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Abstract

Lightning is one of the most visually impressive, powerful and dangerous natural
phenomena on Earth. For its spectacular appearance and its effects on life and structures,
lightning has always had a significant impact on humans and their societies.

Lightning discharges considered in this work are the so called “cloud-to-ground”
lightning discharges, i.e., those that take place between cloud and ground. The high
destructive power of this kind of lightning arises from the high energy generated by the
cloud-to-ground discharge channel and the lightning stroke current. These discharges can
cause damage when they strike directly or strike nearby to a structure.

For low and medium voltage power distribution networks, the height of lines is small
compared to the near structures, then indirect lightning events are more frequent than
direct strikes. For this reason we shall focus on such a type of lightning discharges, which
may cause power outages, disturbances on the network, or failure of electronic and
electrical equipment, due to overvoltages produced.

Since it is impossible to avoid a lightning strike, in order to reduce the effects of
lightning flashes, it is necessary to provide suitable protection measures, which allow to
reduce the risk, defined as the probable annual loss in a system [1], improving the Power
Quality of the system.

In this context, an accurate evaluation of lightning induced voltages is therefore
essential.

Recent progress in the area of lightning induced voltages is significant, both from
numerical and analytical points of view. Numerical approaches have shown excellent
development over the years (e.g., [2]-[6]). They are able to accurately model the
phenomenon (actual return-stroke current waveshape, finite ground conductivity effects,
non-linearities due to surge arresters, and so on). Nevertheless, analytical solutions (e.g.,
[7]-[12]) still deserve attention, since they are important in the design phase [13], in

parametric evaluation and sensitivity analysis (e.g., [14]); they are also implemented in




Abstract

computer codes for lightning induced effects [15]. Analytical solutions, moreover, provide
considerable insight into the phenomenon, which is often obscured in numerical
approaches, and do not suffer from numerical instabilities or convergence problems, which
could affect accuracy of numerical algorithms [16].

Most of the analytical models proposed so far in literatute are approximated and/or
incomplete, as will be shown in the thesis.

The aim of this work is to present new analytical approaches to the evaluation of lightning
induced voltages on ovethead power lines, that allow to overcome errors and/or
approximations present in the solutions available in the literature. Predictions of the
proposed solutions will be also compared to those based on the other approaches found in

the literature in order to check their validity and accuracy.

The thesis is organized as follows:

Chapter 1. In this introductory chapter, a brief overview and a description of the

lightning phenomenon is given.

Chapter 2. In this chapter, the models proposed in the literature for the evaluation of
the lightning induced voltages are summarized. In particular, the most used
lightning return-stroke current models are presented, together with the
techniques for the calculation of the electromagnetic fields generated by the
lightning current. Furthermore, the most important models of field-to-line

coupling are discussed.

Chapter 3. This i1s the main chapter of the thesis. New analytical approaches to the
evaluation of lightning induced voltages on overhead power lines are here
presented. Most of the proposed analytical solutions are derived in an exact
way, that is, without introducing approximations.

The cases of an infinitely long, lossless, single-conductor located at a given
height above both an infinite-conductivity and a lossy ground plane, and
excited by an external EM field due to both a step and a lineatly rising
current wave moving along a vertical lightning channel are analyzed.
Furthermore, some of these solutions are extended to more practical line
configurations, such as terminated single-conductor line and multi-

conductor line (including grounded conductors).
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Finally, the results obtained using the proposed solutions are compared with

those given by other formulas or solutions available in the literature.

Chapter 4. 'This final chapter, is devoted to the conclusions.
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Chapter 1

An Overview on the Lightning
Phenomenon

1.1 Introduction

Experimental observations of the optical and electromagnetic fields generated by
lightning flashes during the last years have significantly advanced the knowledge on the
mechanism of the lightning discharges. Nevertheless, this knowledge is not as exhaustive as
that of long laboratory sparks due to the inability to observe lightning events under
controlled conditions. Thus, the mathematical description of the mechanism of a lightning
flash is actually relatively poor even though the main features of lightning flashes
themselves are well known [1].

In this chapter, and elsewhere in the thesis, a positive discharge is defined as a discharge
on which the direction of motion of electrons is opposite to that of the discharge itself; a
negative discharge is defined as one in the opposite sense. According to this definition a
negative return stroke is a positive discharge and a positive return stroke is a negative
discharge.

A positive field is defined as a negative charge being lowered to ground or as a positive
charge being raised. According to this definition a lightning flash that transports negative

charge to ground produces a positive field change.

1.2 Clouds and lightnings

The source of lightning is usually a thundercloud. A thundercloud generally presents a

tripolar electrostatic structure; it contains, in fact, two main regions of charge, one positive
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near the top and the other negative at midlevel (both containing a charge of 10+100 C),
and a small positive charge located at the base of the cloud, as shown in Figure 1.1 [2].
Actually, the charge structure in a thunderstorm is more complex than shown in Figure 1.1,
it varies from storm to storm, and is occasionally very much different from the structure
illustrated, even upside-down with the main positive charge on the bottom and the main
negative charge on top [3].

The majority of all lightning discharges are the “cloud discharges”. The most common
cloud discharges (that are also the most common of all the forms of lighting) occur totally
within a single cloud, between the upper positive charge and the main negative charge,
where a strong electric field is present, and are called intracloud flashes; those that occur
between clouds are called znzerclound lightnings (less common than intracloud flashes); those
that occur between one of the cloud charge region and the surrounding air are called cloud-
to-air lightnings.

A second kind of lightning discharges is represented by the “cloud-to-ground
discharges”, that take place between the charge centers of the cloud and the ground. There
are four types of lightning flashes that occur between the cloud and ground, illustrated in
Figure 1.2, classified on the basis of the polarity of the electrical charge carried in the
initiation process and the direction of propagation of the initiation process. Figures 1.2a
and c¢ show flashes referred to as dowmward lightnings; Figures 1.2b and d depict wpward
lightnings. The most common ground flashes (about 90% of cloud-to-ground lightning
events) bring negative charge from the main negative charge region of the cloud down to
ground, as shown in Figure 1.2a. The positive ground flashes, which occur about one tenth
as frequently as does the negative ground discharges, are instead depicted in Figure 1.2c,
and bring positive charge from the cloud, either from the upper or lower positive charge
region, down to earth. The remaining two types of cloud-to-ground lightning discharges
(actually ground-to-cloud discharges), shown in Figures 1.2b and d, are less common and
are upward initiated from an object on the Farth’s surface (mountain-tops, tall towers or

other tall objects), toward and often into one of the cloud charge regions [2], [3].

Figure 1.1 — The tripole structure of the thundercloud. Adapted from [2].
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© )
Figure 1.2 — Types of cloud-to-ground lightning discharges as defined from the direction

of leader propagation and charge of the initiating leader: a) downward lightning, negatively
charged leader; b) upward lightning, positively charged leader; ¢) downward lightning,
positively charged leader; d) upward lightning, negatively charged leader. Adapted from [4].

1.3 The cloud-to-ground lightnings

As outlined in the previous paragraph, the most common cloud-to-ground flashes are
the downward lightnings that carries negative charge. This kind of lightning flash may well
initiate as a local discharge between the bottom of the main negative charge region and the
small positive charge region located at the base of the cloud (see Figure 1.1). This local

discharge, also known as “preliminary breakdown” or “initial breakdown”, is able to
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provide free mobile electrons, those electrons that were previously attached to hail and
other heavy particles, and thus immobile. These free electrons represent the main
contributor to the lightning current. In negative ground flashes, the free electrons cross the
lower positive charge region, neutralizing most of its positive charge, and then continue
their travel from cloud to ground in a stepped manner. This process, called “stepped
leader”, and other main phases of the negative ground flashes are illustrated in Figure 1.3
(1], [3]-

The stepped leader moves downward in discrete and subsequent luminous segments of
about 50 m length, each of which is called “step”. In Figure 1.3, the luminous steps appear
as darkened tips on the less-luminous leader channel extending downward from the cloud.
Each leader step appears in a microsecond or less, and the time between two luminous
steps is of few tens of microseconds (typically 20+50 ps). Usually, the downward-
propagating stepped leader give rise to several branches. The average speed of the bottom
of the stepped leader during its travel toward ground is about 2 X 10° m/s, and then the
travel between the cloud and the ground takes few tens of milliseconds [5]. A typical
stepped leader has about 5 coulombs of negative charge distributed over its length. To
establish this charge, on the leader channel, an average current of about 100 to 200
amperes must flow during the whole leader process. However, the pulsed currents which
flow in generating the leader steps can have a peak current of the order of 1000 amperes
[3]. The stepped-leader channel is likely to consist of a thin core that carries the
longitudinal channel current, surrounded by a corona sheath whose diameter is typically
several meters [0].

When the stepped leader is near the ground, due to its relatively large negative charge, it
attracts concentrated positive charges on the conducting Earth beneath it and, mainly, on
objects projecting above the Earth’s surface. If this attraction is strong enough, the positive
charge (on the Farth or on the objects) will attempt to join and neutralize the negative
charge. For doing so, upward-going electrical discharges start from the ground or from
grounded objects, as illustrated in Figure 1.3 at 20.00 ms. When one of these upward-
moving positively charged leader contacts a branch of the downward-moving leader, it
determines the lightning strike-point and the primary lightning channel between cloud and
ground. This is the “attachment process” of Figure 1.3, also known as “break-through
phase” or “final jump”. Then, the negative charge near the bottom of the leader channel
moves violently downward to the Earth, originating large currents to flow at ground and
making the lightning channel near ground very luminous. The luminosity of the channel

and the current, in a process named the “first return stroke”, propagate continuously up
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the channel and down the branches of the leader channel at a speed typically between one-
third and one-half the speed of light (e.g., [7]), as shown in Figure 1.3 at 20.10 and 20.20
ms. Even if the return-stroke’s current and high luminosity move upward on the main
channel, electrons in the channel always move downward and represent the primary
components of the current. Electrons flow up the branches toward the main channel while
the return stoke traverses the branches in the outward and downward direction. Some
milliseconds after the return stroke starting time, the negative electric charge which were
resident on the stepped leader all flow into the ground. Additional current may also flow to
ground directly from the cloud once the return stroke has reached the cloud [3]. The high-
current return-stroke wave (typically with a peak current of about 30 kA) rapidly heats the
channel to a peak temperature near or above 30.000 K and creates a channel pressure of 10
atm or more (e.g., [5]), which results in channel expansion, intense optical radiation, and an
outward propagating shock wave that eventually becomes the thunder [6].

It is worth noting that the human eye cannot respond quickly enough to resolve the
time between the formation of the leader and the illumination of the leader channel by the
return stroke, or to resolve the upward propagation of the return stroke itself. For this
reason we do not see the stepped leader before the first return stroke, and for the same
reason the return stroke we appears as if all points on the lightning channel were lighted
simultaneously.

When the first-stroke current ceases, the lightning discharge may end. In this case, the
discharge is termed a “single-stroke” flash. However, more often the cloud-to-ground
flashes contain more than one stroke (three or more strokes are common), each one
typically separated by 40 or 50 ms from the others. These “subsequent strokes” may occur
only if additional negative charge is made available to the upper portion of the previous
stroke channel immediately after the end of the previous stroke (normally in a time less
than 100 ms). When this additional charge is available, a continuously propagating leader,

named “dart leader”, moves downward along the previous return-stroke channel, again

depositing negative charge along the channel length, as illustrated in Figure 1.3 at 60.00 and
61.00 ms. During the time interval between the end of the first return stroke and the
initiation of a dart leader, J- and K-processes occur in the cloud. The J-process can be
viewed as a relatively slow positive leader extending from the flash origin into the negative
charge region. The K-process then being a relatively fast “recoil streamer” that begins at
the tip of the positive leader and propagates toward the flash origin. Both the J-processes

and the K-processes in cloud-to-ground flashes serve to transport additional negative

charge into and along the existing channel, although not all the way to ground. In this
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respect, K-processes may be viewed as attempted dart leaders [6]. The dart leader’s trip
from cloud to ground takes only a few milliseconds, since, in general, dart leaders travel
along the residual channel of the first return strokes at a typical speed of 10" m/s.
Nevertheless, is not uncommon for the dart leader to take a different path than the first
stroke; in this case it ceases to be a dart leader and travel towards the ground as a stepped
leader. Furthermore, some dart leaders exhibit stepping near ground while propagating
along the path of the preceding return stroke; these leaders being termed dart-stepped
leaders.

The dart leader generally deposits less charge, a tenth as much, along its path than does
the stepped leader, and hence the subsequent return strokes generally lower less charge to
ground and have smaller peak currents than first strokes [3].

Subsequent stroke peak currents range typically from 10 to 15 kA, while first stroke
peak currents are typically near 30 kA. The rise times (usually measured between 10% and
90% of peak value) of subsequent stroke currents are generally less than 1 ps, often tenths
of a microsecond, whereas the rise times of first strokes currents are usually of some
microseconds [8], [9]. The average propagation speed of the return stroke is also different
for first strokes and subsequent strokes; in particular, the average velocity of subsequent
return strokes over the first few hundred meters close to ground is greater than that of the
first return strokes, [10], [11].

As stated above, about 10% of cloud-to-ground lightning flashes are initiated by
downward-moving stepped leader that lower positive charge (see Figure 1.2c). The
mechanism of positive ground flashes is qualitatively similar to the negative flashes, with
differences in the details. For example, the steps of positive stepped leaders are less distinct
than the steps of negative stepped leaders. Furthermore, positive return strokes can exhibit
currents at the ground whose peak value can exceed 300 kA, considerably larger than for
negative strokes whose peak currents rarely exceed 100 kA. Nevertheless, typical positive
peak currents are similar to typical negative peak currents (about 30 kA). Positive
discharges usually exhibit only one return stroke, and that stroke is almost always followed
by a relatively long period of continuing current. The overall charge transfer in positive
flashes can considerably exceed that in negative flashes [3].

In upward lightning, see Figure 1.2b and d, the first leader propagates from ground to
cloud but does not initiate an observable return stroke or return-stroke-like process when it
reaches the cloud charge. Rather, the upward leader primarily provides a connection
between the cloud charge region and the ground. After this connection is made and the

initial current has ceased to flow, subsequent strokes initiated by downward-moving dart
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leaders from the cloud charge, having the same characteristics as strokes following the first
stroke in cloud-to-ground lightning, may occur. About half of all upward flashes exhibit

such subsequent return strokes [3].

Stepped

leader

T

t=1.0ms

20.20 ms

/ Dart
leader i
~;‘§§*\{\§5\ N R
60.00 ms 61.00 ms

Figure 1.3 — Development of a negative cloud-to-ground lightning discharge. Adapted
from [12].
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Chapter 2

A Survey on the Evaluation of
Lightning-Induced Voltages on
Overhead Power Lines

2.1 Introduction

Since the early years of the past century, many researchers activities have been focused
on the evaluation of lightning induced voltages on overhead power lines.

The first significant studies on this subject, carried out by K. W. Wagner [1] in 1908,
Bewley [2] in 1929, and Norinder [3] in 1936, considered the induced voltages due to
indirect lightning as being produced essentially by the electrostatic induction from charged
thunderclouds. Wagner [1], stated that, when the lightning discharge occurs, the charge
bound to the line is released in form of travelling waves of voltage and current, and it did
not consider the electromagnetic field generated by the lightning discharge current.

Afterwards, C. F. Wagner and McCann [4], on the basis of the work of Schonland and
Collens [5] on the nature of the lightning flash, stated for the first time that the induced
voltages can be considered as due, basically, to the return-stroke current (see Chapter 1).
Most of all subsequent studies, including this work, are based on this assumption, that is
particularly useful when the lightning stroke is not very close to the distribution line. In
fact, as observed by Rachidi e a/ [6], for distances less than 30 m, some significant
overvoltages can be induced also during the leader propagation process (described in detail
in Chapter 1) preceding the return stroke.

We remark that, in this thesis, we shall consider only the voltages induced by the

electromagnetic field produced by the return-stroke current, as we are not interested in the
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study of the effects of lightning discharges very close to the line: for distances less than 30
m, direct lightning flashes are more frequently than indirect ones.

Also in recent years, in literature many efforts have been directed to improve the
knowledge of the lightning phenomenon and its effects on power circuits. In particular,
many analytical and numerical approaches have been proposed in order to evaluate the
induced voltages on an overhead line due to an indirect lightning event. In all these
approaches, the calculation of the induced voltages is carried out by following a general
procedure, involving the lightning phenomenon and its effects, which can be divided into

three main stages:

1. adoption of a return stroke model. To evaluate the electromagnetic field radiated
by a lightning discharge, a suitable spatial and temporal model for the
description of the return-stroke current distribution and its propagation along
the lightning channel is needed;

2. calculation of the electromagnetic field. The electromagnetic field generated by
the return-stroke current is calculated by employing the model adopted in the
previous step. The effects of the field propagation are also considered;

3. adoption of a coupling model. To evaluate the voltages induced on an overhead
line, an appropriate coupling model which describes the interaction between the

electromagnetic field and the line conductors must be considered.

Overhead
power line

e

Lightning
channel

Figure 2.1 — A representation of the three main stages of the lightning induced voltages
calculation.
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In Figure 2.1 is represented a downward lightning that carries negative charge from the
cloud to the ground, whose return-stroke current, as detailed in Chapter 1, propagates up
the channel. The lightning channel is here assumed to be perfectly vertical, and this is the
only case examined in this thesis work. The electromagnetic “incident” field generated by
the return-stroke current propagates toward the line and, by means of coupling
phenomena, may cause, for example, a flashover on the insulator surface due to the
overvoltage produced.

In the next paragraph, the most common engineering return-stroke current models will
be presented and discussed. Paragraph 2.3 will be devoted to the evaluation of the
electromagnetic field radiated by a return-stroke current. Finally, in paragraph 2.4, the most

important field-to-line coupling models proposed in the literature will be discussed.

2.2 Engineering return-stroke current models

The lightning electromagnetic field is generally calculated making use of a return-stroke
current model, that is a mathematical formulae that is capable of predicting the spatial and
temporal variation of the lightning current along the channel, the variation of return stroke
speed, the temporal spatial characteristics of optical radiation, and the signature of thunder.
For the point of view of an engineer, the lightning parameters of particular interest are the
return stroke current and its electromagnetic field. Most of the return-stroke models
available today are constructed to predict either one or both of these features.

A comprehensive review of the return-stroke models is available in the literature (e. g.,
[7], and [8]). In [7], Rakov and Uman classified the return stroke models into four

categories:

1. “gas dynamic” or “physical” models, which are primarily concerned with the
g Yy poy , p y

radial evolution of a short segment of the lightning channel and its associated
shock wave;

2. “electromagnetic” models, that are usually based on a lossy, thin-wire antenna

g > y Y,

approximation of the lightning channel. These models involve a numerical
solution of Maxwell’s equations in order to find the current distribution along
the channel from which the remote electric and magnetic fields can be
computed;

3. “distributed-circuit” models, that can be viewed as an approximation of the

electromagnetic models described above, and that represent the lightning

11
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discharge as a transient process on a vertical transmission line characterized by
resistance (R), inductance (L), and capacitance (C), all per unit length;

4. “engineering” models, in which a spatial and temporal distribution of the
channel current (or of the channel-charge density) is specified based on such
observed lightning return stroke characteristics, as the current at the channel
base, the speed of the upward propagating front, and the channel luminosity

profile.

The gas dynamic models are primarily used to reproduce physical parameters of the
return stroke. The other models are mainly used to reproduce the electromagnetic field
radiated from a return-stroke current. In this paragraph, since most of the methods used
for the evaluation of the induced voltages are based on engineering models, we shall limit

the discussion to this kind of model.

Figure 2.2 — Return stroke channel.

With reference to the Figure 2.2, an engineering model for the return-stroke current is a
mathematical specification of the spatial and temporal distribution of the lightning current
along the discharge path, i(z',t), or of the channel line charge density, p(z’,t). Such a
mathematical specification includes the return-stroke wavefront velocity, which is generally
one of the model inputs [9], the charge distribution along the channel, and a number of
adjustable parameters related, to a certain extent, to the discharge phenomenon [8] and
which should be inferred by means of model comparison with experimental results [10].

Outputs can be directly used for computation of electromagnetic fields. In these models,

12
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the lightning channel is generally assumed to be straight, vertical and perpendicular to the
ground plane, as shown in Figure 2.2.

From an engineering point of view, the models of main interest are those in which the
return-stroke current i(z’,t) can be related to the channel-base current i(0,t), since it is
the only current directly measurable, and for which experimental data are available. For this
reason, the most used engineering models presented in the literature give the mathematical
specification of the spatial-temporal distribution of the lightning current along the

discharge channel as follows [11]:

z' z'
i(z',t) = i(O,t ——>-P(z’)-u<t——>, 2.1
Uf (%

where u(*) is the Heaviside function, vy is the return-stroke wavefront propagation speed,

v is the propagation velocity of the return-stroke current-wave, and P(*) is the attenuation
function of the return-stroke current along the channel, which was proposed for the first
time by Rakov and Dulzon [12].

The most commonly adopted return stroke models for the lightning induced voltages

evaluations are:

the Bruce and Golde model (BG), described in [13];

e the Travelling Current Source model (TCS), proposed by Heidler [14];

e the Transmission Line model (TL), presented by Uman and McLain [9];

e the Modified Transmission Line model with Linear current decay with height
(MTLL), introduced by Rakov and Dulzon [12];

e the Modifiel Transmission Line model with Exponential current decay with

height (MTLE), proposed by Nucci ez /. [15].

These five main models are summarized in Table 2.1, where, according to (2.1), both
the propagation velocity and the attenuation function of the return-stroke current along the
channel are specified for each model. In the table, h. is the total channel length, A is the
current decay constant (assumed in [15] to be 2000 m), and ¢ is the speed of light in the
free space.

For sake of completeness, other two return-stroke engineering models will also be
presented here: the Master, Uman, Lin, and Standler (MULS) model [16], and the
Diendorfer and Uman (DU) model [17].

13
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Model P(z) "
BG " o
(Bruce and Golde [13]
TCS | _
(Heidler [14]) c
TL . ;
(Uman and McLain [9]) f
MTLL )
(Rakov and Dulzon [12]) 1-2"/h, Vr
MTLE e (—Z’/A) Uf

(Nucci e al. [15])

Table 2.1 — Return stroke model summarization, according to [11].

In the following subparagraphs, all these models will be briefly described and discussed.
Furthermore, the main models for the channel-base current, i(0,t), proposed in the

literature will be presented.

2.2.1 Bruce and Golde (BG) model

Bruce and Golde [13] proposed a simple model of the return-stroke current based on
two assumptions: 1) the return stroke front propagates upward with a finite and constant
speed which is less than the speed of light, 2) the channel-base current propagates along
the lightning channel undistorted and unattenuated. Mathematically, the current at any

point on the channel reads:
(2.2

An equivalent expression in terms of the line charge density on the channel was

proposed by Thottappillil ez /. [18] by means of the continuity equation:

t t

1 o ) o
p(z', t) = Alzl’TLlOE f i(z'+Az',1)dt f i(z',t)drt|. (2.3)
0 0
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An initial charge distribution, which takes into account the effects of the charges stored in
the corona sheath of the leader, is instantaneously removed by the current. By combining

(2.2) and (2.3), the instantaneously removed charged is obtained, and reads [18]:

i(0,2'/vy)

p(z',t) =
Vr

(2.4)

According with the hypothesis of instantaneous charge removal, the removed charge

(2.4) is time independent.

2.2.2 Travelling Current Source (TCS) model

In this model, proposed by Heidler [14], the return-stroke current may be viewed as
generated at the upward-moving return-stroke front and propagating downward. In the
TCS model, current at a given channel section turns on instantaneously as this section is

passed by the front. The channel current expression reads:

i(0,t+z'/c) =z <wvp-t,

{0 = {0 z' > vt #2)

The equivalent formulation of this model in terms of charge distribution is:

P, 1) = -

i(0, i’/v) L1, Z’/v*)' 2.6)

v*

with v* = vf/(l + vf/c). As one can see, the TCS model reduces to the BG model if the

downward current propagation speed is set equal to infinity instead of the speed of light.

2.2.3 Transmission Line (TL) model

In this model, introduced by Uman and McLain [9], the current is assumed to travel
undistorted ad without any attenuation upwards the lightning channel at a constant speed

v. The expression of the current at any height z' along the lightning channel is given by:

i(0,t—z'/v) 2z <wvp-t,

i(z',t) = { @.7)

1A
0 z' > vp - t.
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The transfer of charge takes place only from the bottom of the leader channel to the
top; thus, no net charge is removed from the channel, ie., p(z',t) = 0. This being an
unrealistic situation with respect to the present knowledge of lightning physics [19].

The basic hypothesis of this model does not tally with the available experimental data.
For example, the results inferred from optical observation show that the current amplitude
and current waveshape do change with height. Moreover, return-stroke speed
measurements demonstrate that the return stroke speed decreases with increasing height.
However, in [20], the authors show that some of the predictions of the TL model are in
fairly good agreement with the corresponding measured values, and also that the early time
field prediction of the TL model is very similar to that of the more physically reasonable
models.

Finally, one can note that the TL model also reduces to the BG model when v = oo,

2.2.4 Modified Transmission Line Linear (MTLL) model

The Transmission Line model with Linear current decay with height was proposed by
Rakov and Dulzon [12]. This model can be viewed as incorporating a current source at the
channel base, which injects a specified current wave into the channel; that wave
propagating upward without distortion but with specified linear attenuation, as seen from

the corresponding current expression at a given height z’, which reads:

i(0,t—z"/v)-(1—-2"/h.) z' S vt
i(z',t) = { (2.8)

, -
0 Z>Uf t,

where h, is the channel length.
This model removed the problem of charge neutralization from the TL model. In fact,

the equivalent formulation of this model in terms of charge distribution is:

1—2"/h, . i(O,t —Z’/vf)
hC Uf

1
p(z,t) = +-Q(0), @9)

where Q(t) is the total charge transferred from the ground to the channel at the time t.

It is given by:
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Q(t) = f i(0,7 —z'/v)dr. (2.10)

z' /v

2.2.5 Modified Transmission Line Exponential (MTLE)
model

This model was proposed by Nucci ¢z a/. [15], and it is similar to the MTLL one. It can
be viewed as incorporating a current source at the channel base, which injects a specified
current wave into the channel; that wave propagating upward without distortion but with

exponential attenuation. The current equation reads:

., i(O,t—z’/v)-e‘Z'//1 z' S vt
i(z',t) = (2.11)
0 z' > vp - t,

where A is the constant describing the current decay with height, and it is assumed to be
equal to 2000 meters.

The equivalent formulation of this model in terms of charge distribution is:

: ot -z'/A
/A.L(O,t Z/Uf)+e
Uf A

p(z',t) =e? -Q(1), (2.12)

where Q(t), once again, is the total charge transferred from the ground to the channel at
the time t, and is still given by (2.10).

The two transmission line models, MTLL and MTLE, represent a modification of the
TL model, that does not consider the current attenuation. This attenuation was introduced
in order to take into account for the effect of the charges stored in the corona sheath of
the leader, and subsequently discharged during the return stroke phase via the upward
current [15]. Thus, the fields predicted by these two models result in a better agreement
with the experimental results. However, if one considers that, for lightning induced
voltages calculation, the eatly time region of the field plays the major role in the coupling
mechanism [21], it follows that the TL model, for the problem of interest, can be

considered a useful and relatively simple engineering tool.
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2.2.6 Master, Uman, Lin, and Standler (MULS) model

This model, described in [16], results from both physics considerations and
experimental results. Originally proposed by Uman, Lin, and Standler (LUS), it was
subsequently modified by Master. According to this model, the return-stroke current is
composed by three terms: a uniform current, i, which accounts for the leader current; an

impulsive upward moving current, i, that accounts for the collapse of the return-stroke

wavefront; and a current, i, due to charges stored in the corona sheath of the leader. For
the latter term, the surge current is assumed distributed along the channel with a double

exponential mathematical form with an exponential decay with the channel height.

2.2.7 Diendorfer and Uman (DU) model

In the Diendorfer and Uman model [17], the return-stroke current may be viewed as
generated at the upward-moving return-stroke front, and propagating downward. The
current at a given channel section turns on exponentially as this section is passed by the

front. The equation of the model reads:

i(0,t+2z/c)—i(0,z"/v*)- e~ (t=2"/vs)/tp z' < v,
i(z',t) = (2.13)
0

where v* = v/ (1 + ve/ C), and Tp is the decay time constant of the current. As one can
see, this current expression is formed by two terms: the first term is a downward-
propagating current, as in the TCS model, that exhibits an inherent discontinuity at the
upward-moving front; the second term is an opposite polarity current which rises
instantaneously to a value equal in magnitude to the current at the front, and then decays
exponentially with a time constant Tp.

The equivalent formulation of this model in terms of charge distribution reads:

i(0,t+2'/c) i(0,z" /v*) N T, 0i(0,z'/v*)
c Vf v* at

p(z',t) = -

(=2 o)/ 4 L0 ;f'/”*) W 010.2'/v) 2.14)

v* Jat

If Tp = 0, the DU model reduces to the TCS model.
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2.2.8 The channel-base current

Channel-base current measurements have been performed by means of instrumented
high towers or by using the lightning triggering technique, and statistical elaboration of
lightning current data have been presented (e.g., [22], [23]). In the case of instrumented
towers, one can exploit the fact that tall structures are struck frequently by lightning flashes.
Relatively tall structures, such as high towers, can be equipped with current measuring
equipment that can record the current signatures at the channel base of lightning flashes.
Since the frequency of lightning strikes to a given object increases with increasing height, a
reasonable amount of information can be obtained over a time span of a few years using
this technique [24], [25]. As regards the lightning triggered technique, a small rocket, trailing
a thin metal wire attached to ground through a coaxial shunt, is launched towards a mature
thundercloud. As the rocket travels upwards, the field at its tip increases and, when this
field reaches a certain critical value, a connecting leader is initiated and travels towards the
cloud. Lightning flashes initiated by this upward moving leader will follow the trailing wire
to ground, and the lightning channel intercepts the instrumented launching pad and the
current is measured directly (e.g., [20]-[28]). However, the first is the best procedure
because the inherent nature of triggering procedure: triggered lightning flashes do not
contain the first return stroke, which are mediated by stepped leaders in natural lightning
flashes.

As already pointed out in Chapter 1, usually, positive flash occurrences are less frequent
than negative ones, and also have a lower peak current-derivative. For these reasons, only
lightning that lower negative charge to ground will be considered in this work. In Figure
2.3, typical channel-base current waveshapes for negative first (Fig. 2.3a) and subsequent
(Fig. 2.3b) return strokes are shown. The statistics of the most important lightning current
parameters for the evaluation of the induced voltages (i.e., peak value and front steepness)
are summarized in Tables 2.2 and 2.3. In particular, the International Council on Large
Electric Systems (CIGRE) study group have recommended that the parameters in Table
2.3, adapted from the work of Anderson and Eriksson [23], be used in engineering

applications.
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a)
0 8 16 24 32 40 us
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Figure 2.3 — Average negative first- (a) and subsequent-stroke (b) channel-base current
each shown on two time scales, A and B. The lover time scales (A) correspond to the solid-
line curves, while the upper time scales (B) correspond to the dashed-line curves. The
vertical scale is in relative units, the peak values being equal to negative unity. Adapted
from [22].

Percentage exceeding tabulated values

95% 50% 5%
Stroke First Subs | Fitst Subs | First  Subs
Ipeak [kA] 14 4.6 30 12 80 30
Time to crest [us] 1.8 0.2 55 1.1 18 4.5
(ai/ at)max[kA/ms] 5.5 12 7 40 32 120

Table 2.2 — Statistics of peak amplitude, time to crest (or front duration) and maximum
front steepness (or rate of rise) for first and subsequent negative return strokes. Adapted
from [22].
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Percentage exceeding tabulated values
95% 50% 5%
Stroke First Subs | First Subs | First  Subs

I, [kA] 141 52 | 311 123 | 685 292

peak

Time to crest [us] 1.8 0.1 4.5 0.6 11.3 2.8

(%5,) [A/ms]| 91 78 | 243 378 | 65 190
at max

Table 2.3 — Statistics of peak amplitude, time to crest and maximum front steepness for
first and subsequent negative return strokes. Adapted from [23].

In the literature, several mathematical models for the description of the channel-base
current, to use in the return-stroke models discussed above, have been proposed. Some of

the most common of these mathematical expressions are described below.

®  Bruce and Golde model

The channel-base current proposed by Bruce and Golde [13] have a double exponential
form. In particular, the authors proposed a channel-base current expression for both the

first- and the subsequent-stroke, which reads:

ifirse (0,8) = Io - (e7%* — e7FY), (2.15)

I
Lsups(0, 1) = EO ' (e—at - e_Bt); (2.16)

where I is the peak value of the channel-base current. The value of I, and the values of

the parameters @ and f assumed by Bruce and Golde are reported in Table 2.4. In Figure

2.4, the first- and subsequent-stroke channel-base currents are shown.

" Pierce and Cianos model

Pierce [29] proposed a model similar to that of Bruce and Golde, but with different
values for the current parameters Iy, @ and f, as reported in Table 2.4. Moreover, in [30],
Pierce and Cianos introduced a new channel-base current model for the first-stroke, in
which a second term is added to the right hand side of (2.15). This new term also have a
double exponential form, and leads to a more realistic waveshape, since it adjust the longer

time value of the current. The expression proposed by Pierce and Cianos reads:
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25

— First Return Stroke
Subsequent Return Stroke
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Channel-Base Current [kA]
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Time [us]
Figure 2.4 — Bruce and Golde channel-base current model.

First Subsequents
Parameters Bruce-Golde Pierce-Cianos | Bruce-Golde Pierce-Cianos
Iy [kA] 30 20 15 10
Io; [kA] - 2 - 2
a[s'] 4.4 % 10* 2% 10* 4.4 % 10* 2% 10*
B [s] 4.6 X 10° 2% 10° 4.6 X 10° 2% 10°
Y [s] - 10° - 10°
5 [s] - 10* - 10*

Table 2.4 — Values of the parameters for the Bruce and Golde, and the Pierce and Cianos
channel-base current models [13], [29], [30].

irirst(0,8) = Ip * (e‘“t — e‘Bt) + Iy; (e‘Vt — e‘&). 2.17)

The values of all the parameters are given in Table 2.4.

Also for the subsequent return strokes the same adjustments are applied, and the
proposed values of the parameters are also reported in Table 2.4. Figure 2.5 shows the
channel base current waveshape proposed by Pierce and Cianos, for both first and
subsequent return strokes.

It is worth noting that, both the Bruce and Golde model and the Pierce and Cianos one
are characterized by an unrealistic convex channel-base current wavefront with a maximum

current derivative at t = 0.
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Time [ps]
Figure 2.5 — Pierce and Cianos channel-base current model.

»  Heidler model

The Heidler model [14] reproduces the observed concave rising portion of a typical
channel base current waveform, i.e., it does not exhibit a discontinuity in its time derivative,
unlike the double-exponential model above presented. The current expression of this

model is:

ool W)t
i(0,t) = i T e u(t), (2.18)

where 1 = el-(1/1)(w2/TOVM] ¢ the correlation factor of the peak current, I is the
amplitude of the channel-base current, T, is the rising front time constant, T, is the decay
constant of the current waveform, n is the current steepness factor (a number in the range
2+10). The expression (2.18) allows one to change conveniently the current peak,
maximum current derivative, and associated electrical charge transfer nearly independently
by changing Iy, T; and T, respectively.

In Table 2.5, typical values for the parameters used to represent a typical subsequent
return-stroke current are given [31]. In Figure 2.6, the correspondent channel-base current
is plotted. The concave rising portion of the Heidler current can be observed in Figure 2.7,

where a magnification of the initial part of the current is shown.
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20
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Figure 2.6 — Heidler channel-base current model.
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Figure 2.7 — Magnification of the initial part of the current shown in Figure 2.6.

T2 [ps]

Tq [ps]

Iy [kA]

25

Table 2.5 — Typical values for the Heidler channel-base current parameters [31].

0.25

10.7
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Sometimes, a sum of two Heidler functions with different parameters is used to
approximate the desired current waveshape. Diendorfer and Uman [17], for example,
described the subsequent-stroke current waveform at the channel base by means of the

expression:

I /T )™ L] t/t)™ b
1 11 2 21

i(0,t) =
with the meaning of the parameters already given for (2.18). In Table 2.6, typical values for
the parameters of (2.19) are reported [31].

The correspondent channel-base current is shown in Figure 2.8. One can see that, for

longer time bases, the current waveshape predicted by (2.19) is more realistic than the one

obtained by using (2.18).

Channel-Base Current [kA]

20
Time [ps]
Figure 2.8 — Subsequent-stroke current waveform at the channel base obtained as the sum
of two Heidler functions.

Iog [KA] Tqq [ms]  Tqz [ns] ng Ioy [KA]  T3q [ns] T2z [ws] n,

10.7 0.25 25 2 6.5 2.1 230 2

Table 2.6 — Typical values for the double Heidler channel-base current parameters [31].

Finally, Nucci ez al [20] proposed a channel-base current as the sum of a Heidler

expression and a double-exponential expression:
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: o @/w)™ —% _ _%_ _% _
i(0,t) = T m e + Iy, (e e )l u(t). (2.20)

Using this equation, we can independently vary the peak current and peak-current
derivative by changing ly; and 7;. In Table 2.7, the typical values of the parameters
appearing in (2.20) are given [20]. These values are based on the average features of the
triggered subsequent return stroke currents. In Figure 2.9, the plot of the current obtained

by using (2.20) is shown.

12

—_
o

Channel-Base Current [kA]

Time [Us]
Figure 2.9 — Nucci ¢7 a/. channel-base current model.

Iog [KA] Ty [ps] T3 [us] n Io; [KA] T3 [us] T4 [us]

9.9 0.072 5 2 7.5 100 6
Table 2.7 — Typical values for the channel-base current proposed by Nucci ez a/. [20].

2.2.9 Models validation

Traditional approaches for the validation of the engineering models are based on direct
procedures. For an assigned return-stroke model, the electromagnetic field is calculated at one
or more distances and then compared to the observed one. A return stroke model is then

considered suitable if there is a relatively good agreement between calculated and measured
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fields. In this view, two main approaches have been used for model validation: the Typical

Return Stroke approach, and the Specific Return Stroke approach [7].

" Typical Return Stroke Approach

This approach involves the use of a typical channel-base current waveform and a typical
return-stroke propagation speed as model inputs, and then compare the model predicted
electromagnetic field with the typical observed fields. This approach has been adopted by
Rakov and Dulzon [12], Thottappillil ez a/. [18], and Nucci ez a/. [20]. In particular, Nucci e#
al. [20] identified four characteristic features in the fields at 1-200 km measured by Lin ¢ a/.
[32] and used those features as a benchmark for their validation of the TL, MTLE, BG,
TCS, and MULS models. In Figure 2.10, the lightning fields measured by Lin e/ a/. for first

and subsequent strokes at different distances are shown. The characteristic features include:

a) a sharp initial peak that varies approximately as the inverse distance beyond a
kilometer or so in both electric and magnetic fields;

b) a slow ramp following the initial peak and lasting in excess of 100 us for electric
fields measured within a few tens of kilometers;

c) a hump following the initial peak in magnetic fields within a few tens of
kilometers, the maximum of which occurs between 10 and 40 ps;

d) a zero crossing within tens of microseconds of the initial peak in both electric

and magnetic fields at 50 to 200 km.

For the current and other model characteristics assumed by Nucci ez /. [20], feature a) is
reproduced by all the models examined, feature b) by all the models except for the TL
model, feature c) by the BG, TL, and TCS models but not by the MTLE model, and
feature d) only by the MTLE model but not by the BG, TL, and TCS models. Diendorfer
and Uman [17], showed that the DU model reproduces features a), b), and c). Thottappillil
et al. [33], demonstrated that a relatively insignificant change in the channel-base current
waveform (well within the range of typical waveforms) allows the reproduction of feature
d), the zero crossing, by the TCS and DU models. Finally, Rakov and Dulzon [12], showed
that the MTLL model reproduces features a), b), and d).

»  Specific Return Stroke Approach

This second approach involves the use of the channel-base current waveform and the

propagation speed measured for the same individual event and compare computed fields
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Figure 2.10 — Typical vertical electric field intensity and horizontal magnetic flux density
waveforms. The fields are plotted for first (solid line) and subsequent (dashed line) return
strokes at distances of 1, 2, 5, 10, 15, 50, and 200 km. Adapted from [32].
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with measured fields for that same specific event. This method is able to provide a more
definitive answer regarding model validity, but it is feasible only in the case of triggered-
lightning return strokes or natural lightning strikes to tall towers where the channel-base
current can be measured. In the field calculations, the channel is generally assumed to be
straight and vertical, with its origin at ground level z' = 0; conditions which are expected
to be valid for subsequent strokes, but potentially not for first strokes.

This approach has been adopted by Thottappillil and Uman [34] who compared the TL,
TCS, MTLE, and DU models. They used 18 sets of three simultaneously measured features
of triggered lightning return strokes: channel-base current, return-stroke propagation
speed, and electric field at about 5 km from the channel base. It has been found that the
TL, MTLE, and DU models each predict the measured initial electric field peaks with a
mean absolute error of about 20%, whereas the TCS model has a mean absolute error of

about 40%.

The above presented approaches for the validation of the engineering models are based
on direct procedures. A different approach has been proposed by Andreotti ez a/. [35]. They
describe the possibility of identifying exactly the attenuation function, P(z"), by means of
an inverse procedure, solving the equations relating the measured field to the channel-base
current. Two different procedures to identify the lightning return stroke attenuation, in the
frequency domain, were proposed: one for different frequencies, and the other for

different distances. Both procedures are able to accurately identify the attenuation function.

2.3 Electromagnetic fields generated by lightning
flashes

In the literature, two main methods have been used to obtain the analytical expressions
of the electric and magnetic fields radiated from a known distribution of currents and
charges. One of these is the mongpole technigne or the continuity equation technique (e.g.,
[36], [37]), which has been primarily used in the power systems literature for lightning fields
calculation, and requires a knowledge of both the current and the charge densities as a
function of time and space [38]. The second method, the dipole technique or lLorentz
condition technique, is described in most electromagnetic books (e.g., [39]-[41]) and is

widely used in the study of the antennas.
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As demonstrated by Rubinstein and Uman [38], these two techniques are absolutely
equivalent, even though their analytical expressions are different.

In the following, we shall briefly describe both the monopole and dipole techniques.

2.3.1 The monopole technique

As well known, Maxwell’s equations for a linear, homogeneous, isotropic, time-invariant

medium can be written as follows:

V-e,E=p, (2.21)
V-unH=0, (2.22)
oun,H
VXE=— , 2.23
T (2.23)
enE
VxH=]+ 6"tl : (2.24)

Given that (2.22) can be derived from (2.23) by taking the divergence of the latter and
integrating over time, with the information that at some times U,,H was zero, these
equations represent seven independent differential equations in the following unknowns:

- three components of the electric field intensity E;

three components of the magnetic field intensity H;

three components of the current density J;
- the charge density p.

With ten unknowns and only seven equations, at least three of the unknowns either
need to be specified or to be related to other unknowns to solve the Maxwell’s equations.

If we know both the charge and all components of the current density, the problem of
finding the fields is overspecified since four of the ten unknowns are specified. This
overspecification, forming the basis of the monopole technique, allows us to find, in some
cases, simpler solutions to otherwise cumbersome problems.

To facilitate the solution of Maxwell’s equations for the case of specified or known
sources, vector and scalar potentials are used. This approach can be found in many
textbooks (e.g., [39]-[41]).

If we define
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E=-V oA 2.25
and
wmH =V X A, (2.26)

and substitute (2.25) and (2.26) into (2.21)-(2.24) with the divergence of A specified by the

so-called Lorentz condition:
¢
V-A+ punem T 0, (2.27)

Maxwell’s equations reduce to two equations for A and ¢, the inhomogeneous solutions of

which are
r.,t—|r.—r.l/c
Ayt = b [ Ot s —rsl/e) (2.28)
4 )y |ry — 1%
1 r.t—|r.—r.|/c
¢(Ts,t) — j p( S | S , Sl/ )dV,, (229)
Am gy Jyr |ry — 1k

as described, for example, in [39]-[41]. The geometry by which (2.28) and (2.29) are to be

interpreted is shown in Figure 2.11.

z A Source

av'’

Field Point

<Yy

X

Figure 2.11 — Geometry and coordinate system for source and field points used in solution
for vector potential found in (2.28) and scalar potential found in (2.29).
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To calculate fields using the monopole technique, (2.25), (2.20), (2.28), (2.29), along with

the continuity equation,

dp
v-j+5-=0, (2.30)

which follows from taking the divergence of (2.24) and combining the resultant relation
with (2.21), have to be used.

In this technique, the source is described in terms of both current density and line
charge density, and the field equations are expressed in terms of both charge density and
current. The current continuity equation is needed to relate the current density and charge
density. There is no need for the explicit use of the Lorentz condition in this technique,
although propetly specified scalar and vector potentials do satisfy the Lorentz condition.

For example, considering a vertical lightning channel over an infinitely conducting
plane, as the one depicted in Figure 2.12, to find the electric and magnetic fields radiated
from a return-stroke current which travels up from the channel, and whose specific
distributions of charge and current are described by one of the models presented in the
previous section, we can use the above equations together with the method of images. In
particular, we have to substitute the expressions describing the current and charge
distributions for the actual channel, and those for the image channel, into (2.28) and (2.29),
respectively. Then, by solving the integrals, we obtain the expressions for the vector and
scalar potentials, both for the real and image distribution. Hence, we can calculate the total
scalar and vector potentials. Finally, by using (2.25) and (2.26) we can obtain the desired

expressions for the electric and magnetic fields.

2.3.2 The dipole technique

Once the source is specified, the radiated fields can always be computed without
approximation other than those involved in the computational process. In the problems
concerning the lightning induced voltages calculation, the most commonly field equations
adopted for the evaluation of return-stroke fields in the time domain have been proposed
by Master and Uman [42]. By assuming the ground as a perfect conductor, they have
derived the equations for the electric and magnetic fields originated by a vertical dipole of
infinitesimal length by solving Maxwell’s equations (2.21)-(2.24) in terms of the retarded
scalar and vector potentials (2.28), (2.29). The geometry of the problem is shown in Figure
2.12.
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Figure 2.12 — Geometry for the return stroke field evaluation: dipole technique.

The lightning return-stroke channel is modeled as a straight line, and the current on the
lightning channel is represented by i(z’,t), where z’ indicates the position along the z axis
with origin at the base of the channel, and t indicates the time. At time t = 0 the return
stroke starts to propagate from the ground. The field evaluated is originated by a vertical
electric dipole of infinitesimal length dz’ placed at height z', that is a linear current element
whose length is vanishingly small compared with the distance at which the field are to be
calculated (the current is assumed to be a constant over the length of the dipole). In the
cylindrical coordinate system shown in Figure 2.12, assuming a perfectly conducting
ground, the field generated by the dipole is characterized by the vertical and radial electric

field components. The equations proposed in [42] are

de(r,2,6) = [3r - f R) dr 4o E=7)

T__
41 - g, c-R*

Zt-—)t— 2.31)

c

i( ) R) r-(z—2") al(z t—R/c)l
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t
dz' 2-(z—z r? 2-(z—2")% -
de,(r,z,t) P, l fl z', T—— dr + -y
0
., R r?  9i(z',t —R/c)
dz' | r R r di(z',t—R/c)
=izt -= 2.
dh,(r,z,t) o IR3 l<Z t c>+c-R2 l, (2.33)

- i(z',t) is the current along the lightning channel;

- R= \/ (z—=2")2+71? is the distance between the electric dipole and the
observation point;

- 1 is the projection of R in the xy-plane (see Figure 2.12);

- ¢ is the speed of light.

In (2.31) and (2.32), the three terms are called, respectively, the electrostatic field, the
induction or intermediate field, and the radiation or far-zone field. In (2.33), the first term
on the right-hand side is the induction field and the second the radiation field.

The total electromagnetic exciting field can be obtained by integrating (2.31)-(2.33),
where the current distribution as a function of height and time is given by one of the
return-stroke models presented above, along the lightning channel and its image, and is

described by the following equations:

t H ,
) = [f’f D i -Darar s [ 020
(Do LD ARy,

—-H
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H H
2-(z—2")% —1r? R r?  9i(z,t—R/c
+ f (z _Z) -i(z',t—?) dz' — f iz / )dz’ , (2.35)

c-R* c%?-R3 ot
—H —H
1|7 R [ r 8i(z.t—R/c)
r T i(z',t—R/c ,
hy(r,z,t) =1 fR3 (z t—;)dz + fc-Rz 5% dz'|. (2.36)
—H —H

Other, different, field expressions in the time domain, with specific application to
lightning, can be found in [18], [43]-[45].

It is worth to observe that, in this technique, the source is described only in terms of
current density, and that the field equations (2.34)-(2.36) are expressed only in terms of
current. Indeed, the use of the Lorentz condition (2.27) eliminates the need for the
specification of the line charge density along with the current density and assures that the

current continuity equation, which is not explicitly used in this technique, is satisfied.

2.3.3 The effect of the finite ground conductivity

If the observation point, P(r, @, z), of the lightning electromagnetic field is located on
the ground surface, and the ground is assumed to be perfectly conducting, only two field
components, the vertical electric field and the azimuthal magnetic field, are present. The
horizontal electric field component is zero, as required by the boundary condition on the
surface of a perfect conductor. At an observation point above a perfectly conducting
ground, a nonzero horizontal electric field component exists.

In the case of a finitely conducting ground, a horizontal electric field exists above
ground and also both on and below its surface.

For distances not exceeding a few kilometers, the perfect ground conductivity
assumption is a reasonable approximation for the vertical component of the electric field
and for the horizontal component of the magnetic field, as shown by several authors (e.g,
[46]-[47]). In fact, considering for example the dipole technique, the contributions of the

source dipole and of its image to these field components add constructively and,
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consequently, small variations in the image field due to the finite ground conductivity will
have little effect on the total field. On the other hand, the horizontal component of the
electric field is appreciably affected by a finite ground conductivity. Indeed, for such a field
component, the effects of the two contributions subtract, and small changes in the image
field may lead to appreciable changes in the total horizontal field. Although the intensity of
the horizontal field component is generally much smaller than that of the vertical one,
within the context of certain coupling models it plays an important role in the coupling
mechanism [48]-[52] and, hence, an accurate calculation method has to be chosen for it.

Methods for the calculation of the horizontal field using the exact Sommerfeld integrals
[53] are not practical because of the limitations on computational time.

Two approximate solutions of the Sommerfeld integrals, both originally proposed in the
frequency domain, are then commonly used for the computation of the horizontal electric
field in presence of a finitely conducting earth. The first is termed “wave tilt formula” and
was proposed by Zenneck [54], whereas the second one is the so-called “Cooray-

Rubinstein formula”, and was presented by Cooray [55] and by Rubinstein [47].

»  Wave tilt formula

The term “wave tilt” originates from the fact that when a plane electromagnetic wave
propagates over a finitely conducting ground, the total electric field at the ground surface is
tilted from the vertical because of the presence of a nonzero horizontal (radial) electric field
component. The tilt is in the direction of propagation if the vertical electric field
component is directed upward, or in the opposite direction if the vertical electric field
component is directed downward, being the vertical component of the Poynting vector
directed into the ground in both cases. The magnitude of this tilt, and hence the amplitude
of the field, depends on the conductivity and the dielectric constant of the soil.

The wave tilt formula sates that, for a plane wave, the ratio between the horizontal
electric field, E, (P, ), and the vertical electric field, E, (P, w), in the frequency domain, is
equal to the ratio of the propagation constants in the air and in the ground [54]. Therefore,

the horizontal electric field component is given by:

1
Jer +0/(w &)

E.(r,z,w) = E,(r,z,w) - (2.37)

where 0 and &, are the conductivity and relative permittivity of the ground, respectively,

and w is the angular frequency. This formula is a special case (valid for grazing incidence)
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of the theory of the reflection of electromagnetic waves off a conducting surface and,
hence, is a reasonable approximation only for relatively distant lightning strikes or for the
early microseconds of close lightning when the return stroke is near ground. The vertical
electric field, E, (1, z, w), in (2.37) is typically computed assuming the ground as a perfect
conductot, or is measured.

In 1988, Thomson et al. [56] presented an expression for the magnitude of the
horizontal electric field component as a function of the magnitude of the vertical electric
tield component by using the time domain approach described by Master in 1982 [57]. By
using this technique, the vertical electric field can be approximated as a sequence of
superposed delayed ramps, since a ramp has an analytical inverse transform expression like
equation (2.37). The horizontal electric field is then determined in the time domain as the

superposition of the responses to the ramps.

" Cooray-Rubinstein formula

The Cooray-Rubinstein formula is expressed as follows [47], [55]:

€ Uo

E.(r,z,w) =E,,(r,z,w) —H,,(r,0,w) - ,
' v o Jer + /G- &)

(2.38)

where &y is the free space permeability, E,,(1,z,w) is the Fourier transform of the
horizontal electric field at height z above ground and Hyy,(r,0,w) is the azimuthal
magnetic field component at ground level, both computed as if the ground were a perfect
conductor. The second term on the right-hand side of (2.38) is equal to zero for g — o
and becomes increasingly important as o decreases.

This approach has been shown to produce satisfactory approximation of the horizontal
electric field for some significant cases. In particular, it reproduces the positive, bipolar and
negative polarities of the field at close (one hundred meters), intermediate (some
kilometers), and far (tens of kilometers) distances, respectively, and at all these ranges it

predicts results close to those predicted by more accurate expressions [47], [58], [59].

2.4 Field-to-line coupling models

Once the electromagnetic field is calculated making use of a return-stroke current

model, it is used to calculate the voltages and currents induced on the conducting system.
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To do this, the most general and rigorous approach to use is the one based on Maxwell’s
equations [60]. However, due to the length of distribution lines, the use of such a theory
for the evaluation of lightning induced voltages implies long computation times. Also the
simplest approach known as “the quasi-static approximation” [61], according to which the
propagation of the field is neglected and coupling between incident fields and the line
conductors can be described by means of lumped elements (e.g., inductances and
capacitances), is not appropriate. In fact, such an approach requires that the dimensions of
the line conductors be smaller than about one tenth of the minimum significant wavelength
of the electromagnetic field. This assumption is not valid for power lines excited by
lightning electromagnetic fields (above 1MHz frequency, that is below 300 m wave length).
Another possible approach, that is the most suitable for the problem of interest, is the
“transmission line approximation” [62]. The basic assumptions of this theory are that the
transverse dimension of the line is much smaller than the minimum significant wavelength
and that the response of the line to the lightning fields is quasi-transverse electromagnetic
(quasi-TEM), i.e., the electromagnetic field due to the electric charges and currents along
the line is confined in the transverse plane and perpendicular to the line axis. In this way,
the line can be represented by a series of elementary sections to which the quasi-static
approximation applies. Each section is excited progressively by the incident
electromagnetic field so that longitudinal propagation effects are taken into account.

In the literature, the most used coupling models adopted for lighting induced voltages
evaluation are based on the transmission line approximation. In this section, we shall

briefly present and discuss three of these most popular coupling models:

e the Taylor, Satterwhite, and Harrison model, described in [62];
e the Agrawal, Price, and Gurbaxani model, proposed in [63];

e the Rachidi model, presented in [64].

To do this, we will refer to the geometry shown in Figure 2.13, that is a lossless, single-
conductor overhead line located at height h above a petfectly conducting ground, parallel
to the x-axis and contained in the xZ-plane, terminated on two impedances, Zy and Z;.
The line is excited by an incident external electromagnetic field (EY, BY), shown in Figure
2.13, which is the sum of the field radiated by the lightning return-stroke current and of the
field reflected by the ground, determined in absence of the wire. The total field (E, B) is
given by the sum of the incident field and the so-called scatfered field, which represents the

tield produced by the reaction of the conductor wire to the incident field.
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As we shall see, all the above mentioned coupling models lead to a pair of equations
involving time and space derivatives of induced voltages and currents along the line, and
source terms, that are a function of the incident external electromagnetic field components.
These equations are obtained integrating Maxwell’s equations along the contour path
defined in Figure 2.13 and using the transmission line approximation.

It has been demonstrated by Nucci and Rachidi [65], that the three models considered
here are fully equivalent approaches, i.e., they provide identical results in terms of total
induced voltage (and total induced current) even if they have different formulations.

It is also worth noting that an earlier field-to-line coupling model was developed by
Rusck [36]. It has been shown by Nucci ef a/. [66] and by Cooray [58] that Rusck’s
equations, expressed in terms of scalar potential, are absolutely equivalent to the above
mentioned models, as far as the excited electromagnetic field is originated by a straight

vertical channel.

Bl

h | 1
| |
| |
| |

Zy Y I | Zy

[ [
[ [

0 : : >
X X+ dx L x

Figure 2.13 — Reference geometry for field-to-line coupling models.

2.4.1 Taylor, Satterwhite and Harrison model

This coupling model, described in [62], refers to a two-wire transmission line excited by

a general external electromagnetic field. With respect to the Figure 2.13, the first wire is
located at z = 0, and the second one at z = h. The incident magnetic field, B t is taken in
the y direction and the incident electric field, E i isin the xz-plane. The model is described

by two coupling equations in the frequency domain, which reads:
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, h
dV(x .
di ) +jw-L1(x) =—jw- f B} (x,z)dz,
4 o (2.39)
dl(x .
L+jou C'"V(x) =—jw-C' -fE}C(x,z)dz,
\ dx .

where V(x) is the total induced voltage along the line, I(x) is the total induced current
along the line, C' and L' are the per-unit-length capacitance and inductance of the line,
respectively; E,l; (x,z) is the horizontal component of the incident electric field along the
line, and Bji, (x, z) is the azimuthal component of the incident magnetic induction.

The boundary condition are
V(0) =—-Z,-1(0), (2.40)
V(L) =Z;, - I(L). (2.41)

The second members of (2.39) are the source terms, which are expressed in terms of
transverse magnetic induction and vertical electric components of inducing field. In Figure
2.14, the equivalent circuit of this coupling model is shown for a lossless single-conductor
overhead line. The forcing functions in (2.39) are included as a set of distributed seties

voltage and parallel current sources along the line.

h
—jw f B} (x, z)dzdx

I(x) Ldx 0 1(x + dx)
—_— —f\+ —_—

..... ol Y YN\ O-—mmmmm
/
h
Zy V(0) V(x) —jwC’ f E;;(x,z)dzdxCTD —_Cldx [Vx+dx) v |z,
0
_____ .C O.______
0 x x + dx L

Figure 2.14 — Equivalent coupling circuit according to the Taylor ez a/. formulation for a
lossless single-conductor overhead line.
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2.4.2 Agrawal, Price, and Gurbaxani model

This coupling model, proposed in [63], refers to the general case of a multi-conductor
line plus a reference conductor, excited by a non-uniform electromagnetic field. With
reference to the Figure 2.13, we are interested to the case of a single-conductor located at
z = h, with the reference conductor located at z = 0. The incident magnetic field, B t s
taken in the y direction and the incident electric field, E [ is in the xz-plane. The model is

described by two coupling equations in the frequency domain, which reads:

avs |
(VD) 1 100 = B ),
dx
2.42)
ac
de +jw-C"-V5(x) =0,

where EL(x, h) is the hotizontal component of the incident electric field along the line, C’
and L' are the per-unit-length capacitance and inductance of the line, respectively, I(x) is
the induced current and V¥ (x) is the scattered voltage, related to the total voltage V (x) by

the following equation

h
Vs(x) =V(x) = Vix) =V(x) + f EL(x,2)dz. (2.43)
0

The term Vi(x) is called the incident (or exciting) voltage, and EZi (x,z) is the vertical
component of the incident electric field.
The boundary conditions, written in terms of the scattered voltages and the total current

are given by

h
Vs(0) =—Z,-1(0) + j EL (0,2)dz, (2.44)
0
h
Vs(L) =2, -1(L) + j EL (L, z)dz. (2.45)
0
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In Figure 2.15, the equivalent circuit of this coupling model is shown. For this model,
the forcing function is the exciting electric field tangential to the line conductor and is
represented by distributed voltage sources along the line. In agreement with boundary
conditions (2.44) and (2.45), two lumped voltage sources are inserted at the line

terminations.

Ei(x,h) dx
I(x) Ldx I(x + dx)
B - + —_—
_____ O0— Y\ ——————
h + U O * h
szi (0,2)dz J-Eé (L, z)dz
¢ - vs©) Ve = Cldx |VSGe+ do) vy T -
Zy Z,
_____ -0 Fo m——
0 x x + dx L

Figure 2.15 — Equivalent coupling circuit according to the Agrawal e/ /. formulation for a
lossless single-conductor overhead line.

The difference between the formulation (2.42) and the formulation (2.39) proposed by
Taylor ez al. are lies essentially in the representation of the source terms. In the formulation
of Agrawal ef al., the source terms are expressed as a function of incident electric field
components only, whereas in the formulation of Taylor e/ al, the source terms are

functions of both electric and magnetic incident fields.

2.4.3 Rachidi model

The model proposed by Rachidi [64], also refers to the case of a multi-conductor line
plus a reference conductor excited by a non-uniform electromagnetic field. With reference
to the Figure 2.13, all the considerations made for the Agrawal e/ a/. formulation are still
valid. The model is described by the following two coupling equations in the frequency

domain:

(dV(x) +jw- L' -15(x) =0,

dx
dIs(x) 1 haBi( ) (2:46)
X LI i
I +jw-C V(x)—L, J. 3y dz,
0
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where BL(x,z) is the horizontal component of the incident magnetic field along the line,
C' and L' are the per-unit-length capacitance and inductance of the line, and I°(x) is the

scattered current, related to the total current by the following equation

h

IS(x) = I1(x) — I'(x) = I(x) + %f B (x,z)dz. (2.47)
0

The term I(x) is called the incident (or exciting) current, and Bji, (x, h) is the horizontal
component of the incident magnetic induction normal to the line.

The boundary conditions, written in terms of the scattered current are

15(0) = — VZ(OO) 7 B} (0,2)dz, (2.48)
0
h
I5(L) = Vz(f) + Ll f B} (L,2)dz. (2.49)

0

In this formulation, the source terms are expressed in terms of magnetic incident field
components. The use of this model is particularly interesting when the exciting field is
determined experimentally, since only the measurement of magnetic field (generally much
easier than that of electric field) is needed.

In Figure 2.16, the equivalent circuit of this coupling model is shown for a lossless

single-conductor overhead line.

h h
1[0 . 1[0 .

— | Bi(0,2)d — | By (L,z)d
le" .V( Z) Z ]S(X) Udx ls(x+dx) L/O y( Z) A
—_ —_

_____ o—rY N Ommmmmm

ha ;
CT Zo vo)  |veo Ll B";;’Z) dzdx (T) ——cCdx [va+do v |z Cl)
0
_____ .C o.______
0 x x +dx L

Figure 2.16 — Equivalent coupling circuit according to the Rachidi formulation for a
lossless single-conductor overhead line.
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Chapter 3

New Approaches to Calculation of
Lightning Induced Voltages

3.1 Introduction

Power quality issues are nowadays fundamental. In particular, Medium Voltage (MV)
distribution lines are very sensitive to nearby lightning strike effects. Accurate evaluation of
lightning induced voltages is therefore essential to address those issues.

Lightning induced voltages have been the subject of many textbooks (e.g., [1], [2]) and
papers. Recent progress in this area is significant, both from numerical and analytical point
of view. Numerical approaches have shown excellent development over the years (e.g., [3]-
[7]). They are able to accurately model the phenomenon (realistic return-stroke current
waveshape, finite ground conductivity effects, non-linearities due to surge arresters and so
on). Nevertheless, analytical solutions (e.g., [8]-[13]) still deserve attention, since they are
important in the design phase [14], in parametric evaluation, and sensitivity analysis (e.g.,
[15]); they are also implemented in computer codes for lightning induced effects [16].
Analytical solutions, moreover, do not suffer from numerical instabilities or convergence
problems, which could affect accuracy of numerical algorithms [17].

Among analytical expressions, exact solutions, i.e. solutions that, for the considered
model, are derived with no approximations, are particularly useful, since they can be used
as a test bench for approximate analytical solutions, in order to analyze their limits of
applicability [8]; they can be used also for testing the validity of numerical approaches.

Exact solutions, unfortunately, can be obtained only for very simple configurations.

The most basic case for lightning induced voltage calculations is concerned with the
evaluation of the analytical functions expressing the waveform of the voltage induced on a

lossless, single conductor located over an infinite-conductivity ground plane and excited by
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an external field due to a step current moving at constant speed along a vertical lightning
channel, unattenuated and without distortion (i.e., according to the TL model, described in
Chapter 2). The configuration is depicted in Figure 3.1, case (a).

This simple and practically unrealistic configuration, has been solved, in chronological
order, by Rusck [9], Chowdhuri and Gross [18], [19], Liew and Mar [20], Hoeidalen [10], and
Andreotti ¢t al. [8]. In particular, Rusck and Heidalen evaluated approximate solutions [8],
by using different coupling models (Rusck [9] and Agrawal et a/. [21] coupling models,
respectively) and different models for computing lightning electromagnetic field (monopole
and dipole techniques, respectively, both discussed in Chapter 2). The two solutions were
found to be the same [10], showing the important result that the solution is model-
independent. A further step was made by Andreotti ¢/ 2/ who, by using the monopole
approach for the lightning electromagnetic field evaluation and the Taylor e a/. coupling
model (described in Chapter 2), found the exact solution, i.e., the solution that, for the
described model, was obtained with no approximations. Furthermore, Andreotti et al.
demonstrated [8] that the Rusck-Hoidalen solution represents the first-order
approximation to their solution, and it is an excellent approximation for distribution lines,
where indirect lightning effects are more important; differences were found between exact
and Rusck-Heidalen approach for transmission lines.

A more realistic situation is the calculation of the induced voltage waveshape based on
the model described before, but for the case of a linearly rising current (followed by a
constant or drooping tail) instead of a step current: the configuration is the one in Figure
3.1, case (b). Approximate analytical solutions for this problem have been proposed by
Chowdhuri-Gross [18], [19], Liew-Mar [20], Hoidalen [10], Sekioka [23], and will be
discussed later in this section.

A further step to consider in the analytical models is the consideration of the lossy
ground effects. Several authors have presented simple formulas or more complex analytical
developments for the model described by both case (a) and case (b) of Figure 3.1. For case
(a), formulas have been proposed by Barker e# a/ [24], Darveniza [25], and Paulino e /.
[26]. In particular, Barker ef a/ proposed a correction factor to be applied to the Rusck’s
formula for the induced voltage peak value (and not for the overall waveshape) calculated
at the point closest to the lightning channel (x = 0). Darveniza presented an empirical
formula, deduced from theoretical considerations and experimental data, which represents
an extension of the Rusck’s formula for the induced voltage peak value again at x = 0, by
replacing the actual height of the line with an effective height, which is a function of

ground conductivity. Paulino e a/, based on the studies [27], [28], proposed an extension of
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the Rusck’s formula, again for the peak value at x = 0, by considering an additional term
which is a function of ground conductivity to account for lossy ground effects. For case
(b), a formula has been proposed by Paulino e a/. [29], which can be used to evaluate the
induced voltage peak value at x = 0, whereas Hoidalen [10] proposed an analytical
approach for the overall waveshape at any position x along the line.

The first purpose of this chapter is to extend the work started in [8] by solving in an
exact way the case of a terminated single-conductor line and other more realistic
configurations in presence of a perfectly conducting ground, that is, long multi-conductor
line with grounded conductors (ground wires) and single- and multi-conductor lines
(including grounded conductors) excited by a linearly rising current (instead of a step
current).

The second purpose is to take into account lossy ground effects. It should be noted that
lossy ground affects the lightning electromagnetic fields, in particular, the horizontal
electric field at line height (as detailed in Chapter 2). The propagation of the induced
voltage along the line is affected too. In this work, we will only consider the lossy-ground
effects on the horizontal field at line height.

The results obtained using the models developed here, for both perfectly conducting
and lossy ground, will be compared with those given by other formulas/solutions found in

the literature.

¢
N
z t Lightning %
Channel /

Figure 3.1 — Lightning channel and infinitely long overhead line: (a) step current, and (b)
linearly rising current.
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3.2 Perfectly conducting ground case

As previously anticipated, in this section, results obtained by Andreotti ¢f @/ in [8] will be
extended to different line configurations.

Specifically, the solution proposed in [8] will be firstly reviewed and reformulated. Then
we will present the exact solution for the evaluation of the induced voltages produced by a
step current on a terminated (matched and unmatched) single-conductor line located above
a perfectly conducting ground. Furthermore, other more realistic configurations, still in the
presence of an ideal ground, as the cases of a long multi-conductor line with grounded
conductors (ground wires) and single- and multi-conductor lines (including grounded

conductors) excited by a linearly rising current (instead of a step current), will be analyzed.

3.2.1 Step channel-base current

3.2.1.1 Infinitely long, single-conductor line

In [8], the authors presented the exact analytical solution for the evaluation of the induced
voltage induced on a long, lossless, single conductor located over an infinite-conductivity
ground plane, and excited by an external field due to a step channel-base current moving
along a vertical lightning channel according to the TL. model. The configuration is depicted
in Figure 3.1.

The expression for the induced voltage along the line was obtained by analytically

solving the following expression [8]:

h
v(x, t) = l—f e,(x,d,z,t)dz
0

+00
1 —-Xx
-3 j ey (n, d,h,t— y> -sign(n — x)dn |- u(t —to), 3.1)

where e,(*) and e,(*) are the vertical and the line axial component of the electric field
radiated by the return-stroke step current, respectively, € is the speed of light in free space,
u(*) is the Heaviside function, t; is the artrival time of the field to the observation point,

given by
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rn NETETIE

th =— =
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(3.2)

The meaning of the other symbols is the same as in Figure 3.1.

For the purposes of this work, we need to rewrite the solution of (3.1), keeping separate
the two contributions on the right-hand side, due, respectively, to the vertical and
horizontal components of the electric field (in [8], the two contributions were directly
simplified in the summation). It is important to keep the two contributions separate since,
when taking into account lossy ground effects [30], the vertical contribution can be directly
used, because it can be considered practically unaffected by the ground effects [31], [32],
whereas one has to modify the horizontal contribution to consider such effects [33], [34]
(see Chapter 2 for a detailed discussion of the finite ground conductivity effects). Making
reference to the first term on the right-hand side of (3.1) as v?(x, t) and the second one as

v*(x,t), we rewrite the induced voltage as
v(x, t) = vi(x,t) + v¥(x,t). (3.3)

The vertical-field contribution v#(x, t) is written here as in [8]

h
vi(x,t) = —f e,(x,d,z, t) u(t —ty)dz =

0
h+my 1 A+ VA% + 62
. Zln< )+—2-ln
r 14 A+ + 52

Co " 1o
AT - f

~u(t —ty), (3.4

where
- {p is the free space wave impedance;
- Iy is the return-stroke peak current;
- [ is the ratio between the return-stroke speed v and c;
N e (3
- r=Vx2+d?
- y=1/J1-p%
- A=B-ct—h A =F-c-t+h
- &d=r/y.
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As noted eatlier, this expression can be directly applied also in the case of lossy ground,

since it is practically unaffected by ground losses.

As to the horizontal-field contribution, v*(x, t), it is made up of two patts

v*(x, t) = vi(x, t) + vi(x,t), (3.52)
with
+00
1 n—x
vi(x,t) = -3 f ey (77, d,ht— T) ~u(t —ty)dn (3.5b)
X
and
1 X
—-x
vi(x,t) = 5 f ey (n, dht+ TIT) “u(t —ty)dn. (3.5¢)

The solution of (3.5b), by using a procedure analogous to the one in [8], can be

b

expressed as

R N e W W Ty
vi(x,t) =——="<In +ln< )
2 A+VA2 + 62

Ap—ﬁx,+\/(ﬁxl—/1p) +53/

Co'
8m-p
[ (2= i +\/(ﬁxl — )2+ 687

x—ﬂxlp+\/(ﬁx—/1p)2+62 |

+£|In + In
xl—ﬁ/lp+\/(ﬁxl—/1p)2+6lz x—ﬁlm+\/(ﬁx—lm)2+62
h+/xlz+d2+h2 Wt )
+in —2 ln( . 0) u(t — to), (3.5d)
—h + /xf+d2+h2
where

- Ap=p-(c-t+x)—h
- Ap=p-(ct+x)+h
- x;=[(c t+x)2—=d?—-h?]/[2(c-t + x)];

- & =x?+d?]y.
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The solution of (3.5¢) can be obtained from (3.5d), by replacing x with —x. Solution (3.5)
represents the exact expression for the perfectly-conducting ground case. In presence of
lossy ground, as we will see later on, the solution needs a modification, for example by
using the Cooray-Rubinstein formula (2.38) in the time domain [35].

Finally, by adding the vertical (3.4) and the horizontal (3.5) contributions, one obtains
the desired expression of the total induced voltage. Figure 3.2 shows, as an example, a 3-D
plot of the induced voltages on a 10 m high single conductor located above perfectly-

conducting ground at a distance d = 100 m from the lightning channel, with [, = 10 kA

and f = 0.4.

N
(@)

(O8]
-

Induced Voltage [kV]
s 8

0
1000

x [m] Time [Us]

Figure 3.2 — 3-D plot of the induced voltages (h =10 m, d = 100 m, [y = 10 kA, f =
0.4).

3.2.1.2 Matched single-conductor line
In this case, we make reference to Figure 3.3. We will consider a finite length single-
conductor line terminated at both ends in its characteristic impedance.

The induced voltage evaluated at the line center (x = 0) is given by [8], [30]
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¥ v
-
z %+ Lightning Overhead Line
Channel

Figure 3.3 — Terminated line case.

h h
1
v.(0,t) = —j e,(0,d,z,t) - u(t —ty)dz + o J e,(L,d,z,t — T) -u(t —t,;)dz
0 0
) h
+§ . J e,(—=L,d,z,t = T) -u(t — t;)dz
0
L
1 Inl\ .
—5 | ex(m d,h,t— ~ sign(n) - u(t — ty)dn, (3.6)
-1

where
- L is the x-coordinate of the right end point of the line (due to the symmetry, the x-
coordinate of the left end point is —L);
- T = L/c is the one-way delay of the line, i.c., the amount of time it takes for the
tield to travel along the line from both ends to the observation point;
- 4= (L +VI% +d? +h? )/ ¢ is the amount of time it takes for the lightning field
to reach the both ends and then to move along the line until the observation point.
The subscript L has been added to distinguish it from the result for an infinite-length line
given in the previous section. One can readily identify the difference by the presence of
two more contributions due to the vertical “risers”. Analogous result applies to the induced

voltage evaluated at an arbitrary value of the abscissa along the line, x:
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h h
1
v (x,t) = —f e,(x,d,z,t) - u(t — ty)dz +§-er(L, d,z,t —T,) u(t —ty,)dz
0 0
) h
+§-J.ez(—L,d,z,t—Tl)-u(t—tll)dz
0
1 In — x|
- X
-3 fex (n,d,h,t— 1 . )-sign(n—x)-u(t—to)dn, (3.7)
-L

where
- T, = (L —x)/c is the amount of time it takes for the field to travel along the line
from the right end to the observation point;
- T, =|-L — x|/c is the amount of time it takes for the field to travel along the line

from the left end to the observation point;

-ty =[(L—x) +VIZ+d? + h?%]/c is the amount of time it takes for the

lightning field to reach the right end and then to move along the line until the

observation point;

-ty = [|—L — x|+ m]/c is the amount of time it takes for the
lightning field to reach the left end and then to move along the line until the
observation point.

For the first three terms on the right-hand side of (3.7), the solution can be simply obtained
from the expression (3.4), whereas for the last term, the horizontal contribution, we need
to make further considerations.

By referring to this term as v (x, t), we have

L
1 - X
vi(x,t) = —E- fex (77, dh,t— I l) -sign(n — x) - u(t — ty)dn
L
L
_ n—x
= __ fex(n,d,h,t—T)dn
X
X
- X
— fex (77, d, h,t+nT) dn] “u(t — tg). (3.8)
L
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The first integral can be rewritten as

X1

L

n—x n—x
fex (n,d,h,t—T)-u(t—to)dn =fex (n,d,h,t—T)-u(t—tO)dn,
X

X

(3.9)
with X; given by
x;(t) x<x(t)<L & ty<t<ty,
% = { (3.10)
L xt) =L < t >ty

where x;(t) is a “dynamic” integration limit, which takes into account for the propagation
effects toward and along the line (see Appendix and [8] for details).
According to (3.10), the solution, for times such that x;(t) < L, that is t < ty,, is the

same as in [8, (50)]. For longer times (t = ty,.), the solution is given by

c

COIIO A‘l‘\/lz +62 2l ( Tr )
= — Zin

n h+r,

| "\ v datr o

Ap—ﬁL+\/(ﬂL—Ap)2+5L2 ~h + /L2+cl2+h2
+Iln +in
A = BL+ [(BL = A)? + 67 ht [12+d2+ 12

[ L—ﬁxlp+\/(,6'L—/1p)2+6L2 x—ﬁ/lm+\/(ﬁx—/1m)2+62 ]
|n + In
l L—ﬁ/’lm+\/(ﬁL—/’lm)2+5E x—mp+\/(ﬁx—/1p)2+52 J

L

n—x
f €y (77, d ht— )u(t —t;,)dn
X

+B

u(t —tyy), (3.11)

with 8§, = VL2 + d2/y. All other symbols are as defined above.

Similarly, the second integral on the right-hand side of (3.8) can be rewritten as

X

X
—x —x
f €y (n, dht+ nT) ~u(t —ty)dn = J. €y (n, dht+ nT) ~u(t —ty)dn,
—L =!

X

(3.12)
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where fl' is

x;(t) —L<x(t) <x & ty<t<ty,

Ratl
Il

(3.13)
—L x () <-L & t =ty

and where x;(t), like as x;(t), is a “dynamic” integration limit, which account for the
propagation effects toward and along the line (see Appendix and [8] for details).

The solution of (3.12) can be obtained from the solution of (3.9) replacing x with —x
and negating the whole expression.

In this way, we obtain the expression of the induced voltage at an arbitrary value of x
along the line.

The exact solution for the point closest to the lightning channel (x = 0) assumes a

simpler form: for times such that x;(t) < L, or, equivalently, x;(t) > —L (note that for x

=0, x;(t) = —x;(t)) the solution is the one found in [8]:

vL(0,8) = v11(0,8) —v15(0,0), (3.14a)
with

,,00,t) = — Z"LL;TIO : [ln <—ﬁ/’l + /,12 + 53) +B-In </1 + |22+ 53)] u(t —ty),

(3.14b)

where 8y = d/y, t, =Vd? 4+ h?/c. The expression of v;,(0,t) can be obtained by
replacing A with A" in (3.14b).

For longer times, we have
UL(O, t) =TVi3 (O, t) - UL4,(O, t), (31521)

with

v,5(0,t) = — {04'7{10 : {ln <—ﬁ/1 + /,12 + 53) —In (L — B+ \/(,BL — D)2+ 55)
B lln (,1 + /,12 + 55) —In (A — BL + J(ﬁL -2+ 55)]} ‘u(t—t,), (3.15b)
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and v;4(0, t) obtained by replacing A with A" in (3.15b).

To summarize, (3.14) represents the exact solution for a finite length line, for times such
that x;(t) < L, whereas (3.15) represents the exact analytical solution for longer times.

In Figure 3.4, the induced voltage at x = 0 for a 10-m height line, located at a distance d
= 100 m, is shown. The line is matched at both ends. Plots are obtained for various line
lengths, ranging from 400 m to 3 km with a 200 m step. One can note, in contrast to the
infinite-length line, the “jump” due to the vertical risers; clearly, increasing L delays the
“jump”. In Figure 3.5, the induced voltage is evaluated at x = L (the same as at x = —L). In
this case, apart from the “jump”, one more effect is noticed: the induced voltage varies as
the line length increases. This effect allows one to make the following observation: in
principle, the lightning electromagnetic field illuminates the line for its entire length; in
order to reduce the computational burden in computer codes used for lightning-induced
voltages calculations (e.g., [16] and [37]), one has to choose a shorter length of the line
which is able to mimic the line for its whole length (e.g., a line 20-km long, which in
principle is illuminated over all the 20 km of its length, could be acceptably represented by
an illuminated segment of 2 km, considering the rest of the line as passive). Now, if the
considered illuminated portion is too short, the corresponding induced voltage is not
accurate: for example, as noted above, in Figure 3.5 the induced voltage becomes more or
less constant when the line is 2-km long or more, i.e., a selected portion of 2 km or more
will be able to mimic a longer illuminated line. It is clear that if the segment selected for the
lluminated portion of the line is not sufficiently long, one could get an underestimation of
the induced voltages. The proposed solution could be used as a means for addressing this
issue. For example, as noted above, in the case analyzed in Figure 3.5 (h = 10 m, d = 100
m) a length of 2 km can be considered suitable.

Finally, in Figure 3.6 a comparison of the results obtained by using (3.14) and (3.15), and
those obtained by using Rusck’s formula [9], the latter adapted to a finite length line, is
shown for a line of length 2 km, a height of 10 m, located at a distance d = 100 m from the
lightning channel. As in the case of an infinite length line [8], no differences can be spotted
on the graph: the maximum relative error was found to be 0.58%. Differences can be

found for typical heights of transmission lines [8].
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Figure 3.4 — Plot of the induced voltage at the center of a line whose length (2L) varies
from 400 to 3000 m with a step of 200 m (h = 10 m, d = 100 m, Iy = 10 kA, § = 0.4).
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Figure 3.5 — Plot of the induced voltage at both ends of a line whose length (2L) varies
from 400 to 3000 m with a step of 200 m (h = 10 m, d = 100 m, Iy = 10 kA, f = 0.4).
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3.2 Perfectly conducting ground case

A | —— Equations (3.14), (3.15)
B[y SR O Rusck's formula 1
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Figure 3.6 — Comparison between exact equations (3.14), (3.15) and Rusck’s expression at

the center of a 2-km length line (h = 10 m, d = 100 m, Iy = 10 kA, B = 0.4).

3.2.1.3 Unmatched single-conductor line

In this case, we still make reference to Figure 3.3, but the two terminating impedances
can be arbitrary. Under the assumption of a lossless line, it is possible to obtain an
analytical solution for the transient response of this line excited by the lightning external
field. In particular, the voltage at the left termination as viewed from the lightning channel

reads [2]

N 1
U (=Lt) =1 +p1)- Z(Pl p)™ >
n=0

-Ipz-U5<t—4(n+1).L_xs>_vs<t_m)l' (316)

c c

where Xg is the x-coordinate of the source (in our case, the lightning channel is located at

xs = 0), p; and p; are the voltage reflection coefficients at the load of the line, given by

Za—Zc Zp — Zc

. M =B “C 3.17
Z,+2z. PPz vz, G17)

P1
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Here, Z, and Zp are the termination impedances, whereas Z; is the line characteristic
impedance. The exciting source v°(t) is given by [2]
L h h
vi(t) = f ex(x,d, h,t)dx + f e,(—L,d, z,t)dz — f e,(L,d, z t)dz. (3.18)

—L 0 0

In our case, one can verify that

4n+1)-L—x 4(n+2)-L
v5<t— ( ) S)=2-17L<L,t—¥>, (3.19)
c c
and that
dn- L+ x; 4n-L
vs(t—f)z—Z-vL(—L,t— p ) (3.20)

The expression of v, (x,t) can be obtained by solving (3.7) as explained in the previous
paragraph.

Hence, we can evaluate the voltage induced at the left termination as

v,(=Lt)=1+py)- Z(ﬁh p)"
n=0

.lpz.vL <L,t_w> + v, (—L,t—4n.L)l. (3.21)

c c

We set n = 5, which is sufficient to show all the waveshapes and reflections on the time
scale chosen. In Figure 3.7 the induced voltage (at the left end) for a line which is
terminated in two impedances smaller than the matching impedance is shown (Z4 = Zp =
0.1 X Z¢). In Figure 3.8, the induced voltage is shown for two impedances greater than the
matching one (Zy, = Zp = 10 X Z). Finally, in Figure 3.9 the line is terminated in two
impedances with one greater and the other smaller than the matching impedance (Z4 = 0.1

X ZC and ZB =10 X Zc)
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Figure 3.7 — Induced voltage at the left end of a 2-km line terminated in Z, = Zp

10 kA, B = 0.4).
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Figure 3.8 — Induced voltage at the left end of a 2-km line terminated in Z, = Zp

10 kA, B = 0.4).
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o
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Induced Voltage [kV]

1
N

Figure 3.9 — Induced voltage at the left end of a 2-km line terminated in Z, = 0.1 X Z¢
and Zp =10 X Z (h =10 m,d = 100 m, [ = 10 kA, § = 0.4).

3.2.1.4 Multi-conductor line

In this section, we will consider a lossless multi-conductor line. As an example, we will

consider a three-phase line with an overhead ground wire, shown in case (a) of Figure 3.10.

e WY

Channel

Figure 3.10 — Infinitely long, lossless, multi-conductor line: (a) step current, and (b) linearly

rising current.
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3.2 Perfectly conducting ground case

One of the general approaches to electromagnetic coupling to overhead line is the Taylor ez
al’s model. Two different, but equivalent models are the Agrawal ¢f a/’s model and the
model proposed by Rachidi. All these models have been presented in Chapter 2 for a
single-conductor line. According to Taylor ef al’s model, the coupling equations for a

multi-conductor line, in the time domain, are

(o d alr
— [0 O] + (1] - [iCx, O] = = f b, (x,d, z,t)dz|,
0

N (3.22)

d d
ka [i(x,t)] + [c'] -a[v(x, t)] = —[c'] gT: fez(x, d,zt)dz|,
0

where

- [v(x, t)] is the induced voltage vector;

- [i(x,t)] is the induced current vector;

- [I'] and [c'] ate, respectively, the inductance and the capacitance matrices per unit

length of the line;
- by (") is the y-component of the magnetic field.
Another different coupling model was proposed by Rusck [9]. It is equivalent to the

three models referred to above when the lightning channel is vertical [38], which is the case
in this work.

Rusck’s model is described by the following coupling equations:

O oo 0] + 11 liGe ) = 0,
(3.23)

d d . .
—[iCo O] + ] [v? (5, 0] =[] - [9'Cx, d, 0],
where [¢l()] is the vector of the inducing scalar potentials of the incident field. These

expressions give [v¢(-)], the vector of the induced voltages due to the inducing scalar
potentials of the incident field. To obtain the total induced voltage, the following

expression can be used [9]:

h
[w(x,0)] = [v?(x,0)] + f%[Aé(x, d, h,t)]dz, (3.24)
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where [Alz()] is the vector of the vertical components of the vector potentials of the
incident field.

It is well known that, for an infinitely long line, the solution of the multi-conductor
coupling equations (3.22) or (3.23) in terms of induced voltage on a given conductor is not
affected by the presence of the other conductors [9], [39]. A coupling can occur at
transition points, e.g.,, ground wire earthing (grounding) points, or at termination
impedances [40]. In this case, the induced voltage on a given conductor is affected by the
other conductors. An important case is that of the induced voltage on a phase wire, which
is reduced by the presence of ground wire(s) [9], [39], [40].

For a power line equipped with ground wire(s), it is important to quantify this shielding
effect. The effect can be quantified by the ratio between the voltage induced on the
considered conductor (here denoted a), v, and the voltage that would be induced on the
same conductor by removing the ground wire(s), V5. In the following, we will focus on the
case of a line equipped with a ground wire which is earthed at only one point, as the one
shown in Figure 3.10. The extension to the case of multiple earthings (e.g., earthing at
every pole), which is fundamental when evaluating the lightning performance of the line,
requires a more complex treatment due to the reflections caused by the earthing points, as
shown for the case of the unmatched single-conductor line, and will be developed in future
studies. We also note that analytical models, as the one developed here, can be applied only
to linear devices such as grounding connections; for nonlinear devices such as surge
arresters, numerical approaches are to be used (e.g., [41] and [42]).

The ratio V;/v, has been referred to as Shielding Factor (SF) [9], [40] or Protective
Ratio (PR) [39], [43].

In the case of power lines equipped with a ground wire connected at only one
grounding point, the general formulation for the induced voltage v, at the grounding

connection is [44], [45]

_L.
Zyp + 2R,

!

Vg = Vg, Vp, (3.25)

where

- Zpa =1/2m /g0 - In(dpg/dpe) is the mutual surge impedance of ground wire

b and phase conductor a;

- Zpy =1/2m\po/ g - In(2hy /1) is the self-surge impedance of the overhead

ground wire b;
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3.2 Perfectly conducting ground case

- Ry is the ground resistance of the overhead ground wire;

- vy is the voltage induced on the ground wire;

- dpq is the distance between the ground wire and the mirror image of conductor a;
- dpg is the distance between the ground wire b and the conductor a;

- hy is the height of the overhead ground wire;

- Ty is the radius of the ground wire, whose cross section is S,.

Hence, the SF (PR) is given by

v_‘;‘:l_i.@
Vg Zpp + 2R, v,

(3.206)
In our case of exact formulation for the step current, the ratio vj, /v, is the ratio between
the expressions obtained by applying (3.3) to conductors a and b. In this case, the SF (PR)
depends on the line geometry through Z,, and Z,,, on the grounding resistance Rj, and,
through the ratio v}, /v,, on the specific position of the earthing pole X, and it is also a
function of time. Other authors, including Rusck [9], found instead that the ratio was
simply a function of the line geometry and grounding resistance. We will use our exact
approach to check Rusck’s result [9]. Rusck, starting from the coupling model (3.23), (3.24),
investigated the shielding effect and found that, for one ground wire earthed at only one

pole, it is given by

v_cll: 1_i.@
Vq be+2Rb ha'

(3.27)
where hg is the height of the phase conductor a.

In this case, the SF (PR) is a function only of the line geometry (i.e., the conductors’
placement in the line section, as in the example shown in Figure 3.11 [46]), through Zj,,
Zpp, ha, hp, and of the grounding resistance Rj. It does not depend on the position X, of
the grounding pole along the line nor is it a function of time. This approach greatly
simplifies the problem, but it is necessary to check its validity.

For this purpose, we recall [8] that Rusck’s formula was the first-order approximation of
the exact solution proposed by Andreotti ¢ al, based on approximating the horizontal
electric field by the first term of its series expansion around z = 0 and considering the
vertical component to be constant between 0 and h (equal to the value obtained for z = 0),

1.€.

b
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Figure 3.11 — Geometry of a three-phase distribution line with an overhead ground wire

[40].

de, (x,v,z,t
ex(x: y; Z! t) E % ' Z: (328)
z z=0
e,(x,y,z,t) = e,(x,y,0,t). (3.29)

This approximation makes the ratio v}, /v,, which in general is given by applying (3.3) to
conductors a and b, to become simply hy,/hg, as shown in (3.27). We now show that for
typical distribution line geometries such the one shown in Figure 3.11, the simplifying
hypothesis introduced by Rusck is fully acceptable, as illustrated by Figures 3.12 and 3.13,
where the dependence of the shielding effect on time and X, is shown for the typical
distribution line geometry given in Figure 3.11, by assuming R, = 0 L, and an overhead
ground wire cross section, Sp, of 16 mm®. The values used for all other parameters are
reported in the figure captions. One can see that the variations are of no practical
importance and the values are very close to the SF (PR) value of 0.63538 calculated by
means of (3.27).

For completeness, in order to show how the SF (PR) depends on the position of the
ground wire, we apply (3.27) to the distribution line of Figure 3.11 by moving the ground
wire to different positions. Considering a perfectly grounded shielding wire, the loci shown
in Figure 3.14 are obtained. One can see that some shielding effects can be obtained even
via ground wires belonging to different power lines; for example, a power line, parallel to
and 7.5 m away from the considered one, and equipped with a ground wire located at a
height of 14 m above the ground, produces a SF between 0.80 and 0.85. In Figure 3.15, we
show, also for the typical distribution-line geometry of Figure 3.11, the SF (PR) as a
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3.2 Perfectly conducting ground case

function of height of the ground wire, considering its possible locations both above and
below the phase conductors. The evaluation is carried out both for the inner phase
conductor (the conductor closest to the ground wire) and for the outer ones for the case of
zero-resistance grounding. In Figure 3.10, the effect of the earthing resistance for the inner
phase conductor is shown. The plots refer to different values of grounding resistance,

varying from 0 Q (perfect grounding) to 200 Q, with a 20 €2 step.
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Figure 3.12 — Voltage ratio for the central phase conductor with x,, = 0 m, hy= 10 m,

hb: 11 m, Sb: 16 mmz, Rb =0 Q, d =100 m, IO =10 kA,ﬁ =0.4.
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Figure 3.13 — Voltage ratio (peak values) for the central phase conductor with X, varying
from 0 to 2 km, hy= 10 m, hpy=11m, Sp,=16 mm* R, = 0 Q, d = 100 m, [, = 10 kA,
g =0.4.
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Figure 3.14 — Loci of the SF relevant to conductor a, in fixed position and isolated from

the ground, for various locations of a petfectly grounded shielding wire, b.
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Figure 3.15 — Plot of the SF versus ground wire height for the line geometry shown in
Figure 3.11 in the case of perfect (zero-resistance) grounding. Due to symmetry, the SF is

the same for both outer conductors.
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Figure 3.16 — Plot of the SF for the inner conductor of Figure 3.11 versus ground wire

height and various grounding resistance (Rp) values.

3.2.2 Linearly rising channel-base current

3.2.2.1 Infinitely long, single-conductor line

A linearly rising current wave propagating along the channel is more consistent with the
actual rising behavior of the lightning current. Figure 3.17 shows a linearly rising current
approximating a typical recorded channel-base current [47].

Here, we will start from the exact solution for the induced voltage due to a lightning
step current, in order to derive the exact solution for the case of a linearly rising current by
means of Duhamel’s integral, which allows one to obtain the response of a system, y(t), to

an arbitrary time-varying excitation, f(t), using the unit step response of the system, s(t):

t

y© = [ 5@ 1@ - (330

0

We will consider both constant-level (i.e., a current with “tail time” t; = %) and drooping
current tails (see Figure 3.18), following the linearly rising front.
We will first calculate the induced voltage at the point closest to the lightning channel

and then the induced voltage for an arbitrary value of x along the line.
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Figure 3.17 — Linearly rising lightning current with constant tail superimposed on a typical
recorded lightning channel-base current (adapted from [47]).
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Figure 3.18 — Linearly rising current waveshapes with constant-level and drooping tails.

In the case of a step current, the exact solution for the point closest to the lightning

channel is given by (3.14). Let us consider the convolution integral (3.30) when the input

f(t) is a ramp of constant slope @ = Io/tf

f() =a-t-u(t), (3.31)

where the “front time” tf is assumed here to be the time needed for the current to rise

from O to its peak value Iy, and where the unit-step response s(t) is the one given by

expression (3.14). Using (3.14) and (3.31) in (3.30), we obtain

v(0,8) = v,1(0, 1) — v,2(0,0), (3.32a)

where
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3.2 Perfectly conducting ground case

v,4(0,t) = ——a ”ln <19 + /192 + 52> ; n<—ﬁ’19 + /192 + 53)] d9, (3.32b)

and

V,,(0,t) = ——a f Iln <0 + /192 + 62> ; n<—ﬁ19 + /192 + 63)] d9, (3.32¢)

with A3 = f-c-t, —hand 4] = B¢ t, + h. The subscript 7 has been added to refer to
a linearly rising current.

Solutions of the integrals (3.32b) and (3.32c) are given in the Appendix. By using (A.1)
and (A.2), we obtain

vr1(0,t) = v;1(0,t) — v,1(0, 1), (3.32d)

with v71(0,t) given by

1
N
+Z larctan - arctan( o +d5 )l - ’/12 + 53} ‘u(t — ty),

(3.32¢)
and v, (0, t) obtained replacing A with A4 in v71(0, t).
Analogously, for v,,(0, t), we obtain
v,5(0,t) = v/,(0,t) — v,5(0,t), (3.32f)

where v,,(0,t) and v,5(0,t) can be obtained by reversing the sign of h in v;4(0,t) and
v,1 (0, t), respectively.
Expression (3.32) is the exact solution for the linearly rising part of the lightning

current.
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A second contribution must be added to obtain the overall current waveshape, which
corresponds to its tail part (constant-level or drooping tail). As shown in Figure 3.18, in the
case of constant-level tail, the second contribution is a time-delayed ramp with a negative
slope whose magnitude is equal to that of the positive slope; for a drooping tail of negative
slope —a’ = —1,/(2 - tp), where t, = t, — t7 is the time needed for current to fall from
the peak value to the half peak value, the second contribution is a time delayed ramp of

fictitious negative slope which is equal to

—a'=—a—a =— . (3.33)

This expression can be easily derived by examining Figure 3.18. We note that, when
t; =0, a" = a.
In the case of constant-level tail, the second contribution, denoted by v,.(0, t), can be

written as
v.(0,0) = —[v,;1(0,t — t7) — v,5(0,t — tf)]. (3.34)

For the drooping tail, v,.(0, t) is computed as
v.(0,6) = —[v;1(0,t — t7) — v75(0,t — tf)], (3.35)

where v;*l(O, t— tf) and v, (0, t— tf) are obtained, respectively, by replacing the slope
@ inv,1(0,¢ — t7) and v,5(0,t — t;) with a*.

In Figure 3.19(a), we show induced voltages computed for a linearly rising current with
constant-level tail for different front times. We start with a very fast front time of 1 ns (not
applicable to lightning, but shown for comparison with the step current case dealt with in
the previous section) and then vary t¢ from 0.1 to 1 ps, with a 0.1-ps step. In Figure
3.19(b), we show the results obtained for a linearly rising current with front times that
range from 1 us, which is typical for subsequent strokes, to 10 s, which is typical for first
strokes, with a step of 1 ps. One can see that a subsequent stroke, all other parameters
being the same, can produce an induced voltage which is about 200% higher than the first-

stroke one.
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Figure 3.19 — Induced voltages obtained for different tf at x = 0 (midpoint position of the
line) with h =10 m, d = 50 m, [ = 10 kA, f = 0.4.

We now consider the evaluation of the induced voltage at an arbitrary value of X along
the line. We will separate vertical and horizontal-field contributions, and we will derive
exactly only the first one. For the horizontal contribution, we will give an approximate

expression.
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Let us consider first the induced voltage contribution due to the vertical electric field
component. In this case, the unit step response s(t) in the convolution integral (3.30) is
given by expression (3.4). The exact analytical solution, obtained using expression (A.1), in

which & is replaced with §, reads

vi(x, t) = v (x,t) + v (x,t) — v5(x,t), (3.36a)

where
U h +

vi(x,t) = Zn(-)ﬁ a-(c-t—ry)- ln( 0) ~u(t —ty), (3.36b)

and
Ho ’ /
Ufl(x,t)=ma'lﬂ'ln<)l+ A2 +52>—Ao-ln</10+ ﬂ.g+62>
—\//12 + 62+ \//1(2, + 6Zl ~u(t —ty), (3.36¢)

with Ag = - c-ty — h. The expression for v%(x,t) is obtained from v7 (x,t) by
reversing the sign of h.

As to the horizontal contribution, due to the complexity of the integrand in (3.5), we
were not able to obtain a sufficiently compact expression. For this reason, an approximate
solution will be presented here.

It is worth noting that an approximate solution for the evaluation of the induced voltage
due to a linearly rising current has been obtained by Sekioka [23]. This solution was
obtained by means of a convolution of the scalar and vector potentials calculated by Rusck
[9] for the step current. Since Rusck’s solution is the first-order approximation of the exact
one, for the convolution product linearity, the Sekioka’s solution can be considered as the
first-order approximation of the exact one as well.

We here note that the advantage of the Rusck’s coupling model compared to the one of
Taylor ez al. is that the evaluation is based on the scalar and vector potentials rather than on
the electric field. This results in an easier evaluation of induced voltages, although the
separation between horizontal and vertical contributions, as we have done previously, is
not possible. For this reason, Sekioka gives the overall voltage expression, with no

separation between vertical and horizontal contributions.
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3.2 Perfectly conducting ground case

Based on the above, the “first-order” horizontal contribution can be obtained by
subtracting from the “first-order” voltage obtained by Sekioka, the “first-order” vertical

contribution, i.e.,

vrE(x,t) = v 5(x, t) —vig(x, 1), (3.37)
where v, 5(x, t) is the solution obtained by Sekioka [23]:

B c?-t2—r2\? Brc-t+¢&
1+<d c't+¢ )

r-(1+p)

vy s(x,t) = Ho " {l + 2B -In }-u(t —ty),

47t-ﬁ

(3.38)

with & = \/(,6’ ¢ t)2 482, {, =r/c, and where vZg(x,t) is the “first-order” vertical
contribution, obtained by convolving, according to (3.30), the following step response

expression obtained by Rusck [9]:

h
o Io 1 1-p2 N
vi(x,t) = — | e,(x,d,z,t) - u(t — to)dz = 5— -h-(—— >-u(t—t0).
b[ 2 B r &
(3.39)
We, therefore, obtain
, _ Hoth .6 Brc-t+¢
vig(x, t) _—Zn-r-ﬁza B-(c-t—ry) ln(ﬁ s )] u(t —tp),
(3.40)

where EO = \/(ﬁ *Cr to)z + 62.
Substituting (3.38) and (3.40) in (3.37), and making the appropriate simplifications, we

obtain the following expression for the horizontal contribution:

h il Bc r2\?
4/3 "+<d t+€)

B+ JFT |
r-(1+p)

(X t) = w)

+B i —

+2B - In [ C t- T0>} u(t —ty). (3.4
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By adding expressions for the vertical contribution (3.36) and horizontal contribution
(3.41), we finally obtain an approximate formula for the evaluation of the total induced

voltage at an arbitrary position along the line:

v-(x, t) = vE(x, t) + v¥(x, t). (3.42)

Note that this expression corresponds only to the linearly rising part of the lightning

current. The contribution from the current tail that must be added to account for the

overall current waveform can be obtained as described above for the closest point case.
The 3-D plot of the induced voltages computed using (3.42) for the case of linearly

rising front and constant-level tail is shown in Figure 3.20.
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Figure 3.20 — 3-D plot of induced voltages obtained for h = 10 m, d = 100 m, I, = 10

kA, B = 0.4, and return-stroke current waveform characterized by tf = 2 us, t, =o.

3.2.2.2 Multi-conductor line

In this case we make reference to case (b) of Figure 3.10. We recall that for a power line
equipped with a ground wire connected at only one grounding point, the SF (PR) is given
by (3.26). In our case of exact formulation for the linearly rising curtrent, the ratio vy, /v, is
the ratio between the expressions obtained by applying (3.32) to conductors a and b for
the rising part and (3.34) or (3.35) for the constant or drooping tail, respectively. In this

case, the SF (PR) depends on the line geometry through Z,, and Zpj, on the grounding
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3.2 Perfectly conducting ground case

resistance R}, and, through the ratio, it is also a function of time (due to the linearity of the
convolution operator, we expect that it depends on the position of xp, but we are not able
to analyze this dependence since the exact solution was calculated only for x, = 0). In the
case of Sekioka’s solution, the ratio v}, /v, is obtained by applying (3.38) to conductors a
and b, and this leads to an expression which is the same as the Rusck’s one (3.27). As for
the step current case, this approach greatly simplifies the problem, but we have to check its
validity. In Figure 3.21, we show the time dependence of the ratio v;/v, calculated
applying (3.32) and (3.35) to conductors a and b for the typical distribution line geometry
given in Figure 3.11. Here, we found that the approximation given by (3.27) which yields a
value of 0.63538 is not accurate only in the very early period of time, where, however, the
induced voltages are still very low without any isolation problem. The voltage peak is

formed after 0.75 ps, when the SF is well established at its asymptotic value.
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Figure 3.21 — Voltage ratio for the central phase conductor of Figure 3.11 (h,= 10 m,
hy=11m, Sp,=16 mm’>, R, = 0Q,d =50 m, I, = 12 kA, B = 0.43, and return-stroke

current waveform characterized by t¢ = 0.5 ps, t; = 20 ps).

We will now use the exact solution for a linearly rising current in the case of a multi-
conductor line with a grounded conductor as a test bench for two numerical approaches; in
particular, we have compared the results obtained by using formulas (3.32) and (3.35)
combined with (3.27) with those obtained by Yokoyama [40] and by Paolone ez al. [41]
using numerical approaches for the same line configuration and return stroke current. In

Figure 3.22(a), we show induced voltages on the inner phase conductor of a line like the
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Chapter 3 - New Approaches to Calculation of Lightning Induced Voltages

one shown in Figure 3.11 for different values of grounding resistance, to be compared
which similar results from [40] and [41] (note that the model used in [41] is implemented in
the LIOV-EMTP code [37]) shown in Figure 3.22(b) and (c), respectively. Parameters used
for the compatison are the same as in [40] and [41] (that is: hy= 10 m, hy= 10.5 m, S,=
50.3 mm’, d = 100 m, Iy = 100 kA, B = 0.1, ty = 2 ps, t; = 40 ps). To better display the
comparison, in Figure 3.23, we have superimposed the induced voltages obtained by using
the three different approaches for the case of an infinite grounding resistance. The

numerical model proposed in [40] is seen to be very accurate; a good accuracy is also found

for the model used in [41].
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Figure 3.22 — Induced voltages on the inner phase conductor at the point closest to the
lightning channel, for different values of grounding resistance: (a) computed using (3.32),
(3.35) and (3.27), (b) adapted from [40], (c) adapted from [41]. Parameters used are the
same as in [40] and [41].
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Figure 3.23 — Induced voltages on the inner phase conductor at the point closest to the
lightning channel for Ry, = %: comparison of calculations made by using (3.32), (3.35) and
(3.27) with results from Yokoyama [40] and Paolone ef a/ [41]. Parameters used are the

same as in [40] and [41].

3.2.2.3 Comparison with other models
As pointed out in the introduction, approximate analytical solutions for the evaluation

of the lightning induced voltage on a lossless, infinitely long, single conductor located over

an infinite-conductivity ground plane and excited by an external field due to a linearly rising

current (followed by a constant or drooping tail) which move along a vertical lightning
channel according to the TL model, that is the configuration depicted in case (b) of Figure

3.1, have been proposed by Chowdhuri-Gross [18], [19], Liew-Mar [20], Hoidalen [10], and

Sekioka [23].
In this paragraph, predictions of the exact analytical solution presented above for the
evaluation of the voltages induced at the point of the line closest to the lightning channel

will be compared to those obtained by using the approximate solutions found in the

literature.
For the comparison purposes, we will assume a channel-base current with a peak value
Iy = 12 kA, a front time ty = 0.5 us, and a drooping tail with t; = 20 ps. This specific
channel base current was selected since it represents the best fit of a typical measured

channel base current [10].

82




Chapter 3 - New Approaches to Calculation of Lightning Induced Voltages

" Chowdhuri-Gross’s formula

The solution proposed by Chowdhuri and Gross [18], [19], for a linearly current of
constant slope a = I,/ tr, was obtained starting by a coupling model developed by the
authors themselves and known as the “Chowdhuri-Gross model” (e.g., [38]). The original
Chowdhuri-Gross’s formula was first published in [18]. Afterwards, in [19], Chowdhuri
modified it on the basis of the suggestions given by Cornfield [48], who found a mistake in

the original expression. The final expression, for x = 0, reads:

“h 1 * la?
vee(0,8) = 4/:1(;-,[3“.{)7. lln<z_2 ly_2+ﬁz.cz.t2 -(1+ 5% —Zﬁz'c't'f1l>
—2In (CTt)] + In (%)} “u(t —ty), (3.43)
where

- fi=m+c?-t?—d? f,=m—c?t?+d?

- fa=mg—c?t2+d% f =my+c?-t:—d?

- m=\/(cz-t2+d2)2+4h§-c2-t2;

- mg =+/(c? -t +d2)?+ 4h2 - c?- 2
- h¢ is the length of the lightning channel;
- & =y@-c- ) +65;

- t,=d/c.

Expression (3.43) is the solution for the linearly rising part of the lightning current. A
second contribution must be added to obtain the overall current waveshape, which
corresponds to its tail (constant-level or drooping tail). This contribution can be obtained
as described above for the exact analytical solution.

Now, we will compare the induced voltage waveform obtained by using the Chowdhuri-
Gross’s formula (3.43) with the one obtained by using the exact solution (3.32). In Figure
3.24(a), the compatison is shown for a 10 meters height line located at distance d = 50 m

from the lightning channel; results have been obtained for Iy = 12 kA, B = 0.4, tr = 0.5 ps,

and t; = 20 ps. The same comparison, but with d increased to 100 meters, is shown in
Figure 3.24(b). We point out that, since the Chowdhuri-Gross’s formula refers to a finite
lightning channel length, for comparison purposes we have considered, for both graphs,

he = % in (3.43). Moreover, for the sake of completeness, we have also checked the finite
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3.2 Perfectly conducting ground case

length channel case, assuming h, = 3 km (see Figures 3.25(a) and (b)). The comparison
clearly shows that the Chowdhuri-Gross’s formula, as for the step current case analyzed in
[8], cannot be considered correct. In fact, in all considered cases, it predicts significantly
higher peak value and steeper front, and a too rapid decay of the current tail.

Furthermore, we notice a polarity inversion, particulatly accentuated when h, is finite,
which cannot be justified for the voltage induced by a linearly rising current waveform in

case of lossless ground.
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Figure 3.24 — Comparison between the induced voltage evaluated at x = 0 by means of
Chowdhuri-Gross’s formula and the proposed exact analytical approach (h = 10 m,
Iy =12kA, B =04, tr = 0.5 s, t; = 20 ps, he = 0): (a) d = 50 m, (b) d = 100 m.
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Figure 3.25 — Comparison between the induced voltage evaluated at x = 0 by means of
Chowdhuri-Gross’s formula and the proposed exact analytical approach (h = 10 m,
Iy =12KkA, B =04, tr = 0.5 us, t; = 20 ps, he = 3 km): (a) d = 50 m, (b) d = 100 m.
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»  Liew-Mar’s formula

The closed form solution proposed by Liew and Mar was first published in [20] and
then revised by Liew and Haldar in the discussion of [19], since the original formula
contained several typographical errors. It has been obtained starting from the Chowdhuri-

Gross coupling model, as discussed in [8]. The final expression, specified for x = 0, reads

, i 4 42
v (0,8) =Z;;_Za-{ ln<%-ch—2+[32-cz-tz-(1+ﬁ2)—2ﬁ2-c-t-fll>

“t\T + +
—2Iln (c_) — [arccosh <a p) — arccosh <a0 p)
d /] S S

b+p/q* by + p/q*
—arccosh <+/q> + arccosh <%>l +2p

- arcsinh (M) — arcsinh (M)} ‘u(t —ty), (3.44)

d d

where

- a=(ct)7%

- ay=(c- )75

- b=(c-t)%

- by =(c- Ez)z;

- p=(d*+2h})/d%

- q=1/d%

- s=p?—¢%
- w=p?/q*-1/q%

Also in this case, expression (3.44) refers to the linearly rising portion of the channel-

base current. A second contribution must be added, as specified in the previous sections.
Now, we will compare results obtained by using the exact solution (3.32) and their
counterparts obtained by using the Liew-Mar’s formula (3.44). In Figure 3.26(a), the
induced voltage waveforms obtained for h = 10 m, d = 50 m, [y = 12 kA, f = 0.4, t; =
0.5 ps, and t; = 20 us are shown. In Figure 3.26(b), the same comparison is shown, but for
d = 100 m. As for the Chowdhuri-Gross’s formula, the Liew-Mar solution also refers to a
lightning channel of finite length: for comparison purposes we have considered h, = % in

(3.44) for both graphs. We have also checked the finite length channel case, assuming h, =
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3.2 Perfectly conducting ground case

3 km (see Figures 3.27(a) and (b)). As one can see from the comparison, the Liew-Mar’s
formula predicts a lower peak value for d = 50 m, and a higher peak value for d = 100 m.
In both cases, results obtained by (3.44) show a steeper front, a too rapid decay of the
current tail, and a polarity inversion. The latter effect can be seen both for finite and
infinite lengths of the lightning channel.

We conclude that the Liew-Mar solution cannot be considered correct.
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Figure 3.26 — Comparison between the induced voltage evaluated at x = 0 by means of

Liew-Mar’s formula and the proposed exact analytical approach (h = 10 m, I = 12 kA,
B =04t =0.5ps, ty =20 us, hy = ©): (@) d = 50 m, (b) d = 100 m.
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Figure 3.27 — Comparison between the induced voltage evaluated at x = 0 by means of

Liew-Mart’s formula and the proposed exact analytical approach (h = 10 m, [ = 12 kA,
B =04,tr =05 ups, ty =20 us, hy = 3 km): (a) d = 50 m, (b) d = 100 m.
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" Sekioka’s formula

As indicated in paragraph 3.2.2.1, an approximate solution for the evaluation of the
induced voltage due to a linearly rising current has been proposed by Sekioka [23]. This
solution was obtained by means of a convolution of the scalar and vector potentials
calculated by Rusck [9] for the step current case, and was derived by using the so-called

Rusck’s coupling model [9]. The Sekioka’s formula (3.38), for x = 0, can be rewritten as

2. 42 _ g2 2
(4Bt ma
d C't+fl

“h
vs(0,t) = Z;_ﬁa-{ln

ﬁ'C't'l‘El ~
+2ﬁ-ln [m]}'ﬂ(t—tz).

(3.45)

Also in this case, this formula refers only to the initial lineatly rising portion of the
current.

By comparing the results obtained by using the exact solution (3.32) and their
counterparts obtained by using the Sekioka’s formula (3.45), calculated for the same values
of parameters proposed above (h = 10 m, d = 50, and 100 m, [ = 12 kA, B = 0.4, t; =
0.5 us, and ¢ = 20 ps), one can observe that, on a 10-ps time-scale, the results are
practically the same (the two induced voltage waveforms overlap each other). Some minor
differences can be spotted by zooming in the graphs, as shown in Figure 3.28(a) for the

case of d = 50 m.
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Figure 3.28 — Comparison between the induced voltage evaluated at x = 0 by means of
Sekioka’s formula and the proposed exact analytical approach (d = 50 m, I; = 12 kA,
p = 04, ty = 0.5 ps, t; = 20 ps): (a) magnification of the 0.6+1.1 us time interval for
h =10 m, (b) h = 30 m.
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3.2 Perfectly conducting ground case

We can therefore conclude that the Sekioka’s formula is consistent with the exact
solution and can be considered suitable for analyzing power distribution lines, for which
the height is relatively small. For higher lines, such as transmission lines, small differences
between predictions of (3.32) and (3.45) can be appreciated. However, the Sekioka’s
formula can still be considered a suitable tool for this kind of lines. In Figure 3.28(b), a 30-

meter height line is considered.

" Hoidalen’s formula

Hoidalen [10] also proposed an approximate formula which allows one to evaluate the
induced voltage along the line. This solution has been obtained by a numerical convolution
of Rusck’s expression for the step current case.

As the expressions presented above, the Hoidalen’s solution is the sum of two
contributions, which account for the linearly rising and the tail part of the current. At x =

0, the formula reads

vy (0,8) = A(0,t) — by - A(0,t — tf), (3.46)
with
] A t/At—l 1
- At
A(0,t) = 22— v5(0,i-At) + = v5(0,0) | - u(t), (3.47)
IO " tf : 2
=0
where

- by=1+t/[2-(t: —t)];

- Iy, is the linearly rising current peak value;

- At is the time step used for the numerical integration.
The term v§(0,t) represents the voltage induced by a step current, whose expression is
given in [10]. Note that the expression given in [10] refers to a finite-length line and to an
arbitrary value of x. It can be easily extended to the case of an infinite-length line and the

resulting expression, for x = 0, reads

. 2.4,
p5(0.) = 2. ¢t (1 et

pre N Py (B E & )lu(t_fZ)' 049
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A comparison between predictions of the exact solution (3.32) and the results obtained
by using the Hoidalen’s formula (3.406) is shown in Figures 3.29(a) and (b), respectively, for
a 10-m-high line and a 30-m-high line. As in the case of Sekioka’s expression, no practical
differences are observed for a 10 m line (the graph was zoomed in to show some minor
differences), whereas for the 30 m line, even if differences can be seen, Hoidalen’s formula

can still be considered a suitable approximation of the exact solution.
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Figure 3.29 — Comparison between the induced voltage evaluated at x = 0 by means of
Hoidalen’s formula and the proposed exact analytical approach (d = 50 m, Iy = 12 kA,
B = 04, ty = 0.5 ps, t; = 20 ps): (a) magnification of the 0.6+1.1 us time interval for
h =10 m, (b) h = 30 m.

Finally, in order to check also the proposed approximate equation for an arbitrary value
of x along the line, we have compared the predictions of (3.42) with those of the
approximate solutions proposed by Hoidalen [10] and Sekioka [23]. Figure 3.30 shows the
results obtained at a distance of 500 m from the center of the line (closest point of the line
to the lightning channel). In both cases, an excellent correspondence can be seen. The
maximum relative error was found to be 0.33% in the case of Heidalen’s expression and

0.32% in the case of Sekioka.
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Figure 3.30 — Induced voltage on an infinitely long line at a distance of 500 m from the
center: comparison between the results obtained using (3.42) and the Hoidalen [10] and
Sekioka [23] formulas. Parameters used ate h = 10 m, d = 50 m, I, = 12 kA, f = 0.4,
tr = 0.5 us, ty = 20 ps.

3.3 Lossy ground case

In this section, the solutions presented above for the lossless ground case and both the
step current and linearly rising current will be extended to take into account lossy ground
effects. For this purpose, it is important to recall that lossy ground affects the lightning
electromagnetic field, in particular, the horizontal electric field at line height (as detailed in
[33] and in Chapter 2). The propagation of the induced voltage along the line is affected
too. Nevertheless, in this thesis work, only the lossy-ground effects on the horizontal field
at line height will be considered.

Finally, results obtained using the model developed below will be compared with those

given by other formulas found in the literature.

3.3.1 General formulation

Let us consider a long, lossless, single conductor located over a finite-conductivity
ground plane, and excited by an external field due to both a step channel-base current and

a linearly rising channel-base current moving along a vertical lightning channel according to
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the TL model. The configuration is the same as the one depicted in Figure 3.1, except for
the soil conductivity.

In the ideal ground case, as described in section 3.2.1.1, the expression for the induced
voltage along the line can be obtained by analytically solving equation (3.1), in which
appear the vertical and the line axial components of the electric field produced by a step
current if one is studying case (a) of Figure 3.1, or by a linearly rising current if one is
studying case (b).

In the case of lossy ground, both e,(*) and e,(+) will be affected by finite ground
conductivity effects, but since we are neglecting the lossy effects along the line, (3.1) still
holds. Rigorously, e,(-) and e, (-) should be calculated by solving the Sommetfeld integrals
[49], but in this case the integrals in (3.1) could not be closed analytically. However, since
the vertical component e, (*) is practically unaffected by the finite ground conductivity and
the line axial component e, (*) can be satisfactory represented by the Cooray-Rubinstein
approximation (see Chapter 2 for a detailed discussion of the lossy ground effects), for
which a time-domain representation has also been given [35], we will adopt this
approximation in the following analysis. The validity of the Cooray-Rubinstein formula has
been investigated by many authors (e.g., [34], [50], [51]). At close ranges, where the induced
voltages are the most critical, the error associated with the Cooray-Rubinstein approach is
significant only for very pootly conducting earth [52]. Therefore, 0 = 0.001 S/m can be
considered as a lower limit for ground conductivities. Down to this value, the errors can be
considered negligible [52].

According to the Cooray-Rubinstein’s approximation, the line axial field e, (+) can be

calculated by means of the following expression [35]:

ex(x,y,2,t) = ey (x,y,2,t) — \/@ “hyi(x,5,0,t) + hy;(x,y,0,t) xK(t), (3.49)

where
- ey;(*) is the ideal electric field line axial component (calculated as if the ground
were a perfect conductor);
- hy; () is the ideal azimuthal magnetic field line normal component (calculated as if
the ground were a perfect conductor);
- & is the ground permittivity.

The sign * denotes a convolution, and K (t) can be expressed by [53]
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P T (T (L] et = = [P A (D). et
K@) = e 2¢ []O(Ze t) ]1(25 t>] e =% dt[]O(Ze t) e ]
(3.50)
where 0 is the ground conductivity, Jo(*) is the modified Bessel function of the first type

and order 0, J; (*) is the modified Bessel function of the first type and order 1.

Therefore, (3.1) can be written as

h
v(x,t) = —fezi(x,d,z,t)dz
0
1 400 | |
n—Xx .
) f €xi (TI; d,h,t— . >-51gn(n—x)d77
1 400 | |
Ho n—x )
5 \/; f hy; (77, do,t— . ) sign(n — x)dn
1 400 | |
—Xx
_E' j [hyi <77, d,0,t— %) . sign(n - X)I * K(t)dn ~u(t — to)-

(3.51)

The first two terms on the right-hand side of (3.51) represent the induced voltage in case of
perfectly conducting ground, whereas the remaining two terms represent the necessary
corrections to account for lossy ground effects.

Let us consider two arbitrary time functions f(t) and g(t). It is well known that their

convolution product is defined as

f@*mw=fﬂﬂg@—ﬂﬁ- 552

Hence, the last term on the right-hand side of (3.51), apart from the multiplying factor

—1/2, can be written as
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t
- X

f hyi\n,d,0,7 — y> -sign(n —x) - K(t — t)dt | dn. (3.53)

0

For our purposes, we need to reverse the integration order in (3.53), so as to obtain

t] +o
—Xx
f f (n, d,0,T— y> -sign(n —x)dn |- K(t — t)dt. (3.54)
0 —0o0
If we set
+00
In—xI\ .

wy(x, t) = hyi|\n,d,0,t — c -sign(n — x) - u(t — ty)dn, (3.55)

and call v;(x, t) the induced voltage in the case of ideal ground, (3.51) can be rewritten as

t

v(x, t) = v;(x,t) +%-\/§-wh(x, t) —%-fwh(x,r) -K(t —1)dr. (3.56)

0

Expressions for v;(x, t) have been presented above, both for the step current case (see
paragraph 3.2.1) and the linearly rising current case (see paragraph 3.2.2)

In the next two sections, we will give the analytical expression of Wy, (*) in an exact form
(i.e., with no approximations) both for the step and the linearly rising channel-base current
cases.

As for the evaluation of the convolution integral appearing in (3.56), we will use the
approach proposed in [53] that will be briefly outlined here. Let us call the convolution
shown in (3.506) as

t

CI(E) = f wy (,7) - K(t — T)dr. (3.57)
0

If we consider N equally spaced time samples in the interval [0, t], and assume that the

function wy, (x, T) is constant between the samples

93



3.3 Lossy ground case

Wh(xﬂ T) ~ 1/1'1 Vte [tnﬂ tn+1)! (358)

with t, =At-(n—1),n=1,2,...,N and V;, = wy(x, t,,), one can compute CI(t) in an
approximate way at each time sample between t; = 0 and ty, implementing the following

formula [53]:

(CI(ty) =Cl; =0,

n-1 (3.59)
Cl(t,) =Cly= Y Vi, IKp_m, n=2,..,N

where
- IK, =VIK,,, — VIK,;
- VIK, = —J,(c/(2¢) - t,) - e/ @& tn,

3.3.2 Step channel-base current

To evaluate the last two terms of (3.50), representing the lossy ground effects, we need
to solve (3.55). First, we recall the exact analytical expression for the line normal
component of the ideal azimuthal magnetic field (i.e., the field calculated as if the ground

were a perfect conductor) evaluated at ground level (z = 0) for the step current case [8]

Iy, frct-x
h;i(x, d, O,t) = 2 :

—— T u(t — to). (3.60)

The integral in (3.55), with h,,; given by (3.60), is solved in the Appendix, and the solution

reads
wi (x,t) = ws(x, t) + ws(—x, t), (3.61a)
with
o [ (Bret 8N o (2B EN L O] e
Welt) = 21 lln </i — Bx; + fl) thn <xl - A+ fz) i <5)l e fo

(3.61b)
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where

- A=B-(c-t+x);

- &= \/(ﬁxl _i)z + 67

By using these results, we first show in Figure 3.31 the induced voltages at different
points along the line (x = 0 m, 500 m, 1000 m, 1500 m, and 2000 m) both for perfect
ground (Figure 3.31(a)) and lossy ground (Figures 3.31(b) and (c)) for two different ground
conductivities (¢ = 0.01 S/m and 0.001 S/m) assuming a relative permittivity, &, of 10.
The well-known polarity inversion effect is reproduced [3], [54]. Note also that all
waveshapes do not start from zero due to the discontinuity produced by the step current.
The lossy ground has also the effect of magnifying the induced voltage at the point closest
to the lightning channel and reducing the positive polarity peaks for “off-the-center”
positions. It should be noted also in Figures 3.31(b) and (c) that the negative polarity peak
increases with increasing x.

For direct comparison purposes, we show in Figure 3.32 the induced voltages at x = 0
for perfectly conducting ground, o = 0.01 S/m, and 0 = 0.001 S/m. The peak increases by
about 14% when o = 0.01 S/m and by about 49% when o = 0.001 S/m, compared to the
perfect ground case.

For the off-the-center position (x = 500 m), a different behavior is seen in Figure 3.33:
the positive polarity peaks decrease and negative polarity peaks increase with decreasing
ground conductivity (note that waveforms for perfectly conducting ground do not exhibit

negative polarity peaks).

3.3.3 Linearly rising channel-base current

For the case of a linearly rising current, we first need to calculate the line normal
component of the ideal-ground azimuthal magnetic field at z =0. It can be obtained
starting from (3.60) by means of the Duhamel’s integral (3.30).

Let us consider the integral (3.30) when the input f(t) is a ramp of constant slope
a = Iy/tr, and where the unit-step response s(t) is the one given by (3.60). This integral

can be solved exactly and the solution reads

X

W (x,d,0,t) = 0
yl(x ) 2n.ﬂ.c.tf.r

> (& —1) - ult — to). (3.62)
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Figure 3.31 — Plots of the induced voltages at different positions along the line (h = 10 m,
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Figure 3.32 — Comparison of the induced voltages at x = 0 for perfectly conducting
ground (0 = © and & = 1), 0 = 0.01 S/m, and ¢ = 0.001 S/m (g, = 10). Plots are
obtained for h = 10 m, d = 50 m, [, = 12 kA, f = 0.43.
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Figure 3.33 — Comparison of the induced voltages at x = 500 m for perfectly conducting
ground (0 = © and & = 1), 0 = 0.01 S/m, and ¢ = 0.001 S/m (g, = 10). Plots are
obtained for h = 10 m, d = 50 m, Iy = 12 kA, f = 0.43.
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3.3 Lossy ground case

As for the case of a step current, by using (3.62), the integral in (3.55) can be solved exactly,

as shown in the Appendix. The solution reads

wi (x, t) = w,(x, t) + we(—x, t), (3.632)

with

Wr(x,t)=1—0 {El—€+ﬁi-ln<w> +Jx2 +d2—\/xlz+d2

2n-Bcty X —BA+E
B ‘AR - |arctanh —WZ(XHQ — arctanh —‘WZ(XZ)-I-Q
2P JQ-T7 Jo-12 Jo-12
+£- arctan (W(xl) A T2> — arctan (W(x) A TZ) } “u(t —ty),
T T JW2(x;) +Q T JW2(x)+Q
(3.63b)
where

- P=[(c-t+x)*+d?] (1-p2);

- Q=[a®+2]/[(c-t+x)?- (1 - D]

- R=(c-t+x)? [(c-t+x)*+d?];

- S=d? [(c-t+x)?+d?;

- T=d/(c-t+x);

- W@ =[(c-t+x)-p+d?*]/[(c-t+x)-(c-t+x—q)]

By using these results, Figure 3.34 shows the induced voltages computed at the point
closest to the lightning channel (x = 0) for a linearly rising current with drooping tail (t; =
20 ps) for different front times. We start with a very fast front time of 1 ns (not applicable
to lightning, but shown for comparison with the step cutrent case) and then vary t¢ from
0.1 to 1 ps, with 0.1-us step. Figure 3.34(a) refers to the perfectly conducting ground,
whereas Figure 3.34(b) refers to a ground with o = 0.001 S/m and &, = 10. We notice that
finite conductivity ground significantly increases the voltage peaks for all front times. In
Figure 3.35, we show the induced voltages at different points along the line (x = 0 m, 500
m, 1000 m, 1500 m, and 2000 m) both for perfect ground (Figure 3.35(a)) and lossy ground
for 0 = 0.001 S/m and &, = 10 (Figures 3.35(b)). The assumed current has a front time t¢

= 0.5 us and a drooping tail with tail time t; = 20 ps. This specific channel-base current
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was selected since it represents the best fit [10] of a current obtained using Heidler
functions [54] which, in turn, reproduce a typical measured channel-base current [55] (see
also the following paragraph “Model validation”). As for the step current case, we observe
the inversion of polarity of the waveshapes; the lossy ground has also the effect of
magnifying the induced voltage at the point closest to the lightning channel and reducing
the positive polarity peaks for an “off-the-center” position. It should be also noted in

Figure 3.35(b) that negative polarity peaks increase with increasing X.

100

aoH i N\

Induced Voltage [kV]

20 [l

W
N
()]

160

140

120

100

80

60

Induced Voltage [kV]

40

20

(b)

Figure 3.34 — Induced voltages obtained for different tf at x = 0 by assuming h = 10 m,
d=50m,ly =12kA, f =043, t, =20 ps: (a) 0 = © and & =1, (b) 0 = 0.001 S/m and
& = 10.
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Figure 3.35 — Plots of the induced voltages at different positions along the line (h = 10 m,
d=50m, I, =12kA, B =043, t; = 05ps,ty =20 us): (a) 0 =0 and & =1, (b) 0 =
0.001 S/m and &, = 10.

For direct comparison purposes, Figure 3.36 shows the induced voltages at x =0 for
petfectly conducting ground, 0 = 0.01 §/m, and o = 0.001 S/m. The peak increases by
about 16% when o = 0.01 S/m and by about 54% when o = 0.001 S/m, compared to the
perfect ground case. For an “off-the-center” position x = 500 m, (see Figure 3.37), the
different behavior noticed in the case of a step current is also noticed here: the positive
polarity peaks decrease and negative polarity peaks increase with decreasing o (note that
for perfectly conducting ground there is no negative polarity peak).
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Figure 3.36 — Comparison of the induced voltages at x = 0 for perfectly conducting

ground (0 = © and & = 1), 0 = 0.01 S/m, and ¢ = 0.001 S/m (g, = 10). Plots are

obtained for h = 10 m, d = 50 m, Iy = 12 kA, B = 0.43, t; = 0.5 ps, t; = 20 ps.
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Figure 3.37 — Comparison of the induced voltages at x = 500 m for perfectly conducting
ground (0 = © and & = 1), 0 = 0.01 S/m, and ¢ = 0.001 S/m (g, = 10). Plots are
obtained for h = 10 m, d = 50 m, Iy = 12 kA, B = 0.43, t; = 0.5 ps, t; = 20 ps.
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3.3.4 Model validation

In order to test the validity of the model, we compared predictions of the proposed
approach and those of the LIOV (Lightning Induced OverVoltage) code [37], [54] based
on solving telegrapher’s equations generalized to include source terms and, similar to the
proposed approach, employs the Cooray-Rubinstein approximation. Since simulations with
the LIOV code for a single-conductor line in the presence of lossy ground are available,
but for a channel-base current of the Heidler-function type (see Chapter 2), we have
approximated the Heidler-function channel base-current with a linearly rising current with
drooping tail, using the approximation proposed in [10]: the parameters used are [y = 12
kA, tr = 0.5 ps, and t; = 20 ps. Further, since simulations with the LIOV code are
available only for a finite length line, we have adapted the new approach to the geometry
considered in [54], which refers to a single-phase 1-km-long and 10-m-high line terminated
in its characteristic impedance. The method used to consider the case of the finite length
line is similar to the one developed in paragraph 3.2.1.2. The lightning channel is located 50
m from the overhead line center. In Figure 3.38, we show the induced voltages at the line
terminal calculated with the proposed approach and with the LIOV code for both
petfectly-conducting (0 = %, . = 1) and lossy ground (o = 0.001 S/m, & = 10) cases
(note a slight difference relative to the induced voltage calculated for an infinite length line
in Figure 3.37). The results match well in the case of lossless ground, whereas a discrepancy
up to about 14% in peak values is seen in the lossy ground case. Reasons for this relatively
small discrepancy are presently unknown. In summary, the proposed formulation seems to

perform well and can represent a useful test bench for numerical and analytical models.

3.3.5 Comparison with other models

As mentioned in the introduction, several authors have presented simple formulas or
more complex analytical developments for the model described by both case (a) and case
(b) of Figure 3.1 in presence of a lossy ground. For case (a), formulas have been proposed
by Barker ez al. [24], Darveniza [25], and Paulino e7 a/. [26]. For case (b), solutions have been
proposed by Paulino e7 a/. [29], and Hoeidalen [10].

In this section, predictions of the new formulation proposed for the evaluation of the
voltages induced on an overhead, lossless, single-conductor line located above a finitely
conducting ground, and due to both a step and a linearly rising current will be compared to

those based on the other approaches found in the literature.
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Figure 3.38 — Comparison of the induced voltages at the line terminal (x = 500 m)
evaluated by means of LIOV code [37], [54] and the proposed approach (h = 10 m, d = 50
m, [y = 12 kA, B = 0.43, t; = 0.5 ps, t; = 20 ps).

3.3.5.1 Step current models
Comparison of different models will be performed for a single-conductor line above
lossy ground, as the one shown in Figure 3.39, where the line conductor height h and

ground conductivity o will be variable parameters.
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Figure 3.39 — Line geometry used for calculations.
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3.3 Lossy ground case

" Barker et al.’s formula

In the approach proposed by Barker e# al. [24], only the peak value of the induced
voltage at the point of the line closest to the channel (x = 0) is estimated. They propose a
correction factor to be applied to the corresponding Rusck’s expression [9] (which was
derived for a lossless ground), in order to bring model predictions closer to the
experimental data. The correction factor serves to increase the induced voltage relative to
the perfectly ground case. Note that, according to Barker e a/, this correction factor was
needed to compensate for inaccuracies in the return-stroke model, however, as pointed out
by Ishii in the discussion accompanying their paper [24], this correction was needed to
account primarily for the lossy ground effects. Other studies confirm that lossy ground
produces higher over-voltages compared to the lossless case (e.g., [5], [10], [54]).

The original Rusck’s formula is

IO " h ﬁ
Ve peak =30 —— 1+TB2 : (3.64)

which, for f = 0.4, the value adopted in the IEEE Standard 1410 [14], becomes

Io'h
d

Vi pear = 38.8 . (3.65)

Barker et al, on the basis of their analysis of experimental data obtained at Camp

Blanding, FL, proposed the following modified formula:

Ioh) Ioh

Vi peax = 1.63 - (38.8- y

(3.66)

which, in their opinion, is able to better reproduce the experimental findings. Note that
(3.66) does not include the value of the ground conductivity (corresponds to the ground
conductivity at the Camp Blanding research facility) and, in addition, is limited to the case
of B = 0.4.

We now compare the induced voltages obtained using (3.66) with the peak values of the
voltage waveforms obtained by using (3.56) together with (3.3), (3.59), and (3.61), for
x=0.

In Figure 3.40(a), we compare the results obtained for different ground conductivities

by using Iy = 10 kA, f = 0.4, & = 10, at a distance d = 100 m, for a 10-m high line. One
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can see that the results match only when the ground conductivity is about 1.5 mS/m.
Figure 3.40(b) shows the same simulation, but with the height of the line reduced to 7.5 m.
In this second case (corresponding to the average conductor height in the experiment), the
match is found for a ground conductivity of about 2.7 mS/m. This means that the results
by Barker e al. are strongly affected by the line height. We also note that values of ground
conductivity at the Camp Blanding site, either measured or inferred from low-frequency
grounding resistance measurements, which are summarized by Thang e 4/ [56], range
between 0.25 and 1.8 mS/m. The value of 2.7 mS/m is higher than these values.

In summary, (3.66) does not seem to provide an accurate solution in the finite
conductivity ground case. However, we note, once again, that the correction factor was not
directly proposed by Barker ez a/. to account for finite ground conductivity effects, but, as
pointed out in the discussion section of the same paper [24], it primarily represented the

direct consequence of these effects.
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Figure 3.40 — Comparison between the induced voltage peak values computed at x = 0 by
means of Barker e a/’s formula and the proposed approach (d = 100 m, I, = 10 kA,
p =0.4,and & = 10): (a) h = 10 m, (b) h = 7.5 m.

" Darveniza’s formula

Darveniza [25] presented an empirical formula for the calculation of the peak values of
the induced voltages at x = 0, which was derived from experimental data, theoretical
considerations, and values obtained from computational simulations. The Darveniza’s
formula, similar to that of Barker ¢7 /., is an extension of Rusck’s formula (3.64), but in this
case, the actual height of the line is replaced by an “effective” value that accounts for the

ground conductivity. This effective height is given by
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3.3 Lossy ground case

We first note that compared to Barker e al’s formula, the Darveniza’s one shows
dependence on the ground conductivity.

We now compare the peak voltage values obtained by (3.64) with h replaced with he s
and their counterparts obtained by using (3.56) together with (3.3), (3.59), and (3.61), for
x=0.

In Figure 3.41, we show the results obtained for different ground conductivities by
using h = 10 m, d = 100 m, Iy = 10 kA, f = 0.4, & = 10. One can observe that the peak
value estimated by using the Darveniza’s formula is always lower than the one calculated by
using the proposed analytical approach, but always within 20%. The percentage difference

was computed as

Vpeak—new approach — Vpeak—Darveniza .

100. (3.68)
Vpeak —new approach
70 \ I
1 1 Proposed approach
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Figure 3.41 — Comparison between the induced voltage peak values evaluated at x = 0 by

means of Darveniza’s formula and the proposed approach (h = 10 m, d = 100 m,
Ih, =10 kA, f = 0.4, and &, = 10).

In Figure 3.42, we plot 3-D graphs showing the percentage difference between the
results obtained by using the Darveniza’s formula and the proposed approach as a function

of the line height and the distance between the lightning channel and the line. Figure
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3.42(a) is for 0 = 0.01 S/m and &, = 10, Figure 3.42(b) for ¢ = 0.001 S/m and &, = 10.
The difference is up to about 22% for ¢ = 0.01 §/m, and up to about 44% for o = 0.001
S/m, increasing with the distance. The range 50250 m was selected because for shorter

distances the lightning strike will be probably intercept the line, whereas for longer

distances it will not be able to produce critical overvoltages.
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Figure 3.42 — 3-D plots of the differences between the induced voltage peak values at
x = 0 computed by means of Darveniza’s formula and the proposed approach (Iy = 10 kA,

B =0.4,and &, = 10): (a) ¢ = 0.01 S/m, (b) & = 0.001 S/m.
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" Paulino et al.’s formula
Paulino ez a/. [26] derived a formula, based on a large number of numerical simulations,
which, similar to other formulas discussed before, is an extension of the Rusck’s formula. It

is given by
Vb pear = k¢ = (Vg + V), (3.69)

where Vi stands for the original Rusck’s formula given by (3.64), and Vs is an additional
term which accounts for the finite conductivity ground effects. This additional term is

given by [26]

Vs = @-ﬁ%-lo-w/l/(a-d). (3.70)

The k. factor in (3.69) is needed to compensate errors due to the delay between the voltage
peaks associated with the two contribution Vi and Vg (see [20] for more details). For an
overhead line above lossy ground (o # ), the suggested value for k. is 0.85 (in the lossless

ground case, k. = 1). Paulino ¢# a/. also give the expression for Vs for the case of f = 0.4,

which reads

Ve =1.28-1y-/1/(o - d). (3.71)
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Figure 3.43 — Comparison between the induced voltage peak values evaluated at x = 0 by
means of Paulino e a/’s formula and the proposed approach (h = 10 m, d = 100 m,
Iy = 10 kA, f = 0.4, and ¢, = 10).
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In Figure 3.43, we compare the values obtained by (3.69) with their counterparts
obtained by using (3.50) together with (3.3), (3.59), and (3.61), for x = 0. In particular we
compate the results obtained for different ground conductivities by using h = 10 m, d =
100 m, Iy = 10 kA, B = 0.4, & = 10. One can see that predictions of Paulino ef al’s

formula are reasonably close to the ones obtained by using the proposed approach. The

maximum difference is about 3.5 kV (7.5%).
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Figure 3.44 — 3-D plots of the differences between the induced voltage peak values at
x = 0 computed by means of Paulino ¢f a/’s formula and the proposed approach (I, = 10

kA, B =04, and & = 10): a) 6 = 0.01 S/m, (b) & = 0.001 S/m.
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3.3 Lossy ground case

In Figure 3.44, we plot 3-D graphs showing the differences between the results obtained
by using the Paulino ez a/’s formula and the proposed method as a function of the line
height and the distance between the lightning channel and the line. Figure 3.44(a) is for o =
0.01 S/m and &, = 10, Figure 3.44(b) for 0 = 0.001 S/m and & = 10. One can sce a
maximum difference of 8.6% in Figure 3.44(a), and a maximum difference of 6.0% in

Figure 3.44(b).

3.3.5.2 Linearly rising current models
Also in this case, comparison of different models will be performed for a single-

conductor line above lossy ground. We will use again the line geometry shown in Figure

3.39.

" Paulino et al.’s formula

For the lineatly rising current, Paulino ez a/. [29] proposed a formula which, similar to

(3.69), is made up of two contributions
VP_peak = ke (Vg + V), 3.72)

where Vs is the same as in (3.70). As for the Vg, they make a numerical convolution of the
Rusck’s expression (3.64), written for a return-stroke velocity of 120 m/us (ie., f = 0.4),
and for a front time ty = 3.8 us, which is the median value suggested by CIGRE for
negative first strokes [57]. They found that [29]

Ve =85"1I,- (3.73)

h
e
For the correction factor k., they suggest the values k. = 0.90 for ¢ # ©, and k. = 1 for
lossless case.

In Figure 3.45, as we have done for the step current case, we compare, for different
ground conductivities, induced peak voltages obtained by using (3.72) with their
counterparts obtained by using (3.56) together with (3.32), (3.59), and (3.63), for x =0. A
trapezoidal channel base current (i.e., a linearly rising current followed by a constant tail)
with Iy = 10 kA and t; = 3.8 ps has been considered for calculations; other parameters

used ate h = 10 m, d = 100 m, f = 0.4, and & = 10. One can see that the results given
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by Paulino e# a/’s formula are reasonably close to the ones obtained by the proposed

approach. The maximum difference is about 2.8 kV (4.4%).
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Figure 3.45 — Comparison between the induced voltage peak values evaluated at x = 0 by
means of Paulino e/ a/’s formula and the proposed approach (h = 10 m, d = 100 m,
Iy =10kA, B = 0.4, tr = 3.8 us, t; =, and &. = 10).

In Figure 3.40, as we have done for the step current case, we plot 3-D graphs showing
the percentage differences between the results obtained by using the Paulino ez 2/’s formula
and the proposed method as a function of both the line height and distance between the
lightning channel and the line. Figure 3.46(a) is for ¢ = 0.01 S/m and &, = 10, Figure
3.46(b) for o = 0.001 S/m and &, = 10. One can see a maximum difference of 7.8% in
Figure 3.46(a), and a maximum difference of 5.2.% in Figure 3.46(b).

" Hoidalen’s fornula

Hoidalen [10], unlike the other analytical expressions discussed before, proposed a
formula which evaluates the overall voltage waveshape for a general position X along the
line. Hoidalen considered the sum of two contributions: one for the lossless case (V;), and

the other to account for the lossy ground effects (V) [10]

Vu(x, t) = Vi(x, 0) + Vs (x, 0), (3.74a)

with V;(x, t) and V;(x, t) given, respectively, by
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Figure 3.46 — 3-D plots of the differences between the induced voltage peak values at
x = 0 computed by means of Paulino ¢f a/’s formula and the proposed approach (I, = 10
kA, B =0.4,tr =3.8us, t; = ©,and & = 10): (a) 0 = 0.01 S/m, (b) 0 = 0.001 S/m.

Vi(x,t) = A;(x,t) — by -Al-(x, t— tf), (3.74b)
and

V,(x,0) = Ag(x,t) — by - Ag(x, t — t7), (3.74¢)
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where
I t/At—1
A, t) = T Z VS (i At)+— w5 o )| u), (3.75)
o *f =0
: A t/At-1 Gei-AD) .
80 At WH X, l" t
Ay(x,t) = ———- : Z —+(—0.22'K3+—)
’ Loty (mo | & ft/ac—i 6

4
Wy (x, £ — AL) + (—1.07 K+ 022 K3 + 5) w6 0| u(®),  (3.76)

with k = \/ & &/ (- o - At). The term vj;(x, t) represents the voltage induced by a step
current in case of ideal ground, and wy(x,t) is an expression obtained integrating the

horizontal magnetic field, whose expressions are [10]

vlfl(xrt) 26_0 IO :8 h’ dz+;2.(tc_.:_x)2.I1+x+ﬁ2(C.t_x)l'u(t 0/
(3.77)
Wy, 0) = 1o B [ln (dz +;;(tc__:_ SR ACH R g])
1 B-c-t+¢& .
B l"<(1 —gyr)| ue-i 78

Since Hoidalen proposed a solution for the calculation of the overall waveshape, we first
make a comparison in Figure 3.47, where the waveshapes for an infinitely long line are
evaluated at the point closest to the lightning channel (x = 0) by using the Hoidalen’s
equation (3.74) and the proposed approach (i.e., by using (3.56) together with (3.32), (3.59),
and (3.63)). Waveforms are given for three different values of ground conductivity (0 = o,
o = 0.01 S/m, and o = 0.001 S/m), and have been obtained for a trapezoidal channel-base
current with Iy = 10 kA, tf = 1 ps, and t; = o; other parameters used are h = 10 m, d =
100 m, f = 0.4. From the compatison, one can observe that the results given by Hoidalen’s
method match the ones predicted by the proposed approach both for the perfectly
conducting ground and for 0 = 0.01 S/m. Some differences between the results are seen

for 0 = 0.001 S/m.
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Figure 3.47 — Comparison between the induced voltages evaluated at x = 0 using
Hoidalen’s approach and the proposed method (h = 10 m, d = 100 m, I, = 10 kA,
B =04,tr =1 ps, t; = ). Hoidalen: 0,0,0.
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Figure 3.48 — Comparison between the induced voltage peak values evaluated at x = 0 by

means of Hoidalen’s approach and the proposed method (h = 10 m, d = 100 m,

Iy =10 kA, B = 04, t, = 0, and &, = 10).
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In Figure 3.48, we compare, for different ground conductivities, peak values of the
induced voltages evaluated at x = 0 by means of Hoidalen’s formula (3.74) and by using
(3.560) together with (3.32), (3.59), and (3.63). The parameters used are the same as in
Figure 3.47, but this time, two different front times are analyzed: the first one, tf = 1 ps, is
representative of subsequent strokes, and the second one, ty = 3.8 ps, is representative of
first strokes. One can see that the results given by Heidalen are very close to the ones
predicted by the proposed method. One can also observe that the difference decreases as
the front time grows: the maximum difference is about 2.3 kV (3.4%) for ty = 1 us, and
about 1.9 kV (3%) for ty = 3.8 ps.

Finally, in Figure 3.49, we plot 3-D graphs showing the percentage differences between
the Hoidalen’s formula and the proposed approach as a function of the line height and
distance between the lightning channel and the line. Figure 3.49(a) is for 0 = 0.01 S/m and
& = 10, and Figure 3.49(b) is for ¢ = 0.001 S/m and &, = 10. One can see a maximum
difference of 0.9% in Figure 3.49(a), and a maximum difference of 2.8% in Figure 3.49(b).
These very small differences between the two methods confirm the conclusion drawn for
the lossless ground case (see [8] and paragraph 3.2.2.3): the two approaches lead to
practically identical results for typical distribution lines (h = 10 m), but differences are

expected in the analysis of typical transmission lines (h = 30 m).
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Figure 3.49 — 3-D plots of the differences between the induced voltage peak values at
x = 0 computed by means of Heidalen’s approach and the proposed method (I, = 10 kA,
B =04t =38 us, t; =0,and & = 10): (a) 0 = 0.01 S/m, (b) 6 = 0.001 S/m.
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Chapter 4

Conclusions

The aim of this thesis is to present new analytical approaches to the evaluation of lightning
induced voltages on ovethead power lines, that allow to overcome errors and/or
approximations present in the solutions available in the literature. An accurate evaluation of
lightning induced voltages is indeed essential in order to reduce the effects of lightning
flashes and improve the Power Quality of the system.

In Chapter 1, the main aspects of the lightning phenomenon have been resumed.

In Chapter 2, the models proposed in the literature for the evaluation of the lightning
induced voltages have been presented. In particular, the most used lightning return stroke
models, the techniques for the calculation of the electromagnetic fields generated by the
lightning current, and the most important field-to-line coupling models have been
presented.

In Chapter 3, new analytical approaches to the evaluation of lightning induced voltages
on overhead power lines have been presented, and predictions of the proposed solutions
have been compared to those based on the other approaches found in the literature in
order to check their validity and accuracy.

As shown in this chapter, the most basic case for lightning induced voltage calculations,
which consists in a lossless, single-conductor line located over an infinite-conductivity
ground plane and excited by an external field due to a step current moving at constant
speed, unattenuated and without distortion, along a vertical lightning channel, has been
solved in an exact way, i.e., without approximations, only recently by Andreotti ez 2/ [1]. The
work started in [1] has been extended here to more practical line configurations.

Specifically, still for the case of an external field due to a step current and perfectly
conducting ground, the cases of terminated single-conductor and multi-conductor lines

(including grounded conductors) have been studied. Further, single-conductor and multi-
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conductor lines (including grounded conductors) excited by an external field due to a
linearly rising current have been examined and a new analytical approach for the calculation
of induced voltages has been proposed. Predictions of this new formulation have been
compared to those given by other analytical (approximate) solutions proposed in the
literature. In particular, the solutions proposed by Chowdhuri and Gross, Liew and Mar,
Sekioka, and Heidalen have been considered. The comparison showed that both the
Chowdhuri-Gross’s and the Liew-Mar’s formula predict results which are in disagreement
with the proposed method, and hence cannot be considered correct. Conversely, both the
Sekioka’s solution and the Hoidalen’s formula are consistent with the proposed analytical
solution, and can be considered suitable for lightning induced overvoltages analysis.
Afterwards, the exact model for the evaluation of voltages induced on a overhead line in
presence of an infinite-conductivity ground plane has been extended to account for the
lossy ground effects. Also in this case, predictions of the new proposed model have been
compared to those based on other formulations found in the literature. In particular, the
solutions proposed by Barker e 4/, Darveniza, and Paulino ef 4/, for the step current case,
and the solutions proposed by Paulino e a/. and Heidalen, for the linearly rising current
case, have been considered. The results of this comparison show that Paulino et al’s
approach yields voltage peaks that differ by less than 10% from results obtained using the
proposed approach, for both step and linearly rising currents. Predictions of Heidalen’s
approach are within a few percent of those based on the new method. Darveniza’s formula
is less accurate, with errors of some tens of percent. Barker ez a/’s formula does not
account for variation of induced voltage with ground conductivity. For the height of the
line used in the Camp Blanding experiment, it yields results consistent with the proposed
approach for ground conductivity equal to 2.7 mS/m, which is higher than values
measured or inferred from measured low-frequency grounding resistances and geometry of
grounding rods at the Camp Blanding site. In summary, Barker ¢f a/’s formula does not
seem to provide an accurate solution in the finite conductivity ground case. Finally, we note
that this new approach can result in a shorter computation time compared with methods
that use numerical field integration (e.g., 2-D-FDTD), and can be particularly useful in the
evaluation of indirect lightning performance of distribution lines. We have tested the
procedure by computer simulations in MathWorks Matlab 7.12.0 (R2011a) environment,
on a 3.4-GHz Intel CoreTM i7 processor with 6 GB of RAM. The computation time for a
total of 1000 time points was about 3 s.

Some of the results showed in Chapter 3 are also published in the articles [2]-[4].
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Future studies will be devoted to obtaining analytical solutions for:

e different return-stroke models, such as the Modified Transmission Line model
with Linear current decay with height, MTLL, the Modified Transmission Line
model with Exponential current decay with height, MTLE, and the Travelling
Current Source model, TCS.

e different channel-base current models, such as the Heidler model, the
Diendorfer and Uman model, and the Nucci ¢ 2/ model;

¢ lightning channels with different inclinations.
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Appendix A

Solution of Some Integrals of
Chapter 3

In this appendix, we provide the closed-form solution for the integrals (3.32b), (3.32c¢),
and (3.55) of Chapter 3.

A.1 Integrals (3.32b) and (3.32c)

The following integration formulas are used to derive the analytical expressions for
lightning induced voltages due to a linearly rising current in presence of a perfectly
conducting ground.

The integrals in (3.32b) and (3.32c) can be divided into two parts. For the first logarithm
(the first integrand) on the right-hand side of both (3.32b) and (3.32c), the solution reads

[1]

f In (ﬁ + /192 + 65) d9=9-In (0 + /192 + 63) — /192 + 85. (A1)

The solution for the second logarithm (the second integrand), by means of simple

algebraic manipulations, can also be brought to a standard form [1]:

fln(—ﬁﬂ+\/1927+602>d19 =ﬁ-[ln<—ﬁﬁ+\/m>—1l

9
+d - [arctan <—

d) — arctan <ﬁ—d2>l .
NEZETY:

(A.2)
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A.2 Integral (3.55)

A.2 Integral (3.55)

In this paragraph details are given for the solution of integral (3.55) for the step current
case and the case of a linearly rising current.

Integral (3.55) can be divided into two integrals

+00
—-x
f hy; (n, d,0,t— In . l)-sign(n — x)dn
+ o0 X
n—x n—x
- f hyi (n.d,0,t —T)dn - fhyi (n.a,0.t +T)dn. (A.3)
X —00
The two integrals in (A.3) can be rewritten as
+oo X1
n—x _ n—x
f hy; (77, d,0,t — T) dn = f hy; (n, d,0,t— T) dn, (A.4)
X X
X X
n—x _ n—x
jhyi (n.d.0.t +T) dn = fhyi (n.d.0.t +T) dn. (A.5)
— o0 xl,

The integration limit x; in (A.4) is given by

(c-t+x)>—h*—-d?
(c-t+x)

Xy , (A.G)

_ 1
)
and is the solution of the following equation representing the delay due to the propagation

of the electromagnetic field and due to the propagation effects along the line:

Jd2+hz+xf x—x
t— - -=—==0. A7)

The same applies to the integration limit X; in (A.5), but this time with a different choice

of the time delay along the line

1 (c-t—x)*—h*—d?
2 (c-t—x)

!

xl=

(A.8)
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By considering the field expression (3.60), we can rewrite the integrals (A.4) and (A.5),

respectively, as

X1

Iy B-(c-t+x—n) n
ﬁf B Gt Prmraye rra o (A9)
1_0 B-(ct—x+n) n w(t — to)dn. 10

X
2n f,J[ﬁ-(c-t—x+n>]2+<n2+d2>/y2 7+ d?
!
Integral (A.9) can be brought to a standard form [1], and the solution reads

b Brlct+x—n o
2r ) B ttx—mE+GE+dDfy? 1+ &

o [ (Bt N g (KA EN L (O] e
=5 [ln <i o fz) +5-In <x1 Y fz) + ln<5)l u(t —ty). (A11)

u(t —ty)dn

In order to solve integral (A.10), first we change the sign of 1, obtaining, by using the

technique of integration by substitution, the integral

Iy r B-(c-t—x—n) .
El_}[r \/[ﬁ'(c't—x—n)]z + (n% +d?)/y? .772 + d2 “u(t = to)dn, (A.12)

and then we change the sign of x. By observing that

, 1 (c-t+x)>2—h?—-d?
—x(—x) = ch ) = x, (A.13)
integral (A.12) becomes
X
o B-(c-t+x—m) 1

“w ) TR R r g mr@ T G
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A.2 Integral (3.55)

Then, the solution of (A.10) can be obtained from (A.11) by replacing x with —x and
negating the whole expression.

If we consider instead the field expression (3.62), the integral (A.4) can be rewritten as

1 o’ 2 d2
m']H[ch-wx—m]u” A

y2
S u(t —ty)dn.  (A.15)
T]Z + d?
We can split this integral into two parts
x1
IO 172 + dZ T]
o (crt+x—n))? : ‘u(t —to)dn, (A16
2m-frc-ty .f\/[ﬁ (crt+x=—ml+ Y2 n?+d? u( o)dn,  (A16)
X
x1
—Zn.ﬁlo.c.t f_z—n = u(t — to)dn. (A17)
f o Jn?+d
Now, the integral (A.16) can be rewritten as
! 2 2 2y /42
lo [B-(c-t+x—m]°+ " +d°)/y n
T = > u(t —to)dn.
2m-Brctr J JB - t+x—mZ+ 02 +d2)/y? 1° +d
(A.18)

Making the appropriate simplifications for the numerator of the integrand, and performing
a polynomial division (by the divisor n? + d?), the integral (A.18), in turn, can be rewritten

as

I, r n—2B%-(c-t+x)
. . —to)d 2
2w fc g Lf«/[B-(c-t+x—n)]2+(n2+d2)/y2 v

X1

f [(c-t+x)2—d?]'n—2d* (c-t+x)
(? +d?)-JIB- (c-t+x—m]* + 0 +d*)/y?

~u(t —ty)dn|. (A19)

X

The first integral in (A.19) can be brought to a standard form [1], and the solution reads
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Appendix A - Solution of Some Integrals of Chapter 3

I, r n—2B%-(c-t+x)
. ) — e
2n-Brc-tf J\/[:8'(C't+x_77)]2+(772+d2)/y2 u(t —ty)dn
_ Iy s N x—BA+E . B
—Z;ijgl& €+Blh<zt}715ﬂiﬂttﬁ.@2®

As for the second integral that appears in (A.19), it can also be closed analytically. In

particular, it is easy to verify that this integral can be rewritten as

X1

Io'ﬁ M'n+N
2m-ctf J (A+B-n+n)m-/C (A, + B, 1 +1?)

~u(t —ty)dn, (A.21)

where
- M=(ct+x)*—d?
- N=2d* (c-t+x);
- A=d* B=0,C=1,
- Ay =B (et + 0+ (d/V)*
- By =-2B% (c-t+x);

- m=1.

Integral (A.21) can be solved by using the technique of integration by substitution [1], and

the solution reads

Xy
Iy- B M-n+N
27T'C'tf J (A+B'7]+772)m'\/c'(141+31'77+772)
_ 10'33 1
_271"C'tf 2.p. Q—T2

. {R . %) — arctanh (—WZ(leQ>
S .
T

arctan (W(XZ) . Q _ T2>

T yW?(x) +Q

~u(t —ty)dn

arctanh (
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where

- P=[(c-t+x)?*+d?] (1-p2);

- Q=[a+ P/let+ 0 (1= B

- R=(c-t+x)? [(c-t+x)*+d?];

- S=d* [(c-t+x)*+d?];

- T=d/(c-t+x);

- W@ =[(ct+x)-@o+d?]/[(c-t+x)-(c-t+x—¢)]

Finally, it is straightforward to evaluate the integral (A.17), and the solution reads

“u(t —ty)dn

Xy
2m-Bcty J /n2+d2

I
:m(\/’cz +d2—\/x12+d2>'u(t—to). (A.23)

By assuming the expressions (A.20), (A.22), and (A.23) we obtain the analytical solution
of the integral (A.15).

The solution of the integral (A.5) with the field expression (3.61) can be obtained from

the solution of the integral (A.15) by replacing x with —x and negating the entire

expression.
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