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INTRODUCTION 

Understanding turbulence is universally considered the Holy Graal of fluid 

mechanics. The inherent unsteady three-dimensional nature of turbulent flows has 

challenged developers and users of numerical and experimental techniques for 

many decades, and most probably it is a war far yet from being won. The 

underlying cascade process needs investigation instruments with large dynamic 

and spatial range (i.e. able to measure with satisfactory accuracy and reliability the 

turbulent fluctuations from the very large scale of the energy-containing range 

down to the dissipative range); the requirement becomes more stringent as the 

Reynolds number increases (i.e. the separation between large and small scales 

widens). Most often, one has to give up information at the small scales due to 

limited spatial resolution or poor sensitivity of the technique; in numerical 

simulations the computational cost effectively results in an upper boundary for the 

Reynolds number in Direct Numerical Simulations (DNS) of the Navier-Stokes 

equation, or the introduction of sometimes questionable turbulence models to 

solve the closure problem (as in the Reynolds Averaged Navier-Stokes (RANS) 

equations). The advancement of the Computational Fluid Dynamics (CFD), in this 

sense, has been impressive over the years. However, instead of replacing the 

experimental fluid dynamics, the demands of the CFD community actually have 

pushed towards significant advancements in the field of development of the 

experimental techniques, as it is starving for more accurate and detailed real data 

for turbulence models validation. 

In this direction, much has been done since the advent of Particle Image 

Velocimetry (PIV), which has unquestionably contributed to significant leaps 

forward in the understanding of many fluid dynamics problems thanks to its ability 

to provide field measurements on planar domains (see Westerweel et al 2013 for 

an extensive review). On the other hand, the analysis is physically limited to "slices" 

of phenomena occurring in a 3D space; turbulence does require a full three-

dimensional (3D) three components (3C) anemometric technique. 

From this point of view Tomographic Particle Image Velocimetry (Tomo-PIV, 

Elsinga et al 2006a) appears to be very promising. The technique is based on the 

reconstruction of the volumetric pattern of light intensity scattered by seeding 

particles illuminated by a pulsed light, simultaneously recorded from several 

viewing directions. The reconstructed distributions at different time instants are 

then interrogated by a 3D cross-correlation algorithm to determine the 3C velocity 

field. The interest in the development of the Tomographic PIV technique is testified 

by its relevance within the AFDAR (Advanced Flow Diagnostic for Aeronautical 
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Research, funded within the 7th Framework Programme, grant agreement N. 

265695) and in which most of the current thesis is framed.  

Even though only recently developed, Tomo-PIV is quite well assessed in the 

measurement of turbulent flows, ranging from the classical wall turbulence 

(Humble et al 2009, Elsinga et al 2010, Atkinson et al 2011, Gao et al 2011, 

Schröder et al 2011, Elsinga et al 2012), the wake of streamlined (Ghaemi & 

Scarano 2011) or bluff bodies (Hain et al 2008, Scarano & Poelma 2009) to more 

advanced applications in aeroacoustics (Violato et al 2011) and in biomedicine 

(Buchmann et al 2011). Nevertheless, the introduction of a new piece in the chain 

of the well-assessed PIV measurement procedure, i.e. the tomographic 

reconstruction, and the extension to the 3D scenario of the cross-correlation 

interrogation algorithms raise new questions, open great margins of improvement 

and introduce new difficulties.  

The aim of the first part of the thesis is to address these topics; in particular, 

the following themes are of crucial importance: 

Computational cost of the tomographic reconstruction. The tomographic 

reconstruction procedure with the widely used Multiplicative Algebraic 

Reconstruction Technique (Herman & Lent 1976) can be very intensive. Hain et al 

(2008) quoted a processing time of 30 min on a eight cores computer only for the 

reconstruction of each volume with a size of                   voxels (being the 

voxels the 3D equivalent of the pixels) using 4 MART iterations, while in the case of 

adoption of higher-resolution cameras (11 Mpixels) the computational cost 

increases to 34 hours on a dual-core computer for the reconstruction of a volume 

with a size of                   voxels. Such a large processing time is certainly 

unacceptable when the number of samples to be analyzed is considerable. A 

reduction of the computational cost could be obtained either by advanced 

parallelization (Open Multi-Processing, Graphics Processing Units, etc.) or by 

developing more efficient reconstruction algorithms. In this thesis a Multi-

Resolution version of MART is proposed, leading to a remarkable processing time 

reduction (up to 20 times) over a wide range of seeding densities. 

Accuracy. Due to the limited available number of simultaneous views, the 

problem of the tomographic reconstruction is underdetermined, i.e. different 

particles distributions can satisfy the set of projections. The pursuit of a reliable 

reconstruction algorithm at a fairly high seeding density and with an acceptable 

computational cost is still in progress. In this thesis a variation of MART is 

proposed, based on properly oriented artificial diffusion applied on the particles 

distributions in the iterative procedure. The technique, named SFIT (Spatial 

Filtering Improved Tomography), allows an improvement of the quality of the 

reconstruction without increasing the computational cost. 

Computational cost of the 3D-PIV. The extension of the well-established high 

accuracy PIV interrogation algorithms to the third dimension is trivial from a 

conceptual point of view, but problematic in the practical implementation. Memory 
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storage issues and large computational cost are the most relevant problems. An 

alternative efficient algorithm, based on multi-resolution interrogation, sparse 

direct cross-correlation and reduction of the number of redundant operations is 

proposed in the present thesis. 

Hardware cost. A relevant balance sheet item for a Tomographic PIV system is 

related to the use of several cameras to achieve accurate tomographic 

reconstructions. However, differently from the case of planar PIV, the requirement 

of double-shutter cameras is much easier to be removed, as the objects to be cross-

correlated consist of the clouds of particles reconstructed at different time instants 

instead of the row images. In this thesis a low-cost approach, based on two (or 

more) independent tomographic systems (composed by cheap cameras working in 

single-frame mode) is proposed. Of course the price to pay is in the complication of 

the optical arrangement of a number of cameras twice as large as the standard 

tomographic PIV systems. On the other hand, the observation of the same set of 

particles from different viewing directions at different instants provides the 

advantage of more diversified information on the objects to be reconstructed, thus 

enabling a significant improvement of the results using multi-exposure 

reconstruction methods. 

 

In the second part of the thesis the focus is on two possible applicative 

scenarios of the technique. In the first application the nearly isotropic and 

homogeneous turbulence generated by square fractal grids (i.e. grids with a square 

pattern repeated at different scales) is investigated. Such turbulence is 

characterized by a very unusual decay, apparently at odds with the so-called 

dissipation anomaly, i.e. the scaling of the turbulent dissipation with the rate of 

transfer of the energy from the large scales to the small scales. Tomographic PIV is 

certainly well suited for the assessment of homogeneity and isotropy (at least at 

large scales); conversely, it is extremely challenged by the small scales 

measurement, and in particular the dissipation is difficult to be estimated as it 

requires spatial resolution down to the Kolmogorov scale. Assessing the 

performances of Tomographic PIV in such framework is of great importance, 

particularly in order to provide an instrument for validation of numerical codes and 

turbulence models. 

In the second application the Tomographic PIV exhibits its great potential in 

the field of 3D quantitative visualization of the organization of coherent structures. 

The evolution of a circular jet (with and without a swirling component) after a 

sudden expansion in a cylindrical chamber is investigated. The flow organization is 

extremely complex, as it intermittently switches between two working conditions, 

i.e. a quasi-axisymmetric expansion within the chamber and an asymmetric 

configuration with reattachment point precessing in a gyroscopic like motion. The 

flow is unsteady, intermittent and three-dimensional, thus making the 

understanding of the flow topology rather difficult. The Proper Orthogonal 
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Decomposition is applied to the 3D data in order to isolate the main features of the 

outflow mode; furthermore, since the flow field is dominated (energetically 

speaking) by a significant periodic component, a low order reconstruction, 

obtained combining the most energetic modes, is implemented to observe the key 

dynamics of the large structures. 

 

 



1 

Chapter 1 - 3D Particle Image Velocimetry 

Turbulent flows are prevalent in nature and in engineering applications. The 

intrinsic three-dimensional features of turbulence have challenged the developers 

and practitioners of measurement techniques for many years. The pursuit of a 

technique able to combine both large dynamic and spatial range (i.e. large ratio 

between the maximum and minimum detectable velocity and spatial scales, 

respectively), and at the same time provide a complete description of the three-

dimensional pattern of coherent structures and its time evolution, is still an open 

field of research with great margins of improvement. Furthermore, the advent of 

advanced 4D numerical simulations (the 4th dimension being the time one), even 

though with limited Reynolds    number, does require the development of 

measurement techniques capable of providing accurate data sets for comparisons 

and validation. 

In the last decades the improvement of the capabilities of the measurement 

techniques has been impressive. The limits in the quantitative analysis of flow 

visualization and the frustration of relying on sometimes questionable assumptions 

to extrapolate spatial information on coherent structures in a dimensional space 

larger than that of measurement (see for example the application of the Taylor’s 

frozen turbulence hypothesis in hot-wire anemometry measurements) have been 

softened by the introduction of field measurements with optical methods. The 

nomenclature particle image velocimetry (PIV) appeared in the literature for the 

first time in the work by Adrian (1984), where it is stressed that the illumination of 

particle tracers, within a flowing fluid, by a laser light would produce particle 

images on a recording medium. Illumination by thin laser sheet pulses with a short 

pulse provides images of particles in a plane. Individual tracking of particles (in 

case of sparsely populated images) or interrogation by statistical operators have 

been widely used in the many different approaches to measure two components of 

the velocity field in the nearly two dimensional illuminated domain. Again, the 

researchers had to accept giving up part of the information, since neither the third 

component of the instantaneous velocity field nor 5 out of 9 terms of the velocity 

gradient tensor were available. More details are reported in Sec 1.1. 

Stereoscopic PIV (Willert 1997, Soloff et al 1997) determined a step forward in 

this sense by allowing the measurement of the third component of the velocity field, 

even though in a 2D domain, by using a two-cameras system in stereoscopic 

arrangement. While adding the complications of an additional camera, a calibration 

technique to map the spatial coordinate reference system onto the image system 

and procedures to account for the possible misalignment of the laser sheet with the 

reference plane for the optical calibration, Stereo PIV has the great advantage of 
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accounting for the errors due to the perspective effect of the out-of-plane motion, 

affecting the standard monocular PIV. 

The extension of PIV to the fully three-dimensional three components (3D3C) 

velocity measurements scenario is more complicate, and it is still ongoing. In the 

first part of this chapter a description of the main features of monocular and 

stereoscopic PIV is provided. Subsequently, a brief survey of some of the 

implemented solutions for the 3D extension of PIV is reported, with no pretension 

of being exhaustive; a more complete review is reported in fundamental books of 

PIV theory (Raffel et al 2007, Adrian & Westerweel 2011). The chapter ends with a 

description of the working principle of Tomographic PIV. 

1.1 Particle image velocimetry 

1.1.1 Fundamentals of PIV 

Particle image velocimetry is a non-invasive anemometric technique for field 

velocity measurements. A sketch of a standard PIV system is provided in Fig. 1.1. A 

basic PIV system consists of a pulsed light source collimated in a light sheet and 

illuminating a cloud of seeding particles within a fluid flow. The particles are 

required to be small enough to accurately track the fluid motion (typically a few 

microns). The small scattering section of such particles and the relatively short 

exposure time to capture particle images without blurring led for a long period of 

time to use almost exclusively high intensity pulsed laser light sources. The light 

scattered by the particles is recorded on a camera (for example a high resolution 

digital camera) on a single-frame (double exposure) or on two separate frames 

(single exposure). The optic axis of the camera is set perpendicular to the laser 

sheet within alignment tolerances. 

The recorded images are divided in interrogation spots (often referred as 

windows). For each interrogation spot a velocity vector is determined using 

statistical methods: auto-correlation in the case of double-exposure images (Adrian 

& Yao 1984); cross-correlation in the case of single-exposure images (Willert & 

Gharib 1991). The velocity components are found from measurements of the 

particle image displacements    and    in the image plane according to the 

relation 

 
 
 
  

  

  
 
  
  

        (1.1) 

where   and   are the fluid velocities in the object plane,    is the time separation 

between the two pulses, and    is the lateral magnification from the object plane to 

the image plane, taken to be constant in the absence of aberrations and 

misalignment of the two conjugate planes. The magnification    is the ratio of the  
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Fig. 1.1 Sketch of a standard PIV experimental setup (Raffel et al 2007). 

image distance    (distance between the lens and the sensor plane) to the object 

distance    (distance between the lens and the object plane). 

1.1.2 Particle imaging 

The particle images are formed on the sensor of the camera (in recent 

applications predominantly based on CCD = Charge Coupled Device, or CMOS = 

Complementary Metal-Oxide Semiconductor) via a high quality lens. The particle 

image diameter depends both on the particles size and on the lens properties. Given 

that    is the ratio of the focal length and the aperture diameter, the diameter of an 

imaged particle is (Adrian 1991): 

         
       

         
 
                 

    (1.2) 

where    is the wavelength of the illuminating source,    is the particle physical 

diameter,       is the geometric image diameter due to magnification and       is 

the diffraction-limited diameter, which formula is determined by approximating the 

Airy disk with a Gaussian function. 

The particle image diameter should be minimized in order to reduce the 

uncertainty in the displacement measurement (see chapter 5 of Raffel et al 2007 for 

further details) and to ensure strong light intensity (since the collected light scales 

with the inverse of the particle image area); on the other hand, small particle 

images can determine a bias effect towards integer pixel values, referred in the 

literature as peak-locking (Westerweel 1993). 
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Considering that the light sheet has a finite thickness    , the imaged particles 

will be in focus only if     is smaller than the depth of field, estimated as follows 

(Adrian 1991): 

          
 

  
 
 

  
         (1.3) 

The features of the recorded image depend upon the source density   , defined 

as: 

       
   

 

   
         (1.4) 

where   is the particles concentration. 

If     , the probability of particles overlapping is rather small (see Sec 1.3.4), 

and the image will be composed of randomly located individual spots; otherwise, 

since the light source is coherent, they will generate randomly oriented fringe 

patterns. 

1.1.3 Interrogation strategies 

The solutions to measure the velocity field from PIV images are strongly 

seeding density dependent. The most intuitive approach is based on tracking of 

individual particles in subsequent exposures (PTV, Particle Tracking Velocimetry). 

The dramatic drop in percentage of valid matching as the image density increases 

limits the application to very sparse images; in a simplifying picture, it is reasonable 

to assume that the particles spacing should be larger than the particles 

displacement in order to obtain a high rate of valid detections. Actually, more 

advanced algorithms, based on the spatial and temporal coherence of the 

displacements of neighbouring particles, can ideally afford image density up to 

0.3ppp (see for example Ohmi & Li 2000). On the other hand, the accuracy is limited 

by the particle identification scheme, which suffers in case of overlapping particles. 

In case of larger image density (but still with     , so that the scattered light 

of the particles will form particle images more than speckles), statistical methods 

are more appropriate. Correlation techniques (either auto-correlation or cross-

correlation) fit perfectly for this purpose. Keane & Adrian (1992) performed a 

theoretical and numerical study on the performances of auto- and cross-

correlation, achieving the final result of a simple curve (Fig. 1.2), representing the 

valid detection probability as a function of a dimensionless parameter, on which 

data from different systems (interrogation spot size, interrogation strategy, number 

of exposures) collapse. The parameter is the product of the mean number of 

particle per interrogation spot    and the fraction of particles remaining in the 

interrogation spot despite of out-of-plane and in-plane displacement (   and   , 

respectively); in practice, it represents the mean number of particle pairs in each 

interrogation spot. 
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Fig. 1.2 Valid detection probability as a function of the mean number of particle pairs in the 

interrogation spot (Keane & Adrian 1992). 

Correlation analysis can be performed either in the spatial or in the frequency 

domain via the Wiener-Kinchin theorem (Smith 1999). Considering interrogation 

spots with intensity      and     , the normalized cross-correlation coefficient map 

in its discretized version is determined by (supposing square interrogation window 

of linear size    for simplicity): 

         
                         

  
   

           
 
                

   
   

  
   

     (1.5) 

where    and    are the mean intensities of the interrogation spots. The main 

advantage of performing this operation in the frequency space is in terms of 

computational cost: using the Fast Fourier Transform (FFT) the number of 

operation required is      
         against     

   for the case of straightforward 

application of (1.5). However, the introduction of artefacts due to the imposed 

periodicity has to be accounted. 

The maximum of the cross-correlation map provides the location of the most 

likely displacement of the particles within the interrogation spot. Since the 

diffraction-limited spot is approximately Gaussian, one can assume that reasonably 

a peak resulting from convolution of Gaussian signals is Gaussian as well. For this 

reason, among the others, a Gaussian peak interpolator has demonstrated to be the 

most accurate in case of small particle images (Raffel et al 2007).  
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1.1.4 Advanced interrogation strategies 

Observing Fig. 1.2 it is evident that a high probability of valid detection is 

achieved when         . To some extent, high seeding density is desired (within 

the limit of     ), while in-plane and out-of plane losses of pairs have to be very 

limited. The effect of out-of-plane motion can be reduced by properly orienting the 

laser sheet, or reducing   ; however, due to the finite thickness of the laser sheet 

(typically 0.5-1mm), the out-of-plane motion is a limiting parameter only in 

presence of a relatively strong mean velocity component orthogonal to the 

illuminated region. On the other hand, the factor    cannot be maximized by 

reducing the in-plane motion (i.e. setting a smaller   ), since it is the object of the 

measurement; considering that the minimum resolvable velocity is approximately 

1-10% of the mean particles diameter, a small    would determine a small dynamic 

range and low measurement accuracy.  

A strategy to reduce (or in some cases eliminate) the in-plane loss of pairs 

consists in using interrogating regions with different size (for example, the 

interrogation spot on the second image can be made larger). This approach has 

been thoroughly analyzed in several works (Adrian 1991, Westerweel 1997, 2000). 

Its main advantages are the intrinsic simplicity and the low computational cost, 

since it is a single-step method. However, a multi-pass cross-correlation with a 

discrete windows offset (Westerweel et al 1997), applied after the evaluation of a 

predictor using interrogation windows larger than the final ones, leads to higher 

signal-to-noise ratios and improved measurement precision, since the algorithm 

actually tracks the particle patterns. A symmetric windows shift (Wereley & 

Meinhart 2001) provides even better performances, as it is second-order accurate. 

A further improvement can be obtained by applying a continuous (i.e. sub-

pixel) shifting, as proposed by Lecordier et al (2001). In this scenario the intensity 

values at sub-pixel locations are needed, and the interpolation scheme is of 

fundamental importance in assessing both bias and random errors (Astarita & 

Cardone 2005, Astarita 2006). 

All the presented methods account for in-plane displacement, but not for 

velocity gradients within the interrogation window, i.e. the velocity dynamic range 

is improved with respect to the standard one-step interrogation, while the vorticity 

dynamic range is about the same. Pushing along the path of sub-pixel interpolation, 

one could imagine of interpolating the velocity field onto each pixel, and deforming 

the entire interrogation window to maximize the particles pattern matching. Huang 

et al (1993) proposed the particle image distortion technique, based on bilinear 

interpolation of the predictor displacement field to compensate both for translation 

and rotation of the interrogation windows using kinematic formulae. Jambunathan 

et al (1995) developed a different algorithm, based on the interpolation of the 

predictor displacement field on each pixel of the first image to evaluate the 

distortion of the second image. Since then image deformation methods (see Scarano 
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2002 for a review) evolved and spread as the standard high-accuracy interrogation 

algorithms. 

A slightly different approach is based on particle tracking on high density 

images with the aid of biased search after calculating a predictor displacement field 

using cross-correlation analysis. The approach is referred as super-resolution PIV 

(Keane et al 1995). With respect to the standard cross-correlation analysis, 

requiring 10-15 particle images for each interrogation spot, the super-resolution 

approach can potentially provide a velocity measurement for each image pair, 

determining a mean spatial resolution of       
     (compared to       for 

standard PIV). However, the method has 3 main limits: the particle image density 

cannot be as high as standard PIV, otherwise even the biased search would fail; the 

data will be distributed on an unstructured grid with non-uniform distribution of 

the spatial resolution (for example regions of high swirl, where larger resolution is 

needed, can be poorly seeded due to centrifugal effects); since the results are based 

only on individual couples, the improved spatial resolution is obtained at the 

expense of the measurement accuracy, reduced by the factor     
    . 

1.1.5 Limits of 2D PIV 

As already mentioned, the standard PIV provides only 4 out of 9 components of 

the velocity gradient tensor, thus leading to the need of assumptions to extract 3D 

information (for example, the turbulent dissipation rate is measured relying on 

local isotropy hypothesis, Tanaka & Eaton 2007) or possible misleading data 

interpretation, such as ambiguous coherent structures identification. 

Furthermore the out-of-plane displacement introduces two limitations. The 

first one, discussed in Sec 1.1.3-4, is the out-of-plane loss of pairs, reducing the 

signal-to-noise ratio, or, in different terms, the spatial resolution, since more 

particle images are needed to keep         . The second one is more subtle, as it 

comes from the perspective effect. Due to the finite depth of field, the particle 

images recorded on the cameras will come from the planes within the region 

            . Assuming that            is the particle location, it is possible to 

show that (Adrian & Westerweel 2011): 

 
   

   
     

   

   
     

     

     
         (1.6) 

where         are the components of the image displacement vector, and 

            are the components of the physical displacement vector. Even a 

modest out-of-plane motion can determine a significant error. For example, in case 

of            ,          and a field of view of 100x100mm2 will determine 

an error of 1% on a displacement equal to              . 

Furthermore, it is often forgotten that in (1.1) the magnification plays the same 

role of the image displacement in determining the accuracy of the measurement. 
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The magnification uncertainty can cause quite significant errors if the light sheet 

location is not determined accurately, or if the light sheet is too thick, or tilted. For 

example,     error in the location of the light sheet when using a       object 

distance results in a bias error of 1% of each velocity reading. The magnification 

can be quite accurately estimated performing an optical calibration (see Sec 1.2.1). 

However, it must be emphasized that the calibration is based on the assumption 

that the laser sheet plane coincides with the reference calibration target plane 

(without loss of generality, from this point on this plane is referred as    , since 

the origin of the physical reference system is usually enclosed within it). In other 

words, the estimated magnification is accurate (within the calibration uncertainty) 

in the     plane, but not throughout the thickness of the laser sheet, nor even in 

the measurement plane. Furthermore, in many applications the target cannot be 

placed into the measurement domain, thus preventing the procedure described 

above. In these cases other (usually less reliable) solutions have to be implemented 

(for example precision markers machined on the walls of the test section to define 

the scale). Discetti & Adrian (2012) proposed a method to measure the 

magnification with high accuracy, provided that the optical access for a second 

camera is available. The procedure is the same addressed in Sec. 1.2.3, as it is based 

on a self-calibration procedure to identify the laser sheet location into the physical 

domain. The great advantage is that the method can be applied even with an ex situ 

calibration, implementing the refraction index changes into the mapping functions 

between spatial coordinates and image coordinates, as proposed by Wieneke 

(2005). 

1.2 Stereoscopic Particle Image Velocimetry 

As observed in the previous section, the in-plane displacement is the result of 

the projection of the 3C velocity field (the third component of it being relevant 

when the requirements of paraxial viewing                  are not closely 

met, and/or the out-of-plane motion is significant). As a matter of fact (1.6) is a 

system of two equations in three unknowns; with planar PIV one has to accept to 

neglect the second term on the right hand side of (1.6) and measure two of the 

three velocity components. On the other hand, the third component could be 

inferred if another simultaneous measurement is available from a different point of 

view and the second term on the right hand side of (1.6) is stressed, i.e. using two 

cameras in stereoscopic arrangement. 

In Fig. 1.3 two possible stereoscopic arrangements are reported. The linear 

displacement (also referred as translation system) has the advantages of uniform 

magnification, uniform quality of the particle images, and the same depth of field 

requirements of monocular PIV. On the other hand, the common area is generally 

limited, especially for long focal length lenses.  
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Fig. 1.3 Basic stereoscopic PIV arrangements: a) lateral displacement b) angular displacement with 

Scheimpflug condition fulfilled (Willert 1997). 

A possible solution, shown in Fig. 1.3a, consists in off-setting the sensors; 

however, sometimes this is not possible due to physical constraints of the camera 

body and due to degradation of the lens performances as the viewing angle 

increases.  

The restriction on the angle subtended between the cameras lead to large 

errors in the measurement of the out-of-plane component, as documented by 

Lawson & Wu (1997a, 1997b). This constraint can be eliminated by using a 

rotational system (angular displacement, Fig. 1.3b), which allows to increase the 

angle while working with the optimum lens performances. On the other hand, the 

magnification is no longer uniform, and, moreover, in order to obtain well-focused 

particle images over the field of view the object plane, the lens plane and the image 

plane have to be collinear. This requirement, known as Scheimpflug condition 

(Scheimpflug 1904), further exasperates the non-uniformity in the magnification. 

Prasad (2000) classified the stereoscopic reconstruction methods in geometric 

and calibration-based. Only the calibration-based methods will be discussed, as 
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many studies have demonstrated their superiority in terms of accuracy on the 

geometric methods. 

1.2.1 Optical calibration 

The calibration-based methods require the measurement of a mapping 

function, determining the correspondence   between spatial coordinates   and 

image coordinates  : 

               (1.7) 

Generally, the calibration consists in placing a target with highly-contrasted 

markers (for example white dots on a dark background) with known physical 

position. Soloff et al (1997) used 1mm circular dots with 5mm spacing on a black 

background. The target is placed possibly in the same location of the laser sheet, 

and translated to sweep a volume in which the illuminated region is enclosed 

(incidentally, if a 3D target is used there is no need to translate it; see for example 

the 3D wavy target used by Scarano et al 2005). One of the markers is identified as 

the origin of the physical reference system, while the other points coordinates are 

determined by setting the orientation of the axes. The identification of the markers 

onto the images can be performed by a template-matching technique, such as cross-

correlating the target images with a template, and searching for the local maxima of 

the cross-correlation map. The final result is a discrete correspondence between 

spatial coordinate and image coordinates. A regression procedure is then used to fit 

a chosen function for the correspondence  . 

Generally speaking, the most adopted camera models are: 

 Pinhole camera model (Tsai 1987), based on 6 extrinsic parameters (a 

translation vector and three Euler angles) and 6 intrinsic parameters (pixel 

aspect ratio; radial distortion factors of first and second order describing the 

distortion caused by the lenses; focal length; image coordinates intersection of 

the optical axis with the image plane); 

 Generic interpolating functions, as: polynomial functions, 3rd order in   and  , 

2nd order in   (Soloff et al 1997); rational functions (Willert 1997); bicubic 

splines (Lawson & Wu 1997a, 1997b). 

1.2.2 Reconstruction of the flow field 

The 3C reconstruction of the velocity field can be performed with 3 different 

approaches: generalized least-square reconstruction (Soloff et al 1997), mapping 

and warping (the last two methods are variations of the technique proposed by 

Willert 1997). 

The generalized reconstruction is based on the interrogation of the raw 

(warped) images with a standard PIV algorithm. The 3C reconstruction of the 
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physical displacement    in the location   is obtained by observing that a first-

order Taylor series expansion of: 

                      (1.8) 

leads to the following relation: 

                  (1.9) 

The expression (1.9) is a system of 4 equations (one for each component of the 

image displacement and for each camera) in 3 unknowns (the three components of 

the physical displacement). Ideally, 2 equations are linearly dependent; in general, 

due to measurement noise, a least square solution of (1.9) is used to determine   . 

In the case of the mapping technique, the images are de-warped onto a 

common grid in the physical space, and then interrogated with a standard PIV 

algorithm. The 3C displacement is obtained by using geometrical relations (Willert 

1997). On the other hand, the warping approach, similarly to the case of the 

generalized reconstruction method, consists in interrogating the warped images, 

and subsequently dewarping the two vector fields to the corresponding physical 

positions. In general, the mapping technique is affected by potential loss of image 

quality due to interpolation (unless the dewarping process is included in the image 

deformation process). The warping approach, on the other hand, suffers for non-

uniform and anisotropic spatial resolution due to the local magnification 

differences between the two cameras. 

1.2.3 Disparity correction and self-calibration 

The most severe source of error in Stereo-PIV is related to the misalignment 

between the calibration plate and the laser sheet. Neglecting the misalignment 

generates two sources of error: position error, i.e. the reconstruction is performed 

using velocity measurements relative to different positions; reconstruction error, 

i.e. the local gradient matrix in the method by Soloff et al (1997), or the viewing 

angles in the mapping/warping approaches, are computed in the wrong position. A 

sketch of the misalignment error is provided in Fig 1.4. 

Willert (1997) proposed a procedure based on cross-correlation of the 

simultaneous dewarped images of the two cameras of the imaging system in the 

    plane; the local misalignments (also referred as disparity map) are used to 

correct the position errors. A more complete procedure, accounting also for the 

reconstruction error, is the self-calibration proposed by Wieneke (2005). In the 

self-calibration procedure the disparity map is used to estimate the position of the 

measurement plane; subsequently, the mapping functions are modified so that the 

measurement plane will be coincident with the     plane. A slightly different 

version was proposed by Giordano & Astarita (2009), arguing that, since the 
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Fig. 1.4 Sketch of the misalignment error between calibration and measurement plane (Giordano & 

Astarita 2009). 

relation between the disparity map and the local misalignment involves the viewing 

angles, the initial misalignment determines an error in calculating the viewing 

angles themselves. Considering Fig. 1.4 as a reference, geometrical relations lead to: 

   
  

               
        (1.10) 

Initially, one can compute    and    in    or   , or halfway, introducing an 

uncertainty. The process is iterated to reduce this source of error. 

1.2.4 Multi-Plane Stereoscopic PIV 

Stereo-PIV is a 2D3C technique, thus it provides only 6 of the 9 components of 

the velocity gradient tensor. The missing information can be recovered by using a 

multi-plane system, as proposed by Kähler & Kompenhans (2000). The imaging 

system consists of two pairs of cameras, while the illumination is provided by a 

four-pulse laser system in which the first couple of pulses is orthogonally polarized 

with respect to the second couple. The polarized light is separated by polarizing 

beam splitters, as shown in Fig. 1.5. The polarization is preserved if the particle 

tracers are small enough, i.e. with size comparable to the incident light.  

Kähler & Kompenhans (2000) used a versatile four cavity laser system, which 

allowed them to place the 4 laser sheets in the same position (so that the four 

frames can be used for multi-frame interrogation, or to provide measurements of 
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Fig. 1.5 Schematic of the optical configuration for dual plane Stereo-PIV: 1-4 digital cameras; 5 lens; 6 

mirror; 7 polarizing beam splitter; 8 light absorbing material;   opening angle (Kähler & Kompenhans 

2000). 

the fluid acceleration), or with an offset in the direction orthogonal to the laser 

sheets to accommodate for a large out-of plane displacement. In this second-case, 

all the three components of the vorticity vector and the nine components of the 

velocity gradient tensor can be measured. 

1.3 Three-Dimensional Particle Image Velocimetry 

1.3.1 Scanning PIV 

Quasi-simultaneous 3D velocity measurements can be obtained by scanning a 

volume with a high pulse frequency laser sheet (Brücker 1995). The laser sheets 

could be either observed by a single camera or two cameras in stereoscopic 

arrangement (Hori & Sakakibara 2004), providing 3D2C or 3D3C velocity 

measurement, respectively (actually, in the first case the out-of-plane velocity 

component can be extracted by applying the continuity equation; however, the 

measurement is affected by noise due to differentiation of the in-plane velocity 

components). This approach is known as scanning PIV. Scanning PIV has potentially 

the same resolution of the standard PIV, and the velocity field computation can be 

performed using the same interrogation algorithms. On the other hand, due to 

depth of field requirements (i.e. larger    to increase   , according to (1.3)), in 

order to achieve the same exposure level of an equivalent 2D PIV experimental  
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Fig. 1.6 Vorticity-magnitude iso-surfaces in the volume and vorticity magnitude contours in three 

spanwise planes at three different instants in the periodic motion of the flapping wing (David et al 

2012). 

setup one should generally increase the laser power or, whenever it is possible, 

increase the tracers diameter. This could be difficult, since high-frequency lasers 

provide lower power output than low-frequency lasers. Furthermore, a highly 

precise scanning mechanism is required for a successful and repeatable 

measurement (in Stereo-Scanning PIV the disparity map computation can be used 

either as a correction procedure for misalignments and for proper laser sheets 

identification). 

Perhaps the most critical aspect is related to the scanning frequency. The 

volume must be swept within a time interval that is smaller than the characteristic 

timescale of the flow under investigation. This aspect limits the applicability of the 

technique to low-speed flows. For example, considering a free jet in water, with 

centerline velocity           and exit diameter            (resulting in 

              ), the characteristic timescale is              , while the 

Kolmogorov timescale is                      , corresponding to a frequency 

of         . Assuming that a limit value for the time interval to sweep the 

volume is one half of the Kolmogorov timescale, if the repetition rate of the laser is 

      only up to 17 planes can be imaged (considering that for each plane two 

images with the desired time separation have to be captured). However, this strict 

requirement can be relaxed if the focus of the investigation is on the large scale 

motion. 

A slightly different implementation is documented by David et al (2012). A 

volume of                    (the first two-dimension being an average value, 

while the third one is limited by depth of field requirements) in the wake of a 

flapping wing is discretized in 100 parallel equidistant planes, illuminated with a 

time-interval of     , corresponding to     . The particle images are captured by 

a high speed Photron camera with             pixels resolution. Successively, the 

images are back-projected into the volume to build a pseudo-3D object, 

interrogated by 3D cross-correlation. 
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Fig. 1.7 Schematic of optical off-axis setups in particle holography. (a) Recording of a hologram of a 

particle field; (b) reconstruction of a virtual image; (c) reconstruction of a real image (Hinsch 2002). 

The final result is a 3D3C velocity field with interestingly low uncertainty (the 

measured local divergence, which should be zero since the flow regime in 

incompressible, lies in the range                       ). An example of vorticity 

magnitude contour representation is reported in Fig. 1.6. 

1.3.2 Holographic PIV 

Holographic image recording is performed without lenses, giving in practice 

infinite depth of field. This feature made the holographic principle (see Collier et al 

1971 for reference) very appealing for the extension of PIV to the 3D field (Hinsch 

1995, 2002). The schematic of the application of the holographic principle to PIV is 

reported in Fig. 1.7, and summarized in the following. 

The particles are illuminated with a laser light wave. The light scattered by the 

particles is combined on a recording medium with a reference wave from the same 

laser source (while in planar PIV lasers are preferable because of the short pulse 

duration and high power, but still optional, in holography the requirement of 

coherent light really forces to use laser light). The produced interference pattern 

(hologram) is then used to reconstruct the image by illumination with a conjugate 

reference wave. The original image is generated by diffraction of the reference 

wave by the interference pattern on the recording medium. 
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The spatial resolution of the technique is related to the fringe spacing, given by 

         , where   is half of the angle between the direction of propagation of the 

two waves. The fringe spacing sets the resolution requirement for the recording 

medium. This requirement can be relieved by reducing the angle  . 

The main issue of using a photographic medium is that a very limited number 

of holograms can be captured (for each realization the film has to be changed). In 

order to allow statistics analysis the technique can be implemented on CCD 

cameras, where the reconstruction is performed numerically. This variation of the 

technique is also known as Digital Holographic PIV (DHPIV). DHPIV is mainly 

limited by the resolution of CCD cameras: generally the pixel pitch lies in the range 

      , allowing the detection of less than            . In this case, using an 

in-line system (i.e. the object beam and the reference beam coincide) could be the 

only option. For in-line systems the main limitations are the small numerical 

aperture (providing very elongated particles along the optical axis of the 

holographic system) and the strong presence of speckle noise, arising from the 

interference of scattered light waves between themselves. 

1.3.3 Defocusing PIV 

Though traditionally included in the classification of photogrammetric systems 

(i.e. system using multiple camera views to determine the three-dimensional 

features of an object), the Defocusing PIV is an elegant solution which requires, as a 

matter of principle, a single camera to determine a virtual multiple-camera view. 

The idea, originally proposed by Willert & Gharib (1992), is based on defocusing 

imaging using a three-holes aperture. The working principle is illustrated in Fig. 1.8 

in the simplified case of conventional imaging and with a two-holes aperture. For a 

conventional system a particle image outside of the focal plane is characterized by a 

larger diameter; for a defocusing system, instead, it will be imaged as a pair of 

particles, whose separation can be related to the distance from the reference focal 

plane. The introduction of a third hole eliminates the possible ambiguity of the 

particle position in front or behind the reference plane, as it would result in two 

opposite orientations of the corresponding imaged triangle. 

In the implementation by Pereira et al (2000), the three-apertures system is 

replaced by three separate cameras arranged in the shape of an equilateral triangle, 

thus reducing the overcrowding of the images. The images are then processed to 

identify the triplet pattern and determine their spatial position. The displacement 

field can be determined either by 3D cross-correlation or by particle tracking. In the 

first case the object is discretized in voxels (the 3D equivalent of pixels, i.e. compact 

support functions with uniform value within a cubic domain and zero elsewhere) 

and the hyper-particles (i.e. the equivalent 3D particle images) are represented by 

an isotropic 3D Gaussian function. 
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Fig. 1.8 Schematic of the defocusing principle: a) conventional system b)  defocusing system (Pereira et 

al 2000). 

The limited solid angle subtended by the viewing rays determines a larger 

uncertainty on the depth position of the particles (10 times larger than the in-plane 

position, as documented by Pereira et al 2000). Furthermore, the image particles 

outside of the focusing plane will be larger, increasing the image density and 

limiting, as a matter of fact, the maximum allowed particle concentration. The need 

to minimize the number of overlapping particle images for the triangle pattern 

recognition also limits the maximum number of imaged particles for a successful 

reconstruction. Indeed the limited particle concentration and the 3D particle 

position identification step make the method more suitable for 3D particle tracking 

than for 3D cross-correlation. 

1.3.4 3D Particle Tracking Velocimetry (PTV) 

Particle Tracking Velocimetry relies on particles position identification and 

tracking of their motion within subsequent frames. The most appealing feature of 

3D PTV is that tracking of the particles over long sequences allows to measure 

particle trajectories and Lagrangian properties (since the particles are illuminated 

within a 3D domain, one can expect that the effect of particles escaping from the 

measurement region is very limited), such as acceleration (Voth et al 1998), 

vorticity dynamics (Lüthi et al 2005), pair dispersion in turbulent flows (Bourgoin 

et al 2006), and many others.  

The locations of the particles are identified by observing the pattern with 

multiple cameras from different directions; generally 3 cameras suffice to the 

purpose when the particle density is limited. Due to calibration errors and 

uncertainty in the particle image location in the images (pixelization, 
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inhomogeneous scattering conditions between the cameras, aberrations, etc.) the 

lines of sight of the same particle might not intersect within the volume. The best 

estimate of the particles location is obtained by inverting the generalized mapping 

function (1.7) for the several cameras, and solving the system of equations: 

 
 
 
 
    

   
  

  
                        (1.11) 

The system (1.11) can be linearized by a Taylor series expansion truncated at 

the first order. The solution can be pursued with the standard numerical methods 

for over-determined systems of linear equations, for example a least square 

approach. 

The spatial resolution and accuracy of 3D PTV are limited by the maximum 

allowed seeding density, both due to the finite probability of overlapping particles 

(affecting the reliability of the particles location algorithm) and due to the 

occurrence of spurious matchings, named ghost particles (Maas et al 1993; see Sec. 

2.2 for further details). 

The probability of overlapping particles can be easily estimated by knowing 

the source density    (see (1.4)) and modeling the process of imaging with a 

Poisson probability distribution. In this case, the probability for each pixel of being 

illuminated by a particle, or by more than one, is given respectively by: 

                                (1.12) 

                                                          

                             (1.13) 

The source density can be immediately associated to the image density 

expressed in number of particles per pixel (    ) by observing that (1.4) is actually 

the product of the particle area    
    and the term       

  . By assuming that    

is the average value of the magnification over the observed volume, and observing 

that the particle concentration is the total number of particles    divided by the 

size of the volume          , it follows immediately that the term       
  , 

normalized with the pixel pitch   , is the number of particles divided by the area on 

which the particles are imaged, i.e. the number of particles per pixel. As a 

consequence, imposing   
  as the particle image diameter in pixels (i.e.   

       ): 

        
   

 

   
        

   
  

 
      (1.14) 

As for the ratio between the number of ghost and true particles for a three 

camera system, it can be estimated using the following relation, derived in Sec. 

2.2.1: 
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Fig. 1.9 Working principle of tomographic PIV (adapted from Elsinga et al 2006a). 

  
    

  
       

      
  

  
     

  
  

   
  

 
 
      

 
 

   
    

            (1.15) 

where      is the total number of cameras. 

Maas et al. (1993) claimed 0        as an upper bound for the application of 

PTV with 3 cameras. Indeed, assuming a particle diameter of 3 pixels, the source 

 density is equal to 0.035 and the probability of overlapping particles in that case 

would be 0.06%. Furthermore, assuming         ,        and        , 

the ratio       is about to 0.1, i.e. of all the reconstructed particles about 10% will 

be spurious. Adding another camera, of course, reduces dramatically this 

percentage to less than 1%.  

1.3.5 Tomographic Particle Image Velocimetry (Tomo-PIV) 

The Tomo-PIV (Elsinga et al 2006a) relies on the reconstruction of the three 

dimensional distribution of scattering objects into a control volume. The 

reconstruction is achieved by analyzing the light intensity scattered by the particles 

illuminated by a pulsed light and imaged by multiple cameras from different 

viewing directions. The obtained light intensity field is discretized in cubic compact 

support functions named voxels, as they are, as a matter of fact, the 3D equivalent of 

the pixels. The full three components velocity field is then computed by 3D cross-

correlation of the subsequent reconstructed volume. The working principle of the 

technique is sketched in Fig. 1.9. 

The reconstruction problem consists in determining the best estimate of a 3D 

object using multiple projections. The analytical solution of the mathematic 
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problem dates back to the work by Radon (1917), who showed that a  -

dimensional object can be reconstructed from an infinite set of ( -1)-dimensional 

projections. In practice, a finite number of projections is available and the problem 

is ill-posed, leading to different techniques to determine approximate solutions. A 

more detailed description is provided in Chapter 2.  

Since the technique does not rely on particles identification, Tomo-PIV can 

work with larger seeding density than 3D PTV. The parametric study by Elsinga et 

al (2006a) suggests that a satisfactorily accurate reconstruction can be achieved by 

a 4 cameras system with seeding density up to 0.05   , with 3 pixels diameter 

particles (resulting in         according to (1.14)). The limitations in terms of 

depth of field (and, consequently, of   ) are the same of scanning PIV; the basic 

difference is the maximum amount of information that can be stored. Tomographic 

PIV has the advantage of allowing simultaneous illumination of the entire volume, 

while scanning PIV is limited by the scanning rate of the system. The number of 

imaged particles in both cases is limited by the relatively large particle diameter 

(depending on   ) and the finite probability of overlapping particle, i.e. of forming 

speckles. However, while Tomo-PIV records all the particle images at the same 

time, in scanning PIV the particle images are recorded in separate frames, enabling 

much better spatial resolution of the measurement. Indeed, supposing     , 

    , the minimum size of the interrogation spot to satisfy the criterion 

         in scanning PIV is given by: 

          
         (1.16) 

resulting in       pixels. Instead, for a tomographic PIV system, the same relation 

has to be expressed in terms of     (particles per voxel): 

     
    

     
          (1.17) 

Similarly to (1.16), for a tomographic PIV system the minimum    is obtained 

by setting      in: 

          
         (1.18) 

Supposing that         ,        and        , (1.18) results in 

      voxels. Even accounting that the requirement      can be fully satisfied 

in Tomo-PIV, while it is not accomplished in Scanning PIV in presence of out-of-

plane motion, the difference is noticeable. 

Straightforward substitution of (1.17) in the (1.18) leads to an estimate of the 

minimum physical size of the interrogation spot    (observing that           ): 

    
       

 

  
     

 
        (1.19) 
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Fig. 1.10 Contour representation of         as a function of    and     for fixed   ,   , and image 

density equal to 0.05ppp The dashed-dotted curves represent the constraint due to finite depth of field 

(       ), diffraction spot size (  
  3 pixels), and volume thickness larger than the interrogation spot 

size (      ) The area with colored contour lines is the valid area to place the design point for the 

Tomo-PIV experiment. 

In Fig. 1.10 the contour representation of    as a function of    and     in the 

case of 0.05ppp,       and        is reported. The lower bound on the 

interrogation spot size is mainly determined by three constraints: diffraction spot 

size smaller than 3 pixels (in this case only diffraction imaging is considered); 

volume thickness smaller than the depth of field to have well-focused images (in 

practice, slightly out-of-focus particle images can be accepted, provided that the 

blur circle size is limited); volume thickness larger than the interrogation spot size 

to provide at least one vector. The area with contour lines indicates the region 

where the design point for the Tomo-PIV experiment can be placed. The first two 

constraints are   -dependent: a larger    relaxes the requirement on the depth of 

field while exacerbating the one on the particle diameter. In general, if high spatial 

resolution is required, decreasing    is advisable, though it limits the volume 

thickness (however, the minimum    is achieved for small    ). Incidentally, a 

smaller particle diameter reduces    with the same     , thus increasing the 

quality of the reconstruction (provided that   
   , see Fig. 2.3b) 

A summary of applications of Tomo-PIV reported in the literature is presented 

in Tab. 1.1.  
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Experiment 
Fluid, 

Re 
Measurement 

domain 
Illumination 

Imaging 
system 

   

Wake of a cylinder 
(Elsinga et al 

2006a) 

Air, 
2700 

            at 
18.4       

0.05ppp 

400mJ/pulse 
at 1Hz 

4 cameras 
1280x1024, 

     

             
              

75% overlap 

Finite cylinder 
obstacles (Hain et 

al 2008) 

Water , 
11000

0 

           at 
50         

150mJ/pulse 
at 10Hz 

4 cameras 
4008x2672 
       

             
                 

75% overlap 
Time-resolved 
cylinder wake 

(Scarano & Poelma 
2009) 

Water, 
1000 

           at 
20        0.025pp 

200mJ/pulse 
(double-pass) 

at 7Hz 

4 cameras 
2048x2048 
       

             
                 

75% overlap 

Turbulent 
boundary 

layer/shock wave 
interaction 

(Humble et al 
2009) 

Air 
           at 

20        0.05ppp 
400mJ/pulse 

at 10Hz 

4 cameras 
2048x2048 
         

             
              

75% overlap 

Drop coalescence 
(Ortiz-Dueñas et al 

2010) 

Water-
glyceri

ne 

           at 
12        

0.05pp 

30mJ/pulse at 
1000Hz 

4 cameras 
1024x1024 
         

             
              

75% overlap 

Supersonic 
turbulent 

boundary layer 
(Elsinga et al 2010) 

Water, 
    
      

            at 
20        0.05ppp 

250mJ/pulse 
4 cameras 

2048x2048, 
         

             
        

75% overlap 

Rod-airfoil 
interaction 

(Violato et al 2011) 

Air, 
3500 

          at 
16.6        

0.05ppp 

12mJ/pulse at 
5000Hz 

4 cameras 
1024x1024 

      

             
              

75% overlap 

Circular and 
chevron jets 

(Violato & Scarano 
2011) 

Water, 
5000 

           at 
20        0.04ppp 

25mJ/pulse at 
1000Hz 

4 cameras 
1024x1024 
       

             
        

75% overlap 

Carotid artery 
bifurcation 

(Buchman et al 
2011) 

Water-
glyceri
ne, 360 

          at 
40        0.01ppp 

400mJ/pulse 
at 5Hz 

4 cameras 
1280x1024, 
         

             
              

75% overlap 

Turbulent 
boundary layer 
(Atkinson et al 

2011) 

Air, 
7800 

          at 
20        0.03ppp 

250mJ/pulse 
(double pass) 

at 1Hz 

4 cameras 
2048x2048, 

      

             
              

75% overlap 

Turbulent channel 
flow (Schäfer et al 

2011) 

Air, 
17000 

          at 
96        

0.03pp 
30mJ/pulse 

4 cameras 
2048x2048 
       

             
        

75% overlap 

Time-resolved 
turbulent 

boundary layer 
(Schröder et al 

2011) 

Water, 
    
     

           at 
11.7        

0.05ppp 

25mJ/pulse at 
1000Hz 

6 cameras 
1024x1024 
       

             
              

75% overlap 

Wake of a trailing 
edge (Ghaemi & 
Scarano 2011) 

Air, 
38600

0 

          at 
22        

0.065ppp 

13mJ/pulse 
(multi-pass) at 

2700Hz 

4 cameras 
1024x1024 
      -16 

             
              

75% overlap 

Zigzag boundary 
layer trip (Elsinga 

& Westerweel 
2012) 

Water, 
    
    
    

           at 
18.5        

0.03ppp 

250mJ/pulse 
at 2Hz 

4 cameras 
2048x2048, 

       

             
              

75% overlap 

Pitching plate 
(Buchner et al 

2012) 

Water, 
7500 

            at 
25        0.05ppp 

240mJ/pulse 
4 cameras 

4008x2672 
       

             
              

50% overlap 

Taylor-Couette 
flow (Tokgoz et al 

2012) 

Water, 
1000-
47000 

           at 
27        

0.025ppp 

50mJ/pulse at 
7.55Hz 

4 cameras 
4800x3200 

             
              
50-75% overlap 

Table 1.1 Summary of Tomo-PIV applications reported in the literature.
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Chapter 2 - Tomographic PIV 

As outlined in the previous chapter, Tomographic Particle Image Velocimetry 

(Tomo-PIV) is perhaps the most promising among the possible candidates to play 

the role of the 3D equivalent of planar PIV. Though some particular experimental 

conditions might suggest using one technique more than the others, Tomo-PIV has 

shown in its early years of development great margins of improvement and 

remarkable flexibility (see Tab. 1.1 for an overview of applications reported in the 

literature). The technique relies on the reconstruction of the particles distribution 

within the measurement volume using multiple projections of it, and velocity 

measurement by 3D cross-correlation of the reconstructed volumes. Differently 

from the case of the standard Computed Axial Tomography (CAT), which is 

currently a well established technique in medical imaging and diagnostic, the object 

to be reconstructed is not steady. Consequently, the projections need to be 

simultaneously captured, unless one can scan the volume with ultra-high speed 

cameras and high precision mechanic shift systems. This option is currently 

unfeasible, thus simultaneous imaging of the particles pattern with several cameras 

is required. The solution of the ill-posed problem of the tomographic 

reconstruction for Tomo-PIV cannot be achieved with the standard Radon-

Transform-based methods of the CAT. On the other hand, the objects to be 

reconstructed are much simpler, i.e. sparsely populated volumes with bright high 

spatial frequency spots on a dark background. In this scenario, iterative algebraic 

reconstruction techniques (Herman & Lent 1976) can be very effective. The 

features and the implementation of the algebraic reconstruction techniques are 

outlined in Sec. 2.1. 

The performances of the algebraic methods in terms accuracy are strongly 

seeding-density-dependent. Indeed, the imaged particles are positioned into the 

measurement volume by taking into account the coherence of the reconstructed 

object with the ensemble of the projections; as a matter of fact, the framework is 

somehow similar (but more robust) to the PTV scenario, in which the 3D position of 

the particles is determined by triangulation. As a consequence, the problem of the 

ghost particles discussed in Sec. 1.3.4 still holds. Even though the cross-correlation 

approach is in general more robust than particle tracking with respect to random 

errors (for example loss of pairs, spurious matchings, etc.), the real issue is related 

to the bias error induced by the coherent motion of the ghost particles. This aspect 

is discussed is Sec. 2.2. 

Though relatively “young”, Tomographic PIV with the aid of algebraic methods 

is quite well established among the scientific community. However, the scientific 

production on the development of solutions to push the limits of the technique is 

relevant. Many researchers are involved in a continuous labor limae to optimize the 

performances of the algebraic methods in terms of accuracy and hardware 
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requirements (see Sec 2.3 for an overview). The PIV analysis by cross-correlation is 

conceptually similar to the 2D case, though the implementation hides some 

harshness. The large amount of data and the relevant computational load require 

very efficient algorithms. The problem is outlined in Sec. 2.4, and some solutions 

are proposed in Chapter 5. 

2.1 Algebraic reconstruction techniques for 

Tomographic PIV 

2.1.1 The reconstruction problem 

Tomography deals with the reconstruction of a  -dimensional object from a 

set of      -dimensional projections. A projection is defined as a line integral of 

the object to be reconstructed along a viewing direction. More specifically, in 

Tomographic PIV the object is the 3D distribution of the light scattered by the 

tracer particles          (where       are the spatial coordinates in a 3D reference 

system), while the recorded intensity values on the cameras constitute the set of 

projections        (where     are the coordinates in the 2D camera reference 

system). In the case of the iterative algebraic reconstruction techniques (Herman & 

Lent 1976), the object is discretized as a 3D array of voxels, as outlined in Sec. 1.3.5. 

The line integrals of the intensity along the lines of sight are discretized as a 

weighted sum of the voxel intensities: 

                         
    
                              (2.1) 

The subscript   and   indicate the  -th pixel and the  -th voxel, respectively;      

and      are the total number of pixels and voxels;      is a weighting coefficient, 

determining the influence of the intensity of the  -th voxel on the intensity recorded 

on the  -th pixel. The (2.1) results in a system of      linear equations with      

unknowns. 

It can be readily shown that the problem is commonly underdetermined in the 

Tomo-PIV scenario. Consider for example a 4 cameras system with average 

magnification        and pixel pitch        , i.e. resolution of         . 

Suppose that the illuminated region is                  . the particles will be 

imaged on the projection of this region, i.e. approximately                (actually 

the projection is slightly larger, depending on the viewing angle; however, the order 

of magnitude of the number of illuminated pixels is very close to the one indicated 

above). On the other hand, since the spatial resolution of the volumetric 

discretization is set to be approximately the same of the imaging system, the 

number of voxels is                  . As a consequence, the (2.1) is a system of 

      equations in       unknowns. The problem is largely underdetermined; 
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Fig. 2.1 Imaging model for the tomographic reconstruction. The weighting elements are non-zero in the 

shaded area; their values are a function of the distance between the line of sight and the center of the 

voxel. Spherical voxels are assumed to simplify the calculation of the weighting elements. (Scarano 

2013). 

however, some additional constraint can consistently reduce the dimension of the 

space of the solutions (for example in Tomo-PIV the solution is positive-definite).  

Furthermore, the weighting matrix is extremely large (for the example 

indicated above, the number of weighting elements is       , requiring        

for the memory storage in single floating point precision), preventing the solution 

of the (2.1) with matrix approaches. Luckily, the matrix is also very sparse, since 

each pixel is influenced only by a small percentage of the voxels (i.e. those relatively 

close to the line of sight). This concept is illustrated in Fig. 2.1 in the simplified 

scenario of a 2D object imaged by two 1D cameras. 

The weighting elements can be modeled and computed in a number of 

different ways. Most often, the weighting elements are computed as the intersecting 

volume between the voxels and the line of sight, expanded as a cylinder with cross-

section equal to the pixel size. A further simplification consists in replacing the 

voxels with equivalent spheres, so that the intersected volume is a function of solely 

the distance between the axis of the line of sight and the center of the voxel, and the 

reciprocal orientation can be taken out of the process. An analytical solution is 

provided by Lamarche & Leroy (1990). 
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The most immediate approach is to set the weighting function linearly varying 

between 1 (line of sight passing through the center of the voxel) and 0 (no 

intersection between the line of sight and the voxel); however, one can more 

generally use more complicate weighting functions, such as Gaussian functions or 

B-Splines (see Hanson & Wecksung 1985 for more details). This procedure is 

commonly referred as basis-function-method. In all cases, the computational burden 

of calculating the triple integral to determine the weighting elements can be 

consistently reduced by using a pre-calculated look-up table (which entries are the 

distance between the line of sight and the center of the voxel, and the resolution 

ratio between voxels and pixels). 

A slightly different approach consists in determining the weighting elements in 

terms of the distance between the image point corresponding to the center of the 

voxel and the center of the pixel. This method is easily implementable, as it requires 

only the straightforward application of the direct mapping function (Sec 1.2.1) and 

the calculation of the distance of two points in the image plane. For this reason, it 

will be referred as direct-method from this point on. As in the basis-function-

method, one can choose generic functions of the distance and the resolution ratio. 

Furthermore, a more general approach consists in adapting locally and for each 

camera the functions for the weighting elements calculation, i.e. a variable Optical 

Transfer Function (OTF), as illustrated by Schanz et al (2013). The OTF can be 

locally set to compensate for optical distortions, aberrations, variable 

magnification, etc. 

2.1.2 Algebraic reconstruction techniques 

In the very first stages of development of Tomo-PIV, several approaches to 

solve the system (2.1) have been investigated. Elsinga et al (2006a) tested two 

iterative methods: 

 Algebraic Reconstruction Technique (ART, Gordon et al 1970): 

                
                 

                           
    
   

     
     

   

     (2.2) 

 Multiplicative Algebraic Reconstruction Technique (MART, Herman & Lent 
1976): 

                
                

        

                   
    
   

 

     

  (2.3) 

The subscript   indicates the iteration number, and   is a relaxation coefficient, 

that plays a significant role in the stability of the iterative process (in MART the 

stability criterion is      ). In both cases one iteration is completed after that 

the update equation has been executed for all the projections (i.e. for all the pixels 

of the cameras set). Elsinga et al (2006a) documented a striking superiority 
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Fig. 2.2 Mechanism of formation of ghost particles. a) two particles imaged by two cameras lead 

potentially to two ghost particles (this is not exactly true in 3D, as the lines of sight can be non-coplanar. 

b-c-d) three possible solutions of the reconstruction problem (Elsinga et al 2011). 

of MART in the framework of Tomo-PIV, as it operates as a logic AND operator (i.e. 

each voxel carries a non-zero intensity only and if only all its projections are non-

zero); conversely, ART works as a logic OR operator (i.e. each voxel has a non-zero 

intensity if at least one projection is non-zero). Since the object to be reconstructed 

consists of small high intensity spots on a dark background, MART is certainly more 

suitable for this task. Actually, the constraint of positive-definite solution is 

automatically applied by the MART algorithm, as the projections in Tomo-PIV are 

strictly non-negative, and so are the voxels intensities. As a matter of fact, each 

zero-intensity projection set automatically to zero the intensity of all the voxels 

along the line of sight, thus consistently reducing the space of the solutions for the 

system (2.1). The MART procedure is characterized by a relatively fast 

convergence, as the reconstructed distributions do not change significantly after 5 

iterations. 

In the work by Atkinson & Soria (2007) a wider spectrum of algebraic 

techniques is considered, still resulting in MART being more suited for handling the 

problem of tomographic reconstruction in the Tomo-PIV scenario. To date, MART is 

considered the consolidated method in this framework.  

The intensity fields reconstructed by MART are usually affected by artefacts 

mainly due to the ambiguity in the estimation of the particles correct position along 

the line of sight. Following Novara et al (2010), the main sources of error can be 

bundled in three categories: 

 Ghost particles (Maas et al 1993), i.e. intensity blobs forming at the 

intersection of line of sight carrying non-zero values, but not corresponding to 

the position of actual particles. The mechanism of the ghost particles 

formation is sketched in Fig. 2.2 for the simplified case of a 2D slice 

reconstructed by two 1D cameras. Obviously the larger is the number of 

particles, the larger is the number of ambiguities in the reconstruction; 
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furthermore, the thicker is the volume, the higher is the number of positions 

that each true particle may occupy into the reconstructed volume, and 

accordingly the higher is the probability of ghost particles occurrence; 

 Elongation of the reconstructed particles in the depth direction (especially 

when the total solid angle is too small), determining an increase of random 

errors in the measurement of the velocity component along the depth. On the 

other hand, a large viewing angle can lead to longer line of sights, enforcing 

the first source of error; 

 Discretization artefacts due to under-sampling, arising when the diameter of 

the particles to be reconstructed is below 2-3 voxels. 

The first source of error can be reduced by increasing the number of cameras, 

reducing the seeding density (at the expense of the spatial resolution), or using high 

accuracy reconstruction schemes (as the MTE-MART by Novara et al 2010, see Sec. 

2.3.3), among the others. The effect of the solid angle is merely geometrical, and it 

can be compensated only by proper orientation of the cameras. As for the effect of 

the discretization, one should note that the particle images are very often 

diffraction limited spots, i.e. with nearly Gaussian shape. As a consequence, the 

reconstructed particles should have Gaussian shape as well. It should be reasonable 

to expect that applying some artificial diffusion with a 3D Gaussian filter in the 

iterative process of (2.3) should reduce the discretization error and increase the 

reconstruction accuracy. This aspect is briefly outlined in Sec. 2.3.2 and discussed 

in more detail in Chapter 4. 

2.1.3 MART performances 

Elsinga et al (2006a) assessed the performances of MART using 2D numerical 

simulations, in which a 2D object is reconstructed by 1D cameras. More recently 3D 

simulations have been conducted in several studies with the same frame of mind 

(see, for instance, Worth et al (2010) and de Silva et al (2012)), leading to more 

predictive results as they include the effect of non-coplanar views in the 3D 

scenario. The common conclusion is that the number of cameras and the tracers 

concentration are the leading parameters in determining the accuracy of the 

reconstruction (see Fig. 2.3, left, relative to 2D simulations taken from Scarano 

2013). It comes with no surprise that these two parameters have a strong influence 

on the ghost particles number, as outlined later in Sec. 2.2.1. The accuracy is 

quantified in terms of the correlation factor between the synthetic generated 

distribution              and the reconstructed one            : 

  
                              

    
   

                   
     

   
                 

     
   

    (2.4) 
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Fig. 2.3 Quality of the reconstruction after 5 MART iterations as a function of the: particles concentration 

(left) for the case of   
   ; particles diameter (right) for the case of        . (Scarano 2013). 

Other experimental parameters might have a relevant impact on the 

reconstruction quality, such as the particles diameter (Fig. 2.3, right), the 

calibration uncertainty, the image quality and pre-processing, the optical 

aberrations, the solid viewing angle subtended by the cameras, etc. Most often, the 

quality drops down as the source density approaches values close to the speckle-

mode (Adrian & Westerweel 2011), i.e.       , regardless of the number of 

cameras, due to loss of the transmittivity of the medium and particles overlap along 

the lines of sight. 

In general, Elsinga et al (2006a) proposed        as a rule of thumb for a 

successful reconstruction. A commonly adopted upper bound for the image density 

is         (which does not affect much the spatial resolution, as it depends only 

weakly on the particle density; see for instance (1.19)). 

2.1.4 Volume self-calibration 

In the results from the synthetic experiments presented in Sec. 2.1.3 the 

weighting functions are obtained with ideally perfect correspondence between 

world coordinates and image coordinates. In the real experiments, this 

correspondence is achieved through the optical calibration procedure described in 

Sec. 1.2.1. The process requires the same software and hardware of the optical 

calibration for Stereo-PIV, but the effects of the calibration uncertainties are 

significantly different, thus affecting the procedure itself. 

In Stereo-PIV the misalignment between the laser sheet and the calibration 

target is the most significant source of error, as discussed in Sec. 1.2.3. In 

Tomographic PIV this aspect is not relevant, provided that the volume swept by the 
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target in the calibration process covers reasonably well the illuminated volume. On 

the other hand, Tomo-PIV suffers of uncertainties due to inaccurate calibration 

plates, unstable calibration shift mechanism, loose connections in the cameras 

system, vibrations, optical distortions that are not accounted by the mapping 

function (this aspect is particularly critical when using the pinhole camera model), 

thermal deformations, etc. Indeed, Tomo-PIV requires that the mapping functions 

have uncertainties possibly below     pixels (Elsinga et al 2006a), which might be 

difficult to achieve in case of large volumes and significant aberrations (for example 

when imaging through optical windows). When the error is large, lines of sight 

relative to the same particle could not intersect within the volume, thus providing 

cancellation (or intensity subtraction) of true particles. In the very first applications 

the problem was tackled by smoothing with a Gaussian filter the original images, 

thus increasing the particles size and the probability of successful reconstruction in 

case of calibration errors. The immediate drawback is the reduction of the 

reconstruction quality due to the increased particle image diameter (see Fig. 2.3, 

right).  

Subsequently, the development of a Volume Self-Calibration (VSC) technique 

by Wieneke (2008) determined a significant leap forward in this sense. The VSC is 

based on the correction of the mapping functions using the actual particles. The 

technique consists in locating the particles on the camera images and finding the 3D 

position of matching particles through triangulation, as in PTV (see Sec 1.3.4 for 

further details). The residual disparity obtained by computing the image distance 

between the projection of each particle and the correspondent positions on the 

camera images are used to correct the mapping functions. The application of this 

method works quite easily in case of very sparsely populated images (as in PTV), 

while the extension to Tomo-PIV images (with image density up to       ) is not 

straightforward at all, and most often it is not possible to record a set of images 

with low density before the experiment. Wieneke (2008) proposed a clustering 

technique, consisting in an artificial reduction of the image density by taking only 

the brightest particles. 

The procedure to identify the matching particles is outlined in Fig. 2.4. For each 

particle on the first camera image, the corresponding candidates for the matching 

on the second camera are those residing within a strip centered on the epipolar line 

(i.e. the projection of the line of sight of the first camera on the second camera) and 

half-width equal to the uncertainty      (that has to be larger than the expected 

maximum calibration error). A first guess position is computed for each candidate, 

and then projected on the other cameras to find the corresponding particle, and, 

eventually, the 3D particle position by solving (1.11). Finally, the projection of the 

3D particle position is compared with the respective image particle positions; the 

disparity vectors are displayed in a histogram map to separate true matchings from 

ghost particles. The disparity vectors are computed for a set of sub-volumes  
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Fig. 2.4 Particle triangulation procedure for the Volume Self-Calibration technique. (Wieneke 2008). 

composing the measurement volume, and then used to correct the original mapping 

functions. 

The VSC technique has shown to be able to reduce significant errors in the 

calibration. For example, in Chapter 8 an application is presented in which a jet 

issues from the bottom of a water tank into a plexiglass cylindrical chamber. Due to 

physical restriction the calibration is performed by moving the target in absence of 

the chamber; subsequently, the VSC is used to correct the misalignment of the lines 

of sight due to refraction effects induced by the plexiglass cylinder. A more detailed 

description of the implemented procedure and of the relevance of the corrections is 

provided in Sec. 8.2.3. 

2.2 The problem of the ghost particles 

The ghost particles constitute a severe source of error in the tomographic 

reconstruction. Even though a model to understand and quantify the ghost particles 

formation is of crucial importance, more interesting questions arise regarding their 

influence on the velocity measurement in terms of bias and random errors. For 
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example, Elsinga et al (2006a) documented an experiment on the wake behind a 

cylinder in which the ghost particles outnumbered the actual particles; the velocity 

measurement was still satisfactory nonetheless. 

In Sec. 2.2.1 a model to estimate the number of ghost particles is presented. 

The model is slightly different from the one proposed by Elsinga et al (2006b) in its 

derivation, formulation and functional dependencies, and conceptually more 

similar to that by Wieneke (2008). In Sec. 2.2.2 the focus is on the effect of the ghost 

particles on the velocity measurement. 

2.2.1 Estimate of the number of ghost particles 

A ghost particle is formed in every occurrence of intersection of all the lines of 

sight in which a particle image is present. Consider, for example, an illuminated 

volume of size             and a particle image of the first camera. The particle 

can be located anywhere along the line of sight, whose length is approximately     

(without affecting the generality of the problem the effect of the viewing angle is 

neglected). The possible candidates for the matching of a single particle of the first 

camera on the second camera are those included in a strip with length equal to the 

projection of the line of sight on the second camera (it can be estimated by 

multiplying     for the average magnification    and dividing by the pixel pitch   ) 

and width equal to the particle image diameter   
 . The number of candidates for 

the matching for each particle image of the first cameras in a 2 camera system can 

be statistically determined by multiplying this area for the particle image density. 

Normalizing with the number of true particles    one obtains: 

  
    

  
       

  
     

  
  

 

   
           (2.5) 

where    is the particle diameter obtained by (1.2), and (1.14) is applied. 

Two projections are enough to define for each candidate a trial position in the 

3D space. The trial position is projected onto the third camera to find the possible 

matchings. In this case the search area is a circle with diameter equal to the particle 

image diameter. The number of spurious matchings is statistically determined by 

multiplying the particle image density      for the search area, which is equal to 

the source density   . This leads to the general formula for a      system: 

  
    

  
       

      
  

  
     

  
  

   
  

 
 
      

 
 

   
    

             (2.6) 

The term in curly brackets is the depth of the volume in voxels (provided that 

the resolution ratio between voxels and pixels is equal to 1), while the term in 

square brackets is the diameter of the particle image. 
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Fig. 2.5 Reoccurrence of ghost particles in the two exposures. Solid lines and dark blue particles indicate 

the first exposure; dashed lines and light blue particles relate to the second exposure. Dark and light red 

circles indicate ghost particles in the first and the second exposure, respectively. Left: ghost particle 

reoccurring in both the exposure. Right: ghost particle appearing only in the first exposure due to the 

presence of velocity gradients (Elsinga et al 2011). 

2.2.2 The role of the ghost particles in the velocity measurement 

The intuition might suggest that in Tomo-PIV the role of the ghost particles is 

marginal with respect to 3D-PTV, since MART iteratively damps their intensity; 

furthermore, cross-correlation is much more solid in terms of spurious matchings 

than particle tracking. These considerations are supported by the evidence that 

Tomo-PIV is able to work with particle image density more than 10 times larger 

than 3D-PTV. In many application reported in Tab. 1.1 the ratio (2.6) is close or 

even larger than 1. However, the contribution of the ghost particles to the cross-

correlation maps is not exclusively dependent on their number per se. Elsinga et al 

(2011) observed that in some conditions ghost particles pairs between the 

exposures might form, and give an undesirable contribution to the cross-

correlation map. 

The process of ghost particles pairing is sketched in Fig. 2.5. Consider a set of 4 

particles observed by 4 cameras, and suppose that the respective lines of sight 

intersect in a common point, determining the creation of a ghost particle. If the 

displacement along the direction normal to the viewing direction is nearly the same 

for the set of particles, a ghost particle will be formed in the second exposure by the 

same group of true particles. As a matter of fact, the ghost particle reoccurs in both 

the exposures in nearby locations, and its displacement is approximately the 

average displacement of the set of true particles. On the other hand, if the 

displacement is significantly different (more than one particle image diameter) for 

at least one particle of the set (i.e. if there is a significant velocity gradient) the 

ghost particles will not reoccur in the second exposure (see Fig. 2.5, right). 
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Elsinga et al (2011) draw two importance consequences:  

 the coherent motion of the ghost particles might lead to velocity detection 

even outside of the illuminated volume. This problem can be avoided by 

identifying the illuminated region with the self-calibration technique (see Sec. 

2.1.4) or by summing the particle intensities in the    planes to determine the 

laser profile; the velocity vectors outside of this region are rejected; 

 since the ghost particles displacement is an average over a set of particles 

whose reciprocal separation might be much larger than the interrogation spot 

size, the effect is a smoothing (say, a modulation) of the velocity field. 

The second consequence is much more severe. Some of the most recent studies 

tackle the problem without focusing on the pairing, i.e. the bias and random errors 

due to the ghost particles are challenged by increasing the reconstruction accuracy 

(see for example Petra et al 2009, Novara et al 2010, Novara & Scarano 2012a, de 

Silva et al 2013) or by using hybrid PIV-PTV approaches (Novara & Scarano 2012b, 

Wieneke 2013). More recently, Discetti et al (2012) proposed a low cost Tomo-PIV 

setup, consisting of two independent tomographic systems with cheap single-

shutter cameras. Since the ghost particles distribution is related to the camera 

orientations, this system actually provides reconstructed distributions in which the 

ghost particles do not reoccur coherently in the two exposures even in absence of 

velocity gradients. More details are provided in Chapter 6. 

2.3 Improvements and advances on the 

reconstruction techniques 

Since the birth of Tomo-PIV with the work by Elsinga et al (2006a), MART 

conquered the status of state-of-art reconstruction technique in the PIV community. 

Nevertheless, two points of weakness immediately captured the attention of several 

research groups, i.e. the large computational cost and the limits of MART in terms of 

allowed seeding density. The first concern drove some studies towards the 

development of more computationally efficient reconstruction techniques (see Sec. 

2.3.1), mainly revolving around MART. The second issue stimulated the 

development of brand new approaches to tackle the mathematical solution of the 

problem of the tomographic reconstruction, moving away from the path of the 

traditional tomography. An overview of these advanced methods is provided in Sec. 

2.3.2. 

2.3.1 Fast reconstruction techniques 

Several efforts have been made in order to reduce both the computational cost 

of the reconstruction and the memory storage requirements while retaining the 

same accuracy. Most of the suggested solutions are based on the sparsity of the 
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distributions to be reconstructed. Indeed, making reference to Fig. 1.2, 7-10 

particles in each interrogation spot are sufficient to guarantee a valid detection 

probability above 95% (though the absence of out-of-plane motion can induce to 

slightly stretch this requirement). If a cube of              voxels is considered, and 

proper f# and resolution ratio are set in order to obtain a diameter of the particles 

of about 3 voxels, less than 1% of the voxels is characterized by a non-zero intensity 

value. Anyhow, as observed by Atkinson & Soria (2009), ambiguities in the 

reconstruction process and limited viewing angles determine the presence of noise 

and spurious voxel intensities, increasing the percentage of voxels with non zero 

intensity to approximately 5-10%. 

Furthermore, the iterative nature of MART implies a certain dependence of the 

first guess on the rate of convergence. A uniform first guess is commonly assumed 

(Elsinga et al 2006a), but several alternative solutions have been proposed, mainly 

enjoying the possibility of identifying locations with zero intensity in advance. 

Worth & Nickels (2008) proposed a Multiplicative First Guess (MFG) to estimate 

the initial intensity field. MFG is mainly based on back-projection of the recorded 

images throughout the volume; the obtained fields are then multiplied in order to 

identify the locations with zero-intensity (or below a certain threshold), whose 

values will be no more updated during the process. Anyway, an efficient application 

of MFG coupled with MART requires the storage of at least one weighting element 

per camera and for each voxel; if sufficient computational resources are not 

available, the weighting elements have to be calculated on-the-fly, increasing 

considerably the processing time. A faster alternative solution, proposed by 

Atkinson & Soria (2009), is based on straightforward projection of the voxels on the 

image planes to determine whether their intensity is zero or not; the approach is 

named MLOS (Multiplicative Line Of Sight). Non-zero projections on each camera 

are multiplied to obtain a suitable first guess, successively refined by means of a 

MART variant with simultaneous update (SMART, Mishra et al 1999). The 

combination of MLOS with 40 SMART iterations enables the acceleration of the 

reconstruction process of 3.8 times for a seeding density of         in a 2D 

simulation for a 3 cameras setup, achieving the same accuracy of the standard 

method based on 5 MART iterations. However, this advantage quickly collapses by 

increasing the seeding density. Furthermore, both MFG and MLOS do not provide 

any attenuation of the intensity of the ghost particles. 

A different solution is the Multi-Resolution MART proposed in this work 

(Chapter 3). The technique is still based on the exploitation of sparsity and quick 

first guess estimation, but the latter is slightly more elaborated. The first guess 

distributions are estimated by performing the tomographic reconstruction by 

MART with smaller spatial resolution (for example reduced by a factor of 2) while 

retaining the same voxel/pixel size ratio by binning the camera images. The 

obtained reconstruction are then interpolated on the final grid and subsequently 

refined by 2-3 further MART iterations. The real advantage of MR-MART with 
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respect to MFG and MLOS is that the first guess estimate already includes a 

damping process of the ghost particles, as it is MART-based. Furthermore, in some 

conditions the weighting matrix for the compressed configuration can be small 

enough to allow its storage in memory, thus consistently accelerating the first guess 

estimation. More details are reported in Chapter 3. 

2.3.2 Developments on the accuracy of MART and advanced 

reconstruction methods 

The mathematical recipe of MART dates back to the ‘70s for the general 

problem of tomographic reconstruction from few (and sometimes incomplete) 

projections. Interestingly enough, one can try to improve the accuracy of the 

technique by adding, somehow, information about the objects to be reconstructed, 

i.e. tracer particles (more exactly, in most of the applications the diffraction is 

dominant with respect to the geometric magnification in determining the particle 

image diameter; as a consequence, the reconstructed particles are hyper-particles, 

i.e. 3D blobs with diameter equivalent to the particle image diameter divided by the 

magnification). 

In this thesis a method is proposed to tackle with the effects of erosion of 

MART on the shape of these 3D blobs and of larger uncertainty in determining the 

position of the particles along the depth direction. The method consists in applying 

artificial diffusion in between the MART iterations, i.e. the reconstructed 

distributions are slightly low-pass filtered after each MART iteration. The low-pass 

filter is expected to smear out some irregularities of the true particles, and to be 

quite effective in damping ghost particles, as their size is usually smaller, as 

observed by de Silva et al (2013). The filtering kernel should have size comparable 

to the particle image diameter. In Chapter 4 the effect of a Gaussian filtering 

window is investigated. This choice is extremely natural, as it is directly connected 

to the particle image shape. Furthermore, the effect of applying anisotropic filtering 

to reduce the uncertainty along the depth direction is investigated. This technique 

is named Spatial Filtering Improved Tomography (SFIT), and it is the object of 

Chapter 4. 

More recently, de Silva et al (2013) proposed an a posteriori method following 

similar observations. The method is named Simulacrum Matching-based 

Reconstruction Enhancement (SMRE), as it is based on a template-matching 

scheme of true and ghost particles. The sum of the squared difference between the 

reconstructed object and a kernel with variable size and uniform intensity (the 

mean background intensity) is locally computed. The peaks above a threshold are 

considered true particles, while the intensity in the other regions is set to zero. It is 

not a surprise that, similarly to SFIT, the optimal size of the kernel is similar to 

(actually slightly larger than) the particle diameter. 
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Another path to increase the accuracy of the reconstructions stands in the 

computation of the weighting elements. In general the OTF to compute the 

weighting elements is chosen for simplicity to be uniform within the volume and 

for all the cameras. This simplification introduces a source of error in presence of 

magnification gradients, optical aberrations, distortions, blurring due to the limited 

depth of field, etc. Schanz et al (2013) proposed a locally adaptive OTF to 

compensate for these effects. The results show a promising improvement of the 

quality of the reconstruction for particle image density up to        . 

An alternative approach to tackle the mathematical problem of tomographic 

reconstruction from few projections is explored by Petra et al (2007, 2009). The 

technique is named Successive Linearization Algorithm (SLA), based on the 

criterion of sparsity maximization of the distributions to be reconstructed. The 

results are promising, but an investigation of the experimental performances of the 

method is still lacking. 

2.3.3 Multi-exposure methods 

The great advantage of the CT scans with respect to the case of Tomo-PIV 

consists in the fact that the subject is steady and several views can be taken over 

time by moving the imager. In PIV the requirement of imaging the particles in the 

short pulse time limits the number of views to the total number of cameras. 

However, this handicap can be partially reduced by considering that in Tomo-PIV at 

least two exposures with (nearly) the same cloud of particles are required. Since 

the particles will move, the relative orientation between the tracers and the camera 

set is slightly different, thus enabling in some cases the extraction of more 

information on the particles distribution. 

Novara et al (2010) introduced a Motion Tracking Enhanced (MTE) algorithm 

to build successive first guess distributions for the MART corrective procedure. The 

method is based on an iterative procedure in which first guess distributions for the 

two (or more) exposures, obtained by straightforward application of MART, are 

subsequently refined by the computation of pseudo-simultaneous objects from the 

recording views at different times. Indeed, the first guess objects are cross-

correlated in order to have a rough estimate of the velocity field; then, considering 

for simplicity the case of two exposures, the intensity (say, the particles) of the first 

exposure is moved forward along the velocity field to build a pseudo-second 

exposure, and the same operation is performed on the second exposure. The 

pseudo simultaneous objects are then summed to the relative first guess exposures. 

In this scenario, the coherent component of the signal is strengthened, while the 

incoherent component (hopefully, the ghost particles) is weakened. 

The principle is illustrated in Fig. 2.6 in the optimal case of velocity shear in the 

direction orthogonal to the viewing one. The results by Novara et al (2010) and by  
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Fig. 2.6 Left: two particles imaged by two cameras (red=first exposure; blue=second exposure) and 

relative ghost particles (light colors). The particles move according to the velocity field indicated with 

gray lines. Right: the true particles superimpose when summing the first exposure with the pseudo-first 

exposure, while the ghost particles do not (Novara et al 2010). 

Novara & Scarano (2012a) show a significant improvement of the correlation signal 

and of the quality of the velocity measurement at particle image density up to 

      , well beyond the values adopted in common practice. On the other hand, the 

potential quality improvement is strongly dependent on the velocity field itself, and 

in particular on the velocity gradients. Indeed, in case of small velocity gradients, 

the ghost particles will tend to add to the coherent component of the signal, as 

outlined in Sec. 2.2.2. In the particular case of no displacement, MTE-MART does 

not give any benefit at all. 

2.4 Three-dimensional motion analysis 

As mentioned in Sec. 1.1.4, the image deformation methods are considered the 

standard algorithms in planar PIV, as they largely compensate for the in-plane 

motion and velocity gradients. The potential of the deformation methods is even 

larger in the 3D scenario, since the ability to cope with the full velocity gradients 

allows the elimination of the loss of pairs due to the out-of-plane motion that affects 

the planar PIV. Since the introduction of the multi-grid multi-step window 

deformation algorithms by Scarano & Riethmuller (2000) many authors proposed 

improvements and updates. The skeleton of the algorithm is summarized in the 

following: 

1. The predictor displacement field is calculated on a rather coarse grid with 

interrogation spot size chosen in agreement with the one-quarter rule (Keane 

& Adrian 1992). The operation consists in computing the normalized 3D 

cross-correlation (obtained by trivial extension to 3D of the (1.5)); 
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2. The predictor displacement field is interpolated on each voxel in order to 

deform the volumes accordingly; 

3. A grid refinement may be executed in the evaluation of the displacement field. 

The interrogation spot size can be progressively reduced, since the volume 

deformation compensates the loss of pairs effect due to the displacement and 

the velocity gradients within the interrogation spot; 

4. A corrector displacement field is evaluated on the deformed volumes; 

5. The true displacement is obtained by summing the corrector and a weighted 

average of the dense predictor over a prescribed region. 

The steps 2-5 are repeated till convergence. For the current status of the 

hardware, the 2D motion analysis is not problematic, as large amount of samples 

captured with cameras with large format sensor can be easily processed with off-

the-shelf computers in relatively short time. Adding the third dimension 

complicates the implementation, as the amount of data increases by two orders of 

magnitude (roughly the depth of the volume in voxels) and the computational cost 

increases both because the algorithm is based on 3D cross-correlation instead of 2D 

and the larger number of interrogation spots (one to two orders of magnitude more 

than the 2D case). Recently, different approaches for the computational cost 

reduction of 3D PIV have been proposed: the volume segmentation technique by 

Ziskin & Adrian (2011) is based on computing a fast reconstruction by a MLOS-

based technique, and adjacent planes are summed to obtain a sufficiently high 

source density to perform the standard 2D correlation-based PIV algorithms; Bilsky 

et al (2011) propose multiple 2D projections of 2D cross-correlation maps of the 

projected interrogation volumes. However, a systematic study on the accuracy of 

these methods has not been conducted yet. 

In this thesis the proposed approach is quite different, as it promises a 

computational cost reduction of up to two orders of magnitude without affecting 

the accuracy. The method is a combination of several solutions: 

 Multi-resolution interrogation in the initial step of the process to get a quick 

estimate of the predictor; 

 In the corrector estimation (step 4), since the predictor is already known, one 

could use a narrower search area of the peak (as already observed by Rohàly 

et al 2002), e.g. limiting the calculation of the (1.5) only to the neighbourhood 

of the peak itself; 

 Sparse direct cross-correlation can consistently reduce the computational 

cost since the percentage of non-zero voxels is usually rather low; 

 The PIV interrogation is usually conducted with overlapping interrogation 

windows (at least 50% to satisfy the Nyquist criterion). In 3D the margin of 

improvement by reduction of the number of redundant calculation in these 

region is very appealing. In Chapter 5 some solutions to optimize the 

algorithm are tested. 
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Chapter 3 - Multi-Resolution MART 

In Tomographic PIV the construction of the first guess distributions for the 

iterative process of the reconstruction can considerably influence the rate of 

convergence of MART. As outlined in Sec. 2.3.1, to date the most effective 

techniques to speed-up the MART-based techniques rely on the quick identification 

of voxels with zero intensity. The Multiplicative Line Of Sight (MLOS) technique by 

Atkinson & Soria (2009) is widely used among the community for its intrinsic 

simplicity and effectiveness. However, one should not forget that, since the energy 

captured by the ghost particles is subtracted from the actual particles, a reliable 

first guess estimation process should not involve an increase of the number of the 

former ones, or pumping their intensity. Atkinson & Soria (2009) showed that the 

number of ghost particles is approximately the same for MART and straightforward 

application of MLOS, as it is determined by the experimental parameters affecting 

the ambiguities of the reconstruction problem (see Sec. 2.2.1), i.e. mainly the 

seeding density, the diameter of the particles and the depth of the illuminated 

volume. Differently from MLOS, MART is capable to provide an attenuation of the 

intensity of the ghost particles. For this reason, a first guess estimation procedure 

mainly based on the MART correction process seems to be more suitable to achieve 

the goal of reducing the computational effort of the reconstruction, without 

affecting the accuracy of the results. In this chapter an algorithm for a quick MART-

based estimation of the first guess distributions is proposed. The algorithm is based 

on a multi-resolution approach, i.e. the distributions are initially reconstructed at a 

lower resolution (but still maintaining a pixel/voxel ratio approximately equal to 1 

by pixels binning). Similarly to MLOS and MFG, the algorithm is still founded on the 

possibility of identifying in advance locations with zero intensity, but at the same 

time it provides attenuated ghost particles as it is based on the MART corrective 

procedure. 

In Sec. 3.1 the Multi-Resolution algorithm is described and discussed in detail. 

A parametric study of the performances of the algorithm is proposed in Sec 3.2, 

mainly addressing the quality of the reconstruction and the reduction of both the 

computational cost and the memory storage requirements. Eventually, in Sec 3.3 a 

Tomo-PIV simulated experiment is presented. 

The description of the technique and the results of the validations have been 

published in Discetti & Astarita (2012a). 
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3.1 Multi-Resolution approach to Tomo-PIV 

The algorithm of the Multi-Resolution (MR) MART is outlined in the following. 

In the first step of the process, a coarser grid in the volume to be reconstructed is 

employed, lowering, as a matter of fact, the number of unknowns of the system 

(2.1). A factor of compression equal to 2 has been chosen as an upper limit in the 

present thesis, because of the unavoidable increasing noise due to discretization 

artefacts if a higher factor is adopted. As a matter of fact, the application of MR is 

particularly critical in case of smaller particles; however, the reconstruction quality 

can be improved by slightly smoothing the original images, e.g. with a simple Top 

Hat moving average filter with a 3x3 kernel. At the same time, the images are 

compressed with a binning-like procedure, retaining a resolution ratio between 

voxels and pixels possibly close to unity for two main reasons: voxels and pixels of 

equal size guarantee uniformity in the capabilities of sampling the shape of the 

particles both in the volume and in the camera planes; the number of pixels 

interested by the projection of the intensity of each voxel depends on the resolution 

ratio. Consequently, a unity value of the latter is the best compromise between 

memory storage reduction, decrease of the computational cost due to the 

projection process and the calculation of the weighting elements, and minimum 

decrease of the available number of equations (i.e. projections) of the system (2.1). 

As shown in the flow chart in Fig. 3.1, the multi-resolution reconstruction 

scheme is structured in the following steps: 

Step a: compression of the camera images by binning pixels in       kernels. 

The corresponding intensities values of each pixel on the compressed projections 

are determined through arithmetical average. 

Step b: one or more MART iterations are performed onto the compressed 

configuration. The number of operations for each of the MART iterations is reduced 

by the cube of the factor of compression with respect to the original configuration. 

Step c: the first guess distribution is interpolated onto the final grid, recovering 

the desired spatial resolution. A nearest neighbour approach is not advisable as it 

can cause deletion of the particle tails; linear interpolation is adopted, since it is the 

best compromise between computational cost and minimum expansion of the 

located non-zero positions. 

Step d: supplementary MART iterations starting from the provided first guess 

are performed on the grid with the final resolution. The number of operations is 

proportional to                     for each iteration, where    is the number of 

pixels influenced by the projection of a voxel,         is the total number of voxels 

with non zero intensity and      is the number of cameras. The larger is        , 

the higher is the speed-up of the process. 
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Fig. 3.1 Flow chart of the Multi-Resolution reconstruction process. 

Some additional considerations regarding the weighting elements have to be 

drawn. Assumed that the complete storage of the weighting matrix, also taking into 

account its sparseness, is nearly impossible for the commonly adopted 

experimental configurations, one should take into consideration that it could be 

achievable for the compressed configuration. In this case, the MART iterations of 

the step b are performed considerably faster, not only for the reduction of 

dimension of the reconstruction problem, but mainly because weighting elements 

are computed only una tantum for an entire set of images. 

Furthermore, in this last case it could be convenient to further accelerate the 

step b by initializing the distribution on the compressed configuration with MLOS. 

The subsequent MART iterations will provide the desired attenuation of the ghost 

particles intensity in the first guess for the step d. It is worth to underline that the 

identification of voxels with zero intensity on the compressed configuration can 

further reduce the weighting elements to be calculated in the final MART iterations, 

in most cases enabling the possibility to store them. Obviously, the weighting 

matrix has to be computed for every distribution of the full set, as long as the non 

zero voxels distribution is time-dependent; however, if the number of iterations of 

the step b is more than one, it could be convenient as well, since the number of 

weighting elements have to be computed only once for each analysis conducted on 

the compressed configuration. The same observation can be applied to the step d. 

Step c: 

Interpolation 

Step a: 

Compression 
of the images 

Step d: 

MART 
iterations 

Step b: 

MR iterations 
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3.2 Parametric study of MR-MART 

The performance assessment of the proposed technique consists of the 

reconstruction of a series of 3D computer generated particle distributions with a 

custom-made software. Spherical Gaussian particles with 3 voxels diameter are 

distributed into a                volume, with a resolution of         , resulting 

in a                 voxels control volume. The distributions are imaged by 

cameras with           pixels resolution, disposed in a linear arrangement in the 

horizontal mid-plane of the volume to be reconstructed, with different viewing 

directions  . Three different cameras setups are tested, respectively 3 cameras 

(             ), 4 cameras (                   ), and 5 cameras 

(                      ). The resolution ratio between pixels and voxels is set 

approximately equal to one throughout the volume; the projected volume is 

completely enclosed into all the image planes.  

Such a small volume to be reconstructed is chosen in order to enable the 

storage of the weighting matrix even in the case of the adoption of the standard 

MART approach. In this way, for each type of process, only the time needed to 

perform the iterative procedure is accounted. Of course this approach strongly 

underestimates the capabilities of the MR approach when the amount of memory is 

sufficient to store the weighting matrix in the compressed configuration and/or in 

the original configuration after the estimation of the first guess. 

The corresponding point of each voxel (        ) on the camera planes (     ) is 

determined by means of the polynomial multi-dimensional mapping approach 

(Soloff et al. 1997) outlined in Sec. 1.2.1; no calibration error is introduced, since it 

affects in the same measure both the standard method and the multi-resolution 

approach. Thresholding is applied in order to eliminate the voxels with weaker 

intensity from the updating process and from the calculation of the corresponding 

weighting elements; since in the present simulation the maximum intensity is the 

same for all the particles, a unique threshold, equal to 0.1% of the peak, is applied 

to all the distributions during the updating iterative process, showing to be able to 

eliminate reconstruction artefacts whereas retaining a negligible cutting of the 

shape of true particles. The weighting elements of the final configuration are stored 

with a 3D extension of the well-assessed Yale format (Eisenstat et al 1982) for 

sparse 2D array storage. The 2D Yale format is founded on storing sparse matrices 

using three vectors: the first one contains the non-zero elements; the second one 

contains the indexes of column; the third one points to the first element of each 

row. 

The source density is varied between 0.05 and 0.5; the equivalent image 

density      can be easily estimated by dividing the source density by the mean 

area of the particle images using the (1.14). The obtained results cannot be directly 

compared with those of the commonly adopted 2D simulations, unless a proper 
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evaluation of the effective source density is conducted. E.g., an image density of 

       , which is widely accepted as a threshold value to achieve a reliable 

reconstruction, is equivalent to a source density of 0.15 in the 2D simulations of 

Elsinga et al (2006a) and Atkinson & Soria (2009).  

The quality of the reconstruction is quantified in terms of the correlation 

between the reconstructed intensity fields, as in (2.4). 

The relaxation parameter of the MART process (2.3) is set to 1; a uniform first 

guess intensity equal to 1 is imposed on the compressed configuration for the 

simple MR-MART, whereas, as stated in Sec. 3.1, an estimation of the initial 

distribution is deduced by MLOS for the modified version, referred as MLOS-MR-

MART from now on.  

The performances of MR-MART and MLOS-MR-MART are assessed in 

comparison to those of the commonly used method based on 5 MART iterations; 

the latter will be synthetically indicated as MART from this point on. The MR-MART 

approach is tested with variable number of iterations on the compressed 

configuration, while retaining the same total number of iterative steps equal to 5. 

3.2.1 Quality of the reconstruction 

The performances in terms of accuracy of the reconstruction of MR-MART in 

comparison to MART are quoted as a function of the seeding density in Fig. 3.2a for 

the 4 cameras setup. The effect of the number of iterations on the compressed 

configuration (from this point on referred as MR iterations) is also investigated; the 

execution of the algorithm with 4 MR iterations is not considered, since 1 single 

supplementary MART iteration on the final configuration is not able to recover a 

reliable estimation of the distributions. 

A slight accuracy improvement can be observed throughout the whole range of 

tested seeding densities. One could reasonably expect a more relevant increase of 

the quality of the reconstruction, as long as the ambiguities in determining the 

depth position of the particles are reduced due to the lower number of voxels in the 

depth direction; it does not effectively happen, mainly because of the presence, in 

the first guess, of artefacts due to undersampling of the particles in the compressed 

configuration. The results of the different algorithms are evidently quite 

independent of the number of MR iterations, except for    exceeding 0.25; beyond 

this value of seeding density, the algorithm with 3 MR iterations performs slightly 

worse than those with 1 or 2 MR iterations, but still better than MART. The 

performances of MLOS-MR-MART in terms of accuracy are practically equal to that 

of the MR-MART algorithm, and for this reason they are not reported herein. 

An overview of the trend of the quality of the reconstruction by varying the 

number of cameras is illustrated in Fig. 3.2b. The results for the processes with 3 

MR iterations with uniform value or MLOS estimation of the first guess on the  
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Fig. 3.2 Reconstruction quality as a function of: (a) the source density for a 4 cameras setup; (b) the 

number of cameras for         and 3 MR iterations. 

compressed configuration are shown, with a fixed source density of 0.25, which 

could be considered a reasonable value for the adopted optical setup, since it 

results in a concentration of approximately 1.4 particles/   , i.e. about 11 

particles in a cubic interrogation volume of              voxels, corresponding to 

             . MR-MART and MLOS-MR-MART provide higher quality of the 

reconstruction with respect to MART for all the tested cameras setups. 

3.2.2 Acceleration of the process 

As already stated before, only the time needed to perform the MART iterations 

will be considered. This implies a noticeable underestimation of the decrease of 

processing time (synthetically referred in the following as speed-up) of the 

algorithm in several conditions, as extensively explained in Sec. 3.1. Nevertheless, 

the speed of the reconstruction is remarkably increased, as illustrated in Fig. 3.3 for 

a 4 cameras setup; furthermore, the speed-up is guaranteed in the whole range of 

tested seeding densities, whose upper limit is well-beyond the capabilities of the 

ordinary reconstruction techniques. The speed-up with respect to MART is 

sensitive to the number of MR iterations and to the seeding density, both for MR-

MART and MLOS-MR-MART. 

For MR-MART (Fig 3.3a) at very low seeding densities, a lower number of MR 

iterations is preferred, since the relatively high percentage of voxels with zero 

intensity in the final configuration allows the fast performance of the subsequent 

final MART iterations. Conversely, increasing the seeding density (and, 

contemporaneously, the number of ambiguities generated in the reconstruction of 

the compressed volume), a higher number of MR iterations is preferable; a little 

decrease of the reconstruction quality is bearable, since MART performs still worse,  
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Fig. 3.3 Effect of seeding density and number of MR iterations on the speed-up for a 4 cameras setup: (a) 

MR-MART; (b) MLOS-MR-MART. 

as illustrated in Sec. 3.2.1. In the range of source density covering 0.075 and 0.125 

the processing time for MR-MART is rather independent of the number of MR 

iterations. 

At the source density of 0.25, MR-MART provides a speed-up of about 2.4, 2.9 

and 3.6 times with respect to MART for 1, 2 and 3 MR iterations respectively. In the 

same conditions MLOS-MR-MART (Fig 3.3b) guarantees slightly better 

performance, with a gain of a factor of 2.6, 3.3 and 4.4 for 1, 2 and 3 MR iterations 

respectively. MLOS-MR-MART consistently outperforms MR-MART at the lowest 

tested seeding density, while beyond the source density of 0.25 the differences 

between the two algorithms are relatively small; hence, if the weighting matrix in 

the compressed configuration can be stored, MR-MART is certainly preferable. 

The speed-up could seem quite small if compared with that of 40 MLOS-SMART 

iterations, quoted in 8 times faster with respect to MART, without taking into 

account the computation of the weighting elements, in a 3D experimental 

configuration (Atkinson & Soria 2009). Anyway, those results are referred to a 

relatively low level of source density, since the experiments have been performed 

with a source density of about 0.13. For this level of image density, MLOS-MR-

MART can provide an increase of the speed of reconstruction of 6.7, 8.1 and 10 

times for 1, 2 and 3 MR iterations respectively. In the same configuration, both MR-

MART and MLOS-MR-MART guarantee a factor of quality of the reconstruction of 

about 0.92 against 0.89 of the standard MART algorithm. 

One should note that these results are not particle-size independent, since in 

case of smaller particles a smoothing of the images is required to recover the same 

accuracy performances of MART, as already stated in Sec. 3.1, sacrificing part of the 

sparseness of the original images. 
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3.2.3 Memory storage reduction 

The reduction of the total number of weighting elements is a key point in the 

decrease of memory storage, since the size of the camera images and of the volume 

to be reconstructed is consistently smaller. As a matter of fact, for a volume 

discretization of                   voxels, with a four 1Mpixels cameras setup, the 

memory needed to store the weighting matrix, taking into account its sparseness, is 

about 58GB, while each of the volumes would need 800MB, and each of the camera 

images 4MB if all data are stored in single floating point precision. Incidentally, the 

number of elements of the weighting matrix can be easily estimated by considering 

that each voxel influences    pixels (tipically     pixels) on each camera. It follows 

immediately that the number of weighting elements is                 ; for the 

aforementioned situation it is equal to        . Considering that in a sparse format 

one has to store arrays with the indexes of rows, columns and   planes of the 

voxels, this leads to          elements, requiring about 115GB for the storage. On 

the other hand, using a 3D sparse Yale format, one can order the voxels (for 

example lexicographic order, and planes sorted along the   direction) and store 

only the columns indexes and a vector pointing to the first element of each row. 

This approach is much more efficient for memory access than simply storing the 

index of the voxel in the chosen order. Furthermore the memory required to store 

this second vector is usually very small, as it is composed by a number of elements 

equal to the product of the length and the depth of the volume. With this approach, 

the memory required is approximately 58GB, as stated before. 

Consequently, the weighting elements represent more than 98% of the total 

data. Anyhow, when the number of weighting elements is reduced by a factor of 10 

(for example using MR-MART or MLOS initialization), they still constitute about 

90% of the total data amount, and if the memory storage reduction is equal to a 

factor of 20, their relative size is still approximately 80%. In the following only the 

reduction of the number of weighting elements will be considered as a parameter. 

Nevertheless, for the aforementioned reasons, the reported results are not so far 

from representing the real total memory storage reduction. 

In this section only the algorithms with 3 MR iterations are considered, being 

the results quite independent of the number of iterations on the compressed 

configuration. As a matter of fact, a single iteration is sufficient to identify all the 

zero locations, while 1 or 2 additive iterations are able to reduce the intensity of the 

ghost particles, carrying the weakest of them below the threshold value. Anyhow, 

the further reduction in memory storage is not significant.  

The results relative to a 4 cameras setup and simple MR-MART (Fig. 3.4) show 

that for the lowest levels of seeding density the memory storage reduction tends to 

the cube of the factor of compression, i.e. 8, as it was foreseeable. The storage of the 

weighting elements on the compressed configuration is really advantageous 
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Fig. 3.4 Effect of seeding density on the memory storage reduction for a 4 cameras setup for MR-MART 

and MLOS-MR-MART, compared with MLOS. 

because it can be used for a full set of images; however, it is evident that it could be 

possible only if a relatively consistent amount of memory is available, and at the 

same time a low level of seeding is guaranteed on the whole sequence. In practice, 

this condition is not trivial to be achieved, and most often is not even desirable due 

to spatial resolution requirements. 

In Fig. 3.4 the performances of MLOS-MR-MART are also quoted in comparison 

to the straightforward application of MLOS. For this setup, MLOS-MR-MART 

appears to outperform not only MR-MART but also the direct application of MLOS, 

for the higher tested seeding densities, thanks to the smoothing of the ghost 

particles due to MART corrective procedure in the MR iterations, and their 

consequent removal due to dropping below the threshold. The same threshold has 

been applied for both methods, meaning a stronger cutting for the MLOS-MR-MART 

method. Luckily, a more stringent threshold does not affect too much the result, 

because the effect of cutting the particle tails is minimum, thanks to the 

interpolation in the step c (see Sec. 3.1) of the process.  

3.3 Validation via synthetic experiment 

In this section a 3D synthetic experiment is presented. The flow motion 

induced by a vortex ring is investigated, following exactly Elsinga et al (2006a). A 

volume of                is reconstructed with a resolution equal to         , 

resulting in                 voxels (a resolution ratio between pixels and voxels of 

about 0.9 has been adopted). Four cameras are placed at a finite distance, with 
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magnification approximately equal to 0.12 throughout the volume; the mean 

particle diameter is set to 2.8 pixels, with a pixel pitch of      . The cameras are 

displaced in linear arrangement on a common horizontal plane, as in the 

performance assessment of Sec. 3.2, i.e. with                    .  

Both the reconstruction and the PIV volume processing have been carried out 

on a laptop machine using a single core of a 2.2 GHz T6660 processor; the available 

amount of RAM memory is      . Only the algorithm with 3 MR iterations is 

considered, since the performance assessment of Sec. 3.2 has shown that it 

guarantees the best compromise between accuracy and speed of the 

reconstruction. Two different levels of seeding concentration are tested, i.e. 0.55 

and 2.2 particles/    (resulting in a source density of 0.075 and 0.3, respectively). 

The displacement field is calculated with a custom-made software, based on the 3D 

extension of the algorithm illustrated in Sec. 2.4. Iterative Discrete Volumes Offset 

(IDVO) or Volume Deformation Method (VDM) are adopted to enhance the 

correlation peak. In this section only linear interpolation is used for the 

deformation of the volumes, since the processing time is a crucial point of the 

analysis. Furthermore, for the sake of clarity, the solutions to accelerate the PIV 

analysis presented in Chapter 5 are not completely exploited here, except for the 

voxel binning in the predictor estimation. In this Multi-Resolution PIV interrogation 

the distributions are initially binned by a factor of four, in order to obtain a fast 

estimation of the predictor displacement field. In the subsequent iterations the 

factor of compression is relaxed (for example in this section it is halved in each step 

of the process, in order to better fit the performances of the FFTW algorithm (Frigo 

& Johnson 2005)). However, the reader should be aware that the processing time of 

the motion analysis can be easily reduced by a further order of magnitude by 

coupling the Multi-Resolution interrogation with efficient algorithms enjoying 

sparse cross-correlations and reduction of the number of redundant operations 

performed in case of overlapping interrogation spots. The topic will be discussed in 

more detail in Chapter 5. 

3.3.1 Low seeding density simulations 

First of all, one should inquiry whether the memory storage of the weighting 

matrix is possible or not for the employed configuration. The memory demand can 

be estimated as in Sec. 3.2.3, resulting in about 15GB for the original configuration 

in single floating point precision. Since for the chosen seeding density and cameras 

setup the memory storage reduction can be quoted as about 6 times for MR-MART 

(see Fig. 3.4) the storage of the weighting elements is not possible for the adopted 

computer. Even in the compressed configuration, in which the memory storage is 

reduced by a factor equal to 8, their storage could not be achieved. On the other 

hand, the memory storage reduction of MLOS-MR-MART is more than 30 times. 
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Consequently, three approaches to the reconstruction are exploited: the 

standard method based on 5 MART iterations; MR-MART, with 3 MR iterations, and 

2 final MART iterations, as presented in Sec. 3.2; MLOS-MR-MART, with initial 

estimation of the distribution by MLOS, and the same structure of MR-MART. For 

the first two methods, the weighting elements are calculated every time they are 

needed; MLOS-MR-MART, conversely, enables the possibility to calculate the 

weighting elements only once both for the compressed and the final configuration. 

Confirming the results of Sec. 3.2, the quality factor of the reconstruction is 

0.91 and 0.94 for MART and the multi-resolution approaches, respectively. The 

reconstruction of each volume with MART and MR-MART is performed in about 17 

and 4 minutes, respectively, resulting in a speed-up of more than 4 times. MLOS-

MR-MART, including the time to calculate the weighting elements on both the 

configurations, is able to perform the reconstruction in approximately 1 minute, i.e. 

17 times faster than MART. The speed up is slightly lower than the one evaluated 

for the same source density in the performance assessment of Sec. 3.2 since having 

the same number of particles in a less deep volume implies the presence of an 

higher percentage of non-zero voxels to be updated. Anyhow, MLOS-MR-MART can 

stand approximately the foreseen speed-up thanks to the pre-calculation of the 

weighting elements. 

The size of the interrogation volume (IV) for PIV processing is 643 voxels, i.e. 

cubes of                    , containing on average 18 particles each one, with 75% 

overlap. The traditional process used in this section consists of the estimation of the 

predictor, followed by a single iteration both in the case of IDVO and VDM (cross-

correlation is always performed with the aid of FFT). The multi-resolution process 

requires an additive iteration to perform the analysis on the original distributions. 

The results of the processing of the reconstructed distributions by MART and MR-

MART are not reported herein, since there is no appreciable difference with those 

of MLOS-MR-MART. 

The processing time of the traditional PIV algorithm and of the multi-

resolution version are 5.3 and 2.7 minutes respectively, if IDVO is used; on the 

other hand the processing with VDM requires 7.5 minutes for the former, and 4.5 

minutes for the latter. The results of the PIV interrogation in terms of accuracy for 

both the algorithms are also quoted in Tab. 3.1, in terms of standard deviation of 

the measurement errors (obviously only the   and the   component are 

considered, being the flow field axisymmetric). The mean error in the measurement 

of the   component    of the velocity field is also reported, since a non negligible 

bias effect is present due to both the limited spatial resolution and the asymmetric 

distribution of  , as already observed by Elsinga et al (2006a). 

In Fig. 3.5 the iso-vorticity surface, corresponding to a vorticity of            

     , obtained by PIV multi-resolution interrogation of the distribution 

reconstructed by MLOS-MR-MART, is presented; 5 planes of velocity vectors (the 
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Fig. 3.5 Iso-vorticity surface (                ) for PIV multi-resolution processing with IDVO (a) and 

VDM (b) on the volume reconstructions obtained by MLOS-MR-MART in the case of low source density; 

5 planes of velocity vectors (colour-coding indicates the magnitude in voxels of the velocity vector). 

 

Fig. 3.6 Iso-vorticity surface (                ) for PIV multi-resolution processing with IDVO (a) and 

VDM (b) on the volume reconstructions obtained by MLOS-MR-MART in the case of high source density; 

5 planes of velocity vectors (color-coding indicates the magnitude in voxels of the velocity vector). 

colour-coding indicates the intensity of the velocity vector) are illustrated. Even if 

the spatial resolution is limited by the low seeding density, the main features of the 

field are captured, as highlighted by the relatively small standard deviations of the 

measurement error on the   and the   components of the displacement field; on 

the other hand, the estimation of the vorticity field is strongly affected by the 

amplification of the random errors, coupled with the low spatial resolution of the 

measurement. 
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Reconstruction 
process 

PIV 
process 

Processing 
time [min] 

                        

MART IDVO 39.3 0.22 -0.07 0.30 

MART MR-IDVO 36.8 0.23 -0.08 0.30 

MLOS-MR-MART IDVO 7.3 0.22 -0.05 0.28 

MLOS-MR-MART MR-IDVO 4.7 0.23 -0.06 0.28 

MART VDM 41.5 0.17 -0.05 0.27 

MART MR-VDM 38.7 0.16 -0.03 0.27 

MLOS-MR-MART VDM 9.4 0.17 -0.03 0.27 

MLOS-MR-MART MR-VDM 6.6 0.16 -0.03 0.27 

Table 3.1 Performances of different reconstruction and interrogation algorithms,         . 

Table 3.2 Performances of different reconstruction and interrogation algorithms,       . 

3.3.2 High seeding density simulations 

Increasing the seeding density, an improvement of spatial resolution is 

obtained at the expense of the computational cost, since the storage of the 

weighting elements is not achievable for all the tested reconstruction approaches 

on the employed computer because of the higher percentage of non zero voxels, 

due to both true particles and ambiguities in the reconstruction. In this section the 

weighting elements are calculated every time they are needed in the reconstruction 

process. The standard MART algorithm achieves a reconstruction quality of 

approximately 0.80, while for both MR-MART and MLOS-MR-MART the obtained 

quality is 0.82, again confirming the slight accuracy improvement. The 

reconstruction of each volume is performed in about 22, 8 and 5 minutes for MART, 

MR-MART and MLOS-MR-MART respectively. The increase of processing time with  

 

Reconstruction 
process 

PIV 
process 

Processing 
time [min] 

                        

MART IDVO 57.8 0.13 -0.08 0.21 

MART MR-IDVO 51.7 0.13 -0.11 0.21 

MLOS-MR-MART IDVO 23.8 0.12 -0.08 0.20 

MLOS-MR-MART MR-IDVO 17.7 0.13 -0.10 0.20 

MART VDM 59.7 0.09 -0.04 0.14 

MART MR-VDM 52.5 0.08 -0.01 0.13 

MLOS-MR-MART VDM 25.7 0.09 -0.03 0.14 

MLOS-MR-MART MR-VDM 18.5 0.08 -0.01 0.13 
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Fig. 3.7 Scatter plot of the measurement error relative to   and   component of the velocity field, for 

IDVO (a) and VDM (b), PIV multi-resolution processing performed on the volume reconstructions 

obtained by MLOS-MR-MART. 

respect to the simulations of Sec. 3.2.2 for the first two methods is due to a higher 

number of non-zero voxels; on top of this, the third method is also affected by the 

impossibility to store the weighting elements, unlike the simulation with low 

seeding density. Both for IDVO and VDM the process consists of 3 iterative steps: 

initially an IV of 643 voxels is employed, with 75% overlap; in the second step the IV 

is reduced to 423 voxels, while retaining the previous grid distance of 16 pixels 

between the vectors; finally, an iteration with interrogation volumes of 423 voxels 

(i.e. cubes of                   , containing on average 18 particles, as in the 

simulations of Sec. 3.3.1) with 75% overlap is performed. In this paragraph, the 

multi-resolution PIV process is carried out with the same total number of steps of 

the traditional algorithm. 

The processing time for traditional PIV is about 13 and 15 minutes with IDVO 

and VDM respectively; the multi-resolution approach, on the other hand, is 

performed approximately 1.9 times faster for both the types of process. Even in the 

case of high seeding density, the full Tomo-PIV process is executed more than 3 

times faster than the standard algorithm if the reconstruction is performed with 

MLOS-MR-MART and PIV interrogation is carried out with the multi-resolution 

algorithm, both in the case of employment of IDVO and VDM. An overview of the 

results in terms of processing time and accuracy performances is reported in Tab. 

3.2. 

In Fig. 3.6 the results obtained by the PIV multi-resolution interrogation of the 

distribution reconstructed by MLOS-MR-MART are presented. The processing with 

VDM better captures the expected torus, and the velocity field appears much less 

noisy, as confirmed also by the data of Tab. 3.2 and by the scatter plot 

representation of the measurement error on the   and   components of the 

displacement field, shown in Fig. 3.7. 



 

54 

Chapter 4 - Spatial Filtering Improved 

Tomographic PIV 

Tomographic reconstruction accuracy is of fundamental importance to obtain 

reliable three-dimensional three-components velocity field measurements. The 

pursuit of accurate reconstructions for larger particle concentrations is central in 

many recent investigations. To date, the most promising approaches are those 

based on multiple exposures, outlined in Sec 2.3.3. Furthermore, the advanced 

methods by Petra et al (2007, 2009), based on sparsity maximization, could 

potentially outperform the standard algebraic techniques. In both cases, the 

accuracy improvement is not priceless in terms of computational cost. 

In this chapter an easily implementable modified version of MART is proposed, 

allowing a remarkable improvement of the accuracy of the tomographic 

reconstruction without significantly increasing the computational cost. The idea is 

based on the observation that ghost particles are often irregularly shaped, smaller 

and weaker than the true particles in the reconstructed distributions. Furthermore, 

the discretization artefacts may lead to an erosive effect of the shape of the true 

particles. In this sense, an artificial diffusion applied on the reconstructed 

distributions can be beneficial, as it damps the ghost particles and regularizes the 

shape of the true ones. The reconstruction algorithm proposed in Sec. 4.1 is based 

on spatial filtering of the distributions in between the MART iterations. For this 

reason, it is named Spatial Filtering Improved Tomographic MART (SFIT-MART). 

In addition to this, the uncertainty in the reconstructed distribution could be 

not equally distributed in all the directions; in fact, physical constraints often lead 

to an elongation of the reconstructed particles along the depth direction. The effects 

of a purposely introduced anisotropy in the spatial filtering are investigated in this 

chapter, since one can tamper with the different shape and size of the 

reconstruction artefacts, like true particles elongation and ghost particles. Since 

most often the imaged particles are diffraction-limited spots with a Gaussian shape, 

the most natural choice is to apply diffusion in the reconstructed distribution using 

filtering windows with a Gaussian distribution of the weights, and size comparable 

to that of the particles. 

A parametric assessment of the SFIT-MART performances is carried out in Sec. 

4.2.1. The spatial resolution improvement is quantified with simulated Tomo-PIV 

experiments on a sinusoidal displacement field with a set of wavelengths in Sec. 

4.2.2. Eventually, the technique is validated using experimental data on decaying 

nearly isotropic fractal generated turbulence (Sec. 4.2.3). The description of the 

technique and the main results have been published in Discetti et al (2013a). 
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Fig. 4.1 Flow chart of the Spatial Filtering Improved Tomography (SFIT-MART). 

4.1 Reconstruction quality enhancement by spatial 

filtering 

The steps of the proposed method are summarized in the flow chart of Fig. 4.1.  

1. A first guess for the distribution is built (uniform distribution equal to 1, MR, 

MFG, MLOS, etc.; the adopted method is of secondary importance in this 

framework); 

2. One or two MART iterations are performed to refine the first guess 

distributions; 

3. The reconstructed distributions are filtered by means of a Gaussian window 

to reduce the error due to voxel-based discretization and, as it will be 

discussed later, to apply a smoothing that, under proper choice of the shape of 

the filtering window, can be more effective on the reconstruction artefacts 

than on the true particles; 

4. The procedure is repeated after each further MART iteration (the smoothing 

is not applied after the last iteration). 

While the choice of the Gaussian filter is quite natural, as it is dictated by the 

feature of the objects to be reconstructed, the size and shape of the filtering kernel 

is a topic of discussion. In the present chapter, two options are tested: isotropic and 

anisotropic filtering. 

Indeed, one can observe that the uncertainty in the reconstructed distributions 

is not equal along the spatial directions. The limited viewing angle that is usually  

 

First guess distribution  

(uniform, MR, MLOS, MFG, etc) 

Initial MART iterations 

Filtering with Gaussian window 

MART iteration(s) 
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Fig. 4.2 Probability distribution function of the particles stretch ratio for the test layout illustrated in 

Sec. 4.2.1 with 4 cameras, source density Ns = 0.5 and a total viewing angle between the cameras   = 60°. 

employed in practice results in a larger uncertainty when determining the position 

of the particles in the depth direction. Consequently, both true and ghost particles 

are usually elongated in the depth direction. 

A possible measure of the stretch of the particle in the   direction is given by 

the ratio of the standard deviations   in the   and   direction, easily computed by 

local best fitting of the particles shape with a normal intensity distribution. Fig. 4.2 

shows how this parameter is distributed in the case of the test layout illustrated in 

Sec. 4.2.1 for all particles, including ghost ones. 

These observations suggest the possibility to tamper with the MART iterative 

algorithm by enjoying both the stretch ratio and the peculiar intensity distribution 

of true and ghost particles intensity (see Elsinga et al 2006a). In particular, one 

should transfer the energy of the intensity profile from the depth direction to the 

plane orthogonal to it. For this purpose the option of an anisotropic filtering of the 

reconstruction performed by MART with Gaussian windows orthogonal to the 

depth direction (for example           voxels kernel, with the depth being the 

smallest dimension), having a kernel with size comparable to the particles 

diameter, is explored herein, in addition to the more intuitive isotropic filtering. 

This approach is expected to provide a more intense smoothing of the intensity 

profiles of true and ghost particles in the planes orthogonal to the depth direction. 

Of course this reduces the intensity peak of both actual and ghost particles; on the 

other hand, the intensity of the ghost particles is reduced, while that of the actual 
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particles in the successive iterations is boosted up, recovering the energy 

subtracted by the ghost particles in the previous ones (provided that the smoothing 

is more effective on the ghost particles than on the true ones; otherwise, the linear 

update of MART will not provide any improvement on the quality of the 

reconstruction after the smoothing). The isotropic filter is expected to provide an 

improvement on the shape of the true particles, and to damp irregularly shaped 

ghost particles. The anisotropic filtering might provide an additional improvement 

when the ghost particles merge together with actual particles along the depth 

direction, or when they occur in form of streaks (but, on the other hand, it is less 

effective than the isotropic one in regularizing the shape of the true particles). 

4.2 Performances of SFIT-MART 

4.2.1 Effect of the experimental parameters 

In this section, the performances are assessed by means of virtually simulated 

two-dimensional distributions of particles, reconstructed starting from 1D 

projections along different viewing directions, similarly to the approach used in 

other studies (Elsinga et al 2006a, Worth & Nickels 2008, Atkinson & Soria 2009). 

Gaussian particle images, with 3 voxels diameter (unless otherwise stated) and a 

maximum intensity of 200 counts, are generated at random locations by means of 

Monte Carlo technique in a          slice, discretized with a resolution of 

        . Four        pixel cameras, with a pixel pitch of       , are used. 

The cameras are placed at infinity, equally angularly spaced with symmetric 

arrangement; a uniform magnification is set equal to 1 over all the field of view. 

The recorded intensities on the cameras are discretized at 12-bit levels. The 

tested source density    ranges between 0.05 and 0.85, corresponding to a 

concentration expressed in      varying between 0.017    through 0.282   . 

However, one has to be careful in extrapolating the results to 3D since the 2D 

simulations do not account for cross-talk between planes. On the other hand, it is 

reasonable to assume that this issue affects in the same measure both MART and 

the proposed SFIT-MART. In order to get a proper scaling to the 3D application, the 

source density should be scaled roughly by a factor proportional to the particles 

diameter in pixel. The quality Q of the reconstruction is quantified in terms of the 

normalized factor of correlation between the reconstructed intensity field and the 

virtually generated distribution of particles, as in (2.4). 

The SFIT method is applied after each MART iteration from the second one on; 

Gaussian filtering windows with    ,     and     kernels and several values 

of the standard deviation (namely 0.5, 1 and 1.5 voxels; from this moment on the 

unit is not reported for simplicity) are applied.  

In order to quantify the effect of the experimental parameters on the quality of 

the reconstruction, a test configuration characterized by 4 cameras with a total 
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viewing angle of       and         is considered as a reference. As for the 

filter, the considered standard is a kernel of     voxels with      . The 

relaxation parameter   of the MART process (2.3) is set equal to 1. The weighting 

elements are computed as the area intersected by the lines of sight (a rectangle 

with width equal to the pixel size) and a circle with area equal to that of the voxels. 

The parameters used in the tests that have been performed are equal to the ones of 

the defined reference configuration unless otherwise stated. 

Rate of convergence. The results in terms of accuracy of the reconstruction are 

reported as a function of the number of iterations in Fig. 4.3 for three levels of 

source density. In case of         the quality factor is increased by the 

anisotropic SFIT-MART of about 2% from iteration 5 on for both the tested values 

of standard deviation of the Gaussian filtering windows,       and    ; on the 

other hand, a too intense filtering is not advisable for a large number of iterations, 

since it seems to lead to divergence of the reconstruction from the exact solution. 

This problem can be prevented either returning to the more stable isotropic filter 

or using smaller σ, obtaining in this last case also a slightly larger quality factor. The 

divergence issue, however, is relevant just for small source densities which are not 

of interest for the standard Tomo-PIV applications. 

A larger source density, of course, determines a reduction of the quality factor; 

on the other hand the gap between the standard MART based method and the 

proposed SFIT-MART technique increases. After 5 iterations, in case of        ,   

is approximately 0.83 for the reconstruction performed by MART, against 0.89 and 

0.91 for the SFIT-MART algorithm, with anisotropic filtering and   equal to 0.5 and 

1, showing a relative improvement of 7.2% and 9.6%. In the same condition the 

isotropic filter provides a quality factor   of approximately 0.88 and 0.89, 

respectively for σ equal to 0.5 and 1, slightly below the one provided by the 

anisotropic filter in both cases. The effect is even more consistent at very high 

source density. For        , after the 5th iteration, the quality factor of the 

reconstruction by MART is 0.65, against 0.72 and 0.75 for the anisotropic SFIT-

MART algorithm, with   equal to 0.5 and 1, respectively. Again, the quality factor 

relative to the isotropic filter is slightly below the one provided by the anisotropic 

filter, in particular       , for      , and       , for    . 

The SFIT-MART combination retains a good rate of convergence also after 5 

iterations. After 10 iterations, in the case of        , the best performances are 

achieved by the anisotropic filter with       or    , for which   is 

approximately 0.93. Under the same conditions, the isotropic filter provides a 

quality factor of about 0.92 while   is about 0.86 when no filtering is applied. 

Finally, the anisotropic filter achieves higher   after 10 iterations also for    

    . In this case, applying SFIT-MART determines a quality factor of approximately 

0.79 and 0.81 for anisotropic filtering and       and     respectively. The 

isotropic filter gives instead a slightly lower   of about 0.78 and 0.80, while for 

MART       . 
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Fig. 4.3 Comparison between MART and the combination SFIT-MART (with both isotropic and 

anisotropic filters) in terms of   as a function of the number of iterations      . The results refer to a test 

layout with      , 4 cameras and source density         (a),         (b),         (c). 

The quality improvement might be due both to the regularization of the shape 

of the actual particles and to the suppression/damping of the ghost particles. In 

order to assess the effects of reduction of the ghost particles intensities the 

probability distribution functions (pdf) of the intensity of true and ghost particles 

are reported in Fig. 4.4. The results are reported for the case of 4 cameras,        

and a viewing angle of 60°. The comparison of the distributions after 5 MART 

iterations and after SFIT-MART with anisotropic filtering       (   ) shows that 

the ghost particles are weaker in the second case and the energy is re-distributed 

on the actual particles. The case of isotropic filtering provides similar results. 

Effect of the source density. As outlined in the previous sub-section the 

anisotropic filter performs slightly better than the isotropic one. In Fig. 4.5 a 

comparison of three different filters in terms of quality factor   is reported. It is 

clear that an anisotropic filter (in particular filtering windows of     or     

pixels are considered) proves to be slightly more effective than an isotropic one at 

either low or high source density   . In particular, the isotropic filter appears to 
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Fig. 4.4 Pdf of the particles peak intensity for the case of 4 cameras, source density        and a total 

viewing angle       after 5 MART iterations (a) or SFIT-MART with 3x1 Gaussian filtering (b). 

 

Fig. 4.5 Comparison of Gaussian filters (   ) characterized by different filtering windows size in terms 

of quality factor   with varying source density   . The data are obtained after 5 iterations, with 4 

cameras, total viewing angle      . 

be too intense especially at low source densities. Increasing   , the quality factor 

obtained with the isotropic filter approaches the one obtained with the anisotropic 

filter, but the former always provides slightly worse results. 

Particle image and filter size. The influence of the particles size on the 

effectiveness of SFIT-MART is illustrated in Fig. 4.6. The performances of two 

Gaussian filters with kernel size of     and     are compared in terms of   for 

variable particles sizes. It is possible to see that the method is effective provided 

that the particles diameter is at least of 2 pixels. Furthermore the effect of the 

standard deviation   of the filters is shown. A kernel size of     appears to 

determine a lower or equal quality factor, when compared with the smaller one, for 
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Fig. 4.6 Quality factor after 5 iterations for two Gaussian filters with kernel dimensions of     (a) and 

    (b) voxels with varying standard deviation σ and  the diameter of the particles. The data refers to 

an experimental setup with 4 cameras,        ,      . 

 

Fig. 4.7 Quality factor obtained using SFIT-MART (dashed and dotted lines for the anisotropic and the 

isotropic filtering, respectively) and MART (continuous lines) as a function of the viewing angle  . These 

results are obtained using a Gaussian filter with    , 4 cameras and after 5 iterations. 

all the tested configurations. This is in accordance with the intuition that the size of 

the optimal filtering should be comparable to that of the particles. However, the 

method seems to be only slightly sensitive to this parameter in the investigated 

range. 

Solid viewing angle. In Fig. 4.7 the quality factor obtained using SFIT-MART 

(with isotropic and anisotropic filtering) is compared with the one obtained using 

the standard MART for different value of the total solid viewing angles  . It can be 

seen that by increasing   the absolute difference in the quality factor between the 
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three methods generally decreases, and a consistent accuracy improvement with 

respect to MART is retained in the entire range of investigation. This is 

understandable since the number of ghost particles and their actual distribution is 

strongly dependent on  : the smaller the solid angle, the more elongated along the 

depth direction the true particles will be. The higher effectiveness of the method in 

case of small   will actually strongly suggest the application of SFIT in cases in 

which the total angle subtended by the camera system is limited by physical 

constraints. As the solid angle approaches 90°, the performances of the isotropic 

and the anisotropic filter are practically equivalent, since the reconstructed 

particles are less elongated. In this scenario, the quality of the improvement is 

almost exclusively dictated by the filtering, independently of the shape of the filter. 

4.2.2 Spatial resolution of SFIT-MART 

A delicate aspect of tomographic PIV is connected to the coherent motion of the 

ghost particles between subsequent exposures, as outlined in Sec. 2.2.2. Since SFIT-

MART has shown to increase the reconstruction quality, above all at high source 

density, where the degrading effect of the presence of ghost particles is 

overwhelming, one should expect a reduction of this modulation effect. This aspect 

is investigated by simulating a simplified tomographic PIV experiment, with the 

same layout of Sec. 4.2.1, i.e. 2D particles distribution observed by 1D cameras. The 

reconstruction is performed using 4 cameras with      . A one-dimensional 

sinusoidal displacement field is imposed between two subsequent exposures: 

             
  

 
         (4.1) 

where   is the amplitude,   is the wavelength,   is the depth-volume coordinate, 

and   is the width-volume coordinate. The displacement along the depth direction 

is always set to zero; the amplitude   is equal to 2 voxels.  

A 2D correlation analysis with iterative multi-grid and window deformation 

algorithm (see Secs. 1.1.4 and 2.4) is performed. The final interrogation window is 

         pixel (the width of the elongated interrogation window is set to ensure a 

sufficient number of particles; as a matter of fact, this does not change the 

generality of the analysis, since the displacement field is one-dimensional); the 

results are averaged on 50 independent realizations to reduce the effect of noise. 

The spatial resolution performances are evaluated in terms of Modulation 

Transfer Function (MTF); the MTF of a classical top-hat moving average cross-

correlation approach is practically coincident with that of a top hat moving filter. 

For the typical values of interrogation spot size   and   in PIV applications it 

practically coincides with          . Since the displacement field is one-

dimensional,   is the size of the interrogation window along the depth direction. 
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Fig. 4.8 Modulation Transfer Function at variable wavelength for        , in the case of MART and 

anisotropic SFIT with standard deviation of the filtering window equal to 1. 

Supposing that the interrogation process only modulates the exact 

displacement, as already shown by Astarita (2006) the MTF can be estimated as: 

          
         

   

              
  

   

      (4.2) 

In Fig. 4.8 the MTF is reported as a function of the spatial frequency     in the 

case of a source density of 0.45; the performances of 5 MART iterations, and of 

SFIT-MART (with the filtering applied after each iteration from the second one on) 

are compared; in the case of SFIT-MART a Gaussian filtering window with a     

kernel and a standard deviation equal to 1 is used. In this section only the 

anisotropic filtering is investigated, since it provides slightly better performances. 

However, the results with the isotropic filter are not expected to be significantly 

different, and for this reason they are not included herein. The results show a clear 

enhancement of the modulation in case of adoption of SFIT-MART; the effect is 

particularly pronounced at low frequencies, since at high frequencies the local 

relatively strong velocity gradient contributes to decouple the ghost particles in the 

two exposures by itself, as outlined in Sec. 2.2.2. 

The MTF depends, of course, on the source density, since the number of actual 

particles is one of the main parameters in determining the percentage of ghost 

particles into the volume. This aspect is illustrated in Fig. 4.9, in which the MTF is 

plotted as a function of the source density for three different values of the 

wavelength of the sinusoidal displacement. The modulation is approximately 

constant at low source density, and the difference between the spatial resolution of 

MART and SFIT-MART is almost negligible, since the percentage of ghost particles is 

relatively small. An increase of the source density implies a stronger modulation 

effect on the reconstructions performed by MART with respect to those obtained by 

SFIT-MART. 
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Fig. 4.9 MTF at variable source density, for three different wavelengths in the case of MART (triangles) 

and anisotropic SFIT (circles) with standard deviation of the filtering window equal to 1. 

 

Fig. 4.10 Standard deviation of the error on the   component of the displacement for         (a) and  

        (b). 

The effect of the SFIT enhancement on the standard deviation of the error on 

the x component of the displacement field as a function of the frequency is 

illustrated for         and         (Fig. 4.10). The results clearly show that at 

low source densities the difference between MART and SFIT-MART is negligible. On 

the other hand, increasing the source density, a definite reduction of the standard 

deviation of the error is observed in the case of adoption of SFIT-MART for the 

reconstruction. Regarding the behaviour of the standard deviation of the error on 

the   component, no net difference between the two approaches for all the tested 

seeding densities is detected. 
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Fig. 4.11 Schematic drawing of the fractal square grid geometry (see Sec. 7.1.1 for further details). 

4.2.3 Experimental application to fractal generated turbulence 

The applicability of SFIT-MART is tested with an experiment performed in the 

open circuit wind tunnel facility of Arizona State University. The flow field under 

investigation is the decaying nearly isotropic turbulence generated by a square 

fractal grid (i.e. a grid with a square pattern repeated at increasingly smaller scales, 

see Sec. 7.1 for further details). The fundamental elements of the experimental 

apparatus are introduced in this section; a more insightful description is provided 

in Sec. 7.2. The square fractal grid is placed at the inlet of the test section of the 

wind tunnel, after the contraction. 

The flow is seeded with olive oil particles with     mean diameter, generated 

by a Laskin nozzle. The particles are illuminated by a double pulse Nd:Yag laser 

with maximum energy of            ; the illuminated region is a slab with the 

larger dimensions along the streamwise and the vertical crosswise direction, and a 

thickness of approximately    . 

The projections of the distribution of particles are recorded by 4 TSI 

POWERVIEW™ Plus 11MP camera with             pixel resolution, with a pixel 

pitch of    . The cameras are placed approximately       downstream of the 

grid in a linear arrangement, angularly equally spaced, spanning an angle of 80°. 

The cameras are equipped with Nikon objectives with a focal length of      when 

focused at infinity, and      . The imaging system is set to have an average 

magnification of approximately 0.31, resulting in an image resolution of about 

        . The diffraction-limited particle diameter is of approximately 3 pixels. 

The calibration target for the optical calibration is made of a glass substrate 

with a              grid of black markers, with diameter of       and spacing 

of    , with 0.2% tolerance. The target is then translated within the range ±6mm 

with respect to the reference plane. A nonlinear regression algorithm is used to 
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obtain pinhole-based mapping functions (Tsai 1987) from the object space to the 

image plane (see Sec. 1.2.1). The volumetric self-calibration described in Sec. 2.1.4 

is applied to reduce any residual calibration error and disparity between the 

cameras.  

The images are pre-processed to eliminate the background and reduce the 

image noise. A four steps pre-processing is implemented: historical background 

removal by taking the minimum in each pixel over an ensemble of 500 realizations; 

instantaneous residual background removal by subtracting from the images a low-

pass filtered image (a Gaussian filter on a kernel       and standard deviation 

equal to 5 is used); thresholding of the images to remove the residual noise due to 

high frequency background fluctuations (1% of the maximum particle intensity); 

      Gaussian smoothing with       to restore the particle tails deleted by the 

thresholding.  

The reconstructed volume is                (the depth dimension is slightly 

larger than the laser slab thickness to ensure that all the imaged particles will be 

reconstructed), discretized with          (i.e. an average resolution ratio of 

approximately one between pixels and voxels is maintained). 

The reconstruction is performed using a camera system composed only of 3 

out of 4 available cameras (the two external cameras and one internal camera) by a 

standard 5 MART iterations algorithm and the proposed SFIT-MART. The filtering 

step is applied from the second iteration on; a Gaussian filtering window with a 

kernel of      voxels (the third one is the depth dimension) and with standard 

deviation equal to 1 is used (the difference of the results obtained with the isotropic 

filtering are not significant, and for this reason are not included herein; this is 

actually in line with the results of Fig. 4.7, since the angle subtended by the cameras 

is 80°).  

From this moment on the distributions reconstructed by the 4 cameras system 

with the standard MART algorithm will be considered as “ground truth”, i.e. the 

quality factors can be calculated by assuming that the reconstruction performed by 

4 cameras will lead to nearly exact result. Since the tomographic PIV system is 

operated at seeding density of around          (particles per pixel), the numerical 

simulations by Elsinga et al (2006a) suggest that this hypothesis is quite 

satisfactorily verified. In order to avoid confusion, this relative quality factor will be 

indicated with the symbol   . The seeding density is systematically underestimated 

due to the occurring of overlapping particles, the actual      is expected to be 

slightly larger (Novara & Scarano 2012a detect an underestimation of about 10%; 

however, in this application the depth of the volume is quite small, suggesting that 

the probability of overlapping particles along the lines of sight is consistently 

smaller). 

The relative quality factor    is reported in Fig. 4.12. The results after 5 

iterations indicate that MART has approximately reached an asymptotic value of  
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Fig. 4.12 Relative quality factor of the tomographic reconstruction for MART and SFIT-MART with a 3 

camera system. 

 

Fig. 4.13 Mean intensity profile of the reconstructed distributions along the   direction. 

0.64, while SFIT-MART achieves a quality factor of approximately 0.73 with a 

residual rate of increase. The simulations of Sec. 4.2.1 have shown that further 

iterations would determine an improvement of the quality factor for SFIT-MART; 

on the other hand, the computational cost and the limited amount of improvement 

suggest considering 5 iterations as a good standard for the tomographic 

reconstruction both for MART and SFIT-MART. 

The profile of the mean intensity of the reconstructed distribution along the   

direction can be considered an optional indicator of a successful reconstruction 

(Elsinga et al 2006b). The profile provides information about the mean intensity of  
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Fig. 4.14 Normalized factor of correlation and fluctuating velocity field for MART (left) and SFIT-MART 

(right) for a portion of the slice      . 

 

Fig. 4.15 Pdf of the normalized factor of correlation and fluctuating velocity field for MART (3cam) SFIT-

MART (3cam) and the reference reconstruction with MART (4cam). 

solely the ghost particles (outside the illuminated volume) and of the sum of ghost 

and true particles (within the illuminated volume). The ratio of the peak of the 

profile and the average value of the plateau outside the volume can be considered 

as a signal to noise ratio for the reconstruction. The results in Fig. 4.13 show a slight 

improvement of the quality of the reconstruction (the ratio peak/plateau increases 

from about 7 for the standard MART to approximately 7.4 for SFIT-MART). The 

result for the 4 camera system, providing a peak/plateau ratio of about 18, is 

included for comparison. The reconstructed distributions are then processed with 

the efficient multi-pass volume deformation algorithm outlined in the Chapter 5. 

The final interrogation volume size is              voxels, with a vector spacing of 

12 voxels (i.e.       ). The final steps of the process are performed with the aid of  
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Fig. 4.16 Pdf of the divergence (normalized with the square root of the characteristic turbulent rate of 

strain) of the velocity field for MART, SFIT-MART and the reference velocity field (MART with 4 

cameras). 

Method          
 [   ]          

 [   ]          
 [   ] 

MART 0.175 0.160 0.285 

SFIT-MART 0.150 0.148 0.257 

Table 4.1 Standard deviation of the velocity measurement difference with respect to the reference 

velocity field. 

direct correlation with a narrow search area on the cross-correlation map. In this 

scenario, the standard definition of the signal to noise ratio as the ratio between the 

first and the second peak on the cross-correlation map cannot be applied. On the 

other hand, a reliable instrument is the normalized factor of correlation, ranging 

between 0 and 1 (Astarita 2009). A higher normalized factor of correlation gives 

direct information on the better quality of the measurement. 

The factor of correlation distribution is reported in Fig. 4.14 as a contour plot 

for a portion of the middle slice of the interrogation volume; the fluctuating     

velocity field is plotted for comparison. In general, SFIT-MART yields higher 

normalized factor of correlation, and slightly lower outliers percentage (for the 

case presented in Fig. 4.14, the interrogation performed by SFIT-MART determines 

88% of correct vectors, while MART achieves 85%; the validation is based on the 

universal median criterion, Westerweel & Scarano 2005). 

The pdf of the factor of correlation obtained over an ensemble of 100 images, 

and computed only on valid vectors, is reported in Fig. 4.15 to further support this 
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assertion. The application of SFIT-MART skews the pdf towards larger values of the 

factor of correlation. The average factor of correlation is 0.54 and 0.59 for MART 

and SFIT-MART, respectively (for the case of the interrogation performed on the 

reference objects reconstructed by MART using 4 cameras, the averaged 

normalized factor of correlation is equal to 0.62). 

The standard deviations of the difference between the reference velocity field 

and the velocity fields measured by interrogating the distribution reconstructed by 

MART and SFIT-MART are reported in Tab. 4.1. As expected, in both cases the error 

is larger along the depth direction; the accuracy improvement obtained by using 

SFIT-MART (about 10% reduction of the standard deviation of the error) is clearly 

detectable. 

A more general indicator of the quality of the velocity measurement in case of 

incompressible flow regime is the standard deviation of the divergence. The 

probability distribution of the divergence for a single realization is reported in Fig. 

4.16. The divergence is presented in non-dimensional form; the reference value is 

the square root of the characteristic value of the turbulent rate-of-strain tensor 

(expressed in a synthetic way in the figure as the square root of the ratio of the 

turbulent dissipation   and the kinematic viscosity  ). This characteristic value is 

obtained by taking the median value of the highest 50 local peaks of the local 

turbulent dissipation within a single realization for the case of the reference 

velocity field. The standard deviation of the non-dimensional divergence is equal to 

0.048 and 0.037 for the case of the standard MART with 3 and 4 cameras, 

respectively. With the SFIT-MART technique the standard deviation is reduced to 

0.042. 
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Chapter 5 - Efficient 3D PIV interrogation 

algorithms 

In the early stages of development of Tomographic PIV, most of the attention 

has been devoted to the tomographic reconstruction, as it was recognized to be the 

bottleneck in the processing algorithm in terms of computational cost. The 3D PIV 

interrogation process has received limited attention, as it is a conceptually trivial 

extension of the standard 2D interrogation algorithms. However, the recent 

achievements outlined in the previous chapters have changed the scenario. In 

addition to this, the development of more robust (but more computationally 

intensive) PIV interrogation algorithms (for example the adaptive PIV interrogation 

by Novara et al 2013, or the multi-frame pyramid correlation by Sciacchitano et al 

2012) require new efficient algorithms to reduce the computational burden. 

Furthermore, one should note that 3D cross-correlation can also be employed to 

improve the quality of the tomographic reconstruction itself (see for example the 

MTE-MART discussed in Sec. 2.3.3). As a consequence, the PIV algorithm might 

repeatedly appear in the Tomo-PIV process. It is clear that a reduction of the 

computational load of 3D PIV can contribute not only to the diffusion of Tomo-PIV 

as a standard tool for 3D3C velocity measurements, but also to increase the 

accuracy of the tomographic reconstruction itself with a limited impact on the total 

processing time. 

The optimization of 3D PIV algorithm efficiency is the object of the present 

chapter. A number of solutions are illustrated in Sec. 5.1, enabling a more efficient 

calculation of the velocity field without any significant loss of accuracy. The 

proposed algorithm combines the multi-resolution interrogation concept (see 

Chapter 3 for the application to the tomographic reconstruction) with sparse data 

storage, cross-correlation and interpolation. Furthermore, three different 

approaches to reduce the number of redundant calculations for overlapping 

windows are presented, based on pre-calculations of the contributions to the cross-

correlations coefficients along segments, planes or blocks. The performances of the 

different processing solutions are tested in Sec. 5.2 in different scenarios with 

progressively tuned complexity. Finally, in the case of block cross-correlation, the 

degrading effects due to poor discretization of the weighting windows are 

discussed in Sec. 5.3. The results discussed in this chapter are published in Discetti 

& Astarita (2012b). 

Again, volume deformation methods will be considered the reference 

processing algorithm. 
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5.1 Fast correlation computation 

The structure of the interrogation algorithm is the same proposed in Sec. 2.4. 

For clarity a more detailed description is reported in this section. 

1. The predictor displacement field is calculated on a rather coarse grid for a 

quick estimation of the velocity field. Since the displacement is not know a 

priori, the interrogation spot size (from this moment on indicated with the 

acronym IV, which stands for Interrogation Volume) has to be large enough to 

compensate for the motion of the particles within the volume. In 2D PIV it is 

commonly accepted that the interrogation spot size should be about 4 times 

the maximum expected displacement (the so called one-quarter rule by Keane 

& Adrian 1992), so that the loss of pairs due to the particles displacement is 

less than 25%. In general, as outlined in Fig. 1.2, it should be         . 

However, since there is no effect of out-of-plane motion in 3D PIV, one should 

simply set         The most likely displacement of the particles is 

determined by the analysis of the cross-correlation map between subsequent 

exposures. The normalized 3D cross-correlation operator is defined as: 

             
       

                                
  
     

        
            

 
       

                     
   

   

  
     

  (5.1) 

where   and   are the intensityies of the IVs,    and    are their relative 

mean intensity values, and   is a weighting function. The (5.1) is a 

generalized 3D version of (1.5), as it includes also the possibility of using 

weighting windows in the cross-correlation step to tamper with the impulsive 

response of the algorithm. The operation can be conducted with the aid of FFT 

(Fast Fourier Transforms), requiring      
       

  operations (two direct and 

one inverse Fourier transforms) instead of   
  by directly computing (5.1), i.e. 

using direct cross-correlation. This estimation includes only the computation 

of the numerator of (5.1). In the case of adoption of weighting windows, the 

overhead for the normalization can be more significant, as the term 

       
                     

   
      requires the computation of a cross-

correlation. In practice, the term can be replaced by        
            

   
      

with acceptable approximation; 

2. A dense predictor is calculated by interpolating the velocity field on each voxel. 

The dense predictor is then used to the deform the volumes (in the present 

algorithm the volumes are displaced symmetrically to achieve second-order 

accuracy, Wereley & Meinhart 2001). In this step the performances of the 

velocity interpolation scheme may have an influence on the spatial resolution 

of the algorithm (Astarita 2008); 
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3. Once the predictor displacement is known, volume deformation can 

compensate the particles displacement, determining a higher valid detection 

probability. Since    is nearly 1, and the velocity gradients within the IV are 

partly compensated by the volume deformation, one can obtain a high 

detection probability with fewer particles, i.e. smaller interrogation spots. A 

grid refinement may be executed in the evaluation of the displacement field; 

4. A corrector displacement field is evaluated on the deformed volumes by 

applying the (5.1). In the corrector estimation one could use a narrower 

search area of the peak (as already observed by Rohàly et al 2002), e.g. 

limiting the calculation only to the cross-correlation coefficients in the 

neighbourhood of the peak itself. As a limiting case, only the coefficients that 

are necessary to compute the Gaussian interpolation of the peak can be 

evaluated. In this case, direct cross-correlation is much faster and more 

accurate than FFT, since no periodicity is imposed. Of course, this approach 

works only if the predictor is accurate within ±0.5 pixels on the finer grid, 

otherwise the full cross-correlation map should be calculated (or the search 

radius should be enlarged); 

5. The true displacement is obtained by summing the corrector and a weighted 

average of the dense predictor over a prescribed window. This operation is 

necessary as the so-called local approach (i.e. summing the local predictor 

with the corrector) might lead to instability of the algorithm if large spatial 

frequencies are present in the flow field (unless an appropriate weighting 

window is used in steps 1 and 4, as proposed by Nogueira et al 1999). One 

should note that this operation requires that the dense predictor computed in 

step 2 has to be stored in memory (otherwise, it could be computed on-the-

fly). The required memory can be consistently large (if single floating point 

precision is used, 4 bytes time the number of voxels are required for each 

velocity component of the dense predictor, i.e. for a 1000 x 1000 x 200 voxels 

discretization, 2.4Gb are needed). 

The part of the process from step 2 to step 5 is iteratively repeated until a 

satisfactory convergence is reached. Evidently, the predictor and corrector 

estimations have to be accelerated with different solutions, since in the first case 

FFT is to be preferred, while in the second case direct correlation can be more 

appealing. 

5.1.1 Multi-resolution predictor estimation 

Similarly to the solution proposed in Chapter 3, voxel binning can consistently 

accelerate the predictor computation. The binned 3D distributions are built by 

clustering voxels in           kernels, being   the binning factor. The number of 

multiplications to be performed is reduced to                      ; e.g. if the IV 

is a cube of 643 voxels, a    and a    binning enable a processing time reduction (in 
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the following referred as speed-up) of the order of 10 and 100 times, respectively. 

Of course a certain overhead due to the computation of the binned volumes has to 

be considered, i.e. a number of additions equal to the number of voxels. However, 

the ratio between the number of operations to compute the FFT and that to bin the 

volumes is                if no overlapping windows are used, and it increases 

with the cube of the reciprocal of the overlap; furthermore additions may be 

computed faster than multiplications, so that the overhead is almost negligible. 

5.1.2 Fast corrector computation with sparse direct correlations 

Direct cross-correlation can be used to compute the coefficients only in the 

neighbourhood of the peak, e.g. the peak itself and the 6 coefficients to find the peak 

with sub-pixel accuracy using a Gaussian fit along the three directions. This reduces 

the number of multiplications to be performed to    
 , versus      

           in 

case of adoption of the FFT, and with the same overhead for the normalization (i.e. 

compute the mean and the covariance of the IV, as in (5.1)); e.g. an acceleration of 

about 7.7 times is obtained in case of IV with linear dimension of 64 voxels. 

Direct cross-correlation can be further accelerated observing that the 

distributions to be interrogated are very sparse. Considering the situation outlined 

in the example of Sec. 2.3.1, i.e. 10 particles per IV with the linear dimension of 32 

voxels and particle occupying a kernel of           voxels, less than 1% of the voxels 

carries a non-zero intensity; considering ambiguities in the tomographic 

reconstruction (depending mainly on the imaging system configuration, the depth 

of the volume to be reconstructed, the number of cameras and the seeding density), 

this percentage is seldom higher than 5%, since thresholding is usually applied to 

accelerate the reconstruction step. For planar PIV and analogous conditions, 24% of 

the pixels have non-zero intensity; in the 2D scenario the overhead to handle data 

in sparse matrix is not negligible and it complicates the algorithm with a worthless 

acceleration. In 3D, the very low percentage of non-zero voxels makes it worth the 

effort. 

One aspect making it difficult to implement sparse cross-correlation with both 

the methods is connected to the memory access to the corresponding element in 

the second volume to each non-null element of the first one. For this reason the 3D 

extension of the Yale format (see Sec. 3.2) is of fundamental importance, as it allows 

for efficient data access. 

5.1.3 Efficient corrector computation with overlapping windows 

In common practice overlapping windows are used (overlap typically ranges 

between 50% and 75%). In this case, a relevant percentage of operations are 

repeated, and a strategy to reduce the number of redundant calculations has to be 

assessed. In the following, 3 approaches to reach this goal are proposed, each one 

relying on the observation that the cross-correlation coefficients for each IV can be 
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obtained by summing contributions of sub-volumes (Rohàly et al 2002). It is 

convenient to split the contributions to the correlation coefficients, decomposing 

(5.1) as in the following (for the sake of simplicity the weighting window is 

supposed to be constant and equal to 1, i.e. a top hat): 
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For each IV of linear dimension   , the following terms have to be calculated: 
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The contributions of the formulae (5.3)-(5.7), as proposed by Rohàly et al 

(2002), can be computed on sub-volumes composing the IV (the geometry of the 

sub-volumes can be arbitrarily chosen, i.e. the sum on the three indexes are 

extended to the relative dimensions of the sub-volume in the three spatial 

directions). The algorithm is, thus, composed of three steps: 

 The sums (5.3)-(5.7) are pre-calculated for each sub-volume (in this case 

the sums have to be generalized to a region with generic shape); 

 The various contributions (5.3)-(5.7) relative to all the sub-volumes 

constituting the IV are summed up; 

 The cross correlation coefficient is evaluated by using (5.2). 

Imposing the symbols           
   

     ,            
   

             and 

           
   

                    , in case of adoption of weighting windows, (5.1) 

reduces to: 

            
       

                      
  
                        

         
       

   
     

   
                    

                
   

     
   

           
 (5.8) 

The number of elements to be pre-calculated for each sub-volume and then 

summed up increases accordingly. 
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Fig. 5.1 Comparison between the standard Blackman weighting window and its piecewise version for 

several overlap values (nbl stands for n blocks). 

5.1.3.1 Block cross-correlations 

The most intuitive solution implies the pre-calculation of the terms (5.3)-(5.7) 

on cubic (or, in general, parallelepipedal) sub-volumes (in the following called 

blocks), whose dimension could be set as the greatest common divisor between the 

IV linear dimension and the grid distance (this second parameter is replaced by the 

overlapping part of the interrogation volumes when the overlap is smaller than 

50%; e.g. if the linear dimension of the IV is 64 voxels, and the overlap is 25%, the 

grid distance is equal to 48 voxels, and the overlapping part is 16 voxels, so that the 

maximum possible linear dimension of the pre-calculated blocks is 16 voxels). The 

idea is equal to that of Roth & Katz (2001), with the difference that this method is 

employed only to calculate a very limited number of coefficients and no truncation 

is performed, i.e. the multiplications are performed in single precision floating 

point format (instead of the single-bit parallel multiplication algorithm proposed by 

Roth & Katz 2001) to avoid degrading effects on the accuracy of the results. 

Performing the calculation of the displacement map in case of overlap ranging 

between 25% to 75% has practically the same computational cost of the case of 

non-overlapping windows, i.e. overlap is introduced without any significant change 

of the processing time.  

The main drawback regards the implementation of weighted cross-correlation: 

the weighting window can be replaced by a piecewise weights distribution for each 

IV (i.e. each block contribution is weighted with a constant value, for example the 

average of the weighting window on that block). Of course, this approach is reliable 

only in case of small ratio between the linear dimension of the blocks and that of 

the IV (i.e. highly or barely overlapped IV); a brief discussion is provided in Sec. 5.3. 

An example of block-version of the Blackman window is provided in Fig. 5.1 for 

different overlap percentages; in this case the choice is to weight each block with 
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the value of the original window discretized with a number of points equal to the 

number of blocks. 

5.1.3.2 Segment or rectangular based cross-correlations 

The choice of the sub-volume shape on which performing the pre-calculation is 

clearly arbitrary and, while the choice of a cubic block enables to reduce the time 

needed to perform the final sums, it does not allow the precise use of weighting 

windows. A way to perform all the calculations required by (5.8) is to pre-calculate 

the sums (5.3)-(5.7) (and the other sums required for the introduction of the 

weighting window, obtained by splitting (5.8) in its basic contributions) along two 

(e.g. index i and j) of the three indexes, i.e. to use rectangular (or better a 

parallelepiped with a dimension equal to one voxel) shaped sub-volumes. In this 

case, separable weighting windows (built as the product of three weighting 

windows for the three directions, i.e.                ) can be correctly used. 

The algorithm can be better understood by first considering the two 

dimensional case. As shown in Fig. 5.2a, where the actual IV is shown with a shaded 

square, the pre-calculation of the sums is performed along columns (indicated with 

blue rectangles in the figure, while green squares identify the pixels) and stored in a 

temporary array (schematized with the top rectangle in the figure); the substantial 

difference with respect to the block cross-correlation case is that the sums are only 

evaluated on a single row of interrogation volumes and successively the elements 

of the array are summed up to complete the process (shaded box on the top 

rectangle of Fig. 5.2a and, for the second IV of the row, in Fig. 5.2b). The inclusion of 

a separable weighting window is possible since the sums are split for the two 

indexes. 

The calculation of the cross-correlation coefficient in the following rows of 

interrogation volumes (Fig. 5.2c-d) is performed with the same principle. Since the 

pre-calculated sum of the previous row of interrogation volumes is not used in the 

following one a significant overhead is introduced with respect to block cross-

correlation. Actually in the evaluation of a complete two dimensional map of cross 

correlation coefficients the computational burden scales linearly with the overlap. 

The extension to the three dimensional case can be made with two approaches 

that differ in the way in which the pre-calculation is performed. In the first one, 

called in the following 2D DC, the pre-calculation of the sums is performed along 

rectangular sub-volumes (i.e. by varying two indexes in the pre-calculation step) 

while in the second one (1D DC) segments (i.e. by varying only one index in the pre-

calculation). In the 2D DC approach the pre-calculated sums are stored in an array 

and the algorithm is a very simple extension of the two-dimensional one, the only 

difference being that the overhead scales quadratically with the overlap. On the 

other hand with the 1D approach the pre-calculated sums have to be stored in a  
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Fig. 5.2 Segment-based direct cross-correlations. The big black rectangles represent the images and the 

top rectangle is a temporary array. Blue rectangles indicate the columns on which sums are pre-

calculated; shaded squares refer to actual IV and green squares identify the pixels. First (a) and second 

(b) IV on the first row of interrogation volumes; first (c) and second (d) IV on the second row of 

interrogation volumes. 

two-dimensional array but the overhead still scales linearly with the overlap. For 

both approaches the size of the temporary arrays can be reduced by using cycling 

indexes. 

5.1.3.3 Wider search area: block FFT 

Due to modulation effects or inaccuracy of the estimated predictor, it might 

happen that the correlation peaks of the corrector displacement field fall above 

±0.5 pixels, and a great number of full correlation maps have to be computed by 

using FFT. This occurs especially in regions of strong velocity gradients, or low 

signal to noise ratio. One possible solution is to enlarge the search area of the peak, 

i.e. to compute a wider zone of the correlation map. Unfortunately, if k is the search 

radius, the number of coefficients to be computed is roughly proportional to k3 (the 

peak can be detected if it is included in the zone ±(k-0.5)). A solution to this 

problem is to compute the blocks of the correlation maps using FFT (as in Rohàly et 

al 2002); the blocks are stored in memory and then summed to obtain the search 

area of the correlation map for each IV, as in 5.1.3.1.  
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This approach suffers of bias effects due to the imposed periodicity; the aspect 

is particularly critical because of the small size of the IV (e.g. for IV of 643 voxels, 

and 75% overlap, the blocks are only 163 voxels). This prevents the application to 

small highly overlapped IV and, in general, a bias correction is of fundamental 

importance. In the present work the bias correction is performed by multiplying 

the coefficients of the correlation maps with the inverse of a triangular window 

(Raffel et al 2007). 

Often during the grid refinement part of the interrogation algorithm the 

modulation associated to both the broad dimension of the IV in the predictor 

estimation (Astarita 2007) and to the interpolation of the velocity field (Astarita 

2008) on the refined grid makes it difficult to have small residual displacements. In 

these cases the block FFT approach is particularly effective since it avoids the need 

to recalculate the full cross-correlation map when the corrector residual 

displacements are larger than ±0.5 voxels. 

5.2 Performance assessment 

The performances are assessed in four different layouts: synthetic 

distributions and small uniform sub-pixel displacement; shear displacement on 

distributions reconstructed by 5 MART iterations; synthetic distributions of a 

simulated jet profile; real images of a swirling jet. Each layout provides information 

on different features of the algorithm: the small uniform displacement highlights 

the performance limit of the algorithm; the shear displacement layout on 

reconstructed distribution focuses on the effects of the ghost particles in presence 

of spatial velocity gradients; the synthetic generated jet profile tests the algorithm 

in presence of tuned strong local gradients (in this case the effect of the ghost 

particles in modulating the velocity gradient along the depth direction provides 

undesirable anisotropy of the performances of the algorithm; consequently the 

analysis is performed on the original synthetic distributions); the real images of a 

swirling jet bundle all these aspects together. 

The tests are carried out on a computer using a single core (so that the 

parallelization coding effects are reduced) of a 3.07 GHz i7 processor (with the 

exception of the last case, in which all 4 cores have been employed). In many cases 

the results will be presented in terms of speed-up with respect to a standard 

reference method (i.e. the full FFT analysis performed on the same grid and with 

the same IV size); this speed-up is only relative to the predictor and corrector 

evaluation steps (i.e. the processing time to compute the dense predictor field, to 

interpolate the volumes and to execute the validation is neglected). 

From this moment on, the search radius for the direct correlation and block 

FFT based algorithms will be set to 1 and 2 voxels, respectively. 
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5.2.1 Test case 1 - Uniform displacement 

Synthetic distributions of spherical particles with Gaussian profile and 3 voxels 

diameter are interrogated. A volume of                  is discretized with 

         resolution, resulting in                 voxels; the IV is 403 voxels. A 

uniform displacement of 0.2 voxels is imposed, in order to assure that all the 

displacements are within 1 pixel search radius and, therefore, direct correlations 

always succeed in finding the correlation peak. Seeding concentrations of 1.25 and 

3.75 particles/mm3 (resulting in approximately 0.5% and 1.5% of voxel with non-

zero intensity respectively when a threshold at 0.5% of the peak intensity is 

applied) are tested. 20 iterations are executed to obtain well converged time 

statistics. 

The speed-up with respect to the equivalent process with computation of the 

full cross-correlation map by FFT is reported in Fig. 5.3. Standard direct 

correlations, without the aid of sparse matrices and redundancy avoidance, enable 

a processing time reduction of approximately 4 times, irrespective of the IV 

overlap. Among the others schemes reducing the redundant calculations and 

enjoying the sparsity of the distributions, block direct correlations are very 

effective when the overlap ranges between 25% and 75%. Indeed, in this case the 

number of operations in the cross-correlation computation step, being almost 

independent of the overlap, is much smaller than that relative to both 1D DC and 2D 

DC. In case of 75% overlap, the processing time is reduced of about 800 and 400 

times for the lowest and the highest tested density, respectively, with respect to the 

standard processing by FFT. For the highest tested overlap the most performing 

approach is 1D DC that enables to have, for the smaller source density, a speed-up 

of over 1000 times. 

The Block FFT algorithm, with a search radius of 2 pixels, is slower than the 

standard method based on FFT when the IV are only slightly overlapped, mainly 

because of the overhead due to summations of the maps. Increasing the overlap 

boosts up the efficiency of the Block-FFT approach; however, the speed-up is lower 

than that of the methods based on sparse direct cross-correlation and redundancy 

avoidance. Nevertheless, as already said, having a broader search area is still an 

advantage when the predictor is modulated, since a smaller number of cross-

correlation maps have to be re-computed. 

As shown in Fig. 5.4, where the normalized processing time with respect to the 

time to compute the standard FFT interrogation without overlapping windows is 

plotted as a function of the number of vectors per linear dimension of the IV, the 

methods with pre-calculations along segments (1D DC) or planes (2D DC) perform 

better than the one with block cross-correlations only when the overlap is limited 

or very high. As expected, 1D DC is normally faster than 2D DC, since the 

redundancy of operations is minimized. The number of operations varies almost  
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Fig. 5.3 Speed-up vs. overlap percentage for 1.25 (a) and 3.75 (b) particles/mm3. 

 

Fig. 5.4 Normalized time (with respect to time to compute the standard FFT interrogation without 

overlapping windows) as a function of the number of vectors for linear dimension of the IV for the 

lowest tested seeding density. 

linearly with the number of vectors to be computed for each linear dimension of the 

IV in the case of 1D DC, while for 2D DC the dependence is approximately quadratic. 

5.2.2 Test case 2 - One-dimensional shear displacement 

In this second case a volume with the same geometric features of the Test case 

1 is built starting from four independent views (4 cameras are placed on a 

horizontal xz plane, with a uniform angular displacement of 15°). The magnification 

is approximately 0.135, and it is almost uniform throughout the volume. The 

imaging is simulated with a pixel pitch of 6.67µm, and the f# is set to 13, so that the 

diameter of the particles is about 2.9 pixels. A custom-made software reconstructs 

the intensity distributions by 5 MART iterations, with an initial uniform first guest. 

The volume is discretized with         , so that the resolution ratio is close to  
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Step 
IV size 
[vox] 

Grid Overlap 
CC evaluation 

method 

1 643         50% FFT-Based 
2 403         50% FFT-Based 
3 403          75% FFT-Based 

Table 5.1 Example of standard process based on FFT. 

Step 
Binning 

factor 

IV 
size 

[vox] 

Effective IV 
size [vox] 

Grid Overlap 
CC evaluation 

method 

1 4x 163 643         50% FFT-Based 
2 2x 203 403         50% DC 
3 1x 403 403          75% DC 

Table 5.2 Example of fast process with multi-resolution interrogation and direct cross-correlation on 

the corrector computation. 

unity. Five different values of the source density (1.4), ranging between 0.1 and 0.5 

(resulting in a percentage of non-zero voxels in the reconstructed distributions 

varying between 0.3% and 3.8% after the application of a threshold equal to 0.1% 

of the peak intensity of the generated particles), are tested. A one-dimensional 

displacement along the x direction is imposed, varying linearly between 0 and 20 

voxels along the y direction. 

The interrogation is executed in three steps, as reported in Tab. 5.1: initially 

IVs of 643 voxels with 50% overlap are employed; the grid is then refined to 403 

voxels IV and 50% overlap; in the final iteration the overlap is increased to 75%. 

From now on, the process involving FFT in the evaluation of the cross-correlation 

map in all the three steps will be referred as "standard process". Direct sparse 

cross-correlations are executed for the other algorithms from the second step on. 

The structure of the algorithm in case of initial 4x binning is reported in Tab. 5.2 for 

example. A distinction is made between the size of the IV in the cross-correlation 

computation, and the effective one (say the equivalent IV on the original 

distributions). In case of failure of the peak identification in the corrector 

computation (i.e. the peak is not collocated within the search radius) the whole 

correlation map is computed again with the aid of FFT. 

Firstly, the speed-up is quantified in the case of process without binning for the 

different approaches for the fast corrector computation. As illustrated in Fig. 5.5, 

the speed-up is consistently lower than the one obtained in the Test case 1, due to  
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Fig. 5.5 Speed-up as a function of the source density with direct cross-correlation from the second 

interrogation step on. 

 

Fig. 5.6 Speed-up as a function of the source density with direct cross-correlation from the second 

interrogation step on, and multi-resolution predictor estimation: initial 2x binning (a) and 4x binning 

(b). 

the necessary initial step performed by FFT. The slightly higher efficiency of 1D DC 

and 2D DC for the lowest seeding densities is due to a different exploitation of the 

sparsity of the distributions; e.g. segments of voxels with zero intensity are easily 

identified in the 1D DC method, and a certain number of useless multiplications are 

skipped, while an entire block with all zero intensity voxels is more difficult to be 

encountered; of course, this occurs more often at low seeding density. Increasing 

the seeding density, block direct cross-correlation performs better than the other 

methods, enabling a speed-up of about 18 times. 

Adopting a multi-resolution predictor estimation can further accelerate the 

process: e.g. 2x and 4x binning are tested. The speed-up for the two different cases  
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Fig. 5.7 Standard deviation (in voxel) of the error as a function of the source density with and without 4x 

binning in the predictor estimation (right and left, respectively). 

is quoted in Fig. 5.6 as a function of the source density. In case of 2x binning, only 

the first step is executed on binned distributions, while if 4x binning is employed, 

the binning factor is halved on the second iterations, and the original distributions 

are interrogated only in the final step (see Tab. 5.2 for details). For the lowest level 

of source density the small number of particles determines a higher probability of 

outliers occurrence in the predictor calculation, and, as a consequence, a higher 

percentage of correlation maps to be computed with the aid of FFT in the final 

iterations, reducing, as a matter of fact, the obtainable speed-up. In the case of 

      , this percentage is 3.7% in step 2 and 2.7% in step 3 when a 4x binning is 

applied (in the case of 2x binning the percentage is 1.1% for step 2, and 0.5% in 

step 3). In all the other cases, the percentage is below 0.5% in the step 2, and 

negligible in the last step. 

One should question whether the speed-up is costless in terms of accuracy or 

not. The obtained standard deviation of the error by using the standard process, or 

a process based on full (i.e. without thresholding) or sparse direct cross-

correlations on the corrector estimation, is reported in Fig. 5.7. At low seeding 

density, direct correlations works better than FFT because the displacement is 

unbiased; increasing the mean number of particles per IV, this effect becomes less 

relevant. Sparse cross-correlation introduce a different source of error, mainly due 

the applied thresholding to increase the percentage of voxels with zero intensity; in 

case of predictor estimation with 4x binning, this aspect is more critical, i.e. too 

intense binning can compromise the accuracy or slow down the convergence of the 

interrogation process. 
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Fig. 5.8 Jet profiles for     (a),      (b). Exact profiles (black curve) are compared with profiles 

obtained by the fast process with Top Hat (TH) and Blackman (BL) weighting window in cross-

correlation and dense predictor averaging. 

5.2.3 Test case 3 - Circular jet 

For this test case 26500 spherical Gaussian particles with 3 voxels diameter 

are distributed in a volume of 19.2 x 19.2 x 57.6 mm3, again with a resolution of 

         (i.e. 384 x 384 x 1152 voxels, with approximately 1.5% of voxels with 

non-zero intensity, and about 17 particles per IV, being the final IV a cube of 48 

voxels for each linear dimension). The displacement field of a circular jet directed 

along the z direction with a peak displacement      of 16 pixels is simulated. The 

used equation of the jet-like profile is: 

         
    

 
           

        

 
       (5.9) 

where   is a parameter to modulate how steep is the descent from the peak velocity 

to zero and   is the station where the jet reaches a velocity that is equal to        

(set to 96 voxels). 

The structure of the processing algorithm is reported in Tab. 5.3. Since the flow 

field is characterized by strong gradients (whose intensity is controlled by  ), the 

modulation effects influence the predictor estimation, determining the corrector 

peak to be above the search radius of ±0.5 pixels for a wide number of IVs. For this 

reason an hybrid method has been tested, i.e. the cross-correlation is evaluated 

using block FFT (BFFT from this point on) in the refinement steps, and one of the 

proposed solutions for the fast final corrector computation (for this test-case the 

1D DC method is adopted; the lower efficiency of the method with respect to that of 

the block direct cross-correlations is of relative importance, since most of the 

processing time is related to the peaks falling above the search radius, i.e. the full 

correlation maps to be computed again with FFT; on the other hand, 1D DC enables 

to use rigorously weighting windows). 
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Fig. 5.9 Speed-up for each step as a function of the processing step for     (a) and      (b). TH and 

BL indicate Top Hat and Blackman weighting window for the cross-correlation map, respectively. 

 

Fig. 5.10 Percentage of re-computed full cross-correlation maps with FFT for     (a) and      (b). 

TH and BL indicate Top Hat and Blackman weighting window for the cross-correlation map, 

respectively. 

Step 
[     ] 

Binning 
factor 

IV 
size 

[vox] 

Effective 
IV size 
[vox] 

Grid Overlap 
CC evaluation 

method 

1 4x 243 963        0% FFT-Based 

2 4x 243 963        50% BFFT/DC 

3 2x 243 483          50% BFFT/DC 

4 1x 483 483          75% BFFT/DC 

5 1x 483 483          75% DC 

6 1x 483 483          75% DC 

Table 5.3 Processing algorithm: in the refinement section the CC evaluation method can be different 

from that of the iterations on the final grid. BFFT and DC stand for block FFT and 1D direct cross-

correlation, respectively. 
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The velocity profiles of the jet-like velocity field are reported in Fig. 5.8. In the 

case of     the results show that with a standard approach without using 

weighting windows (say, a top hat moving average, indicated with TH) the obtained 

profile is only slightly modulated with respect to the original one, the peak 

displacement being 2% smaller; the application of a Blackman (BL) weighting 

window in both cross-correlation and dense predictor averaging (over a window of 

the same size of the IV) reduces this modulation to less than 0.5%. When      

the modulation by the TH approach is much more evident; the profile obtained by 

using BL in the process is closer to the exact one. 

The speed-up for each step (i.e. the reduction of the processing time relative to 

the time needed to execute the iteration with the full FFT approach) of the process 

is reported in Fig. 5.9. The first step is performed about 75 times faster thanks to 4x 

binning; when a Blackman weighting window is applied, the speed-up is of about 

27 times with respect to the standard FFT approach. For the case of    , and no 

windowing applied, the approach based on block FFT during the grid refinement is 

consistently faster, since a broader search area increases the number of "fast-

detected" peaks; this occurs due to modulation effects, placing the corrector 

displacement peak beyond the limit of the search radius of 0.5 pixels, as shown in 

Fig. 5.10, where the percentage of re-computed full cross-correlation map due to 

direct correlation failure is reported as a function of the iteration number (note that 

in the first iteration all the correlations are executed using the FFT, i.e. 100% of the 

correlation is non-direct; on the other hand, since no repetition of the calculation is 

performed, all the curves start fictitiously from 0 at the first iteration). Altogether, 

when no weighting windows are applied, the processing time is reduced by 18 and 

11 times for the method employing BFFT in the first steps, and the other based only 

on direct cross-correlation with pre-calculation of sums along segments, 

respectively. When weighting windows are applied, the speed-up reduces to a 

factor of 12 and 9 for the two cases. However, one should consider that if the 

standard process with application of weighting windows in the computation of FFT 

is considered as a reference, the process with weighting window is accelerated by 

27 and 21 times, respectively. 

The case of      is quite different, since the region affected by velocity 

gradients is smaller, but the slope of the velocity profile is much higher. In this case 

for all the 4 presented methods a not negligible percentage of non-direct cross 

correlations is still present even in the last iterations because of the modulation of 

the velocity profile; this reduces the maximum allowed speed-up of the cross-

correlation algorithm to 6.4 and 5.9 times for the methods without the aid of 

weighting windows, with or without BFFT, respectively (the corresponding speed-

up in case of filtering of the cross-correlation map with a Blackman weighting 

window is 3.9 for both the methods). One should note that the percentage of non-

direct cross correlations for the method without using weighting windows 

increases with the number of iterations; this occurs because of aliasing. This aspect 
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is made clear in Fig. 5.10b. The approach with block FFT implies a higher 

percentage of correlation maps to be recomputed in the 5th step (when direct cross-

correlation is employed) due to the effects of the imposed periodicity, reducing the 

accuracy of the estimated displacement field.  

These issues are less critical if a Blackman weighting window is employed in 

computing the cross-correlation coefficients for all the proposed approaches. In this 

case, the frequency response is more similar to that of an ideal low pass filter 

(Astarita 2007), and no aliasing is present, so that the percentage of non direct 

cross-correlations decreases in the final iterations. 

5.2.4 Experimental test case – swirling jet 

The performances on a real test case are assessed by using the database of a 

tomographic PIV experiment performed in the Jet Tomography Facility (JTF) of TU 

Delft by Ianiro et al (2011). The flow field of a swirling jet at         and swirl 

number equal to 0.4 (see Ianiro & Cardone 2012 for definition) is investigated by 

using three Imager Pro HS 4M cameras observing the light scattered by      

polyamide particles dispersed in an octagonal water tank (     height,      

diameter). The light source is a Quantronix Darwin-Duo Nd:YLF laser, allowing 

             at 1kHz. Nikon objectives with         and    set to 32 are 

used; the optical magnification is approximately      , with an average 

resolution of about         . The particle image density is about         , 

resulting in a source density of 0.34. More details on the experimental apparatus 

can be found in Violato & Scarano (2011). 

A volume self-calibration (Wieneke 2008) is executed to reduce the calibration 

error; 5 MART iterations reconstruct the light intensity distribution in the volume, 

discretized in                 voxels (i.e. a cube of        for each side). Both the 

operations are performed by the Davis 7.4 software. 

The structure of the interrogation algorithm is summarized in Tab. 5.4-5.5 for 

the cross-correlation with top hat moving average, and with the aid of a Blackman 

weighting window (in both cases the dense predictor is averaged over a     voxels 

window). Since the flow field to be measured is challenging, different combinations 

of solutions are tested: block FFT in the refinement part of the process, and direct 

correlations in the final iterations (BFFT+DC); only direct correlation (DC) or block 

FFT (BFFT) during all the process, except for the predictor estimation. Generally 

speaking, one can choose between BFFT and DC for the different stages of the 

process. As shown in Tab. 5.4-5.5, it is proposed to use different solutions for the 

refinement steps and for the final iterations or the same solution for both the stages 

of the process. The initial part of the process is further accelerated by binning the 

distributions to be interrogated by a factor of 4 in the first two steps, and of 2 in the 

third one. 
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Step 
Binning 

factor 

IV 

size 

[vox] 

Effective 

IV size 

[vox] 

      Overlap 

CC 

evaluation 

method 

Processing 

time for the 

standard FFT 

approach [s] 

1 4x 163 643 1.3k 0% FFT-Based 2.6 

2 4x 163 643 12.2k 50% Method 1 20.9 

3 2x 323 643 103.8k 75% Method 1 178.8 

4 1x 483 483 250k 75% Method 1 238 

5 1x 483 483 250k 75% Method 2 239 

6 1x 483 483 250k 75% Method 2 239 

Table 5.4 Processing algorithm: in the refinement section the CC evaluation method can be different 

from that of the iterations on the final grid. 

Step 
Binning 

factor 

IV 

size 

[vox] 

Effective 

IV size 

[vox] 

Nvect Overlap 

CC 

evaluation 

method 

Processing 

time for the 

standard FFT 

approach 

with 

weighting 

windows [s] 

1 4x 243 963 1.3k 33% FFT-Based 44 

2 4x 243 963 12.2k 67% Method 1 317 

3 2x 483 963 103.8k 83% Method 1 2662 

4 1x 723 723 250k 83% Method 1 2348 

5 1x 723 723 250k 83% Method 2 2349 

6 1x 723 723 250k 83% Method 2 2349 

Table 5.5 Processing algorithm in the case of adoption of a Blackman weighting window in the cross-

correlation step: in the refinement section the CC evaluation method can be different from that of the 

iterations on the final grid. 

The results in terms of reduction of processing time are reported step by step 

in Fig. 5.11a. Binning the distributions by a factor of 4 provides an acceleration of 

about 63 times of the predictor estimation; the second step is even faster when 

BFFT is employed, while direct correlation is slowed down by a relevant percentage 

of non-direct correlations to be performed (see Fig. 5.11b). The obtained speed-up 
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Fig. 5.11 Top hat moving average approach: a) Speed-up for each step as a function of the processing 

steps; b) percentage of non-direct correlations. 

 

Fig. 5.12 Instantaneous vorticity magnitude isosurfaces (                , in red) and of Q-criterion 

(in blue); planes of velocity vectors (color-coding indicates y-component). a) BFFT +DC b) BFFT c) BFFT 

+ DC and d) standard process with filtering with Blackman window in the correlation step. 
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Fig. 5.13 Examples of profiles of the streamwise velocity component along the crosswise direction. 

decreases in the refinement part as the binning factor is reduced up to unity. In the 

final iterations acceleration is recovered thanks to the results convergence on the 

final grid, reducing the percentage of non-direct correlations to be executed with 

the aid of FFT. In this sense, BFFT performs better than direct correlation thanks to 

a wider search area for the correlation peak. The overall speed-up is about 4.9, 6.6 

and 11.8 times for DC, BFFT+DC and BFFT, respectively. 

On the other hand, one should consider the accuracy and reliability of the 

results. The instantaneous vorticity fields reported in Fig. 5.12 testify that BFFT 

provides noisier results because of artefacts derived from the imposed periodicity 

on small IV, while DC on the final correction steps provides better convergence to 

slightly smoother results. However, the standard deviation of the difference 

between the two velocity field is rather small (0.07 pixels and 0.09 pixels for the u 

and v component, respectively). 

An improvement in spatial resolution can be obtained adopting a Blackman 

weighting window in the cross-correlation step (see Fig. 5.12c). Of course, this 

increases the computational cost since more terms have to be computed to obtain 

the cross-correlation coefficients. However, if compared to the standard process 

based on FFT, the interrogation is executed 1.3 times faster with the approach 

BFFT+DC, with much better results. Considering that an "equivalent standard 

process", based on FFT weighted with a Blackman weighting window (Fig. 5.12d) is 

executed 10 times slower than the standard process with top hap filtering, this 

involves an acceleration of 13 times of the process BFFT+DC with respect to the 

respective standard one, with roughly the same results. The comparison between 

Fig. 5.12c and 5.12d points out that the proposed algorithm does not lead to a 

reduction of the accuracy; on the contrary, when DC is used in the last iterations of 

the process, the results are not affected by the artefacts due to the imposed 

periodicity when using the FFT. In these two last cases, the standard deviation of 
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the difference between the two velocity field is slightly larger than the previous 

comparison (0.09 pixel and 0.12 pixel for the   and   component, respectively), but 

still within the expected measurement accuracy. 

In Fig. 5.13 the profiles of the streamwise velocity component along a straight 

line parallel to the x axis are reported for the same velocity fields illustrated in Fig. 

5.12. The chosen profile placed is not exactly corresponding to the diameter of the 

nozzle, so that the modulation effects are clearly highlighted using peaks with 

different intensity and width. As expected, the process with windowing enables to 

have an improvement in the spatial resolution, being the profiles less affected by 

modulation issues. 

5.2.5 Conclusions and guidelines 

The results show that the processing time can be reduced by roughly two 

orders of magnitude; on the other hand, the interrogation acceleration is very 

sensitive to the complexity of the flow field and to the quality of the distributions to 

be interrogated, since most of the processing time is connected to the number of 

cross-correlation maps to be recomputed with the aid of FFT because of the failure 

in the peak identification within a narrow search area. 

When dealing with the presented solutions to accelerate the process, the 

experimenter has to be aware that, in order to obtain the maximum speed-up, the 

process must be tuned with respect to the flow field under investigation. The 

results highlight the following points: 

 When the overlap ranges between 25% and 75%, block cross-correlations 

provides the highest speed-up with respect to the standard process (even 800 

times in the case of 100% of successful peak search within the area of 1 pixel); 

on the other hand, weighting windows cannot be rigorously applied in the 

cross-correlation step; 

 The obtainable speed-up is flow field – dependent, in the sense that the peak 

search within a narrow area during the iterations can fail in regions with 

intense curvature of the velocity profile (e.g. shear layers). This aspect is 

particularly critical in the first steps of the process, when larger IV and 

smaller overlap values are used, causing a possible modulation of the velocity 

field. Generally speaking, no universal guideline can be given on the search 

radius choice for the peak detection; the application to the extremely 

complicate flow field of a swirling jet suggests that a search radius of 2 pixel 

suffices in determining an acceptably low rate of failure in the peak detection 

throughout all the process, retaining at the same time a relevant reduction of 

the computational cost; 

 Direct correlation has always to be preferred to FFT in terms of accuracy. 

However, block FFT has shown to be very appealing in terms of 

computational cost reduction when the search radius has to be larger than 1 
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pixel. On the other hand, the experimental results suggest that performing the 

final iterations using direct correlation can recover the loss of accuracy due to 

the imposed periodicity artefacts. 

5.3 Effects of poor discretization of the weighted 

cross-correlation 

It has been proved that weighting windows can be very useful for a wide range 

of purposes: Nogueira et al (1999) introduced a weighting window to stabilize the 

interrogation process based on image deformation methods, and in subsequent 

papers (Nogueira et al 2001, Lecuona et al 2002) it is highlighted that scales 

smaller than the interrogation windows can be followed if correctly sampled by the 

particle motion; Astarita (2007) reviewed the performances of a wide range of 

weighting windows and developed a theoretical model to determine the MTF of the 

interrogation process when weighted dense predictor averaging is employed to 

stabilize the process; Astarita (2009) used the weighting windows feature to assess 

an adaptive PIV interrogation method; Novara et al (2013) made large use of 

spatially oriented Gaussian weighting kernels in the implementation of a 3D PIV 

adaptive interrogation algorithm.  

However, the adoption of weighting highly-overlapping windows in cross-

correlation computation introduces an unacceptable increase of processing time 

(see Sec. 5.1.3), urgently imposing to use the efficient “redundancy-free” algorithms 

presented in Sec. 5.1. In most of the applications the overlap ranges between 50% 

and 75%, so that the temptation of using the very efficient block cross-correlation 

can be compelling. On the other hand, in this case the weighting windows cannot be 

rigorously applied since they have to be replaced by a piecewise version, since each 

block can be weighted only by a single value.  

The aim of this section is to outline that poor discretization of the weighting 

windows can lead to undesirable effects on the MTF of the process, even 

unexpected instability. The stability and the accuracy of the process are discussed 

using the theoretical model by Astarita (2007); eventually, the algorithm is tested 

on 3D simulated distributions of particles. 

5.3.1 The theoretical model for the MTF estimation 

The algorithm presented in Sec. 5.1 is considered as a reference in this section. 

By indicating with   the modulation associated with the step 1, with   the 

modulation due to predictor averaging (step 5) and with   the modulation due to 

interpolation (step 2), Astarita (2007) predicts the modulation at the generic  -th 

iteration as: 

    cmabcm kk 11 1         (5.10) 
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Recalling that     , Astarita (2007) introduces a stability criterion: 

                   (5.11) 

Using (5.10)-(5.11) one can predict the MTF of the interrogation algorithm at 

the generic iteration  , and the range of wavelengths causing instability (if any). In 

the following large use of these instruments will be made. 

5.3.2 Spatial resolution and stability of block weighting windows 

In this section the MTF of block weighting windows is assessed. It will be 

assumed in the following that no modulation occurs due to interpolation (i.e.   

 ); this condition is closely met in case of small grid distance and high accuracy 

interpolation scheme, e.g. B-Splines of high order, see Astarita (2008). In section 

5.3.2.1 the modulation of solely the cross-correlation step will be considered, i.e. 

the modulation in case of the so called local approach, in which the corrector is 

directly summed to the predictor, without any spatial averaging of the dense 

predictor. In section 5.3.2.2 the stability of the algorithm in case of weighted 

predictor averaging will be considered. 

5.3.2.1 Stability of the process with local approach 

When no dense predictor averaging is performed (i.e.    , as proposed by 

Nogueira et al 1999), and no modulation occurs due to interpolation (   ), the 

relation (5.11) reduces to the requirement of positive   for a stable process. 

The MTF of a triangular, a Blackman, a Gaussian window (with parameter 

   ) and the weighting window proposed by Nogueira et al (1999) are compared 

for different values of the overlap percentage, i.e. number of blocks (obviously, the 

case of 50% overlap cannot be considered, since in this case every weighting 

window is reduced to a top hat). The MTFs are plotted in Fig. 5.14 as a function of 

the normalized frequency, i.e. the ratio between the IV size (indicated in this section 

with the letter  , and equal to 60 pixels for this investigation) and the wavelength 

 .  

The triangular function, and the weighting window proposed by Nogueira et al 

(1999), in their original versions, ensure the stability even with the local approach, 

since their MTF is definite semi-positive; the Blackman and the Gaussian window, 

on the other hand, are to be coupled with some dense predictor averaging, due to 

slightly negative values for high frequency, mainly due to discretization effects. 

However, when the discretization is very poor, as in block cross-correlation, even 

the triangular function and the function proposed by Nogueira et al (1999) present 

unexpected negative lobes in its MTF, causing instability in local approach 

application. The high frequency fluctuations are due to the abrupt variations of the 

weighting function between neighbouring blocks.  
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Fig. 5.14 Comparison of the MTF of weighting windows and their piecewise version for several overlap 

values (    stands for   blocks): a) triangular; b) Blackman; c) Gaussian,    ; d) Nogueira et al (1999). 

Otherwise stated, the poor discretized weighting functions can be considered 

as sum of properly weighted top hat windows, contributing with their own 

frequency response in building the MTF of the window. E.g., in case of 3 blocks 

discretization, the weighting window can be considered as a sum of a pedestal, with 

the height equal to that of the two external blocks, and a central top hat, one third 

of the total window wide (see Fig. 5.1). The MTF of the 3-blocks window is the sum 

of two aliased      functions: the first one, due to the pedestal, disappearing very 

quickly as the normalized frequency increases, the second one due to the small 

central kernel, introducing high frequency fluctuations. 

In case of 3 and 4 blocks the performances are very similar, with wide 

oscillations and negative lobes: this is due to the fact that, when using an even 

number of blocks, the two central blocks are weighted with the same value (i.e. as a 

matter of fact the window is composed by only     blocks, the central one being 

twice as large as the other blocks). In all the reported cases using 80% overlap (i.e. 

5 blocks) reduces the intensity of the fluctuations of the MTF, and determines 

negative lobes for wavelengths smaller than 5 times the IV size. Acceptably small 

fluctuations, however, are reached only when 7 blocks or more are used (i.e. about 

a) b) 

c) d) 
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86% overlap). Even in that case, the local approach is unstable; the stability of the 

process can be obtained by using weighted dense predictor averaging, i.e.    . 

5.3.2.2 Stability of the process with weighted predictor averaging 

Differently from the cross-correlation step, in step 5 the weighting windows 

can be applied rigorously (the computational cost of dense predictor summing is 

very small if compared to the other steps of the process, so that there is no 

reasonable incentive to use block summing). The MTF, in this case, can be obtained 

by using (5.10), where   is the modulation due to piecewise weighting window,   is 

the modulation of the original window with the proper discretization, and   is again 

set to 1. 

Recalling (5.11), in case of negative modulation in the cross-correlation step 

(some negative lobes have been observed in all the cases due to poor 

discretization) the process can be stabilized by a small positive or negative  . 

Different results can be obtained by using different windows in the dense predictor 

averaging; however, Astarita (2007) demonstrated that the main characteristics of 

the MTF are lead by the window chosen for the cross-correlation step. For this 

reason, from this moment on only the top hat window will be used for the dense 

predictor averaging, without any loss of generality. In Fig. 5.15 the MTFs for the 

case of the Gaussian window with     after 3 and 100 iterations are reported. 

Three main discretization levels are investigated, i.e. 3, 4 and 5 blocks. The MTF of 

the original window is reported for comparison in Fig. 5.16. 

Astarita (2007) observed that all the investigated weighting windows are 

stable when a predictor average with a top hat window of size      is applied. 

This is not the case of poorly discretized weighting window. A summary of the 

minimum size of the predictor average window in order to have a stable process is 

reported in Tab. 5.6; however it is important to point out that these results may be 

consistently higher if a different weighting window is used to average the dense 

predictor. The process is always stable when the size of the dense predictor 

averaging window is more than 7 pixels wide when a top hat moving average is 

applied. 

The MTFs of the block cross-correlation approach show already undesired 

features after only 3 iterations: whichever is the chosen size for the predictor 

averaging window, all the curves present a wide negative lobe for       and 

        in the case of 3 and 4 blocks discretization, respectively. In the case of 

5 blocks discretization the negative lobe affects only very small scales, and it is of 

moderate intensity. Increasing the number of iterations, the curves relative to 

     and      rapidly diverge for the 3 and 4 blocks discretizations, being the 

process unstable. In the case of 5 blocks discretization, even if the process is stable  
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Fig. 5.15 MTF of a Gaussian window (   ) as a function of the normalized spatial frequency for 
different size Wb of the window over which the predictor is averaged. Results reported after 3 iterations 

(a,b,c) and 100 iterations (d,e,f) in the case of 3, 4 and 5 blocks from the left to the right. 

 
 

Fig. 5.16 MTF of the original Gaussian window (   ) as a function of the normalized spatial frequency 

for different size    of the window over which the predictor is averaged. Results reported after 3 

iterations (a) and 100 iterations (b). 

 3 bl 4 bl 5 bl 6 bl 

Gaussian (   ) 5 7 3 3 

Blackman 5 6 3 4 

Triangular 5 6 3 3 

Table 5.6 Minimum size (pixel) of the dense predictor averaging window Wb in order to have a stable 

process. 
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for     , the MTF has a negative peak of about -2.7 at        . However, one 

should note that      is not advisable also for the original window, since the 

MTF presents wide oscillations, with a negative peak of approximately -1 at 

       . 

When      , the MTF is substantially unchanged in all the cases, i.e. a good 

convergence is reached after few iterations. The case of moderately small    (i.e. 

     ) is slightly different. While for the original window the MTF is 

monotonically decreasing for small normalized frequency, and then slightly 

oscillating around zero with decreasing amplitude, in the case of 3 and 4 blocks 

discretization wide negative lobes are present, with non negligible intensity. The 

situation is much worse in the case of 4 blocks discretization, being the negative 

peak equal to about -0.8 at        . For the 3 blocks discretization the negative 

peak is much less intense (approximately -0.4). On the other hand, when 5 or more 

blocks are used and      , the region of negative MTF is practically the same of 

the cases with      . This behavior is quite independent of the chosen original 

window.  

5.3.3 Performance assessment by 3D simulations 

The performances of the process with the block weighted cross-correlation are 

assessed by using virtually generated distributions of particles. Two different 

layouts are investigated: zero-displacement on a                 voxels volume, 

and one-dimensional sinusoidal displacement field on a                 voxels (the 

displacement is along the x direction, while the gradient is imposed on the   

direction, with wavelength variable between 600 and 40 voxels). Particles with 

Gaussian shape, 200 counts of peak intensity and     diameter of approximately   

voxels are randomly distributed within the volumes; a Gaussian noise with a mean 

of   counts and a standard deviation of   counts is superimposed to the intensity 

distributions. In both cases the particle concentration is          particles per 

voxel, i.e. approximately      particles in an interrogation region of          

voxels. The large number of particles ensures that the investigated wavelengths in 

the second test layout are correctly sampled. The size of the interrogation window 

is    voxels (accordingly, in the case of the overlap of    ,     and     the size 

of each block is   ,    and    voxels, respectively). 

The accuracy is reported in terms of total error  : 

   
 

 
         

          (5.12) 

where   is the number of computed vectors,    is the  -th measured vector, and   is 

the correct displacement value. The first layout is particularly suitable to measure 

the accuracy of the process when a high accuracy interpolation scheme is used in 

step 2 of the algorithm (in the present work the velocity field is interpolated with a  
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Fig. 5.17 Total error as a function for the number of iterations. Left: 4 blocks discretization (75% 

overlap) and different size of the dense predictor averaging window. Right:      and variable overlap. 

B-Spline of      degree), since the bias error is very small and it is not influenced 

by the noise level (Astarita 2006); in this case the average total error is practically 

coincident with the error at zero displacement. 

As in Sec. 5.3.2, a Gaussian filtering window with parameter     is adopted 

in the cross-correlation, and a top hat moving window with variabile size    is 

used ( ,  ,   ,   ,    and    voxels).  

The spatial resolution is assessed in terms of the MTF (4.2). 

5.3.3.1 Precision 

In Fig. 5.17 the total error is reported as a function of the number of iterations 

to assess the convergence of the process (for clarity the symbols are reported only 

each 5 iterations). In Fig. 5.17, left, the results in the case of 75% overlap (i.e. 4 

blocks discretization) show that in the case of       the process converges quite 

rapidly (the average total error is substantially unchanged after 5 iterations). The 

cases with      and   are within the range of instability of the method; as 

expected the error diverges, even if the divergence is quite slow in the second case 

(the modulation in the step 2 of the process due to the relatively large grid distance 

of 15 voxels can significantly restrict the instability range). In the case of       

the error is still increasing after 20 iterations, even if the rate of increase of the 

error is relatively slow. 

In Fig. 5.17, right, the total error is reported for      for the three different 

discretizations of (3, 4, 5 blocks) and for the exact discretization over the size of the 

window (in this last case, the process is theoretically stable, Astarita 2007). The 

rate of increase of the error is consistently higher in the case of the process with 

block-discretized weighting windows in the cross-correlation step; the error is  
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Fig. 5.18 Modulation Transfer Function (left) and total error (right) as a function of the normalized 

frequency for     . 

about 2 times higher with respect to the process with correct application of the 

weighting window after only 4 iterations, while it is more than 2.5 times higher 

after 15 iterations. 

5.3.3.2 Spatial resolution 

The MTF for the case of      is reported in Fig. 5.18, left, for different levels 

of discretization of the weighting windows. One should note that the measured MTF 

is much lower than the theoretical estimate reported in Sec. 5.3.2. The main reason 

for this discrepancy is the sensitivity to the noise effects of (4.2); the higher values 

of the theoretical MTF in the case of the 3-blocks discretization at higher frequency 

determine a stronger contamination of the MTF due to the noise (i.e. the measured 

MTF is consistently lower than the one relative to different levels of discretization). 

In addition, one should note that the theoretical estimated MTF does not take into 

account that the particles are randomly distributed, and they may not be able to 

properly sample the signal in the entire volume. However, this aspect is supposed 

to determine similar degrading effects to the MTFs of all methods, regardless of the 

discretization level of the weighting window. 

The total error, reported in Fig. 5.18, right, as a function of the wavelength, is 

determined both by the presence of noise and by the modulation of the velocity 

profile. This latter effect is dominating, and determines a higher error for the 

process with 3 blocks discretization, except for the smaller tested wavelength (in 

this case the MTF for the process with 3 blocks discretization is the highest one). In 

the case of 4 and 5 blocks discretization, the performances are very similar; 

however, since the results are evaluated after only 20 iterations, and the process 

with 4 blocks discretization in this configuration is unstable (for    ), the 

difference between the two methods can be asymptotically larger.  
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5.3.4 Conclusions and guidelines 

The results clearly underline that a poor discretization of the weighting 

window can determine a consistently different behaviour in terms of impulsive 

response of the algorithm, determining instability even when it is not theoretically 

expected. The local approach is never recommended, unless the number of blocks 

used for the discretization is consistently high (at least 10 blocks, i.e. 90% overlap); 

on the other hand, in this case, the block cross-correlation has been proven to 

provide a lower speed-up with respect to other approaches (pre-calculation of the 

contribution to the cross-correlation coefficients along segments or planes, instead 

of blocks), in which the weighting windows can be applied correctly.  

On top of this, for a proper stabilization the process with block-discretization 

requires larger windows for the dense predictor average with respect to the case of 

the exact discretization of the weighting window over the whole size of the 

interrogation volume. 

The virtual simulations highlight that the poor discretization of the weighting 

windows determines a higher sensitivity to random noise, i.e. a larger total error. 

This is due to the strong fluctuation of the MTF at high frequency, generated by the 

abrupt variations within the weighting window. In summary, in the application of 

block weighted cross-correlation two rules of thumbs can be proposed: 

 When it is possible, use a odd number of blocks: this is because, when using a 

even number of blocks, the central blocks are equally weighted, determining 

in the frequency response a larger negative MTF for frequencies ranging 

between                        (the two central blocks of the weighting 

function can be considered a top hat filter with size equal to twice the size of 

each block); 

 Use wide dense predictor averaging windows (for the top hat approach 

      is suggested when the discretization is performed on 5 or more 

blocks). 
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Chapter 6 - Low-cost Tomo-PIV systems 

Tomo-PIV requires a significant effort in terms of cost of the experimental 

setup, since at least 3-4 cameras are required for a successful tomographic 

reconstruction. In particular double-shutter cameras for PIV applications are much 

more expensive than common cameras. However, the requirement of double-

shutter cameras, which is very strict in planar PIV due to the need to acquire two 

separate images from the same point of view for the image cross-correlation, ceases 

to exist in a Tomo-PIV setup (in principle it can be eliminated also for planar PIV at 

the expense of the simplicity of the experimental setup and procedure, using two 

cameras and the plane identification method proposed by Discetti & Adrian 2012). 

In fact the 3D light intensity distributions can be reconstructed by observing the 

two exposures with independent imaging systems. Thus, while at least three 

double-shutter (or high speed) cameras are required in the standard (or high 

speed) Tomo-PIV implementation, the approach proposed herein requires the use 

of two imaging systems of three (or more) cheaper single-shutter cameras. The cost 

of the experimental setup can be strongly reduced since typically a single-shutter 

camera can be up to 10 times cheaper than a double-shutter camera with the same 

imaging quality (i.e. similar pixel size and quantum efficiency). Some guidelines on 

the possible arrangements of the proposed experimental setup are provided in Sec. 

6.1. 

Moreover in this scenario the ghost particles are not expected to coherently 

contribute (and hence, produce bias errors, see Sec. 2.2.2) to the cross-correlation 

map, since their distribution depends on the arrangement of the imaging system. In 

other words, the same particles pattern will produce approximately the same 

number of ghost particles (Sec 2.2.1), but their locations in the two exposures are 

uncorrelated, as explained in Sec. 6.1. In this framework it is reasonable to assume 

that the effectiveness of the Motion Tracking Enhanced MART (MTE-MART, Novara 

et al 2010) is maximized, independently of the flow field features. 

A numerical analysis of the spatial resolution (in terms of Modulation Transfer 

Function MTF) is presented in Sec. 6.2 using 2D numerical simulations. 3D 

simulations of synthetic experiments with a jet-like flow field with and without 

velocity gradients in the depth direction are described in Sec 6.3 in order to assess 

the effect of MTE-MART. 
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Fig 6.1 Schematic of imaging systems for a jet-like flow field: a) Traditional Tomo PIV setup with 3 

double-shutter cameras (in red and blue); b) Low Cost Tomo-PIV setup with 3 single-frame cameras for 

the first exposure (in red) and 3 single-frame cameras for the second exposure (in blue); c) Low Cost 

Tomo-PIV setup with 2 double-shutter cameras (in red and blue) and 2 single-frame cameras (for the 

first and second exposure in red and blue respectively). 

6.1 Proposed experimental setup 

In Tomo-PIV, the set of cameras to be used for the imaging of each exposure of 

the illuminated volume (i.e. the 2D projections for the volume reconstruction) is  

not required to be the same. If two different imaging systems are used for the 

reconstruction of the first and the second exposure, the required number of 

cameras is doubled. This introduces a complication on the experimental setup 

(more optical accesses, Scheimpflug camera mounts, optics, etc. are needed); on the 

other hand, one can purchase much cheaper single-shutter cameras, since the 

requirement of double-shutter cameras does not hold anymore. 

In particular the simplest idea for the experimental setup is the use of 2 

systems of three single-shutter cameras for the reconstruction of the first and the 

second exposure (see e.g. Fig. 6.1 where a schematic of possible imaging systems 

for a jet-like flow field is presented). Another possible implementation consists of 

two double-shutter cameras (available in all the labs in which stereoscopic PIV 

experiments are already performed) together with two single-shutter cameras, 

obtaining two imaging systems composed by the two double-shutter cameras and 

by the first and the second single-shutter camera for the first and the second 

exposure, respectively. 

6.1.1 Suppression of the bias effect of the coherent ghost particles motion 

The phenomenon of the ghost particles production and their effect on the 

measured flow field for the traditional Tomo-PIV setup and for the proposed low-

cost system are sketched in the schematic of Fig. 6.2 (for the simplified case of 1D 

projections with two cameras). The actual and ghost particles are represented as 

filled and empty circles, respectively. Red and blue colours are used for the first and  



Chapter 6 – Low-cost Tomo-PIV systems 
 

104 

 

 
Fig. 6.2 Schematic of the ghost particles formation and motion in the traditional and in the Low Cost 

Tomo PIV setup. 

the second exposure. The schematic highlights that in the traditional Tomo PIV 

setup, as described by Elsinga et al (2011), ghost particle formed from the same set 

of actual particles in both the reconstructed volumes are characterized by a 

resulting displacement that is approximately the average displacement of the set of 

the associated actual particles (see Sec. 2.2.2 for further details), causing a 

modulation of the velocity gradients. It has to be pointed out that the coherent 

motion of the ghost particles determines a non negligible contribution in building 

higher (but, unfortunately, biased) cross-correlation peaks. This aspect is 

particularly dangerous, as it might result in misleading interpretation on the quality 

of the measurement. In the proposed Low Cost Tomo-PIV setup (from now on 

referred as with the acronym LC, i.e. Low Cost) the ghost particles formed in the 

two subsequent exposures by the same set of actual particles are expected to 

randomly contribute to the cross-correlation maps. In fact, as shown in Fig. 6.2 

(bottom), the number of ghost particles is the same of the standard Tomographic 

PIV system, as it depends mainly on the number of cameras and actual particles; 

however, their locations in the two exposures are completely uncorrelated with the 

actual particles displacement field. Accordingly, the bias effect is completely 

removed, at the expense of a reduction of the signal-to-noise ratio. 
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Fig. 6.3 Schematic of the working principle of MTE in case of weak velocity gradients along the depth 

direction for the traditional TomoPIV setup and the LC system. 

As a matter of fact, in this framework the ghost particles contribution to the 

cross-correlation maps can be imagined as an out-of-plane motion (without any 

implication on perspective effects), determining a loss of pairs between the two 

exposures. A more complete model for the prediction of the number and intensity 

of the ghost particles, in this scenario, would potentially lead to an analytical 

predictability of the performance of the 3D cross-correlation interrogation via 

introduction of a novel loss of pairs factor in the analysis conducted by Keane & 

Adrian (1992). 

6.1.2 Accuracy improvement via MTE-MART 

The non-coherent ghost particles motion can be exploited for the suppression 

of the reconstruction artefacts. The MTE is particularly well suited to perform this 

task, since it is designed to eliminate inconsistent features of subsequent 

exposures. The working principle of MTE and its high effectiveness for the low cost 

Tomo-PIV setup are highlighted in Fig. 6.3, where the same particle pattern and 

camera configuration of Fig. 6.2 are used. In principle, a first guess for the 

distributions is obtained using, for example, the MART procedure. A rough 

displacement field is obtained by cross-correlating the first guess distributions. 

Subsequently, a pseudo-1st exposure is built by deforming the 2nd exposure 

according to the displacement field interpolated on each pixel (the same procedure 

is applied on the other exposure). The pseudo 1st exposure is summed to the 

original one; in this step, the actual particles are supposed to be strengthened, 
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while the ghost particles are not if, and only if, they do not move coherently in the 

two exposures.  

In the standard implementation of Tomo PIV the coherent motion of ghost 

particles strongly limits the effectiveness of MTE. In fact Novara & Scarano (2012a) 

show that, when the velocity gradients are limited, only a moderate reduction in 

ghost intensity is expected by MTE. This aspect is clearly evident in the top part of 

Fig. 6.3. In the case of the traditional Tomo PIV setup, in fact, by summing the 

pseudo 1st exposure to the 1st exposure the ghost particles have nearly the same 

displacement of the actual particles and the resulting guess for the next MART 

iterations still contains the ghost particles unabated. On the other hand, in the case 

of the LC setup, the MTE is evidently effective independently of the flow features 

(i.e. the velocity gradients along the cameras viewing direction). Of course, the 

execution of the MTE algorithm implies an increase of the computational cost; 

however, one can easily reduce the processing time of the 3D PIV processing 

algorithm of one or two orders of magnitude with the solutions presented in 

Chapter 5. 

6.2 Numerical simulations 

In this section the performances of the LC setup are assessed in terms of spatial 

resolution and potential improvement on the accuracy with the MTE-MART. The 

spatial resolution is assessed similarly to the approach in Sec. 4.2.2 imposing a 

sinusoidal displacement on 2D distribution of particles reconstructed with 1D 

cameras. The accuracy of the method and the test on the effectiveness of the MTE-

MART for the LC system is tested in the 3D scenario with synthetic particles 

distributions and the jet-like displacement field modelled by (5.9). 

6.2.1 Spatial resolution 

The volume considered for the present analysis is a slice of              

discretized with         . The synthetic imaging system for the traditional 

Tomo-PIV arrangement is composed by three cameras oriented at -45°, 0° and 45°. 

The proposed LC system is composed by 3+3 cameras oriented at -45°, -10° and 30° 

for the first exposure and -30°, 10° and 45° for the second exposure. The results are 

compared also with the case of a setup composed by six double-shutter cameras in 

the same overall arrangement of the LC system. Gaussian particles with a diameter 

of 3 voxels and maximum particle intensity of 200 counts are randomly distributed 

in the slice to be reconstructed. A sinusoidal displacement field, with   

            and     is imposed; the wavelength   is varied between 24 and 240 

pixels. The present simulation is performed at three levels of source density    

(namely 0.15, 0.25 and 0.35), defined as (1.4); the only difference is that the area is 
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Fig 6.4 Modulation Transfer Function plotted against the normalized frequency for the 6cam, 3cam and 

LC systems: a)         b)         c)        . The MTF of the process on the exact distributions 

and the sinc function are included for reference. 

not circular, but it is the area occupied on a linear sensor (the term    
    has to be 

replaced by simply   ). The Modulation Transfer Function is evaluated with the 

(4.2) on the detected flow field averaged over 500 images. The resolution ratio 

between pixels and voxels is set equal to 1; the reconstruction is performed by 5 

MART iterations with a relaxation coefficient of 1. 

Since the flow field is one-dimensional, the PIV process can be performed with 

interrogation windows elongated along the  -direction (in the present case 

         voxels with     overlap in the gradient direction) in order to guarantee a 

sufficient number of particles in every interrogation window. 

The theoretical MTF of a standard PIV approach without applying weighting 

windows (and for the commonly adopted values of the normalized frequency 

defined as the ratio of the interrogation window size   along the depth direction 

and the wavelength  ) is that of a top hat filter, i.e. a      function. Thus the      

profile is used as a reference for the MTF reported in Fig. 6.4. 

For         (Fig. 6.4a) no significant differences are found between the 

proposed methodology and the 3 cameras (3cam) system, while the MTF relative to 
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the 6 cameras (6cam) system is practically the same of the one obtained by 

interrogating the original images (indicated as exact in the legend). One should note 

that for large wavelengths the 3cam system performs better than the LC one, since 

it benefits of the ghost particles contribution to the cross-correlation (the bias 

effect is less important, due to the relatively low gradient along the depth 

direction), reducing the measurement noise. It is important to point out that the 

equation (4.2) is sensitive to noise, i.e. a MTF lower than 1 is estimated in presence 

of noise even if the mean profile is not modulated; when the number of actual 

particles per interrogation window is relatively small, the noise induced by the 

uncorrelated ghost particles leads to a much larger random error, determining a 

lower MTF for the LC system. By increasing the sine wavelength, the bias effect due 

to the ghost particles motion modulates the gradient in the case of the 3cam 

system, while the LC system, as expected, appears to be less affected. At larger 

source densities (see for example        , Fig. 6.4b) the MTF of the LC system 

strongly benefits of the higher number of true particles, and it is comparable with 

that of the 6cam system, while the MTF of the traditional 3cam system is 

consistently lower (the higher is the source density, the higher is the number of 

ghost particles; accordingly the bias effects are more intense); at source density 

        (Fig. 6.4c) this effect is significantly more evident. 

In Fig. 6.5a-c the averaged flow fields and the correlation maps relative to a 

          pixels region in the centre of the slice are presented for the condition 

with         voxels and        . The LC system is able to obtain the same mean 

flow field obtained by the 6cam system, even if the slightly lower MTF testifies an 

increase of the measurement noise on the single realization. The presence of the 

noise is exemplified in the correlation maps. The LC system produces a normalized 

correlation peak of 0.22 corresponding to a signal to noise ratio (defined as the 

ratio of the first and the second tallest peaks in the cross-correlation map) of 2.8, 

which is much lower with respect to the signal to noise ratio achieved by the 6cam 

system (approximately 8.2) and by the 3cam system (about 5.6). It has to be 

remarked that the 3cam system, despite of the high signal to noise ratio (which 

might lead to a misleading interpretation on the quality of the results), is affected 

by bias effects due to the correlation of the ghost particles (see Fig. 6.5, middle-left). 

On the other hand, the noise level for the LC system can be easily reduced by 

applying the MTE MART, as discussed in the Sec. 6.1.2 and illustrated in Sec. 6.2.2. 

Interestingly enough, the results of Figs. 6.4-6.5 reveal that the quality of the 

reconstruction does not tell everything about the accuracy and the spatial resolution 

of the measured velocity field. In fact, the quality of the reconstructed slices for the 

3cam and the LC system is exactly the same for the two exposures (about 0.81, 0.59 

and 0.47 for the three tested levels of source density), but the final results are 

dramatically different. In other words, the statement on the quality factor 

“       is a good indicator for the quality of the results” is flawed. 
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Fig 6.5 Evaluated flow field and example of correlation map at  =248 pixels and Ns=0.35: LC (top), 3cam 

(middle), 6cam (bottom). 

6.2.2 Measurement noise and MTE 

In this sub-section numerical simulations on 3D synthetic particle distributions 

reconstructed by 2D cameras are presented in order to analyze the effect of the 

proposed imaging setup on the measurement noise and the possibility to improve 

the quality of the results with MTE-MART. The reconstructed region for the present 

analysis is a volume of                  with a spatial discretization of 

          (                voxels). 

The synthetic imaging system for the reference Tomo-PIV system is composed 

by 6 cameras, disposed on two horizontal groups (as in Fig. 6.1b); on each 

horizontal group the cameras are angularly equally spaced by 30° and the two 

horizontal systems describe an angle of 60°, so that, in total, an angle of 60° is 
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enclosed by the outer cameras in both directions. From now on, the two horizontal 

groups will be referred as rails on which the cameras are placed (this terminology 

actually resembles the possible practical implementation of the system). 

The performances of three systems are compared: 6 double-shutter cameras 

system; three double-shutter cameras (2 outer cameras of one rail and one on the 

centre of the other rail as in Fig. 6.1a) and a LC system with 2 imaging systems 

similar to that used for the 3 double-shutter cameras (i.e. the imaging systems for 

the first and the second exposure describe two triangles, with the vertices on the 

opposite sides as in Fig. 6.1b). 

Gaussian particles with 3 voxels diameter and a maximum particle intensity of 

200 counts are randomly distributed in the volume to be reconstructed. A jet-like 

displacement field is imposed, according to (5.9). Two cases are discussed, i.e. a jet-

like profile directed along the z and y directions. In the first case there is no velocity 

gradient along the depth direction  , thus the MTE is expected to be nearly 

ineffective in the traditional 3cam layout, conversely to the case of the proposed LC 

system; in the second case the gradient along the depth direction determines the 

MTE to be highly effective for both systems. 

The present simulation is performed at a source density of 0.24 corresponding 

to 0.035   . The resolution ratio between pixels and voxels is set equal to 1. The 

first MTE step is applied after 5 iterations; subsequently, a MTE step is applied after 

each 3 MART iterations. 

The PIV process is executed using              voxels interrogation windows 

with     overlap. Since the aim of the present simulations is to estimate the 

overall accuracy of the proposed method no ensemble averaging is performed. 

The flow fields relative to a jet aligned with the   direction (without velocity 

gradients in the main camera viewing direction) are presented in Fig. 6.6. Both the 

flow fields obtained with the LC and with the 3cam systems (Fig 6.6a and Fig. 6.6c, 

respectively) are strongly affected by the measurement noise; however, the 3cam 

system exhibits also a modulation of the velocity field, which is not present in the 

case of the LC system. This aspect is testified by the scatter plot of the error along 

the   and the   direction reported in Fig. 6.7b. The elongated asymmetric shape of 

the scatter plot for the 3cam system is due to the modulation of the velocity profile. 

With the application of the MTE, the quality factor of both the LC and 3cam 

systems increases significantly (Fig. 6.7a); in this case the MTE is less effective for 

the 3cam system, as expected. The qualitative inspection of Fig. 6.6b and 6.6e 

reveals that the measurement quality of the LC system is comparable to that of the 

6cam system. Despite of a very high quality factor (around 0.86 after 3 MTE steps, 

against 0.91 achieved by 6cam), the LC system still exhibits some marginal noise 

effects, probably due to the fact that the particles are reconstructed with different 

shapes in the two reconstructed objects. This aspect is more evident in Figs. 6.7c 

and 6.7d, where the root mean square of the error for the   and   velocity  
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Fig 6.6 Numerical simulations on a jet aligned with the   direction – iso-surface ( =15voxels) and 

contour with vector arrows of the displacement along the z direction: a) LC b) LC with 3 MTE steps c) 

3cam d) 3cam with 3 MTE steps e) 6cam. 
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Fig 6.7 Numerical simulations on a jet aligned with the   direction – Comparison between the 3cam and 

the LC system: a) Quality factor Q versus number of MART iterations      ; b) Scatter plot of the velocity 

error in the   and   direction; c) root mean square of the error on the   velocity component versus the 

number of MTE steps; d) root mean square of the error on the   velocity component versus the number 

of MTE steps. 

components are plotted versus the number of MTE iterations for the LC and for the 

3cam system (      are the velocity components along      , respectively). In the 

case of the   component the LC system exhibits a higher level of noise with respect 

to the 3cam system; on the other hand, if the   component is considered, the root 

mean square of the error      in the velocity estimation for the 3cam system is 

much larger, as it is characterized by the bias effect of the coherent ghost particles 

motion. 

The flow fields relative to a jet aligned with the y direction (with velocity 

gradients in the camera viewing direction) are presented in Fig. 6.8. Also in this 

case both the flow fields obtained with the LC and with the 3cam systems (Fig. 6.8a 

and Fig. 6.8c, respectively) are characterized by a relatively strong measurement 

noise. Furthermore, in agreement with Elsinga et al (2011), the 3cam system 

exhibits a much larger modulation. In this case, however, the application of the MTE 

determines a significant improvement of the quality factor of both the LC and 3cam 

systems; the presence of a velocity gradient along the depth direction increases the  
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Fig. 6.8 Numerical simulations on a jet aligned with the   direction – iso-surface ( =15voxels) and 

contour with vector arrows of the displacement along the   direction: a) LC b) LC with 3 MTE steps c) 

3cam d) 3cam with 3 MTE steps e) 6cam. 
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Fig 6.9 Numerical simulations on a jet aligned with the   direction – Comparison between the 3cam and 

the LC system: a) Quality factor   versus number of MART iterations      ; b) Scatter plot of the velocity 

error in the   and   direction; c) root mean square of the error on the   velocity component versus the 

number of MTE steps; d) root mean square of the error on the   velocity component versus the number 

of MTE steps. 

effectiveness of MTE also in the traditional Tomo PIV configuration (compare, for 

instance, the quality achieved by the 3cam system in Fig. 6.7a and 6.9a). However, 

the MTE proves to be still more effective for the LC with respect to the 3cam 

system: due to the strong modulation of the velocity field evaluated with the 3cam 

system, the MTE MART produces a particles distribution that appears filtered in the 

depth direction. The MTE MART is able to reduce the initial modulation of the flow 

field but the final velocity field evaluated is still affected by a significant bias. Also in 

these conditions, despite of a very high quality factor, the LC system still exhibits 

some noise artefacts. 

The measurement noise is quantified in Figs. 6.9c and 6.9d, where the root 

mean square of the error in the   and in the   velocity component is plotted versus 

the number of MTE iterations for the LC and for the 3cam system. For the   

component the LC system exhibits again a higher level of noise with respect to the 

3cam system; indeed, the exact   component is identically zero in the entire 

measurement domain, so the error is only due to random noise, and there are no 

bias effects. Again, the root mean square of the error on the   component for the 
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3cam system is larger, as it is characterized by the bias due to the coherent motion 

of the ghost particles (see, for instance, the asymmetric shape of the scatter plot in 

Fig. 6.9b). 

6.3 Summary and conclusions 

The proposed low-cost experimental setup does not compromise the accuracy 

of the measurements as confirmed by the parametric study on synthetic images. In 

fact, according to the 2D simulations, the effect of modulation due to ghost particles 

is strongly reduced. On the contrary, the measurement noise is found to be slightly 

larger, due the different reconstructed particles shape between the first and the 

second exposure and due to the random effect of the ghost particles on the 

correlation maps. 

The spatial resolution of the LC system is comparable to that of a traditional 

tomographic PIV system with the same total number of cameras, even though the 

quality of the reconstruction for the single exposures is much lower. The 

inconsistent features of the subsequent exposures can be easily eliminated using 

the MTE-MART, which is highly effective regardless of the flow field features in this 

scenario. Furthermore, MTE-MART is expected to be more reliable, since the 

estimated velocity field for the volume deformation is less affected by modulation 

effects than the case of the traditional Tomographic PIV system. 
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Chapter 7 - The decay of fractal-generated 

turbulence 

In turbulence theory very few are the properties believed to hold universally. 

The independence of the turbulent kinetic energy dissipation rate   of the 

kinematic viscosity   in the limit of infinite Reynolds number    certainly belongs 

to this very exclusive class. This hypothesis is one of the most relevant 

consequences of Kolmogorov’s universal equilibrium theory of small scales 

structure (Kolmogorov 1941). The assumption is based on the observation that as 

the    increases (i.e. inertia effects become prevalent on viscous effects) the 

universal tendency of every flow is to develop smaller and smaller structures, i.e. 

sharp gradients, keeping the turbulent kinetic energy dissipation at a constant 

value. In the generic picture of turbulence, it is thought that inertia forces have the 

average tendency to spread the turbulent energy up the spectral pipeline from the 

low-wavenumber energy-containing scales to the high-wavenumber dissipative 

scales (Kolmogorov 1941). In this scenario, since the turnover time of the small 

scales is much smaller than that of the large scales (the two characteristic times 

scale as       ), it is reasonable to assume that the motion of the small scales is 

statistically independent of the relatively slow motion of the large scale turbulence 

and of the mean flow. This leads to the anomalous idea that the small scales motion 

is determined only by the rate of energy transferred by the large scales, and by 

viscosity; furthermore, the dissipation rate can be assumed equal to the rate of 

energy transferred from the large scales, leading to the hypothesis that   depends 

entirely on the large scales turbulence and is independent of viscosity. Taylor 

(1935) proposed the scaling           , where   is the turbulent kinetic energy, 

  is an integral lengthscale, and    is a constant of proportionality, which value is 

different for different classes of flows (Burattini et al 2005, Mazellier & Vassilicos 

2008), provided that the Re number is sufficiently high. This scaling is often 

referred as dissipation anomaly. 

Tennekes & Lumley (1972) define the dissipation anomaly as a cornerstone 

assumption of turbulence theory. It is central in many turbulence phenomenologies 

and modelling (Batchelor 1953, Townsend 1956, Pope 2000), such as one-point 

closures (as the widely used     model) or two-point closures (as in large eddy 

simulation). Strong proofs of its validity have been provided over the last decades: 

Sreenivasan (1984) observed in wind tunnel turbulence generated by bi-plane 

square grids that    is a constant for              (where   is the Taylor 

microscale and     is a Taylor lengthscale-based Reynolds number); direct 

numerical simulation (DNS) data confirm the constancy of   , perhaps with a 

slightly larger minimum     (Sreenivasan 1998, Burattini et al 2005). Evidences 
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against the dissipation anomaly have been reported in the past decades (Bevilaqua 

& Lykoudis 1978, Tong & Warhaft 1994, Lavoie et al 2005), mainly addressed by 

the persistence of coherent structures at all flow scales, determining long-

remembered effects of inlet and boundary conditions. However, the first dramatic 

departures from the constancy of    in experimental measurements are those 

reported by Seoud & Vassilicos (2007) and Mazellier & Vassilicos (2010). They 

observed a significant variation of    in the turbulence generated in wind tunnels 

by fractal square grids (i.e. grids with a square pattern repeated at different scales), 

following approximately      . Furthermore a dependence of    on a global    

determined by the inlet conditions has been detected. Subsequently the analysis by 

Valente & Vassilicos (2012) on the far-wake of regular grids highlighted that 

      
   

     (where     is the mesh-length   based    number,     

     , with    being the inlet velocity), thus implying a more general behaviour, 

not limited to the case of the square fractal grids. 

The importance of the empirical law          in most of the models and the 

theories of homogeneous and inhomogeneous turbulence, and such a dramatic 

violation, raise new questions to be addressed and new accurate and reliable 

models to be developed. So far, the evidences of violation of the dissipation 

anomaly have been detected by pointwise hot-wire anemometry measurements, 

characterized by very high spatial resolution (though relying on Taylor’s frozen 

turbulence hypothesis) but based on small-scale isotropy assumptions to estimate 

the dissipation. However, if Kolmogorov’s universal equilibrium theory is 

questioned, a true complete dissipation measurement (i.e. estimation of the full 

velocity gradient tensor) seems more suitable to perform the task. From this point 

of view Tomographic Particle Image Velocimetry appears to be the most promising 

technique, providing full 3D3C velocity field measurements. On the other hand, 

Tomo-PIV suffers of limited spatial resolution, mainly related to the maximum 

allowed particles concentration within the volume, thus raising questions about its 

possible applications in the measurement of small-scale turbulence.  

In this chapter an experimental investigation of the freely decaying turbulence 

generated by fractal grids with square pattern is described. The objective is to 

assess the capability of Tomo-PIV in a scenario in which hot-wire anemometry is 

certainly the workhorse. The 3D3C measurement does provide an instrument to 

widely investigate homogeneity and isotropy; furthermore, the availability of all the 

9 components of the velocity gradient tensor enables the possibility to perform a 

real measurement of the turbulent dissipation without invoking the small scale 

isotropy assumption. 

The general features and the state of the art in the research of the wake of 

fractal objects are firstly reviewed in Sec. 7.1. The experimental setup and the 

Tomo-PIV system are described in detail in Sec. 7.2. Tomo-PIV is then applied in 
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Fig. 7.1 From left to right, cross, I and square fractal grids (Hurst & Vassilicos 2007). 

Sec. 7.3 to extract information on the homogeneity and the isotropy, on the 

turbulent lengthscales, and on the turbulent dissipation. In this last case, the 

performances of a set of methods are addressed. 

7.1 Wake of fractal objects 

A number of turbulence theories relate the vortex cascade process with an 

underlying fractal/multifractal structure (see the works of Novikov 1971, 

Mandelbrot 1974 and 1982, Sreenivasan & Meneveau 1986, Gouldin 1987). 

However, the research on the turbulence generated by fractal elements has started 

only recently. Queiros-Conde & Vassilicos (2001) and Staicu et al (2003) measured 

the turbulence statistics in the wake of fractal tree-like generators. Though their 

investigations were not conclusive in distinguishing the effects of the finite size of 

the fractal tree and their self-similar structure, interestingly enough they pointed 

out how turbulence with much higher intensity can be generated by using a fractal 

stirrer. This stimulated on one side the development of fractal forcing techniques 

for numerical simulations (Mazzi et al 2002, Mazzi & Vassilicos 2004), while on the 

other side it led to the first systematic investigation of the wind tunnel turbulence 

generated by fractal grids (Hurst & Vassilicos 2007). Hurst & Vassilicos tested a 

total of 21 planar fractal grids from 3 different families: fractal cross grids, fractal I 

grids and fractal square grids (see Fig. 7.1).The interest in the first two families of 

fractal grids in the following years has been quite limited. Geipel et al (2010) used 

fractal cross grids to improve the turbulent mixing in opposed jet flows; Kinzel et al 

(2011) applied the same type of grid to increase the turbulence intensity and the 

local Re in shear-free turbulence under the influence of system rotation. Krogstad & 

Davidson (2012) and Krogstad (2012) investigated the near field decay of fractal 

cross grids by hot-wire anemometry and Laser Doppler Anemometry (LDA), and 

compared the decay rates and the degree of homogeneity with the turbulence 

generated by conventional grids.  
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The turbulence generated by planar fractal I grids has not been studied in deep 

after the survey by Hurst & Vassilicos (2007). On the other hand, the wake of 

similar fractal planar and non-planar fractal I trees has been investigated by 

Chester et al (2007) and Chester & Meneveau (2007), mainly aiming to a better 

understanding of the interaction of turbulent flows with boundaries characterized 

by multiple lengthscales using the Renormalized Numerical Simulation technique. 

Fractal trees with similar features have been investigated also by Bai et al (2012) 

with Particle Image Velocimetry (PIV). In their investigation the simplicity of the 

description of the multiscale nature of fractal trees well fits with the problem of 

modelling the multiple scales of sparse vegetation canopies. 

Far more interest has been devoted on the family of square fractal grids (better 

described in Sec. 7.1.1). In this last case, Hurst & Vassilicos (2007) documented 

very unconventional and interesting properties, outlined in the Secs. 7.1.2-5. 

7.1.1 Square space-filling fractal grids 

The geometry of the square fractal grids (Fig. 7.2) is completely defined by the 

following parameters: 

 number of iterations   ; 

 the length    and thickness    of the bars of the first iteration; 
 the ratio of the length and the thickness of subsequent iterations    and    

(the length and the thickness at the  -th iteration are defined by the 

relations      
 
   and      

 
  ; most often the thickness ratio    of the first 

and the last iteration is used instead of   ); 

 The number    of patterns at each iteration. 

In their pioneering work Hurst & Vassilicos (2007) used space-filling fractal 

grids, i.e. with fractal dimension                       (    in the case of 

square fractal grids,    is set equal to ½).  

Hurst & Vassilicos (2007) proposed the following relations (holding in the case 

of square test section, with linear size  ) to estimate the blockage ratio    and 

effective meshlength     : 

   
           

 
  

    
      

         
       

   

       (7.1) 

     
   

 
     

         (7.2) 

where P is the fractal perimeter length of the grid. It is worth noting that, differently 

from the classical grids, fractal grids do not have a definite mesh size. Hurst & 

Vassilicos (2007) pointed out that, while it is intuitive to grasp the equivalent 

meshlength as proportional to the area of the test section    divided by the fractal 

perimeter, such a definition would not take into account the effect of the blockage 
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Fig. 7.2 Geometry of a space-filling square fractal grid. 

ratio. For this reason they introduced in (7.2) the corrective term      
  (in the 

case of classical rectangular grids,      returns the meshlength of the equivalent 

regular grid). 

7.1.2 The wake interaction lengthscale 

From this point on, the letters   and   will indicate the longitudinal streamwise 

direction and the vertical crosswise direction; the   axis completes the left-handed 

Cartesian reference system. The relative velocity components are referred with the 

symbols      , respectively. The angled brackets     indicate the operation of 

ensemble averaging. The fluctuating velocity components, obtained with a 

Reynolds decomposition (i.e. subtraction of the respective time-averaged velocity 

components) are referred with the lower case letters      . The symbols          

indicate the root mean square of the turbulent fluctuations (i.e.         , etc). 

The turbulence intensity increases in a protracted production region, peaks at 

a streamwise distance       related to the geometrical features of the grid, and then  

decays with an unusually fast rate that could be fitted with an exponential curve 

instead of the well-documented power law decay for decaying homogeneous 

isotropic turbulence. Hurst & Vassilicos (2007) conjectured                   , 

where      and      are the thickness and the length of the smallest square 

iteration, respectively.  Most importantly, they pointed out that, since the position 

of the peak of the turbulence intensity can be tuned by changing the geometrical 

features of the grid, a complete understanding of the scaling of       is of 

fundamental importance, especially in terms of potential application in combustion 

and industrial mixing.  
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Fig. 7.3 Scheme of the wakes interaction in the lee of fractal grids (Mazellier & Vassilicos 2010). 

Subsequently, Mazellier & Vassilicos (2010) proposed a different scaling based 

on the interaction of the wakes of the different bars. Differently from the case of 

classical rectangular grids, the bars of the grid have different size and spacing. As a 

consequence, their wakes interact at different streamwise locations. Following 

Townsend (1956), the typical wake width   of the iteration   scales as      , 

where   is the abscissa in the streamwise direction. Supposing that the scaling does 

hold with reasonable approximation in the case of non-isolated wakes, for each 

iteration one can calculate a characteristic first-interaction abscissa, such that 

        
 , i.e.   

    
    . A scheme of the wake interaction for a square fractal grid 

(SFG) is reported in Fig. 7.3. 

In the case of the fractal grids, the last wakes to interact are those generated by 

the largest iteration of the grid. For this reason Mazellier & Vassilicos (2010) 

introduced the wake-interaction lenghtscale: 

   
  
 

  
        (7.3) 

The wake-interaction lengthscale can be defined also for regular grids (RGs), 

where    is replaced by the meshlength. The data collected by Jayesh & Warhaft 

(1992) in the region          (where   is the grid meshlength) highlight the 

existence of a highly inhomogeneous turbulence in the near-field (     , 

corresponding to approximately              , only slightly larger that 

            , typical of SFGs), where production is dominant, with a peak of 

turbulence intensity and the subsequent well-know power law decay. The ratio 

         is slightly larger for RGs than for SFGs. Valente & Vassilicos (2011) argue 

that in the case of SFGs (and in general FGs) the presence of a set of wake-
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interaction lengthscales is the responsible for this discrepancy: when the largest 

scales start to interact, the smallest scales have already merged upstream, 

determining a more consistent turbulent diffusion and grow rate of the largest 

wakes. 

7.1.3 Quasi-isotropic and homogeneous “high”     turbulence 

Grid turbulence has been widely used to generate nearly homogeneous and 

isotropic turbulence under well-controlled conditions (Batchelor 1953, Townsend 

1956). However, the     of the generated turbulence is not high enough neither for 

industrial applications nor for turbulence theory conclusive studies. From this 

point of view SFG are very appealing, since they generate consistently higher     

than the regular grids with equivalent blockage ratios under similar conditions 

(Comte-Bellot & Corrsin 1966), and comparable to the case of jet grids (Gad-El-Hak 

& Corrsin 1974) and active grids (Makita 1991, Mydlarski & Warhaft 1996), while 

retaining a good level of homogeneity, except for the persistence of pressure and 

transverse energy transport, as reported by Valente & Vassilicos (2011). On the 

other hand, acceptable homogeneity and isotropy are achieved further 

downstream. The quantification of the homogeneity and the isotropy of a flow with 

such interesting features is of central importance. Seoud & Vassilicos (2007) argue 

that “a turbulence with kinetic energy that decays exponentially whilst its integral 

length scales remains constant is either nonisotropic and/or nonhomogeneous or, if it 

is homogeneous and isotropic, is such that the kinetic energy dissipation rate per unit 

mass,  , is not equal to           […] If this fractal-generated turbulence is found to 

be homogeneous and isotropic far downstream where it is decaying, then we will be 

forced to face the question of whether our fractal stirrer modifies the turbulence so 

deeply that it modifies the relation between kinetic energy dissipation rate and 

Reynolds number”. Hurst & Vassilicos (2007) quantified the large scales isotropy by 

measuring the ratio of the root mean square of the streamwise and crosswise 

fluctuations      , showing that along the centreline the ratio is contained in the 

range          in the decay region. This value is slightly larger than the one 

obtained by RGs with a contraction as in Comte-Bellot & Corrsin (1966) (more 

recently Antonia et al 2009 have shown that a small secondary contraction can 

push the isotropy ratio very close to 1) but it is in line with the case of active grids 

(Mydlarski & Warhaft 1996), which produce turbulence with comparable    . 

Seoud & Vassilicos (2007) concentrated their attention on the decay region, 

observing that the turbulence production (measured along y-profiles) is always 

below 30% of the dissipation beyond the turbulence peak. Mazellier & Vassilicos 

(2010) observed that the flow in the near-field is strongly inhomogeneous. The 

mean streamwise component is characterized by a jet-like behaviour along the 

centreline due to the non-uniform distribution of the blockage ratio of the grid; on 

the other hand, it could be considered “wake-like” in the wake of the bars of the  
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Fig. 7.4 Diagonal mean profiles of a) the velocity (normalized with the centerline velocity) and of b) the 

turbulence intensity for: ○           ■          . (Mazellier & Vassilicos 2010). 

largest iterations. This trend is evident in Fig. 7.4, where the velocity and 

turbulence intensity profiles are plotted, and it tends to be smeared by the 

turbulent diffusion along the streamwise coordinate. Interestingly enough, for the 

same reason the centreline is almost turbulence free in the near-field. Mazellier & 

Vassilicos (2010) also documented that beyond          the ratio of the mean 

velocity and turbulence intensity measured on the centreline and in the wake of the 

corner of the second iteration of the grid is substantially equal to 1, and the flow 

can be considered homogeneous. Furthemore they argued that, since the time 

scales of the mean velocity gradients           and           are at least one 

order of magnitude larger than the time scale of the energy-containing eddies, these 

velocity gradients can be considered negligible. 

7.1.4 Power-law or exponential decay? 

A quite surprising feature of SFGs in the pioneering study by Hurst & Vassilicos 

(2007) is the unusual decay of the turbulence intensity along the streamwise 

direction, which appeared at odds with the classic relations of the power-law decay. 

In fact, their experimental data support the idea that the Taylor microscale beyond 

the turbulence intensity peak is independent of   , and, with good approximation, of 

the streamwise coordinate (though Valente & Vassilicos 2011 acknowledged a slow 

increase of   in the far-wake of the grid, even if still incompatible with a power-law 

decaying turbulence). In a picture involving large and small scales isotropy and 

negligible turbulence production, according to Taylor’s hypothesis (1935): 
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          (7.4) 

Assuming that the turbulence decay is modeled by a power-law        

   
   (with    usually referred as “virtual origin”), it follows immediately from 

(7.4) that in the case of freely decaying homogeneous isotropic turbulence: 

                    (7.5) 

This is at odds with the observed constancy of  . By fitting the data with (7.5) 

Hurst & Vassilicos (2007) obtained a virtual origin very far upstream of the grid; by 

applying this virtual origin to find the exponent of the power-law decay of the 

turbulence intensity, they obtained       , which gives a much steeper decay 

that any measured power-law decay. On the other hand, by setting the virtual origin 

equal to zero, and fitting the Taylor microscale trend with a law         
 , they 

obtained      , which is incompatible with the expected exponent ½ in the power 

law decay. 

For this reason Hurst & Vassilicos (2007) proposed an exponential decay, 

confirmed by Mazellier & Vassilicos (2010) in the form: 

   

           
 

           (7.6) 

  and   are dimensionless parameters. The virtual origin is arbitrarily set to 

zero, since it does not affect the value of  , but only the value of  , which plays only 

a role in shifting up or down the fitting curve. 

Interestingly enough, George & Wang (2009) predicted the possibility of such 

exponential decay for homogeneous and isotropic turbulence in the case of time-

independent characteristic lengthscale by using the only assumption of equilibrium 

similarity (George 1992). George & Wang (2009) demonstrated in this scenario the 

existence of two possible solutions of the spectral energy equation (Batchelor 

1953): 1) an inviscid solution, leading to        ; 2) a viscous solution in which the 

turbulence decays exponentially. In this last case, the theory predicts that both the 

integral and the Taylor scales must be constant during the decay (and so does their 

ratio), and the energy spectra at different stages of the decay must collapse if 

normalized with respect to     and  . This last assertion, descending directly from 

the assumption of single lengthscale self-preserving decay, is at odds with 

Kolmogorov’s idea of the presence of an inner and an outer scale. 

However, Mazellier & Vassilicos (2010) recognized that turbulence generated 

by SFGs does not exactly follow the prediction of George & Wang (2009). As for 

example, the ratio of the integral and the Taylor scales is not constant throughout 

the decay, but is slightly increasing further downstream; furthermore, though the 

exponential decay fits reasonably well the data, the dependence of   with the inlet 

Reynolds number does not. They proposed an alternative form to the kinetic energy 

decay, that is both compatible with the exponential decay proposed by George & 
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Wang (2009) and the power-law decay. Such a hybrid behaviour can be motivated 

by the fact that the range of scales that are simultaneously excited by the fractal 

stirrer is still of finite size, while the single lengthscale decay would perhaps 

involve simultaneous excitation of the entire range of turbulent scales down to the 

Kolmogorov scale. 

7.1.5 The violation of the dissipation anomaly 

As already stated in the incipit of this chapter, an immediate consequence of 

the scaling of the dissipation            is that        . Valente & Vassilicos 

(2011) reviewed the rate of variation of the turbulent kinetic energy   and the 

integral lengthscale   along the streamwise downstream distance for a variety of 

high-Reynolds number self-preserving shear flows and in wind tunnel turbulence 

(wakes, jets, grid turbulence, and many others; see Tab. 1 of Valente & Vassilicos 

2011 for reference). They observed, from the data reported in Comte-Bellot & 

Corrsin (1966) and Tennekes & Lumley (1972), that both the   and   streamline 

evolutions are modelled with power laws: 

    
  

      

  
 
  

        (7.7) 

     
      

  
 
  

        (7.8) 

   is a macroscopic scale depending on the flow,    is the inlet velocity and     

is a virtual origin. Assuming that the Taylor microscale can be inferred from the 

scaling by Taylor (1935)        , and that the dissipation anomaly is valid, i.e. 

        , quite surprisingly for this large variety of flows the following two 

relations do hold (defining            as an inlet-condition-based global    

number): 

 

 
      

    

  
 
           

       (7.9) 

    
   

 
      

    

  
 
           

      (7.10) 

Astonishingly, regardless of the value of the exponents   and  , the ratio     

scales exactly as    . This relation actually reflects the Richardson-Kolmogorov 

phenomenology: the higher is the    , the larger is the ratio between the large 

scales of the energy-containing range and the small scales of the dissipative range. 

The turbulence generated by SFGs is characterized by a dramatic departure 

from this scaling. Seoud & Vassilicos (2007) documented essentially that     is 

constant along the streamwise direction while     significantly decays. This 

behaviour is incoherent with          and at odds with the dissipation anomaly. 

Indeed, Seoud & Vassilicos (2007) observed that a scaling          actually well 

fits the data for SFG generated turbulence. Mazellier & Vassilicos (2010) confirmed 
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this finding, adding that     and     are increasing function of the inlet Reynolds 

number    . 

Valente & Vassilicos (2011) compared the behavior of SFG and RG by taking 

hot-wire anemometry measurements with different probes to validate the 

independence of the results on the spatial resolution. Although the     achieved by 

RG is close to the lower hand of the range of validity of the Richardson-Kolmogorov 

phenomenology, their data support to some extent the constancy of    and the 

proportionality of     with    . In the case of SFG, instead, they confirmed the 

observation by Seoud & Vassilicos (2007) and Mazellier & Vassilicos (2010) that 

roughly       
  . 

Subsequently, Valente & Vassilicos (2012) investigated the decay of the 

turbulence generated by SFG and RG with large meshlenght (in one case as large as 

the first iteration of the grid). Interestingly enough, their data show that the 

proportionality       
   is not a unique feature of SFGs, but it also applies in a 

wide region in RGs generated turbulence provided that           . In this 

region       
         and        

    , independently of    . 

The importance of the cornerstone assumption          in turbulence 

theory and simulations, and the repeated violations of it in the more generalized 

scenario of regular grid turbulence, raise new questions on its universality and 

applicability in many other turbulent flows. 

7.1.6 Questions raised and role of 3D data 

The investigation of fractal generated turbulence, above all in the peculiar case 

of SGFs, is still at an early stage. Though the bulk of the work and results obtained 

using hot-wire anemometry are quite well supported by DNS simulations (see 

Nagata et al 2008a,b, Laizet & Vassilicos 2011), even if with limited Reynolds 

number, the scientific community is starving for 3D experimental data to achieve a 

better understanding of the underlying physics of fractal-generated turbulence and 

of its astonishing features. This investigation is actually to be contextualized in a 

wider framework, in which several turbulent flows can be thought, to some extent, 

as a combination of the Richardson-Kolmogorov phenomenology and a different 

scenario in which the dissipation anomaly does not hold. Actually, the turbulence 

generated by SFGs can be a mixture of these phenomenologies as well. 

Three-dimensional three-components velocity measurements can provide a 

more complete picture of this peculiar class of turbulent flows. As for example, the 

validity of the assumption of small-scale isotropy in the turbulence generated by 

SFGs is still an open question; the most thorough analyses on this topic (Seoud & 

Vassilicos 2007, Valente & Vassilicos 2011) are performed with x-wire probes, with 

a separation between the wires of approximately 10 times the Kolmogorov scales, 

raising some doubts on the measurement of coherence spectra at small scales (see 

Fig 7 in Seoud & Vassilicos 2007 or Fig.4 in Valente & Vassilicos 2011). Similarly, 
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assuming small scales isotropy in the measurement of the turbulent dissipation 

rate, even if hardly questionable, may leave room to some perplexity. The 

assessment of a technique for the complete measurement of all the components of 

the stress-strain tensor contributing to the dissipation is strongly needed. 

7.2 Experimental details 

7.2.1 Experimental apparatus and design point 

The experimental investigation is conducted in the open circuit wind tunnel of 

the Laboratory for Energetic Flow and Turbulence of the Arizona State University. 

The measurements are performed in a 1.5m long square test section of width T = 

0.154m. The square fractal grid is placed at the inlet of the test section, immediately 

after a 5.2:1 contraction. The tested grid is composed of 4 iterations, with thickness 

ratio of the grid    equal to 13. The geometrical parameters of the grid are reported 

in Tab. 7.1. 

A global Reynolds number (7.11) is defined by measuring the reference 

velocity    on the tunnel centreline approximately 400mm downstream of the 

outlet of the contraction; the reference length is the equivalent mesh-length, 

defined as in Hurst & Vassilicos (2007), and approximately equal to 15.3mm. In the 

present work,    is set equal to 11.5m/s, resulting in a global Reynolds number of 

approximately 11.5x103: 

   
      

 
        (7.11) 

A Laskin nozzle generates seeding olive-oil particles with     mean diameter 

and concentration of approximately           . The particles are illuminated by 

a double pulse Nd:Yag laser with maximum energy of            , pulse duration 

of 8ns and pulse frequency of    . The laser is placed on a horizontal breadboard 

below the tunnel. A vertical laser slab is obtained by using a 45° mirror, a circular 

aperture and a diverging cylindrical lens. The illuminated region is a slab oriented 

along the streamwise and vertical crosswise directions, and a thickness of 

approximately      . 

As in Sec. 4.2.3, the imaging system is composed of 4 TSI POWERVIEW™ Plus 

11MP camera with             pixel resolution and pixel pitch of    . The 

cameras are disposed approximately in a linear arrangement, angularly equally 

spaced, spanning an angle of 80°, as shown in Fig. 7.5. Even if not optimized (the 

views provide more diversified information if a 3D configuration is used), this 

system is chosen due to its intrinsic simplicity and uniform scattering conditions. 

The imaging system is placed in 3 locations downstream of the grid, corresponding 

approximately to                      . The cameras are equipped with Nikon  
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tr σ Meff [mm] to [mm] tN-1 [mm] Lo [mm] LN-1 [mm] x* [mm] 

13 0.34 15.3 8.12 0.62 80.8 10.1 801 

Table 7.1 Geometric parameters of the tested grid. 

 

Fig. 7.5 Experimental setup: top-view of the cameras arrangement and of the illuminated volume 

location into the test section of the wind tunnel. 

objectives with a focal length of      when focused at infinity, set at      , and 

Tamron 2x teleconverters to approximately double the image distance, thus 

resulting in a higher resolution with respect to the test case presented in Sec. 4.2.3, 

and effective    equal to 16. On the other hand, the object distance is slightly larger 

due to the limit in physical access with the 4 cameras. The average magnification is 

approximately 0.45, resulting in a resolution of about            . 

The diffraction-limited particle diameter   
  is     pixels, which is slightly larger 

than the commonly used diameter of   pixels used in Tomo-PIV experiments. This 

would lead the design point to be located outside the valid area of the diagram in 

Fig. 1.10. However, considering that the volume to be reconstructed is quite thin, 

the imaging system is composed of 4 cameras and the accuracy of the tomographic 

reconstruction can be improved using the SFIT-MART technique outlined in 

Chapter 4, a slightly larger source density can be considered acceptable.  
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Fig. 7.6 Contour representation of         as a function of    and     for fixed   ,   , and image density 

equal to 0.05ppp. The dashed black curves represent the constraint due to finite depth of field 

(       ), diffraction spot size (  
  3 pixels and   

  3.5 pixels), and volume thickness larger than the 

interrogation spot size (      ) The area with colored contour lines is the valid area to place the 

design point for the Tomo-PIV experiment. The area with dashed contour lines is the area where the 

design point can be conditionally placed. The red dot is the design point for the experiment under 

analysis. 

The design chart and the experiment design point are reported in Fig. 7.6. The 

limit of   
      pixels is introduced for reference, and the contour-lines in the 

region comprised in the range     
      are dashed in order to identify that the 

design point can be conditionally located in the area (where the conditions to be 

met are relative to solutions devoted to provide a decent accuracy of the 

tomographic reconstruction even with a source density slightly larger than usual). 

As outlined in Fig. 7.6, under the imaging conditions of the experiment,    should be 

set to about       in order to have in average 10 particles in each interrogation 

region (i.e. about          voxels). 

7.2.2 Calibration, tomographic reconstruction and PIV interrogation 

The calibration target for the optical calibration is the same described in Sec. 

4.2.3, i.e. glass substrate with a              grid of black markers, with diameter 

of       and spacing of     (0.2% tolerance in centring). The target is traslated 



Chapter 7 – The decay of fractal-generated turbulence 
 

130 

with a motorized stage within the range ±4mm with respect to the reference plane. 

The calibration images are analyzed with a template-matching technique to identify 

the calibration markers. A nonlinear regression algorithm is used to obtain pinhole-

based mapping functions (Tsai 1987, see Sec. 1.2.1) from the object space to the 

image plane. The volumetric self-calibration described in Sec. 2.1.4 is applied to 

reduce any residual calibration error and disparity between the cameras. After the 

application of the volume self-calibration the standard deviation of the calibration 

error is less than      pixels for each camera of the set, with a maximum error of 

    pixels. 

Since the thickness of the illuminated volume is smaller than the test case 

presented in Sec. 4.2.3, a higher signal/noise ratio is detected on the original 

images, thus allowing a less intense pre-processing. In this case the pre-processing 

is performed in three steps: historical background removal by taking the minimum 

in each pixel over the ensemble of 1000 realizations; sliding minimum subtraction 

with a kernel of       pixels to eliminate any fluctuating background; slight 

particles sharpening with a Laplacian-based filter to increase the contrast (this step 

is required due to the large particles diameter). 

The reconstructed volume is                (i.e. slightly larger than the 

illuminated region in order to allow the reconstruction of all the imaged particles); 

the average magnification of 0.45 leads to approximately          for a 

resolution ratio between voxels and pixels equal to 1. This results in a 

reconstructed volume of                   voxels. A set of 1000 realizations is 

reconstructed for each of the three streamwise locations. 

The reconstructed distributions are then cross-correlated with the efficient 

multi-pass volume deformation algorithm outlined in the Chapter 5. The 

interrogation is performed using a Blackman weighting window in both the cross-

correlation step and the dense predictor averaging (see Secs. 5.1-5.3 for more 

details on the algorithm) in order to achieve a MTF resembling that of a low pass 

filter. The final interrogation volume size is                     (i.e. 

                      ), with 75% overlap (thus resulting in a vector spacing of    

voxels, i.e.       ). Apparently, the nominal size of    is larger than the predicted 

value of       for the design point; however, it has to be taken into account that 

the Blackman window is characterized by an equivalent noise bandwidth (ENBW, 

i.e. the “(band)width of a rectangle filter with the same peak power gain that would 

accumulate the same noise power”, Harris 1978) of 1.68. This lead to an “effective 

  ” equal to                 , which is very close to the design value. 

However, this value does correspond to a significantly different impulse frequency 

response than the equivalent top hat moving average filter, as shown in Fig. 7.7, 

where the MTF of the Top Hat (TH) window with       voxels is compared with 

those relative to the adopted Blackman window with       voxels and variable 

size of the window for the dense predictor averaging   . The data are obtained  
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Fig. 7.7 MTF as a function of the normalized frequency      (with    set to    voxels) for: Top Hat 

moving average with window size equal to       (dashed line); Blackman windowing with window size 

equal to    and                     voxels. 

with the same theoretical method outlined in Sec. 5.3 (the number of iterations is 

set equal to 3). Defining a cut-off wavelength   such that               , it 

results that for the TH windowing      voxels, while for the Blackman 

windowing   depends on    (           voxels for             voxels 

respectively). The TH approach is affected by a steep decay of the MTF beyond 

     voxels and by large negative lobes for wavelengths smaller than    voxels 

(i.e. beyond the Nyquist limit), thus determining significant aliasing effect. In this 

analysis the cross-correlation is performed using a Blackman windowing with 

dense predictor averaging on       voxels, that provides low values of the MTF 

beyond          (thus significantly smoothing random noise fluctuations) and no 

negative lobes. 

7.3 Results 

7.3.1 Homogeneity assessment 

The streamwise and cross-stream profiles of the mean streamwise velocity 

component are reported in Fig. 7.8. The most upstream measurement region is 

relatively close to the expected location of the centreline turbulence intensity peak 

(i.e. approximately      ). The relatively strong mean flow gradients along the 

streamwise and the cross-stream directions are evidence of non-negligible 

turbulence production, as discussed by Valente & Vassilicos (2011). As the flow 

develops downstream, the jet-like behaviour due to the non-uniform distribution of  
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Fig. 7.8 Profiles of the mean streamwise velocity component: a) longitudinal profile of the centerline 

velocity; b) crosswise vertical profiles at three different longitudinal locations. (The profiles are sub-

sampled for clarity; 9 points for each subset of 10 points are skipped for the longitudinal profile, 5 out of 

6 for the crosswise profile). 

 

Fig. 7.9 Profiles of the normalized turbulent production terms: a) longitudinal profile of 

             ; b) crosswise vertical profiles of               at three different longitudinal 

locations. (The profiles are sub-sampled for clarity; 9 points for each subset of 10 points are skipped for 

the longitudinal profile, 5 out of 6 for the crosswise profile). 

the blockage ratio of the square fractal grids is smoothed by the turbulent transport 

of momentum, and the cross-stream profile of the mean streamwise velocity 

component rapidly becomes flatter. 

In order to assess the degree of inhomogeneity of the fractal generated 

turbulence, the production terms in the turbulent kinetic energy balance are 

evaluated and plotted in Fig. 7.9. In particular, the longitudinal evolution of the 

term               along the centerline, and the crosswise distribution of 

              at three streamwise locations, are analyzed after normalization with 

the local value of the measured dissipation (see Sec. 7.3.4). The results show that 
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the turbulent production along the centreline is not significant, as it is well below 

4% of the dissipation over the entire range of investigation, in agreement with 

Seoud & Vassilicos (2007). On the other hand, the term               indicates a 

significant lack of homogeneity by moving away from the centreline towards the 

wake of the largest iteration (that is placed outside of the observation region, at 

        ). However the inhomogeneity is significantly less pronounced at 

        , where it never exceeds 10% of the dissipation. 

It is worth to point out that these results are not enough to ensure that the 

decay of fractal generated turbulence is not conditioned by inhomogeneity. 

Considering the turbulent kinetic energy equation (here the Einstein notation is 

used, with the symbology     ,     ,      ,         ,        ,        , 

           ,     ): 

  
  

   
        

   

   
 

 

   
      

 

   

     

 
  

   

      
   

   

   

   

   
  (7.12) 

The terms on the right-hand side are referred as production, triple-correlation 

transport, pressure transport, viscous diffusion and dissipation. Tomo-PIV does not 

allow the measurement of the pressure transport, while the computation of the 

triple-correlation transport is extremely delicate, as it involves derivatives of third-

order fluctuations products. However, the results of the hot-wire investigation by 

Valente & Vassilicos (2011) ensure that these terms are usually negligible, or 

approximately constant along the longitudinal direction (for example, this is the 

case of the transverse triple correlation transport), thus the decay is insensitive to 

their presence.  

7.3.2 Large and small scale isotropy 

In the investigation of regular grid turbulence the detection of large scale 

anisotropy has often been performed by measuring the so-called isotropy factor, i.e. 

the ratio of the mean square of the streamwise to cross-stream velocity 

fluctuations. 

Hurst & Vassilicos (2007) applied the same criterion to the turbulence 

generated by square space-filling fractal grids, and concluded that along the 

centreline the isotropy factor is contained within the range 1.1-1.25. The mean 

isotropy factor is only slightly higher than the case of regular grids after a 

contraction (Comte-Bellot & Corrsin 1966), and it is of the same order of magnitude 

in the case of active grids (Mydlarski & Warhaft 1996). On the other hand, the 

inhomogeneous distribution of the blockage ratio for fractal generated turbulence 

causes a strong variation of the isotropy factor along the cross-stream direction, as 

shown in the       profiles in Fig. 7.10. The isotropy factor decreases along the 

longitudinal direction, approaching a value of approximately 1.1 at         . The 

profiles along the crosswise vertical direction, on the other hand, show a significant  

 



Chapter 7 – The decay of fractal-generated turbulence 
 

134 

 

Fig. 7.10 Profiles of the isotropy factor along the longitudinal direction (a) and the crosswise vertical 

direction at three different longitudinal locations (b). (The profiles are sub-sampled for clarity; 9 points 

for each subset of 10 points are skipped for the longitudinal profile, 5 out of 6 for the crosswise profile). 

persistence of the anisotropy when moving towards the wake of the first iteration 

of the grid. Again, the diffusion progressively smears the anisotropy moving 

downstream; for          the isotropy factor attains a maximum value of 1.2 in 

the measurement region. It is evident that the flow remembers the inhomogeneity 

and anisotropy effects induced by the non-uniform distribution of the grid blockage 

ratio for a long time during the decay. 

Another possible path to assess the isotropy of fractal generated turbulence is 

followed by Valente & Vassilicos (2011), which measured the two-point 

longitudinal and transverse autocorrelation functions, and used the relations of 

isotropic turbulence to test for large and small scale isotropy. The autocorrelation 

functions are obtained from the two-point correlation tensor, defined as follows: 

                             (7.13) 

Let the separation be only in the longitudinal direction (i.e.       ), 

                         denote the non-dimensional longitudinal two-point 

correlation, and                          be the transverse two-point 

correlation function measured from the experimental correlations.  Then, by the 

assumption of isotropic turbulence: 

           
 

  

 

  
                 (7.14) 

The longitudinal and the transverse correlation functions are plotted for 

          and      in Fig. 7.11. The transverse correlation function has been 

normalized with respect to    instead of    in order to compensate for the large-

scale anisotropy, and a parabolic fit has been applied to the peak of both the 

longitudinal and the transverse correlation function to remove the effect of the bias 

due to random noise (this aspect is discussed in more detail in Sec. 7.3.3). The  
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Fig. 7.11 Longitudinal and transverse autocorrelation functions for           and          . (The 

functions are sub-sampled for clarity; 4 points for each subset of 5 points are skipped). 

comparison in Fig. 7.11 between the measured transverse correlation function and 

the isotropic estimate (7.14) highlights a modest agreement, even if it improves 

moving downstream along the tunnel centreline. The results clearly indicate an 

acceptable degree of small-scale isotropy when r is smaller than     (i.e. 

approximately the Taylor lengthscale, see Sec. 7.3.3). When moving downstream, as 

the Taylor lengthscale increases, the maximum lengthscale for which local isotropy 

appears valid increases.  

7.3.3 Longitudinal integral and Taylor lengthscales 

The integral lengthscale 
ijL and the Taylor microscale 

ij  are calculated using 

the following expressions: 

       
 

   
  

            
 

 
       (7.15) 

       
 

   
  

  
          

   
  

   

       (7.16) 

In these expressions, and unless otherwise stated, the Einstein convention is 

not used. The subscript   indicates the velocity component, and the subscript 

  refers to the direction of separation. 

The simultaneous measurement of both the integral scale and the Taylor 

microscale is a challenge for PIV, because one must observe a field of view with a 

width of at least 6-7 integral lengthscales to accurately estimate  , and at the same 

time have high enough resolution to resolve the Taylor microscale. This is 

inherently difficult because of the relatively low dynamic spatial range of the two-

pulse digital PIV technique, and it is expected to be even more challenging in Tomo-

PIV, with the resolution being limited by the maximum allowed seeding density. 
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Fig. 7.12 Longitudinal integral lengthscale along the centerline. The Tomo-PIV data are compared with 

the PIV data set by Discetti et al (2013b). The TPIV data are taken with a step of 10 vectors for clarity. 

de Jong et al (2009) have shown that, with PIV data, a good estimate of the 

longitudinal integral lengthscale    , can be obtained even if the extension of the 

field of view is of the same order of magnitude of     by fitting a decaying 

exponential function to the tail of the longitudinal two-point correlation function. 

Considering that the integral lengthscale is of the same order of magnitude of the 

effective meshlength (i.e. about     ), and that the observation region is 

              , one can reasonably expect to be able to measure     in the left half 

of the volume for the three streamwise locations. In order to calculate the integral 

lengthscale, the streamwise autocorrelation function is computed over all the 

points in the left half of the field of view, and then integrated as in the (7.15). An 

exponential function is fitted to the tail of the autocorrelation function by using the 

last 20 points (considering that 75% overlap is used, it corresponds to 5 

statistically independent vectors) to elongate the region of integration. The results 

are compared with those obtained by Discetti et al (2013b) with planar PIV in the 

same conditions. The significant difference is that in the experiments by Discetti et 

al (2013b) the field of view is much larger (          ), thus reducing the 

contribution of the extended exponential tail of the autocorrelation function to less 

than 4% (for the current Tomo-PIV data the correction to the measured integral is 

up to 50% of the integral lengthscale). 

The results, obtained by averaging     over 40 rows of vectors, i.e. a region of 

approximately 10mm of extension in the cross-stream direction, are plotted in Fig. 

7.12. Tomo-PIV data show a more significant scatter, both due to non perfect 

convergence (the PIV statistics are obtained over an ensemble of 5000 independent 

realizations, i.e. 5 times the number of snapshots reconstructed and cross-

correlated with Tomo-PIV) and to larger uncertainty introduced by the large 

contribution of the extended exponential tail to the integral (7.15). While PIV data 
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show a slow but sensitive growth of the integral lengthscale along the streamwise 

direction (in agreement with Valente & Vassilicos 2011), the extraction of the same 

information from the scatter of Tomo-PIV is not straightforward; however, the 

order of magnitude is correctly evaluated. 

As previously mentioned, the Taylor microscale is estimated by computing the 

second derivative of the two-point correlation function at zero offset. The estimate 

of the two-point correlation in the origin is affected by the random error, which is 

in general uncorrelated for non-overlapping interrogation windows (Adrian & 

Westerweel 2011). This means that noise affects the estimate of the first 4 points of 

the two-point correlation when 75% overlap is employed. In particular, for 

021  rr  the expected value in the case of zero offset of the estimate of the two-

point correlation           is: 

                
        (7.17) 

where    is the variance of the random error. For this reason, a parabolic fit is 

applied in proximity of the origin:  

                       
  
 

    
            

  

   
       (7.18) 

A supplementary benefit of the application of the (7.18) is that an estimate of 

both     and   is provided; in particular, the former can be used to define a signal-

to-noise ratio: 

       
   

  
  

   

             
      (7.19) 

The SNR computed with (7.19) is a good a-posteriori indicator of the quality of 

the results. The median of the SNR along the crosswise direction is considered at 

each streamwise location, and plotted in Fig. 7.13. As expected, the SNR decreases 

moving downstream, since the mean square of the velocity fluctuation decreases 

along the decay direction, while the measurement noise retains the same intensity. 

The accuracy of the estimation of the Taylor lengthscale is strongly dependent 

on the upper limit used for the fitting: a higher number of points reduces the error 

in the fitting procedure, but determines a lower resolution (and, consequently, an 

overestimation of the Taylor microscale). The criterion for the definition of the 

upper limit is based on the minimum number of points to obtain a standard 

deviation smaller than 10% of the mean of the estimated value of the Taylor 

microscale in each column of vectors (40 rows are considered in this analysis). In 

all the experiments a maximum of 8 points (equivalent to about    ) suffices to 

this task. Furthermore, by estimating the mean value over each column of vectors 

by using only 6 and 1 points, a range of uncertainty of about 15%-20% is estimated. 
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Fig. 7.13 Signal to noise ratio as a function of the streamwise location. The data are taken with a step of 

10 vectors for clarity. 

 

Fig. 7.14 Longitudinal Taylor microscale along the centerline. The Tomo-PIV data are compared with the 

PIV data set by Discetti et al (2013b). The TPIV data are taken with a step of 10 vectors for clarity. 

The data are compared with the PIV results obtained by Discetti et al (2013b), 

and plotted as a function of the streamwise coordinate in Fig. 7.14. The Tomo-PIV 

results evidently suffer for a lack of spatial resolution if compared with the PIV data 

set. As a matter of fact, even though the average magnification is similar, in the PIV 

experiment by Discetti et al (2013b) a much higher resolution can be achieved, with 

interrogation spots of         pixels (             in the object space; actually, 

considering that a Blackman window is used, the effective size is obtained by 

dividing the real size by the ENBW, resulting in 375         ). This striking 

difference is due to the fact that the PIV image density is not limited by the  
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Fig. 7.15 Ratio of the longitudinal integral lenghtscale     and Taylor microscale     as a function of the 

local    . Dashed line from (7.20) are included for reference. 

requirements of sufficiently accurate tomographic reconstruction. For this reason 

Tomo-PIV measurement of the Taylor microscale are biased towards larger values. 

Again, the PIV results identify a significant growth of the Taylor microscale along 

the streamwise direction, while the scatter of the Tomo-PIV data does not highlight 

this trend. This effect might be also due to the fact that along the streamwise 

direction the Kolmogorov scale does effectively increase (see Sec. 7.3.4), thus partly 

compensating the lack of resolution and consequently reducing the gap between 

the PIV and the Tomo-PIV results. 

7.3.4 Dissipation measurements 

As previously stated, one intriguing feature of the turbulence generated by 

square space-filling fractal grids highlighted by the pioneering experiments of 

Hurst & Vassilicos (2007) is the apparent violation of the commonly accepted 

turbulence dissipation scaling           . An immediate implication of this 

scaling, when combined the relation           (coming from the isotropy 

assumption in (7.4) and         ) is that: 

 

 
 

  

  
           (7.20) 

The (7.20) shows that, according to the so-called dissipation anomaly, the ratio 

    should increase as     increases. The assertion (7.20) is tested in Fig. 7.15, 

where the ratio         is plotted as a function of    . The function         is 

underestimated due to the effects of limited spatial resolution discussed in Sec. 

7.3.3; on the other hand,      is proportional to the Taylor microscale as well, and 

for this reason it is overestimated in the same measure, thus retaining the 

proportionality scaling (7.20). Dashed lines obtained from (7.20) with different 

values of the constant    are included in the figure for reference. The plot indicates 



Chapter 7 – The decay of fractal-generated turbulence 
 

140 

that the dissipation anomaly does not hold, since the ratio is approximately 

constant along the streamwise direction while     decreases rapidly due to the fast 

decay of the turbulent kinetic energy. 

A different way of testing the validity of the dissipation scaling is to determine 

   from measurement of the kinetic energy, dissipation and integral length scale. 

The turbulent dissipation is notoriously difficult to be measured accurately in 

anisotropic and inhomogeneous flows, and for this reason three methods are 

implemented. In the first method, the dissipation is found directly from the 

measurements of the mean squared velocity gradient: 

                    (7.21) 

The turbulent rate-of-strain tensor     is defined as follows: 

    
 

 
 
   

   
 

   

   
         (7.22) 

The great advantage of 3D3C measurements is the availability of all the 

components of the velocity gradient tensor in the same location. The scenario is 

rather different with respect to the case of the hot-wire measurement performed by 

Seoud & Vassilicos (2007), in which the small-scale isotropy assumption is invoked, 

or by Valente & Vassilicos (2011), who used a x-wire with separation of 10 times 

the Kolmogorov scale, thus leaving some questions open about the validity of the 

dissipation measurement. On the other hand, the limited spatial resolution is an 

obstacle to the successful measurement of the spatial derivatives of the velocity 

fluctuations at the smaller turbulent scales. On top of this, in order to reduce the 

degrading effect of noise in the derivative computation, the velocity fluctuations 

fields are low-pass filtered by a local 2nd order polynomial fitting function on a 5 x 5 

kernel. 

The second method extracts the turbulent dissipation from the rate of decay of 

the turbulent kinetic energy, as is commonly done for homogeneous grid 

turbulence. In the present case, the inhomogeneous nature of the flow recommends 

to use the full turbulent kinetic energy balance. The kinetic energy balance (7.12) 

can be expressed on the centreline as in the following (supposing           : 

      
  

  
      

    

  
     

    

  
     

    

  
   

     

  
 

     

  
 

     

  
 

1      +1      +1      +  2   2+ 2   2+ 2   2  

 (7.23) 

The first term in the right hand side dominates the balance, so the others can 

be treated as small corrections in the evaluation of the dissipation. The term in 

curly brackets (i.e. the sum of the triple correlation transport and the pressure 

transport) is evaluated by using the second moment closure model suggested by 

Daly & Harlow (1970). 
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Fig. 7.16 Dissipation obtained with direct measurement  , energy balance   and Large Eddy PIV . a) 

Streamise profile of the dissipation along the centerline; b)    as a function of the local    . 

The third method is often referred as Large Eddy PIV (Sheng et al 2000), as it 

assumes the equilibrium of the transfer of energy from the large lengthscales 

(production) to the small lengthscales (dissipation). The energy flux is evaluated in 

terms of the resolved rate of strain tensor      and a subgrid stress (SGS) tensor    : 

                     (7.24) 

The SGS must be modelled by a small-scale turbulence model, as in Large Eddy 

Simulations. In this case, a Smagorinsky eddy viscosity model (Smagorinsky 1963) 

is used: 

       
   

                    (7.25) 

where         is the Smagorinsky constant. 

The dissipation obtained with the three methods is plotted as a function of the 

streamwise location      in Fig. 7.16. As expected, the direct measurement with 

(7.21) achieves the smallest values due to the lack of resolution at the smaller 

scales where the dissipation takes place. The Large Eddy PIV technique results in a 

significant improvement of the dissipation measurement. The gap between the 

direct measurement and the dissipation obtained with the energy balance 

decreases along the decay. Indeed, while the spatial resolution is the same, the 

Kolmogorov scale (and so the dissipative scales) increases along the decay, as it 

depends on        (            , Kolmogorov 1941). The Kolmogorov scale 

obtained using the dissipation measured with the (7.23) ranges between      and 

96   (i.e. about 7.6 and 5.9 times the effective   , thus justifying the significant 

underestimation of the dissipation with the direct measurement). 

The scaling            is applied to evaluate    (Fig. 7.16b). The results 

from the direct measurement show a significant variation of    along the decay, 

most likely to be addressed to the increasing Kolmogorov scale along the 
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longitudinal direction (consider that smaller     correspond to larger     , as the 

turbulent kinetic energy strongly decays while the Taylor microscale shows only a 

weak rate of growth. The variation of    observed with the data obtained with the 

Large Eddy PIV method and the energy balance is less remarkable, but still relevant 

(about 20% over the investigated range). Such variation is substantially at odds 

with RANS modelling in which the semi-empirical quantity    is assumed to be 

constant. 

7.4 Final remarks 

Tomographic PIV is extremely challenged in applications involving small-scale 

turbulence measurement. The standard planar PIV has progressively reduced the 

gap with hot-wire anemometry over the years in this kind of application, mainly 

thanks to the technological advancement (higher signal to noise ratio in the 

imaging, advanced interrogation algorithms, etc.); Tomographic PIV, instead, has to 

walk over a much steeper path before being well-suited in this experimental 

scenario. 

Tomo-PIV has provided the unquestionable advantage of assessing the 

inhomogeneity of the flow in the decaying region by measuring all the three 

components of the velocity field, and all the nine components of the velocity 

gradient tensor (at least on the central plane of the volume, since the thickness is 

limited by the desired high resolution). The results show that the flow in the 

decaying region is inhomogeneous in all directions, but the strength of the 

inhomogeneity is weak and the turbulent production is limited. The large-scale 

anisotropy persists over the range under investigation, but the small scales, less 

than one Taylor micro scale in size, can be considered approximately isotropic for 

       . The comparison of the longitudinal and transverse correlation functions 

with the corresponding ones under the hypothesis of isotropic turbulence 

underlines a satisfactory agreement for scales smaller than the Taylor microscale, 

while for larger scales the agreement is quite poor. 

Three different methods for the dissipation measurements have been 

compared: direct measurement, Large Eddy PIV and balance of the turbulent 

kinetic energy. The output of the first method is quite poor due to the limited 

spatial resolution. This aspect is reflected also in the overestimation of the Taylor 

microscale. According to Fig. 7.6, there is no much room for higher resolution. A 

larger magnification could be obtained by moving the limit on the particle size 

towards larger values of   , for example by reducing   . On the other hand, smaller 

   means stricter requirements on the depth of field, while larger    requires 

higher Scheimpflug angles, thus complicating the focusing and determining wide 

gradients of illumination and magnification on the camera images. These factors 
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might affect the tomographic reconstruction quality, thus reducing the accuracy of 

the measurement. 

Large Eddy PIV and measurement of the dissipation from the turbulent kinetic 

energy balance seems to confirm the remarkable finding that the scaling of the 

turbulent dissipation with the ratio of the turbulent kinetic energy and the large 

eddy turnover time is not universally valid for all boundary-free turbulent shear 

flows (Hurst & Vassilicos 2007). This peculiar feature could be attributed to the 

effect of the fractal generator on the cascade mechanism; perhaps this initial 

pumping of energy at a range of different length scales does not allow for the 

normal separation of the energy containing and dissipative scales so that the small 

scales do not have “room” (spectrally speaking) to develop the conventionally 

expected behaviour. 



 

144 

Chapter 8 - Jet flows past a sudden expansion 

In turbulent diffusion flames the role of the large coherent structures in the 

mixing of the fuel and the oxidant has a leading importance in determining the 

combustion efficiency, the flame stability, the amount of soot and NOx, and so on. 

The requirements depend strongly on the burner; for example, gas turbines require 

the minimization of the radiant heat transfer towards the walls, and consequently a 

very short residence time; on the other hand, in furnaces and kilns the radiance is 

the leading mechanism in heat transfer, thus making very desirable a long 

residence time. In this second case, considerable attention has been devoted to the 

development of devices with the aim of exciting and enhancing the large scale 

coherent structures embedded into the shear layer of jets. The organization of these 

structures plays a key role in the transport of mass and momentum in flames 

(Mungal et al 1991). These devices can be bundled in three categories: acoustic 

excitation (see Reynolds et al 2003 for a review), which can be obtained both by 

external excitation (for example using speakers) or by self-excitation, enjoying the 

coupling between flow instabilities and acoustic resonance; mechanically 

oscillating devices (see for example Simmons et al 1981), effective in cold 

environment but not well suited for the combustion environment, in which the high 

temperature prevents the use of fast moving parts; fluidically excited devices, like 

flapping jets (Mi et al 2001a) or precessing jets (Nathan et al 1998).  

The precessing jet (PJ) is generated with an axisymmetric jet flowing through a 

circular nozzle and subject to an abrupt expansion in a chamber that is coaxial with 

the nozzle. The jet reattaches asymmetrically after the abrupt expansion, and on the 

opposite side fluid is entrained into the chamber from the ambient. Instantaneous 

asymmetries trigger a rotating pressure field, inducing a precession of the jet, i.e. a 

rotation of the jet axis around the nozzle axis. The PJ, in this sense, is different from 

swirl flows, in which the rotation of the jet occurs around its own axis; on the other 

hand, the two jet flows have some similarities, as precession has been observed in 

proximity of the jet axis for relatively strong swirl (the so called precessing vortex 

core; see Syred 2006 for a review). The PJ has shown extremely interesting 

features, determining a reduction of the global flame strain rates within the flames, 

thus leading to an increase of the volume of soot. The larger amount of soot 

enhances the radiative heat transfer, reducing the flame temperature and the 

production of NOx (see for more details Newbold et al 2000 and Nathan et al 2006). 

PJs have found application in industrial processes in which the radiant heat transfer 

plays a leading role over convection, such as rotary kilns for the production of 

cement and lime. Extensive studies have addressed the main statistical features of 

PJs in the near field (within the chamber) and the external field; however, the flow 
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field is extremely challenging, being it strongly unsteady and three-dimensional. 

Furthermore, PJs belong to the class of bifurcating flow instabilities arising in 

symmetrical configuration in absence of initial bias, which are usually difficult to be 

modelled and numerically simulated.  

Very limited attention has been provided on the topology of the field within the 

chamber, mainly with flow visualization (Nathan et al 1998), phase-averaged 

investigation with pointwise techniques (Wong et al 2003) or with numerical 

simulations (Guo et al 2001, Revuelta et al 2002, Revuelta et al 2004). Tomographic 

PIV, in this sense, can provide a leap forward in understanding the organization of 

the flow topology in the complicate scenario of an unsteady, intermittent and 

strongly three-dimensional turbulent flow field. The task of this chapter is to 

provide a description of the underlying phenomenology of the FPJ, and to provide a 

benchmark for numerical simulations, that are extremely challenged in this 

scenario. 

An overview of the main features of the phenomenology of the PJ is provided in 

Sec. 8.1. The experimental setup for the Tomo-PIV investigation of the near field of 

a PJ is described in Sec. 8.2. The analysis is conducted on the instantaneous and 

average flow field features (Sec. 8.3) and using the Proper Orthogonal 

Decomposition to assess the role of the leading large coherent structures (Sec. 8.4). 

The experiments are carried out in two scenarios: no initial swirl; inlet swirling 

flow, with two levels of initial swirl. 

8.1 Fluidic precessing jet nozzles 

The jet precessing motion is defined as the rotation of the jet about an axis 

other than its own one in a gyroscopic-like motion. In this chapter the basic 

configuration with a round nozzle of diameter   issuing into a cylindrical chamber 

with diameter   and length   (the nozzle and the chamber are concentric) will be 

defined as Fluidic Precessing Jet (FPJ) nozzle. 

The first systematic investigations of the precessing motion in axisymmetric 

chambers date back to the ‘80s, with the works by Hallett & Günther (1984) and 

Dellenback et al (1988). In both cases the precession is induced by an upstream 

swirl motion in the inlet flow. Hallett & Günther (1984) performed experiments 

with an expansion ratio         , and observed a precessing motion in the case 

of low swirl number. On the other hand, for high swirl number the flow field is 

dominated by the vortex breakdown, inducing the presence of a central 

recirculation zone. Interestingly enough, this phenomenon occurs at lower swirl 

number than required in case of unconfined swirling jets. Dellenback et al (1988) 

added to this scenario, with a systematic analysis, the effect of upstream swirl (0 to 

1.2) for           and Reynolds number (referred to the inlet diameter) varying 

in the range 30,000-100,000. They found out that the precession motion and the 
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mean swirl occur in opposite directions at low swirl, and in the same direction for 

high swirl. 

Luxton & Nathan (1989) investigated the effect of an abrupt expansion on 

axisymmetric jets, showing that an upstream swirl is not required to generate a 

precessing motion, provided that the expansion ratio is sufficiently large. Since the 

generated flow field within the chamber leads to a precessing motion at the exit of 

the chamber, this large scale excitation mechanism immediately appeared 

interesting for combustion applications, thus leading to the commercialized device 

Gyro-Therm, patented by the University of Adelaide (Luxton et al 1987). Even 

though the patent is consolidated, still much has not been understood of the 

topology of the flow field of FPJ.  

In this section an overview of the main results reported in the literature is 

provided (Sec. 8.1.1), including a detailed description of the main flow 

phenomenology, and of the effects of the geometrical and experimental parameters 

(Reynolds number, aspect ratio of the chamber, see Sec. 8.1.2). Furthermore, some 

insight is provided on the measurement of the precession frequency in Sec 8.1.3.  

8.1.1 The phenomenology of precession in axisymmetric jets 

The description of the phenomenology of precessing jet is extensively provided 

in the seminal work by Nathan et al (1998), and summarized in the following. In 

their work particular care is taken to ensure that the inlet flow is symmetric and 

free of bias to avoid any influence of residual or induced swirl within the chamber. 

The flow exhibits an intermittent behaviour, switching between a precessing jet 

mode and an axial mode. The visualization of the instantaneous pathlines of the two 

modes, obtained by collecting the light scattered by air bubbles seeding the flow, is 

reported in Fig. 8.1. It has to be noted that in the configuration tested by Nathan et 

al (1998) an exit lip is added to the chamber in order to enhance the deflection of 

the exit jet and increase the asymmetry, which is the driving force of the precessing 

motion. 

In the precessing mode the flow field is characterized by a continuously 

unstable reattaching jet, with a strong recirculation region located on the opposite 

side of the chamber. A transverse pressure gradient in the outflow is established, 

thus determining a sharp deflection of the wall jet at the exit of the chamber. Since 

the flow is in a condition of neutral equilibrium, the effect of any asymmetry and/or 

the turbulence fluctuations induces the reattachment point to move; as the jet 

starts to rotate along one direction, the asymmetry of the flow entrained into the 

chamber induces the establishment of a rotating pressure field. Indeed, the 

recirculating fluid moves upstream within the chamber and swirls in the opposite 

direction to that of the precession, thus retaining the net angular momentum equal 

to zero. This aspect is sketched in Fig. 8.2. 
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Fig. 8.1 Water flow visualization (bottom) and schematic interpretation (top) of the instantaneous 

pathlines in the precessing jet mode (left) and the axial mode (right). (Nathan et al 1998). 

 

Fig. 8.2 Schematic interpretation of the interaction between swirling entrained fluid and precessing 

outflow (Nathan et al 2006). 

The axial mode is characterized by a statistically axisymmetric spreading of the 

jet. Nathan et al (1998) noted that the flow does not reattach to the wall within the 

chamber, but it does interact with the lip, determining the occurrence of a wide 

recirculation region in proximity of the wall and the rising of large coherent 

structures (significantly larger than the case of the unconfined jet). Nevertheless, 

the flow visualizations by Nathan et al (1998) testify that the spreading rate of the 

jet outside the chamber is still much larger in the case of the precessing mode than  
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Fig. 8.3 Precession probability as a function of the inlet Reynolds number. The discrimination between 

the two modes is obtained by using the pdf of the pressure measurement at the wall (indicated with  ), 

or the signal from a total pressure probe on the centreline (indicated with CL). (adapted from Nathan et 

al 1998). 

in the axial one, thus inducing the wish to maximize the probability of occurrence of 

the precession with respect to the axial outlet. 

8.1.2 The effects of geometry and Re on the precession probability 

Several studies have concentrated their focus on developing solutions to favour 

a stable precessing motion.  Nathan et al (1998), and many following studies of the 

same research group, fixed the expansion ratio      , which has shown to be 

very favourable for the precession, and investigated the effects of the chamber 

aspect ratio, the Reynolds number and the chamber geometry on the probability of 

precession. Incidentally, a minor (but still significant) influence is due to the 

characteristics of the inlet flow; in fact, Wong et al (2004) verified that a smooth 

contraction nozzle results in a lower precession probability than inlet from an 

orifice plate or a long pipe. This effect is related to the different initial behaviour of 

the boundary layer, that for the nozzle with a smooth contraction inlet is 

characterized by a symmetrical shedding initial boundary layer, while the sharp-

edged orifice generates an asymmetric shedding of roll-up structures, and the pipe 

jet produces randomly distributed large structures into the shear layer (Mi et al 

2001b). 

Nathan et al (1998) introduced an exit lip to increase the deflection of the exit 

wall jet, thus enhancing the transverse pressure gradient and the asymmetry in the 

entrained flow. They measured the precession probability as a function of the inlet-

based Reynolds number for an aspect ratio of the chamber          by using the  
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Fig. 8.4 Precession probability as a function of: chamber aspect ratio     (left); inlet Reynolds number 

(right). On the left:           ,           ,           ,           ,           ,  

        . On the right: *        , +        ,          ,           ,          ,   

       ,         . (Madej et al 2011). 

probability distribution function of the wall pressure measurements. The results 

reported in Fig. 8.3 show that the precession probability is an increasing function of 

the inlet Reynolds number, and that FPJ nozzles with larger expansion ratio are 

more favourable to the precessing motion (within the range of the tested ratio, i.e. 

           ). 

More recently, Madej et al (2011) investigated the effects of variable aspect 

ratio and Reynolds number on the precession probability by using Stereoscopic PIV 

at the exit of a FPJ nozzle with       and no exit lip. The mode determination is 

performed using three criteria, based on the maximum outflow velocity position, 

centroid location of the volume flow rate and volume flow beyond a cut-off radius. 

The three methods lead with relatively low uncertainty to the results reported in 

Fig. 8.4. In the case of       the flow field does not exhibit the precessing mode 

in the range of tested Reynolds number. Chamber aspect ratios included in the 

range            are very favourable for the precession, with probability of 

precessing mode increasing with the inlet Reynolds number. In all cases, the 

relative increase of the probability with the Reynolds number progressively 

decreases, as observed also by Nathan et al (1998). The probability significantly 

drops down for      , with a partial recover for larger aspect ratios. 

An improved version of the FPJ basic nozzle is obtained by adding a bluff body 

along the centreline of the chamber in proximity of the exit, as shown in Fig. 8.5. 

The centrebody ensures nearly 100% probability of precession, provided that the 

Reynolds number is sufficiently large (Wong et al 2004). The first extensive 

description of the flow field within the chamber in the chamber-centrebody-lip  
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Fig. 8.5 Sketch of the chamber-lip-centrebody configuration (Wong et al 2003). 

configuration is provided by Wong et al (2003). They identified with phase-

averaged Laser Doppler Anemometry (LDA) the asymmetry of the reattaching jet 

and measured a spreading rate significantly larger than turbulent free jets in the 

external field. The limits of the measurement technique, on the other hand, provide 

only phase-locked measurements, giving up any instantaneous field information. A 

more detailed outline of the external velocity field is obtained by Wong et al (2008) 

using phase-triggered PIV and surface visualization. The identification topology of 

the external velocity field goes beyond the scope of the investigation addressed in 

this chapter; the reader is referred to Wong et al (2008) for an exhaustive 

description. 

8.1.3 Determination of the Strouhal number of the precession 

Measuring the Strouhal number, i.e. a normalized frequency, associated with 

the precession, and its dependence on the geometric and flow parameters is of 

fundamental importance, as it influences the mixing outside the chamber, in the 

region where the flame will be located. Nathan & Luxton (1992a, 1992b) verified 

that, for the case of the FPJ, the following definition best collapses the data: 

    
   

  
         (8.1) 

where    is the precession frequency,   is the step height (that is equal to 

       ) and    is the bulk velocity of the inlet jet. However, in the literature the 

definition     based on the inlet diameter   instead of the step height is most 

widely used, especially for the case of the structures embedded in shear layers. 

Nathan et al (1998) measured the precession frequency by identifying the peak in 

the power spectrum of the signal from a total pressure probe placed along the axis 

of the chamber, and collected data on the measured Strouhal number for earlier  
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Fig. 8.6 Schematic of the mechanical precessing nozzle (Mi & Nathan 2004). 

investigations on FPJ and on a flapping jet into a rectangular chamber (Shakouchi 

1981, 1989). Interestingly enough, in both cases the obtained Strouhal number 

ranges is 0.001-0.005, i.e. one order of magnitude below the typical values related 

to the shedding of structures embedded within the shear layer; furthermore, the 

results are obtained with different fluids (water, air) and Mach number varying in a 

significant range (0-0.7), thus excluding any acoustic coupling with resonant modes 

to be responsible of the precession.  

More recently, Mi & Nathan (2004, 2006) investigated the influence of the 

chamber length, the inlet geometry and the Reynolds number on the precession 

frequency. They observed that     increases almost linearly with both the chamber 

length and the jet velocity. In addition to this, the effect of     is much more 

significant than that of     (i.e. the Reynolds number based on the inlet diameter) 

in determining the mixing of the fluids outside the chamber. 

Due to the intrinsic difficulty in isolating the precession features in a 

continuously intermittent flow field, in some explorative studies the effects of the 

precession frequency on the mixing characteristics have been quantified using a 

Mechanical Precessing Jet nozzle (MPJ, Schneider et al 1997). The MPJ is sketched 

in Fig. 8.6. While the MPJ has the unquestionable advantage of enabling the 

independent variation of the parameters influencing the initial conditions, it is not 

well suited for the applications in combustion due to the presence of moving parts; 
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furthermore, there are quite significant evidences of important differences between 

the FPJ and the MPJ. For example, the jet emerging from the FPJ is not circular, but 

“kidney-shaped” (Wong et al 2008, Madej et al 2011); furthermore, the MPJ 

generates a central recirculation zone in the near field, while the FPJ does not. For 

this reason a more robust method to obtain phase-locked measurements and 

isolate the precession frequency is provided in this chapter. 

8.2 Experimental details 

8.2.1 Water facility 

The experiments are carried out in a water facility at the University of Naples 

Federico II. The jet is issued from a circular nozzle (with diameter       ) 

installed on the bottom of a nonagonal plexiglass tank (internal diameter      , 

height      ); the plexiglass walls allow a complete access for both the 

illumination and the camera imaging. The jet expands into a cylindrical chamber, 

coaxial with the nozzle, with diameter         and length         (so that 

      and         ). While in many investigations an exit lip and/or a centre-

body have been included into the chamber to favour the precession mode with 

respect to the axial mode and to condition the exit angle, in this fundamental study 

these solutions are not considered in order to assess the topology of the flow field 

without external conditioning. 

Stabilized water supply of         is provided upstream of the nozzle by a 

centrifugal pump and is laminarized by passing through flow-conditioning grids 

and honeycombs installed in the plenum chamber. The diameter of the plenum 

chamber is    and its length is    , thus no significant effects of fluctuations, or 

bias due to swirl, are expected in the flow at the inlet of the chamber. In order to 

check that the effects of asymmetry and bias are negligible, the profiles of the 

velocity and the turbulent statistics at the exit of the nozzle have been analyzed 

with planar PIV for the case of outflow without the external chamber. The profiles 

of the longitudinal velocity      (where    is the centreline velocity) and of the root 

mean square of the longitudinal velocity fluctuations       (Fig. 8.7) outline that 

the flow can be reasonably assumed symmetrical and unbiased. 

The experiments are carried out with three different outlet conditions: no 

swirl, low swirl (swirl number equal to 0.2) and high swirl (swirl number equal to 

0.6). The swirl is generated with helical inserts as reported by Ianiro & Cardone 

(2012). In all cases the bulk velocity    of the jet entering the chamber is about 

      , thus resulting in                  . In this scenario the precessing 

mode is expected to considerably prevail on the axial mode; indeed, Madej et al 

(2011) indicated 84% of probability of precessing motion for           , 

         and      ; furthermore the probability increases with     (even if 

only a weak dependence is reported in the literature). 
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Fig. 8.7 Profiles of the inlet velocity        and of the root mean square of the axial fluctuations         

(where    is the centreline velocity) of the jet without confinement. 

Unless otherwise stated, the letters       indicate the velocity components 

along the width, the height and the depth of the measurement volume (respectively 

     ). The corresponding lower case letters       refer to the turbulent velocity 

fluctuations obtained by subtracting the mean velocity components from the 

instantaneous realizations. The angled brackets     indicate the operation of 

ensemble averaging over the set of realizations. Finally, the symbols          are 

used to refer to the root mean square (rms) of the turbulent velocity fluctuations. 

8.2.2 Tomographic PIV system 

The flow is seeded with neutrally buoyant polyamide particles with average 

diameter of     , dispersed homogeneously within the facility with a 

concentration of approximately             . Laser pulses are produced with a 

double-cavity Gemini PIV Nd:Yag system (     ,            ,     pulse 

duration). The exit beam of     diameter is shaped into a parallelepiped volume; 

a knife-edged slit is placed along the laser path to set the thickness of the volume to 

about 34  . The light scattered by the particles is collected by a tomographic 

system composed of four LaVision Imager sCMOS 5.5 megapixels cameras 

(            pixels resolution, pixel pitch of      , 16bit resolution in intensity). 

The cameras are disposed in linear arrangement, as sketched in Fig. 8.8, covering 

an angle of 90°. The cameras are equipped with       EX objectives, set at 

      and equipped with Scheimpflug adaptors to obtain well focused particle 

images throughout the volume. The average magnification in the centre of the 

measurement volume is about 0.06, thus resulting in a depth of field of more than 
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Fig. 8.8 Sketch of the illumination and the camera arrangement of the Tomographic PIV system. 

      according to (1.3), and a particle image diameter of     pixels according to 

(1.2). 

Sequences of the tracers particles with time separation of       are taken at a 

frequency equal to     . Considering the typical values of the Strouhal number 

(see Sec. 8.1.3), the acquisition frequency does not suffice for the temporal 

resolution of the vortices within the shear layer, but is certainly higher than the 

Nyquist frequency for the precession motion (that is expected to lie in the range 

         ). 

8.2.3 Calibration correction 

The three-dimensional mapping functions are obtained by recording images of 

a calibration target mechanically translated along the depth direction of the 

measurement volume, as described in Sec. 1.2.1, in the range      . The 

calibration is performed with a double/plane target, with white dots on dark 

background. The spacing of the markers on the same plane is     ; the separation 

between the planes is    . A three-dimensional polynomial function, 3rd order in 

  and  , and 2nd order in  , is fitted to the calibration points correspondence to 

build the mapping functions for each camera of the tomographic setup. A template-

matching technique, with a cross-correlation based algorithm, is used to identify 

the location of the markers. The     of the initial calibration error is quite high 

(about 0.8 pixels) due to the relatively large size of the dots (about 30 pixels on the 

camera planes). 
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The challenge in this application of the procedure resides in the impossibility 

to perform the calibration in-situ due to physical restrictions, i.e. the calibration is 

performed without the presence of the tube. For this reason the self-calibration is 

the keystone for a successful experiment, as it can correct the mapping functions to 

account for misalignment of the lines of sight due to the viewing angle through the 

Plexiglas chamber, determining refraction effects along the optical path. 

An automatic iterative self-calibration procedure (see more details on the 

standard self-calibration in Sec. 2.1.4) has been implemented to gradually correct 

the misalignment and registration errors, which can be significant due to inserting 

the chamber after the calibration. The procedure is a multi-grid algorithm similar to 

the single-image self calibration implemented by Michaelis & Wolf (2011), in this 

case applied to 200 images. In each step the image density is artificially reduced by 

considering only the brightest particles on the original images. The iterative 

procedure strongly relies on the reliability of the measured disparity peaks at the 

previous step. For this reason a signal/noise (SN) ratio is defined as the ratio of the 

disparity peak and the second maximum within the map. A value of 1.5 is 

considered a reasonable threshold to validate the disparity peaks. 

The procedure is outlined in the following: 

 The misalignment due to net displacement between the cameras is corrected 

by computing disparity maps relative to the entire measurement volume. For 

this step the 5000 brightest particles of each image have been considered (i.e. 

about 4% of the total particles, equivalent to 0.002   ), with a search radius 

of 8 pixels. The maximum correction applied on the camera is of 0.6 pixels. 

The average SN is about 5; 

 A refinement of the grid is performed: the measurement volume is divided in 

3x3x3 sub-volumes and the disparity maps are computed using the 10000 

brightest particles. In this step, possible relative rotation between the 

cameras can be corrected. The corrections range between          pixels 

(i.e. larger than the previous step), and this is due to the fact that the left and 

right sides of the measurement volume are much more affected by the optical 

distortions due to chamber. The disparity maps for one camera relative to the 

central plane are reported in Fig. 8.9 (top left). For all sub-volumes the SN is 

larger than 2, with peaks over 30. 

 The grid is refined in 3 additional steps (5x5x3volumes with 20000 particles, 

7x7x5 volumes with 40000 particles, 9x9x5 volumes with all the detected 

particles). The relative disparity maps for one camera relative to the central 

plane are reported in Fig. 8.9. A significantly lower SN is observed on the left 

and right side of the volume, with some vector rejections. This is due to the 

effect of residual reflections, obscuring particles and consequently making it 

difficult the matchings on the different images. Furthermore particles are 
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elongated and distorted due to optical aberrations, thus increasing the 

uncertainty in position measurement. 

At the end of the self-calibration procedure, the root mean square of the 

calibration error is brought down to      pixels, with a maximum error of      

pixels, acceptable for a successful tomographic reconstruction. 

8.2.4 Tomographic reconstruction and CC analysis 

A measurement volume of                   (i.e.                  ) is 

reconstructed using the Multi-Resolution algorithm outlined in Chapter 3, with 

MLOS initialization, 3 MART iterations on a binned 2x configuration and 2 final 

MART iterations on the final resolution. A further accuracy improvement is 

obtained by applying the SFIT technique with anisotropic filtering on a       

kernel, with Gaussian distribution of weights and standard deviation equal to 1. The 

volume is discretized with         , thus resulting in a reconstruction volume of 

                  voxels.  

 

Fig. 8.9 Disparity maps on the middle plane of the measurement volume for one camera in the 4 steps of 

the self-calibration process. 



Chapter 8 – Jet flows past a sudden expansion 
 

157 

 

Fig. 8.10 Intensity profile along the depth direction (left) and pdf of the divergence of the raw velocity 

field (right, continuous line) and of the filtered velocity field (right, dotted line). 

The background on the raw images is eliminated by removing the historical 

minimum on each sequence of 500 images; the residual background intensity is 

deleted by performing a sliding minimum subtraction in both space (        pixels) 

and time (5 samples). The quality of the reconstruction is evaluated a-posteriori by 

computing the sum of the intensity on the    planes (i.e. the z-profile of the light 

intensity within the volume), as done in Sec. 4.2.3. The profile in Fig. 8.10 (left) 

shows that the ratio between the intensity in the illuminated region, which is due to 

both true and ghost particles, and the ghost intensity outside the volume, is quite 

limited, but still acceptable for the 3D velocity measurement. 

The cross-correlation analysis is performed with the efficient algorithm based 

on direct sparse cross-correlations and redundancy avoidance outlined in Sec. 5.1. 

The final interrogation spot is 643 voxels (corresponding to                    ) 

with 75% overlap (thus resulting in a vector spacing of      ). The uncertainty on 

the velocity measurement can be assessed by applying physical criteria, for 

example by computing the divergence of the velocity field, as in Sec. 4.3. The 

uncertainty in the divergence is both due to the measurement error on the velocity 

and the numerical truncation in the derivative calculation; however, the 75% 

overlap reduces this second source of error, thus making it possible to quantify 

with reasonable approximation the uncertainty on the velocity measurement using 

the standard deviation of the divergence. In this case, the data are presented in 

non-dimensional form by referring the data to the typical value of the vorticity 

within the shear layer in the case of the circular jet (               ). For the raw 

velocity field the standard deviation is                   (0.14 in the non-

dimensional version); the uncertainty is reduced to                   if a low-

pass Gaussian filter on a kernel           and standard deviation equal to 1 is 

applied. 
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Fig. 8.11 Contour representation of the longitudinal velocity component      on the middle plane of the 

measurement volume, and iso-surfaces of          (red),           (blue) and     (light blue) 

for the case of: a)    ; b)      ; c)      . 

8.3 Results 

8.3.1 Instantaneous flow features 

Snapshots of instantaneous realization of the velocity field for the three tested 

nozzles are presented in Fig. 8.11. The normalized longitudinal velocity component 

      is presented with a contour representation on the middle-plane of the 

measurement volume along the depth direction; iso-surface of positive and 

negative velocity, and of positive   (where   is the second invariant of the velocity 

gradient tensor; when     rotation prevails on shear, so that it can be used as a 

vortex identification criterion; see Jeong & Hussain 1995 for further details) are 

also reported. The results are presented in non-dimensional form, using the bulk jet 

velocity    and the chamber diameter   as a reference. 

In the case of the circular nozzle, i.e.    , the jet asymmetrically attaches to 

the wall and a wide entrainment region is formed on the opposite side of that of 

impingement. Interestingly enough, the point of attachment is beyond      , in 

contrast with the surface visualization reported by Nathan et al (1998), reporting 

the impingement point to be located about at half-height of the chamber. Such a 

discrepancy is addressed to the presence of the exit lip, which exasperates the exit 

angle (and, consequently, the swirl number of the outlet of the chamber), thus 

inducing the attachment point to move upstream due to the stronger induced swirl. 

This hypothesis is confirmed by the analysis of the instantaneous flow field in case 

of      , in which adding a swirl in the upstream flow determines both the  
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Fig. 8.12 Contour representation of the longitudinal fluctuating velocity component      (relative to the 

same instantaneous realization of Fig. 8.11) on the middle plane of the measurement volume: a)    ; 

b)      ; c)      . 

recirculation regions and the impingement point to be located closer to the inlet 

nozzle. In both cases the  -criterion identifies the main vortical structures to be 

located within the shear layer of the inlet flow, appearing in the form of roll-up 

vortices generated by the Kelvin-Helmholtz instability. Furthermore, a significant 

recirculation region is identified in the upstream part of the chamber below the 

attachment point; the recirculation is remarkably more intense in the case of 

     . 

The instantaneous flow field for       is extremely different. In this case the 

flow field is dominated by the vortex breakdown, typical of flows with significant 

swirl. The central recirculation region is elongated along the chamber axis, leading 

to a substantial entrainment of fluid form the external ambient. These features 

were foreseeable, given the quite large swirl number. Indeed, in swirling flows the 

radial pressure gradient induces an intense expansion of the jet flowing out from 

the nozzle, thus determining an adverse axial pressure gradient; when the swirl 

number is sufficiently high, this phenomenon induces the formation of a central 

recirculation zone. The vortex breakdown has an intimate bond with another 

precessing motion, which shares similar features with the fluidic precessing jets, i.e. 

the precessing vortex core, in which the recirculation region precessing around the 

axis of symmetry of the jet is stirred as a helical structure. The reader is referred to 

more extensive reviews on this topic, provided by Lucca-Negro & O’Doherty (2001) 

and Syred (2006). 
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More interesting features can be highlighted by observing the fluctuating 

velocity fields obtained by a Reynolds decomposition, i.e. subtracting the ensemble 

average of the entire set of realizations from each velocity component. For the case 

of     and       the data of Fig. 8.12 highlight the presence of a pseudo-wall jet 

and a strong entrainment region on the opposite side of that of impingement. In 

absence of swirl the velocity fluctuations due to the precession are significant only 

for        , i.e. the jet is undisturbed and quasi-axisymmetric in its early region 

of development. It is reasonable to assume that this longitudinal abscissa can be 

considerably smaller in presence of an exit lip or an exit centrebody, thus 

influencing the spreading rate of the jet in the very near field. In presence of a weak 

swirl, strong longitudinal velocity fluctuations are evident up to the inlet nozzle, 

and this is due to the fact that the precession is induced (and, in a certain sense, 

powered) by the upstream swirl itself. Again, a wide recirculation region is 

observed, extending almost up to the nozzle inlet. 

The case of       presents significant discrepancies with the two cases 

previously analyzed. The near field is characterized by extremely large velocity 

gradients and the dominance of small-scale turbulent structures due to the mixing 

effects induced by the vortex breakdown. Evidences of a large-scale precession of 

the vortex core are present in the upstream part of the chamber, where a 

fluctuating entrainment and a corresponding outlet are clearly distinguishable. 

Differently from the case of the circular nozzle and weak swirl, the entrainment and 

the fluctuating outlet occur much closer to the chamber axis.  

8.3.2 Mean flow features 

Even though the motion is extremely three-dimensional and intermittent, some 

interesting considerations can be drawn by observing the mean flow features. In 

Figs. 8.13-8.14 the profiles of the mean velocity components and of the root mean 

square of the relative velocity fluctuations are reported at three longitudinal 

location in the near field (              ) for the cases of     and       (the 

results for       present qualitatively similar features with    , and are not 

included for brevity).  

The profile of        for     highlights the presence of a significant swirl 

induced within the lower region of the chamber. This effect is much stronger than 

the rate of entrainment of the jet in the near field, as testified by comparison with 

the profile of       . It is important to note that the direction of swirl is connected 

to that of the precession. Physical arguments on the balance of angular momentum 

suggest that the swirl occurs in the direction opposite to that of precession (in 

agreement with the observations by Dellenback et al 1988). A more detailed 

discussion and evidences of this phenomenon are reported in Sec. 8.4.4. 
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Fig. 8.13 Radial profiles of the mean velocity components for     (a,b,c) and       (d,e,f) for 

               (top to bottom).                        . Symbols are placed each 4 computed 

vectors. 

For the case of       the flow field is dominated by the vortex breakdown, as 

revealed by the profiles of       . At the nozzle inlet (       a positive 

longitudinal velocity is observed, with two weak regions of negative velocity due to 

the recirculation regions in proximity of the wall. Moving longitudinally along the 

axis of the chamber, a wide intense recirculation region is formed due to the vortex 

breakdown. The effects of the intense adverse axial and radial pressure gradients 

determine a rapid transfer of spectral energy from the large to the small scales of 

turbulence, thus enhancing the turbulent mixing at the expense of the mean flow. 

The turbulent fluctuations profiles along the   direction are reported in Fig. 

8.14. The profiles of the root mean square of the velocity fluctuations for the case 
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Fig. 8.14 Radial profiles of the rms of the normalized turbulent fluctuations for     (a,b,c) and       

(d,e,f) for                (top to bottom).                     . Symbols are placed each 4 

computed vectors. 

of     indicate, as expected, a predominance of the longitudinal fluctuations 

within the shear layer. In addition to this, the effect of the induced upstream swirl 

determines larger turbulent fluctuations    than    (the last one being mainly 

induced by the entrainment for the chosen profile). This gap persists over the 

entire near field region, while it disappears for       (see Fig. 8.15), where the 

large scale mixing due to the precession motion is dominant. In case of high swirl 

the turbulence intensity is considerably larger at the inlet than in the case of    . 

Moving downstream, the vortex breakdown determines a rapid decay of the 

intensity of the turbulent kinetic energy in the central recirculation zone. 
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Fig. 8.15 Longitudinal profiles of the normalized rms of the turbulent fluctuations along the centreline of 

the chamber for     (a) and       (b).                     . Data are plotted with a step of 8 

vectors for clarity. 

8.4 POD analysis and Low Order Reconstruction 

As already outlined in the previous sections, the limited acquisition rate is not 

large enough to allow time-resolved measurements, but it does suffice to solve the 

large scale precessing motion, at least for     and       (for the case of high 

swirl this condition is not satisfied, since the flow field is dominated by the 

precessing vortex core and the vortex breakdown, whose typical Strouhal number 

is usually one-two orders of magnitude larger than that associated to the 

precession). On the other hand, the acquisition is not triggered by pressure signals 

(as done by Wong et al 2008, among the others), thus introducing the problem of 

the phase identification to obtained phase-averaged measurements. The task is 

quite challenging, since the flow field is intermittent and highly turbulent.  

Proper Orthogonal Decomposition (POD) is a powerful instrument to extract 

information on the coherent structures in turbulent flows (Berkooz et al 1993). 

Furthermore, in strongly periodic flow fields, the flow phase information can be 

inferred using a relatively low number of POD modes (Ben Chiekh et al 2004, Van 

Oudheusden et al 2005, Meyer et al 2007). In this section the POD implementation 

is briefly outlined, and the most significant POD modes are illustrated for the three 

tested nozzles. A low order reconstruction method, using the most energetic modes, 

is implemented to extract phase-averaged information on the precessing motion for 

   . Finally, the extracted phase data are used to estimate the precession 

frequency range. 

8.4.1 POD implementation 

The Proper Orthogonal Decomposition is a mathematical procedure aimed to 

identify an orthonormal basis using functions estimated as the solution of the 
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integral eigenvalue problem known as a Fredholm equation (see Berkooz 1993 or 

Sirovich 1987 for a more rigorous formulation). Suppose that a function        is 

approximated by: 

                                           
  
     (8.2) 

Without any loss of generality, let   and   be the spatial and time coordinates, 

respectively. The symbols          and        indicate the mean and the 

fluctuating part of the velocity field, respectively; the functions       constitute the 

decomposition basis of the fluctuating velocity field, and       are the time 

coefficients; the symbol    indicates the number of modes. Evidently, the solution 

for the decomposition (8.2) is not unique, as it depends on the chosen basis 

functions      . Furthermore, another difficulty arises in determining the time 

coefficients given the set of basis functions. 

One possible solution to determine the       consists in using orthonormal 

basis functions, i.e.: 

                       (8.3) 

where     is the Kronecker delta symbol, and the overbar indicates spatial 

integration over the measurement domain. This choice leads to: 

                         (8.4) 

Therefore, in case of orthonormal basis functions, each coefficient       is 

dependent only of the pertaining      . 

The remaining problem is the criterion to find the set of orthonormal functions. 

Among the infinite possible solutions, POD aims to find the set of basis which is 

optimal in a least square sense. In the scenario of the formulation of the POD 

snapshot method by Sirovich (1987), it can be demonstrated that the POD modes 

are the eigenmodes of the two-point temporal correlation matrix  : 

              (8.5) 

with                      . Since     is a non-negative Hermitian matrix, it has a 

complete set of non-negative eigenvalues, whose magnitude indicates the energy 

contribution of the respective eigenmodes. Indeed: 

                     
  
         (8.6) 

The POD modes with the largest eigenvalues determine the most dominant 

flow field features in terms of energy. In the case under investigation the precessing 

motion is expected to give a dominant contribution, thus allowing the possibility of 

low-order reconstructions using only a small number of modes (as in Ben Chieck 
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2004), or build phase-averaged measurements by identifying the phase of each 

realization. 

8.4.2 POD modes 

The snapshots method provides, in principle, a number of modes equal to the 

number of snapshots (in this test case, 500 realizations). For clarity, in Figs. 8.16-

8.18-8.20 the plot is limited only to the first 100 modes, containing the bulk of the 

energy. The eigenvalues are normalized with respect to their sum, representing the 

total turbulent energy of the fluctuations. Furthermore, the cumulative sum of the 

energy is reported, in order to identify the number of modes that significantly 

contribute to build up the decomposition of the velocity field. 

In Fig. 8.16 the case of no upstream swirl is illustrated. Evidently, the first three 

modes constitute the most relevant contribution, as they contain respectively 

20.8%, 10.9% and 7.5% of the energy, respectively (building in total 39.2% of the 

overall energy). The modes 4-9, contain in total about 10% of the energy; the 

modes 10-500 are associate each one with less than 1% of the total energy, thus 

they are most certainly associated with random fluctuations due to small scale 

turbulence and measurement noise. 

The first three modes for the case of     are reported in Fig. 8.17, in which 

the contour representation of the   component, normalized with the bulk velocity, 

and the iso-surfaces of            and           are reported. The first and 

second modes are associated with the large scale precession, as they present an 

asymmetric outflow associated with an inflow on the opposite side of the chamber. 

This interpretation is confirmed by observing the instantaneous velocity fields 

reported in Fig. 8.12. The strong periodic component of the flow field enables the 

possibility to reconstruct the main topology of the precessing motion using only the 

first two modes (see Sec. 8.4.3). The difference in the energy pertaining to the first 

and the second mode is probably related to the geometry of the measurement 

volume, since it contains the entire inflow and outflow regions for the case of the 

first mode, while in the second mode the same two highly energetic regions are 

partly located outside of the observed volume in the far field. The third mode is 

quasi-axisymmetric, as it presents a strong on-axis outflow, associated to the axial 

mode. As a matter of fact, the ratio of the energy associated to the first two modes 

and the total energy of the first three modes can be interpreted as an “effective 

energy – probability” of precessing motion (about 81% for the case of    ). 
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Fig. 8.16 Energy distribution for the case of    : a) normalized eigenmodes; b) cumulative energy. 

 

Fig. 8.17 Contour representation on    slices of the     , and iso-surfaces of    
        and 

   
       for the first (a), second (b) and third (c) POD mode for the case of    . 
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Fig. 8.18 Energy distribution for the case of      : a) normalized eigenmodes; b) cumulative energy. 

 

Fig. 8.19 Contour representation on    slices of the     , and iso-surfaces of    
        and 

   
       for the first (a), second (b) and third (c) POD mode for the case of      . 
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Fig. 8.20 Energy distribution for the case of      : a) normalized eigenmodes; b) cumulative energy. 

Also in the case of       the first three modes contain a significant part of the 

energy, i.e. 11.7%, 6.6% and 3.5% of the energy, respectively, as outlined in Fig. 

8.18. In this case the energy of the first three modes constitutes only 21.8% of the 

total energy, mainly due to the effect of swirl, which determines a faster and 

stronger mixing, thus spreading part of the energy over a wide spectrum of modes. 

The first three modes are illustrated in Fig. 8.19 with the same layout of Fig. 8.17. 

The results confirm the presence of two dominant modes induced by the 

precession, and a third mode associated with the axial outflow. The analysis of the 

eigenvalues determines a precession probability of about 84%, which is only 

slightly larger than the case of the circular jet. This result indicates that the 

upstream swirl does not bias significantly the flow field towards a stable precessing 

motion with respect to a non swirling inlet. 

As expected, the POD for the case of       presents significantly different 

features with respect to the two previously presented cases. A quite limited part of 

the energy is contained in the first four modes (3.2%, 2.9%, 1.9%, 1.5%, 

constituting about 9.5% of the overall energy, see Fig. 8.20). The spreading of the 

energy over the set of modes is due to the strong mixing effects of the vortex 

breakdown, determining an extremely fast decay of the turbulent energy along the 

spectral pipeline. Nevertheless the physical content of the first modes is still 

significant. Differently from the cases of     and      , the first two modes (Fig. 

8.21) present both an inflow and an outflow separated along the   direction, the 

main difference being the width of this separation (that is much smaller for the 

second mode). The second mode is related to a far-field precession effect induced 

by the precessing vortex core, while the first mode is similar to some extent to 

those of     and      , but with inflow and outflow confined in the exit region. 

This suggests a more significant interaction with the external field, which goes 

beyond the topic of this investigation. The third and the fourth mode are relative to 

the recirculation region dominating the near field of the sudden expansion. 
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Fig. 8.21 Contour representation on    slices of the     , and iso-surfaces of    
        and 

   
       for the first (a), second (b), third (c) and fourth (d) POD mode for the case of      . 
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Fig. 8.22 Scatter plot of the time coefficients for the first two modes in the normalized plane. The 

circumference with radius 1 is plotted for reference. 

8.4.3 Low Order Reconstruction of the circular precessing jet 

Following the work by Ben Chiekh et al (2004), in flow fields with relevant 

shedding phenomena one can use the POD modes to extract phase information by 

composing a subset of modes carrying the most significant part of the energy. In the 

attempt to reconstruct the features of the precessing motion, a sort of phase-locked 

measurement is pursued using only the first two modes: 

                                                       (8.7) 

The coefficients       and       are both related to the precessing phase angle 

(and, consequently, are not independent, even though they are statistically 

uncorrelated): 

                       (8.8) 

                       (8.9) 

A method to confirm that the first two modes represent the coherent harmonic 

associated with the precession consists in observing the scatter plot of the time 

coefficients for the first two modes in Fig. 8.22. The scatter of points around the 

circle is due to the effect of turbulent fluctuations, which are randomly distributed 

over the cycles. Furthermore the samples with simultaneously large absolute value 

of    (over 0.8 after normalization with the pertaining eigenvalue) and small    and 

   have been excluded from the scatter plot (the threshold for    and    is set to 

0.3), as they are most likely representative of jet flowing in the axial mode. The 

samples isolated with this procedure are about 8% of the entire set. 
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The phase-averaged flow fields obtained with the Low Order Reconstruction 

(8.7) are reported in Fig. 8.23 for the case of                   . The contour 

representation on the    central slice is blanked in case of          , thus 

highlighting the outflow regions. The regions with stronger recirculation are 

identified with the isosurfaces           . The flow field topology reveals the 

presence of a strongly asymmetric entrainment region located on the opposite side 

to that of the outflow in the far field of the chamber. This region is coupled with an 

extended recirculation region (characterized by weaker negative velocity with 

respect to the entrainment one) located below the region of attachment of the 

exiting jet. The two recirculation regions asymmetrically embrace the jet attached 

to the wall, and precess around it, thus determining a region of strong swirl in the 

near field, testified by the isosurfaces of the  -component of the normalized 

vorticity       . The positive    and the streamline representation indicate a net 

rotation around the   axis in the opposite sense to that of the precession (it will be 

shown in the next section that in the performed experiment the precessing motion, 

triggered with a sense of rotation determined by random asymmetries due to the 

turbulence or non perfect initial conditions, persists with that sense of rotation, 

even though occasionally switching to the axial mode, and this sense is opposite to 

that of swirl in the near field to balance the overall angular momentum). It is 

reasonable to conjecture that the asymmetry of the entrainment and the 

recirculation regions are the inertial driving force of the precession, thus making 

solutions like the exit lip or the exit centrebody much more effective than a weak 

upstream swirl in triggering and stabilizing the precessing mode. 

8.4.4 Phase computation: precession frequency measurements for the FPJ 

The effectiveness of the Low Order Reconstruction in identifying phase-

average flow fields implies an immediate implication: the phase of a single 

realization can be extracted using the time coefficients of the first two modes for 

that snapshot. According to van Oudheusden et al (2005), the phase can be 

obtained by observing that: 

     

    
   

               (8.10) 

     

    
   

               (8.11) 

An immediate consequence of (8.10-11) is: 

      

   
 

      

   
   

         (8.12) 

         
    

    

  

  
        (8.13) 
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Fig. 8.23 Streamline representation of the phase-resolved flow fields by means of Low Order 

Reconstruction. a)     , b)      , c)       , d)       . Isosurfaces of    
        (blue), 

           (red),            (green). Contour representation of    
  on    planes (colouring 

blanked for    
      ). 
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Fig. 8.24 Computed phase angles (left) for a 5 seconds time interval, and pdf of the Strouhal number 

based on the inlet diameter for     (right). 

The (8.13) is applied on the samples to determine the phase; then the 

sequences are analyzed to identify patterns of regularly spaced phase angles. The 

results, reported in Fig. 8.24, highlight a regular tendency of the jet to precess with 

a negative angular velocity, i.e. in opposition with the   axis. This result confirms 

the intuition that the upstream swirl generated in the near field (and in particular 

in the shear layer of the jet) is in the opposite direction to that of precession. The 

measured Strouhal number (based on the inlet diameter) presents a dispersion due 

to the intermittency of the phenomenon and the uncertainty in determining the 

exact phase shift in the sequence analysis. The median of the distribution is about 

0.0015 (corresponding to a precession frequency of 0.6  ), in agreement with the 

data reported in the literature.  

8.5 Final remarks 

Tomographic PIV has demonstrated to be a powerful instrument for the 

understanding of complex large-scale turbulence organization. The instantaneous 

and statistical analysis of the flow field with variable intensity of the inlet swirling 

motion leads to the following remarks: 

 For a non-swirling inlet (   ) the driving force of the precession is the 

inertial effect induced by the asymmetric entrainment (on the opposite side of 

that of  the outflow), triggered by the instantaneous turbulent fluctuations in 

the condition of neutral equilibrium of the jet attached to the chamber. The 

entrainment region is extended along the chamber and interacts with an 

asymmetric recirculation region, placed right below the exiting jet and 

extending down to the basis of the chamber. The asymmetry of these two 

regions determines an azimuthal pressure gradient, driving the precession. 

Furthermore, a swirling motion is imparted to the shear layer of the jet in the 

direction opposite to that of precession to balance the angular momentum; 
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 In case of weak swirl (     ) in the inlet flow, the phenomenology is similar 

to that of the circular jet, with the most significant difference being the 

attachment point, located more upstream with respect to the case of    . 

The detected probability of precessing motion is only slightly larger than the 

case of the non-swirling inlet, thus testifying that the precession is not 

essentially driven by initial asymmetries; in this sense, the asymmetric 

entrainment plays a much more important role. Other solutions, like the exit 

lip or the centrebody obstruction, are more effective in maximizing the 

precession probability. However, a weak swirl might be useful in case of short 

chamber due to physical restriction (that can prevent the triggering of the 

precessing motion for non swirling inlet, as testified in Sec. 8.1.2), as it 

promotes the attachment of the jet in the upstream part of the chamber; 

 The flow field for large swirl (     ) is extremely different, as it is 

dominated by the vortex breakdown and the precessing vortex core, localizing 

the entrainment region in proximity of the nozzle axis. The POD analysis has 

shown a significant interaction (and cross-talk between modes) between the 

external precession and the inner precessing vortex core. This mechanism 

complicates the predictability of the features of the flow field in the external 

part of the chamber, thus leaving this interpretation to future investigations. 
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CONCLUSIONS AND PERSPECTIVES 

In this thesis the limits in the implementation and application of Tomographic 

Particle Image Velocimetry to turbulent flow investigations are addressed, and 

some solutions to improve the accuracy of the technique and to extend its range of 

applicability have been presented. 

Advances in tomographic reconstruction 

A multi-resolution method to accelerate the convergence of the reconstruction 

procedure has been proposed. The algorithm is based on a fast estimation of a first 

guess distribution for the voxels carrying non-zero intensity by solving the 

tomographic reconstruction problem discretized with a lower resolution. The 

multi-resolution technique results in a reduction of the computational cost by a 

factor ranging between 5 and 20 times, depending on the image density (and, 

consequently, on the sparseness of the distributions to be reconstructed). This 

speed-up is obtained without affecting the quality of the results; actually, the 

tomographic reconstruction accuracy is slightly improved, probably due to the 

smoothing induced within the reconstruction process by the binning procedure and 

the interpolation step when building the first guess on the final grid. Indeed, an 

induced diffusion within the reconstruction process has shown to be significantly 

beneficial in increasing the quality of the reconstructions. This observation has led 

to the development of the Spatial Filtering Improved Tomographic PIV proposed in 

this thesis. In particular, smoothing of the 3D intensity distributions within the 

iterative reconstruction process can reduce the error due to undersampling in the 

voxels discretization. Considering that the uncertainty in the reconstruction is 

usually anisotropic (most often the cameras of the tomographic system share the 

same depth direction, thus causing elongation of both true and ghost particles), the 

spatial filter can be properly shaped to contrast the anisotropy. The SFIT-MART 

technique has proved to provide a remarkable reconstruction accuracy 

improvement and a consistent reduction of the uncertainty of the velocity 

measurement (about 10%). 

Optimization of 3D cross-correlation 

The digital cross-correlation analysis of the tomographic reconstructed 

volumes is more consolidated, since it is conceptually a 3D extension of the well-

assessed 2D algorithms for planar PIV analysis. On the other hand, the large amount 

of data and of operations required for the 3D analysis complicates the application 

of Tomo-PIV with off-the-shelf machines. In this thesis some solutions are proposed 

and combined to result in an efficient algorithm, based on sparse direct cross-
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correlation and minimization of the number of redundant operations. The 

calculation of the predictor is significantly accelerated by binning the distributions; 

subsequently the measured velocity field is refined by the fast computation of the 

corrector velocity field. In this step, since the corrections are usually small (within 

1 pixels, provided that the under-detection in the validation procedure and the 

modulation of the velocity field in both predictor computation and in the outliers 

replacement do not determine the need of a larger correction), one can use direct 

cross-correlation (that is well suited for the implementation of sparse algorithms) 

with a narrow search radius for the peak identification. Since usually overlapping 

interrogation regions are used, one can pre-calculate the contributions to the cross-

correlation maps on sub-volumes, in form of blocks, planes or segments. The results 

have shown that this efficient algorithm can achieve a speed-up of more than one 

order of magnitude with exactly the same results. In other words, the data of a test 

campaign requiring one month for processing can be analyzed in three days or less. 

Said in a different way, large amount of data can be processed in a reasonable time 

on off-the-shelf computers instead of expensive (often time-shared) 

supercomputers. 

Reduction of the hardware costs 

Last, but not least, the application of Tomographic PIV is limited by the 

operative costs. Many laboratories are equipped with one or two cameras for 

planar PIV or Stereo-PIV applications; on the other hand, Tomo-PIV requires at 

least three cameras (preferably 4 or more) to achieve an acceptable quality of the 

reconstructions. The cameras for PIV applications are usually expensive not only 

for the high required sensitivity, but also due to the requirement of the double-

shutter operating mode. To some extent Tomo-PIV provides the advantage of being 

based on cross-correlation of reconstructed objects, thus eliminating the 

requirement of double-shutter cameras. A "Low-Cost Tomo-PIV" has been 

proposed, based on using two or more independent tomographic systems, to 

reconstruct the single exposures; even though the number of cameras is larger than 

usual, one can use cameras with the same sensitivity of the common PIV cameras 

but much lower price since there is no need to work in double-shutter mode. The 

benefit is not limited to the cost reduction: indeed, the technique has shown to be 

completely unaffected by the bias effect due to the coherent motion of ghost 

particles, thus enabling an improvement of the quality of the results with multi-

exposure methods much more remarkable (and displacement-field independent) 

than the case of the standard Tomo-PIV implementation. 

Applications to turbulent flows: overview and perspectives 

The application of the technique in two significantly different scenarios has 

provided an overview of the capabilities and limits of Tomo-PIV. The analysis of the 
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decaying fractal generated-turbulence has shown that the technique has a long path 

to walk before covering the gap with hot-wire anemometry and planar PIV in the 

measurement of the dissipation and the dynamics of small-scale turbulence. The 

main obstacle is the maximum allowed seeding density, which limits the achievable 

spatial resolution. Nevertheless Tomo-PIV has shown a great potential in 

quantifying the degree of isotropy and homogeneity even down to scales of the 

order of the Taylor microscale, leading to the conclusion that the turbulence 

generated by square space-filling fractal grids is with good approximation 

homogeneous and isotropic for          (with    being the wake-interaction 

lengthscale defined by applying the wake similarity for the largest bars of the grid). 

The possibility to measure all the components of the velocity gradient tensor 

without relying on any theoretical assumption opens fascinating horizons, but in 

the case under analysis the scatter of the data does not allow a conclusive 

statement on the violation of the dissipation anomaly. 

On the other hand, Tomographic PIV has shown to be mature enough for the 

quantitative observation of the large scale organization of high Reynolds number 

turbulent in extremely complex 3D flows, such as the case of the precessing jet 

motion after an abrupt expansion in a cylindrical chamber and the interaction of 

this gyroscopic-like behaviour with an induced swirl in the inlet flow. The 

application of the Proper Orthogonal Decomposition on the 3D data provided by 

Tomographic PIV has demonstrated to be a very powerful instrument for the 

understanding of the topology of inhomogeneous turbulent flows and the 

underlying mechanism generating the precession. As a matter of fact, 3D data 

facilitate the interpretation of the velocity measurements in the complicate 

framework of an intermittent switching between two different behaviours, i.e. 

precessing motion or quasi axisymmetric expansion within the chamber. In case of 

weak (or even absent) upstream swirl, the driving force of the precession is the 

interaction between the asymmetric entrainment from the external ambient and 

the recirculation regions formed below the region of instantaneous reattachment of 

the jet flow. The upstream swirl does not significantly favour the precessing motion 

with respect to the axisymmetric expansion mode, but moves upstream the 

reattachment point, thus allowing the generation of the bi-stable behaviour in 

shorter chambers. 

Future developments 

The outlined achievements in terms of operative cost (hardware, 

computational resources) and reconstruction accuracy improvement are expected 

to have a significant impact, as they allow for a much wider and faster spreading of 

the technique among the scientific community. However, Tomo-PIV development is 

still at its infancy; there are great margins of improvement to annihilate the 
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weaknesses of the technique and establish this new instrument as a solid tool for 

turbulent flows investigation. 

The tomographic reconstruction is capturing an increasing interest. The single-

exposure MART is quite well consolidated, and most probably a significant 

advancement will be obtained following a different path. Optimization methods 

based on sparsity maximization, hybrid Tomo-PTV methods, and other solutions, 

are still at an embryonic stage. Perhaps the most significant margins of 

improvement rely within multi-exposure methods, following the path of the MTE-

MART by Novara et al (2010). Increasing the accuracy without affecting the 

computational burden (or possibly reducing it!) will most certainly stimulate the 

development of brand-new solutions. 

Perhaps the most intriguing feature of Tomo-PIV is the possibility to exploit 

the complete 3D information (or 4D in case of time-resolved data) to increase the 

accuracy and robustness of the velocity measurement. Adaptive 3D interrogation 

enables a much larger margin of improvement with respect to the case of 2D data, 

as outlined by Novara et al (2013); furthermore, time-resolved measurements can 

exploit the temporal coherence to improve the solidity of the technique. In addition 

to this, multi-exposures system (as the triple pulse PIV described in Westerweel et 

al 2013) can be easily implemented in the case of the Low-Cost Tomo-PIV proposed 

in this thesis (for example, the first system can be composed by single-shutter 

cameras, and the second one by double-shutter cameras, recording the second and 

third frame), thus enabling acceleration measurements and/or significant 

reduction of the measurement uncertainty even in ultra-high speed applications. 
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