
Università degli Studi di Napoli Federico II
Dottorato in Ingegneria Informatica ed Automatica

Dipartimento di Ingegneria Elettrica e delle Tecnologie

dell’Informazione (DIETI)

ING-INF/05

Robustness Evaluation of

Software Systems

through Fault Injection

Candidate

Domenico Di Leo

Supervisor

Prof. Domenico Cotroneo

PhD Coordinator

Prof. Franco Garofalo

ciclo XXV, 2010-2013

Università degli Studi di Napoli Federico II, Dipartimento di Ingegneria

Elettrica e delle Tecnologie dell’Informazione (DIETI).

Thesis submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Computer Engineering. Copyright © 2013 by

Domenico Di Leo.

Never Give Up!

Acknowledgments

First of all, I want to express my gratitude to my advisor prof. Domenico

Cotroneo for giving me this opportunity and to prof. Johan Karlsson for

hositng and mentoring me while I was a visitor scholar at Chalmers Univer-

sity (Sweden).

I am thankful to Paolo Salvatore and Marco Romeo from Ciaotech s.r.l.

for financing my graduate studies and introducing me to another relevant

aspect of the research: its management and financing.

I especially want to thank the ”Robs”, Roberto Natella and Roberto

Pietrantuono, for their continuous support, fruitful discussions and funda-

mental collaboration in several works. Sincerely, I consider them as my

second advisor and wish them a brilliant and outstanding career.

Thanks to Francesco Fucci for his valuable support and intense discussion

during the preparation of a joint work.

I owe many thanks to all other Mobilab group members for their incite-

ment.

The last but not the least, I sincerely thank my dear family for being on

my side and encouragement especially in this last period of my life... Thank

you!

Domenico Di Leo

Contents

Contents v

List of Figures ix

List of Tables xi

1 Introduction 1

1.1 Thesis Contribution . 4

2 Robustness 9

2.1 Basic Concepts and Definitions from Dependability 9

2.2 Basic Concepts and Definitions from Software Engineering . . 11

2.3 Robustness Evaluation . 12

2.3.1 Basic Concepts and Definition on Fault Injection . . . 12

2.3.2 A Brief Overview on Fault Injection Techniques 14

3 Robusteness Testing 17

3.1 Robustness Testing Approaches 17

3.2 Robustness Testing Applied to Operating Systems 19

3.3 Robustness Testing Applied to Other Software Systems . . . 24

4 Stateful Robustness Testing of Operating Systems 27

4.1 Approach I . 27

4.1.1 Definitions . 27

4.1.2 Modeling the File System 28

4.2 Approach II . 33

4.2.1 Definitions . 33

4.2.2 Behavioral Data Collection 35

v

vi CONTENTS

4.2.3 Pattern Identification 36

4.2.4 Pattern Clustering . 38

4.2.5 Behavioral Modeling and Test Suite Generation 41

4.2.6 Test Execution . 43

4.3 Case Study . 43

4.4 Approach I: Experimentation 44

4.4.1 Results . 46

4.5 Approach II: Experimentation 51

4.5.1 Results . 53

5 Techniques for Injecting Hardware Faults 61

5.1 Introduction . 61

5.2 Hardware Implemented Fault Injection 62

5.2.1 Pin-level Fault Injection 62

5.2.2 Test Port-Based Fault Injection 63

5.2.3 Radiation-Based Fault Injection 63

5.2.4 Power Supply Disturbance 63

5.3 Software Implemented Fault Injection 64

5.4 SWIFI: approaches and tools 65

5.5 Robustness of Software to Hardware Faults 66

6 An Investigation of the Relationship between Workload In-

puts and Failure Mode Distributions 73

6.1 Target Workloads . 74

6.1.1 Input Sets . 74

6.2 Software Implemented Fault Tolerance 75

6.3 Experimental Setup and Fault Model 76

6.4 Results . 77

6.4.1 Results for Workloads without Software Implemented

Hardware Fault Tolerance 78

6.4.2 Results for Workloads Equipped with TTR-FR 84

6.5 Input Selection . 85

6.5.1 Profiling . 85

6.5.2 Clustering . 87

6.5.3 Input Selection Results 87

7 Conclusions and Future Work 91

CONTENTS vii

Bibliography 95

viii CONTENTS

List of Figures

2.1 Fault-Error-Failure chain. 10

2.2 An overview of fault injection techniques classified by fault

model and their implementation. Under the fault injection

technique appear the names of the main contributors along

with the year in which the technique has been proposed/refined. 14

3.1 (a) Faults is injected into component A and after its activation

becomes an error which emerges to the component interface.

Through service S2 the error propagates to component B. (b)

The call to service S2 is intercepted and an error is injected. . 18

4.1 Robustness testing conducted with the CUT in two different

states si and sk. 28

4.2 File System model. 29

4.3 System overview. 33

4.4 Interactions among OS components. 34

4.5 Example of interaction log and pattern identification. 37

4.6 Example of similar patterns. 39

4.7 Summary of the model generation approach. 41

4.8 Example of behavioral model. 42

4.9 Example of kernel code covered due to interactions between

the file system and caching (from real lookup(), fs/namei.c:478). 50

4.10 Example of kernel code covered due to concurrent I/O re-

quests (from ll rw block(), fs/buffer.c:2941). 51

4.11 Example of kernel code covered due interactions between the

file system and memory management (from try to free buffers(),

fs/buffer.c:3057). 51

ix

x LIST OF FIGURES

4.12 Overview of I/O-related subsystems in FIN.X-RTOS. 53

4.13 Call stack of a robustness vulnerability. 57

5.1 Instrumentation of the workload. 64

6.1 The percentage of value failures for different execution flows

of each workload with the startup block. 80

6.2 The percentage of value failures for different execution flows

of each workload without the startup block. 81

6.3 SHA, CRC and Qsort clusters on assembly metrics. 88

6.4 SHA, CRC and Qsort clusters on the failure distributions. . . 89

List of Tables

3.1 Examples of invalid input values for the three data types of

the write(int filedes, const void *buffer, size t nbytes) system

call. 22

4.1 FileSystem attributes. 30

4.2 OperationalProfile attributes 32

4.3 System calls tested. 44

4.4 FileSystem values. 45

4.5 File values. 45

4.6 OperationalProfile values . 46

4.7 Results of robustness tests. 48

4.8 Statement coverage. 49

4.9 Statistics on the behavioral data collection and test case gen-

eration. 54

4.10 Clusters for EXT3. 55

4.11 Statistics on failure distributions. 57

4.12 Percentage of random injection tests that trigger each vulner-

ability. 58

4.13 Probability to reproduce a robustness vulnerability in SABRINE. 59

6.1 The input space for CRC. 75

6.2 The input space for SHA. 75

6.3 The input space for Qsort. 76

6.4 The input space for BinInt. 76

6.5 Failure distribution of all the execution flows of CRC (all val-

ues are in percentage). 79

xi

xii LIST OF TABLES

6.6 Failure distribution of all the execution flows of SHA (all val-

ues are in percentage). 79

6.7 Failure distribution of all the execution flows of Qsort (all

values are in percentage. 81

6.8 Failure distribution of all the execution flows of BinInt (all

values are in percentage). 82

6.9 Null Hypothesis test results for the workloads. 83

6.10 Average failure distributions for the workloads extended with

TTR-FR, injections in all code blocks. 84

6.11 Average failure distributions for the workloads extended with

TTR-FR injection only in the voter code block. 85

6.12 The initial set of 48 assembly metrics. 86

6.13 Selected Assembly Metrics. 87

7.1 Comparison of Approach I and Approach II (SABRINE). . . 93

Chapter 1

Introduction

Over the last decades, software has been introduced in desperate safety do-

mains, such as automotive, avionics and railways, just to name a few. For

these domains, software is demanded to be highly dependable since its failure

may endanger human life, harm the environment, or cause economical loss.

A growing number of safety-critical operational functions traditionally hard-

ware implemented have been accounted to software. The avionics domains

offers a clear example with the shift from a federated architecture, in which

each Electronic Component Unit (ECU) delivers a specific task, to a central

architecture where a single software based system executes tasks of mixed

criticality. As a consequence, the complexity and the volume of software is

steadily growing in safe-mission critical systems.

In 2004, the American Department of Defence (DoD) reports that ”func-

tionality provided by software for aircraft, has increased from about 10 per-

cent in the early 1960s for the F-4 to 80 percent for theF/A-22” [1] while

the line of codes (generally regarded as a measure for the size of software)

has exceed over 5 million in modern jet, compared to about 1 million lines of

code in older aircrafts [2]. Additionally, due to the pressure from the market,

there is an emergent trend to integrate Commercial Off The Shelf software

(COTS) or more in general OTS software in safety critical systems. Indeed,

COTS software, that is, a software that is not developed in the project,

rather, it is acquired from a vendor and used as-is or with minor modifica-

tions [3], it can potentially be a viable alternative to in-house software also

for safety-critical systems [4].

Furthermore, demanding and severe standards that regulate the devel-

1

2 Introduction

opment of software in safety domains allow to include COTS in the final

released software product [5–8]. If from one side COTS products have the

potentiality to reduce significantly the time to market, from another side

a thorough and presumably costly safety assessment is preliminary to their

integration. Whatever the nature (in-house or COTS), the complexity and

the size, software must ensure that its behavior does not harm the system

in which is part of as well as it must be robust to exceptional inputs com-

ing from the surrounding environment. In other words, as safety standards

recommend [5,7,8] software components are elements of a larger sys-

tems, hence they have to operate correctly even in presence of

software and hardware faults or exceptional conditions. Software

faults, also refereed as bugs, are not avoidable in practice given the complex-

ity of software components [9]. Hardware faults will continue to increase due

to technology scales and transistor wear out [10,11].

Robustness failures due to software faults and hardware faults have been

the cause of clamorous accidents and costly service disruption. For instance,

in the infamous Ariane 5 disaster, the software reused from Ariane 4 proved

to have robustness problems when operating in the conditions experienced

from Ariane 5 [12]. Sun Microsystems found that cosmic ray strikes, a com-

mon cause of transient hardware errors, insisting on L2 cache with defective

protection provoked the Sun servers to suddenly and mysteriously crash.

Many large companies have been affected from this failure, among them

Ebay [13]. As a consequence, a software component should be robust against

erroneous behavior of faulty software components with which interact and,

at the same time, should be tolerant to the faults due the hardware on which

execute.

Fault injection, the deliberate inoculation of faults, is a powerful means

to assess the robustness of software components that goes far beyond tradi-

tional testing techniques. In the last decades several fault injection technique

have been proposed and evaluated. First fault injection approaches, the

so called hardware implemented fault injection, introduced physical faults

through the hardware layer of the target system (e.g., pin level injection [14])

or with an external injector (e.g., heavy ion radiation and electromagnetic

interference source [15]). Because of the rapid increase in processor com-

plexity, hardware implemented fault injection has been replaced with the

Software Implemented Fault Injection (SWIFI). SWIFI emulates hardware

faults through the software layer (e.g., insertion of fault injection code in

3

exception handling routine [16]) or with debugging functionalities available

on modern processors [17].

SWIFI emulates stuck-at bit errors or transient errors that are represen-

tative of errors due to real hardware faults, however this techniques is not

suitable for the injection of software faults. In this case, the Robustness

Testing (RT) which injects errors (due to software faults) to the software

interface of the target component is a more adequate technique. RT specif-

ically selects exceptional values (via typical software testing methods) to

inject into the application programming interface of the target. SWIFI and

RT are widely used and safety standards recommend their application. For

instance, the 20 years old DO178B [5] and it is newer version, DO178C [6]

released in 2011, both used in the avionics, demand the RT. In 2011 the

International Standard Organization (ISO) published the safety standard

ISO26262 [8] for the automotive domain which refers to the RT with the

name ”interface test”, whilst SWIFI is named ”fault injection test”.

These two techniques do not need to access to the source code of the tar-

get, hence they are suited for the assessment of COTS software that might

be available only as an executable. Because COTS are not usually designed

and developed according to safety standards, their behavior may be unre-

liable in presence of hardware and software faults. As a consequence, an

assessment conducted with SWIFI and RT is highly recommended. Both

RT and SWIFI have assessed the robustness of a variety of software compo-

nents, such as distributed systems [18–20] and operating systems [21,22,22].

Despite the intensive use of these techniques, their application is still costly.

Experienced personnel and several days or months are necessary to carry on

”exhaustive” fault injection campaigns [23,24].

More in general, the cost of software verification often exceeds half the

overall cost of software development and maintenance [25]. Besides being

costly, fault injection may contribute to dramatic economic loss if it is poorly

or negligently performed. NIST reports that in the United States alone, the

U.S. lost around 60B$ as a result of inadequate software testing in 2001.

Therefore, approaches and methods are sought to keep fault injec-

tion effective without compromising its efficiency. Many factors affect

the efficiency and the effectiveness such as the complexity of the injector, the

number of faults to inject and the presence of a workloads, i.e., an application

which interacts with the target of the fault injection. The workload plays

a significant dual role in fault injection. On the one hand it can facilitate

4 Introduction

the activation of faults or drive the target in specific states, thus allowing

fault injection to be effective. On the other hand, it must be chosen with

care: the desire to use more workloads in order to augment the probability

of activating a fault would make the fault injection inefficient.

This thesis focuses on robustness testing and software implemented fault

injection, for both analyzes the effect of workload on the experiment out-

comes. Furthermore, the thesis suggests approaches to make the fault injec-

tion techniques more cost-effective by leveraging on the workload.

1.1 Thesis Contribution

A wide literature exists on robustness testing [19,21,22,26,27] and software

implemented fault injection [15, 17, 18, 28, 29], many of these studies have

concentrated on the representativeness of the faults/errors to inject (what

to inject?) and the location (where to inject?) or have assessed software

fault tolerance mechanisms. For the robustness testing the error is selected

through common software engineering methods (e.g., boundary value anal-

ysis) while the application program interface of the software component is

the target location (e.g., in a UNIX system the POSIX interface). For the

software implemented fault injection there is the acceptance of the bit flip

(the temporary permutation of a bit) as representative of hardware faults

occurring in the memory area and the board registers (e.g., general purpose

registers). However, there is a marginal investigation [30–32] on how through

the workload the fault injection can be more effective and at the same time

to keep fault injection efficient in terms of number of injections to execute.

Hence, in this thesis we investigate the effect of the workload on the RT and

SWIFI. More specifically we address the following questions:

• Does and how the workload influence the outcomes of RT?

The workload clearly effects the execution of the target especially when

stimulates complex systems (e.g., an operating system or a middle-

ware) which have different states. For instance, a workload running

on an operating systems that performs I/O operations brings the OS

in a state that differs from the one due to a CPU intensive workload.

This aspects is relevant if we consider that robustness vulnerability

are characterized by rare and subtle activation conditions. Therefore,

the workload can potentially improve the efficiency of RT because it

1.1 Thesis Contribution 5

can activate such conditions. In this thesis, we focus on the operat-

ing system (OS) because they are one of the major COTS component

used in safety critical systems in avionics [33]. In particular, the case

study is an industrial OS, FIN.X-RTOS, developed in the context of

a pilot R&D project, in conjunction with Finmeccanica s.p.a. From

results of this thesis, an important emerging aspect is that, to improve

the effectiveness of robustness testing, fault injection campaigns should

consider one more variables, other than exceptional inputs; that is, the

current state of the OS.

By Combining the workload with the RT is possible to conceive a

new testing strategy, that is, a stateful robustness testing that

outperforms traditional RT (stateless RT) and stress testing. Indeed,

we observed a larger number of failures at application level and an

increment of the statement coverage up to 15% compared to RT. More

importantly the increment occurs in parts of code that are hard to

cover. Although we recognize that more appropriated test strategies

exist for augmenting the coverage (e.g, evolutionary testing), stateful

RT can be a complementary and relative simple technique to adopt

when portion of codes are tough to cover.

• How can we include the workload in RT? Obviously, the workload

cannot be left unspecified if it influences the outcome of the RT. As

said, robustness testing should be extended in the stateful robustness

testing. The vexing challenge is to propose approaches that can model

the state of the OS. Traditional approaches derived from objected ori-

ented software do not scale well for the OS since it is the result of

a complex and intricate design. Additionally such approaches are not

feasible if there is no specification as it is often the case for open source

OSs. Thus, we conceived two alternative approaches for modeling the

file system, the component of the OS under test. In the first approach,

the model of the file systems, manually created, encompasses entities a

file system is composed of, and resources it uses contributing to deter-

mine its state. The second approach, named StAte-Based Robustness

testIng of operatiNg systEms, SABRINE, automatically derives behav-

ioral models from execution traces of the file system and executes the

test cases. Both approaches have been experimented on FIN.X-RTOS

and can be adopted for any operating system.

6 Introduction

• Does and how the workload influence the outcomes of SWIFI?

Undoubtedly, the workload is responsible for the activation of faults

and therefore impacts the outcome of a fault injection campaign. If

we think of an application running on the bare metal to which to

provide a set of inputs, we are likely to observe variation in the failure

distribution because inputs activate different execution paths in the

workload. This dissertation illustrates for a set of OTS applications

running on a PowerPc board, yet representative of real workloads, the

relationship between the characteristics of the input (e.g., its size) and

the failure distribution. Results show that the size of the input data

can induce a fluctuation of about 30% of the percentage of value failure

(silent data corruption).

• How can we make RT and SWIFI more cost-effective? Intu-

itively the presence of the workload can potentially increase the num-

ber of fault injection campaign. Indeed, if we accept that a workload

drives the target in different states, we should conduct RT for each

one. Similarly when injecting hardware faults with SWIFI, we should

evaluate the robustness of the workload for each point of the input

domain. These considerations would make the cost of the techniques

unsustainable. Therefore, in this dissertation we present possible solu-

tions to keep the application of these techniques cost-effective without

compromising their efficiency.

SABRINE, through clustering techniques, can keep the number of test

cases limited and when compared with Random testing (a common

baseline) can achieve the same results with a test suite two order of

magnitude smaller. This thesis also shows that SWIFI does not need

to target the workload for each input provided, rather it is possible to

reduce the number of fault injection campaigns by clustering the input

domain before injecting faults. The approaches is straightforward and

for specific applications in our case study allows to reduce the number

of fault injection by 45%.

The dissertation is organized as follows: Chapter 2 illustrates basic concepts

on robustness and its evaluation through fault injection techniques. Chap-

ter 3 provides the background on robustness testing and surveys previous

revelent works with a specific focus on the application to operating systems.

Chapter 4 is fully devoted to the description of a novel approach which

1.1 Thesis Contribution 7

extends robustness testing into statefull robustness testing. Chapter 5 pro-

vides the basic concepts on hardware fault injection and focuses especially

on SWIFI. Chapter 6 discusses the results on an investigation between work-

load inputs and failure distribution. Chapter 7 concludes with final remarks,

the indication of the lesson learned and future research directions.

This thesis includes materials from the following research papers, already

published in peer-reviewed conferences and journals or submitted for review:

• D. Cotroneo, D. Di Leo, R. Natella, R. Pietrantuono, A Case Study

on State-Based Robustness Testing of an Operating System for the

Avionic Domain, Proc. of the 30th International Conference on Com-

puter Safety, Reliability and Security (SAFECOMP), September 2011,

Naples, Italy

• D. Di Leo, B. Sanghoolie, F. Ayat, J. Karlsson, On the impact of hard-

ware faults on embedded computer systems- An investigation of the re-

lationship between workload input and failure mode distributions, Proc.

of the 31th International Conference on Computer Safety, Reliability

and Security (SAFECOMP), September 2012, Magdeburg, Germany

• D. Cotroneo, D. Di Leo, F. Fucci, R. Natella, SABRINE: StAte-

Based Robustness testIng of operating systems, submitted to the ACM

International Symposium in Software Testing and Analysis (ISSTA),

2013

• D. Cotroneo, D. Di Leo, R. Natella, Adaptive Monitoring in Micro-

kernel OSs, DSN Workshop on Proactive Failure Avoidance, Recovery

and Maintenance (PFARM), Proc. of the 40th Annual IEEE/IFIP

International Conference on Dependable Systems and Networks Work-

shops (DSN-W) June 2010, Chicago, Illinois, USA

• D. Cotroneo, D. Di Leo, N. Silva, R. Barbosa, The PreCertification

Kit for Operating Systems in Safety Domains, Software Certification

(WoSoCER), 2011 First International Workshop on , vol., no., pp.19-

24, Nov. 29 2011-Dec. 2 2011

8 Introduction

Chapter 2

Robustness

This chapter provides the terminology and the basic concept on

which lay the entire thesis. Firstly, we introduce the concept of

robustness which is a property or attribute of a software system

that have been formalized in both dependability engineering and

software engineering. Then, the focus shift on one largely adopted

technique for robustness evaluation: fault injection.

2.1 Basic Concepts and Definitions from De-

pendability

A system is an entity, including human being, software and hardware, that

implements specific functionalities. A system interacts with its surrounding

environment to which provide services through the system boundary. A

system can consist of interacting components, recursively each component is

itself made of components. The ultimate component is the atomic unit: any

further internal structure cannot be discerned, or is not of interest and can

be ignored. One or more services of the system can fail. More specifically

(see Figure 2.1):

• Failures or service failures are the deviation of the system from the

correct implementation of the system function. A failure may occur be-

cause the system violates the specification or because the specification

is not adequate to describe the behavior of the system. The failure of

9

10 Robustness

Figure 2.1: Fault-Error-Failure chain.

one or more services implementing system functions make the system

operate in a degraded mode.

• Errors are the deviation of the system states from a correct state that

may lead to a subsequent (service) failure. Errors are dormant if they

do not cause service failure, it they manifest at system or component

interface, a failure occurs. Errors can propagate from one component

to another of the system through their interfaces.

• Faults are the hypnotized cause of errors. They can be of different

types: development faults that occur during the system development,

physical faults including faults related to hardware and, human inter-

action faults due to the interaction with the components or the system.

An active faults becomes an error, while a latent fault is present in the

component or in the system but it has not been manifested as an error.

Hence, the only presence of faults is not sufficient for a failure, but it

is necessary their activation that may occur under specific triggering

conditions. For instance, a fault is activated only when the software

component is in a specific state or the hardware executes some in-

structions. Therefore, given the activation conditions, faults can be

further classified as: Bohrbugs which have simple and deterministic

activation conditions, Heisenbugs are non deterministic are difficult (if

no impossible) to reproduce, Mandelburgs which have deterministic

activation but they require a complex conditions to activate. At the

2.2 Basic Concepts and Definitions from Software Engineering 11

present, there is no agreement between the definitions of Mandelburgs

and Heisengburg that can be defined in a different manner considering

other factors (such as the delay for their activation). Faults can also

be classified as external and internal. The prior presence of a vulnera-

bility, i.e., an internal fault that enables an external fault to harm the

system, is necessary for an external fault to cause an error and possibly

subsequent failure(s).

A system is said to be dependable if it can avoid service failures that are

more frequent and more severe than is acceptable. Dependability embraces

the following primary attributes:

• Availability: readiness for correct service.

• Reliability: continuity of correct service.

• Safety: absence of catastrophic consequences on the user(s) and the

environment.

• Integrity: absence of improper system alterations.

• Maintainability: ability to undergo modifications and repairs.

Robustness is defined as the specialization of the primary attributes, i.e.,

the dependability with respect to external faults.

2.2 Basic Concepts and Definitions from Soft-

ware Engineering

Robustness expresses the degree to which a system or component can func-

tion correctly in the presence of invalid inputs or stressful environmental

conditions [34]. Similarly to the dependability community, in the software

engineering the definition of robustness is related to external stimuli. How-

ever, if in dependability engineering a robustness failure may occur because

of an internal component error, in software engineering the word error is

meant as the mistake that makes a human being (e.g., a programmer) to

introduce a fault in the software and the fault is the cause of the failure.

For the sake of completeness, we provided definitions and concepts current

in use in software engineering, however in this works we consistently adopt

the definitions in Section 2.1.

12 Robustness

2.3 Robustness Evaluation

As the robustness of a software component has repercussions on the de-

pendability of the whole system, it is essential to evaluate it. Robustness

evaluation is indispensable for COTS software because they have been devel-

oped by ignoring a specific application domain. COTS software is more and

more integrated in safety critical systems [33] hence they must react robustly

when exposed to unexpected inputs coming from hardware as well as from

software. There are several means to this end, from modeling (e.g., formal

methods) to testing. Fault Injection (FI) is a common verification technique

for the assessment of COTS software [4, 19,22,30,35].

2.3.1 Basic Concepts and Definition on Fault Injection

Fault injection (FI) is extensively adopted for evaluating the robustness of

software components or their ability to handle faults, in other words to be

fault tolerant. With the support of FI is possible to:

• Test the effectiveness of fault-handling mechanisms.

• Study error propagation and error latency.

• Verify failure mode assumptions.

• Extract data to serve as inputs for modeling (e.g, reliability models).

FI can target either real systems or models of the system. By real sys-

tems, we mean an actual implementation of the system either commercial

or prototypal. System model for fault injection can be of two different types

software simulation and hardware emulation. Software simulation fault in-

jection can be carried out on a simulator of the system at several different

abstractions. Hardware emulation fault injection is based on model of the

system implemented with large Field Programmable Gate Array (FPGA)

circuits. These models can provide a detailed representation of the relative

real system.

We introduce concepts and definitions that are valid regardless of the

specific technique. The system to be assessed is named target system or

simply target. The target executes a workload, an application or program

that stimulates the target. An experiment consists in the injection of

a single fault into the target. The result of an experiment is also named

2.3 Robustness Evaluation 13

outcome and represent how the target reacts to the fault. A campaign

is a collection of experiments. The set of faults injected during a campaign

represent the faultload. An execution of the workload in absence of faults

(fault-free) is called golden run and its result is usually compared with

the results of fault injection in order to detect failures. A fault model

conventionally describes the faults in terms of their type, location and trigger.

In other words, the fault model indicates the nature of the fault (what to

inject?), the service or the location in which to inject the fault (where to

inject?) and the time interval/instant in which to inject (when to inject?).

Related to the triggering is also the duration of the injection (how long to

inject?). These aspects will be detailed when discussing the RT (Chapter 3)

and SWIFI (Chapter 5).

Fault injection techniques present the following characteristics [36]:

• Controllability - ability to control the injection of faults in time and

space.

• Observability - ability to observe and record the effects of an injected

fault.

• Repeatability - ability to repeat a fault injection experiment and

obtain the same result.

• Reproducibility - ability to reproduce the results of a fault injection

campaign.

• Reachability - ability to reach possible fault locations inside an inte-

grated circuit, or within a program.

• Fault Representativeness - how accurately the faultload represents

real faults.

• Workload Representativeness - how accurately the workload rep-

resents real system usage.

• System Representativeness - how accurately the target system rep-

resents the real system.

Either software simulation or hardware emulation allows to inject faults

in a manner more accurate compared to injection into real systems, on the

opposite, a higher representativeness is achieved when injecting in real sys-

tems. However, the cost to develop the simulator and the simulation may be

14 Robustness

high to prevent software simulation or hardware emulation from their use.

Controllability, observability, repeatability, and reproducibility are higher in

software simulation and hardware emulation than in fault injection into real

systems.

2.3.2 A Brief Overview on Fault Injection Techniques

In this section, we group fault injection techniques applied to real systems

according to the fault model and their implementation1, see Fig. 2.2.

ROBUSTNESS TESTING
(Ghosh 98, Koopman 99, Gu 03,
Albinet 04, Johansonn 06, Sarbu
10)

HARDWARE
FAULT

FAULT
MODEL

PIN-LEVEL
(Martinez 89, Arlat
89, Madeira 94)

TEST-PORT BASED
(Benso 99, Aidemark 01,
Yuste 03)

POWER DISTURBANCE
(Miremadi 95,
Rajabzadeh 04)

RADIATION BASED
(Karlsson 91)

SWIFI
(Barton 89, Kanawati 95, Kao 93,
Tsai 96, Carreira 98, Benso 98,
Rodriguez 99, Vinter 05, Skarin
10)
CODE MUTATION
(Christmasson 96, Voas
97, Duraes 06, Natella 13)

SOFTWARE
FAULT

SOFTWARE
IMPLEMENTED

WITH
 CONTACT

WITHOUT
 CONTACT

HARDWARE
IMPLEMENTED

FAULT
INJECTION ON
REAL SYSTEM

Figure 2.2: An overview of fault injection techniques classified by fault model

and their implementation. Under the fault injection technique appear the

names of the main contributors along with the year in which the technique

has been proposed/refined.

Early fault injection experiments aimed to simulate hardware faults, that

is, emulating malfunctioning hardware. Techniques that emulates hard-

ware faults are classified as hardware implemented and software imple-

1additional details are provided in Chapter 3 and Chapter 5

2.3 Robustness Evaluation 15

mented. Hardware implemented fault injection requires a dedicated hard-

ware for the injection that can occur with contact to the target or without

the contact (radiation). Techniques that inject software faults can be dived

into code mutation and in robustness testing. Code mutation performs fault

injection on source code which is literally manipulated. Robustness testing

injects faults into the interface of the target and can emulate either hardware

faults or software faults.

16 Robustness

Chapter 3

Robusteness Testing

Robustness testing is one of the major technique adopted for

robustness assessment of software components against software

faults. Along the years, it has been applied to several types of soft-

ware systems from operating systems to web applications. This

chapter narrows the application of robustness testing to operat-

ing systems which are a class of software widely spread in safety

domains and one of them is the case study of this thesis.

3.1 Robustness Testing Approaches

As explained in Section 2.1 robustness is evaluated in presence of the errors

that originate from faults.

This means, with reference to the Figure 3.1(a), that faults are injected

into the component A and if they become active, there is a chance they

manifest at the interface of the component A as errors. Then these errors

may propagate to component B which is the target of the RT. The injection

of faults in A ia achieved through code mutation. This technique has been

adopted in [37], although it is effective, it requires that injected faults are

representative of real faults [38], their activation and their propagation to

component B interface. Another possible choice is to inject errors directly

at the interface of the target, component B in Figure 3.1(b). In practice,

the parameters of the service (a function) are corrupted with specific errors.

This approach compared to the former one does not require the activation of

a fault, but it is sufficient to observe a service invocation towards the target.

17

18 Robusteness Testing

Figure 3.1: (a) Faults is injected into component A and after its activation

becomes an error which emerges to the component interface. Through ser-

vice S2 the error propagates to component B. (b) The call to service S2 is

intercepted and an error is injected.

In both cases, the service interface is the error location. For this reason

robustness testing is also termed interface error injection [39]. The driver

interface and the application interface of the OS are typical target. These

interfaces are of interests because through them is possible to assess the

robustness of the OS against erroneous behavior of applications and drivers

which have proven to be particulary error prone [40]. Nevertheless, it is

possible to inject errors into other locations such as the hardware interface or

into the interface of the internal components of the OS. A single experiment

that consists in the injection of an error into the API of the component under

test is also refereed as test case. The types of errors injected at the service

interface exposed from the OS are classified in three categories [27]:

• Fuzzy, errors are chosen randomly among all possible values of the

input domain of the service. Therefore experiments with this type of

errors should be repeated a significant number of times to be confident

in the final results.

• Data Error, errors are selected according to the type of the input

3.2 Robustness Testing Applied to Operating Systems 19

parameters. The selection of the error is conducted on the basis of the

tester experience or with established methods (e.g., boundary analy-

sis). As an example, since the interfaces of an OS are defined with C

code, a data error for a parameter of type int is the MAX INT value.

Dependently on the type of the parameters, the number of injections

can vary from one case to tens of cases for a given parameter [27].

• Bit Flip, errors are flip (permutation) of one of the bit of the input

parameter of the service. This model derives from hardware errors in

which the real faults are modeled as ”bit flips” 1 [41]. It is easy to use,

but it requires many experiments because of different number of the

bit to flip for all the input parameters.

The errors can be injected in a precise temporal interval, time-driven

injection or when specific events occur, event-driven injection. The time

for the injection, often, is not precisely defined, rather it is assumed that the

system is in a given state when executing the RT. The event-driven approach

injects errors when a precise sequence of calls to the service interface takes

place. The duration of the injection is assumed to be transient or perma-

nent. An error originates from a fault, therefore its duration is related to it.

Faults that turn into permanent are often considered as Bohrbugs 2.1 and

they are detected easily with standard techniques [42]. Transient errors can

be regarded as the manifestation of Mandelbugs or Heisenbugs (Sec.2.1) and

are more likely to affect post-release software components. As a consequence,

robustness testing injects transient errors.

3.2 Robustness Testing Applied to Operating

Systems

Several studies approached the problem of robustness testing applied to op-

erating systems. It is interesting to know that operating systems along with

web applications are the COTS components with the larger number of ap-

plications of the RT [43]. One of the earliest study has been presented

in [44], which evaluated the robustness of UNIX utilities in the presence of

random inputs (“fuzzing”). Two tools, respectively Fuzz and ptyjig, were

proposed to submit a random stream of characters to the target through

1More details about this fault moded are in Chapter 5

20 Robusteness Testing

the standard input and through the terminal device. The study found that

a significant number of utility programs on three UNIX systems (between

24% and 33%) is vulnerable to this type of errors, causing process crashes or

stalls. A subsequent experiment [45] found that the same utilities were still

sensible to a significant part of errors found in [44] 5 years later and that sim-

ilar issues were present in network and graphical applications. These studies

highlighted that robustness can be a serious concern even for mature, widely-

adopted software. Moreover, the analysis pointed out several bugs, such as

buffer overruns and unchecked return codes. Even if the fuzzing approach

is simple to implement and can reveal robustness problems, its efficiency

was questioned by some studies, since it relies on many trials and “good

luck”. In [46], it is pointed out that most of unstructured random tests

only test the input parsing code of the program, and do not stress other

software functions. RIDDLE [46], a tool for robustness testing of Windows

NT utilities, extends fuzzing with erroneous inputs generated by a gram-

mar that describes the format of inputs like a Backus-Naur form. These

erroneous inputs (random and boundary values) are syntactically correct,

and able to test more thoroughly the target program. In order to improve

the efficiency of robustness testing, other studies investigated the data-type

based error injection approach, which focuses on invalid inputs that tend to

be more problematic than other to be handled. In [47], a data-type based

approach is proposed to test a Real-Time OS (RTOS) kernel adopted in a

fault-tolerant aerospace system. The RTOS is tested against invalid inputs

passed to its system call interface, in order to assess the ability to handle

errors generated by faulty user-space programs. The study considers sys-

tem calls related to the file system (e.g., create, read, and write files), the

memory system (e.g., allocation and deallocation of memory blocks), and

the inter-process communication system (e.g., post a message and wait for a

message). Each test consists of a system call invocation with a combination

of both valid and invalid parameters. A test driver process executes the test

case. For each group of system calls and each data type, the study defines a

set of invalid input values (e.g., closed or read-only files, and NULL or wrong

pointers to memory areas). The test outcome is determined by recording the

error code returned by the system call (e.g., to identify whether the error

code reflects or not the invalid input, or an error code is not returned at all),

and by monitoring system processes using a watchdog process (e.g., a failure

occurs if a process unexpectedly terminates during the experiment, or it is

3.2 Robustness Testing Applied to Operating Systems 21

stalled). The test campaign found several deficiencies in the target RTOS,

some of them impacting seriously its reliability (e.g., a cold restart of the

whole system is needed).

The approach of [47] was generalized in BALLISTA [26, 48], which was

aimed at evaluating and benchmarking the robustness of commercial OSs

with respect to the POSIX system call interface [49]. BALLISTA adopts

a data-type based robustness testing approach, that is, it defines a subset

of invalid values for every data type encompassed by the POSIX standard,

and invokes system calls using several combinations of valid and invalid val-

ues.Examples of invalid inputs, using a data-type based approach on three

data types, are provided in Table 3.1. The outcome of robustness test cases

is classified by the severity of the OS failure, according to the CRASH scale:

• Catastrophic. The OS state becomes corrupted or the machine crashes

and reboots.

• Restart. The OS never returns control to the caller of a system call,

and the calling process is stalled and needs to be restarted.

• Abort. The OS terminates a process in an abnormal way.

• Silent. The OS does not return an indication of an error in the presence

of exceptional inputs.

• Hindering. The OS returns an incorrect error code, i.e., the error code

reports a misleading exceptional condition.

a Catastrophic failure occurs when the failure affects more than one task

or the OS itself; Restart or Abort failures occur when the task launched by

BALLISTA is killed by the OS or stalled; Silent or Hindering failures occur

when the system call does not return an error code, or returns a wrong

error code. BALLISTA found several invalid inputs not gracefully handled

(Restarts and Aborts); a few Catastrophic failures were observed, mainly

due to illegal pointer values, numeric overflows, and end-of-file overruns [26].

In [50–52], a dependability benchmark has been proposed to compare

robustness of different OSs, by precisely defining the benchmark measures,

the procedure and conditions under which the measures are obtained, and

the domain in which these measures are considered valid and meaningful.In

particular, to obtain realistic measures and allow a fair comparison, the OS

is exercised using a realistic usage profile, which has be representative of the

22 Robusteness Testing

Table 3.1: Examples of invalid input values for the three data types of the

write(int filedes, const void *buffer, size t nbytes) system call.

File descriptor (filedes) Memory buffer (buffer) Size (nbytes)

FD CLOSED BUF SMALL 1 SIZE 1

FD OPEN READ BUF MED PAGESIZE SIZE 16

FD OPEN WRITE BUF LARGE 512MB SIZE PAGE

FD DELETED BUF XLARGE 1GB SIZE PAGEx16

FD NOEXIST BUF HUGE 2GB SIZE PAGEx16plus1

.

expected usage of the OS, since the test outcome is affected by state of the

OS in which an invalid input occurs. The dependability benchmark defines

realistic scenarios in which the OS is part of a database server system or

mail server system, and the system is exercised using a representative set of

user requests. System call inputs generated by user-space applications (e.g.,

the DBMS or the mail server processes) are intercepted and replaced with

invalid ones, by using respectively data-type based values, random values,

and bit-flips (i.e., a correct input is corrupted by inverting one bit). OSs are

compared with respect to the severity of their failures, reaction time (i.e.,

mean time to respond to a system call in presence of faults) and restart

time (i.e., mean time to restart the OS after a test). The dependability

benchmark is one of the first effort to evaluate robustness tests while the

target system is under different working conditions. Robustness testing of

OSs has also been focused on device drivers, since they are usually provided

by third party developers and represent a major cause of OS failures [40,53].

The robustness of the Driver Programming Interface, DPI, of OSs has been

targeted in [54] and [55], in which invalid values are generated by faulty

device drivers when they invoke a function of the OS kernel: in [54], invalid

values are introduced using a data-type based approach, while in [55], the

code of device drivers is mutated (by artificially inserting bugs) to cause a

faulty behavior. Johansson et al. [56], and Winter et al. [57] later, compared

the bit-flipping, fuzzing, and data-type based approaches with respect to

their effectiveness in detecting vulnerabilities in the DPI of Windows CE,

and the efforts required to setup and execute experiments. They found that

3.2 Robustness Testing Applied to Operating Systems 23

bit-flipping is the approach most effective at finding vulnerabilities, but it

incurs a high execution cost due to the large number of experiments, thus

providing a low efficiency, while the other approaches are more efficient but

incur in a higher implementation cost (e.g., in the case of the data-type

based approach, the user has to define exceptional values for each data type).

Finally, they found that the best trade-off between effectiveness and cost is

obtained by combining fuzzing with selective bit-flipping (i.e., focused on a

subset of bits), since the two techniques tend to find different vulnerabilities.

From all these studies, OSs result to be more vulnerable to device drivers

than to applications, since developers tend to omit checks in the device driver

interface to improve performance, and because they trust device drivers more

than applications. Other works assessed the robustness of OSs with respect

to hardware faults (e.g., CPU and disk faults), by corrupting OS code and

data [58,59]. Similarly to system call testing, all these approaches either rely

on a representative workload for exercising the system, or neglect the system

state at all.

The influence of OS state gained attention in recent work on testing de-

vice drivers [60,61]. In [60], the concept of call blocks is introduced to model

repeating subsequences of OS function calls made by device drivers, since

they issue recurring sequences of function calls (e.g., when reading a large

amount of data from a device): therefore, robustness testing is more efficient

when it is focused on call blocks instead of injecting invalid inputs at ran-

dom time. Sarbu et al. [61] proposed a state model for device driver testing,

using a vector of boolean variables. Each variable represents an operation

supported by the device driver: at a given time t, the i-th variable is true if

the driver is performing the i-th operation. Case studies on Microsoft Win-

dows OSs found that the test space can be reduced using the state model.

Prabhakaran et al. [62] proposed an approach for testing journaling file sys-

tems, which injects disk faults at specific states of file system transactions.

These studies showed that the OS state has an important role in testing such

complex systems; however, they require knowledge about OS internals, and

a manual analysis to define state models in which to inject faults.

24 Robusteness Testing

3.3 Robustness Testing Applied to Other Soft-

ware Systems

Robustness testing has been applied to a wide class of software systems.

Regardless of the specific system, the key idea is to provide to its interface

erroneous inputs or make the system experience exceptional condition. Groot

[63] studies the behavior of a Knowledge Based System (KBS) in presence of

”degraded inputs” (e.g., missing, incomplete and abnormal inputs). Malek

[64] compares the robustness of Highly Available middlewares to exceptional

inputs coming from the workload, the operating system and the hardware.

Similarly, Kovi [65] tests the robustness of standard specifications-based HA

middleware. Bovenzi [66] evaluates the robustness of data dissemination

service compliant middleware. The exceptional inputs are selected as null

and empty values, boundary values and values that can cause data type

overflow.

Li [67] tests the robustness of a telecommunication systems, specifically,

the error handling mechanism of the fault manager is tested against errors

from the service manager, in the latter faults are deliberately injected (their

approach resembles the one in 3.1(b)). Calori [68] presents a method to

analyze the robustness of web applications based on FMEA and BBN. Fu [69]

conceives a compile time analysis that allows to test error recovery code (i.e.,

exception handler) of Java web services. Barry [70] and Hanna [71] assess

the robustness of web services with an approach based on analyzing the

Web Service Description Language (WSDL) document of Web Services to

identify what faults could affect the robustness attribute and then test cases

were designed to detect those faults. Laranjero [72] provides an approach

to automatically understand the behavior of the web server in presence of

exceptional inputs, this saves a large amount of work since service responses

has to be manually classified to distinguish regular responses from responses

that indicate robustness problems.

Susskraut [73] proposes an automated approach to evaluate the robust-

ness of software libraries, First, they use a static analysis to prepare and guide

the following fault injection. In the dynamic analysis stage, fault injection

experiments execute the library functions with both usual and extreme input

values. The approach is experimented on Apache libraries. Zamli [74] takes

advantage of the reflection to corrupt the input parameters of Java applica-

tions. Tarhini [75] presents a methodology for testing robustness of realtime

3.3 Robustness Testing Applied to Other Software Systems 25

component-based systems using fault injection and adequate distributed test

architecture. In this work, the term ”hazard” refers to exceptional inputs and

their insertion alters the expected event sequence. Vasan [76] and Jing [77]

applies robustness testing to network protocol, here, the exceptional inputs

are represented by faulty Packet Data Unit (PDU). Faulty PDUs are gen-

erated according to specific algorithms, which seed the field of the PDU

with fault values. Notably, aside from a few works listed above [75,77] they

neglect if and how the state of the system under test influence the outcome.

26 Robusteness Testing

Chapter 4

Stateful Robustness Testing of

Operating Systems

Early studies on robustness testing have investigated in which way

to conduct a robustness test, what type of faults/errors to inject

and which layer of the operating system to target. However, the

state of the system poses a vexing challenge to the use of this

technique. The state of the systems is strictly linked to the in-

stant in which to trigger the robustness test, thus influencing the

final test outcome. In general, the state of an operating systems

is complex to model because of its intricate design and implemen-

tation. We present two alternative approaches that extend the

traditional robustness testing with the state of the target system,

they paves the way for a stateful robustness testing. Stateful ro-

bustness testing shows the relevance of the state in robustness

testing and outperforms conventional robustness testing in terms

of both repeatability and number of experiments to conduct.

4.1 Approach I

4.1.1 Definitions

Since OS components can be very complex and their state has a significant

influence on the OS correct behavior, it is necessary to take the states of

the Component Under test (CUT) into account, and assess its robustness

27

28 Stateful Robustness Testing of Operating Systems

as the state changes. According to this view, a hypothetical test plan is

expressed through two dimensions: the exceptional inputs and the states.

Inputs are selected as usual (e.g., boundary values) while the state varies

in S = {s1, s2 ... sn}. In order to apply this strategy, we need to test the

CUT with both a test driver and a state setter. The former injects invalid

inputs into its interface, whereas the latter is responsible for producing the

state transition or keeping the component in a given state sk. (see Figure

4.1) In complex components the state representation (i.e., the state model)

Excep&onal	
Inputs	

State	

e1	 	 e2	 e3	 s1	

e1	 	 e2	 e3	 s2	

...	 ...	

	 Test	 driver	 State	 se0er	 	

CUT(Si)

Test	 driver	 State	 se0er	 	

CUT(Sk)

(a) (b)

<e1,e2, e3 > <e1,e2, e3 >

Figure 4.1: Robustness testing conducted with the CUT in two different

states si and sk.

plays a key role. It can be considered at several levels of abstraction, hence

determining the number of potential states the state setter should cope with.

This aspect is relevant for our approach, since it can affect the efficiency and

the feasibility of robustness testing. Thus the state model should satisfy these

requirements: i) it should be easy to set and control by the tester, ii) it should

represent the state at a level of abstraction high enough to keep the number

of test cases reasonably small and iii) it should include those configurations

that are the most influential on the component behavior. Thus, with this

regard, the model that we define expresses the state of an OS component

without detailing its internals, since they are not always easy to understand

and to manage, and would inflate the number of states.

4.1.2 Modeling the File System

In this work, we experiment the described strategy by applying it to the File

System (FS) component. We choose the FS because it is a critical and bug-

prone component [62,78]. Furthermore, the behavior of the FS is influenced

by its internal state and the other components with which it interacts (e.g.,

virtual memory manger, scheduler). Following the previous requirements,

we conceived a model for the FS (4.2)

4.1 Approach I 29

Figure 4.2: File System model.

Moreover, the model is easily adoptable across different FS 1 implementa-

tions; as a consequence, the proposed model does not take specific ”internal

design” of a FS into account (e.g., inode that are adopted in some UNIX file

system, but not in others). The model is a UML representation of the FS,

with three main classes: Item, FileSystem and OperationalProfile. FileSys-

tem represents the contents of data on the disk as a whole. It includes

the state attributes that are not specific of a file. The class attributes are

reported in Table 4.1.

The choice of attribute values defines the test cases. Attributes like Par-

tition Allocated can assume values from a minimum (e.g., 1MB) to the max-

imum allowable (e.g., 2TB). Therefore, the number of test cases, just for one

parameter, grows rapidly. However, test cases in which the values of Parti-

tion Allocated varies with very small increments (e.g., from 1MB to 2MB)

can be of little interest (e.g., 1MB or 2Mb both are values for a small parti-

tion). Thus, it is necessary to define criteria to keep the number of test cases

reasonably low and cover a reasonable set of test scenarios. Hereafter, we

illustrate potential choices for those attributes that the tester can set except

for the attributes assigned by OS (e.g., Max file size). The attributes Block

size and Partition size are typically set when the file system is formatted

for the first time. In a hypothetical test campaign, these values could as-

sume minimum, maximum and intermediate values. The attribute Partition

1In this work, the term ”File System” refers to the OS component for managing files.

The term ”filesystem” refers to the contents on the storage, e.g., the structure of tree.

30 Stateful Robustness Testing of Operating Systems

Table 4.1: FileSystem attributes.

Attributes Description Type

Partition type Typology of the partition Primary, Logical

Partition size Size of the partition on which is

installed the FS

Byte

Partition allocated The current size of the allocated

partition

Byte

Max file size The maximum dimension of a file

on the FS

Byte

Block size The dimension of a block Byte

FS implementation The type of file system NTFS, ext2, ext3

of files allocated The number of files in the FS Integer

of directories The number of directories in the

FS

Integer

FS layout The tree that represents the FS Balanced, Unbal-

anced

of items allocated The current number of items al-

located in the FS

Integer

allocated can be expressed as a percentage of Partition size, therefore the

tester can set scenarios in which the file system is totally full, partially full or

empty. The attribute FS layout deals with the tree representing the direc-

tory hierarchy on the FS. In particular, it can assume the values: balanced,

i.e., trees in which the number of sub-directories is almost the same on each

directory, and unbalanced, i.e., trees in which the number of sub-directories

significantly differs. In order to generate balanced and unbalanced trees, we

introduce P({dk+1dj}), i.e., the probability that a new directory, dk+1, is a

child of a directory, dj , already present in the tree. This probability allows,

to some extent, to control the structure of the hierarchy, once Number of

Directory allocated is fixed. For P({dk+1dj}), we provide the following for-

mulas for generating balanced and unbalanced trees, although other choices

4.1 Approach I 31

are possible (e.g., to use a well-known statistical distribution):

Punbalanced({dk+1dj}) = depth(dj)
1

k∑
i=1

depth(di)

(4.1)

Pbalanced({dk+1dj}) =
1

depth(dj)

1
k∑

i=1

1
depth(di)

(4.2)

ParentDirectory = d : max{P ({dk+1d1})...P ({dk+1dk})} (4.3)

where k is the number of current directories in the tree, and N the number

of directories to be created; k is increased until k=N. In 4.1, new directories

are more likely to form an unbalanced tree, since the higher the depth of a

node is, the higher the probability to have children. In 4.2, new directories

are more likely to group at the same depth. The parent directory 4.3 is the

one with the highest value of P({dk+1dj}). As for the FileSystem class, it

is possible to conceive several criteria for assigning values to the attributes.

For instance, the attribute Name can assume alphabetical and numerical

characters with equal probability or the length should not overpass a given

value. The attributes Permission and Owner can be assigned in such a way

that a given percentage of files are executable by the owner only, another

percentage is readable by all users and so on. The attribute Size can be fixed

for all files, generated according to a statistical distribution.

The Item class represents the entity which a FileSystem is made of. For

this class, we define typical attributes that are available in every OS. Such

attributes are: name of the item, permission (e.g., readable, writeable, ex-

ecutable), owner (root, nobody, user) and size. The classes that inherit

from Item represent the different types of file in a UNIX file system. Files

are randomly generated to populate the directory tree mentioned above; the

location and type of file can be determined according to statistical distribu-

tions. The FS, like other OS subcomponents, uses resources such as cache,

locks and buffers. We refer to these resources as auxiliary resources, that is,

resources that serve for managing an Item of a FS. For instance, if a thread

performs I/O operations it is likely to stimulate auxiliary resources: indeed,

buffers are instantiated; locks to control the access to them are used, and so

forth. These resources are part of the internal state of the FS, although they

are not included in our model, since (i) they cannot be easily controlled by

32 Stateful Robustness Testing of Operating Systems

the tester, and (ii) they are dependent on the FS internals. Moreover, most

of these resources are instantiated at run-time, and they are not part of the

filesystem on the disk. The presence of these resources, however, cannot be

neglected because they may influence the state of the FS and potentially

change test outcomes. Therefore, in order to include both the behavior of

the auxiliary resources in our model and the manner in which the FS is ex-

ercised, we introduce the OperationalProfile class. It expresses the degree

of usage of the auxiliary resources and more generally, the way the FS is

stimulated. This class does not directly model the auxiliary resource, but it

allows to know the way in which the FS is invoked while performing a test.

Thus the tester, indirectly, is aware of the mechanisms that are stimulated,

e.g., if there are threads invoking I/O operations it is likely that caching

and mutex mechanisms are invoked. The OperationalProfile attributes are

reported in Table 4.2.

Table 4.2: OperationalProfile attributes

Attributes Description Type

Number of tasks in-

voking FS ops.

Number of tasks that invokes

I/O operations (like read, write,

open).

Integer

Average number of

ops/s

Average number of operations

made by a task

Integer

Ratio of read/write

ops.

Ratio of read/write operations

made by a task

Float

The OperationalProfile attributes are related to the performance of the

File System and the hardware, which can limit the rate of FS operations

that can be served by the system within a reasonable latency. Therefore, the

selection of these attributes should be preceded by a capacity test aiming at

assessing the maximum operation rate allowed by the system. A capacity

test [79] consists in gradually increasing the operations rate, given a fixed

number of concurrent tasks (e.g., 2, 4 or 16), until the I/O bandwidth is

saturated, i.e., the amount of transferred data per second reaches its peak.

After that the I/O bandwidth is known, the tests can select a discrete set

of usage levels (e.g., 10% and 90% of I/O bandwidth) and the ratio between

read and write operations (e.g., 2 read operations per 1 write operation).

4.2 Approach II 33

4.2 Approach II

4.2.1 Definitions

In this alternative approach, named StAte-Based Robustness testIng of oper-

atiNg systEms (SABRINE), we distinguish between the different components

that form an OS. A component is a subsystem of the OS that is responsible

for managing a resource or for providing a set of services, such as memory

management, I/O management, and process scheduling. Each component

provides an interface to other components, that is, a set of functions that

are invoked to request a service. Applications can require a service to the OS

by performing a system call, which in turn triggers one or more components

that interact in order to implement the OS service (Figure 4.3). Addition-

ally, component services can be invoked by interrupt requests coming from

the hardware, and by kernel tasks, i.e., processes that execute in kernel space

and that can directly interact with OS components. Several system calls, in-

terrupt requests and kernel tasks can be executed in parallel (by alternating

on the same CPU, or by running concurrently on different CPUs). The ap-

plications that run on top of the OS and exercise it are referred to as the

workload.

Opera&ng	 System	

OS	
component	

1	

OS	
component	

2	

OS	
component	

N	 O
S	 interface	

Target	
OS	

component	

User	
apps	

HW	

System
calls

Interrupt
requests

Kernel	
tasks	

Figure 4.3: System overview.

We test OS robustness against service failures of a component. A service

can fail, for instance, due to the exhaustion of a resource, or due to a hard-

ware fault in a device or a defect in an OS component. In case of a failure,

the function that has been invoked typically returns an error code to notify

that a service cannot be provided. A service failure may cause a non-robust

34 Stateful Robustness Testing of Operating Systems

behavior, such as an OS crash, when it is not correctly handled by the OS

code that invokes the service. In such a case, the OS is considered vulnerable

to that service failure, and a robustness vulnerability has been found, which

may require to fix the OS in order to make it robust against the service fail-

ure (e.g., by retrying the failed operation, or switching to a degraded mode

of service). To test robustness, we force a service failure (also referred to

as fault) while the system is exercised with a workload, that is, by forcing

the called function (representing the service) to return an error code, and

analyzing the system reaction to the service failure.

In particular, given that the same service can be requested by several OS

components, we focus on service invocations performed by one specific target

component at a time. For instance, the target component can be represented

by a new component under development, such as a device driver to support

new hardware, or a new filesystem component. To identify the states of the

target OS component, we log interactions at its interfaces with other OS

components (dashed arrows in Figure 4.3). The target component may be

invoked by another component (input interaction), or the target component

may invoke another component (output interaction). An interaction with a

function that can fail (e.g., a function for resource allocation), and in which a

failure can be injected, is referred to as injectable interaction (see Figure 4.4).

We both consider the case in which an injectable interaction is direct, that is,

the injectable function is invoked by the target component, and the case in

which the injectable interaction is indirect, in which the injectable function

is invoked by another component on behalf of the target component (i.e., the

function is invoked to provide a service to the target component). We include

indirect interactions in our robustness tests since the fault may propagate to

the target component and trigger its robustness vulnerabilities.

time

Target
Component

Component X

Component Y

input
interaction

output
interaction

an error code
is returned

...

injectable
interaction

KEY
function
invocation

return
from
function

the fault propagates

fault

Figure 4.4: Interactions among OS components.

4.2 Approach II 35

4.2.2 Behavioral Data Collection

In this phase, the OS is executed using a workload, without injecting faults.

The workload is selected by developers and testers before performing ro-

bustness testing. In a similar way to performance benchmarks, the workload

reflects the context in which the OS will be adopted (e.g., web applications,

DBMSs, . . .), and it affects the way the OS is exercised during the tests

(e.g., a DBMS-oriented workload stresses storage-related services) and its

behavior under unexpected events. During the workload execution, we mon-

itor component interactions (Figure 4.3), and derive state models for the

target component on the basis of its interactions with other components.

As discussed later, state models are based on input, output, and injectable

interactions that involve the target component.

Component interactions are monitored through static (i.e., hard-wired in

the kernel source code) or dynamic probes (i.e., inserted at run-time) located

at the interfaces of components. A probe consists of a small piece of code

(e.g., a breakpoint) that is inserted in a given code location, and that triggers

a handler routine when executed. In turn, the handler collects information

and restores kernel execution. For tracing input interactions, we probe the

interface of the target component, storing information (as described in the

next section) about the component that invokes the target. For tracing out-

put and injectable interactions, we probe the interfaces of components that

are invoked by the target component, storing information about the invoked

component. Probing at component interfaces represents a practical solution

for most of modern commodity OSs, since they often provide tools that al-

low to insert static and/or dynamic probes in kernel code and monitor its

execution with a low overhead, such as DTrace for Oracle Solaris [80], Sys-

temTap for Linux [81], and DebugView for Microsoft Windows [82]. Data

from probes are transferred to an external computer through a serial port,

which is typically adopted for debugging purposes since the serial port driver

has minimal interactions with other OS components, thus limiting interfer-

ences on OS execution due to monitoring.

When collecting behavioral data, we need to account for the fact that

component interactions may vary between different workload executions due

to random factors: for instance, some interactions may appear in a different

order or not appear at all, depending on the timing of I/O events and process

scheduling. As a consequence, such random factors can affect the definition

of robustness test cases, since some OS states can be missed during an indi-

36 Stateful Robustness Testing of Operating Systems

vidual workload execution. For this reason, we repeat the execution of the

workload several times during this phase: by doing so, we are able to include

sets of interactions even when they do not occur at every execution, and to

generate robustness test cases that also cover them, leaving uncovered only

the few sets of interactions that occur very rarely.

4.2.3 Pattern Identification

The output of the previous phase consists of an interaction log, in which

interactions among components appear in sequential order (i.e., ordered by

their timestamp). The log is divided into sequences, where each sequence

is a set of events that occur during the execution of an individual system

call, interrupt request, or a kernel task. Two executions of the same system

call represent two distinct sequences, but they can produce different sets

of interactions, depending on the state of the system. By dividing the log

into sequences, we discriminate subsets of interactions that repeat identically

(in this phase) or are similar (in the next phase), in which it is likely that

the target has assumed the same states. Identical sequences are grouped

together, forming a pattern.

To extract sequences, we log the following information for each interaction

between the target and other components:

• Operation ID: A string identifier of the operation (system call, inter-

rupt request, or kernel task) that is being serviced at the time of the

interaction.

• Execution ID: An integer that identifies a specific execution of a sys-

tem call, interrupt request or kernel task. Each time that an operation

starts, a new execution ID is generated, and all the interactions pro-

duced during this operation will be identified by this value. If a system

call is started while the same system call is already executing (e.g., in-

voked by a different process on a different CPU), the interactions of the

new execution have the new execution ID, while the interactions gener-

ated by the other operation are still denoted by the previous execution

ID.

• Trace ID: An integer that identifies a specific execution of the whole

workload. Since the workload can be executed several times, and more

than one workload execution can appear in the same interaction log,

4.2 Approach II 37

the interactions of each workload execution are denoted by a specific

trace IDs.

Moreover, each logged interaction contains the following information:

• Called function: In the case of input interactions, it is the name of

the function of the target invoked by another component. For output

and injectable interactions, it is the name of the function invoked by

the target in another component.

• Call point: The code location in which the function is invoked (e.g.,

the address in the executable code of the instruction that invokes the

function).

!
!
...!
OUT, pdflush, 428, 1, ll_rw_block, flush_commit_list:1f3eb!
INJ, pdflush, 428, 1, kmem_cache_alloc, flush_commit_list:1f3eb!
INJ, pdflush, 428, 1, kmem_cache_alloc, flush_commit_list:1f3eb!
IN, close, 491, 1, reiserfs_file_release, __fput:c018efda!
IN, write, 486, 1, reiserfs_write_begin, generic_file_buffered_write:c016b0fe!
OUT, write, 486, 1, __grab_cache_page, reiserfs_write_begin:c845!
OUT, write, 486, 1, block_write_begin, reiserfs_write_begin:c8de!
IN, write, 486, 1, reiserfs_write_end, generic_file_buffered_write:c016b151!
OUT, write, 486, 1, mark_buffer_dirty, reiserfs_commit_page:d966!
OUT, write, 486, 1, kmem_cache_alloc, alloc_jh:1fde9!
INJ, write, 486, 1, kmem_cache_alloc, alloc_jh:1fde9!
INJ, pdflush, 428, 1, generic_make_request, flush_commit_list:1f3eb!
OUT, pdflush, 428, 1, __find_get_block, flush_commit_list:1f3cc!
...!
IN, close, 503, 1, reiserfs_file_release, __fput:c018efda!
...!

TRACE
ID

OPERATION
ID

EXEC.
ID

INT.
TYPE

CALLED
FUNCTION

CALL
POINT

1

2

3

1 (cont.)

2

Figure 4.5: Example of interaction log and pattern identification.

Figure 4.5 shows an extract of the interaction log from the case study

that we will consider in this work. The first sequence in the example (high-

lighted in light gray) is identified by the triple 〈pdflush, 428, 1〉, in which

there are two output interactions (denoted by “OUT”) and two injectable

interactions (denoted by “INJ”), and all of them are invocations made by the

flush commit list function of the target component (a filesystem). This se-

quence is interleaved with two other ones, identified by 〈close, 491, 1〉 (white

background) and 〈write, 486, 1〉 (dark gray background) respectively. This

interleaving occurred since pdflush (a kernel task) has been suspended while

38 Stateful Robustness Testing of Operating Systems

executing kmem cache alloc, which performs memory allocation and can pre-

empt a task when this operation takes a long time (e.g., an I/O operation is

required in order to free memory). The other two sequences are generated by

the workload invoking the close and write system calls, which in turn trigger

input interactions with the target component (denoted by “IN”). When the

third sequence performs its second memory allocation, a workload process is

preempted in favor of pdflush, which continues the first sequence. The same

sequence of interactions can repeat identically in the log, with a different

identifier: this is the case of the sequence identified by 〈close, 503, 1〉 (a se-

quence containing only one interaction), which is identical to the sequence

identified by 〈close, 491, 1〉. These sequences represent two instances of the

same pattern (number 2), and only one instance per pattern is considered in

the subsequent phases.

4.2.4 Pattern Clustering

The execution of the OS typically leads to patterns that are not identical,

but differ for a few interactions, or there is a small variation in the order

of the interactions. In other words, several patterns tend to be very “sim-

ilar”. Small variations in the sequences are unavoidable, and are due to

non-deterministic factors that can affect OS execution. For instance, Fig-

ure 4.6 shows two similar patterns related to the write system call (for the

sake of readability, only the called function is showed for each interaction).

The patterns p1 and p2 exhibit almost the same number and sequence of

interactions, aside from three interactions (gray background) which appear

only in p2. These interactions, in this specific case, represent the allocation

of additional memory when metadata are written to the disk.

However, generating one behavioral model for each individual pattern

would lead to an excessive number of models and, as discussed later, to

superfluous robustness test cases. Therefore, before generating behavioral

models, we group together similar patterns, thus obtaining clusters of pat-

terns. Each cluster represents a specific “mode of operation” of the target

component, where the patterns in a given cluster only differ with respect

to a few interactions. To perform clustering, we first measure the similarity

among all pairs of patterns using a similarity function, and then we cluster

patterns that are similar with a clustering algorithm.

A similarity function is a quantitative way to express the similarity be-

tween two sequences, and it is used in several applications, such as the pro-

4.2 Approach II 39

ext3_dirty_inode
journal_start
kmem_cache_alloc
__getblk
journal_get_write_access
- <GAP>
- <GAP>
journal_dirty_metadata
- <GAP>
__brelse
journal_stop

ext3_dirty_inode
journal_start
kmem_cache_alloc
__getblk
journal_get_write_access
__alloc_pages
kmem_cache_alloc
journal_dirty_metadata
kmem_cache_alloc
__brelse
journal_stop

PATTERN 1 PATTERN 2

Figure 4.6: Example of similar patterns.

cessing of biological sequences. In our case, we compare sequences of inter-

actions, in which each interaction (i.e., a pair 〈 called function, call point

〉) represents an element of the sequence. Two main approaches exists in

the literature for evaluating similarity, which respectively (i) only consider

which elements appear in each sequence, and evaluate the number of ele-

ments that appear in both sequences (set-based similarity functions), and

(ii) consider the ordering of elements while comparing common elements

between the sequences (sequence-based similarity functions) [83]. In our ap-

proach, we measure the similarity between patterns with a sequence-based

function: two sequences of interactions with different orderings may reflect

different states of the system, and should be regarded as dissimilar.

Sequence-based functions are based on “alignment” algorithms, in which

the elements of the sequences are placed side by side in order to maximize the

number of matches, and minimizing the number of gaps and mismatches2.

With the Smith-Waterman algorithm [84], we compute an alignment score

for each pair of patterns p and q according to the following dynamic pro-

gramming formulation:

F0,j = −j ∗ g , Fi,0 = −i ∗ g (4.4)

2When the elements at a given position of a pair of patterns are the same, we say that

there is a match; otherwise we say that there is a mismatch. A gap, instead, consists in

introducing a special symbol to fill the vacuum due to the different lengths of the two

sequences.

40 Stateful Robustness Testing of Operating Systems

Fi,j = max

Fi−1,j−1 + sim(pi, qj)

Fi−1,j − g
Fi,j−1 − g
0

(4.5)

sim(pi, qj) =

{
m if pi = qj
−n otherwise

(4.6)

In this set of equations, pi and qj are the i-th and j-th element of patterns

p and q, respectively, with i ∈ [1, ..., N] and j ∈ [1, ...,M], and N and M

are the lengths of patterns p and q. F is the scoring matrix, where the

value Fi,j is the score of the best alignment between the initial segment

p1...i of p up to pi and the initial segment q1...j of q up to qj , which is

calculated recursively from Fi−1,j , Fi,j−1, and Fi−1,j−1 [84]. The constants

g and n are the score penalty for gaps and mismatches, while m is a score

reward for matches. Common choices are g = 1, n = 2, and m = g + n

[83]. The highest value of F , that is FN,M , represents the score of the best

possible alignment. For instance, the patterns p1 and p2 showed (aligned) in

Figure 4.6 have score SW (p1, p2) = Wmatch ∗m+Wmismatch ∗n+Wgap ∗g =

(8) ∗ (+3) + (0) ∗ (−2) + (3) ∗ (−1) = 21, where the W s are the number

of matches, mismatches and gaps, respectively. For each pair of patterns,

we compute the SW score, and collect this score into a cell of a matrix,

named Similarity Matrix (SM), which expresses quantitatively the degree

of similarity among all pairs of patterns. The score of each pair is normalized

using the length of the longest pattern in each pair, since patterns in our

context have variable length, which would otherwise affect the evaluation of

pattern similarity.

We group together similar patterns using a spectral clustering algorithm

[85]. This class of algorithms allows to cluster a set of elements on the ba-

sis of their similarity matrix, and has recently emerged as an effective and

computationally-efficient clustering approach [86]. A spectral clustering al-

gorithm interprets input elements as the nodes of a graph, and the similarity

score of each pair of elements as the weight of the connection between two

nodes. Then, elements are clustered into k groups, by performing k cuts in

the graph, each group includes the nodes that are still connected after the

cuts. The idea behind spectral clustering is that cutting “weak” connections

splits the graph into partitions of elements that are “strongly connected” and

thus very similar each other. The weights of cuts in the graphs are closely

4.2 Approach II 41

related to the spectrum of the graph, that is, the eigenvalues λ1, . . . , λn of

the laplacian matrix L derived from SM [87]. By processing L on the basis

of its eigenvectors, the spectral clustering algorithm can obtain k cuts and,

in turn, k clusters. To select the number k of clusters, we use the eigengap

heuristic [86], which chooses k such that all λ1, ..., λk eigenvalues of L are

very small and λk+1 is relatively large. Intuitively, if the first k eigenvalues

are very small, then the algorithm can split the graph into k parts without

separating strongly-connected nodes.

Interaction log

BEHAVIORAL DATA
COLLECTION

PATTERN IDENTIFICATION
AND CLUSTERING

BEHAVIORAL
MODELING

Finite State
Automata Cluster

Sequence

}

Figure 4.7: Summary of the model generation approach.

4.2.5 Behavioral Modeling and Test Suite Generation

At this point, the initial interaction log, through pattern identification and

clustering, has been turned into clusters of sequences. From each cluster,

we infer a behavioral model in the form of a finite state automata (FSA).

Behavioral models of software systems have been adopted and proved to be

useful in several software engineering applications, such as specification min-

ing [88], automated debugging [89], and reverse engineering [90]. We adopt

the kBehavior mining algorithm [91, 92], which incrementally infers FSAs

from execution traces, which in our case consist of sequences of component

interactions. The algorithm starts with an empty automata (e.g., only one

state with no transitions), examines the first pattern and generates an FSA

whose transitions are labeled with an interaction (i.e., a pair 〈 called func-

tion, call point 〉). If the cluster contains more than one pattern, they are

subsequently provided as input to the mining algorithm, one at at a time.

Each time that a new pattern is provided, the algorithm augments the FSA

with new transitions and states, in order to reflect both the new patterns

42 Stateful Robustness Testing of Operating Systems

and previous ones. This process is repeated for each cluster, leading to an

FSA for each cluster. The overall transformation of the behavioral data,

from the interaction log up to the FSAs is depicted in Figure 4.7. Finally,

a set of robustness test cases is derived from each FSA. We identify transi-

tions in the FSA that represent an injectable interaction (i.e., an invocation

of a function that can fail), and introduce a test case for each injectable

interaction in the FSA. Given a state S with an outgoing transition t that

represents an injectable interaction, the test case associated with t consists

in forcing a failure of that function when the system is in the state S and

the injectable function is invoked.

0	 1	

ext3_dirty_inode

2	 5	 6	 7	 8	

9	 10	 11	

journal_start

journal_dirty_metadata

alloc_pages

kmem_cache_alloc journal_dirty_metadata

kmem_cache_alloc

__brelse journal_stop

3	 4	

kmem_cache_alloc

__getblk

journal_get_write_access

Robustness test case #1

Robustness test case #2

Robustness test case #3

KEY Patterns 1, 2 Pattern 1 Pattern 2

Figure 4.8: Example of behavioral model.

Figure 4.8 provides an example of behavioral model. It depicts the FSA

obtained from the two patterns in Figure 4.6 (only the called function is

showed at each transition). States from 0 to 5, and states from 6 to 8 are

connected by interactions that appears in both patterns, while states 5 and

6 are connected by two different sets of transitions. This occurs since the

two patterns share most of their interactions, but one of them performs con-

tains additional memory allocations, and the mining algorithm inserted new

states and transitions corresponding to these interactions. Assuming to in-

ject failures at the invocations of the kmem cache alloc memory allocation

function, this FSA leads to 3 robustness test cases. The example also points

out the importance of clustering on the generation of test cases. The first in-

vocation of kmem cache alloc, which appears in both patterns of Figure 4.6,

is performed in the same context in both patterns. By using only one FSA

for representing both patterns, the occurrences of the first kmem cache alloc

invocation are represented by only one transition in the FSA, the one be-

4.3 Case Study 43

tween states 2 and 3. In this way, we can reduce the number of robustness

test cases (only one test is performed for each transition with an injectable

interaction), while still covering relevant states of the target system, thus

improving the efficiency of robustness testing. A similar reduction is ob-

tained when the kmem cache alloc is performed in a loop: in such cases,

since the same interactions are repeated several times, the mining algorithm

translated these interactions into a loop in the FSA, and only one test case

is generated for the injectable interaction in the loop.

4.2.6 Test Execution

Robustness test cases are translated in test programs that are then executed

to inject service failures in the different states of the OS. In a similar way to

the “Behavioral Data Collection” phase (Subsection 4.2.2), the test program

collects interaction sequences at run-time using kernel probes, and keeps

track of the current state of the target component. If the test program, in

the current state, observes the interaction specified in the FSA, it transits

to the new state. If the observed interaction it is not the expected one,

the target program transit to the initial state. When the system reaches

the target state S, the target program injects a service failure during the

injectable interaction. After the injection, the OS behavior evolves freely.

4.3 Case Study

To illustrate the use of both approaches (Approach I and Approach II), we

consider an OS developed in the context of a pilot R&D project, in con-

junction with the Finmeccanica s.p.a. industrial group. The goal of the

project is to develop a reliable Linux-based Real-Time Operating System

(RTOS), namely FIN.X-RTOS to adopt in software systems for avionic ap-

plications. FINX-RTOS 2.2.1 derives from the Plain-Vanilla 2.6.24 kernel, it

is reduced to an essential subset of components (e.g, there is only the code

for a specific board) and it is extended with real-time services (e.g, the in-

terrupts are threaded and real-time mutexs replace the ordinary mutexs). In

order to certify FIN.X-RTOS, the OS needs to be accompanied by evidences

(e.g., test artifacts) showing the compliancy to the recommendations of the

DO-178B safety standard [5]. Therefore, the entire kernel code has been doc-

umented and accompanied with low-level and high-level requirements. The

44 Stateful Robustness Testing of Operating Systems

requirements of the standard at level D (to be followed for software whose

anomalous behavior would cause “a minor failure condition” for the aircraft)

have been fulfilled. At the time of writing, FIN.X-RTOS is being tested with

additional verification activities according to the requirements of level C (for

software that may cause “a major failure condition” for the aircraft), which

demand to test the robustness of the software against abnormal inputs and

conditions. An example of requirement from the standard is to “provoke

transitions that are not allowed by the software requirements” [5].

4.4 Approach I: Experimentation

The proposed approach has been applied to the ext3 file system available in

FIN.X-RTOS. We selected a set of system calls to test, described in Table 4.3.

The system calls are commonly used by applications and exercise different

parts of the FS code.

Table 4.3: System calls tested.

System Call Description

access check user’s permissions for a file

dup2 duplicate a file descriptor

lseek reposition read/write file offset

mkfifo make a FIFO special file (a named pipe)

mmap map files or devices into memory

open open and possibly create a file or device

read read from a file descriptor

unlink delete a name and possibly the file it refers to

write write to a file descriptor

To apply the proposed strategy, we selected, without loss of generality,

two well known tools for supporting testing execution, namely Ballista and

Filebench 3. With regard to Figure 4.1, Ballista plays the role of test driver,

while FileBench is the state setter. The Ballista tool is currently distributed

with the Linux Test Project tool suite. We ported the original version to

3http://www.ece.cmu.edu/ koopman/ballista/ - http://www.fsl.cs.sunysb.edu/ vass/-

filebench/

4.4 Approach I: Experimentation 45

FIN.X-RTOS. FileBench is a tool for FS benchmarking: the user can cus-

tomize a workload by configuring I/O access patterns in terms of number of

threads, access type and so on. In our test campaign, we choose a realistic

scenario in which the partition of filesystem is partially full (75% of Parti-

ton size) and there are tasks invoking FS operations, e.g., read and write.

Leveraging on the model introduced in Section 4.1.2, we create a logical

partition with a balanced tree and the number of directories is 10 each one

populated with 100 small files. No other items have been considered. Table

4.4 summarizes the values that we selected for the FileSystem entity’s at-

tributes. Table 4.5 shows the values selected for the File entities; all the files,

apart from Name, have the same values. Table 4.6 specifies the attributes of

OperationalProfile, which are typical values for FS benchmarking.

Table 4.4: FileSystem values.

Attribute Value

Partition type Logical

Partition size 2GB

Partition allocated 1,5GB

Block size 4096

File system implementation ext3

Number of files allocated 1000

Number of directories allocated 10

Number of items allocated 1010

Table 4.5: File values.

Attribute Value

Name Numeric string with length equals to five

Permission Readable, Writeable, Executable

Owner Root

Size 1500Kb

Those instances of File, FileSystem, and OperationalProfile reproduce

stressful conditions in which to test the FS. By stressing the FS with read

46 Stateful Robustness Testing of Operating Systems

Table 4.6: OperationalProfile values

Attributes Values

Number of tasks invoking FS operations 16

Average number of operations per second 10

Ratio of read/write operations 1

and write operations on a full allocated partition, we aim at creating excep-

tional conditions: in fact, with this setting, it is more likely to experiment

conditions in which disk blocks are not available, seek operations have to

traverse several directories, and so on. We carry out three experimental

campaigns:

1. Stateless robustness testing. Ballista injects errors into the selected

system calls (Table 4.3). The errors to apply to the parameters of the

system call belongs to the default Ballista configuration. An example

is represented in Section 3.1(Table 3.1). This test campaign lasts 15

minutes.

2. Stress testing. FileBench invokes the system calls read and write on

the files previously allocated for 1 hour. The operations produced

by FileBench reflect the attributes of OperationalProfile (Table 4.6).

Ballista is not executed.

3. Stateful robustness testing. FileBench and Ballista work at the same

time. Ballista and FileBench use the same configuration (error model

and operations executed) of the previous campaigns. The entire test

campaign lasts 1 hour. The experimental duration for the first test

campaign is the time that Ballista spends to execute all the test cases.

The second campaign lasts the time necessary for Ballista to execute

all the tests while FileBench is running. The time for the third test

campaign is set to 1 hour in order to compare the results between the

second and third campaign over the same duration time.

4.4.1 Results

We first analyze the outcomes of robustness tests, which are classified ac-

cording to the CRASH scale: a Catastrophic failure occurs when the failure

4.4 Approach I: Experimentation 47

affects more than one task or the OS itself; Restart or Abort failures occur

when the task launched by BALLISTA is killed by the OS or stalled; Silent

or Hindering failures occur when the system call does not return an error

code, or returns a wrong error code (for more details see Section 3.2).

Table 4.7 provides the summary produced by Ballista in the default con-

figuration (i.e., all potential test cases are generated). We did not observe

any Catastrophic failure, and only a small number of Restart and Abort

failures occurred. This result was expected, since the OS is a mature and

well-tested system, and is consistent with past results on POSIX OSs [26],

in which only a small number of corner cases led to Catastrophic failures

(e.g., an OS crash). The relevance of Restart and Abort failures is a con-

troversial subject, since OS developers tend to consider them as a ”robust”

behavior of the OS [26]. According to this point of view, we do not consider

Restarts as severe failures: several OSs (e.g., QNX, Minix) intentionally deal

with a misbehaving task by killing it in some specific cases (e.g., manipu-

lation of an invalid memory address, or lack of privileges for performing an

operation), in order to avoid further error propagation within the system.

Similarly, Abort failures can represent an expected (and desirable) behavior

of the OS, such as in the case of the read() and write() system calls that

can bring a task in a ”waiting for I/O” state. For these reasons, a ”Restart”

or ”Abort” outcome cannot be considered as a ”failure” without a detailed

analysis of the expected behavior. It should be noted that stateful robustness

testing differs from stateless robustness testing with respect to the number

of Restart outcomes, mostly due to failed memory and disk allocations. Al-

though we cannot conclude that these outcomes represent OS failures, this

result points out that OS state can affect test outcomes and the assessment

of OS robustness.

However, the stateful tests cover a scenario not considered by stateless

tests, and therefore they represent an additional evidence of the robust be-

havior of the OS. As a result, we observed an increased coverage of kernel

code after executing the stateful tests; this aspect is relevant since coverage is

a measure of test confidence and a requirement for software in safety-critical

systems (e.g., DO-178B at level C [5]). We analyzed statement coverage

of file system code, which is the target of our tests. The file system code

is arranged in three directories: the code in the ”fs/” directory is indepen-

dent from the specific file system implementation (i.e., it is shared among

several implementations such as ext3 and NTFS). The ”ext3” directory pro-

48 Stateful Robustness Testing of Operating Systems

Table 4.7: Results of robustness tests.

Function # Tests Stateless RT Stateful RT

Restart # Abort # Restart # Abort

access() 3,986 0 4 1 4

dup2() 3,954 0 0 1 0

lseek() 3,977 0 0 0 0

mkfifo() 3,870 0 5 1 5

mmap() 4,003 0 0 0 0

open() 3,988 0 8 40 8

read() 3,924 0 253 1 253

unlink() 500 0 1 0 1

write() 3,989 0 68 4 68

Total 32,191 0 339 48 339

vides the implementation of the ext3 file system; finally, the ”jbd” directory

provides a generic support for journaling file systems. Data about cover-

age was collected using GCOV. Table 4.8 compares the statement coverage

with respect to the three considered scenarios. We observed differences in

coverage between stateless (second column) and stateful robustness testing

(fourth column), ranging between 0.49% and 15.11%. Part of the code is

covered by the plain state setter (i.e., without using Ballista); the remaining

part is covered due to interactions between Ballista and the OS state (some

examples are provided in the following).

In particular, stateful testing exercised those parts of the file system that

interact with other subsystems (e.g., interactions between ”fs/buffer.c” and

the memory management subsystem, and between ”fs/fs-writeback.c” and

disk device drivers). The coverage improvement is more significant for the

journal-related code (i.e., the JBD component in ”fs/jbd”). This effect can

be attributed to the interactions between file system transactions and the

state of I/O queues. For instance, a transaction commit can be delayed due

to concurrent I/O operations, therefore affecting the management of data

buffers within the kernel and the file system image on the disk. Although

the improvement is less significant for the implementation-independent code,

the proposed approach has been useful for improving test coverage with no

4.4 Approach I: Experimentation 49

human effort. This aspect is relevant since FIN.X-RTOS is mostly composed

by third-party code re-used from the Linux kernel; covering this code can be

very costly, due to the lack of knowledge of kernel internals and the inherent

complexity of OS code (e.g., heuristics for memory management).

Table 4.8: Statement coverage.

Source file Stateless robust-

ness testing

Stress testing Stateful robust-

ness testing

fs/binfmt elf.c 319/850 (37.53%) 331/850 (38.94%) 332/850 (39.06%)

fs/buffer.c 529/1320 (40.08%) 553/1320 (41.89%) 565/1320 (42.80%)

fs/dcache.c 371/880 (42.16%) 341/880 (38.75%) 387/880 (43.98%)

fs/exec.c 479/807 (59.36%) 392/807 (48.57%) 486/807 (60.22%)

fs/fswriteback.c 146/273 (53.48%) 169/273 (61.90%) 174/273 (63.74%)

fs/inode.c 252/527 (47.82%) 307/527 (58.25%) 316/527 (59.96%)

fs/namei.c 918/1392 (65.95%) 626/1392 (44.97%) 925/1392 (66.45%)

fs/select.c 237/402 (58.96%) 237/402 (58.96%) 239/402 (59.45%)

fs/ext3/balloc.c 384/556 (69.06%) 385/556 (69.24%) 398/556 (71.58%)

fs/ext3/dir.c 140/219 (63.93%) 143/219 (65.30%) 144/219 (65.75%)

fs/ext3/ialloc.c 181/337 (53.71%) 186/337 (55.19%) 189/337 (56.08%)

fs/ext3/inode.c 719/1204 (59.72%) 729/1204 (60.55%) 737/1204 (61.21%)

fs/ext3/namei.c 607/1088 (55.79%) 654/1088 (60.11%) 781/1088 (71.78%)

fs/jbd/checkpoint.c 102/263 (38.78%) 141/263 (53.61%) 142/263 (53.99%)

fs/jbd/commit.c 300/362 (82.87%) 302/362 (83.43%) 318/362 (87.85%)

fs/jbd/revoke.c 108/228 (47.37%) 105/228 (46.05%) 116/228 (50.87%)

fs/jbd/transaction.c 489/697 (70.16%) 500/697 (71.74%) 545/697 (78.19%)

In order to better understand the interactions between OS state and test

cases, we analyzed more in depth part of the kernel code only covered by

stateful robustness testing. Figure 4.9 shows an example of corner case in the

kernel code not covered in stateless testing (part of the code was omitted; we

kept some comments from developers). The real lookup() routine is invoked

when file metadata are not in the page cache, and the FS needs to access to

the disk. It blocks the current task on a semaphore (using the mutex lock()

primitive) until a given directory can be accessed in mutual exclusion. It then

checks if metadata have been added to the cache during this wait period.

Usually, metadata are not found, and the routine performs an access to

the disk. In stateful testing, a different behavior was observed, since the

50 Stateful Robustness Testing of Operating Systems

cache has been re-populated during the wait period (developers refer to this

situation as ”nasty case”), and additional operations are executed (e.g., to

check that metadata are not expired due to a timeout in distributed file

systems). This code was only executed in stateful testing due to interactions

with the cache that occur when concurrent I/O operations are taking place.

1 static struct dentry ∗ real_lookup (struct dentry ∗ parent ,
2 struct qstr ∗ name , struct nameidata ∗nd) {
3 /∗ −−− OMISSIS (d e c l a r a t i o n s) −−− ∗/
4 mutex_lock(&dir−>i_mutex) ;
5 result = d_lookup (parent , name) ;
6 if (! result) {
7 /∗ −−− OMISSIS (pe r f o rms lookup) −−− ∗/
8 mutex_unlock(&dir−>i_mutex) ;
9 return result ;

10 }
11 /∗ Uhhuh ! Na s t y c a s e : t h e c a c h e wa s r e−p opu l a t e d wh i l e
12 we wa i t e d o n t h e s emaph o r e . N e e d t o r e v a l i d a t e . ∗/
13 mutex_unlock(&dir−>i_mutex) ;
14 if (result−>d_op && result−>d_op−>d_revalidate) {
15 result = do_revalidate (result , nd) ;
16 if (! result)
17 result = ERR_PTR(−ENOENT) ;
18 }
19 return result ;
20 }

Figure 4.9: Example of kernel code covered due to interactions between the

file system and caching (from real lookup(), fs/namei.c:478).

Another example is provided in Figure 4.10, which is related to concur-

rency of kernel code. The ll rw block() routine performs several low-level

accesses to the disk, and each access is controlled by a ”buffer head” data

structure. During the inspection of the list of buffer heads, one of them could

have been locked by another concurrent task; this condition is detected by

the test set buffer locked() primitive, which may fail to lock the buffer head

in some cases. Stateful testing covered this rare scenario, and it is worth

being tested to verify that pending I/O is correctly managed.

Finally, we analyzed an example of kernel code interacting with memory

management, which is provided in Figure 4.11. The try to free buffers()

routine is invoked by the file system when the cache for file system data (the

”page cache”) gets large and pages need to be freed for incoming data. It

may occur that a file system transaction involves I/O buffers allocated over

several pages, and these pages cannot be de-allocated until the transaction

4.5 Approach II: Experimentation 51

1 void ll_rw_block (int rw , int nr , struct buffer_head ∗bhs []) {
2 int i ;
3 for (i = 0 ; i < nr ; i++) {
4 struct buffer_head ∗bh = bhs [i] ;
5 if (rw == SWRITE)
6 lock_buffer (bh) ;
7 else if (test_set_buffer_locked (bh))
8 continue ;
9 /∗ −−− OMISSIS (pe r f o rms I /O op .) −−− ∗/

10 }

Figure 4.10: Example of kernel code covered due to concurrent I/O requests

(from ll rw block(), fs/buffer.c:2941).

commits. Pages are then marked with ”mapping == NULL” in order to

be reclaimed later (the drop buffers() routine checks that I/O buffers in the

page are not being used). As suggested by the comment in the code, this

condition is unlikely to occur; the code has been executed in stateful testing

since memory management has been put under stress.

1 int try_to_free_buffers (struct page ∗page) {
2 /∗ −−− OMISSIS (d e c l a r a t i o n s) −−− ∗/
3 BUG_ON (! PageLocked (page)) ;
4 if (PageWriteback (page))
5 return 0 ;
6 if (mapping == NULL) { /∗ c a n t h i s s t i l l h a p p e n ? ∗/
7 ret = drop_buffers (page , &buffers_to_free) ;
8 goto out ;
9 }

10 /∗ −−− OMISSIS (page w r i t e ba ck and d e a l l o c a t i o n) −−− ∗/
11 }

Figure 4.11: Example of kernel code covered due interactions be-

tween the file system and memory management (from try to free buffers(),

fs/buffer.c:3057).

4.5 Approach II: Experimentation

We applied the SABRINE approach to assess the robustness of a set of

I/O-related components against service failures in the memory allocator of

the kernel. We selected memory allocation failures because most of OS

52 Stateful Robustness Testing of Operating Systems

components depend on this service, and it is a frequent cause of system

failures [93]. Kernel developers also perceive memory allocation problems as

a likely cause of OS failures: in fact, the Linux kernel includes a framework

for injecting service failures, which encompasses memory allocation failures

[94]. Both in our implementation of SABRINE and in the Linux injection

framework, a failure is injected by forcing a memory allocation function

(kmem cache alloc) to return a NULL pointer instead of a valid pointer to

the newly allocated memory.

While the Linux framework injects failures at a random time, the SABRINE

approach selects the time in which to inject based on the state of the target

component. We compare both these approaches in our experiments. The

relationships between I/O-related components in the kernel are showed in

Figure 4.12. In this architecture, I/O system calls (e.g., writes) first pass

through the Virtual File System, which provides generic services for imple-

menting file systems, and forwards a file operation to the specific filesystem

that manages the file (e.g., EXT3, ReiserFS, . . .). The file system can issue

an I/O operation to the Block I/O Layer, which provides generic services

such as scheduling of I/O requests and caching of disk data. In turn, the

Block I/O Layer forwards requests to a device driver, which manages the

disk device.

All these components use the memory allocator for dynamically allocate

memory, such as for storing file metadata and for temporary I/O buffers.

The target components are represented by thick boxes in Figure 4.12, and

include two widely-adopted file systems (EXT3 and ReiserFS) and a device

driver (the SCSI subsystem). We adopt the Apache HTTPD web server to

exercise the OS, using the httperf performance testing tool to generate web

requests [95].

Experiments were executed in a virtual machine environment, and were

fully automated using programs running on the host machine. A System-

Tap program [81] collects behavioral data. FSA models are created with the

kBehavior algorithm [91,92], and automatically translated in test programs

implemented in the SystemTap language. Behavioral data and error mes-

sages from the OS are collected using virtual serial port connections. In the

case of an OS crash, we collect information including the type of exception

(e.g., illegal memory access), the code location, the contents of the stack and

of CPU registers. The virtual machine is automatically rebooted in case of

a crash.

4.5 Approach II: Experimentation 53

Kernel	
code	 System	 Call	 Interface	

User	 apps	

Virtual	 File	 System	

ReiserFS	 EXT3	 NTFS	 ...	

M
em

ory	 Allocator	

Block	 I/O	 Layer	

SCSI	 disk	
driver	

IDE	 disk	
driver	 ...	

Disk	 device	

IRQ	 Interface	

Figure 4.12: Overview of I/O-related subsystems in FIN.X-RTOS.

4.5.1 Results

This section presents the results obtained from SABRINE in our case study.

Table 4.9 provides some basic facts about data collection and processing, and

test generation. We collected an interaction log for each target component,

by running the web server workload 10 times for each target. In the cases

of EXT3 and ReiserFS, interactions were performed in the context of file-

related system calls, such as open and write, and of the pdflush kernel thread

of the Block I/O Layer, which periodically flushed cached data to the disk.

For SCSI, interactions were initiated by kernel threads of the Block I/O

Layer, which requested data transfers, and by interrupts from the hardware.

Several thousands of interactions appear in each log. These logs were

divided into sequences, and identical sequences were grouped into patterns.

Since we aimed at injecting service failures of the kmem cache alloc func-

tion, we focused our analysis only on sequences containing an interaction

with this function. For EXT3 and ReiserFS, a non-negligible number of pat-

terns and clusters was generated, since memory allocations were performed

in many different contexts during filesystem operations. Instead, even if

54 Stateful Robustness Testing of Operating Systems

Table 4.9: Statistics on the behavioral data collection and test case genera-

tion.

EXT3 ReiserFS SCSI

interactions 34,784 97,341 27,311

sequences* 432 239 1,307

patterns* 79 57 10

clusters 9 6 2

test cases 49 28 10

* involving the kmem cache alloc function.

SCSI produced the highest number of sequences with kmem cache alloc, it

exhibited the lowest number of distinct patterns and of clusters: for this

target, memory allocations performed always at the same code location (i.e.,

when allocating memory for storing a new data transfer command), leading

to repetitive sequences. Consequently, only 2 clusters are enough to group

the patterns of SCSI, while EXT3 and ReiserFS require 9 and 6 clusters,

respectively.

We examined in depth the clusters, in order to understand the mode of

operation represented by each pattern, and to assess whether clustered pat-

terns are “semantically” similar. Table 4.10 provides a description for the

clusters of EXT3; similar interpretations apply to ReiserFS and SCSI clus-

ters, but we do not show them due to space constraints. Column “Behavior”

provides a brief description of clusters, and column “Context” details the

system calls or kernel task in which these behaviors were observed. Each

cluster represents a distinct behavior of the file system. For instance, cluster

1 gathers the patterns representing “get” and “set” operations on file meta-

data (e.g., file permissions), which is the case of the stat system call; clusters

2 and 3 represent the typical behavior of read and write system calls. For

each cluster of each target component, we derived an FSA, and a set of one

or more test cases for each FSA (Subsection 4.2.5).

In order to evaluate the efficiency of SABRINE, we executed the robust-

ness test cases generated by the approach, and compared the results with

the ones obtained using the standard fault injection framework included in

the kernel [94]. In the standard injection framework, allocation failures are

4.5 Approach II: Experimentation 55

Table 4.10: Clusters for EXT3.

Cluster Behavior Context # patterns

1 gets and sets the file metadata stat syscall 6

2 retrieves and stores in memory

the file index block, or updates

it on the disk

open, unlink

syscalls

5

3 copies file contents from disk to

a cache, and modifies it

write syscall 8

4 copies a small amount of data

from a file to a network socket

sendfile syscall 10

5 modifies the contents of a file al-

ready in the disk cache

write syscall 8

6 flushes a small amount of data

from the cache to the disk

pdflush kernel task 19

7 flushes a large amount of data

from the cache to the disk

pdflush kernel task 6

8 copies a large amount of data

from a file to a network socket

sendfile syscall 12

9 updates file metadata to reflect

that is has been memory-mapped

mmap2 syscall 5

56 Stateful Robustness Testing of Operating Systems

injected randomly: each time kmem cache alloc is invoked, it can fail with a

fixed probability P ; if a failure is not injected, the subsequent invocation be-

comes the next candidate injection. Moreover, the standard injector allows

to inject service failures when the injectable function is invoked (directly or

indirectly) by the target component (EXT3, ReiserFS, or SCSI) [94]. We

performed 1,000 random injections for each target component; these exper-

iments took a few days per target component to complete, therefore 1,000

injections can be considered a conservative estimate on the number of ex-

periments that a developer would perform. We set P = 5% in order to avoid

that too many injections take place only at the beginning of the experiment.

As for SABRINE, we executed the number of tests reported in the last row

of Table 4.9. We classify the outcome of a test in:

• Kernel Failure: the OS is crashed, or its state is corrupted. To de-

tect state corruptions in the OS, we enabled several consistency checks

introduced by developers in the kernel code, including checks on stack

overflows, stuck system calls, locks not released, and corruptions on

key kernel data structures. This kind of failures is the most severe,

since they affect all applications and the OS itself.

• Workload Failure: the web server crashes, exits abnormally, does not

reply to requests, or does not execute correctly the requests. These

failures are detected through the logs of the web server and of the

client.

• FS Corruption: after each test, we detect disk corruptions using

filesystem check utilities.

• No Impact: neither the OS nor the workload show an abnormal be-

havior.

Table 4.11 summarizes the percentage of failures observed during the

experiments. Both kernel failures and workload failures were observed; in-

stead, no memory allocation failure caused filesystem corruptions, since the

kernel tends to crash immediately or to fail gracefully in order to avoid data

corruptions. The SCSI target component was very robust to memory alloca-

tion failures: by inspecting its source code, we found that it keeps a pool of

previously-allocated data structures (e.g., data transfer command structure)

that supply memory when the kernel allocator fails, in order not to lose im-

portant disk writes. Instead, there were several cases in which an injected

4.5 Approach II: Experimentation 57

Table 4.11: Statistics on failure distributions.

Testing

Technique

Target Kernel

Failures

Workload

Failures

FS Corrup-

tions

Random

EXT3 32.8% 37.5% 0%

ReiserFS 9.6% 65.9% 0%

SCSI 0% 0% 0%

SABRINE

EXT3 22.4% 16.3% 0%

ReiserFS 20.0% 32.0% 0%

SCSI 0% 0% 0%

failure in EXT3 and ReiserFS lead workload and kernel failures: in the first

case, the injection caused a system call failure and, in turn, a failure of the

web server; in the second case, the kernel performs an illegal memory access,

leading to an OS crash.

Frame Kernel function
no.

0 kmem_cache_alloc+0x22/0x110 ← a failure occurs here
1 radix_tree_node_alloc+0x35/0xb0
2 radix_tree_insert+0x16e/0x1d0
3 add_to_page_cache+0x65/0x1d0
4 add_to_page_cache_lru+0x1b/0x40
5 mpage_readpages+0x70/0xe0
6 ext3_readpages+0x19/0x20 ← affected EXT3 function
7 __do_page_cache_readahead+0x176/0x210
8 ondemand_readahead+0xbe/0x170
9 page_cache_async_readahead+0x66/0x90
10 generic_file_splice_read+0x4a9/0x630
11 do_splice_to+0x61/0x80
12 splice_direct_to_actor+0x8f/0x180
13 do_splice_direct+0x3b/0x60
14 do_sendfile+0x187/0x240
15 sys_sendfile64+0x77/0xa0
16 sysenter_past_esp+0x5f/0x91

Figure 4.13: Call stack of a robustness vulnerability.

In particular, OS crashes were caused by two robustness vulnerabilities

in the kernel code. For instance, Figure 4.13 shows the case of a memory

allocation in radix tree node alloc that causes the corruption of data struc-

58 Stateful Robustness Testing of Operating Systems

Table 4.12: Percentage of random injection tests that trigger each vulnera-

bility.

Vulnerability EXT3 ReiserFS

get blk 29.0% 0.2%

radix tree node alloc 3.8% 9.4%

tures when the allocation fails and, in turn, the failure of the OS component

calling the function. This vulnerability emerges when the file system is re-

trieving data from the disk to its cache in the main memory when a memory

allocation fails, as in the case of cluster 3 in Table 4.10. Table 4.12 provides

the percentage of random tests able to reveal each robustness vulnerability:

this percentage can be very low, as the case of get blk in ReiserFS (two

cases out of 1,000 random tests trigger the vulnerability).

In our experiments, SABRINE was able to detect both the two vulnera-

bilities, with a high efficiency. For each vulnerability, SABRINE generated

several test cases able to detect it, by injecting in states where the vul-

nerability could be triggered. The SABRINE approach identified the same

vulnerabilities of random testing, but only a relatively small set of robustness

test cases was required to find them (77 test cases in total). Moreover, a vul-

nerability can be easily reproduced once a test case of SABRINE can detect

it. By repeating 10 times the execution of SABRINE test cases, almost every

OS crashes repeated identically: Table 4.13 provides the average probability

of repeating an OS crash. Instead, it is difficult to reproduce failures using

random injections, since the state of the system at the time of the injection

plays an important role in triggering vulnerabilities, but it is neglected in

random injections. The dramatic reduction of the number of test cases and

the ability to easily reproduce OS failures increase significantly the efficiency

of robustness testing.

4.5 Approach II: Experimentation 59

Table 4.13: Probability to reproduce a robustness vulnerability in SABRINE.

Vulnerability EXT3 ReiserFS

get blk 68.8% 100%

radix tree node alloc 77.7% 100%

60 Stateful Robustness Testing of Operating Systems

Chapter 5

Techniques for Injecting

Hardware Faults

From the nineties several techniques have been developed for the

assessment of robustness against hardware faults. Early meth-

ods relied on additional hardware devices that had some limita-

tions such as the low controllability and repeatability of the ex-

periments. As the software started to be a viable alternative for

emulating hardware faults, a number of tools have been developed

under the umbrella approach Software Implemented Fault Injec-

tion (SWIFI). SWIFI is attractive because does not require pur-

posely developed device, thus saving cost, and allows to assess the

robustness or fault tolerance easier. In this chapter, we survey

the techniques used for emulating hardware faults and highlight

the robustness of software systems against them.

5.1 Introduction

Early studies in the fault injection field evaluated the robustness of software

component when injecting or emulating hardware errors. These studied as-

sumed that the hardware is faulty and its behavior can impact the executing

software program, the workload. It must be said that the term error injec-

tion and fault injection are sometimes used interchangeably. However, in

this work we will be consistent with the definition in Section 2.1. We inject

faults into the hardware layer to induce a failure. The hardware failure prop-

61

62 Techniques for Injecting Hardware Faults

agates to the software layer as an error and we observe the robustness of the

software to them. Nowadays, the reason for the injection of hardware faults

reside in the continuous scale of the transistor to small dimensions. Thereby,

the transistor become more susceptible to transient faults, also called soft

errors or Single Event Upset (SEU), mainly due to the following factors:

• radiation, atmospheric neutrons result from cosmic rays colliding with

participles in the atmosphere. Neutrons with energies greater than 1

mega-electron-volt (MeV) when strike a sensitive region of an SRAM

cell, the charge that accumulates could exceed the minimum charge

that is needed to keep the value stored in the cell, resulting in a soft

error [96].

• crosstalk, which is the capacitive and inductive coupling of signals from

one signal line to another. As system performance and board densities

increase, so does the problem of cross-talk [97].

• wear-out effects, under this term are collected critical intrinsic fail-

ure mechanisms for processors such as electromigration, stress migra-

tion, gate-oxide breakdown or time dependent dielectric breakdown

(TDDB), and thermal cycling [98]. These effects can result in soft

errors or even in hard errors (a persistent error).

5.2 Hardware Implemented Fault Injection

Hardware implemented fault injection (HIFI) includes additional hardware

to inoculate faults/errors in the target hardware. This technique can be

applied with and without contact to the target on the basis of the location

in which to inject. HIFI techniques requiring contact with the target are

pin-level fault injection and test port-based fault injection while for radiation

based fault injection is not necessary the contact.

5.2.1 Pin-level Fault Injection

There are two approaches to implement this technique: the forcing and the

insertion. In the forcing approach the faults/errors are injected through

probes to the pin of the Integrated Circuit (IC). AFIT [99] supports this

technique. In the insertion approach, the IC is isolated from the system

with a specific design circuit that intersects the signals to the IC. RIFLE

5.2 Hardware Implemented Fault Injection 63

[100] implements this approach, while MESSALINE [101] either forcing or

insertion.

5.2.2 Test Port-Based Fault Injection

This technique takes benefit of test ports available on modern micropro-

cessor. JTAG 1, NEXUS and Background Debug Mode (BDM) are three

common test port types that equip several microprocessors, the first two are

standardized by IEEE, while the latter is a proprietary solution by Freeescale

Inc. Test ports access instruction set architecture registers (ISA) as it is

the case for JTAG and also memory word (BDM and Nexus).The injection

through these ports involves three major steps: i) a breakpoint is set before

executing the workload, ii) when the workload reaches the breakpoint the

value in the target location (e.g., a register) is corrupted iii) the execution is

resumed. Therefore, these techniques allow to control the experiment with

respect to the target location, but the execution time depends on the access

speed of the test ports (Nexus in general is faster than JTAG and BDM).

This technique is implemented in GOOFI [102], INERTE [103], FlexiFi [104].

5.2.3 Radiation-Based Fault Injection

An injection consists in exposing the target to Electromagnetic Interferences

(EMI) or to Heavy-Ion radiation [105]. This technique has been used in the

nineties [106] and early twenties, the main drawbacks are the low controlla-

bility in terms of fault location (the interference insists on different area of

the board) and its repeatability.

5.2.4 Power Supply Disturbance

The fault injection occurs with a voltage drop in the power supply of the pro-

cessor for a few milliseconds [105,107]. When the power voltage drops below

a predefined threshold is expected that the processor does not work prop-

erly. This injection is hard to perform especially in modern microprocessor

because their very high clock frequency make calculation of the pulse inten-

sity tricky. Therefore, the intrusiveness and repeatability of this injection is

questionable.

1Joint Test Action Group is the common name for the IEEE 1149.1 Standard Test

Access Port and Boundary-Scan Architecture.

64 Techniques for Injecting Hardware Faults

5.3 Software Implemented Fault Injection

Software Implemented Fault Injection (SWIFI) emulates hardware faults

through the software layer. Basically, there are two main SWIFI techniques:

pre run-time injection and run-time injection. Pre run-time injection ana-

lyzes the binary image of the workload before its execution and alter it in

a specific fault location. This techniques is also refereed as Instrumentation

Based Fault Injection [108] and can be implemented as follow. The fault

injector inserts a software breakpoint in the workload executable. In Figure

5.1 the instruction 398016 is replaced with a jump to the injection routine at

the address 700016. The injection routine manipulates a register, executes

the replaced instruction 398016 and resumes the execution of the workload.

INJECTION
STEP

ADDR ASSEMBLY

0 397c add r9,r2,r1

1 3980 lwz ro,8(r9)

2 ba 7000 <instr_f>

5 3984 cmp r0,r9

3 inst_f: #instrumentation function

7000 stw r1,-16(r1)

...

7048 lwz ro,8(r9)

4 704c ba 3984

Figure 5.1: Instrumentation of the workload.

This technique has a variable spatial and temporal intrusiveness because

it extends the original image with injection code of variable size. The run-

time injection encompasses five major steps. The injector downloads on the

target an exception routine designed to inject faults. The second step sets

an hardware breakpoint along with an invocation count which serve as a

fault trigger. Third, the workload is executed. Fourth when the workload

triggers the hardware breakpoint, the hardware exception code inject the

fault. Fifth, the workload resumes.This technique does not manipulate the

binary of the workload, but it implements a complex mechanisms that can

increase its temporal intrusiveness.

Pre-injection and run-time injection have been intensely used over the

5.4 SWIFI: approaches and tools 65

years and experimentally compared in [109], on the average they produce

the same results. SWIFI assumes that hardware faults can be emulated

with one of the two techniques, however faults manifesting in the internal

logic of the Central Processing Unit (CPU) are not reproducible (e.g., faults

in the Arithmetic Logic Unit). Yet, permanent hardware faults are hard to

emulate with SWIFI because their insertion implies several manipulation of

the target or of the workload. On the opposite, SWIFI can effectively inject

transient faults.

A novel approach for SWIFI benefits of the Extensible Firmware Inter-

face(EFI) [110] standard available on x86/x64 architecture. In principal, this

approach does not modify the target and is highly flexible with four possible

implementations, however, at present, there is no fault injection campaign

that proves the feasibility of this technique.

5.4 SWIFI: approaches and tools

We describe in this section the evolution of SWIFI over the years and the

tools which implement it. FIAT [31] developed in 1990 corrupts the data

area of the binary according to three fault models, namely, zero-a-byte faults,

set-a-byte faults, and two-bit compensating faults. The zero- a-byte and set-

a-byte faults zeros or sets eight bits of a 32 bit word, two-bit compensating

faults flip two bits. Experiments did not consider the injection of a single bit

because the hardware was equipped with parity check. FERRARI (1992) [16]

could inject permanent and transient faults as well as control flow errors, bus

errors, memory errors, and processor control line errors into systems based on

SPARC processors from Sun Microsystems. FERRARI uses software traps

to inject faults and has five fault models: XORing a bit, resetting a bit,

setting a bit, setting a byte and resetting a byte. FINE emulates hardware

and software faults 2 on the kernel of Sun OS 4.1.2. FINE (1993) [111]

can inject transient and permanent hardware faults in the CPU, bus and

memory (text and data area) by flipping a bit. DEFINE (1994) [20] is the

evolution of FINE for distributed systems. Basically, DEFINE injects faults

in a single node as FINE does, in addition observe if and how they affect

other nodes in the system. DOCTOR (1995) [112]can inject communication

faults as well as traditional hardware faults such as memory and CPU faults

into HARTS distributed system. The faults can be intermittent, permanent

2For details about software faults see Section 3.1

66 Techniques for Injecting Hardware Faults

and transient. Fault can be injected as a single bit, two-bit (compensating),

whole byte, or burst (of multiple bytes). Communication faults in DOCTOR

can cause messages to be lost, altered, duplicated, or delayed.

FTAPE (1996) [113] performs injection on TANDEM system and sup-

ports single/multiple bit-flip and zero/set faults in CPU registers (e.g., stack

pointer, program counter) as well as in memory. FTAPE also includes I/O

faults, that is, SCSI and disk faults. Xception (1998) [114] takes benefit

of the exception available on the microprocessor, i.e., execute a run time

injection. The fault models includes flip stuck-at-zero, stuck at-one, and

bit flip. EXFI (1999) [115] exploits the Trace Exception Mode available in

most low cost micropocessor. EXFI can inject single bit-flip transient fault

into memory data and registers. A notable feature of this tool is a set of

fault collapsing rules which reduces the number of faults to inject without

decreasing the accuracy of the results.

MAFALDA [22] corrupts pseudo random selected byte in the code seg-

ment and data segment of a Microkernel OS. MAFALDA can flip one or

more bits for a temporarily, i.e., emulates a transient error. Exhaustif [116]

(2007) adds the target workload with a software module that can manipu-

late memory and processor registers according to specific patterns, such as

changes in the state of a bit (bit flip), the use of a mask (bit mask) or copy of

a new value. Skarin [17] extends the previous version of Goofi [102] to inject

multiple bit flip and bit flip into CPU registers and memory. Goofi-2 sup-

ports both pre-injection and run-time injection. A notable future of Goofi-2

is the optimization of the fault-space by utilizing assembly-level knowledge

of the target system in order to place single bit-flips in registers and memory

locations only immediately before these are read by the executed instruc-

tions.

5.5 Robustness of Software to Hardware Faults

In this section, we survey the literature with the aim to highlight the sen-

sitivity of software components to hardware errors injected through SWIFI.

The analysis includes contributions concerning single node systems (e.g., a

microprocessor with a workload), since the contribution of this thesis is re-

stricted to this kind of systems. Hence studies regarding distributed systems

are left out. Barton [31] injects 130000 faults into an IBM system on which

execute two workloads, quicksort and matrix multiplication. Both quicksort

5.5 Robustness of Software to Hardware Faults 67

and matrix multiplication run with inputs of different data size and they

are not extended with software fault tolerance mechanism (e.g., checksum),

neither an operating system is present. Error detection mechanism are pro-

vided by the hardware. Experimental evidences highlighted that there is a

strong linear correlation between the coverage of detection mechanism and

data size, the first decreases as the second increases.

Kanawati [16] injected faults and errors into a Sparc system under the

execution of three workloads: matrix multiplications using checksum, quick-

sort with assertions, and matrix multiplication using Continuous Signature

Monitoring (CSM) and checksum. The workloads were targeted with 8 dif-

ferent fault models. Results for the matrix multiplication show that about

43% of 600000 injections are caught by Sparc error detection systems (e.g.,

segmentation fault) and workload built-in detection mechanisms (e.g., check-

sum). While over 41% of the injected transient errors were latent (No Error).

Results for quicksort indicate that failure distribution varies when a 100 el-

ements array and 1000 elements are provided, in particular when the data

size increase, the probability of corrupting a data element increases as well.

Kao [111] investigates the robustness of a Unix OS to hardware and

software faults. In this case the workload are synthetically generated to

invokes OS system calls. Results illustrate that the fault locations (data

segment, text segment, bus) induce fluctuation in the failure distribution:

the percentage of faults provoking a self reboot of the OS change from 0.76%

(faults in bus) to 0.22% (faults in data segment). This is explained because a

significant part of the UNIX kernel is not exercised, although the accelerated

workload is used.

Tsai [117] benchmarks two different implementation of Tandem system,

Tandem A and Tandem B. Three workloads are synthetically generated, one

is CPU intensive, another is I/O intensive and the last one is a balanced

mix of CPU, I/O and memory intensive operations. Faults are injected into

both memory and CPU registers according to single bit flip, multiple bit flip,

and zero/set model. The three workloads on the two target systems show

a different error sensitiveness. In Tandem A the mixed workload is more

robust to errors while in Tandem B the CPU bound workload is the more

robust. Apparently, only the I/O workload is the less robust across the two

different implementation of Tandem.

Carreira [114] performs fault injection on a PowerPc board, the fault

model is bit flip. Three workloads, Π-calculation (computes an approximate

68 Techniques for Injecting Hardware Faults

value of π), SOR (a Laplace equation solver), and matrix multiplication are

targeted with about 2000 faults each. The iterative nature of the Laplace

equation solver algorithm masked a high percentage of the faults and there-

fore they obtained a small number of silent data corruption (no detection

mechanism caught the fault and the elaboration differs from the expected

one), not more than 8.5% in all functional units (e.g. address bus, floating

point unit). The matrix multiplication enhanced with the ABFT (Algorithm

Based Fault Tolerance) mechanism allows to detect all the errors. ABFT is

an extremely simple method, which only implies the inclusion of an extra

line and column in the result matrix.

Benso [115] carries on fault injection campaigns on a Motorola board.

Parser (a syntactical analyzer for arithmetic expressions with a software er-

ror detection mechanism), matrix multiplication (of two matrixes, 10x10

elements each), a bubble sort algorithm (running on a 10 integers vector)

are submitted to fault injection campaigns of approximately 300000 faults

in CPU registers and memory. In their experience, the size of data structure

affects the percentage of ”no-impact” faults, because larger data size entails

the injection of faults into variables or registers outside the period in which

it is used. Bubble Sort and Parser are control-dominated programs therefore

faults are likely to trigger a detection mechanism or have no effect. Con-

versely, matrix is data-dominated, hence faults are more prone to generate

a silent data corruption.

Audet [118] shows, through synthetic programs and a real program that

implements the Fast Fourier Transform algorithm (FFT), how the error sen-

sitivity is affected from the program structure. The synthetic workloads

implement the same functionality, but some are a pure sequence of instruc-

tions, while others are a mix of iterative instructions (for loop) and sequen-

tial instructions. Blocks of iterative instructions seem much more robust to

transient errors than the equivalent sequential implementation. This con-

sideration is also backed up by the FFT workload. From this experimental

observation, Audet deducts a set of rules to apply during coding to make the

workload more robust. Examples of rules are: i) ”If data dependency is not

affected, break a large loop into a series of smaller loops” ii) ”iterative com-

putations (loops) should be placed toward the end of a program whenever

possible”.

Folkesson [119] estimated the percentage of value failure for quicksort and

shellsort, both executed with 24 different inputs on a Thor board. Quicksort

5.5 Robustness of Software to Hardware Faults 69

has a percentage of value failure varying from 8% up to 14% whilst for

shellsort the percentage of value failure is approximately constant and equals

to 18%.

Ruiz [24] benchmarks the robustness of an engine control application

running directly on a PowerPc board and when it executes on the same

board but with the interposition of an operating system. The engine control

application drives the quantity of the air and fuel to enter the cylinder.

Representative inputs recorded from a real engine stimulates the control

application. A campaign consisting of 2000 transient faults reveals that

10.7% of injections produces an unpredictable behavior of the stand alone

engine control application (without operating system) while unpredictable

situation is reduced by a factor of four when the application executes on the

operating system.

In the last years, the need for more dependable software in area where

the cost is a major issues has encouraged researchers in developing soft-

ware fault tolerant algorithms and mechanisms, the so called Software Im-

plemented Hardware Fault Tolerance (SIHFT). The software component is

then hardened with additional source or assembly code. Oh [120] with its

seminal work presents the Error Detection by Data Diversity and Duplicated

Instructions (ED4). This technique executes two ”different” programs with

the same functionality but with different data sets and compare their out-

puts. Although, the effectiveness of ED4 against single event upset is proved

only through simulation, this work has been inspiring for many other studies

conducted on real systems.

Madeira [121] is among the first authors to propose a software detection

schema based on signature checking. The assembly is segmented in section.

A signature is computed for each section and used at run time to detect er-

rors. This approach is applied to: 1) a pseudo-random number generator, 2)

a string search program, 3) a bit shift, set, reset, and test program, 4) a quick

sort, and 5) a Sieve prime number generator. Unfortunately, results about

the robustness of each application are not available, however the proposed

detection mechanism is able to detect about 94% of 6000 faults injected in

the Z80 bus.

Rebaundengo [122,123] introduces a set of rules to make more robust the

software to transient errors. Such rules are the duplication and checksum

of variables, control flow checks, and they have been applied to the source

code of: Sieve program which implements the sieve of Eratosthenes, matrix

70 Techniques for Injecting Hardware Faults

multiplication and bubble sort running on Intel 8085. The proposed method

can reduce to zero the number of silent data corruption regardless of the

fault location (data and code).

Nicolescu [124] provides the results of fault injection into Leon proces-

sor registers and a digital signal processing unit for 6 workloads of which 3

synthetic programs and 3 real programs. The three synthetic programs are:

intensive data computing program (IDC), intensive branching program (IB)

and the high recursivity degree program (HRD). The three real workloads

are Constant Modulus Algorithm (CMA), signal equalization algorithm used

in space communications, quick sort, and Finite Impulse Response (FIR) a

digital filter. All workloads are extended with advanced control flow tech-

niques and code duplications. An extensive fault injection on both target

hardware show the absence of silent data corruption for all the workloads.

Reis [125] proposes software fault tolerance mechanisms implemented at

assembly level. The mechanism duplicates code instructions and check the

control flow with checksum. These methods are combined with hardware

implemented error correction code. Transient faults are injected into CPU

registers accessed by a large number of programs from SPEC CINT2000,

SPEC FP2000, SPEC CINT95 and MediaBench benchmark, in total more

than 32 programs are targeted while executing on Intel Itanium. Results

show that for all the program no silent data corruption is observed.

Vinter [126] augments the robustness of a software implemented integra-

tor with a schema that protects the internal state of the integrator itself. The

proposed solution proved to be very effective against single and multiple bit

flip injected into the registers of a PI controller: no value failure is observed.

Skarin [127] tested the robustness of anti-lock brake by wire system (ABS)

against bit flip in registers and memory area of a PowerPc board. The ABS

is augmented with two error detection mechanisms: a stack pointer checker

and a rate limit check, an ad-hoc schema to check the output values of

an integrator. Together these mechanisms can reduce critical failures (an

unacceptable behavior of the ABS) from 4.6% to 0.4%.

Cook [128]investigates on the masking effects at assembly instruction

level, i.e., for a class of assembly instructions (e.g., load, store, compare)

he shows how transient faults do not alter the behavior of the workload.

The masking effects are a sort of ”workload self-immunity” to transient er-

rors. The experimentation is conducted on SPEC CPU2000 INT benchmarks

compiled with different optimizations. Interestingly, across all the optimiza-

5.5 Robustness of Software to Hardware Faults 71

tions and all the programs about 30% of 10000 injections is masked. Cooks

exploits this masking effects to develop more efficient hardware detection

mechanisms.

Alexandersson [129] benchmarks a Fibonacci program and an Anti-lock

Brake by wire System (ABS) with fault tolerance mechanisms implemented

either through Aspect Oriented Programming (AOP) or manually. The fault

tolerance mechanisms are an improved version of the traditional control flow

check (CFC) and the triple time redundant with forward recovery (TTR).

Workloads run on a PowerPc board. The total value failure obtained when

using the CFC mechanism varied between 12% and 5% for the evaluated pro-

grams. Value failure amounts from 4% to 6% for the TTR mechanism. These

results are valid regardless of the implementation method, AOP or manual

addition of C lines of code. Another notably contribution by Alexanderson

is the evaluation of the influence of the compiler optimization on the failure

distribution. Aggressive optimization are likely to reduce the size of the pro-

gram thus lowering the exposure to faults, as a consequence highly optimized

version of the two workloads presented a smaller percentage of value failure.

From this literature review emerges that, at present, there is no com-

mon agreement on the workloads to use in fault injection campaigns, thus

the results, here reported, are not meant for comparison. Yet, only the

work [16, 24, 31, 119] provide insight on the influence of the workload inputs

on the failure distribution. Since inputs can impact on the results to a large

extent, they must be contemplated in fault injection experiments. Surpris-

ingly, many of the analyzed studies do not even state which input exercises

the workloads.

72 Techniques for Injecting Hardware Faults

Chapter 6

An Investigation of the

Relationship between Workload

Inputs and Failure Mode

Distributions

Despite the consolidated use of SWIFI, there are still open prob-

lems which deserve an investigation such as the influence of the

workload inputs on the experimentation. Thus, we experimentally

illustrate the influence of the workload inputs on fault injection

outcomes and study the relationship existing between them. This

chapter presents the results of extensive fault injection experi-

ments with four programs where single bit errors were injected

in CPU registers and main memory locations of the target sys-

tems. The aim of the study is to investigate how error coverage

varies for different inputs. We conducted experiments with pro-

grams protected by triple-time redundant execution with forward

recovery, and with programs without software-implemented fault

tolerance. In addition, we propose a technique for identifying in-

put sets that are likely to cause the measured error coverage to

vary.

73

74
An Investigation of the Relationship between Workload Inputs

and Failure Mode Distributions

6.1 Target Workloads

We present the four target workloads used in the fault injection setups; secure

hash algorithm (SHA), cyclic redundancy check (CRC), quick sort (Qsort),

and binary string to integer convertor (BinInt). SHA is a cryptographic

hash function which generates a 160-bit message digest. Here we use SHA-1

algorithm which is applied in many security protocols and applications such

as SSL, TLS, SSH and IPsec. The CRC that we used in our experiments is a

software implementation of CRC 32-bit polynomial which is mostly used to

calculate the end-to-end checksum. Qsort is a recursive implementation of

the well-known quick sort algorithm, which is also used as a target program

for fault injection experiments in [119, 130]. Finally, BinInt converts an

ASCII binary string, 1s and 0s, into its equivalent integer value.

Even though the implementation of our workloads can be found in the

MiBench suite 1, we only take CRC and BinInt from this suite. For the

quick sort algorithm, the MiBench implementation uses a built-in C func-

tion named qsort whose source code is not available. This prevents us from

performing detailed analysis. Furthermore, the MiBench implementation of

SHA uses dynamic memory allocation which is not necessary for an embed-

ded system.

Thus, we adopt another implementation of SHA 2. The structure of these

synthetic workloads profoundly differs in terms of lines of source code (LOC),

number of functions, input types and executed assembly instructions. BinInt

is the smallest workload with 7 LOC and is made of one function with one

loop, whereas SHA measures 125 LOC and has 5 functions.

6.1.1 Input Sets

Nine different inputs are selected for each workload. The combination of an

input and a workload is called an execution flow. Thus, for each workload, we

have conducted experiments for 9 execution flows. On the basis of the length

of the inputs, we group SHA and CRC execution flows into three categories,

see Table 6.1 and Table 6.2. These categories are chosen to represent input

lengths that are common in real scenarios. For Qsort, the input vector

consists of 6 integers. The execution flows use the same 6 integers with

different permutations (Table 6.3). The input of BinInt is a random string

1Mibench Version 1, [Online] http://www.eecs.umich.edu/mibench/
2http://www.dil.univ-mrs.fr/ morin/DIL/tp-crypto/sha1-c

6.2 Software Implemented Fault Tolerance 75

Table 6.1: The input space for CRC.

Category Input length (characters) Execution flow

Small

0 CRC-1

1 CRC-2

2 CRC-3

Medium
10 CRC-4 & CRC-5

46 CRC-6 & CRC-7

Large 99 CRC-8 & CRC-9

Table 6.2: The input space for SHA.

Category Input length (characters) Execution flow

Small

0 SHA-1

1 SHA-2

2 SHA-3

Medium
10 SHA-4 & SHA-5

60 SHA-6 & SHA-7

Large 99 SHA-8 & SHA-9

of 1s and 0s. Since an integer is a 32-bit data type, the length of the input

string is limited to 32 characters, see Table 6.4.

6.2 Software Implemented Fault Tolerance

In addition to the basic version of the workloads, we conducted experiments

on the triple time redundant execution with forward recovery (TTR-FR)

[129]. In TTR-FR, the target workload is executed three times and the

result of each run is compared with the other two runs using a software

implemented voter. If only one run of the program generates a different

output, the output of the other two runs will be selected. Thus, the state

of the faulty run moves forward to a fault-free point (forward recovery).

If none of the outputs match, then error detection is signaled. The non-

fault tolerance version of the workloads consists of three major code blocks;

76
An Investigation of the Relationship between Workload Inputs

and Failure Mode Distributions

Table 6.3: The input space for Qsort.

Category Number of sorted elements Execution flow

Sorted 6 Qsort-1

Mostly Sorted 4 Qsort-2 & Qsort-3

Partly Sorted
3 Qsort-4 & Qsort-5

2 Qsort-6 & Qsort-7

Unsorted 0 Qsort-8 & Qsort-9

Table 6.4: The input space for BinInt.

Category Input length (characters) Execution flow

Small
0 BinInt-1

9 BinInt-2 & BinInt-3

Medium
16 BinInt-4 & BinInt-5

24 BinInt-6 & BinInt-7

Large 31 BinInt-8 & BinInt-9

startup, main function, and core function. In the TTR-FR implementation

we add the voter to the main function to perform the majority voting. The

core function, which is called three times from the main function, performs

the foremost functionality of each workload. As an example, in Qsort, the

sorting procedure is done in the Qsort’s core function, whereas in CRC, the

core function is responsible for the checksum calculations.

6.3 Experimental Setup and Fault Model

The workloads are executed on a Freescale MPC565 microcontroller, which

implements a PowerPC architecture. Faults are injected into the micro-

controller via a Nexus debug interface using Goofi-2 [17], a tool developed

at Chalmers University. This environment allows us to inject faults, bit

flips, into instruction set architecture (ISA) registers and main memory of

the microcontroller. Ideally, the fault model to adopt for this evaluation

should exhibit real faults, i.e., it should account for multiple and single bit

6.4 Results 77

flips. However, there is no commonly agreed model for multiple bit flips.

Thus, we adopt the single bit flip model as it has been done in other stud-

ies [114,123,125,128,131].

Faults are injected into the main memory (stack, data, etc.) and all CPU

registers used by the execution flows. The registers include general purpose

registers, program counter register, link register, integer exception register,

and condition register. As the machine code of our workloads is stored in

a Flash memory, it cannot be subjected to fault injection. We define fault

in terms of time-location pair, where the location is a randomly selected

bit in the memory word or CPU register, while the time corresponds to the

execution of a given machine instruction (i.e., a point in the execution flow).

A fault injection experiment consists of injecting one fault and observing its

impact on a workload. A fault injection campaign is a series of fault injection

experiments with a given execution flow.

6.4 Results

In this section, we present the outcomes of fault injection campaigns con-

ducted on the 4 workloads. We carried out 9 campaigns per workload which

resulted in a total of 36 campaigns for the basic version and 36 campaigns

for the TTR-FR version. The campaigns consist of 25000 experiments ex-

cept for CRC campaigns that are subjected to 12000 experiments. The error

classification scheme of each experiment is:

• No Impact (NI), errors that do not affect the output of the execution

flow.

• Detected by Hardware (DHW), errors that are detected by the hard-

ware exceptions.

• Time Out (TO), errors that cause violation of the timeout.

• Value Failure (VF), erroneous output with no indication of failure

(silent failure).

• Detected by Software (DSW), errors that are detected by the software

detection mechanisms.

• Corrected by Software (CSW), errors that are corrected by the software

correction mechanisms.

78
An Investigation of the Relationship between Workload Inputs

and Failure Mode Distributions

When presenting the results, we also refer to the coverage (COV) as the

probability that a fault does not cause value failures, which is calculated in

equation 6.1

COV = 1−#V F/N (6.1)

Here N is the total number of experiments, and #VF is the total number

of experiments that resulted in value failure. In addition to the experiments

classified as detected by hardware, the coverage includes no impact and

timeout experiments. No impact experiments can be the result of internal

robustness of the workload; therefore they contribute to the overall coverage

of the system. Experiments that are resulted in timeout are detected by

Goofi-2. In a real application, watchdog timers are used to detect these

types of errors.

6.4.1 Results for Workloads without Software Imple-

mented Hardware Fault Tolerance

Tables 6.5, 6.6, 6.7, and 6.8 present failure distributions for all the work-

loads. Each row shows the percentage of experiments that fall in different

error classifications. Due to the large number of experiments (25000 for

SHA, BinInt, Qsort and 12000 for CRC), the 95% confidence interval for the

measures in this section varies from ±0.08% to ±0.89%. For SHA and CRC,

the percentage of experiments classified as value failures grows as the length

of the inputs is increased.

If we consider that the value failure is distributed as a normal variable

with a mean value equals to the quote between the number of value failure

experiments and the total number of experiments, we can conduct one way

analysis of variance (ANOVA). ANOVA is performed by testing the hypoth-

esis H0 which states ”there is no linear correlation between the length of the

input and the percentage of value failure”. The results of ANOVA in Table

6.9 allow us to reject H0 with a confidence of 95%. The reason behind this

correlation is that when the length of the input increases, the number of

reads from registers and memory locations are increased as well. Therefore,

there are more possibilities to inject faults that result in value failure. Ob-

viously, as the value failure increases linearly with the length, the coverage

is linearly decreased (see Table 6.5 and Table 6.6).

Qsort and BinInt exhibit a non-linear variation of the value failure with,

6.4 Results 79

Table 6.5: Failure distribution of all the execution flows of CRC (all values

are in percentage).

Execution flow NI VF DHW TO COV

CRC-1 42.7 6.1 48.2 3.0 93.9

CRC-2 32.9 17.9 46.7 2.4 82.1

CRC-3 28.3 24.3 45.8 1.6 75.7

CRC-4 20.8 34.3 44.0 0.8 65.7

CRC-5 20.3 35.5 43.6 0.6 64.5

CRC-6 17.1 39.6 43.0 0.3 60.4

CRC-7 16.6 39.8 43.4 0.2 60.2

CRC-8 15.7 41.2 42.7 0.4 58.8

CRC-9 16.0 41.9 41.8 0.3 58.1

Table 6.6: Failure distribution of all the execution flows of SHA (all values

are in percentage).

Execution flow NI VF DHW TO COV

SHA-1 18.9 38.8 41.0 1.4 61.2

SHA-2 17.8 40.1 41.0 1.1 59.9

SHA-3 17.6 40.8 40.6 1.0 59.2

SHA-4 16.8 42.1 39.7 1.4 57.9

SHA-5 15.9 43.1 39.4 1.6 56.9

SHA-6 11.5 47.1 39.5 1.9 52.9

SHA-7 11.4 47.7 39.3 1.6 52.3

SHA-8 10.7 48.8 38.8 1.7 51.2

SHA-9 10.7 49.1 38.4 1.8 50.9

respectively, the number of sorted elements and the input length (Table 6.7

and Table 6.8). For Qsort, this can be explained by considering that in

addition to the number of sorted elements, the position of these elements

impacts Qsort’s behaviour. This causes different number of element com-

parisons and recursive calls to the core function. This effect is particularly

evident for Qsort-4 and Qsort-5. Even though both have 50% of the input

elements sorted, there is a difference of 4.85 percentage points between their

80
An Investigation of the Relationship between Workload Inputs

and Failure Mode Distributions

value failures. Although there is no linear correlation for Qsort, it is notable

that the average value failures of the first five execution flows, which have

more sorted elements, is 4.22 percentage points lower than the next four

execution flows. BinInt, however, is a small program with an input space

between 0 to 32 characters; these inputs for such a small application do not

cause a significant variation in the failure distribution. Results in Table 6.9

show that the proportion of failures detected by the hardware exceptions is

almost constant for a given workload (the coefficient is 0.019 for SHA, 0.04

for CRC, and 0.02 for BinInt). Analogously, the proportion of experiments

classified as timeout is almost constant for all the workloads. It is worth

noting that the startup code may vary in different systems. We therefore

show the trend of value failures with/without the startup block in Fig. 6.1

and in Fig. 6.2. We can see that the trends in the two diagrams are similar

which is due to the fact that the startup code consists of significantly fewer

lines of code compared to the other blocks.

0"

10"

20"

30"

40"

50"

60"

1" 2" 3" 4" 5" 6" 7" 8" 9"

VF
#(%

)#

Execu,on#flow#

CRC#

SHA#

Qsort#

BinInt#

Figure 6.1: The percentage of value failures for different execution flows of

each workload with the startup block.

6.4 Results 81

0"

10"

20"

30"

40"

50"

60"

1" 2" 3" 4" 5" 6" 7" 8" 9"

VF
#(%

)#

Execu,on#flow#

CRC#

SHA#

Qsort#

BinInt#

Figure 6.2: The percentage of value failures for different execution flows of

each workload without the startup block.

Table 6.7: Failure distribution of all the execution flows of Qsort (all values

are in percentage.

Execution flow NI VF DHW TO COV

Qsort-1 37.1 12.7 46.8 3.5 87.3

Qsort-2 32.8 17.1 46.9 3.2 82.9

Qsort-2 32.8 17.1 46.9 3.2 82.9

Qsort-3 31.3 17.7 47.7 3.3 82.3

Qsort-4 31.7 18.1 46.8 3.9 81.9

Qsort-5 26.5 23.0 47.2 3.3 77.0

Qsort-6 29.0 20.7 46.0 4.3 79.3

Qsort-7 29.3 20.9 46.3 3.5 79.1

Qsort-8 27.2 22.1 46.6 4.2 77.9

Qsort-9 25.4 24.2 46.5 4.0 75.8

82
An Investigation of the Relationship between Workload Inputs

and Failure Mode Distributions

Table 6.8: Failure distribution of all the execution flows of BinInt (all values

are in percentage).

Execution flow NI VF DHW TO COV

BinInt-1 44.1 3.5 49.9 2.5 96.5

BinInt-2 34.9 20.6 41.5 3.0 79.4

BinInt-2 34.9 20.6 41.5 3.0 79.4

BinInt-3 34.7 20.6 41.6 3.1 79.4

BinInt-4 34.5 20.5 42.0 2.9 79.5

BinInt-5 35.3 21.2 40.5 3.0 78.8

BinInt-6 35.1 21.0 40.8 3.1 79.0

BitInt-7 34.8 21.5 40.5 3.2 78.5

BitInt-8 36.7 20.4 40.0 3.0 79.6

BinInt-9 35.5 20.9 40.5 3.1 79.1

6.4 Results 83

T
a
b

le
6
.9

:
N

u
ll

H
y
p

o
th

es
is

te
st

re
su

lt
s

fo
r

th
e

w
o
rk

lo
a
d

s.

N
u
ll

H
y
p
o
th

e
-

si
s(
H
0
)

In
p
u
t

C
h
a
r
-

a
c
te

r
is
ti
c

W
o
r
k
lo
a
d

p
-v
a
lu

e

(α
=
0
.0
5
)

R
e
su

lt
L
in

e
a
r
R
e
g
r
e
ss
io
n

E
q
u
a
ti
o
n

N
o

li
n

ea
r

co
rr

el
a
ti

o
n

b
et

w
ee

n
V

F
a
n

d
in

p
u

t

ch
a
ra

ct
er

is
ti

c

L
en

g
th

in

ch
a
ra

ct
er

s

C
R

C
0
.0

2
9

R
ej

ec
t

V
F

=
2
3
.2

0
+

0
.2

2
le

n
g
th

S
H

A
<

0
.0

0
1

R
ej

ec
t

V
F

=
4
0
.6

4
+

0
.0

9
le

n
g
th

B
in

In
t

0
.0

6
9

A
cc

ep
t

–

S
o
rt

ed
el

e-

m
en

ts
Q

so
rt

0
.0

5
3

A
cc

ep
t

–

N
o

li
n

ea
r

co
rr

el
a
ti

o
n

b
et

w
ee

n
D

H
W

a
n

d

in
p

u
t

ch
a
ra

ct
er

is
ti

c

L
en

g
th

in

ch
a
ra

ct
er

s

C
R

C
0
.0

1
R

ej
ec

t
D

H
W

=
4
5
.8

4
-

0
.0

4
le

n
g
th

S
H

A
0
.0

3
4

R
ej

ec
t

D
H

W
=

4
0
.4

6
-0

.0
1
9
le

n
g
th

B
in

In
t

0
.0

2
R

ej
ec

t
D

H
W

=
4
5
.7

5
-

0
.0

2
le

n
g
th

S
o
rt

ed
el

e-

m
en

ts
Q

so
rt

0
.1

2
A

cc
ep

t
–

N
o

li
n

ea
r

co
rr

el
a
ti

o
n

b
et

w
ee

n
T

O
a
n

d
in

p
u

t

ch
a
ra

ct
er

is
ti

c

L
en

g
th

in

ch
a
ra

ct
er

s

C
R

C
0
.0

4
6

R
ej

ec
t

T
O

=
1
.6

7
-

0
.0

1
7
le

n
g
th

S
H

A
0
.3

7
A

cc
ep

t
–

B
in

In
t

0
.1

A
cc

ep
t

–

S
o
rt

ed
el

e-

m
en

ts
Q

so
rt

0
.1

8
A

cc
ep

t
–

84
An Investigation of the Relationship between Workload Inputs

and Failure Mode Distributions

6.4.2 Results for Workloads Equipped with TTR-FR

Table 6.10 presents the average results for the 9 execution flows of each

workload. The percentage of value failures for SHA, CRC and BinInt is less

than 2%, while for Qsort there is a higher percentage of value failures, about

5%. The proportion of value failure varies for different code blocks. With

respect to the core function, the main contributor to the lack of coverage is

faults in the program counter register. These faults change the control flow

in such a way that the voter is incorrectly executed or not executed at all.

For instance, for the core function of SHA, around 96% of the value

failures were caused by faults in the program counter register. Faults injected

into the other code blocks, including the voter, are more likely to generate

value failures since they are not protected by the TTR-FR. For Qsort, the

relative size of the core function is smaller compared to the other programs.

This resulted in only around 57% of the injections in this function, while

in the other workloads more than 96% of faults were injected in the core

function. This can explain the higher percentage of value failures in Qsort

compared to the other workloads. In order to evaluate the robustness of the

voter, we conducted exhaustive fault injections (i.e., we inject all possible

faults) in the voter of each workload, see Table 6.11. It is notable that even

though TTR-FR mechanism decreases the percentage of value failure, the

voter is one of the main contributors to the occurrence of value failure. The

average percentage of errors detected by the hardware exceptions does not

vary significantly between the versions extended with TTR-FR and those

without this mechanism for SHA, CRC, and BinInt, while it differs about

5% for Qsort.

Table 6.10: Average failure distributions for the workloads extended with

TTR-FR, injections in all code blocks.

Workload NI VF CSW DSW DHW TO COV

CRC 20.78 1.65 33.43 0.19 43.22 0.73 98.35

SHA 14.92 0.76 43.36 0.15 39.00 1.78 99.24

Qsort 28.74 5.42 20.37 0.77 41.89 2.79 94.58

BinInt 34.69 1.45 20.21 0.09 40.60 2.96 98.55

6.5 Input Selection 85

Table 6.11: Average failure distributions for the workloads extended with

TTR-FR injection only in the voter code block.

Workload VF

CRC 12.32

SHA 16.60

Qsort 17.05

BinInt 12.32

6.5 Input Selection

As we demonstrate in this work, the likelihood for a program to exhibit a

value failure due to bit flips in CPU-registers or memory words depends on

the input to the program. Thus, when we assess the error sensitivity of an

executable program by fault injection, it is desirable to perform experiments

with several inputs. In this section, we describe a method for selecting inputs

such that they are likely to result in widely different outcome distributions.

The selection process consists of three steps. First, the fault-free execution

flows for a large set of inputs are profiled using assembly code metrics. We

then use cluster analysis to form clusters of similar execution flows. Finally,

we select one representative execution flow from each cluster and subject

the workload to fault injection. We validate the method by showing that

inputs in the same clusters indeed generate similar outcome distributions,

while inputs in different clusters are likely to generate different outcome

distributions.

6.5.1 Profiling

We adopt a set of 48 assembly metrics corresponding to different access types

(read, write) to registers and memory sections along with various categories

of assembly instructions (Table 6.12). Since that the 47 metrics might be

redundant or highly correlated, with the Principal Component Analysis we

select only a set of 6 uncorrelated metrics shown in Table 6.13.

For each group, we define the percentage of execution as the number

of times that the instructions of that category are executed out of the total

number of executed instructions. These 6 metrics are a proper representative

86
An Investigation of the Relationship between Workload Inputs

and Failure Mode Distributions

Table 6.12: The initial set of 48 assembly metrics.

Metric

Number

Metric

Name

Description

General

Metrics

1 NEI Number of different Executed Instructions, the total number of different

instructions in the assembly code.

2 NE Number of Executed instructions, i.e., the number of times that the

PCR has been updated.

Instruction

Metrics

3 NLI Number of Load Instructions.

4 NSI Number of Store Instructions.

5 NAI Number of Arithmetic Instructions.

6 NBI Number of Branch Instructions.

7 NLGI Number of Logical Instructions.

8 NPI Number of Processor Instructions.

9 PLI Percentage of Load Instructions. (NLI/NE)

10 PSI Percentage of Store Instructions. (NSI/NE)

11 PAI Percentage of Arithmetic Instructions. (NAI/NE)

12 PBI Percentage of Branch Instructions. (NBI/NE)

13 PLGI Percentage of Logical Instructions. (NLGI/NE)

14 PPI Percentage of Processor Instructions. (NPI/NE)

15 LAD Load Distance, the average distance between two consecutive executions

of load instructions.

16 SD Store Distance, the average distance between two consecutive executions

of store instructions.

17 AD Arithmetic Distance, the average distance between two consecutive ex-

ecutions of arithmetic instructions.

18 BD Branch Distance, the average distance between two consecutive execu-

tions of branch instructions.

19 LGD Logical Distance, the average distance between two consecutive execu-

tions of logical instructions.

20 PD Processor Distance, the average distance between two consecutive exe-

cutions of processor instructions.

Register

Metrics

21 NGPR Total number of different GPRs accessed.

22 NRCR Number of access in read mode to condition register.

23 NWCR Number of access in write mode to condition register.

24 NRSP Number of access in read mode to the stack pointer.

25 NWSP Number of access in write mode to the Stack pointer.

26 NRGPR Number of access in read mode to GPRs (all GPRs except r1, that has

been counted in NRSP)

27 NWGPR Number of access in write mode to GPRs? (all GPRs except r1, that

has been counted in NWSP)

28 NRXER Number of access in read mode to the XER.

29 RDCR The average distance between two consecutive read operations from the

CR.

30 WDCR The average distance between two consecutive write operations? into

the CR.

31 RDSP The average distance between two consecutive read operations from the

SP.

32 WDSP The average distance between two consecutive write operations into the

SP.

33 RDGPR The average distance between two consecutive read operations from the

GPRs.

34 WDGPR The average distance between two consecutive write operations into the

GPRs.

35 RDXER The average distance between two consecutive read operations from the

XER.

Memory

Metrics

36 NRTXT Number of times the program reads from the text section.

37 NRAS Number of times the program reads from the Stack section.

38 NWAS Number of times the program writes into the Stack section.

39 NRAB Number of times the program reads from the bss/sbss section.

40 NWAB Number of times the program writes into the bss/sbss section.

41 NRAD Number of times that the program read from data/sdata section.

42 NWAD Number of times the program writes into the data/sdata section.

43 RSD The average distance between two consecutive read operations from the

stack section in terms of PC executions.

44 WSD The average distance between two consecutive write operations into the

stack section in terms of PC executions.

45 RBD The average distance between two consecutive read operations from the

bss/sbss section in terms of PC executions.

46 WBD The average distance between two consecutive write operations into the

bss/sbss section in terms of PC executions.

47 RDD The average distance between two consecutive read operations from the

data/sdata section in terms of PC executions.

48 WDD The average distance between two consecutive write operations into the

data/sdata section in terms of PC executions.

6.5 Input Selection 87

of the metric set for our workloads. Therefore, these metrics are used as a

signature for the fault-free run of each execution flow to be used in the

clustering algorithm.

Table 6.13: Selected Assembly Metrics.

Categories Instructions Metrics

LOAD (LD) lbz, li, lwi, lmw, lswi,

. . .

PLD (percentage of load

instructions)

STORE (ST) stb, stub, sth, sthx,

stw,. . .

PST (percentage of

store instructions)

ARITHMETIC (AI) add, subf, divw, mulhw,

. . .

PAI (percentage of

arithmetic instructions)

BRANCH (BR) b, bl, bc, bclr, . . . PBR (percentage of

branch instructions)

LOGICAL (LG) and, or, cmp, rlwimi,

. . .

PLG (percentage of log-

ical instructions)

PROCESSOR (PR) mcrf, mftb, sc, rfi, . . . PPR (percentage of pro-

cessor instructions)

6.5.2 Clustering

Cluster analysis divides the input set (the execution flow, in our case) into

homogenous groups based on the measurements of input attributes, the sig-

nature of execution flows. We adopted the hierarchical clustering [132] due

to the fact that unlike other clustering techniques (e.g., K-means), it does

not require a preliminary knowledge of the number of clusters. Thus, we can

validate a posteriori if the execution flows are clustered as expected. The

hierarchical clustering adopted in this work evaluates the distance between

two clusters according to the centroid method.

6.5.3 Input Selection Results

The clustering technique is applied to normalized values (mean equal to 0 and

a variance equal to 1) of the assembly metrics. In the case of non-normalized

88
An Investigation of the Relationship between Workload Inputs

and Failure Mode Distributions

data, higher weights will be given to variables with higher variances. To

prevent this effect, due to the significant variations in the metric values, e.g.,

the variance of PLD is orders of magnitude larger than the variance of PPR,

we use the normalized values. Fig. 6.3 depicts dendrogram representations of

the results of the clustering technique for the non-TTR-FR implementation

of SHA, CRC, and Qsort workloads (BinInt has already shown a roughly

constant variation in its failure distribution, thus, we exclude it from the

clustering analysis). Each dendrogram is read from left to right.

Figure 6.3: SHA, CRC and Qsort clusters on assembly metrics.

At the first stage of the algorithm, the execution flows of each workload

are either grouped in 2-dimension clusters (e.g., SHA-4 and SHA-5) or left

isolated (e.g., SHA-1). These groups can be easily linked to characteristics of

the inputs in the case of SHA and CRC. Indeed, inputs with the same length

(e.g., CRC-9 and CRC-8) or approximately the same length (e.g., CRC-2,

CRC-3) belong to the same cluster. However in Qsort, this observation is not

verified, since vectors with the same number of sorted elements are placed

in different clusters (e.g., Qsort-8 and Qsort-9). At the next stage, different

clusters are joined using vertical lines. The positions of these lines indicate

the distance at which clusters are joined. In the case of our workloads, the

algorithm groups the former clusters together by merging the inputs with

”smaller size” (e.g., SHA-1, SHA-2, SHA-3 with SHA-4, SHA-5) and inputs

with ”larger size” (e.g., CRC-6, CRC-7 with CRC-8, CRC-9). In order to

validate the results of our approach, we need to show that execution flows

with a ”similar” failure distribution belong to the same cluster. The same

clustering algorithm can be used for identifying the execution flows that are

similar in terms of failure distribution. This time, the error categories (VF,

NI, DHW, TO) are used instead of the assembly metrics, see Fig. 6.4.

Comparing Fig. 6.3 and Fig. 6.4, for CRC and SHA, we can observe

that the first clusters from the left are grouped exactly in the same way. For

these workloads, after the profiling, we can arbitrarily select one execution

6.5 Input Selection 89

Figure 6.4: SHA, CRC and Qsort clusters on the failure distributions.

flow from each cluster for a fault injection campaign and consider its failure

distribution as a representative of the other member of that cluster. In this

way, the variation in failure mode distribution of a workload can be discov-

ered by performing fault injection campaigns on fewer number of execution

flows. We quantify the reduction, R, of fault injection campaigns in 6.2

R = (1− C/I) ∗ 100 (6.2)

Here C indicates the number of clusters at the first stage, and I is the

total number of execution flows. For CRC and SHA, the reduction is 45%,

which means that we can save about 45% of time. Hence, for these workloads

we can profile their execution flows and on the basis of the obtained clusters

decide whether to conduct a fault injection campaign or not. It is notable

that input selection requires very limited human interactions and it is mostly

accomplished by a fault-free run of the execution flow performed by Goofi-2,

a signature extractor tool, and a data analysis tool. In our experimental

environment, profiling costs up to 5 hours, while a fault injection campaign

costs up to 2 days. This is a significant benefit of the proposed approach.

For Qsort there is no mapping between the clusters in the assembly space

and the ones for the failure distribution. This might mean that for some

applications like Qsort, where the failure distribution is dependent on more

than just the length of input, other suitable assembly metrics are required.

We exclude that this result is tied to the choice of the clustering method

since we also obtain identical results with other methods such as average

and ward.

90
An Investigation of the Relationship between Workload Inputs

and Failure Mode Distributions

Chapter 7

Conclusions and Future Work

Robustness evaluation is a fundamental activity for software systems adopted

in mission critical systems. Fault injection is an attractive means to assess

the robustness, however, its application is still costly and cumbersome. In

this thesis, we focused on two fault injection techniques, namely Software

Implemented Fault Injection (SWIFI) and Robustness Testing (RT). For

both techniques we show that the workload plays a crucial role since it can

affect the experiment outcome at large and increase the cost due to their

application.

In complex systems such as an operating system which have different

states, the workload can induce transition from one state to another. RT has

been applied to an operating system used in the avionics domain for which we

investigated the impact of OS state through experiments on the File System.

With the Approach I, we included the OS state in the robustness test plan

through a model of the File System, which encompasses a set of factors (such

as file tree layout and concurrent I/O operations) that are most influential

on the File System behavior, and that can be controlled by the tester. We

performed an experiment using the proposed model, which highlighted the

influence of the OS state on the test outcomes and on statement coverage.

In particular, robustness tests were able to reach corner cases with com-

plex interactions with other subsystems (such as scheduling, caching and

memory management), which are not covered by traditional robustness test-

ing. In turn, this approach comes in handy to achieve an increased confidence

in OS robustness with low human effort, since both robustness test cases and

OS states can be automatically generated once programmed by the tester.

91

92 Conclusions and Future Work

Alternatively, we conceived Approach II, also named SABRINE, which

infers behavioral models of the OS in an automatic fashion and does not re-

quire the tester to know internal details of the OSs. The behavioral models

are then used for creating and executing a robustness test suite. We com-

pared the results obtained with SABRINE against random testing, which

is often considered as a comparison baseline. Results clearly showed that

SABRINE outperforms random strategy, as the number of test cases can be

dramatically reduced while detecting the same robustness vulnerabilities.

Table 7.1 compares qualitatively the two approaches in terms of fault

injection properties that we introduced in Section 2.3.1. Both approaches

reach high reproducibility, since that we have not measured the reproducibil-

ity of the Approach I (as we did for Approach II), we are conservative and

assign a medium level. Approaches present a high controllability because

both allows to select when and where to inject an error. The temporal intru-

siveness for Approach I is low compared to Approach II which requires to log

the interactions of the component under test. Spatial intrusiveness, in prin-

ciple is none for Approach I because no additional code is necessary for the

execution of the tests. Differently, Approach II instruments the operating

system in order to log the interactions.

Test effort indicates the work required to the tester during the ”setup”

of the approach (e.g., for developing the model of the target or selecting the

call points). Aside from the setup, both approaches executes automatically

therefore no additional effort is needed. The test effort of the Approach I

can vary from medium to high because the model of the component under

test is manually developed and he/she needs knowledge on the characterizes

of the target (e.g., a file system can be balanced or unbalanced, tuning of

the model attributes). Likewise, this activity should be conducted by expe-

rienced testers to avoid erroneous model of the target. Conversely, Approach

II automatically extracts the behavioral models. During the setup the tester

has to only indicate the call points which can be automatically extract with

simple scripts.

In this work SABRINE creates behavioral models under the stimulation

of a specific workload. In the future, more workloads should be used and

select by avoiding workloads that generate the same behavioral models or it

might be possible to use a state setter as shown in Approach I.

Regarding SWIFI, we preliminary investigated how the input affects the

failure distribution, an aspect often neglected in the fault injection planning.

93

Table 7.1: Comparison of Approach I and Approach II (SABRINE).

Property Approach I Approach II (SABRINE)

Repeatability Medium High

Controllability High High

Temporal Intrusiveness Low Low to Medium

Spatial Intrusiveness None Low to Medium

Tester Effort Medium to High Low

The experiments, carried out on an embedded system, demonstrate that for

some applications, the size of input is linearly correlated to the percentage of

value failure while the percentage of faults detected by the hardware excep-

tions is workload dependent, i.e., it is not affected by the input. As similar

inputs (e.g., same length inputs) result in a similar failure distribution, we

devised an approach to reduce the number of fault injections. In addition,

we studied assembly level metrics with respect to the failure distribution.

While in performance benchmarking some study [133] explores the corre-

lation between metrics and performance factors (e.g., power consumption),

in the dependability field there is a no investigation on this area. Future

researches might focus on prediction algorithms that allow to estimate the

failure distribution of a specific workload as the input varies.

94 Conclusions and Future Work

Bibliography

[1] United States General Accounting Office. Stronger Management Practices

Are Needed to Improve DOD’s Software-Intensive Weapon Acquisitions.

Technical report, Department of Defence, 2004.

[2] D. Michaels and A. Pasztor. Incidents Prompt New Scrutiny Of Airplane

Software Glitches. 2006.

[3] M. Torchiano and M. Morisio. Overlooked aspects of COTS-based develop-

ment. Software, IEEE, 21(2):88 – 93, march-april 2004.

[4] C.P. Shelton, P. Koopman, and K. Devale. Robustness testing of the Mi-

crosoft Win32 API. In Dependable Systems and Networks, 2000. DSN 2000.

Proceedings International Conference on, pages 261 –270, 2000.

[5] RTCA, EUROCAE. Software Considerations in Airbone Systems and Equip-

ment Certification DO178B, 1992.

[6] RTCA, EUROCAE. Software Considerations in Airbone Systems and Equip-

ment Certification DO178C, 2011.

[7] CENELEC. EN50126, 1999.

[8] International Organization for Standardization. Product development: soft-

ware level, 2006.

[9] E. Voas, F. Charron, G. McGraw, K. Miller, and M. Friedman. Predicting

how badly good software can behave. Software, IEEE, 14(4):73 –83, jul/aug

1997.

[10] S. Borkar. Designing reliable systems from unreliable components: the chal-

lenges of transistor variability and degradation. Micro, IEEE, 25(6):10 – 16,

nov.-dec. 2005.

[11] R. Baumann. Soft errors in advanced computer systems. Design Test of

Computers, IEEE, 22(3):258 – 266, may-june 2005.

[12] Lions, J. Ariane 5 Flight 501 Failure. Technical report, European Space

Agency, 2007.

95

96 BIBLIOGRAPHY

[13] S.S. Mukherjee, J. Emer, and S.K. Reinhardt. The soft error problem: an ar-

chitectural perspective. In High-Performance Computer Architecture, 2005.

HPCA-11. 11th International Symposium on, pages 243 – 247, feb. 2005.

[14] J. Arlat, M. Aguera, L. Amat, Y. Crouzet, J.-C. Fabre, J.-C. Laprie, E. Mar-

tins, and D. Powell. Fault injection for dependability validation: a method-

ology and some applications. Software Engineering, IEEE Transactions on,

16(2):166 –182, feb 1990.

[15] U. Gunneflo, J. Karlsson, and J. Torin. Evaluation of error detection schemes

using fault injection by heavy-ion radiation. In Fault-Tolerant Computing,

1989. FTCS-19. Digest of Papers., Nineteenth International Symposium on,

pages 340 –347, jun 1989.

[16] G.A. Kanawati, N.A. Kanawati, and J.A. Abraham. FERRARI: a flexible

software-based fault and error injection system. Computers, IEEE Transac-

tions on, 44(2):248 –260, feb 1995.

[17] D. Skarin, R. Barbosa, and J. Karlsson. Goofi-2: A tool for experimental

dependability assessment. In Dependable Systems and Networks (DSN), 2010

IEEE/IFIP International Conference on, pages 557 –562, 28 2010-july 1

2010.

[18] D.T. Stott, B. Floering, D. Burke, Z. Kalbarczpk, and R.K. Iyer. Nftape: a

framework for assessing dependability in distributed systems with lightweight

fault injectors. In Computer Performance and Dependability Symposium,

2000. IPDS 2000. Proceedings. IEEE International, pages 91 –100, 2000.

[19] Jiantao Pan, P. Koopman, Yennun Huang, R. Gruber, and Mimi Ling Jiang.

Robustness testing and hardening of corba orb implementations. In Depend-

able Systems and Networks, 2001. DSN 2001. International Conference on,

pages 141 –150, july 2001.

[20] Wei-Lun Kao and R.K. Iyer. Define: a distributed fault injection and mon-

itoring environment. In Fault-Tolerant Parallel and Distributed Systems,

1994., Proceedings of IEEE Workshop on, pages 252 –259, jun 1994.

[21] N.P. Kropp, P.J. Koopman, and D.P. Siewiorek. Automated robustness test-

ing of off-the-shelf software components. In Fault-Tolerant Computing, 1998.

Digest of Papers. Twenty-Eighth Annual International Symposium on, pages

230 –239, jun 1998.

[22] Manuel Rodriguez, Jean-Charles Salles, Fabre, and Jean Arlat. MAFALDA:

Microkernel Assessment by Fault Injection and Design Aid. In Jan Hlav-

icka, Erik Maehle, and Andras Pataricza, editors, Dependable Computing

EDCC-3, volume 1667 of Lecture Notes in Computer Science, pages 143–

160. Springer Berlin Heidelberg, 1999.

BIBLIOGRAPHY 97

[23] Marco Vieira and Henrique Madeira. A dependability benchmark for OLTP

application environments. In Proceedings of the 29th international conference

on Very large data bases - Volume 29, VLDB ’03, pages 742–753. VLDB

Endowment, 2003.

[24] J.-C. Ruiz, P. Yuste, P. Gil, and L. Lemus. On benchmarking the depend-

ability of automotive engine control applications. In Dependable Systems and

Networks, 2004 International Conference on, pages 857–866, 2004.

[25] M. Pezze and M. Young. Software Testing and Analysis: Process, Principles

and Techniques. Wiley,John & Sons, 2007.

[26] P. Koopman and J. DeVale. The exception handling effectiveness of POSIX

operating systems. Software Engineering, IEEE Transactions on, 26(9):837–

848, 2000.

[27] A. Johansson, N. Suri, and B. Murphy. On the selection of error model(s)

for OS robustness evaluation. In Proc. Intl. Conf. on Dependable Systems

and Networks, pages 502–511, 2007.

[28] M. Rebaudengo, M. Sonxa Reorda, and M. Viaolante. A new approach to

software-implemented fault tolerance. In IEEE Latin American Test Work-

shop, 2004.

[29] R. Alexandersson and J. Karlsson. Fault injection-based assessment of

aspect-oriented implementation of fault tolerance. In Dependable Systems

Networks (DSN), 2011 IEEE/IFIP 41st International Conference on, pages

303 –314, june 2011.

[30] A. Johansson, N. Suri, and B. Murphy. On the impact of injection triggers

for OS robustness evaluation. In Proc. Intl. Symp. on Software Reliability

Engineering, pages 127–126, 2007.

[31] J.H. Barton, E.W. Czeck, Z.Z. Segall, and D.P. Siewiorek. Fault injection

experiments using FIAT. Computers, IEEE Transactions on, 39(4):575 –582,

apr 1990.

[32] C. Sarbu, A. Johansson, N. Suri, and N. Nagappan. Profiling the operational

behavior of os device drivers. In Software Reliability Engineering, 2008.

ISSRE 2008. 19th International Symposium on, pages 127 –136, nov. 2008.

[33] U.S. Department of Transportation Federal Aviation Administration, Office

of Aviation Research Washington, D.C. 20591. Commercial Off-The-Shelf

(COTS) Avionics Software Study, DOT/FAA/AR-01/26. Technical report,

2001.

[34] IEEE Std 610.12-1990. IEEE Standard Glossary of Software Engineering

Terminology, 1990.

98 BIBLIOGRAPHY

[35] H. Madeira, R.R. Some, F. Moreira, D. Costa, and D. Rennels. Experimental

evaluation of a COTS system for space applications. In Dependable Systems

and Networks, 2002. DSN 2002. Proceedings. International Conference on,

pages 325 – 330, 2002.

[36] VV. AA. State of the art of AMBER project. 2009.

[37] J. Durães and H. Madeira. Characterization of Operating Systems Behavior

in the Presence of Faulty Drivers through Software Fault Emulation. In Proc.

Pacific Rim Intl. Symp. on Dependable Computing, pages 201–209, 2002.

[38] Natella, R. and Cotroneo, D. and Duraes, J.A. and Madeira, H.S. On Fault

Representativeness of Software Fault Injection. Software Engineering, IEEE

Transactions on, 39(1):80 –96, jan. 2013.

[39] R. Natella. Achieving Representative Faultloads in Software Fault Injection.

PhD thesis, Università degli Studi di Napoli Federico II, 2011.

[40] A. Chou, J. Yang, B. Chelf, S. Hallem, and D. Engler. An empirical study

of operating systems errors. In Proc. ACM Symp. on Operating Systems

Principles, 2001.

[41] Mei-Chen Hsueh, T.K. Tsai, and R.K. Iyer. Fault injection techniques and

tools. Computer, 30(4):75 –82, apr 1997.

[42] J. Gray. Why do computers stop and what can be done about it? In Proc. of

the Symposium on Reliability in Distributed Software and Database Systems

(SRDS), pages 3–12, 1986.

[43] A. Shahrokni and F. Robert. A systematic review of software robustness.

Information and Software Technology, 55(1):1 – 17, 2013.

[44] B.P. Miller, L. Fredriksen, and B. So. An empirical study of the reliability

of UNIX utilities. Communications of the ACM, 33(12):32–44, 1990.

[45] B. Miller, D. Koski, C. Lee, V. Maganty, R. Murthy, A. Natarajan, and

J. Steidl. Fuzz Revisited: A Re-examination of the Reliability of UNIX

Utilities and Services. Technical Report CSTR-95-1268, 1998.

[46] A.K. Ghosh, M. Schmid, and V. Shah. Testing the Robustness of Windows

NT Software. In Proc. Intl. Symp. on Software Reliability Engineering, pages

231–235, 1998.

[47] C.P. Dingman, J. Marshall, and D.P. Siewiorek. Measuring robustness of a

fault tolerant aerospace system. In Fault-Tolerant Computing, 1995. FTCS-

25. Digest of Papers., Twenty-Fifth International Symposium on, pages 522–

527. IEEE, 1995.

[48] P. Koopman and J. DeVale. Comparing the Robustness of POSIX Operating

Systems. In Proc. Intl. Symp. on Fault-Tolerant Comp., pages 30–37, 1999.

BIBLIOGRAPHY 99

[49] IEEE. IEEE Standard for Information Technology–Portable Operating Sys-

tem Interface (POSIX) Part 1. IEEE Std 1003.1b-1993, 1994.

[50] K. Kanoun, Y. Crouzet, A. Kalakech, A.E. Rugina, and P. Rumeau. Bench-

marking the Dependability of Windows and Linux Using PostMark Work-

loads. In Proc. Intl. Symp. on Fault-Tolerant Comp., pages 11–20, 2005.

[51] A. Kalakech, K. Kanoun, Y. Crouzet, and J. Arlat. Benchmarking the De-

pendability of Windows NT4, 2000 and XP. In Proc. Intl. Conf. on Depend-

able Systems and Networks, pages 681–686, 2004.

[52] K. Kanoun and L. Spainhower. Dependability Benchmarking for Computer

Systems. Wiley-IEEE Computer Society, 2008.

[53] A. Ganapathi, V. Ganapathi, and D. Patterson. Windows XP kernel crash

analysis. In Proc. USENIX Large Installation System Administration Conf.,

pages 101–111, 2006.

[54] A. Albinet, J. Arlat, and J.C. Fabre. Characterization of the Impact of

Faulty Drivers on the Robustness of the Linux Kernel. In Proc. Intl. Conf.

on Dependable Systems and Networks, pages 867–876, 2004.

[55] J. Durães, M. Vieira, and H. Madeira. Multidimensional Characterization

of the Impact of Faulty Drivers on the Operating Systems Behavior. IEICE

Trans. on Information and Systems, 86(12):2563–2570, 2003.

[56] A. Johansson, N. Suri, and B. Murphy. On the selection of error model(s)

for OS robustness evaluation. In Proc. Intl. Conf. on Dependable Systems

and Networks, pages 502–511, 2007.

[57] S. Winter, C. Sârbu, N. Suri, and B. Murphy. The impact of fault models

on software robustness evaluations. In Proc. Intl. Conf. on Software Engi-

neering, pages 51–60, 2011.

[58] W. Gu, Z. Kalbarczyk, R.K. Iyer, Z. Yang, et al. Characterization of linux

kernel behavior under errors. In Proc. Intl. Conf. on Dependable Systems

and Networks, pages 459–468, 2003.

[59] L.N. Bairavasundaram, M. Rungta, N. Agrawa, A.C. Arpaci-Dusseau, R.H.

Arpaci-Dusseau, and M.M. Swift. Analyzing the effects of disk-pointer cor-

ruption. In Proc. IEEE Intl. Conf. Dependable Systems and Networks, pages

502–511. IEEE, 2008.

[60] A. Johansson, N. Suri, and B. Murphy. On the impact of injection triggers

for OS robustness evaluation. In Proc. Intl. Symp. on Software Reliability

Engineering, pages 127–126, 2007.

[61] C. Sârbu, A. Johansson, N. Suri, and N. Nagappan. Profiling the operational

behavior of OS device drivers. Empirical Software Engineering, 15(4):380–

422, 2010.

100 BIBLIOGRAPHY

[62] V. Prabhakaran, A.C. Arpaci-Dusseau, and R.H. Arpaci-Dusseau. Model-

based failure analysis of journaling file systems. In Dependable Systems and

Networks, 2005. DSN 2005. Proceedings. International Conference on, pages

802–811. IEEE, 2005.

[63] Perry Groot, Frank Harmelen, and AnnetteTen Teije. Torture Tests: A

Quantitative Analysis for the Robustness of Knowledge-Based Systems. In

Rose Dieng and Olivier Corby, editors, Knowledge Engineering and Knowl-

edge Management Methods, Models, and Tools, volume 1937 of Lecture Notes

in Computer Science, pages 403–418. Springer Berlin Heidelberg, 2000.

[64] ZoltÃ¡n Micskei, IstvÃ¡n Majzik, and Francis Tam. Comparing Robustness

of AIS-Based Middleware Implementations. In Miroslaw Malek, Manfred

Reitenspie, and Aad Moorsel, editors, Service Availability, volume 4526 of

Lecture Notes in Computer Science, pages 20–30. Springer Berlin Heidelberg,

2007.

[65] A. Kovi and Z. Micskei. Robustness testing of standard specifications-based

ha middleware. In Distributed Computing Systems Workshops (ICDCSW),

2010 IEEE 30th International Conference on, pages 302–306, 2010.

[66] Antonio Bovenzi, Aniello Napolitano, Christian Esposito, and Gabriella Car-

rozza. Jfit: an automatic tool for assessing robustness of dds-compliant

middleware. In Domenico Cotroneo, editor, Innovative Technologies for De-

pendable OTS-Based Critical Systems, pages 69–81. Springer Milan, 2013.

[67] Tsanchi Li, C.-M. Chen, B. Horgan, Ming Yee Lai, and S.Y. Wang. A

software fault insertion testing methodology for improving the robustness of

telecommunications systems. In Communications, 1994. ICC ’94, SUPER-

COMM/ICC ’94, Conference Record, ’Serving Humanity Through Commu-

nications.’ IEEE International Conference on, pages 1767–1771 vol.3, 1994.

[68] Ilaria Canova Calori, Tor St̊alhane, and Sven Ziemer. Robustness analysis

using fmea and bbn case study for a web-based application. 2007.

[69] Chen Fu, Barbara Ryder, Ana Milanova, and David Wonnacott. Testing

of java web services for robustness. In In Proceedings of the International

Symposium on Software Testing and Analysis (ISSTA, pages 23–34. ACM

Press, 2004.

[70] Samer Hanna and Malcolm Munro. An approach for wsdl-based automated

robustness testing of web services. In Chris Barry, Michael Lang, Wita

Wojtkowski, Kieran Conboy, and Gregory Wojtkowski, editors, Information

Systems Development, pages 1093–1104. Springer US, 2009.

[71] S. Hanna and M. Munro. Fault-based web services testing. In Informa-

tion Technology: New Generations, 2008. ITNG 2008. Fifth International

Conference on, pages 471–476, 2008.

BIBLIOGRAPHY 101

[72] N. Laranjeiro, R. Oliveira, and M. Vieira. Applying text classification algo-

rithms in web services robustness testing. In Reliable Distributed Systems,

2010 29th IEEE Symposium on, pages 255–264, 31 2010-Nov. 3.

[73] M. Susskraut and C. Fetzer. Robustness and security hardening of cots

software libraries. In Dependable Systems and Networks, 2007. DSN ’07.

37th Annual IEEE/IFIP International Conference on, pages 61–71, 2007.

[74] K.Z. Zamli, M.D.A. Hassan, N.A.M. Isa, and S.N. Azizan. An automated

software fault injection tool for robustness assessment of java cots. In Com-

puting Informatics, 2006. ICOCI ’06. International Conference on, pages

1–6, 2006.

[75] A. Tarhini, A. Rollet, and H. Fouchal. A pragmatic approach for testing

robustness on real-time component based systems. In Computer Systems

and Applications, 2005. The 3rd ACS/IEEE International Conference on,

pages 143–, 2005.

[76] A. Vasan and A.M. Memon. Aspire: automated systematic protocol imple-

mentation robustness evaluation. In Software Engineering Conference, 2004.

Proceedings. 2004 Australian, pages 241–250, 2004.

[77] Chuanming Jing, Zhiliang Wang, Xia Yin, and Jianping Wu. A formal ap-

proach to robustness testing of network protocol. In Jian Cao, Minglu Li,

Min-You Wu, and Jinjun Chen, editors, Network and Parallel Computing,

volume 5245 of Lecture Notes in Computer Science, pages 24–37. Springer

Berlin Heidelberg, 2008.

[78] Domenico Cotroneo, Roberto Natella, Roberto Pietrantuono, and Stefano

Russo. Software aging analysis of the linux operating system. 2010 IEEE

21st International Symposium on Software Reliability Engineering, 0:71–80,

2010.

[79] A. Bovenzi, D. Cotroneo, R. Pietrantuono, and S. Russo. Workload char-

acterization for software aging analysis. In Software Reliability Engineer-

ing (ISSRE), 2011 IEEE 22nd International Symposium on, pages 240–249,

2011.

[80] R. McDougall, J. Mauro, and B. Gregg. Solaris™ Performance and Tools:

DTrace and MDB Techniques for Solaris 10 and OpenSolaris. Prentice Hall

PTR, 2006.

[81] B. Jacob, P. Larson, B. Leitao, and S.A.M.M. da Silva. SystemTap: instru-

menting the Linux kernel for analyzing performance and functional problems.

IBM Redbook, 2008.

[82] M.E. Russinovich and A. Margosis. Windows® Sysinternals Administrator’s

Reference. Microsoft Press, 2011.

102 BIBLIOGRAPHY

[83] Hadi Hemmati, Andrea Arcuri, and Lionel Briand. Achieving scalable model-

based testing through test case diversity. ACM Transactions on Software

Engineering and Methodology (TOSEM), 22(1), 2012.

[84] R. Durbin, S. Eddy, A. Krogh, and G. Mitchison. Biological sequence anal-

ysis. 11th edition, 2006.

[85] R. Kannan, S. Vempala, and A. Veta. On clusterings-good, bad and spectral.

In Proceedings of the 41st Annual Symposium on Foundations of Computer

Science, FOCS ’00, pages 367–, Washington, DC, USA, 2000. IEEE Com-

puter Society.

[86] Ulrike von Luxburg. A tutorial on spectral clustering. Statistics and Com-

puting, 17(4):395–416, 2007.

[87] F. R. K. Chung. Spectral Graph Theory. American Mathematical Society,

1997.

[88] Glenn Ammons, Rastislav Bod́ık, and James R. Larus. Mining specifications.

SIGPLAN Not., 37(1), January 2002.

[89] Valentin Dallmeier, Andreas Zeller, and Bertrand Meyer. Generating fixes

from object behavior anomalies. In Proceedings of the 2009 IEEE/ACM In-

ternational Conference on Automated Software Engineering, ASE ’09, 2009.

[90] Lothar Wendehals and Alessandro Orso. Recognizing behavioral patterns

at runtime using finite automata. In Proceedings of the 2006 international

workshop on Dynamic systems analysis, WODA ’06, 2006.

[91] L. Mariani and M. Pezzè. Dynamic detection of COTS component incom-

patibility. Software, IEEE, 24(5):76–85, 2007.

[92] L. Mariani, F. Pastore, and M. Pezzè. Dynamic analysis for diagnosing

integration faults. Software Engineering, IEEE Transactions on, 37(4):486–

508, 2011.

[93] S. Garg, A. van Moorsel, K. Vaidyanathan, and K.S. Trivedi. A methodology

for detection and estimation of software aging. In Proc. Intl. Symposium on

Software Reliability Engineering, pages 283–292. IEEE, 1998.

[94] Akinobu Mita. Fault injection capabilities infrastructure. http://www.

kernel.org/doc/Documentation/fault-injection/fault-injection.txt.

[95] D. Mosberger and T. Jin. httperf—a tool for measuring web server perfor-

mance. ACM SIGMETRICS Performance Evaluation Review, 26(3):31–37,

1998.

[96] P. Shivakumar, M. Kistler, S.W. Keckler, D. Burger, and L. Alvisi. Mod-

eling the effect of technology trends on the soft error rate of combinational

logic. In Dependable Systems and Networks, 2002. DSN 2002. Proceedings.

International Conference on, pages 389 – 398, 2002.

http://www.kernel.org/doc/Documentation/fault-injection/fault-injection.txt
http://www.kernel.org/doc/Documentation/fault-injection/fault-injection.txt

BIBLIOGRAPHY 103

[97] M. Favalli and C. Metra. Optimization of error detecting codes for the

detection of crosstalk originated errors. In Design, Automation and Test in

Europe, 2001. Conference and Exhibition 2001. Proceedings, pages 290 –296,

2001.

[98] J. Srinivasan, S. V. Adve, P. Bose, and J. A. Rivers. The Case for Lifetime

Reliability-Aware Microprocessors. In Proceedings of the 31st annual inter-

national symposium on Computer architecture, ISCA ’04, pages 276–. IEEE

Computer Society, 2004.

[99] R.J. Martinez, P.J. Gil, G. Martin, C. Perez, and J.J. Serrano. Experimental

validation of high-speed fault-tolerant systems using physical fault injection.

In Dependable Computing for Critical Applications 7, 1999, pages 249 –265,

nov 1999.

[100] H. Madeira, M. Rela, F. Moreira, and J. G. Silva. RIFLE: A general purpose

pin-level fault injector. In Dependable Computing EDCC-1, volume 852 of

Lecture Notes in Computer Science, pages 197–216. 1994.

[101] J. Arlat, Y. Crouzet, and J.-C. Laprie. Fault injection for dependability

validation of fault-tolerant computing systems. In Fault-Tolerant Computing,

1989. FTCS-19. Digest of Papers., Nineteenth International Symposium on,

pages 348 –355, jun 1989.

[102] J. Aidemark, J. Vinter, P. Folkesson, and J. Karlsson. GOOFI: generic

object-oriented fault injection tool. In Dependable Systems and Networks,

2001. DSN 2001. International Conference on, pages 83 –88, july 2001.

[103] P. Yuste, D. de Andres, L. Lemus, J.J. Serrano, and P. Gil. INERTE: in-

tegrated nexus-based real-time fault injection tool for embedded systems.

In Dependable Systems and Networks, 2003. Proceedings. 2003 International

Conference on, page 669, june 2003.

[104] Alfredo Benso, Maurizio Rebaudengo, and MatteoSonza Reorda. FlexFi: A

Flexible Fault Injection Environment for Microprocessor-Based Systems. In

Massimo Felici and Karama Kanoun, editors, Computer Safety, Reliability

and Security, volume 1698 of Lecture Notes in Computer Science, pages 323–

335. Springer Berlin Heidelberg, 1999.

[105] G. Miremadi and J. Torin. Evaluating processor-behavior and three error-

detection mechanisms using physical fault-injection. Reliability, IEEE Trans-

actions on, 44(3):441 –454, 1995.

[106] J. Karlsson, U. Gunneflo, P. Liden, and J. Torin. Two fault injection tech-

niques for test of fault handling mechanism. In Test Conference, 1991, Pro-

ceedings., International, page 140, oct 1991.

104 BIBLIOGRAPHY

[107] A. Rajabzadeh, S. Ghassem, and M. Miremadi. Experimental Evaluation of

Master/Checker Architecture Using Power Supply- and Software-Based Fault

Injection. 11th IEEE International On-Line Testing Symposium, 0:239, 2004.

[108] D. Skarin. On Fault Injection-Based Assessment of Safety Critical Systems.

PhD thesis, Chalmers University of Technology, 2010.

[109] D. Skarin, R. Barbosa, and J. Karlsson. Comparing and Validating Measure-

ments of Dependability Attributes. In Dependable Computing Conference

(EDCC), 2010 European, pages 3 –12, april 2010.

[110] P. Troger, F. Salfner, and S. Tschirpke. Software-Implemented Fault Injec-

tion at Firmware Level. In Dependability (DEPEND), 2010 Third Interna-

tional Conference on, pages 13 –16, july 2010.

[111] W.-I. Kao, R.K. Iyer, and D. Tang. FINE: A fault injection and monitoring

environment for tracing the UNIX system behavior under faults. Software

Engineering, IEEE Transactions on, 19(11):1105 –1118, nov 1993.

[112] SeungJae Han, K.G. Shin, and H.A. Rosenberg. DOCTOR: an integrated

software fault injection environment for distributed real-time systems. In

Computer Performance and Dependability Symposium, 1995. Proceedings.,

International, pages 204 –213, apr 1995.

[113] T.K. Tsai, R.K. Iyer, and D. Jewitt. An approach towards benchmarking

of fault-tolerant commercial systems. In Fault Tolerant Computing, 1996.,

Proceedings of Annual Symposium on, pages 314 –323, jun 1996.

[114] J. Carreira, H. Madeira, and J.G. Silva. Xception: a technique for the

experimental evaluation of dependability in modern computers. Software

Engineering, IEEE Transactions on, 24(2):125 –136, feb 1998.

[115] A. Benso, P. Prinetto, M. Rebaudengo, and M. Sonza Reorda. EXFI: a low-

cost fault injection system for embedded microprocessor-based boards. ACM

Trans. Des. Autom. Electron. Syst., 3(4):626–634, October 1998.

[116] Antonio Dasilva, José-F Mart́ınez, Lourdes López, Ana-B Garćıa, and Luis

Redondo. Exhaustif: a fault injection tool for distributed heterogeneous

embedded systems. In Proceedings of the 2007 Euro American conference on

Telematics and information systems, EATIS ’07, pages 17:1–17:8, New York,

NY, USA, 2007. ACM.

[117] T.K. Tsai, R.K. Iyer, and D. Jewitt. An approach towards benchmarking

of fault-tolerant commercial systems. In Fault Tolerant Computing, 1996.,

Proceedings of Annual Symposium on, pages 314 –323, jun 1996.

[118] D. Audet, S. Masson, and Y. Savaria. Reducing fault sensitivity of

microprocessor-based systems by modifying workload structure. In Defect

and Fault Tolerance in VLSI Systems, 1998. Proceedings., 1998 IEEE Inter-

national Symposium on, pages 241–249, 1998.

BIBLIOGRAPHY 105

[119] Peter Folkesson and Johan Karlsson. Considering workload input variations

in error coverage estimation. In Proceedings of the Third European Depend-

able Computing Conference on Dependable Computing, EDCC-3, pages 171–

190, London, UK, UK, 1999. Springer-Verlag.

[120] N. Oh, M. Subahshish, and McCluskey E. J. ED4: error detection by diverse

data and duplicated instructions. IEEE Transaction on Computer, 51:626–

634, 2002.

[121] H. Madeira and J.G. Silva. On-line signature learning and checking: ex-

perimental evaluation. In CompEuro ’91. Advanced Computer Technology,

Reliable Systems and Applications. 5th Annual European Computer Confer-

ence. Proceedings., pages 642–646, 1991.

[122] M. Rebaudengo, M. Sonza Reorda, and M.; Violante. New Approach to

Software-Implemented Fault Tolerance. In Jan Hlavicka, Erik Maehle, and

Andras Pataricza, editors, Journal of Electronic Testing, volume 20 of Lecture

Notes in Computer Science, pages 433–437. Springer Berlin Heidelberg, 2004.

[123] M. Rebaudengo, M.S. Reorda, and M. Violante. A new software-based tech-

nique for low-cost fault-tolerant application. In Reliability and Maintainabil-

ity Symposium, 2003. Annual, pages 25–28.

[124] B. Nicolescu, Y. Savaria, and R. Velazco. Software detection mechanisms

providing full coverage against single bit-flip faults. Nuclear Science, IEEE

Transactions on, 51(6):3510–3518, 2004.

[125] G.A. Reis, J. Chang, N. Vachharajani, R. Rangan, and D.I. August. SWIFT:

software implemented fault tolerance. In Code Generation and Optimization,

2005. CGO 2005. International Symposium on, pages 243–254, March.

[126] J. Vinter, A. Johansson, P. Folkesson, and J. Karlsson. On the design of

robust integrators for fail-bounded control systems. In Dependable Systems

and Networks, 2003. Proceedings. 2003 International Conference on, pages

415–424, June.

[127] D. Skarin and J. Karlsson. Software Implemented Detection and Recovery

of Soft Errors in a Brake-by-Wire System. In Dependable Computing Con-

ference, 2008. EDCC 2008. Seventh European, pages 145–154, May.

[128] J.J. Cook and C. Zilles. A characterization of instruction-level error derating

and its implications for error detection. In Dependable Systems and Networks

With FTCS and DCC, 2008. DSN 2008. IEEE International Conference on,

pages 482–491, 2008.

[129] R. Alexandersson and J. Karlsson. Fault injection-based assessment of

aspect-oriented implementation of fault tolerance. In Dependable Systems

Networks (DSN), 2011 IEEE/IFIP 41st International Conference on, pages

303–314, 2011.

106 BIBLIOGRAPHY

[130] Raul Barbosa, Jonny Vinter, Peter Folkesson, and Johan Karlsson.

Assembly-level preinjection analysis for improving fault injection efficiency.

In in Proceedings of the Fifth European Dependable Computing Conference

(EDCC-5, 2005.

[131] A. Martinez-Alvarez, S. Cuenca-Asensi, F. Restrepo-Calle, F. Palomo Pinto,

H. Guzman-Miranda, and M. A. Aguirre. Compiler-Directed Soft Error Miti-

gation for Embedded Systems. IEEE Transactions on Dependable and Secure

Computing, 9(2):159–172, 2012.

[132] A. K. Jain, M. N. Murty, and P. J. Flynn. Data clustering: a review. ACM

Comput. Surv., 31(3):264–323, September 1999.

[133] L. Eeckhout, J. Sampson, and B. Calder. Exploiting program microarchitec-

ture independent characteristics and phase behavior for reduced benchmark

suite simulation. In Workload Characterization Symposium, 2005. Proceed-

ings of the IEEE International, pages 2–12, 2005.

	Contents
	List of Figures
	List of Tables
	Introduction
	Thesis Contribution

	Robustness
	Basic Concepts and Definitions from Dependability
	Basic Concepts and Definitions from Software Engineering
	Robustness Evaluation
	Basic Concepts and Definition on Fault Injection
	A Brief Overview on Fault Injection Techniques

	Robusteness Testing
	Robustness Testing Approaches
	Robustness Testing Applied to Operating Systems
	Robustness Testing Applied to Other Software Systems

	Stateful Robustness Testing of Operating Systems
	Approach I
	Definitions
	Modeling the File System

	Approach II
	Definitions
	Behavioral Data Collection
	Pattern Identification
	Pattern Clustering
	Behavioral Modeling and Test Suite Generation
	Test Execution

	Case Study
	Approach I: Experimentation
	Results

	Approach II: Experimentation
	Results

	Techniques for Injecting Hardware Faults
	Introduction
	Hardware Implemented Fault Injection
	Pin-level Fault Injection
	Test Port-Based Fault Injection
	Radiation-Based Fault Injection
	Power Supply Disturbance

	Software Implemented Fault Injection
	SWIFI: approaches and tools
	Robustness of Software to Hardware Faults

	An Investigation of the Relationship between Workload Inputs and Failure Mode Distributions
	Target Workloads
	Input Sets

	Software Implemented Fault Tolerance
	Experimental Setup and Fault Model
	Results
	Results for Workloads without Software Implemented Hardware Fault Tolerance
	Results for Workloads Equipped with TTR-FR

	Input Selection
	Profiling
	Clustering
	Input Selection Results

	Conclusions and Future Work
	Bibliography

