Development and validation of the SPI method in order to evaluate the 

astringency of red wines 

2) The application of the SPI method to evaluate: 

a) Factors influencing astringency 

i. Stimuli 

ii. Medium components 

b) The effect of enological practices, in particular: 

i. Dealcoholisation  

ii. Wine fining 

3) Characterization of Aglianico (Vitis vinifera L. cv) grape proanthocyanidins and 

evaluation of their reactivity toward salivary proteins by the SPI (Saliva 

Precipitation Index). 
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‘‘The chemical complexity and heterogeneity of plant tannins means that they do not lend themselves to 

ready quantitative assessment, and this has produced a confused picture of their real significance  

–  both evolutionary and ecological…’’  

(Haslam, 1988)  

  

 

Chapter Three 

Results and Discussion 

 

 

3.1 Development and validation of the SPI (Saliva Precipitaion Index) method: 

Application of the SPI (Saliva Precipitation Index) to the evaluation of red wine 

astringency 

 

The aim of this work was to evaluate the astringency of red wines by means of a SDS–

PAGE based-method. The optimization of the in vitro assay, named SPI (Saliva 

Precipitation Index) that measured the reactivity of salivary proteins towards wine 

polyphenols, has been performed. Improvements included the choice of saliva:wine ratio, 

saliva typology (resting or stimulated saliva), and temperature of binding. The LOD (0.05 

g/L of condensed tannin) and LOQ (0.1 g/L of condensed tannin) for the binding reaction 

between salivary proteins and tannins added in white wine were also determined. Fifty-

seven red wines were analysed by the optimised SPI, the Folin–Ciocalteu Index, the 

gelatine index, the content of total tannins and the sensory quantitative evaluation of 

astringency. A significant correlation between the SPI and the astringency of red wines 

was found (R
2
 = 0.969), thus indicating that this assay may be useful as estimator of 

astringency. 

 

3.1.1 Introduction 

Astringency is an important sensory characteristic of food and beverages containing 

polyphenols. This mouthfeel is mainly due to the interactions of polyphenols with 

salivary proteins, causing complexes formation and their further precipitation, which 

leads to a reduction of the lubricating properties of saliva (Breslin et al., 1993). 

Consequently, sensations of dryness, hardness, and constriction are felt in the mouth (Lee 

and Lawless, 1991). Wine astringency is generally estimated by tasting, which represents 

an in vivo evaluation according to physiological responses. Notwithstanding, sensory 

analysis has some disadvantages: (i) the confusion of astringent sensation with sour and 

bitter tastes, (ii) the tendency of the astringency to increase on prolonged exposure, (iii) 
the necessity of an expert panel, (iv) the carry-over effects, (v) the influence of many 

factors, such as ethanol, pH and acidity on the intensity of perception (Fontoin et al., 

2008). In addition, astringency evaluation is subject to certain subjectivity (Valentova et 

al., 2002). For this reason, a chemical evaluation of astringency has gained much 

attention during last years. Several studies focused on methods for astringency prediction, 

based on polyphenol–proteins interactions and the correlation with wine astringency 

perceived by trained jury. Since astringency is mainly considered a tactile sensation, 

different methods based on tannin precipitation were built up. The methods developed up 
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to now to estimate the chemical astringency (Llaudy et al., 2004; Mercurio and Smith, 

2008) utilised different proteic standards as precipitation agent. The utilisation of saliva 

has not yet been considered despite its contributing to taste and mouthfeel perception 

(Neyraud et al., 2009) by transporting and dissolving the stimuli substances, and by 

interacting with them (Matsuo, 2000). The difficulties in measuring wine astringency 

using human saliva lies in reproducing the physiology involved during tasting. The 

perception of astringency is basically a dynamic process, that continuously changes and 

evolves to reach a maximum of intensity once red wine is ingested. Following the 

physiological course, what happens in mouth during wine tasting? When a sip of wine is 

made, a volume of wine is introduced in the oral cavity. According to sensory protocols, 

it is necessary to hold wine in the mouth for almost 8 s, during which wine constituents 

mix with saliva at a temperature of 37 °C. After this time, wine can be expectorated or 

ingested together with saliva. Astringency takes many seconds 

(15 s) to develop fully (Kallithraka et al., 2001) and is perceived on soft palate, gingives, 

lips as well as on the oral cavity (Breslin et al., 1993). The chemical interactions of wine 

polyphenols with some salivary constituents and the subsequent precipitation reduce the 

lubricating properties of saliva, so sensations of dryness, hardness, and constriction are 

felt in mouth. In a previous work (Gambuti et al., 2006), the precipitation of salivary 

proteins after the binding reaction with polyphenols was observed by means of the SDS–

PAGE electrophoresis. The SPI (Saliva Precipitation Index) based on the precipitation of 

two salivary proteins (Rinaldi et al., 2010), was utilised to evaluate the astringency of red 

wines. The role of human saliva in the development of astringency was also evaluated by 

others (Soares et al., 2011), stating that in a competitive assay, the different proteins 

families have a different reactivity towards condensed tannins. However, not all 

physiological conditions involved during perception have been considered until now. In 

this study with the aim to optimise the SPI, the influence of parameters such as salivary 

flow, ratio saliva:wine, saliva typology, and temperature of binding have been evaluated. 

Phenolic composition of red wines was also investigated. Analytical data were then 

correlated with sensory analysis performed by a trained panel. On the basis of the 

importance that consumers and winemakers ascribe to wine astringency, a relationship 

between SPI and wine phenolic content, estimated in gallic acid equivalent, has been 

determined. 

 

3.1.2 Materials and methods 

3.1.2.1 Reagents 

Solvents of HPLC grade, L(+)-tartaric acid were purchased from J.T. Baker 

(Levanchimica; Bari, Italy). Caffeine was purchased from ACEF (Piacenza, Italy). Tannic 

acid was purchased by Extrasynthése (Lyon, France). Condensed tannin (CT), 

characterised by a mean degree of polymerisation of 2.1, and by a flavanol composition 

of 45.3% (+)-catechin, 43.1% (-)-epicatechin and 11.6% (-)-epicatechin gallate (Fontoin 

et al., 2008), was provided by Laffort (Biotan, Bordeaux, France). 

 

3.1.2.2 Wines and CT wine solutions 

Aglianico and Pinot noir used for method optimization, and 57 red wines utilised for 

Pearson’s correlation which included Aglianico, Merlot, Cabernet Sauvignon, Syrah and 

Sangiovese, were commercial products. CT wine solutions were composed of a white 

wine (Tavernello by Caviro, Faenza, Italy) with an alcohol content of 11% v/V, pH = 

3.02, titrable acidity = 4.9 g/L of tartaric acid, fortified with 2% of ethanol, and added of 

CT at 0.1–1.0–2.5–3.5–5.0 g/L concentrations. CT wine solutions were utilised for SPI 

calibration and sensory analysis. 
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3.1.2.3 Phenolic analysis 

Total phenolics (Folin–Ciocalteu Index, FCI) were measured according to Waterhouse 

(2001) and were expressed in g/L of gallic acid equivalent (GAE). Gelatin index was 

evaluated according to Glories methods (1984). Tannins (g/L) were evaluated according 

to Bate–Smith method (1954). 

 

3.1.2.4 Sensory analysis 

3.1.2.4.1 Training and selection sessions 

Twenty-four subjects were recruited from the University of Naples ‘‘Federico II’’, (Corso 

di Laurea in Viticoltura ed Enologia, Avellino, Italy), to participate in sensory sessions. 

Eighteen were chosen on the basis of their sensory capabilities, interest and availability. 

Screening tasks included basic taste and binary mixtures identification, and intensity 

rating tests. Panelists were familiarised with samples and tasting procedures in ten one-

hour training sessions. They had been introduced first to the theory of astringency and 

extensively trained to differentiate astringency from bitterness and sourness using 3.0 g/L 

tannic acid, 0.25 g/L caffeine and 4.0 g/L tartaric acid as examples of astringency, 

bitterness and sourness, respectively. Successively, they were asked to individuate the 

different stimuli (acid, sweet, sour and astringent) in binary mixtures first in water then in 

white wine. All the eighteen panelists indicated an ability to discriminate among these 

taste stimuli. In the following sessions, panelists were familiarised with astringency 

rating. They were asked to evaluate overall astringency of different concentrations (from 

0.1 to 5.0 g/L) of CT tannin on a 9-point scale (named: absent, very weak, weak, weak 

moderate, moderate, moderate strong, strong, very strong, extremely strong) first in water 

and then in white wine. The different concentrations were not anchored to specific 

intensity categories. In each session five unknown samples (10 mL) were presented in 

balanced random order at room temperature (18 ± 2°C) in black tulip-shaped glasses 

coded with 3-digit random numbers. The assessors were instructed to pour the whole 

sample in their mouth, hold it for 8 s, expectorate and rate the perceived overall 

astringency using a 9-point scale. Judges waited for 4 min before to rinse with de-ionised 

water for 10 s twice, and then waited at least 30 s before the next sample. Each sample 

was evaluated within 5 min. Astringency was expressed as the maximum of intensity 

perceived. The data obtained were used for assessing the reliability and consistency of the 

panelists, which were considered acceptable (P < 0.05 for reproducibility of scores of 

replicate samples). 

 

3.1.2.4.2 Absolute threshold determination 

The rapid method (E 679) of the American Society for Testing and Material (ASTM) was 

used to evaluate the astringency threshold of CT concentration in wine. The absolute 

threshold was evaluated in a white wine prepared by adding different amounts of CT. The 

panelists each received six 3-Alternative Forced Choice (3-AFC) tests with ascending 

concentrations spaced by a factor of 1.8, starting from 0.02 to 0.38 g/L in wine. In each 3-

AFC presentation, three samples are presented: two are controls, and one contains the 

substance under test. The judges have to examine each sample from left to right and select 

the odd wine. Randomization of the position of the different sample, within each 3-AFC 

presentation, was carried out for the different panelists; the option of going back to repeat 

the evaluation of each sample was possible within the single 3-AFC presentation but not 

possible among the different 3-AFC groups of wines. The best estimate threshold (BET) 

for each subject was evaluated as the geometric mean of the highest concentration missed 

and the next higher concentration. The group BET is the geometric mean of the individual 

ones. As shown in Fig. 1, the detection threshold was 0.12 g/L of CT.  
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3.1.2.4.3 Sensory evaluation sessions 

During the tasting sessions, CT wine solutions (0.1–1.0–2.5–3.5–5.0 g/L), were evaluated 

for building up the calibration curve. At the beginning of each session, panelists tasted the 

standard reference solutions for astringency, which consisted of three CT wine solutions 

(very weak astringency = 0.1 g/L; moderate astringency = 2.5 g/L; extremely strong 

astringency = 5.0 g/L) representing the intensities of the sensation on the 9-point scale. 

The same was made during tasting sessions for red wines evaluation. During the tasting 

sessions four samples (CT wine solutions or wines) were evaluated in duplicate. In each 

session samples (10 mL) were presented in balanced random order at room temperature 

(18 ± 2 °C) in black tulip-shaped glasses coded with 3-digit random numbers. The 

evaluation procedure was the same as the training sessions. 

 

3.1.2.5 SPI analysis 

3.1.2.5.1 Resting saliva (RS) and stimulated saliva (SS) 

Resting saliva (RS) was obtained by mixing resting saliva samples from different 

individuals. Stimulated saliva (SS) was obtained by chewing a paraffin piece. Saliva 

collection was performed between 10 to 11 a.m. Subjects were asked not to consume any 

food and beverage for 2 h before saliva collection. Saliva was collected from six non-

smoking volunteers (three males and three females) by expectorating saliva into a pre-

weighted ice-cooled tube for 5 min. The resulting mix was centrifuged at 10,000 g for 10 

min to remove any insoluble material, and the supernatant was referred to as RS or SS. 

RS and SS flow rates of selected panelists were measured at 11 a.m and 5 p.m during the 

day, repeated for three days. Flow rates were determined gravimetrically and expressed as 

millilitre per minute (mL/min). 

 

3.1.2.5.2 Binding assays 

Interaction mixtures (150 µl final volume) contained 100 µl of saliva (RS or SS) and 50 

µl of wine, which was previously filtered with Durapore filter at 0.45 µm (Millipore; 

Rome, Italy). Binding assays were performed in Eppendorfs maintained at 25 or 37 °C for 

5 min. The mixture was then centrifuged for 10 min at 10,000 g. The analyses were 

performed on the resulting supernatant. Binding assays of samples were performed in 

quadruplicate. 

 

3.1.2.5.3 SDS–PAGE electrophoresis 

The SDS–PAGE electrophoresis of RS and SS before and after the binding assay was 

performed on a Bio-Rad Protean II xi Cell electrophoresis apparatus (Bio-Rad, Milano, 

Italy) using a PowerPac 1000 Bio-Rad power supply set at 150 V/gel for the stacking gel 

and 180 V/gel for the resolving gel. Samples mixed with an equal volume of 2x 

electrophoresis sample buffer (0.125 M Tris–HCl, 4% SDS; 20% v/V glycerol, 0.2 M 
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DTT, 0.02% bromophenol blue, pH 6.8) and heated at 95 °C for 4 min were analysed by 

sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS–PAGE) using 30% 

acrylamide/bisacrylamide (37.5:1) solution. The resolving gels were 14% acrylamide, 

stacking gels were 5% acrylamide. The gels were fixed with a mixture of ethanol, acetic 

acid, and deionised water (40:10:50) for 1 h. After washing in water for 5 min, the gels 

were stained with Coomassie Brilliant Blue R250 staining solution (Bio-Rad, Milano, 

Italy). The destain step was performed by incubation in the destain solution Coomassie 

Blue R250 (Bio-Rad, Milano, Italy). The apparent molecular weights of bands were 

calculated from the linear regression equation of log molecular weight against mobility, 

by comparison with the migration rates of Broad Range protein standards (Bio-Rad, 

Milano, Italy). 

 

3.1.2.5.4 Densitometry 

Densitometric tracing of gels was performed with a Bio-Rad GS800 densitometer, and 

electrophoretic data were analysed by Quantity One analysis software, Version 4.5 (Bio-

Rad). 

 

3.1.2.5.5 SPI (Saliva Precipitation Index) 

The percentage of density reduction of two bands (at 59–54 and 15 KDa), was calculated 

after the binding reaction of RS with CT wine solutions (0.1–1.0–2.5–3.5–5.0 g/L). Since 

increasing CT concentrations in wine an increase of astringency intensity by panelists was 

perceived, the calibration curve (R
2
 = 0.9907) was built plotting the percentage of 

selected bands reduction and CT concentrations (g/L) determined the SPI (Saliva 

Precipitation Index). 

 

3.1.2.6 Statistical analysis 

Multifactorial ANOVA with second-order interactions was used to evaluate the 

relationships between saliva typology and temperature with SPI. Differences of p < 0.001 

were considered significant. As one-way ANOVA analysis, Fisher’s Least Significant 

Differences (LSD) procedure was used to discriminate among the means of the variables. 

Elaborations were carried out by means of Statgraphics  5.0 Plus-PC (Manugistics, Inc.). 

 

3.1.3 Results and discussion 

The in vitro assay to evaluate astringency consists of a binding reaction between saliva 

and wine, subsequent centrifugation, and analysis of proteins remained in supernatant by 

the SDS–PAGE. The SPI (Saliva Precipitation Index) (Rinaldi et al., 2010) was improved 

with the aim to make the in vitro assay closer to the in vivo evaluation of astringency. In 

this study, the bands at 59–54 and 15 KDa were chosen from the salivary pattern as 

representative of whole salivary proteins because the percentage of their optical density 

was better correlated with sensory analysis made with a trained jury on the astringency 

sensation. In order to optimise the method, the operative conditions of the binding 

reaction between saliva and wine, which is at the basis of the tactile sensation of 

astringency, were improved. Improvements over the existing SPI that utilises human 

saliva for astringency assessment include the saliva:wine ratio, saliva typology, and 

temperature of binding. 

 

3.1.3.1 Parameters involved in binding reaction 

3.1.3.1.1 Choice of saliva:wine (S:W) ratio 

In order to choose the optimal ratio of saliva:wine, it is important to take into 

consideration what happens during the sensory evaluation of astringency. The in vitro 

assay represents a static system while the oral cavity is dynamic, in which saliva is 
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continuously secreted and ingested. In order to make the two systems closer, in the 

binding reaction wine is considered the static fluid, while saliva the dynamic one. During 

tasting, a volume of 10 mL of wine is generally introduced in the mouth. The volume of 

saliva normally present in mouth, called residual saliva, is about 0.75 mL (Lagerlof and 

Dawes, 1984). Beside residual saliva, a continuous flow of further saliva is secreted by 

the major and minor salivary glands in the oral mucosa. The salivary flow responsive to 

wine is 1 mL/min (Hide and Pangborn, 1978). According to sensory protocols, when wine 

is introduced in mouth and 15 s are necessary for astringency to develop, the volume of 

saliva produced within 15 s resulted to be 0.25 mL. The total salivary volume that comes 

in contact with wine and produced within 15 s resulted 1 mL, which is made by the sum 

of 0.25 mL (saliva responsive to wine during 15 s) and 0.75 mL of residual saliva. 

Therefore, the salivary volume par minute resulted 4 mL. In our sensory sets, the 

astringency evaluation of each sample, expressed as the maximum of intensity perceived, 

was performed within 5 min in order to avoid carry-over effects and to limit fatigue. 

Considering that, the in vitro binding assay between saliva and wine lasts 5 min (Sarni-

Manchado et al., 1999), the volume of saliva becomes 20 mL. Since 10 mL of wine is 

exposed to 20 mL of saliva for 5 min, the ratio saliva:wine 2:1 seems closer to reality. 

Starting from this ratio, the quantity of saliva was reduced progressively respect to wine. 

Then, other ratio saliva:wine (S:W) considered were 1:1, 1:2, 1:3, 1:4. In Fig. 2, the 

electrophoretic pattern of salivary proteins after the interaction of saliva and red wine at 

different ratio is shown.  

 

 

 
 

 

The ratio saliva:wine (S:W) was 2:1, 1:1, 1:2, 1:3, 1:4 respectively in lanes 2, 3, 4, 5 and 

6. As the volume of wine augmented respect to saliva (lane 1), the percentage of bands 

reduction due to both dilution effect and binding reaction between saliva proteins and 

wine polyphenols resulted of about 21% (S:W = 2:1), 43% (S:W = 1:1), 63% (S:W = 

1:2), 73% (S:W = 1:3) and 100% (S:W = 1:4). Since a loss of sensitivity is recorded 

mainly for the band density at 15 KDa as more wine interacted with saliva, the ratio S:W 
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= 2:1 permits to better analyse the density of the two selected proteins (marked with an 

asterisk *). On the basis of what has been reported above, the ratio S:W = 2:1 resulted 

also to be closer to the in vivo evaluation of astringency. 

 

3.1.3.1.2 Salivary flow 

When attempting to model sensory–instrumental relationships it is particularly important 

to take into consideration the impact of physiological factors on perception. The typology 

of saliva that comprised resting (RS) and stimulated (SS) saliva, was then taken into 

account. Salivary flow of donators was measured because this factor can modulate the 

intensity of astringency induced by phenolic compounds (Fisher et al., 1994). 

Furthermore, it is known that low responding subjects are characterised by high salivary 

flow rate and high responding subjects by low flow rate (Horne et al., 2002). Therefore, 

before starting to evaluate the influence of saliva typology on the binding reaction with 

polyphenols, in this study, the mean flow for SS and RS of panelists has been evaluated. 

The flow rate values of SS and of RS were 1.66 ± 0.5 mL/min and 0.77 ± 0.33 mL/min, 

respectively, comparable to those determined by others (Enberg et al., 2001). Moreover, 

the mean flow for SS was in the range of the medium flow group previously used to build 

up a predictive model of the astringency sensation (Condelli et al., 2006). These data 

confirm that the salivary flow represents an important criterion to take in consideration in 

order to limit the effect of individual differences in astringency perception due to 

subjects’ saliva characteristics. 

 

3.1.3.1.3 Saliva typology and binding temperature 

Once saliva:wine ratio has been chosen and the salivary flow of panelists has been 

evaluated, in order to give an overview on the optimization of the method, the 

physiological conditions of the binding between saliva and wine were tested. They 

included the saliva typology and the temperature of binding. Saliva that continuously 

baths the overall buccal cavity, is secreted by different mechanisms (various reflexes and 

spontaneous secretion) producing resting (RS) and stimulated (SS) saliva. For the in vitro 

assay the binding reaction between RS or SS and wine was tested at two temperatures 25 

°C (as reported by Sarni-Manchado et al., 1999) and 37 °C (physiological temperature). 

With the aim to apply this method to different red wines the effect of these parameters 

was evaluated on two red wines extremely different. The interaction was performed with 

Aglianico and Pinot noir wines because of their different polyphenol content. Aglianico 

represents a tannin-rich wine (HTW) instead Pinot noir is known for its low tannin 

content (LTW). In fact, tannin concentration measured with the Bate-Smith method, was 

of 4.96 ± 0.07 and 2.08 ± 0.10 g/L for HTW and LTW, respectively. As shown in Table 

1, the values of SPI for RS after the interaction with HTW were of about 5 and 4 

(expressed as g/L of CT) at 25 °C and 37 °C, respectively. As regard SS, the SPI was 

almost the same at the two temperatures considered.  
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The SPI for LTW was of about 4 and 2 g/L of CT, after the binding reaction of RS at 25 

and 37 °C. As for the HTW, the SPI measured for SS was the same at the two 

temperatures. Anyway, the values of SPI for HTW were greater than LTW, being in 

agreement with their tannin content. A multifactorial analysisof variance (ANOVA) was 

carried out to assess the influence of saliva typology (RS and SS) and temperature (25 and 

37 °C) on the precipitation of salivary proteins, as well as the interactions between these 

factors. The F ratio and p values were obtained from the statistical analysis for the SPI. 

The F ratio represents the quotient between variability due to the effect considered and 

the residual variance. A higher value of F ratio means a more marked effect of that factor 

on a variable. As regard the wine with a high tannin content (HTW), saliva typology 

showed a greater effect (F ratio = 39.52; p-value = 0.0002) than temperature (F ratio = 

8.26; p-value = 0.0207) on the SPI. While no significant differences at 99% for the 

temperature of binding at 25 and 37 °C were observed, it seems that the RS amplified the 

differences in SPI, respect to SS. The same trend for saliva typology was observed for the 

low tannin wine (LTW). Based on literature, prominent differences between stimulated 

and resting salivary secretions are seen in their protein composition, flow rate and 

viscosity. Whole saliva is a composite of secretions produced by the parotid, 

submandibular/sublingual and minor salivary glands. Under unstimulated conditions, the 

parotid glands contribute approx. 25% of whole saliva, the submanadibular/sublingual 

glands about 67% and the minor mucous glands about 8% (Schneyer, 1956; Dawes and 

Wood, 1973). When stimulated, parotid saliva may constitute up to 49% of whole saliva 

(Shannon, 1962). Parotid flow increases dramatically during stimulation, and its main role 

may be to produce copious, highly buffered, fluid to protect against extrinsic insult (for 

instance, acid). 

Moreover, many proteins were secreted by parotid glands under stimulation. A high 

proportion of human parotid salivary proteins is proline-rich proteins (PRPs) (Bennick, 

2002). Basic proline-rich proteins, in particular, have been found to interact strongly with 

polyphenols (Lu and Bennick, 1998). A more pronounced production of PRPs by parotid 

glands in stimulated saliva was observed in a SDS–PAGE electrophoresis by Schwartz et 

al.,  (1995), as the abundance of deep pink-violet staining PRP bands was higher than in 

saliva produced by other glands. As SPI is calculated from the percentage of density 

reduction of two bands as representative of the whole saliva, in SS the interaction of these 

proteins with wine polyphenols was reduced because PRPs (present at a higher extent in 

this typology of saliva) competed for the binding reaction. Then, the SPI for SS is less 

sensible to polyphenolic variation in wine. The enhanced production of PRPs inducted by 

stimulation may determine a same level of interaction with tannins for HTW and LTW. 

Another difference in composition is that parafilm-stimulated saliva contained more of 

the high-density mucin species then did unstimulated saliva (Veerman et al., 1992). As 
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mucin is responsible for saliva viscosity it is likely that the viscosity of SS is higher with 

respect to RS. Thus, the high viscosity of the biological fluid of SS respect to RS may 

determine a minor sensitivity of the saliva as analytical tool. In addition, when salivation 

is stimulated, the concentration of bicarbonate is higher than in resting condition; this 

may determine a higher buffering capacity of the oral fluid. Under stimulated conditions, 

the role of bicarbonate as a major buffering component will increase, as it will be 

available in high concentrations (Aps and Martens, 2005). Therefore, this is probably 

another reason by which SS showed a similar binding affinity with polyphenols 

depending on the typology of wine. In the case of low tannin wine (LTW), the influence 

of the binding temperature (F ratio = 47.42; p-value = 0.0013) was more pronounced than 

saliva (F ratio = 23.16; p-value = 0.0001) on the SPI, respect to HTW. The interaction 

between saliva typology and temperature was for both wines significant at 99% level in 

the same way (p = 0.0004). It seems that when wine is characterised by low tannin 

content, the interactions between saliva and wine were more promoted at higher 

temperature. This finding can be explained considering that when the affinity constant of 

the reaction increases with temperature, hydrophobic interactions were mainly involved 

(Oh et al., 1980). Since the physiological temperature in the oral cavity is 37 °C, this 

parameter was chosen as the temperature of binding for the in vitro assay. Based on our 

results the choice of saliva typology is also important. Resting or unstimulated saliva, 

which refers to the saliva secreted in the absence of apparent sensory stimuli related to 

eating, was utilised as proteic model. Resting saliva baths the overall buccal cavity for 

more than 90% of the day (Matsuo, 2000) and respect to stimulated saliva is less subject 

to variability. The salivary flow rate, and consequently the composition of stimulated 

saliva, in fact, is influenced by the time of collection (Dawes, 1975), nature and duration 

of stimulus (Dawes, 1969), emotional state (Bolwig & Rafaelsen, 1972) and gender 

(Heintze, Birkhed, & Bjørn, 1983). Therefore, the operative conditions chosen for the in 

vitro assay are: resting saliva (RS) interacting with wine in a ratio 2:1 (S:W) during the 

binding reaction set at a temperature of 37 °C. 

 

3.1.3.2. Method validation 

Once the operating conditions for the binding reaction between RS and wine have been 

optimised, the repeatability of the in vitro assay was tested by carrying out twenty-two 

replications for reaction mixtures containing (i) saliva and white wine added with 1 g/L of 

tannic acid and (ii) saliva and Merlot red wine. The obtained SPIs were 1.75 ± 0.14 and 

4.30 ± 0.16 g/L of CT, respectively. The RSD (relative standard deviation) for SPI were 

lower than 10% both for white wine supplemented with tannic acid (8.1%) and red wine 

(3.8%), indicating that SPI can be considered a reliable index for the evaluation of the 

reactions between salivary proteins and polyphenols in wine. The limit of detection LOD 

was estimated by the densitometric analysis of selected proteins after the binding reaction 

between RS and increasing concentrations of CT in white wine. The percentage of 

proteins reduction was determined after the addition of CT at 0.01, 0.025, 0.05 and 0.1 

g/L to control wine. The LOD was calculated as the concentration at which the SPI did 

not differ from the white wine not added with tannin. The LOD was 0.05 g/L of CT. The 

limit of quantification (LOQ) sets as the concentration of CT in white wine above which 

the SPI became significant at 99%. The LOQ was 0.1 g/L of CT. This value was close to 

the absolute threshold concentration from which the trained panel became to perceive the 

astringency of CT wine solutions (0.12 g/L, in material and method section). The 

calibration curve obtained from the percentage of selected bands reduction and increasing 

CT concentrations (g/L) was determined. The equation of the calibration curve is y = 

19.026x + 15.858, where x represents the CT concentration and y the SPI value. The 

coefficient of determination for the SPI was R
2
 = 0.9907. 
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3.1.3.3 Correlation between SPI and astringency intensity 

The SPI was determined for 57 different red wines. Aglianico, Merlot, Cabernet 

Sauvignon, Syrah and Sangiovese were included. Wines were evaluated by a trained 

panel for the astringency sensation. Phenolic analyses as FCI (Folin Ciocalteu Index), 

tannins (g/L) and gelatin index (GI) were also conducted to establish a relationship with 

astringency. In Table 2, the minimum and the maximum values for each analysis are 

shown. The tannin content of wines ranged from 1.67 to 5.55 g /L of tannins, total 

phenolics from 1.47 to 7.57 g/L of gallic acid equivalent, gelatine index from 24.40 to 

77.98, and SPI from 2.12 to 10.18 g/L of CT. In order to assess a relationship between 

sensory and analytical data Pearson’s correlation was carried out. 

  

 

 
 

 

As shown in Table 2, positive correlations were obtained for all analyses, being the 

gelatine index the less sensible (0.552). In a recent work (Goldner and Zamora, 2010), it 

was demonstrated that this method was a good estimator of astringency when polyphenols 

level was low, but when the concentration was higher than 5.20 g/L of gallic acid 

equivalent, the relationship was very low. In this study, among the 57 red wines, the 

analyses were carried out also on Aglianico wines characterised by high values of 

phenolics and tannins (maximum value for FCI = 7.57 g/L gallic acid equivalent, and for 

tannins = 5.55 g/L). The choice of analysing these wines was made with aim to represent 

a worldwide range of astringency including HTWs, as can be Aglianico or Tannat wines. 

As regard astringency and the FCI, the coefficient of correlation was 0.648, meaning that 

the phenolic content of wines is not a requisite for the potential astringency. In fact, the 

Folin Ciocalteu Index that measures the sample reducing capacity, has the disadvantage 

of an overestimation of the total polyphenolic content (Escarpa and Gonzalez, 2001). In 

addition, among phenols there is no a distinction from the reactive phenolics (Singleton 

and Rossi, 1965). The tannins measured with butanol-chloryde assay gives a better 

correlation with the astringency intensity (0.800), even if this method does not provide 

any information on the structure of proanthocyanidins. This sensation, in fact, is 

dependent not only on grape proanthocyanidin amount but also on structure (Chira et al., 

2009). In particular, astringency depends on proanthocyanidin mDP and the proportion of 

galloylation (Vidal et al., 2003). Although the SPI lacks of this information, it furnishes 

the reactivity of wine tannins towards salivary proteins. As shown in Table 2, a 

significant Pearson’s correlation between the in vitro assay response and the sensory 

perception was obtained (R
2
 = 0.969). In Fig. 3, the correlation between SPI and 

astringency intensity was shown (y = 0.8324x + 0.4721). 

 

 



39 

 

 
 

 

The improved SPI method resulted a good predictor for red wine astringency. Further 

studies will focus on the structure characterization of grape and wine tannins reactive to 

salivary proteins in order to better correlate the different proanthocyanidins fractions with 

SPI and to determine the molecular basis of binding between tannins and each protein in 

salivary pattern. A relationship between SPI and gallic acid equivalent (g/L) was then 

obtained in order to universally quantify this index (R
2
 = 0.9728). The correlation line (y 

= 1.0899x - 0.2128) permits to express the reactivity of salivary proteins towards wine 

polyphenols, and consequently the potential astringency of wines by an easy criterion of 

evaluation. 

 

3.1.4 Conclusions 

In order to make the SPI method more similar to the physiological response to astringents, 

improvements of the in vitro assay were made. The saliva:wine ratio, the choice of saliva 

typology and the temperature of binding were optimised as factors affecting the 

interactions between salivary proteins and wine polyphenols. Given the difficulties and 

the expense of conducting controlled sensory evaluation, the salivary proteins 

precipitation method (SPI) seems to be a useful in vitro tool for astringency assessment 

since a good correlation with this perception was obtained. The ability to quantify the 

astringency of red wine as gallic acid equivalent could potentially represent an easy way 

to express the reactivity of wine polyphenols towards salivary proteins for astringency 

evaluation. In addition, this study may provide a link between structural studies of 

binding reactions between tannins and salivary proteins and sensory perception.  
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3.2 Factors influencing astringency 

3.2.1 Evaluation of the astringency of commercial tannins by means of the SDS–

PAGE-based method 

 

The astringency of wines enriched with commercial tannins (CTs) was evaluated by a 

method based on the SDS–PAGE electrophoresis of salivary proteins after the reaction of 

saliva with wine. Nineteen CTs tested in synthetic wine at the same pH (3.6) and 

concentration (1 g/l) gave different values of saliva precipitation index (SPI). The effect 

of CTs addition was investigated in four wines. Results showed that the wine matrix 

influenced the astringent capacity of CTs and that became less pronounced as wine 

polyphenolic complexity increased. For some types of wine, astringency was not affected, 

indicating that the effect of CTs utilisation is not easily predictable by classical methods. 

The ability to objectively evaluate the astringency provided by CTs with the SDS–PAGE-

based method would supply producers and winemakers with a useful tool to manage the 

processing conditions and thus to improve the quality of wine. 

 

3.2.1.1 Introduction 

The gustative balance is fundamental in defining the quality of a red wine that is 

determined by a fine equilibrium between three components: sweetness, acidity and 

astringency. Harsh wines, in which the gustative balance is shifted toward the tannic 

component, are usually characterised by an excess of polyphenols and are described as 

astringent (Gawel, 1998). In addition to polyphenols, the grape acids also contribute to 

wine astringency (Fischer and Noble, 1994; Guinard et al., 1986). Astringency is not a 

taste but a mouthfeel (American Society for the Testing of Materials, 1989) perceived in 

the oral cavity after the ingestion of red wine as a drying, puckering, and roughing of the 

epithelium (Lee and Lawless, 1991). This tactile sensation derives from the interaction of 

salivary proteins with tannins, from their complexation,and from the subsequent 

precipitationin the oral cavity (Joslyn and Goldstein, 1964). Wine tannins may be 

categorised as condensed and hydrolyzable tannins derived from grape and wood 

cooperage, respectively. The former are composed of flavan-3-ol units with various 

degrees of substitution and polymerisation, that constitute the largest group of 

proanthocyanidins (Haslam and Lilley, 1988). The latter arecomposedof gallic acidand its 

dimer ellagic acid esterified with sugar molecules (Haslam and Cai, 1994). They have the 

peculiarity of binding proteins according to their structural features. In general, increasing 

the mean molecular mass of grape procyanidins increases their ability to precipitate 

proteins (Bate-Smith, 1954), as well as their perceived astringency (Vidal et al., 2003), up 

to a given degree of polymerisation. The capacity of binding protein is also enhanced by 

the galloylation of flavan-3-ols (Poncet-Legrand et al., 2006) and by the increasing 

number of galloyl ester groups on the galloyl-D-glucose core (Charlton et al., 2002). 

When the protein binding is enhanced, the perception of astringency increases (Vidal et 

al., 2003). Therefore, the large polymeric tannins from grape skin and the more 

galloylated tannins from seeds extracted during the fermentation-maceration process 

(Aron and Kennedy, 2007) are the major grape-derived contributors to wine astringency. 

In addition, some gallotannins and ellagitannins, such as those released by oak barrels, 

can also contribute to wine astringency (Glabasnia and Hofman, 2006). At the same time, 

during oak ageing, some processes, such as the augmentation of the proanthocyanidin 

degree of polymerization and the formation of anthocyanin-flavanol adducts, occur in 

wine, leading to a decrease in astringency (Vivas and Glories, 1996). Currently, a 

common practice is the utilisation of commercial tannins (CTs) both in powders and 

chips, as a substitute for oak barrels, to improve colour stability and taste. A large variety 

of CTs from different origins is available on the market. It is of fundamental importance 
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to understand the effect of CTs addition on wine astringency, in order to not compromise 

overall wine quality. Until now the astringency of isogenous tannins has been evaluated 

for a few types of CTs in alcoholic solution (Vivas et al., 2002) and for different purified 

ellagitannins in aqueous solutions (Glabasnia and Hofman, 2006; Schwarz and Hofmann, 

2008) only by sensory analysis. However, the sensory evaluation of astringency is often 

wrongly associated with bitterness (Peleg et al., 1999), and thus it is necessary to 

accurately train the panel; this is time-consuming and expensive. The effect on the 

astringency from the addition of different CTs in wine is not easy to predict because 

polyphenols are highly reactive and undergo several chemical transformations with other 

wine components inducing chemical and sensorial modifications (Cheynier et al., 2006; 

Vidal et al., 2004). In a previous work (Gambuti et al., 2006) an objective evaluation of 

the astringency of seeds and skins by means of SDS–PAGE electrophoresis was 

performed. The evaluation was carried out in a reaction system which simulates what 

happens in the mouth during tasting. Because some salivary proteins in the 

electrophoretic pattern were significantly reduced after the binding reaction with grape 

polyphenol extracts, they were used to obtain an astringency calibration curve. Until now, 

this method was not applied to the analysis of wine astringency. The ability to objectively 

evaluate the astringency provided by tannins in wine might supply producers and 

winemakers with a useful tool to manage the processing conditions and thus to improve 

the quality of wine. In this work, in order to evaluate the astringency elicited by CTs, an 

SDS–PAGE-based method was applied. The relationship between CTs and the sensory 

perception of astringency was studied by a saliva precipitation index (SPI) measured both 

in model solution and wines. 

 

3.2.1.2 Materials and methods 

3.2.1.2.1 Reagents 

All solvents and acids used were of HPLC grade and were purchased from J.T. Baker 

(Levanchimica; Bari, Italy). 

 

3.2.1.2.2 Synthetic wine (SW) 

The synthetic wine was composed of ethanol (12%) and tartaric acid (4 g/l). A pH of 3.6 

was reached by adding a solution of NaOH (1 N). The synthetic wine was filtered under 

vacuum with sterile filters of 0.45 lm (Millipore; Rome, Italy). 

 

3.2.1.2.3 Wines (W) 

Aglianico and Merlot wines were derived from 100% Aglianico and Merlot grapes, 

respectively. White wine and Pinot noir wine were commercial products. After the 

addition of CTs, wines were stored for 72 h before measurement. Prior to the binding 

reaction, wines were diluted with synthetic wine in a 1:1 ratio. 

 

3.2.1.2.4 Tannin solutions (TS) 

All commercial tannins (CTs) were provided by Laffort (Bordeaux, France), except for 

the tannin (TA), composed of tannic acid purchased by Extrasynthese (Lyon, France). 

The list of tannins used in the experiments, the origin and their chemical nature is 

reported in Table 1. Tannin solutions were prepared in distilled water in a ratio 1:10 

(tannin:water), then they were dissolved in synthetic wine at different concentrations and 

pH was adjusted to 3.6 when necessary with NaOH 0.1 N. After the addition of CTs to 

synthetic wine, 72 h passed before the measurement. 
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3.2.1.2.5 Human saliva (HS) 

Human saliva (HS) was obtained by mixing resting whole mouth saliva samples from 

different individuals. Saliva was spontaneously collected from six non-smoking 

volunteers (three males and three females) by expectorating saliva into an ice-cooled tube. 

The resulting mix was centrifuged at 10,000g for 10 min to remove any insoluble 

material, and the supernatant was referred to as human saliva (HS). 

 

3.2.1.2.6 Binding assay 

Interaction mixtures (150 µl final volume) contained 100 µl of saliva (HS) and 50 µl of 

TS or wine. Binding assays were performed in Eppendorfs maintained at 25 °C for 5 min. 

The mixture was then centrifuged for 10 min at 10,000g. The analyses were performed on 

the resulting supernatant. Binding assays were performed in triplicate. 

 

3.2.1.2.7 SDS–PAGE electrophoresis 

The SDS–PAGE electrophoresis was performed in duplicate as reported by Gambuti et al. 

(2006) with some modifications. 

 

3.2.1.2.8 Densitometry 

Densitometric tracing of gels was performed with a Bio-Rad GS800 densitometer, and 

electrophoretic data were analysed by Quantity One analysis software, Version 4.5 (Bio-

Rad). 

 

3.2.1.2.9 Spectrophotometric analysis 

Total phenolics (Folin–Ciocalteau Index, FCI) were measured according to Waterhouse 

(2001) and were expressed in g/l of gallic acid equivalent (GAE). 

 

3.2.1.2.10 Sensorial analysis 

The sensory analysis of TA samples at different concentrations (0, 2, 4, 6 and 10 g/l) was 

conducted as described in Gambuti et al., (2006). 

 

3.2.1.2.11 SPI calculation 

The perceived astringency of TA samples at different concentrations (0–10 g/l), expressed 

as mean rank sum, was correlated with the percentage of band proteic reduction of the 

salivary proteins progressively involved. The four proteins selected for the evaluation of 
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astringency corresponded to the following peaks reported in Fig. 1: Peak 2 (with an 

apparent molecular weight of 94 kDa), Peak 3 (65 kDa), Peak 4 (54–59 kDa), and Peak 

11 (15 kDa).  

 

 
 

 

 

The best correlation with sensory analysis was obtained considering the mean sum of the 

percentages of density reduction of proteins corresponding to peaks 4 and 11 (R
2
 = 0.93). 

In order to obtain a calibration curve to evaluate the astringency capacity of wine, the 

values of the percentage of density reduction of the two bands were plotted against the 

TA concentration ranging from 0 to 10 g/l. A regression line was obtained (R
2
 = 0.9685) 

and used to determinemthe SPI. 

 

3.2.1.2.12 Statistical analysis 

All the data are expressed as the arithmetic average ± standard deviation of two or three 

replicates. Analysis of variance and Tukey’s test were used to interpret differences in 

means, if any, at the 95% confidence level. 

 

3.2.1.3 Results and discussion 

3.2.1.3.1 Comparison among CTs 

In these experiments CTs from different sources were used. The astringency of these 

tannic preparations at a concentration of 1 g/l in synthetic wine (ethanol 12%, tartaric acid 

4 g/l, pH 3.6) was investigated using the saliva precipitation index (SPI) obtained by 

means of the SDS–PAGE-based method. The Folin–Ciocalteau index (FCI), as an 

indicator of the total phenolics of the CTs, was also measured (Fig. 2). Data reported in 

Fig. 2 clearly show that the content in total phenols estimated by the Folin–Ciocalteau 

index does not give an estimation of the potential reactivity of tannins toward salivary 

proteins.  
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Although being very similar in the total phenolics, tannins showed a different astringent 

capacity expressed by the SPI. As reported by Vivas et al., (2002), the majority of CTs 

are rich in polyphenols but not necessarily in reactive tannins that represent the active 

material of the preparations. Since the commercial preparations of tannins are rich in 

other materials that vary depending on the extraction and manufacturing processes, the 

SPI may supply interesting information on the astringent capacity of tannins in synthetic 

wine, this being probably elicited by the active tannic fraction. The most astringent tannin 

is TA, a tannic acid which is also rich in total phenols (Fig. 2). This is in agreement with 

previous research that shows that tannic acid (hydrolyzable tannin containing eight 

galloyl groups) has an unusually high binding affinity for proteins (Hofmann et al., 2006). 

This behaviour is due to the fact that each galloyl group provides three hydroxyl groups 

and a benzene ring that can establish hydrogen and hydrophobic bonds, respectively, thus 

increasing the binding affinity to salivary proteins as earlier observed for the binding 

affinity to BSA (Soares et al., 2007). An interesting tannin with a low astringent capacity 
is TC1, composed of catechin that shows a relative low affinity for proteins. In a previous 

study the catechin was perceived as more bitter than astringent (Peleg et al., 1999). 

 

3.2.1.3.2 Effect of tannin concentration in model solution 

The comparison of the electrophoretic pattern of salivary proteins after the reaction with 

four CTs: TR4, TB, TG and TP at increasing concentrations (Fig. 3), shows that the 

decrease of band density with concentration for condensed tannin (TR4) is more evident 

than for hydrolyzable tannins (TP).  
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The SPI of synthetic wine after the addition of increasing concentrations (0.25–2.0 g/l) of 

two condensed tannins (TR4 and TB) and two hydrolyzable tannins (TP and TG) was 

reported in Fig. 4. At low concentration there are no significant differences among 

tannins, showing that at 0.25 g/l tannins had a comparable reactivity toward salivary 

proteins. At high concentration (2 g/l) no differences in the SPI were observed indicating 

that the protein binding sites were equally saturated by tannins.  
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The SPI of TR4 and TB increases with concentration (Fig. 4), as expected by the fact that 

the ability to precipitate salivary proteins was enhanced by concentration (Sarni-

Manchado et al., 1999). This result is in agreement with a previous study which showed 

that as the concentration of proanthocyanidins extracted from seed grapes increased, the 

astringency increased proportionally (Ricardo-da-Silva et al., 1991). A different trend was 

observed for the hydrolyzable tannins TP and TG showing that the dependence on 

concentration was less pronounced. In this case, this phenomenon could be associated 

with the different ability of these tannins to form insoluble compounds with the salivary 

proteins (Y and S5) used in the SDS–PAGE assay. According to Hagerman et al., (1998) 

the aggregation between polyphenols and proteins depends on the nature of the tannin– 

protein interactions that differ according to the polyphenolic nature of the molecules 

involved. In the case of condensed tannins, the interaction mechanism mainly involves 

the formation of hydrogen bonds, while the hydrophobic interactions seem to be 

responsible for the precipitation of hydrolyzable tannins. A three-stage interaction 

mechanism for the binding between polyphenols and peptides from salivary proteins was 

proposed by Charlton et al., (2002). The first stage deals with the formation of a soluble 

complex through weak bonding, making the process reversible; in the second stage the 

interaction with an analogue complex caused an augmentation of the molecular mass, 

then the complex became insoluble. In the third stage a further aggregation with insoluble 

complexes led to a phase separation. In 1998, Lu and Bennick, in evaluating the stability 

of insoluble complexes between a representative salivary protein and condensed tannins 

or hydrolysable tannins, found that the insoluble complexes formed with hydrolyzable 

tannins tended to be more soluble than the majority of complexes with condensed tannins 

that instead remained insoluble. 

 

3.2.1.3.3. The effect of wine matrix 

In a second experiment, in order to evaluate the effect of the matrix on astringency, a 

quantity (0.3 g/l) recommended by the producers of the condensed tannin TB was added 

to different types of wine: a white wine, a Pinot noir, and an Aglianico wine. The SPI was 

measured before and after the treatment as shown in Fig. 5. 
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The two red wines were chosen because they differ greatly as to the content of total 

phenols and tannins, being higher in Aglianico wine than Pinot noir (Mattini et al., 2002). 

The addition of the TB tannin at a concentration of 0.3 g/l enhanced the astringency of 

white wine and Pinot noir wine. The overall astringency of Aglianico wine was not 

compromised by the recommended quantity of TB. Two reasons may explain the 

behaviour observed: (i) the presence in wine of grape-derived tannins that have saturated 

the binding sites of salivary proteins, and (ii) the interaction of isogenous tannins with 

wine polyphenols, resulting in a loss of affinity of isogenous tannins with salivary 

proteins. It is interesting to note that the behaviour of white wine and Pinot noir is similar, 

while a great difference was observed between the two red wines. Therefore, the nature of 

both isogenous tannins and polyphenols of red wine is a determining factor on the effect 

of the addition of tannins. For these reasons, in the third experiment, three CTs (TP, TG, 

and TR4) were added in Pinot noir, Merlot, and Aglianico wines at 1 g/l. In Table 2 the 

percentage of increase of the SPI in wine after the tannin addition is shown. TR4 caused 

in Pinot noir an increase of the astringency of 37%, in Merlot wine of 28%, and no 

modification of the astringency observed in Aglianico wine.  

 

 
 

The addition of TP caused an increase of the SPI equal to 23% in Pinot noir, to 11% in 

Merlot and 0% in Aglianico wine. Therefore, the treatment of Aglianico with the CTs 

TR4 and TP does not affect the wine astringency. This result is of technological 

importance because these tannins can be utilised on Aglianico wine without the risk of 

producing harsh wine. The addition of the tannin TG resulted in an increase of the 

percentage of the SPI of 33% in Pinot noir, of 27% in Merlot, and of 23% in Aglianico 

wine. Generally, for these three CTs (TR4, TG, and TB), as the wine polyphenolic 
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content increased, the astringent capacity of these tannins was quite small. This 

phenomenon seems not to be dependent on the tannin type but on the polyphenolic matrix 

of wines. In fact, TR4 (a condensed tannin mixture), TP (an ellagitannin mixture), and TG 

(a gallotannin mixture) showed a similar effect on the same wines but with a different 

order of astringency: TR4 > TG > TP. From these data it can be argued that wine 

polyphenols such as anthocyanins and flavanols may effectively interact with isogenous 

CTs influencing the astringency of the treated wine. Depending on the wine, different 

possible adducts can be formed between CTs and anthocyanins and flavanols, that favour 

colour stabilisation and structure complexity. In conclusion, SPI has provided an 

objective evaluation of the astringency of CTs in model solutions and wines. SPI has 

represented a useful tool to differentiate between commercial preparations of tannins of 

different origins. Condensed tannin resulted in more astringency than hydrolyzable 

tannins. The addition of CTs in wine does not necessarily cause an increase in 

astringency; it depends on wine type. In the case of Aglianico wine the astringency was 

not enhanced. It may be postulated that the matrix may interact with isogenous tannins so 

that the richer in polyphenols the wine, the lower the effect of CTs addition on wine 

astringency. On the basis of these results, the type of tannins and the amount added during 

the refinement of different types of wine could be optimized using the SDS–PAGE-based 

method. This can help enologists in the choice of commercial tannin to use according to 

the wine and the desired result. Further studies will focus on the influence of 

anthocyanins and flavanols of red wines on the SPI, in order to better understand the 

chemical and sensorial modifications caused by CTs. 
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3.2.2 Precipitation of Salivary Proteins After the Interaction with Wine: The Effect 

of Ethanol, pH, Fructose, and Mannoproteins 

 
Astringency is a complex sensation mainly caused by the precipitation of salivary 

proteins with polyphenols. In wine it can be enhanced or reduced depending on the 

composition of the medium. In order to investigate the effect of ethanol, tartaric acid, 

fructose, and commercial mannoproteins (MPs) addition on the precipitation of salivary 

proteins, the saliva precipitation index (SPI) was determined by means of the sodium 

dodecyl sulphate polyacrylamide gel electrophoresis of human saliva after the reaction 

with Merlot wines and model solutions. Gelatin index, ethanol index, and Folin–Ciocalteu 

index were also determined. As resulted by Pearson’s correlation, data on SPI were well 

correlated with the sensory analysis performed on the same samples. In a second 

experiment, increasing the ethanol (11%–13%–17%), MPs (0–2–8 g/L), fructose (0–2–6 

g/L) level, and pH values (2.9–3.0–3.6), a decrease in the precipitation of salivary 

proteins was observed. A difference in the SPI between model solution and red wine 

stated that an influence of wine matrix on the precipitation of salivary proteins occurred. 

 

3.2.2.1 Introduction 

Astringency may be considered the resulting of different sensations as drying, roughing, 

and puckering of the epithelium (Lee and Lawless 1991) felt in the mouth after the 

ingestion of foods and beverages containing polyphenols. This mouthfeel is localized not 

only in specific regions of the tongue, as it happens for the gustative sensations, but it also 

involves the overall buccal cavity like soft palate, gingives, and lips (Breslin et al., 1993). 

One of the main mechanisms that have been proposed to explain astringency is based on 

the chemical interactions of some salivary constituents with polyphenols and on the 

formation of protein–polyphenol complexes. The precipitation of these complexes is able 

to stimulate mechanoreceptors connected with trigeminal nerve and to transmit to brain 

the perception of astringency. This results in tactile sensations characterized by different 

astringent subqualities, as described by the mouthfeel wheel (Gawel et al., 2000). Other 

scientists considered astringency a taste because like sour, sweet, salty, and bitter 

compounds, astringent stimulus is able to activate signal transduction pathways 

(Spielman, 1990). However, the weight of evidence favors the tactile sensation as 

principally caused when astringent substances precipitate salivary proteins that give saliva 

its lubricity (Breslin et al., 1993). During last decades, astringency has been largely 

studied in red wine, because it represents an important quality attribute. Wine is a 

complex matrix and its taste perception is determined by a balance among sensory active 

compounds like acids, sugars, ethanol, and others. All these gustatory stimuli have been 

shown to affect the perception of astringency. Adding acids to wines or tannic acid 

solutions produced an increase in astringency (Guinard et al., 1986). On the contrary, the 

addition of sweeteners was observed to attenuate the mouth dryness typical of the 

astringent sensation both of tannic acid solutions (Lyman and Green, 1990) and red wine 

(Ishikawa and Noble, 1995). The astringent sensation can also be altered by the presence 

of the most important component of wine: the ethanol (Lesschaeve and Noble, 2005). As 

the ethanol level increased in model solution (Fontoin et al., 2008), a decrease in 

perceived astringency and in some astringent subqualities (Vidal et al., 2004a) was 

observed. In case of red wine, astringency sensation was affected by alcohol reduction 

(Meillon and others 2009). Astringency can also be modulated by the presence of some 

polysaccharides, such as mannoproteins (MPs), decreasing the intensity of some 

astringent attributes and contributing to the fullness of model wine solutions (Vidal et al., 

2004b). During tasting, the influence of wine components on astringency perception may 

involve different mechanisms that govern gustatory and somatosensory interactions and 
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their cross-modal modulation in the mouth. When assessing mixtures of flavor eliciting 

compounds, 2 levels of interaction must be taken into account: (i) psychological, 

considering cognitive effects of different stimuli being perceived together in the mouth; 

and (ii) physiological, including both chemical interactions occurring in solution which 

may directly affect perception and secondary interactions between one of the mixture 

components and the taste receptors/transduction mechanisms of the other component. 

From a psychological point of view, when tastants and chemesthetic substances in a 

matrix mix with saliva to reach the receptive areas, networks of brain areas are involved 

specialized for integrating different types of multimodal information (Verhagen and 

Engelen, 2006). As concern physiology, it was observed that viscosity of the saliva–wine 

solution seems to affect the way we perceive astringency after the addition of acids (Luck 

et al., 1994), sugars (Smith et al., 1996), ethanol (Pickering et al., 1998), and MPs (Jones 

et al., 2008). Until now, no extensive studies investigating the occurrence of the addition 

of factors such as acids, sugars, ethanol, and MPs in wine on polyphenols–salivary 

proteins precipitation have been carried out. Several studies focused on methods for 

astringency prediction, based on polyphenol–proteins interactions. Both suspended 

particles (Monteleone et al., 2004) and insoluble complexes (Llaudy et al., 2004) have 

been considered. Given that the strongest correlation between sensory analysis and 

analytical methods was obtained for the formation of insoluble complexes (Kennedy et 

al., 2006), our attention has been focused on protein precipitation assay as an analytical 

method for astringency assessment. In this work, the saliva precipitation index (SPI), 

based on the precipitation of selected salivary proteins after the reaction with wine 

polyphenols (Rinaldi et al., 2010), was utilized to better understand the influence of 

factors such as ethanol, pH, fructose, and mannoproteins on astringency of Merlot wines 

and model solutions. In a second experiment, the influence of the concentration of these 

factors on the precipitation of salivary proteins was evaluated. Because the protein 

precipitation method is similar to the physiological response to astringents, it seems to be 

a useful in vitro tool for understanding how modification by different factors leads to 

modification in astringency perception. 

 

3.2.2.2 Materials and Methods 

3.2.2.2.1 Reagents 

Solvents of HPLC grade, D(-)- fructose and L(+)-tartaric acid were purchased from J.T. 

Baker (Levanchimica; Bari, Italy). Tannic acid was purchased by Extrasynth´ese (Lyon, 

France). Commercial mannoproteins were provided by Laffort (Bordeaux, France). 

Model solutions (S) and Merlot wines (W) The model solution (S) was composed of 

tannic acid 3 g/L, ethanol 13% v/V, tartaric acid 4 g/L, and pH = 3.6. Base parameters of 

Merlot wine (W) were: 2.95 ± 0.17 g/L gallic acid equivalent (GAE); ethanol 11% v/V; 

pH = 3.6; <1 g/L residual sugars. Ethanol (2%–4%–6% v/V), D(-)- fructose (2–4–6 g/L), 

L(+)-tartaric acid (2–4–6 g/L), and mannoproteins (2–4–8 g/L) were added to S and W. 

After L(+)-tartaric acid addition in S and 

W, the pH was immediately measured by Crison pH-meter Basic 20. S and W samples 

were used for phenolic, SPI, and sensory analysis. 

 

3.2.2.2.2 Phenolic analysis 

Total phenolics (Folin–Ciocalteu index (FCI)) were measured according to Waterhouse 

(2001) and were expressed in g/L of GAE. Gelatin index was evaluated according to 

Glories methods (1984) with some modifications; the index was calculated as the 

difference between the total wine phenolics by FCI and the concentration after gelatin 

precipitation. Results were expressed as a percentage, referring this difference to the total 
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phenolics concentration. The content of polyphenols combined with polysaccharides was 

estimated using the ethanol index (Glories 1984). 

 

3.2.2.2.3 SPI analysis 

Human saliva (HS). HS was obtained by mixing resting whole mouth saliva samples from 

different individuals. Saliva collection was performed for between 10 and 11 am. Subjects 

were asked not to consume any food and beverage for 2 h before saliva collection. Saliva 

was spontaneously collected from 6 nonsmoking volunteers (3 males and 3 females) by 

expectorating saliva into a preweighted ice-cooled tube for 5 min. The resulting mix was 

centrifuged at 10000g for 10 min to remove any insoluble material, and the supernatant 

was referred to as HS. Resting HS flow rates were determined gravimetrically and 

expressed as milliliter per minute (mL/min). An average resting salivary flow rate is 

estimated at 0.64 ± 0.08 mL/min. 

 

Binding assays. Interaction mixtures (150 μL final volume) contained 100 μL of HS and 

50 μL of S or W, which were previously filtered at 0.45 μm (Millipore; Rome, Italy). 

Binding assays were performed in Eppendorfs maintained at 25 °C for 5 min (Sarni-

Manchado and others 1999). The mixture was then centrifuged for 10 min at 10000g. The 

analyses were performed on the resulting supernatant. Binding assays were performed in 

triplicate. 

 

Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS–PAGE) 

electrophoresis. The SDS–PAGE electrophoresis of HS before and after the binding assay 

was performed in triplicate on a Bio-Rad Protean II xi Cell electrophoresis apparatus 

(Bio-Rad, Milano, Italy) using a PowerPac 1000 Bio-Rad power supply set at 150 V/gel 

for the stacking gel and 180 V/gel for the resolving gel. Samples mixed with an equal 

volume of 2× electrophoresis sample buffer (0.125 M Tris–HCl, 4% SDS; 20% v/V 

glycerol, 0.2 M DTT, 0.02% bromophenol blue, pH 6.8) and heated at 95 ◦C for 4 min 

were analyzed by SDS–PAGE using 30% acrylamide/bisacrylamide (37.5 : 1) solution. 

The resolving gels were 14% acrylamide, and stacking gels were 5% acrylamide. The 

gelswere fixedwith a mixture of ethanol, acetic acid, and deionized water (40 : 10 : 50) 

for 1 h. After washing in water for 5 min, the gels were stained with Coomassie Brilliant 

Blue R250 staining solution (Bio-Rad). The destain step was performed by incubation in 

the destain solution Coomassie Blue R250 (Bio-Rad). The apparent molecular weights of 

bands 1 and 2 were calculated from the linear regression equation of log molecular weight 

against mobility, by comparison with the migration rates of precision plus protein 

standards all blues (Bio-Rad). 

 

3.2.2.2.4 Densitometry 

Densitometric tracing of gels was performed with a Bio-Rad GS800 densitometer, and 

electrophoretic data were analyzed by Quantity One analysis software, Version 4.5 (Bio-

Rad). 

SPI. The SPI was obtained by the density reduction of the bands 1 (59–54 KDa) and 2 (15 

KDa) marked with asterisk (∗) in Figure 1, as described by Rinaldi et al., (2010). 

 

3.2.2.2.5 Sensory analysis 

Fifty subjects composed of enologists and winemaking experts, participated at a sensory 

course organized by the University of Naples “Federico II.” Potential participants were 

screened following IS0 guidelines (IS0 8586-1 1993). Thirty-one were chosen on the 

basis of their sensory capabilities, interest, and availability. Screening tasks included 

basic taste identification and intensity rating tests. Panelists were familiarized with 
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samples and tasting procedures in ten 1-h training sessions. They had been introduced 

first to the theory of astringency and extensively trained to differentiate astringency from 

bitterness and sourness using 3.0 g/L tannic acid, 0.25 g/L quinine sulfate, and 4.0 g/L 

tartaric acid as examples of 

astringency, bitterness, and sourness, respectively. Thirty-one panelists indicated an 

ability to discriminate among these taste stimuli. In the following sessions, panelists were 

familiarized with astringency rating. They were asked to evaluate global astringency of 

tannin acid at different concentrations (0.5–1.0–2.5–3.5) on a 5-point scale (1 = not 

detected, 2 = weak, 3 = medium, 4 = strong, 5 = very strong) first in water and then in 

wine solution. The obtained data were used for assessing the reliability and consistency of 

the panelists, which were considered to be acceptable (p < 0.05 for reproducibility of 

scores of replicate samples). Successively, during 2 tasting sessions, 5 samples (W or S) 

were evaluated in duplicate. Each tasting session consisted of 2 sets and in each set, 5 

samples were evaluated, with the order of samples randomized in each set. In each 

session, W samples (10 mL) were presented in balanced random order at room 

temperature (18±2 °C) in black tulipshaped glasses coded with 3-digit random numbers. 

The assessors were instructed to pour the whole sample in their mouth, hold it for 8 s, 

expectorate and rate the perceived overall astringency using a 5-point scale (1 = not 

detected, 2 = weak, 3 = medium, 4 = strong, 5 = very strong). Judges rinsed twice with 

deionized water, and then waited at least 30 s between samples. Samples S were 

evaluated in the same manner as W samples. 

 

3.2.2.2.6 Statistical analysis 

To determine the effect of ethanol, tartaric acid, fructose, and MPs addition among 

studied variables, one-way analysis of variance (ANOVA) analysis was used when the 

variables fulfilled the parametric conditions. Fisher’s least significant differences (LSDs) 

procedure was used to discriminate among the means of the variables when 

necessary.When the variances were not homogeneous, data were analyzed using 

Kruskall–Wallis test and significant differences were established by using Notched Box 

Plots. Multifactorial ANOVA with second-order interactions was used to evaluate the 

relationships between included factors. Differences of p <0.05 were considered 

significant. Elaborations were carried out by means of Statgraphics 5.0 Plus-PC 

(Manugistics, Inc., Rockville, MD, U.S.A.). All analyses were carried out in triplicate. 

 

3.2.2.3 Results and Discussion 

In the phenomenon of astringency, the interaction of polyphenols with salivary proteins in 

the mouth causes physical changes in the saliva, which are sensed by the 

mechanoreceptors in the oral cavity. Hydrogen bonding and hydrophobic interactions are 

the most likely mechanisms under physiological conditions (Clifford, 1986). As 

previously reported, by means of the SDS–PAGE, human saliva pattern changes after the 

binding reaction with polyphenols extracts (Gambuti et al., 2006) and wine (Rinaldi et al., 

2010). After the interaction, some salivary constituents in the pool of salivary proteins 

present in mouth decreased. The precipitation with polyphenols leads to a reduction in 

density of 2 selected proteic bands that, having been correlated with astringency 

perception, represented a measure of the in vitro interactions occurring. The analytical 

data concerning with the ability of polyphenols to precipitate salivary proteins are given 

by the SPI. In order to understand if the addition of ethanol, tartaric acid, fructose, and 

commercial MPs may have an effect on the precipitation of salivary proteins, the 

interaction of HS with Merlot wine (W) and model solution (S) was carried out. In Figure 

1A, the electrophoretic pattern of HS before (lane 1) and after the binding reaction with 

Merlot wine (lane 2), Merlot added of 2% v/V ethanol (lane 3), Merlot added of 4 g/L 
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MPs (lane 4), Merlot added of 2 g/L tartaric acid (lane 5), and Merlot added of 4 g/L 

fructose (lane 6), was shown. The densitometric analysis was performed on proteic bands 

marked with asterisk (∗), as previously reported (Rinaldi et al., 2010). Density was 

represented by the area under the peak for each band typology, called band 1 and band 2, 

as shown in Figure 1B.  

 

 
 

 

The addition of tartaric acid on Merlot wine determined the most relevant decrease in 

density of proteic bands (Figure 1A, lane 5). As better shown in Figure 1B, in fact, the 

area under the yellow peaks related to wine added with acids (line 5) is less than the green 

one, related to control wine (line 2) for both bands. Thus, among factors considered 

proteins were mainly precipitated by acids. The acidic environment, in fact, promotes 

precipitation of salivary proteins (Payne et al., 2009), increasing the binding with 

polyphenols. In addition, polyphenols through hydrophobic interactions could create a 

layer around the proteins, which may also become less hydrophilic and then precipitate. It 

has also been shown a direct action of tartaric acid on the formation of bigger and much 

more polydisperse particles of tannins (Poncet-Legrand et al., 2003). In agreement with 

an enhanced precipitation, the SPI values significantly increased both in Merlot wine (W) 

and model solution (S) after the addition of tartaric acid (Table 1). Compared to control, 

an increase in SPI of 21.7% and 11.9% was obtained in wine and model solution, 

respectively. The addition of 2% v/V ethanol, on the contrary, has a slight negative effect 

on salivary proteins precipitation as stated by the higher density of proteic bands (Figure 

1A, lanes 3) with respect to control wine (lane 2). In fact, the area under the orange peak 

(Figure 1B, line 3) is greater than the green one (line 2). As a consequence, values in 

Table 1 for SPI after the ethanol addition were significantly lower both in wine (W) and 

model solution (S). The percentage reduction was of 15.5% in Merlot and 14.3% in 

synthetic medium. The presence of this solvent can modify interactions and cause the 
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disruption of hydrogen bonding between polyphenols and proteins (Noble, 1990), then 

salivary proteins are less precipitated. Moreover, ethanol is also responsible for 

modification in protein folding and may induce conformational changes in proteins and in 

solubility of tannins (Poncet-Legrand et al., 2003), thus modifying the reactivity of 

salivary proteins toward polyphenols. As for ethanol, the addition of 4 g/L of fructose (the 

reducing sugar mainly present in a not completely fermented wine) to Merlot wine 

determined a decrease in proteins precipitation (Figure 1A, lane 4), as well in SPI (Table 

1) both in wine (17.5%) and model solution (19.7%). The hydrophilic nature of sugar may 

interfere with hydrogen bonding between polyphenols and protein (Ishikawa and Noble 

1995), reducing the precipitation with saliva. The protective effect of carbohydrates 

against phenols precipitation by salivary proteins may also depend on sugar molecule that 

through -CH2OH substituents can accommodate with the protein without steric 

interference, making inaccessible the binding site to polyphenols. As regard the addition 

of 4 g/L of commercial MPs to Merlot wine, it seems that the binding reaction between 

salivary proteins and wine polyphenols was reduced or inhibited by MPs, since selected 

proteins were mainly precipitated after the interaction of wine without MPs (Figure 1A, 

lane 6). As shown in Figure 1B, the area under the pink peak (line 6) is greater than the 

control green one (line 2) for both bands. The SPI values in Merlot and model solution 

were significantly lower than controls (Table 1).  

 

 

 
 

 

It is possible that the association of the MPs with the astringents prevents the binding with 

salivary proteins. As proposed by Vidal et al., (2004b), physical adsorption onto the 

surface of polysaccharides has probably been occurred, reducing the tannic fraction 

reactive toward salivary proteins. Moreover, the tannin–mannoprotein combination would 

produce stable structures that are not reactive toward salivary proteins, explaining why 

wine tannins are less astringent in the presence of mannoproteins (Escot et al., 2001). In 

order to asses if the observed effects on the precipitation of salivary proteins was 

perceived at a cognitive level, Merlot wines (W) and model solutions (S) added with 2% 

v/V ethanol, 4 g/L MPs, 2 g/L tartaric acid, and 4 g/L fructose were evaluated by sensory 

analysis. In Table 2, the mean sensory ratings for astringency of W and S were shown.  
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Judges perceived an increase of the sensation both in W and S after the addition of 2 g/L 

of tartaric acid. Previously, it was shown that acidity increased astringency as a function 

of pH reduction (Guinard et al., 1986; De Miglio and Pickering, 2008). In the present 

study, the increase of astringency can be due to the lowering of pH from 3.6 to 3.2 

measured after tartaric acid addition, both in W and S. This was in accordance with the 

observation made in model solution (Fontoin et al., 2008), in which a pH decrease had a 

large effect on increasing astringency. On the contrary, the addition of ethanol and 

fructose caused a reduction in the perception of W and S astringency. The same effect on 

mean sensory ratings for astringency was previously observed after the addition of sugars 

(Ishikawa and Noble, 1995) and ethanol (Fontoin et al., 2008) to wine or model solution. 

As regard the addition of 4 g/L of MPs in W and S, in both cases, the overall astringency 

was reduced. Recently, it has been shown that the addition of commercial mannoproteins 

in red wine (Guadalupe and Ayestaran, 2008) caused a decrease in astringency. Different 

and controversial reasons have been proposed to explain this phenomenon. According to 

Guadalupe and Ayestaran (2008), mannoproteins favorites the formation of tannin 

aggregates leading to a reduction of total proanthocyanidins content and a decrease in 

astringency. Other researchers proposed that mannoproteins interact with phenolic 

compounds in model wine preventing tannin aggregation at wine concentration (Riou et 

al., 2002). The discrepancy between the proposed mechanisms by how mannoproteins 

can reduce astringency may be due to the different ability of these proteins to interact 

with red wine or model wine. From our study, it can be postulated that the interaction 

between salivary proteins and polyphenols is also modulated by the medium. In fact, the 

different composition of media utilized, the tannic acid in S and wine polyphenols in W, 

had a significant (F-ratio 48.95; p = 0.0000) influence on the precipitation of salivary 

proteins, as well as on the astringency perception (F-ratio = 12.24, p = 0.0004) evaluated 

by means of a multifactorial ANOVA with a second-order interaction for the variables 

considered at 99% confidence level. Merlot wines (W) and model solutions (S) added 

with 2% v/V ethanol, 4 g/L MPs, 2 g/L tartaric acid, and 4 g/L fructose were also 

analyzed by one of the physicochemical methodologies commonly used to evaluate 

astringency that is the gelatine index. In addition, the formation of polysaccharides–

tannin–protein complex by the ethanol index and total phenols by FCI was also 

determined. In Table 3, no differences in these parameters between control and treated 

wines were detected, indicating that they are not sensitive to changes occurring after the 

addition of selected factors.  

 

 

 
 

 

As expected, FCI increased after the addition of MPs in W. This is due to the well-known 

reactivity of the reagent toward both sugars and proteins (Singleton and Rossi, 1965). In 

order to compare sensory data with the analytical data considered, a Pearson’s correlation 

was performed. A positive correlation was found between SPI and sensory data (r = 

0.888), while no correlation with gelatine index (0.017) and ethanol index (0.082) and a 
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negative one for FCI (−0.276) were obtained. Since the precipitation of salivary proteins 

was good correlated with perceived astringency, the SPI was utilized to evaluate the 

effect of concentration of ethanol, tartaric acid, fructose, and mannoproteins. The SPI was 

determined after the addition of increasing concentrations of these factors in W and S, and 

results were shown in Table 4. 

 

 
 

 

Adding increasing amounts of tartaric acid, the pH of wines and solutions decreased from 

3.6 to 2.9, determining an increase in the precipitation of salivary proteins. Several 

phenomena can explain these data. Poncet-Legrand et al., (2003) observed a decrease of 

tannins solubility when the concentration of tartaric acid in a model ethanolic solution 

increased. Moreover, the addition of acids increases the percentage of tannins in the 

phenolate form, and therefore increases the possibility of hydrogen bonding. It is also 

likely that Van der Waal interactions and hydrogen bonding between proteins and 

polyphenols can be enhanced by the major accessibility of binding sites at low pH. The 

SPI augmented proportionally in W as in S. As the ethanol level was increased in W and 

S, the SPI decreased proportionally. The ethanol has a great influence on self-aggregation 

of tannins (Poncet-Legrand et al., 2003) and on the precipitation of both tannic acid and 

wine polyphenols with salivary proteins, in agreement with recent findings demonstrating 

a direct inhibition of binding as the concentration augmented (De Miglio and Pickering, 

2008). The addition of 2 and 6 g/L of fructose to Merlot wine determined a proportional 

decrease in the SPI, also in model solution. As regard mannoproteins, the SPI was 

assayed after the addition of different concentrations (2–8 g/L) in W and S, as shown in 

Table 4. The ability of MPs to interfere with proteins precipitation was linear with 

concentration in both media. Because the SPI diminished as the concentration increased, 

it is possible that the association of the MPs with the astringents prevents the binding with 

salivary proteins. From SPI data, it seems that the tannic acid present in S has a different 

reactivity toward salivary proteins in the presence of solutes as tartaric acid, fructose, and 

mannoproteins with respect to the whole pool of wine polyphenols. This may be ascribed 

to the different chemical nature of phenols in the matrix. 

Tannic acid is generally present in commercial products as hydrolysable tannin containing 

up to 8 galloyl residues, while wine polyphenols are mainly proanthocyanidins; the 

structure features of their functional groups give to these molecules a different protein 

binding affinity. In order to assess the influence of wine matrix and concentration of each 

influencing factors on the SPI, a multifactorial ANOVA was carried out taking into 
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consideration the wine matrix and the concentration of the influencing factors, as well as 

the interactions between these factors. Table 5 shows the F ratio and p values obtained 

from the statistical analysis for the SPI.  

 

 
 

 

The F ratio represents the quotient between variability due to the considered effect and 

the residual variance. The F ratio values are also comparable in each column, because the 

number of observations was the same in all cases. A higher value of F ratio means a more 

marked effect of that factor on a variable. According to this, variables, in general, were 

affected by the different nature of wine matrix and the increasing concentration added. 

Among the influencing factors, matrix (M) and concentration (c) have mainly affected the 

SPI after the addition of increasing amounts of tartaric acid. The other variables were 

differently influenced by M and c. The interactions between the 2 factors (M × c) took 

place in all cases, which indicates that the capability of wines supplied with increasing 

levels of ethanol, tartaric acid, fructose, and commercial mannoproteins to precipitate 

salivary proteins was different depending on the polyphenolic matrix. Therefore, matrix 

seems to play an important role in establishing multidentate interactions with proteins, 

enhancing or reducing salivary proteins binding and subsequent precipitation.  

 

3.2.2.4 Conclusions 

The precipitation of salivary proteins, which was one of the mechanisms on the basis of 

astringency, was stated to be affected by factors as ethanol, tartaric acid, fructose, and 

commercial mannoproteins added in Merlot wine and model solution. Since the protein 

precipitation assay has been considered one of the possible methods able to reproduce the 

physiological response to astringents (Kennedy et al., 2006), the SPI represented a useful 

tool to evaluate these effects. Tartaric acid addition caused the most relevant increase in 

salivary proteins precipitation and, as revealed by sensory analysis, in astringency 

perception. Ethanol, fructose, and mannoproteins addition on the contrary caused a 

reduction of the sensation as well in the SPI. Increasing the concentration of each 

influencing factors, the effect on the precipitation of salivary proteins was enhanced. This 

effect is influenced by polyphenolic matrix. These results provide interesting suggestions 

for enologists, which could modulate the astringency of red wine by: (i) leaving some 

residual reducing sugars (such as fructose) in red wine during winemaking of grapes rich 

in tannins; (ii) avoiding the lowering of pH; (iii) adding commercial mannoproteins or 

promoting a “sur lie” aging; and (iv) harvesting grapes at high technological maturity in 

order to obtain wines with a satisfactory alcoholic content when possible. Further studies 

will aim to give a deeper insight the perturbing action of each factor by means of 

structural analysis of the binding. Moreover, because the results of this study showed that 

a physiological effect occurred, it will be interesting to evaluate the contribution of 
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phenomena occurring at neurophysiological level, such as the multimodal interactions 

among tastes and tactile  sensations present in a matrix. 
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3.3 The effect of enological practices  

3.3.1 Partial dealcoholisation of red wines by membrane contactor technique: 

influence on colour, phenolic compounds and saliva precipitation index 

 

In this study, red wines from different grape varieties (Merlot, Aglianico and Piedirosso) 

and containing different alcoholic level (from 13.67 to 15.46% v/v) were treated to 

diminish the alcoholic percentage of 2, 3 and 5% v/v by a polypropylene hollowfibre 

membrane contactor apparatus. The wines were analysed before and after partial 

dealcoholisation. Colour indexes and phenolics were analysed by spectrophotometric 

methods and HPLC. Wine astringency was evaluated by an astringency index based on 

the ability of treated wines to precipitate salivary proteins (SPI, Saliva Precipitation 

Index). For all the levels of dealcoholisation studied, changes in chromatic characteristics, 

Folin–Ciocalteu index and vanillin reactive flavans were below the methodological errors 

of the analyses. A loss of malvidin 3-monoglucoside was detected after the 

dealcoholisation process. Decreasing the ethanol content of wines caused an increase in 

SPI values. 

 

3.3.1.1 Introduction 

Alcohol levels in wine have been increasing over the last decades. This is due to the 

tendency for vine growers toplant grape varieties that produce more sugar, as well as 

climate changes and improvements in viticulture and in winemaking techniques. Today, 

the level of alcohol in wine is an issue as consumers have become more healthconscious. 

For this reason, the worldwide demand for less alcoholic wines, as well as the treatments 

in wine industry aimed to reduce ethanol level, is growing. In view of this exigency, the 

EU regulation permits up to a 2% adjustment. However, in some cases, as during very 

warm vintages, there is the necessity of reducing the ethanol content of wine more than 

2%. Several techniques have been developed to partially reduce alcohol content in wines, 

such as reverse osmosis (Pilipovik and Riverol, 2005) vacuum membrane distillation 

(Gomez-Plaza et al., 1999), pervaporation (Takàcs et al., 2007) and spinning cone column 

(Belisario-Sanchez et al., 2009). The goal of winemaking industry is to find a method 

able to reduce alcohol without lowering the concentration of other compounds involved in 

wine quality. Membrane contactors are among the most used systems in the industry to 

decrease the ethanol content of 1–5%. Until now, the effect of this treatment has been 

mainly evaluated for sensory quality (Lisanti et al., 2010) and for aroma volatile 

compounds in model wine solution (Diban et al., 2008). In spite of the importance of 

phenolic compounds for wine colour, mouthfeel sensations, ageing behaviour and their 

beneficial effects on human health, no data were reported on the effect of partial 

dealcoholisation by membrane contactors on wine phenolics and wine chromatic 

characteristics. An interesting result on the effect of partial dealcoholisation by reverse 

osmosis on mouthfeel sensations was reported: astringency, in several cases, increased 

(Meillon et al., 2009). As this sensation is mainly due to salivary proteins–polyphenols 

interactions (Haslam and Lilley, 1988), this effect may be ascribed to a change in 

phenolic composition of wine and/or to an effect exercised by ethanol on the phenomena 

that origin astringency. Until now, the effect of dealcoholisation by membrane process 

onwine polyphenols is still not known. In addition, the role of ethanol on salivary 

proteins–tannins interactions is controversial. Some authors showed a decrease in the 

perception of astringency with the increase in ethanol (Gawel, 1998; Fontoin et al., 2008), 

while a minimal effect was reported by Noble (Noble, 1998). Scinska et al., (2000) 

supposed that ethanol decreases astringency by a masking action due to its own bitter or 

sweet taste. The ethanol may also act directly on saliva properties such as viscosity 

(Pickering et al., 1998) and lubricant power (Smith et al., 1996). It is also possible that 
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ethanol acts directly on the salivary proteins-tannin binding as earlier observed for BSA-

tannin binding (Rinaldi et al., 2010). Due to the lack in knowledge on the influence of 

partial dealcoholisation on wine phenolics and chromatic characteristics, in this study, a 

partial dealcoholisation of -2, -3 and -5% of ethanol was performed on four monovarietal 

wines: one Merlot, one Piedirosso and two Aglianico wines. In order to investigate the 

effect of partial dealcoholisation on wine astringency, sensory analysis was performed 

and the Saliva Precipitation Index (SPI) was also evaluated. 

 

3.3.1.2 Materials and methods 
3.3.1.2.1 Wines 

Wines were provided by Taburno winery (Foglianise, Benevento). They were obtained 

from grapes of Vitis vinifera cv. Piedirosso, Merlot and Aglianico, from vineyards located 

in the area surrounding the city of Benevento (Campania, Italy). Three wines (Piedirosso, 

Merlot and Aglianico) were produced in 2008 vintage, while the second Aglianico wine 

was from 2007 vintage. All wines were produced by a conventional winemaking 

procedure. 

 

3.3.1.2.2 Wine dealcoholisation 

The dealcoholisation tests were carried out in an industrial system ALCOLESS PRIMO 

(Enolife s.r.l. Montemesola, Taranto, Italy) equipped with a polypropylene hollow fibre 

membrane contactor (Liqui-Cel, Extra-Flow 4 9 28, Celgard 950) and a centrifugal pump 

in stainless steel (Lowara CEA 70/3/A, Q 30–80 L/min, PZ 0.37 kW). Wines were 

partially dealcoholised at almost -2% (d≈2), -3% (d≈2) and -5% (d≈5) v/v of ethanol. The 

dealcoholisation process consists of continuous cycles in which water circulating on one 

surface of polypropylene membrane is gradually enriched by ethanol deriving from wine 

circulating on the other side of the membrane. The driving force for the process is the 

difference in partial pressure of ethanol across the membrane. Ethanol evaporates from 

the surface of solution having higher partial pressure (higher concentration in alcohol), 

diffuses in theform of vapour through the membrane and condenses on the surface of the 

water, which results in the dealcoholisation of wine and the alcoholisation of water. 

During all the process, wine continuously circulates from an open tank to the 

dealcoholisation apparatus. In order to achieve the desired dealcoholisation level, the 

content of ethanol in treated wine was monitored during all the process until the target 

level was achieved. Membrane operating parameters were: wine inlet pressure 1 bar, wine 

outlet pressure 0.6 bar, water inlet pressure 1 bar, water outlet pressure 0.2 bar, wine flow 

35 L/h, water flow 11 L/h. The mean process time needed to achieve the dealcoholisation 

of -2, -3 and -5% was 1, 2 and 3 h, respectively. One hectoliter of each wine was used. 

The dealcoholisation treatments were done at the temperature of 20 °C. Chemical 

parameters of wines before and after partial dealcoholisation treatments are reported in 

Table 1. 
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3.3.1.2.3 Standard chemical analyses and spectrophotometric measurement 

Standard chemical analyses (alcoholic strength by volume, reducing sugars, total acidity, 

pH, volatile acidity, total dry matter and total polyphenols (Folin–Ciocalteu index) were 

measured according to the OIV Compendium of International Methods of Analysis of 

Wine and Musts. Alcoholic strength measurements were performed obtaining the 

distillate by a DE distillation unit (Gibertini, Milan, Italy). Measurements of the alcoholic 

strength of the distillate and of total dry matter were determined by densimetry using an 

ALCOMAT2 hydrostatic balance (Gibertini, Milan, Italy). Accuracy and repeatability of 

hydrostatic balance were ±0.03% vol. Tannins were evaluated as described by Ribéreau-

Gayon & Stonestreet (1966). Total anthocyanins and vanillin reactive flavans were 

determined according to Di Stefano & Guidoni (1989). Colourant intensity, d420, d520, 

d620, hue and gelatine index (GI) were evaluated according to Glories methods (1984). A 

Shimadzu UV-1800 (Kyoto, Japan) UV spectrophotometer was used for all data 

pertaining to the results reported in this article. Photometric accuracy was of ±0.002 Abs, 

and photometric repeatability was less than ±0.001 Abs. All analyses were carried out in 

triplicate. 

 

3.3.1.2.4 HPLC analysis 

Equipment 

A HPLC Shimadzu LC10 ADVP apparatus was used (Shimadzu Italy, Milan), consisting 

of a SCL-10AVP system controller, two LC-10ADVP pumps, a SPD-M 10 AVP detector 

and an injection system full Rheodyne model 7725 (Rheodyne, Cotati, CA) equipped with 

a 20 µL loop. Allthe samples were filtered through 0.45-µm Durapore membrane filters 

(Millipore-Ireland) into glass vials and immediately injected into the HPLC system. 

Anthocyanins method 

For the separation and quantification of anthocyanins, a Waters Spherisorb column (250 9 

4.6 mm, 4 µm particles diameter) with precolumn was used. Twenty microlitre of wine or 

calibration standards were injected onto the column. The HPLC solvents were: solvent A: 

water/formic acid/acetonitrile (87:10:3) v/v; solvent B: water/formic acid/acetonitrile 

(40:10:50) v/v. Zero-time conditions were 94% A and 6% B, after 15 min the pumps were 

adjusted to 70% A and 30% B, at 30 min to 50% A and 50% B, at 35 min to 40% A and 

60% B, at 41 min, end of analysis, to 94% A and 6% B. This zero-time solvent mixture 

was followed by 10-min equilibrium period prior to inject the next sample. The flow rate 
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was 0.80 mL/min. Detection was carried out by monitoring the absorbance signals at 518 

nm. Detector sensitivity was 0.01 absorbance units full scale (AUFS). For calibration, the 

external standard method was used: the calibration curve was plotted for the malvidin-3-

monoglucoside on the basis of peak area. The calibration curve was obtained by injecting 

5 solutions (in triplicate) containing increasing concentrations of malvidin-3-

monoglucoside. The anthocyanins concentrations were expressed as mg/L of malvidin-3-

monoglucoside. The analyses were carried out in triplicate. 

 

3.3.1.2.5 SPI Analysis 

The SPI analysis was performed as reported by Rinaldi et al., (2010).  

 

3.3.1.2.6 Statistical analysis 

All the data are expressed as the arithmetic average ± standard deviation of three 

replicates (two in the case of sensory data). To determine the influence of 

dealcoholisation treatment among variables studied, one-way ANOVA analysis was used 

when the variables fulfilled the parametric conditions. Fisher’s least significant 

differences (LSD) procedure was used to discriminate among the means of the variables 

when necessary. When the variances were not homogeneous, data were analysed using 

Kruskall–Wallis test and significant differences were established by using Notched Box 

Plots. Differences of p<0.05 were considered significant. Elaborations were carried out by 

means of Statgraphics 5.0 Plus-PC (Manugistics, Inc.). 

 

3.3.1.3 Results and discussion 

3.3.1.3.1 Anthocyanins and chromatic characteristics 

A significant modification in the content of several monomeric anthocyanins was 

observed after partial dealcoholisation of wines (p<0.05) (Table 2). The loss of total 

monomeric anthocyanins after the partial dealcoholisation of 5% was higher for Merlot 

(loss of 57%; p<0.05) and Piedirosso (loss of 52%; p<0.05) than Aglianico 2007 (loss of 

49%; p<0.05). No significant change for Aglianico 2008 wine was detected. The loss of 

monomeric anthocyanins was uninfluenced by their chemical nature: pigments with 

higher degree of methoxylation (malvidin 3-glucoside) showed behaviour similar to that 

observed for cyanidin 3-glucoside which contains more hydroxyls. A different trend was 

observed for total anthocyanins: they did not change after the dealcoholisation treatments 

for all red wines considered (Table 2). 
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Changes in the concentration of wine pigments after dealcoholisation may result from 

several processes: (1) the oxidation of O2 sensible compounds during the dealcoholisation 

process, (2) the concentration effect due to the loss of ethanol from wine and (3) the 

adsorption on the membrane surface. A passage of water from stripping solution to the 

wine should be also considered. However, it is irrelevant owing to the nearly identical 

vapour pressure of water over the wine and over the stripping flow (Hogan et al., 1998). 

The results of this study suggest that the subtractive processes are predominant. 

Differences in the entity of the loss of anthocyanins among wines were already observed 

in a study where a membrane treatment was performed on wine of different years (Bosso 

et al., 2001). They may be due to differences in the content of O2 quenching compounds 

of each wine and/or in content of colloids acting as filtration bed on membrane surface. 

The dealcoholisation process did not affect the chromatic characteristics of wines (Table 

2). This indicates that: (1) the contribution of copigments to wine colour is dominant 

respect to monomeric anthocyanins, and (2) it is unaffected by the dealcoholisation 

treatment. It is also likely that, during the treatment, a formation of more coloured 

pigment may occur due to the oxygen intake and to the loss of SO2. Several studies have 

also showed that increasing the concentration of ethanol a decrease in colour and 

copigmentation levels of wines occurred owing to the disruptive action of ethanol on 

copigmentation stacks (Hermosin Gutierrez, 2003; Somers and Evans, 1979). However, 

the effect of ethanol on colour and copigmentation depends on the ratio between 

anthocyanins and related copigments found in wines (Boulton, 2001). Therefore, it is 

likely that the presence of more copigments in Aglianico and Piedirosso wines minimise 

the effect of ethanol on colour. 
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3.3.1.3.2 Phenolics and saliva precipitation indexes 

The partial dealcoholisation process did not affect the Folin–Ciocalteu index of the 

analysed wines (Table 3). These results are in agreement with earlier data reporting that 

polyphenols are only marginally adsorbed by polypropylene membrane (Ulbricht et al., 

2009). An increase in total phenolics was, instead, observed when an Aglianico wine was 

totally dealcoholised probably for the concentration effect due to the removal of ethanol 

(Liguori et al., 2010). This effect was not observed in our study because the maximum 

diminution of ethanol (5% v/v) was not sufficient to determine a detectable concentration 

of total phenolics in wine. The content of vanillin reactive flavans (VRF) did not differ in 

each set of samples. VRF is a parameter more sensitive to monomers and small 

proanthocyanidins (mean degree of polymerisation less than 4 units) than large 

proanthocyanidins (Vrhovsek et al., 2001). To give more information on the effect of 

dealcoholisation on the chemical nature of tannic molecules, a more specific analysis on 

the polymerization degree and composition of tannins must be carried out. In order to 

investigate the effect of dealcoholisation on astringent active phenolics, the SDS–PAGE 

analysis of human saliva (HS) after the interaction with experimental wines was 

performed. Figure 1 showed the electrophoretic pattern of HS (line 1) and HS after the 

reaction with Agl07 (line 2), Agl07d≈2 (line 3), Agl07d≈3, (line 4), Agl07d≈5 (5).  

 

 

 
 

 

A slight decrease in the density of proteic bands at an apparent molecular weight of 59-54 

kDa (Band 1) and 15 kDa (Band 2) occurred as the dealcoholisation level of wine 

increased (Fig. 1). In an early study, these two bands were chosen as representative of 

whole salivary proteins, because they were better correlated with astringency (Rinaldi et 

al., 2010). Based on apparent molecular weight and on the comparison with mobility of 

pure standard (Fluka EC label 10092, Sigma, Milan, Italy), the proteic band 1 may be a-

amylase, a major protein component of the HS pattern (Beeley et al., 1991). Band 2 may 

be ascribed to the acidic proline-rich phosphoproteins PRP1 identified by isolation 
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(Oppenheim et al., 1971) and by the determination of molecular masses by RP-HPLC–

ESI–MS, MS/MS and MALDI-TOF (Soares et al., 2011). The histograms A and B are 

related to the density of the Band 1 and Band 2, respectively, expressed as trace quantity 

(ODxmm
2
) (Fig. 1). The diminution of the density of both bands indicated that in treated 

wines (lines 3, 4 and 5) there are more polyphenols precipitated with salivary proteins. 

The SPI, an index obtained from the percentage reduction in density of Band 1 and Band 

2 after interaction of saliva with wines (Rinaldi et al., 2010), was determined. Higher 

values of SPI at increasing dealcoholisation level were also observed for Aglianico 2008, 

Merlot and Piedirosso wines (Fig. 2).  

 

 

 

 
 

 

These data were in agreement with sensory result reported by Meillon et al., (2009) for 

Merlot wine after the partial dealcoholisation of -1.5 and -3%. Because the Folin–

Ciocalteu index and VRF did not change among wines (Table 3), these results may 

indicate both a change in structure of high molecular weight tannins (molecular size 

and/or monomeric composition) and/or a direct influence of ethanol on the reactivity of 

wine tannins towards saliva. About the first hypothesis, more detailed information may 

derive from the analysis of molecular structure of tannins.  
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Concerning the effect on the precipitation of salivary proteins by tannins, it has been 

recently showed that ethanol directly influences this interaction both in model solution 

and red wine (Rinaldi et al., 2011). As the binding between tannins and salivary proteins 

takes place via the intermediation of hydrogen bonds between phenolic groups of tannins 

and peptide links of proteins and via hydrophobic interactions (Haslam and Lilley, 1988; 

Spencer et al., 1988), this effect may be due to the perturbation of these chemical links by 

ethanol. This is in agreement with the finding that interactions between proteins and 

phenolics are inhibited by the presence of hydrophobic solvents or hydrogen bond 

acceptor solvents (Asano et al., 1982; Spencer et al., 1988). In addition, a significant 

effect of ethanol on red wine tannins-protein (BSA) interactions was detected (Serafini et 

al., 1997). Therefore, ethanol could modify the native configuration of salivary proteins 

and/or disrupt the hydrophobic interactions causing a reduction in the ability of protein to 

bind tannins. The entity of the dealcoholisation effect on SPI differs among wine type 

(Aglianico, Merlot and Piedirosso). This may be related to other factors influencing wine 

astringency, such as polyphenols concentration, pH and organic acids nature and 

concentration (Fontoin et al., 2008; Smith et al., 1996; Guinard et al.,1986). 

 

3.3.1.4 Conclusion 

The partial dealcoholisation of 2, 3 and 5% v/v of Aglianico, Merlot and Piedirosso wines 

by a polypropylene hollow fibre membrane contactor apparatus did not change Folin–

Ciocalteu index and VRF content of all red wines considered. Only a loss of monomeric 

anthocyanins was observed probably due to the adsorption on membrane surface and/or to 

the oxidation of wine when in contact with air during the treatment. The magnitude of 

anthocyanins loss was different among wines, likely due to differences in the content of 

O2 quenching compounds in each wine. Anyway, the loss of monomeric anthocyanins did 

not affect the colour parameters of wines. In order to minimize these losses, 

dealcoholisation should be carried out under conditions limiting the dissolution of oxygen 

and using wines with an adequate content of molecular SO2. SPI, an index that mimic the 

interaction between salivary proteins and wine tannins, increased with dealcoholisation 

level. The effect of dealcoholisation on SPI was significant with a loss of ethanol of only 

2% v/v. Naturally, besides salivary protein precipitation, for a more complete estimation 

of the effect of dealcoholisation on astringency, it is necessary to investigate other factors 

such as changes in molecular structure of tannins. In conclusion, the partial 

dealcoholisation of wines by membrane contactor is a suitable technique for wine 

industry because, apart a loss of monomeric anthocyanins, it did not change significantly 

the main spectrophotometrically evaluable phenolics and the colour of red wine. 

Nevertheless, the oenologists have to consider that the decrease in alcohol level may 

affect wine astringency. 
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3.3.2 Use of patatin, a protein extracted from potato, as alternative to animal 

proteins in fining of red wine 

 

The use of plant-derived proteins as wine fining agent has gained increased interest owing 

to the potential allergenicity of animal proteins in susceptible subjects. Patatin P is the 

name of a family of glycoproteins that can be recovered from potato aqueous by-product. 

In this study, a comparative fining trial simulating industrial procedures with 10, 20 and 

30 g/hL of commercial preparations of patatin, potassium caseinate, gelatin and egg 

albumin on an Aglianico (Vitis vinifera L.) red wine was performed. Color indexes and 

phenolics were analyzed by spectrophotometric methods and HPLC. The potential 

astringency has been evaluated by an index based on the ability of wine to precipitate 

salivary proteins (SPI, Saliva Precipitation Index). Patatin is a suitable alternative to 

animal proteins used as fining agent because: (i) a decrease in total phenolics and tannins 

after the treatments with 10, 20 and 30 g/hL of commercial preparation containing P was 

detected; (ii) Patatin, as well as all the fining agents used in this experiment, is able to 

diminish astringency and the content of red wine phenolics able to react with salivary 

proteins. Considering all concentrations tested, the effectiveness in reducing proteins 

reactive towards wine polyphenols was patatin = gelatine[egg albumin[casein (p<0.05); 

(iii) at each concentration considered, the treatment with patatin causes no depletion of 

chromatic characteristics of red wine although a significant slight loss of individual 

anthocyanins was observed. 

 

3.3.2.1 Introduction 

Many food proteins can act as antigens in sensitive subjects provoking allergenic 

reactions. Among them egg, gluten, milk, fish, crustacean shellfish, soy and nuts are the 

most common. These are all the important food protein sources, the major part of which 

has been also used as emulsifiers, gelling and foaming agents in food systems. Although 

potato is the largest vegetable crop worldwide, amounting to approximately 329 million 

metric tons annually (FAO 2009), allergy towards this tuber is much less common 

(Castells et al., 1986). Potato tubers comprise about 2 % of nitrogen compounds on a 

fresh basis, the 35–75 % of which is represented by proteins (Knorr et al., 1977; Pots et 

al., 1999). In accordance with US Food and Drug Administration, potato proteins are 

intended for use for a variety of functional effects associated with proteins, for example, 

as water binder in meat and sausage, as foaming aid in confectionary, bakery and dairy 

products, and as emulsifier in spreads, sauces, desserts and dressings. The described use 

of coagulated potato protein and hydrolyzed coagulated potato protein has been shown to 

be Generally Recognized as Safe (GRAS) (GRAS, 2001). Potato proteins can therefore be 

an interesting replacement for potentially allergenic proteins as food hydrocolloids. The 

major potato tuber protein (39–45 kDa) is patatin P. This is a family of glycoproteins that 

makes up over 40 % of the total soluble protein in potato (Solanum tuberosum) tubers. 

This potato protein might represent a suitable food additive because of its satisfactory 

solubility, significant foaming and emulsifying properties (Knorr et al., 1977; Holm 

andEriksen, 1980). During the last decades, industry processing potato has been 

expanded, exceeding considerably the amount of fresh vegetable consumation (Shieber et 

al., 2001). Tuber proteins are present in water from potato processing. Therefore, the use 

of these wastes as by-products for further exploitation on the production of food additives 

is economically attractive. Until now numerous systems for protein recovery resulted in 

products with unacceptable flavor and functionality. Today a satisfactory method for the 

recovery of proteins from potato aqueous by-product has been proposed (Bartova and 

Barta, 2009). A suitable use of patatin as food additive could be the fining of wine. In 

wine industry, the use of plant-derived proteins has gained increased interest owing to the 
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potential allergenicity of residual animal proteins in susceptible subjects. As concerns 

winemaking, several animal proteins are usually used to modulate one of most important 

sensory characteristic of red wine, the astringency. This is a significant descriptor of wine 

and an important quality attribute to the consumer. Astringency is mainly due to the 

interaction between salivary proteins and polyphenols such as condensed and ellagic 

tannins (Gambuti et al., 2006; Rinaldi et al., 2010). Proteins used for fining interact with 

wine tannins by a mechanism similar to that occurring during tasting. To reduce wine 

astringency proteins as casein, egg albumin and gelatine are used as fining agents with the 

risk of potential allergenicity owing to their animal origin. The potato-derived protein 

patatin P has an apparent molecular mass of approx. 40,000 (Park et al., 1983), similar to 

that of egg albumin. In addition, the protein P has an isoelectric point of 4.6, and the 

solubility is low at wine pH (Løkra et al., 2008). Therefore, the treatment with this protein 

of a red wine rich in tannins should not cause latent instability. Thus, protein P may 

represent an interesting vegetable alternative for wine fining. In this study, a comparative 

fining trial simulating industrial procedures with commercial preparation of protein P, 

potassium caseinate, gelatin and egg albumin on an Aglianico (Vitis vinifera L.) red wine 

was performed. This wine was chosen because Aglianico grape is rich in polyphenols 

and, often, wine obtained from it needs to be treated to diminish the content of astringent 

tannins. Because an essential requirement of a fining agent used to diminish astringency 

is the preservation of chromatic characteristics of wine, in this study, the ability of treated 

wine to precipitate salivary proteins (by SPI saliva precipitation index), phenolic 

composition and color has been evaluated. 

 

3.3.2.2 Materials and methods 

3.3.2.2.1 Wines 

Aglianico wines were derived from 100 % Aglianico grapes obtained from vineyards 

located in the area surrounding the city of Benevento (Campania, Italy). Wines were 

produced in 2009 by Cantina del Taburno winery in agreement with standard procedure 

used for the production of Aglianico del Taburno DOC wine. Wines used in these 

experiments were not aged in barrels. Preliminary sensory tests were performed prior to 

the start of treatments with patatin. No contamination of wine odor and taste occurred 

after the addition of 10, 20 and 30 g/hL of P. 

 

3.3.2.2.2 Fining experiments 

Six months after the end of alcoholic fermentation, unfined Aglianico wine was treated 

with egg albumin (10, 20 and 30 g/hL), casein (10, 20 and 30 g/hL), patatin (10, 20 and 

30 g/hL) and gelatin (10, 20 and 30 g/hL). All fining experiments were carried out in 

duplicate in 2 L bottles. The commercial preparations of patatin, egg albumin and 

potassium caseinate were diluted 1:10 (w/V) with distilledwater (20 °C) before to be 

added to the wine. The gelatin was diluted 1:10 (by volume) with distilled water (20 °C). 

After 1 week at 14 °C, wines were separated from lees, racked and filtered under vacuum 

with paper (Whatman 113 V - Dassel, Germany). After 1 year, all treated wines not 

showed protein instability (analysis of turbidity). 

 

3.3.2.2.3 Enological products 

Patatin P (powder) was supplied by Laffort OEnologie (Bordeaux, France). Producers 

guaranteed that the patatin was not from genetically modified organism. Egg albumin 

powder (ovoclar) was furnished by Pall Filtration & Separations (Verona, Italy), 

potassium caseinate powder and liquid gelatine (oliver gel 45) were supplied by Oliver 

Ogar (San Giovanni Lupatoto, Verona, Italy). Gelatine is derived from the acid hydrolysis 

of porcine collagen (bloom value = 0; isoelectric point ranging between 7 and 9). 
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Potassium caseinate is a salt highly soluble in water whose isoelectric point is 4.6. Patatin 

is obtained from raw potato tubers as reported by Lynch et al. (2012). The 

isolationmprocess involves chromatography and ultrafiltration techniques. The 

fractionation procedure produces two distinctnprotein fractions: a high molecular weight 

(HMW) fraction (> 35 kDa) and a low molecular weight (LMW) fraction (> 4 kDa, but < 

35 kDa). The HMW fraction consists primarily of patatin, the main potato storage protein, 

whereas the LMW fraction comprises a group of protease inhibitor proteins. Successively 

the proteins can be fractionated to both isoelectric point and molecular weight. This 

allows to separate the patatin and protease inhibitor fraction. Patatin isolates are eluted at 

a pH of 5.8–6.2. 

 

3.3.2.2.4 Spectrophotometric measurements 

Total polyphenols (Folin-Ciocalteu) was measured according to the OIV Compendium of 

International Methods of Analysis of Wine and Musts. Tannins were evaluated as 

described by Ribéreau-Gayon & Stonestreet. Total anthocyanins and SO2 bleaching 

anthocyanins were determined according to Ribéreau-Gayon and Stonestreet. Vanillin 

Reactive Flavans (VRF) were determined according to Di Stefano and Guidoni. Color 

intensity, absorbance at 420 nm, 520 nm, 620 nm (Abs420, Abs520, Abs620) and gelatin 

index were evaluated according to Glories methods. A Shimadzu UV-1800 (Kyoto, 

Japan) UV spectrophotometer was used. Ten millimeter plastic cuvettes were used. 

Photometric accuracy was of ±0.002 Abs and photometric repeatability was less than 

±0.001 Abs. All analyses were carried out in duplicate. 

 

3.3.2.2.5 HPLC analysis of anthocyanins 

For the separation and quantification of anthocyanins, a HPLC Shimadzu LC10 ADVP 

apparatus was used (Shimadzu Italy, Milan), consisting of a SCL-10AVP system 

controller, two LC-10ADVP pumps, a SPD-M 10 AVP detector, and an injection system 

full Rheodyne model 7725 (Rheodyne, Cotati, CA) equipped with a 20-µL loop. A 

Waters Spherisorb column (250 x 4.6 mm, 4 µm particles diameter) with precolumn was 

used. HPLC separation of anthocyanins was carried out according to the OIV 

Compendium of International Methods of Analysis of Wine and Musts. Twenty microliter 

of wine or calibration standards was injected onto the column. All the samples were 

filtered through 0.45 µm Durapore membrane filters (Millipore - Ireland) into glass vials 

and immediately injected into the HPLC system. The HPLC solvents were as follows: 

solvent A: water/formic acid/acetonitrile (87:10:3) v/v; solvent B: water/formic 

acid/acetonitrile (40:10:50) v/v. Zero-time conditions were 94 % A and 6 % B; after 15 

min, the pumps were adjusted to 70 % A and 30 % B, at 30 min to 50 % A and 50 % B, at 

35 min to 40 % A and 60 % B, at 41 min, end of analysis, to 94 % A and 6 % B. This 

zero-time solvent mixture was followed by 10-min equilibrium period prior to inject the 

next sample. The flow rate was 0.80 mL/min. Detection was carried out by monitoring the 

absorbance signals at 518 nm. Detector sensitivity was 0.01 Absorbance units full scale 

(AUFS). For calibration, the external standard method was used: The calibration curve 

was plotted for the malvidin-3-monoglucoside on the basis of peak area. The calibration 

curve was obtained by injecting 5 solutions (in triplicate) containing increasing 

concentrations of malvidin-3-monoglucoside. The anthocyanins concentrations were 

expressed as mg/L of malvidin-3-monoglucoside. Calibration curve was characterized by 

a correlation coefficient (R
2
) = 0.996. The linearity range of the calibration curve was 5–

200 mg/L. Malvidin-3-monoglucoside detection limit was 0.5 mg/L. The precision of the 

method used was tested by six replicate analyses of a red wine sample containing 223.8 

mg/L of total monomeric anthocyanins. The coefficient of variation was included 

between 0.9 % (for malvidin 3-monoglucoside) and 11.7 % (for malvidin 3-(6II-
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coumaroyl)-glucoside) and demonstrated the good reproducibility of the HPLC analysis. 

The analyses were carried out in duplicate. 

 

3.3.2.2.6 Human saliva 

Whole human saliva was obtained by mixing saliva samples collected from six non-

smoking volunteers (3 males and 3 females). The resulting saliva was centrifuged at 

10,000g for 10 min at 4 °C and the supernatant (referred as HS) was used for the analysis. 

The binding assays were performed mixing 100 µL of HS and 50 µL of wines into 

eppendorfs maintained at 25°C for 5 min. The SDS–PAGE electrophoresis analyses were 

performed on the resulting supernatant (S). 

 

3.3.2.2.7 SDS–PAGE electrophoresis 

Electrophoresis was performed on a Bio-Rad Protean II xi Cell electrophoresis apparatus 

(Bio-Rad, Milano, Italy) using a PowerPac 1000 Bio-Rad power supply set at 150 V/gel 

for the stacking gel and 180 V/gel for the resolving gel. Samples (S) and fining proteins 

were mixed with an equal volume of 29 electrophoresis sample buffer (0.125 M Tris–

HCl, 4 % SDS; 20 % v/v glycerol, 0.2 M DTT, 0.02 % bromophenol blue, pH 6.8) and 

were heated at 95 °C for 4 min. Successively samples were processed by sodium dodecyl 

sulfate–polyacrylamide gel electrophoresis (SDS–PAGE) using 14% acrylamide 

resolving gels. The stacking gel was 5 % acrylamide (Bio-Rad). Both gels were fixed 

with a mixture of ethanol, acetic acid and deionized water (40:10:50) for 1 h. After 

washing in water for 5 min, the gels were stained with Coomassie Brilliant Blue R250 

staining solution (Bio-Rad, #161-0436). The destain step was performed by incubation in 

the destain solution Coomassie Blue R250 (Bio-Rad, #161-0438). 

 

3.3.2.2.8 Molecular weights of proteins 

Molecular weights of proteins were estimated by comparison with the migration rates of 

SDS–PAGE molecular weight standards, broad range (Bio-Rad, #161-0317). The 

apparent molecular weights were calculated from the linear regression equation of log 

molecular weight versus mobility. The analyses were performed in duplicate. 

Densitometric tracing of gels was performed with a Bio-Rad GS800 densitometer. 

Electrophoretic data were analyzed by Quantity One analysis software, Version 4.5 (Bio-

Rad). SPI determination The SPI was determined as reported by Rinaldi et al. (2009). The 

calibration curve was obtained by the analysis of optical density of two selected salivary 

proteins, at an apparent molecular weight of 59–54 kDa (Band 1) and 15 kDa (Band 2), in 

the supernatant obtained after the interaction of saliva with five standard solutions 

containing tannic acid (2–10 g/L in water) (Extrasynthése, Lyon, France). The linearity 

range was included in the range of SPI values 10–60. The correlation coefficient was (R
2
) 

= 0.978. SPI detection limit was 5 corresponding to 0.7 g/L of tannic acid. The 

reproducibility of the method used was tested by seven replicate analyses of a sample of 

red wine. The coefficient of variation CV = 4.8 % demonstrated the good reproducibility 

of the analysis. 

 

3.3.2.2.9 Total protein content in fining agents 

Total protein content in egg albumin, patatin and potassium caseinate commercial 

preparation was measured using a colorimetric assay based on the Bradford dye-binding 

procedure. The protein assay reagent (Bio-Rad Laboratories, Milano, Italy) was added to 

diluted fining agents (1 mg/mL) and the optical density was measured at 595 nm. BSA 

(Sigma) was used as a standard. The protein content obtained by this method were as 

follows: 472.9 ± 14.1 µg/mL for egg albumin, 705.2 ± 12.3 µg/mL for patatin and 635.2 ± 

41.5 µg/mL for potassium caseinate. Because Coomassie blue not react with gelatine, the 
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total protein content of gelatin was furnished by supplier (OLIVER OGAR, San Giovanni 

Lupatoto, Verona, Italy) and was 45 % (w/V). 

 

3.3.2.2.10 Statistical analysis 

All the data are expressed as the arithmetic average ± standard deviation of four 

replicates. To determine the influence of the concentration of fining agent used for the 

treatment among variables studied, one-way ANOVA analysis was used when the 

variables fulfilled the parametric conditions. Fisher’s least significant differences (LSD) 

procedure was used to discriminate among the means of the variables when necessary. 

When data failed test for normality, they were analyzed using Kruskall–Wallis test and 

significant differences were established by using Notched Box Plots. Differences of 

p<0.05 were considered significant. Multifactorial ANOVA with second-order 

interactions was used to evaluate the relationships between concentration (10–20–30 

g/hL) and fining agents (patatin, egg albumin, gelatine and casein) with SPI. Differences 

of p<0.05 were considered significant. Elaborations were carried out by means of 

Statgraphics 5.0 Plus-PC (Manugistics, Inc.). 

 

3.3.2.3 Results and Discussion 

3.3.2.3.1 Characteristics of protein fining agents separated by SDS–PAGE electrophoresis 

using Coomassie Brillant Blue as protein dye  

Molecular weight distributions of fining proteins were studied by the SDS–PAGE 

electrophoresis. In Fig. 1, the patatin, potassium caseinate, egg albumin and gelatin 

patterns are shown (lane 1–2–3–4) in comparison with human saliva (lane 5). Because 

fining proteins are usually used to diminish astringency of red wine, and this sensation 

ismainly due to the precipitation of salivary proteins with wine components, the 

comparison with saliva proteins pattern was done in order to find similarity in molecular 

weight among peptides.  
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As reported by Cosme et al. (2007), potassium caseinate (lane 2) presented two major 

bands at ≈30 and ≈34 kDa. Egg albumin (lane 3) presented the typical bands at ≈43 kDa 

and at 14 kDa (Cosme et al., 2007; Marchal et al. 2002). Both egg albumin and potassium 

caseinate showed protein bands at ≈30 and ≈43 kDa very similar in molecular masses to 

the acidic PRPs of human saliva (Beeley et al., 1991). PRPs are responsible for the 

smeary sensation in the mouth. Tannins react with PRPs reducing their amount, then the 

smeary taste sensation decrease, and this phenomenon is interpreted as astringency 

(Charlton et al., 1996; Croft and Foley, 2008; Pascal et al. 2009). Probably the presence 

of similar peptides may explain the worldwide use of these two animal proteins as fining 

agents. No bands were detected in the molecular masses range (200–14.4 kDa) for 

gelatine. A similar result was already reported by Cosme et al. (2007). The minimal size 

of peptide capable of interaction with Coomassie Brilliant Blue is somewhere between 

penta- and non-apeptides (Tal et al., 1980) and it has been previously showed that gelatin 

used in enology reacts weakly with Coomassie Brilliant Blue (Stoscheck, 1990). Because 

commercial gelatins are composed of a wide range of molecular weight proteins (Maury 

et al., 2001)and no band was detected by the SDS–PAGEelectrophoresis analysis, it is 

evident that thismethod is not suitable for testing this protein fining agent. In agreement 

with Park et al. (1983) and comparable to previous results on a not well-specified protein 

extracted from potato (Tschiersch et al., 2010), a major band at ≈40 kDa for patatin was 

detected (lane 1). Other bands at ≈120 kDa, between 66.20 and 97.40 kDa, between 20 

and 30 kDa and at ≈15 kDa were observed. The lower molecular weight protein band 

present in patatin (15 kDa) was also observed in human saliva pattern (lane 5). This result 

is of great interest because in an earlier study, this band has been chosen, toghether with 

another protein band, as representative of the behavior of whole salivary proteins in the 

interaction with wine tannins causing astringency sensation (Rinaldi et al., 2010). 
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However, molecular weight of proteins is not the only criterion for being an effective 

fining agent (Tschiersch et al., 2010), and thewhole pool of chemical properties 

ofmacromolecules, their colloidal behavior and the real effectiveness in improving wine 

quality have also to be considered. 

 

3.3.2.3.2 Effect on pigments and chromatic characteristics 

A fundamental requisite for a fining treatment is that it should not cause dramatic changes 

in chromatic characteristics of red wine. In this study, patatin, egg albumin, potassium 

caseinate and gelatin at three concentration (10, 20 and 30 g/hL) have been added to 

Aglianico wine as fining agents. All the fining treatments, at the 3 concentrations, 

determined a significant loss of total individual anthocyanins and of the three main grape 

native anthocyanins, namely petunidin-3-glucoside, peonidin-3-glucoside and malvidin-3-

glucoside (Table 1).  

 

 

 
 

 

The retention of part of monomeric anthocyanins by protein fining agents is in agreement 

with previous findings (Glories, 1984; Lovino et al., 1999). After the treatments, changes 

in the relative distribution among monoglucosides, acetylglucosides and p-

coumarylglucosides occurred. In particular, cyanidin-3-glucoside, petunidin-3-glucoside, 

peonidin-3-glucoside and malvidin-3-p-coumarylglucoside decreased in higher 

percentage. The effect of increasing concentration of fining agent on the decrease in 

monomeric anthocyanins is not the same for all proteins used. When 10 g/hL of fining 

agent was used, the lowest decrease in total monomeric anthocyanins (-18 %) was 

detected for patatin followed by potassium caseinate (-22.3 %), gelatin (-23.8 %) and egg 

albumin (-25.6 %). Data on gelatine are similar to previous finding showing that the 

fining with 8 g/hL of hydrolyzed gelatin (MW < 14.4 KDa) caused a decrease of 28 % of 

the content of total monomeric anthocyanins (Cosme et al., 2007). The decrease in 

monomeric anthocyanins was higher when higher content of gelatin and potassium 

caseinate were used: at 30 g/hL, they removed malvidin-3-glucoside (-41.3 and 39.7 %, 
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respectively) and total monomeric anthocyanins (-39.1 and -38.1 %) to the greatest extent. 

For wines treated with patatin and egg albumin, a different trend was observed: The 

maximum loss was obtained at 20 g/hL (-34.5 and -32.5 %, respectively) indicating that 

probably a saturation effect occurred. Beside the removal of monomeric anthocyanins, a 

significant decrease in color intensity after fining with egg albumin and potassium 

caseinate was observed (Table 2).  

 

 

 

 
 

 

 

These data are in agreement with earlier findings showing that these protein fining agents 

promote a decrease in wine pigments and that the color differences can be detected 

visually (Cosme et al., 2007). Surprisingly fining with patatin did not change color 

intensity and total anthocyanins of wines while an increase in Abs620 occurred. Since a 

decrease in monomeric anthocyanins was instead observed, it is likely that new pigments 

determining the shift toward higher wavelength occurred in wine during fining. The 

nature of these pigments may be various (Boulton, 2001). A recent study (Granato et al., 

2010) showing the presence of newly formed products in the pellet obtained after fining 

of a wine-like model solution with vegetable proteins may support this hypothesis. It is 

likely that, in our case, the formation of products giving rise to Abs620 took place. Fining 

with 20 and 30 g/hL of gelatine caused an increase in color intensity of red wine mainly 

due to the augmented absorbance at 420 nm. At the same time, a decrease in absorbance 

at 520 nm was observed. The shift to lower absorbances of the maximum of the spectrum 

of red wine is due to several reactions occurring during fining treatment involving 

phenolics, oxygen, anthocyanins and cofactor such as acetaldehyde (Timberlake and 
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Bridle, 1976). In accordance with Granato et al. (2010), acetaldehyde may be produced 

from the oxidation of ethanol, catalyzed either by transition metals such as iron and 

copper (mainly associated with plantderived proteins) or through coupled oxidation of 

phenols (Ross et al., 2000). In order to better explain these findings, future researches will 

be made to determine the factors influencing the formation of pigments changing 

chromatic characteristics of red wine during fining and to help enologist to individuate the 

best fining agent and conditions to treat wine before bottling. Total phenolics, tannins, 

vanilline reactive flavans and astringency indexes. The effect of fining treatments at 10, 

20 and 30 g/hL with ovalbumin, casein, patatin and gelatine on phenolic compounds is 

reported in Table 3.  

 

 

 
 

 

The content of total phenolics and tannins was significantly lower in wines treated with 

patatin, gelatin, albumin and potassium caseinate at each level of treatment considered 

(p<0.05). Similar results on total phenolics were previously found for a red wine treated 

with potassium caseinate, egg albumin and gelatin (Cosme et al., 2009) and for Noble 

wine treated with casein (Sims et al., 1995). The loss of tannins after the treatment with 

each protein ranged from 7 to 13 %. These percentages are in agreement with those 

reported by Maury et al. (2001). For all fining proteins, the maximum remotion of total 

phenolics and tannins was observed at 20 g/hL indicating that increasing concentration is 

not required for a further decrease of these compounds in wine. The fining at 10 g/hL 

caused no effect on vanilline reactive flavans (VRF). This analysis gives a measure of the 

content of monomeric flavanols and proanthocyanidins formed by 2–4 units (Vrhovsek et 

al., 2001). Since at this concentration, a significant decrease in total tannins was instead 

observed it is likely that, according to literature (Maury et al., 2001; Ricardo-da-Silva et 

al., 1991; Sarni-Manchado et al., 1999), the largest proanthocyanidin molecules are 

precipitated first in fining experiment. Inwines treated with 20 and 30 g/hL of fining 
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agent, the content of VRF was significantly lower than control. In particular, finingwith 

20 g/hL of patatin decreased the content of low molecular weight polyphenols of ≈18 % 

and the percentage of loss is higher than that observed for total tannins (-13 %). The 

discrepancy among the effects observed at 10, 20 and 30 g/hL can be explained 

considering the complex nature of the colloidal equilibrium that occurs when a protein 

was added to a tannic solution. Beside the effect of the concentration of protein on the 

formation of aggregates (Siebert et al., 1996), several interactions are involved and they 

are related to both tannins characteristics [(polymerization degree, galloylation degree, 

conformational flexibility and solubility (Maury et al., 2001; Spencer et al., 1988; Baxter 

et al., 1997)] and protein nature [(molecular size, composition of the fractions, 

conformational flexibility and hydrophobicity (Oh et al., 1980; Marangon et al., 2010)]. It 

is possible that increasing the concentration of proteins, the nature of colloids formed 

between proteins and tannins changes and, consequently, the exposed surfaces have a 

higher reactivity toward vanilline reactive flavans (low molecular weight tannins). 

However, the knowledge of wine phenolic composition is not enough to have a prevision 

of astringency because of the complexity of wine solution and interaction between wine 

components and human response. Since the protein precipitation assays have been 

considered, the more appropriate methods to reproduce physiological response to 

astringents (Kennedy et al., 2006), the SPI represents a useful tool to assess this effect. 

This index evaluated the precipitation of salivary proteins occurring during tasting of an 

astringent stimulus. SPI was determined by the SDS–PAGE analysis of human saliva 

(HS) after the interaction with experimental wines. Among salivary proteins migrated in 

gel electrophoresis, two bands (one at 59 KDa and another at 15 KDa) were chosen as 

representative of whole salivary proteins, because they were better correlated with 

astringency (Rinaldi et al., 2010). The lower the value SPI, the lower the content of wine 

polyphenols reactive toward salivary proteins that may cause astringency. The SPI 

significantly differed among treated wines and controls at 10, 20 and 30 g/hL of each 

fining protein (Figs. 1, 2).  

 

 
 

After the treatment with gelatin, potassium caseinate and egg albumin no differences in 

SPI were detected at the 3 concentrations utilized. The minor decrease in SPI was 

observed for potassium caeseinate (6–9 %) while treatments with egg albumin and gelatin 

caused a similar effect (11.5–13 %). When increasing the concentration of patatin from 10 
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to 30 g/hL, a more marked decrease in polyphenols reactive toward salivary proteins was 

observed (from 11 to 16 %). At 30 g/hL, the efficacy of decreasing the SPI follows the 

order: patatin > gelatine = egg albumin > casein (F = 54.65; p = 0.0000). Amultifactorial 

analysis of variance (ANOVA) was carried out to assess the influence of the 

concentration (10–20–30 g/hL) and fining agents (patatin, gelatine, egg albumin and 

casein) on the precipitation of salivary proteins, as well as the interaction between these 

factors. The F ratio and p value were obtained fromthe statistical analysis for the SPI. The 

level of concentration showed a greater effect (F ratio = 105.44; p value = 0.0000) than 

the commercial protein preparation (F ratio = 11.57; p value = 0.0000) on SPI. The 

interaction between concentration and fining agent occurred (F ratio = 3.91; p value = 

0.001) and was significant at 95 % of confidence. Among fining agents (considering the 

three concentrations), the efficacy in reducing proteins reactive toward wine polyphenols 

was patatin = gelatin > egg albumin > casein (p<0.05). Then, patatin resulted highly 

active in diminishing wine polyphenols reactive toward salivary proteins in the same 

manner as the widely used gelatin. This result could surprise because P is a glycoprotein, 

and several studies showed that glycoproteins have a lower affinity for tannins than non-

glycosilated ones (Strumeyer and Malin, 1970; Lu and Bennick, 1998; Rowe et al., 2010). 

However, it has been also observed that, when protein content is held constant and 

polyphenol concentration is increased, the precipitation increased (Siebert, 2006; Sarni-

Manchado et al., 2008). To find a better understanding of what happens when patatin is 

added to a red wine, future studies will be aimed at investigating the factors (such as 

protein/tannins ratio, ethanol content and pH of wine) influencing the presence of soluble 

and insoluble aggregates. Moreover, because several evidences indicate that hydrophobic 

bonding may be the major mode of interaction between condensed tannins and proteins 

(Siebert et al., 1996; Oh et al., 1980; Marangon et al., 2010), this could be attributed to 

the relatively high exposed hydrophobicity of patatin (Creusot et al., 2010). More specific 

experiments aimed to study the chemical–physical processes involvedmay better elucidate 

the nature of the phenomenon. Astringency rating furnished by a selected and trained 

panel is reported in Table 4.  
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Apart C10 and C20, all treatment caused a significant decrease in wine astringency, and 

no differences among wines treated with 10, 20 g/hL of fining agents have been observed. 

However, after the treatment with commercial preparations at 30 g/hL, a difference 

among proteins in reducing astringency was observed. In fact, panelists perceived as the 

less astringent the wine treated with patatin than control (p<0.05). This may be ascribed 

to the difference in protein concentration of the commercial preparation used in this 

study. In fact, the commercial preparation of patatin, potassium caseinate, gelatine and 

egg albumin contained the 70, 63, 45 and 47 % of pure protein, respectively.  

 

3.3.2.3.3 Principal components analyses 

In order to better visualizate the differences and similarities among fining treatments in all 

compositional parameters and their relationships with the concentration of proteins used, 

principal component analysis (PCA) was applied to the pooled data (Fig. 3). The first two 

principal components accounted for 67.66 % of the total variation. Approximately 

180°angles between the vectors representing colorant intensity and SPI indicated that they 

were negatively correlated.  
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The smaller angles between the vectors for colorant intensity, Abs420, Abs620 indicated 

a high degree of correlation. The first axis, representing 46.54 % of the total variance, was 

positively correlated with total anthocyanins, tannins, VRF and SPI. Wines were fairly 

well discriminated in function of the level of treatment along the first axis (PC1), which 

can thus be interpreted as a ‘‘fining’’ axis with unfined wine located on the positive side 

of the PC1. As the concentration increase from 10 to 30 g/hL, wines are shifted to the 

negative side of PC1. The second principal component (PC2), accounting for the 21.12 % 

of variance, is positively related to color intensity, Abs620 and Abs420, and negatively to 

SPI and Abs520. Wines treated with patatin were well separated along the second axis 

and they were discriminated on the basis of high values of colorant intensity, Abs620 and 

Abs420, and low values of SPI and Abs520. In particular, wines treated with 20 and 30 

g/hL of patatin P were negatively correlated with sensory rating of astringency and SPI. 

On the contrary, wines treated with 20 and 30 g/hL of potassium caseinate and egg 

albumin were located in third quadrant indicating high correlation with SPI and low 

correlation with colorant intensity. A similar position on the graph was observed for 

wines treated with gelatin (20 and 30 g/hL). On the basis of these data, the commercial 

preparation containing patatin P is suitable for fining of red wine especially to decrease 

phenolic fraction reactive toward salivary proteins. 
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3.3.2.4 Conclusion 

The results reported in this study show that patatin is a suitable non-allergenic alternative 

to animal proteins for fining of red wines because: (i) at each concentration considered 

(10, 20 and 30 g/hL), the treatment with the commercial preparation of patatin causes no 

depletion of chromatic characteristics of red wine although a significant slight loss of 

individual anthocyanins was observed; (ii) the content of total phenolics, vanillin reactive 

flavans and tannins was significant lower in wines treated with 20 and 30 g/hL of P; (iii) 

Patatin is able to diminish the content of red wine in phenolics able to react with salivary 

proteins. When the three concentration are considered the efficacy in reducing 

polyphenols reactive toward proteins was patatin= gelatine[egg albumin[casein (p<0.05); 

(iv) at each concentration considered, the treatment with preparations containing P, as 

well as animal proteins usually used for wine fining, caused a significant decrease in 

astringency. Further studies are necessary to investigate at a molecular level the binding 

reaction between patatin and wine tannins and to determine the factors influencing the 

formation of soluble and insoluble aggregates.  
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3.4 Characterization of Aglianico (Vitis vinifera L. cv) grape proanthocyanidins and 

evaluation of their reactivity toward salivary proteins by the SPI (Saliva 

Precipitation Index) 
 

Aglianico is one of the most ancient grape cultivar introduced by Greeks into Southern 

Italy in pre-Roman times, and is native of regions as Campania and Basilicata. The 

flavan-3-ol and proanthocyanidin composition of both skins and seeds of Aglianico 

grapes were for the first time determined by HPLC-MS. The monomeric/oligomeric and 

polymeric fractions were analysed for their mean degree of polymerization (mDP), 

percentage of galloylation (%G) and of prodelfinidin (%P) by acid-catalyzed 

depolymerization in the presence of phloroglucinol (phloroglucinolysis). The composition 

of extension and terminal units of skins and seeds fractions was determined. As a rare 

instance, Aglianico skin fractions present a higher amount of epigallocatechin in the 

terminal units. Monomers [(+)-catechin C, (-)-epicatechin EC, (-)-epicatechin-O-gallate  

ECG] and oligomers [dimers B1, B2, B3, and B4 and trimer Epi-Epi-Epi (C1)] were 

identified by Mass Spectrometry analysis and quantified. A comparison with international 

grapes as Merlot and Cabernet Sauvignon cultivated in the same geographical area and of 

the same year was made. In seeds fractions a content of about 180 mg/g of catechin was 

detected in Aglianico respect to Merlot (≈ 100 mg/g) and Cabernet Sauvignon (≈ 70 

mg/g), the component present at the lowest concentration was B2 (≈17 mg/g for 

Aglianico and ≈ 30 mg/g for Merlot and Cabernet Sauvignon). In addition, the peak 

corresponding to ECG (m/z = 441) was detected only in Aglianico seeds. As regard skins 

fractions, the content of C and EC of Aglianico was similar to Cabernet Sauvignon, 

dimers concentration was higher than others, while only gallic acid resulted in lower 

amount in Aglianico. As reported by literature, the structural composition of Aglianico 

proanthocyanidins makes this grape cultivar a model for studying astringency. The 

reactivity toward salivary proteins represents the ability of tannins to precipitate proteins 

and then the potential astringency. For this purpose, the monomeric/oligomeric and 

polymeric fractions of grapes skins and seeds were dissolved in model wine at a 

concentration of 1 g/L and analysed by the Saliva Precipitation Index (SPI). Aglianico 

fractions of both skins and seeds resulted more astringent than Merlot and Cabernet 

Sauvignon for the high percentage of galloylation, low mDP in accordance with the 

sensory studies on astringency. The percentage of ECG in extension units resulted to 

significantly contribute to the precipitation of salivary proteins by grape tannins. 

 

3.4.1 Introduction 

Vitis Vinifera L. cv. Aglianico is a very old red grape variety of Greek origin, 

autochthonous of Campania and Basilicata, regions of Southern Italy that has an 

established wine industry. The stronger hypothesis is that during Magna Grecia dominus 

Greek settlers imported and spread this grape during the colonization of Southern Italy. 

Aglianico del Taburno, one of the three biotypes of Aglianico grape cultivar (Taburno, 

Vulture e Taurasi) is a high-quality and the best known variety used in Taburno DOCG 

(Denominazione di Origine Controllata e Garantita) geographical area, surrounded 

Benevento city. The Aglianico premium red wine produced according to the production 

regulation, is appreciated worldwide (Gambuti et al., 2007), and the new exploited 

countries devoted to wine, such as California, Australia and Texas have started to 

commercialize it. Aglianico cultivar is a later-maturing grape and is characterized by a 

high content of polyphenols mainly tannins, that confer to the wine obtained from it a 

harsh and astringent character, if winemaking is not highly controlled. The knowledge of 

the structural characteristics and localization of Aglianico grape phenolics may help to 

understand how to better manage the vinification processes. 

http://www.sciencedirect.com/science/article/pii/S017616171200168X#bib0080
http://en.wikipedia.org/wiki/California
http://en.wikipedia.org/wiki/Australia
http://en.wikipedia.org/wiki/Texas
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Polyphenols are the most important secondary metabolites and the major bioactive 

compounds synthesized in the berries. The most important of them are the anthocyanins, 

pigments responsible for the color of red grapes and young red wines, and the tannins, 

(proanthocyanidins) compounds responsible for astringency and bitterness of grape and 

wine (Cheynier et al., 2006; Gil-Muñoz et al., 2009). Variation in tannin content, 

composition, and polymer length are likely to determine mouthfeel and aging properties 

of wine (Vidal et al., 2003). Condensed tannins or proanthocyanidins derived from grape 

berries are polymers composed of terminal and extension subunits analogous to the 

flavan-3-ols catechin, epicatechin, epicatechin-gallate, and epigallocatechin. Subunits are 

linked via interflavan bonds between C-4 and C-8 and less commonly C-4 and C-6 

(Haslam, 1998). In the grape skin, catechin is the primary terminal subunit, with 

epicatechin and epicatechin-gallate reported in much lower quantities (Souquet et al. 

1996, Kennedy et al. 2001, Downey et al., 2003, Monagas et al. 2003, Gagne et al., 

2006). Epicatechin is the most common extension subunit, followed by epigallocatechin 

and epicatechin-gallate (Souquet et al., 1996; Kennedy and Jones, 2001; Monagas et al., 

2003). The proanthocyanidin amount, composition, and mean degree of polymerization 

(mDP) differ between berry skins and seeds. Skin proanthocyanidins have a higher mDP 

and a lower proportion of galloylated subunits than those from seeds (Prieur et al., 1994; 

Souquet et al., 1996; Vidal et al., 2003). Experimental evidence has shown that the mDP 

and galloylation of wine proanthocyanidins are important structural variables affecting 

wine astringency perception (Vidal et al., 2003). 

While the characterisation of international grape varieties such as Merlot and Cabernet 

Sauvignon have been extensively studied, no studies on proanthocyanidins composition 

of Aglianico grape cultivar have been realized. This study represents the first 

phytochemical compositional study of the flavan-3-ol and proanthocyanidins of Aglianico 

Vitis vinifera L. cv. The flavan-3-ol and proanthocyanidin composition of both skins and 

seeds of Aglianico grapes were established using high performance liquid 

chromatography HPLC/UV-Fluo-MS and compared with Merlot and Cabernet Sauvignon 

grapes cultivated in the same geographical area, the Taburno DOCG. The reactivity of the 

monomeric/oligomeric and polymeric grape fractions toward salivary proteins was 

determined by the Saliva Precipitation Index (SPI). This index obtained by a method 

based on the precipitation of salivary proteins by polyphenols, represents an estimation of 

the potential astringency of grape fractions. This may help to better understand the 

characteristics of grapes that are mainly correlated with the astringency perception.  

 

3.4.2 Materials and methods 

3.4.2.1 Chemicals  

Phloroglucinol, (+)-catechin, (–)-epicatechin, (–)-epigallocatechin (EGC), (–)-

epicatechin-3-O-gallate (ECG), procyanidin B1 [(–)-epicatechin-(4β-8)-(+)-catechin], 

procyanidin B2 [(–)-epicatechin-(4β-8)-(–)-epicatechin] were supplied from Sigma – 

Aldrich (Saint Quentin Fallavier, France). All solvents (HPLC grade), ʟ-ascorbic acid and 

sodium acetate were purchased from Prolabo-VWR (Fontenays sous Bois, France). 

Procyanidin B3 [(+)-catechin-(4α-8)-(+)-catechin] and procyanidin B4 [(+)-catechin-(4α-

8)-(-)-epicatechin] and trimer (C1) [(-)-epicatechin-(4β-8)-(-)-epicatechin-(4β-8)-(-)-

epicatechin] were obtained from Polyphenols Biotech (Villenave d'Ornon, France). 

 

3.4.2.2 Grape Samples and extracts 

Vitis Vinifera L. cv. Aglianico, Merlot and Cabernet Sauvignon (vintage 2010) were 

harvested at their technological maturity from the vineyards of “Cantine del Taburno” 

located in Taburno DOCG area (Foglianise, BN, Italy). About 450 g of frozen berries, 
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randomly selected from the collected samples of each variety (3 kg), were used for the 

study. 

Seeds and skins were removed by hand from grapes, lyophilised for 2 days and stored at -

20 °C. The frozen seeds and skins were finally ground in a ball grinder. 

Five grams of the obtained powder were submitted to 6 solid/liquid extractions with 45 

mL of acetone/water (80:20, v/v), followed by 2 extractions with the same volume of 

methanol/ water (60:40, v/v) using an accelerated solvent extraction system (DIONEX 

ASE 350) with the following parameters: static time set at 8 min, temperature set at 60 °C 

and pressure set at 150 bar. All extracts were combined and evaporated under reduced 

pressure at 30°C to remove organic solvents; the residue was dissolved in water and 

lyophilised to obtain a crude tannin extract. The extraction was made twice for each 

sample. 

 

3.4.2.3 Fractionation and analyses of proanthocyanidins 

The left crude tannin extract (equal to 5 g of dried powder of skins or seeds) was 

solubilised in 250 mL of water/ethanol (95:5, v/v) and extracted three times with 

chloroform to remove lipophilic material. Then the aqueous phase was extracted three 

times with ethyl acetate to obtain two distinctive fractions: a low molecular weight 

procyanidins fraction (monomeric/oligomeric tannins) in the organic phase and a high 

weight procyanidins fraction (polymeric tannins) in the aqueous phase. These two 

fractions were concentrated and lyophilised to obtain a dry powder. Fractionation of 

tannin extracts was repeated twice. 

 

3.4.2.4 HPLC analyses of monomeric and oligomeric flavan-3-ols 

Monomeric/oligomeric tannins extracts were solubilised in a methanol/water solution 

(50:50, v/v) at concentrations of 1 g/L for seed extracts and 6 g/L for skin extracts. The 

equipment used for HPLC analysis consisted of a Thermo-Finnigan UV–vis detector 

(UV–vis 200), a Thermo-Finnigan autosampler and a Thermo-Finnigan ternary pump 

coupled to an Xcalibur data treatment system. Separation was performed on a reversed-

phase Agilent C18 (250x4 mm, 5 µm) column. The mobile phases were 50 mM 

dihydrogen ammonium phosphate adjusted to pH 2.6 with orthophosphoric acid (solvent 

A), 20% solvent A with 80% acetonitrile (solvent B) and 0.2 M orthophosphoric acid 

adjusted with ammonia to pH 1.5 (solvent C) at a flow rate of 0.5 mL/min. Initial A and B 

were set at 97% and 3% respectively. The ternary mobile phase gradient was as 

following: 97% A and 3% B at 5 min, 92% A and 8% B at 15 min, 0% A and 8% B at 18 

min, 0% A and 13% B at 30 min, 0% A and 20% B at 55 min, 0% A and 25% B at 60 

min, 0% A and 30% B at 70 min, 0% A and 80% B at 75 min, 0% A and 97% B at 80 

min, 97% A and 3% B from 82 to 84 min. Eluting peaks were monitored at 280 nm. 

Identification of mean peaks was performed by comparison to injected external standards. 

Calibration curves were established at 280 nm using external standards either commercial 

either synthesised (C, EC, ECG, B1, B2, B3, B4, C1). The results were converted in mg 

of dried skins or seeds weights. Analytical replicates of each sample consisted of four 

injections.  

 

3.4.2.5 Determination of mean degree of polymerisation (mDP) 

The proanthocyanidins mDP were determined for seed and skin extracts both in 

monomeric/oligomeric tannins fraction and in polymeric tannins fractions by the means 

of phloroglucinolysis (Drinkine et al., 2007). Reactions were carried out twice. Reaction 

products were analysed by HPLC–MS on a Hewlett–Packard 1100 series (Agilent, 

Massy, France) included a pump module and a UV detector and coupled to a Micromass 

Platform II simple quadruple mass spectrometer (Micromass-Beckman, Roissy Charles de 
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Gaulle, France) equipped with an electrospray ion source. The mass spectrometer was 

operated in negative-ion mode. The source’s temperature was 120 °C, the capillary 

voltage was set at 3.5 kV and the cone voltage was -30 eV. Both systems were operated 

using Masslynx 3.4 software. The absorbance was recorded at 280 nm and mass spectra 

were recorded in the range of 50–1500 amu. Separation was performed on a reversed-

phase Waters XTerra RR C18 (100 x4.6 mm, 3.5 µm) column at room temperature. A 

binary gradient system was employed using 1% (v/v) aqueous acetic acid (solvent A) and 

MeOH (solvent B) at a flow rate of 1 mL/min. The elution conditions were: 5% B at t0; 

16% B at 1 min, 22% B at 7 min, 35% B at 8 min, 42% B at 15 min; the column was then 

washed with 100% B for 3 min and re-equilibrated with 5% B for 4 min before next 

injection. 

 

3.4.2.6 The Saliva Precipitation Index (SPI) 

The SPI method was performed as described in Rinaldi et al., (2012). Wine samples for 

the binding reaction were obtained from the dissolution of grape fraction extracts at a 

concentration of 1 g/L in model wine solution (ethanol 12%; pH=3.6; tartaric acid = 4 

g/L). 

 

 

3.4.3 Results  

3.4.3.1 Chemical characterization 

3.4.3.1.1 Monomeric/oligomeric fraction by HPLC/Fluo-MS analysis 

For the first time the flavan-3-ol monomers (C, EC, ECG) and oligomers (B1, B2, B3, B4 

dimers and a trimer C1) were identified and quantified in both seeds and skins of 

Aglianico grapes harvested during 2010 vintage by means of HPLC/Fluo-MS data and by 

comparison with the retention time and spectral features of flavan-3-ol reference 

compounds. The cromatografic profile of the monomeric/oligomeric fraction of Aglianico 

seeds was shown in Fig.1. Twelve peaks were identified that corresponded to the 

compounds listed in Tab. 1, with their retention time and [M-H]
-
.  

 

 

 

 
Fig. 1: Cromatografic profile of Aglianico grape seeds monomeric/oligomeric fraction. 
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The monomeric fraction contained as the main peaks (+)-catechin and (-)-epicatechin (4 

and 8 in Fig. 1) in both seeds and skins. The ion fragment at m/z 169 corresponded to the 

gallic acid (peak 1). HPLC/MS analysis confirmed the presence of dimeric ([M-H]
-
 m/z 

577), dimer gallate ([M-H]
-
 m/z 729), trimeric ([M-H]

-
 m/z 865), and trimeric digallate 

([M-H]
-
 m/z 1169) procyanidins (Fig. 1; Tab 1). A compound with [M-H]

-
 at m/z 441 also 

confirmed the presence of the monomer (-)-epicatechin-3-O-gallate in the oligomeric 

fraction of Aglianico seeds. 

 

 

 
Tab. 1: Compounds identified in Aglianico seeds fraction by HPLC/MS, the peaks, codes, their retention 

time (RT) and [M-H]
-
  (m/z). 

 

 

 

 

 

Once identified, the main compounds such as monomers (C-EC, ECG), GA, dimers (B1-

B2-B3-B4), and C1 trimer were quantified both in skins and seeds extracts of Aglianico, 

Merlot and Cabernet Sauvignon grapes. As reported in Fig. 2, the seeds extract of 

Aglianico contained the higher amount of C (180 mg/g) respect to Merlot (100 mg/g) and 

Cabernet Sauvignon (70 mg/g). 

 

Peak Compound Code RT m/z 

1 Gallic acid  GA  6.70  169  

2 (+)-catechin-(4α-8)-(+)-catechin B3 26.40 577 

3 (–)-epicatechin-(4β-8)-(+)-catechin B1 25.08 577 

4 (+)-catechin C 26.42 289  

5 Trimer  - 27.64 865 

6 (+)-catechin-(4α-8)-(-)-epicatechin B4 29.14 577 

7 (–)-epicatechin-(4β-8)-(–)-epicatechin B2 32.00 577 

8 (–)-epicatechin EC 34.95 289  

9 (-)-epicatechin-(4β-8)-(-)-epicatechin-(4β-8)-(-)-epicatechin C1 38.50  865 

10 Dimer gallates - 38.88 729 

11 Trimer digallate - 42.08 1169 

12 (−)-epicatechin gallate ECG 42.95 441  
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Fig. 2: Monomers (C-EC-GA), dimers (B1-B2-B3-B4) and oligomer (C1) content in seeds extracts of 

Aglianico, Merlot and Cabernet Sauvignon grapes. 

 

 

 

As regard the content of EC, Merlot was richer (150 mg/g) than Aglianico (140 mg/g) and 

Cabernet Sauvignon (80 mg/g). Among dimers, the B1 and B4 were the most aboundant 

in Cabernet Sauvignon (9.5 and 52.5 mg/g, respectively). B2 content was similar between 

Merlot and Cabernet Sauvignon (about 33 mg/L), but lower in Aglianico (17 mg/g). B3 

does not differ among cultivar. The trimer C1 was a little higher in Cabernet Sauvignon. 

Gallic acid, instead, was similar in Aglianico and Cabernet Sauvignon (about 6 mg/g) and 

in Merlot was present at a concentration of about 10 mg/g.  

Generally, the concentrations of skins phenolics was much lower than in seeds extracts, as 

reported also by others with different cultivars (Fernandez et al., 2007). In particular, a 

different distribution of phenolic compounds was observed (Fig.3). In fact, Merlot extract 

was characterized by a low content of C and EC (0.7 and 0.2 mg/g) respect to Aglianico 

and Cabernet S. (about 1.2 and 0.9 mg/g). In addition, B3 and C1 were absent in Merlot 

skins extract, while gallic acid (2.6 mg/g) was similar to Cabernet S. (2.5 mg/g) but 

higher than Aglianico (1.9 mg/g). The content of dimers B1, B2 and B4 was higher in 

Aglianico.  
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Fig. 3: Monomers (C-EC-GA), dimers (B1-B2-B3-B4) and oligomer (C1) content in skins extracts of 

Aglianico, Merlot and Cabernet Sauvignon grapes. 

 

 

3.4.3.1.2 Olygomeric and polymeric fraction by acid-catalyzed depolymerization 

In order to study the structural composition and characteristics of Aglianico 

proanthocyanidins, as well as of Merlot and Cabernet Sauvignon grapes, the acid-

catalyzed depolymerization in the presence of phloroglucinol was carried out. It provided 

valuable information on proanthocyanidin subunit composition, mean degree of 

polymerization (mDP) of skins and seeds fractions. The mDP was calculated, as 

described by Drinkine et al., (2007), briefly it is determined by dividing the sum of all 

proanthocyanidins subunits (flavan-3-olmonomers and flavanol-3-ol phloroglucinol 

adducts) to the sum of terminal units (flavan-3-ol monomers), in mole equivalents. The 

concentrations of flavan-3-ol monomers in grapes before the phloroglucinolysis reaction 

were subtracted from the corresponding concentrations of flavan-3-ols after reaction in 

order to determine the terminal subunits. The percentage of galloylation (%G) and the 

percentage of prodelphinidins (%P) as well as the mean degree of polymerization (mDP) 

of the proanthocyanidin fractions of seed and skin tannin extracts of Aglianico, Merlot 

and Cabernet Sauvignon are presented in Tab. 2.  

 
Tab. 2: Structural composition and characteristics of Aglianico, Merlot and Cabernet Sauvignon seeds and 

skins monomeric/oligomeric (M/O) and polymeric (P) fractions. 

 

 

extention (%) terminal (%)

seeds mDP %G C EC ECG C EC ECG

aglianico 5,6              24,8            6,5              73,4            20,1            29,2            24,2            46,7            

merlot 4,6              25,3            10,3            74,6            15,1            17,3            21,0            61,7            

cabernet sauvignon 5,8              21,0            8,6              80,2            11,2            18,6            14,3            67,1            

skins mDP %G %P C EC ECG EGC C EC ECG EGC

aglianico 11,1            13,7            21,1            2,9              64,2            15,1            17,8            46,1            -               -               53,9            

merlot 13,6            6,2              31,5            2,6              57,5            5,9              34,1            23,0            71,3            -               -

cabernet sauvignon 13,7            5,6              33,3            3,0              56,3            5,0              35,6            25,7            61,5            12,9            -

extention (%) terminal (%)

seeds mDP %G C EC ECG C EC ECG

aglianico 2,5              38,3            6,8              33,2            60,1            52,8            41,3            5,8              

merlot 1,9              17,6            15,9            56,7            27,3            37,8            55,3            6,9              

cabernet sauvignon 2,5              18,5            14,7            62,4            22,8            44,1            44,1            11,8            

skins mDP %G %P C EC ECG EGC C EC ECG EGC

aglianico 3,8              11,9            11,6            4,9              71,5            11,5            12,2            60,0 17,0 12,9 10,1

merlot 2,3              12,0            23,8            2,5              40,4            14,6            42,5            87,9            3,4              8,8              -

cabernet sauvignon 2,0              10,4            26,0            3,6              30,6            13,8            52,0            86,5            5,1              8,4              -

M/O fraction

P fraction
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This study represents the first structural characterization of Aglianico (A) grapes, in 

comparison with Merlot (M) and Cabernet Sauvignon (CS). In general, skin and seed 

proanthocyanidin profiles differed by their low amounts of galloylated derivates and 

higher mDP. These results are consistent with data concerning mDP values of polymeric 

proanthocyanidins in some publications, where values for grape seeds extracts ranged 

from 2.7 to 18.6 (Monagas et al., 2003; Fernandez et al., 2007) for other V. Vinifera 

varieties. However, literature data concerning mDP values of skin polymeric 

proanthocyanidins largely vary, from 11 to 83 approximately depending on the 

fractionation technique employed and the grape variety and vintage (Souquet et al., 1996; 

Sun at al., 1999). Polymeric and monomeric/oligomeric fractions of Aglianico skins and 

seeds were firstly characterized. Considering Aglianico, Merlot and Cabernet Sauvignon 

grapes of the Taburno DOCG geographical area, the mDP of polymeric fractions ranged 

from 11.1 of Aglianico to 13 for Merlot and Cabernet Sauvigon skins, while it was abot 

4.7 for A and M, and 5.8 for CS seeds. It can be observed in Tab. 2 that the extension 

units of polymeric skins are composed of 2.9% C, 64.2% EC, 15,1% ECG, 17.8% EGC, 

while the terminal units of 46.1% C, no EC and ECG were detected, and 53.9% of EGC. 

The presence of a percentage of about 54% of EGC in the terminal units of A represents a 

rare instance because it was never found before. A high degree of prodelphinidin (%P) 

was observed for CS (33.5%) and M (31.5%), while A accounted for a 21.1%. As regard 

the polymeric seeds fraction, Aglianico showed the high percentage of ECG in extension 

units (20.1%) respect to Merlot (15.1%) and Cabernet S. (11.2%), while the contrary was 

observed in the terminal units: 46.7% for A, 61.7% for M and for CS. A higher degree of 

galloylation of 38.3% was also detected in Aglianico seed monomeric fraction than 

17.6% of Merlot and 18.5% of Cabernet Sauvignon. This was mainly due to the presence 

in Aglianico of ECG as the extension subunit (60.1%), respect to Merlot (27.3%) and 

Cabernet Sauvignon (22.8%). A content of C of 6.8% and 52.8% characterized 

respectively the extension and terminal units of Aglianico monomeric seeds, quite 

different from Merlot and Cabernet Sauvignon (Tab.2). The monomeric/oligomeric 

fraction of Aglianico skins showed an higher mDP, a similar %G and low %P than the 

others. A high content of EC was observed in both extension and terminal units. Also in 

this fraction was detected the EGC as terminal units in Aglianico skins (10%).  

 

3.4.3.1.3 Reactivity of phenolic fractions toward salivary proteins 

The precipitation of salivary proteins by polyphenols is at the basis of the astringency 

phenomenon, and mainly depends on proanthocyanidin structural characteristics. It is 

very important to know the monomeric and oligomeric flavan-3-ols of the grape seeds 

and skins because they could contribute to the flavan-3-ol profile of the respective wines, 

and determine their gustative and mouthfeel properties. Also grape polymers contribute 

significantly to wine astringency (Sun et al., 2013), but the difficulty in the purification 

and the absence of standard references did not give us the possibility to quantify them. 

However, the monomeric/oligomeric and polymeric fractions of grapes were obtained by 

liquid/liquid solvent extraction for representing the totality of proanthocyanidins. In order 

to study the potential astringency of grapes, the monomeric/oligomeric and polymeric 

fractions of skins and seeds of Aglianico, Merlot and Cabernet Sauvignon cultivars were 

dissolved in model wine solution (ethanol 12%; pH=3.6; tartaric acid = 4 g/L) at a 

concentration of 1 g/L and analysed by SDS-PAGE-based method.  

In Fig. 4 the electrophoretic pattern of human saliva (HS) before and after the interaction 

with the monomeric/oligomeric fraction of grape seeds (A) and skins (B) of Aglianico, 

Merlot and Cabernet Sauvignon was shown. The proteins from which the SPI was 
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calculated were at about 65 and 15 kDa. The Saliva Precipitation Index (SPI) revealed the 

reactivity of proanthocyanidins toward salivary proteins, and being correlated with 

sensory analysis, represents  an evaluation of their astringency.  

From the comparison between seeds and skins reactivity toward salivary proteins, it can 

be seen that the density reduction of bands after the interaction with seeds fractions was 

higher than skins fractions for all cultivars. The great capability of seeds to precipitate 

proteins respect to skins has also been shown (Gambuti et al., 2006). 

The bands density reduction denoted that the Aglianico seeds fraction mainly precipitated 

proteins respect to Merlot and Cabernet Sauvignon.  

 

 

 
A  
 

 
 

 

B 

 
       

 

Fig. 4: Example of the SDS-PAGE electrophoresis of human saliva (HS) before and after the interaction 

with: Aglianico, Merlot and Cabernet Sauvignon monomeric/oligomeric seeds fractions (A), and skin 

fractions (B). 

 

 

 

The SPI calculated by means of densitometric analysis for the monomers/oligomers and 

polymers of seeds fractions was shown in Fig. 5. Aglianico monomers/oligomers showed 

a higher value of SPI than polymers, while no differences between monomers/oligomers 

and polymers for Merlot and Cabernet Sauvignon were denoted. These values revealed 

that the astringency of Aglianico monomers/oligomers seeds was equivalent to about 1.9 

g/L of gallic acid equivalent (GAE), respect to Merlot (1.7 g/L) and Cabernet Sauvignon 

(1.5 g/L). However, polymeric fractions were less astringent being egual to 1.66, 1.58 and 

1.45 g/L of GAE for Aglianico, Merlot and  Cabernet Sauvignon, respectively. 

Aglianico Merlot
Cabernet 

SauvignonHSMW
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Fig. 5: the SPI (expressed as g/L of gallic acid equivalent GAE) of polymeric and monomeric/oligomeric 

fractions of  Aglianico, Merlot and Cabernet Sauvignon 

 

 

The SPI for skins extracts, as well as monomeric/oligomeric and polymeric fractions, of 

Aglianico, Merlot and Cabernet Sauvignon was determined (Fig. 6). 

 

 

 
 

 

Fig. 6: The SPI (expressed as g/L of gallic acid equivalent GAE) of monomeric/oligomeric and polymeric 

skins fractions of Aglianico, Merlot and Cabernet Sauvignon grapes.  

 

 

The reactivity toward salivary proteins of skins polymers was higher than monomers for 

all of the cultivars. The potential astringencies of monomers/oligomers were similar 

among cultivars. As regard the polymeric fraction the order of astringency based on the 

precipitation of salivary proteins, was Aglianico > Merlot > Cabernet. Surprisingly, 

Merlot grapes resulted more astringent than Cabernet Sauvignon, different from data 

reported by others (Chira et al., 2009). However, it is also known that territorial and 

climatic parameters also influenced grape characteristics (Ubalde et al., 2010). This great 

diversity in structural characteristics of Aglianico proanthocyanidins respect to Merlot 

and Cabernet Sauvignon reflected also the different reactivity toward salivary proteins, as 
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showed by the SPI. The high reactivity of Aglianico grapes, both seeds and skins, make 

this cultivar a good model for astringency.  

In order to understand the relationships among grape composition and astringency, 

expressed as the ability of proanthocyanidins to precipitate salivary proteins, a statistical 

analysis that takes into account all of these variables was carried out. Each structural 

parameter was correlated with the SPI, as shown in Tab.3.  

 

 
Tab. 3: Correlation value between structural parameters and SPI, and significative values. 

 
 

Based on the correlation analysis, it can be observed that the precipitation of salivary 

proteins (SPI) was positively and significantly correlated with %G (R = 0.844) and 

eECG% (R = 0.817) while is negatively correlated with eEGC% (R = -0.667) and %P (R 

= -0.583). However, the variables that contributing the most to the predictive model of 

SPI with a R
2
= 0.9119 were mDP, %G and eECG. When the variables are used for a 

multiple linear regression analysis (Fig. 7), they explained 99.9 % of the SPI variance; the 

levels of ECG extension units (eECG%) explained 13.3%, the galloylation content (%G) 

account 42.8%,  whereas mDP justified 43.8% of the total SPI variance. 

 

 
 

Fig. 7: Prediction of SPI from the structural composition of grapes Aglianico (A), Merlot (M) and Cabernet 

Sauvignon (CS). 

 

 

SPI p-value

mDP -0,1565 0,6272

%G 0,8446 0,0005 ***

%P -0,5835 0,0464 *

eC% 0,3770 0,2270

eEC% -0,0444 0,8910

eECG% 0,8167 0,0012 **

tC% 0,1591 0,6213

tEC% -0,3326 0,2908

tECG -0,1502 0,6413

eEGC% -0,6669 0,0179 *

tEGC% 0,0792 0,8067

significativity    p < 0,05 *

0,01 **

0,001 ***
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The importance of these variables can be also seen in the predicted model: 

 

SPI = 1.28 - 0.013x(mDP) + 0.001x(%G) - 0.003x (eECG%)  

 

These results confirm the importance of mDP and %G in the astringency mechanism, but 

stresses also that the percentage of ECG in extension units of grape contribute 

significantly to the precipitation of tannins with salivary proteins.  

 

3.4.4 Conclusions 

For the first time the characterization of proanthocyanidins of seeds and skins of 

Aglianico grape cultivar was carried out. A comparison with international cultivar as 

Merlot and Cabernet Sauvignon was made in order to understand the peculiarities that 

make Aglianico wine different from a sensorial point of view from others. In fact, 

Aglianico is considered more astringent over the average of red wines. This may due to 

the chemical composition of grapes. In particular, it has been shown that the precipitation 

of salivary proteins, which is at the basis of the astringent sensation, was mainly due to 

the percentage of galloylation, the presence in the extension units of ECG, and negatively 

correlated with the mean degree of polymerization. This study puts the bases for better 

understand how to manage the vinification processes with grape cultivar rich in 

polyphenols as Aglianico, and in particular with seeds characteristics that may 

compromise the sensory quality of wine. 
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