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Preface 
________________________________________________________________________________ 

  

 

Tissue engineering is an interdisciplinary field that has the goal of creating new tissues and organs. 

Ideal bone scaffold, which is the key element, should possess important chemical, biochemical and 

biophysical properties, but the biomechanical environment introduces another level of complexity. 

Scaffold needs to be able to withstand external forces, and it is known that bone regeneration, 

modeling and remodeling is mediated by mechanical stimuli known as mechanotransduction. 

Mechanical stimuli transferred by scaffolds to cells rely exclusively on intrinsic scaffold properties, 

such as material stiffness and architecture. Consequently, the introduction of rapid prototyping 

technologies in the biomedical field has allowed to obtain scaffolds characterized by a precise 

control of its internal architecture, including precise pore size, pore geometry, spatial distribution of 

pores and interconnectivity, which may be considered as critical features to the their in vivo, 

biological and mechanical performances.   

In order to obtain a complete histomorphologically and biologically mature tissue, as bone, the 

restoration of the mechanical resistance to physiological stresses should be also followed by 

angiogenesis, which is a crucial aspect in the development of regenerative medicine approaches that 

require rapid vascularization of tissue-engineered structures. 

The main driving idea of this work is creating a conceptually new type of bioactive scaffold able to 

be manipulated in situ by means of magnetic forces in order to repair large bone defects and 

osteochondral lesions. Chapter 1 has been focused on the State of the Art, whilst Chapter 2 deals 

with a preliminary approach in the design of a magnetic scaffold for advanced bone tissue 

engineering providing new opportunity in terms of scaffold fixation and functionalization. The first 

kind of scaffold, which was obtained by embedding iron oxide (Fe3O4) magnetic nanoparticles in a 

poly(ε-caprolactone) (PCL) matrix, was designed and developed through a rapid prototyping 
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technique (3D fiber deposition). To avoid the dangerous problem of leaving any non bioresorbable 

magnetic inclusion, as in the case of magnetite, inside the repaired tissue, materials as iron-doped 

hydroxyapatite nanoparticles (FeHA) have been employed. Chapter 3 and Chapter 4 basically 

describe the effect of the inclusion of FeHA nanoparticles embedded in the PCL matrix on the 

mechanical, morphological, magnetic and biological performances. In a first analysis, the study has 

involved the design, the preparation and the characterization of magnetic substrates obtained 

through molding and solvent casting techniques employing different polymer-to-particle weight 

ratios. Successively, the selected polymer-to-nanoparticle weight ratio, showing the best 

compromise between mechanical, magnetic and biological performances, has been employed to 

develop 3D morphologically controlled nanocomposite magnetic scaffolds. Finally, in the last part 

of Chapter 4, in vitro and in vivo biological analyses have shown interesting results.  
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Chapter 1 

 State of the Art  
________________________________________________________________________________ 

 

 

 1.1 Tissue Engineering and Regenerative Medicine 

Tissue engineering and regenerative medicine (TERM) is an interdisciplinary field that involves cell 

biology, materials science, reactor engineering, medicine, and clinical research with the goal of 

creating new tissues and organs.
1
 Due to the limitations of traditional treatments based on organ 

transplantation and biomaterial implantation,
2,3

 it aims to produce “artificial” organs and tissue 

substitutes that can grow with the patient, without causing adverse reactions.
2
 The concept of  

“scaffolding” was firstly introduced by Barth in 1893.
4
 He indicated as scaffold a porous matrix or 

an implant in which cells can infiltrate and regenerate the local tissue. In these terms, scaffold acts 

as a temporary extracellular matrix (ECM) during the process of new tissue growth.
5,6

 In the last 

two decades, with the term scaffold researchers have indicated natural and synthetic structures that 

can temporarily support cells and the release of biological factors that can regulate tissue growth. 

In tissue engineering, two important strategies are usually pursued. The first is based on seeding 

cells in vitro on a synthetic three-dimensional (3D) scaffold that acts as a template and stimulus for 

tissue regeneration. The cell-construct is then implanted into the patient where, degrading into 

nontoxic products, it allows cells to produce their own extracellular matrix (Figure 1). On the 

contrary, a second strategy is based on implanting a scaffold, mainly resorbable, in situ, directly 

into a defect site. In this case, the body is used as its own bioreactor.
3,7
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Figure 1: Tissue engineering approach. 

 

However, scaffold should be considered as the key element for in vitro or in vivo tissue 

regeneration.  

Therefore, the design of scaffolds able to guide the process of tissue growth represents one of the 

most challenging goals. The ideal scaffold should possess a set of chemical, biochemical and 

biophysical properties able to control and promote specific events at the cellular level.
8,9

 Scaffold 

should be easily manufactured into a variety of shapes and sizes, it should not induce adverse 

reactions, it should exhibit biocompatibility, tailored biodegradability and/or bioresorbability and, 

finally, it should have suitable mechanical properties and appropriate morphology and surface 

chemistry.
5,8,10,11

 

A wide range of biomaterials is being investigated for TERM scaffolds.
5,10-12

 

Natural, synthetic, semi-synthetic and hybrid materials have been widely proposed and tested as 

scaffolds for tissue regeneration.
8
 Synthetic and natural polymers may be considered as an attractive 

alternative to the growth of most tissues. Natural polymers used in tissue engineering include 

collagen, alginate, agarose, chitosan, fibrin, and hyaluronic acid.  
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Unlike natural polymers, synthetic polymers are man-made polymers that may present several 

advantages such as more flexibility and processability. The phisico-chemical, mechanical and 

degradation properties can be tailored. Among all the biodegradable polymers, poly(lactic acid) 

(PLA), poly(glycolic acid) (PGA), their copolymer (PLGA) and poly(ε-caprolactone) (PCL) are the 

most commonly used polymers for tissue engineering. If compared to ceramic scaffolds, polymeric 

scaffolds turned out to be too flexible, while the ceramic ones tended to be too brittle.
8,13,14

 

Consequently, research attention has been focused on composite materials consisting of polymers 

reinforced with inorganic ceramic fillers. Different polymer-based composites have been studied for 

biomedical applications. Specific advantages have been obtained in using polymer-based composite 

biomaterials that are also called “biocomposites”.
8,15,16 

Compared to neat polymers, composites should present improved mechanical properties, better 

flexibility and structural integrity than brittle ceramic materials. 

In particular, typical biomaterials for bone and cartilage tissue engineering include hydroxyapatite, 

calcium carbonate and bioactive glass.  

Even though these ceramic materials resemble the natural inorganic component of bone and possess 

osteoconductivity
a
 properties,

8,17,18
 they are brittle and cannot match the mechanical properties of 

bone. Furthermore, ceramic scaffolds have also been found to be unsuitable for the growth of soft 

tissues that are characterized by different cellular receptors and mechanical performances than hard 

tissues. However, none of these materials used on their own can satisfy all the goals required for 

creating optimal tissue scaffolding, such as suitable fracture strength, stiffness, toughness, 

osteoinductivity
b
, osteoconductivity as well as in vitro and in vivo controlled rate of degradation.

5
 

Therefore, the tailored combination of biomaterials to form biocomposite is being increasingly 

considered for the development of optimal scaffolds.
5,19,20

 

 

                                                
a ability to  support bone growth and encourage the ingrowth of surrounding bone 
b
 ability to initiate bone formation in a non-bone site 
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 1.2 Cell-material interaction 

A bidirectional complex combination of events takes place between the material and the biological 

environment, once it is implanted. The success of a biomaterial depends on its interactions with the 

physiological fluids and cells. Cell-material interaction process consists of different stages. 

In a first stage, which is highly dependent on the material surface properties, the initial contact takes 

place between material surface and water molecules forming a water coating layer.  

The successive stage consists of the interaction of all the macromolecules existing in the 

physiological medium, namely sugars, lipids, proteins with the material surface. During this stage, 

the “Vroman effect”
c
 takes place and the material surface is covered by an adsorbed layer of 

proteins. Biocompatibility and material interactions with biological entities are dependent on the 

proteins adsorbed to the surface. By this point of view, surface features, surface energy and 

chemical composition of the material strongly influence cell-material interaction process 

determining the nature of the proteins adsorbed to the surface and their orientation and 

conformation which are crucial parameters.  

Finally, a third stage occurs, during which, cells get in contact with the material and interact with it. 

Cell-material interaction takes place through cell adhesion proteins known as integrins that interact 

with particular peptide motifs from the protein adsorbed to the material surface. 

Integrins are cell transmembrane proteins that possess two glycoproteic units (α and β) and three 

domains (cytoplasmatic, transmembrane and the extracellular one). The extracellular domains of the 

α and β units possess receptors for the specific recognition of cell adhesive peptides motifs that are 

contained in some adhesive proteins present in the ECM.
21,23

 

Thus, cell attachment and proliferation are integrin-mediated processes. Although integrins are the 

first contact point between cells and the material surface, cell interaction with the material surface is 

carried out through their cytoplasm, specifically through cell structures named lamellipodia or 

                                                
c Dynamic process that regulates the absorption of serum on a surface. In particular, firstly proteins with low weight and 

high concentration are adsorbed. These proteins are then replaced by more large proteins with low concentration but a 

greater affinity for the surface.  
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pseudopodia which are cell extensions formed by actin filaments.
21,24

 Filopodia are the actuators of 

the adhesion, morphology, spreading and motility processes. Integrins, located within these long 

and thin cytoplasm extensions, interact with the substrate surface creating focal contacts that are 

points where several integrin receptors meet to form stronger adhesion points. The just described 

mechanism is schematically reported in figure 2. The cell is rounded at the beginning (A), then 

assumes an expanse form and results well spread (B). 

 

 

Figure 2: Cell-material interactions. 

 

A biocomposite material should be able to activate specific processes by the generation of signals 

that trigger different cascades through these surfaces receptors. In this sense, the composite should 

be able to deliver biochemical and/or biophysical signals, which could be the constituents of the 

composite. In addition to the surface properties, there are other physical and chemical features 

related to the intrinsic properties that also affect the tissue regeneration process.
21
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 1.3 Physical and chemical properties of scaffolds for tissue engineering  

       applications 

In order to replicate the original morphology and structure of the damaged tissue for promoting the 

integration with the surrounding biological environment, scaffolds should be easily manufactured 

into a variety of shapes and sizes.
5,8,10,11

 

Mechanical properties of the bioresorbable scaffold-tissue construct at the time of implantation 

should match that of the host tissue as closely as possible. It may be required to provide sufficient 

initial mechanical strength and stiffness to substitute the diseased or damaged tissue for a period 

until the in vivo tissue ingrowth has replaced the slowly vanishing scaffold matrix.
25

  

An important feature in the design of scaffolds for TERM applications is their 3D porous 

architecture. To favor tissue integration and vascularization, scaffold should be characterized by 

interconnecting pores of the right scale, in which cells reside.
5,26 

It is recognized that highly porous 

and interconnected structures are required to allow cell seeding and migration throughout the entire 

scaffold. The combination of different pore sizes in hierarchical 3D structures allows not only the 

growth and the colonization of the relevant cells but also capillary ingrowth for vascularization of 

the new tissues, as well as the path of diffusion of nutrients and metabolic waste.
5,27

 In particular, 

pore shape and dimension influence cell differentiation. Small pores (100-200 µm) favor hypoxic 

conditions and induce chondrogenesis differentiation. In contrast, large pores (300-400 µm) rapidly 

induce vascularization and lead to direct ostogenesis.
25

 

Mechanical properties, microstructure, 3D porosity are not the only factors that determine the 

success of a scaffold. Cell response in contact with a solid surface is affected by the surface 

physico-chemical parameters such as surface energy, surface charges, and chemical composition.  

Surface topography is one of the most important cues for cells.
5,28

 

The primary cell-material interaction is strongly dependent on the material surface roughness, 

where the presence of nanoscale features plays a key role. Although cells have micrometer 

dimensions, they get in vivo in close contact with the ECM, and its topographical/structural features 
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of nanometer size.
5,28

 Consequently, there is increasing interest in developing methods to modify 

biomaterial in order to mimic the nanoscale topographical features presented to cells. These 

nanoscale surface features should promote functions such as cell adhesion, mobility and 

differentiation.
5
 

Surface chemistry together with surface topography play an important role in the scaffold design. 

Biological tissues consist of cells immersed in the extracellular matrix, which is a complex mixture 

of proteins and glycosaminoglycans with both mechanical and signaling functions. Integrin 

heterodimers bind to specific amino acid sequences, such as the arginine-glycine-aspartic acid 

(RGD) recognition motif that is largely present in many ECM proteins.
29,30,31

 Thus, small synthetic 

peptides that contain the RGD amino acid sequence can mediate cell attachment as well as the large 

parental molecule.
29,30

 

Benefiting from this basis, great efforts have been made to develop surface treatment approach (i.e. 

aminolysis) and biomimetic approaches for conjugating short peptides (i.e. RGD) onto synthetic or 

natural substrates, the aim being to obtain multifunctional biomaterials able to promote and improve 

cell attachment.
29,32,33

 

Functional groups exposed at the material surface are responsible for surface properties such as 

wettability, surface electrical charges and free energy that in turn influence protein adsorption and 

cell behavior. Thus, by tailoring the functional groups available at the material surface, it is possible 

to modify and enhance protein-surface interactions.
25

 

One of the most important chemical cues that a scaffold should possess is a tailored 

biodegradability and/or bioresorbability. Scaffold should exhibit a degradation rate that matches the 

tissue growth rate in order to maintain the mechanical strength and to avoid the collapse or the 

stress shielding effect. Besides, the material has to be degradable over an appropriate timescale into 

products that can be metabolized or excreted. Degradation rate is highly dependent on the intrinsic 

properties of the material. Polymer biodegradability is mainly originated by hydrolysis of the 

polymer backbone and to a lesser extent by enzymatic activity.
21,34

 Degradation rate depends on 
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polymer crystallinity, molecular weight, thermal history, porosity, monomer concentration, 

geometry and location of the implant. In an aqueous environment, water penetrates the bulk of the 

polymer sample and attacks the chemical bonds of the amorphous phase, shortening the polymer 

chains.
21 

Crystalline regions remain and support the physical properties of the device until water 

attacks the crystalline regions. In a second stage, enzymatic attack takes place. Several studies have 

shown that the incorporation of an inorganic phase into a polymeric matrix not only modifies the 

mechanical performances of the porous structure
21,35 

and enhances the bioactivity of the scaffold, 

but also changes the degradation pattern of the polymer. 

 

 1.4 Bone tissue: structure-properties relationship 

Bone is a dynamic, highly vascular and mineralized connective tissue which, together with 

cartilage, builds up the skeletal system. Its main functions are to provide mechanical support, 

protection of vital organs and a site of muscle attachment for locomotion. Furthermore, bone tissue 

serves as a mineral reservoir of calcium and phosphate.
36

 

Bone is a natural hybrid hierarchical nanocomposite (Figure 3), with the lowest level belonging to 

the nanoscale range that consists in a mineral component, hydroxyapatite nanocrystals, dispersed in 

an organic matrix formed predominantly of oriented collagen.  

Consequently, in order to understand the mechanical properties of bone material, it is important to 

understand the mechanical properties of its constituents, and the structural relationship between 

them at the various levels of the hierarchical structural organization.
37

 

These levels and structures are:  

� the subnanostructure (<100 nm): molecular structure of constituent elements, such as 

mineral, collagen, and non-collagenous organic proteins; 

� the nanostructure (100 nm–1 mm): fibrillar collagen and embedded mineral;  

�  the sub-microstructure (1–10 mm): lamellae;  

� the microstructure (10 to 500 mm): Haversian systems, osteons, single trabeculae; 
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� the macrostructure: cancellous and cortical bone. 

This structure gives bone its balance of stiffness, toughness, and vibrational damping properties.
38,39 

 

 

Figure 3: Hierarchical structure of human bone.
40 

 

Bone consists of approximately 70% of inorganic and 30% of organic components. 

The mineral component of bone is an analogue of the naturally occurring mineral hydroxyapatite 

(HA) in the form of spindle- or plate-shaped crystals.  

The unit cell of HA has the following formula: Ca10(PO4)6(OH)2. However, the natural mineral 

component of bone consists in biological apatites that are poorly crystalline and contain anionic and 

cationic substitutions in the sites of HA crystal structure, thus resulting far from the typical 

stoichiometric HA.
41 

Natural bone shows a Ca:P molar ratio ranging from 1.3:1 to 1.9:1.  

The organic matrix is composed of proteoglycans (type I and type II), glycoproteins (osteonectin, 

alkaline phosphatase, fibronectin, sialoproteins, γ-carboxyglutamic acid based proteins (or “Gla” 

proteins as osteocalcin) and type I collagen.
42,43

 

90 % of organic matrix is represented by macromolecular chains of collagen which are arranged in 

the triple helix structure of tropocollagen, stabilized by hydrogen bonding between the amide 
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groups and the matrix water. The helical structure of tropocollagen stops the polyamide chains from 

collapsing into a random coil structure and facilitates the orientation of collagen in biological 

tissues such as bone.
38

 

Only 2% of the organic fraction consists of cells, growth factors and cytokines, such as Fibroblast 

Growth Factors (FGFs), Platelet-Derived Growth Factors (PDGFs), Transforming Growth Factor-

Beta (TGFβ) and Bone Morphogenic Proteins (BMPs).  

Depending on the collagen fibers arrangement, bone tissue can be classified as non-lamellar bone 

and lamellar bone tissue. 

The first one is characterized by the presence of collagen fibers randomly arranged, gathered in 

large bundles, parallel or twisted without any definite orientation. It can be found in the embryo and 

fetus or into the bone that is formed temporarily after a fracture. 

The latter, on the other hand, has collagen fibers oriented tidily in a single direction.  

The lamellar bone tissue is mainly found in the bones of adult mammals. In the adult skeleton, it is 

arranged in two architectural forms: cortical or compact bone (around 80% of the total skeleton) 

and trabecular, or spongy bone also called cancellous (around 20% of the total skeleton).
 42

  

The proportions of these two architectural forms differ at various locations in the skeleton.  

Cortical bone is a thick and dense protective layer of calcified tissue which has a high resistance to 

bending and torsion, thus is almost solid, being only 10% porous.
42

 It is an anisotropic material, 

which shows mechanical properties depending on the load direction. Its basic unit is an “osteon” 

(Figure 4), which is also known as a “Haversian System”.  Each Haversian system has a cylindrical 

structure that consists of four parts: 

1. A central tube called as Haversian Canal, which contains blood vessels and nerves. There 

are also other canals, named Volkmann canals, which extend in an oblique direction with 

respect to Haversian ones.  

2. Lamellae, are concentric rings of a strong matrix formed from mineral salts including 

calcium, phosphates and collagen fibers. They surround the Haversian Canal. 
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3. Lacunae, the small spaces between the lamellae in which the bone cells (called 

“osteocytes”) are located. Lacunae are linked together by minute channels called canaliculi.

4. Canaliculi, minute channels, by which nutrients can reach the osteocytes and waste products 

can leave them.  

In cortical bone the mechanical properties are influenced greatly by the porosity, the mineralization 

level and the organization of the solid matrix. In general, at the macrostructural level, the 

mechanical properties vary from one bone to another as well as within different regions of the same 

bone.
37,44,45

 

For example, the average values of strength and elastic modulus of human long bones (tibia, and 

femur) evaluated in compression are about 200 MPa and 20 GPa, respectively, while in tension  

they are about 144 MPa and 18 GPa.
38

  

At microstructural level, the results, obtained from mechanical tests performed on compact bone, 

have shown that tensile Young's modulus and stress at break are greater in the osteons characterized 

by oriented longitudinally lamellae, while compression tests have shown that these values are 

greater in osteons characterized by oriented transversely lamellae.
46,47

  

Bending tests have revealed that osteons with a transverse arrangement of the lamellae have greater 

stiffness but faster fracture mechanisms, while osteons with a longitudinal arrangement of the 

lamellae show significant deformation at break and a higher resistance to torsion.
48,49

 

On the other end, trabecular bone is arranged in a spongy-like form, with a honeycomb form, 

plates and rods of various sizes called trabeculae (Figure 4). As cortical bone, it is an anisotropic 

material, which shows mechanical properties depending on the anatomical site, the load direction 

and the conditions under which tests are carried out. Trabecular bone presents a higher porosity, 50-

90%, higher elasticity, consequently, its modulus and ultimate compressive strength are around 20 

times inferior to those of cortical bone.
42,43

 Furthermore, the tensile stiffness of trabecular bone is 

significantly smaller than that in compression.
50,51
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The values of tensile strength and elastic modulus of cancellous bone are much lower than the 

corresponding values obtained for cortical bone. For example, as for the human distal femur, the 

values of tensile strength and elastic modulus are about 6 and 400 MPa.
52

 

At the level of single trabeculae the assessment of mechanical properties is quite a challenging task. 

Mechanical tests performed on individual trabeculae have shown values for the Young's modulus 

between 1 GPa and 15 GPa. The cause of this broad discrepancy in Young's modulus results might 

be in sample preparation, different testing protocols or anisotropy and asymmetry of the 

microsamples.
52 

 

 

Figure 4: Schematic picture of bone structure showing lamellae, trabeculae and osteons.  

 

Anatomically, bones are classified as: long bones (femur and tibia), short bones (wrist and ankle) 

and flat bones (skull vault and irregular bones). All these bone types, regardless of their anatomical 

form, are composed of both spongy and compact bone.
42

 

Trabecular bone is commonly found in the vertebral bodies, in short bones, flat bones and in the 

epiphyses of long bones (the proximal and distal ends of all long bones) covered by cortical bone, 

which can be also found in the diaphysis (central part) of long bones and in flat bones.
42

 The 

external surface of all bones is covered with the periosteum, a fibrous membrane which contains the 

blood vessels and nerves (located in Haversian canals) that provide nourishment and sensation to 



State of the Art - 17  

 

the bone. It also plays an important role in osteogenesis, as it is colonized by bone cells.
53

 Also the 

internal bone surface is lined by a thin layer of osteogenic and other cells (endosteum). 

Progenitor cells or pre-osteoblasts, osteoblasts, osteocytes and osteoclasts are the major types of 

bone cells.  

Osteoblasts are bone-forming cells. They originate from local pluripotent mesenchymal stem cells, 

either bone marrow stromal cells residing in the endosteum or connective tissue mesenchymal 

stromal cells from the periosteum. These cells are very active in synthesizing and secreting the 

components of the bone matrix and have well-developed rough endoplasmic reticulum, Golgi 

bodies and granules. Osteoblasts are rich in the enzyme alkaline phosphatase, which plays a major 

role in the formation of the mineral deposits in the matrix. The collagen fibers are synthesized and 

secreted by the osteoblasts.  

Lining the bone surface, they are gradually trapped in the bone matrix which they produce and that 

calcifies. As a result those cells dramatically decrease their metabolic activity, now becoming fully 

differentiated mature bone cells (osteocytes) enclosed in small lacunae. Thus, osteocytes, the most 

abundant cell type in bone tissue, are mature bone cells that develop from osteoblasts and are 

located in lacunae within the bone matrix. Osteocytes have cytoplasmic processes located in 

canaliculi, which penetrate the bone matrix.  In contrast to osteoblasts and osteocytes, osteoclasts 

are giant multinucleated bone resorbing cells, which differentiate from hematopoietic progenitors of 

the monocyte/macrophage lineage. Like osteoblasts, they are situated on the bone surface
54

 and can 

be found on the eroding surfaces of bone. 

The correct interplay between those cell types is essential in bone homeostasis, remodeling and 

repair. Skeletal elements are initially formed as soft tissue templates that thereafter undergo gradual 

ossification and growth leading to an increase in size with relatively little changes in shape. This 

phase of bone formation lasts from the early stages of fetal life until adulthood. 

Two distinct mechanisms are responsible for bone formation: intramembranous, and endochondral 

ossification. Both types of ossification involve initial condensation of mesenchyme followed by the 
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formation of calcified bone. Whereas intramembranous bone formation accomplishes this directly 

giving rise to flat bones (e.g. skull bones, scapula, mandible and ilium), endochondral ossification 

involves an intermediate step in which a cartilaginous template regulates the growth and patterning 

of the developing skeletal element, creating long bones (e.g. tibia, femur, humerus and vertebrae). 

The cartilaginous center subsequently becomes hypertrophic and a center of ossification forms by 

vascular invasion. The secretion and mineralization of ECM is mediated by osteoblasts. As bone 

grows, this center of ossification expands and the inside of the shaft region is resorbed.
55,56 

 

The skeleton is a metabolically active organ undergoing continuous remodeling process. These 

processes control the reshaping or replacement of bone following injuries like fractures but also 

micro-damage, which occur during normal activity. Remodeling responds also to functional 

demands of the mechanical loading. 

The process of bone remodeling is a turnover mechanism, which allows old bone replacement as 

well as changes in shape, architecture or density of the skeleton. It involves three consecutive 

phases: resorption, during which osteoclasts digest old mineralized bone; reversal, when 

mononuclear cells appear on the bone surface, and formation, when osteoblasts lay down new bone 

until the resorbed bone is completely replaced.
57

 Bone healing is initiated by hematoma formation 

and inflammation at the fracture site. 

The inflammatory phase is a critical period characterized by low oxygen tension, impaired 

perfusion, and the migration of a wide array of growth factors. As a second step, bone is very 

rapidly formed through endochondral or intramembranous ossification. However, it is progressively 

replaced by mature bone, during the following remodeling process.
58
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 1.5 Bone tissue engineering: from conventional approaches to magnetic   

                scaffolds 

The guiding process of bone regeneration is gaining importance as an alternative treatment of bone 

defects, as a novel strategy that recourses neither to synthetic prostheses nor to bone grafts. It aims 

to restoring the function of large bone defects and overcomes the limitations of prostheses and bone 

grafts. 

Synthetic prostheses partially restore large defects for a relatively short useful life. On the other 

hand, autologous bone graft is not always available in sufficient amounts. Bone allografts are 

expensive and have known risks of bacterial contamination, viral transmission and immunogenicity 

if compared to autologous bone grafts. 

Ideal bone scaffold should possess all the properties described above, but the biomechanical 

environment introduces another level of complexity. In fact, the scaffold needs to be able to 

withstand external forces, and it is known that bone regeneration, modeling and remodeling is 

mediated by mechanical stimuli known as mechanotransduction.
d
 Mechanical stimuli transferred by 

scaffolds to cells rely exclusively on intrinsic scaffold properties, such as material stiffness and 

architecture.  

Re-establishing the full functionality in damaged tissues, through tissue engineering approach, 

requires a relatively long regeneration time. Thus, the temporal control of the various aspects of the 

tissue growth is very important to allow optimal clinical outcomes. In order to obtain a complete 

histomorphologically and biologically mature tissue, as bone, the restoration of the mechanical 

                                                
d The process by which mechanical energy is converted into electrical and/or biochemical signals.

21, 59
 At the cellular 

level, a bidirectional integrin mediated process takes place between cells and their surroundings in which they 

experience different types of forces. A normal tissue cell not only applies a force but responds through the cytoskeleton 

organization to the resistance that cell senses regardless of a synthetic substrate or an adjacent cell. In trabecular as well 

as in compact bone, the three-dimensional organization of its structure depends on the direction of the principal 

mechanical stresses during daily loading and movement.
21,60-62

 The loading information is communicated to effector 

cells that can make new bone or destroy old bone.
21

 It is currently believed that when bones are loaded, the resulting 

deformation will drive the thin layer of interstitial fluid surrounding the network of osteocytes to flow from regions 

under high pressure to regions under low pressure.
63-65

 This flow of fluid is sensed by the osteocytes which in turn 

produce signaling molecules that can regulate bone resorption through the osteoclasts, and bone formation through the 

osteoblasts, leading to adequate bone remodeling.63-65 This concept is known as the fluid flow hypothesis. 
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resistance to physiological stresses should be followed by angiogenesis
e
, which is a crucial aspect in 

the development of regenerative medicine approaches that require rapid vascularization of tissue-

engineered structures. Using the traditional scaffolds approaches, where the growth factors are 

usually seeded before the implantation, a temporal control is hardly achievable.  

Pre-loading limits the delivery of localized and temporally controlled growth factors, thus reducing 

the scaffold tissue regeneration potential. 

The possibility of developing innovative scaffolds, able to modify intrinsic properties on demand, 

affords new opportunities to control the bone regeneration process.  

In the last years, research attention has been focused on the design and development of new 

conceptually type of bioactive scaffold able to be manipulated in situ by means of magnetic forces
67

 

in order to repair large bone defects and osteochondral lesions of the skeletal system.  

In designing magnetic substrates/scaffolds, the rationale should be summarized in the possibility to 

obtain structures that can be manipulated in situ by applying external magnetic fields, also able to 

control specific processes at cell level by releasing biomolecules and bioactive factors, in turn 

linked to magnetic nanocarriers.
67,72

 

The previously described concept of magnetic guidance basically spans from biomedicine to tissue 

engineering, involving drug delivery, hyperthermia treatment of tumors, magneto-mechanical 

stimulation/activation of cell-constructs and mechanosensitive ion channels, magnetic cell-seeding 

procedures, controlled cell proliferation and differentiation.
67,68-89

 

In the field of biomedicine, magnetic nanoparticles (MNPs) possess peculiar physical properties and 

provide some attractive possibilities because of their dimensions, ranging from a few nanometers up 

to tens of nanometers, which make them comparable to several biological entities. They show sizes 

                                                
e
 The physiological process through which new blood vessels are developed starting from pre-existing vessels. It is 

critical to tissue functionality for the delivery of nutrients and oxygen and depends on the tightly coordinated interplay 

between a specific peptide sequence known as Vascular Endothelial Growth Factor (VEGF) and other signaling 

molecules. VEGF induces endothelial cells which are the ones lining the lumen of blood vessels to proliferate, migrate 

and sprout neovessel. Simultaneous interactions between different molecules such as angiopoietin-2 and basic 

Fibroblast Growth Factor (BFGF) contribute to the induction of this process whereas sequential collaboration with 

Platelet Derived Growth Factor (PDFG) and angiopoietin-1 mediate recruitment of mural cells and stabilization of 

endhotelium.21,66 
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that are close to or smaller than those of a protein (5-50 nm), a virus (20-450 nm), a cell (10-100 

µm), or a gene (10-100 nm). Basically, their magnetic features allow for manipulating them by 

properly applying an external magnetic field gradient. This suggests that it would be possible to 

immobilize and/or to transport the MNPs themselves and magnetically-tagged biological units. 

Drugs or a group of radionuclide atoms could be suitably delivered to a targeted region of the body 

(i.e., a tumor). MNPs can resonantly respond to a time-varying magnetic field and several 

advantages can be obtained by the energy transfer from the exciting field to the MNPs.
68,73

  

As an example, MNPs may be heated up allowing their use as hyperthermia agents able to deliver 

thermal energy to targeted bodies (i.e., tumors) or as elements capable of improving chemotherapy 

or radiotherapy by providing a degree of tissue warming appropriate for the destruction of malign 

cells.
68,73

 

Markaki A.E. and Clyne W.T.(2004 and 2005) studied the magneto-mechanical stimulation and 

actuation of a bonded array of ferromagnetic fibers (i.e., nickel-free ferritic stainless steel) in a non 

magnetic matrix located in inter-fiber space, evidencing the possibility to generate a change shape 

of the magnetized fiber array, straining the matrix and inducing a possible mechanism for bone 

growth stimulation by magnetic field application.
68,76,77

 Mannix R.S. et al. (2008) focused their 

attention on the nanomagnetic actuation of receptor-mediated signal transduction, describing a 

magnetic nanotechnology which activates a biochemical signaling mechanism normally switched-

on by binding of multivalent chemical ligands.
68,78

 However, an interesting approach related to a 

selective activation of mechanosensitive ion channels using magnetic particles has been also 

reported by Hughes S. et al. (2008). This technique should permit the direct manipulation of ion 

channels in real time without the needs for pharmacological drugs, and should be potentially 

considered as a tool for the treatment of human diseases ascribed to ion-channel dysfunction.
68,79

  

Interestingly, Kanczler J.M. et al. (2010) studied the controlled differentiation of human bone 

marrow stromal cells using remote magnetic field activation and MNPs.
68,80

 In the field of tissue 

engineering, novel methodologies, defined as “magnetic force-based tissue engineering”, and 
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techniques for designing tissue-engineered tubular and sheet-like constructs using MNPs and 

magnetic force were proposed and studied by Ito A. et al. (2005).
68,81,82

 It has also been reported 

that magnetic forces enable rapid endothelialization of a knitted Dacron graft externally covered by 

a magnetic sheet, benefiting from biophysical forces able to attach blood-derived endothelial 

outgrowth cells (EOCs) to the surface of prosthetic vascular grafts, since EOCs endocytose 

magnetic particles and result attracted to the magnetized graft surfaces.
68,83

  

The basic principles in designing a novel magnetic force mechanical conditioning bioreactor for 

tissue engineering was proposed by Dobson J. et al. (2006).
68,84,85

 Furthermore, by binding MNPs to 

the surface of cells, the possibility to manipulate and control cell function through the application of 

an external magnetic field has been studied, providing information on cellular mechanics and ion 

channel activation.
68,86

 This technique has been proposed as an investigative potential tool for 

actively controlling cellular function and processes with a special focus toward tissue engineering 

and regenerative medicine.
68,86

 

Magnetically actuable tubular scaffolds for smooth muscle tissue engineering were firstly fabricated 

from sheets of electrospun fibrils of biocompatible and biodegradable polymers containing uniform 

dispersions of Fe2O3 NPs and then wound into tubes for cell seeding from the inner layer to the 

outer one.
68,87

 As a consequence of the magnetic field application, the induced deformation 

produces strains in the tube walls and fluid pumping through the walls, which should promote cell 

proliferation and differentiation. The design of these tubular scaffolds was optimized through a 

model used to predict the deformation and fluid flow for specific magnetic field strength, material 

properties and geometrical parameters.
68,87

 Furthermore, involving direct magnetic cell-seeding 

procedures and MNPs, novel strategies for vascular tissue engineering were proposed by Perea H. et 

al. (2006)
68,88

 and Shimizu K. et al. (2007).
68,89

 

Firstly, the idea to develop magnetic scaffolds for additionally controlling angiogenesis in vivo has 

been considered by Bock N. et al. (2010).
67

 In that work, magnetic scaffolds were manufactured 
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through dip-coating of the scaffolds in aqueous ferrofluids that contained iron oxide nanoparticles 

coated with different polymers for biomedical applications.
67

 

From a magnetic point of view, nanoparticles below 30 nm in size of these materials present 

superparamagnetic behavior (see Appendix), stressing their ability to be magnetized by applying a 

magnetic field without remanence once the field is turned off.
67, 68,73, 90

 

Taking into consideration a superparamagnetic material, the resulting magnetic scaffold may be 

able to reach appropriate magnetization values (i.e., up to 15 emu/g at 10 kOe) for ferrofluid or 

MNPs adhesion when applying an external magnetic field as reported by Bock N. et al. (2010), but 

it may also be magnetically ‘‘turned off” by removing the applied magnetic field.
67,68

 

The scaffold works like a magnetic focusing lens or local field amplificator: its relatively strong 

internal magnetization can be aligned in the same direction by relatively weak external field. Forces 

in the order of piconewtons (0.1-1 pN) can be easily achieved by reasonable gradients (0.1-1 T/cm), 

and such forces can efficiently move nanoparticles (1-10 femtograms) and bioaggregates against the 

physiologic fluid viscosity. 

The magnetic scaffold modifies the magnetic flux distribution and leads to much higher 

concentration of magnetic “lines” near/inside the scaffold. This point results crucial as these 

magnetization values can generate magnetic gradients, and via magnetic driving scaffolds may 

attract and take up cells or other bioagents bound to MNPs and in vivo growth factors. In particular, 

MNPs act as shuttles that can transport these bioagents towards the static scaffold (Figure 5). The 

magnetic moment of this new type of scaffold allows to control bone regeneration reloading 

continuously from an external supervising center with tissue growth factors. Thus, a magnetic 

scaffold can be imagined as a fixed “station” that offers a long-living assistance to implanted tissue 

engineering constructs, providing a unique possibility to “adjust" the scaffold activity to the 

personal needs of the patient, when and where tissue regeneration process requires.
67
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Figure 5: A magnetic scaffold, manipulated in situ by applying external magnetic fields, is able to release biomolecules 

and bioactive growth factors, in turn linked to magnetic nanocarriers. 

 

In addition to the reloading function, magnetic scaffolds will be able to play a number of very 

important roles.  

Magnetic scaffolds and MNPs will be used as delivery systems triggered by a temperature switch 

due to the possibility to control their temperature through the use of an external variable magnetic 

field. This approach can be also used to investigate the effect of a prolonged localized temperature 

increase on angiogenesis during the repair process. From this point of view, it is known that the 

application of magnetic fields stimulates angiogenesis and osteogenic precursor proliferation, and 

can also promote bone formation within suitable matrices.
91

 

Magnetic scaffolds will be used to achieve efficient scaffold fixation via magnetic forces providing 

a very elegant and simple solution to the clinical problems of fixation that many scaffolds meet. 

Today, in the treatment of small osteochondral lesions, most surgeons do not use any fixation 

system while in the treatment of large bone defects, fixation is achieved by means of external 

systems, intramedullary nails, plates and screws, complicate procedures that require continuous 

control and often multiple surgical interventions. By this point of view, Russo A. et al. (2012) have 
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proposed an innovative magnetic fixation approach based on the application of a magnetic scaffold 

(with a saturation value of 17 emu/g).
92

 

In that work, different configurations have been proposed and a finite element modeling (FEM) was 

exploited to investigate the fixation efficiency (Figure 6) 

It was found that for most appropriate magnetic materials and optimized magnet-scaffold 

positioning, all the considered configurations provide a sufficient scaffold fixation.
92

 

 

 

Figure 6: Schematic representation of magnet-scaffold configurations: (a) external permanent magnet ring (EM); (b) 

implanted permanent magnet pins (PM); (c) implanted stainless steel pins in the field of external magnet (EM + SS).
92

 

 

 

 

 1.6 Scaffold preparation techniques  

In order to obtain 3D porous scaffolds, several different techniques, with their own advantages and 

limitations, have been developed.  

Usually, scaffold fabrication techniques have been classified into two groups, defined as 

“conventional” and “novel” methods.
2,17,93

 

Basically, conventional methods, such as fiber bonding, gas foaming, solvent casting/particulate 

leaching, phase separation, freeze drying, solution casting, are unable to precisely control the 

internal architecture of scaffolds, including pore size, pore geometry, spatial distribution of pores 

and interconnectivity, which are critical features for the their in vivo, biological and mechanical 

performances.  
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Conversely, the introduction of solid freeform fabrication (SFF) techniques, named also “rapid 

prototyping” (RP) techniques, into biomedical field has allowed to produce customized scaffolds 

with reproducible internal morphology.  

SFF was initially developed in 1987 for fabricating prototype engineering parts and manufacture 

objects in a layer-by-layer fashion from the 3D computer design of the object.
2,17,93,94

 

All SFF technologies are characterized by three basic steps in their process: data input, data file 

preparation, and object building.
2,17,94

 In particular, the general process is based on a computer-

generated model obtained through the use of a computer-aided design (CAD) software. 

Successively, a CAD model is expressed as a series of cross-sectional layers, and the data are 

implemented by the SFF machine that creates the physical model.  

Accordingly, customized scaffolds for tissue engineering may be designed and manufactured by 

integrating different techniques such as image capture (i.e. computed tomography or magnetic 

resonance imaging), 3D modeling and rapid prototyping with those related to the preparation of 

polymer and nano/microcomposite materials for scaffolds processing. 

Among all the SFF techniques, 3D printing, Fused Deposition Modeling (FDM), ink-jet printing, 

stereolithography, Selective Laser Sintering (SLS), 3D Bioplotting and 3D fiber deposition have 

gained great importance. 

3D printing is a technology based on a binder ejection from a jet head that moves in accordance 

with the CAD data onto a polymer powder surface. The binder dissolves to join powder particles. 

The process is then repeated until the structure is obtained.
17

 

FDM is an additive manufacturing technology. It uses a moving extrusion system which follows a 

tool-path defined by the CAD file in order to build layer-by-layer a physical model starting from a 

polymeric fiber. The nozzle is heated to melt the material and can be moved in both horizontal and 

vertical directions by a numerically controlled mechanism, using a computer-aided manufacturing 

(CAM) software package.
17
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Ink-jet printing is based on a system that consists in a build platform, set on top of an elevator with 

a rolling cutter blade on one side of the platform and two print jets mounted on x, y rails. In order to 

build a 3D structure, two print materials are used, build materials and support materials. The build 

jet first lays down the design pattern by printing droplets onto the platform. The support jet then 

prints support material around the printed pattern. After printing, the cutter blade comes over and 

cuts the build layer to a predetermined layer thickness, thereby controlling the accuracy in the z-

direction. The build jet then prints build material for the next layer. The process repeats itself until 

the entire object is completed.
17

 

Stereolithography allows to build accurate parts directly from 3D CAD data without tooling by 

converting liquid materials and composites into solid cross-sections, layer-by-layer, using an 

ultraviolet laser (UV). The UV beam is guided onto the liquid monomer surface placed on an 

elevator. After the first layer is built, the elevator is lowered. Then, a resin-filled blade sweeps 

across the cross-section of the part, re-coating it with fresh material. The process is repeated until a 

3D part is built; finally, it is immersed in a chemical bath in order to be cleaned of excess resin and 

is subsequently cured in an ultraviolet oven.
17

 

In SLS, the material is not melted; powder grains of polymeric or polymer coated ceramic material 

are fused together by heating the materials shortly just above the glass transition temperature, so 

that only outer layer of the powder grains melts and fuses to the adjacent grain. This technique uses 

a high power laser (i.e. CO2) to fuse the small particles into a mass that has a desired three-

dimensional shape. The laser selectively fuses powdered material by scanning cross-sections 

generated from a 3D digital description of the part (i.e. CAD data) on the surface of a powder bed. 

After each cross-section is scanned, the powder bed is lowered by one layer thickness, a new layer 

of material is applied on top, and the process is repeated until the part is completed.
 17

 

3D Bioplotting is an additive technology very similar to FDM. The Bioplotter system, developed by 

researchers at the University of Freiburg, involves a moving extruder head (x-, y- and z-axis 

control) and uses compressed air to force out a liquid or a paste-like plotting medium into the form 
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of filaments, which solidify onto the platform. The extruder head can be heated to the required 

temperature. The medium solidifies when it comes in contact with the substrate or previous layer.
 17

 

 

 1.6.1 3D fiber deposition technique 

Among all of the rapid prototyping techniques, 3D plotting
95- 97

 and 3D fiber deposition
98

 have been 

recently developed and used for tissue-engineering purposes.  

In particular, 3D fiber deposition may be considered as a modified technique of 3D plotting for the 

extrusion of highly viscous polymers, and it is a fused deposition technique in which a molten 

polymer is extruded and then deposited through a servo-mechanically controlled syringe that 

applies pressure (Figure 7).
99-101

 This process allows to obtain scaffolds, with a customized shape 

and size by CAD/CAM techniques and 100% interconnectivity.  

The key-element of the 3D fiber deposition technique is a dispensing machine known as Bioplotter, 

which was developed by Landers et al. 
95-97

 to produce scaffolds from hydrogel for soft tissue 

engineering.  

It consists of a dispenser, equipped with a heating jacket that is movable in three dimensions. The 

basic process involves dispensing of a flowable material stored into a cartridge through a thin 

needle by air-pressure control, and its subsequent hardening 

(Figure 7). 

The material can be dispensed in a liquid that has the 

advantage of preventing deformation
95 

or in presence of air if 

highly viscous materials, such as polymer melts, are 

processed. Hardening processes can be obtained through 

thermally induced solidification, solidification induced by a 

chemical reaction, and solidification induced by 

precipitation.  
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The knowledge of the critical processing parameters results crucial to develop 3D fiber deposited 

scaffolds. The building process for 3D plotting is dependent on a large number of parameters such 

as: needle (i.e. type, length and diameter), dispensing pressure gradient, deposition speed or feeding 

rate, layer thickness, fiber spacing or strand distance, sequence of stacking or lay-down pattern. 

The needle length is significant for the dispensing process as it is closely connected with the 

viscosity of the plotter material. Low-viscosity materials are usually processed with long, thin 

dispensing needles, while on the other hand, short (often conical) dispensing needle types are used 

for highly viscous materials. 

 If a molten polymer is assumed as a viscous Newtonian fluid and the Hagen-Poiseuille equation as 

valid,
98, 102

 the flow rate from the nozzle can be expressed according to:  

                                                                    
l

Pd
Q

η

π

128

4∆
=                                                                  (1) 

The above Hagen-Poiseuille equation (1) indicates that the flow rate (Q) is directly proportional to 

both the pressure gradient (∆P) across the syringe and needle tip, and the needle diameter (d). 

Moreover, the flow rate (Q) is inversely proportional to needle length (l) and polymer viscosity (η). 

A high Q value may result in over-deposition of the fiber, thus reducing porosity, whilst a low Q 

value reduces the fiber diameter, compromising the overall scaffold integrity. A decrease in needle 

diameter reduces the flow rate, requiring considerably greater pressures to extrude fibers, and in the 

case of small needle diameters the pressures required to achieve a suitable flow rate can be greater 

than those usually used in practice, thus needing changes in viscosity.
98

 Even though for small 

needle diameters polymer viscosity can be reduced through the addition of specific solvents or 

increasing the syringe temperature, the incomplete removal of solvents post-processing or polymer 

exposure to high temperatures can be detrimental to scaffold biocompatibility.  

Moroni L. et al.
99-101

designed, manufactured and characterized 3D fiber deposited PEOT/PBT 

scaffolds. Poly(ethylene oxide terephthalate)–poly(butylene terephthalate) (PEOT/PBT) block 

copolymers belong to a class of materials known as thermoplastic elastomers, and possess 
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mechanical properties depending on the their weight ratio in block form and on the molecular 

weight of the initial poly(ethylene glycol) (PEG) blocks.
99-101

 

Several PEOT/PBT copolymer compositions were used to fabricate scaffolds with a Bioplotter 

device through heating polymer pellets. Moreover, pores were varied in shape and size, by changing 

fiber diameter, spacing, sequence of stacking, and layer thickness.
17,99-101 

However, since pore 

geometry (and, hence, porosity) is defined by fiber diameter and spacing, and layer thickness, it is 

also strongly dependent on the deposition speed or feeding rate used during the process (Figure 8).
99

 

 

 

Figure 8: Effect of deposition speed on scaffold porosity and fiber diameter.
99

 

 

 

The feeding rate is dependent on the material flow through the nozzle and the rate at which the 

material hardens. The faster a material hardens, the faster the feeding rate has to be, ensuring that 

the adhesiveness of the plotter material is still adequate to bond the layers when it reaches the layer 

below. On the other hand, if the material hardens very slowly it needs to choose a relatively slow 

feeding rate, to give the previously dispensed plotter material time to harden before the new layer is 

dispensed on to it. The material flow through the nozzle and the feeding rate must be coordinated 

with each other. 
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Accordingly, in order to assess the influence of the pores geometry and architecture on the 

mechanical performances, 3D fiber deposited PEOT/PBT scaffolds were characterized through 

dynamic-mechanical analysis (DMA). In particular, with increasing porosity, DMA analysis 

showed a decrease of the elastic properties such as the storage modulus (E′) (Figure 9a),
100,101

 whilst 

an increase of the modulus was evaluated with decreasing the fiber spacing (Figure 9b).
100,101 

Furthermore, it is worth noting that for PEOT/PBT scaffolds with the same composition and 

porosity but different architectures, E′ varied within a wide range of values (Figure 9c).  

 

 

Figure 9: a) Effect of porosity on the storage modulus E′ for 3D fiber deposited PEOT/PBT scaffolds with specific 

composition,100 b) Effect of fiber spacing on the storage modulus E′ for 3D fiber deposited PEOT/PBT scaffolds with 

specific composition and architecture, considering two different fiber diameters,
100

 c) Effect of architecture on the 

storage modulus E′ for 3D fiber deposited PEOT/PBT scaffolds with same composition and porosity.
100

 

 

Another interesting approach was to make hollow fibers directly integrated in a 3D fiber deposited 

structure, thus obtaining scaffolds which can be used in tissue engineering and controlled drug 

delivery applications as possible smart biomaterial devices.
103

 To obtain hollow fibers, with 

controllable hollow cavity diameter and shell thickness, a rheological phenomenon, which is known 
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as “viscous encapsulation” and often undesired in molten polymeric blends, has to be considered.
103

 

Briefly, when two components of a polymer blend possess a significant difference in viscosity in 

the molten state, fibers with a shell-core configuration can be extruded.  

The polymer with lower viscosity tends to shift, when flowing through a narrow duct, such as the 

nozzle of an extruder (e.g. the needle used during the 3D Bioplotting process), towards the walls of 

the nozzle during extrusion.  

Due to the higher shear stresses at the walls this separation of the components produces 

stratification or ‘‘canalization’’ effect, thus providing fibers with a shell-core structure (Figure 10). 

By removing the core polymer by selective dissolution, hollow fibers can be obtained.
103

 

 

 

Figure 10: (left) Viscous encapsulation phenomenon: arrows indicate the encapsulation of the high viscosity polymer 

(A) by the low viscosity polymer (B), due to higher shear stress (longer arrows) at the nozzle walls,
103

 (right) 3D fiber 

deposited structure with shell-core fibers.
103

 

 

The use of these biphasic shell-core 3D fiber deposited scaffolds with appropriate mechanical and 

surface properties has been demonstrated to be a promising solution for cartilage tissue engineering. 

Finally, since cell-seeding efficiency still remains a critical factor for optimal tissue regeneration, 

the possibility to combine the 3D fiber deposition technique with electrospinning was also 

demonstrated (Figure 11);
17,104

 therefore, obtaining scaffolds where the periodical macrofibers 

typical of 3D fiber deposited structures were integrated with the random electrospun ones. In these 

integrated structures, the 3D fiber deposited scaffold acts as a structural support with adequate 
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mechanical properties, whilst the electrospun network mainly works as a cell entrapment 

system.
17,104,105 

 

 

Figure 11: SEM images of hybrid poly(ε-caprolactone) (PCL) scaffolds obtained combining 3D fiber deposition and 

electrospinning technologies.105 

 

In conclusion, the mechanical behavior of the 3D fiber deposited scaffolds is dependent not only on 

the intrinsic properties of the material processed, but also on the different 3D architectural and 

geometric features, thus highlighting the possibility to tailor their mechanical properties suitably. 

Consequently, if mimicking the biomechanical behavior of the tissue to be grown is a key point in 

tissue engineering, the 3D fiber deposition technique may be considered as a powerful tool to create 

scaffolds for specific applications.
17
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Chapter 2 

A basic approach in the development of  

poly(ε-caprolactone)/iron oxide nanocomposite 

magnetic scaffolds 
________________________________________________________________________________ 

 

 

 Preface 

In the last years, great attention has been given to nanotechnology which may enhance the 

performance of all the materials used for bone tissue engineering. This approach has led to the 

design of materials with nanostructured surface features or constituent nanomaterials, such as fibers, 

grains, or particles, which show at least one dimension from 1 to 100 nm, which may reproduce the 

natural nanostructure of bone tissue. Nanocomposites can mimic the constituents of natural bone 

better than the individual components. Thus, nanocomposites consisting of a natural or synthetic 

polymer reinforced with an inorganic phase (i.e., ceramic phase) are increasingly preferred for bone 

tissue regeneration because they more closely mimic the structure of natural bone. In comparison 

with conventional composites, nanocomposites better induce cell response because of their 

similarity with the natural structure. Moreover, the mechanical performances of nanocomposites 

may also be further improved.
1
 A conceptually innovative solution for the design of magnetic 

scaffolds for tissue engineering was recently proposed.
2
 

Accordingly, the aim of this work was to propose an approach in the design and development of 3D 

fiber deposited poly(ε-caprolactone)/iron oxide (PCL/Fe3O4) magnetic scaffolds. The effect of 

Fe3O4 nanoparticle inclusion on the biological, mechanical, and magnetic performances was also 

investigated.
3,4
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2.1 Materials and Methods 

 2.1.1 Poly(ε-caprolactone) 

Poly(ε-caprolactone) is a synthetic semicrystalline polymer, belonging to the family of linear 

aliphatic polyesters. It is a biodegradable thermoplastic polymer characterized by low viscosity and 

ease of processing, a low melting point (around 60°C), a low glass transition temperature (-60°C) if 

compared to other bioresorbable polymers.
5
 Its decomposition temperature is equal to 360°C. In 

addition, PCL has a good resistance against chlorine, oil, water and solvents in general. For this 

reason it has been approved by Food and Drug Administration (FDA). These features make it 

widely used in the field of biomedical applications for drug delivery devices, as suture or adhesion 

barrier, for tissue engineering, in odontology or dentistry.
6 

PCL is obtained from ring opening 

polymerization of ε-caprolactone, using as catalyst, the stannous octanoate (Figure 1).  

 

 

Figure 1: Ring opening polymerization of ε-caprolactone. 

 

PCL is able to dissolve at room temperature when it is in contact with different solvents as 

dimethylacetamide (DMAc), tetrahydrofuran (THF) and chloroform (CLF), which are usually 

chosen, taking into account the specific field of application. 

The most important chemical feature is its ability to degrade in the physiological environment; in 

particular, it is affected by degradation phenomena caused by the interaction between aliphatic ester 

bonds, presents along the main chain, and water molecules. This degradation mechanism activated 
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by chemical hydrolysis allows the polycaprolactone to be counted as one of the leading members of 

the class of bioerodible polymers.
7
 

Several important factors influence hydrolysis kinetic: 

• the diffusion coefficient of water in the polymer and the water absorption; 

• the crystallinity of the polymer, since the amorphous areas are more quickly involved in the 

process being more accessible to water molecules; 

• the temperature, since its increase up to values above the glass transition temperature of the 

material determines a greater mobility of chain, thus favoring the penetration of water; 

• the chemical structure, in particular the presence of hydrophobic or hydrophilic groups can 

make the process more or less smooth; 

• the surface morphology, since the presence of inhomogeneities and roughness 

accelerate typically the degradation process. 

In particular, PCL degradation process consists of at least two discrete phases; the first one involves 

the non-enzymatic bulk hydrolysis of the ester bond auto-catalyzed by carboxylic groups present 

along the main chain, whereas the second one involves a surface erosion mechanism.  

The amorphous phase firstly degrades, resulting in an increase in the degree of crystallinity, while 

the molecular weight remains constant.
7
 Then, cleavage of ester bonds results in a mass loss.

8,9
 

The polymer degrades by end chain scission at higher temperatures, while it degrades by random 

chain scission at lower temperatures.
10

 

PCL degradation is auto-catalyzed by the carboxylic acids liberated during hydrolysis
 
of the ester 

bond
9,11 

but it can also be catalyzed by enzymes, resulting in faster decomposition
12

 since many 

microbes, in nature, are able to completely biodegrade PCL.
13

 

Anyway, while PCL can be enzymatically degraded in the environment, it cannot be degraded 

enzymatically in the body.
14
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Many studies were made in order to better understand the degradation process of the PCL. For 

example, some studies have shown that free radicals, produced by the reaction between the 

carboxylic groups, are much more reactive than oxygen radicals produced by reaction with oxydrile 

groups (OH
-
).

11 
Other works aimed to study the evolution of physical and chemical properties 

during the degradation process. 

Figure 2 shows the trend of the molecular weight (Mw) of the polymer in distilled water. It is clear 

that, due to the activation of hydrolysis, the breaking of bonds along the aliphatic macromolecules, 

which gradually become shorter, begins and this causes the loss of molecular weight, faster at first, 

and, then, most significant slower, until the complete degradation of the polymer.
11 

Similarly, as the 

mechanism of degradation goes on, surface erosion mechanism plays a crucial role in determining a 

percentage reduction in the amount of polymer.
15

 

The period of time where the degradation process takes place is pretty long: in distilled water, it is 

of about 30 weeks, in agreement with the figure 2.
16 

 

 

Figure 2: (left) PCL molecular weight (Mw) versus time, during degradation in distilled water; (right) PCL weight loss 

versus time, during degradation in distilled water.
16 

 

Sun et al. (2008) highlighted that the in vivo degradation of PCL was observed for 3 years in rats. 

The disruption, absorption and excretion of PCL were traced in rats by radioactive labeling. PCL 

capsules with initial molecular weight of 66000 g mol
-1

 remained intact in shape during 2-year 

implantation. It broke into low molecular weight (Mw = 8000 g mol
-1

) pieces at the end of 30 
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months. The molecular weight of PCL decreased with time and followed a linear relationship 

between log Mw and time (Figure 3).
17

 

 

 
 

Figure 3: Decrease in the molecular weight (Mw) of PCL capsules, implanted in rats, with time. A linear relationship 

between the logarithm of Mw and time was observed.
17

 

 

Due to its chemical structure, PCL is highly hydrophobic and the main limitation lies in its 

mechanical properties: compressive strength and tensile strength which are equal to 1.58 MPa
15

 and 

to 20.7 MPa,
18

 respectively. For this reason, research attention has been focused on the development 

of polymer-based composites consisting of polymers reinforced with inorganic ceramic 

micro/nanofillers. Compared with poly(ε-caprolactone), polymer-based composites possess 

enhanced mechanical properties, while showing flexibility and structural integrity better than 

ceramic materials. 

 

 2.1.2 Iron oxide nanoparticles 

Since many years, different kinds of magnetic micro/nanoparticle carriers have been optimized and 

proposed for drug delivery, hyperthermia treatment and other applications. Magnetic nanoparticles 

(MNPs) may be properly shielded from the surrounding environment or functionalized/bioactivated 

with specific molecules, biocompatible polymers (i.e., Polyvinyl Alcohol (PVA), 
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Polyvynilpyrrolidone (PVP), dextran, or others). Inorganic silica-based materials have also been 

considered as coatings for magnetite (Fe3O4)
a
 or maghemite (γ-Fe2O3)

b
 MNPs.

19
  

Iron oxide nanoparticles exhibit hydrophobic surfaces with a large surface area to volume ratio. Due 

to the hydrophobic interaction, these particles tend to agglomerate and to form clusters with an 

increase in overall particle size. The clusters display strong dipolar attractions to other particles and 

exhibit ferromagnetic behavior.20,21 Since magnetic attraction exists between particles, additional 

Van der Waals forces result in the usual aggregations, and therefore, in order to stabilize iron oxide 

nanoparticles, an appropriate surface modification is needed.
20

 Moreover, it is worth noting that for 

medical applications the stabilized iron oxide nanoparticles should be nontoxic and biocompatible.22  

An important strategy is represented by coating nanoparticles with several materials for biomedical 

applications including organic, inorganic, polymeric and non-polymeric materials.  

In this stage of the work, magnetite nanoparticles coated by Polyvinylpyrrolidone (0.2 w % PVP) 

with an average diameter of about 25 nm (NanoAmor, Houston, TX) were used.
3,4

 

 

 

                                                
a
 The cubic spinel Fe3O4 is ferromagnetic at temperature below 858 K. Magnetite particles are commonly synthesized 

by treating a solution of a mixture of iron salts (Fe
2+

 and Fe
3+

) with a base under an inert atmosphere. For example, the 

addition of an aqueous solution of ammonia to a solution of FeCl2 and FeCl3 (1:2) yields nanoparticles, which are 

transferred into a hexane solution by treatment with oleic acid.
23,24 

The repeated selective precipitation gives Fe3O4 

nanoparticles with a rather narrow size distribution.  

 
b Among several crystalline modifications of Fe2O3, there are two magnetic phases, namely, rhombohedral α-Fe2O3 

(hematite) and cubic γ -Fe2O3 (maghemite) phases. In the γ -Fe2O3 all Fe
3+

 ions having the structure of a cation-deficient 

AB2O4 spinel, the metal atoms A and B occur in tetrahedral and octahedral environments, respectively.
23

  

A bulk γ -Fe2O3 sample is a ferrimagnet below 620°C. Nanoparticles are commonly obtained
23,25 

by mild oxidation (on 

treatment with Me3NO) of pre-formed metallic nanoparticles. The same result can be attained by direct introduction of 

Fe(CO)5 into a heated solution of Me3NO. The oxidation with air oxygen is also used to prepare γ -Fe2O3 nanoparticles. 

For this purpose, the Fe3O4 nanoparticles are boiled in water at pH 12-13. 

The most popular route to γ -Fe2O3 nanoparticles is thermal decomposition of Fe
3+

 salts in various media. For example, 

good results have been obtained by using iron complexes with cupferron.23,26,27 
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 2.1.3 Design and preparation of PCL/Fe3O4 nanocomposite scaffolds 

PCL (Mw = 65000, Aldrich, St. Louis, MO) pellets were dissolved in tetrahydrofuran with stirring 

at room temperature. Polyvinylpyrrolidone coated Fe3O4 (NanoAmor, Houston, TX) nanoparticles 

and then ethanol were added to the PCL/THF solution during stirring. A PCL/Fe3O4 weight ratio 

(w/w) of 90/10 was used. An ultrasonic bath (Branson 1510 MT, Danbury, CT) was also used to 

optimize the Fe3O4 nanoparticle dispersion in the polymer solution. Accordingly, a homogeneous 

paste was obtained, and then, the solvent was totally removed. Successively, PCL/Fe3O4 (90/10 

w/w) pellets were made. Nanocomposite fibers, 3D block-shaped scaffolds with a 0°/90° pattern 

and 3D cylindrical scaffolds with a 02°/902° lay-down pattern were preliminary manufactured by the 

processing PCL/Fe3O4 (90/10 w/w) pellets through a 3D fiber deposition technique. 

In particular, nanocomposite scaffolds were built by extruding and alternatively depositing the 

fibers along the 0° direction and the 90° direction between successive layers, thus obtaining the 

selected lay-down pattern. PCL/Fe3O4 (90/10 w/w) pellets were initially placed in a stainless steel 

syringe and then heated at a temperature of 130–140°C with a heated cartridge unit placed on the 

mobile arm of a bioplotter-dispensing machine (Envisiontec GmbH, Gladbeck, Germany). 

Successively, a nitrogen pressure of 8.5–8.9 bar was applied to the syringe through a cap. The 

nozzle used to extrude the PCL/Fe3O4 fibers was stainless steel characterized by an inner diameter 

of 400 or 600 µm. Scaffolds were characterized not only by the fiber diameter (depending on the 

needle diameter and/or the deposition speed) but also by the fiber spacing (strand distance, that is, 

center-to-center distance between two adjacent fibers) and layer thickness, which influenced the 

overall pore size. A deposition speed of 30 mm/min was used. Images of the PCL/Fe3O4 

nanocomposite fibers and scaffolds are shown in figure 4. 
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Figure 4: Representative image of a PCL/Fe3O4 nanocomposite fiber and of a 3D block-shaped PCL/Fe3O4 magnetic 

scaffold obtained through rapid prototyping technique, attracted by a neodymium magnet. 

 

 2.1.4 Morphological Analysis: Micro-CT and Optical Imaging 

Micro-Computed Tomography (Micro-CT) was performed at a resolution of 5.8 µm through a 

SkyScan 1072 system (Aartselaar, Belgium) with a rotational step of 0.9° over an angle of 180° to 

capture the image and, hence, shape and size of the polymer and nanocomposite fibers. Cross-

sections and 3D models of the nanocomposite fibers were then reconstructed with SkyScan’s 

software package, Image J, and Materialise Mimics software (version 12.0, Materialise, Leuven, 

Belgium) for image analysis and visualization of the results from Micro-CT scanning. 

Also, a Nikon Eclipse 80i microscope (Mellville, NY) equipped with a Nikon digital camera was 

used for optical imaging of the scaffolds.  

 

 2.1.5 Tensile Tests on PCL/Fe3O4 nanocomposite fibers  

Tensile tests were performed, with an Instron 5566 dynamometer (Bucks, UK), on PCL and 

PCL/Fe3O4 nanocomposite fibers having a diameter (D) of 340–360 µm and 380 µm, respectively. 

The fiber length (l) between the grips was set to 20 mm. The fibers were tested at a constant 

crosshead speed of 50 mm/min, according to the standard practice ASTM D 3822. The engineering

stress (σ=F/A) was obtained as the force measured by the loading cell divided by the total area of 

the fiber cross-section: A=πD
2
/4, whereas the strain (ε=∆l/l) was defined as the ratio between the 
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vertical displacement (i.e., the elongation), assumed to be equal to the crosshead displacement, and 

the initial distance between the grips. 

Statistical differences for the tensile modulus (E), maximum stress (σmax), and maximum strain 

(εmax) between the polymeric and nanocomposite groups were assessed with a one-way analysis of 

variance through the software package OriginPro 7 (Origin- Lab Corp., Northampton, UK). 

 

 2.1.6 Compression Tests on PCL/Fe3O4 nanocomposite scaffolds 

Compression tests were carried out on 3D cylindrical scaffolds characterized by a diameter (D0) of 

6.0 mm, a height (h0) of 6.5 mm, a 0°2/90°2 pattern by a fiber diameter of 500 µm, a layer thickness 

of 390-400 µm, a center-to-center fiber distance of 1000 µm. All the tests were performed at a rate 

of 1 mm/min up to a strain value of 0.4 mm/mm, using an INSTRON 5566 testing machine (Bucks, 

UK). The stress (σ=F/A0) was defined as the ratio between the force (F) measured by the load cell 

and the apparent cross-section of the scaffold (A0= πD0
2
/ 4). The strain (ε=∆h/h0) was evaluated as 

the ratio between the scaffold height variation (∆h) and the initial height (h0). 

 

 2.1.7 Magnetic Analysis 

Magnetization measurements were performed in a Squid magnetometer (San Diego, CA) designed 

for the operation ranges -7 T ≤ B ≤ +7 T and 1.8 K ≤ T ≤ 400 K.  

Firstly, direct-current magnetization and alternating-current susceptibility at low magnetic field - 

several millitesla (mT) - were measured as functions of temperature.  

The field-dependent magnetization curve, which is of practical interest for biomedical applications, 

was taken at in vivo temperature conditions of T = 310 K.  
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Assuming monodisperse particle size, we fitted the experimental curve with a Langevin function 

common for superparamagnetic behavior (see Appendix): 

                                       (1) 

where Ms is the saturation magnetization, µp stands for the magnetic moment of a particle, kB is the 

Boltzmann constant, T and H the temperature and the magnetic field. 

 

 2.1.8 Biological Analysis 

Cell Adhesion Study 

Human Mesenchymal Stem Cells (hMSCs, 1.0*10
4 

cells/sample) were seeded on PCL and 

PCL/Fe3O4 substrates and grown in Dulbecco’s modified Eagle medium (DMEM) supplemented 

with 10% fetal bovine serum (FBS, BioWhittaker, Walkersville, MD). 

The different kinds of cell-constructs were analyzed through Confocal Laser Scanning Microscopy 

(CLSM). They were fixed with 4% paraformaldehyde, rinsed twice with phosphate-buffered saline 

(PBS buffer) and incubated with Phosphate-Buffered Saline and Bovine Serum Albumin (PBS-BSA 

0.5%). Preliminary CLSM analyses were carried out to study human mesenchymal stem cell 

adhesion and spreading on the PCL/Fe3O4 nanocomposite fibers at 72 h after seeding. To visualize 

the cells adhered to the nanocomposite fibers, the phalloidin-labeled actin filament fluorescence 

intensity was measured with several steps along the length of the fibers by means of a confocal laser 

scanning microscope (Zeiss LSM 510/Confocor 2, Oberkochen, Germany).  

Accordingly, actin microfilaments were stained with phalloidin-tetramethylrhodamine B 

isothiocyanate (Sigma Aldrich). Phalloidin was diluted in PBS-BSA 0.5% and incubated at room 

temperature for a suitable time. CLSM was equipped with helium–neon laser sources at a 

wavelength of 543 nm and with a 20x objective.  

 

( )HTkTkHMM pBBps µµ /)/coth( −=
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 2.2 Results and Discussion 

 2.2.1 Morphological Analysis: Micro-CT and Optical Imaging 

The first step of the morphological study through Micro-CT has involved the evaluation of the fiber 

diameter produced through a bioplotter, whereas the second one showed the distribution of Fe3O4 

nanoparticle clusters. As for the diameter, the results have evidenced values of 340–360 and 380 

µm for the PCL and PCL/Fe3O4 fibers, respectively.  

The images obtained through the Micro-CT system scan have allowed for obtaining the 3D 

reconstruction of the nanocomposite fibers also assessing the distribution of Fe3O4 nanoparticles 

(Figure 5). 

 

 

Figure 5: Two different reconstructions of nanocomposite fibers obtained through (left) Image J and (right) Materialise 

Mimics that have highlighted the distribution of Fe3O4 particles. 

 

In particular, 3D reconstructions through Materialise Mimics have highlighted an evident 

distribution of Fe3O4 nanoparticle clusters; thus, a uniform distribution of nanoparticles along each 

fiber composing the scaffold was expected. The clustering effect of high surface-to-volume ratio 

particles is widely documented; levels much lower than 10% usually produce clusters. If clusters 

are effective for magnetic features of the scaffold, higher amount of clusters are known to 

drastically reduce the mechanical properties.  

Figure 6 shows the imaging through optical microscopy of the investigated scaffolds. Optical 

imaging has shown that the fibers composing the scaffold were very well aligned and regularly 

spaced along each layer; this suggests proper performance of the fiber deposition process. 
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Moreover, a 100% interconnectivity among macropores was observed. Therefore, morphologically 

controlled composite scaffolds based on a PCL matrix can be fabricated in similar fashion to the 

neat PCL structures.
28-30 

 

 

Figure 6: Optical microscopy image of a PCL/Fe3O4 scaffold showing that fibers composing the scaffold are very well 

aligned and regularly spaced along each layer, thus suggesting a proper performance of the 3D fiber deposition process. 

 

 2.2.2 Tensile Tests on PCL/Fe3O4 nanocomposite fibers 

The results from the tensile tests have evidenced a ductile behavior for both the PCL and 

PCL/Fe3O4 fibers. Typical stress-strain curves are reported in figure 7. 

 

 

Figure 7: Typical stress-strain curves obtained from tensile tests performed on PCL and PCL/Fe3O4 fibers evidencing a 

ductile behavior: (left) Stress-strain curves reported up to break; (right) Stress-strain curves reported up to a strain level 

of 0.2 mm/mm in order to better highlight the initial mechanical behavior. 
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They have shown an initial linear region, firstly followed by a small decrease in the slope up to a 

local maximum stress (σmax) value; and, then, by a decrease of the tensile stress.  

It is worth noting that a plateau-like region and, finally, a new increase were observed until 

maximum stress (σmax) was reached. Values of the tensile modulus (E), maximum stress (σmax), and 

maximum strain (εmax) are reported in Table I. 

Fibers E 

(MPa) 

σmax 

(MPa) 

εmax 

(mm/mm) 

PCL 571.5 ± 45.6 29.3 ± 3.2 12.3 ± 2.0 

PCL/Fe3O4 640.0 ± 60.4 38.1 ±4.1 5.5 ± 1.4 

 

Table I: Tensile modulus (E), maximum stress (σmax) and maximum strain (εmax) reported as mean value ± standard 

deviation 

 

 

In particular, the values of the modulus (E) obtained for the PCL fibers were consistent with the 

literature data;
28

 however, the slightly greater value measured in this investigation may have been 

related to the higher speed of testing (50 mm/min). 

Even though the inclusion of Fe3O4 nanoparticles strongly reduced the maximum strain (εmax), the 

results have suggested that the modulus and maximum stress (σmax) were enhanced. The increase of 

stiffness and strength observed for PCL/Fe3O4 have suggested that the use of 10% by weight of 

magnetic nanoparticles was still an effective reinforcement, even if a maximum effect was expected 

at lower amounts of nanoparticles. The higher number of clusters, which can be detected from 

figure 5, have highlighted that further increasing the amount of nanoparticles might break down 

mechanical properties. It is also interesting to observe that the mechanical properties of these 

scaffolds (Table I) were in the range of those related to trabecular bone. Therefore, the variation in 

the amount of nanoparticles may be a useful tool for tailoring mechanical features.  

The results from the statistical analysis have highlighted a significant statistical difference between 

the polymeric and nanocomposite groups (p < 0.01) for both σmax and εmax, whereas a weaker 
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difference (p < 0.05) was observed for the modulus. Furthermore, the values of the modulus 

obtained for the fibers seemed to match those of trabecular bone.
31

 

 

 2.2.3 Compression Tests on PCL/Fe3O4 nanocomposite scaffolds 

Results from compression tests have highlighted that the 3D rapid prototyped scaffolds show a 

mechanical behavior, which is similar to that of flexible foams. 

A linear region is evident at low values of strain, suggesting an initial stiff mechanical response. 

This zone is followed by a region with lower stiffness. Finally, another stiff zone of the stress-strain 

curve can be observed (Figure 8).  

 

 

Figure 8: Typical stress-strain curves obtained from compression tests performed on PCL and PCL/Fe3O4 cylindrical 

scaffolds: left) Stress-strain curves reported up to a strain level of 0.4 mm/mm; (right) Stress-strain curves reported up 

to a strain level of 0.04 mm/mm in order to better highlight the initial mechanical behavior. 

 

According to previous works,
28,30

 in contrast to the typical behavior of the flexible foams
28

 and 3D 

scaffolds obtained through fused deposition modeling
32

 the central region of the stress-strain curve 

does not present a plateau, however, showing a lower stiffness in comparison with the other two 

regions of the curve.  
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Compressive modulus and maximum stress (at a strain level of 0.4 mm/mm) have been reported in 

Table II. 

Scaffolds Compressive modulus, E 

(MPa) 

Maximum Stress, σmax 

(MPa) 

PCL 92.1 ± 19.1 12.1 ± 1.9  

PCL/Fe3O4 132.3 ± 19.7 14.5 ± 2.3 

 
Table II: Compressive modulus (E) and maximum stress (σmax) at a strain level of 0.4 mm/mm reported as mean value 

± standard deviation. 

  

 2.2.4 Magnetic Analysis 

The magnetization curves, have shown a superparamagnetic behavior at 310 K for these PCL-based 

scaffolds containing 10% by weight of magnetic Fe3O4 nanoparticles with a blocking temperature at 

about 250 K (Figure 9). 

The particle moment (µp), estimated from Langevin fit, was about 10
6
 µB. As each Fe3O4 molecule 

carried a magnetic moment of 4.7 µB, a particle diameter of about 28 nm has been estimated, which 

was equivalent to a particle mass of about 2 * 10
5
 Fe3O4 molecules. This agreed well with the grain 

diameter provided by the producer. This further result has suggested a mass concentration of 

nanoparticles of N=Ms/µp ≈ 1.5*10
15

 particles per gram where Ms is the saturation magnetization. 

Even if the saturation value was low if compared to a dip-coated scaffold,
2
 it was still encouraging 

because these scaffolds could be attracted and fixed by a magnetic field and they were capable of 

attracting magnetized bioaggregates used for scaffold functionalization, benefiting from the fully 

interconnected porosity of the 3D rapid prototyped structures. 
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Figure 9: Magnetic moment per mass measured at 310 K for two different PCL/Fe3O4 samples. Black solid lines 

represent fits of the Langevin function to the experimental data points. 

 

 

 

 2.2.5 Biological Analysis 

Cell Adhesion Study 

Confocal images have shown interesting results in terms of cell adhesion and spreading (Figure 10 

and 11). Hence, preliminary studies suggest a high ability of the magnetic scaffolds to support 

adhesion and proliferation human bone marrow stem cells, at least in vitro. Therefore, this new type 

of scaffold is a valuable candidate for tissue engineering applications and offers novel magnetic 

options. 

In particular, confocal analysis has highlighted an increase in the adhered number and a more 

evident spreading of human mesenchymal stem cells when compared to the results usually obtained 

from only PCL fibers. This could have probably been due to the presence of Fe3O4 nanoparticles or 

to the surface topography and roughness of the nanocomposite fibers. With regard to the release of 

nanoparticles, several in vitro and in vivo investigations have already confirmed that magnetic 

nanoparticles with adequate biocompatible coatings do not have cytotoxic effects on cell behavior.
33

 

Furthermore, some magnetic nanoparticles coated with arginine-glycine-aspartic acid (RGD) 

peptides showed good biocompatibility in contact with osteoblasts.
34

  

 



Magnetic PCL/Fe3O4 scaffolds - 59  

 

Dobson J. (2008) also highlighted that the change in the magnetic properties of magnetic 

nanoparticles in the presence of a magnetic field had no influence on cellular toxicity
35

. However, 

further research is needed to assess whether this enhanced cell-material behavior is related to the 

presence of magnetic Fe3O4 powder or to changes in the surface topography of fibers as a 

consequence of the presence of nanoparticles. 

 

 

Figure 10: Images obtained from confocal analysis with several steps along the length of the nanocomposite fibers, 

highlighting the phalloidin-labeled actin filaments. Scale Bar - 100 µm 

 

 

 

 

 

Figure 11: Image obtained from confocal analysis: (a) evidencing the great number of cells adhered to the scaffold; 

Scale Bar - 100 µm (b) a higher magnification (Scale Bar - 50 µm) of the central zone reported in figure (a). 
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 Conclusions 

Fully interconnected PCL/Fe3O4 nanocomposite magnetic scaffolds were successfully prototyped 

through 3D fiber deposition. An amount of 10% by weight of nanoparticles enhanced stiffness and 

strength of the scaffolds and provided magnetic features that allowed the design of novel fixation 

methods and functionalization of the scaffold, thus providing novel strategies for designing 

scaffolds for bone tissue engineering. Moreover, a biological in vitro investigation has suggested an 

increase in the adhered number and a marked spreading of human mesenchymal stem cells. 
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Chapter 3 

Poly(ε-caprolactone)/iron-doped 

hydroxyapatite nanocomposite  

magnetic substrates  
________________________________________________________________________________ 

 

 Preface 

Even though iron oxide-based phases such as maghemite or magnetite have been widely considered 

in biomedical applications, their long-term effects in the human body remain still unclear.
1-3

Clearly, 

the development of suitably surface-modified magnetic nanoparticles (MNPs) through the design of 

specific biocompatible layers consisting of polymers, inorganic phases or metals deposited on their 

surface avoid dangerous problems related to their eventual toxicity, such as to leave any non 

bioresorbable magnetic inclusion (for example, magnetite) inside the repaired tissue.
1,4,5

 

Consequently, research attention has been focused on the synthesis of biocompatible and fully 

biodegradable materials as iron-doped hydroxyapatite (HA) nanoparticles, that can be potentially 

employed to develop new magnetic ceramic scaffolds with enhanced regenerative properties for 

bone surgery.
4,6,7

  

Chemical modification and the engineering of hydroxyapatite has been widely investigated in order 

to produce new biomimetic non-stoichiometric apatites which would better resemble the chemical 

composition and structure of the mineral phase in bones, providing higher rate of biodegradability 

and bioactivity compared to stoichiometric apatites or to improve HA mechanical properties by 

optimizing the processing and the sintering regimes .
6,8-10

 

The ionic substitutions can modify the surface structure and electrical charge of HA. Among the 

substituents of the calcium ion (Ca
2+

), Mg 
2+

 is of great interest. 
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The effect of Mg ion substitution on the crystallization of HA has been reported in literature. The 

presence of Mg ion accelerates the nucleation kinetics of HA, inhibits its crystallization, producing 

a synthetic apatite more similar to natural one.
6,8-10

 

Mg-doped hydroxyapatite results more soluble and absorbable than non-doped apatites but there is 

a limit to the introduction of Mg ion into the apatite network without altering the reticular structure. 

The introduction of carbonate ions (CO3
2-

) into the apatite structure may allow to increase Mg ion 

substitution. The carbonate ion can partially substitute the OH
-
 sites (site A), leading  to an apatite 

characterized by less affinity to osteoblast cell, and/or the PO4
3-

 (site B) leading to an apatite less 

crystalline and more soluble if compared to stoichiometric apatites. However, Mg ions are bivalent 

as Ca ions, thus carbonate ion is not forced to substitute in the site B.
6,8,9

 Consequently, the co-

substitution of Mg and CO3 ions into HA structure has allowed to obtain a biomimetic apatite.  

In the last years, great efforts have been directed toward the synthesis of iron-doped 

hydroxyapatites.  

By stressing the importance of having nontoxic MNPs for all the above-mentioned applications, 

Tampieri A. et al. (2012) synthesized a novel biocompatible and bioresorbable superparamagnetic-

like phase by doping hydroxyapatite with Fe
3+

/Fe
2+

 ions, minimizing the formation of magnetite as 

secondary phase (Italian Patent MI2010A001420). Microstructural, physico-chemical and magnetic 

analyses were carried out on the nanoparticles, highlighting their intrinsic magnetization and 

suggesting new perspectives for devices for bone tissue engineering and for anti-cancer therapies 

based on hyperthermia.
4
 

In this further step of the research, the mechanical, biological and magnetic performances of the 

proposed poly(ε-caprolactone)/iron-doped hydroxyapatite (PCL/FeHA) nanocomposite substrates 

were properly evaluated. 

The study has involved the design, the preparation and the characterization of magnetic substrates 

obtained through molding and solvent casting techniques employing different polymer-to-particle 

weight ratios (w/w).  



Magnetic PCL/FeHA substrates - 67 

 

 3.1 Materials and Methods 

 3.1.1 Iron-doped hydroxyapatite synthesis  

The intrinsic magnetic hydroxyapatite used in this work was suitably synthesized by the Institute of 

Science and Technology for Ceramics (ISTEC), National Research Council (CNR), Faenza, Italy.  

As reported in literature, a new class of magnetic hydroxyapatites has been already synthesized to 

avoid the problems of toxicity that are usually related to iron oxide-based phases. Their synthesis 

involves a neutralization method used to synthesize HA nanopowders and a partial substitution of 

Ca ion
 
by Fe

2+
 and Fe

3+
 ions that can enter the HA lattice, as highlighted in a previous work.

4
  

In particular, by simultaneously adding both Fe species under specific and controlled synthesis 

conditions, it has been possible to obtain an iron-doped hydroxyapatite characterized by a (Fe–

Ca)/P molar ratio very similar to the theoretical ratio (Ca/P = 1.67), Fe
3+

/Fe
2+

 ratio of about 3 and a 

negligible amount of magnetite as secondary phase. 

The biocompatibility and the intrinsic magnetism of these FeHA nanoparticles have been properly 

assessed by Tampieri A. et al. (2012), proposing the possibility to potentially use magnetic 

hydroxyapatites for developing magnetic ceramic scaffolds with improved properties for bone 

regeneration, thus opening novel frontiers in the field of regenerative medicine.
4 

A superparamagnetic-like behavior of single-domain magnetic nanoparticles has been evidenced by 

the magnetization curves as a function of the applied magnetic field.
4
 

FeHA nanoparticles were prepared according to the method previously described.
4
 A basic 

suspension of calcium hydroxide Ca(OH)2, (Aldrich, 95 w% pure, 50 g in 400 mL of H2O) was 

stirred and heated to 40°C. FeCl2·4H2O (Aldrich, ≥ 99 w% pure, 12.74 g in 75 mL of H2O) and 

FeCl3·6H2O (Aldrich, 97 w% pure, 17.86 g in 75 mL of H2O) solutions were contemporarily added 

to the basic suspension as sources of Fe
2+

 and Fe
3+ 

ions. The total amounts of iron ions with respect 

to calcium ions were adjusted so as to obtain: Fe/Ca = 0.20 mol. 
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After soon, a phosphoric acid (Aldrich, 85 w% pure, 44.40 g in 300 mL of H2O) solution was drop-

wise added into the basic suspension of calcium hydroxide containing iron ions, over a period of 2 

h, under constant heating and stirring. 

The reaction products were kept in suspension by constant stirring and heating for 1 h, and then left 

ageing for 24 h at room temperature without further stirring. The precipitate was separated from 

mother liquor by centrifugation, and then washed with distilled water and centrifuged three times; 

finally it was freeze-dried and sieved at 150 µm. In figure 1 the iron-doped HA synthesized by 

ISTEC-CNR is schematically reported. 

 

 

Figure 1: Schematic representation of iron-doped hydroxyapatite synthesized by ISTEC-CNR, Faenza, Italy. 

 

Fe
3+

 ions are present preferentially at the surface level whereas at the bulk level, Fe
2+ 

ions are 

distributed on both Ca(I) and Ca(II) with a preferential occupation of Ca(II) with sixfold 

coordination, on the other hand, Fe
3+ 

ions are distributed on both Ca(I) and Ca(II) with a 

preferential occupation of Ca(I) with fourfold coordination (Figure 1). 
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 3.1.2 Design and preparation of PCL/FeHA nanocomposite substrates 

Magnetic nanocomposite substrates were produced by embedding FeHA nanoparticles into a PCL 

matrix. 

Poly(ε-caprolactone) (Mw = 65000 – Sigma Aldrich, St. Louis, Mo) pellets were dissolved in 

tetrahydrofuran (THF) under stirring at room temperature.  

FeHA nanoparticles having a diameter lower than 20 nm were added to the PCL/THF solution 

during stirring and three different polymer-to-particle weight ratios (w/w) (90/10, 80/20 and 70/30 

w/w) were employed. An ultrasonic bath (Branson 1510 MT, Danbury CT) was also used to 

optimize the nanoparticle dispersion in the polymer solution. Then, molding and solvent casting 

techniques were used to manufacture miniature disk-shaped specimens (Figure 2) with a diameter 

of 6.4 mm and a thickness of 0.5 mm.  

 

 

Figure 2: Schematic representation of molding and solvent casting technique used to obtain polymeric and 

nanocomposite disk-shaped specimens. 

 

To determine the phase composition and crystallinity, PCL/FeHA nanocomposite substrates were 

analyzed through X-ray diffraction (XRD). To this aim, a D8 Advance Diffractometer (Bruker, 

Karlsruhe, Germany) was employed and the nanocomposite substrates were scanned from 2θ = 10° 

to 2θ = 60° using Cu-Kα radiation. 
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 3.1.3 Morphological Analysis: SEM/EDS and Micro-CT 

In order to study the characteristics of the substrates, a Scanning Electron Microscopy/Energy 

Dispersive X-ray Spectroscopy (SEM/EDS) and Micro-Computed Tomography (Micro-CT) 

analysis were performed on PCL and PCL/FeHA substrates. 

In particular, SEM was employed to evaluate the morphology of the PCL/FeHA nanocomposites by 

using a FEI Quanta FEG 200 scanning electron microscope (The Netherlands) while EDS was used 

to determine whether the small particles observed in the nanocomposites were FeHA nanoparticles 

or not, and SEM–EDS P-, Ca-, and Fe-mapping were considered to assess the dispersion of FeHA 

nanoparticles in the polymer matrix.  

Finally, a Micro-CT analysis was performed on disk-shaped PCL/FeHA specimens, using a 

SkyScan 1072 system (Aartselaar, Belgium). A rotational step of 0.9° over an angle of 180° was 

employed in order to visualize the morphological features and surface topography. Cross-sections 

and 3D models of PCL/FeHA nanocomposite substrates were reconstructed using SkyScan’s 

software package, Image J software, Materialise Mimics and Rapidform 2006 that allowed for 

analyzing the results from Micro-CT system scan.  

 

 3.1.4 Contact Angle Measurements 

The hydrophilic nature of a material, together with its chemical composition and its morphological 

features, should be important to determine its ability to interact with the biological environment. To 

this aim, contact angle measurements were performed on PCL and PCL/FeHA substrates by using a 

DataPhysics OCA 20 apparatus. Briefly, distilled water was dropped onto at least 5 different sites 

on each specimen and the static contact angle was measured. Results were reported as mean value ± 

standard deviation.  
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 3.1.5 Small Punch Tests 

Small punch tests were carried out on PCL/FeHA disk-shaped specimens with a diameter of 6.4 mm 

and a thickness of 0.5 mm according to the ASTM F 2183 standard, in order to evaluate maximum 

load and displacement at maximum load. All the tests were performed using an INSTRON 5566 

testing machine (Bucks, UK). 

The experimental setup consisted of a die, a hemispherical head punch, and a guide for the punch 

(Figure 3). 

 

 

Figure 3: Experimental setup used to perform small punch test according to ASTM F2183 standard. 

 

 The specimen was loaded axisymmetrically in bending by the hemispherical head punch at a 

constant displacement rate of 0.5 mm/min until failure occurred. The values of load and 

displacement of the punch were recorded continuously while performing the test.   

 

 3.1.6 Magnetic Analysis  

Magnetization measurements were performed by using a Superconducting Quantum Interference 

Device (SQUID) magnetometer. This instrument measures the total magnetic moment of a sample, 

including all atomic and molecular magnetic contributions. Due to size restrictions, a small part of 

sample material was carefully cut away from the scaffolds, and then fixed in a specially designed 

sample holder, which allows for cancelling background contributions to the total magnetic moment.  
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During the measurements, the magnetic field in the superconducting coil was either held constant at 

varying temperatures, or was swept at constant temperature, while the samples were consistently 

moved through a pick-up coil system connected to the SQUID via a flux transformer. 

Magnetization data were taken at temperatures 5 K < T < 350 K using a liquid-He cooled variable-

temperature insert installed in the commercial SQUID-magnetometer setup (MPMS, Quantum 

Design Inc., San Diego, USA). In order to scale the measured magnetic moments to the amount of 

substance, the weight of the sample was determined with great care. 

On the other hand, magnetic hyperthermia characterizations were performed applying a 

radio-frequency (RF) magnetic field to the samples, which were placed in a thermally isolated 

Teflon holder while temperature was simultaneously recorded with an optical fiber thermometer.  

Both frequency and amplitude of the oscillating magnetic field (f=260 kHz and 27 mT, 

respectively) were generated with a home-made alternating current source feeding a refrigerated 

copper coil. The hyperthermia device has been designed to be into the safety specific absorption 

rate range for in vivo applications. 

 

 3.1.7 Biological Analysis 

Bone marrow–derived human mesenchymal stem cells (hMSCs, Clonetics, Italy) were maintained 

at 37 °C and 5% CO2 in Dulbecco’s modified Eagle medium (DMEM) supplemented with 10% 

fetal bovine serum (FBS, BioWhittaker, Walkersville, MD), 2 mM L-glutamine (Sigma Aldrich, St. 

Louis, MO), 1000 U/l penicillin (Sigma, St. Louis, MO) and 100 mg/l streptomycin (Sigma 

Aldrich, St. Louis, MO).  

Disk-shaped PCL/FeHA substrates were prepared for cell seeding by soaking first in 70% ethanol 

for 1 h, then in 1% antibiotic/antimycotic in Phosphate-Buffered Saline (PBS) for 2 h and pre-

wetted in medium for 2 h. Cells were statically seeded onto the PCL and PCL/FeHA nanocomposite 

substrates using a density of 1.0*10
4
 cells/sample and grown in DMEM w/o FBS.  
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Cell Adhesion Study 

Different kinds of cell-constructs (PCL-hMSCs and PCL/FeHA-hMSCs) were analyzed through 

Confocal Laser Scanning Microscopy (CLSM, Zeiss LSM 510/Confocor 2, Oberkochen, Germany). 

They were fixed with 4% paraformaldehyde, rinsed twice with PBS buffer and incubated with 

phosphate-buffered saline and bovine serum albumin (PBS-BSA 0.5%). Actin microfilaments were 

stained with phalloidin-tetramethylrhodamine B isothiocyanate (Sigma Aldrich). Phalloidin was 

diluted in PBS-BSA 0.5% and incubated at room temperature for a suitable time. The images of 

cell-constructs were acquired by using a He-Ne excitation laser at the wavelength of 543 nm and a 

20X objective.  

 

Alamar BlueTM assay  

Cell viability and proliferation were evaluated by using the Alamar Blue
TM 

assay. The Alamar Blue
 

is a soluble and non toxic dye; it is stable in the culture medium. When it is added to the culture 

medium, it is taken up by cells in their cytoplasm, reduced from the metabolic activity, very intense 

in the cells in the proliferation stage, and returned to the medium. Alamar Blue
TM 

assay is based on 

a redox reaction, that occurs in the mitochondria of the cells and that is accompanied by significant 

variations in color and fluorescence intensity; the colored product, transported out of the cell, can be 

measured through a spectrophotometer. The number of viable cells correlates with the magnitude of 

dye reduction
1,11-14 

and it is expressed as a percentage of Alamar Blue
TM

 reduction according to the 

manufacturer’s protocol.  

In particular, at 7, 14, and 21 days after seeding, the cell-constructs were rinsed with PBS (Sigma 

Aldrich, Italy), and for each sample, 200 µl of Dulbecco’s modified Eagle’s medium (DMEM) 

without Phenol Red (HyClone, UK) containing 10% (v/v) Alamar Blue
TM

 (AbD Serotec Ltd, UK) 

was added, followed by incubation in 5% CO2 diluted atmosphere for 4 h at 37°C. 

A specific volumetric amount of solution was then removed from the wells and transferred to a new 

96-well plate. The optical density was immediately measured using a spectrophotometer (Sunrise; 
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Tecan, Männedorf, Zurich, Switzerland) at wavelengths of 570 and 595 nm. Each test was repeated 

at least three times in triplicate. 

 

ALP/DNA assay 

As CLSM analyses and Alamar Blue
TM 

assay have allowed for obtaining qualitative and 

quantitative information on cell adhesion and viability/proliferation, respectively, Alkaline 

Phosphatase (ALP/DNA) measurements were used to assess the osteogenic expression of hMSCs as 

ALP is an early marker for the osteogenic differentiation of cells. The alkaline phosphatase is a 

dimeric glycoprotein (hydrolase enzyme) of the cell membrane, which is responsible for removing 

phosphate groups from many types of molecules, including nucleotides, proteins, and alkaloids. The 

process of removing the phosphate group is called dephosphorylation. This enzyme has a critical 

role in the formation of hydroxyapatite crystals and, therefore, in the beginning of the extracellular 

matrix mineralization. 

Samples were removed from the medium and washed twice with PBS on days 7, 14 and 21. The 

substrates were then submerged into 1 mL of lysis buffer. ALP activity was measured using a 

specific biochemical assay. The substrates were then centrifuged and the supernatant was used to 

calculate the alkaline phosphatase activity by the p-nitro phenyl phosphate (p-NPP) method 

(SensoLyte® pNPP Alkaline Phosphatase Assay Kit). In particular, alkaline phosphatase is 

associated with a secondary antibody, using paranitrophenyl-phosphate (pNPP) as substrate. pNPP 

after being dephosphorylated by the ALP, is yellow colored making it to possible to detect its 

presence at a wavelength of 405 nm. Thus the ALP activity can be detected by measuring the 

amount of p-nitrophenol at 405 nm. 

ALP/DNA was then reported by using the Quant-iT™ PicoGreen
®

 assay kit that allows to detect 

and quantify DNA. Cultures were performed in both standard and osteogenic differentiation 

medium (+OM, Sigma–Aldrich). 
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 3.2 Results and Discussion 

Magnetic activation results in an interesting strategy that has been previously proposed to answer 

the increasing need for assisted bone and vascular remodeling.
4
 

The idea to design biodevices that should be biologically manipulated or activated in situ by 

applying an external magnetic field results in a great challenge in tissue engineering.  

Accordingly, trying to benefit from the biocompatibility/degradability of superparamagnetic FeHA 

nanoparticles that should overcome the side effects of long-term cytotoxicity, an interesting idea  

has been to develop nanocomposite substrates for bone tissue engineering by embedding FeHA 

nanoparticles into a PCL matrix.  

XRD analysis has confirmed that the synthesis process used to realize such PCL/FeHA magnetic 

substrates does not modify the structure and the crystallinity of the magnetic iron-doped 

hydroxyapatite. Just as an example, the XRD analysis relative to PCL/FeHA 70/30 nanocomposite 

is reported in figure 4. The XRD analysis has evidenced the presence of peaks ascribed to the 

organic (PCL) phase and also to the inorganic (FeHA) phase which shows the same features of the 

starting FeHA powder (Figure 4)
4
. 

 

 

Figure 4: XRD spectra relative to PCL, FeHA and the nanocomposite containing the biggest amount of magnetic phase 

(PCL/FeHA 70/30). 
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 3.2.1 Morphological Analysis: SEM/EDS and Micro-CT 

SEM analysis has allowed to evaluate morphological features of the substrates. In particular, all of 

the substrates have the same structure and morphology except for PCL/FeHA 90/10 nanocomposite, 

which is characterized by the presence of several pores, randomly distributed, due to solvent 

extraction. Just as an example, in figure 5 SEM images of PCL/FeHA 90/10 and PCL/FeHA 80/20 

are reported. 

 

 

Figure 5: SEM image of (left) PCL/FeHA 90/10, (right) PCL/FeHA 80/20 nanocomposites. 

 

SEM/EDS analysis (Figure 6) has allowed to verify that FeHA is characterized by a (Fe–Ca)/P 

molar ratio very similar to the theoretical ratio (Ca/P = 1.67).  

With regard to the nanoparticle distribution, all the nanocomposite substrates have shown that 

MNPs and aggregates are uniformly distributed in the matrix. 

Just as an example, the EDS images of the PCL/FeHA 80/20 nanocomposite, as well as the SEM–

EDS P-, Ca-, and Fe-mapping photographs are presented in figure 6.     
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Figure 6: (up) EDS analysis, (down) SEM–EDS P-, Ca- and Fe-mapping photographs of PCL/FeHA 80/20 

nanocomposite. 

 

Micro-CT analysis has allowed for obtaining 3D reconstructions of the PCL and PCL/FeHA 

substrates, qualitatively evidencing the morphological features, the surface topography, and the 

presence of eventual defects (i.e., clusters, voids) (Figure 7). 

 

 

Figure 7: Results obtained from Micro-CT analysis: reconstruction of (A) PCL/FeHA 90/10, (B) 70/30 w/w, obtained 

by integrating SkyScan’s software package, Image J software, Materialise Mimics and Rapidform 2006. 
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 3.2.2 Contact Angle Measurements 

The hydrophilicity of the manufactured PCL/FeHA substrates was examined by measuring the 

water contact angle and the results were compared to those obtained from the neat PCL ones 

(Figure 8, Table I). 

 

 

Figure 8: Typical image qualitatively representing the water contact angle. 

 

Materials Water Contact Angle, θ (deg) 

PCL 81.4 ± 4.4 

PCL/FeHA 90/10 75.7 ± 4.6 

PCL/FeHA 80/20 74.8 ± 2.6 

PCL/FeHA 70/30 64.9 ± 8.2 

 
Table I: Water contact angles reported as mean value ± standard deviation for PCL and PCL/FeHA substrates. 

 

The water contact angle of PCL/FeHA nanocomposite substrates is lower than that of neat PCL 

ones, thus indicating that the presence of FeHA nanoparticles embedded into the polymeric matrix 

makes the surface more hydrophilic. In particular, the higher the amount of the FeHA nanoparticles, 

the lower is the water contact angle; its values basically span from 81.4° for PCL substrates to 64.9° 

for PCL/FeHA 70/30 w/w. 

All of the above mentioned results might be ascribed to the synergetic contribution of both surface 

chemistry and topography that can be clearly varied by including the FeHA nanoparticles. 

However, it is well known that PCL is a hydrophobic polymer and the water contact angle 

measured for PCL substrates should be greater than 90°. In contrast to this, with regard to PCL 
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substrates, Table I reports a water contact angle of 81.4 ± 4.4°. This result may be related to the 

specific techniques (molding and solvent casting) used to manufacture the substrates that obviously 

alter the surface topography and roughness, thus reducing the value of the water contact angle.   

 

 3.2.3 Small Punch Tests  

As a first step towards the mechanical characterization, the small punch test has been chosen to 

assess the performances of the proposed disk-shaped PCL/FeHA nanocomposite substrates as it 

may be considered as a reproducible miniature specimen test method. This test method has been 

already taken into consideration to evaluate the mechanical properties of retrieved acrylic bone 

cement, and PCL reinforced with sol-gel synthesized organic-inorganic hybrid fillers.
11,15

 

It is worth noting that this test does not yield a numerical value for the Young’s modulus; however 

a numerical simulation of the small punch test setup using the finite element method (FEM) should 

be performed in order to find a precise correlation between the test results and the Young’s modulus 

of the materials.
12

 Results from small punch tests on PCL and PCL/FeHA substrates have shown 

load-displacement curves generally characterized by an initial linear trend, followed by a decrease 

of the curve slope until a maximum load is reached. Finally, it is well evident that a decrease of the 

load until failure has occurred for all specimens (Figure 9).  

 

Figure 9: Load-displacement curves obtained from small punch tests performed on poly(ε-caprolactone) (PCL) 

reinforced with iron-doped hydroxyapatite (FeHA) nanoparticles. 
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Maximum load and displacement at maximum load obtained from PCL and PCL/FeHA substrates 

are reported as mean value ± standard deviation in Table II. 

 

Materials 
Maximum load 

(N) 

Displacement at maximum load 
(mm) 

PCL 15.30 ± 1.30 1.60 ± 0.20 

PCL/FeHA 90/10 22.51 ± 0.60 2.40 ± 0.45 

PCL/FeHA 80/20 12.19 ± 0.57 1.32 ± 0.12 

PCL/FeHA 70/30 10.27 ± 1.05 1.12 ± 0.18 

 
Table II: Results from small punch tests: maximum load and displacement at maximum load are reported as mean 

value ± standard deviation. 

 

Figure 9 and Table II highlight that the inclusion of 10% by weight of FeHA nanoparticles 

represents an effective reinforcement in terms of higher maximum load, providing mechanical 

performances that are better than those obtained for the neat PCL substrates and the other 

compositions of nanocomposite.  

In particular, PCL/FeHA 90/10 w/w substrates have provided higher values of maximum load 

(22.51 ± 0.60 N) and displacement at maximum load (2.40 ± 0.45 mm) in comparison to neat PCL 

and other nanocomposites, thus resulting to be stronger but flexible and tough at the same time. 

However, it is worth noting that PCL substrates show values of maximum load (15.30 ± 1.30 N) 

that are greater than those achieved by PCL/FeHA 80/20 and 70/30 w/w.  

It is well known that weakness in the structure may be clearly due to discontinuities in the stress 

transfer and generation of stress concentration at the nanoparticle/matrix interface, which may be 

ascribed to the difference in ductility between the polymeric matrix and the inorganic nanofillers. 

These experiments suggest that beyond a specific limit of nanoparticle amount, by further 

increasing the nanoparticle concentration, the mechanical performances of the nanocomposite 

substrates decrease since the nanoparticles act as “weak points” instead of reinforcement for the 

polymeric matrix. 
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 3.2.4 Magnetic Analysis 

The approach to design magnetic scaffolds for tissue engineering clearly rises from the challenging 

idea of guiding tissue regeneration process benefiting from a magnetic field. 

As already specified, even though, the magnetic guiding process is already well known in 

nanomedicine (i.e., drug delivery, hyperthermia treatment of tumors), this concept is not yet 

employed in the field of scaffolds for tissue engineering. For this reason, as a first step, preliminary 

magnetic measurements have been carried out in terms of magnetization and susceptibility. In 

particular, three different measurement modes have been used to perform a magnetic 

characterization of the samples: field dependence of the magnetization M (H, T) at body 

temperature (T = 310 K), temperature dependence of the magnetization in a small field (H = 50 Oe), 

and frequency dependence of the magnetic susceptibility χ (f) at T = 310 K. The results of these 

measurements confirmed the superparamagnetic character of the FeHA nanoparticles in the 

samples, indicated by a very low coercive field, a defined saturation magnetization, and a strong 

history dependence in temperature sweeps.  

The results of the field-dependent magnetization measurements are depicted in figure 10. 

 

 

Figure 10: Field-dependent magnetization of the three PCL/FeHA compositions investigated in the article. Each curve 

was taken at T = 310 K (human body temperature). The coercive field is approximately 15 Oe, independent of the 

composition.  
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Independent of their FeHA content, the coercive field of all samples took a value of 15 Oe at body 

temperature, indicating vanishingly small interactions between the MNPs. The saturation 

magnetization values were found to be strictly proportional to the FeHA content. The magnetization 

curves are superimposed by a diamagnetic background originating from the PCL and FeHA content 

of the samples. This diamagnetic background can be roughly ascribed to a value of χPCL which is 

equal to -1.46*10
-7

 emu / (g% wPCLOe) at 310 K. 

The temperature dependence of the magnetization of one sample (PCL/FeHA 90/10) is shown in 

figure 11.  

 

 

Figure 11: Temperature dependence of the magnetization of the PCL/FeHA 90/10 sample. The sample was cooled in a 

zero field, then heated in a small field (50 Oe – fh branch) and again cooled in field (fc branch).  

 

The results for the other compositions investigated in this research are similar to those given in the 

figure 11. The data were taken in a zero-field cooling – field heating – field cooling sequence in 

order to trace the polarization process (see Appendix). Within the temperature range shown, the 

field-heating and field-cooling curves do not seem to overlap, making it difficult to determine the 

blocking temperature unambiguously. From the temperature value at the maximum of the field-

heated curve we derive an effective MNP-core diameter of deff = 13 nm.
16

 

The frequency-dependent susceptibility is an important indicator for the applicability of these 

materials to hyperthermia treatment methods. All the measurements discussed here have been taken 
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at a background field much smaller than 5 Oe. The results for the sample of PCL/FeHA 90/10 are 

shown in figure 12, again representing the other compositions that showed similar results. 

 

 

Figure 12: Frequency dependence of the real (a) and imaginary (b) part of the magnetic susceptibility of PCL/FeHA 

90/10 nanocomposite substrate. 

 

 

At a fixed excitation and 310 K, χ' (f), which is the real part of χ (f), takes a constant value of 6*10
-3 

emu/(g Oe) within the frequency range 0 Hz < f < 1500 Hz, increasing linearly with the excitation 

amplitude. The imaginary part χ'' (f) is approximately zero below f = 1200 Hz. For frequencies 

above 1200 Hz, χ'' (f) increases approximately linearly with frequency, reaching a value of 7*10
-4 

emu/(g Oe) at 1500 Hz. 

This increase of χ'' (f) can be interpreted as an onset of a maximum of dissipation, which is due to 

thermally agitated directional fluctuations rather than to ferromagnetic resonance.
17

 

Regarding the heating properties, figure 13 shows the temperature increase of the PCL/FeHA 

magnetic composites under an alternating magnetic field of 27 mT at a frequency of f=260 kHz.  
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Figure 13: Hyperthermia curves of the PCL/FeHA magnetic substrates under application of a RF magnetic field of 

f=260 kHz and H=27mT, suitable for in vivo applications. 

  

 

Basically, it can be observed that all the samples show a magnetically induced thermal response, 

due to the energy released through the Néel relaxation process, which is the only mechanism 

contributing for superparamagnetic nanoparticles embedded in a rigid solid. Significant temperature 

increases between 2 K and 10 K were achieved after 5 minutes of exposure to an external magnetic 

field for all the PCL/FeHA compositions. A progressive increase in the heating rate is observed as 

the amount of magnetic FeHA nanoparticles increases in the composite.  

These results provide PCL/FeHA scaffolds with unique properties to be used in in vivo applications, 

since their functionality can be remotely fine-tuned by controlling both the amount of magnetic 

nanoparticle concentration and the time of the magnetic field exposure. 

 

 3.2.5 Biological Analysis 

Cell Adhesion Study 

The biocompatibility of the PCL/FeHA nanocomposite substrates has been studied in vitro by using 

hMSCs. The results of the in vitro study are reported in figures 14-16. Firstly, CLSM analyses 

performed on all the cell-constructs have qualitatively provided interesting results in terms of 

hMSCs adhesion and spreading at 7, 14 and 21 days after seeding (Figure 14).  
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Figure 14: Cell adhesion study: CLSM images at different times after cell seeding. A I, B I, C I and D I represent PCL, 

PCL/FeHA 90/10, 80/20 and 70/30 at 7 days after cell seeding. A II, B II, C II and D II are PCL, PCL/FeHA 90/10, 

80/20 and 70/30 at 14 days after cell seeding. A III, B III, C III and D III represent PCL, PCL/FeHA 90/10, 80/20 and 

70/30 at 21 days after cell seeding. Scale Bar: 100 µm. 

 

Figure 14 highlights the cell cytoskeleton organization over the time. In particular, hMSCs were 

well spread and better adhered on PCL/FeHA nanocomposites in comparison to cells seeded on 

PCL substrates, as qualitatively suggested by actin-cytoskeleton staining. In addition, an increase in 

the adhered number of hMSCs is well evident in the case of FeHA nanocomposites.  
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Alamar BlueTM assay 

The Alamar Blue
TM

 assay has provided information on cell proliferation and viability over the 

culture time through a quantitative evaluation of the percentage of Alamar Blue
TM

 reduction for the 

substrates. The results are graphically shown in figure 15 where they are reported as mean value 

and error bars represent standard deviation. 

 

 

Figure 15: Results obtained from Alamar BlueTM assay at 7, 14 and 21 days after seeding. Error bar represents the 

standard deviation. * p<0.05; ** p<0.01; *** p<0.001, indicate statistically significant differences between 

nanocomposite and poly(ε-caprolactone) substrates, at the same time from cell seeding (one-way ANOVA followed by 

Tukey post hoc test). 

 

The results obtained from the Alamar Blue
TM 

assay have evidenced that hMSCs were viable on both 

PCL and PCL/FeHA substrates over time, as the percentage of Alamar Blue
TM

 reduction increases 

with time. In particular, even though at 7 days after seeding there is no great difference among the 

PCL and PCL/FeHA substrates, some differences may be noticed at 14 and 21 days.  

In particular, PCL/FeHA 70/30 and 80/20 w/w substrates have provided higher values of the 

percentage of Alamar Blue
TM

 reduction at 21 days after seeding.  

It seems that especially the results obtained at 21 days are correlated with the values of water 

contact angle. The inclusion of FeHA nanoparticles intrinsically enhances the hydrophilicity and 

modifies the substrate topography, thus favoring cell viability and proliferation.  
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ALP/DNA assay 

As previously stated, ALP activity was measured using a specific biochemical assay. The 

osteogenic differentiation of the hMSCs cells has been assessed by normalized ALP activity and 

reported as mean value and standard deviation over time (Figure 16). 

 

 

Figure 16: Results obtained from ALP/DNA assay at 7, 14 and 21 days after cell seeding. Error bar represents the 

standard deviation. 

 

The significant increase of the ALP activity from day 7 to 14 clearly suggests that cells were 

induced to differentiate during this period, thus evidencing the ability of both polymeric and 

nanocomposite substrates to support the osteogenic differentiation of hMSCs. The decrease of the 

ALP activity from day 14 to 21 is also consistent with that reported for the MG63 cells seeded on 

hydroxyapatite/collagen nanocomposite sponges and ascribed to the expression of later-stage 

osteogenic markers and to the begin of calcium deposition.
18

 

However, especially for PCL substrates, the effect of the osteogenic medium (OM) is well evident; 

ALP activity of the osteogenically-induced hMSCs results higher than that obtained from cultures 

under standard conditions. Furthermore, taking into account the values of ALP activity reported in 

figure 16, it may be noticed how, under standard culture conditions, the nanocomposite PCL/FeHA 

substrates seem to better promote the osteogenic differentiation than the PCL ones. These results 
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are also consistent with those previously obtained from quantitative biological analyses (CLSM 

analysis and Alamar Blue
TM 

assay); stressing the importance of how the chemistry of FeHA 

nanoparticles and/or the different surface topography and roughness of the nanocomposites can 

enhance cell adhesion.  

 

 Conclusions 

Nanocomposite substrates were firstly designed by embedding iron-doped hydroxyapatite 

nanoparticles into a poly(ε-caprolactone) matrix. 

XRD analysis has been used as a tool to demonstrate that the process used to make the substrates 

does not affect the structure and crystallinity of the magnetic iron-doped hydroxyapatite, whilst the 

effect of nanoparticle inclusion on the mechanical performances of the substrates has been 

evaluated through small punch tests. 

On the other hand, a magnetic characterization has been carried out to assess the magnetization as a 

function of field and temperature, as well as the frequency dependence of the susceptibility. In 

addition to the magnetic performances of the nanocomposites, the thermal activity obtained by 

magnetic hyperthermia experiments reveal this material to be extremely useful for remotely 

controlled in vivo applications.     

The biological performances of the nanocomposite substrates have been properly evaluated through 

Alamar Blue
TM

 and ALP/DNA measurements as well as through CLSM analysis. In particular, 

confocal laser scanning microscopy and Alamar Blue
TM

 have provided qualitative and quantitative 

information on hMSC adhesion and viability/proliferation, respectively, whilst the ability of the 

nanocomposite substrates to support the osteogenic differentiation has been assessed through 

ALP/DNA assay. Furthermore, it is worth noting how the results obtained from biological analyses 

are correlated with the values of water contact angle. The present study may be considered as a first 

step of a future complex work that should be aimed by the design of 3D magnetic nanocomposite 
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scaffolds for bone tissue engineering, benefiting from the eventual effect of the magnetic field on 

the tissue regeneration process.  
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Chapter 4 

From the design of 2D substrates to  

3D poly(ε-caprolactone)/iron-doped 

hydroxyapatite nanocomposite  

magnetic scaffolds  
 

________________________________________________________________________________ 

 

 

 Preface 

The aim of this step of the research was to develop and to study 3D rapid prototyped scaffolds 

consisting of a poly(ε-caprolactone) (PCL) matrix reinforced with iron-doped hydroxyapatite 

(FeHA) nanoparticles, benefiting from the previous experimental analyses performed on the 2D 

nanocomposite magnetic substrates.
1
 The effects of the nanoparticle inclusion on the mechanical, 

magnetic and biological performances of the substrates were evaluated.
1
 Results obtained from the 

above mentioned studies have allowed to select the polymer-to-nanoparticle weight ratio (w/w) 

showing the best compromise between mechanical, magnetic and biological properties. In particular 

a PCL/FeHA weight ratio (w/w) of 80/20 was used. In this study, the mechanical and biological 

performances of the proposed PCL/FeHA nanocomposite scaffolds were properly evaluated.  

In particular, preliminary biological analyses have involved magnetic scaffolds and sinusoidal 

magnetic fields, in order to highlight the influence of a magnetic stimulation on cell adhesion and 

proliferation.  

Further analyses, using magnetically-charged cells and magnetic scaffolds, have been performed, 

the aim being to assess if the application of a magnetic field at time of scaffold loading provides 

some benefits in terms of the efficiency of cell loading. 

Finally, in vivo experiments and preliminary hystologycal analyses have been carried out.  
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 4.1 Materials and Methods  

 4.1.1 Design and preparation of 3D PCL/FeHA nanocomposite scaffolds 

As a first step toward the design of 3D nanocomposite magnetic scaffolds through the rapid 

prototyping technique, nanocomposite PCL/FeHA pellets were suitably prepared. Poly(ε-

caprolactone) (Mw = 65000 - Sigma Aldrich St. Louis, MO) pellets were dissolved in 

tetrahydrofuran (THF) with stirring at room temperature. FeHA nanoparticles and, subsequently, 

ethanol were added to the PCL/THF solution during stirring. A PCL/FeHA weight ratio (w/w) of 

80/20 was used. 

An ultrasonic bath (Branson 1510 MT, Danbury CT) was employed to optimize the nanoparticle 

dispersion in the polymer solution. Homogenous paste was obtained and the solvent was then 

properly removed. Successively, nanocomposite pellets were made by machining. 

3D well organized scaffolds were manufactured by processing PCL/FeHA pellets through a 3D 

fiber deposition technique.  

In particular, nanocomposite scaffolds were built by extruding and depositing the fibers along 

specific directions according to the selected lay-down pattern. PCL/FeHA (80/20 w/w) pellets were 

initially placed in a stainless steel syringe and then heated to a temperature of 130-140°C using a 

heated cartridge unit placed on the mobile arm of a bioplotter dispensing machine (Envisiontec 

GmbH, Germany). Successively, an appropriate nitrogen pressure (i.e., 8.5-8.9 bar) was applied to 

the syringe through a cap. The nozzle used to extrude PCL/FeHA fibers presented an inner diameter 

of 600 µm. A deposition speed of 30-40 mm/min was generally used. Scaffolds were characterized 

by the fiber diameter (depending on the needle diameter and/or the deposition speed), the fiber 

spacing (strand distance, i.e. center-to-center distance) and layer thickness, which influence the 

overall pore size.  

Block-shaped and cylindrical scaffolds were manufactured to highlight the feasibility of the process 

and to preliminarily study their mechanical and biological performances.  
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An image of a block-shaped PCL/FeHA magnetic scaffold is reported in figure 1. 

 

 

Figure 1: Image of a block-shaped 3D PCL/FeHA scaffold attracted to a neodymium magnet. 

 

 4.1.2 Morphological Analysis: SEM and TEM 

In order to evaluate the morphology of the PCL/FeHA nanocomposite scaffolds, Scanning Electron 

Microscopy (SEM) was employed by using a FEI Quanta FEG 200 scanning electron microscope 

(The Netherlands).  

On the other hand, Transmission Electron Microscopy (TEM), was employed to obtain an image 

strongly magnified related to the internal structure of the same, morphological (i.e. grain size, 

defects) and crystallographic information on PCL/FeHA nanocomposites, by using a FEI Tecnai G2 

Spirit TWIN apparatus (The Netherlands). 

 

 4.1.3 Compression Tests on PCL/FeHA nanocomposite scaffolds 

Compression tests were carried out on 3D cylindrical scaffolds characterized by a diameter (D0) of 

6.0 mm, a height (h0) of 6.5 mm and a 0°2/90°2 pattern. Scaffolds were characterized by a layer 

thickness of 390-400 µm, a fiber spacing of 1000 µm and a fiber diameter of 490-500 µm.  All the 

tests were performed at a rate of 1 mm/min up to a strain value of 0.4 mm/mm, using an INSTRON 

5566 testing machine (Bucks, UK). The stress (σ=F/A0) was defined as the ratio between the force 
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(F) measured by the load cell and the apparent cross-section of the scaffold (A0= πD0
2
/4). The strain 

(ε=∆h/h0) was evaluated as the ratio between the scaffold height variation (∆h) and the initial height 

(h0). 

 

 4.1.4 Biological Analyses 

 4.1.4.1 The effect of a sinusoidal magnetic field on cell adhesion and proliferation 

Introduction 

One of the promising challenges in tissue engineering approach is to provide living constructs that 

can integrate with the surrounding tissue. To overcome the limitations related to the static culture 

systems, such as limited diffusion and inhomogeneous cell-matrix distribution, scaffold and several 

bioreactors have been designed. As already explained in the Chapter 1, scaffold should possess a set 

of chemical, biochemical and morphological cues, in order to promote and to control specific events 

at the cellular and tissue levels. On the contrary, the ideal feature of a bioreactor is that it should 

supply suitable levels of oxygen, nutrients, cytokines, growth factors, and mechanical stimulation to 

populate the volume of the scaffold with cells and their extracellular matrix. 

A valuable candidate for tissue engineering applications should be a 3D rapid prototyped magnetic 

scaffold. It should satisfy all the above requirements. It will provide a morphologically controlled 

and tailored structure with interconnected pores of specific scale. Furthermore, a superparamagnetic 

(see Appendix) scaffold should be used also as its own bioreactor. The possibility to magnetically 

switch-on/switch-off the scaffold should be used at the same time for delivering biofactors, such as 

angiogenic ones, and stem cells, and for stimulating cells to adhere, proliferate and differentiate.  

In order to better understand the possible range of biomedical applications of magnetic devices and 

their potentials, the effects of magnetic fields on human tissues need to be well investigated. 

The influence of static or variable magnetic fields on biological systems has become a topic of 

considerable interest.  
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In the literature, many works aimed to investigate the influence of static magnetic field on 

biological systems. Static Moderate-intensity Field (SMFs) (1 mT - 1 T) are capable of affecting a 

number of biological phenomena such as cell proliferation,
2,3

 migration
2,4 

and orientation.
2,5

 

It has been demonstrated that SMFs have no lethal effect on cell growth and the cells have the 

ability to survive under normal growing conditions.
6-8

 SMFs can prevent decrease in bone mineral 

density,
2,9

 and promote the healing of bone fractures.
2,10,11 

Using an electromagnetic bioreactor 

(magnetic field intensity, 2 mT; frequency, 75 Hz), Fassina L. et al. (2006) investigated the effect of 

the electromagnetic stimulation on proliferation and calcified matrix production of a human 

osteogenic sarcoma cell line (SAOS-2); cell proliferation was twice as high whilst expression of 

decorin, osteocalcin, osteopontin, type I collagen, and type III collagen was greater and calcium 

deposition was five times as great as under static conditions without electromagnetic stimulation.
12

 

Chiu K.H. et al. (2007) studied the differentiative effect of osteoblasts after treatment with a static 

magnetic field (0.4 T for 6 hours).
13

 The authors highlighted that during SMF stimulation, the 

cellular membrane is assumed to be the target. Phospholipids can be oriented by SMF, resulting in 

an over-deformation of the cellular membrane. SMF affects osteoblastic maturation by increasing 

the membrane rigidity, reducing its fluidity and the proliferation-promoting effects of growth 

factors at the membrane domain. Consequently, they observed an increase in the Alkaline 

Phosphatase (ALP) activity and a change in cell morphology.
13

 Feng S.W. et al. (2010) 

demonstrated a similar effect. In particular, they studied the influence of static magnetic field on 

osteoblast cells grown on poly(L-lactide) (PLLA) scaffolds. The results of their study suggested that 

human osteosarcoma cells (MG63) seeded on PLLA scaffolds and treated with SMF had a more 

differentiated phenotype.
14

 

The effect of SMFs on cell morphology has been evaluated, showing that their effect depends on 

cell type and field strength.  

Along these lines, the work of Sato K. et al. (1992) shows that the application of a static magnetic 

field of 1.5 T for 96 h on “immortal” cervical cancer cells (HeLa) did not produce significant 
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changes in cell shape,
15

 in contrast to the results obtained from the investigation of Pacini S. et al. 

(1999) who reported dramatic changes in the morphology of human neural cells derived from 

human olfactory epithelium (FNC-B4) after exposure to a magnetic resonance tomography.
16

  

Pacini S. et al. (2003) reported an alteration of cell morphology of human skin fibroblasts 

associated with a decrease in the expression of glycoconjugate sugar residues when cells were 

exposed to a magnetic field of 0.2 T.
17

 

Other studies have suggested that static magnetic fields have a detrimental effect on cell 

proliferation.
18

 Specifically, Cunha C. et al. (2012) analyzed for the first time the effect of a 

moderate intensity static magnetic field (320 mT) on MG-63 human osteoblast cells seeded in vitro 

on magnetic scaffolds. The application of a SMF, either continuously or applied for 1 h per day, 

resulted in a negative effect on cell proliferation and osteocalcin secretion.  

However, the effect was not correlated with an increase in cellular apoptosis, stress or disruption of 

membrane integrity and morphological features and gene expression resulted unaltered.
18 

 

Regarding the application of variable magnetic fields, several studies have shown that continuous 

and prolonged exposure of cells to magnetic fields modify cell physiological parameters such as 

proliferation, synthesis and secretion of growth factors.
6,19-21

 These physiological changes depend 

largely on the physical properties of electromagnetic fields such as waveform and frequency, while 

the applied electromagnetic field dose is a function of field strength and duration of exposure.
6,22  

It was found that application of Extremely Low Frequency (ELF) magnetic fields demonstrates 

advantages for in vitro generation of osteogenic tissue,
23,24

 stimulates angiogenesis and osteogenic 

precursor proliferation, and can also promote bone formation within suitable matrices.
24

 

Among the first published studies, Liboff A.R. et al. (1984) assessed the influence of a sinusoidal 

magnetic field with frequency of 76 Hz and intensity of 0.16 µT on the process of fibroblast 

proliferation. The authors highlighted a positive effect due to the application of the field during the 

proliferation process.
25
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De Mattei M. et al. (1999) evaluated the effect of a pulsed electromagnetic field with frequency of 

75 Hz and 1.3 ms pulses on the proliferation process of different cell lines, showing that the 

magnetic field favors cell proliferation.
26

  

  P. et al. (2002) analyzed the effect of a magnetic field of 7mT and 15 Hz on the proliferation of 

murine calvarial cells (MC3T3-E1), observing an increase in the proliferation process after constant 

exposure.
27

 

Furthermore, Chang W.H.S. et al. (2004), reported the effect of a pulsed electromagnetic field with 

frequency of 15 Hz and magnetic field strength of 0.1 mT on primary cultures of mouse calvaria in 

the proliferation and differentiation processes, reporting that constant exposure of 8 h per day for 14 

days accelerated the process of proliferation without altering cell differentiation.
28

 

Recently, Martino C.F. et al. (2008) evaluated the effect of a pulsed magnetic field of 20 G and 15 

Hz on the growth of SAOS-2 cells. The results of their research suggest that the electromagnetic 

field does not alter cell growth during constant exposure to the field.
29

 

The aim of the present study was to preliminary investigate the effect of variable magnetic field on 

in vitro adhesion and proliferation of Human Mesenchymal Stem Cells (hMSCs) seeded on 3D 

fiber deposited superparamagnetic scaffolds.  

In particular, it was decided to analyze the effect of a sinusoidal magnetic field with frequency of 70 

Hz and intensity of 25-30 mT, a value that falls in a specific range (1 mT to 1 T) which was 

demonstrated to have particular implications in a number of biological phenomena.
18,30,31

  

3D well organized block-shaped PCL and PCL/FeHA 80/20 scaffolds (8 mm x 8 mm x 2 mm ) with 

a 0°2/90°2 lay-down pattern, a strand distance of 1 mm, a layer thickness of 390-400 µm and a fiber 

diameter of 500 µm, were manufactured through 3D fiber deposition technique. 
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Cell culture 

Human mesenchymal stem cells (hMSCs; Clonetics, Italy), at the fourth passage, were cultured in 

α-modified Eagle’s medium (α-MEM) (Bio-Whittaker, Belgium) containing 10% (v/v) fetal bovine 

serum, 100 U/mL penicillin and 0.1 mg/mL streptomycin (HyClone, UK), in a humidified 

atmosphere at 37°C and 5% CO2. Scaffolds for cell-culture experiments were prepared for cell 

seeding by soaking first in 70% ethanol (1 h) and then in 1% antibiotic/antimycotic in phosphate-

buffered saline (PBS) (2 h), and pre-wetted in medium (2 h). Cells (density 1.0*10
4
 cells/sample), 

resuspended in 1 mL of medium, were statically seeded onto the substrate. 

  

Sinusoidal Magnetic Field - Exposure System 

At 1 day from cell seeding, two different exposure conditions have been considered. 

• Group 1: continuous exposure for 6 h per day. 

• Group 2: 6 h per day distributed in 18 minute of exposure, followed by 54 minutes of stasis. 

Cell-constructs placed in the same incubator not subjected to a magnetic stimulation were used as 

control. Figure 2 is a schematic representation of the exposure system used. The electromagnet was 

placed below the wells to expose the cultures to sinusoidal magnetic field. Two adjacent wells used 

for culture were set apart by more than 10 mm as the edge-to-edge distance, so that the mutual 

influence of the magnetic field would be excluded.  

 

Figure 2: Schematic representation of the experimental setup used to perform biological analyses. 
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Alamar BlueTM assay 

Cell viability and proliferation were evaluated by using the Alamar Blue
TM

 assay. This is based on a 

redox reaction that occurs in the mitochondria of the cells; the colored product is transported out of 

the cell and can be measured spectrophotometrically.  

After 1, 4, 7, 14, 21, 28, 35 days from cell seeding, the cell-constructs were rinsed with PBS (Sigma 

Aldrich, Italy), and for each sample, 200 µl of Dulbecco’s modified Eagle’s medium. (DMEM) 

without Phenol Red (HyClone, UK) containing 10% (v/v) Alamar Blue
TM 

(AbD Serotec Ltd, UK) 

was added, followed by incubation in 5% CO2 diluted atmosphere for 4 hours at 37°C. 

One hundred microliters of the solution was subsequently removed from the wells and transferred to 

a new 96-well plate. The optical density was immediately measured with a spectrophotometer 

(Sunrise; Tecan, Männedorf, Zurich, Switzerland) at wavelengths of 570 and 595 nm. The number 

of viable cells correlates with the magnitude of dye reduction and is expressed as a percentage of 

Alamar Blue
TM

 reduction, according to the manufacturer’s protocol. Each experiment was repeated 

at least 3 times in triplicate. 

 

Scanning Electron Microscopy (SEM) 

In order to evaluate morphological features, cell adhesion and shape, scanning electron microscopy 

was performed through a FEI Quanta FEG 200 scanning electron microscope (The Netherlands).  

The culture media was removed and the samples were rinsed three times with PBS. Then, cell-

constructs were fixed in 2.5% glutaraldehyde (pH 7.4) (Sigma Aldrich, Italy) for 20 min at room 

temperature. The samples were washed and dehydrated in an ethanol series (70, 80, 90, 95, and 

100% v/v), dried air, gold sputtered and analyzed by SEM. 
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 4.1.4.2 Magnetically-charged cells and magnetic scaffolds: Scaffold-cell loading 

Introduction 

Cell labeling with magnetic nanoparticles is attracting growing interest, both in the field of 

magnetic resonance imaging and cell therapy.
32-34

 

 Recently, a great number of studies have looked at magnetic targeting of cells. In vivo studies have 

shown that magnetic labeling, particularly with superparamagnetic iron oxide nanoparticles 

(SPIONs), is relatively easy and safe.35-38  

However, limited work has been done on using magnetic fields to guide SPION-labeled cells to 

specific targets.
35,39

 

This approach is a current method for monitoring cell migration in cell therapy trials.
32,40,41

 

Magnetically-labeled cells can be remotely manipulated by external magnetic fields for cell-sorting 

applications
32,42 

or to influence migration and organization of cells in engineered substrates or 

tissues.
32,39,43-45

 Tissue engineering and cellular therapy could both benefit from cellular magnetic 

targeting and control.
32,46

 

With the term “magnetic force-based tissue engineering”, Shimizu K. et al. (2005) have proposed 

an innovative cell-seeding methodology which could help to overcome the problems related to 

conventional cell seeding. In conventional static cell seeding, the cell suspension is seeded into 

small scaffolds using small volumes of highly concentrated cell suspension.
47

 The inevitable 

problem is that the seeded cell suspension flows away with the medium and few cells remain in the 

scaffolds. If magnetically-labeled cells are used, magnetic forces could attract and prevent them 

from flowing away, thus allowing for the efficiency of cell seeding.  

Benefiting from the above reported studies, the main driving idea of this work has been the design 

of a 3D rapid prototyped magnetic scaffold, the aim being to enhance the cell-seeding process.  

A superparamagnetic scaffold should be able to attract and take up magnetically-charged cells via a 

driving magnetic force when it is necessary because it may be magnetically ‘‘turned off” upon 

removal of the magnetic field. 



Magnetic PCL/FeHA scaffolds - 103 

 

In particular, the efficiency of human breast cancer cell loading has been analyzed. Four-layer 

cylindrical PCL/FeHA 80/20 scaffolds were designed in order to optimize cell-assay in 96-multi-

well-plate. In order to optimize pore size, 3D fiber deposited scaffolds with a 0°2/90°2 lay-down 

pattern, a fiber diameter of 500 µm and a layer thickness of 390-400 µm, were characterized by a 

three type of architectures (Figure 3): 

• Group A - PCL/FeHA 80/20, 4 layers, strand distance 1835 µm; 

• Group B - PCL/FeHA 80/20 4 layers, strand distance 1375 µm; 

• Group C - PCL/FeHA 2 layers with a strand distance of 1835 µm, 2 layers with a strand    

                 distance of 1375 µm. 

 

Figure 3: Different architectures of 3D fiber deposited scaffolds with a 0°2/90°2 lay-down pattern, a fiber diameter of 

500 µm, a layer thickness of 390-400 µm and characterized by: (left) a strand distance of 1835 µm, (central) a strand 

distance of 1375 µm and (right) 2 layers with a strand distance of 1835 µm, 2 layers with a strand distance of 1375 µm. 

 

  

Cell Culture 

Human breast cancer (hBrCa) cells, isolated from a primary tumor, were used. 

hBrCa cells display cell-surface adhesion molecules, such as the αvβ3 integrin, which bind to bone 

matrix proteins. There are striking similarities between breast and bone stroma, which may 

contribute to the ability of hBrCa cells to survive and proliferate in bone. The stromal matrix of 

both tissues is rich in collagen type-I, osteopontin, laminin, and fibronectin.
48,49

 

Briefly, hBrCas (1.0*10
5
 cells) were seeded into a 60 mm cell culture dish. After 24 h of 

incubation, in order to permit internalization of the nanoparticles, the medium was replaced with 
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medium containing SPIONs and the cells were reincubated. hBrCas avidly internalized magnetic 

nanoparticles (MNPs), thus obtaining magnetically-charged hBrCas.  

Magnetically-charged hBrCas were loaded on 3D well-organized scaffolds by applying or not a 

magnetic field and by changing culture medium 24 h after cell seeding. Furthermore, before first 

change of medium, scaffold loading time was 24 h.  

A magnetic field was applied for 1 h, and then for 4 h or 24 h of the loading period; the results were 

clearly compared with a negative control in which no magnetic field was applied.  

The assay readout was the cell number measured as DNA content. Standard plots used as internal 

controls allowed DNA content to be reported in terms of cell numbers. Measurements were made at 

least in triplicate for each treatment.  

At 24 h after seeding, loaded scaffolds were transferred to fresh wells, and the cells present in the 

scaffold and those not associated with the scaffold were assayed.  

The fresh wells were round-bottomed, to minimize well contact with the scaffold, and so prevent 

cell outgrowth from the scaffold onto the well surface.  

Thereafter, the cell-based assay was run for 72 h. At 72 h, the scaffold was again transferred to a 

fresh well, and the cells present in the scaffold as well as those remaining in the previous well were 

assayed. 

 

 4.2 In vivo experiments and histological analysis 

PCL and PCL/FeHA 80/20 cylindrical scaffolds were successfully rapid 

prototyped for in vivo experiments into rabbits. Scaffold design was developed 

according to a large bone defect. Cylindrical scaffolds (diameter of 6.0 mm and 

a height of 8 mm) with a lay-down pattern of 0°2/90°2 and a layer thickness of 

390-400 µm were built. The fiber spacing was set to 1835 µm and the fibers 

were characterized by a diameter of 490-500 µm (Figure 4).  
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The study was performed in accordance with EC guidelines (EC Council Directive 86/609, 1986) 

and the Italian legislation on animal experimentation (Decreto L.vo 116/92). The research protocol 

on animals has been approved by the Ethical Committee of Rizzoli Orthopaedic Institute and by the 

responsible public authorities. Six male rabbits (Oryctolagus cuniculus, Charles River, Lecco, 

Italy), 2.4 ± 0.2 kg body weight, were housed at a controlled temperature of 22 ± 1°C and relative 

humidity of 55 ± 5% in single boxes and fed a standard diet (Mucedola, Milano, Italy) with filtered 

tap water ad libitum. After quarantine of at least 10 days, the animals were fasted for 24 h before 

surgery. The animals were subjected to surgery to implant the scaffolds at the distal femoral 

epiphysis under general anaesthesia and in aseptic conditions. After having shaved and disinfected 

the posterior legs, the animals underwent a lateral longitudinal incision of lateral femoral condyle. 

Femoral lateral condyle trabecular bone was cross-sectionally drilled at low speed and a profuse 

irrigation with cold sterile 0.9% NaCl solution was maintained throughout the process to prevent 

the risk of bone necrosis. A critical bone defect of 6.00 mm in diameter and 8.00 mm in depth was 

made in each lateral femoral condyle. All six animals were subjected to the implantation of one 

PCL/FeHA scaffold and one PCL scaffold was implanted in the contralateral condyle as a control 

group. Scaffolds were sterilized by 25 kGy γ-ray radiation. Finally, the skin was sutured. General 

anaesthesia was induced by an intramuscular injection of 44 mg/kg ketamine (Imalgene 1000, 

Merial Italia S.p.A, Milan, Italy) and 3 mg/kg xylazine (Rompun, Bayer SpA, Milano, Italy) under 

assisted ventilation with O2/N2O (1-0.4 l/min) mixture and 2.5% isofluorane (Forane, Abbot SpA, 

Latina, Italy). Post-operatively, antibiotics and analgesics were administered: 0.6 mL/kg flumequil 

(Flumexil, (FATRO S.p.A., Bologna, Italy) and 0.1 mL/kg per day metamizole sodium 

(Farmolisina, Ceva Vetem SpA, Monza-Brianza, Italy).  

At 4 weeks after surgery, the animals were pharmacologically euthanized with intravenous 

administration of Tanax (Hoechst, Frankfurt am Main, Germany), under general anaesthesia. The 

operated bone segments were excised and stripped of soft tissue and the presence of haematomas, 

oedema, and inflammatory tissue reactions were macroscopically evaluated. The bone segments 
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were fixed in 4% buffered paraformaldehyde for 24 h, dehydrated in a graded series of alcohol and 

finally embedded in a methylmethacrylate resin (Merck Schuchardt OHG, Hohenbrunn, Germany). 

Using a saw microtome (Leica SP1600, Leica Microsystems S.r.l., Italy), three consecutive central 

sections to the major axis of the implant for each bone segment were cut (60 ± 20 µm) and polished 

(Struers Dap-7, Struers Tech A/S, Rodovre/Copenaghen, Denmark). Then, thinned sections (30 ± 

10 µm) were stained with Toluidine Blue, Acid Fucsin and Fast Green. 

 

 4.3 Results and Discussion 

 4.3.1 Morphological Analysis: SEM and TEM 

Results obtained from SEM analyses (Figure 5) have allowed to highlight the well-organized 

structure (i.e. architecture, fiber spacing, effective fiber diameter) and to evaluate morphological 

features of the polymeric and nanocomposite scaffolds. In particular, PCL and PCL/FeHA fibers 

have a mean diameter of 500 µm. It is worth noting that the nanocomposite magnetic surface is 

characterized by a greater roughness, due to the presence of FeHA nanoparticles, which has been 

shown to strongly affect cell behaviors. As already explained above, surface topography and 

chemistry play an important synergistic role in the process of cell-material interaction. 

 

 

Figure 5: Different images of 3D PCL and PCL/FeHA nanocomposite scaffolds manufactured by 3D fiber deposition 

technique: (left) overall scaffold image, Scale Bar - 2 mm, (middle) Scale Bar - 500 µm, (right) Scale Bar - 300 µm. 
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TEM analysis (Figure 6) has allowed to confirm that MNPs and aggregates or clusters are 

uniformly and randomly distributed in the matrix. Furthermore, in comparison with TEM images 

obtained for nanocomposite magnetic substrates and those obtained for iron-doped hydroxyapatite 

nanoparticles,
50

 it is worth noting that morphological features, size and shape of nanoparticles in the 

PCL matrix, are not influenced by the synthesis process used to obtain such PCL/FeHA scaffolds.  

 

 
 

Figure 6: TEM images of: (a) FeHA nanoparticles Scale Bar - 50 nm,50 b) PCL/FeHA 80/20 nanocomposite - Scale Bar 

- 200 nm, c) PCL/FeHA 80/20 nanocomposite - Scale Bar - 500 nm. 

 
 

4.3.2 Compression Tests on PCL/FeHA nanocomposite scaffolds 

Results from compression tests have highlighted that the 3D PCL/FeHA scaffolds show a 

mechanical behavior very similar to that of 3D PCL/Fe3O4 ones even if the polymer-to-particle 

weight ratio is greater (Figure 7). 

 

Figure 7: Typical stress-strain curves obtained from compression tests performed on PCL and PCL/FeHA cylindrical 

scaffolds: left) Stress-strain curves reported up to a strain level of 0.4 mm/mm; (right) Stress-strain curves reported up 

to a strain level of 0.04 mm/mm in order to better highlight the initial mechanical behavior. 
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Compressive modulus and maximum stress (at a strain level of 0.4 mm/mm) have been reported in 

Table I. 

Scaffolds Compressive modulus, E 

(MPa) 

Maximum Stress, σmax 

(MPa) 

PCL 92.1 ± 19.1 12.1 ± 1.9  

PCL/FeHA 139.2 ± 21.8 15.6 ± 2.7  

 
Table I: Compressive modulus (E) and maximum stress (σmax) at a strain level of 0.4 mm/mm reported as mean value ± 

standard deviation. 

 

 

 

4.3.3 Biological Analyses  

 4.3.3.1 The effect of a sinusoidal magnetic field on cell adhesion and proliferation 

Results obtained from Alamar Blue
TM

 assay performed on Group 1 (frequency 70 Hz, intensity 30 

mT for 6 h per day) and control samples have shown that prolonged exposure time to a sinusoidal 

magnetic field seems to negatively affect cell viability (Figure 8). In particular, not magnetically 

stimulated PCL and PCL/FeHA scaffolds have provided generally higher values of the percentage 

of Alamar Blue
TM

 reduction and a maximum viability peak at 14days after cell seeding. On the 

contrary, magnetically stimulated PCL and PCL/FeHA structures have provided lower values of 

percentage of Alamar Blue
TM

 reduction and a maximum viability peak at 4 days after cell seeding. 

 
 

Figure 8: Results obtained from Alamar Blue 
TM

 Assay performed on Group 1 reported as mean value ± standard 

deviation. PCL/MAg. and PCL/FeHA/MAg. indicate polymeric and nanocomposite scaffolds of Group 1, stimulated by 

a sinusoidal magnetic field. “Mag.” has been introduced to denote the application of a magnetic field. 
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At 35 days after cell seeding, SEM images (Figure 9) have shown that an increase in the number of 

hMSCs, which adhered on not magnetically stimulated PCL and PCL/FeHA scaffolds, is quite 

evident if compared to magnetized cell-constructs. In particular, hMSCs were well spread and better 

adhered on PCL/FeHA nanocomposites in comparison to those seeded on PCL substrates. On the 

other hand, these results seem to be consistent with those obtained from Alamar Blue
TM

 assay.  

 

 

Figure 9: SEM images of different cell-constructs: a) PCL/Mag., b) PCL/FeHA/Mag., c) PCL, d) PCL/FeHA. Scale 

Bar - 500 µm. 
 

Figure 10 reports an overall image of cell-construct at 35 days after cell seeding and a higher 

magnification of a central zone. 

 

 
 

Figure 10: SEM images of: (left) cell-scaffold construct, Scale Bar - 2mm, (right) a higher magnification of a central 

zone, Scale Bar - 200 µm. 

 

 

Alamar Blue
TM

 assay performed on Group 2 (frequency 70 Hz, intensity 30 mT for 6 h per day 

distributed in 18 minute intervals) has shown interesting results in terms of cell 

viability/proliferation (Figure 11).  
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hMSCs are viable on both PCL and PCL/FeHA substrates. In particular PCL/FeHA scaffolds have 

provided higher values of the percentage of Alamar Blue
TM

 reduction if compared to PCL ones. 

This result should be probably ascribed to the greater roughness of nanocomposites that enhances 

cell adhesion. On the other hand, the nanoparticle inclusion also enhances hydrophilicity of the 

materials, as evidenced by the lower values of water contact angle in comparison with those of neat 

PCL.
1
    

It is worth noting that not magnetically stimulated PCL and PCL/FeHA scaffolds have provided a 

maximum viability peak at 14 days after cell seeding whereas magnetically stimulated scaffolds at 4 

days after cell seeding. This may suggest that cells should be induced to stop earlier their 

proliferation. 

 

 

Figure 11: Results obtained from Alamar Blue
TM

 assay performed on Group 2 reported as mean value ± standard 

deviation. PCL/MAg. and PCL/FeHA/MAg. indicate polymeric and nanocomposite scaffolds of Group 2, stimulated by 

a sinusoidal magnetic field. “Mag.” has been introduced to denote the application of a magnetic field. 

  

At 4 days and 14 days after cell seeding, SEM analyses (Figure 12) have provided interesting 

results in terms of cell adhesion.  

In particular, at 4 days it seems that a higher number of cells adhere and are well spread on 

polymeric and nanocomposite scaffolds under magnetic stimulation. Furthermore, at 14 days after 

cell seeding, cells would seem to be well spread on all the rapid prototyped scaffolds.   
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Figure 12: SEM images of different cell-constructs at 4 and 14 days after cell seeding: a) PCL/Mag., b) 

PCL/FeHA/Mag., c) PCL, d) PCL/FeHA. Scale Bar - 500 µm. 

 

 

In conclusion, Group 1 and Group 2 constructs have shown a similar behavior.  

However, Group 2 does not exhibit lower value of percentage of Alamar Blue
TM

 reduction, as it 

occurs for Group 1. This effect should be ascribed to an early apoptosis due to an overheating effect 

of the environment. 

This study may be considered as a first step of a future complex work with the aim of studying the 

effect of a sinusoidal magnetic field on cell differentiation.  

Future works should take into account also the possibility to suitably modify the intensity and the 

frequency of the applied field in order to optimize the magnetic stimulation process. 
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 4.3.3.2 Magnetically-charged cells and magnetic scaffolds: Scaffold-cell loading 

Figure 13 shows the effect of the presence of a magnetic field on magnetically-charged cell loading 

of the scaffold.  

 

 

Figure 13: Cell loading of magnetic scaffolds in the presence or absence of a magnetic field. The number of MNPs-

cells associated with scaffolds at 24 h is expressed as percentage of total loaded cells. 

 

In particular, it seems that two of the three scaffolds (Group A and C) showed an increase in cell 

number associated with the scaffold when a magnetic field was applied throughout the 24 h loading 

period. Group B exhibited a behavior that results difficult to explain. 

With this treatment, results have shown that there was a consistently higher number of cells present 

in the scaffolds at 72 h after loading in the presence of a 24 h magnetic field (Figure 14), compared 

with the negative control (loading in the absence of a magnetic field). However, in the case of 

scaffolds B and C, there was no evidence of cell population expansion during the 72 h time course 

of the assay. Just as an example, Group A loaded with magnetic field assistance showed growth of 

the cell population by ~50%, thus it should be considered as the best performing structure  
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Figure 14: Scaffold content after 72 h culture. Cell content is expressed as a percentage of scaffold-associated cell 

number at loading 

 

Figure 15 highlights the effect of different magnetic field exposure time on the efficiency of cell 

loading. 

 

 

Figure 15: Effect of different magnetic field exposure time on the efficiency of cell loading. The number of MNPs-cells 

associated with scaffolds at 24 h is expressed as percentage of total loaded cells. 

 

Even though both Group A and Group C have exhibited a defined behavior at 24 h, Group A 

showed no effect of the magnetic field until an exposure time of 24 h was considered. Group C 

showed a progressive increase in scaffold-cell loading with longer magnetic field exposure.  

In conclusion, the experimental results have indicated that, using magnetically-charged cells and 

magnetic scaffolds, the application of a magnetic field at time of scaffold loading provides some 
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benefits in terms of the efficiency of cell loading. Interestingly, the results also suggest that there 

may be longer-term benefit during a subsequent cell-based assay period, as shown for the Group A 

in which good cell growth is quite evident.  

Accordingly, magnetic forces may enhance cell anchorage at loading, thus improving the potential 

for cell growth and retention in the 3D environment. 

 

 4.4 In vivo experiments and histological analysis 

At 4 weeks post-implantation, macroscopic evaluation showed the implants to be in the proper 

position and there was no evidence of haematoma, oedema, infection or tissue necrosis in either 

bone and peri-implant soft tissue associated with control or magnetic implants. Bone tissue was 

well visible around and inside the scaffold in both groups (Figure 16). Due to the interconnected 

structure, bone regenerated into the magnetic scaffold and after only 4 weeks some parts of the 

scaffolds were completely full of new formed bone proving a good level of histocompatibility of the 

scaffold comparable to the control group (Figure 16). 

After 4 weeks, the PCL/FeHA construct showed mineralized tissue regeneration into its structure in 

a similar manner as PCL one. 
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Figure 16: Histological evaluation of the in vivo implanted scaffolds. Toluidine Blue, Acid Fucsin and Fast Green 

staining shows similar histocompatibility for both scaffolds 4 weeks after implantation (n=6). A, B) Control, C, D) 

PCL/FeHA. Scale bars: A, C) 3.0 mm, B, D) 1.0 mm 

 

 

 Conclusions 

Benefiting from previous results, nanocomposite scaffolds were firstly designed by embedding 

FeHA nanoparticles into a PCL matrix. A PCL/FeHA weight ratio (w/w) of 80/20 was used. The 

effect of nanoparticle inclusion on the mechanical performances of the substrates has been 

evaluated through compression tests, whilst morphological features were assessed through scanning 

electron microscopy. 

Two important skills of the magnetic scaffolds have been considered. In a first step, it has been 

demonstrated the possibility to enhance cell proliferation employing a sinusoidal magnetic field. A 

second step has been focused on the feasibility to increase cell-loading efficiency by using 

magnetically-charged cells.   
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Finally, in vivo experiments have highlighted PCL/FeHA as a suitable candidate for bone tissue 

regeneration and it has opened new perspectives for the application of a magnetic field in a clinical 

setting of bone replacement. 
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Conclusions and Future Trends 
________________________________________________________________________________ 

 

In the field of bone tissue engineering, great attention has been given toward the material and 

scaffold features including morphological, mechanical and transport properties through a suitable 

topological optimization. This work has introduced another important scaffold property. Scaffold 

should be also superparamagnetic in order to obtain a controlled delivery system, which should be 

manipulated in situ by means of magnetic forces providing bioagents and growth factors (i.e. 

vascular endothelial growth factor, VEGF). The main driving idea was, thus, the achievement of a 

“fixed station” that, once it is implanted in vivo, should offer a long-living assistance to implanted 

tissue engineering constructs, recruiting VEGF functionalized magnetic nanoparticles (MNPs) and 

releasing them when and where it is required by tissue regeneration process. A magnetic scaffold 

could be able to recruit magnetically-charged cells, which under application of a magnetic field 

gradient could behave as shuttles toward the static structure. In the field of biomedicine, magnetic 

nanoparticles have been widely studied for their hyperthermia features, giving them the possibility 

to be used in the treatment of tumors. A magnetic scaffold should be employed also in this field.  

As first step, the design of 3D fiber deposited poly(ε-caprolactone)/iron oxide (PCL/Fe3O4) 

nanocomposite scaffolds has been described. The effect of iron oxide nanoparticle inclusion on 

morphological, mechanical, magnetic and biological performances has been assessed. 

Successively, in order to avoid the dangerous problem of leaving any non bioresorbable magnetic 

inclusion (for example magnetite) inside the repaired tissue, PCL/iron-doped hydroxyapatite 

(FeHA) nanocomposite substrates were designed and characterized using different polymer-to-

particle weight ratios. The effect of FeHA nanoparticle inclusion on morphological, mechanical, 

magnetic and biological performances has been assessed. This has allowed to choose the optimal 

polymer-to-particle weight ratio. In particular, a nanoparticle amount of 20% by weight embedded 

into the polymeric matrix has shown the best compromise between all the above reported features 
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and then, 3D morphologically controlled PCL/FeHA 80/20 (w/w) nanocomposite scaffolds have 

been manufactured.  

The effect of a sinusoidal magnetic stimulation on adhesion and proliferation of cells seeded on 

PCL/FeHA scaffolds has been studied. Future works will be focused on the effect of variable 

magnetic field on cell differentiation.  

This work may represent a first approach toward the design of morphologically controlled and fully 

biodegradable PCL/FeHA nanocomposite magnetic scaffolds, which should be able to improve cell 

recruitment and cell-loading efficiency. 

Preliminary results from histological experiments performed on rabbits have shown that PCL/FeHA 

scaffolds were completely full of new formed bone indicating a good level of histocompatibility. 
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Appendix 
________________________________________________________________________________ 

 

Historical introduction 

Magnetism is a subject, which has been studied for more than thousand years; when a selection of 

ores, such as ferrites (MO Fe2O3, M = Fe, Mn, Zn, Sr…), was found to be “attractive” or 

“magnetic” and capable of attracting small pieces of iron. 

The term magnetism is derived from Magnesia, a city and region of ancient Greece known for the 

abundance of magnets, rocks rich in magnetite, Fe3O4.  

Aristotle attributes the first scientific discussion on magnetism to Thales of Miletus, who lived from 

about 625 to about 545 B.C. Around the same time, in ancient India, the Indian surgeon, Sushruta, 

was the first to make use of the magnet for surgical purposes.  

In ancient China, literary reference to magnetism can be found in a 4
th 

century B.C. book called 

“Book of the Devil Valley Master”: “The lodestone makes iron come or it attracts it”. The Chinese 

understood that a piece of iron in the vicinity of a natural magnet acquired and retained over the 

time the magnetization. The next step in understanding of electromagnetism was realizing that the 

“magnetic needle” is free to rotate naturally turn guided along the geographic North - South. In 

East, already in 400 A.D. magnets were used in navigation, such as compasses. 

We find news of magnetic phenomena already in the writings of Pliny the Elder (Historiae 

Naturalis), but in 1187, Alexander Neckham, was the first in Europe to describe the compass and its 

use for navigation. In 1269, Peter Peregrinus de Maricourt wrote the “Epistola de magnete”, the 

first extant treatise describing the properties of magnets. In 1600, William Gilbert published his 

“De Magnete, Magneticisque Corporibus, et de Magno Magnete Tellure” (On the Magnet and 

Magnetic Bodies, and on the Great Magnet the Earth). In this work he described many of his 

experiments and he concluded that the Earth was itself magnetic and that this was the reason 

compasses pointed north (previously, some believed that it was the pole star (Polaris) or a large 

magnetic island on the North Pole that attracted the compass). In 1819 Oersted understood the 

connection between electric phenomena and magnetic phenomena. 

In 1831 Faraday discovered that a circuit in which current flows develops the magnetic 

phenomena. A magnet generates a magnetic field in the surrounding space and is subject to turn to 

a moment of forces in an external magnetic field. James Clerk Maxwell synthesized and expanded 

these insights into Maxwell's equations, unifying electricity, magnetism, and optics into the field of 

electromagnetism. In 1905, Einstein used these laws in motivating his theory of special relativity, 

requiring that the laws held true in all inertial reference frames. 

 

All the materials are influenced varyingly by the presence of a magnetic field and have magnetic 

properties. The term magnetism describes a range of materials that can be divided in five main 

groups: paramagnetic, diamagnetic, ferromagnetic, antiferromagnetic and ferrimagnetic 

materials.
1,2
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 Basic Principles of Magnetism 

Macroscopic magnetic properties of the materials come from the magnetic moments associated with 

individual electrons. In the atom, each electron has magnetic moments that originate from two 

sources: the first is due to the orbital motion round the nucleus (orbital magnetic moment), the other 

is due to the rotation of the electron around its own axis, associated with a fundamental quantum 

property, their spin (the magnetic moment of spin). For each electron the magnetic moment of spin 

is ±µB, where µB is the Bohr magneton (µB) that has the value of 9.27*10
-24 

Am
2
. The orbital 

magnetic moment is equal to mlµB, where ml is magnetic quantum number of the electron.  

The symbol of a magnetic field can be referred to either B or H, which are different in both unit and 

definition. The B field is also defined as the magnetic induction or flux density, and it is the value of 

the magnetic field strength of a material subjected to an H field. The unit is Tesla (T) in the S.I. 

system and Gauss (G) in the C.G.S. system, where one T is equal to 10 kG. The H field is also 

defined as the field strength and the unit is Ampere per meter (A m
-1

) in the S.I. system and is 

Oersted (Oe) in the C.G.S. system. The magnetic induction (B) is the sum of the applied (H) field 

and the external field due to the magnetization. 

If a magnetic material is placed in a magnetic field of strength H, the individual atomic moments in 

the material contribute to its overall response, the magnetic induction: 

(1) 

where µ0 is the permeability of free space (4π*10
-7

Tm/A), and the magnetization M = m/V is the 

magnetic moment per unit volume.  

All the materials can be conveniently classified in terms of their volumetric magnetic susceptibility, 

χ, defied as: 

HM χ=                                                                       (2) 

In SI units χ is dimensionless and both H and M are expressed in Am
-1

.Thus, the equation (2) 

describes the magnetization induced in a material by H.  

)(000 MHMHB +=+= µµµ
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Under conditions of time-variant magnetic field the magnetic susceptibility can be expressed as a 

function of the frequency of the magnetic field:  

)()()( ''' ωχωχωχ i−=                                                         (3) 

Where χ '(ω) is the real component while χ'' (ω) is the imaginary component, in turn expressible as: 
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Where χ0 is defined as the susceptibility at the equilibrium (or at low frequency); ω is the magnetic 

field pulsation (ω=2πf, f is frequency field), t is the relaxation time. The real part of the 

susceptibility is proportional to the component of the magnetization that is induced in phase with 

the applied modulation while the imaginary part is proportional to the π/2 out of phase or 

quadrature component of the magnetization. This latter part is directly proportional to the 

dissipation in the material. 

 

 Paramagnetism and Diamagnetism  

Most materials show little magnetism, and even then only in the presence of an applied field; these 

are classified as paramagnets, or diamagnets. 

The paramagnetism is a form of magnetism that some materials show only in the presence of 

magnetic fields, and is manifested by a magnetization having the same direction and toward that of 

the external field. The susceptibility, χ is positive and spans from 10
-6

 to 10
-1

. Since the thermal 

agitation randomly distributes the directions of the magnetic dipoles, an increase in temperature 

decreases the paramagnetic effect.2,3 

The characteristic of paramagnetism can be understood by postulating permanent atomic magnetic 

moments, which can be re-oriented in an external field. These moments can be either due to orbiting 
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electrons or due to atomic nuclei. The torque applied by an external magnetic field on these 

moments will tend to fix them parallel to the field, which then reinforces it.
4
 

All the organic substances, some metals and superconductors below the critical temperatures are 

diamagnetic. An external magnetic field induces magnetic dipoles that are oriented antiparallel with 

respect to the exciting field due to Lenz’s rule (magnetic field is produced in a induced current and 

the magnetism is parallel to the electromotive force). Therefore, the susceptibility, χ is negative and 

falls in the range 10
-6 

÷10
-1

. 

When the magnetic field is turned off, there is no permanent magnetization remaining in 

paramagnetic and diamagnetic materials. 

 

 Ferromagnetism, antiferromagnetism and ferrimagnetism 

Some materials exhibit ordered magnetic states and are magnetic even without a field applied, these 

are classified as ferromagnets, antiferromagnets and ferrimagnets. 

Ferromagnetic elements as iron (Fe), cobalt (Co) and nichel (Ni), which have unpaired electron 

spins align them spontaneously so that the material can show magnetizations without being in a 

magnetic field. Ferromagnetism is a so-called cooperative phenomenon, where single atoms cannot 

exhibit ferromagnetism, but the ferromagnetic properties arise when some of the atoms are bound 

together in solid form. If the field is reversed, ferromagnetic material will initially resist the field 

change, however most magnetic domains will eventually switch their magnetization vectors and 

come to the same inverse magnetization.
5
 The field produced by ferromagnetic materials (obviously 

magnetized) is very intense and lasts a long time after removal of the external field. The 

susceptibility (χ) is much higher than zero and µ0M<µ0H. From equation (1), the B field and the M 

result in a linear relationship.
4,6

 

This property is maintained only below a certain temperature, called the Curie temperature above 

which the ordered structure of magnetic dipoles oriented is destroyed by the increase of thermal 

energy and the substance behaves as a paramagnetic material (Figure I).  
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Figure I: Effect of the temperature increase on saturation magnetization (Ms) value for a ferromagnetic material under 

its Temperature Curie (Tc). Increasing the temperature, magnetic moments are randomly distributed and the material 

becomes paramagnetic. 

 

Manganese (Mn), chromium (Cr), and other metal oxides are said antiferromagnetic. In such 

materials, the magnetic dipoles tend spontaneously to be arranged so as to cancel each other. At a 

macroscopic level, below a certain temperature, called Néel temperature, and in the absence of 

external magnetic field, the magnetization of these materials is practically zero. The Néel 

temperature is a temperature above which the order of the magnetic domains in the crystal structure 

is destroyed and the material behaves as a paramagnetic substance.  

Ferrites (mixture of oxides of iron and other metals) and magnetic garnets (such as yttrium and iron 

garnet), which possess, as the ferromagnetic materials, permanent magnetic dipoles are named 

ferrimagnets. In ferrimagnetic materials the magnetic moments of the atoms are oriented in a 

manner similar to the antiferromagnetic materials, but the opposing moments are unequal and a 

spontaneous magnetization remains. This happens when the sublattices consist of different materials 

or ions (such as Fe
2+

 and Fe
3+

). The ferrimagnetism is also called "decompensated 

antiferromagnetism", just for the fact that the opposing magnetic moments are not equal in 

magnitude. The ferrimagnetic materials, such as ferromagnetic ones, possess a spontaneous 
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magnetization under Curie temperature, and do not show magnetic order above this temperature. 

The oldest known magnetic substance, magnetite (mixed oxide of iron (II, III), Fe3O4), is actually a 

ferrimagnet, it was originally classified as a ferromagnet before the discovery of Louis Néel (1904-

2000, Nobel Prize for Physics in 1970) of the ferrimagnetism and antiferromagnetism. 

In the following figure II, it is schematically represented the different moment orientation for 

paramagnetic (A), ferromagnetic (B), antiferromagnetic (C) and ferrimagnetic (D) materials. 

 

 

Figure II: Different moment orientation for magnetic materials. 

 

In the following table I typical values for magnetic susceptibility, χ are reported.  

 

Behavior Typical values for  

magnetic susceptibility, χ 

Diamagnetic -10
-6

 ÷ -10
-1

 

Paramagnetic 10
-6

 ÷ 10
-1

 

Ferromagnetic ≈ 10
3
 

Antiferromagnetic 0 ÷ 10
-2

 

 
Table I: Typical values of magnetic susceptibility (χ) for magnetic materials. 
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 Magnetic domains and hysteresis 

Ferromagnetic and ferrimagnetic materials, under Curie temperature, consist of small volume 

regions where magnetic dipoles are arranged in the same direction. These regions are named 

domains and are magnetized up to own saturation magnetization value. Adjacent domains are 

separated by walls, where magnetization direction changes gradually. The domains are microscopic 

and in a polycrystalline material each grain can consist of several domains. The M field value for 

the whole solid is given by the vectorial sum of the magnetizations of all domains, weighing each 

domain contribution with its volume fraction. The flux density, B and the field strength H are not 

proportional. If the material is not initially magnetized, B depends on H as shown in figure III. 

 

 

Figure III: B-H (or M-H) curve for a ferromagnetic or ferrimagnetic not initially magnetized material. The figure 

represents how domains change their configuration during the magnetization phenomenon.
7
 

 

B increases slowly with the increase of H, then faster and successively becomes constant and 

independent from H. The maximum value of B is the flux density saturation, Bs. As the permeability 

µ is the slope of the curve B-H, it follows that µ varies with and is dependent on H. At H=0, the 

slope of the curve B-H is the initial permeability, µ i. As shown in the figure III, with H increasing, 
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the domains change their form and dimension, due to the grain walls movement. Initially, domain 

magnetic moments are randomly arranged. Then, the domains arranged in the H field direction 

increase to the detriment of those that are randomly arranged. This phenomenon continues until the 

material becomes a single-domain aligned with the field. As shown in figure IV the characteristic 

shape of B-H (or M-H) curve is sigmoidal, with B (or M) approaching a saturation value (Bs or Ms) 

at large values of H. If the field is reversed, at the point “S” (figure IV), the curve does not return to 

the origin. This gives rise to a curve loop named hysteresis loop, where B field decreases with H 

field at lower speed. 

 

  

Figure IV: Characteristic sigmoidal shape of B-H (or M-H) curve, with B or M approaching a saturation value and 

hysteresis phenomenon for a ferromagnetic or ferrimagnetic material.
7
 

 

The remaining magnetization value after removal of external field (at H=0) is Br. The coercivity 

(Hc) is the H field value which is necessary to apply, in order to demagnetize the material.  

The shape of magnetization curves (M-H) depends on the different type of magnetism. 
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 Fundamentals of Magnetic Nanoparticles 

Intensive studies of nanoparticles as a special class of objects started from the discovery of unusual 

magnetic properties. In 1930, Frenkel J. and Dorfman J. showed on the basis of energy 

considerations that particles of a sufficiently small size should be single-domain. These studies 

identified a substantial increase in the coercive force of a ferromagnet on passing from a 

multidomain to the single-domain structure, which is important for the creation of permanent 

magnets.8,9 

The critical diameter values corresponding to particle transition from the multidomain to the single-

domain state were calculated for spherical particles with an axial magnetic anisotropy. For other 

types of anisotropy (cubic, hexagonal, etc.) and other particle shapes, the numerical estimation of 

the critical diameter for the single-domain character changes. In particular, the particle can be 

transferred into the single-domain state without decreasing the volume if it has a shape other than a 

sphere, for example, an oblong ellipsoid. The term “single-domain” does not require a necessary 

uniform magnetization throughout the whole particle bulk but only implies the absence of domain 

walls. In addition, a single-domain particle is not necessarily a “small” particle (as opposed to a 

“bulk” particle) as regards specific magnetic characteristics. Thus, the specific properties of 

nanoparticles start to be manifested at sizes much smaller than the “single-domain limit”.  

One more remarkable property of the nanoparticles, which allowed their experimental discovery in 

the mid-20
th

 century, is the superparamagnetism, the absence of residual magnetic force between 

particles upon removal of the magnetic field.8 

 

 Superparamagnetism 

Superparamagnetism occurs when ferromagnetic or ferrimagnetic materials are reduced in size 

below about 50 nm in the largest dimension and present a single magnetic domain. 

Superparamagnetic materials may exhibit similar behavior to paramagnetism even at temperatures 

below the Curie temperature; magnetization can randomly flip direction under the influence of 
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temperature and the magnetic moment of the particle as a whole is free to fluctuate in response to 

thermal energy, while the individual atomic moments maintain the ordered state relative to each 

other.  

 

 Magnetic Anisotropy and Néel Relaxation time in absence of a magnetic  

         field 

The energy barrier to moment reversal has several origins, including both intrinsic and extrinsic 

effects such as the magnetically crystalline anisotropy and the shape anisotropy. The magnetically 

crystalline anisotropy energetically favors the alignment along a specific crystallographic direction, 

preferential magnetization axis (easy axis); it is an intrinsically material property, which depends on 

crystal lattice and its chemical environment. 

The shape anisotropy, which is only present in objects of different shape from that spherical, helps 

to orient the magnetization along the longitudinal axis of the nanocrystal.  

The magnetization anisotropy is often modeled as uniaxial and the anisotropic magnetic energy ∆E 

is described in its simplest form by the following equation: 

                                                                (6) 

Where Kv is the volume anisotropy energy density, V the particle volume and θ is the angle between 

the vector of the particle magnetic moment m and the anisotropy axis.  

The anisotropy energy ∆E plays the role of energy barrier, which may be overcome in order to 

enable the rotations of the magnetic moments of the particles. If θ=0° (i.e. the direction of 

magnetization corresponds to the easy axis), the potential energy reaches the minimum value. 

Reducing the size of a ferromagnetic nanoparticle up to a threshold value, defined as blocking 

dimension, to which is associated a blocking temperature, TB, the energy ∆E becomes comparable 

to the thermal energy of activation, kBT (where kB is the Boltzmann constant). In this case the 

anisotropic energy barrier is so small that thermal activation energy and/or an external magnetic 

field H can easily change the magnetization direction with respect to the axis preferential. If no 

θsin
2VKE v=∆
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external magnetic field or surface anisotropy is present, the minimum energy of the particle is 

attained at the orientation of the magnetic moment, m, along the anisotropy axis. In this case, two 

neighboring minima are separated by a barrier with height KvV. 

Because of the nanoparticle magnetic anisotropy, the magnetic moment has usually only two stable 

orientations antiparallel to each other, separated by an energy barrier.  

At finite temperature, there is a finite probability for the magnetization to flip and reverse its 

direction. The mean time between two flips as a result of thermal fluctuations is defined as the Néel 

relaxation time, τ, and is given by Néel-Arrhenius equation. The activation law for the relaxation 

time of the net particle magnetization was obtained by Néel:
8,10

 

                                                    (7)                   

where ∆E is the energy barrier to moment reversal, and kBT is the thermal energy. For non-

interacting particles the pre-exponential τ0 is of the order 10
-10

 ÷ 10
-12

 s and only weakly dependent 

on temperature.  

At higher temperatures, ∆E/kBT ≤ 1; the time required for system transition into a state with the 

minimum energy is short compared to the characteristic time of measurements τmeas and the system 

is not expected to show a magnetic hysteresis, so, τmeas>>τ and the system occurs in the 

superparamagnetic state and reaches an equilibrium magnetization on changing the temperature or 

the external field, the magnetization will not flip during the measurement, so the measured 

magnetization will be the instantaneous magnetization evaluated at the beginning of the 

measurement. In this state, an external magnetic field is able to magnetize the nanoparticles, 

similarly to a paramagnet. However, their magnetic susceptibility is much larger than that of a 

paramagnet. 

In the case where ∆E/kBT ≥ 1, the system transition into an equilibrium state may take a very long 

time depending on the particle. If τmeas << τ, the nanoparticle magnetization will flip several times 

during the measurement, then the measured magnetization will average to zero. 

( )Tk B/Eexp0 ∆= ττ



138 - Appendix 

 

In the former case, the nanoparticle will appear to be in the superparamagnetic state whereas in the 

latter case it will appear to be “blocked” in its initial state. At very low temperatures nanoparticles 

remain “frozen magnetically” and behave like a ferromagnetic material.  

The state of the nanoparticle (superparamagnetic or blocked) depends on the measurement time. A 

transition between superparamagnetism and blocked state occurs when τmeas=τ. In several 

experiments, the measurement time is kept constant but the temperature is varied, so the transition 

between superparamagnetism and blocked state is seen as a function of the temperature. The 

temperature for which τmeas= τ is defined as the blocking temperature Tb. 
8
 

For a zero magnetic field blocking Temperature, Tb, is given by: 

 

                                                   (8) 

 

 Effect of a magnetic field 

The model of an ideal superparamagnetic was mainly worked out by the early 1960s, but now it 

continues to develop.
8, 11

 The simplest variant of this model considers a system of non-interacting 

identical particles with the magnetic moment µef. Since the magnetic moment of the particle is 

assumed to be large, its interaction with the magnetic field H is calculated without taking the 

quantum effects into account. In the case of isotropic particles, the equilibrium magnetization 

system is described by the Langevin equation: 

                                     (9) 

Equation (9) has been derived with the assumption that single particles are magnetically isotropic 

(all the directions for their magnetic moments are energetically equivalent), but this condition is 

hardly ever fulfilled.  

If the particles are magnetically anisotropic, the calculation of the equilibrium magnetization 

becomes more complicated.  

( )ττ /ln measB

v
B

k

VK
T =

( )HTkTkHNM efBBefef
µµµ /)/coth( −=
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When investigating the magnetic properties of the samples containing nanoparticles, the 

magnetization curve is usually measured up to magnetization. The B-H (or M-H) curve is 

anhysteretic, but still sigmoidal as shown in figure V. The remaining magnetization value after 

removal of external field and the coercivity are zero. 

  

 
 
Figure V: Characteristic sigmoidal shape of B-H (or M-H) curve, with B or M approaching a saturation value for a 

superparamagnetic material 

 

 

 Zero-field cooling (ZFC) and field cooling (FC) measurements 

In order to determine the temperature dependence of the magnetization M, two types of experiments 

are commonly carried out, namely, zero-field cooling (ZFC) and field cooling (FC). According to 

the ZFC procedure, the sample is cooled (usually down to the liquid helium temperature) in the 

absence of a magnetic field and then a moderate measuring field is applied (1 ± 100 Oe) and the 

temperature is gradually raised, the magnetic moment MZFC values are recorded. The FC procedure 

differs from ZFC only by the fact that the sample is cooled in a non-zero magnetic field “by 
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freezing” the alignment of the nanoparticle magnetic moments. The temperature is gradually raised 

in the absence of a magnetic field and the magnetic moment MFC values are recorded. 

For magnetic nanoparticles, the MFC(T) and MZFC(T) curves usually coincide at relatively high 

temperatures but start to differ below a certain temperature Tir (irreversibility temperature).  

The MZFC(T) curve has a maximum at some temperature Tmax which coincides with the blocking 

temperature. Above this temperature value, MZFC(T) curve decreases due to thermal fluctuations and 

the MFC(T) curve, most often, ascends monotonically to very low temperature. Below blocking 

temperature, the free movement of the magnetic moments is blocked while above Tb it is evident 

superparamagnetic relaxation (Figure VI).
8
 

 

 

Figure VI: Temperature dependence of the magnetic moment (ZFC and FC measurements).
8
 

 

During the ZFC process, as the temperature decreases, the potential energy tends to decrease, by 

aligning the magnetic moments of each particle along the magnetization preferential axis. Since the 

nanoparticles are randomly dispersed, at low temperature the total magnetization of the sample 

shows the lowest value. When the temperature increases in the presence of a magnetic field, the 

energy barriers are beginning to be overcome by thermal energy.  

 



141 - Appendix 

 

The total magnetization increases with increasing temperature and the maximum is reached when 

the thermal activation energy is equal to the magnetic anisotropy energy: 

                                                        ( ) TkTkVK BmeasBv BB 25/ln == ττ                                            (7) 

where τmeas=100 s (characteristic time for the static magnetic measurements) and τ0=10
-9

 s. 

During the FC process, when the nanoparticles are cooled in the presence of a magnetic field, the 

magnetization direction is “frozen” in the direction of applied external magnetic field. Below Tb, the 

differences between ZFC and FC measurements is due to the presence of the magnetic anisotropy 

energy barrier, at each temperature MFC represents all the nanoparticle contribution while MZFC 

reflects only the magnetization of the nanoparticles whose energy barrier is exceeded by thermal 

energy. Starting from Tb, ZFC and FC curves overlap because the nanoparticles are thermally 

activated in the superparamagnetic state. 
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