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Background 

1. Introduction 

1.1. Scope and purposes 
This thesis work was developed in conjunction with the activities of the EC FP7 Adaptive Control of 

Manufacturing Processes for a New Generation of Jet Engine Components (ACCENT) Project (See 

section 1.4). 

Most of the experimental activities were carried out at AVIO SpA facilities, Pomigliano d’Arco, 

Naples; Avio SpA is an industrial partner in the EC FP7 ACCENT Project. 

The goals of this thesis work are explained below.  

First of all, the design and realization of an experimental campaign of turning tests on a nickel base 

alloy of aeronautical interest (Inconel 718) was carried out in an industrial environment. 

A multi sensor monitoring system, endowed with diverse sensing units was designed, assembled, 

calibrated and employed during machining tests in order to acquire different sensor signals on an 

online basis. 

Raw signals acquired were subjected to conventional and advanced signal analysis methods in order 

to extract significant features useful for decision making on process conditions. 

This thesis work includes material characterization tests carried out to investigate the surface 

integrity of the workpiece as well as the state of the tool wear with the scope of correlating these 

conditions to sensor signals features. 

By the implementation of a decision making support system, sensor signal features extracted by 

signal processing techniques were utilized for the identification of defects in the workpiece due to 

the machining process, as revealed by the material characterization tests. 

Decision making was carried out by diverse Neural Network pattern recognition paradigms, 

designed and implemented for the purpose. 

The organization of the activities carried out in this thesis can be summarized as in the flow chart 

reported in Fig. 1.1. 



 
 6 

 
Fig. 1.1 Activities flow chart 

 

1.2. Publications review 
In [1] tool wear progress estimation for optimal tool life utilisation in turning of Inconel 718 aircraft 

engine products, under industrial manufacturing conditions, was achieved through cognitive 

modeling of tool wear growth based on supervised neural network data processing. 

Low prediction errors were obtained for the lower cutting speeds, whereas large forecast errors were 

verified for the highest cutting speed value. However, under the latter condition, the flank wear safe 

machining limit (SML) was exceeded, which represents an industrially unacceptable event. If this 

instance is disregarded as technologically improper, the estimation errors are low enough to deem 

the Neural Network modelling able to provide a dependable tool wear curve trend for all realistic 

Inconel 718 turning conditions. 

In [2] sensor fusion of digital signals obtained during sensor monitoring of longitudinal turning 

operations carried out on C45 carbon steel was investigated with the aim to achieve the reliable chip 

form categorization. Advanced signal processing, characterization and feature extraction was 

performed through the Principal Component Analysis (PCA) algorithm and cognitive decision 

making was carried out using neural network based pattern recognition. 

The Neural Network success rates in chip form recognition were always higher than 80%, validating 

the capability of PCA in extracting valuable sensory features for chip form monitoring. 

Decision Making Support System for Tool Wear Identification and Residual Stress Assessment 

Neural Networks Based Pattern Recognition  

Sensor Signal Processing for Features Extraction 

Conventional Features Extraction Advanced Features Extraction 

Workpiece Material Characterization Tests Selection and Implementation 

Visual Inspection FPI Metallographic Tests 
Residual Stress 
Measurement 

Design and Implementation of Experimental Turning Tests on Inconel 718 

Sensor Signal Acquisition Tool wear measurement 

Multiple Sensor System Design and Implementation for Machining Process Monitoring  

Cutting Forces Sensor Acoustic Emission Sensor Vibration Sensor 
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The favourable/unfavourable chip type identification yielded higher NN SR values than the single 

chip form classification, as a four classes (four chip forms) recognition effort is undoubtedly harder 

than a two-classes (favourable/unfavourable chip form) discrimination task. 

The Neural Network Success Rates values for the 4-element feature vectors are higher than for the 3-

element feature vectors cases, confirming that sensor fusion of sensorial data of different kinds can 

be positively valuable for pattern recognition. 

In [3] a multiple sensor monitoring approach for tool wear identification during the orthogonal 

cutting of diverse composite materials (GFRP, SMC, CFRP) was carried out through the detection of 

cutting force and acoustic emission sensor signals. Signal data processing was performed through the 

Principal Component Analysis (PCA) procedure in order to lessen the high dimensionality of sensor 

signals and extract significant signal features to utilize for pattern recognition based decision making 

on tool wear state identification. 

The results obtained by applying the PCA procedure showed that the first principal component is 

strongly related to AE signal, the second principal component to the cutting force component Fy, 

and the third principal component to the cutting force component Fz, for all three examined 

composite materials. 

The 3 principal components were used as inputs to a neural network (NN) based pattern recognition 

paradigm to identify the correlations between sensory data and tool wear state. For all composite 

materials, the NN success rate was comprised between 70% and 88%, representing a medium to high 

NN performance for decision making on cutting tool conditions during composite materials 

machining. 

[4] discusses an enhanced strategy for process monitoring of machining processes, based on 

industrial needs and incentives. Through subdividing the feature to be monitored e.g. a hole, 

different actions can be set for each section. Thus an Adaptive Process Monitor. 

The concept is implemented in an industrial environment, however on a laboratory scale, from 

which the results in this paper are collected. 

It is shown that by the implementation of the adaptive concept, anomalies like tool run-out can be 

detected prior to any gross malfunction of the process e.g. prior to any scrapping. 

Furthermore, measures can be taken to create a uniform Probability of Detection (POD), in 

particular for deep holes. 

In [5] multiple sensor monitoring for tool wear state classification was carried out during turning of 

Inconel 718 through simultaneous detection of cutting force, acoustic emission and vibration sensor 

signals. 

Sensor fusion signal data processing was performed through Principal Component Analysis (PCA) to 

reduce the high dimensionality of sensorial data and extract significant signal features to utilize for 

NN based pattern recognition aimed at decision making on tool wear state. 

The PCA approach allowed to extract principal components features from multi sensor fusion data 

sets that yielded NN success rates in tool wear classification much higher than for signal features 

obtained from single sensors or combinations of two sensors. 
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As regards the correlation between sensor signals and principal components provided by the PCA 

algorithm, the acceleration signal features, strongly related to the first 3 principal components, 

provided lower NN success rates for tool wear identification than in the case of cutting force signal 

features related to higher order principal components.  

In [6] multiple sensor monitoring for tool wear state assessment was carried out during turning of 

Inconel 718 through simultaneous detection of cutting force, acoustic emission and vibration sensor 

signals. 

Feature extraction through linear predictive analysis (LPA) was applied in order to obtain 4 element 

feature vectors. 

Sensor fusion technology based neural network paradigm was implemented by combining the 4 

feature vectors. In particular, the fusion of sensorial data was applied considering the integration of 

two sensor signal specimens ([Fx +Fy + Fz + AERMS] or [AERMS + ax +ay + az]) and the all sensorial 

data specimens ([Fx +Fy + Fz + AERMS + ax +ay + az]). 

The obtained results showed that the NN SR values in the assessment of tool wear is higher by 

resorting to sensor fusion of 3 sensorial data (cutting force, acceleration and AE) instead of using the 

combinations of two sensors (cutting force and AE or acceleration components and AE). 

This emphasizes the NN capability to realize the concept of sensor fusion. 

In [7], tool wear development during turning of a difficult-to-machine Ni-base alloy (Inconel 718) 

was investigated. 

An experimental programme was implemented according to a DoE procedure and cutting tests were 

carried out for different cutting conditions with stepwise measurements of tool flank wear. 

The experimental data were processed through 3-layers back-propagation feed-forward NNs with the 

aim to predict tool wear in the case of unknown process conditions. 

The good NN prediction performance obtained for all feed rates is allowed for convenient data 

processing conditions of the corresponding trained NN that are asked to provide output values 

interpolated with respect to the NN training set: this is a task at which feed-forward 

backpropagation NN are typically very good. 

In [8] multiple sensor monitoring for residual stress assessment was carried out during turning of 

Inconel 718 through simultaneous detection of cutting force, acoustic emission and vibration sensor 

signals. 

Sensor fusion signal data processing was performed through two different methodologies, a 

convenvional one and the Principal Component Analysis (PCA), to reduce the high dimensionality of 

sensorial data and extract significant signal features to utilize for NN based pattern recognition 

aimed at decision making on residual stress condition. As regards the correlation between sensor 

signals and principal components provided by the PCA algorithm, the acceleration signal features, 

strongly related to the first 3 principal components, provided higher NN success rates for tool wear 

identification than in the case of cutting force signal features related to higher order principal 

components. 
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1.3. State of the Art 
In the cognitive sciences, sensorial perception is the process of attaining awareness or understanding 

of sensory information. It is a task far more complex than was imagined in the ‘50s–19s’, when it was 

predicted that building perceiving machines would take about a decade, a goal which is still very far 

from fruition [10]. 

1.3.1. Historical/philosophical background of sensorial perception 

Since the times of early ancient Greek philosophy, a number of interesting considerations 

concerning Sensorial Perception (SP), knowledge achievement and truth identification have 

emerged. The diverse concepts, views and theories regarding SP and knowledge acquisition may be 

grouped into a few categories that, along with the predominant cultural tendency in the course of 

epochs, attribute to SP a higher or lower role (Table 1.1)[10]. 

Table 1.1: Concepts of sensorial perception (SP) and its role in knowledge acquisition and truth identification 
during the different epochs. 

SP role Authors of concepts/theories of SP in the course of 
epochs 

Trivial, minor or no value Heraclitus (535–475 B.C.); Parmenides (515–450 B.C.) and the 
Eleatics; Pyrrho (360–320 B.C.) and the Sceptics 

Initiates cognition Empedocles (490–430 B.C.); Democritus (460–370 B.C.) and the 
Atomists 

Supports cognition Plato (427–347 B.C.); Plotinus (205–270 A.D.); St. Augustine (354–
430 A.D.); Hegel (1770–1831) and the Idealists 

Indispensible for cognition Aristotle (384–322 B.C.); St. Thomas Aquinas (1221–1274); Ockam 
(1280–1349); Spinoza (1632–1677); Leibniz (1646–1716); Locke (1632–
1704) and the Empyrists; Kant (1724–1804); Peirce (1839–1914) and 
the Pragmatists 

Basis of all knowledge 
acquisition 

Epicurus (341–270 B.C.); Zeno (334–262 B.C.) and the Stoics; L. da 
Vinci (1452–1519); Telesio (1509–1588); Galilei (1564–1642); F. Bacon 
(1561–1626); Newton (1642–1727); Descartes (1596–1650) and the 
theory of passive perception; Condillac (1714–1780) and the Sensists; 
Stuart Mill (1806–1873), Comte (1798–1857) and the Positivists 

Continuous adaptation of 
sensing to environment 

Darwin (1809–1882), Avenarius (1843–1900), Mach (1838–1916) and 
the Empiriocriticists; Dewey (1859–1952) and the Instrumentalists; 
Bergson (1859–1941); Gregory [6–8] and the theory of active 
perception 

1.3.2. Modern theories of sensorial perception 

Passive perception, initially conceived by R. Descartes and surmised as a ‘‘static’’ sequence of events: 

surrounding  input (senses)  processing (brain)  output (reaction), is still supported by 

mainstream philosophers, psychologists, neurologists and scientists. However, it is a theory 

nowadays largely losing momentum. The theory of active perception has emerged from extensive 

research of sensory misapprehensions, most notably the works of Gregory [11][12]. This theory, which 

is increasingly gaining experimental support, can be surmised as the ‘‘dynamic’’ relationship between 

description (in the brain)  senses  surrounding, all of which holds true to the linear concept 

of experience. For more information on the implications of active perception theory for science and 

technology see [13]. 

1.3.3. Sensors and sensor systems for machining 

The measuring techniques for the monitoring of machining operations have traditionally been 

categorised into two approaches: direct and indirect. In the direct approach the actual quantity of 
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the variable, e.g. tool wear, is measured. Examples of direct measurement in this case are the use of 

cameras for visual inspection, radioactive isotopes, laser beams, and electrical resistance. Many 

direct methods can only be used as laboratory techniques. This is largely due to the practical 

limitations caused by access problems during machining, illumination and the use of cutting fluid. 

However, direct measurement has a high degree of accuracy and has been employed extensively in 

research laboratories to support the investigations of fundamental measurable phenomena during 

machining processes. Through indirect measurement approaches, auxiliary quantities such as the 

cutting force components can be measured. The actual quantity is subsequently deduced via 

empirically determined correlations. Indirect methods are less accurate than direct ones but are also 

less complex and more suitable for practical applications. In contrast to the traditional detection of 

tool conditions, the approach is that machining processes are being continuously monitored via 

sensing devices to quantify the process performance or provide information for process optimization 

using sensors. Sensors that are commonly used for online measurement are summarised in Fig. 

1.2.[10]  

 

Fig. 1.2. Measurable phenomena for online sensor monitoring 

Force and Torque 

Any cutting operation requires a certain force to separate and remove the material. The monitoring 

of cutting forces in machining for the validation of analytical process models, the detection of tool 

failure, etc., has been used extensively by researchers [14]. This is due to the high sensitivity and 

rapid response of force signals to changes in cutting states. Torque sensors, like force sensors, also 

consist of a mechanical structure that responds to a deformation but in this case the applied load is 

torsional. The underlying force measurement technology is often identical but the application of 

torque sensors and the method of signal transmission from rotating tool holders are different. Force 

and torque sensors generally employ sensing elements that convert the applied force or torsional 

load into deformation of an elastic element. The two main sensor types used are piezoelectric based 

and strain based sensors. 

Piezoelectric sensors 

Direct force measurement using piezoelectric sensors is possible when the force transducer is 

mounted in line with the force path. In cases where more measurement flexibility is required, multi-
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component force transducers have been developed and are used extensively in lab based 

applications. Rotating cutting force dynamometers are also available that contain the force sensing 

elements capable to measure 3 components of force and torque. The data is transmitted from the 

rotating part of the sensor to a stator via telemetry. Rotating cutting force dynamometers can 

operate at speeds of up to 20,000 rpm and have been used for high speed milling of aerospace 

materials. Developments like the integration of force sensors into the machine structure have taken 

place over the last 10 years with concepts developed for drilling [15] and milling [24]. Fig. 1.3 shows 

sensors integrated into the main force flux of the motor spindle. These concepts have been slow to 

transfer into practice because the spindle or structure itself must be characterised and strategies to 

isolate process phenomena from spindle and machine dynamics must be developed 

[17][24][26][27][21]. 

 
Fig. 1.3 – Integrated force sensors in motor spindle [22] 

Acoustic emission measuring technology and sensors 

Piezoelectric sensor technology is particularly suitable for measuring acoustic emission (AE) [23][24] 

in machining process monitoring. With very wide sensor dynamic bandwidth from 100 to 900 kHz, 

AE can detect most of the phenomena in machining, though significant data acquisition and signal 

processing is required [25] (Fig. 1.4). This presents problems for signal processing and bandpass 

filters usually provide great flexibility for AE detection by selecting appropriate frequency ranges. 

The output signal from the AE sensor is fed through a preamplifier that has a high input impedance 

and low output impedance. A root mean square (RMS) converter, gain selection unit and filters are 
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also typically contained within the preamplifier housing. The capacitance principle can also be used 

for detecting AE, as the capacitance of two parallel plates changes with the distance between plates. 

The accuracy of this AE detection method is higher than many other techniques and capacitance 

based AE sensors are used for calibrating other AE sensors. However, capacitance type displacement 

sensors for AE are very sensitive to sensor position and surface mounting. Thus, they are not suitable 

for machining process monitoring where the operating environment is often quite severe on the 

sensor [26]. 

 
Fig. 1.4 - Sources of AE in machining [25] 

Another sensing method for AE detection is the application of a piezoelectric thin film sensor 

deposited on a shim and located between cutting insert and tool holder. The coating materials can 

be AlN or ZnO. The sensor is reported to have advantages over commercially available AE sensors: it 

is located close to the cutting process and is characterised by a very large frequency bandwidth. 

Good signal quality has been reported, particularly in the high frequency range, with less 

interference and lower geometrical propagation loss and absorption rate [27]. An alternative 

approach using fibre optics was investigated in [28] [29]. This sensing method has reported 

advantages over conventional AE sensors such as a broader bandwidth, flat frequency response and 

absolute calibration. More significantly, the fibre optic interferometer is a noncontacting method of 

signal transmission from source to sensor. The latter two methods have largely only been developed 

in the laboratory and have not been significantly used in industrial applications. 

The high frequency and low amplitude nature of AE means that signal transmission via a coupling 

fluid is possible. By the location of the AE sensor on the coolant supply nozzle, the coolant can be 

used as transmission path [30]. Hutton and Hu [31] used a nonintrusive coupling fluid to couple the 

AE sensor to the spindle drive shaft, similar to Li et al. [33]. These signal transmission methods had a 

distinct advantage for rotating tools such as in milling and drilling. Various other methods of signal 

transmission from AE sensor to AE coupler/signal processor are common to other sensing 

applications, including slip rings, inductive coupling, and radio frequency transmission [30][33]. 

Jemielniak [34] investigated aspects of AE signal processing in machining and proposed that in the 

machine tool environment the AE signal is repeatedly reflected from the inner surfaces of the 
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structure where the sensor is mounted. This resulted in prolonged duration of the signal recorded by 

the sensor. AE sensor mounting requires a couplant between sensor and material surface. The latter 

should be free from dirt, paint, and any other barrier that may influence the acoustic coupling. The 

farther the sensor is placed from the AE source, the greater the signal attenuation. This has 

significant implications for measuring AE during machining. If the AE sensor is mounted on the 

workpiece side, the changing distance between sensor and source during machining is a factor that 

requires consideration. This sensor location also presents difficulties regarding sensor mounting, e.g. 

should the AE sensor be located on the workpiece or on some stationary part of the machine tool 

[35]. 

Vibration and other sensor types 

A large variety of sensing principles are used for sensing vibration. However, piezoelectric 

transduction is the most common type in vibration sensing of machining operations. Vibrations that 

occur during metal cutting can be divided into two groups: (i) dependant and (ii) independent of the 

cutting process. The two groups are not mutually exclusive. Vibration independent of metal cutting 

include forced vibration caused by other machines or machine components, e.g. vibration 

transmitted through foundations, unbalance of rotating parts, inertia forces of reciprocating parts 

and kinematic inaccuracies of drives. Vibration dependant on metal cutting can demonstrate a 

number of characteristics as a function of the process, e.g. interrupted cutting. The varying cutting 

forces that occur during metal cutting may result from non-homogeneity and properties variations 

in the work material. Tool engagement conditions during machining play a notable role in the 

vibration produced. The self excited vibration characteristic known as chatter is the most renowned 

type of vibration in machining and is detrimental to surface finish and tool life. Chatter mainly 

occurs due to the waviness regeneration caused by the interaction between material surface and tool 

at particular spindle rotational frequencies, and by mode coupling where relative vibration between 

workpiece and tool occurs concurrently in two directions in the plane of cut[10]. 

1.3.4. Advanced Signal Processing 

It is generally acknowledged that reliable process condition monitoring based on a single signal 

feature (SF) is not feasible. Therefore, the calculation of a sufficient number of SFs related to the tool 

and/or process conditions [36][37][38][38] is a key issue in machining monitoring systems. This is 

obtained through signal processing methods that comprise the stages shown in Fig. 1.5. First, pre-

processing (filtering, amplification, A/D conversion, and segmentation) including, on occasion, 

signal transformation into frequency or time–frequency domain (Fourier transform, wavelet 

transform, etc.). The next stage is the extraction of signal or signal transform features changing with 

tool or process conditions. There are many diverse descriptors from different sensor signals, but 

most cannot be easily related with the process being monitored. Thus, feature selection is of critical 

importance and the identified relevant features are finally integrated into the tool or process 

condition diagnosis system. 
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Fig. 1.5. Signal processing logical scheme[1] 

Signal pre-processing 

The analog signal from the sensor usually cannot be connected directly to the A/D converter but 

needs pre-processing by a conditioner specific to the sensor (piezotron coupler, charge amplifier, 

etc.). For example, a typical procedure of analog AE signal pre-processing follows the pattern 

schematically shown in Fig. 1.6. 

The piezoelectric AE sensor is usually placed as close as possible to the cutting zone, e.g. on the tool 

shank, the tool post, the head stock or the spindle. Because of its high impedance, the sensor must 

be directly connected to a buffer amplifier which converts the charge signal from the sensor into a 

proportional voltage signal. This is typical also of other piezoelectric sensors such as dynamometers 

or accelerometers. The analog signal should be filtered to keep it within the range of the frequency 

response of the sensor, suppress high frequency noise or continuous biases. The filtered signal is 

then subjected to further processing and/or recording. The frequency range of the raw AE reaches 1 

MHz (typically 80–700 kHz) so dealing with it requires a high sampling frequency (>1 MS/s) and 

large memory resources with high computing costs. Thus, in many cases the AE signal is 

demodulated to RMS (AERMS) to obtain a low frequency variable, which can be further processed 

with less expensive signal processing devices [10]. 

 

Fig. 1.6. Typical measuring chain for AE detection during machining[10] 

The integration time constant of the RMS converter should be carefully selected, depending on the 

subsequent SF extraction. Signal averages can be calculated with other features such as burst rate, 

event counts, etc. In such cases, the integration time constant should be 10 times shorter than the 

typical burst duration, which is approximately 2 ms [34]. The AE energy from the cutting zone can be 

considerable. Because of the pre-processing units characteristics, these high amplitude signals may 

cause overloading of the buffer amplifier and signal saturation. High-pass filtering of saturated 

signals results in temporal vanishing of the signal value [40]. This can often result in misleading data 

evaluation. It should be noted that this signal distortion cannot be detected in the AERMS signal and, 
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in this case, such signals must be considered completely distorted and useless. To avoid these 

problems, the gain of the buffer amplifier should be as small as possible and any further necessary 

amplification should be done after signal filtering. This is critically important when AERMS is used 

instead of AEraw [40]. Just before conversion into digital form, for the highest possible accuracy, the 

signal is usually amplified so that the signal maximum voltage range equals the maximum input 

range of the A/D converter. The digital signal is often subjected to further pre-processing. Digital 

filtering reduces frequency bands not correlated with the monitored process or extracts information 

necessary for specific pattern recognition stages. For example while using a spindle-integrated force 

sensor system on a machining center, the cutting force signals are distorted when the spindle speed 

harmonics coincide with the spindle natural modes. Kalman filters eliminate the influence of 

structural modes on force measurement and significantly increase the frequency bandwidth of the 

force measurement system [41]. Scheffer and Heyns [42] investigated possible SFs related to tool 

wear in interrupted cutting. They applied digital filters to separate two frequency ranges of cutting 

force signals: the low frequency range was an indication of static cutting forces and the high-

frequency range of the natural frequencies of the toolholder which resulted from the excitation of 

the cutting operation. Jemielniak [43] used low-pass filtering of cutting force signals for catastrophic 

tool failure detection in turning based on the detection of sudden force value changes. The filtering 

allowed a much lower tolerance band on the limit set on force value. In many applications, a digital 

signal is filtered to prevent high frequency noise and signal oscillations due to transient mechanical 

events [44][45]. Another sensor signal pre-processing method is segmentation. Signal information 

should be extracted when the tool is actually removing metal in a steady state, since only this signal 

portion contains information about process or tool conditions [46][47]. Dong et al. [48] calculated 

SFs from force samples in one spindle rotation, instead of one tooth period, to reduce the influence 

of runout. Similarly in [49], where tool failure detection in interrupted turning was analyzed, the 

data points taken into consideration contained the AE data from at least one full workpiece 

revolution. Jemielniak et al. [50] noted that, despite constant cutting conditions in single micro-

milling cut, AE was not constant; thus, separate SFs were calculated for all the cut and for the 1st and 

the 2nd third of the cut. 

Features extraction in time domain 

From the sensor signal, SFs need to be derived that can describe the signal adequately and maintain 

the relevant information about the process or tool conditions. There are several SFs that can be 

extracted from any time domain signal. The most common are: (i) arithmetic mean, average value, 

magnitude [44][48][51][52][53][54][55][56][57][58][59]; (ii) effective value (root mean square – RMS) 

[44][48][51][53][54][55][57][59][60]; (iii) variance (or standard deviation) 

[44][45][52][53][54][57][60][61]; (iv) skewness [45][53][54][55][56][57][61]; (v) kurtosis 

[45][53][54][55][56][57][61][62]; (vi) signal power [46][57][61]; (vii) peak-to-peak, range, or peak-to-

valley amplitude, [42][44][45][51][53][57]; (viii) crest factor [45][51][54][55][57]; and (ix) ratios of the 

signals, signal increments [51][63]. 

Acoustic emission time domain features. 

Some features are applicable only to vibration and AE signals: (a) ring down count or pulse rate: 

number of times AEraw signal crosses the threshold level [37][40][59][60][64]; (b) pulse width: the 

percentage of time during which AEraw remains above the threshold level [40][64]; (c) burst rate 

number of times AERMS signal exceeds preset thresholds per second [37][40][57]; and (d) burst width 
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– percentage of time AERMS signal remains above each threshold [40][64]. Kannatey-Asibu and 

Dornfeld [65] assumed that AERMS signal has a b distribution. They showed that skew and kurtosis 

are sensitive to both the stick-slip transition for chip contact along the tool rake face and progressive 

tool wear on the flank of the cutting tool. Jemielniak and Otman [49][66] applied these parameters 

to catastrophic tool failure detection. 

Time series modeling. 

Three main time series modeling techniques are frequently used in machining monitoring: Auto 

Regressive (AR), Moving Average (MA) and Auto Regressive Moving Average (ARMA) 

[37][45][54][67]. Early research work developed AR models of high order, up to the 28th order [67]. 

These were considered of little practical use because of the high computing load inadequate for 

online process monitoring. Thus, the 1st or the 1st and the 2nd AR, MA or ARMA coefficients were 

used as features [37][45][54]; sometimes higher AR coefficients of the 3rd–5th order [68]. Recently, 

Suprock et al. [68] applied the 100th order AR model for failure prediction in endmilling. They 

noticed that, while lower-order models may achieve ‘‘adequacy’’, as defined in statistical terms, 

higher-order models produce more stable trends. 

Principal Component Analysis. 

Principal component analysis (PCA), also known as the Karhunen–Loeve transformation, has been 

widely used in system identification and dimensionality reduction in dynamic systems. Shi and 

Gindy [69] investigated the PCA technique to extract features from multiple sensory signals treated 

as a high-dimensional multivariate random matrix, composed of several vectors formed by the 

signals. By implementation of PCA, the signals can be reduced to a new reduced-size feature vector. 

Shi and Gindy used two perpendicular cutting force signals for tool wear monitoring in broaching. 

The pattern of cutting forces in the 2D space orbit diagram (Fig. 1.7) formed as scatter ellipse and 

was closely related to tool wear. This relation was quantitatively evaluated by PCA through the 

length of the major/minor axes (a/b) and the ellipse inclination angle (b). Moreover, the origin (Fy, 

Fz) of the scatter ellipse was related to the average value of the cutting force in two orthogonal 

directions and could also be included in the feature set. Finally, the feature set normalized elements 

were specified as {Fy, Fz, a, b, b} and fed to the tool wear prediction model. Abellan-Nebot and 

Subiro´n [70] extracted several standard SFs from cutting force signals, applied PCA to reduce the 

number of SF and constructed a new set of features that were a combination of the original SFs. 
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Fig. 1.7. Orbit diagram of cutting force signals in dual directions measured by integrated force sensors for 

different level of tool wear [69] 

1.3.5. Monitoring scopes 

In this section, a survey of applications related to the main goals of advanced monitoring of 

machining operations is presented.  

Tool conditions 

Kuljanic et al. [71] focus on the application of AE for tool wear estimation in milling using WPD to 

build an automatic tool wear classification system. Axinte and Gindy [72] try to correlate broaching 

tool conditions to output signals of multiple sensors: AE, vibration, cutting force and broaching 

machine hydraulic pressure. In [73], they assess the use of spindle power signal for TCM in milling, 

drilling and turning: this method is successful for continuous turning and drilling while it shows low 

sensitivity for discontinuous milling. Teti and Baciu [74] apply an intelligent monitoring system 

based on audible sound energy for in-process tool state recognition in band sawing of Al alloy and 

low C steel. Lee et al. [75] present a real-time tool breakage monitoring system for milling based on 

cutting force indirect measurement through feed drive AC motor current, whose sensitivity is 

sufficient to identify tool breakage. Ryabov et al. [76] develop an online tool geometry measurement 

system based on a laser displacement meter. Ahn et al. build up a vision system to detect small 

diameter tap breaks hardly perceived by indirect in-process monitoring methods as AE, torque and 

motor current; in [77], they propose an online drill wear estimation method based on spindle motor 

power signal during drilling. Arrazzola [78] uses micro-scale thermal imaging to identify effects of 

steel machinability change on cutting zone temperature and related tool wear mechanisms. In [79], 

he analyses and compares cost effective methods for tool breakage detection by performing trials on 

an ultra-precision micro-milling machine. 

Chip conditions 

Govekar et al. [80] use filtered AE spectrum components for chip form classification. Kim and Ahn 

[52] propose a method of chip disposal state monitoring in drilling based on spindle motor power 

features. Teti et al. [81][82][83] apply WPT and spectral estimation of cutting force signals for chip 

form recognition. Venuvinod et al. [84] use a variety of sensors to obtain stable clusters of chip form 

under varying dry cutting conditions through geometric transformations of the control variables: 

they aimed at recognising chip entanglements, chip size (including continuity), and chip shape. 
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Andreasen and De Chiffre [85] develop and test a laboratory system for automatic chip breaking 

detection via frequency analysis of cutting forces. 

Process Conditions 

Brophy et al. [86] classify drilling operations as ‘normal’ or ‘abnormal’ (tool breakage or missing tool) 

using spindle power signals. Mezentsev et al. [87] develop a method for fault detection in tapping 

based on torque and radial force; the method allows to identify typical faults of tapping operations: 

axial misalignment, tap runout, tooth breakage both singly and in a combined way. Axinte et al. [88] 

develop an online machining monitoring system based on PXI and LabVIEW platforms 

experimentally validated for broaching, turning and milling of aero engine materials. Teti et al. 

[89][90][91] use a process monitoring system based on inexpensive sound energy sensors, audible 

sound frequency analysis and neural network processing of audible sound SFs to identify variable 

process conditions in Al alloy milling. Chen et al. [92] implement a generalised internet-based 

process monitoring facility to provide clients with a virtual manufacturing process optimisation 

facility combining process simulation software with a Remote Machine Monitoring System (RMMS). 

In [93], state monitoring in the slicing of quartz glass ferrules is studied using AE detected during 

normal and abnormal states and extracting SFs for each symptom: a monitoring algorithm is 

proposed to reliably discriminate abnormal from normal states even under noisy circumstances. In 

[94], a polishing expert system integrated with sensory information is proposed which can modify 

even the polishing conditions initially recommended by the system itself, depending on the on-site 

polishing status; a real system using AE signals is developed. Pujana et al. [95] report on a new 

method to assess cutting variables (shear angle, chip thickness, tool vibration amplitude, strain, 

strain rate) and chip topology by means of high speed photography combined with laser printed 

square grid patterns on the workpiece at industrial cutting speeds and feeds. 

Surface integrity 

Azouzi and Guillot [96] apply cutting parameters and two cutting force components for online 

estimation of surface finish and dimensional deviations. Huang and Chen [58] employ a statistical 

approach to correlate surface roughness and cutting force in endmilling operations. Abouelatta and 

Madl [97] develop a method of surface roughness prediction in turning based on cutting parameters 

and FFT analysis of tool vibrations. Salgado et al. [98] use singular spectrum analysis to decompose 

the vibration signals for in-process prediction of surface roughness in turning. Song et al. [99] 

investigate time series analysis of vibration acceleration signals measured during cutting operations 

for real-time prediction of surface roughness. Axinte et al. [100] try to correlate the quality of the 

machined surface after broaching, in terms of geometrical accuracy, burr formation, chatter marks 

and surface anomalies, and the output signals from multiple sensors: AE, vibration, cutting force; the 

former proved efficient to detect small surface anomalies such as plucking, laps and smeared 

material. Guo and Ammula [59] investigate the sensitivity of a broad range of AE parameters to 

white layer, surface finish and tool wear in hard machining: AERMS, frequency and count rate have 

good correlation with white layer formation and may be used to monitor surface integrity factors. 

Kwak and Song [60] apply AE signal analysis to recognise grinding burns in cylindrical plunge 

grinding processes. Chang et al. [101] develop a method for inprocess surface roughness prediction 

based on the displacement signal of spindle motion. Axinte et al. [102][103], using AE signals backed 

up by cutting force data, report on process monitoring to detect surface anomalies when abusively 

broaching and milling difficult-to-machine aerospace materials. In [104], they report on the 

dynamics of broaching of complex part features: force and acceleration signal analysis revealed that 

damped coupled vibrations, resulting in tilted chatter surface marks, occur due to specific geometry 
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of cutting edges that enable coupling of 3D vibrations. In [105][106], the detection of workpiece 

surface discontinuities, plucking, and smearing is attempted through an array of 3 AE sensors during 

multiple cutting edge machining. Rawat and Attia [107] investigate the effect of cutting speed and 

feed rate on the quality features of drilled holes in carbon fiber composites (delamination, geometric 

errors, surface finish) by recording cutting forces with a dynamometer and inserting two K type 

thermocouples inside the drill. 

1.3.6. Decision making support systems and paradigms 

In monitoring and control activities for modern untended manufacturing systems, the role of 

cognitive computing methods employed in the implementation of intelligent sensors and sensorial 

systems is a fundamental one [108]. A conspicuous number of schemes, techniques and paradigms 

have been used to develop decision making support systems functional to come to a conclusion on 

machining process conditions based on sensor signals data features.  

Neural Networks 

An artificial neural network (NN) is a computational model of the human brain that assumes that 

computation is distributed over several simple interconnected processing elements, called neurons 

or nodes, which operate in parallel [109]. A NN provides a mapping through which points in the 

input space are associated with corresponding points in an output space on the basis of designated 

attribute values, of which class membership can be one. NN can capture domain knowledge from 

examples, do not archive knowledge in an explicit form such as rules or databases, can readily handle 

both continuous and discrete data, and have a good generalisation capability. NN can be employed 

as mapping devices, pattern classifiers or patterns completers. For more information on NN, see 

[110][111]. Knowledge is built into a NN by training. Some NN can be trained by feeding them with 

typical input patterns and expected output patterns. The error between actual and expected outputs 

is used to modify the weight of the connections between neurons. This method is known as 

supervised training. Other NN are trained in an unsupervised mode where only the input patterns 

are provided during training: the NN learns automatically to cluster them in groups with similar 

features. 

Supervised learning 

Among supervised learning paradigms, backpropagation (BP) NN, which are multiple-layered 

feedforward (FF) NN [109], have been very popular for their performance. Jemielniak et al. [64] 

noticed that conventional training of FF BP NN very soon leads to overtraining and deterioration of 

the NN response. Training of these NN depends very much on the initial weight values. A good way 

to obtain satisfactory results is to introduce random distortions to the weight system, which 

efficiently push the NN out of local minima of testing errors. An even more effective method is to 

employ temporary shifts in the weights, alternately negative and positive. 

This brings the NN to a balance between training and testing errors and enables a notable reduction 

in the number of hidden nodes. Further supervised NN approaches are also considered here due to 

their use in decision making during monitoring of machining: probabilistic NN (PNN) [112], 

recurrent NN (RNN) [113][114][115], artificial cellular NN (ACNN) [116], fuzzy logic NN (FLNN) or 

neurofuzzy systems (NFS) combining NN and FL methods to integrate the benefits of both 

paradigms [117]. 
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Unsupervised learning. 

In unsupervised learning, only input stimuli are shown to the NN that organises itself internally so 

that each hidden processing element responds strongly to a different set or closely related group of 

stimuli. These sets of stimuli represent clusters in the input space which typically stand for distinct 

real concepts. Among unsupervised learning paradigms, the self-organising map (SOM) NN has been 

largely used for their performance [118]. The SOM NN creates a 2D feature map of input data so that 

order is preserved: if two input vectors are close, they will be mapped to processing elements that are 

close together in the 2D layer that represents the features or clusters of the input data. 

NN applications to sensor monitoring of machining 

The use of PNN for automated classification of broaching tool conditions utilising cutting force data 

is described in [119]. Trials with short broaching tools that simulate the roughing stage of industrial 

broaching were carried out to produce square profile slots while detecting cutting force signals. To 

reproduce real industrial tool failures, where both tool wear and single tooth chipping or breakage 

may randomly occur, the broaching tools had cutting teeth in different conditions: fresh, worn, 

chipped tooth, broken tooth. The push-off force Fy was selected as the most sensitive to tool 

conditions. Tool failure recognition was based on the extraction of a set of N characteristic points 

from the Fy plot by repetitive selection of local maxima to construct N-elements feature vectors 

(pattern vectors). Pattern vectors for different tool conditions were used as inputs to a PNN with 4 

tool state classes: fresh, worn, chipped, broken. The success rate achieved was as high as 92%. A 

scheme of the tool failure recognition paradigm is shown in Fig. 1.8. Recurrent NN with simple 

architecture were used in [120][121][122][123][124] for the evaluation of tool wear in turning. In [120], 

features from wavelet representation of AE signals were related to flank wear. Using RNN data 

processing, accurate flank wear estimations were obtained for the operating conditions adopted in 

the experimentation [121]. In [122], fractal dimensions were used as input features to a RNN for flank 

wear land estimation [123]. The development of this estimator comprised four stages: (i) signal 

representation, (ii) signal separation, (iii) feature extraction, and (iv) state estimation (flank wear 

land). In stage (i), a compact Suboptimal Wavelet Packet Representation (SWPR) [121], superior to 

other wavelet-based signal representation schemes, was used. In stage (ii), a method for suppressing 

noise components from measured time series data, called Modified Wavelet Method (MWM) [124], 

was selected for signal separation due to its high performance.  
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Fig. 1.8. Schematic of the tool condition recognition system.[10]  

The capacity, correlation and information fractal dimensions were extracted as features of a 4D time 

series vector formed by combining cutting force and vibration signals. The extracted features were 

related to flank wear land using a trained RNN that out-performed earlier tool wear estimators in 

terms of architecture simplicity and estimation accuracy. Due to the high signal sampling rate, this 

estimator may be used for real-time flank wear estimation at time epochs of few milliseconds, which 

can help with early detection of undue tool wear and related machining process faults [122].  

Particular attention was paid to industrial needs: (a) no reduction in machine stiffness; (b) 

compatibility with pallet and tool changers; (c) no restriction on tools, parts and cutting parameters; 

(d) robustness against sensing units failures; and (d) independence from cutting conditions and 

system dynamics. To evaluate the system capability for a broad application range, different test 

setups with diverse milling machines, toolings, sensor systems and work materials were used. A NN 

approach was used for decision making, comprising an ACNN [116] applied to acceleration signals 

and a fuzzy NN [117] for axial force signals. Good levels of NN accuracy were obtained with all single 

sensor signals. To realise the concept of multi-sensor chatter detection, the NN outputs for each 

single sensor signal were combined through: (i) linear combination of single sensor chatter 

indicators; (ii) a separate NN for multi-sensor classification; (iii) fuzzy logic classification (Sugeno 

fuzzy model); and (iv) statistical inference classification based on conditional probability, i.e. the 

probability that the system is unstable for a specific combination of single chatter indicators. The 

accuracy of the first three approaches was very high: 95–96%. But residual accuracy in case of 

sensing unit malfunctions dropped notably: 50–75%. The behaviour of the forth approach was quite 

different: accuracy was slightly lower, 94%, but insensitivity to malfunctions was extremely robust: 

90–92%. Thus, the statistical inference multi-sensor chatter indicator, combining NN data 

processing and statistical methods to achieve both high accuracy and high robustness, was assessed 

as the most suitable for industrial milling applications. In [125], a sensor monitoring method, based 

on spindle motor power sensing and NN processing, was evaluated for chip disposal state detection 

in drilling. Spindle motor power measurements have the advantage of being easily realised during 

machining. From them, selected features such as variance/mean, mean absolute deviation, gradient, 

and event count were calculated to form input vectors to a FF BP NN for decision making on chip 

disposal state. The selected features were experimentally shown to be sensitive to changes in chip 

disposal state and relatively insensitive to changes in drilling conditions. So, the proposed 
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monitoring system could effectively recognize chip disposal states over a wide range of drilling 

parameters, even if training was carried out under diverse process conditions. 

Among the various sensing techniques, audible sound energy appears as one of the most practical 

ones since it can replace the traditional ability of the operator, based on his experience and senses 

(mainly vision and hearing), to determine the process state and react adequately to any machine 

performance decay [126]. This monitoring technology, however, has not been exhaustively 

investigated for process monitoring in machining, even though it is extensively used by machine tool 

operators for real-time decision making. In [77][89][90][91], audible sound energy generated by 

milling and band sawing of Al alloy and C steel under different process and tool conditions was 

analysed in the frequency domain by a real-time spectrum analyser to develop an automatic process 

monitoring system based on inexpensive sound sensors. Signal analysis was carried out by 

suppressing the noise generated by the machine and the environment from the sound emitted 

during machining. Classification of audible sound SFs was performed by a NN approach that could 

successfully identify the process and tool conditions solely on the basis of sound sensor monitoring. 

1.3.7. Sensor fusion technology 

Sensor fusion concepts and paradigms 

When measuring a particular variable, a single sensory source for that variable may not be able to 

meet all the required performance specifications. A solution to this problem is sensor fusion that 

combines sensory data from disparate sources so that the resulting information is better than would 

be possible when these sources are used individually. The term ‘‘better’’ can mean more accurate, 

more complete, more dependable, more robust, or refer to the result of an emerging view, such as 

stereoscopic vision that calculates depth information by combining 2D images from two cameras at 

slightly different viewpoints. One can distinguish direct fusion, indirect fusion and fusion of the 

outputs of the former two. Direct fusion is the fusion of sensor data from a set of heterogeneous or 

homogeneous sensors, soft sensors, and history values of sensor data, while indirect fusion uses 

information sources like a priori knowledge about the environment and human input [127][128][129]. 

Reconfigurable monitoring system for sensor fusion research 

Sensor fusion for machining process monitoring has been extensively investigated in 

[130][131][132][133][134] within a multi-annual project aiming at the implementation of a 

reconfigurable multisensory monitoring system (Fig. 1.9), endowed with cutting force, vibration, AE, 

motor current, audible sound and optical sensors, for application to diverse machining processes 

(orthogonal cutting, turning, milling, drilling, and broaching), work materials (steels, composite 

materials, Ti alloys, Ni alloys, Ni–Ti alloys) and monitoring scopes (tool wear, chip form, process 

conditions, work material state, and machinability assessment). Sensor signal characterisation is 

based on frequency domain analysis, accomplishing sensor signal spectral estimation through a 

parametric method that allows for feature extraction from the signal frequency content [135]. In this 

procedure, the signal spectrum is assumed to take on a specific functional form, the parameters of 

which are unknown. The spectral estimation problem, therefore, becomes one of estimating these 

unknown parameters of the spectrum model rather than the spectrum itself [136]. From each signal 

specimen (measurement vector), p features {a1, . . ., ap} (feature vector), characteristic of the 

spectrum model, are obtained through Linear Predictive Analysis (LPA) by applying Durbin’s 

algorithm [137]. The details of this procedure are given in [138]. 
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Fig. 1.9. Reconfigurable multi-sensor monitoring system [10] 

 

Feature vectors are used to construct input pattern vectors for pattern recognition paradigms [139]. If 

single signal specimens are utilised as inputs, the feature vector and pattern vector coincide. If signal 

specimens’ inputs come from two or more diverse sensor signals, input patterns are complex vectors 

integrating sensory data from diverse sources to realise the concept of sensor fusion. Pattern 

recognition and decision making in the reconfigurable multi-sensor monitoring system is carried out 

by three layers FF BP NN whose architecture is automatically configured as a function of the 

monitoring application. The constructed input pattern vectors are the input of the first NN layer 

that, accordingly, assumes a number of nodes equal to the number of input pattern vector elements. 

The hidden layer takes up a number of nodes as a function of the number of input nodes. The output 

layer contains one or more nodes, yielding coded values associated with the monitored process 

variables that need to be recognised. For NN learning, the leave-k-out method, particularly useful 

when dealing with relatively small training sets, is typically utilised [140]: one homogeneous group of 

k patterns, extracted from the training set, is held back in turn for testing and the rest of the patterns 

is used for training. The NN output is correct if the actual output, Oa, is equal to the desired output, 

Od, ±50% of the difference between the numerical codes for different process conditions.  

By setting error E = (Oa - Od), process conditions identification is correct if -0.5 ≤ E ≤ + 0.5; 

otherwise, a misclassification case occurs. The ratio of correct classifications over total training cases 

yields the NN success rate. 

Sensor fusion application to machining process monitoring 

The NN pattern recognition paradigm of the reconfigurable multi-sensor monitoring system proved 

able to effectively realize the concept of sensor fusion for a broad range of machining process 

monitoring applications, yielding satisfactory results also under unfavourable situations by 

synergically combining the knowledge extracted from multiple sources of information. In 

[132][141][142] the system was applied to process condition and machinability evaluation during 

cutting of difficult-to-machine materials such as Ti alloys and NiTi alloys, using cutting force and 

acceleration signals through both single signal and sensor fusion data analysis. 
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Training sets with input pattern vectors of different size and nature were built: (a) signal specimen 

feature vectors of single cutting force or acceleration component: Fx, Fy, Fz, ax, ay, az; (b) integrated 

pattern vectors of the 3 cutting force or acceleration components: 

[F] = [Fx Fy Fz]; [A] = [ax ay az]; (c) sensor fusion pattern vectors combining cutting force and 

acceleration pattern vectors: 

[S] = [F A] = [Fx Fy Fz ax ay az]. The NN outputs were coded values to evaluate process condition 

and machinability. Results showed that the use of single component signal data as pattern inputs 

provided acceptable accuracy: 78–85%. If the integrated 3 acceleration or 3 cutting force components 

signal data are used as inputs, accuracy improves notably: 92–97%. By applying sensor fusion 

technology to fully combine information from cutting force and acceleration signal data, a very high 

accuracy is obtained: 99–100%. 

In Teti and Segreto [131], sensor monitoring during cutting of plastic matrix fibre reinforce 

composites was performed for consistent and reliable identification of tool state. AE and cutting 

force signals were subjected to the NN based sensor fusion paradigm. The superior classification 

results found by merging cutting force and AE data stressed sensor fusion aptitude for data analysis 

enhancement and decision making reinforcement [81][143]. 

It is worth noting that the above results were achieved via sensor fusion of multimodal data which is 

far less common than fusion of data from the same sensor type. This highlights the NN ability to 

efficiently realize the concept of sensor fusion as well as to deal with incomplete or noisy data sets, 

yielding satisfactory results also under adverse situations by synergically combining knowledge 

extracted from multiple sources of information. In [144], the combination of a direct sensor (vision) 

and an indirect sensor (force) is proposed to create an intelligent integrated TCM system for online 

monitoring of tool wear and breakage in milling, using the complementary strengths of the two 

types of sensors. For tool flank wear, images of the tool are captured and processed in-cycle using 

successive moving-image analysis. Two features of the cutting force, which closely indicate flank 

wear, are extracted in-process and appropriately preprocessed. A SOM network is trained in a batch 

mode after each cutting pass, using the two features from the cutting force, and measured wear 

values obtained by interpolating the vision-based measurements. The trained SOM network is 

applied to the succeeding machining pass to estimate the flank wear in-process. The in-cycle and in-

process procedures are employed alternatively for the online monitoring of flank wear. To detect 

tool breakage, two time domain features from cutting force are used, and their thresholds are 

determined dynamically. Again, vision is used to verify any breakage identified in-process through 

cutting force monitoring. Experimental results show that this sensor fusion scheme is feasible and 

effective to implement online TCM in milling and is independent of cutting conditions [10]. 

1.4. ACCENT Project at a Glance  

The manufacture of safety critical rotating components in modern aero engines is by nature very 

conservative. In order to achieve the required engine performance, thermal and mechanical stresses 

are pushed to the maximum, which in turn leaves the choice of materials to exotic super alloys. 

These materials are classed as difficult to machine under normal circumstances, but when added to 

the changes in mechanical properties which occur naturally from part to part, consequently variable 

and often unpredictable tool life, and the ever present possibility of random and unexpected process 

anomalies, machining processes can never be fully optimised. Stringent legislative controls are 
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placed on safety critical component manufacture to ensure that parts entering service will function 

correctly and safely to a declared service life, and in declaring the service life for such a part, the 

machinability issues stated above have to be taken into consideration. Hence manufacturing process 

parameters are often reduced or tools are changed early to ensure part surface integrity.  The 

industry method adopted, is to “freeze” to process following process qualification to first article 

inspection, and successful part validation via laboratory examination and testing. Once frozen, no 

changes to process parameters are permitted without time consuming and costly re-validation. 

Obiectives 

ACCENT aimed at allowing the European Aero Engine manufacturers to improve their 

competitiveness by applying adaptive control techniques to the manufacture of their components. 

Being able to adapt the machining process to the constantly changing tool and component 

conditions whilst operating in a multi-dimensional “approved process window”, processes can be 

optimised to the prevailing conditions and no longer “frozen”. Benefits can be seen in terms of 

reduced part manufacturing process time, more consistent part quality in terms of geometry, surface 

and sub-surface properties, tool usage optimisation, elimination of costly part re-validation due to 

small process changes, and the possibility to improve component design due to optimised machined 

surfaces. 

Description of Work 

The project is divided into five work packages (WP). 

 WP1: project management. 

 WP2: ensures that a standard procedure is generated to define multi-dimensional parameter 

windows for the machining process and material combinations. The outcome will be a 

specification which defines how a machining process has to be established and controlled in 

order to satisfy a defined surface integrity level. 

 WP3: is focused on developing the Standard Procedure for Adaptive Control. The work package 

will deliver an understanding of how to use process monitoring systems in a closed-loop adaptive 

control system that keeps the process within a defined process window. 

 WP4: will bring together those elements that have a direct effect on the component performance 

in terms of life and fitness for purpose. The interaction between the surface integrity generated 

as a result of the machining process parameters, cutting tool and machine tool condition, 

material characteristics, etc. will be investigated and understood. 

 WP5: exploitation and dissemination. 

The knowledge gained by the Project allows for the design function to understand the effect of 

machining processes on part quality and subsequent component service, and thus allows the 

component design to be optimised. With the new validation procedure, new demands can be placed 

on storage and retrieval of related data. 

Expected Results 

For the manufacture of critical aero-engine components, ACCENT aimed at developing a standard 

procedure for defining process parameter windows and methods whereby components 

manufactured within these process parameter windows are validated to meet the demands of design 

and surface integrity requirements. It aimed to provide a new manufacturing methodology that can 

allow significant reduction in recurring validation costs and develop a novel standard procedure for 
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adaptive control based on process monitoring techniques. It took account of factors responsible for 

producing variable part quality and provide aero-engine manufacturers with a methodology that can 

be adapted to individual company procedures, thus allowing the design and manufacture of critical 

components to be optimised. As the majority of Europe's aero-engine companies are project 

partners, increased contacts led to new collaboration opportunities and consolidation of the aero-

engine sector in Europe. ACCENT involved world-leading experts from both universities and 

companies in Europe, thus helping to increase the synergy between academia and industry, and 

helped to secure a supply of highly skilled young aero-engine engineers in Europe. 
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Experimental Activities 

2. Experimental Setup 

2.1. Machine Tool 
The machine tool employed for experimental campaign is a VDF CNC horizontal lathe as reported in 

Fig. 2.1.  

 
Fig. 2.1 – VDF CNC Horizontal Lathe machine tool 

2.2. Work material 

The material used for the experimental activities is INCONEL 718. 

Inconel 718 is a precipitation-hardenable nickel-chromium alloy containing significant amounts of 

iron, niobium, and molybdenum along with lesser amounts of aluminum and titanium. It combines 

corrosion resistance and high strength with outstanding weldability, including resistance to 

postweld cracking. The alloy has excellent creep-rupture strength at temperatures up to 700 °C. Used 

in gas turbines, rocket motors, spacecraft, nuclear reactors, pumps, and tooling.[146]. 
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Typical analysis in percent 

Table 2.1 

Ni(+Co):  50 - 55 Cr: 17 - 21 
Fe: bal Co: 1 
Mo: 2.3 – 3.3 Nb (+Ta) 4.75 – 5.5 
Ti 0.65 – 1.15 Al:  0.2 – 0.8 
C: 0.08 Mn 0.35 
Si:  0.35 B: 0.006 
Cu: 0.3   

Physical properties 

Table 2.2. Inconel 718 physical properties 

Density 8.19 g/cm3 

Melting point range:  1260 – 1336 °C 

Specific heat: 435 J/kg∙K 

Average Coefficient of Thermal 
Expansion: 

13.0 µm/m∙K 

Thermal Conductivity: 11.4 W/m∙K 

Electrical Resistivity: 1250 n∙m 

Curie Temperature: -112 °C 

Typical mechanical properties: 
Table 2.3. Inconel 718 mechanical properties 

At room temperature 

Ultimate tensile 
strength 

1240 MPa 

Yield strength 1036 MPa 
Elongation in 50 mm 12 % 
Elastic modulus 
(Tension) 

211 GPa 

Hardness 36 HRC 
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2.3. Workpiece 
The experimental campaign was carried out by turning an Inconel 718 cylindrical shaft, as shown in 

Fig. 2.2 

 
Fig. 2.2 Inconel 718 Cylindrical shaft utilized as work material 

 

2.4. Cutting tools 
The cutting tools utilized for the experimental tests are Kennametal CNMG120408-K313 rombic 

uncoated carbide tools as the one shown in figure below. 

 

Fig. 2.3 – Kennametal cutting tool 

 

D L10 S Rε D1 

12.70 12.90 4.76 0.8 5.16 

dimensions in millimeters 

Fig. 2.4. Cutting tool dimensions 
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The tool holder is a customized compatible holder as shown in figure 2.5. 

 
Fig. 2.5 – Customized tool holder 
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3. Experimental tests programme 
On the basis of common cutting parameters adopted for turning of Inconel 718 workpieces, three 

cutting speed values were considered for the experimental programme, respectively 45, 50 and 55 

m/min, this last value is close to the maximum acceptable cutting speed, fixed at 56 m/min in case of 

cutting with carbide inserts. 

Three feed rates were considered: 0.10, 0.125 and 0.15 mm/rev according to the literature and the 

common shop floor values. 

Table 3.1. Standard Tests experimental programme 

Test ID V (m/min) f (mm/rev) 

#1 45 0.10 
#2 45 0.125 
#3 45 0.15 
#4 50 0.10 
#5 50 0.125 
#6 50 0.15 
#7 55 0.10 
#8 55 0.125 
#9 55 0.15 

The depth of cut (ap) is kept constant and equal to 0.3 mm for every cutting test. 

An additional experimental programme has been carried out in order to increase the probabilities in 

generating surface defects. 

For this purpose, severe cutting conditions were chosen, increasing both the cutting speed (up to 80 

– 100 m/min) and the feed rate (up to 0.30 mm/rev). The turning tests were carried out both in 

cooled and in dry conditions as reported in the table below. 

Table 3.2. Severe cutting conditions tests experimental programme 

Test ID  V (m/min)  f (mm/rev)  Cutting Fluid  

#1H  80  0.15  On  
#2H  80  0.30  On  
#3H  100  0.15  On  
#4H  100  0.30  On  
#5H  80  0.15  Off  
#6H  80  0.30  Off  
#7H  100  0.15  Off  
#8H  100  0.30  Off  

3.1. Experimental tests procedure 
The experimental tests begin with turning the external diameter for 120 seconds setting a depth of 

cut equal to 0.3 mm. In this way the external diameter will be reduced by 0.6 mm at every step. 

After every step, the tool wear measurement by a profile projector is carried out. If the tool wear has 

reached the 0.3 mm value, considered the maximum recommended acceptable value, then the test is 

completed otherwise there will be another 120 seconds turning step. 
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For the severe cutting conditions tests, the single turning step lasts 30 seconds while the tool wear 

threshold value is 0.5 mm. The experimental procedures can be summarized by the flow charts 

reported below. 

 

Fig.3.1.Experimental procedure flow chart for standard tests 

 

 
Fig. 3.2 Experimental procedure flow chart for Severe Cutting Conditions tests 

In order to have 2 minutes step (or 30 seconds for Severe Cutting Conditions Tests) regardless the 

several cutting speeds, the cutting length Z (illustrated in Fig. 3.3), was calculated as follows: 

Vc Cutting Speed m/min 

 
Fig. 3.3. Cutting length 

T Cutting Time min 

D Diameter mm 

f Feed Rate mm/rev 

n Number of 
revolutions 
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At every step, the workpiece diameter decreases by 0.6 mm (2∙ap), consequently the cutting length 

increases. Hence, after calculating Z for every step, an average value was considered and used in the 

CNC code. 
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4. Sensor Units 

4.1. Cutting Force Sensor 
The cutting force sensor used for process monitoring is MONTRONIX FS-ICA shown in Fig. 4.1 a. 

The cutting force sensor signal is then amplified by a Montronix TSFA3-ICA Force Amplifier (Fig. 

4.1 b) 

 
a 

 
b 

Fig. 4.1. Cutting force sensor (a) and amplifier (b) 

The force amplifier was configured with the following settings, shown in Fig. 4.2 and explained in 

Table 4.1. 

 
Fig. 4.2. Cutting Force amplifier settings 
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Table 4.1. Cutting force amplifier specifications 

Cutting Forces Amplifier Specifications 

Gain Settings 1, 2, 4, 8, 10, 20, 40, 80, 100, 200, 400, 800 
Gain Error ±2% 
Power Provided to Sensor ±15 VDC 

Amplifier Power Requirements 
+15 VDC @ 70mA, 
-15 VDC @ -20 mA 

Temperature Range 0° to 60° C 
Connectors PG9 threated fittings, sensor-specific 
Weight 700 
Sensor Inputs 1, 2 or 3 

 
Table 4.2. Cutting forces sensor signal pre-conditionings 

Cutting Forces Sensor Signal pre-conditioning 

Type of signal:  analog signal 
Selected gain:  8 x 100 = 800 
Frequency band:  0 – 2500 Hz 
Static Part of Force Signal (Fx, Fy, 
Fz): 

3 times ±10V  

Digitalisation:  
through National Instruments USB-6221 A/D converter using sampling 
rate = 10 kHz 

 

4.2. Acoustic Emission Sensor 
The acoustic emission sensor used for process monitoring is MONTRONIX BV-100 Series shown in 

Fig. 4.3. 

The analogue acoustic emission sensor signal is then amplified by a Montronix TSVA4G AE 

Amplifier. 

The RMS signal is obtained by using a SHORT time constant equal to 0.12 ms. 

 
a 

 
b 

Fig. 4.3. Acoustic Emission sensor (a) and amplifier (b) 

The Acoustic Emission amplifier was configured with the following settings, shown in Fig. 4.4 and 

explained in Table 4.3. 
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Fig. 4.4. AE amplifier settings 

 

Table 4.3. AE amplifier specifications 

AE Amplifier Specifications 

Gain Settings 1, 2, 5, 10, 20, 40, 80, 200, 400, 800 
Gain Error ±2% 
Output Voltage 0 to 10 V 
Power provided to Sensor + 15 VDC @ 4mA constant current 

Amplifier Power Requirements 
+15 VDC @ 80mA, 
-15 VDC @ -60 mA 

Temperature Range 0° to 60° C 
Connectors PG9 threated fittings, sensor-specific 
Weight 680 g 

 
Table 4.4. AE sensor signal pre-conditioning 

AE Sensor Signal pre-conditioning 

Type of signal:  analog RMS signal 
Time average: Short (0.12 ms) 
Selected gain:  20 x 40 = 800 
Frequency band: 0 – 2500 Hz 

Digitalisation: 
through National Instruments USB-
6221 A/D converter using sampling 
rate = 10 kHz 

4.3. Vibration Sensor 
The vibration sensor used for this experimental campaign was a Montronix SpectraPulse provided by 

direct USB connection, shown in Fig. 4.5. 
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Fig. 4.5. Montronix SpectraPulse USB Vibration Sensor 

Vibration sensor technical specifications are reported in the table below 

Table 4.5. Vibration sensor technical specifications 

Vibration sensor technical specifications 

Frequency range:  DC 0 to 2500 Hz 
Measuring range: ± 18 g 
Shock Resistance: 1000 g 
Weight: 55 g 
Dimensions (mm): 55 x 30 x 15 
Connection: USB 

4.4. Signal Acquisition 

A customized amplification board was assembled in order to handle the multi-sensor system for the 

experimental campaign. A power supply box is connected to the two amplifiers (Forces and Acoustic 

Emission). In order to avoid signal drift phenomena, the force amplifier is connected to a secondary 

power switch, in order to reset the sensor before every sensing session. 

The power box, the amplifiers and the switch are screwed on a metallic board. A scheme of the 

amplification board is shown in Fig. 4.6, and a picture is reported in Fig.4.7. 

 

Fig. 4.6. Amplification board scheme 
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Fig. 4.7. Custom Amplification Board 

The analogue signal from the Cutting Force sensor and AE sensor have to be digitized by a National 

Instruments USB-6221 A/D 

 

. 

 

Specifications 

Channels  16 analog input channels  
(8 differential channels)  

Resolution  16 bits  
Sample Rate  250 kS/s  
Maximum Voltage Range  10 V , 10 V  
Maximum Voltage Range Accuracy  3100 µV  
Maximum Voltage Range Sensitivity  97.6 µV  
Minimum Voltage Range  -200 mV , 200 mV  
Minimum Voltage Range Accuracy  112 µV  
Minimum Voltage Range Sensitivity  5.2 µV  

Fig. 4.8. National Instrument Data Acquisition Device 

4.4.1. Sampling Frequency 

Nyquist-Shannon theory 

The Nyquist sampling theorem provides a prescription for the nominal sampling interval required to 

avoid aliasing. It may be stated simply as follows: 

The sampling frequency should be at least twice the highest frequency contained in the signal. 

Or in mathematical terms:  

        

Where fs is the sampling frequency (how often samples are taken per unit of time or space), and fc is 

the highest frequency contained in the signal. That this is so is really quite intuitive. 
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Fig. 4.9. 

Consider for example a signal composed of a single sinewave at a frequency of 1 Hz: 

Sampling this waveform at 2 Hz (as dictated by the Nyquist theorem) is sufficient to capture each 

peak and trough of the signal: 

 

Fig. 4.10. 

By sampling at a frequency higher than this, for example 3 Hz, there are more than enough samples 

to capture the variations in the signal: 

 
Fig. 4.11. 

However, sampling at a frequency lower than 2 Hz, for example at 1.5 Hz, there will not be enough 

samples to capture all the peaks and troughs in the signal: 
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Fig. 4.12. 

Note here that here there is not only a loss of information, but the information about the signal is 

wrong. The person receiving these samples, without any previous knowledge of the original signal, 

may well be mislead into thinking that the signal has quite a different form: 

 
Fig. 4.13. 

From this example, it’s possible to see the reason for the term aliasing. That is, the signal now takes 

on a different “persona", or a false presentation, due to being sampled at an insufficiently high 

frequency. 

Now we are ready to think about the sampling of a complex signal composed of many frequency 

components. By Fourier's theorem, it’s known that any continuous signal may be decomposed in 

terms of a sum of sines and cosines at different frequencies. 

For example, the following waveform was composed by adding together sinewaves at frequencies of 1 

Hz, 2 Hz, and 3 Hz: 

 
Fig. 4.14. 
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According to the Nyquist sampling theorem, the signal must be sampled at twice the highest 

frequency contained in the signal. In this case, we have fc=3 Hz, and so the Nyquist theorem tells 

that the sampling frequency, fs, must be at least 6 Hz. And sure enough, this appears to be sufficient: 

 
Fig. 4.15. 

Thus, when a signal contains not just one but many different frequencies added together, the 

minimal sampling rate needed to avoid aliasing is just twice whatever the highest frequency is, 

irrespective of how many other frequency components there are [147]. 

4.4.2. RMS vs RAW 

The RAW information from the monitoring is a collection of positive and negative electrical signals, 

their frequency (how often they occur), and their amplitude give information about the stress 

generated i.e. by the elastic waves in case of acoustic emission [148]. 

 
Fig. 4.16. Raw signal 

In the raw graph (Fig. 4.16) the X axis displays time and the Y axis displays amplitude in V (Volts), 

both positive and negative about the axis which is zero. This 3 second sample of data has an 

amplitude of 400V. 

RMS or Root Mean Square is a technique for rectifying the RAW signal and converting it to an 

amplitude envelope, which is easier to view, to make it easier to view. The rectification process 

converts all the numbers into positive values rather than positive and negative. The RMS graph of 

the same 3 seconds of signal is shown below in Fig. 4.17. 

 
Fig. 4.17. RMS Signal 

The RMS of a collection of n values              is 
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The corresponding formula for a continuous function      defined over the interval         is 

      
 

     
           

  

  

 

And the RMS for a function over all time is 

        
   

 
 

  
          

 

  

 

4.4.3. Time constant 

RMS and Noise calculations are always performed through an average of the instantaneous voltages 

over a period of time called the Time Constant. The shorter the time constant, the closer the RMS 

value is to the instantaneous peak value. 

The figures below illustrate the difference in peak signal sampling using two different time 

constants. In case of using τRMS = 1.2 ms the width of the peak basis is circa 2000 samples (0.4 s at 5 

kHz- Fig. 4.18), while using τRMS = 0.12 ms it is circa 700 samples (0.14 s at 5 kHz – Fig. 4.19) [149]. 

 
Fig. 4.18. Peak signal sampled with Time Constant τRMS = 1.2 ms 
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Fig. 4.19. Peak signal sampled with Time Constant τRMS = 0.12 ms 

According to Nyquist theorem and taking into account the natural frequencies of the available 

equipment, and bearing in mind the purposes of this research, it has been decided to use as sampling 

frequency the following values: 

Table 4.6. Sampling frequencies 

Sensor Unit Sampling Frequency 

Cutting Forces 

10 kHz Acoustic Emission RMS 

Power 

Vibration 3 kHz 

In this way it is possible to easily handle the arrays of data for all the application needed without any 

loss of quality in terms of precision and reliability. 
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4.5. Acquisition Software 
For the Cutting Forces, Acoustic Emission and Power, the signal acquisition software is LABview.  

For the vibration signal, the specific VIBRALOG software has been used. 

 
Fig. 4.20. Vibralog and Labview screenshotGeneral Scheme 
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In Fig. 4.21 a general schema of the multi sensor monitoring system applied to the machine tool is 

reported. 

 
Fig. 4.21. Sensor Monitoring General Setup Scheme 
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5. Tool wear 

5.1. Generalities 
Gradual wear occurs at two principal locations on a cutting tool: the top rake face and the flank. 

Accordingly, two main types of tool wear can be distinguished: crater wear and flank wear, 

illustrated in Figs. 5.1 and 5.2. A single-point tool is used to explain tool wear and the mechanisms 

that cause it. Crater wear, Fig. 5.2(a), consists of a cavity in the rake face of the tool that forms and 

grows from the action of the chip sliding against the surface. High stresses and temperatures 

characterize the tool–chip contact interface, contributing to the wearing action. The crater can be 

measured either by its depth or its area. Flank wear, Fig. 5.2(b), occurs on the flank, or relief face, of 

the tool. It results from rubbing between the newly generated work surface and the flank face 

adjacent to the cutting edge. Flank wear is measured by the width of the wear band, FW. This wear 

band is sometimes called the flank wear land [150]. 

 
5.1. Diagram of worn cutting tool, showing the principal locations and types of wear that occur 

Certain features of flank wear can be identified. First, an extreme condition of flank wear often 

appears on the cutting edge at the location corresponding to the original surface of the workpart. 

This is called notch wear. It occurs because the original work surface is harder and/or more abrasive 

than the internal material, which could be caused by work hardening from cold drawing or previous 

machining, sand particles in the surface from casting, or other reasons. As a consequence of the 

harder surface, wear is accelerated at this location. A second region of flank wear that can be 

identified is nose radius wear; this occurs on the nose radius leading into the end cutting edge. 

 
(a) 

 
(b) 

Fig. 5.2. (a) Crater wear and (b) flank wear on a cemented carbide tool, as seen through a toolmaker’s 
microscope. (Courtesy of Manufacturing Technology Laboratory, Lehigh University, photos by J. C. Keefe.) 

The mechanisms that cause wear at the tool–chip and tool–work interfaces in machining can be 

summarized as follows: 
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 Abrasion. This is a mechanical wearing action caused by hard particles in the work material 

gouging and removing small portions of the tool. This abrasive action occurs in both flank wear 

and crater wear; it is a significant cause of flank wear. 

 Adhesion. When two metals are forced into contact under high pressure and temperature, 

adhesion or welding occur between them. These conditions are present between the chip and the 

rake face of the tool. As the chip flows across the tool, small particles of the tool are broken away 

from the surface, resulting in attrition of the surface. 

 Diffusion. This is a process in which an exchange of atoms takes place across a close contact 

boundary between two materials. In the case of tool wear, diffusion occurs at the tool–chip 

boundary, causing the tool surface to become depleted of the atoms responsible for its hardness. 

As this process continues, the tool surface becomes more susceptible to abrasion and adhesion. 

Diffusion is believed to be a principal mechanism of crater wear. 

 Chemical reactions. The high temperatures and clean surfaces at the tool–chip interface in 

machining at high speeds can result in chemical reactions, in particular, oxidation, on the rake 

face of the tool. The oxidized layer, being softer than the parent tool material, is sheared away, 

exposing new material to sustain the reaction process. 

 Plastic deformation. Another mechanism that contributes to tool wear is plastic deformation of 

the cutting edge. The cutting forces acting on the cutting edge at high temperature cause the 

edge to deform plastically, making it more vulnerable to abrasion of the tool surface. Plastic 

deformation contributes mainly to flank wear. 

Most of these tool-wear mechanisms are accelerated at higher cutting speeds and temperatures. 

Diffusion and chemical reaction are especially sensitive to elevated temperature [150]. 

Tool life and the Taylor tool life equation 

As cutting proceeds, the various wear mechanisms result in increasing levels of wear on the cutting 

tool. The general relationship of tool wear versus cutting time is shown in Fig. 5.3. Although the 

relationship shown is for flank wear, a similar relationship occurs for crater wear. Three regions can 

usually be identified in the typical wear growth curve. The first is the break-in period, in which the 

sharp cutting edge wears rapidly at the beginning of its use. This first region occurs within the first 

few minutes of cutting. The break-in period is followed by wear that occurs at a fairly uniform rate. 

This is called the steady-state wear region. In our figure, this region is pictured as a linear function of 

time, although there are deviations from the straight line in actual machining. Finally, wear reaches 

a level at which the wear rate begins to accelerate. This marks the beginning of the failure region, in 

which cutting temperatures are higher, and the general efficiency of the machining process is 

reduced. If allowed to continue, the tool finally fails by temperature failure. 
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Fig. 5.3. Tool wear as a function of cutting time. Flank wear (FW) is used here as the measure of tool wear. Crater 

wear follows a similar growth curve. 

The slope of the tool wear curve in the steady-state region is affected by work material and cutting 

conditions. Harder work materials cause the wear rate (slope of the tool wear curve) to increase. 

Increased speed, feed, and depth of cut have a similar effect, with speed being the most important of 

the three. If the tool wear curves are plotted for several different cutting speeds, the results appear as 

in Fig. 5.4. As cutting speed is increased, wear rate increases so the same level of wear is reached in 

less time. 

Tool life is defined as the length of cutting time that the tool can be used. Operating the tool until 

final catastrophic failure is one way of defining tool life. This is indicated in Fig. 5.4. by the end of 

each tool wear curve. However, in production, it is often a disadvantage to use the tool until this 

failure occurs because of difficulties in resharpening the tool and problems with work surface 

quality. As an alternative, a level of tool wear can be selected as a criterion of tool life, and the tool is 

replaced when wear reaches that level. A convenient tool life criterion is a certain flank wear value, 

such as 0.5 mm, illustrated as the horizontal line on the graph. When each of the three wear curves 

intersects that line, the life of the corresponding tool is defined as ended. If the intersection points 

are projected down to the time axis, the values of tool life can be identified [150]. 

 
Fig. 5.4. Effect of  cutting speed on tool flank wear for three cutting speeds. Hypothetical values of speed and tool 

life are shown for a tool life criterion of 0.50 mm flank wear 

Taylor Tool Life Equation  

If the tool life values for the three wear curves in Fig. 5.4. are plotted on a natural log–log graph of 

cutting speed versus tool life, the resulting relationship is a straight line as shown in Fig. 5.5. The 



 
 49 

discovery of this relationship around 1900 is credited to F.W. Taylor. It can be expressed in equation 

form and is called the Taylor tool life equation: 

      5.1 

where v = cutting speed, m/min; T = tool life, min; and n and C are parameters whose values depend 

on feed, depth of cut, work material, tooling (material in particular), and the tool life criterion used. 

The value of n is relative constant for a given tool material, whereas the value of C depends on tool 

material, work material, and cutting conditions.  

 
Fig. 5.5. Natural log-plot of cutting speed vs- tool life 

Basically, Eq. 5.1 states that higher cutting speeds result in shorter tool lives. Relating the parameters 

n and C to Fig. 5.5, n is the slope of the plot (expressed in linear terms rather than in the scale of the 

axes), and C is the intercept on the speed axis. C represents the cutting speed that results in a 1-min 

tool life. The problem with Eq. 5.1 is that the units on the right-hand side of the equation are not 

consistent with the units on the left-hand side. To make the units consistent, the equation should be 

expressed in the form 

          
   5.2 

where Tref = a reference value for C. Tref is simply 1 min when m/min (ft/min) and minutes are used 

for v and T, respectively. The advantage of Eq. 5.2 is seen when it is desired to use the Taylor 

equation with units other than m/min (ft/min) and minutes—for example, if cutting speed were 

expressed as m/sec and tool life as sec. In this case, Tref would be 60 sec and C would therefore be the 

same speed value as in Eq. 5.1, although converted to units of m/sec. The slope n would have the 

same numerical value as in Eq. 5.1.  

An expanded version of Eq. 5.2 can be formulated to include the effects of feed, depth of cut, and 

even work material hardness: 

               
     

     
 

    
 

 5.3 

where f = feed, mm; d = depth of cut, mm; H = hardness, expressed in an appropriate hardness scale; 

m, p, and q are exponents whose values are experimentally determined for the conditions of the 

operation; K = a constant analogous to C in Eq. 5.2; and fref, dref, and Href are reference values for feed, 

depth of cut, and hardness. 
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The values of m and p, the exponents for feed and depth, are less than 1.0. This indicates the greater 

effect of cutting speed on tool life, because the exponent of v is 1.0. After speed, feed is next in 

importance, so m has a value greater than p. The exponent for work hardness, q, is also less than 1.0. 

Perhaps the greatest difficulty in applying Eq. 5.3 in a practical machining operation is the 

tremendous amount of machining data that would be required to determine the parameters of the 

equation. Variations in work materials and testing conditions also cause difficulties by introducing 

statistical variations in the data. Eq. 5.3 is valid in indicating general trends among its variables, but 

not in its ability to accurately predict tool life performance. To reduce these problems and make the 

scope of the equation more manageable, some of the terms are usually eliminated. For example, 

omitting depth and hardness reduces Eq. 5.3 to the following: 

           
     

  5.4 

where the terms have the same meaning as before, except that the constant K will have a slightly 

different interpretation. 

Tool Life Criteria in Production  

Although flank wear is the tool life criterion in our previous discussion of the Taylor equation, this 

criterion is not very practical in a factory environment because of the difficulties and time required 

to measure flank wear. Following are nine alternative tool life criteria that are more convenient to 

use in a production machining operation, some of which are admittedly subjective [150]:  

 Complete failure of the cutting edge (fracture failure, temperature failure, or wearing until 

complete breakdown of the tool has occurred). This criterion has disadvantages, as discussed 

earlier. 

 Visual inspection of flank wear (or crater wear) by the machine operator (without a toolmaker’s 

microscope). This criterion is limited by the operator’s judgment and ability to observe tool wear 

with the naked eye. 

 Fingernail test across the cutting edge by the operator to test for irregularities. 

 Changes in the sound emitting from the operation, as judged by the operator. 

 Chips become ribbony, stringy, and difficult to dispose of. 

 Degradation of the surface finish on the work. 

 Increased power consumption in the operation, as measured by a wattmeter connected to the 

machine tool. 

 Workpiece count. The operator is instructed to change the tool after a certain specified number 

of parts have been machined. 

 Cumulative cutting time. This is similar to the previous workpiece count, except that the length 

of time the tool has been cutting is monitored. This is possible on machine tools controlled by 

computer; the computer is programmed to keep data on the total cutting time for each tool.  
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5.2. Tool wear measurement 
ISO 3685:1993 (E) 

Particles adhering to the flank directly under the wear land can give the appearance of a larger width 

of the wear land. Also a deposit in the crater results in lower values of the crater depth. Loose 

material shall be removed carefully but chemical etchants shall not be used except at the end of the 

test. 

For the purpose of the wear measurements, the major cutting edge is considered to be divided into 

four zones as shown in Fig. 5.6.  

 Zone C is the curved part of the cutting edge at the tool corner. 

 Zone B is the remaining straight part of the cutting edge between zone C and zone A. 

 Zone A is the quarter of the worn cutting edge length b farthest away from the tool corner. 

 Zone N extends beyond the area of mutual contact between the tool and workpiece for 

approximately 1 mm to 2 mm along the major cutting edge. The wear is of notch type. 

The width of the flank wear land VBB shall be measured within zone B in the tool cutting edge plane 

Ps (the plane containing the major cutting edge and the assumed direction of primary motion) 

perpendicular to the major cutting edge. The width of the flank wear land shall be measured from 

the position of the original major cutting edge [151]. 

Flank wear 

This is the best known type of tool wear (Fig. 5.6). In many cases the flank wear land has a rather 

uniform width along the middle portion of the straight part of the major cutting edge. The width of 

the flank wear land is relatively easy to measure. The growing width of the flank wear land leads to a 

reduction in the quality of the tool. All cutting tool materials normally have a high initial rate of 

flank wear which usually decreases considerably after a short time of cutting, unless excessive 

cutting speeds are used. The flank wear of high-speed steel frequently develops differently from the 

wear of sintered carbide and ceramic tools. 

High-speed steel tools may have prolonged periods of very little measurable increase of flank wear. 

This phenomenon occurs especially at low cutting speeds when machining ductile materials. At 

higher cutting speeds the increase of flank wear of all cutting tool materials is usually approximately 

uniform, subsequent to the initial high wear rate. The final portion of the flank wear versus time 

graph often shows an accelerated rate of wear which leads to catastrophic failure. The width of the 

flank wear land VBmax. (Fig. 5.6) is a suitable tool wear measure and a predetermined value of 

VBmax. is regarded as a good tool-life criterion [151]. 

Notch wear 

This is a special type of combined flank and face wear which occurs adjacent to, but outside, the 

point where the major cutting edge intersects the work surface, and may under certain  

circumstances make the change of tools necessary. The profile and the length of the wear notch VBN 

(Fig. 5.6) depend to a great extent on the accuracy of repeated depth settings. For these reasons the 

notch wear is excluded from the evaluation of the width of the flank wear land (see 8.3). In special 

cases where the notch wear is predominant over all other tool wear phenomena, the length of the 

wear notch may be used as the tool wear measure. In such cases the value for VB, may be used as the 

tool-life criterion [151]. 
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5.6. Some types of wear on turning tool 

Wear of the face 

Crater wear is the most commonly occurring type of face wear. The depth of the crater KT (Fig. 5.6) 

may be used as a tool wear measure and a predetermined value of KT may be selected as a tool-life 

criterion. Crater wear is more important for carbide tools than for ceramic and high-speed steel. The 

position of the crater relative to the cutting edge has also some importance. A deep, wide crater far 

away from the cutting edge can be less dangerous to the tool than a less deep, narrow crater close to 

the cutting edge. 

The distance from the front edge of the crater to the major cutting edge is sometimes a useful 

criterion which if limited can eliminate catastrophic failure. This is one of the reasons why the values 

for KT as a tool-life criterion are given in relation to the feed. For special purposes, the crater centre 

distance KM and the crater width KB may be measured as additional information. However, they 

should not be used as tool-life criteria. 
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The crater centre distance KM (the distance between the original major cutting edge and the deepest 

point of the crater) is measured in zone B parallel to the face and perpendicular to the major cutting 

edge (Fig. 5.6). 

The crater width KB (the distance between the original major cutting edge and the rear side of the 

crater) is measured parallel to the face in zone B and perpendicular to the major cutting edge (Fig. 

5.6). As the crater centre distance KM depends not only on feed but also on work material and tool 

material, the crater ratio   
  

  
 is sometimes calculated. 

A chosen value may then be used as the tool-life criterion and the value K approximately 0.1 is 

recommended [151]. 

5.3. Tool wear measurement during experimental tests 
In order to built tool wear curves development it is necessary to carry out tool wear measurement 

after every 2 minutes turning step. 

It has been chosen as tool life criteria, the VBmax value, it means the maximum value of flank wear 

as explained in § 5.2. The maximum acceptable value was set at 0.3 mm for standard tests and 0.5 

mm for severe conditions cutting tests. 

The first step for tool wear measurement is to remove the tool insert from the tool holder on the 

lathe, and clean it to remove chip parts. 

The insert is then positioned in an identical tool holder located on the profile projector.. 

Then, the insert is enlightened by two radial light (Fig.5.7) in a dark environment. 

On the profile projector screen, the enlarged image of the tool flank is visualized. A correct 

visualization depends on the adjustment of the two radial lights. 

Once the tool is positioned and enlightened adjustment is done, the measuring starting point, zero, 

is set in correspondence of the top edge of the insert, as shown in Fig 5.8. 

By a joystick the system is moved until the flank wear lower edge is reached and the measurement is 

recorded. 

By repeating this procedure after every turning step, it is possible to track the tool wear curves 

development for every experimental test. 
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Fig. 5.7. Cutting tool positioned in the profile projector 

 
Fig. 5.8. Tool flank wear VBmax as visualized on the profile projector screen, for T8_H test. 
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5.4. Tool wear measurement reports 
 

Test #1  

  Vc 45 m/min   
  
  
   

  f 0.1 mm/rev 
  ap 0.3 mm 
  Z 28.5 mm 

Step n (rev/min) D (mm) T  (s) VBmax (mm) 
1 140 102.4 120 0.083 
2 141 101.8 240 0.129 
3 142 101.2 360 0.146 
4 142 100.6 480 0.160 
5 143 100 600 0.172 
6 144 99.4 720 0.186 
7 145 98.8 840 0.202 
8 146 98.2 960 0.215 
9 147 97.6 1080 0.229 

10 148 97 1200 0.239 
11 149 96.4 1320 0.253 
12 150 95.8 1440 0.267 
13 150 95.2 1560 0.285 
14 151 94.6 1680 0.301 

 

 

Test #1r 

  Vc 45 m/min   
  
  
   

  f 0.1 mm/rev 
  ap 0.3 mm 
  Z 34.5 mm 

Step n (rev/min) D (mm) T  (s) VBmax (mm) 
1 170 84.25 120 0.108 
2 171 83.65 240 0.132 
3 172 83.05 360 0.143 
4 174 82.45 480 0.156 
5 175 81.85 600 0.171 
6 176 81.25 720 0.180 
7 178 80.65 840 0.188 
8 179 80.05 960 0.195 
9 180 79.45 1080 0.203 

10 182 78.85 1200 0.220 
11 183 78.25 1320 0.231 
12 184 77.65 1440 0.244 
13 186 77.05 1560 0.256 
14 187 76.45 1680 0.273 
15 189 75.85 1800 0.300 
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Test #2 

  Vc 45 m/min   
  
  
  

  f 0.125 mm/rev 
  ap 0.3 mm 
  Z 35.5 mm 

Step n (rev/min) D (mm) T  (s) VBmax (mm) 
1 140 102.4 120 0.100 
2 141 101.8 240 0.136 
3 142 101.2 360 0.152 
4 142 100.6 480 0.170 
5 143 100 600 0.184 
6 144 99.4 720 0.192 
7 145 98.8 840 0.203 
8 146 98.2 960 0.214 
9 147 97.6 1080 0.223 

10 148 97 1200 0.242 
11 149 96.4 1320 0.256 
12 150 95.8 1440 0.270 
13 150 95.2 1560 0.285 
14 151 94.6 1680 0.310 

 

 

Test #2r 

  Vc 45 m/min   
  
  
  

  f 0.125 mm/rev 
  ap 0.3 mm 
  Z 43 mm 

Step n (rev/min) D (mm) T  (s) VBmax (mm) 
1 170 84.25 120 0.112 
2 171 83.65 240 0.128 
3 172 83.05 360 0.144 
4 174 82.45 480 0.159 
5 175 81.85 600 0.178 
6 176 81.25 720 0.185 
7 178 80.65 840 0.191 
8 179 80.05 960 0.206 
9 180 79.45 1080 0.215 

10 182 78.85 1200 0.230 
11 183 78.25 1320 0.242 
12 184 77.65 1440 0.256 
13 186 77.05 1560 0.278 
14 187 76.45 1680 0.300 
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Test #3 

  Vc 45 m/min   
  
  
  

  f 0.15 mm/rev 
  ap 0.3 mm 
  Z 42.5 mm 

Step n (rev/min) D (mm) T  (s) VBmax (mm) 
1 140 102.4 120 0.104 
2 141 101.8 240 0.138 
3 142 101.2 360 0.157 
4 142 100.6 480 0.170 
5 143 100 600 0.188 
6 144 99.4 720 0.210 
7 145 98.8 840 0.224 
8 146 98.2 960 0.248 
9 147 97.6 1080 0.262 

10 148 97 1200 0.289 
11 149 96.4 1320 0.306 

 

Test #3r 

  Vc 45 m/min   
  
  
  

  f 0.15 mm/rev 
  ap 0.3 mm 
  Z 39 mm 

Step n (rev/min) D (mm) T  (s) Vbmax (mm) 
1 130 110.25 120 0.107 
2 131 109.65 240 0.132 
3 131 109.05 360 0.156 
4 132 108.45 480 0.179 
5 133 107.85 600 0.192 
6 134 107.25 720 0.226 
7 134 106.65 840 0.249 
8 135 106.05 960 0.280 
9 136 105.45 1080 0.300 

 

Test #4 

  Vc 50 m/min   
  
  
  

  f 0.1 mm/rev 
  ap 0.3 mm 
  Z 40 mm 

Step n (rev/min) D (mm) T  (s) VBmax (mm) 
1 x x 120 0.120 
2 x x 240 0.132 
3 x x 360 0.154 
4 x x 480 0.176 
5 x x 600 0.205 
6 x x 720 0.224 
7 x x 840 0.232 
8 x x 960 0.250 
9 x x 1080 0.276 

10 x x 1200 0.307 
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Test #4r 

  Vc 50 m/min   
  
  
  

  f 0.1 mm/rev 
  ap 0.3 mm 
  Z 31.5 mm 

Step n (rev/min) D (mm) T  (s) Vbmax (mm) 
1 155 102.4 120 0.122 
2 156 101.8 240 0.151 
3 157 101.2 360 0.181 
4 158 100.6 480 0.203 
5 159 100 600 0.222 
6 160 99.4 720 0.253 
7 161 98.8 840 0.281 
8 162 98.2 960 0.313 

 

Test #4rr 

  Vc 50 m/min   
  
  
  

  f 0.1 mm/rev 
  ap 0.3 mm 
  Z 28.8 mm 

Step n (rev/min) D (mm) T  (s) Vbmax (mm) 
1 144 110.25 120 0.110 
2 145 109.65 240 0.132 
3 146 109.05 360 0.166 
4 147 108.45 480 0.194 
5 148 107.85 600 0.225 
6 148 107.25 720 0.249 
7 149 106.65 840 0.278 
8 150 106.05 960 0.303 

 

Test #5 

  Vc 50 m/min   
  
  
  

  f 0.125 mm/rev 
  ap 0.3 mm 
  Z 50 mm 

Step n (rev/min) D (mm) T  (s) Vbmax (mm) 
1 x x 120 0.126 
2 x x 240 0.150 
3 x x 360 0.164 
4 x x 480 0.192 
5 x x 600 0.232 
6 x x 720 0.268 
7 x x 840 0.292 
8 x x 960 0.332 
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Test #5r 

  Vc 50 m/min   
  
  
  

  f 0.125 mm/rev 
  ap 0.3 mm 
  Z 43.5 mm 

Step n (rev/min) D (mm) T  (s) Vbmax (mm) 
1 173 92.05 120 0.101 
2 174 91.45 240 0.128 
3 175 90.85 360 0.147 
4 176 90.25 480 0.177 
5 178 89.65 600 0.200 
6 179 89.05 720 0.230 
7 180 88.45 840 0.263 
8 181 87.85 960 0.308 

 

Test #6 

  Vc 50 m/min   
   f 0.15 mm/rev 

  ap 0.3 mm 
  Z 59.5 mm 

Step n (rev/min) D (mm) T  (s) Vbmax (mm) 
1 x x 120 0.114 
2 x x 240 0.142 
3 x x 360 0.175 
4 x x 480 0.212 
5 x x 600 0.250 
6 x x 720 0.286 
7 x x 840 0.315 

 

Test #6r  

  Vc 50 m/min   
  
  
  

  f 0.15 mm/rev 
  ap 0.3 mm 
  Z 52 mm 

Step n (rev/min) D (mm) T  (s) Vbmax (mm) 
1 173 92.05 120 0.136 
2 174 91.45 240 0.187 
3 175 90.85 360 0.222 
4 176 90.25 480 0.256 
5 178 89.65 600 0.301 
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Test #7  

  Vc 55 m/min   
   f 0.1 mm/rev 

  ap 0.3 mm 
  Z 44 mm 

Step n (rev/min) D (mm) T  (s) VBmax (mm) 
1 x x 120 0.131 
2 x x 240 0.154 
3 x x 360 0.173 
4 x x 480 0.217 
5 x x 600 0.243 
6 x x 720 0.282 
7 x x 840 0.318 

 

Test #7r  

  Vc 55 m/min   
  
  
  

  f 0.1 mm/rev 
  ap 0.3 mm 
  Z 38.5 mm 

Step n (rev/min) D (mm) T  (s) VBmax (mm) 
1 190 92.05 120 0.161 
2 191 91.45 240 0.223 
3 193 90.85 360 0.278 
4 194 90.25 480 0.349 

 

Test #7rr  

  Vc 55 m/min   
  
  
  

  f 0.1 mm/rev 
  ap 0.3 mm 
  Z 35 mm 

Step n (rev/min) D (mm) T  (s) VBmax (mm) 
1 173 101.37 120 0.128 
2 174 100.77 240 0.171 
3 175 100.17 360 0.229 
4 176 99.57 480 0.282 
5 177 98.97 600 0.326 

 

Test #8  

  Vc 55 m/min   
  
  
  

  f 0.125 mm/rev 
  ap 0.3 mm 
  Z 52 mm 

Step n (rev/min) D (mm) T  (s) VBmax (mm) 
1 206 85.1 120 0.108 
2 207 84.5 240 0.205 
3 209 83.9 360 0.262 
4 210 83.3 480 0.320 
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Test #8r 

  Vc 55 m/min   
  
  
  

  f 0.125 mm/rev 
  ap 0.3 mm 
  Z 48 mm 

Step n (rev/min) D (mm) T  (s) VBmax (mm) 
1 190 92.05 120 0.192 
2 191 91.45 240 0.261 
3 193 90.85 360 0.316 

 

Test #8rr  

  Vc 55 m/min   
  
  
  

  f 0.125 mm/rev 
  ap 0.3 mm 
  Z 43.5 mm 

Step n (rev/min) D (mm) T  (s) VBmax (mm) 
1 173 101.37 120 0.181 
2 174 100.77 240 0.257 
3 175 100.17 360 0.329 

 

Test #9 

  Vc 55 m/min   
  
  
  

  f 0.125 mm/rev 
  ap 0.3 mm 
  Z 62 mm 

Step n (rev/min) D (mm) T  (s) VBmax (mm) 
1 206 85.1 120 0.200 
2 207 84.5 240 0.283 
3 209 83.9 360 0.363 

 

Test #9r 

  Vc 55 m/min   
  
  
  

  f 0.15 mm/rev 
  ap 0.3 mm 
  Z 52 mm 

Step n (rev/min) D (mm) T  (s) VBmax (mm) 
1 173 101.37 120 0.252 
2 174 100.77 240 0.332 

 

Test #9rr  

  Vc 55 m/min   
  
  
  

  f 0.15 mm/rev 
  ap 0.3 mm 
  Z 48 mm 

Step n (rev/min) D (mm) T  (s) VBmax (mm) 
1 159 110.43 120 0.223 
2 159 109.83 240 0.305 

 

 



 
 62 

On the basis of the tool wear measurements listed above, it was possible to draw the tool wear curves 

development, as reported in Fig. 5.9 for Standard Tests 

 

Fig. 5.9. Tool wear curves for standard tests 

 

Test #1H 

  Vc 80 m/min Fluid: on 
   f 0.15 mm/rev 

  ap 0.3 mm 
  Z 17.4 mm 

Step n (rev/min) D (mm) T  (s) VBmax (mm) 
1 231 110.25 30 0.198 
2 232 109.65 60 0.278 
3 234 109.05 90 0.345 
4 235 108.45 120 0.437 
5 236 107.85 150 0.557 

 

Test #2H 

  Vc 80 m/min Fluid: on 
 
 

  f 0.3 mm/rev 
  ap 0.3 mm 
  Z 34.7 mm 

Step n (rev/min) D (mm) T  (s) VBmax (mm) 
1 231 110.25 30 0.230 
2 232 109.65 60 0.305 
3 234 109.05 90 0.415 
4 235 108.45 120 0.540 
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Test #3H 

  Vc 100 m/min Fluid: on 
    f 0.15 mm/rev 

  ap 0.3 mm 
  Z 21.7 mm 

Step n (rev/min) D (mm) T  (s) VBmax (mm) 
1 289 110.25 30 0.285 
2 290 109.65 60 0.348 
3 292 109.05 90 0.865 

 

Test #4H  

  Vc 100 m/min Fluid: on 
    f 0.3 mm/rev 

  ap 0.3 mm 
  Z 43.4 mm 

Step n (rev/min) D (mm) T  (s) VBmax (mm) 
1 289 110.25 30 0.593 
2 290 109.65 60 0.765 

 

Test #5H 

  Vc 80 m/min Fluid: off 
  
  
  

  f 0.15 mm/rev 
  ap 0.3 mm 
  Z 17.4 mm 

Step n (rev/min) D (mm) T  (s) VBmax (mm) 
1 231 110.25 30 0.198 
2 232 109.65 60 0.280 
3 234 109.05 90 0.390 
4 235 108.45 120 0.507 

 

Test #6H    

  Vc 80 m/min Fluid: off 
  
  

  f 0.3 mm/rev 
  ap 0.3 mm 
  Z 34.7 mm 

Step n (rev/min) D (mm) T  (s) VBmax (mm) 
1 231 110.25 30 0.244 
2 232 109.65 60 0.304 
3 234 109.05 90 0.378 
4 235 108.45 120 0.601 
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Test #7H 

  Vc 100 m/min Fluid: off 
   f 0.15 mm/rev 

  ap 0.3 mm 
  Z 21.7 mm 

Step n (rev/min) D (mm) T  (s) VBmax (mm) 
1 289 110.25 30 0.285 
2 290 109.65 60 0.348 
3 292 109.05 90 0.865 

 

Test #8H 

  Vc 100 m/min Fluid: off 
  f 0.3 mm/rev 
  ap 0.3 mm 
  Z 43.4 mm 

Step n (rev/min) D (mm) T  (s) VBmax (mm) 
1 289 110.25 30 1.082 

 

On the basis of the tool wear measurements listed above, it was possible to draw the tool wear curves 

development, for Severe Cutting Conditions Tests, as reported in Fig. 5.10 and Fig. 5.11 for cooled 

tests and dry tests respectively. 

 

Fig. 5.10. Tool wear curves for Severe Conditions Cutting Tests (Cooled Tests) 
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Fig. 5.11. Tool wear curves for Severe Conditions Cutting Tests (Dry Tests) 

  

0 

0,1 

0,2 

0,3 

0,4 

0,5 

0,6 

0,7 

0,8 

0,9 

1 

1,1 

1,2 

0 30 60 90 120 

V
B

m
a

x
 (

m
m

) 

Time (s) 

Tool wear curves - Severe Cutting Conditions Tests 
Dry Tests 

v80 f0,15 

v80 f0,30 

v100 f0,15 

v100 f0,30 



 
 66 

6. Residual stress measurement 

6.1. Residual stress in machining 
It is probably true to say that all engineering components contain stresses (of variable magnitude 

and sign) before being subjected to service loading conditions owing to the history of the material 

prior to such service. These stresses, produced as a result of mechanical working of the material, heat 

treatment, chemical treatment, joining procedure, etc., are termed residual stresses and they can 

have a very significant effect on the fatigue life of components. These residual stresses are “locked 

into” the component in the absence of external loading and represent a datum stress over which the 

service load stresses are subsequently superimposed. If, by fortune or design, the residual stresses are 

of opposite sign to the service stresses then part of the service load goes to reduce the residual stress 

to zero before the combined stress can again rise towards any likely failure value; such residual 

stresses are thus extremely beneficial to the strength of the component and significantly higher 

fatigue strengths can result. If, however, the residual stresses are of the same sign as the applied 

stress, e.g. both tensile, then a smaller service load is required to produce failure than would have 

been the case for a component with a zero stress level initially; the strength and fatigue life in this 

case is thus reduced. Thus, both the magnitude and sign of residual stresses are important to fatigue 

life considerations, and methods for determining these quantities are introduced below [152]. 

6.2. X-ray diffraction technique  
[PAUL S. PREVÉY, LAMBDA RESEARCH, INC] 

In x-ray diffraction residual stress measurement, the strain in the crystal lattice is measured, and the 

residual stress producing the strain is calculated, assuming a linear elastic distortion of the crystal 

lattice. Although the term stress measurement has come into common usage, stress is an extrinsic 

property that is not directly measurable. All methods of stress determination require measurement 

of some intrinsic property, such as strain or force and area, and the calculation of the associated 

stress. Mechanical methods (dissection techniques) and nonlinear elastic methods (ultrasonic and 

magnetic techniques) are limited in their applicability to residual stress determination. Mechanical 

methods are limited by assumptions concerning the nature of the residual stress field and sample 

geometry. Mechanical methods, being necessarily destructive, cannot be directly checked by repeat 

measurement. Spatial and depth resolution are All nonlinear elastic methods are subject to major 

error from preferred orientation, cold work, temperature, and grain size. All require stress-free 

reference samples, which are otherwise identical to the sample under investigation. Nonlinear elastic 

methods are generally not suitable for routine residual stress determination at their current state of 

development. In addition, their spatial and depth resolutions are orders of magnitude less than those 

of x-ray diffraction. 

To determine the stress, the strain in the crystal lattice must be measured for at least two precisely 

known orientations relative to the sample surface. Therefore, xray diffraction residual stress 

measurement is applicable to materials that are crystalline, relatively fine grained, and produce 

diffraction for any orientation of the sample surface. Samples may be metallic or ceramic, provided a 

diffraction peak of suitable intensity and free of interference from neighboring peaks can be 

produced in the high back-reflection region with the radiations available. X-ray diffraction residual 

stress measurement is unique in that macroscopic and microscopic residual stresses can be 

determined nondestructively [153].  
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Macroscopic stresses, or macrostresses, which extend over distances that are large relative to the 

grain size of the material, are of general interest in design and failure analysis. Macrostresses are 

tensor quantities, with magnitudes varying with direction at a single point in a body. The 

macrostress for a given location and direction is determined by measuring the strain in that 

direction at a single point. When macrostresses are determined in at least three known directions, 

and a condition of plane stress is assumed, the three stresses can be combined using Mohr's circle for 

stress to determine the maximum and minimum residual stresses, the maximum shear stress, and 

their orientation relative to a reference direction. Macrostresses strain many crystals uniformly in 

the surface. This uniform distortion of the crystal lattice shifts the angular position of the diffraction 

peak selected for residual stress measurement. 

Microscopic stresses, or microstresses, are scalar properties of the sample, such as percent of cold 

work or hardness, that are without direction and result from imperfections in the crystal lattice. 

Microstresses are associated with strains within the crystal lattice that traverse distances on the 

order of or less than the dimensions of the crystals. Microstresses vary from point to point within the 

crystal lattice, altering the lattice spacing and broadening the diffraction peak. Macrostresses and 

microstresses can be determined separately from the diffraction peak position and breadth. 

Fig. 6.1 shows the diffraction of a monochromatic beam of x-rays at a high diffraction angle (2θ) from 

the surface of a stressed sample for two orientations of the sample relative to the x-ray beam. The 

angle ψ, defining the orientation of the sample surface, is the angle between the normal of the 

surface and the incident and diffracted beam bisector, which is also the angle between the normal to 

the diffracting lattice planes and the normal to sample surface [153]. 

 

(a)  
(b) 

Fig. 6.1. (a)ψ = 0. (b) ψ = ψ (sample rotated through some known angle ψ).  
D, x-ray detector: S, x-ray source; N, normal to the surface. 

Diffraction occurs at an angle 2θ, defined by Bragg's Law: nλ = 2d sin θ, where n is an integer 

denoting the order of diffraction, λ is the x-ray wavelength, d is the lattice spacing of crystal planes, 

and θ is the diffraction angle. For the monochromatic x-rays produced by the metallic target of an x-

ray tube, the wavelength is known to 1 part in 105. Any change in the lattice spacing, d, results in a 

corresponding shift in the diffraction angle 2θ. 
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Fig. 6.1 (a) shows the sample in the ψ = 0 orientation. The presence of a tensile stress in the sample 

results in a Poisson's ratio contraction, reducing the lattice spacing and slightly increasing the 

diffraction angle, 2θ. If the sample is then rotated through some known angle ψ (Fig.6.11(b)), the 

tensile stress present in the surface increases the lattice spacing over the stress-free state and 

decreases 2θ. Measuring the change in the angular position of the diffraction peak for at least two 

orientations of the sample defined by the angle ψ enables calculation of the stress present in the 

sample surface lying in the plane of diffraction, which contains the incident and diffracted x-ray 

beams. To measure the stress in different directions at the same point, the sample is rotated about 

its surface normal to coincide the direction of interest with the diffraction plane. 

Because only the elastic strain changes the mean lattice spacing, only elastic strains are measured 

using x-ray diffraction for the determination of macrostresses. When the elastic limit is exceeded, 

further strain results in dislocation motion, disruption of the crystal lattice, and the formation of 

microstresses, but no additional increase in macroscopic stress. Although residual stresses result 

from nonuniform plastic deformation, all residual macrostresses remaining after deformation are 

necessarily elastic. 

The residual stress determined using x-ray diffraction is the arithmetic average stress in a volume of 

material defined by the irradiated area, which may vary from square centimeters to square 

millimeters, and the depth of penetration of the x-ray beam. The linear absorption coefficient of the 

material for the radiation used governs the depth of penetration, which can vary considerably. 

However, in iron, nickel, and aluminum-base alloys, 50% of the radiation is diffracted from a layer 

approximately 0.005 mm (0.0002 in.) deep for the radiations generally used for stress measurement. 

This shallow depth of penetration allows determination of macro and microscopic residual stresses 

as functions of depth, with depth resolution approximately 10 to 100 times that possible using other 

methods. Although in principle virtually any interplanar spacing may be used to measure strain in 

the crystal lattice, availability of the wavelengths produced by commercial x-ray tubes limits the 

choice to a few possible planes. The choice of a diffraction peak selected for residual stress 

measurement impacts significantly on the precision of the method. The higher the diffraction angle, 

the greater the precision. Practical techniques generally require diffraction angles, 2θ, greater than 

120°. 

Table 6.1 lists recommended diffraction techniques for Nickel base alloys. The relative sensitivity is 

shown by the value of K45, the magnitude of the stress necessary to cause an apparent shift in 

diffraction-peak position of 1° for a 45°ψ tilt. As K45 increases, sensitivity decreases. 

Table 6.1. Incone718 Diffraction technique 

Alloy Radiation 
Lattice 
Plane 
(hkl) 

Angle 
(2θ), 

degrees 

Elastic constants(a) 
(E/I=ν) GPa (106 psi) Bulk Error 

(%) 

K45(b) 
Linear Absorption 

Coefficient (µ) 

(hkl) Bulk MPa ksi cm-1 In.-1 

Nickel-base alloys 
Inconel 718 Cu Kα (420) 145.0 140.0±2.1 156.5 -8.9 772 112.0 1232 3127 

(a) Constants determined from four-point bending tests. (b) K45 is the magnitude of the stress necessary to cause an apparent 
shift in diffraction-peak position of 1° for 45° angle tilt 
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Plane-Stress Elastic Model 

X-ray diffraction stress measurement is confined to the surface of the sample. Electropolishing is 

used to expose new surfaces for subsurface measurement. In the exposed surface layer, a condition of 

plane stress is assumed to exist. That is, a stress distribution described by principal stresses σ1 and σ2 

exists in the plane of the surface, and no stress is assumed perpendicular to the surface, σ3 = 0. 

However, a strain component perpendicular to the surface ε3 exists as a result of the Poisson's ratio 

contractions caused by the two principal stresses (Fig. 6.2). 

 

Fig. 6.2. Plane stress elastic model 

The strain, εφψ in the direction defined by the angles φ and ψ is: 

     
   

 
     

      
     

 

 
         Eq. 6.1 

where E is the modulus of elasticity, v is the Poisson's ratio, and α1 and α2 are the angle cosines of the 

strain vector: 

            

            
Eq. 6.2 

Substituting for the angle cosines in Eq. 6.1 and simplifying enables expressing the strain in terms of 

the orientation angles: 

     
   

 
      

        
           

 

 
         Eq. 6.3 

If the angle ψ is taken to be 90°, the strain vector lies in the plane of the surface, and the surface 

stress component, σφ is: 

         
          

    Eq. 6.4 

Substituting Eq. 6.4 into Eq. 6.3 yields the strain in the sample surface at an angle φ from the 

principal stress σ1: 
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         Eq. 6.5 

Equation 5 relates the surface stress σφ, in any direction defined by the angle ψ, to the strain, ∈, in 

the direction (φ, ψ) and the principal stresses in the surface. 

If dφψ is the spacing between the lattice planes measured in the direction defined by φ and ψ, the 

strain can be expressed in terms of changes in the linear dimensions of the crystal lattice: 

    
  

  
 

      

  
 

where d0 is the stress-free lattice spacing. Substitution into Eq 6.5 yields: 

      

  
   

   

 
 
     

           
 

 
 
     

         Eq. 6.6 

where the elastic constants  
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 are not the bulk values but the values for the 

crystallographic direction normal to the lattice planes in which the strain is measured as specified by 

the Miller indices (hkl). Because of elastic anisotropy, the elastic constants in the (hkl) direction 

commonly vary significantly from the bulk mechanical values, which are an average over all possible 

directions in the crystal lattice. 

The lattice spacing for any orientation, then, is: 

      
   

 
 
     

       
      

 

 
 
     

              Eq. 6.7 

Eq. 6.7 describes the fundamental relationship between lattice spacing and the biaxial stresses in the 

surface of the sample. The lattice spacing dφψ, is a linear function of sin2ψ.  

Fig. 6.3 shows the actual dependence of d(311) for ψ, ranging from 0 to 45° for shot peened 5056-O 

aluminum having a surface stress of -148 MPa (-21.5 ksi), to which a straight line has been fitted by 

least squares regression. 
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Fig. 6.3. A d(311) versus sin
2
ψ plot for a shot peened 5056-O aluminum alloy having a surface stress of -148 MPa  

The intercept of the plot at sin2ψ = 0 is: 

        
 

 
 
     

                
 

 
 
     

         Eq. 6.8 

which equals the unstressed lattice spacing, d0, minus the Poisson's ratio contraction caused by the 

sum of the principal stresses. The slope of the plot is: 

    

      
  

   

 
 
     

     

which can be solved for the stress σφ: 

    
 

   
 
     

 

  
 

    

      
  Eq. 6.9 

The x-ray elastic constants can be determined empirically, but the unstressed lattice spacing, d0, is 

generally unknown. However, because E >> (σ1 + σ2), the value of dφ0 from Eq 6.8 differs from d0 by 

not more than ± 1%, and σφ may be approximated to this accuracy using: 

    
 

   
 
     

 

   
 

    

      
  Eq. 6.10 

The method then becomes a differential technique, and no stress-free reference standards are 

required to determine d0 for the biaxial stress case. The three most common methods of x-ray 

diffraction residual stress measurement, the single-angle, two-angle, and sin2ψ techniques, assume 

plane stress at the sample surface and are based on the fundamental relationship between lattice 

spacing and stress given in Eq 6.7. 
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The sin2ψ technique 

The sin2ψ technique [154] is identical to the two-angle technique, except lattice spacing is 

determined for multiple ψ tilts, a straight line is fitted by least squares regression (as shown for the 

shot peened aluminum sample in Fig. 6.3), and the stress is calculated from the slope of the best fit 

line using Eq 6.10. The method, a standard procedure in Japan and Germany, provides no significant 

improvement in precision over the two-angle technique if the two data points are selected at the 

extreme ends of the sin2ψ range. 

The primary advantage of the sin2ψ technique, considering the additional time required for data 

collection, is in establishing the linearity of d as a function of sin2ψ to demonstrate that x-ray 

diffraction residual stress measurement is possible on the sample of interest. 

6.3. Basic Procedure 

Sample preparation 

Sample preparation, if the geometry of the sample does not interfere with the incident or diffracted 

x-ray beams, is generally minimal. Preparation of the sample surface depends on the nature of the 

residual stresses to be determined. If the stresses of interest are produced by such surface treatments 

as machining, grinding, or shot peening, the residual stress distribution is usually limited to less than 

500 μm of the sample surface. Therefore, the sample surface must be carefully protected from 

secondary abrasion, corrosion, or etching. Samples should be oiled to prevent corrosion and packed 

to protect the surface during handling. Secondary abrasive treatment, such as wire brushing or sand 

blasting, radically alters the urface residual stresses, generally producing a shallow, highly 

compressive layer over the original residual stress distribution. 

If the stresses of interest are those produced by carburizing or heat treatment, it may be advisable to 

electropolish the surface of the sample, which may have undergone finish grinding or sand blasting 

after heat treatment. Electropolishing eliminates the shallow, highly stressed surface layer, exposing 

the subsurface stresses before measurement. 

To measure the inside surface of tubing, in bolt holes, between gear teeth, and other restrictive 

geometries, the sample must be sectioned to provide clearance for the incident and diffracted x-ray 

beams. Unless prior experience with the sample under investigation indicates that no significant 

stress relaxation occurs upon sectioning, electrical resistance strain-gage rosettes should be applied 

to the measurement area to record the strain relaxation that occurs during sectioning. Unless the 

geometry of the sample clearly defines the minimum and maximum directions of stress relaxation, a 

full rectangular strain-gage rosette should be used to calculate the true stress relaxation in the 

direction of interest from the measured strain relaxation. 

Following x-ray diffraction residual stress measurements, the total stress before sectioning can be 

calculated by subtracting algebraically the sectioning stress relaxation from the x-ray diffraction 

results. If only near-surface layers are examined on a massive sample, a constant relaxation 

correction can be applied to all depths examined. If a significant volume of material is removed, as in 

determination of the stress distribution through the carburized case of a thin bearing race, a more 

accurate representation of sectioning relaxation can be achieved by applying strain-gage rosettes to 

the inner and outer surfaces and by assuming a linear relaxation of stress through the sample. 
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Sample Positioning.  

Because the diffraction angles must be determined to accuracies of approximately ±0.01°, the sample 

must be positioned in the x-ray beam at the true center of rotation of the ψ and 2θ axes, and the 

angle ψ must be constant throughout the irradiated area. 

Therefore, extremely precise positioning of the sample to accuracies of approximately 0.025 mm 

(0.001 in.) is critical. Further, the size of the irradiated area must be limited to an essentially flat 

region on the sample surface. Small diameter samples or such sample geometries as small-radius 

fillets, the roots of threads, and fine-pitched gears may contribute to major sources of error if the x-

ray beam is not confined to an essentially flat region at a known ψ tilt on the curved surface. If the 

irradiated area is allowed to span a curved surface, ψ will not be constant during determination of 

lattice spacing. These restrictions imposed by the sample geometry may prohibit x-ray diffraction 

residual stress measurement in many areas of primary concern, such as the roots of notches. 

Irradiated Area and Measurement Time. 

The residual stress determined by x-ray diffraction is the arithmetic average stress in the area 

defined by the dimensions of the x-ray beam. Consideration must be given to an appropriate beam 

size for the nature of the stress to be investigated. If average stresses over significant areas are of 

interest, the maximum beam size allowed by the geometry of the sample would be an appropriate 

choice. If local variations in residual stress, such as those produced by individual passes of a grinding 

wheel, are of interest, a smaller irradiated area with a geometry appropriate for the investigation 

should be selected. Practical dimensions of the irradiated area may range from circular zones 1.25 

mm (0.050 in.) in diameter to a range of rectangular geometries from approximately 0.5 to 13 mm 

(0.020 to 0.5 in.). The maximum irradiated area generally feasible is approximately 13 x 8 mm (0.5 x 

0.3 in.). 

As the irradiated area is increased, the data collection time necessary to achieve adequate precision 

for residual stress measurement diminishes. The precision with which the diffracted intensity can be 

determined varies as the inverse of the square root of the number of x-rays collected. To determine 

the intensity to an accuracy of 1% at a single point on the diffraction peak, 104 x-rays must be 

counted, regardless of the time required. With diffracted intensities typically available on a fixed slit 

diffractometer system, this may require collection times of approximately 30 s for each point on the 

diffraction peak. If seven data points are collected on each diffraction peak for a two-angle 

technique, total measurement time may be 10 to 15 min. Reducing the irradiated area sufficiently to 

decrease the diffracted intensity by an order of magnitude increases the data collection time 

proportionally for the same precision in measurement. If fluorescence is not a problem, position-

sensitive detectors can be used to collect data simultaneously at numerous points across the 

diffraction peak, with some sacrifice in angular precision, reducing data collection time by an order 

of magnitude [153]. 

Diffraction-Peak Location.  

The transition metal target x-ray tubes used for stress measurement produce a continuous spectrum 

of white radiation and three monochromatic high-intensity lines. The three lines are the Kα1, Kα2, 

and Kβ characteristic radiations with wavelengths known to high precision. The Kα1 and Kα2 lines 

differ too little in wavelength to allow separation of the diffraction peaks produced. The Kα1 line, the 

highest intensity, is nominally twice that of the Kα2 line. The Kβ line is produced at a substantially 

shorter wavelength and can generally be separated from the Kα lines by filtration, the use of high-
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energy resolution detectors, or crystal monochromators. The Kβ line is typically one fifth the 

intensity of the Kα1 line and is generally too weak for practical x-ray diffraction residual stress 

measurement on plastically deformed surfaces. 

Because the Kα doublet is generally used for residual stress measurement, the diffraction peaks 

produced consist of a superimposed pair of peaks, as shown in Fig. 6.3 for four cases, indicating the 

various degrees of broadening that may be encountered. The variable blending of the Kα doublet 

typical of an annealed sample is indicated by curve A; a fully hardened or cold-worked sample, curve 

D. Because the accuracy of x-ray diffraction residual stress measurement depends on the precision 

with which the diffraction peak can be located, the method used to locate broadened doublet peaks 

is of primary importance. 

Precise determination of the position of the diffraction peak at each ψ tilt begins with collection of 

raw intensity data at several points on the peak. The diffracted intensity (x-rays counted per unit 

time) or inverse intensity (time for a fixed number of x-rays to be counted) is determined to a 

precision exceeding 1% at several fixed diffraction angles, 2θ, spanning the diffraction peak. 

Depending on the method to be used for peak location, 3 to 15 individual data points and 2 

background points are measured using standard diffractometer techniques. If data are collected 

using a position-sensitive detector, the diffracted intensity can be determined at dozens of data 

points spanning the diffraction peak. Sharp diffraction peaks, such as those shown in curve A in Fig. 

6.4, may be located using intensity data of lower precision than that required for broad peaks, as 

shown in curve D. The number of x-rays to be collected, and therefore the time required for stress 

measurement to a fixed precision, increases as the diffraction peaks broaden. 

 

Fig. 6.4. Range of Kα doublet blending for a simulated steel (211) Cr Kα peak at 156.0°. A, fully annealed, B and C, 
intermediate hardness; D, fully hardened 

Before determining a diffraction-peak position, the raw measured intensities must be corrected for 

Lorentz polarization and absorption. A sloping background intensity is then corrected by subtracting 

the background, assuming a linear variation beneath the diffraction peak. Various numerical 

methods are available to calculate the position of the diffraction peak. The simplest method, 
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incorporated in early automated diffraction equipment, is to locate 2θ positions on either side of the 

peak at which the intensity is equal and assume the peak position to be at the midpoint. A straight 

line can be fitted to the opposing sides of the diffraction peak and the point of intersection of the 

two lines taken as a peak position [155]. Early SAE literature recommends calculating the vertex of 

the parabola defined by three points confined to the top 15% of the peak [156]. A significant 

improvement in precision can be achieved, approaching the 0.01° resolution of most diffractometers, 

by collecting 5 to 15 data points in the top 15% and fitting a parabola by least squares regression 

before calculation of the peak vertex. 

If the intensity is measured at many points ranging across the entire Kα doublet, the peak position 

can be calculated as the centroid of the area above the background or by autocorrelation. Both of 

these area-integration methods are independent of the peak shape, but are extremely sensitive to the 

precision with which the tails of the diffraction peak can be determined. 

All the above methods are effective, regression fit parabola being superior, if applied to a single 

symmetrical diffraction peak profile, such as the simple Kα1, peak shown in curve A in Fig. 6.4 or the 

fully combined doublet shown in curve D. All can lead to significant error in the event of partial 

separation of the doublet, as shown in curve B (Fig. 6.4). Partial separation commonly results from 

defocusing as the sample is tilted through a range of ψ angles. If residual stresses are measured as a 

function of depth, diffraction peaks can vary from breadths similar to curve D (Fig. 6.4) at the cold-

worked surface through a continuous range of blending to complete separation beneath the cold-

work layer, as shown in curve A. All the techniques of peak location discussed can lead to significant 

error in stress measurement as the degree of doublet separation varies. The Rachinger correction 

[157] can be applied to separate the Kα doublet before fitting parabolas, but the precision of the 

correction diminishes on the Kα2 side of the combined profile and is generally inadequate for precise 

residual stress measurement. Fitting Pearson VII distribution functions (Cauchy to Gaussian bell-

shaped, as described in [158] and [159]) separately to the Kα1 and Kα2 diffraction peaks, assuming a 

doublet separation based on the difference in wavelength, provides a method of peak location that 

overcomes most of the problems outlined above. 

Figs. 6.5 and 6.6 show the effect of the peak-location method on the results obtained. Fig. 6.5 

illustrates comparison of the same data reduced using Pearson VII distribution functions and a five-

point least squares parabolic fit for ground Ti-6Al-4V using the (21.3) planes for residual stress 

measurement. Apparent nonlinearities in d versus sin2ψ for the parabola fit are due to inaccurate 

diffraction-peak location in the presence of partial blending of the Kα doublet. Fig. 6.6 shows the 

errors in stress measurement by the two methods of peak location applied to the identical data for 

the entire stress profile. The errors for the distribution function fit are smaller than the plotting 

symbols at all depths. 
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Fig. 6.5. Comparison of d (21.3) versus sin
2
ψ data taken 0.176 mm  below the surface for a ground Ti-6Al-4V 

sample using two diffraction peak location methods 

 

 
Fig. 6.6. Comparison of residual stress patterns derived using Cauchy and parabolic peak location for a ground 

Ti-6Al-4V sample using a six-angle sin
2
ψ technique. Errors in stress measurement by two methods of diffraction-

peak location are shown. 

Microstress Determination and line Broadening. 

Diffraction peak broadening caused by microstresses in the crystal lattice can be separated into 

components due to strain in the crystal lattice and crystallite size. Separation of the broadening, 

which is of instrumental origin, from that due to lattice strain and crystallite size is performed using 

Fourier analysis of the diffraction-peak profile and data collection sufficient to define precisely the 

shape of the entire diffraction peak. Analysis of the Fourier series terms allows separation of the 

components of the broadening attributable to lattice strain from that caused by reduction in the 

crystallite size. However, this method requires extensive data collection and depends on the 
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precision with which the tails of the diffraction peak can be separated from the background 

intensity. 

For most routine analyses of microstresses associated with cold working or heat treatment for which 

separation of the strain and size components is not necessary, much simpler determinations of 

diffraction-peak breadth are adequate. The diffraction-peak width can be quantified precisely as the 

integral breadth (total area under the peak divided by diffraction-peak height) or the width at half 

the height of the diffraction peak. The width of the diffraction peak can be measured directly from 

strip-chart recordings or calculated from the width of the function fitted to the diffraction-peak 

profile during macrostress measurement. Microstresses and macrostresses can then be determined 

simultaneously from the peak breadth and position. 

  

Fig. 6.7. Diffraction-peak breadth at half height for the 
(211) peak for M50 high-speed tool steel as a function 

of Rockwell hardness. 

Fig. 6.8. Diffraction-peak breadth at half height for the 
(420) peak for Rene 95 as a function of cold-working 

percentage 

Figs 6.7 and 6.8 show empirical relationships established between diffraction-peak breadth at half 

height for the (211) peak for M50 high-speed tool steel as a function of hardness and for the (420) 

peak breadth as a function of percent cold work for Rene 95, respectively. These empirical curves can 

be used to calculate the hardness or cold work in conjunction with macroscopic residual stress 

measurement. For the preparation of the hardness curve, a series of coupons are quenched and 

tempered to known hardness. The peak breadth is then measured using the same slit system and 

peak-location method used for macrostress measurement. For the percent cold work curve, samples 

are heat treated, then pulled in tension to produce a series of coupons with various known amounts 

of cold work. Because the initial heat treatment may alter significantly the initial peak breadth 

before cold work, the coupons must receive the same heat treatment as the samples to be measured 

before inducing known amounts of cold work [153]. 

Sample fluorescence 

Sample fluorescence complicates the selection of radiation to be used for residual stress 

measurement. The radiation necessary for the highest precision techniques may cause fluorescence 

of the elements present in the sample under investigation. The use of Cu Kα radiation for residual 

stress measurement in alloys containing iron, chromium, or titanium can result in fluorescent 

background intensities many times as intense as the diffracted radiation, greatly reducing the signal-

to-noise ratio. Problems with fluorescence may be overcome in some cases by use of metal foil filters, 

but generally require use of a crystal monochromator or high energy resolution solid-state detector. 

Failure to eliminate fluorescence can degrade severely the precision with which the diffraction peak 
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can be located accurately, increasing random experimental error significantly. Diffracted beam 

monochromators and solid-state detectors can be used only on standard laboratory diffractometers. 

The position-sensitive detectors available for residual stress measurement are the gas-filled 

proportional counter or fluorescence screen type and have insufficient energy resolution to 

overcome fluorescence [153]. 

6.4. X-ray stress analyzer 

The instrument used for the residual stress measurement is an “XSTRESS 3000” X-ray stress analyzer 

produced by Stresstech, as shown in Fig. 6.9. 

The most important features are reported below [160]: 

 
Fig. 6.9. Stresstech XSTRESS3000  

Technical Specifications  

Main Unit X3000 

 High voltage power supply (generator) for X-ray tube continuously variable within 5 to 30 kV / 0 

up to 10 mA. 

 Ultra-compact design. 

 Electrical 

 90 to 260 VAC, 48 to 62 Hz, 600 VA 

 Cooling 

 Self-contained recirculating water cooling with heat exchanger for X-ray tube and 

 power supply. No external water supply needed. 

Goniometer 

 Xstress 3000 goniometer type G2 mounted on a tripod with magnetic anchoring as a standard. 

 χ-inclination: Programmable –45° to +45° (standard) 

 χ-oscillation: Programmable 0° to ±6°. 
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 Distance between goniometer and the measurement point automatically adjusted to ± 0.003 mm 

accuracy. 

Detectors 

 Dual position sensitive MOS Linear Image Sensors in symmetrical modified χ (side inclination) 

geometry. 

 Angular resolution: 0.029°/pixel, 512 pixels/0.5 in. 

 2θ-angle is instantly adjustable by sliding the detectors manually to the desired angular position 

along arc-shaped detector holder. 

 2θ-range of the detectors is continuously adjustable within +100° to 165° 

X-ray Tube 

 Miniature, 30 kV, 10 mA, 300 W, Cr, Cu, Co, Fe, V, Ti, Mn. Cr-tube provided as a standard. Tube 

can be replaced in less than 10 minutes without special tools. 

Cables 

 5 meters standard. 

Collimator 

 Replaceable, to provide 1, 2, 3, 4, and 5 millimeter spot sizes. Special collimators available as an 

option. 
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6.5. Residual stress measurement results 
 

 
Fig. 6.10. Residual stress measurement directions on a test sample 

In Fig. 6.10 a residual stress measurement scheme is reported. The blue ring represent the test 

workpiece, and the white square is representative of the test surface (1 mm x 1 mm). The two red 

arrows show the two measurement directions: the cutting speed direction and the feed direction 

respectively. 

Table 6.2. Residual stress measurement results 

 Test ID RS (MPa) direction 1 RS (MPa) direction 2 

S
ta

n
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a
rd
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e
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T_1 379 -176 
T_2 182 -287 
T_3 455 -65 
T_4 309 -111 
T_5 644 35 
T_6 767 205 
T_7 378 -9 
T_8 662 252 
T_9 1009 725 
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T_1H 1228 635 
T_2H 1515 1206 
T_3H 1376 882 
T_4H 1521 1172 
T_5H 1387 934 
T_6H 1473 965 
T_7H 1277 689 
T_8H 1412 1187 

 

In Table 6.2 all the residual stress measurements are reported, for all the tests and for both the 

measurement directions. In bold the values that exceed the acceptance threshold, set at 850 MPa. 
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In Fig. 6.11 the residual stress measured values are reported in a 3D plot. As reported in the graph, for 

standard tests only the test T_9 produces unacceptable residual stress value (over the grey plan 

threshold). Figs. 6.12 and 6.13 show the residual stress measurement results for the Severe Cutting 

Conditions Tests, cooled and dry respectively. It is clear that for both series of tests, all the 

measurements showed unacceptable residual stress values, over 850 MPa. 

 

Fig. 6.11. Residual stress plot of Standard Tests 

 

Fig. 6.12. Residual stress  measurement for Severe Cutting Conditions Tests (Cooled tests) 
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Fig. 6.13. Residual stress  measurement for Severe Cutting Conditions Tests (Dry tests) 
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7. Material characterization tests 

7.1. Test typologies 

7.1.1. Visual Inspection 

Visual inspection is the most basic and common inspection method, and involves getting the 

inspector to "see" where one normally couldn't. This is done with the use of tools such as fiberscopes, 

borescopes, magnifying glasses and mirrors. Successful use of the technique requires good lighting 

and vision for best sensitivity, as well as training & experience which are vital for accurate 

interpretation of features.[161] 

Advantages of Visual Inspection 

 Inspection performed rapidly and at low cost 

 Ability to inspect complex sizes and shapes of any material 

 Minimum part preparation required 

Limitations of Visual Inspection 

 Surface too be inspected must somehow be accessible to inspector or visual aids 

 Surface finish, roughness and cleanliness can interfere with inspection 

 Only surface defects are detectable 

7.1.2. Fluorescent Penetrant Inspection 

In Fluorescent Penetrant Inspection (FPI), a fluid with high capillary potential is applied to a sample 

and drawn into surface breaking flaws. The excess is removed after a period of time and an 

appropriate developer is applied to draw the penetrant back out. As it bleeds out laterally on the part 

surface, it is visually noted due to contrast with the developer. A penetrant that fluoresces under UV 

light may also be used to generate dramatic visualization of the flaws. 

It may be used on any non-porous material and is used to find surface flaws, sometimes to detect 

leaks. Equipment for FPI can be as simple as a collection of aerosol spray cans, or may be a fully 

automated system. There are considerable choices of penetrant, remover, and developer materials. 

Selection is based on the required sensitivity, portability requirements, and the nature of the 

material to be tested with respect to compatibility issues [162]. 

Procedure 

Surface Preparation: One of the most critical steps of a liquid penetrant inspection is the surface 

preparation. The surface must be free of oil, grease, water, or other contaminants that may prevent 

penetrant from entering flaws. The sample may also require etching if mechanical operations such as 

machining, sanding, or grit blasting have been performed. These and other mechanical operations 

can smear metal over the flaw opening and prevent the penetrant from entering. 

Penetrant Application: Once the surface has been thoroughly cleaned and dried, the penetrant 

material is applied by spraying, brushing, or immersing the part in a penetrant bath. 

Penetrant Dwell: The penetrant is left on the surface for a sufficient time to allow as much penetrant 

as possible to be drawn from or to seep into a defect. Penetrant dwell time is the total time that the 

penetrant is in contact with the part surface. Dwell times are usually recommended by the penetrant 
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producers or required by the specification being followed. The times vary depending on the 

application, penetrant materials used, the material, the form of the material being inspected, and the 

type of defect being inspected for. Minimum dwell times typically range from five to 60 minutes. 

Generally, there is no harm in using a longer penetrant dwell time as long as the penetrant is not 

allowed to dry. The ideal dwell time is often determined by experimentation and may be very 

specific to a particular application 

Excess Penetrant Removal: This is the most delicate part of the inspection procedure because the 

excess penetrant must be removed from the surface of the sample while removing as little penetrant 

as possible from defects.  Depending on the penetrant system used, this step may involve cleaning 

with a solvent, direct rinsing with water, or first treating the part with an emulsifier and then rinsing 

with water. 

Developer Application: A thin layer of developer is then applied to the sample to draw penetrant 

trapped in flaws back to the surface where it will be visible. Developers come in a variety of forms 

that may be applied by dusting (dry powdered), dipping, or spraying (wet developers). 

Indication Development: The developer is allowed to stand on the part surface for a period of time 

sufficient to permit the extraction of the trapped penetrant out of any surface flaws. This 

development time is usually a minimum of 10 minutes.  Significantly longer times may be necessary 

for tight cracks. 

Inspection: Inspection is then performed under appropriate lighting to detect indications from any 

flaws which may be present. 

Clean Surface: The final step in the process is to thoroughly clean the part surface to remove the 

developer from the parts that were found to be acceptable [163]. 

 
Fig. 7.1. Example of FPI Testing Sample 

Advantages of FPI 

 Large areas or volumes of parts/materials can be inspected rapidly and at low cost 

 Parts with complex geometries are routinely inspected 

 Indications are produced directly on surface of the part, providing a visual image of the 

discontinuity 

 Equipment investment can be quite low 

 Aerosol spray cans can make testing very portable 



 
 85 

Limitations of FPI 

 Only detects surface breaking defects 

 Test material must be nonporous 

 Precleaning is critical - contaminants can mask defects 

 Post cleaning is sometimes necessary to remove chemicals 

 Requires multiple operations under controlled conditions 

 Chemical handling precautions may be necessary 

 Metal smearing from machining, grinding and other operations inhibits detection 

 Some materials may need to be etched prior to inspection [162]. 

7.1.3. Metallographic Tests 

Optical metallography, entails examination of materials using visible light to provide a magnified 

image of the micro- and macrostructure. 

Microscopy (microstructural examination) involves magnifications of approximately 50x or higher; 

macroscopy (macrostructural examination), 50 x or lower. 

Optical microscopy is used to characterize structure by revealing grain boundaries, phase 

boundaries, inclusion distribution, and evidence of mechanical deformation. 

Because the macro- and microstructure of metals and alloys often determine the behavior of the 

material, characterization of the effects of composition, processing, service conditions, and other 

such variables on the macro- and microstructure is frequently required. Typical structure-property 

relationships that have been established using optical metallography include: 

 A general increase in yield strength and hardness of a metal with decreasing grain size 

 A general tendency for a decreased ductility with increasing inclusion content 

 Correlations of weld penetration, heataffected zone (HAZ) size, and welddefect density with the 

nature and character of the welding 

 Evaluation of such surface treatments as carburizing and induction hardening by determinations 

of the depth and microstructural characteristics of the hardened region 

 Correlations of fatigue crack growth rates and fracture-toughness parameters with such 

structural variables as inclusion content and distribution 

 Association of failure initiation sites with microstructural inhomogeneities, such as second-phase 

particles 

 Correlations of anisotropic mechanical behavior with elongated grains and/or preferred grain 

orientations 

The microstructures of metals and alloys are determined by composition, solidification processes, 

and thermomechanical treatment. Therefore, these process variables determine the response of 

metals and alloys to laboratory and service environments. Because of the relationships between 

structure and properties, metallographic characterization is used in materials specification, quality 

control, quality assurance, process control, and failure analysis. 

Optical metallography is applicable to studies ranging from fundamental research to production 

evaluations [164]. 
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Specimen preparation 

The first step in metallographic analysis is to select a sample that is representative of the material to 

be evaluated. This step is critical to the success of any subsequent study. The second, equally 

important step is to correctly prepare a metallographic specimen. 

The region of the sample that is of interest must be sectioned from the component. Each of the 

samples would be mounted to facilitate handling. Selected surfaces would then be ground flat, 

polished, and etched to reveal the specific structure or structures of interest. 

Sectioning 

Sectioning of a metallographic sample must be performed carefully to avoid altering or destroying 

the structure of interest. The most widely used sectioning device is the abrasive cutoff machine, 

ranging from units using thin diamond-rimmed wafering blades to those using wheels that are more 

than 1.5 mm thick, 30 to 45 cm in diameter, containing silicon carbide particles. Heat is generated 

during abrasive cutting, and the material just below the abraded surface is deformed. To minimize 

burning and deformation, a lubricant or coolant is typically used. Wet cutting yields a flat relatively 

smooth surface. However, because of the abrasion associated with cutting, the structure of the metal 

or alloy is damaged to a depth of approximately 1 mm. 

Mounting 

Mounting facilitates handling of the specimen. A procedure that does not damage the specimen 

should be selected. Because large specimens are generally more difficult to prepare than small ones, 

specimen size should be minimized. Standard or typical specimen mounts are right circular cylinders 

25 to 50 mm in diameter. Mounting mediums should be compatible with the specimen regarding 

hardness and abrasion resistance. Two common mounting materials are thermosetting phenolics, 

such as Bakelite, and thermoplastic materials, such as methyl methacrylate (Lucite). A thermosetting 

polymer develops a rigid three-dimensional structure upon being heated and held at 200 to 300 °C. A 

thermoplastic polymer softens when held at elevated temperatures. Mounting involves placing the 

specimen in a mold and surrounding it with the appropriate powders. The mold and its contents are 

then heated under pressure to the thermal setting or the softening temperature. Once the powder 

sets, thermosetting mounts can be removed from the mold without lowering the temperature; 

thermoplastic mounts must be cooled to ambient temperature before removal. Mounting pressure or 

temperature may alter the structure of low melting temperature or soft and/or fragile specimens; 

therefore, castable (cold-mounting) techniques have been developed. 

Plastics that set at room temperature are referred to as castable (cold-mounting) materials. The most 

widely used materials are epoxy resins. Epoxies resist acids and strong solvents effectively, a 

desirable characteristic in any mounting material. Epoxies and thermoplastic materials are relatively 

soft mounting materials, and the specimen in such a mount must often be surrounded by a hard 

material, for example, hardened steel balls Fig. 7.2. This material helps retain the edges of the sample 

by maintaining a flat surface during grinding and polishing [164]. 
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Fig. 7.2. One method of mounting the sample to retain flatness for metallographic examination 

Grinding 

Grinding is generally considered the most important step in specimen preparation. Care must be 

taken to minimize mechanical surface damage. Grinding is generally performed by the abrasion of 

the specimen surface against water-lubricated abrasive wheels (assuming water does not adversely 

affect the metal). Grinding develops a flat surface with a minimum depth of deformed metal and 

usually is accomplished by using progressively finer abrasive grits on the grinding wheels. A typical 

sequence might begin with 120- or 180-grit papers and proceed to 240, 320, 400, and 600 grits. 

Scratches and damage to the specimen surface from each grit must be. removed by the next finer 

grinding step. The surface damage remaining, on the specimen after grinding must be removed by 

polishing. If this disturbed or deformed metal at the surface is not removed, microstructural 

observations may be obscured. 

Polishing 

Polishing of the metallographic specimen generally involves rough polishing and fine polishing. In 

rough polishing, the cloth covering on a wheel is impregnated with a fine (often as small as 1 µm) 

diamond paste or a slurry of powdered ot-A1203 in water, and the specimen is held against the 

rotating wheel. The cloth for rough polishing is frequently napless, providing easy access of the 

polishing abrasive to the specimen surface. Fine polishing is conducted similarly, but with finer 

abrasives (down to 0.05 µm in diameter) on a napped cloth. Although often automated, polishing 

can be performed by hand. Vibratory polishing and electropolishing techniques have also been 

developed for many metals and alloys. Polishing should yield a scratch-free specimen surface, in 

which inclusions and other second-phase articles may be visible. Polishing damage, should be 

recognized and avoided when preparing metallographic specimens. 

Etching 

Etching includes any process used to reveal the microstructure of a metal or alloy. Because many 

microstructural details are not observable on an as-polished specimen, the specimen surface must be 

treated to reveal such structural features as grains, grain boundaries, twins, slip lines, and phase 

boundaries. Etchants attack at different rates areas of different crystal orientation, crystalline 

imperfections, or different composition. The resulting surface irregularities differentially reflect the 

incident light, producing contrast, coloration, polarization, etc. Various etching techniques are 

available, including chemical attack, electrochemical attack, thermal treatments, vacuum cathodic 

etching, and mechanical treatments. Chemical and electrochemical attack are the most frequently 

used. Metallography involves many steps that can obscure or alter the structure observed during 

examination, leading to erroneous conclusions. Therefore, specimen preparation is not necessarily 



 
 88 

straightforward, and care must be taken to ensure that the structure observed is not an artifact. 

Good metallography is necessary in developing a correlation between the structure and the 

properties of metals and alloys [164]. 

7.1.4. Roughness measurement 

(DIN EN ISO 4287:1998 AND DIN EN ISO 11562:1998) 

Every surface has some form of texture which will vary according to the way it has been 

manufactured. Surface characteristics can be quantified by the use of parameters, the most popular 

of which are described here [165]. 

Amplitude Parameters 

 
Fig. 7.3. Ra. Rq, Wa, Wq, Pa, Pq 

 
Fig. 7.4. Rv, Rp, Rt, Wv, Wp, Wt, Pv, Pp, Pt 

 Ra is the arithmetic mean of the absolute departures of the roughness profile from the mean line. 

It is universally recognized and is the most often used international parameter of roughness. 

 Rq (sometimes referred to as RMS) is the rms parameter corresponding to Ra. 

   
 

 
         

 

 

 

    
 

 
        

 

 

 

 Wa, Wq, Pa and Pq are the corresponding parameters from the waviness and primary profiles, 

respectively. 

 Rv is the maximum depth of the profile below the mean line within the sampling length. 

 Rp is the maximum height of the profile above the mean line within the sampling length. 

 Rt is the maximum peak to valley height of the profile in the assessment length. 

 Rp1max is the largest of the individual peak to mean from each sample length. 
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 Rv1max is the largest of the individual mean to valleys from each sample length. 

 Wv, Wp, Wt, Pv, Pp, and Pt are the corresponding parameters from the waviness and primary 

profiles, respectively. 

 
Fig. 7.5. Rz, Wz, Pz 

 
Fig. 7.6. Rz(JIS), Pz(JIS) 

 Rz = Rp + Rv and is the maximum peak to valley height of the profile within a sampling length. 

 Rz1max is the largest of the individual peak to valleys from each sample length. 

 Wz, Pz are the corresponding parameters from the waviness and primary profiles respectively. 

 Rz(JIS) (also known as the ISO 10 point height parameter in ISO 4287/1-1984) is measured on the 

roughness and primary profiles only and is numerically the average height difference between 

the five highest peaks and the five lowest valleys within the sampling length. 

        
                                           

 
 

 Pz(JIS) is the corresponding parameter from the primary profile. 

Cut-off, Evaluation and Sample lengths 

A cut-off is a filter that uses electronic or mathematical means to remove or reduce unwanted data in 

order to look at wavelengths in the region of interest. Sample lengths are equal to the filter cut-off 

length λc (Table 7.1) and are long enough to include a statistically reliable amount of data. 

The evaluation length (l) is defined as the length of profile used for the measurement of surface 

roughness parameters. It usually contains several sample lengths with five consecutive sample 

lengths taken as standard. Almost all parameters are defined over one sample length, however in 

practice more than one sample length is assessed (usually five) and the mean is calculated. This 

provides a better statistical estimate of the parameter's measured value [165]. 
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Selecting the proper cut-off length [165] 

Table 7.1. Recommendet cut-off according to ISO-4288/1997 

RECOMMENDED CUT-OFF ISO 4288-1997 

PERIODIC 
PROFILES 

NON-PERIODIC PROFILES CUT-
OFFS 

SAMPLING LENGTH / EVALUATION 
LENGTH 

Spacing Sm (mm) Rz (μm) Ra (μm) λc (μm) λc/L (mm) 
>0.013 to 0.04 (0.025) to 0.1 (0.006) to 0.02 0.08 0.08 / 0.4 

>0.04 to 0.13 >0.1 to 0.5 >0.02 to 0.1 0.25 0.25 / 1.25 

>0.13 to 0.4 >0.5 to 10 >0.1 to 2 0.8 0.8 / 4 

>0.4 to 1.3 >10 to 50 >2 to 10 2.5 2.5 / 12.5 

>1.3 to 4 >50 to 200 >10 to 80 8 8 / 40 

7.1.5. Micro-hardness 

Microhardness testing is a useful tool for the microstructural analysis of a finished surface. 

Information such as phase identification and fracture toughness data can be determined. Hardness is 

defined as the resistance to penetration by an indenter, and the Knoop and Vickers measurements 

are the most common [166]. 

A Knoop hardness number (HK) is obtained by: 

   
 

  
       

 

   

where P is the load in kilogram force, Ap is the projected area of indentation in millimeters, and d is 

the length of the longest diagonal in millimeters. 

The Vickers hardness number (HV) is obtained by: 

   
 

  
       

 

   

where P is the load in kilogram force, As is the surface area of indentation in millimeters, and d is the 

length of the longest diagonal in millimeters. Surface preparation is typically required before 

hardness testing to ensure that accurate reproducible results can be obtained. The surface finish 

used depends on the load to be applied to the indenter. For microhardness testing (1 to 1000 gf), a 

final polish is recommended. Microhardness testing is a useful technique in characterizing different 

phases, and it has also been used to determine the fracture toughness in brittle materials. Fracture 

toughness is determined by initiating a controlled crack, then breaking the specimen, or by 

measuring crack lengths and applying fracture toughness equations [167][168][169][170]. 

 

7.2. Defects to be investigated 

7.2.1. Macro anomalies 

Scores 

Scoring is surface damage due to accumulated small seizures caused by sliding under improper 

lubrication or severe operating conditions. Linear damage appears circumferentially on the raceway 
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and roller surfaces. Cycloidal shaped damage on the roller ends and Scoring on the rib surface 

contacting roller ends also occur. Scores’ depth maximum allowable value: 0.013 mm. [171].  

 
Fig. 7.7. Scores 

Scratches 

Grooves produced in a solid surface by the cutting and/or plowing action of a sharp particle or 

protuberance moving along that surface. 

 
Fig. 7.8. Scratches 

Orange peel 

Dull or cloudy spots appear on surface along with light Wear. From such dull spots, tiny Cracks are 

generated downward to a depth of 5-10 µm. Small particles fall off and minor Flaking occurs widely. 

 
Fig. 7.9. Orange Peel 
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Chatter 

Chatter is a self-excited vibration that can occur during machining operations and become a 

common limitation to productivity and part quality. 

 
(a) 

 
(b) 

Fig. 7.10. (a) Typical Chatter (b) Fish Scale Chatter  

Cracks 

Cracks are external or internal separations with sharp outlines. Cracks requiring a magnification of 

10× or higher to be seen by a naked eye are called microcracks. 

 
Fig. 7.11. Cracks 

Inclusion 

A physical and mechanical discontinuity occurring within a material or part, usually consisting of 

solid, encapsulated foreign material. Inclusions are often capable of transmitting some structural 

stresses and energy fields, but to a noticeably different degree than from the parent material [172]. 

  
Fig. 7.12. Inclusions: (a) Micro section of broken tungsten carbide cutting insert in TiAl6V4 matrix showing 

microstructural distortion and phase transformation through adiabatic shear; (b) broken inclusion in Waspaloy 
after rework.[173] 
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Discoloration 

A change in the appearance from shiny bright metal. Localized heating takes place at the surface of 

the hole. Colour intensity can be used to predict temperature reached. 

 
Fig. 7.13. Discoloration 

Burr 

A burr is a body created on a workpiece surface during the manufacturing of a workpiece, which 

extends over the intended and actual workpiece surface and has a slight volume in comparison with 

the workpiece, undesired, but to some extended, unavoidable [174]. 

Typically burrs occurring in turning operations are Poisson burrs (Fig. 7.14). They form when the 

cutting edge of a tool extends past the workpiece edge. Yet, if the cutting tool passes over a groove or 

cutting is interrupted due to other geometric features of the workpiece, a rollover burr forms. In 

turning operations, most burrs are created as a rollover burr at the side of the workpiece when the 

tool exits from cutting [175][176]. 

 
Fig. 7.14. Poisson burr formed when cutting edge of tool extends past edge of workpiece 

 

7.2.2. Micro anomalies 

Flaking 

Flaking occurs when small pieces of bearing material are split off from the smooth surface of the 

raceway or rolling elements due to rolling fatigue, thereby creating regions having rough and coarse 

texture[177]. 
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Fig. 7.15. Flaking 

Laps 

Laps (or seams) are surface defects which result from overlapping of the material during processing. 

 
Fig. 7.16. Laps 

 

Plucking 

Plucking is a phenomenon where small volumes of material are torn out of the surface. This  leads to 

very small surface depressions, which are open to the surface and so not reliably detected by 

penetrant inspection. Plucking is mainly observed on machined surfaces using aggressive cutting 

parameters [181]. 

 
Fig. 7.17. Plucking [180] 

Smearing 

A condition that causes a tool to leave burrs on a workpiece when it is not properly lubricated during 

machining. Smearing causes a poor surface finish [178]. 
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Fig. 7.18. Smearing 

7.2.3. Microstructure changes 

Recast Layer 

The recast layer is a surface layer made up of moltenmetal particles that have been re-deposited onto 

the surface of the workpiece [179]. 

 
Fig. 7.19. SEM of recast layer on cut surface 

 

White etching layer (WEL) 

A generic term referring to a layer of material that may be hard and brittle and because of its 

resistance to etching in comparison to the bulk material, appears featureless and white under light 

microscopes. WEL is normally found in association with a plastically deformed layer that results 

from the heat and stresses generated during metal removal operations 

 
Fig. 7.20. White Layer 
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Table 7.2. WEL Acceptance criteria 

White Etching Layer 

Acceptable 
Continuous areas ≤ 2.54 µm 
Isolated areas provided they are no deeper than:  1.27 µm 

Rejectable White layer in excess of acceptable requirements 

Distorted Surface Structure 

Slightly Distorted Surface Structure 

Microstructure is distorted however grain and/or phase boundaries are definable. 

Severely Distorted Surface Structure 

A microstructure distorted to the extent where grain and/or phase boundaries become undefinable. 

Acceptance criteria 
Table 7.3. Distorted surface acceptance criteria 

Distorted Surface Structure 

Acceptable 
Distortion-free --- 
Slightly distorted 15.24 µm 
Severely distorted 7.62 µm 

Rejectable Distorted structures in excess of acceptable requirements 

Table 7.4. Defect frequency 

Frequency % of investigated 
surface with defect 

Isolated < 5 
Occasional 5 – 15 
Intermittent > 15 – 40 
Predominant > 40 – 90 
Continuous > 90  

 

Recrystallized Layer 

The change from one crystal structure to another, as occurs on heating or cooling through a critical 

temperature. 

 

Fig. 7.21. Schematic diagram of the measurement of the recrystallized depth [182] 
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Re-deposited Layer 

Programming errors or tool selection errors can lead to contact of non cutting tool parts with the 

machined surface. This usually rare event could lead to overheating and/or microstructural 

distortion and even cracks at the component surface. Another reason for overheating may be the 

absence of coolant or out of range cutting parameters. Fig. 7.22 presents the result of intended 

abusive cutting conditions at the surface of a hole. The micro-structure is heavily distorted and 

parent material is redeposited. Provided that such events will of course be noticed it must be taken 

into account that there could remain some damage after rework of the surface [173]. 

 
Fig. 7.22. Redeposited layer [173] 
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7.3. Reports and results 

7.3.1. Visual Inspection results 

Standard Tests 

T_1 

V45 F0.10 Ap 0.3 
 

Defect type Detected Entity 
Scores N  
Scratches Y few 
Orange Peel N  
Chatter N  
Cracks N  
Inclusion N  
Discoloration N  
Burr N  

Final Evaluation: 12/15 

 

T_2 

V45 F0.125 Ap 0.3 
 

Defect type Detected Entity 
Scores N  
Scratches N  
Orange Peel N  
Chatter N  
Cracks N  
Inclusion N  
Discoloration N  
Burr N  

Final Evaluation: 14/15 

 

T_3 

V45 F0.15 Ap 0.3 
 

Defect type Detected Entity 
Scores N  
Scratches N  
Orange Peel N  
Chatter N  
Cracks N  
Inclusion N  
Discoloration N  
Burr N  

Final Evaluation: 14/15 
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T_4 

V50 F0.10 Ap 0.3 
 

Defect type Detected Entity 
Scores N  
Scratches N  
Orange Peel N  
Chatter N  
Cracks N  
Inclusion N  
Discoloration N  
Burr N  

Final Evaluation: 14/15 

 

T_5 

V50 F0.125 Ap 0.3 
 

Defect type Detected Entity 
Scores N  
Scratches N  
Orange Peel N  
Chatter N  
Cracks N  
Inclusion N  
Discoloration N  
Burr N  

Final Evaluation: 14/15 

 

T_6 

V50 F0.15 Ap 0.3 
 

Defect type Detected Entity 
Scores Y Due to handling 
Scratches N  
Orange Peel N  
Chatter N  
Cracks N  
Inclusion N  
Discoloration N  
Burr N  

Final Evaluation: 12/15 
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T_7 

V55 F0.10 Ap 0.3 
 

Defect type Detected Entity 
Scores N  
Scratches N  
Orange Peel N  
Chatter N  
Cracks N  
Inclusion N  
Discoloration N  
Burr N  

Final Evaluation: 14/15 

 

T_8 

V55 F0.125 
 

Defect type Detected Entity 
Scores N  
Scratches Y ~10 
Orange Peel N  
Chatter N  
Cracks N  
Inclusion N  
Discoloration N  
Burr N  

Final Evaluation: 11/15 

 

T_9 

V55 F0.15 
 

Defect type Detected Entity 
Scores N  
Scratches N  
Orange Peel N  
Chatter N  
Cracks N  
Inclusion N  
Discoloration N  
Burr N  

Final Evaluation: 14/15 
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Severe Cutting Conditions Tests 

T_1H 

V80 F0.15 Cool 
 

Defect type Detected Entity 
Scores Y (?) 
Scratches N  
Orange Peel N  
Chatter N  
Cracks N  
Inclusion N  
Discoloration N  
Burr N  

Final Evaluation: 8/15 

 

T_2H 

V80 F0.30 Cool 
 

Defect type Detected Entity 
Scores Y In some parts of circumference, not deep 
Scratches Y Very superficial  
Orange Peel N  
Chatter N  
Cracks N  
Inclusion N  
Discoloration N  
Burr N  

Final Evaluation: 7/15 

 

T_3H 

V100 F0.15 Cool 
 

Defect type Detected Entity 
Scores N  
Scratches Y Superficial 
Orange Peel N  
Chatter N  
Cracks N  
Inclusion N  
Discoloration N  
Burr N  

Final Evaluation: 10/15 
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T_4H 

V100 F0.30 Cool 
 

Defect type Detected Entity 
Scores N  
Scratches Y Superficial 
Orange Peel N  
Chatter N  
Cracks N  
Inclusion N  
Discoloration N  
Burr N  

Final Evaluation: 10/15 

 

T_5H 

V80 F0.15 Dry 
 

Defect type Detected Entity 
Scores N  
Scratches Y Deeper than usual 
Orange Peel N  
Chatter N  
Cracks N  
Inclusion N  
Discoloration N  
Burr N  

Final Evaluation: 11/15 

 

T_6H 

V80 F0.30 Dry 
 

Defect type Detected Entity 
Scores Y All along the circumference 
Scratches Y Superficial 
Orange Peel N  
Chatter N  
Cracks N  
Inclusion N  
Discoloration N  
Burr N  

Final Evaluation: 8/15 
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T_7H 

V100 F0.15 Dry 
 

Defect type Detected Entity 
Scores Y All along the circumference 
Scratches Y Superficial 
Orange Peel N  
Chatter N  
Cracks N  
Inclusion N  
Discoloration N  
Burr N  

Final Evaluation: 7/15 

 

T_8H 

V100 F0.30 Dry 
 

Defect type Detected Entity 
Scores Y All along the circumference 
Scratches Y Superficial 
Orange Peel N  
Chatter N  
Cracks N  
Inclusion N  
Discoloration N  
Burr N  

Final Evaluation: 6/15 
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7.3.2. FPI results 

FPI Tests did NOT evidence any surface defect, neither in Standard Tests nor in Severe cutting 

conditions tests. 

7.3.3. Metallographic tests results 

Standard Tests 

Tests carried out by Aviogroup SpA 

T_1: V 45 - f 0.10 

 
Typical condition at ~ 500X 
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T_2: V 45 - f 0.125 

 
Typical condition at ~ 500X 

 
Worst condition at ~ 500X 
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T_3: V 45 - f 0.15 

 
Typical condition at ~ 500X 

 
Worst condition at ~ 500X 
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T_4: V 50 - f 0.10 

 
Typical condition at ~ 500X 

 
Worst condition at ~ 500X 
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T_5: V 50 - f 0.125 

 
Typical condition at ~ 500X 
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T_6: V 50 - f 0.15 

 
Typical condition at ~ 500X 

 
Worst condition at ~ 500X 
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T_7: V 55 - f 0.10 

 
Typical condition at ~ 500X 

 

T_8: V 55 - f 0.125 

 
Typical condition at ~ 500X 
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T_9: V 55 - f 0.15 

 
Typical condition at ~ 500X 

 

Severe Cutting Conditions Tests 

Tests carried out by Aviogroup SpA 
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1.1.1. Micro hardness results 

Notations 

Hardness Tests (Vickers 300g) 

d = Arithmetic mean of the two diagonals, d1 and d2 in mm 

D = distance from edge 

 

Fig. 7.23. 
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Standard Tests 

T_1: V 45 - f 0.10 

d(μm) HV D(μm) Row HV average 

34.7 462 107 1 

458 34.9 457 112 1 

35.0 454 113 1 

34.5 467 193 2 

467 34.4 470 216 2 

34.6 465 229 2 

34.5 467 319 3 

467 34.4 470 326 3 

34.6 465 340 3 

 

T_2: V 45 - f 0.125 

d(μm) HV D(μm) Row HV average 

34.3 473 114 1 

473 34.3 473 105 1 

34.3 473 91 1 

34.7 462 229 2 

471 34.9 457 206 2 

33.6 493 220 2 

34.6 465 297 3 

459 34.9 457 324 3 

35.0 454 341 3 

 

T_3: V 45 - f 0.15 

d(μm) HV D(μm) Row HV average 

34.3 473 126 1 

474 33.8 487 128 1 

34.7 462 127 1 

34.3 473 243 2 

473 34.5 467 244 2 

34.1 478 242 2 

34.7 462 331 3 

472 34.0 481 330 3 

34.3 473 328 3 

 
Hardness Impressions @100X 
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T_4: V 50 - f 0.10 

d(μm) HV D(μm) Row HV average 

33.9 484 108 1 478 

34.2 476 121 1 

34.3 473 142 1 

33.9 484 217 2 489 

33.8 487 236 2 

33.5 496 247 2 

34.9 457 318 3 474 

34.2 476 328 3 

33.7 490 330 3 

 
Hardness Impressions @100X 

 

T_5: V 50 - f 0.125 

d(μm) HV D(μm) Row HV average 

34.1 478 77* 1 

468 34.6 465 119 1 

34.7 462 106 1 

34.0 481 210 2 

474 34.3 473 205 2 

34.5 467 205 2 

34.8 459 270 3 

467 34.4 470 265 3 

34.3 473 266 3 

* distance from edge less than 2,5 times diagonal lenght 
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T_6: V 50 - f 0.15 

d(μm) HV D(μm) Row HV average 

34.5 470 95 1 

467 34.1 478 105 1 

35.0 454 106 1 

34.3 473 194 2 

469 34.5 467 200 2 

34.5 467 204 2 

34.2 476 283 3 

473 34.1 478 268 3 

34.6 465 290 3 

 

T_7: V 55 - f 0.10 

d(μm) HV D(μm) Row HV average 

34.5 467 95 1 

469 34.4 470 111 1 

34.4 470 89 1 

34.2 476 237 2 

473 34.5 467 267 2 

34.2 476 241 2 

34.3 473 369 3 

470 34.6 465 378 3 

34.3 473 376 3 

 

T_8: V 55 - f 0.125 

d(μm) HV D(μm) Row HV average 

34.5 467 75 1 

465 34.7 462 100 1 

34.6 465 117 1 

34.2 476 191 2 

471 34.4 470 207 2 

34.5 467 198 2 

34.3 473 313 3 

473 34.4 470 296 3 

34.2 476 288 3 

 

T_9: V 55 - f 0.15 

d(μm) HV D(μm) Row HV average 

34.8 459 132 1 

474 33.9 484 115 1 

34.1 478 110 1 

34.5 467 234 2 

466 34.6 465 230 2 

34.6 465 230 2 

34.2 476 350 3 

473 34.3 473 372 3 

34.0 470 363 3 
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Severe Cutting Conditions Tests Microhardness Measurements 

 

T_1H: V 80 - f 0.15 - Cooled 

d(μm) HV D(μm) Row HV average 

34.4 470 136 1 470 

34.3 473 135 1 

34.5 467 137 1 

34.5 467 267 2 465 

34.8 459 266 2 

34.4 470 267 2 

34.9 457 353 3 465 

34.4 470 358 3 

34.5 467 358 3 

 
Hardness Impressions @100X 
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T_2H: V 80 - f 0.30 - Cooled 

d(μm) HV D(μm) Row HV average 

34.7 462 128 1 

464 34.3 473 128 1 

34.9 457 131 1 

34.3 473 250 2 

467 34.5 467 251 2 

34.7 462 254 2 

34.0 481 345 3 

475 34.5 467 345 3 

34.1 478 343 3 

 
Hardness Impressions @100X 

 

T_3H: V 100 - f 0.15 - Cooled 

d(μm) HV D(μm) Row HV average 

33.8 487 138 1 

475 34.3 473 137 1 

34.6 465 136 1 

34.7 462 265 2 

471 33.9 484 267 2 

34.5 467 262 2 

34.8 459 352 3 

466 34.3 473 358 3 

34.5 467 355 3 

 
Hardness Impressions @100X 
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T_4H: V 100 - f 0.3 - Cooled 

d(μm) HV D(μm) Row HV average 

34.0 481 125 1 

476 34.6 465 123 1 

34.0 481 126 1 

34.6 465 239 2 

461 35.1 451 230 2 

34.5 467 242 2 

35.3 446 330 3 

445 35.2 449 326 3 

35.5 441 335 3 

 
Hardness Impressions @100X 

 

T_5H: V 80 - f 0.15 - Dry 

d(μm) HV D(μm) Row HV average 

34.9 457 137 1 461 

34.8 459 135 1 

34.5 467 137 1 

34.5 467 262 2 467 

34.3 473 262 2 

34.7 462 264 2 

34.3 473 359 3 471 

34.4 470 359 3 

34.4 470 359 3 

 
Hardness Impressions @100X 
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T_6H: V 80 - f 0.15 - Dry 

d(μm) HV D(μm) Row HV average 

34.2 476 131 1 477 

34.1 478 129 1 

34.2 476 133 1 

34.2 476 251 2 474 

34.5 467 245 2 

34.1 478 249 2 

34.0 481 361 3 470 

34.5 467 358 3 

34.7 462 363 3 

 
Hardness Impressions @100X 

 

T_7H: V 100 - f 0.15 - Dry 

d(μm) HV D(μm) Row HV average 

34.3 473 118 1 470 

34.2 476 120 1 

34.7 462 121 1 

34.9 457 229 2 466 

34.5 467 228 2 

34.3 473 232 2 

34.1 478 307 3 474 

34.7 462 311 3 

34.0 481 312 3 

 
Hardness Impressions @100X 
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T_8H: V 100 - f 0.30 - Dry 

d(μm) HV D(μm) Row HV average 

33.5 496 136 1 504 

33.1 508 137 1 

33.1 508 138 1 

33.2 505 264 2 497 

33.5 496 264 2 

33.7 490 267 2 

33.4 499 359 3 499 

33.1 508 360 3 

33.7 490 358 3 

 
Hardness Impressions @100X 

 

1.1.2. Roughness measurements reports 

Roughness measurements are carried out on samples by using a Taylor Hobson roughness tester. 

The results are reported in the tables below.  

Table 7.5. Roughness parameters 

Roughness parameters 

RA Arithmetic average of absolute values 
RP Maximum peak height 
RV Maximum valley depth 
RT Maximum Height of the Profile 

RzJIS 
Japanese Industrial Standard for Rz, based on the five highest peaks and lowest valleys over the 
entire sampling length 
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Standard Tests 

 
RA 3.3151 µm 

RP 6.7524 µm 

RV 4.8499 µm 

RT 12.1788 µm 

RzJIS 11.1493 µm 

 

 
RA 1.7332 µm 

RP 3.1776 µm 

RV 2.7023 µm 

RT 6.1479 µm 

RzJIS 5.5481 µm 
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Severe Cutting Conditions Tests 

 
RA 0.3502 µm 

RP 1.0965 µm 

RV 0.7686 µm 

RT 2.1462 µm 

RzJIS 1.4937 µm 

 

 
RA 1.2864 µm 

RP 2.5071 µm 

RV 2.1179 µm 

RT 5.1853 µm 
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RA 0.4279 µm 

RP 1.4225 µm 

RV 1.1493 µm 

RT 3.1398 µm 

RzJIS 1.7243 µm 

 

 
RA 1.1726 µm 

RP 2.1774 µm 

RV 1.9801 µm 

RT 4.3643 µm 
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RA 0.2258 µm 

RP 0.9111 µm 

RV 0.5554 µm 

RT 1.7409 µm 

RzJIS 0.9051 µm 

 

 
RA 0.4978 µm 

RP 1.1037 µm 

RV 1.0371 µm 

RT 2.4434 µm 

RzJIS 1.4467 µm 

 



 
 128 

 
RA 0.3786 µm 

RP 1.1270 µm 

RV 1.0380 µm 

RT 3.0915 µm 

RzJIS 1.4958 µm 

 

 
RA 1.4443 µm 

RP 2.9257 µm 

RV 2.4814 µm 

RT 5.9946 µm 
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8. Signal Processing and Features Extraction 

8.1. Pre – processing 

8.1.1. File format 

Labview allows to save the acquired signals in *.txt file compatible with all the operative systems. 

Nevertheless, Matlab needs a conversion in order to store the data in the workspace. 

Among the Matlab resources, a file converter is available, txt2mat.m downloadable at [183], it quickly 

converts ascii files containing m-by-n numeric data, allowing for header lines. 

For the Vibralog output files, the file format is *.dat. A file conversion is hence needed in order to 

process the signals in Matlab. 

8.1.2. Signal segmentation 

The raw signals (Fig. 8.1) coming from the stored data, needs to be pre-processed in order to be 

handled for further analysis. 

 

8.1. Examples of raw signals 

Signal head and tail were removed from each component of the whole signals. This operation is 

carried out manually, evaluating time by time the samplings to be removed. 

After this preliminary operation, signals appear as in Fig. 8.2. 
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Fig. 8.2. First signal segmentation (head and tail removed) 

Signal segmentation has been carried out by extracting a portion of signal as highlighted in Fig. 8.3. 

This operation is required in order to process an homogenous segment of signal. The number of 

samples per portion varies for each test and step. 

 

8.3. Fig. Selected signal portion for segmentation (in yellow) 

The signal segmentation has been carried out for all the signal components: Fx, Fy, Fz, AERMS, Ax, Ay, 

Az, respectively for each experimental test and each step. 

The file name to be given to each segmented signal set is made up in the following way: 

 Test number, according to Tables 3.1 and 3.2. 
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 Step number 

So, for example, the file related to the first step of Test #1 is Test1_step1.mat 

8.1.3. Signal Subdivision 

 

 

Fig. 8.4. Signal subdivision 

Signal subdivision is carried out by isolating five portions made of 3000 samples each, as highlighted 

in yellow in Fig. 8.4. 

The five portions are uniformly distributed along the signal length resulting from the previous 

segmentation. This procedure is automatically carried out through Matlab® ad-hoc code written for 

this purpose. Below an example of such code written for test case Test_1: 

Test_1_I=Test_1(((length(Test_1)/6)-1499):((length(Test_1)/6)+1500),:); 
Test_1_II=Test_1(((length(Test_1)/3)-1499):((length(Test_1)/3)+1500),:); 
Test_1_III=Test_1(((length(Test_1)/2)-1499):((length(Test_1)/2)+1500),:); 
Test_1_IV=Test_1((4*(length(Test_1)/6)-1499):(4*(length(Test_1)/6)+1500),:); 
Test_1_V=Test_1((5*(length(Test_1)/6)-1499):(5*(length(Test_1)/6)+1500),:); 

Where Test_1_I, Test_1_II, Test_1_III, Test_1_IV and Test_1_V are respectively the five selected 

portions of the signal. 

In this way, the files are renamed in order to classify the signals according to their experimental test, 

step number and portion. 

For example, the first portion of the first step of the first test case is named: 

Test1_step1_I 
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Test1_step1_II is the second portion, and so on 

The dataset coming out from this operation appears as it follows: 

Table 8.1. Example of dataset (T_1_I) 

Sampling Fx Fy Fz AERMS Ax Ay Az 

1 0,6444 -0,6031 -0,1491 1,7085 3,6908 -8,9871 0,6727 
2 0,6483 -0,6021 -0,1326 1,7075 0,0358 -1,3501 1,5047 
…  0,6528 -0,5920 -0,1841 1,7065 -3,5602 -12,8791 0,2567 
3000 0,9276 -0,9763 -0,1776 1,8261 0,8078 10,5959 -4,0513 

8.1.4. Dataset Construction 

Due to drift phenomena occurred during the acquisition phases, it can happen that vibration signals 

have non-zero mean value, while, for their very nature, vibrations should oscillate around zero. To 

bring back the signal mean value to zero, the following Matlab® code was implemented (the example 

is referred to test case Test_1_I) 

 

means_I=mean(Test_1_I); %calculates the mean value of each variable 
columns=size(Test_1_I,2); %calculate the number of columns of dataset 
for i = 5:columns; 

     
Test_1_I (:,i)= Test_1_I(:,i)-means_I(i); % mean subtraction from the vibration columns 
end 

 

The vibration columns are 5, 6 and 7, respectively Ax, Ay and Az 

The final dataset used for signal processing is hence made of a 3000 x 7 matrix, in which the 3000 

rows are the signal specimens and the 7 columns represent the signal variables: Fx, Fy, Fz, AErms, 

Ax, Ay and Az respectively. The last 3 columns (related to the three acceleration components) are 

normalized and have zero mean value. 

In this way, five dataset for each experimental test case step have been created. 

  



 
 133 

8.2. Conventional Features Extraction 
The conventional features to be extracted from each dataset are statistical features: means and 

variances 

The features extracted are: 

 Mean Fx; 

 Mean Fy; 

 Mean Fz; 

 Variance Fx; 

 Variance Fy; 

 Variance Fz; 

 Mean AErms; 

 Variance AErms; 

 Variance Ax; 

 Variance Ay; 

 Variance Az; 

For the acceleration components obviously the mean is not calculates as it is zero by definition. 

By implementing the following Matlab® code, the 11 features have been extracted. 

clear workspace 
load ..\Dataset\Test1_step_1.mat 
conv_I=[mean(Test1_step1_I(:,1:3)),var(Test1_step1_I(:,1:3)),mean(Test1_step1_I(:,4)),var

(Test1_step1_I(:,4)),var(Test1_step1_I(:,5:7))]; 
conv_II=[mean(Test1_step1_II(:,1:3)),var(Test1_step1_II(:,1:3)),mean(Test1_step1_II(:,4))

,var(Test1_step1_II(:,4)),var(Test1_step1_II(:,5:7))]; 
conv_III=[mean(Test1_step1_III(:,1:3)),var(Test1_step1_III(:,1:3)),mean(Test1_step1_III(:

,4)),var(Test1_step1_III(:,4)),var(Test1_step1_III(:,5:7))]; 
conv_IV=[mean(Test1_step1_IV(:,1:3)),var(Test1_step1_IV(:,1:3)),mean(Test1_step1_IV(:,4))

,var(Test1_step1_IV(:,4)),var(Test1_step1_IV(:,5:7))]; 
conv_V=[mean(Test1_step1_V(:,1:3)),var(Test1_step1_V(:,1:3)),mean(Test1_step1_V(:,4)),var

(Test1_step1_V(:,4)),var(Test1_step1_V(:,5:7))]; 

  
box_conv=[conv_I;conv_II;conv_III;conv_IV;conv_V]; 

  
save conv_Test1_step1.mat 

 

In this way, a 5x11 matrix is created, in which the five rows are the five signal portions and the 11 

columns are the 11 conventional features extracted. 

As an example the conventional features related to Test1_step1 are reported in the table below 

Table 8.2. Conventional features extracted from T_1_1 

ID TEST 
Mean 

Fx 
Mean 

Fy 
Mean 

Fz 
Var 
Fx 

Var 
Fy 

Var 
Fz 

Mean 
AE 

Var 
AE 

Var 
Ax 

Var 
Ay 

Var 
Az 

Test1_step1_I 0,3630 -0,1751 -0,2245 0,0001 0,0004 0,0002 2,5985 0,0069 7,0708 164,7952 3,1242 

Test1_step1_II 0,3575 -0,1709 -0,2243 0,0002 0,0004 0,0002 2,5218 0,0058 8,2219 178,4524 3,1371 

Test1_step1_III 0,3468 -0,1787 -0,2354 0,0002 0,0004 0,0002 2,5590 0,0040 9,8744 175,4386 3,7511 

Test1_step1_IV 0,3349 -0,1999 -0,2573 0,0002 0,0004 0,0002 2,6263 0,0071 9,8561 180,3695 3,5059 

Test1_step1_V 0,3199 -0,2237 -0,2735 0,0002 0,0004 0,0002 2,6555 0,0041 11,2864 201,7403 3,8425 
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8.3. Principal Components Analysis 

8.3.1. Generalities 

Advances in computing and sensor technology allow the collection and storage of large amounts of 

measurements from many chemical manufacturing processes. These measured data are a rich source 

of information, which when used effectively can greatly enhance the performance of these processes. 

The information embedded in data can be efficiently extracted by constructing accurate models that 

describe, summarize, and predict the process behavior [184]. 

Principal Component Analysis (PCA) is a popular modeling technique used to extract information 

from process data by relating its variables. PCA has been found useful in many applications, such as 

process monitoring [185][186], data filtering, [187] compression and regression. It transforms the 

process variables by rotating their axes of representation to capture the variation of the original 

variables in a lower dimension space. The new axes of rotation are represented by the projection 

directions or principal component loadings [184]. 

8.3.2. Purposes 

The goals of PCA [188] are to: 

 extract the most important information from the data table; 

 compress the size of the data set by keeping only this important information; 

 simplify the description of the data set; 

 analyze the structure of the observations and the variables. 

In order to achieve these goals, PCA computes new variables called principal components which are 

obtained as linear combinations of the original variables. 

The first principal component is required to have the largest possible variance (i.e., inertia and 

therefore this component will \explain" or \extract" the largest part of the inertia of the data table). 

The second component is computed under the constraint of being orthogonal to the first component 

and to have the largest possible inertia. The other components are computed likewise. The values of 

these new variables for the observations are called scores, these scores can be interpreted 

geometrically as the projections of the observations onto the principal components [188]. 

8.3.3. Computation 

The Principal Components Analysis procedure can be summarized in the following flow chart:  

 

Dataset  

Normalization 

Covariance 
Matrix 

Calculation 

Eigenvectors 
Calculation 

Eigenvalues 
Calculation 
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8.3.3.1. Normalization 

To implement the Principal Components Analysis on the dataset, the first step to carry out is the 

data normalization, which consists to bring all the signal variables to zero-mean values. In order to 

perform this normalization, the following Matlab® code was created: 

means_I=mean(Test1_step1_I); 
columns=size(Test1_step1_I,2); 
for i = 1:columns; 

     
Test1_step1_I(:,i)=Test1_step1_I(:,i)-means_I(i); 
end 
%------------------------- 
means_II=mean(Test1_step1_II); 
columns=size(Test1_step1_II,2); 
for i = 1:columns; 

     
Test1_step1_II(:,i)=Test1_step1_II(:,i)-means_II(i); 
end 
%------------------------- 
means_III=mean(Test1_step1_III); 
columns=size(Test1_step1_III,2); 
for i = 1:columns; 

     
Test1_step1_III(:,i)=Test1_step1_III(:,i)-means_III(i); 
end 
%------------------------- 
means_IV=mean(Test1_step1_IV); 
columns=size(Test1_step1_IV,2); 
for i = 1:columns; 

     
Test1_step1_IV(:,i)=Test1_step1_IV(:,i)-means_IV(i); 
end 
%------------------------- 
means_V=mean(Test1_step1_V); 
columns=size(Test1_step1_V,2); 
for i = 1:columns; 

     
Test1_step1_V(:,i)=Test1_step1_V(:,i)-means_V(i); 
end 
%---------- 

 

In this way, the mean value of each variable has been subtracted from the related column. 

The dataset is now ready for the next PCA steps. 
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8.3.3.2. Covariance Matrix Calculation 

The Covariance matrix is a matrix formed from the pairwise covariances of several random variables; 

more precisely, for the k-dimensional vector             the covariance matrix is the square 

matrix                   , where                is the vector of mean values.  

The components of the covariance matrix are: 

                                   

          

and for     they are the same as                (that is, the variances of the    lie on the principal 

diagonal). The covariance matrix is a symmetric positive semi-definite matrix. If the covariance 

matrix is positive definite, then the distribution of   is non-degenerate; otherwise it is degenerate. 

For the random vector   the covariance matrix plays the same role as the variance of a random 

variable [189]. 

The covariance matrix of each dataset is calculated along the all seven variables 

Table 8.3. Example of covariance matrix (Test T_1_I) 

0,0255 -0,0306 -0,0005 0,0089 -0,0036 0,0276 -0,0030 
-0,0306 0,0388 0,0011 -0,0104 0,0043 -0,0504 0,0036 
-0,0005 0,0011 0,0011 0,0003 -0,0021 -0,0020 0,0006 
0,0089 -0,0104 0,0003 0,0056 -0,0009 0,0184 0,0017 

-0,0036 0,0043 -0,0021 -0,0009 13,6935 -2,7606 3,1376 
0,0276 -0,0504 -0,0020 0,0184 -2,7606 88,8354 1,3861 

-0,0030 0,0036 0,0006 0,0017 3,1376 1,3861 4,0516 

8.3.3.3. Eigenvectors Calculation 

Eigenvectors are a special set of vectors associated with a linear system of equations (i.e., a matrix 

equation) that are sometimes also known as characteristic vectors, proper vectors, or latent vectors 

[190]. 

The determination of the eigenvectors and eigenvalues of a system is extremely important in physics 

and engineering, where it is equivalent to matrix diagonalization and arises in such common 

applications as stability analysis, the physics of rotating bodies, and small oscillations of vibrating 

systems, to name only a few. Each eigenvector is paired with a corresponding so-called eigenvalue. 

Mathematically, two different kinds of eigenvectors need to be distinguished: left eigenvectors and 

right eigenvectors. However, for many problems in physics and engineering, it is sufficient to 

consider only right eigenvectors. The term "eigenvector" used without qualification in such 

applications can therefore be understood to refer to a right eigenvector. 

The decomposition of a square matrix A into eigenvalues and eigenvectors is known in this work as 

eigen decomposition, and the fact that this decomposition is always possible as long as the matrix 

consisting of the eigenvectors of A is square is known as the eigen decomposition theorem. 

Define a right eigenvector as a column vector XR satisfying 

         (8.1) 
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Where A is a matrix, so 

            (8.2) 

which means the right eigenvalues must have zero determinant, i.e., 

             (8.3) 

Similarly, define a left eigenvector as a row vector XL satisfying 

         (8.4) 

Taking the transpose of each side gives 

           
  (8.5) 

which can be rewritten as 

    
      

  (8.6) 

Rearrange again to obtain 

           (8.7) 

which means 

              (8.8) 

Rewriting gives 

                        
   

             
  

              

(8.9) 
(8.10) 
(8.11) 

where the last step follows from the identity 

                (8.12) 

Equating equations (8.9) and (8.11), which are both equal to 0 for arbitrary A and X, therefore 

requires that λR = λL ≡ λ, i.e., left and right eigenvalues are equivalent, a statement that is not true 

for eigenvectors. 

Let XR be a matrix formed by the columns of the right eigenvectors and XL be a matrix formed by the 

rows of the left eigenvectors. Let 

   
    
   
    

  (8.13) 

Then 

        
        

(8.14) 
(8.15) 

And 
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(8.16) 
(8.17) 

So 

            (8.18) 

But this equation is of the form 

      (8.19) 

where D is a diagonal matrix, so it must be true that C ≡ XLXR is also diagonal. In particular, if A is a 

symmetric matrix, then the left and right eigenvectors are simply each other's transpose, and if A is a 

self-adjoint matrix (i.e., it is Hermitian), then the left and right eigenvectors are adjoint matrices. 

Eigenvectors may not be equal to the zero vector. A nonzero scalar multiple of an eigenvector is 

equivalent to the original eigenvector. Hence, without loss of generality, eigenvectors are often 

normalized to unit length. 

While an     matrix always has n eigenvalues, some or all of which may be degenerate, such a 

matrix may have between 0 and n linearly independent eigenvectors. For example, the matrix  
  
  

  

has only the single eigenvector (1, 0) [191]. 

8.3.3.4. Eigenvalues Calculation 

Eigenvalues are a special set of scalars associated with a linear system of equations (i.e., a matrix 

equation) that are sometimes also known as characteristic roots, characteristic values (Hoffman and 

Kunze 1971), proper values, or latent roots (Marcus and Minc 1988, p. 144). 

The determination of the eigenvalues and eigenvectors of a system is extremely important in physics 

and engineering, where it is equivalent to matrix diagonalization and arises in such common 

applications as stability analysis, the physics of rotating bodies, and small oscillations of vibrating 

systems, to name only a few. Each eigenvalue is paired with a corresponding so-called eigenvector 

(or, in general, a corresponding right eigenvector and a corresponding left eigenvector; there is no 

analogous distinction between left and right for eigenvalues). 

The decomposition of a square matrix  into eigenvalues and eigenvectors is known in this work as 

eigen decomposition, and the fact that this decomposition is always possible as long as the matrix 

consisting of the eigenvectors of  is square is known as the eigen decomposition theorem. 

The Lanczos algorithm is an algorithm for computing the eigenvalues and eigenvectors for large 

symmetric sparse matrices. 

Let A be a linear transformation represented by a matrix A. If there is a vector  ∈    such that: 

      8.20 

for some scalar λ, then λ is called the eigenvalue of A with corresponding (right) eigenvector X. 

Letting A be a     square matrix 
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  8.21 

with eigenvalue λ, then the corresponding eigenvectors satisfy 

 

       

   
       

  

  

 
  

    

  

 
  

  8.22 

which is equivalent to the homogeneous system 

 
         

   
         

  

  

 
  

   
 
 
 
  8.23 

Equation 8.23 can be written compactly as 

          8.24 

where I is the identity matrix. As shown in Cramer's rule, a linear system of equations has nontrivial 

solutions iff the determinant vanishes, so the solutions of equation 8.24 are given by 

            8.25 

This equation is known as the characteristic equation of A, and the left-hand side is known as the 

characteristic polynomial [192]. 

The eigenvalues of the covariance matrix, called Latent Roots, were grouped  and used as input 

features for Neural Networks  

8.3.4. Matlab Principal Components Analysis Computation 

Syntax [193] 

[COEFF,SCORE,latent] = princomp(X) 

princomp(X) performs principal components analysis (PCA) on the n-by-p data matrix X, and 

returns the principal component coefficients, also known as loadings. Rows of X correspond to 

observations, columns to variables. princomp centers X by subtracting off column means. 

COEFF is a p-by-p matrix, each column containing coefficients for one principal component. The 

columns are in order of decreasing component variance. 

SCORE returns the principal component scores; that is, the representation of X in the principal 

component space. Rows of SCORE correspond to observations, columns to components. 

Latent returns a vector containing the eigenvalues of the covariance matrix of X. 

The scores are the data formed by transforming the original data into the space of the principal 

components. The values of the vector Latent are the variance of the columns of SCORE. 

[194][195][196][197].  
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8.3.5. Plots 

8.3.5.1. Scree Plot 

A Scree Plot is a simple line segment plot that shows the fraction of total variance in the data as 

explained or represented by each PC. The PCs are ordered by decreasing order of contribution to 

total variance.. Such a plot when read left-to-right across the abscissa can often show a clear 

separation in fraction of total variance where the “most important” components cease and the “least 

important” components begin. The point of separation is often called the “elbow”. In the PCA 

literature, the plot is called a “Scree” Plot because it often looks like a “scree” slope, where rocks have 

fallen down and accumulated on the side of a mountain [198]. 

 

8.5. Latent roots scree plot 

 

8.3.5.2. Biplot 

A biplot allows to visualize the magnitude and sign of each variable's contribution to the first three 

principal components, and how each observation is represented in terms of those components. 
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8.6. Principal Components Biplot 

 

8.4. Results 
The results of the PCA procedure applied to all sensor fusion data matrices (all test cases) are 

summarized in Table 8.4. The table values represent the sensor signal variable corresponding to the 

1st, …, 7th principal component, respectively.  

Table 8.4. Table with correspondence 

Principal  
Components 

Original  
Variables 

1st  Ay 
2nd   Ax 
3rd  Az 
4th  AERMS 
5th  Fy 
6th  Fz 
7th  Fx 
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Decision Making 

9. Neural Network based Pattern Recognition  

9.1. Pattern Recognition and Neural Networks 
Pattern recognition can be defined as the categorization of input data into identifiable classes via the 

extraction of significant features or attributes of the data from a background of irrelevant detail. The 

historically most frequent areas of application are in spatial pattern recognition—3-D image 

processing, character and voice recognition, and in temporal pattern recognition—weather 

forecasting and financial time series forecasting [199] [200]. 

3-Layers Feedforward backpropagation Neural Networks were used for Pattern Recognition 

Purposes. 

The first term, “feedforward” describes how this neural network processes and recalls patterns. In a 

feedforward neural network, neurons are only connected foreword. Each layer of the neural network 

contains connections to the next layer (for example, from the input to the hidden layer), but there 

are no connections back. 

The term “backpropagation” describes how this type of neural network is trained. Backpropagation is 

a form of supervised training. When using a supervised training method, the network must be 

provided with both sample inputs and anticipated outputs. The anticipated outputs are compared 

against the actual outputs for given input. Using the anticipated outputs, the backpropagation 

training algorithm then takes a calculated error and adjusts the weights of the various layers 

backwards from the output layer to the input layer. 

The backpropagation and feedforward algorithms are often used together. The feedforward neural 

network begins with an input layer. The input layer may be connected to a hidden layer or directly to 

the output layer. If it is connected to a hidden layer, the hidden layer can then be connected to 

another hidden layer or directly to the output layer. There can be any number of hidden layers, as 

long as there is at least one hidden layer or output layer provided. In common use, most neural 

networks will have one hidden layer, and it is very rare for a neural network to have more than two 

hidden layers [200]. 

Figure 9.1 illustrates a typical feedforward neural network with a single hidden layer. 

The input layer is the conduit through which the external environment presents a pattern to the 

neural network. Once a pattern is presented to the input layer, the output layer will produce another 

pattern. In essence, this is all the neural network does. The input layer should represent the 

condition for which the neural network is trained. Every input neuron should represent some 

independent variable that has an influence over the output of the neural network. 

The output layer of the neural network is what actually presents a pattern to the external 

environment. The pattern presented by the output layer can be directly traced back to the input 

layer. The number of output neurons should be directly related to the type of work that the neural 

network is to perform. 
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To determine the number of neurons to use in output layer, the intended use of the neural network 

should be considered If the neural network is to be used to classify items into groups, then it is often 

preferable to have one output neuron for each group that input items are to be assigned into [200]. 

 

 

9.1. A typical feedforward neural network (single hidden layer) 

 

Considerations about the number of hidden layer nodes 

Statistical considerations based on several attempts of Neural Networks configurations shown that, 

on average, better results are obtained by setting a number of hidden layer nodes equal to 2 times 

(double) and 4 times (quadruple) the number of the input layer nodes. Hence, the two hidden layer 

nodes configuration mentioned above will be adopted for pattern recognition purposes in this thesis 

work, and they will be denoted by “2x” and “4x” respectively. 

So, for example, the series of Neural Network configurations implemented by using SCG training 

algorithm and a number of hidden layer nodes equal to the double of Input Layer Nodes will be 

reported as SCG 2x, the quadruple as SCG 4x and so on… 

9.2. Purposes 

9.2.1. Tool State Identification 

The first goal of pattern recognition neural networks is to identify the tool state, on the basis of 

features extracted in correspondence of both fresh tool and worn tool. 

9.2.2. Residual Stress Assessment (worn tool) 

For every experimental test, the signals related to the last step were considered., which are the steps 

in correspondence of which the residual stress measurement was carried out.  
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9.2.3. Residual Stress Assessment (fresh tool) 

Signals related to the last step of every experimental turning test, by their definition, are acquired in 

correspondence of worn tool. The signals taken into account are hence the ones belonging to the 

first step of every experimental test. 

9.3. Pattern Vectors 
Features extracted both by conventional methodology and by advanced PCA based methodology 

were used as input pattern vectors for neural networks. 

9.3.1. Pattern Vectors from Conventional Features 
14 different pattern vectors made of different combinations of conventional features were utilized as 

input vectors for Neural Network decision making support systems, and reported in the table below. 

Table 9.1. Pattern vectors from conventional features 

# of 
features 

Features 

2 [Mean AE, Var AE] 
3 [Var Ax, Var Ay, Var Az] 
3 [Var Fx, Var Fy, Var Fz] 
3 [Mean Fx, Mean Fy, Mean Fz] 
6 [Mean Fx, Mean Fy, Mean Fz, Var Fx, Var Fy, Var Fz] 
4 [Var Fx, Var Fy, Var Fz, Var AE] 
4 [Mean Fx, Mean Fy, Mean Fz, Mean AE] 
4 [Var AE, Var Ax, Var Ay, Var Az] 
5 [Mean AE, Var AE, Var Ax, Var Ay, Var Az] 
6 [Var Fx, Var Fy, Var Fz, Var Ax, Var Ay, Var Az,] 
7 [Var Fx, Var Fy, Var Fz, Var AE, Var Ax, Var Ay,Var Az] 
8 [Mean Fx, Mean Fy, Mean Fz, Var Fx, Var Fy, Var Fz, Mean AE, Var AE] 
9 [Mean Fx, Mean Fy, Mean Fz, Var Fx, Var Fy, Var Fz, Var Ax, Var Ay,Var Az] 
11 [Mean Fx, Mean Fy, Mean Fz, Var Fx, Var Fy, Var Fz, Mean AE, Var AE, Var Ax, Var 

Ay,Var Az] 

9.3.2. Pattern Vectors from PCA based Features 
6 different pattern vectors made of PCA based features were utilized as input vectors for Neural 

Network decision making support systems, and reported in the table below. 

Table 9.2. Pattern vectors from PCA-based features 

#of Features Features 

3 [Ay Ax Az] 

3 [Fy Fz Fx] 

4 [AErms Fy Fz Fx 

4 [Ay Ax Az AERMS] 

6 [Ay Ax Az Fy Fz Fx] 

7 [Ay Ax Az AERMS Fy Fz Fx] 
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9.4. Training Algorithms 

9.4.1. Levenberg-Marquardt (LM) 

Like the quasi-Newton methods, the Levenberg-Marquardt algorithm [201] was designed to 

approach second-order training speed without having to compute the Hessian matrix. When the 

performance function has the form of a sum of squares (as is typical in training feedforward 

networks), then the Hessian matrix can be approximated as 

      

and the gradient can be computed as 

      

Where J is the Jacobian matrix that contains first derivatives of the network errors with respect to 

the weights and biases, and e is a vector of network errors. The Jacobian matrix can be computed 

through a standard backpropagation technique (see [HaMe94]) that is much less complex than 

computing the Hessian matrix. 

The Levenberg-Marquardt algorithm uses this approximation to the Hessian matrix in the following 

Newton-like update: 

                      

When the scalar µ is zero, this is just Newton's method, using the approximate Hessian matrix. 

When µ is large, this becomes gradient descent with a small step size. Newton's method is faster and 

more accurate near an error minimum, so the aim is to shift toward Newton's method as quickly as 

possible. Thus, µ is decreased after each successful step (reduction in performance function) and is 

increased only when a tentative step would increase the performance function. In this way, the 

performance function is always reduced at each iteration of the algorithm [203]. 

9.4.2. Scaled Conjugate Gradient (SCG) 

Conjugate gradient is the most popular iterative method for  solving large systems of linear 

equations [204]. In the first iteration usually the conjugate gradient algorithm will find the steep 

descent direction.  

Approximate solution, xk for conjugate gradient iteration is described as formulas below [201]: 

               9.1 

k will always be the iteration index, αk is the length of the step preformed at iteration k, dk is search 

direction, rk is residual vector and βk is improvement. Formula (9.2),(9.3),(9.4),(9.5) shows the 

relative component of approximate solution for conjugate gradient. 

   
     

      

     
       

 9.2 

             9.3 

                9.4 

http://www.mathworks.it/it/help/nnet/ug/bibliography.html
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 9.5 

SCG is a second order Conjugate Gradient Algorithm that help minimize goal functions of several 

variables. This theoretical foundations was prove by Moller [201] which remains  first order 

techniques in first derivatives like standard backpropogation and find the better way to a local 

minimum in second order techniques in second derivatives. SCG use a step size scaling mechanism 

avoids a time consuming line-search per learning iteration, which makes the algorithm faster than 

other second order algorithms recently proposed. Base on the Moller [201], SCG methods shows 

superlinear convergence on most problems [205]. 

9.4.3. Leave – k – Out (LKO) 

In the leave-k-out method [1] [7] [9] [202] one homogeneous group of k patterns (here, k = 1), 

extracted from the full training set, was held back in turn for testing and the rest of the patterns was 

used for training. During testing, the NN output is correct if error E = (Oa – Od), where Oa = actual 

output and Od = desired output, is -0.5 ≤ E ≤ +0.5; otherwise, a misclassification case occurs. The 

ratio of correct classifications over the total training cases yields the NN success rate (SR). 

9.5. Matlab procedure 

Input 

The input matrix dimension is n x m, where: 

 n rows, representing the number of samplings, 3000 for each dataset; 

 m columns, representing the number of signal features; 

Target 

The target vector dimensions n x 1. The target elements are zeros and ones in function of the 

purposes: 

 Tool state identification 

o Zero = fresh tool 

o One = worn tool 

 Residual stress assessment 

o Zero = acceptable residual stress 

o One = unacceptable residual stress 

Output  

Output represent the classification resulting from the neural network implementation, and it must 

be compared to the target in order to find out the success rate. 

Data division 

Validation and test data sets are each set to 15% of the original data. With these settings, the input 

vectors and target vectors will be randomly divided into three sets as follows: 

 70% are used for training. 

 15% are used to validate that the network is generalizing and to stop training before overfitting. 

 The last 15% are used as a completely independent test of network generalization. 
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The Matlab code for the neural network pattern recognition implementation is reported in the next 

page. 

The example is referred to a number of hidden layer nodes equal to 12 and Levenberg-Marquardt as a 

training algorithm. 
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% Solve a Pattern Recognition Problem with a Neural Network 
% Script generated by NPRTOOL 

 
inputs = input'; %   input - input data 
targets = target'; %   target - target data 

 
% Create a Pattern Recognition Network 
hiddenLayerSize = 12; 
net = patternnet(hiddenLayerSize); 

  
% Choose Input and Output Pre/Post-Processing Functions 
% For a list of all processing functions type: help nnprocess 
net.inputs{1}.processFcns = {'removeconstantrows','mapminmax'}; 
net.outputs{2}.processFcns = {'removeconstantrows','mapminmax'}; 

 
% Setup Division of Data for Training, Validation, Testing 
% For a list of all data division functions type: help nndivide 
net.divideFcn = 'dividerand';  % Divide data randomly 
net.divideMode = 'sample';  % Divide up every sample 
net.divideParam.trainRatio = 70/100; 
net.divideParam.valRatio = 15/100; 
net.divideParam.testRatio = 15/100; 

  
% For help on training function 'trainlm' type: help trainlm 
% For a list of all training functions type: help nntrain 
net.trainFcn = 'trainlm';  % Levenberg-Marquardt 

  
% Choose a Performance Function 
% For a list of all performance functions type: help nnperformance 
net.performFcn = 'mse';  % Mean squared error 

  
% Choose Plot Functions 
% For a list of all plot functions type: help nnplot 
net.plotFcns = {'plotconfusion','plotperform','plottrainstate','ploterrhist', 

'plotregression', 'plotfit'}; 

 
% Train the Network 
[net,tr] = train(net,inputs,targets); 

  
% Test the Network 
outputs = net(inputs); 
errors = gsubtract(targets,outputs); 
performance = perform(net,targets,outputs) 

  
% Recalculate Training, Validation and Test Performance 
trainTargets = targets .* tr.trainMask{1}; 
valTargets = targets  .* tr.valMask{1}; 
testTargets = targets  .* tr.testMask{1}; 
trainPerformance = perform(net,trainTargets,outputs) 
valPerformance = perform(net,valTargets,outputs) 
testPerformance = perform(net,testTargets,outputs) 

  
view(net) % View the Network 

  
% Plots 
figure, plotperform(tr) 
figure, plottrainstate(tr) 
figure, plotconfusion(targets,outputs) 
figure, ploterrhist(errors) 
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The results of the neural networks computations are organized in confusion matrices  

The confusion matrix shows the percentages of correct and incorrect classifications. Correct 

classifications are the green squares on the matrices diagonal. Incorrect classifications form the red 

squares [206]. 

In Fig. 9.2 an example of confusion matrix is reported, for the configuration listed below: 

 Tool State Identification 

 Standard Tests only 

 PCA Features 

 Pattern features vector = [Ax Ay Az AERMS Fy Fz Fx] 

 SCG Training algorithm 

 Hidden layer nodes = 2 x input layer nodes 

 

Fig. 9.2. Confusion Matrix example 
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10.Results 

10.1. Tool State Identification 

10.1.1. Standards Tests 

Statistics Summary 

Table 10.1. Statistics Summary 

Statistics 

Total Average 90,76 

Std dev. 10,46 

Mode 100 

Minimum 61,1 

Conv vs PCA 

Conv 89,74 

PCA 93,14 

Difference 3,40 

Training Algorithm 

LM 95,09 

SCG 87,64 

LKO 89,55 

LM-SCG 7,45 

LM-LKO 5,54 

SCG-LKO -1,91 

Hidden Layer Nodes (4x - 2x)  

LM 2,83 

SCG 3,51 

LKO -0,64 

The results reported in Table 10.1 show that: 

 It is possible to identificate the tool state by extracting features from multi sensor signals with an 

average Success Rate (SR) = 90.76% , the minimum SR is 61.1%. 

 The most frequent success rate is 100% showing an excellent reliability of features and neural 

network, for both Conventional and PCA features. 

PCA vs. Conventional 

Considering all the categories of NN Configurations, in terms of training algorithm and number of 

hidden layer nodes, the features extracted by PCA yield to a more successful pattern recognition 

than the ones obtained by conventional methodology, as shown in Table 10.2 and in Fig. 10.1. The 

difference in success rate between the two methodologies is 3.40% 

The training algorithm that shows a clearer difference between the two features extraction 

methodologies is the SCG, where the gap ranges from 6.27 % (SCG-2x) to 6.32 % (SCG-4X). 
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Table 10.2 

 LKO 2x LKO 4x SCG 2x SCG 4x LM 2x LM 4x 

Conventional 89.14 89.05 84,00 87,50 92,66 96,07 

PCA 91.58 89.63 90,27 93,82 96,02 97,50 

 

 

Fig. 10.1. PCA vs Conventional 

Conventional Features Evaluation 

In Figs. 10.2, 10.3 10.4 and 10.5 a conventional features evaluation is reported  

Figures  show that by increasing the number of features, the success rates increases too,  

It is clear also that increasing the number of variables yields higher success rates. 

This evaluation has been carried out for all the training algorithms and the trend mentioned above 

occurs for each training algorithm. 
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Fig. 10.3. Conventional features evaluation: SCG training algorithm 
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Fig. 10.4. Conventional features evaluation: LKO training algorithm 

 

 

Fig. 10.5. Conventional features evaluation: LM training algorithm 
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Variables Comparison 

Fig. 10.6. shows that as single group of variables, the cutting force components yield better results in 

terms of average success rate. 

 

Fig. 10.6. Variables comparison 

PCA Features Evaluation 

Fig. 10.7. shows that by increasing the number of Principal Components, the success rates increases. 

By freezing the number of Principal Components utilized, the plot shows better results coming from 

cutting force components based PCA features. 

 

Fig. 10.7. PCA features evaluation 
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Success Rates vs. Training Algorithms 

Levenberg-Marquardt training algorithm shows higher success rates compared to other algorithms 

both by adopting Conventional and PCA features, the differences in terms of success rates among 

the best (LM) and the worst (SCG) training algorithms is 7.45%. The results regarding the differences 

among the training algorithms are reported in Table 10.3 and in Fig. 10.6. 

Table 10.3. Training algorithms comparison 

 SCG LKO LM 

Conventional 85,75 89,09 94,37 

PCA 92,04 90,61 96,76 

 

 

Fig. 10.8. Training algorithms comparison 

Success Rates vs. Number of Hidden Layer Nodes 

The general trend visible when increasing the number of hidden layer nodes, is an increasing of 

success rates. This occurs for both LM and SCG training algorithms but not for LKO, for which 

increasing hidden layer nodes yields a very small, not appreciable, decreasing trend, as reported in 

Fig. 10.9. 
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Fig. 10.9. Hidden layer nodes influence 

 

10.1.2. Standard Tests + Severe Cutting Conditions Tests 

Statistics Summary 

Table 10.4. Statistics summary 

Statistics 

Total Average 87,73 

Std dev. 11,40 

Mode 99,6 

Minimum 59,6 

Conv vs PCA 

Conv 88,81 

PCA 85,19 

Difference -3,63 

Training Algorithm 

LM 90,85 

SCG 84,60 

LKO   

LM-SCG 6,25 

LM-LKO 90,85 

SCG-LKO 84,60 

Hidden Layer Nodes (4x - 2x)   

LM 2,31 
SCG 2,44 
LKO 2,12 

The results reported in Table 10.1 show that: 
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 It is possible to identificate the tool state by extracting features from multi sensor signals with an 

average Success Rate (SR) = 87.73% , the minimum SR is 59.6%. 

 The most frequent success rate is 99.6% showing an excellent reliability of features and neural 

network, for both Conventional and PCA features. 

PCA vs. Conventional 

Considering all the categories of NN Configurations, in terms of training algorithm and number of 

hidden layer nodes, the features extracted by conventional methodology yield to a more successful 

pattern recognition than the ones obtained by PCA, as shown in Table 10.5 and in Fig. 10.10. The 

difference in success rate between the two methodologies is 3.63% 

The training algorithm that shows a clearer difference between the two features extraction 

methodologies is the SCG, where the gap ranges from 5.86 % (SCG-2x) to 5.14 % (SCG-4X). 

Table 10.5. Conventional vs. PCA 

 LKO 2x LKO 4x SCG 2x SCG 4x LM 2x LM 4x 

Conventional 85,41 86,93 85,14 87,36 90,22 92,54 

PCA 80,08 83,60 79,28 82,22 88,48 90,77 

 

 

Fig. 10.10. Conventional vs. PCA 
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It is clear also that increasing the number of variables yields higher success rates. 

This evaluation has been carried out for all the training algorithms and the trend mentioned above 

occurs for each training algorithm. 

 

Fig. 10.11. Conventional features evaluation: overall average 

 

 

Fig. 10.12. Conventional features evaluation: SCG training algorithm 
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Fig. 10.13. Conventional features evaluation: LKO training algorithm 

 

 

Fig. 10.14. Conventional features evaluation: LM training algorithm 
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Variables Comparison 

Fig. 10.14. shows that as single group of variables, the cutting force components yield better results in 

terms of average success rate. 

 

Fig. 10.15. Variables comparison 

PCA Features Evaluation 

Fig. 10.15. shows that by increasing the number of Principal Components, the success rates increases. 

By freezing the number of Principal Components utilized, the plot shows better results coming from 

cutting force components based PCA features. 
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Fig. 10.16. PCA features evaluation 

Success Rates vs. Training Algorithms 

Levenberg-Marquardt training algorithm shows higher success rates compared to other algorithms 

both by adopting Conventional and PCA features, the differences in terms of success rates among 

the best (LM) and the worst (SCG) training algorithms is 7.45%. The results regarding the differences 

among the training algorithms are reported in Table 10.5 and in Fig. 10.16. 

Table 10.6. Training algorithms comparison 

 SCG LKO LM 

Conventional 86,25 86,17 91,38 

PCA 80,75 81,84 89,63 
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Fig. 10.17 Training algorithms comparison 

Success Rates vs. Number of Hidden Layer Nodes 

The general trend visible when increasing the number of hidden layer nodes, is an increasing of 

success rates. This occurs all the training algorithms, as reported in Fig. 10.17.

 

Fig. 10.18. Hidden layer nodes influence 
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10.2. Residual Stress Assessment (worn tool) 

10.2.1. Standard Tests 

Statistics Summary 

Statistics 

Total Average 97,09 
Std dev. 3,67 
Mode 100 
Minimum 84,4 

Conv vs PCA 

Conv 97,70 
PCA 95,66 
Difference -2,05 

Training Algorithm 

LM 98,67 
SCG 97,09 
LKO 95,52 
LM-SCG 1,59 
LM-LKO 3,16 
SCG-LKO 1,57 

Hidden Layer Nodes (4x - 2x) 

LM 0,64 
SCG 0,61 
LKO 0,00 

The results reported in Table 10.x show that: 

 It is possible to distinguish favorable and unfavorable residual stresses by extracting features 

from signals acquired in correspondence of worn tool with an average Success Rate (SR) = 

97.09% , the minimum SR is 84.4%. 

 The most frequent success rate is 100% showing an excellent reliability of features and neural 

network, for both Conventional and PCA features. 

PCA vs. Conventional 

Considering all the categories of NN Configurations, in terms of training algorithm and number of 

hidden layer nodes, the features extracted by conventional methodology yield to a more successful 

pattern recognition than the ones obtained by PCA, as shown in Table 10.5 and in Fig. 10.19. The 

difference in success rate between the two methodologies is 2.05% 

The training algorithm that shows a clearer difference between the two features extraction 

methodologies is the LKO, where the gap ranges from 2.55 % (LKO-2x) to 4.44 % (LKO-4X). 

Table 10.7. Conventional vs PCA 

 LKO 2x LKO 4x SCG 2x SCG 4x LM 2x LM 4x 

Conv 96,28 98,72 97,54 98,41 100,00 100,00 
PCA 93,73 94,28 94,80 94,80 97,60 98,72 
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Fig. 10.19. Conventional vs PCA 

Conventional Features Evaluation 

In Figs. 10.20, 10.21 10.22 and 10.23 a conventional features evaluation is reported  

Figures  show that by increasing the number of features, the success rates increases too,  

It is clear also that increasing the number of variables yields higher success rates. 

This evaluation has been carried out for all the training algorithms and the trend mentioned above 

occurs for each training algorithm. 
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Fig. 10.20. Conventional features evaluation: overall average 

 

Fig. 10.21. Conventional features evaluation: LKO training algorithm 
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Fig. 10.22. Conventional features evaluation: SCG training algorithm 

 

Fig. 10.23. Conventional features evaluation: SCG training algorithm 
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Variables Comparison 

Fig. 10.23. shows that as single group of variables, the acceleration components yield better results in 

terms of average success rate. 

 

Fig. 10.24. Variables comparison 

PCA Features Evaluation 

Fig. 10.24. shows that by increasing the number of Principal Components, the success rates increases. 

By freezing the number of Principal Components utilized, the plot shows better results coming from 

cutting force components based PCA features. 

 

Fig. 10.25. PCA features evaluation 
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Success Rates vs. Training Algorithms 

Levenberg-Marquardt training algorithm shows higher success rates compared to other algorithms 

both by adopting Conventional and PCA features, the differences in terms of success rates among 

the best (LM) and the worst (LKO) training algorithms is 5.99 %. The results regarding the 

differences among the training algorithms are reported in Table 10.7 and in Fig. 10.25. 

10.8 Training algorithms comparison 

 LKO SCG LM 

Conventional 96,16 98,06 100,00 

PCA 94,01 94,80 98,42 

 

 

Fig. 10.26. Training algorithms comparison 

 

Success Rates vs. Number of Hidden Layer Nodes 

The general trend visible when increasing the number of hidden layer nodes, is an increasing of 

success rates. This occurs for both LM and SCG training algorithms but not for LKO, for which 

increasing hidden layer nodes yields a very small, not appreciable, decreasing trend, as reported in 

Fig. 10.26. 

 

 

PCA 

Conventional 
90,00 

92,00 

94,00 

96,00 

98,00 

100,00 

LKO 
SCG 

LM 

N
N

 S
R

 (
%

) 

Training Algorithm 

Success Rates vs. Training Algorithms 



 
 169 

 

Fig. 10.27. Hidden layer nodes influence 
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10.2.2. Standard Tests + Severe Cutting Conditions Tests 

Statistics Summary 

Statistics 

Total Average 93,94 
Std dev. 6,30 
Mode 100 
Minimum 71,5 

Conv vs PCA 

Conv 96,31 
PCA 88,40 
Difference -7,91 

Training Algorithm 

LM 96,03 
SCG 93,12 
LKO 92,67 
LM-SCG 2,91 
LM-LKO 3,35 
SCG-LKO 0,44 

Hidden Layer Nodes (4x - 2x) 

LM 0,81 
SCG 0,93 
LKO 0,05 

The results reported in Table 10.1 show that: 

 It is possible to distinguish favorable and unfavorable residual stresses by extracting features 

from signals acquired in correspondence of fresh tool with an average Success Rate (SR) = 

93.94% , the minimum SR is 71.5%. 

 The most frequent success rate is 100% showing an excellent reliability of features and neural 

network, for both Conventional and PCA features. 

PCA vs. Conventional 

Considering all the categories of NN Configurations, in terms of training algorithm and number of 

hidden layer nodes, the features extracted by conventional methodology yield to a more successful 

pattern recognition than the ones obtained by PCA, as shown in Table 10.9 and in Fig. 10.28. The 

difference in success rate between the two methodologies is 7.91% 

The training algorithm that shows a clearer difference between the two features extraction 

methodologies is the LKO, where the gap ranges from 9.12 % (LKO-2x) to 9.71 % (LKO-4X). 

 

Table 10.9. Conventional vs PCA 

 LKO 2x LKO 4x SCG 2x SCG 4x LM 2x LM 4x 

Conv 95,39 95,61 95,06 96,04 97,59 98,19 

PCA 86,27 85,90 87,03 87,83 91,03 92,33 

 



 
 171 

 
Fig. 10.28. Conventional vs. PCA 

Conventional Features Evaluation 

In Figs. 10.29, 10.30 10.31 and 10.32 a conventional features evaluation is reported  

Figures  show that generally, by increasing the number of features, the success rates increases too,  

It is clear also that, in most of cases, increasing the number of variables yields higher success rates. 

This evaluation has been carried out for all the training algorithms and the trend mentioned above 

occurs for each training algorithm. 
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Fig. 10.29. Conventional features evaluation: overall average 

 

Fig. 10.30. Conventional features evaluation: LKO training algorithm 
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Fig. 10.31. Conventional features evaluation: SCG training algorithm 

 

Fig. 10.32. Conventional features evaluation: LM training algorithm 
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Variables Comparison 

Fig. 10.33. shows that as single group of variables, the cutting force components yield better results in 

terms of average success rate. 

 
Fig. 10.33. Variables comparison 

PCA Features Evaluation 

Fig. 10.34. shows that by increasing the number of Principal Components, the success rates increases. 

By freezing the number of Principal Components utilized, the plot shows better results coming from 

acceleration components based PCA features. 

 

Fig. 10.34. PCA features evaluation 
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Success Rates vs. Training Algorithm 

Levenberg-Marquardt training algorithm shows higher success rates compared to other algorithms 

both by adopting Conventional and PCA features, the differences in terms of success rates among 

the best (LM) and the worst (LKO) training algorithms is 7.45%. The results regarding the 

differences among the training algorithms are reported in Table 10.5 and in Fig. 10.16. 

 

10.10. Training algorithms comparison 

 LKO SCG LM 

Conventional 95,50 95,55 97,89 

PCA 86,08 87,43 91,68 

 

 
Fig. 10.35. Training algorithms comparison 

Success Rates vs. Number of Hidden Layer Nodes 

The general trend visible when increasing the number of hidden layer nodes, is an increasing of 

success rates. This occurs all the training algorithms, as reported in Fig. 10.36. 
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Fig. 10.36. Hidden layer nodes influence 
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10.3. Residual Stress Assessment (fresh tool) 

10.3.1. Standard Tests 

Statistics Summary 
Table 10.11. Statistics summary 

Statistics 

Total Average 98,71 

Std dev. 1,88 

Mode 100 

Minimum 91,1 

Conv vs PCA 

Conv 98,22 

PCA 99,85 

Difference 1,63 

Training Algorithm 

LM 99,36 

SCG 98,96 

LKO 97,79 

LM-SCG 0,40 

LM-LKO 1,57 

SCG-LKO 1,17 

Hidden Layer Nodes (4x - 2x) 

LM 0,39 

SCG 0,84 

LKO -0,45 

The results reported in Table 10.11 show that: 

 It is possible to distinguish favorable and unfavorable residual stresses by extracting features 

from signals acquired in correspondence of fresh tool with an average Success Rate (SR) = 98.71% 

, the minimum SR is 91.1%. 

 The most frequent success rate is 100% showing an excellent reliability of features and neural 

network, for both Conventional and PCA features. 

PCA vs. Conventional 

Considering all the categories of NN Configurations, in terms of training algorithm and number of 

hidden layer nodes, the features extracted by PCA yield to a more successful pattern recognition 

than the ones obtained by conventional methodology, as shown in Table 10.12 and in Fig. 10.37. The 

difference in success rate between the two methodologies is 1.63% 

The training algorithm that shows a clearer difference between the two features extraction 

methodologies is the LKO, where the gap ranges from 2.31 % (LKO-2x) to 2.69 % (LKO-4X). 

Table 10.12 

 LKO 2x LKO 4x SCG 2x SCG 4x LM 2x LM 4x 

Conventional 97,32 96,76 97,91 99,12 98,81 99,36 

PCA 99,63 99,45 100,00 100,00 100,00 100,00 
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Fig. 10.37. PCA vs Conventional 

Conventional Features Evaluation 

In Figs. 10.38, 10.39 10.40 and 10.41 a conventional features evaluation is reported  

Figures  show that generally, by increasing the number of features, the success rates increases too,  

It is clear also that, in most of cases, increasing the number of variables yields higher success rates. 

This evaluation has been carried out for all the training algorithms and the trend mentioned above 

occurs for each training algorithm. 
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Fig. 10.38. Conventional features evaluation: overall average 

 

Fig. 10.39. Conventional features evaluation: LKO training algorithm 
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Fig. 10.40. Conventional features evaluation: SCG training algorithm 

 

Fig. 10.41. Conventional features evaluation: LM training algorithm 
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Variables Comparison 

Fig. 10.23. shows that as single group of variables, the cutting forces components yield better results 

in terms of average success rate. 

 

Fig. 10.42. Variables comparison 

PCA Features Evaluation 

Fig. 10.42. shows that the PCA based features produce success rates always higher than 99% 

demonstrating an excellent capability of PCA techniques in residual stress assessment. 

 

Fig. 10.43. PCA features evaluation 
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Success Rates vs Training Algorithms 

Levenberg-Marquardt training algorithm shows higher success rates compared to other algorithms 

both by adopting Conventional and PCA features, the differences in terms of success rates among 

the best (LM) and the worst (LKO) training algorithms is 2.96%. The results regarding the 

differences among the training algorithms are reported in Table 10.5 and in Fig. 10.16. 

Table 10.13Training algorithms comparison 

 LKO SCG LM 

Conventional 97,04 98,52 99,09 

PCA 99,54 100,00 100,00 

 

10.44.Training algorithms comparison 

Success Rates vs. Number of Hidden Layer Nodes 

The general trend visible when increasing the number of hidden layer nodes, is an increasing of 

success rates. This occurs for both LM and SCG training algorithms but not for LKO, for which 

increasing hidden layer nodes yields a very small, decreasing trend, as reported in Fig. 10.44. 
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Fig. 10.45. Hidden layer nodes influence 

 

 

 

10.3.2. Standard Tests + Severe Cutting Conditions Tests 

Statistics Summary 
Table 10.14. Statistics summary 

Statistics 

Total Average 97,74 

Std dev. 2,26 

Mode 100 

Minimum 91,5 

Conv vs PCA 

Conv 97,62 

PCA 97,99 

Difference 0,37 

Training Algorithm 

LM 99,48 

SCG 97,26 

LKO 96,47 

LM-SCG 2,22 

LM-LKO 3,01 

SCG-LKO 0,78 

Hidden Layer Nodes (4x - 2x) 

LM 0,35 

SCG 1,42 

LKO 0,00 

The results reported in Table 10.12 show that: 
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 It is possible to distinguish favorable and unfavorable residual stresses by extracting features 

from signals acquired in correspondence of fresh tool with an average Success Rate (SR) = 

97.04% , the minimum SR is 91.5%. 

 The most frequent success rate is 100% showing an excellent reliability of features and neural 

network, for both Conventional and PCA features. 

PCA vs. Conventional 

Considering all the categories of NN Configurations, in terms of training algorithm and number of 

hidden layer nodes, the features extracted by PCA yield to a more successful pattern recognition 

than the ones obtained by conventional methodology, as shown in Table 10.15 and in Fig. 10.46. The 

difference in success rate between the two methodologies is 0.37% 

The training algorithm that shows a clearer difference between the two features extraction 

methodologies is the LM, where the gap ranges from 0.99 % (LM-2x) to 0.49 % (LM-4X). 

Table 10.15 

 LKO 2x LKO 4x SCG 2x SCG 4x LM 2x LM 4x 

Conventional 96,39 96,50 96,44 97,91 99,01 99,51 
PCA 96,68 96,40 96,80 98,08 100,00 100,00 

 

 

10.46. PCA vs Conventional 

Conventional Features Evaluation 

In Figs. 10.47, 10.48 10.49 and 10.50 a conventional features evaluation is reported  

Figures  show that generally, by increasing the number of features, the success rates increases too,  

It is clear also that, in most of cases, increasing the number of variables yields higher success rates. 

This evaluation has been carried out for all the training algorithms and the trend mentioned above 

occurs for each training algorithm. 
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Fig. 10.47. Conventional features evaluation: overall average 

 

Fig. 10.48. Conventional features evaluation: LKO training algorithm 
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Fig. 10.49. Conventional features evaluation: SCG training algorithm 

 

Fig. 10.50. Conventional features evaluation: LM training algorithm 
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Variables Comparison 

Fig. 10.50. shows that as single group of variables, the cutting force components yield better results 

in terms of average success rate. 

 

Fig. 10.51. Variables comparison 

PCA Features Evaluation 

Fig. 10.51. shows that success rates produced by PCA based features range from 96.17% to 99.1% . By 

freezing the number of Principal Components utilized, the plot shows better results coming from 

cutting force components based PCA features. 
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Fig. 10.52. PCA features evaluation 

Success Rates vs. Training Algorithms 

Levenberg-Marquardt training algorithm shows higher success rates compared to other algorithms 

both by adopting Conventional and PCA features, the differences in terms of success rates among 

the best (LM) and the worst (LKO) training algorithms is 3.46%. The results regarding the 

differences among the training algorithms are reported in Table 10.14 and in Fig. 10.52. 

Table 10.16. Training algorithms comparison 

 LKO SCG LM 

Conventional 96,44 97,18 99,26 

PCA 96,54 97,44 100,00 
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Fig. 10.53. Training algorithms comparison 

Success Rates vs. Number of Hidden Layer Nodes 

The general trend visible when increasing the number of hidden layer nodes, is an increasing of 

success rates. This occurs for both LM and SCG training algorithms but not for LKO, for which 

increasing hidden layer nodes yields a very small, not appreciable, decreasing trend, as reported in 

Fig. 10.53. 
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Fig. 10.54 Hidden layer nodes influence 

 

10.4. Summary plots 
From Figs. 10.54 to Fig 10.59 a summary plot, is reported for each purpose, both in case of Standard 

Tests only and for Standard Tests + Severe Cutting Conditions Tests. 
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Fig. 10.55 Tool State Identification - Standard Tests 

 

Fig. 10.56. Tool State Identification - Standard Tests + Severe Cutting Conditions Tests 
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Fig. 10.57. Residual Stress Assessment (worn tool) - Standard Tests 

 

10.58. Residual Stress Assessment (worn tool) - Standard Tests + Severe Cutting Conditions Tests 
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10.59. Residual Stress Assessment (fresh tool) - Standard Tests 

 

10.60. Residual Stress Assessment (fresh tool) - Standard Tests + Severe Cutting Conditions Tests 

9
5,

6
 

9
5,

6
 

9
8

,9
 

9
1,

1 9
8

,9
 

9
8

,9
 

9
8

,9
 

9
8

,9
 

9
6

,7
 

9
6

,7
 

10
0

 

9
7,

8
 

9
6

,7
 

9
7,

8
 

10
0

 

9
8

,9
 

10
0

 

9
8

,9
 

10
0

 

10
0

 

9
2,

2 9
7,

8
 

9
5,

6
 

9
3,

3 9
7,

8
 

9
5,

6
 

9
8

,9
 

9
7,

8
 

10
0

 

9
6

,7
 

9
7,

8
 

9
6

,7
 

9
7,

8
 

9
6

,7
 

10
0

 

10
0

 

9
7,

8
 

10
0

 

10
0

 

9
8

,9
 

9
4

,4
 

9
8

,9
 

9
8

,9
 

9
8

,9
 

10
0

 

9
8

,9
 

9
5,

6
 

9
6

,7
 

9
7,

8
 

9
8

,9
 

9
6

,7
 

9
6

,2
 

9
8

,9
 

10
0

 

10
0

 

10
0

 

10
0

 

10
0

 

10
0

 

10
0

 

9
4

,4
 10

0
 

10
0

 

10
0

 

10
0

 

10
0

 

9
6

,7
 

10
0

 

10
0

 

10
0

 

10
0

 

9
7,

7 

9
8

,9
 

10
0

 

10
0

 

10
0

 

10
0

 

10
0

 

10
0

 

10
0

 

9
3,

3 9
8

,9
 

9
8

,9
 

9
8

,9
 

10
0

 

9
8

,9
 

9
7,

8
 

9
8

,9
 

9
7,

8
 

10
0

 

10
0

 

10
0

 

10
0

 

10
0

 

10
0

 

10
0

 

10
0

 

10
0

 

10
0

 

10
0

 

9
4

,4
 10

0
 

10
0

 

10
0

 

10
0

 

9
8

,9
 

9
7,

8
 

10
0

 

10
0

 

10
0

 

10
0

 

10
0

 

10
0

 

10
0

 

10
0

 

10
0

 

10
0

 

10
0

 

10
0

 

10
0

 

50 
55 
60 
65 
70 
75 
80 
85 
90 
95 

100 

[M
ea

n
 A

E
, 

V
ar

 A
E

] 

[V
ar

 A
x,

 V
ar

 A
y,

 V
ar

 A
z]

 

[V
ar

 F
x,

 V
ar

 F
y,

 V
ar

 F
z]

 

[M
ea

n
 F

x,
 M

ea
n

 F
y,

 M
ea

n
 F

z]
 

[M
ea

n
 F

x,
 M

ea
n

 F
y,

 M
ea

n
 F

z,
 V

ar
 

F
x,

 V
ar

 F
y,

 V
ar

 F
z]

 

[V
ar

 F
x,

 V
ar

 F
y,

 V
ar

 F
z,

 V
ar

 A
E

] 

[M
ea

n
 F

x,
 M

ea
n

 F
y,

 M
ea

n
 F

z,
 

M
ea

n
 A

E
] 

[V
ar

 A
E

, 
V

ar
 A

x,
 V

ar
 A

y,
 V

ar
 A

z]
 

 [
M

ea
n

 A
E

, 
V

ar
 A

E
, 

V
ar

 A
x,

 V
ar

 
A

y,
 V

ar
 A

z]
 

[V
ar

 F
x,

 V
ar

 F
y,

 V
ar

 F
z,

 V
ar

 A
x,

 
V

ar
 A

y,
 V

ar
 A

z,
] 

[V
ar

 F
x,

 V
ar

 F
y,

 V
ar

 F
z,

 V
ar

 A
E

, 
V

ar
 A

x,
 V

ar
 A

y,
V

ar
 A

z]
 

[M
ea

n
 F

x,
 M

ea
n

 F
y,

 M
ea

n
 F

z,
 V

ar
 

F
x,

 V
ar

 F
y,

 V
ar

 F
z,

 M
ea

n
 A

E
, 

V
ar

 
A

E
] 

[M
ea

n
 F

x,
 M

ea
n

 F
y,

 M
ea

n
 F

z,
 V

ar
 

F
x,

 V
ar

 F
y,

 V
ar

 F
z,

 V
ar

 A
x,

 V
ar

 
A

y,
V

ar
 A

z]
 

[M
ea

n
 F

x,
 M

ea
n

 F
y,

 M
ea

n
 F

z,
 V

ar
 

F
x,

 V
ar

 F
y,

 V
ar

 F
z,

 M
ea

n
 A

E
, 

V
ar

 
A

E
, V

ar
 A

x,
 V

ar
 A

y,
V

ar
 A

z]
 

A
y 

A
x 

A
z 

 F
y 

F
z 

F
x 

A
E

rm
s 

F
y 

F
z 

F
x 

A
y 

A
x 

A
z 

A
E

rm
s 

A
y 

A
x 

A
z 

F
y 

F
z 

F
x 

A
y 

A
x 

A
z 

A
er

m
s 

F
y 

F
z 

F
x
 

2 3 3 3 6 4 4 4 5 6 7 8 9 11 3 3 4 4 6 7 

Conventional Features Principal Components 

N
N

 S
R

 (
%

) 
NN Success Rates - Residual Stress Assessment (Fresh Tool) - Standard Tests  

LKO 2x 

LKO 4x 

SCG 2x 

SCG 4x 

LM 2x 

LM 4x 

9
6

,2
 

9
5,

4
 

9
6

,9
 

9
5,

4
 

9
4

,6
 

9
6

,2
 

9
6

,2
 

9
6

,9
 

9
8

,5
 

9
5,

4
 

9
6

,9
 

9
6

,9
 

9
6

,2
 

9
7,

7 

9
7,

7 

9
7,

7 

9
3,

1 9
8

,5
 

9
6

,9
 

9
6

,2
 

9
6

,2
 

9
6

,9
 

9
2,

3 

9
2,

3 

9
6

,2
 

9
8

,5
 

9
8

,5
 

9
6

,2
 

9
7,

7 

9
6

,9
 

9
5,

4
 

9
8

,5
 

9
7,

7 

9
7,

7 

9
6

,9
 

9
5,

4
 

9
1,

5 9
9

,2
 

9
7,

7 

9
7,

7 

9
6

,2
 

9
2,

3 

9
4

,6
 

9
6

,2
 

9
6

,9
 

9
4

,6
 

9
6

,2
 

9
5,

4
 

9
6

,2
 

9
9

,2
 

9
6

,9
 

9
6

,2
 

9
9

,2
 

10
0

 

9
2,

3 9
9

,2
 

9
6

,2
 

9
3,

1 10
0

 

10
0

 

9
6

,2
 

9
2,

3 9
8

,5
 

9
7,

7 

9
6

,9
 

9
7,

7 

9
7,

7 10
0

 

10
0

 

9
9

,2
 

9
6

,9
 

9
7,

7 10
0

 

10
0

 

9
2,

3 

10
0

 

9
6

,2
 

10
0

 

10
0

 

10
0

 

9
6

,2
 

9
9

,2
 

9
6

,2
 

9
6

,9
 

10
0

 

9
9

,2
 

10
0

 

9
9

,2
 

10
0

 

10
0

 

10
0

 

10
0

 

9
9

,2
 

10
0

 

10
0

 

10
0

 

10
0

 

10
0

 

10
0

 

10
0

 

9
6

,2
 

10
0

 

9
8

,5
 

9
9

,2
 

10
0

 

9
9

,2
 

10
0

 

10
0

 

10
0

 

10
0

 

10
0

 

10
0

 

10
0

 

10
0

 

10
0

 

10
0

 

10
0

 

10
0

 

10
0

 

10
0

 

50 
55 
60 
65 
70 
75 
80 
85 
90 
95 

100 

[M
ea

n
 A

E
, 

V
ar

 A
E

] 

[V
ar

 A
x,

 V
ar

 A
y,

 V
ar

 A
z]

 

[V
ar

 F
x,

 V
ar

 F
y,

 V
ar

 F
z]

 

[M
ea

n
 F

x,
 M

ea
n

 F
y,

 M
ea

n
 F

z]
 

[M
ea

n
 F

x,
 M

ea
n

 F
y,

 M
ea

n
 F

z,
 V

ar
 

F
x,

 V
ar

 F
y,

 V
ar

 F
z]

 

[V
ar

 F
x,

 V
ar

 F
y,

 V
ar

 F
z,

 V
ar

 A
E

] 

[M
ea

n
 F

x,
 M

ea
n

 F
y,

 M
ea

n
 F

z,
 

M
ea

n
 A

E
] 

[V
ar

 A
E

, 
V

ar
 A

x,
 V

ar
 A

y,
 V

ar
 A

z]
 

 [
M

ea
n

 A
E

, 
V

ar
 A

E
, 

V
ar

 A
x,

 V
ar

 
A

y,
 V

ar
 A

z]
 

[V
ar

 F
x,

 V
ar

 F
y,

 V
ar

 F
z,

 V
ar

 A
x,

 
V

ar
 A

y,
 V

ar
 A

z,
] 

[V
ar

 F
x,

 V
ar

 F
y,

 V
ar

 F
z,

 V
ar

 A
E

, 
V

ar
 A

x,
 V

ar
 A

y,
V

ar
 A

z]
 

[M
ea

n
 F

x,
 M

ea
n

 F
y,

 M
ea

n
 F

z,
 V

ar
 

F
x,

 V
ar

 F
y,

 V
ar

 F
z,

 M
ea

n
 A

E
, 

V
ar

 
A

E
] 

[M
ea

n
 F

x,
 M

ea
n

 F
y,

 M
ea

n
 F

z,
 V

ar
 

F
x,

 V
ar

 F
y,

 V
ar

 F
z,

 V
ar

 A
x,

 V
ar

 
A

y,
V

ar
 A

z]
 

[M
ea

n
 F

x,
 M

ea
n

 F
y,

 M
ea

n
 F

z,
 V

ar
 

F
x,

 V
ar

 F
y,

 V
ar

 F
z,

 M
ea

n
 A

E
, 

V
ar

 
A

E
, V

ar
 A

x,
 V

ar
 A

y,
V

ar
 A

z]
 

A
y 

A
x 

A
z 

 F
y 

F
z 

F
x 

A
E

rm
s 

F
y 

F
z 

F
x 

A
y 

A
x 

A
z 

A
E

rm
s 

A
y 

A
x 

A
z 

F
y 

F
z 

F
x 

A
y 

A
x 

A
z 

A
er

m
s 

F
y 

F
z 

F
x
 

2 3 3 3 6 4 4 4 5 6 7 8 9 11 3 3 4 4 6 7 

Conventional Features Principal Components 

N
N

 S
R

 (
%

) 

NN Success Rates - Residual Stress Assessment (Fresh Tool) - Standard Tests + Severe Cutting Conditions Tests 

LKO 2x 

LKO 4x 

SCG 2x 

SCG 4x 

LM 2x 

LM 4x 



11.Conclusions / Considerations 
A multi sensor monitoring system endowed with force, acoustic emission and vibration sensor was 

designed, assembled, calibrated and employed during machining operations. 

An experimental campaign of turning tests on Inconel 718 cylindrical shafts was designed and carried 

out by considering standard cutting conditions as well as severe cutting conditions in order to 

increase the probability to generate surface defects on the workpiece. 

For every cutting test, tool wear measurements were carried out in order to construct tool wear 

curves. 

The surface defects were investigated by a series of material characterization tests including visual 

inspection, FPI, metallographic tests, microhardness and roughness measurements and residual 

stress measurements. 

From the residual stress measurements it was possible to identify which turning tests yielded non 

acceptable residual stress values in the workpiece after machining. 

Signal processing was performed for every cutting test on the detected sensor signals in order to 

generate homogeneous datasets, which were used to extract significant signal features. 

Features extraction was carried out by adopting two methodologies, the former based on statistical 

conventional features and the latter based on an advanced paradigm based on Principal Components 

Analysis. Both signal features typologies were selected and grouped into pattern feature vectors and 

utilized as input for neural network based decision making pattern recognition. 

Diverse neural network configurations were adopted for pattern recognition purposes, by changing 

the number of input layer nodes, the number of hidden layer nodes and the training algorithms. 

All the configurations were applied to two different datasets, the first regarding the standard cutting 

conditions tests only and the second including the severe cutting conditions tests too. 

The pattern recognition objectives regarded the Tool Wear Identification and the Residual Stress 

Assessment. The latter was subdivided into two precise purposes: discrimination of residual stress 

considering signals related to the worn tool (in correspondence of which the residual stress 

measurements were carried out) and signals related to the fresh tool. 
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