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Abstract 
 

 

Lightning is one of the most visually impressive, powerful and dangerous natural 

phenomena on Earth. For its spectacular appearance and its effects on life and structures, 

lightning has always had a significant impact on humans and their societies. 

Lightning discharges considered in this work are the so called “cloud-to-ground” 

lightning discharges, i.e., those that take place between cloud and ground. The high 

destructive power of this kind of lightning arises from the high energy generated by the 

cloud-to-ground discharge channel and the lightning stroke current. These discharges can 

cause damage when they strike directly or strike nearby to a structure. 

For low and medium voltage power distribution networks, the height of lines is small 

compared to the near structures, then indirect lightning events are more frequent than 

direct strikes. For this reason we shall focus on such a type of lightning discharges, which 

may cause power outages, disturbances on the network, or failure of electronic and 

electrical equipment, due to overvoltages produced.  

Since it is impossible to avoid a lightning strike, in order to reduce the effects of 

lightning flashes, it is necessary to provide suitable protection measures, which allow to 

reduce the risk, defined as the probable annual loss in a system [1], improving the Power 

Quality of the system.  

In this context, an accurate evaluation of lightning induced voltages is therefore 

essential.  

Recent progress in the area of lightning induced voltages is significant, both from 

numerical and analytical points of view. Numerical approaches have shown excellent 

development over the years (e.g., [2]-[6]). They are able to accurately model the 

phenomenon (actual return-stroke current waveshape, finite ground conductivity effects, 

non-linearities due to surge arresters, and so on). Nevertheless, analytical solutions (e.g., 

[7]-[12]) still deserve attention, since they are important in the design phase [13], in 

parametric evaluation and sensitivity analysis (e.g., [14]); they are also implemented in 
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computer codes for lightning induced effects [15]. Analytical solutions, moreover, provide 

considerable insight into the phenomenon, which is often obscured in numerical 

approaches, and do not suffer from numerical instabilities or convergence problems, which 

could affect accuracy of numerical algorithms [16]. 

Most of the analytical models proposed so far in literature are approximated and/or 

incomplete, as will be shown in the thesis. 

The aim of this work is to present new analytical approaches to the evaluation of lightning 

induced voltages on overhead power lines, that allow to overcome errors and/or 

approximations present in the solutions available in the literature. Predictions of the 

proposed solutions will be also compared to those based on the other approaches found in 

the literature in order to check their validity and accuracy. 

 

The thesis is organized as follows: 

 

Chapter 1. In this introductory chapter, a brief overview and a description of the 

lightning phenomenon is given. 

 

Chapter 2. In this chapter, the models proposed in the literature for the evaluation of 

the lightning induced voltages are summarized. In particular, the most used 

lightning return-stroke current models are presented, together with the 

techniques for the calculation of the electromagnetic fields generated by the 

lightning current. Furthermore, the most important models of field-to-line 

coupling are discussed. 

 

Chapter 3. This is the main chapter of the thesis. New analytical approaches to the 

evaluation of lightning induced voltages on overhead power lines are here 

presented. Most of the proposed analytical solutions are derived in an exact 

way, that is, without introducing approximations. 

 The cases of an infinitely long, lossless, single-conductor located at a given 

height above both an infinite-conductivity and a lossy ground plane, and 

excited by an external EM field due to both a step and a linearly rising 

current wave moving along a vertical lightning channel are analyzed. 

Furthermore, some of these solutions are extended to more practical line 

configurations, such as terminated single-conductor line and multi-

conductor line (including grounded conductors). 
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Finally, the results obtained using the proposed solutions are compared with 

those given by other formulas or solutions available in the literature. 

 

Chapter 4. This final chapter, is devoted to the conclusions. 
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Chapter 1  

An Overview on the Lightning 
Phenomenon 

 
 
1.1 Introduction 

Experimental observations of the optical and electromagnetic fields generated by 

lightning flashes during the last years have significantly advanced the knowledge on the 

mechanism of the lightning discharges. Nevertheless, this knowledge is not as exhaustive as 

that of long laboratory sparks due to the inability to observe lightning events under 

controlled conditions. Thus, the mathematical description of the mechanism of a lightning 

flash is actually relatively poor even though the main features of lightning flashes 

themselves are well known [1]. 

In this chapter, and elsewhere in the thesis, a positive discharge is defined as a discharge 

on which the direction of motion of electrons is opposite to that of the discharge itself; a 

negative discharge is defined as one in the opposite sense. According to this definition a 

negative return stroke is a positive discharge and a positive return stroke is a negative 

discharge. 

A positive field is defined as a negative charge being lowered to ground or as a positive 

charge being raised. According to this definition a lightning flash that transports negative 

charge to ground produces a positive field change. 

1.2 Clouds and lightnings 

The source of lightning is usually a thundercloud. A thundercloud generally presents a 

tripolar electrostatic structure; it contains, in fact, two main regions of charge, one positive 
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near the top and the other negative at midlevel (both containing a charge of 10÷100 C), 

and a small positive charge located at the base of the cloud, as shown in Figure 1.1 [2]. 

Actually, the charge structure in a thunderstorm is more complex than shown in Figure 1.1, 

it varies from storm to storm, and is occasionally very much different from the structure 

illustrated, even upside-down with the main positive charge on the bottom and the main 

negative charge on top [3]. 

The majority of all lightning discharges are the “cloud discharges”. The most common 

cloud discharges (that are also the most common of all the forms of lighting) occur totally 

within a single cloud, between the upper positive charge and the main negative charge, 

where a strong electric field is present, and are called intracloud flashes; those that occur 

between clouds are called intercloud lightnings (less common than intracloud flashes); those 

that occur between one of the cloud charge region and the surrounding air are called cloud-

to-air lightnings. 

A second kind of lightning discharges is represented by the “cloud-to-ground 

discharges”, that take place between the charge centers of the cloud and the ground. There 

are four types of lightning flashes that occur between the cloud and ground, illustrated in 

Figure 1.2, classified on the basis of the polarity of the electrical charge carried in the 

initiation process and the direction of propagation of the initiation process. Figures 1.2a 

and c show flashes referred to as downward lightnings; Figures 1.2b and d depict upward 

lightnings. The most common ground flashes (about 90% of cloud-to-ground lightning 

events) bring negative charge from the main negative charge region of the cloud down to 

ground, as shown in Figure 1.2a. The positive ground flashes, which occur about one tenth 

as frequently as does the negative ground discharges, are instead depicted in Figure 1.2c, 

and bring positive charge from the cloud, either from the upper or lower positive charge 

region, down to earth. The remaining two types of cloud-to-ground lightning discharges 

(actually ground-to-cloud discharges), shown in Figures 1.2b and d, are less common and 

are upward initiated from an object on the Earth’s surface (mountain-tops, tall towers or 

other tall objects), toward and often into one of the cloud charge regions [2], [3]. 

 

Figure 1.1 – The tripole structure of the thundercloud. Adapted from [2]. 
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                              (a)                                                                      (b) 

 
                              (c)                                                                      (d) 

Figure 1.2 – Types of cloud-to-ground lightning discharges as defined from the direction 
of leader propagation and charge of the initiating leader: a) downward lightning, negatively 
charged leader; b) upward lightning, positively charged leader; c) downward lightning, 
positively charged leader; d) upward lightning, negatively charged leader. Adapted from [4].  

1.3 The cloud-to-ground lightnings 

As outlined in the previous paragraph, the most common cloud-to-ground flashes are 

the downward lightnings that carries negative charge. This kind of lightning flash may well 

initiate as a local discharge between the bottom of the main negative charge region and the 

small positive charge region located at the base of the cloud (see Figure 1.1). This local 

discharge, also known as “preliminary breakdown” or “initial breakdown”, is able to 
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provide free mobile electrons, those electrons that were previously attached to hail and 

other heavy particles, and thus immobile. These free electrons represent the main 

contributor to the lightning current. In negative ground flashes, the free electrons cross the 

lower positive charge region, neutralizing most of its positive charge, and then continue 

their travel from cloud to ground in a stepped manner. This process, called “stepped 

leader”, and other main phases of the negative ground flashes are illustrated in Figure 1.3 

[1], [3]. 

The stepped leader moves downward in discrete and subsequent luminous segments of 

about 50 m length, each of which is called “step”. In Figure 1.3, the luminous steps appear 

as darkened tips on the less-luminous leader channel extending downward from the cloud. 

Each leader step appears in a microsecond or less, and the time between two luminous 

steps is of few tens of microseconds (typically 20÷50 µs). Usually, the downward-

propagating stepped leader give rise to several branches. The average speed of the bottom 

of the stepped leader during its travel toward ground is about 2 × 105 m/s, and then the 

travel between the cloud and the ground takes few tens of milliseconds [5]. A typical 

stepped leader has about 5 coulombs of negative charge distributed over its length. To 

establish this charge, on the leader channel, an average current of about 100 to 200 

amperes must flow during the whole leader process. However, the pulsed currents which 

flow in generating the leader steps can have a peak current of the order of 1000 amperes 

[3]. The stepped-leader channel is likely to consist of a thin core that carries the 

longitudinal channel current, surrounded by a corona sheath whose diameter is typically 

several meters [6]. 

When the stepped leader is near the ground, due to its relatively large negative charge, it 

attracts concentrated positive charges on the conducting Earth beneath it and, mainly, on 

objects projecting above the Earth’s surface. If this attraction is strong enough, the positive 

charge (on the Earth or on the objects) will attempt to join and neutralize the negative 

charge. For doing so, upward-going electrical discharges start from the ground or from 

grounded objects, as illustrated in Figure 1.3 at 20.00 ms. When one of these upward-

moving positively charged leader contacts a branch of the downward-moving leader, it 

determines the lightning strike-point and the primary lightning channel between cloud and 

ground. This is the “attachment process” of Figure 1.3, also known as “break-through 

phase” or “final jump”. Then, the negative charge near the bottom of the leader channel 

moves violently downward to the Earth, originating large currents to flow at ground and 

making the lightning channel near ground very luminous. The luminosity of the channel 

and the current, in a process named the “first return stroke”, propagate continuously up 
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the channel and down the branches of the leader channel at a speed typically between one-

third and one-half the speed of light (e.g., [7]), as shown in Figure 1.3 at 20.10 and 20.20 

ms. Even if the return-stroke’s current and high luminosity move upward on the main 

channel, electrons in the channel always move downward and represent the primary 

components of the current. Electrons flow up the branches toward the main channel while 

the return stoke traverses the branches in the outward and downward direction. Some 

milliseconds after the return stroke starting time, the negative electric charge which were 

resident on the stepped leader all flow into the ground. Additional current may also flow to 

ground directly from the cloud once the return stroke has reached the cloud [3]. The high-

current return-stroke wave (typically with a peak current of about 30 kA) rapidly heats the 

channel to a peak temperature near or above 30.000 K and creates a channel pressure of 10 

atm or more (e.g., [5]), which results in channel expansion, intense optical radiation, and an 

outward propagating shock wave that eventually becomes the thunder [6]. 

It is worth noting that the human eye cannot respond quickly enough to resolve the 

time between the formation of the leader and the illumination of the leader channel by the 

return stroke, or to resolve the upward propagation of the return stroke itself. For this 

reason we do not see the stepped leader before the first return stroke, and for the same 

reason the return stroke we appears as if all points on the lightning channel were lighted 

simultaneously. 

When the first-stroke current ceases, the lightning discharge may end. In this case, the 

discharge is termed a “single-stroke” flash. However, more often the cloud-to-ground 

flashes contain more than one stroke (three or more strokes are common), each one 

typically separated by 40 or 50 ms from the others. These “subsequent strokes” may occur 

only if additional negative charge is made available to the upper portion of the previous 

stroke channel immediately after the end of the previous stroke (normally in a time less 

than 100 ms). When this additional charge is available, a continuously propagating leader, 

named “dart leader”, moves downward along the previous return-stroke channel, again 

depositing negative charge along the channel length, as illustrated in Figure 1.3 at 60.00 and 

61.00 ms. During the time interval between the end of the first return stroke and the 

initiation of a dart leader, J- and K-processes occur in the cloud. The J-process can be 

viewed as a relatively slow positive leader extending from the flash origin into the negative 

charge region. The K-process then being a relatively fast “recoil streamer” that begins at 

the tip of the positive leader and propagates toward the flash origin. Both the J-processes 

and the K-processes in cloud-to-ground flashes serve to transport additional negative 

charge into and along the existing channel, although not all the way to ground. In this 
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respect, K-processes may be viewed as attempted dart leaders [6]. The dart leader’s trip 

from cloud to ground takes only a few milliseconds, since, in general, dart leaders travel 

along the residual channel of the first return strokes at a typical speed of 107 m/s. 

Nevertheless, is not uncommon for the dart leader to take a different path than the first 

stroke; in this case it ceases to be a dart leader and travel towards the ground as a stepped 

leader. Furthermore, some dart leaders exhibit stepping near ground while propagating 

along the path of the preceding return stroke; these leaders being termed dart-stepped 

leaders.  

The dart leader generally deposits less charge, a tenth as much, along its path than does 

the stepped leader, and hence the subsequent return strokes generally lower less charge to 

ground and have smaller peak currents than first strokes [3].  

Subsequent stroke peak currents range typically from 10 to 15 kA, while first stroke 

peak currents are typically near 30 kA. The rise times (usually measured between 10% and 

90% of peak value) of subsequent stroke currents are generally less than 1 µs, often tenths 

of a microsecond, whereas the rise times of first strokes currents are usually of some 

microseconds [8], [9]. The average propagation speed of the return stroke is also different 

for first strokes and subsequent strokes; in particular, the average velocity of subsequent 

return strokes over the first few hundred meters close to ground is greater than that of the 

first return strokes, [10], [11]. 

As stated above, about 10% of cloud-to-ground lightning flashes are initiated by 

downward-moving stepped leader that lower positive charge (see Figure 1.2c). The 

mechanism of positive ground flashes is qualitatively similar to the negative flashes, with 

differences in the details. For example, the steps of positive stepped leaders are less distinct 

than the steps of negative stepped leaders. Furthermore, positive return strokes can exhibit 

currents at the ground whose peak value can exceed 300 kA, considerably larger than for 

negative strokes whose peak currents rarely exceed 100 kA. Nevertheless, typical positive 

peak currents are similar to typical negative peak currents (about 30 kA). Positive 

discharges usually exhibit only one return stroke, and that stroke is almost always followed 

by a relatively long period of continuing current. The overall charge transfer in positive 

flashes can considerably exceed that in negative flashes [3]. 

In upward lightning, see Figure 1.2b and d, the first leader propagates from ground to 

cloud but does not initiate an observable return stroke or return-stroke-like process when it 

reaches the cloud charge. Rather, the upward leader primarily provides a connection 

between the cloud charge region and the ground. After this connection is made and the 

initial current has ceased to flow, subsequent strokes initiated by downward-moving dart 
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leaders from the cloud charge, having the same characteristics as strokes following the first 

stroke in cloud-to-ground lightning, may occur. About half of all upward flashes exhibit 

such subsequent return strokes [3]. 

 

 

Figure 1.3 – Development of a negative cloud-to-ground lightning discharge. Adapted 
from [12]. 
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Chapter 2  

A Survey on the Evaluation of 
Lightning-Induced Voltages on 

Overhead Power Lines 

 
 
2.1 Introduction 

Since the early years of the past century, many researchers activities have been focused 

on the evaluation of lightning induced voltages on overhead power lines. 

The first significant studies on this subject, carried out by K. W. Wagner [1] in 1908, 

Bewley [2] in 1929, and Norinder [3] in 1936, considered the induced voltages due to 

indirect lightning as being produced essentially by the electrostatic induction from charged 

thunderclouds. Wagner [1], stated that, when the lightning discharge occurs, the charge 

bound to the line is released in form of travelling waves of voltage and current, and it did 

not consider the electromagnetic field generated by the lightning discharge current. 

Afterwards, C. F. Wagner and McCann [4], on the basis of the work of Schonland and 

Collens [5] on the nature of the lightning flash, stated for the first time that the induced 

voltages can be considered as due, basically, to the return-stroke current (see Chapter 1). 

Most of all subsequent studies, including this work, are based on this assumption, that is 

particularly useful when the lightning stroke is not very close to the distribution line. In 

fact, as observed by Rachidi et al. [6], for distances less than 30 m, some significant 

overvoltages can be induced also during the leader propagation process (described in detail 

in Chapter 1) preceding the return stroke. 

We remark that, in this thesis, we shall consider only the voltages induced by the 

electromagnetic field produced by the return-stroke current, as we are not interested in the 
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In Figure 2.1 is represented a downward lightning that carries negative charge from the 

cloud to the ground, whose return-stroke current, as detailed in Chapter 1, propagates up 

the channel. The lightning channel is here assumed to be perfectly vertical, and this is the 

only case examined in this thesis work. The electromagnetic “incident” field generated by 

the return-stroke current propagates toward the line and, by means of coupling 

phenomena, may cause, for example, a flashover on the insulator surface due to the 

overvoltage produced. 

In the next paragraph, the most common engineering return-stroke current models will 

be presented and discussed. Paragraph 2.3 will be devoted to the evaluation of the 

electromagnetic field radiated by a return-stroke current. Finally, in paragraph 2.4, the most 

important field-to-line coupling models proposed in the literature will be discussed. 

2.2 Engineering return-stroke current models 

The lightning electromagnetic field is generally calculated making use of a return-stroke 

current model, that is a mathematical formulae that is capable of predicting the spatial and 

temporal variation of the lightning current along the channel, the variation of return stroke 

speed, the temporal spatial characteristics of optical radiation, and the signature of thunder. 

For the point of view of an engineer, the lightning parameters of particular interest are the 

return stroke current and its electromagnetic field. Most of the return-stroke models 

available today are constructed to predict either one or both of these features. 

A comprehensive review of the return-stroke models is available in the literature (e. g., 

[7], and [8]). In [7], Rakov and Uman classified the return stroke models into four 

categories: 

 

1. “gas dynamic” or “physical” models, which are primarily concerned with the 

radial evolution of a short segment of the lightning channel and its associated 

shock wave; 

2. “electromagnetic” models, that are usually based on a lossy, thin-wire antenna 

approximation of the lightning channel. These models involve a numerical 

solution of Maxwell’s equations in order to find the current distribution along 

the channel from which the remote electric and magnetic fields can be 

computed;  

3. “distributed-circuit” models, that can be viewed as an approximation of the 

electromagnetic models described above, and that represent the lightning 
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the lightning channel is generally assumed to be straight, vertical and perpendicular to the 

ground plane, as shown in Figure 2.2. 

From an engineering point of view, the models of main interest are those in which the 

return-stroke current ݅(ݖᇱ, ,can be related to the channel-base current ݅(0 (ݐ  since it is ,(ݐ

the only current directly measurable, and for which experimental data are available. For this 

reason, the most used engineering models presented in the literature give the mathematical 

specification of the spatial-temporal distribution of the lightning current along the 

discharge channel as follows [11]: 

,ᇱݖ)݅ (ݐ = ݅ ቆ0, ݐ − ቇݒᇱݖ ∙ (ᇱݖ)ܲ ∙ ݑ ቆݐ − ቇݒᇱݖ ,																																																																			(2.1)	
where ݑ(∙) is the Heaviside function, ݒ is the return-stroke wavefront propagation speed, ݒ is the propagation velocity of the return-stroke current-wave, and ܲ(∙) is the attenuation 

function of the return-stroke current along the channel, which was proposed for the first 

time by Rakov and Dulzon [12]. 

The most commonly adopted return stroke models for the lightning induced voltages 

evaluations are:  

 

• the Bruce and Golde model (BG), described in [13]; 

• the Travelling Current Source model (TCS), proposed by Heidler [14]; 

• the Transmission Line model (TL), presented by Uman and McLain [9]; 

• the Modified Transmission Line model with Linear current decay with height 

(MTLL), introduced by Rakov and Dulzon [12]; 

• the Modifiel Transmission Line model with Exponential current decay with 

height (MTLE), proposed by Nucci et al. [15]. 

 

These five main models are summarized in Table 2.1, where, according to (2.1), both 

the propagation velocity and the attenuation function of the return-stroke current along the 

channel are specified for each model. In the table, ℎ is the total channel length, Λ is the 

current decay constant (assumed in [15] to be 2000 m), and ܿ is the speed of light in the 

free space. 

For sake of completeness, other two return-stroke engineering models will also be 

presented here: the Master, Uman, Lin, and Standler (MULS) model [16], and the 

Diendorfer and Uman (DU) model [17]. 
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Model ࡼ(ࢠᇱ) ࢜ 

BG 
(Bruce and Golde [13] 1 ∞ 

TCS 
(Heidler [14]) 1 −ܿ 

TL 
(Uman and McLain [9]) 1 ݒ 

MTLL 
(Rakov and Dulzon [12]) 1 − ᇱݖ ℎ⁄  ݒ 

MTLE 
(Nucci et al. [15]) ݁൫ି௭ᇲ ஃ⁄ ൯ ݒ 

Table 2.1 – Return stroke model summarization, according to [11]. 

In the following subparagraphs, all these models will be briefly described and discussed. 

Furthermore, the main models for the channel-base current, ݅(0,  proposed in the ,(ݐ

literature will be presented. 

2.2.1 Bruce and Golde (BG) model 

Bruce and Golde [13] proposed a simple model of the return-stroke current based on 

two assumptions: 1) the return stroke front propagates upward with a finite and constant 

speed which is less than the speed of light, 2) the channel-base current propagates along 

the lightning channel undistorted and unattenuated. Mathematically, the current at any 

point on the channel reads: 

,ᇱݖ)݅ (ݐ = ቊ	݅(0, ᇱݖ							(ݐ ≤ ݒ ∙ ᇱݖ																0	,ݐ > ݒ ∙ .ݐ 																																																																																						(2.2)	
An equivalent expression in terms of the line charge density on the channel was 

proposed by Thottappillil et al. [18] by means of the continuity equation: 

,ᇱݖ)ߩ (ݐ = ݈݅݉∆௭ᇲ→ ᇱݖ∆1 න ᇱݖ)݅ + ,ᇱݖ∆ ߬)݀߬௧
 − න ,ᇱݖ)݅ ߬)݀߬௧

  . 																																										(2.3)	
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An initial charge distribution, which takes into account the effects of the charges stored in 

the corona sheath of the leader, is instantaneously removed by the current. By combining 

(2.2) and (2.3), the instantaneously removed charged is obtained, and reads [18]: 

,ᇱݖ)ߩ (ݐ = ݅൫0, ᇱݖ ⁄ݒ ൯ݒ . 																																																																																																									(2.4)	
According with the hypothesis of instantaneous charge removal, the removed charge 

(2.4) is time independent. 

2.2.2 Travelling Current Source (TCS) model 

In this model, proposed by Heidler [14], the return-stroke current may be viewed as 

generated at the upward-moving return-stroke front and propagating downward. In the 

TCS model, current at a given channel section turns on instantaneously as this section is 

passed by the front. The channel current expression reads: 

,ᇱݖ)݅ (ݐ = ቊ	݅(0, ݐ + ᇱݖ ܿ⁄ ᇱݖ							( ≤ ݒ ∙ ᇱݖ																														0	,ݐ > ݒ ∙ .ݐ 																																																																								(2.5)	
The equivalent formulation of this model in terms of charge distribution is: 

,ᇱݖ)ߩ (ݐ = − ݅(0, ᇱݖ ⁄ݒ )ܿ + ݅(0, ᇱݖ ⁄∗ݒ ∗ݒ( , 																																																																													(2.6)	
with ݒ∗ = ݒ ൫1 + ݒ ܿ⁄ ൯⁄ . As one can see, the TCS model reduces to the BG model if the 

downward current propagation speed is set equal to infinity instead of the speed of light. 

2.2.3 Transmission Line (TL) model 

In this model, introduced by Uman and McLain [9], the current is assumed to travel 

undistorted ad without any attenuation upwards the lightning channel at a constant speed ݒ. The expression of the current at any height ݖᇱ along the lightning channel is given by: 

,ᇱݖ)݅ (ݐ = ቊ	݅(0, ݐ − ᇱݖ ⁄ݒ ᇱݖ							( ≤ ݒ ∙ ᇱݖ																														0	,ݐ > ݒ ∙ .ݐ 																																																																								(2.7)	



2.2 Engineering return-stroke current models 
 
 

 

16 

The transfer of charge takes place only from the bottom of the leader channel to the 

top; thus, no net charge is removed from the channel, i.e., ݖ)ߩᇱ, (ݐ = 0. This being an 

unrealistic situation with respect to the present knowledge of lightning physics [19].  

The basic hypothesis of this model does not tally with the available experimental data. 

For example, the results inferred from optical observation show that the current amplitude 

and current waveshape do change with height. Moreover, return-stroke speed 

measurements demonstrate that the return stroke speed decreases with increasing height. 

However, in [20], the authors show that some of the predictions of the TL model are in 

fairly good agreement with the corresponding measured values, and also that the early time 

field prediction of the TL model is very similar to that of the more physically reasonable 

models. 

Finally, one can note that the TL model also reduces to the BG model when ݒ = ∞. 

2.2.4 Modified Transmission Line Linear (MTLL) model 

The Transmission Line model with Linear current decay with height was proposed by 

Rakov and Dulzon [12]. This model can be viewed as incorporating a current source at the 

channel base, which injects a specified current wave into the channel; that wave 

propagating upward without distortion but with specified linear attenuation, as seen from 

the corresponding current expression at a given height ݖᇱ, which reads: 

,ᇱݖ)݅ (ݐ = ቊ	݅(0, ݐ − ᇱݖ ⁄ݒ ) ∙ (1 − ᇱݖ ℎ⁄ ᇱݖ											( ≤ ݒ ∙ ᇱݖ																																																												0	,ݐ > ݒ ∙ ,ݐ 																																										(2.8) 

where ℎ is the channel length.  

This model removed the problem of charge neutralization from the TL model. In fact, 

the equivalent formulation of this model in terms of charge distribution is: 

,ᇱݖ)ߩ (ݐ = 1 − ᇱݖ ℎ⁄ℎ ∙ ݅൫0, ݐ − ᇱݖ ⁄ݒ ൯ݒ + 1ℎ ∙ ,(ݐ)ܳ 																																																						 (2.9) 

where ܳ(ݐ) is the total charge transferred from the ground to the channel at the time ݐ. 
It is given by: 
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(ݐ)ܳ = න ݅(0, ߬ − ᇱݖ ⁄ݒ )݀߬.௧
௭ᇲ ௩⁄ 																																																																																										(2.10)	

2.2.5 Modified Transmission Line Exponential (MTLE) 
model 

This model was proposed by Nucci et al. [15], and it is similar to the MTLL one. It can 

be viewed as incorporating a current source at the channel base, which injects a specified 

current wave into the channel; that wave propagating upward without distortion but with 

exponential attenuation. The current equation reads: 

,ᇱݖ)݅ (ݐ = ൝	݅(0, ݐ − ᇱݖ ⁄ݒ ) ∙ ݁ି௭ᇲ ௸⁄ ᇱݖ																		 ≤ ݒ ∙ ᇱݖ																																																									0	,ݐ > ݒ ∙ ,ݐ 																																											(2.11)	
where Λ is the constant describing the current decay with height, and it is assumed to be 

equal to 2000 meters. 

The equivalent formulation of this model in terms of charge distribution is: 

,ᇱݖ)ߩ (ݐ = ݁ି௭ᇲ ௸⁄ ∙ ݅൫0, ݐ − ᇱݖ ⁄ݒ ൯ݒ + ݁ି௭ᇲ ߉⁄௸ ∙ ,(ݐ)ܳ 																																																		 (2.12)	
where ܳ(ݐ), once again, is the total charge transferred from the ground to the channel at 

the time ݐ, and is still given by (2.10). 

The two transmission line models, MTLL and MTLE, represent a modification of the 

TL model, that does not consider the current attenuation. This attenuation was introduced 

in order to take into account for the effect of the charges stored in the corona sheath of 

the leader, and subsequently discharged during the return stroke phase via the upward 

current [15]. Thus, the fields predicted by these two models result in a better agreement 

with the experimental results. However, if one considers that, for lightning induced 

voltages calculation, the early time region of the field plays the major role in the coupling 

mechanism [21], it follows that the TL model, for the problem of interest, can be 

considered a useful and relatively simple engineering tool. 
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2.2.6 Master, Uman, Lin, and Standler (MULS) model 

This model, described in [16], results from both physics considerations and 

experimental results. Originally proposed by Uman, Lin, and Standler (LUS), it was 

subsequently modified by Master. According to this model, the return-stroke current is 

composed by three terms: a uniform current, ݅௨, which accounts for the leader current; an 

impulsive upward moving current, ݅, that accounts for the collapse of the return-stroke 

wavefront; and a current, ݅ , due to charges stored in the corona sheath of the leader. For 

the latter term, the surge current is assumed distributed along the channel with a double 

exponential mathematical form with an exponential decay with the channel height. 

2.2.7 Diendorfer and Uman (DU) model 

In the Diendorfer and Uman model [17], the return-stroke current may be viewed as 

generated at the upward-moving return-stroke front, and propagating downward. The 

current at a given channel section turns on exponentially as this section is passed by the 

front. The equation of the model reads: 

,ᇱݖ)݅ (ݐ = ൝	݅(0, ݐ + ᇱݖ ܿ⁄ ) − 	݅(0, ᇱݖ ⁄∗ݒ ) ∙ ݁ି൫௧ି௭ᇲ ௩ൗ ൯ ఛವ⁄ ᇱݖ										 ≤ ݒ ∙ ᇱݖ																																																																																									0	,ݐ > ݒ ∙ ,ݐ 											(2.13)	
where ݒ∗ = ݒ ൫1 + ݒ ܿ⁄ ൯⁄ , and ߬ is the decay time constant of the current. As one can 

see, this current expression is formed by two terms: the first term is a downward-

propagating current, as in the TCS model, that exhibits an inherent discontinuity at the 

upward-moving front; the second term is an opposite polarity current which rises 

instantaneously to a value equal in magnitude to the current at the front, and then decays 

exponentially with a time constant ߬. 

The equivalent formulation of this model in terms of charge distribution reads: 

,ᇱݖ)ߩ (ݐ = − ݅(0, ݐ + ᇱݖ ܿ⁄ )ܿ − ቈ݅(0, ᇱݖ ⁄∗ݒ ݒ( + ߬ݒ∗ ∙ ߲݅(0, ᇱݖ ⁄∗ݒ ݐ߲(  
																					∙ ݁ି൫௧ି௭ᇲ ௩ൗ ൯ ఛವ⁄ + ݅(0, ݐ − ᇱݖ ⁄∗ݒ ∗ݒ( + ߬ݒ∗ ∙ ߲݅(0, ᇱݖ ⁄∗ݒ ݐ߲( . 																									(2.14) 

If ߬ = 0, the DU model reduces to the TCS model. 
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2.2.8 The channel-base current 

Channel-base current measurements have been performed by means of instrumented 

high towers or by using the lightning triggering technique, and statistical elaboration of 

lightning current data have been presented (e.g., [22], [23]). In the case of instrumented 

towers, one can exploit the fact that tall structures are struck frequently by lightning flashes. 

Relatively tall structures, such as high towers, can be equipped with current measuring 

equipment that can record the current signatures at the channel base of lightning flashes. 

Since the frequency of lightning strikes to a given object increases with increasing height, a 

reasonable amount of information can be obtained over a time span of a few years using 

this technique [24], [25]. As regards the lightning triggered technique, a small rocket, trailing 

a thin metal wire attached to ground through a coaxial shunt, is launched towards a mature 

thundercloud. As the rocket travels upwards, the field at its tip increases and, when this 

field reaches a certain critical value, a connecting leader is initiated and travels towards the 

cloud. Lightning flashes initiated by this upward moving leader will follow the trailing wire 

to ground, and the lightning channel intercepts the instrumented launching pad and the 

current is measured directly (e.g., [26]-[28]). However, the first is the best procedure 

because the inherent nature of triggering procedure: triggered lightning flashes do not 

contain the first return stroke, which are mediated by stepped leaders in natural lightning 

flashes. 

As already pointed out in Chapter 1, usually, positive flash occurrences are less frequent 

than negative ones, and also have a lower peak current-derivative. For these reasons, only 

lightning that lower negative charge to ground will be considered in this work. In Figure 

2.3, typical channel-base current waveshapes for negative first (Fig. 2.3a) and subsequent 

(Fig. 2.3b) return strokes are shown. The statistics of the most important lightning current 

parameters for the evaluation of the induced voltages (i.e., peak value and front steepness) 

are summarized in Tables 2.2 and 2.3. In particular, the International Council on Large 

Electric Systems (CIGRÉ) study group have recommended that the parameters in Table 

2.3, adapted from the work of Anderson and Eriksson [23], be used in engineering 

applications. 
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a) 

b) 
Figure 2.3 – Average negative first- (a) and subsequent-stroke (b) channel-base current 
each shown on two time scales, A and B. The lover time scales (A) correspond to the solid-
line curves, while the upper time scales (B) correspond to the dashed-line curves. The 
vertical scale is in relative units, the peak values being equal to negative unity. Adapted 
from [22]. 

 Percentage exceeding tabulated values 

 95% 50% 5% 

Stroke First Subs First Subs First Subs 

Ipeak [kA] 14 4.6 30 12 80 30 

Time to crest [µs] 1.8 0.2 5.5 1.1 18 4.5 ቀ߲݅ ൗݐ߲ ቁ௫[kA/ms] 5.5 12 12 40 32 120 

Table 2.2 – Statistics of peak amplitude, time to crest (or front duration) and maximum 
front steepness (or rate of rise) for first and subsequent negative return strokes. Adapted 
from [22]. 
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Percentage exceeding tabulated values 

95% 50% 5% 

Stroke First Subs First Subs First Subs 

Ipeak [kA] 14.1 5.2 31.1 12.3 68.5 29.2 

Time to crest [µs] 1.8 0.1 4.5 0.6 11.3 2.8 ቀ߲݅ ൗݐ߲ ቁ௫[kA/ms] 9.1 7.8 24.3 37.8 65 190 

Table 2.3 – Statistics of peak amplitude, time to crest and maximum front steepness for 
first and subsequent negative return strokes. Adapted from [23]. 

In the literature, several mathematical models for the description of the channel-base 

current, to use in the return-stroke models discussed above, have been proposed. Some of 

the most common of these mathematical expressions are described below. 

 

 Bruce and Golde model 

The channel-base current proposed by Bruce and Golde [13] have a double exponential 

form. In particular, the authors proposed a channel-base current expression for both the 

first- and the subsequent-stroke, which reads: 

݅௦௧(0, (ݐ = ܫ ∙ ൫݁ିఈ௧ − ݁ିఉ௧൯,																																																																																						(2.15) 

݅௦௨௦(0, (ݐ = 2ܫ ∙ ൫݁ିఈ௧ − ݁ିఉ௧൯,																																																																																						(2.16) 

where ܫ is the peak value of the channel-base current. The value of ܫ, and the values of 

the parameters ߙ and ߚ assumed by Bruce and Golde are reported in Table 2.4. In Figure 

2.4, the first- and subsequent-stroke channel-base currents are shown. 

 

 Pierce and Cianos model 

Pierce [29] proposed a model similar to that of Bruce and Golde, but with different 

values for the current parameters ܫ, ߙ and ߚ, as reported in Table 2.4. Moreover, in [30], 

Pierce and Cianos introduced a new channel-base current model for the first-stroke, in 

which a second term is added to the right hand side of (2.15). This new term also have a 

double exponential form, and leads to a more realistic waveshape, since it adjust the longer 

time value of the current. The expression proposed by Pierce and Cianos reads: 



2.2 Engineering return-stroke current models 
 
 

 

22 

 
Figure 2.4 – Bruce and Golde channel-base current model. 

 First Subsequents 

Parameters Bruce-Golde Pierce-Cianos Bruce-Golde Pierce-Cianos ܫ [kA] 30 20 15 10 ܫ [kA] - 2 - 2 ߙ [s-1] 4.4 × 104 2 × 104 4.4 × 104 2 × 104 ߚ [s-1] 4.6 × 105 2 × 106 4.6 × 105 2 × 106 ߛ [s-1] - 103 - 103 ߜ [s-1] - 104 - 104 

Table 2.4 – Values of the parameters for the Bruce and Golde, and the Pierce and Cianos 
channel-base current models [13], [29], [30]. 

݅௦௧(0, (ݐ = ܫ ∙ ൫݁ିఈ௧ − ݁ିఉ௧൯ + ܫ ∙ ൫݁ିఊ௧ − ݁ିఋ௧൯.																																													 (2.17)	
The values of all the parameters are given in Table 2.4. 

Also for the subsequent return strokes the same adjustments are applied, and the 

proposed values of the parameters are also reported in Table 2.4. Figure 2.5 shows the 

channel base current waveshape proposed by Pierce and Cianos, for both first and 

subsequent return strokes. 

It is worth noting that, both the Bruce and Golde model and the Pierce and Cianos one 

are characterized by an unrealistic convex channel-base current wavefront with a maximum 

current derivative at ݐ = 0. 
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Figure 2.5 – Pierce and Cianos channel-base current model. 

 Heidler model 

The Heidler model [14] reproduces the observed concave rising portion of a typical 

channel base current waveform, i.e., it does not exhibit a discontinuity in its time derivative, 

unlike the double-exponential model above presented. The current expression of this 

model is: 

݅(0, (ݐ = ߟܫ ∙ ݐ) ߬ଵ⁄ )1 + ݐ) ߬ଵ⁄ ) ∙ ݁ି ௧ఛమ ∙ 	(2.18)																																																																											,(ݐ)ݑ
where ߟ = ݁ൣି(ఛభ ఛమ⁄ )∙(ఛమ ఛభ⁄ )భ ⁄ ൧ is the correlation factor of the peak current, ܫ is the 

amplitude of the channel-base current, ߬ଵ is the rising front time constant, ߬ଶ is the decay 

constant of the current waveform, ݊ is the current steepness factor (a number in the range 

2÷10). The expression (2.18) allows one to change conveniently the current peak, 

maximum current derivative, and associated electrical charge transfer nearly independently 

by changing ܫ, ߬ଵ and ߬ଶ respectively. 

In Table 2.5, typical values for the parameters used to represent a typical subsequent 

return-stroke current are given [31]. In Figure 2.6, the correspondent channel-base current 

is plotted. The concave rising portion of the Heidler current can be observed in Figure 2.7, 

where a magnification of the initial part of the current is shown. 
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Figure 2.6 – Heidler channel-base current model. 

 
Figure 2.7 – Magnification of the initial part of the current shown in Figure 2.6. 

   [µs]࣎  [µs]࣎  [kA]ࡵ 

10.7 0.25 2.5 2 

Table 2.5 – Typical values for the Heidler channel-base current parameters [31]. 
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Sometimes, a sum of two Heidler functions with different parameters is used to 

approximate the desired current waveshape. Diendorfer and Uman [17], for example, 

described the subsequent-stroke current waveform at the channel base by means of the 

expression: 

݅(0, (ݐ = ቈܫଵߟଵ ∙ ݐ) ߬ଵଵ⁄ )భ1 + ݐ) ߬ଵଵ⁄ )భ ∙ ݁ି ௧ఛభమ + ଶߟଶܫ ∙ ݐ) ߬ଶଵ⁄ )మ1 + ݐ) ߬ଶଵ⁄ )మ ∙ ݁ି ௧ఛమమ ∙  (2.19)											,(ݐ)ݑ

with the meaning of the parameters already given for (2.18). In Table 2.6, typical values for 

the parameters of (2.19) are reported [31]. 

The correspondent channel-base current is shown in Figure 2.8. One can see that, for 

longer time bases, the current waveshape predicted by (2.19) is more realistic than the one 

obtained by using (2.18). 

 
Figure 2.8 – Subsequent-stroke current waveform at the channel base obtained as the sum 
of two Heidler functions. 

 [µs]࣎  [µs]࣎  [kA]ࡵ  [kA]ࡵ   [µs]࣎    [µs]࣎

10.7 0.25 2.5 2 6.5 2.1 230 2 

Table 2.6 – Typical values for the double Heidler channel-base current parameters [31]. 

Finally, Nucci et al. [20] proposed a channel-base current as the sum of a Heidler 

expression and a double-exponential expression: 
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݅(0, (ݐ = ቈܫଵߟ ∙ ݐ) ߬ଵ⁄ )1 + ݐ) ߬ଵ⁄ ) ∙ ݁ି ௧ఛమ + ଶܫ ∙ ൬݁ି ௧ఛయ − ݁ି ௧ఛర൰ ∙ 	(2.20)																													.(ݐ)ݑ
Using this equation, we can independently vary the peak current and peak-current 

derivative by changing ܫଵ and ߬ଵ. In Table 2.7, the typical values of the parameters 

appearing in (2.20) are given [20]. These values are based on the average features of the 

triggered subsequent return stroke currents. In Figure 2.9, the plot of the current obtained 

by using (2.20) is shown. 

 
Figure 2.9 – Nucci et al. channel-base current model. 

 [kA]ࡵ   [µs]࣎  [µs]࣎  [kA]ࡵ    [µs]࣎  [µs]࣎

9.9 0.072 5 2 7.5 100 6 

Table 2.7 – Typical values for the channel-base current proposed by Nucci et al. [20]. 

2.2.9 Models validation 

Traditional approaches for the validation of the engineering models are based on direct 

procedures. For an assigned return-stroke model, the electromagnetic field is calculated at one 

or more distances and then compared to the observed one. A return stroke model is then 

considered suitable if there is a relatively good agreement between calculated and measured 
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fields. In this view, two main approaches have been used for model validation: the Typical 

Return Stroke approach, and the Specific Return Stroke approach [7]. 

 

 Typical Return Stroke Approach 

This approach involves the use of a typical channel-base current waveform and a typical 

return-stroke propagation speed as model inputs, and then compare the model predicted 

electromagnetic field with the typical observed fields. This approach has been adopted by 

Rakov and Dulzon [12], Thottappillil et al. [18], and Nucci et al. [20]. In particular, Nucci et 

al. [20] identified four characteristic features in the fields at 1-200 km measured by Lin et al. 

[32] and used those features as a benchmark for their validation of the TL, MTLE, BG, 

TCS, and MULS models. In Figure 2.10, the lightning fields measured by Lin et al. for first 

and subsequent strokes at different distances are shown. The characteristic features include:  

 

a) a sharp initial peak that varies approximately as the inverse distance beyond a 

kilometer or so in both electric and magnetic fields; 

b) a slow ramp following the initial peak and lasting in excess of 100 µs for electric 

fields measured within a few tens of kilometers; 

c) a hump following the initial peak in magnetic fields within a few tens of 

kilometers, the maximum of which occurs between 10 and 40 µs; 

d) a zero crossing within tens of microseconds of the initial peak in both electric 

and magnetic fields at 50 to 200 km. 

 

For the current and other model characteristics assumed by Nucci et al. [20], feature a) is 

reproduced by all the models examined, feature b) by all the models except for the TL 

model, feature c) by the BG, TL, and TCS models but not by the MTLE model, and 

feature d) only by the MTLE model but not by the BG, TL, and TCS models. Diendorfer 

and Uman [17], showed that the DU model reproduces features a), b), and c). Thottappillil 

et al. [33], demonstrated that a relatively insignificant change in the channel-base current 

waveform (well within the range of typical waveforms) allows the reproduction of feature 

d), the zero crossing, by the TCS and DU models. Finally, Rakov and Dulzon [12], showed 

that the MTLL model reproduces features a), b), and d). 

 

 Specific Return Stroke Approach 

This second approach involves the use of the channel-base current waveform and the 

propagation speed measured for the same individual event and compare computed fields 
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Figure 2.10 – Typical vertical electric field intensity and horizontal magnetic flux density 
waveforms. The fields are plotted for first (solid line) and subsequent (dashed line) return 
strokes at distances of 1, 2, 5, 10, 15, 50, and 200 km. Adapted from [32]. 
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with measured fields for that same specific event. This method is able to provide a more 

definitive answer regarding model validity, but it is feasible only in the case of triggered-

lightning return strokes or natural lightning strikes to tall towers where the channel-base 

current can be measured. In the field calculations, the channel is generally assumed to be 

straight and vertical, with its origin at ground level ݖᇱ = 0; conditions which are expected 

to be valid for subsequent strokes, but potentially not for first strokes.  

This approach has been adopted by Thottappillil and Uman [34] who compared the TL, 

TCS, MTLE, and DU models. They used 18 sets of three simultaneously measured features 

of triggered lightning return strokes: channel-base current, return-stroke propagation 

speed, and electric field at about 5 km from the channel base. It has been found that the 

TL, MTLE, and DU models each predict the measured initial electric field peaks with a 

mean absolute error of about 20%, whereas the TCS model has a mean absolute error of 

about 40%. 

 

The above presented approaches for the validation of the engineering models are based 

on direct procedures. A different approach has been proposed by Andreotti et al. [35]. They 

describe the possibility of identifying exactly the attenuation function, ܲ(ݖᇱ), by means of 

an inverse procedure, solving the equations relating the measured field to the channel-base 

current. Two different procedures to identify the lightning return stroke attenuation, in the 

frequency domain, were proposed: one for different frequencies, and the other for 

different distances. Both procedures are able to accurately identify the attenuation function. 

2.3 Electromagnetic fields generated by lightning 
flashes 

In the literature, two main methods have been used to obtain the analytical expressions 

of the electric and magnetic fields radiated from a known distribution of currents and 

charges. One of these is the monopole technique or the continuity equation technique (e.g., 

[36], [37]), which has been primarily used in the power systems literature for lightning fields 

calculation, and requires a knowledge of both the current and the charge densities as a 

function of time and space [38]. The second method, the dipole technique or Lorentz 

condition technique, is described in most electromagnetic books (e.g., [39]-[41]) and is 

widely used in the study of the antennas. 
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As demonstrated by Rubinstein and Uman [38], these two techniques are absolutely 

equivalent, even though their analytical expressions are different. 

In the following, we shall briefly describe both the monopole and dipole techniques. 

2.3.1 The monopole technique 

As well known, Maxwell’s equations for a linear, homogeneous, isotropic, time-invariant 

medium can be written as follows: 

ࢺ ∙ ࡱߝ = 	(2.21)																																																																																																																									,ߩ
ࢺ ∙ ࡴߤ = 0,																																																																																																																								(2.22)	
ࢺ × ࡱ = ݐ߲ࡴߤ߲− ,																																																																																																														(2.23)	
ࢺ × ࡴ = ࡶ + ݐ߲ࡱߝ߲ .																																																																																																											(2.24)	
Given that (2.22) can be derived from (2.23) by taking the divergence of the latter and 

integrating over time, with the information that at some times ߤࡴ was zero, these 

equations represent seven independent differential equations in the following unknowns: 

- three components of the electric field intensity ࡱ; 

- three components of the magnetic field intensity ࡴ; 

- three components of the current density ࡶ; 
- the charge density ߩ. 

With ten unknowns and only seven equations, at least three of the unknowns either 

need to be specified or to be related to other unknowns to solve the Maxwell’s equations. 

If we know both the charge and all components of the current density, the problem of 

finding the fields is overspecified since four of the ten unknowns are specified. This 

overspecification, forming the basis of the monopole technique, allows us to find, in some 

cases, simpler solutions to otherwise cumbersome problems. 

To facilitate the solution of Maxwell’s equations for the case of specified or known 

sources, vector and scalar potentials are used. This approach can be found in many 

textbooks (e.g., [39]-[41]).  

If we define 
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To calculate fields using the monopole technique, (2.25), (2.26), (2.28), (2.29), along with 

the continuity equation, 

ࢺ ∙ ࡶ + ݐ߲ߩ߲ = 0,																																																																																																																					(2.30)	
which follows from taking the divergence of (2.24) and combining the resultant relation 

with (2.21), have to be used. 

In this technique, the source is described in terms of both current density and line 

charge density, and the field equations are expressed in terms of both charge density and 

current. The current continuity equation is needed to relate the current density and charge 

density. There is no need for the explicit use of the Lorentz condition in this technique, 

although properly specified scalar and vector potentials do satisfy the Lorentz condition. 

For example, considering a vertical lightning channel over an infinitely conducting 

plane, as the one depicted in Figure 2.12, to find the electric and magnetic fields radiated 

from a return-stroke current which travels up from the channel, and whose specific 

distributions of charge and current are described by one of the models presented in the 

previous section, we can use the above equations together with the method of images. In 

particular, we have to substitute the expressions describing the current and charge 

distributions for the actual channel, and those for the image channel, into (2.28) and (2.29), 

respectively. Then, by solving the integrals, we obtain the expressions for the vector and 

scalar potentials, both for the real and image distribution. Hence, we can calculate the total 

scalar and vector potentials. Finally, by using (2.25) and (2.26) we can obtain the desired 

expressions for the electric and magnetic fields. 

2.3.2 The dipole technique 

Once the source is specified, the radiated fields can always be computed without 

approximation other than those involved in the computational process. In the problems 

concerning the lightning induced voltages calculation, the most commonly field equations 

adopted for the evaluation of return-stroke fields in the time domain have been proposed 

by Master and Uman [42]. By assuming the ground as a perfect conductor, they have 

derived the equations for the electric and magnetic fields originated by a vertical dipole of 

infinitesimal length by solving Maxwell’s equations (2.21)-(2.24) in terms of the retarded 

scalar and vector potentials (2.28), (2.29). The geometry of the problem is shown in Figure 

2.12.  
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݀݁௭(ݎ, ,ݖ (ݐ = ߨᇱ4ݖ݀ ∙ ߝ ∙ ቈ2 ∙ ݖ) − ᇱ)ଶݖ − ଶܴହݎ ∙ න ݅ ൬ݖᇱ, ߬ − ܴܿ൰ ݀߬௧
 + 2 ∙ ݖ) − ᇱ)ଶݖ − ଶܿݎ ∙ ܴସ 	

																										∙ ݅ ൬ݖᇱ, ݐ − ܴܿ൰ − ଶܿଶݎ ∙ ܴଷ ∙ ,ᇱݖ)߲݅ ݐ − ܴ ܿ⁄ ݐ߲(  ,																																									(2.32)	
݀ℎఝ(ݎ, ,ݖ (ݐ = ߨᇱ4ݖ݀ ∙ ቈ ଷݎܴ ∙ ݅ ൬ݖᇱ, ݐ − ܴܿ൰ + ܿݎ ∙ ܴଶ ,ᇱݖ)߲݅ ݐ − ܴ ܿ⁄ ݐ߲(  ,																											(2.33)	

where 

,ᇱݖ)݅ -  ;is the current along the lightning channel (ݐ

- ܴ = ඥ(ݖ − ᇱ)ଶݖ +  ଶ is the distance between the electric dipole and theݎ

observation point; 

 ;plane (see Figure 2.12)-ݕݔ is the projection of R in the ݎ -

- ܿ is the speed of light. 

In (2.31) and (2.32), the three terms are called, respectively, the electrostatic field, the 

induction or intermediate field, and the radiation or far-zone field. In (2.33), the first term 

on the right-hand side is the induction field and the second the radiation field. 

The total electromagnetic exciting field can be obtained by integrating (2.31)-(2.33), 

where the current distribution as a function of height and time is given by one of the 

return-stroke models presented above, along the lightning channel and its image, and is 

described by the following equations: 

݁(ݎ, ,ݖ (ݐ = ߨ14 ∙ ߝ ∙  න ݎ3 ∙ ݖ) − ᇱ)ܴହுݖ
ିு ∙ න ݅ ൬ݖᇱ, ߬ − ܴܿ൰ ݀߬௧

 ᇱݖ݀ + න ݎ3 ∙ ݖ) − ܿ(ᇱݖ ∙ ܴସு
ିு 	

																							∙ ݅ ൬ݖᇱ, ݐ − ܴܿ൰ ᇱݖ݀ + න ݎ ∙ ݖ) − ᇱ)ܿଶݖ ∙ ܴଷு
ିு ∙ ,ᇱݖ)߲݅ ݐ − ܴ ܿ⁄ ݐ߲( ᇱݖ݀ ,															(2.34)	



Chapter 2 - A Survey on the Evaluation of Lightning-Induced Voltages on Overhead Power Lines 
 
 

 

35 

݁௭(ݎ, ,ݖ (ݐ = ߨ14 ∙ ߝ ∙  න 2 ∙ ݖ) − ᇱ)ଶݖ − ଶܴହுݎ
ିு ∙ න ݅ ൬ݖᇱ, ߬ − ܴܿ൰ ݀߬௧

 	ᇱݖ݀
+ න 2 ∙ ݖ) − ᇱ)ଶݖ − ଶܿݎ ∙ ܴସு

ିு ∙ ݅ ൬ݖᇱ, ݐ − ܴܿ൰ ᇱݖ݀ − න ଶܿଶݎ ∙ ܴଷு
ିு ∙ ,ᇱݖ)߲݅ ݐ − ܴ ܿ⁄ ݐ߲( ᇱݖ݀ ,		(2.35)	

ℎఝ(ݎ, ,ݖ (ݐ = ߨ14 ∙  න ଷݎܴ ∙ ݅ ൬ݖᇱ, ݐ − ܴܿ൰ு
ିு ᇱݖ݀ + න ܿݎ ∙ ܴଶு

ିு
,ᇱݖ)߲݅ ݐ − ܴ ܿ⁄ ݐ߲( ᇱݖ݀ .				(2.36)	

Other, different, field expressions in the time domain, with specific application to 

lightning, can be found in [18], [43]-[45]. 

It is worth to observe that, in this technique, the source is described only in terms of 

current density, and that the field equations (2.34)-(2.36) are expressed only in terms of 

current. Indeed, the use of the Lorentz condition (2.27) eliminates the need for the 

specification of the line charge density along with the current density and assures that the 

current continuity equation, which is not explicitly used in this technique, is satisfied.  

2.3.3 The effect of the finite ground conductivity 

If the observation point, ܲ(ݎ, ߮,  of the lightning electromagnetic field is located on ,(ݖ

the ground surface, and the ground is assumed to be perfectly conducting, only two field 

components, the vertical electric field and the azimuthal magnetic field, are present. The 

horizontal electric field component is zero, as required by the boundary condition on the 

surface of a perfect conductor. At an observation point above a perfectly conducting 

ground, a nonzero horizontal electric field component exists. 

In the case of a finitely conducting ground, a horizontal electric field exists above 

ground and also both on and below its surface. 

For distances not exceeding a few kilometers, the perfect ground conductivity 

assumption is a reasonable approximation for the vertical component of the electric field 

and for the horizontal component of the magnetic field, as shown by several authors (e.g, 

[46]-[47]). In fact, considering for example the dipole technique, the contributions of the 

source dipole and of its image to these field components add constructively and, 
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consequently, small variations in the image field due to the finite ground conductivity will 

have little effect on the total field. On the other hand, the horizontal component of the 

electric field is appreciably affected by a finite ground conductivity. Indeed, for such a field 

component, the effects of the two contributions subtract, and small changes in the image 

field may lead to appreciable changes in the total horizontal field. Although the intensity of 

the horizontal field component is generally much smaller than that of the vertical one, 

within the context of certain coupling models it plays an important role in the coupling 

mechanism [48]-[52] and, hence, an accurate calculation method has to be chosen for it. 

Methods for the calculation of the horizontal field using the exact Sommerfeld integrals 

[53] are not practical because of the limitations on computational time. 

Two approximate solutions of the Sommerfeld integrals, both originally proposed in the 

frequency domain, are then commonly used for the computation of the horizontal electric 

field in presence of a finitely conducting earth. The first is termed “wave tilt formula” and 

was proposed by Zenneck [54], whereas the second one is the so-called “Cooray-

Rubinstein formula”, and was presented by Cooray [55] and by Rubinstein [47]. 

 

 Wave tilt formula 

The term “wave tilt” originates from the fact that when a plane electromagnetic wave 

propagates over a finitely conducting ground, the total electric field at the ground surface is 

tilted from the vertical because of the presence of a nonzero horizontal (radial) electric field 

component. The tilt is in the direction of propagation if the vertical electric field 

component is directed upward, or in the opposite direction if the vertical electric field 

component is directed downward, being the vertical component of the Poynting vector 

directed into the ground in both cases. The magnitude of this tilt, and hence the amplitude 

of the field, depends on the conductivity and the dielectric constant of the soil. 

The wave tilt formula sates that, for a plane wave, the ratio between the horizontal 

electric field, ܧ(ܲ, ߱), and the vertical electric field, ܧ௭(ܲ, ߱), in the frequency domain, is 

equal to the ratio of the propagation constants in the air and in the ground [54]. Therefore, 

the horizontal electric field component is given by: 

,ݎ)ܧ ,ݖ ߱) = ,ݎ)௭ܧ ,ݖ ߱) ∙ 1ඥߝ + ߪ (݆߱ ∙ ⁄(ߝ ,																																																													(2.37)	
where ߪ and ߝ are the conductivity and relative permittivity of the ground, respectively, 

and ߱ is the angular frequency. This formula is a special case (valid for grazing incidence) 
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of the theory of the reflection of electromagnetic waves off a conducting surface and, 

hence, is a reasonable approximation only for relatively distant lightning strikes or for the 

early microseconds of close lightning when the return stroke is near ground. The vertical 

electric field, ܧ௭(ݎ, ,ݖ ߱), in (2.37) is typically computed assuming the ground as a perfect 

conductor, or is measured. 

In 1988, Thomson et al. [56] presented an expression for the magnitude of the 

horizontal electric field component as a function of the magnitude of the vertical electric 

field component by using the time domain approach described by Master in 1982 [57]. By 

using this technique, the vertical electric field can be approximated as a sequence of 

superposed delayed ramps, since a ramp has an analytical inverse transform expression like 

equation (2.37). The horizontal electric field is then determined in the time domain as the 

superposition of the responses to the ramps. 

 

 Cooray-Rubinstein formula 

The Cooray-Rubinstein formula is expressed as follows [47], [55]: 

,ݎ)ܧ ,ݖ ߱) = ,ݎ)ܧ ,ݖ ߱) − ,ݎ)ఝܪ 0, ߱) ∙ ܿ ∙ ߝඥߤ + ߪ (݆߱ ∙ ⁄(ߝ ,																															(2.38)	
where ߝ is the free space permeability, ܧ(ݎ, ,ݖ ߱) is the Fourier transform of the 

horizontal electric field at height ݖ above ground and ܪఝ(ݎ, 0, ߱) is the azimuthal 

magnetic field component at ground level, both computed as if the ground were a perfect 

conductor. The second term on the right-hand side of (2.38) is equal to zero for ߪ → ∞ 

and becomes increasingly important as ߪ decreases. 

This approach has been shown to produce satisfactory approximation of the horizontal 

electric field for some significant cases. In particular, it reproduces the positive, bipolar and 

negative polarities of the field at close (one hundred meters), intermediate (some 

kilometers), and far (tens of kilometers) distances, respectively, and at all these ranges it 

predicts results close to those predicted by more accurate expressions [47], [58], [59]. 

2.4 Field-to-line coupling models 

Once the electromagnetic field is calculated making use of a return-stroke current 

model, it is used to calculate the voltages and currents induced on the conducting system. 
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To do this, the most general and rigorous approach to use is the one based on Maxwell’s 

equations [60]. However, due to the length of distribution lines, the use of such a theory 

for the evaluation of lightning induced voltages implies long computation times. Also the 

simplest approach known as “the quasi-static approximation” [61], according to which the 

propagation of the field is neglected and coupling between incident fields and the line 

conductors can be described by means of lumped elements (e.g., inductances and 

capacitances), is not appropriate. In fact, such an approach requires that the dimensions of 

the line conductors be smaller than about one tenth of the minimum significant wavelength 

of the electromagnetic field. This assumption is not valid for power lines excited by 

lightning electromagnetic fields (above 1MHz frequency, that is below 300 m wave length). 

Another possible approach, that is the most suitable for the problem of interest, is the 

“transmission line approximation” [62]. The basic assumptions of this theory are that the 

transverse dimension of the line is much smaller than the minimum significant wavelength 

and that the response of the line to the lightning fields is quasi-transverse electromagnetic 

(quasi-TEM), i.e., the electromagnetic field due to the electric charges and currents along 

the line is confined in the transverse plane and perpendicular to the line axis. In this way, 

the line can be represented by a series of elementary sections to which the quasi-static 

approximation applies. Each section is excited progressively by the incident 

electromagnetic field so that longitudinal propagation effects are taken into account. 

In the literature, the most used coupling models adopted for lighting induced voltages 

evaluation are based on the transmission line approximation. In this section, we shall 

briefly present and discuss three of these most popular coupling models: 

 

• the Taylor, Satterwhite, and Harrison model, described in [62]; 

• the Agrawal, Price, and Gurbaxani model, proposed in [63]; 

• the Rachidi model, presented in [64]. 

 

To do this, we will refer to the geometry shown in Figure 2.13, that is a lossless, single-

conductor overhead line located at height ℎ above a perfectly conducting ground, parallel 

to the ݔ-axis and contained in the ݖݔ-plane, terminated on two impedances, ܼ and ܼ. 

The line is excited by an incident external electromagnetic field (ܧ  ), shown in Figureܤ ,

2.13, which is the sum of the field radiated by the lightning return-stroke current and of the 

field reflected by the ground, determined in absence of the wire. The total field (ܤ ,ܧ) is 

given by the sum of the incident field and the so-called scattered field, which represents the 

field produced by the reaction of the conductor wire to the incident field. 
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2.4.2 Agrawal, Price, and Gurbaxani model 

This coupling model, proposed in [63], refers to the general case of a multi-conductor 

line plus a reference conductor, excited by a non-uniform electromagnetic field. With 

reference to the Figure 2.13, we are interested to the case of a single-conductor located at ݖ = ℎ, with the reference conductor located at ݖ = 0. The incident magnetic field, ܤ , is 
taken in the ݕ direction and the incident electric field, ܧ , is in the ݖݔ-plane. The model is 

described by two coupling equations in the frequency domain, which reads: 

۔ۖەۖ
ݔ݀(ݔ)௦ܸ݀ۓ + ݆߱ ∙ ᇱܮ ∙ (ݔ)ܫ = ௫ܧ ,ݔ) ℎ),݀ݔ݀(ݔ)ܫ + ݆߱ ∙ ᇱܥ ∙ ܸ௦(ݔ) = 0,																																																																																									(2.42)	

where ܧ௫ ,ݔ) ℎ) is the horizontal component of the incident electric field along the line, ܥᇱ 
and ܮᇱ are the per-unit-length capacitance and inductance of the line, respectively, (ݔ)ܫ is 
the induced current and ܸ௦(ݔ) is the scattered voltage, related to the total voltage ܸ(ݔ) by 

the following equation 

ܸ௦(ݔ) = (ݔ)ܸ − ܸ(ݔ) = (ݔ)ܸ + නܧ௭(ݔ, .ݖ݀(ݖ
 																																																								(2.43)	

The term ܸ(ݔ) is called the incident (or exciting) voltage, and ܧ௭(ݔ,  is the vertical (ݖ

component of the incident electric field. 

The boundary conditions, written in terms of the scattered voltages and the total current 

are given by 

ܸ௦(0) = −ܼ ∙ (0)ܫ + නܧ௭	(0, ,ݖ݀(ݖ
 																																																																												(2.44)	

ܸ௦(ܮ) = ܼ ∙ (ܮ)ܫ + නܧ௭ ,ܮ)	 .ݖ݀(ݖ
 						 																																																																									(2.45)	
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Chapter 3  

New Approaches to Calculation of 
Lightning Induced Voltages 

 
 
3.1 Introduction 

Power quality issues are nowadays fundamental. In particular, Medium Voltage (MV) 

distribution lines are very sensitive to nearby lightning strike effects. Accurate evaluation of 

lightning induced voltages is therefore essential to address those issues. 

Lightning induced voltages have been the subject of many textbooks (e.g., [1], [2]) and 

papers. Recent progress in this area is significant, both from numerical and analytical point 

of view. Numerical approaches have shown excellent development over the years (e.g., [3]-

[7]). They are able to accurately model the phenomenon (realistic return-stroke current 

waveshape, finite ground conductivity effects, non-linearities due to surge arresters and so 

on). Nevertheless, analytical solutions (e.g., [8]-[13]) still deserve attention, since they are 

important in the design phase [14], in parametric evaluation, and sensitivity analysis (e.g., 

[15]); they are also implemented in computer codes for lightning induced effects [16]. 

Analytical solutions, moreover, do not suffer from numerical instabilities or convergence 

problems, which could affect accuracy of numerical algorithms [17]. 

Among analytical expressions, exact solutions, i.e. solutions that, for the considered 

model, are derived with no approximations, are particularly useful, since they can be used 

as a test bench for approximate analytical solutions, in order to analyze their limits of 

applicability [8]; they can be used also for testing the validity of numerical approaches. 

Exact solutions, unfortunately, can be obtained only for very simple configurations. 

The most basic case for lightning induced voltage calculations is concerned with the 

evaluation of the analytical functions expressing the waveform of the voltage induced on a 

lossless, single conductor located over an infinite-conductivity ground plane and excited by 
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an external field due to a step current moving at constant speed along a vertical lightning 

channel, unattenuated and without distortion (i.e., according to the TL model, described in 

Chapter 2). The configuration is depicted in Figure 3.1, case (a). 

This simple and practically unrealistic configuration, has been solved, in chronological 

order, by Rusck [9], Chowdhuri and Gross [18], [19], Liew and Mar [20], Høidalen [10], and 

Andreotti et al. [8]. In particular, Rusck and Høidalen evaluated approximate solutions [8], 

by using different coupling models (Rusck [9] and Agrawal et al. [21] coupling models, 

respectively) and different models for computing lightning electromagnetic field (monopole 

and dipole techniques, respectively, both discussed in Chapter 2). The two solutions were 

found to be the same [10], showing the important result that the solution is model-

independent. A further step was made by Andreotti et al. who, by using the monopole 

approach for the lightning electromagnetic field evaluation and the Taylor et al. coupling 

model (described in  Chapter 2), found the exact solution, i.e., the solution that, for the 

described model, was obtained with no approximations. Furthermore, Andreotti et al. 

demonstrated [8] that the Rusck-Høidalen solution represents the first-order 

approximation to their solution, and it is an excellent approximation for distribution lines, 

where indirect lightning effects are more important; differences were found between exact 

and Rusck-Høidalen approach for transmission lines.  

A more realistic situation is the calculation of the induced voltage waveshape based on 

the model described before, but for the case of a linearly rising current (followed by a 

constant or drooping tail) instead of a step current: the configuration is the one in Figure 

3.1, case (b). Approximate analytical solutions for this problem have been proposed by 

Chowdhuri-Gross [18], [19], Liew-Mar [20], Høidalen [10], Sekioka [23], and will be 

discussed later in this section. 

A further step to consider in the analytical models is the consideration of the lossy 

ground effects. Several authors have presented simple formulas or more complex analytical 

developments for the model described by both case (a) and case (b) of Figure 3.1. For case 

(a), formulas have been proposed by Barker et al. [24], Darveniza [25], and Paulino et al. 

[26]. In particular, Barker et al. proposed a correction factor to be applied to the Rusck’s 

formula for the induced voltage peak value (and not for the overall waveshape) calculated 

at the point closest to the lightning channel (ݔ	0 =). Darveniza presented an empirical 

formula, deduced from theoretical considerations and experimental data, which represents 

an extension of the Rusck’s formula for the induced voltage peak value again at ݔ	0 =, by 

replacing the actual height of the line with an effective height, which is a function of 

ground conductivity. Paulino et al., based on the studies [27], [28], proposed an extension of 
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3.2 Perfectly conducting ground case 

As previously anticipated, in this section, results obtained by Andreotti et al. in [8] will be 

extended to different line configurations.  

Specifically, the solution proposed in [8] will be firstly reviewed and reformulated. Then 

we will present the exact solution for the evaluation of the induced voltages produced by a 

step current on a terminated (matched and unmatched) single-conductor line located above 

a perfectly conducting ground. Furthermore, other more realistic configurations, still in the 

presence of an ideal ground, as the cases of a long multi-conductor line with grounded 

conductors (ground wires) and single- and multi-conductor lines (including grounded 

conductors) excited by a linearly rising current (instead of a step current), will be analyzed. 

3.2.1 Step channel-base current 

3.2.1.1 Infinitely long, single-conductor line 

In [8], the authors presented the exact analytical solution for the evaluation of the induced 

voltage induced on a long, lossless, single conductor located over an infinite-conductivity 

ground plane, and excited by an external field due to a step channel-base current moving 

along a vertical lightning channel according to the TL model. The configuration is depicted 

in Figure 3.1.  

The expression for the induced voltage along the line was obtained by analytically 

solving the following expression [8]: 

,ݔ)ݒ (ݐ = −න݁௭(ݔ, ݀, ,ݖ ݖ݀(ݐ
  

																	− 12 ∙ න ݁௫ ቆߟ, ݀, ℎ, ݐ − ߟ| − ܿ|ݔ ቇ ∙ ߟ)݊݃݅ݏ − ାஶߟ݀(ݔ
ିஶ  ∙ ݐ)ݑ −  (3.1)														),ݐ

where ݁௭(∙) and ݁௫(∙) are the vertical and the line axial component of the electric field 

radiated by the return-stroke step current, respectively, ܿ is the speed of light in free space, ݑ(∙) is the Heaviside function, ݐ is the arrival time of the field to the observation point, 

given by 
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ݐ = ܿݎ = ଶݔ√ + ݀ଶ + ℎଶܿ .																																																																																																		(3.2)	
The meaning of the other symbols is the same as in Figure 3.1. 

For the purposes of this work, we need to rewrite the solution of (3.1), keeping separate 

the two contributions on the right-hand side, due, respectively, to the vertical and 

horizontal components of the electric field (in [8], the two contributions were directly 

simplified in the summation). It is important to keep the two contributions separate since, 

when taking into account lossy ground effects [30], the vertical contribution can be directly 

used, because it can be considered practically unaffected by the ground effects [31], [32], 

whereas one has to modify the horizontal contribution to consider such effects [33], [34] 

(see Chapter 2 for a detailed discussion of the finite ground conductivity effects). Making 

reference to the first term on the right-hand side of (3.1) as ݒ௭(ݔ, ,ݔ)௫ݒ and the second one as (ݐ  we rewrite the induced voltage as ,(ݐ

,ݔ)ݒ (ݐ = ,ݔ)௭ݒ (ݐ + ,ݔ)௫ݒ 	(3.3)																																																																																													.(ݐ
The vertical-field contribution ݒ௭(ݔ,  is written here as in [8] (ݐ

,ݔ)௭ݒ (ݐ = −න݁௭(ݔ, ݀, ,ݖ (ݐ ∙ ݐ)ݑ − ݖ݀(ݐ
 = ߞ ∙ ߨ4ܫ ∙  ߚ

																					∙ ቈ2	݈݊ ൬ℎ + ݎݎ ൰ + ଶߛ1 ∙ ݈݊ ቆ ߣ + ଶߣ√ + ᇱߣଶߜ + ඥߣᇱଶ + ଶቇߜ ∙ ݐ)ݑ −   (3.4)																						),ݐ

where 

 ; is the free space wave impedanceߞ -

 ; is the return-stroke peak currentܫ -

 ;ܿ and ݒ is the ratio between the return-stroke speed ߚ -

ݎ - = ଶݔ√ + ݀ଶ + ℎଶ; 

ݎ - = ଶݔ√ + ݀ଶ; 

ߛ - = 1 ඥ1 − ⁄ଶߚ ; 

ߣ - = ߚ ∙ ܿ ∙ ݐ − ℎ, ߣᇱ = ߚ ∙ ܿ ∙ ݐ + ℎ; 

ߜ - = ݎ ⁄ߛ . 
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As noted earlier, this expression can be directly applied also in the case of lossy ground, 

since it is practically unaffected by ground losses. 

As to the horizontal-field contribution, ݒ௫(ݔ,  it is made up of two parts ,(ݐ

,ݔ)௫ݒ (ݐ = ,ݔ)ଵ௫ݒ (ݐ + ,ݔ)ଶ௫ݒ 	(3.5a) 																																																																																							,(ݐ
with  

,ݔ)ଵ௫ݒ (ݐ = −12 ∙ න ݁௫ ቀߟ, ݀, ℎ, ݐ − ߟ − ܿݔ ቁ ∙ ݐ)ݑ − ାஶߟ݀(ݐ
௫ 																																									(3.5b)	

and 

,ݔ)ଶ௫ݒ (ݐ = 12 ∙ න ݁௫ ቀߟ, ݀, ℎ, ݐ + ߟ − ܿݔ ቁ ∙ ݐ)ݑ − ௫.ߟ݀(ݐ
ିஶ                                     			 (3.5c) 

The solution of (3.5b), by using a procedure analogous to the one in [8], can be 

expressed as  

,ݔ)ଵ௫ݒ (ݐ = ߞ ∙ ߨ8ܫ ∙ ߚ ∙ ۔ە
ۇۉ݈݊ۓ

ߣ − ݔߚ + ට(ݔߚ − )ଶߣ + ߣଶߜ − ݔߚ + ට൫ݔߚ − ൯ଶߣ + ଶߜ ۊی + ݈݊ ൭ߣᇱ + ඥߣᇱଶ + ߣଶߜ + ଶߣ√ + ଶߜ ൱ 

ߚ+ ێێۏ
݈݊ۍ ۇۉ

ݔ − ߣߚ + ට(ݔߚ − )ଶߣ + ݔଶߜ − ߣߚ + ට൫ݔߚ − ൯ଶߣ + ଶߜ ۊی + ۇۉ݈݊
ݔ − ߣߚ + ට൫ݔߚ − ൯ଶߣ + ݔଶߜ − ߣߚ + ට(ݔߚ − )ଶߣ + ଶߜ ۑۑےۊی

ې
 

ۇۉ݈݊+
ℎ + ටݔଶ + ݀ଶ + ℎଶ−ℎ + ටݔଶ + ݀ଶ + ℎଶ ۊی − 2	݈݊ ൬ℎ + ݎݎ ൰ۙۘ

ۗ ∙ ݐ)ݑ −  (3.5d)																																							),ݐ

where 

ߣ - = ߚ ∙ (ܿ ∙ ݐ + (ݔ − ℎ; 

ߣ - = ߚ ∙ (ܿ ∙ ݐ + (ݔ + ℎ; 

ݔ - = ሾ(ܿ ∙ ݐ + ଶ(ݔ − ݀ଶ − ℎଶሿ ሾ2(ܿ ∙ ݐ + ⁄ሿ(ݔ ; 

ߜ - = ඥݔଶ + ݀ଶ ൗߛ . 
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The solution of (3.5c) can be obtained from (3.5d), by replacing ݔ with −ݔ. Solution (3.5) 

represents the exact expression for the perfectly-conducting ground case. In presence of 

lossy ground, as we will see later on, the solution needs a modification, for example by 

using the Cooray-Rubinstein formula (2.38) in the time domain [35]. 

Finally, by adding the vertical (3.4) and the horizontal (3.5) contributions, one obtains 

the desired expression of the total induced voltage. Figure 3.2 shows, as an example, a 3-D 

plot of the induced voltages on a 10 m high single conductor located above perfectly-

conducting ground at a distance ݀ = 100 m from the lightning channel, with ܫ = 10 kA 

and 0.4 = ߚ. 

 

 
Figure 3.2 – 3-D plot of the induced voltages (ℎ =10 m, ݀ = 100 m,  ܫ = 10 kA, ߚ = 
0.4). 

3.2.1.2 Matched single-conductor line 

In this case, we make reference to Figure 3.3. We will consider a finite length single-

conductor line terminated at both ends in its characteristic impedance. 

The induced voltage evaluated at the line center (0 = ݔ) is given by [8], [36] 
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,ݔ)ݒ (ݐ = −න݁௭(ݔ, ݀, ,ݖ (ݐ ∙ ݐ)ݑ − ݖ݀(ݐ
 + 12 ∙ න ݁௭(ܮ, ݀, ,ݖ ݐ − ܶ) ∙ ݐ)ݑ − ݖ݀(ଵݐ

  

																				+ 12 ∙ න ݁௭(−ܮ, ݀, ,ݖ ݐ − ܶ) ∙ ݐ)ݑ − ݖ݀(ଵݐ
  

																				− 12 ∙ න ݁௫ ቆߟ, ݀, ℎ, ݐ − ߟ| − ܿ|ݔ ቇ ∙ ߟ)݊݃݅ݏ − (ݔ ∙ ݐ)ݑ − ߟ݀(ݐ
ି ,														(3.7)	

where 

- ܶ = ܮ) − (ݔ ܿ⁄  is the amount of time it takes for the field to travel along the line 

from the right end to the observation point; 

- ܶ = ܮ−| − |ݔ ܿ⁄  is the amount of time it takes for the field to travel along the line 

from the left end to the observation point; 

ଵݐ - = ܮ)ൣ − (ݔ + ଶܮ√ + ݀ଶ + ℎଶ൧ ܿ⁄  is the amount of time it takes for the 

lightning field to reach the right end and then to move along the line until the 

observation point; 

ଵݐ - = ܮ−|ൣ − |ݔ + ଶܮ√ + ݀ଶ + ℎଶ൧ ܿ⁄  is the amount of time it takes for the 

lightning field to reach the left end and then to move along the line until the 

observation point. 

For the first three terms on the right-hand side of (3.7), the solution can be simply obtained 

from the expression (3.4), whereas for the last term, the horizontal contribution, we need 

to make further considerations. 

By referring to this term as ݒ௫(ݔ,  we have ,(ݐ

,ݔ)௫ݒ (ݐ = −12 ∙ න ݁௫ ቆߟ, ݀, ℎ, ݐ − ߟ| − ܿ|ݔ ቇ ∙ ߟ)݊݃݅ݏ − (ݔ ∙ ݐ)ݑ − ߟ݀(ݐ
ି 	

																= −12 ∙ න݁௫ ቀߟ, ݀, ℎ, ݐ − ߟ − ܿݔ ቁ 	ߟ݀
௫ 	

																					− න݁௫ ቀߟ, ݀, ℎ, ݐ + ߟ − ܿݔ ቁ ௫ߟ݀
ି ൩ ∙ ݐ)ݑ − 	(3.8)																																															).ݐ
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The first integral can be rewritten as 

න݁௫ ቀߟ, ݀, ℎ, ݐ − ߟ − ܿݔ ቁ ∙ ݐ)ݑ − ߟ݀(ݐ = න ݁௫ ቀߟ, ݀, ℎ, ݐ − ߟ − ܿݔ ቁ ∙ ݐ)ݑ − ௫,ߟ݀(ݐ
௫


௫ 	
																																																																																																																																																			(3.9) 

with ݔ given by  

ݔ = ൝ݔ(ݐ)																	ݔ ≤ (ݐ)ݔ < 	ܮ ⟺	 ݐ ≤ ݐ < (ݐ)ݔ																																ܮ,ଵݐ ≥ 	ܮ ⟺ ݐ										 ≥ ,ଵݐ 																																														(3.10)	
where ݔ(ݐ) is a “dynamic” integration limit, which takes into account for the propagation 

effects toward and along the line (see Appendix and [8] for details). 

According to (3.10), the solution, for times such that ݔ(ݐ) < ݐ that is ,ܮ <  ଵ, is theݐ

same as in [8, (50)]. For longer times (ݐ ≥  ଵ), the solution is given byݐ

න݁௫ ቀߟ, ݀, ℎ, ݐ − ߟ − ܿݔ ቁ ݐ)ݑ − ߟ݀(ଵݐ
௫ = ߞ ∙ ߨ4ܫ ∙ ߚ ቐ݈݊ ቌߣ + ඥߣଶ + ᇱߣଶߜ + ඥߣᇱଶ + ଶቍߜ − 2݈݊ ൬ ℎݎ + 	൰ݎ
ۇۉ݈݊+

ߣ − ܮߚ + ට൫ܮߚ − ൯ଶߣ + ߣଶߜ − ܮߚ + ට(ܮߚ − )ଶߣ + ଶߜ ۊی + ۇۉ݈݊
−ℎ + ටܮଶ + ݀ଶ + ℎଶℎ + ටܮଶ + ݀ଶ + ℎଶ ۊی + 	ߚ

∙ ێێۏ
ۇۉ݈݊ۍ

ܮ − ߣߚ + ට൫ܮߚ − ൯ଶߣ + ܮଶߜ − ߣߚ + ට(ܮߚ − )ଶߣ + ଶߜ ۊی + ۇۉ݈݊
ݔ − ߣߚ + ට(ݔߚ − )ଶߣ + ݔଶߜ − ߣߚ + ට൫ݔߚ − ൯ଶߣ + ଶߜ ۑۑےۊی

ې
ۙۘ
ۗ	

∙ ݐ)ݑ − 	(3.11)																																																																																																																											ଵ),ݐ
with ߜ = ଶܮ√ + ݀ଶ ൗߛ . All other symbols are as defined above.  

Similarly, the second integral on the right-hand side of (3.8) can be rewritten as 

න݁௫ ቀߟ, ݀, ℎ, ݐ + ߟ − ܿݔ ቁ ∙ ݐ)ݑ − ߟ݀(ݐ = න݁௫ ቀߟ, ݀, ℎ, ݐ + ߟ − ܿݔ ቁ ∙ ݐ)ݑ − ௫,ߟ݀(ݐ
௫ᇲ

௫
ି  

                                                                                                                                (3.12) 
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where ݔᇱ is  
ᇱݔ = ൝ݔᇱ(ݐ) 																− ܮ < (ݐ)ᇱݔ ≤ 						ݔ ⟺ 	 ݐ ≤ ݐ < (ݐ)ᇱݔ																																	ܮ−,ଵݐ ≤ 			ܮ− ⟺ ݐ										 ≥ ,ଵݐ 																																					(3.13)	

and where ݔᇱ(ݐ), like as ݔ(ݐ), is a “dynamic” integration limit, which account for the 

propagation effects toward and along the line (see Appendix and [8] for details). 

The solution of (3.12) can be obtained from the solution of (3.9) replacing ݔ with −ݔ 

and negating the whole expression. 

In this way, we obtain the expression of the induced voltage at an arbitrary value of ݔ 

along the line.  

The exact solution for the point closest to the lightning channel (0 = ݔ) assumes a 

simpler form: for times such that ݔ(ݐ) < (ݐ)ᇱݔ ,or, equivalently ,ܮ >  ݔ note that for) ܮ−

(ݐ)ݔ ,0 = =  :the solution is the one found in [8] ((ݐ)ᇱݔ−

,(0ݒ (ݐ = ,ଵ(0ݒ (ݐ − ,ଶ(0ݒ 	(3.14a)																																																																													 						,(ݐ
with  

,ଵ(0ݒ (ݐ = ߞ− ∙ ߨ4ܫ ∙ ቈ݈݊ ቆ−ߣߚ + ටߣଶ + ଶቇߜ + ߚ ∙ ݈݊ ቆߣ + ටߣଶ + ଶቇߜ ݐ)ݑ −  (3.14b)																																																																																																																																																ଶ),ݐ

where ߜ = ݀ ⁄ߛ ଶݐ , = √݀ଶ + ℎଶ ܿ⁄ . The expression of ݒଶ(0,  can be obtained by (ݐ

replacing ߣ with ߣᇱ in (3.14b). 

For longer times, we have  

,(0ݒ (ݐ = ,ଷ(0ݒ (ݐ − ,ସ(0ݒ 	(3.15a)																																																																																				,(ݐ
with  

,ଷ(0ݒ (ݐ = ߞ− ∙ ߨ4ܫ ∙ ቊ݈݊ ቆ−ߣߚ + ටߣଶ + ଶቇߜ − ݈݊ ቆܮ − ߣߚ + ට(ܮߚ − ଶ(ߣ + 	ଶቇߜ
ߚ ∙ ቈ݈݊ ቆߣ + ටߣଶ + ଶቇߜ − ݈݊ ቆߣ − ܮߚ + ට(ܮߚ − ଶ(ߣ + ଶቇቋߜ ∙ ݐ)ݑ − 	(3.15b)							ଵ),ݐ
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and ݒସ(0,  .ᇱ in (3.15b)ߣ with ߣ obtained by replacing (ݐ

To summarize, (3.14) represents the exact solution for a finite length line, for times such 

that ݔ(ݐ) <  .whereas (3.15) represents the exact analytical solution for longer times ,ܮ

In Figure 3.4, the induced voltage at 0 = ݔ for a 10-m height line, located at a distance ݀ 

= 100 m, is shown. The line is matched at both ends. Plots are obtained for various line 

lengths, ranging from 400 m to 3 km with a 200 m step. One can note, in contrast to the 

infinite-length line, the “jump” due to the vertical risers; clearly, increasing L delays the 

“jump”. In Figure 3.5, the induced voltage is evaluated at ܮ = ݔ (the same as at ܮ− = ݔ). In 

this case, apart from the “jump”, one more effect is noticed: the induced voltage varies as 

the line length increases. This effect allows one to make the following observation: in 

principle, the lightning electromagnetic field illuminates the line for its entire length; in 

order to reduce the computational burden in computer codes used for lightning-induced 

voltages calculations (e.g., [16] and [37]), one has to choose a shorter length of the line 

which is able to mimic the line for its whole length (e.g., a line 20-km long, which in 

principle is illuminated over all the 20 km of its length, could be acceptably represented by 

an illuminated segment of 2 km, considering the rest of the line as passive). Now, if the 

considered illuminated portion is too short, the corresponding induced voltage is not 

accurate: for example, as noted above, in Figure 3.5 the induced voltage becomes more or 

less constant when the line is 2-km long or more, i.e., a selected portion of 2 km or more 

will be able to mimic a longer illuminated line. It is clear that if the segment selected for the 

illuminated portion of the line is not sufficiently long, one could get an underestimation of 

the induced voltages. The proposed solution could be used as a means for addressing this 

issue. For example, as noted above, in the case analyzed in Figure 3.5 (ℎ = 10 m, ݀ = 100 

m) a length of 2 km can be considered suitable. 

Finally, in Figure 3.6 a comparison of the results obtained by using (3.14) and (3.15), and 

those obtained by using Rusck’s formula [9], the latter adapted to a finite length line, is 

shown for a line of length 2 km, a height of 10 m, located at a distance ݀ = 100 m from the 

lightning channel. As in the case of an infinite length line [8], no differences can be spotted 

on the graph: the maximum relative error was found to be 0.58%. Differences can be 

found for typical heights of transmission lines [8]. 
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Figure 3.4 – Plot of the induced voltage at the center of a line whose length (2ܮ) varies 
from 400 to 3000 m with a step of 200 m (ℎ = 10 m, ݀ = 100 m, ܫ = 10 kA, 0.4 = ߚ). 

 
Figure 3.5 – Plot of the induced voltage at both ends of a line whose length (2ܮ) varies 
from 400 to 3000 m with a step of 200 m (ℎ = 10 m, ݀ = 100 m, ܫ = 10 kA, 0.4 = ߚ). 
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Figure 3.6 – Comparison between exact equations (3.14), (3.15) and Rusck’s expression at 
the center of a 2-km length line (ℎ = 10 m, ݀ = 100 m, ܫ = 10 kA, 0.4 = ߚ). 

 

3.2.1.3 Unmatched single-conductor line 

In this case, we still make reference to Figure 3.3, but the two terminating impedances 

can be arbitrary. Under the assumption of a lossless line, it is possible to obtain an 

analytical solution for the transient response of this line excited by the lightning external 

field. In particular, the voltage at the left termination as viewed from the lightning channel 

reads [2] 

,ܮ−)ݒ (ݐ = (1 + (ଵߩ ∙ (ߩଵ ∙ ଶ)ߩ ∙ 12ஶ
ୀ 	

																							∙ ቈߩଶ ∙ ௦ݒ ቆݐ − 4(݊ + 1) ∙ ܮ − ௦ܿݔ ቇ − ௦ݒ ൬ݐ − 4݊ ∙ ܮ + ௦ܿݔ ൰ ,														(3.16)	
where ݔ௦ is the ݔ-coordinate of the source (in our case, the lightning channel is located at ݔ௦ = 0), ߩଵ and ߩଵ are the voltage reflection coefficients at the load of the line, given by 

ଵߩ = ܼ − ܼܼ + ܼ ଶߩ										, = ܼ − ܼܼ + ܼ .																																																																																	(3.17)	
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Here, ܼ and ܼ are the termination impedances, whereas ܼ is the line characteristic 

impedance. The exciting source ݒ௦(ݐ) is given by [2] 

(ݐ)௦ݒ = න݁௫(ݔ, ݀, ℎ, ݔ݀(ݐ
ି + න݁௭(−ܮ, ݀, ,ݖ ݖ݀(ݐ

 − න݁௭(ܮ, ݀, ,ݖ ݖ݀(ݐ
 .																(3.18)	

In our case, one can verify that  

௦ݒ ቆݐ − 4(݊ + 1) ∙ ܮ − ௦ܿݔ ቇ = 2 ∙ ݒ ቆܮ, ݐ − 4(݊ + 2) ∙ ܿܮ ቇ ,																																					(3.19)	
and that 

௦ݒ ൬ݐ − 4݊ ∙ ܮ + ௦ܿݔ ൰ = −2 ∙ ݒ ൬−ܮ, ݐ − 4݊ ∙ ܿܮ ൰ .																																																							(3.20)	
The expression of ݒ(ݔ,  can be obtained by solving (3.7) as explained in the previous (ݐ

paragraph. 

Hence, we can evaluate the voltage induced at the left termination as 

,ܮ−)ݒ (ݐ = (1 + (ଵߩ ∙ (ߩଵ ∙ ଶ)ஶߩ
ୀ 	

																							∙ ቈߩଶ ∙ ݒ ቆܮ, ݐ − 4(݊ + 2) ∙ ܿܮ ቇ + ݒ ൬−ܮ, ݐ − 4݊ ∙ ܿܮ ൰ .																						(3.21)	
We set ݊ = 5, which is sufficient to show all the waveshapes and reflections on the time 

scale chosen. In Figure 3.7 the induced voltage (at the left end) for a line which is 

terminated in two impedances smaller than the matching impedance is shown ( ܼ = ܼ = 

0.1 × ܼ). In Figure 3.8, the induced voltage is shown for two impedances greater than the 

matching one ( ܼ = ܼ = 10 × ܼ). Finally, in Figure 3.9 the line is terminated in two 

impedances with one greater and the other smaller than the matching impedance ( ܼ = 0.1 × ܼ and ܼ = 10 × ܼ). 
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Figure 3.7 – Induced voltage at the left end of a 2-km line terminated in ܼ = ܼ =       
0.1 × ܼ (ℎ = 10 m, ݀ = 100 m, ܫ = 10 kA, 0.4 = ߚ). 

 
Figure 3.8 – Induced voltage at the left end of a 2-km line terminated in ܼ = ܼ =         
10 × ܼ (ℎ = 10 m, ݀ = 100 m, ܫ = 10 kA, 0.4 = ߚ). 
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One of the general approaches to electromagnetic coupling to overhead line is the Taylor et 

al.’s model. Two different, but equivalent models are the Agrawal et al.’s model and the 

model proposed by Rachidi. All these models have been presented in Chapter 2 for a 

single-conductor line. According to Taylor et al.’s model, the coupling equations for a 

multi-conductor line, in the time domain, are 

۔ۖۖەۖۖ
ۓ ݔ߲߲ ሾݔ)ݒ, ሿ(ݐ + ሾ݈ᇱሿ ∙ ݐ߲߲ ሾ݅(ݔ, ሿ(ݐ = ݐ߲߲ න ܾ௬(ݔ, ݀, ,ݖ ݖ݀(ݐ

 ,														
ݔ߲߲ ሾ݅(ݔ, ሿ(ݐ + ሾܿᇱሿ ∙ ݐ߲߲ ሾݔ)ݒ, ሿ(ݐ = −ሾܿᇱሿ ∙ ݐ߲߲ න ݁௭(ݔ, ݀, ,ݖ ݖ݀(ݐ

  , 																							(3.22)	
where 

- ሾݔ)ݒ,  ;ሿ is the induced voltage vector(ݐ

- ሾ݅(ݔ,  ;ሿ is the induced current vector(ݐ

- ሾ݈ᇱሿ and ሾܿᇱሿ are, respectively, the inductance and the capacitance matrices per unit 

length of the line; 

- ܾ௬(∙) is the ݕ-component of the magnetic field. 

Another different coupling model was proposed by Rusck [9]. It is equivalent to the 

three models referred to above when the lightning channel is vertical [38], which is the case 

in this work.  

Rusck’s model is described by the following coupling equations: 

۔ۖەۖ
ۓ ݔ߲߲ ,ݔ)థݒൣ ൧(ݐ + ሾ݈ᇱሿ ∙ ݐ߲߲ ሾ݅(ݔ, ሿ(ݐ = ݔ߲߲																																								,0 ሾ݅(ݔ, ሿ(ݐ + ሾܿᇱሿ ∙ ݐ߲߲ ,ݔ)థݒൣ ൧(ݐ = ሾܿᇱሿ ∙ ݐ߲߲ ൣ߶(ݔ, ݀, ℎ, ,൧(ݐ 																																	(3.23)	

where ൣ߶(∙)൧ is the vector of the inducing scalar potentials of the incident field. These 

expressions give ൣݒథ(∙)൧, the vector of the induced voltages due to the inducing scalar 

potentials of the incident field. To obtain the total induced voltage, the following 

expression can be used [9]: 

ሾݔ)ݒ, ሿ(ݐ = ,ݔ)థݒൣ ൧(ݐ + න ݐ߲߲ ௭ܣൣ ,ݔ) ݀, ℎ, ,ݖ൧݀(ݐ
 																																																								(3.24)	
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where ൣܣ௭ (∙)൧ is the vector of the vertical components of the vector potentials of the 

incident field.  

It is well known that, for an infinitely long line, the solution of the multi-conductor 

coupling equations (3.22) or (3.23) in terms of induced voltage on a given conductor is not 

affected by the presence of the other conductors [9], [39]. A coupling can occur at 

transition points, e.g., ground wire earthing (grounding) points, or at termination 

impedances [40]. In this case, the induced voltage on a given conductor is affected by the 

other conductors. An important case is that of the induced voltage on a phase wire, which 

is reduced by the presence of ground wire(s) [9], [39], [40]. 

For a power line equipped with ground wire(s), it is important to quantify this shielding 

effect. The effect can be quantified by the ratio between the voltage induced on the 

considered conductor (here denoted ܽ), ݒᇱ , and the voltage that would be induced on the 

same conductor by removing the ground wire(s), ݒ. In the following, we will focus on the 

case of a line equipped with a ground wire which is earthed at only one point, as the one 

shown in Figure 3.10. The extension to the case of multiple earthings (e.g., earthing at 

every pole), which is fundamental when evaluating the lightning performance of the line, 

requires a more complex treatment due to the reflections caused by the earthing points, as 

shown for the case of the unmatched single-conductor line, and will be developed in future 

studies. We also note that analytical models, as the one developed here, can be applied only 

to linear devices such as grounding connections; for nonlinear devices such as surge 

arresters, numerical approaches are to be used (e.g., [41] and [42]). 

The ratio ݒᇱ ⁄ݒ  has been referred to as Shielding Factor (SF) [9], [40] or Protective 

Ratio (PR) [39], [43].  

In the case of power lines equipped with a ground wire connected at only one 

grounding point, the general formulation for the induced voltage ݒᇱ  at the grounding 

connection is [44], [45] 

ᇱݒ = ݒ − ܼܼ + 2ܴ ∙ 	(3.25)																																																																																																,ݒ
where 

- ܼ = 1 ⁄ߨ2 ඥߤ ⁄ߝ ∙ ݈݊(݀ᇱ ݀⁄ ) is the mutual surge impedance of ground wire ܾ and phase conductor ܽ; 

- ܼ = 1 ⁄ߨ2 ඥߤ ⁄ߝ ∙ ݈݊(2ℎ ⁄ݎ ) is the self-surge impedance of the overhead 

ground wire ܾ; 
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- ܴ is the ground resistance of the overhead ground wire; 

 ; is the voltage induced on the ground wireݒ -

- ݀ᇱ  is the distance between the ground wire and the mirror image of conductor ܽ; 

- ݀ is the distance between the ground wire ܾ and the conductor ܽ; 

- ℎ is the height of the overhead ground wire; 

 . is the radius of the ground wire, whose cross section is ܵݎ -

Hence, the SF (PR) is given by 

ݒᇱݒ = 1 − ܼܼ + 2ܴ ∙ ݒݒ .																																																																																																		(3.26)	
In our case of exact formulation for the step current, the ratio ݒ ⁄ݒ  is the ratio between 

the expressions obtained by applying (3.3) to conductors ܽ and ܾ. In this case, the SF (PR) 

depends on the line geometry through ܼ and ܼ, on the grounding resistance ܴ, and, 

through the ratio ݒ ⁄ݒ , on the specific position of the earthing pole ݔ, and it is also a 

function of time. Other authors, including Rusck [9], found instead that the ratio was 

simply a function of the line geometry and grounding resistance. We will use our exact 

approach to check Rusck’s result [9]. Rusck, starting from the coupling model (3.23), (3.24), 

investigated the shielding effect and found that, for one ground wire earthed at only one 

pole, it is given by 

ݒᇱݒ = 1 − ܼܼ + 2ܴ ∙ ℎℎ ,																																																																																																	(3.27)	
where ℎ is the height of the phase conductor ܽ. 

In this case, the SF (PR) is a function only of the line geometry (i.e., the conductors’ 

placement in the line section, as in the example shown in Figure 3.11 [46]), through ܼ, ܼ, ℎ, ℎ, and of the grounding resistance ܴ. It does not depend on the position ݔ of 

the grounding pole along the line nor is it a function of time. This approach greatly 

simplifies the problem, but it is necessary to check its validity.  

For this purpose, we recall [8] that Rusck’s formula was the first-order approximation of 

the exact solution proposed by Andreotti et al., based on approximating the horizontal 

electric field by the first term of its series expansion around 0 = ݖ and considering the 

vertical component to be constant between 0 and ℎ (equal to the value obtained for 0 = ݖ), 

i.e.,  
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function of height of the ground wire, considering its possible locations both above and 

below the phase conductors. The evaluation is carried out both for the inner phase 

conductor (the conductor closest to the ground wire) and for the outer ones for the case of 

zero-resistance grounding. In Figure 3.16, the effect of the earthing resistance for the inner 

phase conductor is shown. The plots refer to different values of grounding resistance, 

varying from 0 Ω (perfect grounding) to 200 Ω, with a 20 Ω step. 

 
Figure 3.12 – Voltage ratio for the central phase conductor with ݔ = 0 m, ℎ= 10 m, ℎ= 11 m, 	ܵ= 16 mm2, ܴ = 0 Ω, ݀ = 100 m, ܫ = 10 kA, 0.4 = ߚ. 

 
Figure 3.13 – Voltage ratio (peak values) for the central phase conductor with ݔ varying 

from 0 to 2 km, ℎ= 10 m, ℎ= 11 m, 	ܵ= 16 mm2, ܴ = 0 Ω, ݀ = 100 m, ܫ = 10 kA,   0.4 = ߚ. 
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Figure 3.14 – Loci of the SF relevant to conductor ܽ, in fixed position and isolated from 
the ground, for various locations of a perfectly grounded shielding wire, ܾ. 

 
Figure 3.15 – Plot of the SF versus ground wire height for the line geometry shown in 
Figure 3.11 in the case of perfect (zero-resistance) grounding. Due to symmetry, the SF is 
the same for both outer conductors. 
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Figure 3.16 – Plot of the SF for the inner conductor of Figure 3.11 versus ground wire 
height and various grounding resistance (ܴ) values. 

3.2.2 Linearly rising channel-base current 

3.2.2.1 Infinitely long, single-conductor line 

A linearly rising current wave propagating along the channel is more consistent with the 

actual rising behavior of the lightning current. Figure 3.17 shows a linearly rising current 

approximating a typical recorded channel-base current [47]. 

Here, we will start from the exact solution for the induced voltage due to a lightning 

step current, in order to derive the exact solution for the case of a linearly rising current by 

means of Duhamel’s integral, which allows one to obtain the response of a system, (ݐ)ݕ, to 

an arbitrary time-varying excitation, ݂(ݐ), using the unit step response of the system, (ݐ)ݏ: 
(ݐ)ݕ = නݏ(߬)௧

 ݂ᇱ(ݐ − ߬)݀߬.																																																																																														(3.30)	
We will consider both constant-level (i.e., a current with “tail time” 	ݐ௧ = ∞) and drooping 

current tails (see Figure 3.18), following the linearly rising front.  

We will first calculate the induced voltage at the point closest to the lightning channel 

and then the induced voltage for an arbitrary value of ݔ along the line. 

 

5 7.5 10 12.5 15
0.4

0.5

0.6

0.7

0.8

0.9

1

S
hi

el
di

ng
 F

ac
to

r

Ground wire height [m]

R
b
 = 0 Ω

Increasing R
b

Rb = 200 Ω



Fi
re

Fi

ch݂(
wh

fr

ex

wh

 

igure 3.17 –
ecorded light

igure 3.18 –

In the cas

hannel is giv(ݐ) is a ramp

(ݐ)݂ = ߙ
here the “fr

om 0 to its

xpression (3

,(0ݒ (ݐ =
here 

Ch

– Linearly ri
tning chann

– Linearly ris

e of a step 

ven by (3.14

p of constan

∙ ݐ ∙ 				,(ݐ)ݑ
ront time” ݐ
s peak value

.14). Using (

= ,ଵ(0ݒ (ݐ −

hapter 3 - Ne

ising lightnin
nel-base curr

sing current

current, the

4). Let us co

nt slope ߙ =
																				
 is assumݐ

e ܫ, and w

(3.14) and (3

− ,ଶ(0ݒ ,(ݐ

ew Approache

73

ng current w
rent (adapted

t waveshape

e exact solu

onsider the = ܫ ⁄ݐ  

																			
ed here to 

where the un

3.31) in (3.3

																			

es to Calculat

with constan
d from [47])

s with const

ution for th

convolution

																			
be the time

nit-step resp

0), we obtai

																				

tion of Lightn

nt tail superi
. 

tant-level an

e point clos

n integral (3

																				
e needed for

ponse (ݐ)ݏ i

n 

																				

ning Induced

 
imposed on 

nd drooping 

sest to the 

3.30) when t

																				
r the curren

is the one 

																				

d Voltages 
 
 

 

a typical 

tails. 

lightning 

the input 

				(3.31)	
nt to rise 

given by 

			(3.32a)	



3.2 Perfectly conducting ground case 
 
 

 

74 

,ଵ(0ݒ (ݐ = − ߨ4ߤ ߙ ∙ න ቈ݈݊ ቆߴ + ටߴଶ + ଶቇߜ + ߚ1 ∙ ݈݊ ቆ−ߴߚ + ටߴଶ + ଶቇߜ (3.32b)			,ߴ݀

ఒ
ఒభ 	

and 

,ଶ(0ݒ (ݐ = − ߨ4ߤ ߙ ∙ න ቈ݈݊ ቆߴ + ටߴଶ + ଶቇߜ + ߚ1 ∙ ݈݊ ቆ−ߴߚ + ටߴଶ + ଶቇߜ ఒᇲ,ߴ݀
ఒభᇲ 		(3.32c) 

with ߣଵ = ߚ ∙ c ∙ ଶݐ − ℎ and ߣଵᇱ = ߚ ∙ c ∙ ଶݐ + ℎ. The subscript ݎ has been added to refer to 

a linearly rising current. 

Solutions of the integrals (3.32b) and (3.32c) are given in the Appendix. By using (A.1) 

and (A.2), we obtain 

,ଵ(0ݒ (ݐ = ଵᇱݒ (0, (ݐ − ଵᇱᇱݒ (0,  (3.32d)																																																																																		,(ݐ

with ݒଵᇱ (0,  given by (ݐ

ଵᇱݒ (0, (ݐ = − ߨ4ߤ ߙ ∙ ቊߣ ∙ ቊ݈݊ ቆߣ + ටߣଶ + ଶቇߜ + ߚ1 ∙ ቈ݈݊ ቆ−ߣߚ + ටߣଶ + ଶቇߜ − 1ቋ 

																						+ ߚ݀ ∙ ቈܽ݊ܽݐܿݎ ൬݀ߣ൰ − ݊ܽݐܿݎܽ ቆ ߚ ∙ ݀ඥߣଶ + ଶቇߜ − ටߣଶ + ଶቋߜ ∙ ݐ)ݑ − 	(3.32e)																																																																																																																																															 ଶ),ݐ
and ݒଵᇱᇱ (0, ଵᇱݒ ଵ inߣ with ߣ obtained replacing (ݐ (0,  .(ݐ

Analogously, for ݒଶ(0,  we obtain ,(ݐ

,ଶ(0ݒ (ݐ = ଶᇱݒ (0, (ݐ − ଶᇱᇱݒ (0, 	(3.32f)																																																																																			,(ݐ
where ݒଶᇱ (0, ଶᇱᇱݒ and (ݐ (0, ଵᇱݒ can be obtained by reversing the sign of ℎ in (ݐ (0, ଵᇱᇱݒ and (ݐ (0,  .respectively ,(ݐ

Expression (3.32) is the exact solution for the linearly rising part of the lightning 

current. 
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A second contribution must be added to obtain the overall current waveshape, which 

corresponds to its tail part (constant-level or drooping tail). As shown in Figure 3.18, in the 

case of constant-level tail, the second contribution is a time-delayed ramp with a negative 

slope whose magnitude is equal to that of the positive slope; for a drooping tail of negative 

slope −ߙᇱ = − ܫ (2 ∙ ⁄(ݐ , where ݐ = ௧ݐ −   is the time needed for current to fall fromݐ

the peak value to the half peak value, the second contribution is a time delayed ramp of 

fictitious negative slope which is equal to 

∗ߙ− = ߙ− − ᇱߙ = − ܫ ∙ ൫ݐ + 2 ∙ ൯2ݐ ∙ ݐ ∙ ݐ .																																																																										(3.33)	
This expression can be easily derived by examining Figure 3.18. We note that, when     ݐ௧ = ∞, ߙ = ∗ߙ. 

In the case of constant-level tail, the second contribution, denoted by ݒᇱ(0,  can be ,(ݐ

written as 

,ᇱ(0ݒ (ݐ = ,ଵ൫0ݒൣ− ݐ − ൯ݐ − ,ଶ൫0ݒ ݐ − 	 (3.34)																																																												൯൧.ݐ
For the drooping tail, ݒᇱ(0,  is computed as (ݐ

,ᇱ(0ݒ (ݐ = ∗ଵݒൣ− ൫0, ݐ − ൯ݐ − ∗ଶݒ ൫0, ݐ − 	 (3.35)																																																												൯൧,ݐ
where ݒଵ∗ ൫0, ݐ − ∗ଶݒ ൯ andݐ ൫0, ݐ − ,ଵ൫0ݒ in ߙ ൯ are obtained, respectively, by replacing the slopeݐ ݐ − ,ଶ൫0ݒ ൯ andݐ ݐ −  .∗ߙ ൯ withݐ

In Figure 3.19(a), we show induced voltages computed for a linearly rising current with 

constant-level tail for different front times. We start with a very fast front time of 1 ns (not 

applicable to lightning, but shown for comparison with the step current case dealt with in 

the previous section) and then vary ݐ from 0.1 to 1 μs, with a 0.1-μs step. In Figure 

3.19(b), we show the results obtained for a linearly rising current with front times that 

range from 1 μs, which is typical for subsequent strokes, to 10 μs, which is typical for first 

strokes, with a step of 1 μs. One can see that a subsequent stroke, all other parameters 

being the same, can produce an induced voltage which is about 200% higher than the first-

stroke one. 
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(a) 

(b) 
Figure 3.19 – Induced voltages obtained for different ݐ at 0 = ݔ (midpoint position of the 

line) with ℎ = 10 m, ݀ = 50 m, ܫ = 10 kA, 0.4 = ߚ. 

We now consider the evaluation of the induced voltage at an arbitrary value of ݔ along 

the line. We will separate vertical and horizontal-field contributions, and we will derive 

exactly only the first one. For the horizontal contribution, we will give an approximate 

expression. 
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Let us consider first the induced voltage contribution due to the vertical electric field 

component. In this case, the unit step response (ݐ)ݏ in the convolution integral (3.30) is 

given by expression (3.4). The exact analytical solution, obtained using expression (A.1), in 

which ߜ is replaced with ߜ, reads 

,ݔ)௭ݒ (ݐ = ௭ݒ ,ݔ) (ݐ + ଵ௭ݒ ,ݔ) (ݐ − ଶ௭ݒ ,ݔ) 	(3.36a) 																																																													,(ݐ
where 

௭ݒ ,ݔ) (ݐ = ߨ2ߤ ∙ ߚ ߙ ∙ (ܿ ∙ ݐ − (ݎ ∙ ݈݊ ൬ℎ + ݎݎ ൰ ∙ ݐ)ݑ − 	(3.36b)																																					),ݐ
and 

ଵ௭ݒ ,ݔ) (ݐ = ߨ4ߤ ∙ ଶߚ ∙ ଶߛ ߙ ∙ ቈߣ ∙ ݈݊ ቆߣ + ටߣଶ + ଶቇߜ − ߣ ∙ ݈݊ ቆߣ + ටߣଶ + 	ଶቇߜ
																						−ටߣଶ + ଶߜ + ටߣଶ + ଶߜ ∙ ݐ)ݑ − 	(3.36c)																																																				),ݐ

with λ = ߚ ∙ c ∙ ݐ − ℎ. The expression for ݒଶ௭ ,ݔ) ଵ௭ݒ is obtained from (ݐ ,ݔ)  by (ݐ

reversing the sign of ℎ. 

As to the horizontal contribution, due to the complexity of the integrand in (3.5), we 

were not able to obtain a sufficiently compact expression. For this reason, an approximate 

solution will be presented here. 

It is worth noting that an approximate solution for the evaluation of the induced voltage 

due to a linearly rising current has been obtained by Sekioka [23]. This solution was 

obtained by means of a convolution of the scalar and vector potentials calculated by Rusck 

[9] for the step current. Since Rusck’s solution is the first-order approximation of the exact 

one, for the convolution product linearity, the Sekioka’s solution can be considered as the 

first-order approximation of the exact one as well. 

We here note that the advantage of the Rusck’s coupling model compared to the one of 

Taylor et al. is that the evaluation is based on the scalar and vector potentials rather than on 

the electric field. This results in an easier evaluation of induced voltages, although the 

separation between horizontal and vertical contributions, as we have done previously, is 

not possible. For this reason, Sekioka gives the overall voltage expression, with no 

separation between vertical and horizontal contributions. 
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Based on the above, the “first-order” horizontal contribution can be obtained by 

subtracting from the “first-order” voltage obtained by Sekioka, the “first-order” vertical 

contribution, i.e.,  

,ݔ)௫ݒ (ݐ = ,ݔ),ௌݒ (ݐ − ,ோ௭ݒ ,ݔ) 	(3.37)																																																																																				,(ݐ
where ݒ,ௌ(ݔ,  :is the solution obtained by Sekioka [23] (ݐ

,ݔ),ௌݒ (ݐ = ߤ ∙ ℎ4ߨ ∙ ߚ ߙ ∙ ൝݈݊ 1 + ቆ݀ߚ ∙ ܿଶ ∙ ଶݐ − ଶܿݎ ∙ ݐ + ߦ ቇଶ൩ + ߚ2 ∙ ݈݊ ߚ ∙ ܿ ∙ ݐ + ݎߦ ∙ (1 + ൨ൡ(ߚ ∙ ݐ)ݑ − 	(3.38)																																																																																																																																																		),ݐ̃
with ߦ = ඥ(ߚ ∙ ܿ ∙ ଶ(ݐ + ݐ̃ ,ଶߜ = ݎ ܿ⁄ , and where ݒ,ோ௭ ,ݔ)  is the “first-order” vertical (ݐ

contribution, obtained by convolving, according to (3.30), the following step response 

expression obtained by Rusck [9]: 

௦,ோ௭ݒ ,ݔ) (ݐ = −න݁௭(ݔ, ݀, ,ݖ (ݐ
 ∙ ݐ)ݑ − ݖ݀(ݐ ≅ ߞ ∙ ߨ2ܫ ∙ ߚ ∙ ℎ ∙ ቆ1ݎ − 1 − ߦଶߚ ቇ ∙ ݐ)ݑ −  .(ݐ̃

                                                                                                                            		  (3.39) 

We, therefore, obtain 

,ோ௭ݒ ,ݔ) (ݐ = ߤ ∙ ℎ2ߨ ∙ ݎ ∙ ଶߚ ߙ ∙ ߚ ∙ (ܿ ∙ ݐ − (ݎ − ߛߜ ∙ ݈݊ ൬ߚ ∙ ܿ ∙ ݐ + ߚߦ ∙ ݎ + ߦ ൰൨ ∙ ݐ)ݑ − 		,(ݐ̃
                                                                                                                                (3.40) 

where ξ = ඥ(ߚ ∙ ܿ ∙ )ଶݐ +   .ଶߜ

Substituting (3.38) and (3.40) in (3.37), and making the appropriate simplifications, we 

obtain the following expression for the horizontal contribution: 

,ݔ)௫ݒ (ݐ = ߤ ∙ ℎ4ߨ ∙ ߚ ߙ ∙ ൝݈݊ 1 + ቆ݀ߚ ∙ ܿଶ ∙ ଶݐ − ଶܿݎ ∙ ݐ + ߦ ቇଶ൩ + ߚ2 ∙ ݈݊ ൬ߚ ∙ ܿ ∙ ݐ + ߚߦ ∙ ݎ + ߦ ൰	
ߚ2+																				 ∙ ݈݊ ߚ ∙ ݎ + ඥݎଶ + ଶߚ ∙ ℎଶݎ ∙ (1 + (ߚ ൩ − 2 ∙ ൬ܿ ∙ ݐ − ݎݎ ൰ൡ ∙ ݐ)ݑ − 	(3.41)								).ݐ̃
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By adding expressions for the vertical contribution (3.36) and horizontal contribution 

(3.41), we finally obtain an approximate formula for the evaluation of the total induced 

voltage at an arbitrary position along the line: 

,ݔ)ݒ (ݐ = ,ݔ)௭ݒ (ݐ + ,ݔ)௫ݒ 	(3.42)																																																																																									.(ݐ
Note that this expression corresponds only to the linearly rising part of the lightning 

current. The contribution from the current tail that must be added to account for the 

overall current waveform can be obtained as described above for the closest point case. 

The 3-D plot of the induced voltages computed using (3.42) for the case of linearly 

rising front and constant-level tail is shown in Figure 3.20. 

 
Figure 3.20 – 3-D plot of induced voltages obtained for ℎ = 10 m, ݀ = 100 m, ܫ = 10 
kA, 0.4 = ߚ, and return-stroke current waveform characterized by ݐ = 2 µs, ݐ௧ =∞. 

3.2.2.2 Multi-conductor line 

In this case we make reference to case (b) of Figure 3.10. We recall that for a power line 

equipped with a ground wire connected at only one grounding point, the SF (PR) is given 

by (3.26). In our case of exact formulation for the linearly rising current, the ratio ݒ ⁄ݒ  is 

the ratio between the expressions obtained by applying (3.32) to conductors ܽ and ܾ for 

the rising part and (3.34) or (3.35) for the constant or drooping tail, respectively. In this 

case, the SF (PR) depends on the line geometry through ܼ and ܼ, on the grounding 
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resistance ܴ, and, through the ratio, it is also a function of time (due to the linearity of the 

convolution operator, we expect that it depends on the position of ݔ, but we are not able 

to analyze this dependence since the exact solution was calculated only for ݔ = 0 ). In the 

case of Sekioka’s solution, the ratio ݒ ⁄ݒ  is obtained by applying (3.38) to conductors ܽ 

and ܾ, and this leads to an expression which is the same as the Rusck’s one (3.27). As for 

the step current case, this approach greatly simplifies the problem, but we have to check its 

validity. In Figure 3.21, we show the time dependence of the ratio ݒᇱ ⁄ݒ  calculated 

applying (3.32) and (3.35) to conductors ܽ and ܾ for the typical distribution line geometry 

given in Figure 3.11. Here, we found that the approximation given by (3.27) which yields a 

value of 0.63538 is not accurate only in the very early period of time, where, however, the 

induced voltages are still very low without any isolation problem. The voltage peak is 

formed after 0.75 µs, when the SF is well established at its asymptotic value. 

 
Figure 3.21 – Voltage ratio for the central phase conductor of Figure 3.11 (ℎ= 10 m,  ℎ= 11 m, 	ܵ= 16 mm2, ܴ = 0 Ω, ݀ = 50 m, ܫ = 12 kA, 0.43 = ߚ, and return-stroke 
current waveform characterized by ݐ = 0.5 µs, ݐ௧ = 20 µs). 

We will now use the exact solution for a linearly rising current in the case of a multi-

conductor line with a grounded conductor as a test bench for two numerical approaches; in 

particular, we have compared the results obtained by using formulas (3.32) and (3.35) 

combined with (3.27) with those obtained by Yokoyama [40] and by Paolone et al. [41] 

using numerical approaches for the same line configuration and return stroke current. In 

Figure 3.22(a), we show induced voltages on the inner phase conductor of a line like the 
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Figure 3.23 – Induced voltages on the inner phase conductor at the point closest to the 
lightning channel for ܴ = ∞: comparison of calculations made by using (3.32), (3.35) and 
(3.27) with results from Yokoyama [40] and Paolone et al. [41]. Parameters used are the 
same as in [40] and [41]. 

3.2.2.3 Comparison with other models 

As pointed out in the introduction, approximate analytical solutions for the evaluation 

of the lightning induced voltage on a lossless, infinitely long, single conductor located over 

an infinite-conductivity ground plane and excited by an external field due to a linearly rising 

current (followed by a constant or drooping tail) which move along a vertical lightning 

channel according to the TL model, that is the configuration depicted in case (b) of Figure 

3.1, have been proposed by Chowdhuri-Gross [18], [19], Liew-Mar [20], Høidalen [10], and 

Sekioka [23]. 

In this paragraph, predictions of the exact analytical solution presented above for the 

evaluation of the voltages induced at the point of the line closest to the lightning channel 

will be compared to those obtained by using the approximate solutions found in the 

literature. 

For the comparison purposes, we will assume a channel-base current with a peak value ܫ = 12 kA, a front time ݐ = 0.5 µs, and a drooping tail with ݐ௧ = 20 µs. This specific 

channel base current was selected since it represents the best fit of a typical measured 

channel base current [10]. 

 



Chapter 3 - New Approaches to Calculation of Lightning Induced Voltages 
 
 

 

83 

 Chowdhuri-Gross’s formula 

The solution proposed by Chowdhuri and Gross [18], [19], for a linearly current of 

constant slope ߙ = ܫ ⁄ݐ , was obtained starting by a coupling model developed by the 

authors themselves and known as the “Chowdhuri-Gross model” (e.g., [38]). The original 

Chowdhuri-Gross’s formula was first published in [18]. Afterwards, in [19], Chowdhuri 

modified it on the basis of the suggestions given by Cornfield [48], who found a mistake in 

the original expression. The final expression, for 0 = ݔ, reads: 

,ீ(0ݒ (ݐ = ߤ ∙ ℎ4ߨ ∙ ߚ ߙ ∙ ቊ ଶߛ1 ∙ ቈ݈݊ ቆߛସ݀ଶ ∙ ቈ݀ଶߛଶ + ଶߚ ∙ ܿଶ ∙ ଶݐ ∙ (1 + (ଶߚ − ଶߚ2 ∙ ܿ ∙ ݐ ∙ 	ଵቇߦ
																					−2݈݊ ൬ܿ ∙ ݀ݐ ൰൨ + ݈݊ ቆ ଵ݂ ∙ ଷ݂ଶ݂ ∙ ସ݂ ቇቋ ∙ ݐ)ݑ − 	(3.43)																																																ଶ),ݐ̃

where  

- ଵ݂ = ݉ + ܿଶ ∙ ଶݐ − ݀ଶ, ଶ݂ = ݉ − ܿଶ ∙ ଶݐ + ݀ଶ; 

- ଷ݂ = ݉ − ܿଶ ∙ ଶଶݐ̃ + ݀ଶ, ସ݂ = ݉ + ܿଶ ∙ ଶଶݐ̃ − ݀ଶ; 

- ݉ = ඥ(ܿଶ ∙ ଶݐ + ݀ଶ)ଶ + 4ℎଶ ∙ ܿଶ ∙  ;ଶݐ

- ݉ = ඥ(ܿଶ ∙ ଶଶݐ̃ + ݀ଶ)ଶ + 4ℎଶ ∙ ܿଶ ∙  ;ଶଶݐ̃

- ℎ is the length of the lightning channel; 

ଵߦ - = ඥ(ߚ ∙ ܿ ∙ ଶ(ݐ +  ;ଶߜ

ଶݐ̃ - = ݀ ܿ⁄ . 

Expression (3.43) is the solution for the linearly rising part of the lightning current. A 

second contribution must be added to obtain the overall current waveshape, which 

corresponds to its tail (constant-level or drooping tail). This contribution can be obtained 

as described above for the exact analytical solution. 

Now, we will compare the induced voltage waveform obtained by using the Chowdhuri-

Gross’s formula (3.43) with the one obtained by using the exact solution (3.32). In Figure 

3.24(a), the comparison is shown for a 10 meters height line located at distance ݀ = 50 m 

from the lightning channel; results have been obtained for ܫ = 12 kA, ݐ ,0.4 = ߚ = 0.5 µs, 

and ݐ௧ = 20 µs. The same comparison, but with ݀ increased to 100 meters, is shown in 

Figure 3.24(b). We point out that, since the Chowdhuri-Gross’s formula refers to a finite 

lightning channel length, for comparison purposes we have considered, for both graphs, ℎ → ∞ in (3.43). Moreover, for the sake of completeness, we have also checked the finite 
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length channel case, assuming ℎ = 3 km (see Figures 3.25(a) and (b)). The comparison 

clearly shows that the Chowdhuri-Gross’s formula, as for the step current case analyzed in 

[8], cannot be considered correct. In fact, in all considered cases, it predicts significantly 

higher peak value and steeper front, and a too rapid decay of the current tail.  

Furthermore, we notice a polarity inversion, particularly accentuated when ℎ is finite, 

which cannot be justified for the voltage induced by a linearly rising current waveform in 

case of lossless ground. 

 

  
                                (a)                                                                  (b) 

Figure 3.24 – Comparison between the induced voltage evaluated at 0 = ݔ by means of 
Chowdhuri-Gross’s formula and the proposed exact analytical approach (ℎ = 10 m,          ܫ = 12 kA, ݐ ,0.4 = ߚ = 0.5 µs, ݐ௧ = 20 µs, ℎ = ∞): (a) ݀ = 50 m, (b) ݀ = 100 m. 

  
                                (a)                                                                  (b) 

Figure 3.25 – Comparison between the induced voltage evaluated at 0 = ݔ by means of 
Chowdhuri-Gross’s formula and the proposed exact analytical approach (ℎ = 10 m,          ܫ = 12 kA, ݐ ,0.4 = ߚ = 0.5 µs, ݐ௧ = 20 µs, ℎ = 3 km): (a) ݀ = 50 m, (b) ݀ = 100 m. 
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 Liew-Mar’s formula 

The closed form solution proposed by Liew and Mar was first published in [20] and 

then revised by Liew and Haldar in the discussion of [19], since the original formula 

contained several typographical errors. It has been obtained starting from the Chowdhuri-

Gross coupling model, as discussed in [8]. The final expression, specified for 0 = ݔ, reads 

,ெ(0ݒ (ݐ = ߤ ∙ ℎ4ߨ ∙ ߚ ߙ ∙ ቊቈ݈݊ ቆߛସ݀ଶ ∙ ቈ݀ଶߛଶ + ଶߚ ∙ ܿଶ ∙ ଶݐ ∙ (1 + (ଶߚ − ଶߚ2 ∙ ܿ ∙ ݐ ∙ 	ଵቇߦ
																					−2݈݊ ൬ܿ ∙ ݀ݐ ൰൨ − ቈܽݏܿܿݎℎ ൬ܽ + ݏ ൰ − ℎݏܿܿݎܽ ቆܽ + ݏ ቇ	
																					− ℎݏܿܿݎܽ ቆܾ +  ݓ⁄ଶݍ ቇ + ℎݏܿܿݎܽ ቆܾ +  ݓ⁄ଶݍ ቇ + 		ߚ2
																					∙ ℎ݊݅ݏܿݎܽ ൬ߚ ∙ ߛ ∙ ܿ ∙ ݀ݐ ൰ − ℎ݊݅ݏܿݎܽ ቆߚ ∙ ߛ ∙ ܿ ∙ ଶ݀ݐ̃ ቇቋ ∙ ݐ)ݑ − 	(3.44)											ଶ),ݐ̃

where  

- ܽ = (ܿ ∙  ;ଶି(ݐ

- ܽ = (ܿ ∙  ;ଶ)ିଶݐ̃

- ܾ = (ܿ ∙  ;ଶ(ݐ

- ܾ = (ܿ ∙  ;ଶ)ଶݐ̃

 - = (݀ଶ + 2ℎଶ) ݀ସ⁄ ; 

ݍ - = 1 ݀ଶ⁄ ; 

ݏ - = ඥଶ −  ;ଶݍ

ݓ - = ඥଶ ସݍ − 1 ⁄⁄ଶݍ . 

Also in this case, expression (3.44) refers to the linearly rising portion of the channel-

base current. A second contribution must be added, as specified in the previous sections. 

Now, we will compare results obtained by using the exact solution (3.32) and their 

counterparts obtained by using the Liew-Mar’s formula (3.44). In Figure 3.26(a), the 

induced voltage waveforms obtained for ℎ = 10 m, ݀ = 50 m, ܫ = 12 kA, ݐ ,0.4 = ߚ = 

0.5 µs, and ݐ௧ = 20 µs are shown. In Figure 3.26(b), the same comparison is shown, but for ݀ = 100 m. As for the Chowdhuri-Gross’s formula, the Liew-Mar solution also refers to a 

lightning channel of finite length: for comparison purposes we have considered ℎ → ∞ in 

(3.44) for both graphs. We have also checked the finite length channel case, assuming ℎ = 
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3 km (see Figures 3.27(a) and (b)). As one can see from the comparison, the Liew-Mar’s 

formula predicts a lower peak value for ݀ = 50 m, and a higher peak value for ݀ = 100 m. 

In both cases, results obtained by (3.44) show a steeper front, a too rapid decay of the 

current tail, and a polarity inversion. The latter effect can be seen both for finite and 

infinite lengths of the lightning channel. 

We conclude that the Liew-Mar solution cannot be considered correct. 

 

 
                                (a)                                                                  (b) 

Figure 3.26 – Comparison between the induced voltage evaluated at 0 = ݔ by means of 
Liew-Mar’s formula and the proposed exact analytical approach (ℎ = 10 m, ܫ = 12 kA,     ݐ ,0.4 = ߚ = 0.5 µs, ݐ௧ = 20 µs, ℎ = ∞): (a) ݀ = 50 m, (b) ݀ = 100 m. 

 
                                (a)                                                                  (b) 

Figure 3.27 – Comparison between the induced voltage evaluated at 0 = ݔ by means of 
Liew-Mar’s formula and the proposed exact analytical approach (ℎ = 10 m, ܫ = 12 kA,     ݐ ,0.4 = ߚ = 0.5 µs, ݐ௧ = 20 µs, ℎ = 3 km): (a) ݀ = 50 m, (b) ݀ = 100 m. 
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 Sekioka’s formula 

As indicated in paragraph 3.2.2.1, an approximate solution for the evaluation of the 

induced voltage due to a linearly rising current has been proposed by Sekioka [23]. This 

solution was obtained by means of a convolution of the scalar and vector potentials 

calculated by Rusck [9] for the step current case, and was derived by using the so-called 

Rusck’s coupling model [9]. The Sekioka’s formula (3.38), for x= 0, can be rewritten as 

,ௌ(0ݒ (ݐ = ߤ ∙ ℎ4ߨ ∙ ߚ ߙ ∙ ൝݈݊ 1 + ቆ݀ߚ ∙ ܿଶ ∙ ଶݐ − ݀ଶܿ ∙ ݐ + ଵߦ ቇଶ൩ + ߚ2 ∙ ݈݊ ߚ ∙ ܿ ∙ ݐ + ଵ݀ߦ ∙ (1 + (ߚ ൨ൡ ∙ ݐ)ݑ −   (3.45)																																																																																																																																																	ଶ).ݐ̃

Also in this case, this formula refers only to the initial linearly rising portion of the 

current.  

By comparing the results obtained by using the exact solution (3.32) and their 

counterparts obtained by using the Sekioka’s formula (3.45), calculated for the same values 

of parameters proposed above (ℎ = 10 m, ݀ = 50, and 100 m, ܫ = 12 kA, ݐ ,0.4 = ߚ = 

0.5 µs, and ݐ௧ = 20 µs), one can observe that, on a 10-µs time-scale, the results are 

practically the same (the two induced voltage waveforms overlap each other). Some minor 

differences can be spotted by zooming in the graphs, as shown in Figure 3.28(a) for the 

case of ݀ = 50 m. 

  
                                (a)                                                                  (b) 

Figure 3.28 – Comparison between the induced voltage evaluated at 0 = ݔ by means of 
Sekioka’s formula and the proposed exact analytical approach (݀ = 50 m, ܫ = 12 kA,        ݐ ,0.4 = ߚ = 0.5 µs, ݐ௧ = 20 µs): (a) magnification of the 0.6÷1.1 µs time interval for         ℎ = 10 m, (b) ℎ = 30 m. 
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We can therefore conclude that the Sekioka’s formula is consistent with the exact 

solution and can be considered suitable for analyzing power distribution lines, for which 

the height is relatively small. For higher lines, such as transmission lines, small differences 

between predictions of (3.32) and (3.45) can be appreciated. However, the Sekioka’s 

formula can still be considered a suitable tool for this kind of lines. In Figure 3.28(b), a 30-

meter height line is considered. 

 

 Høidalen’s formula 

Høidalen [10] also proposed an approximate formula which allows one to evaluate the 

induced voltage along the line. This solution has been obtained by a numerical convolution 

of Rusck’s expression for the step current case.  

As the expressions presented above, the Høidalen’s solution is the sum of two 

contributions, which account for the linearly rising and the tail part of the current. At ݔ = 

0, the formula reads 

,ு(0ݒ (ݐ ≈ ,0)ܣ (ݐ − ܾு ∙ ,൫0ܣ ݐ − 	(3.46)																																																																											൯,ݐ
with  

,0)ܣ (ݐ = ܫ ∙ ܫݐ∆ ∙ ݐ ∙   ு௦ݒ (0, ݅ ∙ (ݐ∆ + 12 ∙ ு௦ݒ (0, ௧(ݐ ∆௧⁄ ିଵ
ୀ  ∙ 	(3.47)																																		,(ݐ)ݑ

where  

- ܾு = 1 + ݐ ൣ2 ∙ ൫ݐ௧ − ⁄൯൧ݐ ; 

 ; is the linearly rising current peak valueܫ -

 .is the time step used for the numerical integration ݐ∆ -

The term ݒு௦ (0,  represents the voltage induced by a step current, whose expression is (ݐ

given in [10]. Note that the expression given in [10] refers to a finite-length line and to an 

arbitrary value of ݔ. It can be easily extended to the case of an infinite-length line and the 

resulting expression, for 0 = ݔ, reads 

ு௦ݒ (0, (ݐ = ߨ2ߞ ∙ ܫ ∙ ߚ ∙ ℎ ∙ ܿ ∙ ଶ݀ݐ + ߚ) ∙ ܿ ∙ ଶ(ݐ ∙ ቆ1 + ଶߚ ∙ ܿ ∙ ଵߦݐ ቇ ∙ ݐ)ݑ − 	(3.48)															ଶ).ݐ̃
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A comparison between predictions of the exact solution (3.32) and the results obtained 

by using the Høidalen’s formula (3.46) is shown in Figures 3.29(a) and (b), respectively, for 

a 10-m-high line and a 30-m-high line. As in the case of Sekioka’s expression, no practical 

differences are observed for a 10 m line (the graph was zoomed in to show some minor 

differences), whereas for the 30 m line, even if differences can be seen, Høidalen’s formula 

can still be considered a suitable approximation of the exact solution. 

 

 
                                (a)                                                                  (b) 

Figure 3.29 – Comparison between the induced voltage evaluated at 0 = ݔ by means of 
Høidalen’s formula and the proposed exact analytical approach (݀ = 50 m, ܫ = 12 kA,        ݐ ,0.4 = ߚ = 0.5 µs, ݐ௧ = 20 µs): (a) magnification of the 0.6÷1.1 µs time interval for         ℎ = 10 m, (b) ℎ = 30 m. 

 

Finally, in order to check also the proposed approximate equation for an arbitrary value 

of ݔ along the line, we have compared the predictions of (3.42) with those of the 

approximate solutions proposed by Høidalen [10] and Sekioka [23]. Figure 3.30 shows the 

results obtained at a distance of 500 m from the center of the line (closest point of the line 

to the lightning channel). In both cases, an excellent correspondence can be seen. The 

maximum relative error was found to be 0.33% in the case of Høidalen’s expression and 

0.32% in the case of Sekioka. 
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Figure 3.30 – Induced voltage on an infinitely long line at a distance of 500 m from the 
center: comparison between the results obtained using (3.42) and the Høidalen [10] and 
Sekioka [23] formulas. Parameters used are ℎ = 10 m, ݀ = 50 m, ܫ = 12 kA, ݐ       ,0.4 = ߚ = 0.5 µs, ݐ௧ = 20 µs. 

3.3 Lossy ground case 

In this section, the solutions presented above for the lossless ground case and both the 

step current and linearly rising current will be extended to take into account lossy ground 

effects. For this purpose, it is important to recall that lossy ground affects the lightning 

electromagnetic field, in particular, the horizontal electric field at line height (as detailed in 

[33] and in Chapter 2). The propagation of the induced voltage along the line is affected 

too. Nevertheless, in this thesis work, only the lossy-ground effects on the horizontal field 

at line height will be considered. 

Finally, results obtained using the model developed below will be compared with those 

given by other formulas found in the literature.  

3.3.1 General formulation 

Let us consider a long, lossless, single conductor located over a finite-conductivity 

ground plane, and excited by an external field due to both a step channel-base current and 

a linearly rising channel-base current moving along a vertical lightning channel according to 

0 2 4 6 8 10
0

10

20

30

40

50

60

70

80

Time [μs]

In
du

ce
d 

V
ol

ta
ge

 [
kV

]

 

 

Proposed approach
Høidalen's formula
Sekioka's formula



Chapter 3 - New Approaches to Calculation of Lightning Induced Voltages 
 
 

 

91 

the TL model. The configuration is the same as the one depicted in Figure 3.1, except for 

the soil conductivity. 

In the ideal ground case, as described in section 3.2.1.1, the expression for the induced 

voltage along the line can be obtained by analytically solving equation (3.1), in which 

appear the vertical and the line axial components of the electric field produced by a step 

current if one is studying case (a) of Figure 3.1, or by a linearly rising current if one is 

studying case (b). 

In the case of lossy ground, both ݁௭(∙) and ݁௫(∙) will be affected by finite ground 

conductivity effects, but since we are neglecting the lossy effects along the line, (3.1) still 

holds. Rigorously, ݁௭(∙) and ݁௫(∙) should be calculated by solving the Sommerfeld integrals 

[49], but in this case the integrals in (3.1) could not be closed analytically. However, since 

the vertical component ݁௭(∙) is practically unaffected by the finite ground conductivity  and 

the line axial component ݁௫(∙) can be satisfactory represented by the Cooray-Rubinstein 

approximation (see Chapter 2 for a detailed discussion of the lossy ground effects), for 

which a time-domain representation has also been given [35], we will adopt this 

approximation in the following analysis. The validity of the Cooray-Rubinstein formula has 

been investigated by many authors (e.g., [34], [50], [51]). At close ranges, where the induced 

voltages are the most critical, the error associated with the Cooray-Rubinstein approach is 

significant only for very poorly conducting earth [52]. Therefore, 0.001 = ߪ S/m can be 

considered as a lower limit for ground conductivities. Down to this value, the errors can be 

considered negligible [52]. 

According to the Cooray-Rubinstein’s approximation, the line axial field ݁௫(∙) can be 

calculated by means of the following expression [35]: 

݁௫(ݔ, ,ݕ ,ݖ (ݐ = ݁௫(ݔ, ,ݕ ,ݖ (ݐ − ටߤߝ ∙ ℎ௬(ݔ, ,ݕ 0, (ݐ + ℎ௬(ݔ, ,ݕ 0, (ݐ ∗ 	(3.49)								,(ݐ)ܭ
where  

- ݁௫(∙) is the ideal electric field line axial component (calculated as if the ground 

were a perfect conductor); 

- ℎ௬(∙) is the ideal azimuthal magnetic field line normal component (calculated as if 

the ground were a perfect conductor); 

 .is the ground permittivity ߝ -

The sign ∗ denotes a convolution, and (ݐ)ܭ can be expressed by [53] 
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(ݐ)ܭ = ටߤߝ ∙ ߝ2ߪ ∙ ቂܬ ቀ ߝ2ߪ ∙ ቁݐ − ଵܬ ቀ ߝ2ߪ ∙ ቁቃݐ ∙ ݁ି ఙଶఌ∙௧ = −ටߤߝ ∙ ݐ݀݀ ቂܬ ቀ ߝ2ߪ ∙ ቁݐ ∙ ݁ି ఙଶఌ∙௧ቃ,	
																																																																																																																																																	(3.50) 

where ߪ is the ground conductivity, ܬ(∙) is the modified Bessel function of the first type 

and order 0, ܬଵ(∙) is the modified Bessel function of the first type and order 1. 

Therefore, (3.1) can be written as  

,ݔ)ݒ (ݐ = ቐ−න݁௭(ݔ, ݀, ,ݖ ݖ݀(ݐ
  

																	− 12 න ݁௫ ቆߟ, ݀, ℎ, ݐ − ߟ| − ܿ|ݔ ቇ ∙ ߟ)݊݃݅ݏ − ାஶߟ݀(ݔ
ିஶ 	 

																	+ 12 ∙ ටߤߝ ∙ න ℎ௬ ቆߟ, ݀, 0, ݐ − ߟ| − ܿ|ݔ ቇ ∙ ߟ)݊݃݅ݏ − ାஶߟ݀(ݔ
ିஶ 		

																	− 12 ∙ න ቈℎ௬ ቆߟ, ݀, 0, ݐ − ߟ| − ܿ|ݔ ቇ ∙ ߟ)݊݃݅ݏ − (ݔ ∗ ାஶߟ݀(ݐ)ܭ
ିஶ ቑ	 ∙ ݐ)ݑ − 	.(ݐ

																																																																																																																																																	(3.51) 

The first two terms on the right-hand side of (3.51) represent the induced voltage in case of 

perfectly conducting ground, whereas the remaining two terms represent the necessary 

corrections to account for lossy ground effects. 

Let us consider two arbitrary time functions ݂(ݐ) and ݃(ݐ). It is well known that their 

convolution product is defined as 

(ݐ)݂ ∗ (ݐ)݃ = න݂(߬) ∙ ݐ)݃ − ߬)݀߬.																																																																																(3.52)

௧
 	

Hence, the last term on the right-hand side of (3.51), apart from the multiplying factor −1 2⁄ , can be written as  
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න නℎ௬ ቆߟ, ݀, 0, ߬ − ߟ| − ܿ|ݔ ቇ ∙ ߟ)݊݃݅ݏ − (ݔ ∙ ݐ)ܭ − ߬)݀߬௧
 	 (3.53)																									.ߟ݀

ାஶ
ିஶ 	
For our purposes, we need to reverse the integration order in (3.53), so as to obtain 

න න ℎ௬ ቆߟ, ݀, 0, ߬ − ߟ| − ܿ|ݔ ቇ ∙ ߟ)݊݃݅ݏ − ାஶߟ݀(ݔ
ିஶ 	 ∙ ݐ)ܭ − ߬)݀߬.																									(3.54)

௧
 	

If we set 

,ݔ)ݓ (ݐ = න ℎ௬ ቆߟ, ݀, 0, ݐ − ߟ| − ܿ|ݔ ቇ ∙ ߟ)݊݃݅ݏ − (ݔ ∙ ݐ)ݑ − ାஶ,ߟ݀(ݐ
ିஶ 																	(3.55)	

and call ݒ(ݔ,   the induced voltage in the case of ideal ground, (3.51) can be rewritten as (ݐ

,ݔ)ݒ (ݐ = ,ݔ)ݒ (ݐ + 12 ∙ ටߤߝ ∙ ,ݔ)ݓ (ݐ − 12 ∙ නݓ(ݔ, ߬) ∙ ݐ)ܭ − ߬)݀߬௧
 .																		(3.56)	

Expressions for ݒ(ݔ,  have been presented above, both for the step current case (see (ݐ

paragraph 3.2.1) and the linearly rising current case (see paragraph 3.2.2)  

In the next two sections, we will give the analytical expression of ݓ(∙) in an exact form 

(i.e., with no approximations) both for the step and the linearly rising channel-base current 

cases. 

As for the evaluation of the convolution integral appearing in (3.56), we will use the 

approach proposed in [53] that will be briefly outlined here. Let us call the convolution 

shown in (3.56) as 

(ݐ)ܫܥ = නݓ(ݔ, ߬) ∙ ݐ)ܭ − ߬)݀߬௧
 .																																																																																			(3.57)	

If we consider ܰ equally spaced time samples in the interval ሾ0,  ሿ, and assume that theݐ

function ݓ(ݔ, ߬) is constant between the samples 
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,ݔ)ݓ ߬) ≈ ܸ																		∀	߬	߳	ሾݐ, 	(3.58)																																																																									ାଵ),ݐ
with ݐ = ݐ∆ ∙ (݊ − 1), ݊ = 1,2,… ,ܰ and ܸ = ,ݔ)ݓ  in an (ݐ)ܫܥ ), one can computeݐ

approximate way at each time sample between ݐଵ = 0 and ݐே, implementing the following 

formula [53]: 

۔ۖەۖ
(ଵݐ)ܫܥۓ = ଵܫܥ = 0,																																																											
(ݐ)ܫܥ = ܫܥ =  ܸ ∙ ݊												,ିܭܫ = 2,… ,ܰିଵ

ୀଵ
																																																	(3.59)	

where  

ܭܫ - = ାଵܭܫܸ −  ;ܭܫܸ

ܭܫܸ - = ߪ)ܬ− (ߝ2) ∙ ⁄ݐ ) ∙ ݁ିఙ (ଶఌ)∙௧⁄ . 

3.3.2 Step channel-base current 

To evaluate the last two terms of (3.56), representing the lossy ground effects, we need 

to solve (3.55). First, we recall the exact analytical expression for the line normal 

component of the ideal azimuthal magnetic field (i.e., the field calculated as if the ground 

were a perfect conductor) evaluated at ground level (0 = ݖ) for the step current case [8] 

ℎ௬௦ ,ݔ) ݀, 0, (ݐ = ߨ2ܫ ∙ ଶݎ ∙ ߚ ∙ ܿ ∙ ݐ ∙ ߦݔ ∙ ݐ)ݑ − 	(3.60)																																																										).ݐ
The integral in (3.55), with ℎ௬ given by (3.60), is solved in the Appendix, and the solution 

reads 

,ݔ)௦ݓ (ݐ = ,ݔ)௦ݓ (ݐ + ,ݔ−)௦ݓ 	(3.61a)																																																																																		,(ݐ
with  

,ݔ)௦ݓ (ݐ = ߨ2ܫ ∙ ቈ݈݊ ቆ ߚ ∙ ܿ ∙ ݐ + መߣߦ − ݔߚ + ቇߦ + ߚ ∙ ݈݊ ቆ ݔ − መߣߚ + ݔߦ − መߣߚ + ቇߦ + ݈݊ ൬ߜߜ ൰ ∙ ݐ)ݑ − 	(3.61b)																																																																																																																																																),ݐ
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where  

መߣ - = ߚ ∙ (ܿ ∙ ݐ +  ;(ݔ
ߦ - = ට൫ݔߚ − መ൯ଶߣ +  .ଶߜ

By using these results, we first show in Figure 3.31 the induced voltages at different 

points along the line (0 = ݔ m, 500 m, 1000 m, 1500 m, and 2000 m) both for perfect 

ground (Figure 3.31(a)) and lossy ground (Figures 3.31(b) and (c)) for two different ground 

conductivities (0.01 = ߪ S/m and 0.001 S/m) assuming a relative permittivity, ߝ, of 10. 

The well-known polarity inversion effect is reproduced [3], [54]. Note also that all 

waveshapes do not start from zero due to the discontinuity produced by the step current. 

The lossy ground has also the effect of magnifying the induced voltage at the point closest 

to the lightning channel and reducing the positive polarity peaks for “off-the-center” 

positions. It should be noted also in Figures 3.31(b) and (c) that the negative polarity peak 

increases with increasing ݔ. 

For direct comparison purposes, we show in Figure 3.32 the induced voltages at 0 = ݔ 

for perfectly conducting ground, 0.01 = ߪ S/m, and 0.001 = ߪ S/m. The peak increases by 

about 14% when 0.01 = ߪ S/m and by about 49% when 0.001 = ߪ S/m, compared to the 

perfect ground case. 

For the off-the-center position (500 = ݔ m), a different behavior is seen in Figure 3.33: 

the positive polarity peaks decrease and negative polarity peaks increase with decreasing 

ground conductivity (note that waveforms for perfectly conducting ground do not exhibit 

negative polarity peaks). 

3.3.3 Linearly rising channel-base current 

For the case of a linearly rising current, we first need to calculate the line normal 

component of the ideal-ground azimuthal magnetic field at 0= ݖ. It can be obtained 

starting from (3.60) by means of the Duhamel’s integral (3.30).  

Let us consider the integral (3.30) when the input ݂(ݐ) is a ramp of constant slope ߙ = 	 ܫ ⁄ݐ , and where the unit-step response (ݐ)ݏ is the one given by (3.60). This integral 

can be solved exactly and the solution reads 

ℎ௬ ,ݔ) ݀, 0, (ݐ = ܫ ∙ ߨ2ݔ ∙ ߚ ∙ ܿ ∙ ݐ ∙ ଶݎ ∙ ߦ) − (ݎ ∙ ݐ)ݑ − 	(3.62)																																													).ݐ
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(a)

(b)

(c) 
Figure 3.31 – Plots of the induced voltages at different positions along the line (ℎ = 10 m, ݀ = 50 m, ܫ = 12 kA, 0.43 = ߚ): (a) ߪ = ∞ and ߝ = 1, (b) 0.01 = ߪ S/m and ߝ = 10, (c) 0.001 = ߪ S/m and ߝ = 10. 
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Figure 3.32 – Comparison of the induced voltages at 0 = ݔ for perfectly conducting 
ground (ߪ = ∞ and ߝ = 1), 0.01 = ߪ S/m, and 0.001 = ߪ S/m (ߝ = 10). Plots are 
obtained for ℎ = 10 m, ݀ = 50 m, ܫ = 12 kA, 0.43 = ߚ. 

 
Figure 3.33 – Comparison of the induced voltages at 500 = ݔ m for perfectly conducting 
ground (ߪ = ∞ and ߝ = 1), 0.01 = ߪ S/m, and 0.001 = ߪ S/m (ߝ = 10). Plots are 
obtained for ℎ = 10 m, ݀ = 50 m, ܫ = 12 kA, 0.43 = ߚ. 
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As for the case of a step current, by using (3.62), the integral in (3.55) can be solved exactly, 

as shown in the Appendix. The solution reads 

,ݔ)ݓ (ݐ = ,ݔ)ݓ (ݐ + ,ݔ−)ݓ 	(3.63a)																																																																																		,(ݐ
with 

,ݔ)ݓ (ݐ = ߨ2ܫ ∙ ߚ ∙ ܿ ∙ ݐ ∙ ൝ߦ − ߦ + መߣߚ ∙ ݈݊ ቆ ݔ − መߣߚ + ݔߦ − መߣߚ + ቇߦ + ටݔଶ + ݀ଶ − ටݔଶ + ݀ଶ	
+ መଶߣସߚ ∙ ܲ ∙ ඥܳ − ܶଶ ∙ ൝ܴ ∙ ܽ݊ܽݐܿݎℎ ൭ඥܹଶ(ݔ) + ܳඥܳ − ܶଶ ൱ − ℎ݊ܽݐܿݎܽ ൭ඥܹଶ(ݔ) + ܳඥܳ − ܶଶ ൱൩	
+ ܵܶ ∙ ܽ݊ܽݐܿݎ ൭ܹ(ݔ) ∙ ඥܳ − ܶଶܶ ∙ ඥܹଶ(ݔ) + ܳ൱ − ݊ܽݐܿݎܽ ൭ܹ(ݔ) ∙ ඥܳ − ܶଶܶ ∙ ඥܹଶ(ݔ) + ܳ൱൩ൡቑ ∙ ݐ)ݑ − 	,(ݐ
																																																																																																																																															(3.63b)	

where  

- ܲ = ඥሾ(ܿ ∙ ݐ + ଶ(ݔ + ݀ଶሿ ∙ (1 −  ;(ଶߚ
- ܳ = ൣ݀ଶ + መଶ൧ߣ ሾ(ܿ ∙ ݐ + ଶ(ݔ ∙ (1 − ⁄ଶ)ሿߚ ; 

- ܴ = (ܿ ∙ ݐ + ଶ(ݔ ∙ ሾ(ܿ ∙ ݐ + ଶ(ݔ + ݀ଶሿ; 
- ܵ = ݀ଶ ∙ ሾ(ܿ ∙ ݐ + ଶ(ݔ + ݀ଶሿ; 
- ܶ = ݀ (ܿ ∙ ݐ + ⁄(ݔ ; 

- ܹ(߮) = ሾ(ܿ ∙ ݐ + (ݔ ∙ ߮ + ݀ଶሿ ሾ(ܿ ∙ ݐ + (ݔ ∙ (ܿ ∙ ݐ + ݔ − ߮)ሿ⁄ . 

By using these results, Figure 3.34 shows the induced voltages computed at the point 

closest to the lightning channel (0 = ݔ) for a linearly rising current with drooping tail (ݐ௧ = 

20 µs) for different front times. We start with a very fast front time of 1 ns (not applicable 

to lightning, but shown for comparison with the step current case) and then vary ݐ from 

0.1 to 1 µs, with 0.1-µs step. Figure 3.34(a) refers to the perfectly conducting ground, 

whereas Figure 3.34(b) refers to a ground with 0.001 = ߪ S/m and ߝ = 10. We notice that 

finite conductivity ground significantly increases the voltage peaks for all front times. In 

Figure 3.35, we show the induced voltages at different points along the line (0 = ݔ m, 500 

m, 1000 m, 1500 m, and 2000 m) both for perfect ground (Figure 3.35(a)) and lossy ground 

for 0.001 = ߪ S/m and ߝ = 10 (Figures 3.35(b)). The assumed current has a front time ݐ 

= 0.5 µs and a drooping tail with tail time ݐ௧ = 20 µs. This specific channel-base current 
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was selected since it represents the best fit [10] of a current obtained using Heidler 

functions [54] which, in turn, reproduce a typical measured channel-base current [55] (see 

also the following paragraph “Model validation”). As for the step current case, we observe 

the inversion of polarity of the waveshapes; the lossy ground has also the effect of 

magnifying the induced voltage at the point closest to the lightning channel and reducing 

the positive polarity peaks for an “off-the-center” position. It should be also noted in 

Figure 3.35(b) that negative polarity peaks increase with increasing ݔ. 

(a)

(b) 

Figure 3.34 – Induced voltages obtained for different ݐ at 0 = ݔ by assuming ℎ = 10 m,  ݀ = 50 m, ܫ = 12 kA, ݐ ,0.43 = ߚ௧ = 20 µs: (a) ߪ = ∞ and ߝ = 1, (b) 0.001 = ߪ S/m and ߝ = 10. 
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(a)

(b) 

Figure 3.35 – Plots of the induced voltages at different positions along the line (ℎ = 10 m, ݀ = 50 m, ܫ = 12 kA, ݐ ,0.43 = ߚ = 0.5 µs, ݐ௧ = 20 µs): (a) ߪ = ∞ and ߝ = 1, (b) ߪ = 

0.001 S/m and ߝ = 10. 

For direct comparison purposes, Figure 3.36 shows the induced voltages at 0= ݔ for 

perfectly conducting ground, 0.01 = ߪ S/m, and 0.001 = ߪ S/m. The peak increases by 

about 16% when 0.01 = ߪ S/m and by about 54% when 0.001 = ߪ S/m, compared to the 

perfect ground case. For an “off-the-center” position 500 = ݔ m, (see Figure 3.37), the 

different behavior noticed in the case of a step current is also noticed here: the positive 

polarity peaks decrease and negative polarity peaks increase with decreasing ߪ (note that 

for perfectly conducting ground there is no negative polarity peak). 
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Figure 3.36 – Comparison of the induced voltages at 0 = ݔ for perfectly conducting 
ground (ߪ = ∞ and ߝ = 1), 0.01 = ߪ S/m, and 0.001 = ߪ S/m (ߝ = 10). Plots are 
obtained for ℎ = 10 m, ݀ = 50 m, ܫ = 12 kA, ݐ ,0.43 = ߚ = 0.5 µs, ݐ௧ = 20 µs. 

 
Figure 3.37 – Comparison of the induced voltages at 500 = ݔ m for perfectly conducting 
ground (ߪ = ∞ and ߝ = 1), 0.01 = ߪ S/m, and 0.001 = ߪ S/m (ߝ = 10). Plots are 
obtained for ℎ = 10 m, ݀ = 50 m, ܫ = 12 kA, ݐ ,0.43 = ߚ = 0.5 µs, ݐ௧ = 20 µs. 
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3.3.4 Model validation 

In order to test the validity of the model, we compared predictions of the proposed 

approach and those of the LIOV (Lightning Induced OverVoltage) code [37], [54] based 

on solving telegrapher’s equations generalized to include source terms and, similar to the 

proposed approach, employs the Cooray-Rubinstein approximation. Since simulations with 

the LIOV code for a single-conductor line in the presence of lossy ground are available, 

but for a channel-base current of the Heidler-function type (see Chapter 2), we have 

approximated the Heidler-function channel base-current with a linearly rising current with 

drooping tail, using the approximation proposed in [10]: the parameters used are ܫ = 12 

kA, ݐ = 0.5 µs, and ݐ௧ = 20 µs. Further, since simulations with the LIOV code are 

available only for a finite length line, we have adapted the new approach to the geometry 

considered in [54], which refers to a single-phase 1-km-long and 10-m-high line terminated 

in its characteristic impedance. The method used to consider the case of the finite length 

line is similar to the one developed in paragraph 3.2.1.2. The lightning channel is located 50 

m from the overhead line center. In Figure 3.38, we show the induced voltages at the line 

terminal calculated with the proposed approach and with the LIOV code for both 

perfectly-conducting (ߝ ,∞ = ߪ = 1) and lossy ground (0.001 = ߪ S/m, ߝ = 10) cases 

(note a slight difference relative to the induced voltage calculated for an infinite length line 

in Figure 3.37). The results match well in the case of lossless ground, whereas a discrepancy 

up to about 14% in peak values is seen in the lossy ground case. Reasons for this relatively 

small discrepancy are presently unknown. In summary, the proposed formulation seems to 

perform well and can represent a useful test bench for numerical and analytical models. 

3.3.5 Comparison with other models 

As mentioned in the introduction, several authors have presented simple formulas or 

more complex analytical developments for the model described by both case (a) and case 

(b) of Figure 3.1 in presence of a lossy ground. For case (a), formulas have been proposed 

by Barker et al. [24], Darveniza [25], and Paulino et al. [26]. For case (b), solutions have been 

proposed by Paulino et al. [29], and Høidalen [10]. 

In this section, predictions of the new formulation proposed for the evaluation of the 

voltages induced on an overhead, lossless, single-conductor line located above a finitely 

conducting ground, and due to both a step and a linearly rising current will be compared to 

those based on the other approaches found in the literature. 
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 Barker et al.’s formula 

In the approach proposed by Barker et al. [24], only the peak value of the induced 

voltage at the point of the line closest to the channel (0 = ݔ) is estimated. They propose a 

correction factor to be applied to the corresponding Rusck’s expression [9] (which was 

derived for a lossless ground), in order to bring model predictions closer to the 

experimental data. The correction factor serves to increase the induced voltage relative to 

the perfectly ground case. Note that, according to Barker et al., this correction factor was 

needed to compensate for inaccuracies in the return-stroke model, however, as pointed out 

by Ishii in the discussion accompanying their paper [24], this correction was needed to 

account primarily for the lossy ground effects. Other studies confirm that lossy ground 

produces higher over-voltages compared to the lossless case (e.g., [5], [10], [54]). 

The original Rusck’s formula is 

ோܸ_ = 30 ∙ ܫ ∙ ℎ݀ ∙ ቆ1 + ඥ2ߚ − ଶቇߚ ,																																																																										(3.64)	
which, for 0.4 = ߚ, the value adopted in the IEEE Standard 1410 [14], becomes 

ோܸ_ = 38.8 ∙ ܫ ∙ ℎ݀ .																																																																																																							(3.65)	
Barker et al., on the basis of their analysis of experimental data obtained at Camp 

Blanding, FL, proposed the following modified formula: 

ܸ_ = 1.63 ∙ ൬38.8 ∙ ܫ ∙ ℎ݀ ൰ ≅ 63 ∙ ܫ ∙ ℎ݀ ,																																																															(3.66)	
which, in their opinion, is able to better reproduce the experimental findings. Note that 

(3.66) does not include the value of the ground conductivity (corresponds to the ground 

conductivity at the Camp Blanding research facility) and, in addition, is limited to the case 

of 0.4 = ߚ. 

We now compare the induced voltages obtained using (3.66) with the peak values of the 

voltage waveforms obtained by using (3.56) together with (3.3), (3.59), and (3.61), for ݔ	=	0. 

In Figure 3.40(a), we compare the results obtained for different ground conductivities 

by using ܫ = 10 kA, ߝ ,0.4 = ߚ = 10, at a distance ݀ = 100 m, for a 10-m high line. One 
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can see that the results match only when the ground conductivity is about 1.5 mS/m. 

Figure 3.40(b) shows the same simulation, but with the height of the line reduced to 7.5 m. 

In this second case (corresponding to the average conductor height in the experiment), the 

match is found for a ground conductivity of about 2.7 mS/m. This means that the results 

by Barker et al. are strongly affected by the line height. We also note that values of ground 

conductivity at the Camp Blanding site, either measured or inferred from low-frequency 

grounding resistance measurements, which are summarized by Thang et al. [56], range 

between 0.25 and 1.8 mS/m. The value of 2.7 mS/m is higher than these values. 

In summary, (3.66) does not seem to provide an accurate solution in the finite 

conductivity ground case. However, we note, once again, that the correction factor was not 

directly proposed by Barker et al. to account for finite ground conductivity effects, but, as 

pointed out in the discussion section of the same paper [24], it primarily represented the 

direct consequence of these effects.  

 
                                (a)                                                                 (b) 

Figure 3.40 – Comparison between the induced voltage peak values computed at 0 = ݔ by 
means of Barker et al.’s formula and the proposed approach (݀ = 100 m, ܫ = 10 kA,         0.4 = ߚ, and ߝ = 10): (a) ℎ = 10 m, (b) ℎ = 7.5 m. 

 Darveniza’s formula 

Darveniza [25] presented an empirical formula for the calculation of the peak values of 

the induced voltages at 0 = ݔ, which was derived from experimental data, theoretical 

considerations, and values obtained from computational simulations. The Darveniza’s 

formula, similar to that of Barker et al., is an extension of Rusck’s formula (3.64), but in this 

case, the actual height of the line is replaced by an “effective” value that accounts for the 

ground conductivity. This effective height is given by 
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ℎ = ℎ + 0.15 ∙ ඥ1 ⁄ߪ .																																																																																																		(3.67)	
We first note that compared to Barker et al.’s formula, the Darveniza’s one shows 

dependence on the ground conductivity. 

We now compare the peak voltage values obtained by (3.64) with ℎ replaced with ℎ 

and their counterparts obtained by using (3.56) together with (3.3), (3.59), and (3.61), for ݔ	=	0. 

In Figure 3.41, we show the results obtained for different ground conductivities by 

using ℎ = 10 m, ݀ = 100 m, ܫ = 10 kA, ߝ ,0.4 = ߚ = 10. One can observe that the peak 

value estimated by using the Darveniza’s formula is always lower than the one calculated by 

using the proposed analytical approach, but always within 20%. The percentage difference 

was computed as 

ܸି௪	 − ܸି௩௭ܸି௪	 ∙ 100.																																																																(3.68)	

 
Figure 3.41 – Comparison between the induced voltage peak values evaluated at 0 = ݔ by 
means of Darveniza’s formula and the proposed approach (ℎ = 10 m, ݀ = 100 m,             ܫ = 10 kA, 0.4 = ߚ, and ߝ = 10). 

In Figure 3.42, we plot 3-D graphs showing the percentage difference between the 

results obtained by using the Darveniza’s formula and the proposed approach as a function 

of the line height and the distance between the lightning channel and the line. Figure 
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3.42(a) is for 0.01 = ߪ S/m and ߝ = 10, Figure 3.42(b) for 0.001 = ߪ S/m and ߝ = 10. 

The difference is up to about 22% for 0.01 = ߪ S/m, and up to about 44% for 0.001 = ߪ 

S/m, increasing with the distance. The range 50÷250 m was selected because for shorter 

distances the lightning strike will be probably intercept the line, whereas for longer 

distances it will not be able to produce critical overvoltages.  

(a)

(b) 

Figure 3.42 – 3-D plots of the differences between the induced voltage peak values at      0 = ݔ computed by means of Darveniza’s formula and the proposed approach (ܫ = 10 kA,     0.4 = ߚ, and ߝ = 10): (a) 0.01 = ߪ S/m, (b) 0.001 = ߪ S/m. 
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 Paulino et al.’s formula 

Paulino et al. [26] derived a formula, based on a large number of numerical simulations, 

which, similar to other formulas discussed before, is an extension of the Rusck’s formula. It 

is given by  

ܸ_ = ݇ ∙ ( ோܸ + ௌܸ),																																																																																																			(3.69)	
where ோܸ stands for the original Rusck’s formula given by (3.64), and ௌܸ is an additional 

term which accounts for the finite conductivity ground effects. This additional term is 

given by [26] 

ௌܸ = √3 ∙ ଵଷߚ ∙ ܫ ∙ ඥ1 ߪ) ∙ ݀)⁄ .																																																																																									(3.70)	
The ݇ factor in (3.69) is needed to compensate errors due to the delay between the voltage 

peaks associated with the two contribution ோܸ and ௌܸ (see [26] for more details). For an 

overhead line above lossy ground (ߪ ≠ ∞), the suggested value for ݇ is 0.85 (in the lossless 

ground case, ݇ = 1). Paulino et al. also give the expression for ௌܸ for the case of 0.4 = ߚ, 

which reads  

ௌܸ = 1.28 ∙ ܫ ∙ ඥ1 ߪ) ∙ ݀)⁄ .																																																																																												(3.71)	

 
Figure 3.43 – Comparison between the induced voltage peak values evaluated at 0 = ݔ by 
means of Paulino et al.’s formula and the proposed approach (ℎ = 10 m, ݀ = 100 m,             ܫ = 10 kA, 0.4 = ߚ, and ߝ = 10). 
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In Figure 3.43, we compare the values obtained by (3.69) with their counterparts 

obtained by using (3.56) together with (3.3), (3.59), and (3.61), for ݔ	=	0. In particular we 

compare the results obtained for different ground conductivities by using ℎ = 10 m, ݀ = 

100 m, ܫ = 10 kA, ߝ ,0.4 = ߚ = 10. One can see that predictions of Paulino et al.’s 

formula are reasonably close to the ones obtained by using the proposed approach. The 

maximum difference is about 3.5 kV (7.5%). 

 

(a)

(b) 

Figure 3.44 – 3-D plots of the differences between the induced voltage peak values at      0 = ݔ computed by means of Paulino et al.’s formula and the proposed approach (ܫ = 10 
kA,  0.4 = ߚ, and ߝ = 10): (a) 0.01 = ߪ S/m, (b) 0.001 = ߪ S/m. 
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In Figure 3.44, we plot 3-D graphs showing the differences between the results obtained 

by using the Paulino et al.’s formula and the proposed method as a function of the line 

height and the distance between the lightning channel and the line. Figure 3.44(a) is for ߪ = 

0.01 S/m and ߝ = 10, Figure 3.44(b) for 0.001 = ߪ S/m and ߝ = 10. One can see a 

maximum difference of 8.6% in Figure 3.44(a), and a maximum difference of 6.0% in 

Figure 3.44(b). 

 

3.3.5.2 Linearly rising current models 

Also in this case, comparison of different models will be performed for a single-

conductor line above lossy ground. We will use again the line geometry shown in Figure 

3.39. 

 

 Paulino et al.’s formula 

For the linearly rising current, Paulino et al. [29] proposed a formula which, similar to 

(3.69), is made up of two contributions  

ܸ_ = ݇ ∙ ( ோܸ + ௌܸ),																																																																																																		 (3.72)	
where ௌܸ is the same as in (3.70). As for the ோܸ, they make a numerical convolution of the 

Rusck’s expression (3.64), written for a return-stroke velocity of 120 m/µs (i.e., 0.4 = ߚ), 

and for a front time ݐ = 3.8 µs, which is the median value suggested by CIGRÉ for 

negative first strokes [57]. They found that [29] 

ோܸ = 8.5 ∙ ܫ ∙ ℎ√݀ଷర 	.																																																																																																												(3.73)	
For the correction factor ݇ , they suggest the values ݇ = 0.90 for ߪ ≠ ∞, and ݇ = 1 for 

lossless case. 

In Figure 3.45, as we have done for the step current case, we compare, for different 

ground conductivities, induced peak voltages obtained by using (3.72) with their 

counterparts obtained by using (3.56) together with (3.32), (3.59), and (3.63), for ݔ	=	0. A 

trapezoidal channel base current (i.e., a linearly rising current followed by a constant tail) 

with ܫ = 10 kA and ݐ = 3.8 µs has been considered for calculations; other parameters 

used are ℎ = 10 m, ݀ = 100 m, 0.4 = ߚ,  and ߝ = 10.  One can see that the results given 
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by Paulino et al.’s formula are reasonably close to the ones obtained by the proposed 

approach. The maximum difference is about 2.8 kV (4.4%). 

 
Figure 3.45 – Comparison between the induced voltage peak values evaluated at 0 = ݔ by 
means of Paulino et al.’s formula and the proposed approach (ℎ = 10 m, ݀ = 100 m,             ܫ = 10 kA, ݐ ,0.4 = ߚ = 3.8 µs, ݐ௧ = ∞, and ߝ = 10). 

In Figure 3.46, as we have done for the step current case, we plot 3-D graphs showing 

the percentage differences between the results obtained by using the Paulino et al.’s formula 

and the proposed method as a function of both the line height and distance between the 

lightning channel and the line. Figure 3.46(a) is for 0.01 = ߪ S/m and ߝ = 10, Figure 

3.46(b) for 0.001 = ߪ S/m and ߝ = 10. One can see a maximum difference of 7.8% in 

Figure 3.46(a), and a maximum difference of 5.2.% in Figure 3.46(b). 

 

 Høidalen’s formula 

Høidalen [10], unlike the other analytical expressions discussed before, proposed a 

formula which evaluates the overall voltage waveshape for a general position ݔ along the 

line. Høidalen considered the sum of two contributions: one for the lossless case ( ܸ), and 

the other to account for the lossy ground effects ( ఙܸ) [10] 

ுܸ(ݔ, (ݐ = ܸ(ݔ, (ݐ + ఙܸ(ݔ, 	(3.74a)																																																																																								,(ݐ
with ܸ(ݔ, ,ݔ)and ఙܸ (ݐ  given, respectively, by (ݐ

0 2 4 6 8 10
35

40

45

50

55

60

65

Ground Conductivity [mS/m]

P
ea

k 
V

ol
ta

ge
 [

kV
]

 

 

Proposed approach
Paulino et al.'s formula



3.3 Lossy ground case 
 
 

 

112 

(a)

(b) 

Figure 3.46 – 3-D plots of the differences between the induced voltage peak values at      0 = ݔ computed by means of Paulino et al.’s formula and the proposed approach (ܫ = 10 
kA,  ݐ ,0.4 = ߚ = 3.8 µs, ݐ௧ = ∞, and ߝ = 10): (a) 0.01 = ߪ S/m, (b) 0.001 = ߪ S/m. 

ܸ(ݔ, (ݐ ≈ ,ݔ)ܣ (ݐ − ܾு ∙ ,ݔ൫ܣ ݐ − 	(3.74b)																																																																							൯,ݐ
and  

ఙܸ(ݔ, (ݐ ≈ ,ݔ)ఙܣ (ݐ − ܾு ∙ ,ݔఙ൫ܣ ݐ − 	(3.74c)																																																																					൯,ݐ
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where  

,ݔ)ܣ (ݐ = ܫ ∙ ܫݐ∆ ∙ ݐ ∙   ு௦ݒ ,ݔ) ݅ ∙ (ݐ∆ + 12 ∙ ு௦ݒ ,ݔ) ௧(ݐ ∆௧⁄ ିଵ
ୀ  ∙ 	(3.75)																																	,(ݐ)ݑ

,ݔ)ఙܣ (ݐ = − ܫܫ ∙ ݐ ∙ ඨߝ ∙ ߨݐ∆ ∙ ߪ ∙   ,ݔ)ுݓ ݅ ∙ ݐඥ(ݐ∆ ݐ∆ − ݅⁄ + ൬−0.22 ∙ ଷߢ + 16൰௧ ∆௧⁄ ିଵ
ୀ 	

					 ∙ ,ݔ)ுݓ ݐ − (ݐ∆ + ൬−1.07 ∙ ߢ + 0.22 ∙ ଷߢ + 43൰ ∙ ,ݔ)ுݓ (ݐ ∙ 	(3.76)						,(ݐ)ݑ
with ߢ = ඥߝ ∙ ߝ ߨ) ∙ ߪ ∙ ⁄(ݐ∆ . The term ݒு௦ ,ݔ)  represents the voltage induced by a step (ݐ

current in case of ideal ground, and ݓு(ݔ,  is an expression obtained integrating the (ݐ

horizontal magnetic field, whose expressions are [10] 

ு௦ݒ ,ݔ) (ݐ = ߨ2ߞ ∙ ܫ ∙ ߚ ∙ ℎ ∙ ܿ ∙ ݐ − ଶ݀ݔ + ܿ)ଶߚ ∙ ݐ − ଶ(ݔ ∙ ቈ1 + ݔ + ܿ)ଶߚ ∙ ݐ − ߦ(ݔ  ∙ ݐ)ݑ − 	(3.77)																																																																																																																																																			),ݐ̃
,ݔ)ுݓ (ݐ = ߨ2ߞ ∙ ܫ ∙ ߚ ∙ ݈݊ ൬ ܿ ∙ ݐ − ଶ݀ݔ + ܿ)ଶߚ ∙ ݐ − ଶ(ݔ ∙ ሾݔ + ܿ)ଶߚ ∙ ݐ − (ݔ + 	ሿ൰ߦ
																				− ߚ1 ∙ ݈݊ ൬ߚ ∙ ܿ ∙ ݐ + 1)ߦ − (ߚ ∙ ݎ ൰൨ ∙ ݐ)ݑ − 	(3.78)																																																													).ݐ̃
Since Høidalen proposed a solution for the calculation of the overall waveshape, we first 

make a comparison in Figure 3.47, where the waveshapes for an infinitely long line are 

evaluated at the point closest to the lightning channel (0 = ݔ) by using the Høidalen’s 

equation (3.74) and the proposed approach (i.e., by using (3.56) together with (3.32), (3.59), 

and (3.63)). Waveforms are given for three different values of ground conductivity (0.01 = ߪ ,∞ = ߪ S/m, and 0.001 = ߪ S/m), and have been obtained for a trapezoidal channel-base 

current with ܫ = 10 kA, ݐ = 1 µs, and ݐ௧ = ∞; other parameters used are ℎ = 10 m, ݀ = 

100 m, 0.4 = ߚ. From the comparison, one can observe that the results given by Høidalen’s 

method match the ones predicted by the proposed approach both for the perfectly 

conducting ground and for 0.01 = ߪ S/m. Some differences between the results are seen 

for 0.001 = ߪ S/m. 
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Figure 3.47 – Comparison between the induced voltages evaluated at 0 = ݔ using 
Høidalen’s approach and the proposed method (ℎ = 10 m, ݀ = 100 m, ܫ = 10 kA,           ݐ ,0.4 = ߚ = 1 µs, ݐ௧ = ∞). Høidalen: ◊,□,○. 

 
Figure 3.48 – Comparison between the induced voltage peak values evaluated at 0 = ݔ by 
means of Høidalen’s approach and the proposed method (ℎ = 10 m, ݀ = 100 m,                ܫ = 10 kA, ݐ ,0.4 = ߚ௧ = ∞, and ߝ = 10). 
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In Figure 3.48, we compare, for different ground conductivities, peak values of the 

induced voltages evaluated at 0 = ݔ by means of Høidalen’s formula (3.74) and by using 

(3.56) together with (3.32), (3.59), and (3.63). The parameters used are the same as in 

Figure 3.47, but this time, two different front times are analyzed: the first one, ݐ = 1 µs, is 

representative of subsequent strokes, and the second one, ݐ = 3.8 µs, is representative of 

first strokes. One can see that the results given by Høidalen are very close to the ones 

predicted by the proposed method. One can also observe that the difference decreases as 

the front time grows: the maximum difference is about 2.3 kV (3.4%) for ݐ = 1 µs, and 

about 1.9 kV (3%) for ݐ = 3.8 µs. 

Finally, in Figure 3.49, we plot 3-D graphs showing the percentage differences between 

the Høidalen’s formula and the proposed approach as a function of the line height and 

distance between the lightning channel and the line. Figure 3.49(a) is for 0.01 = ߪ S/m and ߝ = 10, and Figure 3.49(b) is for 0.001 = ߪ S/m and ߝ = 10. One can see a maximum 

difference of 0.9% in Figure 3.49(a), and a maximum difference of 2.8% in Figure 3.49(b). 

These very small differences between the two methods confirm the conclusion drawn for 

the lossless ground case (see [8] and paragraph 3.2.2.3): the two approaches lead to 

practically identical results for typical distribution lines (ℎ ≈ 10 m), but differences are 

expected in the analysis of typical transmission lines (ℎ ≈ 30 m). 
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(a) 

(b) 

Figure 3.49 – 3-D plots of the differences between the induced voltage peak values at      0 = ݔ computed by means of Høidalen’s approach and the proposed method (ܫ = 10 kA,  ݐ ,0.4 = ߚ = 3.8 µs, ݐ௧ = ∞, and ߝ = 10): (a) 0.01 = ߪ S/m, (b) 0.001 = ߪ S/m. 
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Chapter 4  

Conclusions 
 

 

 
The aim of this thesis is to present new analytical approaches to the evaluation of lightning 

induced voltages on overhead power lines, that allow to overcome errors and/or 

approximations present in the solutions available in the literature. An accurate evaluation of 

lightning induced voltages is indeed essential in order to reduce the effects of lightning 

flashes and improve the Power Quality of the system. 

In Chapter 1, the main aspects of the lightning phenomenon have been resumed.  

In Chapter 2, the models proposed in the literature for the evaluation of the lightning 

induced voltages have been presented. In particular, the most used lightning return stroke 

models, the techniques for the calculation of the electromagnetic fields generated by the 

lightning current, and the most important field-to-line coupling models have been 

presented. 

In Chapter 3, new analytical approaches to the evaluation of lightning induced voltages 

on overhead power lines have been presented, and predictions of the proposed solutions 

have been compared to those based on the other approaches found in the literature in 

order to check their validity and accuracy. 

As shown in this chapter, the most basic case for lightning induced voltage calculations, 

which consists in a lossless, single-conductor line located over an infinite-conductivity 

ground plane and excited by an external field due to a step current moving at constant 

speed, unattenuated and without distortion, along a vertical lightning channel, has been 

solved in an exact way, i.e., without approximations, only recently by Andreotti et al. [1]. The 

work started in [1] has been extended here to more practical line configurations. 

Specifically, still for the case of an external field due to a step current and perfectly 

conducting ground, the cases of terminated single-conductor and multi-conductor lines 

(including grounded conductors) have been studied. Further, single-conductor and multi-
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conductor lines (including grounded conductors) excited by an external field due to a 

linearly rising current have been examined and a new analytical approach for the calculation 

of induced voltages has been proposed. Predictions of this new formulation have been 

compared to those given by other analytical (approximate) solutions proposed in the 

literature. In particular, the solutions proposed by Chowdhuri and Gross, Liew and Mar, 

Sekioka, and Høidalen have been considered. The comparison showed that both the 

Chowdhuri-Gross’s and the Liew-Mar’s formula predict results which are in disagreement 

with the proposed method, and hence cannot be considered correct. Conversely, both the 

Sekioka’s solution and the Høidalen’s formula are consistent with the proposed analytical 

solution, and can be considered suitable for lightning induced overvoltages analysis. 

Afterwards, the exact model for the evaluation of voltages induced on a overhead line in 

presence of an infinite-conductivity ground plane has been extended to account for the 

lossy ground effects. Also in this case, predictions of the new proposed model have been 

compared to those based on other formulations found in the literature. In particular, the 

solutions proposed by Barker et al., Darveniza, and Paulino et al., for the step current case, 

and the solutions proposed by Paulino et al. and Høidalen, for the linearly rising current 

case, have been considered. The results of this comparison show that Paulino et al.’s 

approach yields voltage peaks that differ by less than 10% from results obtained using the 

proposed approach, for both step and linearly rising currents. Predictions of Høidalen’s 

approach are within a few percent of those based on the new method. Darveniza’s formula 

is less accurate, with errors of some tens of percent. Barker et al.’s formula does not 

account for variation of induced voltage with ground conductivity. For the height of the 

line used in the Camp Blanding experiment, it yields results consistent with the proposed 

approach for ground conductivity equal to 2.7 mS/m, which is higher than values 

measured or inferred from measured low-frequency grounding resistances and geometry of 

grounding rods at the Camp Blanding site. In summary, Barker et al.’s formula does not 

seem to provide an accurate solution in the finite conductivity ground case. Finally, we note 

that this new approach can result in a shorter computation time compared with methods 

that use numerical field integration (e.g., 2-D-FDTD), and can be particularly useful in the 

evaluation of indirect lightning performance of distribution lines. We have tested the 

procedure by computer simulations in MathWorks Matlab 7.12.0 (R2011a) environment, 

on a 3.4-GHz Intel CoreTM i7 processor with 6 GB of RAM. The computation time for a 

total of 1000 time points was about 3 s. 

Some of the results showed in Chapter 3 are also published in the articles [2]-[4]. 
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Future studies will be devoted to obtaining analytical solutions for: 

• different return-stroke models, such as the Modified Transmission Line model 

with Linear current decay with height, MTLL, the Modified Transmission Line 

model with Exponential current decay with height, MTLE, and the Travelling 

Current Source model, TCS. 

• different channel-base current models, such as the Heidler model, the 

Diendorfer and Uman model, and the Nucci et al. model; 

• lightning channels with different inclinations. 
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Appendix A  

Solution of Some Integrals of 
Chapter 3 

 

In this appendix, we provide the closed-form solution for the integrals (3.32b), (3.32c), 

and (3.55) of Chapter 3. 

A.1 Integrals (3.32b) and (3.32c) 

The following integration formulas are used to derive the analytical expressions for 

lightning induced voltages due to a linearly rising current in presence of a perfectly 

conducting ground. 

The integrals in (3.32b) and (3.32c) can be divided into two parts. For the first logarithm 

(the first integrand) on the right-hand side of both (3.32b) and (3.32c), the solution reads 

[1] 

න݈݊ ቆߴ + ටߴଶ + ଶቇߜ ߴ݀ = ߴ ∙ ݈݊ ቆߴ + ටߴଶ + ଶቇߜ − ටߴଶ + 	(A.1)																									ଶ.ߜ
The solution for the second logarithm (the second integrand), by means of simple 

algebraic manipulations, can also be brought to a standard form [1]: 

න݈݊ ቆ−ߴߚ + ටߴଶ + ߴଶቇ݀ߜ = ߴ ∙ ቈ݈݊ ቆ−ߴߚ + ටߴଶ + ଶቇߜ − 1	
																																																										+݀ ∙ ቈܽ݊ܽݐܿݎ ൬݀ߴ൰ − ݊ܽݐܿݎܽ ቆ ߚ ∙ ݀ඥߴଶ + ଶቇߜ .								(A.2)	



A.2 Integral (3.55) 
 
 

 

126 

A.2 Integral (3.55) 

In this paragraph details are given for the solution of integral (3.55) for the step current 

case and the case of a linearly rising current. 

Integral (3.55) can be divided into two integrals 

න ℎ௬ ቆߟ, ݀, 0, ݐ − ߟ| − ܿ|ݔ ቇ ∙ ߟ)݊݃݅ݏ − ାஶߟ݀(ݔ
ିஶ 	
																						= න ℎ௬ ቀߟ, ݀, 0, ݐ − ߟ − ܿݔ ቁ ାஶߟ݀

௫ − නℎ௬ ቀߟ, ݀, 0, ݐ + ߟ − ܿݔ ቁ ௫ߟ݀
ିஶ .					(A.3)	

The two integrals in (A.3) can be rewritten as 

න ℎ௬ ቀߟ, ݀, 0, ݐ − ߟ − ܿݔ ቁ ାஶߟ݀
௫ = න ℎ௬ ቀߟ, ݀, 0, ݐ − ߟ − ܿݔ ቁ ௫ߟ݀

௫ ,																																(A.4)	
න ℎ௬ ቀߟ, ݀, 0, ݐ + ߟ − ܿݔ ቁ ௫ߟ݀
ିஶ = නℎ௬ ቀߟ, ݀, 0, ݐ + ߟ − ܿݔ ቁ ௫ߟ݀

௫ᇲ .																																(A.5)	
The integration limit ݔ in (A.4) is given by  

ݔ = 12 ∙ (ܿ ∙ ݐ + ଶ(ݔ − ℎଶ − ݀ଶ(ܿ ∙ ݐ + (ݔ ,																																																																																								(A.6)	
and is the solution of the following equation representing the delay due to the propagation 

of the electromagnetic field and due to the propagation effects along the line:  

ݐ − ඥ݀ଶ + ℎଶ + ଶܿݔ − ݔ − ܿݔ = 0.																																																																																				(A.7)	
The same applies to the integration limit ݔᇱ in (A.5), but this time with a different choice 

of the time delay along the line 

ᇱݔ = −12 ∙ (ܿ ∙ ݐ − ଶ(ݔ − ℎଶ − ݀ଶ(ܿ ∙ ݐ − (ݔ .																																																																																			(A.8)	
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By considering the field expression (3.60), we can rewrite the integrals (A.4) and (A.5), 

respectively, as 

ߨ2ܫ ∙ න ߚ ∙ (ܿ ∙ ݐ + ݔ − ߚඥሾ(ߟ ∙ (ܿ ∙ ݐ + ݔ − ሿଶ(ߟ + ଶߟ) + ݀ଶ) ⁄ଶߛ ∙ ଶߟߟ + ݀ଶ ∙ ݐ)ݑ − ௫,ߟ݀(ݐ
௫ 															(A.9)	

ߨ2ܫ ∙ න ߚ ∙ (ܿ ∙ ݐ − ݔ + ߚඥሾ(ߟ ∙ (ܿ ∙ ݐ − ݔ + ሿଶ(ߟ + ଶߟ) + ݀ଶ) ⁄ଶߛ ∙ ଶߟߟ + ݀ଶ ∙ ݐ)ݑ − ௫.ߟ݀(ݐ
௫ᇲ 												(A.10)	

Integral (A.9) can be brought to a standard form [1], and the solution reads 

ߨ2ܫ ∙ න ߚ ∙ (ܿ ∙ ݐ + ݔ − ߚඥሾ(ߟ ∙ (ܿ ∙ ݐ + ݔ − ሿଶ(ߟ + ଶߟ) + ݀ଶ) ⁄ଶߛ ∙ ଶߟߟ + ݀ଶ ∙ ݐ)ݑ − ௫ߟ݀(ݐ
௫ 	

= ߨ2ܫ ∙ ቈ݈݊ ቆ ߚ ∙ ܿ ∙ ݐ + መߣߦ − ݔߚ + ቇߦ + ߚ ∙ ݈݊ ቆ ݔ − መߣߚ + ݔߦ − መߣߚ + ቇߦ + ݈݊ ൬ߜߜ ൰ ∙ ݐ)ݑ − 	(A.11)									).ݐ
In order to solve integral (A.10), first we change the sign of ߟ, obtaining, by using the 

technique of integration by substitution, the integral 

ߨ2ܫ ∙ න ߚ ∙ (ܿ ∙ ݐ − ݔ − ߚඥሾ(ߟ ∙ (ܿ ∙ ݐ − ݔ − ሿଶ(ߟ + ଶߟ) + ݀ଶ) ⁄ଶߛ ∙ ଶߟߟ + ݀ଶ ∙ ݐ)ݑ − ௫ି,ߟ݀(ݐ
ି௫ᇲ 										(A.12)	

and then we change the sign of ݔ. By observing that 

(ݔ−)ᇱݔ− = 12 ∙ (ܿ ∙ ݐ + ଶ(ݔ − ℎଶ − ݀ଶ(ܿ ∙ ݐ + (ݔ = 	(A.13)																																																															,ݔ
integral (A.12) becomes 

− ߨ2ܫ ∙ න ߚ ∙ (ܿ ∙ ݐ + ݔ − ߚඥሾ(ߟ ∙ (ܿ ∙ ݐ + ݔ − ሿଶ(ߟ + ଶߟ) + ݀ଶ) ⁄ଶߛ ∙ ଶߟߟ + ݀ଶ ∙ ݐ)ݑ − ௫.ߟ݀(ݐ
௫ 								(A.14)	
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Then, the solution of (A.10) can be obtained from (A.11) by replacing ݔ with −ݔ and 

negating the whole expression. 

If we consider instead the field expression (3.62), the integral (A.4) can be rewritten as 

ߨ2ܫ ∙ ߚ ∙ ܿ ∙ ݐ ∙ න ඨሾߚ ∙ (ܿ ∙ ݐ + ݔ − ሿଶ(ߟ + ଶߟ + ݀ଶߛଶ − ඥߟଶ + ݀ଶ௫
௫ 	

																																																																																												∙ ଶߟߟ + ݀ଶ ∙ ݐ)ݑ − 	(A.15)								.ߟ݀(ݐ
We can split this integral into two parts 

ߨ2ܫ ∙ ߚ ∙ ܿ ∙ ݐ ∙ න ඨሾߚ ∙ (ܿ ∙ ݐ + ݔ − ሿଶ(ߟ + ଶߟ + ݀ଶߛଶ ∙௫
௫

ଶߟߟ + ݀ଶ ∙ ݐ)ݑ − 	(A.16)						,ߟ݀(ݐ
ߨ2ܫ ∙ ߚ ∙ ܿ ∙ ݐ ∙ න ଶߟඥߟ− + ݀ଶ௫

௫ ∙ ݐ)ݑ − 	(A.17)																																																																			.ߟ݀(ݐ
Now, the integral (A.16) can be rewritten as 

ߨ2ܫ ∙ ߚ ∙ ܿ ∙ ݐ ∙ න ሾߚ ∙ (ܿ ∙ ݐ + ݔ − ሿଶ(ߟ + ଶߟ) + ݀ଶ) ߚଶ⁄ඥሾߛ ∙ (ܿ ∙ ݐ + ݔ − ሿଶ(ߟ + ଶߟ) + ݀ଶ) ⁄ଶߛ ∙௫
௫

ଶߟߟ + ݀ଶ ∙ ݐ)ݑ − 	(A.18)																																																																																																																																																							.ߟ݀(ݐ
Making the appropriate simplifications for the numerator of the integrand, and performing 

a polynomial division (by the divisor ߟଶ + ݀ଶ), the integral (A.18), in turn, can be rewritten 

as 

ߨ2ܫ ∙ ߚ ∙ ܿ ∙ ݐ ∙ න ߟ − ଶߚ2 ∙ (ܿ ∙ ݐ + ߚඥሾ(ݔ ∙ (ܿ ∙ ݐ + ݔ − ሿଶ(ߟ + ଶߟ) + ݀ଶ) ଶ⁄௫ߛ
௫ ∙ ݐ)ݑ − ߟ݀(ݐ + 							ଶߚ

											∙ න ሾ(ܿ ∙ ݐ + ଶ(ݔ − ݀ଶሿ ∙ ߟ − 2݀ଶ ∙ (ܿ ∙ ݐ + ଶߟ)(ݔ + ݀ଶ) ∙ ඥሾߚ ∙ (ܿ ∙ ݐ + ݔ − ሿଶ(ߟ + ଶߟ) + ݀ଶ) ⁄ଶߛ ∙ ݐ)ݑ − ௫ߟ݀(ݐ
௫  .		(A.19)	

The first integral in (A.19) can be brought to a standard form [1], and the solution reads 
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ߨ2ܫ ∙ ߚ ∙ ܿ ∙ ݐ ∙ න ߟ − ଶߚ2 ∙ (ܿ ∙ ݐ + ߚඥሾ(ݔ ∙ (ܿ ∙ ݐ + ݔ − ሿଶ(ߟ + ଶߟ) + ݀ଶ) ଶ⁄௫ߛ
௫ ∙ ݐ)ݑ − 	ߟ݀(ݐ

																									= ߨ2ܫ ∙ ߚ ∙ ܿ ∙ ݐ ∙ ቈߦ − ߦ + መߣߚ ∙ ݈݊ ቆ ݔ − መߣߚ + ݔߦ − መߣߚ + ቇߦ ∙ ݐ)ݑ − 	(A.20)				).ݐ
As for the second integral that appears in (A.19), it can also be closed analytically. In 

particular, it is easy to verify that this integral can be rewritten as 

ܫ ∙ ߨ2ߚ ∙ ܿ ∙ ݐ ∙ න ܯ ∙ ߟ + ܣ)ܰ + ܤ ∙ ߟ + ଶ)ߟ ∙ ඥܥ ∙ ଵܣ) + ଵܤ ∙ ߟ + ଶ)௫ߟ
௫ ∙ ݐ)ݑ − ,ߟ݀(ݐ 										(A.21)	

where  

ܯ - = (ܿ ∙ ݐ + ଶ(ݔ − ݀ଶ; 

- ܰ = 2݀ଶ ∙ (ܿ ∙ ݐ +  ;(ݔ
ܣ - = ݀ଶ,  ܤ = ܥ  ,0 = 1; 

ଵܣ - = ଶߚ ∙ (ܿ ∙ ݐ + ଶ(ݔ + (݀ ⁄ߛ )ଶ; 

ଵܤ - = ଶߚ2− ∙ (ܿ ∙ ݐ +  ;(ݔ
- ݉ = 1. 

 

Integral (A.21) can be solved by using the technique of integration by substitution [1], and 

the solution reads 

ܫ ∙ ߨ2ߚ ∙ ܿ ∙ ݐ ∙ න ܯ ∙ ߟ + ܣ)ܰ + ܤ ∙ ߟ + ଶ)ߟ ∙ ඥܥ ∙ ଵܣ) + ଵܤ ∙ ߟ + ଶ)௫ߟ
௫ ∙ ݐ)ݑ − 	ߟ݀(ݐ

							= ܫ ∙ ߨଷ2ߚ ∙ ܿ ∙ ݐ ∙ መଶߣ1 ∙ ܲ ∙ ඥܳ − ܶଶ	
										∙ ൝ܴ ∙ ܽ݊ܽݐܿݎℎ ൭ඥܹଶ(ݔ) + ܳඥܳ − ܶଶ ൱ − ℎ݊ܽݐܿݎܽ ൭ඥܹଶ(ݔ) + ܳඥܳ − ܶଶ ൱൩	
									+ ܵܶ ∙ ܽ݊ܽݐܿݎ ൭ܹ(ݔ) ∙ ඥܳ − ܶଶܶ ∙ ඥܹଶ(ݔ) + ܳ൱ − ݊ܽݐܿݎܽ ൭ܹ(ݔ) ∙ ඥܳ − ܶଶܶ ∙ ඥܹଶ(ݔ) + ܳ൱൩ൡ ∙ ݐ)ݑ − (A.22)																																																																																																																																																	),ݐ
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where  

- ܲ = ඥሾ(ܿ ∙ ݐ + ଶ(ݔ + ݀ଶሿ ∙ (1 −  ;(ଶߚ
- ܳ = ൣ݀ଶ + መଶ൧ߣ ሾ(ܿ ∙ ݐ + ଶ(ݔ ∙ (1 − ⁄ଶ)ሿߚ ; 

- ܴ = (ܿ ∙ ݐ + ଶ(ݔ ∙ ሾ(ܿ ∙ ݐ + ଶ(ݔ + ݀ଶሿ; 
- ܵ = ݀ଶ ∙ ሾ(ܿ ∙ ݐ + ଶ(ݔ + ݀ଶሿ; 
- ܶ = ݀ (ܿ ∙ ݐ + ⁄(ݔ ; 

- ܹ(߮) = ሾ(ܿ ∙ ݐ + (ݔ ∙ ߮ + ݀ଶሿ ሾ(ܿ ∙ ݐ + (ݔ ∙ (ܿ ∙ ݐ + ݔ − ߮)ሿ⁄ . 

 

Finally, it is straightforward to evaluate the integral (A.17), and the solution reads 

ߨ2ܫ ∙ ߚ ∙ ܿ ∙ ݐ ∙ න ଶߟඥߟ− + ݀ଶ௫
௫ ∙ ݐ)ݑ − 	ߟ݀(ݐ

																																= ߨ2ܫ ∙ ߚ ∙ ܿ ∙ ݐ ∙ ቆටݔଶ + ݀ଶ − ටݔଶ + ݀ଶቇ ∙ ݐ)ݑ − 	(A.23)											).ݐ
By assuming the expressions (A.20), (A.22), and (A.23) we obtain the analytical solution 

of the integral (A.15). 

The solution of the integral (A.5) with the field expression (3.61) can be obtained from 

the solution of the integral (A.15) by replacing ݔ with –  and negating the entire ݔ

expression. 
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