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Abstract

Researchers who work on large amount of data have to face vari-

ous problems such as data mining and information retrieval: this is

the case of gene expression. The general scope of these experiments

is to find co-regulated genes, in order to understand the biologic

pathways underlying a particular phenomenon. A clustering con-

cept can be used to find out if co-regulated genes can be active only

over some conditions. Recently, some biclustering approaches have

been used to find groups of co-regulated genes into a data matrix.

Among them, several heuristic algorithms have been developed to

find good solutions in a reasonable running time.

In the current Ph.D. thesis, a GRASP-like (Greedy Randomized

Adaptive Search Procedure) approach was developed to perform

biclustering of microarray data. A new local search has been devel-

oped composed of three simple steps based on a concept inspired by

the social aggregation of groups. It is very fast and allows to ob-

tain results similar to those achieved using some of the best known

biclustering algorithms. Other new algorithms have also been pro-

posed using novel combinations of iterated local search and MST

clustering.

The different biclustering algorithms were then tested on four

different datasets of gene expression data. Results are encouraging

because they are similar or even better to those obtained with the
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former GRASP-like algorithm. Possible future improvements could

be obtained by implementing further combinations of heuristics and

testing them onto different datasets in order to evaluate their general

application to different kinds of data.
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Chapter 1
Omics data analysis

The fish you find depends upon
the sea you sail upon.

1.1 The origins

The human genome is composed of approximately 20.000 genes [1].

A very long sequence of DNA encodes them. What gives the differ-

ence in terms of shape and functions to the cells of our organisms is

the activation of genes. For this reason, researchers have been inves-

tigating for long time the best way to analyze the DNA and discover

what are the genes activated in each kind of cell or in different cell

conditions.

The first studies on gene expression data appeared in 1977, when

the Northern blot technique was developed [2].

In the 80s, Roger Ekins (Department of Molecular Endocrinology,

University College London Medical School) produced and patented

ligand-binding assays in a microarray format [3]. The secret of this

technique is that, when the spot is small enough, the signal is clear

and independent from the chemical compounds used to bind [4].

1



CHAPTER 1. OMICS DATA ANALYSIS 2

Since the 90s till today, a growing number of commercial enti-

ties and academic groups has contributed to the advancement in

microarray technology.

With the evolution of ”omics”-based technologies, importance of

algorithms to store and manage data increased with the amount of

data generated.

1.2 Microarrays

A microarray is a slide (chip) on which short DNA molecules called

”probes”, which correspond unambiguously to a gene, are fixed.

This DNA may be of genomic origin, e.g. in case it originates from

prokaryotic organisms, or can be obtained by extraction of the RNA

molecules from the cells of the organism of interest, and reverse tran-

scription into cDNA using an enzyme called reverse transcriptase,

in the case it derives from eukaryotes. Finally it can be obtained

through synthesis. In the most recent microarrays, the probes are

deposited on the slide by various techniques, including photolithog-

raphy [5]. In this technique, as schematized in Figure 1.1, the surface

of a substrate (a silicon wafer), rich of hydroxyalkyl groups, is cov-

ered by photosensitive molecules that are able to mask the reactive

groups. The synthesis of the oligonucleotides is carried out directly

on the surface of the slide, through a series of cycles of deprotection

and coupling. A photolithographic mask allows the transmission of

light radiation only in some selected points of the wafer. There-

fore, when the photolithographic mask is aligned with the wafer,

the light allows the deprotection, and the subsequent activation of

selected reactive groups. By passing solutions of nucleotides, they

will couple to the deprotected reactive groups. The multiple steps

of deprotection and coupling allow the synthesis of the entire set of

the desired product.
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Figure 1.1: Manufacture of a gene chip. (A) On the left, an ultraviolet light pass

through a mask containing open windows. The position of each open window

identifies the surface on the wafer which will be activated for the chemical syn-

thesis. On the right, a picture of the photolithographic process; (B) On the left

is represented the cycle through which the nucleic acids are synthesized: the light

removes the protections (square) in the areas of the array. A single nucleotide is

coupled in the area without protection. Through successive steps, any oligonu-

cleotide sequence can be mounted on each feature of the array. On the right, an

image of the chemical synthesis station where nucleotides binds; (C) On the left

the complete synthesis in the wafer results in many microarrays in a single wafer

that will be placed in plastic cartridges. On the right, the machine that takes

care of incorporating the microarrays in the cartridge. Image taken from [5].

An array of 1.28 cm2 may contain about 1.4 million locations

for the probe, and each of them can contain millions of identical
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molecules of DNA. For example, an Affymetrix microarray can con-

tain a total of about 6.5 million probes on the same array. Microar-

rays containing entire genomes of many animal species, including

humans are commercially available, but researchers may also ask

for the creation of custom microarrays for particular research inter-

ests.

Since microarrays allow the study of large amounts of genes at a

time and are very fast, they have been developed as an important

tool to monitor the gene expression leading to the development of

a new ”omics” technique called Transcriptomic.

A possible application is the analysis of a pathological tissue

against the same tissue in the healthy state (Figure 1.2).

Figure 1.2: Workflow of a possible application of microarray. In this example a

cancer cell and an healthy one are taken, mRNA is extracted and cDNA created.

Then the cDNA is hybridized on the microarray.
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1.2.1 From mRNA to images

A microarray experiment starts by taking samples of tissues or cells

in different conditions.

The mRNA molecules are extracted from the cells and are retro-

transcribed into cDNA (complementary DNA) using an enzyme

called reverse transcriptase. This step is necessary because the

mRNA molecules are easily degraded, while the DNA is more sta-

ble. The cDNAs are then labeled in order to distinguish the different

conditions analysed, using fluorescent probes which, when energized,

emit light at different wavelengths, corresponding to different colors

(the most common being red and green). Then, the cDNA from

the two samples are mixed and put on the slide, where they bind

to the spot where their complementary sequence is present, with

a process called hybridization. After hybridization and subsequent

washing to remove samples that did not react, the chip is excited

by a laser at an appropriate wavelength to allow the excitation of

fluorescent probes and the emission of the color of the corresponding

fluorescence, indicating that the cDNA hybridization to a probe of

the chip is done (Figure 1.3).

Figure 1.3: An example of microarray. Green, red, yellow, black represent the

fact that genes in the samples are expressed or not. (Image of Agilent microarray)
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Figure 1.4: Formation of colors on a microarray spot. The colors are: red or

green for exclusive expression of genes in one tissue, yellow for expression of gene

in both tissues, dark yellow for a low expression and black for no expression.

Using red and green dyes, the possible emitted colors are, as in

Figure 1.4:

• yellow, when the gene is expressed in both tissues in a compa-

rable quantity;

• red, when only the gene of the tissue in the first condition is

expressed;

• green, when only the gene of the tissue in the second condition

is expressed;

• dark yellow, when the genes are both expressed in low quantity;

• black, when gene is not expressed in both cases. In this case,

in fact, no cDNA is bound to the probe.
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1.2.2 From images to data

The ratio of the emission intensity relative to each fluorophore is

used to identify the genes that are over-expressed or under-expressed

in one of two samples. This is performed by a segmentation algo-

rithm that, in general, is based on the color and edge detection. It

can be affected by errors in scanning or by the presence of poor-

quality and low-intensity features, thus the result has to be filtered.

Then the background is subtracted to keep in evidence only the

spots and the detection of their intensity is performed. This is a

crucial step for the following analysis.

Once the image is produced, a set of statistics are computed:

each pixel is taken into account and mean, median and intensity

values are reported. The signal intensity is considered significant if

it is at least two standard deviation above the background [6]. Fi-

nally, a table of fluorescent intensities for each gene in the array is

exported in some .dat files (RAW images that represent the micro-

scope rough signal). Since the amounts of mRNA for each sample

can be different, these values in raw form have to be normalized.

The data generated by the microarrays has been subject of sev-

eral discussion on how to standardize: common ways to name the

genes have been decided. A standardization occurs also for the chip

technology, for the biological processes involved in its realization

and, finally, for the display of results.

Another big problem is data storage. An huge amount of data

needs great memory space. NCBI (National Center of Biotechnology

Information) spawned a system called the GEO (Gene Expression

Omnibus) which contains microarray results from laboratories all

around the world stored in a standard format widely recognized by

the scientific community. Many types of gene expression data are

accepted and archived as public dataset and this permits to use them

also to researcher that cannot produce their own microarrays [7].
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1.2.3 From data to biological significance

The final result of a microarray experiment is a large table of real or

integer numbers whose values represent the gene expression. Some-

times values are discretized between 0 and 1 (where 1 means that

gene is expressed above a certain threshold and 0 below).

A gene can be expressed as a row vector gi = {ai1, . . . , ain} and

datasets of gene expression data are usually represented in form of a

matrix A where each value ai,j corresponds to the expression value

of the gene i in the j condition. The following is an example:
a11 a12 · · · a1n

a21 a22 · · · a2n

· · · · · · · · · · · ·
am1 am2 · · · amn


where m and n correspond to the cardinality of, respectively,

gene and conditions sets.

To derive a biological significance from these data, various anal-

yses can be made.

The ultimate goal of a microarray experiment is to identify groups

of co-regulated genes, because this allows to assign possible func-

tions to genes not previously characterized, or identify common reg-

ulatory motifs and cascades of regulation deriving the reasons for

the physiological reactions to a stimulus.

There are several approaches that allow to extract this kind of

information. Among these, the most widespread and popular are

the clustering algorithms, which allow to group those genes that

are expressed in a similar manner under certain conditions without

making a priori assumptions about the possible categories to be

assigned to the data.
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1.3 Clustering

Different types of clustering algorithms have been studied and imple-

mented in the past and recent years. They belong to the class of pat-

tern recognition algorithms, where the pattern is a pair {observation,

meaning} and the term recognition is the act of giving a meaning

to the observation. The goal of pattern recognition is to establish a

mapping from the space of the observation to the one of meanings.

The steps are: data pre-processing, feature extraction, classifica-

tion. Each step can be optimized in its computational complexity

to obtain more powerful algorithms and database structures [8].

Pattern recognition is a subclass of the broader machine learning

class of algorithms and it is subdivided in two different types of

learning: supervised and unsupervised. The first approach allows

to recognize the class of an observation on the basis of a priori data.

Some frameworks like neural networks, self organized maps (SOM),

support vector machines (SVM) belong to this first class where the

system can have in input a large set of pairs {observation, meaning}
and they can ”learn” from a training set and later test by using a

test set (used also to assess the robustness of the network). Instead

unsupervised techniques start without any a priori information and

try to classify objects using only the information contained in the

observations given as input [9].

A gene subjected to a number of conditions can be represented

as a vector whose values (data conditions) are its characteristics

(features). The characteristics of two different vectors can be com-

pared to express the similarity of features according to their spatial

proximity.

As stated, in the case of genes, features will be given by their ex-

pression levels gi = {ai1, ai2, . . . , ain}. Using measures of similarity

(cosine distance, euclidean distance, Pearson coefficient, Manhattan,
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etc) one can write an algorithm that will compute distances between

the vectors and put them in the correct class (Figure 1.5).

Figure 1.5: An example of clustering. On the left, the dataset represented by

feature vectors that are point in the n-dimensional space. On the right, vectors

have been grouped in clusters of elements.

Many techniques exist to address the problem of clustering. For

the clustering of microarray data one of the most widely used strat-

egy is the hierarchical clustering that builds clusters gradually,

while they are growing up. It can be agglomerative, when it starts

from each separated vector and put them in the most similar clus-

ter, or divisive, when, starting from big clusters, it splits them in

smaller ones with similar properties. Partitioning methods (like

kMeans) create clusters shifting elements from a cluster to another

one during their execution [9].

1.3.1 Clustering vs biclustering

Clustering algorihtms can be very useful for the purpose of gene ex-

pression analysis and classification. However, with matrices of gene

expression data, sometimes one does not want to group the genes

on the basis of the overall conditions. A way to solve this problem



CHAPTER 1. OMICS DATA ANALYSIS 11

is to disclose the involvement of a gene in more than one cluster and

saving the most significant one. This cannot be done with cluster-

ing, where genes are collected based on the overall similarities, but

it can be done using a technique called Biclustering introduced by

Cheng and Church in 2000 [10].

Biclustering of gene expression data permits also to discover what

are the similarities between genes subjected to a subset of con-

ditions. This is intuitively good when one thinks that a cellular

process is active only in some conditions or that a gene may partic-

ipate in pathways that may or may not be active together under all

conditions.

Different types of biclusters have been described with mathe-

matical rules. An overview on these rules will be given in the next

chapter. The ones relevant here are those in which a gene/condition

belongs to more than one cluster and is grouped using only a subset

of genes/conditions.



Chapter 2
Biclustering and its evaluation

Do not make a decision when
you do not have to take one.

2.1 Problem formulation

The term Biclustering was first introduced by Mirkin [11] but a

similar idea was already present in a work of Hartigan in 1972, where

he was working on the possibility to explore a table of electoral

votes [12]. It was used then by Cheng and Church for the analysis

of gene expression data [10].

Biclustering is the process of identifying n sub-matrices B =

B1, . . . ,Bn from a matrix of values A so that elements of Bi fol-

low a desired behavior. Each Bi may share columns or rows of the

matrix A with other sub-matrices. The order is not important: each

row (column) of a bicluster Bi can be followed by any subsequent or

previous row (column) [10]. It is shown in Figure 2.1 that the order

is not important and elements can belong to different subsets.

12
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Figure 2.1: An example of biclustering output. In the image are present four

different biclusters distinguished by four different colors. Biclusters can be over-

lapped and, in this case, some elements from a bicluster can belong also to another

one. This is evidenced in the image as a mixed color, i.e. the elements of the

bicluster with darker edges.

Biclustering is applied also to other problems and not only to

gene expression data. For example it has been applied for electoral

vote and truth tables [13] and for the detection of important terms

in the advertising [14].

A generic mathematical formalization of the problem can be writ-

ten: given a matrix A = (X, Y ), where X = {x1, . . . , xm} is the set

of rows, Y = {y1, . . . , yn} the set of columns and aij represents the

value of object i subject to the condition j (the expression value of

gene i at the j-th condition), then one can define a bicluster as a sub-

set B = (I, J) where I = {i1, . . . , ik} ⊆ X and J = {j1, . . . , js} ⊆ Y .

Each bicluster has to respect some rule of homogeneity that can dif-

fer with the addressing problem.

Madeira and Oliveira [15] stated that the problem of bicluster-
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ing is NP-complete because, representing the matrix as a complete

weighted bipartite graph, one has to find the maximum edge bi-

clique [16].

Different types of biclusters can be found and in the following

paragraph a brief illustration of them is given.

2.1.1 Types of biclusters

According to Madeira and Oliveira [15] four types of biclusters can

be defined:

1. constant values bicluster, when all the values are identical;

2. constant rows bicluster, when all the rows have the same

values;

3. constant columns, when all the columns have the same val-

ues;

4. coherent evolution in additive or multiplicative way. These

are the more interesting biclusters: they are composed of ele-

ments that are sequences of numbers that increase or decrease

in a regular way.

All these types of biclusters are shown in Figure 2.2.
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Figure 2.2: Bicluster types. a) bicluster with constant values; b) constant rows

bicluster; c) constant columns; d) coherent evolution in additive or multiplicative

way.

These types are obviously related to specific problems tha require

specific algorithms to be solved. Usually they start from a bicluster

seed and improve it, but also two-way clustering methods exist that

search first for columns and rows separately and then combine these

results to obtain a final result.

In some algorithms the search is restricted only to one represen-

tative bicluster that can have different localization inside the matrix

A. When more than one bicluster is present, the possible structures

are the following [15]:

1. non-overlapping biclusters;

2. completely separated non-overlapping;

3. overlapping biclusters with hierarchical structure;

4. overlapping biclusters with arbitrary positions.
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They are shown in Figure 2.3

Figure 2.3: Bicluster structures. a) non overlapping biclusters; b) completely

separated non-overlapping; c) overlapping biclusters with hierarchical structure;

d) overlapping biclusters with arbitrary positions.

Here has been studied only the type of biclusters where values on

row and columns increase or decrease in the same way (Figure 2.2,

coherent evolution) and those that can have elements in common

and be positioned everywhere (Figure 2.3, overlapping bicluster with

arbitrary position) have been studied. Biclusters can also be non-

exhaustive: there will be rows or columns that will not belong to

any bicluster.

H score

Cheng and Church [10] defined a measure of evaluation for a generic

bicluster BIJ as the sum of the squared residues R(aij)|aij ∈ A. It

is a measure of how well the element fits into the bicluster BIJ and

it is indicated with the letter H.
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If the residue is written as:

R(aij) = aij − aIj − aiJ + aIJ

then H score is defined as:

H =

∑
i∈I,j∈J(R(aij))

2

|I| · |J |
,

where

aIj =

∑
i∈I aij
|I|

,

is the column mean of column j,

aiJ =

∑
j∈J aij

|J |
,

is the row mean of row i,

aIJ =

∑
i∈I,j∈J aij

|I| · |J |
,

is the bicluster mean.

The lower the H value, the higher the coherence of the biclus-

ter. Computational complexity of the H score computation depends

from the dimensions of the bicluster: O((|I| · |J |)2).

2.1.2 Solution to the problem of biclustering

A candidate solution is a member of a set of possible solutions

for a given problem because it is in the set of solutions that satisfy

all constraints. The space of all candidate solutions is called the

feasible region or the solutions space.

In the world of biclustering, a feasible solution is a set of sub-

matrices overlapped (or not) that best describes a ”biclustering” of

the genes represented. Given the set B = {B1 = (I1, J1), . . . ,Bk =
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(Ik, Jk)} of biclusters resulting from a run of the algorithm, one

would to maximize the expression:

min
k∑
i=1

H(Bi),

where i is the i-th bicluster and H is the score of the bicluster.

2.2 State of the art

2.2.1 State-of-the-art algorithms

Several techniques have been designed to address the problem of

biclustering. They have been divided from Madeira and Oliveira in

five distinct groups [15]. These are actually slightly different and for

this reason the fundamental ones are explained. A first type of al-

gorithms does not solve the computational intractability and maybe

can work only with low dimensions matrices: it is the exhaustive one

that try with possible combination of biclusters finding the better

ones. The second is the two-way clustering, where a clustering is

computed first for the rows and then for the columns and results

are mixed together to obtain significant biclusters. A third type is

that of the greedy algorithms where, starting from a bicluster seed,

elements are inserted as first improvement. There are also some

distribution parameter identification algorithms that try to identify

the distribution parameter that can generate the data by minimiz-

ing a certain criterion. The last group is represented by divide et

impera algorithms, where one can start from the overall matrix and

subdivide it iteratively until the result can be considered a good

grouping.

Some of the most famous algorithms for biclustering are the fol-

lowing, grouped according to Madeira and Oliveira:
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Two-way clustering

• CTWC (Coupled Two-Way Clustering), that combines rows

and columns clusters searching for non-overlapping biclusters.

These are ordered and at the next step only the best is kept [17];

• ITWC (Interrelated Two-Way Clustering), that is similar to

CTWC but uses kMeans for clustering [18].

Divide et impera

• Block clustering was the first divide et impera approach

based on a top-down strategy that starts with big blocks of

data and separate them until the overall variance reaches a

certain threshold [12];

• Bimax that searches for blocks of 1 in a binarized matrix in

which these blocks are over-expressed genes. These algorithms

recursively subdivides the matrix in blocks and stops when each

block represents a bicluster [19].

Greedy search algorithms

• CC (Cheng & Church): this algorithm is based on a greedy

heuristic to converge to a locally optimal bicluster with score

smaller than a threshold [10]. It is based on a set of itera-

tions: for each of them an initial bicluster is increased with the

addition of one more element that gives the best score to the

bicluster itself. The algorithm finishes when the bicluster score

exceeds the input threshold. In the same work the Authors

introduce the MSR formula (here called H score) to be used as

a reference measure for the score;

• FLOC (FLexible Overlapped biClustering) extends Cheng and

Church algorithm by dealing with missing values via a thresh-

old. The algorithm is developed in two phases: the first is the
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creation of biclusters based on the use of a parameter that es-

tablishes its increase, and in the second phase, bicluster is built

by using the selected threshold [20];

• OPSM (Order-Preserving SubMatrices) searches sub-matrices

inside the starting matrix, preserving the order of columns.

This can happen only in good biclusters [21];

• xMotif : biclusters are built following a given bicluster with

coherent evolution. An xMotif is one with coherent evolutions

on rows. The algorithm searches for the set of rows (I) and

columns (J) that follow the xMotif [22].

Exhaustive algorithms

• SAMBA: it simply searches exhaustively for the best biclus-

ters [23]. The goal of the algorithm is the identification of a

maximum weight subgraph of a bipartite graph. It assumes

that the weight of the sub-graph corresponds to its statistical

significance.

Distribution parameter identification

• Plaid Models, that looks at the matrix as an image. This

algorithm assigns a value to each of the elements and tries to

give an order at the matrix elements in a way that one can do

the assumptions that specific blocks are biclusters [24].

Other algorithms

Other biclustering algorithms not grouped in [15] are the following:

• PSM (Particle Swarm Optimization), that emulates the move-

ments of groups of swarm birds searching food to group the

elements as animals do [25];
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• ISA (Iterative Signature Algorithm) considers a bicluster as

a module with regulated genes associated with regulated con-

ditions. These initial biclusters can be grown according to a

threshold and a measure of quality. The algorithm is com-

posed of a set of iterations that run until the modules do not

change anymore [26];

• CCC (Contiguous Column Coherent) is a method by Madeira

and Oliveira that finds patterns in contiguous columns. This

method is applied to time series datasets [27];

• cMonkey is an algorithm that searches for co-expressed and

co-regulated genes for example those sharing the same regula-

tory control or also those genes whose products form a protein

complex. This algorithm implies a pre-processing step to dis-

cover or set these similarities, reduce the dimensionality of the

data and reduce the noise [28];

• FABIA is a multiplicative model that searches for linear de-

pendencies between genes and conditions. It uses the Bayesian

models to discover statistical rules from the behaviors of the

genes at each experiment [29];

• QUBIC (QUalitative BIClustering) is a model by [30] where

the initial matrix is transformed in one with values that cor-

responds wherever the genes are similar. Transforming it in

this way, the final step is to search for sub-matrices that have

similar elements. This will be a bicluster.

2.2.2 Meta-heuristics

When a problem is computationally intractable, an heuristic is a

method to find an approximate solution in a reasonable compu-

tational time. In combinatorial optimization, meta-heuristics are
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combinations of algorithms thought to solve generic intractable prob-

lems. The following are some of the meta-heuristics used to address

the problem of biclustering:

• Genetic algorithm: it is based on some iterations inspired

to principles of selection and evolution proposed by Darwin

in ”The origin of species”. Implementations can be found

in [31], [32] and [33];

• Simulated Annealing: the idea comes from the annealing

process in metallurgy: it regards the controlled heating and

cooling of a material to modify its dimensions. If bad solutions

are accepted then the temperature of the system is lowered,

thus only a limited number of bad solution are accepted [34].

Accepting worse solution is critical in meta-heuristics since this

way to proceed can allow to a deep search of the optimal solu-

tion. Implementations are found in [35] and [36];

• GRASP (Greedy Randomized Adaptive Search Procedure)

will be explained in the next chapter. It has been largely used

to solve several problems in different fields. Applications can

be found in telecommunication [37],[38],[39], electrical trans-

mission problems [40],[41], biology and related fields [42],[43].

GRASP meta-heuristic together with two algorithms for biclus-

tering of gene expression data will be explained thoroughly in the

next chapter. The first is the algorithm from which this work has

started. Some drawbacks have been overcome by modifying it. The

other is an algorithm used for the same purpose introducing an it-

erated local search.
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2.3 Measures of distances

To evaluate distances between two vectors in the clustering proce-

dures used, the two better formulas are the Cosine Similarity and

the Pearson correlation coefficient.

Cosine Similarity

The cosine similarity is used to measure the distance between two

vectors in n dimensions. It gives the cosine of the angle between

them. Given the elements of the vector in a 2D graph, the formula

also expresses a similarity between the trends of the curves.

Given two vectors A and B of size n, the cosine similarity is rep-

resented using a dot product and the norm of vectors. The following

is the formula:

cosSim =
A ·B
‖A‖‖B‖

.

Cosine similarity is 1 when the two vectors are equals and -1

when they are exactly opposite.

Pearson’s correlation coefficient

Another way to obtain a measure of distance between a vector x and

a vector y is by using the Pearson’s correlation coefficient. Since it

is based on the use of the covariance, this coefficient is optimal when

there is a linear relationship between two variables.

Attributes of a vector can be seen as a series of measurements

of X written as xi and yi where i = 1, 2, ..., n. Given two different

vectors and measurements, the Pearson coefficient can be used to

estimate the correlation c between X and Y . It is written in the

following way:
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CorrXY =

∑n
i=1(xi − µx)(yi − µy)

(n− 1)σxσy
,

where µx and µy are the sample means of X and Y , σx and σy
are their sample standard deviations.



Chapter 3
Our algorithm

Love is guided by rationality and
irrationality. It is not simply an
emotion, but many of them built
during a wonderful time.

3.1 GRASP

A set of techniques to best solve the problem of biclustering have

been studied. All are deployed using as framework GRASP (Greedy

Randomized Adaptive Search Procedures) [44, 45]. This is a multi-

start metaheuristic made up of:

• a construction phase, where a feasible solution is built in a

greedy, randomized and adaptive manner;

• a local search phase, which starts from the constructed so-

lution and searches a locally optimal solution.

GRASP has been used to produce high-quality solutions for hard

combinatorial optimization problems and it has been applied in

many fields recently and in the past. An overview on the fields

where GRASP has been applied is reported in [46, 47, 48].

25
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GRASP is a multi-start procedure: a number of iterations occurs

before that it converges to an approximate solution. This number is

decided by the user and could be: a maximum number of iterations,

a set of iterations without improvements or one can decide to run

the algorithm until a certain quality of the solution is reached.

3.1.1 Construction phase

During the construction phase a new element has to be added: the

choice is determined by the so-called candidate list C created using

a greedy function g : C → R which in our case is given by the mean

square error (H). All elements, that hold the cost to be feasible,

enter in a restricted candidate list (RCL) (Figure 3.8 line 10). The

heuristic is adaptive because the costs associated with the elements

change reflecting the improvement obtained with the last entry. The

probabilistic component of our algorithm is given by the random

choice of the element to be inserted from RCL (Figure 3.8 line 11).

Therefore it is not necessarily the candidate that maintains the H

lower.

Then, assume that g : C → R gives the incremental cost associ-

ated with the insertion of the element in the solution and that gmin
and gmax are costs minimum and maximum respectively, i.e.

gmin = min
c∈C

g(c), gmax = max
c∈C

g(c). (3.1)

The RCL is composed of elements c ∈ C with which one can

get the best incremental costs g(c). To build the RCL has been

implemented the value-based (VB) method. So the creation of RCL

is associated with a parameter α ∈ [0, 1] and a threshold value

µ = gmin +α(gmax− gmin). All the elements, whose insertion causes

to not exceed the threshold µ, are taken.

In this work has been implemented the reactive version of GRASP

meta-heuristic framework. The term reactive means that, during the
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construction of the RCL, the parameter α is selected from a finite

set of elements with a probability that depends on the insertion of

the elements made so far.

One of the ways to obtain the reactive behavior is to use the

formula proposed in [49].

Assume that the set of possible values for α is given by: ∆ =

{α1, α2, . . . , α`} (Figure 3.5 line 1). At the first iteration all elements

` have the same probability of being selected (lines 2–4):

pαi
=

1

`
, i = 1, . . . , `. (3.2)

At each iteration the incumbent solution value is ẑ and Ai the

average of the values of all the solutions found using α = αi, i =

1, . . . , `. Probabilities are recomputerd (Figure 3.10 line 13 and

Figure 3.11 line 13) using the following function:

pi =
qi∑`
j=1 qj

, (3.3)

If one of the αi leads to better results then that α is taken leading,

in this way, to a general improvement of the incumbent solution.

This operation is performed at each iteration.

To attempt to improve each iteration of the algorithm a local

search replaces the current solution with a better one in its neigh-

borhood.

3.1.2 Local search

The local search is a process that is used in many heuristic methods

for combinatorial optimization. It can be seen as a step sometimes

necessary to find good approximate solutions. The idea is to have a

set S of solutions and a cost function g : S → R and each solution

s ∈ S maps to a real value that is its cost. The local search has the

intent to minimize the cost of the objective function g:
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min{g(s), s ∈ S} (3.4)

A neighborhood N for a solution s is given by the set of solutions

s̄1, .., s̄n that can be obtained with small modifications of s.

A solution ŝ is a local minimum of g for the neighborhood N
when:

g(ŝ) ≤ g(y),∀y ∈ N (s) (3.5)

This is performed in a series of successive iterations that may

be of various types. For example, a greedy approach would choose

the best solution obtainable throughout the set of neighbors but,

since often the neighborhood is very wide, one can choose different

techniques such as taking the first solution that improves the current

or the best one.

The fact is that the larger the neighborhood the more are the

evaluations carried out and the higher the computational complexity

of the algorithm.

The reactive GRASP has lead to many improvements over the

generic framework. They can be seen both in the planning of net-

works for energy transmission [40] or into problems of capacitated

location [50].

3.2 GRASP-like algorithms

The algorithms have been designed taking inspiration from GRASP

and modifying it to obtain some variants that change the behaviour

of the algorithm for certain conditions of the microarray data bi-

clustering problem. For example, dataset to analyze can be differ-

ent, values and dimensions are not always the same, the number

of genes can be more than conditions and cluster columns first and

then rows is slightly different. These and some other aspects of
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the problem lead to decide to hybridize GRASP with other heuris-

tic/metaheuristic approaches.

An algorithm has been designed that implements biclustering

beginning from a clustering of rows and columns [51], then by com-

bining the best of the resulting in some bicluster seeds that can be

increased in a greedy-random way until the score H of the bicluster

remains below a certain threshold. This technique seemed limited

for three main reasons:

1. it is only possible to insert elements and not to erase them.

After clustering, the larger sized seeds are discarded because

they have a higher H score, with only very small seeds. It is

then assumed that doing only the insertion is a limit for the

construction of a good bicluster;

2. during the insertion, the neighborhood chosen is the whole set

of elements that remain outside of the bicluster. This choice

gives always the best value but worsens the algorithm in terms

of performance;

3. the computational complexity 1 of this local search depends

from the number of genes and from the computational cost of

the H score: O(|X|(|I||J |)2). The overall GRASP-like algo-

rithm builds the bicluster inserting, in the worsen case, all the

elements of the dataset and at each iteration applies the local

search: O(|X|2(|I||J |)2). This is done first for rows and then

for columns. The value is the same as the columns are usually

less then the rows.
1The computational complexity of a procedure (for a given input) is the number of elementary

instructions that it executes. This number is computed with respect to the size n of the input
data. The notationO (big ”O” notation) is a symbol used to describe the asymptotic behavior of
a function. In particular it is used to understand how quickly a function increases or decreases.
It is used an ”O” because the growth rate is called the ”order.” Thus we can write: p(n) grows
in the order of n2 as p(n) = O(n2) [52].
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Our technique started from this algorithm and then searched for

ways to improve its efficiency especially in terms of computational

complexity.

3.2.1 Overview on the algorithms design

An algorithm that performs a local search has been implemented,

it is based on a 3-step quick insertion/elimination of elements taken

randomly from the whole and that are somehow similar to those

already present within the bicluster. In this first step only the speed

of the algorithm has been improved while, instead comparing the

results obtained with the database of Gene Ontology it was found

that biological significance of results are similar.

The next step is represented by the attempt to improve the clus-

tering technique used in the procedure. Therefore it has been chosen

to implement a MST clustering based on the algorithm of Prim [53].

A further attempt has been to introduce some sort of intensifica-

tion in the local search with iterated local search.

3.3 Clustering algorithms

GRASP-like algorithm starts with the creation of biclusters seeds

using a simple clustering procedure. It builds a set of clusters of

rows and another for columns and combine them together to obtain

the best ones as a starting point.

Two clustering algorithms have been implemented in order to

obtain the bicluster seeds required for our purpose: the first is based

simply on kMeans and the second on the theory of the minimum

spanning tree.
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3.3.1 kMeans

kMeans [54] is a well known and frequently used algorithm for the

clustering of objects. In kMeans algorithm, objects have to be rep-

resented with numerical values. In addition the user has to specify

the number of groups (referred to as k) to be identified.

In Lloyd’s algorithm each object is represented by n features. All

these features together create a vector in an n dimensional space and

they can be thought as positioned in this space and, so, they can be

ordered by proximity.

When the algorithm starts, one has to choose the number k of

points in that space that will be the initial centers (centroids) of the

clusters (they may also be randomly chosen). Then the algorithm

begins with a series of iterations, each of which is composed of a

step in which all objects are assigned to the nearest center. Also

the distance measure can be chosen by the user, determined by the

kind of task.

At the end of the i-th iteration, the centroids are recomputed by

averaging the vectors of all objects assigned to it (see Figure 3.1).

The process will continue re-assigning elements to the closest centers

and re-positioning them. The algorithm is proven to converge after

a finite number of iterations: the iterations stop when the centroids

do not change anymore or their variability is very slow in the last

iterations.

The computational complexity of the kMeans algorithm depends

on the size of the feature vector from the k chosen and from the

number of entities n that have to be grouped. It is: O(nk+1 log n).

3.3.2 MST clustering

A weighted undirected graph G = (V,E) is formed by a set of

points called nodes (elements of the set V ) and a set of pairs of
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Figure 3.1: A single iteration of the kMeans algorithm. The points are all assigned

to the nearest centroid and then these ones are recomputed to assume the position

of a perfect center.

points that will form the edges (elements of the set E). For each

edge is assigned a weight.

A graph is said connected if it has at least one path for each

pair of nodes.

A tree is a connected graph without circuits

A spanning tree is a tree in G that contains all nodes.

Suppose that each edge has a weight and call ”weight of the

graph” the sum of the weights of the edge contained, then we can

give the definition of minimum spanning tree. It will be the one

whose weight among all the spanning trees is minimum.

In Figure 3.2 are shown: a) a connected graph; b) a spanning

tree that is not a minimum; c) a minimum spanning tree, obtained

by choosing the edge of minimum weight to create the trees.

Let us define some ways to describe elements:

• a partition of nodes of graph G is a division into disjoint nonempty

subsets P1, .., Q1;
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Figure 3.2: An example of graph and spanning tree. (a) Weighted linear graph;

(b) Spanning tree; (c) Minimal Spanning tree; (d) Example of a MST clustering.

When the inconsistent edge is cut there will be two different groups.

• the distance ρ(P,Q) between two partition P and Q is the

minor weight among all edges which have one end node in P

and the other in Q;

• the distance between two nodes i and j will be defined as ρ(i, j);

• upper cases will differentiate partitions from nodes.

Prim Algorithm

Prim’s algorithm [53] is a greedy algorithm that, starting from a

connected weighted undirected graph, finds a minimum spanning

tree. To do this, it looks for subsets of edges that create a tree

containing all vertices. The characteristic of MST is that the total

weight of the edge within the tree is minimal.

The algorithm was designed in 1930 by the czech mathematician

Vojtech Jarnik and, only later, the computer scientist Robert C.
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Prim made a first implementation (1957) [53]. The algorithm was

then taken up by the dutch Edsger Dijkstra in 1959. Sometimes it

is in fact called the DJP algorithm.

The only spanning tree of the empty graph (with an empty vertex

set) is again the empty graph. The following description assumes

that this special case is handled separately.

The algorithm continuously increases the size of a tree, one edge

at a time, starting with a tree consisting of a single vertex, until it

spans all vertices (Figure 3.3).

procedure prim-algorithm (G = (V0, E0))

/*G is a non-empty connected weighted graph (weights can be negative)*/

1 V1 = {x}, /* where x is an arbitrary chosen vertex in V , E1 = {} ∗ / O(1)

2 repeat

3 Take an edge (u, v) s.t. u ∈ V1 and v /∈ V1 and ρ(u, v) is minimal weight O(|V |2)
/*if more than one edges have the same weight, any of them must be picked)*/

4 Add v to V1 and (u, v) to E1 O(1)

5 until

6 V1 = V ;

7 return V1, E1

end

Figure 3.3: Prim’s Algorithm. Algorithm for MST Finding. The computational

cost is O(|V |2)

The Prim algorithm has been realized using the adjacency matrix

graph representation and using an array of weights. The computa-

tional cost is O(|V |2) because of the search of minimal weight edges

in the adjacency matrix.

Edge cutting

After the creation of a minimum spanning tree, a set of sub-trees is

obtained. These sub-trees are the final clusters. The only problem

is that they are still connected by edges which then must be cut.
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For a completely greedy approach, longer edges must be cut [55],

but this approach does not lead always to good results. The first

used is therefore a completely random approach where, given the

graph G = (V,E) one erase k random edges: e1, .., ek. This approach

is proved to be good when matched with our previous algorithm

implemented with kMeans clustering.

Greedy-randomized cut

A second implementation was the greedy randomized, where one

collects a series of longer edges in an RCL (restricted candidate

list). This approach is similar to that explained in the GRASP

method. The RCL is made up of elements ei ∈ E with the best

incremental costs (in this case longer edges). There are two main

mechanisms to build this list: a cardinality based (CB) and a value

based (VB) mechanism. In the CB case, theRCL is made up of the k

elements with the best incremental costs, where k is the parameter.

In the VB case, the RCL is associated with a parameter α and a

threshold value. All the candidate elements whose incremental cost

is no greater than the threshold value are inserted in the RCL:

RCL← {e ∈ E|ρ(e) ≤ emin + α(emax − emin)}

where

emin ← min{ρ(e)|e ∈ E}

emax ← max{ρ(e)|e ∈ E}

E is the edge set, α is the RCL threshold parameter, α ∈ [0..1].

The amount of greedyness and randomness are controlled by the

α parameter. When α = 0 the algorithm is completely greedy,

instead for α = 1 the algorithm is completely random.
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The next element to be added to the partial solution is randomly

chosen from the elements in the RCL.

procedure mst-clustering(k,d istMatrix)

1 d istMatrix := initialize− matrix(); /*distances matrix O(|V |2)*/

2 Prim-algorithm(d istMatrix); O(|V |2)
3 greedy-random-cut(d istMatrix, k); O(k · |E|)
end

Figure 3.4: Pseudo-code of mst-clustering procedure. It is invoked in our

GRASP-like algorithm. The computational complexity is given by O(|V |2 + |E|).

The overall MST clustering algorithm is represented in Figure 3.4

where there are only three main steps. After the initialization of

matrix of distances (line 1), Prim’s algorithm is executed to create

the minimum spanning tree from the graph (line 2) and finally the

cut is applied (line 3). The algorithm used for the cut is the greedy-

random one just explained.

The computational complexity of the overall algorithm depends

from the computational time in the Prim’s algorithm and from

greedy-random-cut that erase the longer edges from the list of

vertex in a greedy-random way and depends from the number k of

cuts and that of edges. It is given by: O(|V |2 + |E|).

3.4 Reactive GRASP-like algorithms for biclus-

tering

In [51] a GRASP for biclustering is implemented. It is implied only

in the construction of the biclusters and, since a GRASP is involved

for all the process to find a solution for that problem, it is more

commonly viewed as GRASP-like.

To have a complete GRASP all the biclusters found by the algo-

rithm have to be considered together as the solution for the problem.
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The cited solution takes one single bicluster and applies on it a pro-

cedure where elements are inserted considering a set of iterations

where the best element are chosen using the restricted candidate

list.

To search for the best element to insert at each iteration the

neighborhood used is composed by all the possible elements (genes

or conditions) of the whole matrix in input. As said before this

method is expensive in terms of computational time.

In our approach, the neighborhood used has been changed in the

way that will be explained in the following paragraphs.

algorithm GRASP-like-biclustering(A,MaxNoImpr,MaxDist,δ)

1 ∆ := {α1, . . . , α`}; /* αi ∈ [0, 1], i = 1, . . . , ` */

2 for i = 1 to ` do

3 pαi
:= 1

`
;

4 endfor

5 B = {B1, . . . ,Bk} :=filtered-Kmeans(A); /* H(Bq) ≤ δ, q = 1, . . . , k */

O(|X| log |X|)
6 for q = 1 to k do

7 B̂q :=grasp(Bq,∆,A,MaxNoImpr,MaxDist); O(|X|(|I||J |)2)

8 endfor

9 return (B̂ = {B̂1, . . . , B̂k});
end

Figure 3.5: Pseudo-code of the proposed GRASP-like algorithm.

In our GRASP-like the stopping criterion is the achievement of a

maximum number of iterations without improvements (MaxNoImpr)

and we implemented the reactive type of the metaheuristic frame-

work. The pseudo-code is reported in Figure 3.5.

The computational complexity of the overall GRASP-like algo-

rithm depends obviously from the applications of the procedures

inside it. Therefore it will be explained after all the algorithms.
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3.4.1 Biclustering using a social dynamic

This new approach is cheaper in execution time with respect to the

approach of Dharan Nair in [51]. This latter, although robust and

elegant, has a local search too heavy and that does not guarantee

results, in terms of biological results, better than those obtainable

using faster processes.

It considers in the neighborhood not all the elements of the ma-

trix and tries to fetch them in an intelligent way. The question is:

what neighborhood may be appropriate in the case of gene expres-

sion data?

The real problem is that one never knows what might be the

right neighborhood for a bicluster because at any given time its

composition depends from elements that are not helpful in under-

standing what are the best required. A bicluster, at the moment of

its creation, is an object with elements almost not in accord. The

”almost” is used because, both in the Daharan and Nair method

and in our approach, it has been chosen to use a clustering algo-

rithm to create starting biclusters (such bicluster seed). The seeds

contain elements that are similar in terms of spatial proximity, but

each condition of the matrix is considered. This could be misleading

also because it has to be considered that the bicluster seed usually

consists of less than ten elements for both rows and columns. So it

is like having the correct recipe to cook a good meal with not all the

correct ingredients: the correct recipe alone will not guarantee the

right taste. So, finally, what could be the correct neighbourhood of

these biclusters?

To overcome this drawback a local search strategy has been de-

signed in which a different neighborhood of a bicluster is used formed

by biclusters which have an element more or one less. The element to

be removed or added is chosen on the basis of both the proximity to
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the bicluster (distance from the mean vector) and the improvement

obtainable in terms of objective function. The objective function

used is the MSR (minimum square residual) previously described

and indicated with H.

This approach is based on a social dynamic. Suppose the exis-

tence of a group of friends. This happens when some people initially

know themselves and constitute a group (this will be a seed biclus-

ter). This group is coherent because the people share some similar

behavior or interests (this fact is represented by the bicluster coher-

ent evolution). During the time the group can change: someone goes

because of different interests or someone goes because his behavior

is no more compatible with the group. The latter happens when

new people take part to the group and the interests are changed.

This natural dynamic has been represented as a GRASP-like al-

gorithm that makes some choices during the local search.

Each time that a new element is taken from the RCL it is con-

sidered like a feasible friend to add to the group. The neighborhood

of this candidate is formed by other elements suitable to the cluster

(that keeps H in a determined threshold) so a simple local search

where an element more is added or not has been chosen to obtain

this behaviour. It is extracted randomly from all the possible choices

and if it is near to the solution and improve the objective function

it will be inserted. Possible situations can be seen in Figure 3.6. In

red the mean vector of the bicluster. Randomly another element

from all is extracted. If it is:

• (violet) far from red and from the cluster, do not insert it;

• (blue) near to red and not in the bicluster, add it;

• (green) near to red and already present, no action;

• (yellow) far from red and still present, erase it;
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Figure 3.6: Graphical example of the proposed local search. Red is the mean

vector of the bicluster. A new element is extracted randomly from all. Depending

on the distance from the mean vector it will be erased or inserted.

This is the idea that a friend of someone entered the group and

other people make considerations on his behavior. This friend may

be accepted by the group or not. Then two other action are per-

formed: one is to erase the element farthest from the mean and

to remove a random element taken from the bicluster far from the

mean (these eliminations are done if and only if the solution remains

suitable). These actions corresponds to reject persons that are no

more suitable to the group, because the new friend permit to the

group to modify it is behavior and preferences coherently with its

insertions.

3.4.2 Inside our GRASP-like algorithm

The overall algorithm takes inspiration from Dharan-Nair [51]. It

begins with a partial solution formed by a set of k biclusters B =

{B1, . . . ,Bk} created by applying a clustering algorithm. The partial

solution will consists of the so-called ”seeds” that will be made such

that H(Bq) ≤ δ, where delta is a given input parameter.



CHAPTER 3. OUR ALGORITHM 41

The method continues iteratively (Figure 3.7) trying to get the

best local solution considering first the columns (lines 8–15) and

then the rows (lines 1–7). The iterations continue until MaxNoImpr

of them are reached without improving the current solution.

procedure grasp(Bq,∆,A,MaxNoImpr,MaxDist)

1 count := 0;

2 repeat

3 (c,B̄q):=build-columns(Bq,∆,A); O(|Y |(|I||J |)2)

3 (bool,B′
q):=local-improvement-columns(c,∆,B̄q,A,MaxDist); O(|I|2|J |)

4 if (bool) then count := 0; O(1)

5 else count := count+ 1; O(1)

6 endif

7 until (count =MaxNoImpr)

8 count := 0;

9 repeat

10 (c,B̄q):=build-rows(B′
q,∆,A); O(|X|(|I||J |)2)

11 (bool,B′
q):=local-improvement-rows(c,∆,B̄q,A,MaxDist); O(|I||J |2)

12 if (bool) then count := 0; O(1)

13 else count := count+ 1; O(1)

14 endif

15 until (count =MaxNoImpr)

16 return (B′);

end

Figure 3.7: Pseudo-code of grasp procedure. It is invoked in our GRASP-like

algorithm.

At the end of the procedure is given in output the best incumbent

solution (line 16).

Both procedures build-rows (Figure 3.8) and

build-columns (Figure 3.9) take as input a partial bicluster Bq and

try to insert elements in order to increase the number of consistent

items.

The computational complexities of the build-rows and the build-

columns procedures are given respectively by O(|X|(|I||J |)2) and

O(|Y |(|I||J |)2) due to the computation of the H scores in the loop
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procedure build-rows(Bq,∆,A)

1 C := ∅; gmin := large; gmax := 0; /* Bq = (Iq, Jq), A = (X, Y ) O(1) */

2 for each x ∈ X \ Iq do

3 C := C ∪ {x}; O(1)

4 g(x) := H(Iq ∪ {x}, Jq); /* mean squared residue */ O((|I||J |)2)

5 if (gmin > g(x)) then gmin := g(x); O(1)

6 if (gmax < g(x)) then gmax := g(x); O(1)

7 endfor

8 α :=extract(∆); O(1)

9 µ := gmin + α(gmax − gmin); O(1)

10 RCL:= {c ∈ C | g(c) ≤ µ}; O(|X|)
11 c :=extract(RCL); Iq := Iq ∪ {c}; O(1)

12 return (c,Bq = (Iq, Jq));

end

Figure 3.8: Pseudo-code of build-rows procedure. It is invoked in our GRASP-

like algorithm.

procedure build-columns(Bq,∆,A)

1 C := ∅; gmin := large; gmax := 0; /* Bq = (Iq, Jq), A = (X, Y ) O(1) */

2 for each y ∈ Y \ Jq do

3 C := C ∪ {y} O(1);

4 g(y) := H(Iq, Jq ∪ {y}); /* mean squared residue */ O((|I||J |)2)

5 if (gmin > g(y)) then gmin := g(y); O(1)

6 if (gmax < g(y)) then gmax := g(y); O(1)

7 endfor

8 α :=extract(∆); O(1)

9 µ := gmin + α(gmax − gmin); O(1)

10 RCL:= {c ∈ C | g(c) ≤ µ}; O(|Y |)
11 c :=extract(RCL); Jq := Jq ∪ {c}; O(1)

12 return (c,Bq = (Iq, Jq));

end

Figure 3.9: Pseudo-code of build-columns procedure. It is invoked in our

GRASP-like algorithm.

executed for each element of the dataset. In the computation of

the overall complexity the one for columns will not be considered
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because it can be ignored.

The proposed local search

The last step of the algorithm is the local search. In Dharan-Nair

approach the neighbourhood is defined as composed by all possi-

ble biclusters that differs from the current one for the presence of

one other element of the dataset. In the approach presented the

neighbourhood has been built using the algorithm which has been

discussed above, based on a social dynamic. This procedure replaces

at each iteration a bicluster B̄q = (Īq, J̄q) with a new bicluster taken

from the neighborhood of B̄q which will be formed by all the biclus-

ters that differ from B̄q for an element more or/and one less. The

element that will be removed or added will be chosen on the basis

of its difference from the mean vector of the bicluster (Figures 3.10

and 3.11 lines 3–7) and on the basis of the objective function whose

value is given by the mean squared error (Figures 3.10 and 3.11 lines

8–11).

If a best value of the objective function is found, then the prob-

ability of selection of the α are re-computed in agreement with this

new situation.

After that a new value from the RCL has been extracted it will

be inserted in the incumbent solution and then the local search is

composed of three steps. Assuming that µ is the mean vector of the

bicluster, T is an inputed threshold and with H is intended the H

score, they are the following:

1. extracts a random element x′ from the whole set and if ρ(x′, µ) <

T then inserts x′ in the incumbent solution (Figures 3.11 and 3.10

lines 2-7 );

2. extracts a random element x′′ from the bicluster and ifH(Īq, D) <
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procedure local-improvement-rows(c,∆,B̄q,A,T )

1 H score := H(Īq, J̄q); /* B̄q = (Īq, J̄q), A = (X, Y ) */ O(1)

2 D := Īq; new :=extract(X); µ := bicl mean(B̄q); d ist := ρ(new,µ);

3 if (new ∈ D) then

4 if (d ist > T ) then D := D \ {new}; O(1)

5 else

6 if (d ist ≤ T ) then D := D ∪ {new}; O(1)

7 endif

8 new := argmin{d ∈ D|H(D \ {d}, J̄q)}; O(|Īq|)
9 D := D \ {d}; new :=extract(D); O(1)

10 d ist := ρ(new,c);

11 if (d ist > T and H(D \ {new}, J̄q) < H(D, J̄q)) then D := D \ {new};
O(|J̄q|)

12 if (score > H(D, Jq)) then

13 recompute-probabilities(∆); O(‖∆‖)
14 Īq := D; bool := true; O(1)

15 else

16 bool := f alse; O(1)

17 endif

18 return (bool,B̄q = (Īq, J̄q));

end

Figure 3.10: Pseudo-code of local-improvement-rows procedure. It is invoked

in our GRASP-like algorithm.

H(Īq, D/x
′′) then remove x′′ from the incumbent solution (Fig-

ures 3.11 and 3.10 lines 9-11 );

3. remove the element x′′′ from the incumbent solution where

H(Īq, D/x
′′′) is the minimum respect to all the H(Īq, D/y) re-

sulting from the removal of all other y of the bicluster (Fig-

ures 3.11 and 3.10 lines 8-9 ).

Each of this removal is performed if and only if the H(Īq, D) < δ,

where δ is an a priori decided threshold chosen to build the biclus-

ters.

The computational complexity of these procedures is given re-
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procedure local-improvement-columns(c,∆,B̄q,A,T )

1 H score := H(Īq, J̄q); /* B̄q = (Īq, J̄q), A = (X, Y ) */ O(1)

2 D := J̄q; new :=extract(Y ); µ := bicl mean(B̄q); d ist := ρ(new,µ);

3 if (new ∈ D) then

4 if (d ist > T ) then D := D \ {new}; O(1)

5 else

6 if (d ist ≤ T ) then D := D ∪ {new}; O(1)

7 endif

8 new := argmin{d ∈ D|H(Īq, D) \ {d}}; O(|J̄q|)
9 D := D \ {d}; new :=extract(D); O(1)

10 d ist := ρ(new,c);

11 if (d ist > T and H(Īq, D \ {new}) < H(Īq, D)) then D := D \ {new}; O(|Īq|)
12 if (score > H(Iq, D)) then

13 recompute-probabilities(∆); O(‖∆‖)
14 J̄q := D; bool := true; O(1)

15 else

16 bool := f alse; O(1)

17 endif

18 return (bool,B̄q = (Īq, J̄q));

end

Figure 3.11: Pseudo-code of local-improvement-columns procedure. It is in-

voked in our GRASP-like algorithm.

spectively by O(|I|(|I||J |)2) and O(|J |(|I||J |)2) due to the compu-

tation of the H scores in the loop acting for each element of the

dataset. The difference from the previous local search is signifi-

cant because the choice of the neighbourhood have a complexity of

O(|I|) due to the search of the worsen element. Instead, the overall

complexity depends from the whole gene set. In the computation

of the overall complexity the one for columns will not be considered

because it can be ignored.
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3.4.3 Alterned insertion of rows and columns

One of the limitation of GRASP-like created is that it does not

support contemporary insertion of rows and columns. So, it has

been thought to include this possibility.

Since bicluster seeds were created using a clustering algorithm,

they are a good starting point. The problem is that when the biclus-

ter becomes greater, some columns that have not been added could

have been crucial in the bicluster construction. So, it is natural to

think to insert columns also after having inserted them in the first

step of the algorithm.

For this purpose a variant of GRASP-like algorithm has been

created that proceeds in this way: first, it uses the procedure to

insert columns and, inside the procedure that inserts rows, a column

is inserted each time that is needed. Since the genes are always

more than the conditions, it has been thought to add a column each

totRows/totColumns iterations (Figure 3.12, lines 11-18).

With this different way to proceed, computational complexity is

not increased because the alternate insertion of elements complexity

can be ignored.

3.4.4 Iterated local search

A local search algorithm tries to find a solution locally optimal ŝ

starting from a good solution s. To do that, it analyzes the neigh-

borhood of the solution s looking for a solution to have the best

value for the objective function g. The point is that using this tech-

nique corresponds to search within a local minimum. Figure 3.13

illustrates how it is possible that, if the space of value for g is seen

as a curve, it exists the possibility that the solution found is at a

point where you can only find local optima.

It was the problem of local optima to push researchers to design
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procedure graspAlterned(Bq,∆,A,MaxNoImpr,MaxDist totRows,totCols)

1 count := 0;

1 alternRate := totRows/totCols;

2 repeat

3 (c,B̄q):=build-columns(Bq,∆,A); O(|Y |(|I||J |)2)

4 (bool,B′
q):=local-improvement-columns(c,∆,B̄q,A,MaxDist);O(|I|2|J |)

5 if (bool) then count := 0; O(1)

6 else count := count+ 1; O(1)

7 endif

8 until (count =MaxNoImpr)

9 count := 0; O(1)

10 repeat

11 if (alternCount < alternRate) then

12 (c,B̄q):=build-rows(B′
q,∆,A); O(|X|(|I||J |)2)

13 B̄q=B̄q ∪ c; O(1)

14 alternCount++; O(1)

15 else

16 (c,B̄′
q):=build-columns(B̄q,∆,A); O(|Y |(|I||J |)2)

17 B̄′
q=B̄′

q ∪ c; O(1)

18 alternCount=0; O(1)

19 (bool,B′′
q):=local-improvement-rows(c,∆,B̄′′

q,A,MaxDist); O(|I||J |2)
20 if (bool) then count := 0; O(1)

21 else count := count+ 1; O(1)

22 endif

23 until (count =MaxNoImpr)

24 return (B′′
q );

end

Figure 3.12: Pseudo-code of grasp procedure with columns introduction. It is

invoked in our GRASP-like algorithm.

new algorithms in order to obtain local searches more versatile and

able to avoid this type of error.

The iterated local search allows to avoid the constraint of using

only the nearest neighbors of a solution s. From this, in fact, a

perturbation is first applied that leads to a new solution s′. If this

new solution can pass a test then s′ becomes a temporary solution
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Figure 3.13: An example of iterated local search. One can fall in a local minimum

while ideally a global minimum is needed.

whose use is required to arrive to the, possibly global, optimum.

The perturbation of the solution allows, theoretically, to move

from one point of the curve of the solutions to another randomly (or

guided, depending on how one chooses to implement the algorithm).

The procedure is correct if the perturbation is made in such a

way that it is neither too small nor too large. If it is too small

there is a risk of being too close to the solution s and have a search

space too small. Conversely, if the perturbation is too large, it may

happen that the solution s′ is really too far from s and this leads

the algorithm to become totally random.

The iterated local search has as advantage the fact that leads,

in most cases, to better solutions than the one found. One of the

problems is that, once the perturbation is done, one might want to

go back if the solution produced is not as good. This can be avoided

by storing a history of perturbations made. An iterated local search

algorithm is in Figure 3.14 where you can see that each of the steps

is described: it generates an initial solution (line 1), makes a normal

local search (line 2), the solution is perturbed and is found a new
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local solution (lines 3-4), a criterion says if it can continue with this

solution (line 5).

procedure iterated-local-search

1 s0 = CreateInitialSolution;

2 s = searchLocally(s0);

3 repeat

4 s′ = PerturbateSolution(s, history);

5 s′′ = searchLocally(s′);

6 testSolution(s′′, s′, history);

7 until termination condition

end

Figure 3.14: Pseudo-code of iterated-local-search. This procedure is invoked

in our GRASP-like algorithm.

The computational complexity of ILS depends in great part from

the history. The overall algorithm can be optimized adjusting the

acceptance criteria and the perturbation step that can be wrote

using a good transformation dependent from the problem. For ex-

ample it can be a rule that guides the algorithm in the transforma-

tions. An ILS algorithm can have a wide range of complexity that

can be added step by step. It is an appealing algorithm also because

computes its local searches with interesting speed.

3.4.5 The iterated local search implemented

The iterated local search implemented in this work refers to the work

of [56]. This follows the general pattern of the ILS. It can start from

any biclustering algorithm and uses the hill-climbing strategy to

explore the neighborhood. During each of the iterations one moves

within the neighborhood following the objective function chosen.

The objective function used in [56] is a new one that aims to evaluate

the bicluster. It is based on the use of a different matrix created

from the original one.
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The matrix M ′ is achieved by combining a pair of columns (con-

ditions) from the input matrix A. Since the initial matrix has |X|
rows and |Y | columns exist |X|(|X| − 1)/2 possible combinations of

columns represented by J ′′. It will be defined as:

M ′[i, l] =


1 if A[i,k] < A[i,q]

−1 if A[i,k] > A[i,q]

0 if A[i,k] = A[i,q]

where i ∈ [1 . . . n], l ∈ [i+ 1 . . . J ′′], k ∈ [1 . . .m− 1], q ∈ [1 . . .m]

and q > k + 1.

From this matrix the behaviors of genes through the chosen con-

ditions can be observed .

Given the incumbent solution s = (I ′, J ′) the quality of s is

evaluated using the following function:

S(s) =

∑
i∈I ′

∑
j∈I ′,j<i+1Fij(gi, gj)
|I ′|(|I ′| − 1)/2

where Fij is described by:

Fij(gi; gj) =

∑
l∈J ′′

s0
T (M ′[i, l]) = M ′[j, l]

|J ′′s0|
where

• T (Func) is true, if and only if Func is true, and T (Func) is

false.

• i ∈ I ′, j ∈ I ′ and i 6= j, when F is used by S and, i ∈ I, j ∈ I
and i 6= j otherwise.

• |J ′′s0| is the cardinality of the subset of conditions in M ′ ob-

tained from s0,

• 0 < Fij(gi, gj) ≤ 1.
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Each result of the function F attests the quality of a pair of genes

subjected to a series of conditions. A high value indicates that the

genes are related, whereas a low value indicates the opposite. In the

first case the value will be close to 1 otherwise to 0. To compare two

pairs of genes will be sufficient to compare: (gi; gj) is better than

(g′i; g
′
j), when Fij(gi; gj) > Fij(g′i; g′j).

Instead the function S(s) expresses an average of functions Fij(gi; gj)
for each gene and in the same manner the more the value is close

to 1 and the more bicluster will be good, this means that genes are

correlated. Conversely, a value close to 0 belongs to an insignificant

bicluster. When one is going to compare two solutions s and s′, s is

better than s′ if S(s) > S(s′).

The algorithm described is shown in Figures 3.15. The algorithm

stops when one can no longer find a neighbor in the neighborhood

that improves the solution. So the last solution found is considered

a local optimum. Once this research phase is over, the algorithm

perturbs the solution in order to generate a new starting point. The

perturbation changes a certain quantity of items within the biclus-

ter. In particular, it was decided to change a percentage of 10% of

the genes between the better ones that are still in the incumbent

solution (the bicluster s).

The algorithm terminates when it is unnecessary to go further

because the solution does not improve anymore, or has been reached

the a priori fixed iterations.

The computational complexity of the iterated local search just

described depends from the creation of the behaviour matrix M ′

that is created each time that the ILS starts. It is: O(|X|2|Y |).
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procedure bils-iterated-local-search(B0,λ,A)

1 MB :=create-behav-matrix(A); O(|X|2|Y |)
2 Γ :=compute-F(B0); O(1)

3 B := B0; O(1)

4 repeat

5 repeat

6 (gi, gj) :=select(B); /* Fij(gi, gj) < λ */ O(|I||J |)
7 (gj, gr) :=select(B); /* Fjr(gj, gr) ≥ λ */ O(|I||J |)
8 V = {gv | Frv(gr, gv) ≥ λ} O(1)

9 B′ ← V O(1)

10 B′ → gi O(1)

11 if (S (B′) ≥ S (B)) then B := B′; O(1)

12 endif

13 until (no improving neighbour can be found)

14 B=perturbe-solution(B) O(1)

15 until (stop condition is verified)

16 return B
17 end

Figure 3.15: Pseudo-code of bils-iterated-local-search procedure. It is in-

voked in the GRASP-like algorithm.

3.5 A multi-start way to proceed

The whole algorithm can be inserted in a multi-start procedure. In

this way the algorithm is computed a number of times and the best

solution is kept.

This way to proceed is named Multistart. Multistart is certainly

one of the earliest global procedures used: it has also been used

in local optimization for increasing the confidence in the obtained

solution [57]. One drawback of multistart methods is that, when

many starting points are used, the same minimum will eventually

be determined several times. In order to improve the efficiency of

multistart this should be avoided.

We give here an example of the execution of our algorithms in

multi-start mode.
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algorithm Multi-Start-GRASP-like(A,MaxIters,MaxNoImpr,MaxDist,δ, B0)

1 best = B0;

2 for i = 1 to MaxIters do

3 ∆ := {α1, . . . , α`}; /* αi ∈ [0, 1], i = 1, . . . , ` */

4 for i = 1 to ` do

5 pαi
:= 1

`
;

6 endfor

7 B = {B1, . . . ,Bk} :=filtered-Kmeans(A); /* H(Bq) ≤ δ, q = 1, . . . , k */

8 for q = 1 to k do

9 B̂q :=grasp(Bq,∆,A,MaxNoImpr,MaxDist);

10 endfor

11 if B̂ is better than best then

12 best = B̂
13 endfor

14 return (best);

end

Figure 3.16: Pseudo-code of our multi GRASP-like algorithm. Here computa-

tional complexity contribution are not underlined because they are equal to that

in Figure 3.5

As it can be clearly seen, the only addition to the general GRASP-

like algorithm is that all the operations are executed a certain num-

ber of times. This is because in practice one wants to obtain more

than one different global solution for the biclustering and retain only

the best one. For each of the iterations the solution is computed and

matched with the previous and, if it brings to improvement of the

objective function, then the global one is substituted (Figure 3.16

lines 11-12). In this way at the end of the process only the one with

the best objective function value (best) will be returned (Figure 3.16

line 13). Supposing that are given k biclusters B = {B1, . . . ,Bk} and

their volumes are V1, .., Vk and their H score values are H1, .., Hk

then the mean for volumes and scores are respectively Vmean and

Hmean. The relations between them Vmean/Hmean has been used as

value to match between the results. If the last is better then the
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best obtained, the incumbent solution is substituted.

The computational complexity of a multi start algorithm in-

creases the overall complexity and it depends from the number of

time that one wants to re-start the algorithm to have different start-

ing point. In our algorithm they have been not more of three or four

times. This very low number is due to the fact that the overall pro-

cedure can otherwise be very slow.

3.6 Computational complexity

The computational complexity of the overall GRASP-like algorithm

depends on the size of the dataset and those of the biclusters while

they are been created.

The procedure GRASP-like-biclustering is the reference main

algorithm. It calls the procedure grasp composed by the following

procedures:

• build-rows: O(|X|(|I||J |)2);

• local-improvement-rows: O(|I|2|J |);

• build-cols: O(|Y |(|I||J |)2);

• local-improvement-cols: O(|J |2|I|).

And before than GRASP-like, one of two clustering procedures

is executed:

• kMeans: O(|X| log |X|);

• mst-clustering: O(|X|2 + |E|), where O(|V |2 + E) became

O(|X|2 + E) because the vertices of the graph are the genes.

For the overall cost is not considered the part relative to columns

because the time to execute is very low respect to that of executing
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on rows. The complexities have to be summed obtaining (without

the clustering):

O(|X|(|I||J |)2 + |I|2|J |),

that becomes:

O(|X|(|I||J |)2),

because the first factor is bigger than the second.

This is thus the computational complexity of the grasp proce-

dure. It is inserted in GRASP-like-biclustering procedure whose

complexity is the following:

in the case of the use of kMeans algorithm,

O((|X|(|I||J |)2) + (|X| log |X|)),

and when MST clustering is used it becomes,

O((|X|(|I||J |)2) + (|X|2 + |E|).



Chapter 4
Application to microarray data

If love had not been such a
wonderful thing it would take far
less time to understand

4.1 Introduction

In order to evaluate their performances, the different versions of our

algorithm were tested on several microarray data extracted from lit-

erature, and available in public datasets. The first dataset used is

based on the study of the cell cycle of the yeast Saccharomyces cere-

visiae, in which the same genes are present in 17 different time series.

The other datasets used are from Human lymphoma, Arabidopsis

thaliana and another one for Saccharomyces cerevisiae (called Yeast

environmental) in which all experiments were made with different

conditions or patients. A more detailed description of the dataset

is given in the next section.

The biclusters obtained by our algorithms have been evaluated

using the GO (Gene Ontology) annotation database and tools on-

line. They comprise a large number of genes that researchers contin-

uously update to give a significance for each cluster. In GO annota-

56
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tion, terms describing biological processes (BP), cellular components

(CC), and molecular functions (MF) are assigned to genes, so that

a list of genes can be analyzed, looking for terms associated. The

statistical significance to which the genes match with the different

GO terms or categories can be indicated by the p-value.

The most known databases of Gene Ontologies are DAVID [58]

and PANTHER [59]. We choose to test our algorithms with these

websites since they are very simple to use and complete in their

functionality.

4.2 Datasets

Here is a little description of the datasets used to assess the quality of

the developed algorithm. Indeed, the ”consistency” of the bicluster,

defined by H-score, is definitely the first parameter to be evaluated,

but it is also necessary to consider what is the biological significance

of clusters identified, and the ability of the algorithm to evaluate

different biological data from different sources and with different

purposes. To do this, four datasets of gene expression data from

different organisms have been tested.

4.2.1 Yeast time series

This dataset has been taken from [60] and is formed by 2885 genes

and 17 time series selected according to [61]. The authors selected

these genes as the most variable ORFs using the normalized disper-

sion in expression level of each gene across the time points. This is

the only dataset containing columns representing exactly the same

gene taken at different times.

The cells were assessed at intervals of 10 minutes in 17 subsequent

times. The intervals allowed to follow two full cell cycles. The cell
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cycle phasing has been determined by using the size of the bud, the

position of the nucleus in the cell, and the induction pattern.

From each sample, RNA has been isolated, converted to cDNA

and hybridized to an array containing the whole yeast genome (6218

genes). The array has been read using a specially designed confocal

scanner created by Affymetrix.

4.2.2 Arabidopsis

This is a dataset containing 795 genes and 69 conditions based on

Wille et al [62].

Plants were grown at 70% humidity and cycles of 16h of light at

21◦C and 8h during the night at the same temperature.

The different samples came out from different environmental and

grown conditions. RNA has been also extracted from transgenic

seedlings or roots exposed to hormonal treatments. The experi-

ments are based on extraction of RNA from wild-type and are mu-

tant seedlings, leaf and seedling in a baseline, a root inducible sys-

tem exposed to hormonal treatments, seedlings exposed to light and

dark conditions in a time-course experiment and to ozone. Another

experiment has been performed to assess the effect of inhibitors of

pathways on the expression of genes involved in isoprenoid biosyn-

thesis.

To extract mRNA, frozen seedlings and leafs of Arabidopsis were

prepared using Trizol (a reagent to deliver high quality RNA from

tissue) and purified using RNEasy columns. Fifteen micrograms

of RNA were used to prepare the cDNA using a kit according to

instructions of Affymetrix that produced the gene chip.

The array has been scanned using the confocal scanner Agilent

GS 2500 and raw data processed with the Affymetrix Microarray

Suite 5.0 using the default parameters.

The dataset obtained contains only those genes for which relevant
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structures from 56 metabolic pathways have been found.

4.2.3 Yeast environmental

This dataset is based on [63]. In this work the Authors have char-

acterized genomic expression in yeast responding to environmental

changes.

The cells were subjected to heat shock, hydrogen peroxide, su-

peroxide generated by menadione, a sulfhydryl oxidizing agent (di-

amide), and a disulfide reducing agent (dithiothreitol), hyper-osmotic

shock, amino acid starvation, nitrogen source depletion and progres-

sion into stationary phase. This work is important for the formu-

lation of hypothesis for the way in which the yeast responds to

environmental changes and stress.

Each condition has been controlled to preserve at least the 80%

cell viability. For almost all experiments the samples were collected

during the 2-3 hours elapsing between the beginning and the end

of the procedure. Cells have been compared also for changes in

temperature to check the response to heat-shock.

In the experiment 142 different mRNA samples have been taken

by the hybridization of the whole genome.

All the cells have been subject to the extraction of RNA and

creation of cDNA samples. Then they have been hybridized on a

microarray. The dataset used contains 2993 x 142 genomic data.

4.2.4 Lymphoma

The diffuse large B-cell lymphoma is a disease of the mature B-

lymphocites. It attacks every year 25,000 people. Although many

patients respond well to chemotherapy initially, only few of them

continue with good results. For this reason it is important to know

what are the genes that induce resistance to the treatment.
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The lymphoma dataset is taken from [60] and based on the work

in [64]. The authors realized a special microarray called Lympho-

chip with genes that are expressed in lymphoid cells with a role in

the processes of immunology or cancer.

Only a subset from the overall genes were chosen from a B-cell

library because they are suspected to be important for the genera-

tion of the non-Hodgkins lymphoma. Some other genes have been

added from follicular lymphoma, mantle cell lymphoma and chronic

lymphocitic leukemia.

The cDNA has been put on the microarray in 2-3 copies to hy-

bridize the samples obtained.

This dataset is formed by 4026 genes and 96 conditions according

to [10], with the expression level reported as an integer value. All

array elements for which the fluorescence was greater than 1,4 times

the local background were considered well measured. Only the genes

with at least the 80% of the mRNA samples well measured were not

excluded.

4.3 The Gene Ontology

To evaluate biological significance of biclusters it has been chosen

to use the Gene Ontology. This is a project whose goal is to unify

the way of genes annotation and to have a database where all in-

formation about them are stored. Several bioinformatics centers

collaborate into the project. The GO project is part of the Open

Biomedical Ontologies (OBO) [65].

The project provides coverage for three domains:

• cellular component (CC), which describes the different cel-

lular compartments or the extracellular content:

• molecular function (MF), which describes the activities of
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the elements at the molecular level in the genes, such as catal-

ysis and binding;

• biological process (BP), which describes the molecular events

that belong to living units, such as cells, tissues and organs,

which have a beginning and an end well defined.

Each element created by the GO Project is constituted by an

unique alphanumeric identifier. For each term there is a description

and an indication of the domain to which it belongs. The terms

may also have a synonym that exactly belong to the same class.

Each term may correspond to different descriptions and can have

connections to other databases or comments on how the term is

done and how it should be used [65].

The GO project has organized things in such a way that the

terms are independent of the species: this means that there can be

a GO term reference, for example, to the same gene in both human

and in mouse. In addition, these terms can be applied to single and

multicellular organisms as well as both prokaryotes and eukaryotes.

Each gene can also refer to more GO terms depending on whether

these describe its biological process, molecular function or cellular

component. And for each of the descriptions there may be more

words that describe it.

The GO ontology is a dynamic project that is constantly evolv-

ing. Researchers from all over the world can propose additions,

corrections and changes to the team that is responsible for man-

aging the project. The changes suggested are being examined and

approved by the maintainer if they are correct [65].
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4.3.1 Annotation

When genes are annotated, information are gathered about them

and written in an archive. For example after the sequencing and

assembly of a genome, alignment procedures can be used to obtain

information on their sequences. In the case of the GO, the members

submit their annotations to the website where they can be reviewed

and approved [65].

Each element of the GO database has an unique alphanumeric

identifier and a description. The description contains: a reference

to the publication of annotation, an evidence code to understand

the source of the annotation, creation date and creator of the anno-

tation. The evidence code comes out from a controlled vocabulary.

Some of the codes are as follows: Traceable Author Statement

(TAS) means that the record was taken from a paper; Inferred from

Sequence Similarity (ISS) means that the output of a similarity

search has been used; Inferred from Electronic Annotation (IEA)

are those records that have been created through an automated

process. Currently, more than 95% of the records were inferred

automatically.

4.3.2 Tools

There are a large number of tools available both online and offline

that use the data provided by the GO project. The vast majority

of these come from third parties. Some of them have been used in

this work to confirm a biological significance of biclusters found.

The Saccharomyces genome database

The GO tool for Yeast environmental [66] is located at [67] and

provides information about genes, proteins and other features of

the budding yeast. The website is composed of tools that permit
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to have the functional description of budding yeast and to match it

with higher organisms.

It also maintans the reference genomic chromosomal sequence of

the S. cerevisiae functioning as a central hub where researcher can

add and get information.

The database permits to have information about groups of genes

given in a form input on the website and gives in output a graphical

chart showing the connections and their importances. It also gives

a p-value for each function, process, component found.

PANTHER

The website of PANTHER [68] has been realized in order to allow

the analysis of large clusters of genes [59]. It contains functional

information about genes and can therefore be used:

• to study biological processes, molecular functions, cellular com-

ponents and pathways;

• to generate lists of genes that have functions in common or that

participate in the same biological processes;

• to extract general information about groups or individual genes

of specific interest;

• to check which biological processes, molecular functions or cel-

lular components or pathways have in common genes.

Because of this last feature, PANTHER was chosen as one of the

systems to validate the biclusters created during this work.

The PANTHER database can be used starting from files that

contain lists of genes that should be evaluated. They must be up-

loaded. The type of identifier has to be chosen and also the organ-

ism. The query returns a GO classification corresponding to the

molecular functions, biological processes or cellular components in
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common with different genes. The different GO terms found for

each cluster are associated to a p-value assessing their statistical

significance (the lower the p-value, the higher the validity of the

statistical association).

DAVID

DAVID is a service developed by the Laboratory of Immunopatho-

genesis and Bioinformatics (LIB) [69] and is open access [58].

This service provides a functional interpretation of a list of genes

that is given as input. The whole system consists of five annotation

tools: the DAVID Gene Functional Classification Tool, the DAVID

Functional Annotation Tool, the DAVID Gene ID Conversion Tool,

the DAVID Gene Name Viewer and the DAVID NIAID Pathogen

Genome Browser.

DAVID is a tool which connects a large variety of identifiers and

terms from bioinformatic public databases. It also allows conver-

sions of names, provides tools that allow to group lists of genes

based on functionalities and allows to graphically display a set of re-

lationships between genes on the basis of data identifiers. It also has

the same functionality of PANTHER providing information about

biological processes, molecular functions, cellular components and

pathways.

DAVID offers various tools for the analysis of Gene Ontology: the

conversion of gene names, the functional gene classification and the

gene annotation. The latter has been used to evaluate the biclusters.

Unfortunately, the genes do not have a universally accepted iden-

tifier but different types have been created to meet different needs.

For example, there are names created by the manufacturer Affymetrix,

Unigene or EntrezGene. These names are all different and are often

made in order to give information on the organism and the type of

gene.



CHAPTER 4. APPLICATION TO MICROARRAY DATA 65

The GO database did not provide a way to identify all possible

genes. Several genes exist and some databases, as DAVID, have a

converter that could not be able to identify all the gene names.

The motivation for the usage of two different datasets is that

when we execute queries the systems with our group of genes ob-

tained from clustering it is difficult that all these genes are recog-

nized by a system. In a large number of cases they have to be

converted and not all the converters give results for all the possible

genes.

In particular PANTHER (Protein ANalysis THrough Evolution-

ary Relationships) classification system has been largely used with

the yeast time series and Lymphoma datasets whereas DAVID was

used to classify the results obtained with also the other two datasets.

4.4 Experimental Results

4.4.1 Assessing validity of the technique

The Reactive GRASP-like algorithm has been implemented in C

language, compiled with the Apple Xcode 3.1, and ran first on a

MacBookPro 2GHz Intel Core Duo running MAC OSX 10.6. Then it

has been executed on a 2GHZ AMD Opteron Processor 248 because

of the high number of tests. Several iterations have been performed

adopting the stopping criterion that counts a maximum number

of iterations without improvement of the incumbent solution and

inspecting the results obtained.

The initial experiments have been conducted on the Yeast time

series dataset [61] and on the Lymphoma dataset [64] to evaluate

the quality of the proposed algorithm. In these first tests only our

local search algorithm has been implemented without the change

of clustering procedure and the multi-start type of execution. This
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tests has been performed only on these two datasets to assess the

correctness of our procedure.

In Table 4.1 results for 33 biclusters generated for Yeast time

series, and 11 biclusters generated for Lymphoma are shown. they

are in terms of mean number of genes, mean number of conditions,

mean volume, mean squared residue H and mean running time over

10 trials using 10 different random number created by a generator.

Table 4.1: First results with Yeast time series and Lymphoma dataset. In the

table the Yeast time series dataset is indicated with Yeast TS). Results are

in terms of mean p-values. The same results have been retrieved from a set of

random biclusters to assess the validity of the proposed method (Hr).

Statistics Yeast TS Dataset Lymphoma Dataset

mean number of genes 97,33 59,63
mean number of conditions 10,52 8,18
mean volume 1000,06 478,93

mean H value 195,73 0,03

mean running time (in secs) 4044,43 5012,03

mean Hr value 1821,76 0,56

Mean volumes and number of genes and conditions depend from

the bicluster dimensions and object collected by the algorithm. The

mean H value is the mean MSR score computed on the final bi-

clusters for each of the 33 (for Yeast time series) and the 11 (for

Lymphoma), while the Hr value is the mean of the MSR scores for,

respectively, 33 and 11 biclusters randomly created. This has been

done to compare our algorithm with a completely random approach

to find biclusters. It is evident that this approach outperforms a

simple random approach and assess its correctness.

Moreover, looking at the graphical behaviour of the curves for the

bicluster (in Figure 4.1 and 4.2) one can note that they are similar

in many cases under a subset of conditions. This has proven that
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the biclusters from gene expression data identified are coherent.

Figure 4.1: Chart of the results with Yeast time series dataset. This is a graphical

representation of the expression levels for a sample biclusters obtained in our

analysis on Yeast time series dataset [61]. On the rows we have the gene behaviour

and on columns the conditions. Different colors of the curves represent different

genes.
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Figure 4.2: Chart of the results with Lymphoma dataset. This is a graphical

representation of the expression levels for sample biclusters obtained in our anal-

ysis on Lymphoma dataset [64]. On the rows we have the gene behaviour and on

columns the conditions. Different colors of the curves represent different genes.

In Table 4.2 we inserted a summary of results using the Yeast GO

ontology [67]. They are all in terms of p-value. The first set of rows

shows the mean of p-value for biological process, molecular function

and cellular component associated to the biclusters found. These

value has been taken from the output of the GO website. When a

significant p-value is obtained it has been selected and in the case

that two or more are significantly associated then only the lowest

p-value has been taken. In the GO result a plot can also be shown

with the connections between the functions and components found.
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Table 4.2: Statistics on results of biclustering on the Yeast time series and the

Lymphoma datasets. Yeast time series is indicated with Yeast TS. The table

shows a summary of the results in terms of p-values.

Mean of minimum p-value Yeast TS Dataset Lymphoma Dataset

mean for BP 1,83E-03 1,15E-03
mean for MF 9,28E-04 5,88E-03
mean for CC 1,60E-03 1,38E-01

min for BP 3,89E-15 5,25E-05
min for MF 5,08E-17 3,27E-08
min for CC 6,62E-22 1,05E-03

In Figure 4.3 a graphical example of connections between molec-

ular functions is shown. This is a result for a bicluster where an high

percentage of genes belong to the class of structural constituent of

ribosome. For this class the color is orange since the S. cerevisiae

ontology database assigns this color to p-values lower than 1e−10.

So this is indicative of an high correlation of elements found inside

the biclusters. Also this has been a clear proof that our algorithm

performed well on this dataset.
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Figure 4.3: Graphical example of molecular functions for Yeast time series

dataset. The graphical output comes from the Saccharomyces Genome Database.

Colors express the biological significance. The higher is for the orange, the lower

is in brown.

These tests showed that there is at least a GO term significant

for 29 out of 33 biclusters examined for Yeast time series dataset

and for 11 out of 11 in the Lymphoma dataset.

This analysis confirms the coherence of the bicluster analysis with

our methods, being most of the gene clusters characterized by a

common molecular function, or cellular component, or by the in-

volvement in a biological process. This assesses the goodness of our

local search.

4.4.2 Different combinations of algorithms

Assumed that our local search algorithm has a good performance, it

was decided to put it in different combinations of heuristics already

known in the literature, and that might give better performances

to our GRASP-like algorithm. In addition, the same combination



CHAPTER 4. APPLICATION TO MICROARRAY DATA 71

of heuristics was tested, for comparison, on the Dahran-Nair algo-

rithm [51]. Then the results have been evaluated using the GO

systems.

The biclustering algorithm can be sub-divided in 3 parts:

1. a clustering step needed to found the initial seeds to upgrade

during the process. We implemented two algorithm for this:

kMeans (kM) and MST clustering (MST);

2. a step for the ”growing” of the bicluster. It has been done with

a GRASP-like technique. In this step the local search distin-

guishes our algorithm (MyGR) from the Dahran-Nair (DNGr)

algorithm [51];

3. a final optional step that can be considered as included in the

second and that can improve the final solution. This is repre-

sented by the iterated local search (ILSAy). A step that can

be done after the typical local search and can improve the final

solution;

All the process can be executed several times in a Multi-Start

procedure (MS).

The overall tests computed are for nine different versions of a

biclustering algorithm coming from 9 different combinations of the

heuristics previously described. They are shown in Table 4.3.

These results demonstrate that MST clustering algorithm works

better than the kMeans. The mean p-value for cellular component

is always an high value. In any case the best improvements we find

were those obtained with the multi start method and our GRASP-

like algorithm.

Table 4.4 represents two different test: the first is realized with

the Dharan-Nair algorithm and the following are results with our

best version.
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Table 4.3: Statistics on the Lymphoma dataset using PANTHER. The table shows

a summary of the results for each combination of heuristics in terms of p-values.

BP, biological process; MF, molecular function; CC, cellular component. These

results have been obtained using PANTHER.

Algorithm BP MF CC

kM+MyGr 1,15E-03 5,88E-03 1,38E-01
MST+MyGr 2,90E-02 1,11E-02 3,70E-01
MST+MyGr+ILSAy 5,19E-03 5,50E-03 8,58E-02

MST+DNGr+ILSAy 7,30E-04 7,86E-04 1,69E-01
MS+MST+DNGr 2,85E-06 1,21E-05 1,51E-01
MS+MST+DNGr+ILSAy 3,21E-06 1,64E-04 1,53E-01
MS+MST+MyGr 3,22E-06 5,72E-05 4,39E-02
MS+MST+MyGr+ILSAy 5,34E-07 1,22E-05 2,31E-02

Table 4.4: Comparing Dharan-Nair algorithm and ours with Lymphoma dataset.

Tests realized with the Dharan-Nair algorithm (first three lines) and the best

version of proposed algorithm (second three lines) and using Arabidopsis Dataset,

Yeast environmental and Lymphoma datasets with PANTHER. (BP, biological

process; MF, molecular function; CC, cellular component)

Dataset BP MF CC

Yeast environmental 1,27E-03 2,38E-02 5,29E-01
Arabidopsis 8,52E-04 7,22E-02 1,15E-01
Lymphoma 3,92E-04 3,10E-03 8,43E-01

Yeast environmental 8,77E-04 4,88E-04 2,25E-02
Arabidopsis 4,54E-05 5,20E-02 7,85E-02
Lymphoma 3,95E-05 2,20E-04 1,15E-01

4.4.3 Tuning of parameters

During this work we searched the best measures to use for clustering

of microarray data and for biclustering. Using prior knowledge we

evaluated the power of the biclusters obtained and we could calibrate
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our algorithm to work fine with these type of data.

While experiments were carried out, some parameters were ad-

justed to obtain the best output. Since this algorithm does not allow

for biclusters to overlap, the dimensions of the bicluster are a mea-

sure to quantify the effectiveness of this algorithm. The parameters

used by our software were related to:

• number of biclusters to create;

• minimum number of rows to achieve in a bicluster;

• minimum number of columns to get in a bicluster.

Inside the clustering methods:

• number of cluster (both for rows and for columns);

• minimum distance to see if two elements are close to or less.

The number of bicluster to be created throughout the work has

been the subject of great attention in order to understand if it would

be preferable to include the whole set of genes into the biclusters or

to optimize the number of biologically significant biclusters.

The most significant decisions on this subject have been taken

during the tests carried out on Yeast environmental and Lymphoma

datasets.

From our observations we found that it is preferable to obtain a

number of bicluster between 10 and 20 and then to increase their

size to 50-100 genes.

It has been found that the larger the bicluster and the easier is

to get a high biological significance.

The number of clusters of rows that we chose to include is about

150-180. This is because usually the dataset used have a number of

genes between 2000 and 4000 and it needs to have very small initial

clusters as a starting point.
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An automatic choice of the number of clusters has been also pro-

vided. If the dataset is bigger than these dimensions, the software

decides to set up a number of clusters equal to one tenth of the

cardinality of the dataset.

4.4.4 Number of genes considered by the algorithm

The following are some statistics extracted from the composition

of the biclusters obtained. They illustrate, for the set of bicluster

obtained in a single execution of our algorithms, what is the number

of genes considered. It is useful to understand what is the possibility

of grouping all the genes in each dataset.

As it can be clearly seen in Table 4.5, Table 4.6 and Table 4.7,

the number of genes involved in a result is sometimes far from the

overall number of genes.

This is because it is possible that some initial clusters have to be

selected several times for the creation of bicluster, because of their

very low H-score.

4.4.5 Evaluation of biclusters with DAVID

In the following three tables there is the final evaluation of the

results obtained with different combinations of algorithms.
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Table 4.5: Number of genes retrieved with Lymphoma dataset. The numbers

come from an execution of our best algorithm with Lymphoma dataset. The

genes in the column Num of Genes are present in a number of biclusters wrote

in the second column Num of Biclusters. In example 234 genes are present

only one time for all the biclusters retrieved.

Num of Genes Num of Biclusters

234 1
129 2
86 3
36 4
38 5
18 6
8 7
3 8
3 9
1 10
0 > 10

322 comparing in more than one biclusters
556 total genes considered

Table 4.8: Statistics on the Lymphoma dataset. The table shows a summary

of the results in terms of p-values using the DAVID GO database. For each

combinations of heuristics there is a result for BP, MF, CC.

Algorithm BP MF CC

DNGr 3,5E-5 5,7E-3 1,0E-4
MST+MyGr 1,5E-2 1,98E-2 1,92E-2
MST+DNGr+ILSAy 6,0E-4 1,4E-2 4,6E-3
MST+MyGr+ILSAy 8,4E-3 2,0E-2 2,0E-02
MS+DNGr+ILSAy 1,2E-2 7,4E-2 9,5E-3
MS+MST+MyGr+ILSAy 1,2E-2 1,6E-2 2,5E-2
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Table 4.6: Number of genes retrieved with Yeast environmental dataset. These

are statistics on the number of genes retrieved on each execution of our best

algorithms with Yeast environmental dataset. For description see Table 4.5.

Num of Genes Num of Biclusters

703 1
176 2
58 3
11 4
0 5
1 6
1 7
0 8
0 9
0 10
0 > 10

247 comparing in more than one biclusters
950 total genes considered

Table 4.9: Statistics on the Yeast environmental dataset. The table shows a

summary of the results in terms of p-values using the DAVID GO database. For

each combinations of heuristics there is a result for BP, MF, CC.

Algorithm BP MF CC

DNGr 3,3E-3 6,9E-3 1,3E-2
MST+MyGr 2,1E-2 3,1E-2 4,3E-2
MST+DNGr+ILSAy 2,5E-3 3,8E-3 2,4E-3
MST+MyGr+ILSAy 1,9E-2 1,7E-2 2,3E-2
MS+MST+DNGr+ILSAy 1,4E-2 2,5E-2 2,4E-2
MS+MST+MyGr+ILSAy 1,55E-3 1,14E-3 2,7E-2
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Table 4.7: Number of genes retrieved with Arabidopsis dataset. These are statis-

tics on the number of genes retrieved on each execution of our best algorithms

with Arabidopsis dataset. For description see Table 4.5.

Num of Genes Num of Biclusters

154 1
172 2
113 3
83 4
39 5
16 6
7 7
3 8
0 9
0 10
0 > 10

433 comparing in more than one biclusters
587 total genes considered

Table 4.10: Statistics on the Arabidopsis dataset. The table shows a summary

of the results in terms of p-values using the DAVID GO database. For each

combinations of heuristics there is a result for BP, MF, CC.

Algorithm BP MF CC

DNGr 3,1E-3 1,9E-2 2,0E-3
MST+MyGr 3,7E-4 2,5E-2 8,1E-3
MST+DNGr+ILSAy 1,41E-5 2,6E-2 3,8E-4
MST+MyGr+ILSAy 1,4E-6 1,5E-2 1,3E-3
MS+MST+DNGr+ILSAy 4,5E-11 8,3E-3 2,8E-5
MS+MST+MyGr+ILSAy 3,1E-3 2,03E-2 7,9E-3

In Figure 4.4 and Figure 4.5, two different plots can be seen . The

first figure corresponds to the test on the Arabidopsis dataset made

by the Dharan-Nair algorithm and the second is obtained with our
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procedure. It has been evident that with bigger biclusters a large

part of the curves is not similar.

Figure 4.4: Plot of one bicluster output of the Dharan-Nair algorithm on the

Arabidopsis dataset. The dataset is Arabidopsis. The curves are colored and

each of them represent a gene. In abscissa the number represent a condition. In

ordinate the number represent the value of expression found in the matrix A.

Figure 4.5: Plot of one bicluster output of the designed algorithm. The dataset

is Arabidopsis. The curves are colored and each of them represent a gene. In

abscissa the number represent a condition. In ordinate the number represent the

value of expression found in the matrix A.

Two other plots in Figures 4.6 and 4.7 are the expression of the

fact that these algorithms work well. In effect the behaviours of the

curves are very similar even if they are built using parameters that

permit a large inclusion of elements. The bigger is the bicluster the

lower is the similarity among the genes as curves in the plot. When

bicluster are very big it can happen that more than one group are

present inside it.
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Figure 4.6: Plot of one bicluster with a modified version of Dharan-Nair algorithm.

It is the algorithm in [51] with the addition of the ILS procedure and inserting it

in a multi-start context. The dataset is Lymphoma. The curves are colored and

each of them represent a gene. In abscissa the number represent a condition. In

ordinate the number represent the value of expression found in the matrix A.

Figure 4.7: Plot of one bicluster using our GRASP-like on the Lymphoma dataset.

The dataset is Lymphoma. The curves are colored and each of them represent

a gene. In abscissa the number represent a condition. In ordinate the number

represents the value of expression found in the matrix A. The behaviour of the

curves are similar but not all together. This happens when the threshold is higher

and permits the introduction of more genes.

4.5 Comparison with algorithms from literature

In order to compare the results obtained with our approach to those

of other approaches already described in literature, we selected three
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algorithms, taken from the most popular for biclustering and we

applied them on the same datasets used to test the proposed algo-

rithms. They are the Cheng and Church algorithm [10], the ISA

algorithm [26], the OPSM algorithm [21]. They all have been al-

ready described in Chapter 2. The experiments have been conducted

running the software BicAT [70] that is implemented in Java and

analysing the biological significance of the results using the DAVID

GO web service. Results are shown in Table 4.11 and 4.12 together

with those of our best version (MST+MyGr+ILSAy). It is possible

to note that the performances of our algorithms on Lymphoma and

Arabidopsis datasets are very similar to those of some of the most

known algorithms for biclustering. Instead, on the Yeast environ-

mental dataset the performances of the three algorithms from the

literature are slightly better than those obtainable with ours. This

behaviour is due to the fact that the algorithms can perform better

on certain types of data and in any case the values shown, as we

said before, are strictly correlated with the dimensions of the biclus-

ter obtained. In many cases these algorithms permit to obtain very

large clusters. When a set of clusters is given to a GO system like

DAVID, it returns a value that, experimentally, is also dependent

from the cardinality of that set.
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Table 4.11: Results on Lymphoma dataset with DAVID using ISA, CC, OPSM.

The table shows a summary of the results in terms of p-values using the DAVID

GO database and the algorithms CC, ISA and OPSM. MST+MyGr+ILSAy is

our best algorithm. CC is intended for Cheng and Church algorithm in [10], ISA

is the ISA algorithm in [26] and OPSM is the one in [21].

Algorithm BP MF CC

MST+MyGr+ILSAy 8,4E-3 2,0E-2 2,0E-2
CC 5,4E-4 2,3E-3 9,3E-3
ISA 2,1E-3 1,4E-2 5,0E-3
OPSM 1,3E-4 3,2E-3 2,6E-3

Table 4.12: Results on Yeast environmental dataset with DAVID using ISA, CC,

OPSM. For description see Table 4.11.

Algorithm BP MF CC

MST+MyGr+ILSAy 1,9E-2 1,7E-2 2,3E-2
CC 3,4E-5 5,6E-3 4,7E-3
ISA 8,3E-7 1,2E-4 1,8E-4
OPSM 2,4E-4 4,2E-7 1E-5

Table 4.13: Results on Arabidopsis dataset with DAVID using ISA, CC, OPSM.

For description see Table 4.11.

Algorithm BP MF CC

MST+MyGr+ILSAy 1,4E-6 1,5E-2 1,3E-3
CC 2,2E-3 4,0E-2 1,1E-2
ISA 7,9E-4 2,1E-2 9,2E-3
OPSM 6,2E-4 1,5E-2 3,7E-3

So it has been decided to change the parameters of our best

version of hybridized algorithm to obtain more objects to be in-

cluded in the clusters (Table 4.14) to see the significance in this
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case. It has been done only for one of the best algorithms imple-

mented (MST+MyGr+ILSAy). Only the biclusters with around

one hundred elements have been taken and used with the DAVID

system. The results show that the mean of the best p-values are

higher than the previous.

Table 4.14: Results on the three datasets with DAVID using our best algorithm.

The best algorithm include the iterated local search and the alternate insertion.

Average number of genes in the biclusters resulting from the experiments is ap-

proximately 110 for Lymphoma and Arabidopsis and 70 for Yeast environmental.

The values represent the p-value for respectively biological process, molecular

function and cellular component.

Dataset BP MF CC

Lymphoma 2,0E-5 2,0E-3 8,8E-5
Yeast environmental 1,2E-2 1,0E-2 3,8E-2
Arabidopsis 9,7E-17 6,8E-07 8,6E-07

In Figure 4.8 is shown a boxplot of the results of the algorithms.

The algorithm created in this work and ISA are the ones that allow

to have the more linear distribution of values. This means that our

biclusters have biological significances (in terms of p-value) while in

other cases, i.e. with the OPSM algorithm, the biclusters found have

different p-values. The test is referred to the Arabidopsis dataset

and the specific case of biological process results.
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Figure 4.8: Boxplot of the p-values. In order from left are the DN algorithm, the

MyGR+ILSAy designed, then the OPSM and ISA algorithm. These plots show

what is the distribution of values obtained for the case of Arabidopsis dataset.

The case is of one generic bicluster.



Chapter 5
Discussion

The best ideas arrive when you
are not thinking about your goal.

The main purpose obtained in this thesis was to overcome some of

the limitations of the most common biclustering approaches. Some

of them can find only a certain type of bicluster and need the use

of many parameters to define the final result.

The work is begun with the assumption that the problem of bi-

clustering of gene expression data is NP-Complete. To solve this

problem one can use the appropriate heuristics that allow to get an

eligible solution in a reasonable time.

This work started with the analysis of a GRASP-like approach [51]

and from the consideration that it implemented the use of all pos-

sible solutions as a neighborhood of the current solution. This ap-

proach appears to be not ideal, since it obtains all possible neighbors

and so needs to enter any missing element in turn and calculate the

score of the bicluster obtained. This takes away a significant amount

of time even if, searching for several solutions, it leads to good re-

sults.

In the new GRASP-like algorithm, the first thing that has been

attempted to improve was the local search. The algorithm takes

84
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inspiration from a social dynamic: a group of friends can be created

for bonds due to common choices (e.g. school or social events of any

type) and it can grow up and become a solid group. As time goes,

people leave the group or they are always be added on the basis of

a similarity of interests. If the individual is not compatible with the

group it will come out easily. Otherwise it enters in the group and

it becomes a constituent part of the group

Then, the insertion of a procedure for the intensification of local

search, the iterated local search, allowed to move in the space of

solutions looking for the global minimum.

Finally the whole procedure was repeated several times to obtain

a multi start logic: starting from multiple points of the space of

solutions different results have been obtained and the best one is

kept at the end of the procedure.

We defined as ”best algorithm” a version of our algorithm that

has the lower p-values in most of the experiments and it does not

need a long execution time. It is MST+MyGr+ILSAy. It is very

similar in results to the version with the multi-start procedure (MS+

MST+MyGr+ILSAy) but the first one has been chosen because of

the long execution time that the multi-start procedure needs.

Another issue is represented by the choice of measures of similar-

ity and distance. Distance cosine measure has been used because,

empirically, it seems to be the one capable of giving a meaning to

the proximity of two vectors that can be equal only for some of

their features. However, the measure of Cheng and Church (MSR)

still seems to be the one that best quantifies the goodness of the

biclusters.

The comparison of the GRASP-like procedure previously pub-

lished [51] with the one developed in this work shows that:



CHAPTER 5. DISCUSSION 86

1. the Dharan-Nair algorithm is slower than ours because the lo-

cal search implemented is very different. In the first case the

search for a better candidate is among all the genes and not

only among a subgroup. As a consequence, this computation is

considered very expensive. In contrast our algorithm is faster

because it chooses as a candidate the random extracted from

the RCL and executes some simple operations only inside the

bicluster or randomly on all the set;

2. Dharan-Nair algorithm does not have an erasing step and so

the presence of outliers is more probable.

Our new GRASP-like seems very similar, in terms of biological

results, to the one in Dharan-Nair that in a few cases is better than

ours. This can be seen in Table 4.8 where DNGr has values better

than the MS+MyGr algorithm or in the case of the Yeast environ-

mental in Table 4.9. However, our local search is faster. We seen

that to create a bicluster our algorithm requires few minutes (8-15)

while the algorithm of departure may take among 10 and 45 min-

utes. A computational complexity depending from the number of

genes in the dataset has been improved with a complexity depending

on the number of genes in the bicluster only.

Moreover both the iterated local search and the use of a multi-

start approach can improve the results for all the algorithms. In six

cases out of ten an improvement of this type can give better results

to the algorithm DNGr this is shown comparing the results in the

Tables 4.8, 4.9 and 4.10. The fact that the MST+DNGr+ILSAy or

MS+DNGr+ILSAy have a lower p-value in more than 70% of cases

it suggests that is better to use these type of algorithms. However,

in the case of a multi-start procedure, it must be remembered that

the computational cost is increased multiplying the normal cost for

the number of times one is deciding to restart the overall algorithm.
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Another thing that has been noted is that the greater are the

biclusters and higher their biological significance. But in any case

this is not a rule. The problem is that when clusters are very big they

contain more than one group of elements with the same properties,

and this can be misleading during a bioinformatic analysis. This

is the reason why in the experiments has been chosen to keep the

biclusters with limited dimensions.

Methods to avoid building overlapping biclusters have not been

explored in this thesis.

With this work has been assessed that, even if a meta-heuristics

have not been so largely used for the biclustering problem it can be

a good starting point. Several combinations of heuristics can still

be tested, and those used in this work are sufficient to establish that

GRASP-like is a good approach to solve the problem of biclustering

where there is not a priori knowledge of the elements to be treated.

Some other useful steps to improve the clustering algorithm based

on the social dynamic can also been tested and found.



Appendix A
Creation of the statistics

The tool Clone/GeneId Converter provided in [71] has been used to

convert gene names (for example, to convert an Accession Number

in a Unigene identifier). Thus has been filled the gap of the absence

of gene identifiers in the GO systems. The id-converter website [72]

provides a form where one can choose the organism, the type of

identifier and then convert to a specific identifier. A set of genes

can be inserted and will be returned in an output file with all the

names that the tool is able to convert.

Once identifiers are converted, the sets of genes may be transmit-

ted to the GO system. For example DAVID has a function similar

to that of the converter described. Steps are the following: create

and upload a list of genes, choose an identifier type and submit the

list. Most of the times the system can recognize the gene names but

in some cases it will need to convert them.

A set of results for the biological process, molecular function

and cellular components will be given in output for each of the

clusters of genes given in input. From this results one can take the

p-value assigned to each of the function, component, process by the

system and that has been written in a table. This table can be also

downloaded to use it later. Only the first p-value (the best one) has

been taken. It has been inserted in a table that for each bicluster has

88
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a row and for each of the results (BP, MF, CC) a column. Fifteen

biclusters has been collected for each algorithm run. The mean of

the fifteen has been taken and inserted in a final results table. This

table has been used to assess the validity of the algorithms.



Acknowledgments

Scarcity in employment is the bane of our society. People are out

of work and do not have a future employment opportunities. I do

not know exactly what made me reject a sure job to follow just a

passion. Maybe, because it is true that Love and passion for work

are the fuel on which the engine of life chugs. Without them, life

cannot continue. Now I know ”what it takes” to keep the flame

alive in the self. And I know that this all is not right.

Some time ago I decided to leave my studies but now here I

am and I owe it to my tutors, Paola Festa and Anna Marabotti.

They encouraged me ”to do it” in this journey of mine along with

Angelo Facchiano. I thank prof. Petrosino who accompanied me in

the university path and allowed me to chalk my own work strategy.

Letting me go, perhaps at the right time. I owe it to Remo Sanges

who gave me an opportunity.

I owe it to Arianna who has endured my uncertainties and my

discomfort with a soul as big as a universe. I owe it to my great

new colleagues and my bioinformatics lab! I owe it to the b.b.m.:

my strength, my certainty. I owe it to my brothers and my parents.

And I owe it to the strength of my mother.

90



Bibliography

[1] P. Flicek, M. R. Amode, D. Barrell, K. Beal, S. Brent, D.

Carvalho-Silva, P. Clapham, G. Coates, S. Fairley, S. Fitzger-

ald, L. Gil, L. Gordon, M. Hendrix, T. Hourlier, N. John-

son, A. Kahari, D. Keefe, S. Keenan, R. Kinsella, M. Ko-

morowska, G. Koscielny, E. Kulesha, P. Larsson, I. Long-

den, W. McLaren, M. Muffato, B. Overduin, M. Pignatelli,

B. Pritchard, H. S. Riat, G. R. S. Ritchie, M. Ruffier, M.

Schuster, D. Sobral, Y. A. Tang, K. Taylor, S. Trevanion, J.

Vandrovcova, S. White, M. Wilson, S. P. Wilder, B. L. Aken,

E. Birney, F. Cunningham, I. Dunham, R. Durbin, X. M.

Fernandez-Suarez, J. Harrow, J. Herrero, T. J. P. Hubbard,

A. Parker, G. Proctor, G. Spudich, J. Vogel, A. Yates, A.

Zadissa, S. M. J. Searle,”Ensembl 2012”, Nucleic Acids Res.,

vol. 40 pp. D84-D90, 2012.

[2] J. C. Alwine, D. J. Kemp, G. R. Stark, ”Method for de-

tection of specific RNAs in agarose gels by transfer to

diazobenzyloxymethyl-paper and hybridization with DNA

probes”, Proc. Natl. Acad. Sci. U.S.A., vol. 74(12), pp.

5350
’
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