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Abstract

We investigate how to coherently define entropy production for a process of tran-
sient relaxation in the Quantum Brownian Motion model for the harmonic poten-
tial. We compare a form, called “Poised” (P), which after non-Markovian tran-
sients corresponds to a definition of heat as the change in the system Hamiltonian
of mean force, with a recent proposal by Esposito et al (ELB) based on a defini-
tion of heat as the energy change in the bath. Both expressions yield a positive-
defined entropy production and coincide for vanishing coupling strength, but their
difference is proved to be always positive (after non-Markovian transients disap-
pear) and to grow as the coupling strength increases. In the classical over-damped
limit the “Poised” entropy production converges to the entropy production used in
stochastic thermodynamics. We also investigate the effects of the system size, and
of the ensuing Poincaré recurrences, and how the classical limit is approached.
We close by discussing the strong- coupling limit, in which the ideal canonical
equilibrium of the bath is violated.
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5 Poincaré recurrences 52
5.1 Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.1.1 Uniform. . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.1.2 Lorentzian. . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.3 Finite-size entropy production . . . . . . . . . . . . . . . . . . . 58

6 Bath entropy 59

7 Two Baths QBM 63
7.1 Initial conditions and evolution . . . . . . . . . . . . . . . . . . . 64
7.2 Thermodynamic limit . . . . . . . . . . . . . . . . . . . . . . . . 65
7.3 ELB entropy production rate . . . . . . . . . . . . . . . . . . . . 67

Conclusions 69

A Technical complements 71
A.1 Equivalence of the Ullersma and Fleming solutions . . . . . . . . 71
A.2 Covariance matrix . . . . . . . . . . . . . . . . . . . . . . . . . . 71
A.3 Effect of initial slips . . . . . . . . . . . . . . . . . . . . . . . . . 74
A.4 Calculation of the Poised entropy production . . . . . . . . . . . 75
A.5 Liouvillian operator of the adjoint dynamics . . . . . . . . . . . . 76
A.6 Interaction energy term . . . . . . . . . . . . . . . . . . . . . . . 77
A.7 Evaluation of the bath entropy . . . . . . . . . . . . . . . . . . . 79
A.8 Bath covariance matrix . . . . . . . . . . . . . . . . . . . . . . . 81
A.9 Entropy Flow rate terms . . . . . . . . . . . . . . . . . . . . . . 81

Bibliography 84

3



Introduction

The theory of stochastic thermodynamics provides a consistent description of
nonequilibrium thermodynamics for classical systems weakly coupled to their en-
vironments and described by Markovian dynamics [Esposito, 2012,Seifert, 2008].
In recent years fundamental characteristics of classical thermodynamics have been
put under scrutiny in the quantum realm where a proper formulation of nonequi-
librium thermodynamics seems a much harder task. In particular when consid-
ering low temperatures and non-vanishing couplings various difficulties arise,
some of which are already present at equilibrium. An ubiquitous exactly solvable
model to address these questions is the Quantum Brownian Motion (QBM) model
[Ullersma, 1966, Haake and Reibold, 1985, Caldeira and Leggett, 1983]. It con-
sists of a system with Hamiltonian HS (often an harmonic oscillator) bi-linearly
coupled via a term denoted HI to a bath of harmonic oscillators with Hamilto-
nian HB. The total Hamiltonian is thus of the form H = HS + HB + HI . In this
model, when the total system is initially in canonical equilibrium ρeq = e−βH/Z,
the Clausius formulation of the second law seems to be violated for a quasi-static
change of the mass or of the frequency of the central oscillator [Allahverdyan
and Nieuwenhuizen, 2000, Hörhammer and Büttner, 2008]. In this case, the heat
flow is defined as the change in the averaged central system Hamiltonian due to
the bath and is found to be larger than the temperature times the change in the
system entropy, defined as the von Neumann entropy of the central system. To
remain consistent with these definitions, work and free energy are also defined in
terms of the system Hamiltonian and as a result the Thompson formulation of the
second law is also violated [Ford and O’Connell, 2006, Nieuwenhuizen and Al-
lahverdyan, 2002]. More work can be extracted from the system than the change
in its free energy. One also intriguingly finds that the behavior of the heat capacity
of the system is different when it is derived from the energy of the central system
at equilibrium or from a partition function approach [Hänggi et al., 2008, Hänggi
and Ludwig Ingold, 2006]. In this latter case the heat capacity might even be-
come negative at low temperature. Also, the von Neumann entropy of the central
oscillator does not vanish at zero temperature while the equilibrium entropy of the
total system (which coincides with the von Neumann entropy of the total system)
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does. These phenomena can be ascribed to quantum correlations between the cen-
tral system and the bath [Hilt and Lutz, 2009]. Various attempts have been made
in order to overcome these difficulties. Some of them incorporate in Thompson’s
formulation of the second law the work contribution required to initially couple
the system to the bath at zero [Ford and O’Connell, 2006] or arbitrary temper-
atures [Hilt et al., 2011, Kim and Mahler, 2007]. Others introduce different no-
tions of effective temperature [Nieuwenhuizen and Allahverdyan, 2002, Kim and
Mahler, 2010]. Ultimately, many of the difficulties are related to the fact that the
equilibrium density matrix of the central oscillator is not the familiar canonical
distribution ρeq

S = e−βHS/ZS defined in terms of the central system Hamiltonian as
is often the case in weak-coupling theories.

In this thesis, we want to investigate the slightly different problem of transient
relaxation to equilibrium in the QBM model. This means that we initially place
the central oscillator in a nonequilibrium state and put it in contact with its bath
at equilibrium. Due to the interaction, the two parts of the system will exchange
energy and if the bath is sufficiently large, the central oscillator will asymptot-
ically reach an equilibrium state. For such a process we would like to identify
a meaningful notion of entropy production. In stochastic thermodynamics the
nonequilibrium version of the second law states that for such a relaxation process
the entropy production is equal to the change in system entropy (which is identi-
fied with the Shannon entropy of the system) minus the heat exchanged with the
bath divided by the bath temperature. Furthermore the entropy production can be
proved to be an always positive quantity which only vanishes at equilibrium. For
quantum systems the Shannon entropy is replaced by the von Neumann entropy
of the system S = −trSρS ln ρS and a very similar formulation holds as long as
the quantum system is weakly coupled to its bath and described by a Markovian
quantum master equation [Spohn and Lebowitz, 2007, Breuer and Petruccione,
2002]. The heat exchanged with the bath is then expressed in terms of the system
Hamiltonian by integrating Q̇ ≡ trSHSρ̇S. An attempt to use such an expression
for the entropy production for the QBM model was made in [Nieuwenhuizen and
Allahverdyan, 2002] but with non satisfactory results, since a negative entropy
production rate was obtained for non-vanishing system-bath coupling strength. A
more satisfactory definition of entropy production has been recently introduced by
Esposito, Lindenberg and Van den Broeck [Esposito et al., 2010] (denoted here
by ELB) in the form ∆iS = ∆S − Q/T , where the heat is now defined as minus
the energy change in the bath (Q̇ ≡ −trHBρ̇B). This quantum entropy production
is positive definite even for finite bath sizes, notwithstanding recurrences. This
definition applies on the assumption that the central system and the bath have
uncorrelated density matrices at the initial time.

In this work, we compare this definition of entropy production ∆iS with a new
definition ∆iS P, inspired by the one introduced in [Breuer and Petruccione, 2002]
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in the context of Markovian master equations. The corresponding heat definition
is expressed in term of the averaged change of an effective Hamiltonian which
reduces to the system Hamiltonian HS in the weak-coupling limit. We evaluate
analytically both expressions of the entropy production for the QBM model and
evaluate their difference. We consider only Gaussian initial conditions, both for
the bath and for the central oscillator, what guarantees that the density matrix re-
mains Gaussian at all times. We find that ∆iS is positive definite but can present
oscillations while ∆iS P is positive definite and has a positive time derivative only
in the Markovian high-temperature or weak-coupling limits. The difference be-
tween the two definitions considerably depends on the coupling. We also study the
behavior of the entropy production for finite-size thermal baths, where Poincaré
recurrences characterize the time evolution of the system. The convergence to-
wards a continuous relaxing behavior is studied as a function of the system size.
It turns out that a Lorentzian, rather than uniform, sampling of oscillation fre-
quencies of the bath guarantees a better convergence. Finally the evolution the
von Neumann entropy of the bath is studied. It is found that, for fixed initial con-
ditions, its asymptotic value does not depend on the coupling in the classical limit
while it does in the quantum regime. However, in both cases the Kullback-Leibler
divergence between the density matrix of the bath at time t and at canonical equi-
librium depends considerably on the coupling, making the usual approximation of
the ideal bath problematic.

In the case of two or multiple reservoirs, a way to split the entropy produc-
tion ∆iS into an adiabatic ∆aS and a non-adiabatic contribution ∆naS has been
introduced, in analogy with the context of Markovian master equations [Esposito
and Van den Broeck, 2010a,Esposito and Van den Broeck, 2010b]. The rate of the
adiabatic term is the only surviving after the relaxation of the central system to the
steady state, when it is determined from the constant heat current from one bath
to the other. Interestingly our definition establishes a condition for the positivity
of both the adiabatic and non-adiabatic terms, which is satisfied in the Markovian
limit of the QBM model. Nothing can be said in general about the sign of rates.
Finally we found analytical expressions of entropy flow rate ∆eS for the QBM
model with two baths, which would enable in a future work a detailed study of the
adiabatic and non-adiabatic terms.

Outline
An introductory discussion over general aspects of equilibrium thermodynamics,
non-equilibrium Markovian dynamics, problems for the definition of thermody-
namic equilibrium of small open quantum systems, and aspects of quantum non-
equilibrium are reported in chapter 1. In chapter 2 the different definitions of the
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entropy production are spelled out, along with the general protocol adopted. Def-
inition of entropy production with a single reservoir is detailed also in the case
of an external driving which tunes the parameters of the central system Hamilto-
nian and the interaction term. In chapter 3 the Quantum Brownian Motion model
is introduced and solved. Initial conditions are specified in 3.1 and the evolu-
tion of the system is described in section 3.2 via its Wigner quasi-distribution
function. The approach to the thermodynamic limit is described in section 3.3.
Explicit expressions of the definitions of entropy for our model are reported in
chapter 4. Chapter 5 is devoted to a study of the model with a finite-sized bath,
where Poincaré recurrences characterize its behavior. A discussion of the bath
entropy, correlation entropy and of the distance of the bath density operator from
its canonical form is reported in section 6. The Quantum Brownian Motion model
with two baths is introduced and solved and it is found the analytical expression
for the entropy production rate in chapter 7. In chapter 7.3 we conclude and sum-
marize our results. A few technical details are relegated in several appendices.
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Chapter 1

Classical and quantum aspects of
thermodynamics

1.1 Equilibrium and irreversibility
Classical equilibrium statistical thermodynamics, as described exhaustively in
several textbooks, is fundamentally based on the possibility to describe a closed
system with Hamiltonian H via a probability distribution in the space of configu-
rations C of the canonical form

Peq [C] = e−βH[C]/Z, Z =

∫
D [C] e−βH[C], (1.1)

with Boltzmann factor β = 1/kBT . Once the energy U and the Shannon entropy
S are defined as functionals of the equilibrium probability distribution Peq [C]

U =

∫
D [C] H [C] Peq [C] , (1.2)

S = −

∫
D [C] Peq [C] ln Peq [C] , (1.3)

where H [C] is the energy of the configuration C, Peq [C] is found by minimizing
the free energy potential F = U − TS . This means also that, by expressing the
free energy as F = −(1/β) ln Z, ’thermostatic’ quantities like energy and entropy
can be obtained from F:

S = β2∂F
∂β
, U = F + β

∂F
∂β
. (1.4)

This is actually an axiomatic approach starting from a variational principle,
which can also be equivalently formulated in terms of the maximization of the
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statistical entropy S , with the average energy U fixed at a constant value. The
principle of maximum entropy, introduced by Jaynes [Jaynes, 1957], is based on
an information theoretical interpretation of entropy, as measure of lack of infor-
mation, or degree of disorder. From the measure of uncertainty one should be
able to make a statistical inference of some quantities in the most unbiased way,
given the certain or probabilistic knowledge of other quantities (see also [Balian,
1999]). By choosing to maximize entropy means to retain all the available infor-
mation and discarding any other irrelevant and biased information, which would
decrease the value of S .

On the other hand Shannon entropy S has the same properties which second
law postulates for thermodynamic entropy. It is additive in the case the subsystem
probability distribution factorize, it is concave, and extensive, as shown for a wide
class of inter-particle interactions, in the limit of a large number of particles [Ru-
elle, 1969, Lieb, 1976, Thirring, 1981]. Its identification with the thermodynamic
entropy is obtained by taking into account the first law of thermodynamics

dU = δQ + δW. (1.5)

In fact, an infinitesimal change of the parameters defining H implies that the en-
ergy change dU can be written as the sum of the work

δW =

∫
D [C] dH [C] Peq [C] , (1.6)

and the heat

TdS = δQ =

∫
D [C] H [C] Peq [C] d ln Peq [C] . (1.7)

Therefore, due to the second law of thermodynamics, the quantity dS = δQ/T has
to correspond to the change of the thermodynamic entropy, since δQ is an exact
differential. The same considerations can extended to the Von Neumann entropy
in the quantum case [Balian and Balazs, 1987], even when the operators contained
in the Hamiltonian do not commute. In this case we have a trace over the system
Hilbert space of states in place of the integral over the space of configurations,
and averages of any operator are done by using a density matrix operator [Breuer
and Petruccione, 2002].

Physical reliability of Peq [C] is based on the fact that fluctuations of intensive
variables are of order O(N−1/2), if N is the number of particles which constitute
the system, so that in the thermodynamic limit N → ∞ they are vanishingly
small. The same probability distribution can be derived with the microcanonical
approach for an open system in weak contact with a thermal reservoir both in the
classical [Peliti, 2011] and the quantum case [Balian and Balazs, 1987]. Basic
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assumptions are that in the thermodynamic limit the magnitude of the interaction
of the system with the reservoir is negligible respect to the system energy, and at
the same time the energy of the system is negligible respect to the energy of the
reservoir.

The second law of thermodynamics, or more precisely thermostatistics, refers
to the growth of entropy for an isolated system which passes from a state of local
equilibrium at time t0 to a state of global equilibrium at a later time t1 [Callen,
1985]. This transition can happen in the thermodynamic regime, namely by pass-
ing through successive states of local equilibrium or in a non-thermodynamic
regime, as in the case of an explosive chemical reaction, a shock wave etc. En-
tropy production is intimately related to the limited subjective description of sta-
tistical mechanics [Balian, 1999, Balian, 2005], which explains the paradox of
irreversibility by Poincaré. Actually the concept of entropy of a system has to do
with the choice of a set of variables relevant to the observer, which often corre-
spond to coarse-grained measurable quantities. The observer realizes the corre-
spondence between a set of macroscopic quantitiesAi and the average values 〈A〉i
assumed by a set of observables Ai. This description is incomplete since it does
not include all the microscopical features of the system, which are disregarded
when the Von Neumann entropy is maximized. The result of maximization is the
relevant density matrix at initial time

ρR(t0) = exp

−ψ −∑
i

γiAi

, (1.8)

which has the same Gibbsian form of (1.1), where ψ is a normalization factor
and the parameters γi are obtained by imposing 〈Ai〉 = tr AiρR(t0) = Ai. Let us
assume now that density operator ρR(t0) coincides with the initial density operator
for the evolution. The complete dynamics is totally reversible, due to the unitary
evolution of observables in the quantum case

i~
dO
dt

= [H,O] , (1.9)

or analogously due to the time reversibility of the Hamiltonian equations in the
classical case. Then Von Neumann entropy is conserved when calculated with the
unitary-evolved density operator ρ(t), but generally loses its initial Gibbsian form
(1.8). This implies that by definition the relevant entropy S R(t) has to be bigger,
because it is calculated at each time by the maximum entropy principle, according
to the new valuesAi(t) = trAiρ(t) assumed by the relevant observables.

The increase registered in S R has to correspond to a flow of information to-
wards the irrelevant degrees of freedom. This can be formalized by using the
projection method of Nakajima and Zwanzig [Zwanzig, 2001], decomposing the
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Liouville equation for the evolution of the density operator ρ(t) into an equation
for the projection of ρR(t) = Pρ(t) over the relevant part, coupled with the equa-
tion for the projection over the irrelevant part (1 − P)ρ(t) [Balian, 1999]. The
equation for ρR(t) and correspondingly that for the relevant quantities Ai(t), con-
tains a term which is due to the direct interaction between the relevant observables
and another which describes the effect of the coupling with the irrelevant ones via
a memory kernelM(t, t′). The latter characterizes also the dissipation, namely the
time derivative of the relevant entropy S R(t) which results as

dS R

dt
=

∑
i

γi(t)
∫ t

t0
dt′trAiM(t, t′)Pρ(t′), (1.10)

where the γi(t)’s are the parameters which define the relevant density matrix at
time t. Term M(t, t′) has a memory effect, related to the history of the coupling
with the irrelevant variables and to the initial relevant density matrix.

Even if relevant entropy is by definition bigger than the initial Von Neumann
entropy, its time derivative can be negative and a temporary come-back of in-
formation from the irrelevant variables is possible, due to the non-Markovian
character of (1.10). If the choice of the relevant variables is such that the ir-
relevant ones evolve rapidly so to interfere destructively, the memory time over
which M(t, t′) is relevant is short respect to the characteristic time of variation
of ρR(t). Then one realizes the so-called Markovian approximation and obtains a
local time-independent evolution, by replacing ρR(t′) with ρR(t) and t0 with −∞
in (1.10) [Balian, 1999]. Due to short memory, any ρR(t) can be considered an
initial density operator, what means that at each time relevant entropy S R has to
increase, with an irreversible loss of information.

The thermodynamic irreversible regime, corresponds to the Markovian dy-
namics. It relies on the possibility to coarse-grain the description of the total
system in a set of subsystems, to which it is possible to assign a set of observables
with a defined slow-varying average value. This is possible only if the interaction
between the subsystems is weak. In order to guarantee irreversibility it is fun-
damental that all slow degrees of freedom be included, with a sharp time-scale
separation respect to the fast, irrelevant ones.

1.2 Entropy production in the classical Markovian
regime

We consider here an open system in contact with one or more reservoirs. Its
description can be reduced to a generalized Langevin equation, characterized by a
non-local damping kernel and a colored noise, where apart from the damping, any
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force acting on the system is completely independent from the noise, while in the
strong-coupling limit one should consider also a renormalization of the effective
Hamiltonian of the central system.

In the thermodynamic limit and weak coupling with the reservoir, dynamics
of the open system is often supposed to become Markovian, since the total effect
of the bath degrees of freedom is suppressed due to destructive interference. Then
by neglecting what happens at short time scales, the effect of the reservoirs can be
schematized by white noise and local damping. Due to its economical character,
this formalism has plenty of applications in condensed matter physics, quantum
optics, atomic physics and chemistry [Klimontovich, 1995, Gardiner and Zoller,
2004, Gardiner, 1985]. The most important instrument to describe classical non-
equilibrium thermodynamics of these systems is the Fokker Plank equation for
the evolution of the probability distribution [Risken, 1989, Gardiner, 1985]. Here
relation with equilibrium thermodynamics is readily found. In fact the stationary
probability distribution assumes a Gibbsian form, even if, when the Hamiltonian
of the central system is not quadratic, the temporal analytical solution is not a
simple matter [Lindenberg and West, 1990].

Stochastic description is adapt to investigate thermodynamics properties deep
into the non-equilibrium region. In recent years it has been possible to derive exact
thermodynamics statements for small systems with significant fluctuations. These
are based on the possibility to describe relevant thermodynamic quantities of the
single particle at the level of its trajectory in phase space. A large number of Fluc-
tuation Theorems (FT) adapt to the description of diverse physical configurations
has been derived. They express universal properties of the functional probability
distributions for work, heat or entropy. FT’s are fundamentally based on the parity
relation existing between the functional S ([x]) associated to the trajectory [x] of a
relevant physical quantity and the functional S †

[
x†

]
associated to some conjugate

dynamics for the same physical quantity

S †
[
x†

]
= εS ([x]), (1.11)

where ε = ±1 [Seifert, 2005].
For example, we briefly recall here the Crooks’ FT [Crooks, 2000], which is

valid for a system in contact with a reservoir at temperature T = 1/(kBβ) and
subject to a time dependent potential V(q, λt)

PF(Wdiss)
PR(−Wdiss)

= eβWdiss . (1.12)

It expresses a relation between the probability of having a dissipated work Wdiss =

W − ∆F along the forward (F) dynamics and the probability for having negative-
dissipated work −Wdiss along the time-reversed (R) dynamics. Free energy differ-
ence ∆F is evaluated according to the equilibrium distribution corresponding to
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the initial and final values of the driving parameter λt. Consequences of eq. (1.12)
are that one can experimentally determine the value of ∆F due to the splitting
between the forward and reversed probability distributions. Furthermore, there
is the possibility of violating the second law along given trajectories, even if on
average it still holds, since 〈W〉 ≥ ∆F [Jarzynski, 1997b, Jarzynski, 1997a]. Any-
way the probability of these trajectories decreases by enlarging the size of the
system, when the probabilities distributions get peaked in correspondence of their
the point of maximum.

In the case of a system characterized by discrete states, classical non-equilibrium
Markovian processes can be formulated via the following master equation

ṗm(t) =
∑
m′,ν

W (ν)
m,m′(λt)pm′(t), (1.13)

where pm(t) are the occupation probabilities of the different states m, and the tran-
sitions rates W (ν)

m,m′(λt) between the states can be related to different mechanisms
ν, as for example reservoirs at different temperatures, and depend explicitly on
time via the parameter λt, if an external force is exerted. Being able to separate
the transition probabilities related to different reservoirs, implies they are weakly
coupled with the central system.

The time derivative of the Shannon entropy can be split into two contributions,

Ṡ (t) = −
∑

m

ṗm ln pm = Ṡ e(t) + Ṡ i(t), (1.14)

the entropy flow rate

Ṡ e(t) =
∑

m,m′,ν

W (ν)
m,m′(λt)pm′(t) ln

W (ν)
m,m′(λt)

W (ν)
m′,m(λt)

, (1.15)

and the positive entropy production rate

Ṡ i(t) =
∑

m,m′,ν

W (ν)
m,m′(λt)pm′(t) ln

W (ν)
m,m′(λt)pm′(t)

W (ν)
m′,m(λt)pm(t)

. (1.16)

Different channels ν can be made correspond to the exchange of heat with different
reservoirs. The equilibrium distribution peq(λt, ν), which satisfies the condition of
local detailed balance,

W (ν)
m,m′(λt)peq

m′(λt, ν) = W (ν)
m′,m(λt)peq

m (λt, ν), (1.17)

namely the stationary distribution in the case there is only the reservoir ν, is a
canonical distribution peq

m (λt, ν) ∝ exp−β(ν)εm(λt) where β(ν) is the Boltzmann co-
efficient associated to the reservoir ν. This assumption is a consequence of weak-
coupling between system and each reservoir. This gives a physical meaning to
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the mathematics which is derived from (1.13). In fact in this case the entropy flow
rate can be written as the sum of heat flows over the temperatures of the respective
baths.

Ṡ e(t) =
∑
ν

β(ν)Q̇(ν)(t), Q̇(ν)(t) =
∑
m,m′

J(ν)
m,m′(t)εm(λt), (1.18)

where we used the probability fluxes

J(ν)
m,m′ = W (ν)

m,m′(λt)pm′(t) −W (ν)
m′,m(λt)pm(t). (1.19)

One can identify also the work due to the changing driving parameter λt from the
first principle of thermodynamics [Esposito and Van den Broeck, 2010b].

Detailed balance condition (1.17) is related to the assumption that each bath ν
relaxes at each time infinitely fast at its equilibrium. Moreover since the baths are
assumed to stay at equilibrium, no irreversible process takes place within them, so
that the total entropy production rate has to coincide with Ṡ i(t) and consequently
Ṡ e(t) = −Ṡ r(t), where Ṡ r(t) is the entropy increase in the reservoir.

Interestingly the entropy production rate can be split into the sum of two con-
tributions which are both positive, the adiabatic Ṡ a and the non-adiabatic Ṡ na [Es-
posito and Van den Broeck, 2010b]. The first one is

Ṡ a(t) =
∑

m,m′,ν

W (ν)
m,m′(λt)pm′(t) ln

W (ν)
m,m′(λt)pst

m′(t)

W (ν)
m′,m(λt)pst

m(t)
, (1.20)

where pst
m(λt) is the stationary probability distribution:∑

m′
Wm,m′(λt)pst

m′(λt) = 0. (1.21)

The second one, which does not contains any explicit reference to the different
mechanisms ν

Ṡ na(t) = −
∑

m

ṗm(t) ln
pm(t)
pst

m(λt)
, (1.22)

is due to the relaxing of the probability distribution pm(t) to the stationary one
pst

m(λt). In case the driving on λ is sufficiently slow to let a fast equilibration of
pm(t) to pst

m(λt) this term vanishes, so that the transformation can be effectively de-
fined as ’adiabatic’, since the system passes through successive states of equilib-
rium. The positivity of the three rate terms Ṡ i(t), Ṡ a(t) and Ṡ na(t) derives from the
conservation of probability

∑
m,ν W (ν)

m,m′ = 0, stationarity condition (1.21) and to the
Jensen inequality inequality − ln x ≥ 1 − x. Moreover three fluctuation theorems
hold for the corresponding integral quantities ∆iS (t), ∆aS (t) and ∆naS (t) [Esposito
and Van den Broeck, 2010a].
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In general problems arise experimentally when in a non-Markovian dynamics
it is not possible to access to all slow variables. Even if identification of physical
quantities entering the first law is independent from the Markovian assumption,
the identification of entropy production is often not possible. It is in fact funda-
mental that for fixed parameters a thermodynamic equilibrium will be reached for
an arbitrary initial distribution of the slow variables. Generalized Langevin equa-
tion guarantees this, as far as the memory kernel determines the correlations of
the colored noise [Zamponi et al., 2005, Speck and Seifert, 2007, Mai and Dhar,
2007, Hasegawa, 2011].

1.3 Quantum difficulties
In the quantum description other some problems due to the presence of quantum
correlations. In particular, when looking at nanoscale-sized systems coupled to
quantum environments, the interaction with the reservoir is often no longer negli-
gible respect to the system energy. This means that while the axiomatic Gibbsian
description do applies also to closed quantum systems, it is not generally possible
also for open quantum systems. Nowadays plenty of experimental situations ex-
ist which show the inconsistencies of a Gibbsian weak-coupling limit description.
We mention for example super-conductive regions connected by Josephson junc-
tions in the over-damped regime [Koch et al., 1980], spin dynamics in quantum
dots [Cohen and Kottos, 2004] and optical excitation for molecular wave func-
tions [Suominen et al., 1992].

Consider a generic Hamiltonian of a closed system formed by an open system
S interacting with a reservoir B, via an interaction term HI

H = HS + HB + HI, (1.23)

and its corresponding Gibbsian equilibrium density operator,

ρeq =
e−βH

Z
, Z = tr e−βH, (1.24)

The reduced density operator of the system S

ρ
eq
S = trBρ

eq, (1.25)

has not in general a Gibbsian form.
A reference Hamiltonian model for an open system coupled to a reservoir is

the Quantum Brownian Motion (QBM) introduced by Ullersma [Ullersma, 1966]:
an harmonic oscillator is coupled to a bath of harmonic oscillators via a bilinear
term depending on the position operators. Due to the linearity of the model it is

15



analytically solvable. Explicit calculations are made in the thermodynamic limit
by using a realistic continuum of bath modes which is realized via a Drude-like
Ullersma’s coupling strength [Ullersma, 1966, Haake and Reibold, 1985]. It was
shown that for this model the occupation probability e−βEn/Z of the eigenstates |n〉
of the quadratic Hamiltonian Heq

S defining the equilibrium density matrix

ρ
eq
S =

e−βHeq
S

Zeq
S

, Zeq
S = trSe−βHeq

S , (1.26)

does not vanish at zero temperature [Grabert et al., 1984], due to the entanglement
between system and reservoir [Breuer and Petruccione, 2002]. Then at T = 0 sys-
tem S is not in the ground state of the effective Hamiltonian Heq

S , and consequently,
while the total Von Neumann entropy vanishes, the entropy of the reduced system
S

S = −trρeq
S ln ρeq

S , (1.27)

does not [Allahverdyan and Nieuwenhuizen, 2002]. This appears to be in contrast
with the third law of thermodynamics. Various definition for energy, entropy, and
heat have actually been introduced for the equilibrium thermodynamics descrip-
tion of an open quantum system strongly interacting with a thermal bath. Each
of them traces its roots in classical statistical thermodynamics or have a definite
physical sense, nonetheless some discrepancies emerge which prevent an univocal
description. All differences and problems vanish only in the weak-coupling limit.

1.3.1 Violation of the second law?
A relevant aspect of the QBM model at T = 0 is the possibility of violating the
Clausius inequality δQ ≤ TdS : since the bath is not in its ground state, its energy
could be lowered by a positive transfer of heat δQ ≥ 0 to the central system. A
positive exchange of heat at zero temperature can actually be observed for a quasi-
static change of parameters as the mass or the oscillation frequency of the central
oscillator, from which both HS and ρeq

S depend. In fact by defining the energy as

U = 〈HS〉eq = trρeq
S HS, (1.28)

where ρeq
S is given in (1.26), according to the first law of thermodynamics

dU = dQ + dW, (1.29)

an infinitesimal variation of U can be split into a component due to the change of
ρeq (1.24) identified as the heat dQ,

dQ =

〈
HS

d ln ρeq
S

dα

〉
eq

dα, (1.30)
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plus one associated to the averaged change of HS, the work dW:

dW =

〈
dHS

dα

〉
eq

dα, (1.31)

where α represents the mass or frequency parameter. It turns our that a variation
of each of the parameters appearing HS can be made so that dQ ≥ 0 [Allahverdyan
and Nieuwenhuizen, 2000, Hilt and Lutz, 2009]. A violation of the Clausius in-
equality seems to hold also at temperature close to zero, where one can show that
for a finite variation of the parameters [Hilt et al., 2011]

∆Q(α) ≥ ∆S (α), (1.32)

where ∆S (α) is the difference of the Von Neumann entropy (1.27) of the central
system calculated with the final value α f and the initial value αi of the varia-
tion protocol. Violations disappear in the high-temperature, weak-coupling limit.
Another relevant consequence of having the central oscillator with an energy
〈HS〉eq > 〈HS〉0 is that one could make work out of it by fishing out the cen-
tral oscillator, and to be able to do a cyclic extraction of energy from a single
reservoir. This would be a violation of the Thompson formulation of the second
law [Ford and O’Connell, 2006], [Kim and Mahler, 2007].

A fundamental observation in order to resolve these paradoxes is the fact that
the Clausius inequality presupposes an initial Gibbsian state [Kubo, 1968, Hilt
et al., 2011]. Validity of Clausius and Thompson formulations is preserved in the
QBM model by considering the work Wc which is needed to couple the central
oscillator to the bath, acting before the quasi-static change of the parameters of
HS. The principle of minimum work [Landau and Lifshits, 1958] states that the
minimum work required to change the thermodynamic state of a system is given
by the difference of the final and initial-state Helmoltz free energies. Accordingly
one can express the coupling work as

Wc =

∫ η

0
dη′

dHI

dη′
ρeq(η′, αi) = F(η, αi) − F(0, αi), (1.33)

where η is the linear coupling parameter through which the interaction inside HI

(1.23) is tuned [Hilt et al., 2011]. Here we have the total coupled-system free
energy

F(η,T, αi) = −
1
β

ln tre−β(HS(αi)+HB+HI(η)), (1.34)

which for η = 0 reduces to the sum of the uncoupled bath and central system free
energies.

The heat exchanged in the coupling process is Q(c) = ∆U (c)−W (c), with ∆U (c) =

U(η, αi) − U(0, αi) the difference of system energy (1.28). Then, By composing
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the coupling process and the adiabatic change of the parameters of HS (1.32), it
turns out that the Clausius inequality is now fulfilled [Hilt et al., 2011]

Q(c) + Q(α) ≤ ∆S (c) + ∆S (α), (1.35)

where ∆S c = S (η, αi)−S (0, αi) is the change of entropy (1.27) due to the coupling.
Moreover one has that

W (c) ≥ ∆Uc, (1.36)

so that the minimum work which occurs to couple the central system to the reser-
voir is greater than the maximum useful work which can be extracted from the
central oscillator in the decoupling process [Kim and Mahler, 2007], which actu-
ally coincides with the change of its internal energy. Their difference is highest at
T = 0 and by growing the temperature asymptotically vanish.

An attempt to overcome the above-seen difficulties is to introduce an effective
description for the central system, which opportunely includes interactions with
the environment. This proved also useful in [Jarzynski, 2004] to derive a classical
non-equilibrium work theorem for a Hamiltonian system formed by the open sys-
tem strongly coupled with a reservoir, and successively in [Campisi et al., 2009]
to extend the validity of the theorem to the quantum case. One introduces the
mean field free energy

FMF = −kBT ln ZMF, ZMF
S =

tre−βH

trBe−βHB
, (1.37)

where mean field partition function ZMF
S is the rate of the total Z and the the free-

bath ZB partition functions. From FMF mean field energy UMF and entropy S MF

are obtained by equations (1.4). One can see that the latter differs from the sta-
tistical entropy S (1.27) by the mutual information S c, otherwise called correla-
tion entropy (6.3) [Hörhammer and Büttner, 2008]. In the QBM model with a
strictly Ohmic damping, mean field entropy S MF vanishes linearly with the tem-
perature [Hänggi and Ludwig Ingold, 2006], in agreement with third law of ther-
modynamics. Specific heat CMF = ∂UMF/∂T is actually different from the spe-
cific heat CU = ∂U/∂T derived from energy (1.28) [Hänggi and Ludwig Ingold,
2006, Hänggi et al., 2008]. In fact one gets that the mean field energy instead can
by decomposed as

UMF = U + UI, UI = 〈HI〉eq + 〈HB〉eq − 〈HB〉0 , (1.38)

where 〈·〉0 is made with the free bath density matrix ρ0
B = e−βHB/ZB. The difference

between U and UMF and correspondingly on the specific heats originates in an
averaged interaction term and in the difference of the average bath energy when
the total density matrix ρeq or the free bath density matrix ρ0

B are used.
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Within the model of a free quantum Brownian particle with Ullersma’s cou-
pling strength [Hänggi et al., 2008], it turns out that due to quantum dissipation
both the two expressions for the specific heat vanish linearly with the temperature,
then satisfying the third law of thermodynamics. Nevertheless they are different
both in the high temperature limit, in terms of their quantum corrections, and
in the low-temperature quantum limit. Remarkably CMF is negative in the low-
temperature regime, if the cut-off of the Ullersma’s strength is taken smaller than
the damping constant, which corresponds also to negative regions of the density
of states.

It is interesting to note that a variation of parameters of HS in (1.38), leads in
general to the first law formulation

dUMF = dW + TdS MF, (1.39)

where dW = dFMF is the usual work due to a variation of the parameters which
define the central-system Hamiltonian (1.31), and the mean-field entropy variation

TdS MF = dQMF = dQ + dUI, (1.40)

contains the heat (1.30) plus the variation of UI (1.38) [Hörhammer and Büttner,
2008]. Then at T = 0, one sees that since for the QBM model dS MF = 0, it has to
be also dQ = −dUI, namely the contribute of the interaction part to the mean field
potential is relevant for the fulfillment of the third law.

Violation of the second law (1.32) has been related initially to entanglement
between system and reservoir. Remarkably, for the Rubin model, where the bath
is made of a chain of oscillators, this has been questioned [Hilt and Lutz, 2009].
There exist a critical temperature Tc above which the negativity [Vidal and Werner,
2002], namely the measure of entanglement defined as

N(ρ) =
‖ ρTS ‖ −1

2
, (1.41)

where the trace norm of an operator O is given by ‖ O ‖= tr
√

OO†, abruptly van-
ishes even if inequality (1.32) holds for temperatures T > Tc. This suggests that
mechanisms leading to violation could include aspects of quantum correlations
other that entanglement. By the way, recently it has shown that quantum corre-
lation between two subsystems can be present also, when the density matrix is
separated [Ollivier and Zurek, 2001].

Effective temperature It could appear improper the use of the temperature of
the total system to study the Clausius inequality for a subsystem, as its reduced
density operator (1.25) has not in general a Gibbsian form. Actually the pres-
ence of the Boltzmann factor β of the total system inside the exponential defining
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the reduced density matrix (1.26) is completely arbitrary. In fact the coefficients
defining Heq

S , which have a complicate dependence on the coupling constant and
on the temperature of the total system, contain also the factor β−1 [Grabert et al.,
1984]. Due to this arbitrariness one can choose the temperature in an ad-hoc way.
In [Kim and Mahler, 2010] the effective mass oscillation frequency and corre-
spondingly the effective temperature T ∗eff

of the QBM model are defined so that
the average of the effective Hamiltonian H∗eff

coincides with system energy (1.28):〈
H∗eff

〉
eq = 〈HS〉eq . (1.42)

The effective Hamiltonian changes but the reduced density matrix and conse-
quently the Von Neumann entropy remain the same. With this choice violations
of the second law seen above are eliminated. It can be shown in fact the variation
of the effective heat dQ∗eff

is related to the variation of the Von Neumann entropy
dS according to the usual thermodynamic expression

dQ∗eff =

〈
H∗eff

d ln ρeq
S

dα

〉
eq

dα = T ∗effdS , (1.43)

both for a variation of the parameters of HS and for a variation of the coupling
with the reservoir. Moreover, one can use the partition function of the reduced
density matrix (1.26) Zeq

S = Z∗eff
to define the effective free energy

F∗eff = −kBT ∗eff ln Z∗eff = U − T ∗effS , (1.44)

from which, by deriving respect to β∗eff
= (kBT ∗eff

) both entropy S and energy U
can be obtained according to the usual relations (1.4).

1.3.2 Quantum aspects of non-equilibrium
Respect to the classical case, the Quantum Langevin Equation is much less known,
and it is not straightforward to derive the corresponding quantum master equation,
when the potential acting on the central system in non-quadratic. Obviously things
get much more complicated when the evolution is non-local and non-Markovian.
Actually the stationary density matrix is known only for the harmonic potential,
as for the QBM model where the form of the master equation and its solution are
exceptionally known even when the damping kernel is non-local. Remarkably,
the origin of non-Markovian behavior can be due only to quantum coherences of
the bath degrees of freedom. Recently efforts have been directed to characterize
the degree of non-Markovian behavior in quantum systems [Breuer et al., 2009]
which is based on the time-convolutionless approach for master equations [Breuer
and Petruccione, 2002, Breuer and Piilo, 2009].
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In the Markovian case it is known that the density operator of the central sys-
tem satisfies a Quantum Master Equation (QME) in Lindblad form [Breuer and
Petruccione, 2002] which can be generally put in the form

dρS(t)
dt

= −i
[
HS, ρS

]
+

N2−1∑
k=1

γk

(
AkρSA†k −

1
2

A†kAkρS −
1
2
ρSA†kAk

)
, (1.45)

where N is the dimension of the Hilbert space of the system, HS is the system
Hamiltonian and Ak’s are the Lindblad orthogonal operators which provide the
coupling of the system to the various decay channels, each with a damping rate
γk. It is not possible to reduce it in the form of a discrete master equation (1.13)
simply by projecting onto the eigenstates of HS due to the non-diagonal terms,
namely the coherences which characterize the density operator. This is possible
only when the rotative wave approximation hold [Breuer and Petruccione, 2002],
namely one has the condition

[HS, Ak] = −ωkAk,
[
HS, A

†

k

]
= −ωkA†k , (1.46)

where the Ak’s are eigenoperators of the system Hamiltonian. In this case, by
taking the trace with the basis of eigenvectors of HS, the entropy rate can be dis-
cretized exactly as in the classical master equation context (1.14), where apart
from the entropy flow, one can identify a positive entropy production with posi-
tive adiabatic and non-adiabatic contributions, if there is more than one reservoir.
On the other hand, with this assumption the stationary density matrix of the cen-
tral system reduces to the canonical equilibrium one ρeq

S ∝ exp−βHS in presence
of a single reservoir.

In the quantum realm it is not possible to follow trajectories of the particles
in the phase space, due to the uncertainty principle. Anyway fluctuation theorems
have been formulated according to different procedures. One of these is the unrav-
eling of the reduced QME for the central system, which can be seen as resulting
from a continuous projective measurement on the reservoir. This leads to a con-
tinuous positive operator-valued measurement on the system which allows one to
construct a trajectory picture in the Hilbert space of states for the central system,
where each realization of the continuous measurement leads to a given system
trajectory [Breuer and Petruccione, 2002,De Roeck and Maes, 2006,Esposito and
Mukamel, 2006]. Some FT’s in the counting statistic field are based on the use
of the influence functional propagator defined on a Keldish loop as the generating
function of the electron counting probability distribution [Nazarov, 2007, Saito
and Dhar, 2007], or on a semiclassical scattering approach [Pilgram et al., 2003].

A technique which provides a unified framework to derive FT’s has been more
recently introduced, where the change of a certain physical observable is de-
termined from a two-point projective measurement [M. Esposito and Mukamel,
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2009]. Physically this is the result of the detector-system interaction on the sys-
tem, so that the detailed modeling of detectors and their dynamics is avoided. This
measurement technique has been originally introduced in order to give account of
work fluctuation theorems, since work is not an observable [Talkner et al., 2007].
FT’s establish the relation between the joint probability P[at, a0] to measure a cer-
tain value a0 of the physical quantity at initial time and conditionally to measure
another value at at final time, and the probability PTR[a0, at] to measure the same
values in a time-reversed dynamics. By using this symmetry FT’s are derived for
closed and open systems driven out of equilibrium by an external time-dependent
force, and for open systems maintained in a steady state by nonequilibrium bound-
ary conditions.

A brief account of it will be given next, in the context of entropy production
for an out-of-equilibrium open system put in contact with a thermal reservoir. On
the other hand fluctuation theorems regarding adiabatic and non-adiabatic contri-
butions have not been found yet.
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Chapter 2

Entropy production

We consider a central system S coupled to its bath B. The total Hamiltonian is:

H = HS + HB + HI. (2.1)

We assume to prepare the system and the bath separately, so that no correlation
is initially present between them, and to instantaneously switch on the interaction
HI at t = 0. We also assume that the bath is initially at canonical equilibrium. The
density matrix of the total system is therefore of the form

ρ(0) = ρS(0) ⊗ ρB(0) , ρB(0) = ρ
eq
B ≡

e−βHB

ZB
, ZB = trBe−βHB , (2.2)

where β = (kBT )−1 is the Boltzmann factor and ρS(0) and ρB(0) are respectively
the central oscillator and the bath reduced density matrix. From now on we set
kB = 1. The density matrix ρS(t) of the system S evolves according to the equation

ρS(t) = V(t)ρS(0) = trBρ(t), (2.3)

with the evolved total density operator

ρ(t) = U(t)ρ(0)U†(t), (2.4)

where

U(t) = e−iHt, (2.5)

is the unitary evolution operator in the global system S ⊗ R.
The evolution of the system density matrix (2.3) can be formally written as

ρ̇S(t) = L(t)ρS(t) , L(t) = V̇(t)V−1(t), (2.6)
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where the operatorL(t) in general depends on time. In this case, the evolution op-
erator V(t) may be written as V(t) = T exp {

∫ t

0
dτL(τ)} in which T indicates the

time-ordering operator. The form (2.6) is the starting point to derive convolution-
less quantum master equations [Breuer and Petruccione, 2002]. In the Markovian
case,L(t) is time-independent. This typically happens in the thermodynamic limit
of the bath for times t larger then the bath correlation time.

2.1 The ‘Poised’ definition
Let us define the poised density matrix ρ∗S(t) as the solution of

V(t)ρ∗S(t) = ρ∗S(t). (2.7)

Its existence and uniqueness may not always be guaranteed. In the Markovian
case, the poised density matrix ρ∗S becomes constant in time and coincides with
the stationary density matrix ρst

S , defined by Lρst
S = 0:

ρ∗S = ρst
S . (2.8)

For the QBM model, the poised density matrix is well defined at all times. Its
expression is given in equation (4.5) and is derived in A.4.

We can then introduce the following definition of the entropy production:

∆iS P =
[
D(ρS(0)‖ρ∗S(t)) − D(ρS(t)‖ρ∗S(t))

]
, (2.9)

where D(. . . ‖ . . .) is the Kullback-Leibler divergence, defined by

D(ρ‖ρ′) = trρ ln ρ − trρ ln ρ′ ≥ 0. (2.10)

One can prove that the expression (2.9) is positive definite as follows. From equa-
tion (2.3) we obtain

D(ρS(t)‖ρ∗S(t)) = D(V(t)ρS(0)‖V(t)ρ∗S(t))

= D
(
trBU(t)ρS(0) ⊗ ρB(0)U†(t)‖trBU(t)ρ∗S(t) ⊗ ρB(0)U†(t)

)
≤ D(ρS(0)‖ρ∗S(t)), (2.11)

where we have used the property of the Kullback-Leibler divergence

D(ρ1‖ρ2) ≥ D(trBρ1‖trBρ2). (2.12)

We also introduce the slightly different entropy production

∆iS Br = D(ρS(0)‖ρst
S ) − D(ρS(t)‖ρst

S ), (2.13)
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which is also obviously also positive definite in the Markovian case and extends
the definition previously proposed by Breuer and Petruccione for weakly coupled
systems [Breuer and Petruccione, 2002] where ρst

S is the canonical distribution
expressed in terms of the system Hamiltonian HS.

In the Markovian case, it follows from (2.11) that the time derivative of ∆iS P

as well as that of ∆iS Br is also positive [Breuer and Petruccione, 2002, Yukawa,
2001]:

d∆iS P

dt
=

d∆iS Br

dt
= − lim

dt→0

D(ρS(t + dt)‖ρst
S ) − D(ρS(t)‖ρst

S )
dt

≥ 0. (2.14)

This result does not hold in the non-Markovian case where L(t) depends on t and
where d∆iS P/dt , d∆iS Br/dt.

It may happen that the stationary density matrix can be expressed as the canon-
ical distribution of some effective Hamiltonian Heq

S . In the weak-coupling limit it
corresponds to the system Hamiltonian HS. Its expression for the QBM model
is given in equation (3.53). In such cases, the entropy production (2.13) has a
straightforward physical interpretation, since it can be rewritten as

∆iS Br = ∆S − ∆eS Br, (2.15)

i.e., as the difference between the entropy change ∆S , and the entropy flow ∆eS Br

identified by the variation of the averaged effective Hamiltonian of the central
system:

∆eS Br = β∆
〈
Heq

S

〉
. (2.16)

The average of an operator O is defined as 〈O〉 = trρ(t)O and ∆ denotes the dif-
ference between the average evaluated at time t and at time 0. We shall see in
section 4.1 that in the classical high-temperature limit and in the quantum weak-
coupling limit this definition becomes equal to the one used in the usual stochastic
thermodynamics setup. In the following, when studying the QBM model for a
finite-size bath, where ρst

S does not exist, and when referring to ∆iS Br, one should
consider the definition (2.15) instead of (2.13). When the bath approaches the
thermodynamic limit the two definitions are equivalent.

2.2 The ELB definition
A definition of the entropy production which guarantees its positivity in all cases
has been recently introduced by Esposito et al [Esposito et al., 2010]. It reads

∆iS = D
(
ρ(t)

∥∥∥ρS(t) ⊗ ρeq
B

)
. (2.17)
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This quantity is clearly positive definite and within our assumptions it expresses
the second law in the form

∆iS = ∆S + β∆ 〈HB〉 . (2.18)

One has in fact, exploiting the conservation of the von Neumann entropy:

D
(
ρ(t)‖ρS(t) ⊗ ρeq

B

)
= trρ(t) ln ρ(t) − trρ(t) ln ρS(t) − trρ(t) ln ρeq

B

= trρeq
B ln ρeq

B + trρS(0) ln ρS(0) − trρS(t) ln ρS(t) − trρB(t) ln ρeq
B

= ∆S (t) +
[
trρeq

B (−βHB) − trρB(t) (−βHB)
]
. (2.19)

From (2.18) we observe that the entropy flow

∆eS = −β∆ 〈HB〉 = β
(
∆ 〈HS〉 + ∆ 〈HI〉

)
, (2.20)

is now identified as the change of the bath energy HB times the inverse temper-
ature β, as usual in equilibrium thermodynamics. It is then proportional to the
change of the central oscillator energy plus an interaction term which is discussed
in section 4. The time derivative of (2.17) is not generally positive, as we will
observe in 4.1.1. Since by (2.16) and (2.20) one has Heq → HS and 〈HI〉 → 0,
we see that the two definitions coincide in the weak-coupling limit. We note that
the positivity of the right-hand-side of (2.18) was also remarked in ref. [Jarzynski,
1999].

2.2.1 Derivation from a Fluctuation Theorem
The positivity of the ELB expression (2.17) for entropy production can actually
be derived through a quantum integral fluctuation theorem whose general formu-
lation can be found in [M. Esposito and Mukamel, 2009]. Here we give a brief
account of it. Let us introduce the time dependent operator in the total Hilbert
space S ⊗ B:

A(t) = ln ρS(t) + βHB, (2.21)

whose average change between time t and 0 clearly corresponds to ELB entropy
production (2.18), when initial conditions (2.2) are assumed. Then we consider
the operator

R[at; a0] = ln
P[at; a0]

PTR[a0, at]
, (2.22)

as the logarithm of the ratio of the probability P[at; a0] of measuring the eigen-
value a0 of A(0) at time 0 and conditionally to measure the eigenvalue at of A(t)
at time t according to the forward evolution

P[at; a0] = | 〈at|U(t, 0) |a0〉 |
2 〈a0| ρ(0) |a0〉 , (2.23)
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and the probability PTR[a0, at] of measuring at initial time at and conditionally a0

at time t for the time reversed TR evolution

PTR[a0, at] = | 〈a0|U†(t, 0) |at〉 |
2 〈a0| ρ

TR(0) |a0〉 . (2.24)

Density operator ρTR(0) is the initial condition of the time reversed (TR) dynamics.
The eigenvalues of A(t) are at = λt − βEB, where λt is a time-dependent eigenvalue
of ln ρS(t), and EB of HB with eigenvectors respectively in the bath B Hilbert
space. For brevity we have not considered here degenerate states, but the result is
equivalent. One immediately sees that〈

e−R
〉

=
∑
at ,a0

P[at; a0]e−R[at;a0] =
∑
at ,a0

PTR[a0; at] = 1, (2.25)

and due to the Jensen inequality
〈
eX

〉
≥ e〈X〉 one gets

〈R〉 =
∑
at ,a0

P[at; a0]R[at; a0] ≥ 0. (2.26)

In order to recover expression (2.17) for ELB entropy production, one has to as-
sure that the initial conditions for the forward and reversed dynamics fulfill the
following commutation properties

[A(0), ρ(0)] = 0, (2.27)

which is implicit in the choice of A(t) (2.21) when the initial conditions (2.2) are
considered, and

[A(t), ρTR(0)] = 0, (2.28)

which is verified by choosing

ρTR(0) = ρS(t) ⊗ e−βHB/ZB. (2.29)

In fact, due to equations (2.27) and (2.28), one finds

〈R〉 =
∑
at ,a0

P[at; a0] ln
〈a0| ρ(0) |at〉

〈at| ρTR(0) |a0〉
= trρ(0) ln ρ(0) − trρ(t) ln ρTR(0), (2.30)

which gives us back ELB definition (2.17).

2.3 Difference between the two definitions
Since the following identity holds

D(ρ(t)||ρst
S ⊗ ρ

eq
B ) = D(ρ(t)||ρS(t) ⊗ ρeq

B ) + D(ρS(t)||ρst
S ), (2.31)
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we find, using (2.17) and (2.13), that the difference between the ELB definition
∆iS and the Breuer one ∆iS Br is given by

∆iS − ∆iS Br = D(ρ(t)||ρst
S ⊗ ρ

eq
B ) − D(ρS(0)||ρst

S ). (2.32)

Due to the unitary evolution of the total density operator ρ(t) (2.4,2.5), one can
recast the first term of the right hand side of (2.32) in the form

D(ρ(t)||ρst
S ⊗ ρ

eq
B ) = D(ρS(0) ⊗ ρeq

B ||U
†(t)ρst

S ⊗ ρ
eq
B U(t)). (2.33)

By inserting this identity into (2.32) and noting that

D(ρS(0)||ρst
S ) = D(ρS(0) ⊗ ρeq

B ||ρ
st
S ⊗ ρ

eq
B ), (2.34)

we obtain

∆iS − ∆iS Br = −trρS(0) ⊗ ρeq
B [ln U†(t)ρst

S ⊗ ρ
eq
B U(t) − ln ρst

S ⊗ ρ
eq
B ]. (2.35)

Moreover due to the inequality

D(ρS(0) ⊗ ρeq
B ||U

†(t)ρst
S ⊗ ρ

eq
B U(t))

≥ D(trB{ρS(0) ⊗ ρeq
B }||trB{U†(t)ρst

S ⊗ ρ
eq
B U(t)})

= D(ρS(0)||trB{U†(t)ρst
S ⊗ ρ

eq
B U(t)}), (2.36)

it follows from (2.35) that

∆iS − ∆iS Br ≥ −trSρS(0)
[
ln Ṽ(t)ρst

S − ln ρst
S

]
, (2.37)

where we have introduced the evolution operator for the central system associated
to the total adjoint dynamics, implicitly defined by

Ṽ(t)ρS = trB{U†(t)ρS ⊗ ρ
eq
B U(t)}, (2.38)

where ρS is a generic density operator for the system S.
If the operator L(t) is Markovian, L̃(t) = ˙̃V(t)Ṽ−1(t) will also be so. If they

furthermore have the same stationary state, so that

Ṽ(t)ρst
S = ρst

S , (2.39)

then the right-hand side of (2.37) vanishes and the ELB expression is strictly larger
than the Breuer one:

∆iS − ∆iS Br ≥ 0. (2.40)

In A.5 we show that this is indeed the case in the QBM model.
In the following we are going to study these different definitions in the con-

text of the QBM model [Ullersma, 1966, Haake and Reibold, 1985, Caldeira and
Leggett, 1983].
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2.4 External Driving
We consider here definitions for entropy production in the presence of an external
driving which modifies the system S Hamiltonian or the interaction term, such
that the total Hamiltonian is written as:

H = HS(t) + HI(t) + HB. (2.41)

2.4.1 Lutz definition
The following definition of entropy production we call ’Lutz’, is the homologous
to the ’Breuer’ one (2.13) in the absence of an external driving and is an extension
to a general Markovian case of that given for the weak coupling limit in [Deffner
and Lutz, 2011].

∆iS Lu = D(ρS(0)||ρeq
S (0)) − D(ρS(t)||ρeq

S (t)) −
∫ t

0
dτtrSρS(τ)∂t ln ρeq

S (τ), (2.42)

where ρ
eq
S (t) is the density operator satisfying the local stationarity condition

L(t)ρeq
S (t) = 0 for the reduced system S dynamics at time t is put in the form

ρ
eq
S (t) = e−βHeq

S (t)Zeq
S (t), (2.43)

where Heq
S (t) can be in general a complicated function of the coupling and the

temperature.
Entropy production (2.42) can be also expressed as:

∆iS Lu = β(WLu(t) − ∆FLu(t)), (2.44)

where we have defined the work term

WLu(t) =

∫ t

0
dτ

〈
Ḣeq

S (τ)
〉
τ
, (2.45)

and the out of equilibrium free energy difference

∆FLu(t) = ∆ULu − T∆S , (2.46)

with the effective energy change

∆ULu =
〈
Heq

S (t)
〉

t
−

〈
Heq

S (0)
〉

0
. (2.47)

In the weak coupling limit one expects that Heq
S (t) = HS(t).

Lutz entropy production (2.42) can be shown to be positive in the Markovian
dynamics [Deffner and Lutz, 2011], in fact its time derivative is positive

d∆iS Lu

dt
= −trρ̇S(t) ln ρS(t) + trρ̇S(t) ln ρeq

S (t) ≥ 0, (2.48)

due to the fact that the map ρS → −trL(ρS) ln ρS is a convex functional when
superoperator L has Lindblad form [Breuer and Petruccione, 2002].
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2.4.2 ELB definition
By observing that the heat exchange according to the ELB definition in (2.17) can
be rewritten as

〈HB〉0 − 〈HB〉t = −

∫ t

0
dτ trρ̇(t)HB =

∫ t

0
dτ tr [HS(τ) + HI(τ)] ρ̇S(τ), (2.49)

where the last equality is due to the fact that for the ciclicity of trace trρ̇(τ)H(τ) =

0, one rewrite (2.17) as:
∆iS = β(W(t) − ∆F(t)), (2.50)

where the work W(t) is

W(t) =

∫ t

0
dτ

〈
ḢS(τ)

〉
τ

+
〈
ḢI(τ)

〉
τ
, (2.51)

and the out of equilibrium free energy difference is

∆F(t) = ∆U − T∆S , (2.52)

where the energy change

∆U = 〈[HS(t) + HI(t)]〉t − 〈[HS(0) + HI(0)]〉0 . (2.53)

The study of ELB expression (2.50) as a function of work and an off-equilibrium
free energy, as well as the comparison with the Lutz definition (2.42) goes beyond
the scope of this work, where we focus on transient relaxation. It would be inter-
esting the study of these definitions of entropy production from a fast change of
parameters to very slow ’equilibrium’ transformations.

2.5 Entropy production with multiple reservoirs
Here we are going to consider entropy production in the case of a central oscillator
coupled with a ’left’ L and a ’right’ R reservoirs:

H = HS + HL + HR + HIL + HIR; (2.54)

The same discussions we make in the following could be easily extended to a
general case with n reservoirs. We assume to prepare the system and the two baths
separately, and we assume to switch on both the interations HIL and HIR with the
two baths at t = 0. The two bath are assumed initially at canonical equilibrium at
different temperatures TL and TR.

ρ(0) = ρS(0) ⊗ ρL(0) ⊗ ρR(0), ρL,R(0) = ρ
eq
L,R ≡

e−βL,RHL,R

ZL,R
, ZL,R = trR,Le−βL,RHL,R ,

(2.55)
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where βL = (kBTL)−1 and βR = (kBTR)−1 are the Boltzmann factors and ρS(0), ρL(0)
and ρR(0) are respectively the central oscillator, the left and right bath reduced
density matrix.

The evolution of the density matrix is characterized by a time evolution of the
kind (2.6). In general the dynamics is non-Markovian, moreover the contribution
given by the diffent reservoirs is not separable.

2.5.1 Adiabatic and Non-Adiabatic contributions
In the following we make attempts to split the entropy production into two con-
tributions which we would identify with an adiabatic term, corresponding at late
times to the steady state entropy production, and a non-adiabatic term which cor-
responds to the entropy production due to to the relaxation of the central system
to the steady state in analogy with what is seen in the discrete master equation
case (1.20,1.22). We use the definition of ’Poised’ density operator ρ∗S(t) (2.7) to
introduce the ’Poised’ adiabatic and non-adiabatic contributions to ELB entropy
production. Then an analogous ’Breuer’ definition is introduced by the use of the
steady state density operator ρss

S .
The evolution of a central-system density operator is defined as:

V(t)ρS = trB U(t)ρS ⊗ ρ
eq
L ⊗ ρ

eq
R U†(t), (2.56)

for any system density operator ρS. In the Markovian case, the poised density
matrix reduces to steady state density matrix ρ∗S(t) = ρss

S , which satisfies Lρss
S = 0.

ELB entropy production (2.17) has a simple generalization in the case of mul-
tiple reservoirs connected to the central system [Esposito et al., 2010]. In the case
of two baths one has, once initial conditions (2.55) are introduced,

∆iS = ∆S − ∆eS = D
(
ρ(t)

∥∥∥ρS(t) ⊗ ρeq
L ⊗ ρ

eq
R

)
, (2.57)

so that the entropy flow is now

∆S e = −βL∆ 〈HL〉 − βR∆ 〈HR〉 . (2.58)

Since the change of entropy for the central system can be rearranged as:

∆S = D[ρS(0)||ρ∗S(t)] − D[ρS(t)||ρ∗S(t)] − ∆
〈
ln ρ∗S(t)

〉
, (2.59)

by using the definition of entropy flow (2.57), one sees that entropy production
can be decomposed as the sum of an adiabatic

∆aS P ≡ βL∆ 〈HL〉 + βR∆ 〈HR〉 − ∆
〈
ln ρ∗S(t)

〉
, (2.60)
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and a non-adiabatic term

∆naS P = D[ρS(0)||ρ∗S(t)] − D[ρS(t)||ρ∗S(t)]. (2.61)

With exactly the same passages as in (2.11) one can show that:

∆naS P ≥ 0. (2.62)

Moreover, in a similar way as done in (2.3), due to the equality

D(ρ(t)||ρ∗S(t) ⊗ ρeq
L ⊗ ρ

eq
R ) = D(ρ(t)||ρS(t) ⊗ ρeq

L ⊗ ρ
eq
R ) + D(ρS(t)||ρ∗S(t)), (2.63)

one can express the difference between entropy production and the P non-adiabatic
contribution as:

∆iS −∆naS P = −trρS(0)⊗ρeq
L ⊗ρ

eq
R [ln U†(t)ρ∗S(t)⊗ρeq

L ⊗ρ
eq
R U(t)− ln ρ∗S(t)⊗ρeq

L ⊗ρ
eq
R ].

(2.64)
Finally, since the following inequality holds:

D(ρS(0) ⊗ ρeq
L ⊗ ρ

eq
R ||U

†(t)ρ∗S(t) ⊗ ρeq
L ⊗ ρ

eq
R U(t))

≥ D(ρS(0)||trB{U†(t)ρ∗S(t) ⊗ ρeq
L ⊗ ρ

eq
R U(t)}), (2.65)

one can assert the following inequality:

∆iS − ∆naS P ≥ −trSρS(0)
[
ln Ṽ(t)ρ∗S(t) − ln ρ∗S(t)

]
, (2.66)

where we have introduced the evolution operator for the central system associated
to the total adjoint dynamics, implicitly defined by

Ṽ(t)ρS = trB{U†(t)ρS ⊗ ρ
eq
L ⊗ ρ

eq
R U(t)}, (2.67)

where ρS is a generic density operator for the system S.
Then, if one is able to show that the rhs of (2.64) or the rhs of (2.66) are not

negative, one gets
∆aS P ≥ 0. (2.68)

The rhs of (2.66) actually vanish in the Markovian context of the QBM model
with two baths A.5, just like it happens in the case of a single reservoir (2.39), due
to the fact that

Ṽ(t)ρss
S = ρss

S , (2.69)

which means thus validating inequality (2.68).
Entropy production (2.57) can be split also into the sum of the ’Breuer’ adia-

batic
∆aS Br ≡ −βLQL − βRQR − ∆

〈
ln ρss

S
〉
, (2.70)
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and the non-adiabatic one

∆naS Br = D[ρS(0)||ρss
S ] − D[ρS(t)||ρss

S ]. (2.71)

Both terms are different from those of the ’Poised’ case. Moreover here the non-
adiabatic contribution (2.70) is positive only in the Markovian case. Their time
derivatives are expressed respectively as:

Ṡ Br
a = −trρ̇S(t) ln ρss

S − trρ̇L(t) ln ρeq
L − trρ̇R(t) ln ρeq

R , (2.72)

and
Ṡ Br

na = −trρ̇S(t)(ln ρS(t) − ln ρss
S ). (2.73)

In the late time limit one expects the adiabatic rate Ṡ Br
a to be a positive quantity,

since it has to coincide with the entropy production rate d∆iS/dt, instead the non-
adiabatic rate Ṡ Br

na clearly vanishes. It is not possible to establish their sign at
generic time, unless the dynamics is Markovian, where in analogy with (2.14)
Ṡ Br

na ≥ 0.
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Chapter 3

The model

The QBM Hamiltonian represents an harmonic oscillator bi-linearly coupled with
coupling constants εi to a bath of N harmonic oscillators:

H = HS + HB + HI; (3.1)

HS =
1
2

(
ω2

0Q2
0 + P2

0

)
, HB =

1
2

N∑
i=1

(
ω2

i Q2
i + P2

i

)
, HI =

N∑
i=1

εiQ0Qi.

We have put all masses equal to one for simplicity.
The equations of motion in the Heisenberg picture read

Q̇µ(t) =
i
~

[
H,Qµ(t)

]
, Ṗµ(t) =

i
~

[
H, Pµ(t)

]
. (3.2)

The Greek indices µ and ν include by convention also the central oscillator and
the terms associated to the bath, while the Latin ones only run on the bath degrees
of freedom. For convenience, we will use the shorthand notation Q = Q0 and
P = P0. The solution of the equations of motion reads [Ullersma, 1966, Haake
and Reibold, 1985]

Qµ(t) =

N∑
µ=0

(
Ȧµν(t)Qν(0) + Aµν(t)Pν(0)

)
, Pµ(t) = Q̇µ(t). (3.3)

It is obtained by first finding a matrix transformation into new conjugate operators
{Q′µ, P

′
µ} which diagonalize the Hamiltonian into a set of N + 1 normal harmonic

oscillators, by then writing the Heisenberg solutions in that basis, and by finally
transforming back to the original operators. The functions Aµν(t) can be expressed
in terms of the function

g(z) = z2 − ω2
0 −

N∑
i=1

ε2
i

z2 − ω2
i

, (3.4)
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whose zeros zν, ν = 0, . . . ,N, are the normal frequencies of the harmonic oscilla-
tors in the new basis. We have in fact

Aµν(t) =

N∑
ρ=0

XµρXνρ

sin(zρt)
zρ

, (3.5)

where the elements Xµν of the transformation matrix are given by

X0ν =

[
1
2z

dg(z)
dz

∣∣∣∣∣
z=zν

]−1/2

, ν = 0, . . . ,N; (3.6)

Xiν =
εi

z2
ν − ω

2
i

X0ν, i = 1, . . . ,N; ν = 0, . . . ,N. (3.7)

From (3.4) one gets also a condition to be fulfilled in order to obtain a positive-
definite Hamiltonian and non diverging solutions:

Ω2
0 = ω2

0 −

N∑
i=1

ε2
i

ω2
i

≥ 0. (3.8)

Ω0 actually defines a normalized frequency of the central oscillator, as it emerges
in the following Quantum Langevin Equation (QLE) (3.10). The role of the term
A(t) ≡ A00 is that of a retarded propagator (see [Fleming et al., 2011]). To see
it, we first exploit the explicit solution to write down the equations of motion for
the position operators in the bath as integro-differential equations involving the
position operator of the central oscillator:

Qi(t) = Qi(0) cos(ωit) +
Pi(0)
ωi

sin(ωit) −
εi

ωi

∫ t

0
ds sin[ωi(t − s)]Q(s). (3.9)

Then the central oscillator satisfies the following QLE which we express in a
matrix representation:

ż(t) + H ∗ z(t) = −η(t) − F(t). (3.10)

In this expression, ∗ represents the time convolution, H(t) is given by

H(t) =

[
0 −δ(t)

Ω2
0δ(t) K(t)

]
; (3.11)

and we have defined z(t) with zT(t) = (Q(t), P(t)) and the noise ηT(t) = (0, η(t))
with components

η(t) =

N∑
i

εi

[
Qi(0) cosωit +

Pi(0)
ωi

sinωit
]
. (3.12)
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The damping kernel K(t) is defined by

K(t) =

∫ ∞

0
dω

γ(ω)
ω2 cosωt, (3.13)

where γ(ω) is the coupling strength

γ(ω) =
∑

i

ε2
i δ(ω − ωi), (3.14)

and F(t) = (0,K(t)Q(0)) is the forcing term, which is responsible in the continuum
limit for a fast slip of the initial conditions (see section 3.3).

The solution of the differential equation (3.10) can be easily obtained by taking
the Laplace transform and then transforming back. One obtains

z(t) = Φ(t)z(0) − (Φ ∗ η)(t). (3.15)

Both terms contain the matrix propagator Φ(t)

Φ(t) =

[
Ȧ(t) A(t)
Ä(t) Ȧ(t)

]
, (3.16)

which depends on the damping kernel K(t) via the propagator A(t). The Laplace
transform of A(t) is given by

Â(s) =
1

s2 + sK̂(s) + Ω2
0

. (3.17)

In A.1 we show that the Ullersma solution (3.3) and the Fleming one (3.9,3.15)
are equivalent.

Having determined the time evolution of the Heisenberg momenta and posi-
tions as functions of the same operators at time t = 0, all the moments of these
quantities at time t can now be evaluated as functions of the moments at t = 0 and
of the Aµν’s.

3.1 Initial conditions
General initial conditions were specified in equation (2.2). An equivalent de-
scription of the system can be obtained via the Wigner quasi-probability distri-
bution (often simply called “Wigner”), a function of the phase-space variables
(q, p) = (q0, p0, . . . , qN , pN), defined in term of the total density matrix ρ by

W(q, p) =
1

(π~)N

∫ ∞

−∞

∏
µ

dyµ eipµyµ/~
〈
q0 −

y0

2
, . . . , qN −

yN

2

∣∣∣∣∣ ρ ∣∣∣∣∣q0 +
y0

2
, . . . , qN +

yN

2

〉
.

(3.18)
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The reduced Wigner corresponding to the central oscillator and the bath reduced
density matrix can be defined in a similar way and can be obtained from the total
system Wigner by integrating out the appropriate degrees of freedom.

Using a matrix formalism with vectors z̃T = (p, q), zT = (Q, P) and kT =

(kq, kp), a generic single-particle Gaussian Wigner and its Fourier transform read
[Agarwal, 1971]:

W(q, p) =
1

√
2π∆2

exp {−
( z̃ − 〈 z̃〉)Tσ( z̃ − 〈 z̃〉)

2∆2 }; (3.19)

W̃(k) = exp {−
1
2

kTσk − ikT 〈z〉}. (3.20)

The first moments and the symmetric covariance matrix respectively read 〈 z̃〉T =

(〈P〉 , 〈Q〉), 〈z〉T = (〈Q〉 , 〈P〉) and σi j =
〈
{zi, z j}

〉
/2 − 〈zi〉

〈
z j

〉
with i, j = 1, 2,

where we denote by {. . . , . . .} the anticommutator and by 〈. . .〉 the average over a
Gaussian density matrix ρ. We also define

∆ =
(
σ2

qσ
2
p −C2

qp

) 1
2

= (detσ)
1
2 , (3.21)

where we indicate σ2
q = σ11, σ2

p = σ22 and Cqp = σ12.
We shall only consider initial conditions such that the Wigner of the cen-

tral oscillator has a Gaussian expression at time t = 0. Then the Wigner is
parametrized by its moments 〈Q(0)〉, 〈P(0)〉,

〈
Q2(0)

〉
,
〈
P2(0)

〉
and Cpq(0), given by

Cqp(0) = 〈{Q(0) − 〈Q(0)〉 , P(0) − 〈P(0)〉}〉 /2. Since the initial density matrix of
the bath is a product of exponentials of quadratic Hamiltonians, its corresponding
Wigner is a product of Gaussian states which are parametrized, for i = 1, . . . ,N,
by the moments

〈Qi(0)〉 = 〈Pi(0)〉 = 〈{Qi(0), Pi(0)}〉 = 0, (3.22)〈
Q2

i (0)
〉

=
E(ωi,T )
ω2

i

,
〈
P2

i (0)
〉

= E(ωi,T ),

where
E(ω,T ) =

~ω

2
coth
~ω

2T
. (3.23)

As a result the initial total Wigner is also Gaussian.

3.2 Evolution
At time t > 0 the total density matrix operator will evolve in a unitary way (2.4)
and the central oscillator and the bath will be correlated. The corresponding total
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Wigner satisfies the Liouville-like evolution equation [Haake and Reibold, 1985,
Zurek, 2003]

∂

∂t
W(q, p, t) = [H,W]PB , (3.24)

where H (3.1) is now considered as a function of the phase-space variables (q, p) =

(q0, p0, . . . , qN , pN) and where [. . ., . . .]PB are the Poisson brackets. Again, by the
linearity of the dependence of the solution for (q, p) on the initial conditions, an
initial Gaussian distribution remains Gaussian at later times. This means that the
Wigner is a real Gaussian, positive definite at all times, and fully characterized by
its first and second moments. This also applies to the bath and will be useful to
evaluate its entropy as we are going to see in section 6.

It was shown in refs. [Haake and Reibold, 1985, Fleming et al., 2011] that the
reduced Wigner satisfies the following partial differential equation:

∂

∂t
WS(z, t) =

[
∇T

z ·H(t) · z + ∇T
z · D(t) · ∇z

]
WS(z, t), (3.25)

where the pseudo-HamiltonianH(t) and diffusion D(t) matrices are respectively
given by

H(t) ≡
[

0 −1
Ω2

R(t) 2Γ(t)

]
= −Φ̇(t)Φ−1(t), (3.26)

D(t) ≡
[

0 −1
2 Dqp(t)

−1
2 Dqp(t) Dpp(t)

]
=

1
2

[
H(t)σT (t) + σT (t)HT(t) + σ̇T (t)

]
,(3.27)

where Φ(t) is the matrix propagator (3.16) and the thermal covariance matrix
σT (t) is defined by

σT (t) =

[
σ2

q,T Cqp,T

Cqp,T σ2
p,T

]
=

∫ t

0
dτ

∫ t

0
dτ′ Φ(t − τ)

[
0 0
0 ν(τ − τ′)

]
ΦT(t − τ′).

(3.28)
The noise kernel is defined as

ν(t) =
1
2
〈{η(t), η(0)}〉 =

∫ ∞

0
dω

γ(ω)
ω2 E(ω,T ) cosωt, (3.29)

so that we have explicitly

σT (t) =

∫ ∞

0
dω

γ(ω)
ω2 E(ω,T )


∣∣∣∣∫ t

0
dt′ A(t′)eiωt′

∣∣∣∣2 1
2

d
dt

∣∣∣∣∫ t

0
dt′ A(t′)eiωt′

∣∣∣∣2
1
2

d
dt

∣∣∣∣∫ t

0
dt′A(t′)eiωt′

∣∣∣∣2 ∣∣∣∣∫ t

0
dt′ Ȧ(t′)eiωt′

∣∣∣∣2
 .

(3.30)
H(t) and D(t) depend on the coupling strength via the damping and noise ker-

nels. The off-diagonal elements of the diffusion matrix are called the anomalous
diffusion coefficients.
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The solution of equation (3.25) can be found by a Fourier transformation, via
the method of characteristics [Fleming et al., 2011]:

W̃S(k, t) = W̃S(ΦT(t)k, 0) e−
1
2 kTσT (t)k, (3.31)

which appears as a product of a function depending on the Wigner at time zero
W̃S(k, 0), times a Gaussian one containing the thermal covariance. It clearly as-
sumes Gaussian form in our hypotheses where the initial W̃S (k, 0) is Gaussian
(3.20). The dynamics of the central oscillator is then fully described by the first
and second moments of the position and momentum operators:

〈z(t)〉 = Φ(t)z0; (3.32)
σ(t) = Φ(t)σ0Φ

T(t) + σT (t). (3.33)

The general covariance matrix σ(t) corresponds to the covariance matrix in (3.19)
if the averages 〈. . .〉 are evaluated with the total density operator at time t (2.4).
It appears as the sum of the contribution of the evolution of the initial conditions
and of the thermal covariance. The same expressions can be found by taking
the average over initial conditions of the operators in the Heisenberg form (3.3),
expressing the Ai0(t)’s as functions of A(t) (A.1) and by then using the coupling
strength (3.14) [Haake and Reibold, 1985]. The elements of the correlation matrix
are reported in more detail in A.2.

At finite sizes one expects oscillatory behavior both for the dissipation and the
diffusion coefficients. As in Ref. [Ullersma, 1966], in the following we are going
to assume an Ohmic form with a large cut-off for the couplings ε2

i in (3.14). This
choice enables us to obtain time-independent dissipation coefficients in the con-
tinuum frequency limit, while the diffusion ones only become time-independent
in certain limits such as the high temperature limit. In general, however, this
would not be the case: by assuming for example a sub-Ohmic coupling with a
slower decay for larger frequencies, one would have time-dependent and nonlo-
cal dissipation and diffusion coefficients at all times, even in the high-temperature
limit [Fleming et al., 2011].

3.3 Thermodynamic limit
The thermodynamic limit of an infinite number of bath oscillators is obtained by
substituting a continuous function γ(ω) to the discrete coupling strength (3.14).
We choose the Drude-like Ullersma coupling strength [Haake and Reibold, 1985,
Ullersma, 1966]

γ(ω) =
2
π

κα2ω2

α2 + ω2 . (3.34)
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The parameter κ tunes the strength of the coupling, while the cut-off α, which is
introduced in order to eliminate ultra-violet divergences, can be associated to the
bath memory time. In fact the damping kernel (3.13) with this coupling strength
is given by

K(t) = κα e−αt, (3.35)

and thus decays over times of order α−1.
The general form of the propagator A(t) following from the strength (3.34) can

be found in [Haake and Reibold, 1985]. It is characterized by three time scales:
Ω, Γ and λ, deriving from the poles λ, Γ ± iΩ of the Laplace transform of the
propagator (3.17). They are obtained by solving the following equations in which
the bare central oscillator frequency ω0, the coupling κ and the cut-off α appear:

λ + 2Γ = α , Ω2 + Γ2 + 2Γλ = ω2
0 ,

(
Ω2 + Γ2

) λ
α

= ω2
0 − κα. (3.36)

In this situation, the renormalized frequency Ω0 (3.8) of the central oscillator is
simply given by

Ω2
0 = ω2

0 − κα. (3.37)

The propagator A(t) describes a noisy damped oscillator, where Ω is the charac-
teristic frequency and λ and Γ characterize the damping rates. When the time
scale 1/λ is much shorter than 1/Γ and 1/Ω, the damping kernel K(t) (3.13) be-
comes delta-like and the evolution equation (3.10) becomes local in time. This is
obtained by taking the large cut-off limit, defined by

α � κ, ω0. (3.38)

We can then approximate (3.36) by

λ ' α , Γ ' κ/2 , Ω2
0 ' Γ2 + Ω2, (3.39)

and the propagator A(t) assumes the form

Aloc(t) =
1
Ω

sin(Ωt)e−Γt, (3.40)

which is typical of a damped Ornstein-Uhlenbeck process. One can observe in fact
that the pseudo-HamiltonianH(t), at O (1/α) and for t � 1/α, becomes equal to
the the time-independent matrix

H loc =

[
0 −1

Ω2
0 2Γ

]
. (3.41)

Since Ω0 is real, the transition between real and imaginary Ω corresponds to the
transition between the under-damped (Γ < Ω0) and the over-damped regimes (Γ >
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Figure 3.1: Transition between real (white) and imaginary (yellow) Ω. In the large cut-off

limit (3.38) it corresponds to the transition between under-damping Γ < Ω0 and over-
damping Γ > Ω0. For α/ω0 ≤

√
3 (on the left of the dotted line) one always has Ω2 > 0.

Ω0). The quantum and time-dependence features of our process are then contained
only in the noise kernel (3.29),

ν(t) = −κα2

1
2

cot
βα

2
e−αt +

1
π

∞∑
`=1

`

(ατβ)2 − `2 e−`t/τβ
 , (3.42)

where we have defined
τβ =

~β

2π
. (3.43)

We can thus define the following limits:

The low-temperature limit:

α � 1/τβ; (3.44)

The high-temperature classical limit:

1/τβ � α; (3.45)

The weak-coupling limit:

Γ � Ω, 1/τβ. (3.46)
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The noise kernel determines the thermal covariance matrix σβ (3.28) and,
via (3.27), the diffusion coefficients of the ME. Thus the quantum and time-
dependence features will show up in these quantities. One can evaluate the co-
variance matrix by using the local propagator (3.40) inside the general expression
(3.30), up to terms of O (1/α). Using this propagator instead of the general one
(see [Haake and Reibold, 1985, eq.(7.10)]) does not affect either the covariance
thermal matrix or the diffusion coefficients in the large cut-off limit, even for times
t < 1/α, since only correction of O (1/α) arise [Fleming et al., 2011]. Since the
coupling strength (3.34) is an even meromorphic function, the integrals appearing
in (3.30) can be evaluated by a contour integration in the complex plane.

Complete expression for the thermal correlation matrix in the large cut-off

limit, which are exploited in the following for the calculation of the entropies,
were derived in [Haake and Reibold, 1985] and are reported in A.2. Their quan-
tum features are due to the presence of the function E(ω,T ), whose poles at
ω = ik 2π/τβ with k any integer, give rise to the thermal transients, i.e., to terms
which vanish on a time scale of order τβ. These terms are also responsible for the
time-dependence of the diffusion coefficients of the master equation [Haake and
Reibold, 1985]. In the high-temperature classical limit, where E(ω,T ) approaches
T , all the thermal transients vanish and the expressions of the covariance matrix
simplify.

One can deduce from equations (3.16), (3.31) and (3.40) that, since
limt→∞ Aloc(t) = 0, in the thermodynamic limit the system eventually loses all
information on its initial conditions, and its distribution assumes the character-
istic Gaussian form corresponding to the late-time thermal covariance matrix, as
described in the next subsection.

An important feature of this model is the presence of initial slips in the mo-
mentum average, in the non-thermal part of the averaged square momentum and
of the correlation between Q and P. Using the local propagator (3.40) from t = 0,
implies neglecting an initial evolution of the system during a short time of order
1/α, in which the central oscillator is subjected to an initial kick [Fleming et al.,
2011, Haake and Reibold, 1985]. One can easily observe, indeed, that

Ä(0) = 0 , Äloc(t=0+) = −2Γ. (3.47)

Our description will thus only be valid for t � 1/α. The effect of initial slips both
on the moments and on the definitions of entropy production is discussed in A.3.

Late-time covariance matrix
In the thermodynamical limit it is possible to evaluate the long-time behavior of
the diffusion coefficients and of the covariance thermal matrix. They are related
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by

Dqp(∞) =
〈
P2(∞)

〉
−Ω2

0

〈
Q2(∞)

〉
; (3.48)

Dpp(∞) = 2Γ
〈
P2(∞)

〉
. (3.49)

Thus the anomalous diffusion coefficients survive, since the right-hand side of the
first equation of (3.48) does not vanish. This implies that equipartition does not
hold in the general quantum case.

Interestingly, as observed in [Haake and Reibold, 1985], one obtains〈
Q2(∞)

〉
=

〈
Q2

〉
eq

,
〈
P2(∞)

〉
=

〈
P2

〉
eq
, (3.50)

namely that the stationary form of the central oscillator density matrix at t = ∞

equals the traced canonical equilibrium one of the total system:

ρS(∞) = ρst
S = trBρ

eq , ρeq ≡
e−βH

Z
, Z = tre−βH. (3.51)

This does not mean of course that the total system equilibrates: ρ(∞) , ρeq [Hilt
et al., 2011]. Furthermore, it has been shown in [Grabert et al., 1984] that

ρS(∞) = ρ
eq
S ≡

e−βHeq
S

Zeq
S

, Zeq
S = trSe−βHeq

S , (3.52)

where the equilibrium effective Hamiltonian Heq
S is given by

Heq
S =

1
2Meff

P2 +
1
2

Meffω
2
effQ2. (3.53)

The effective frequency ωeff and mass Meff are respectively given by

ωeff =
2
β~

coth−1
(
2
~

√〈
Q2〉

eq
〈
P2〉

eq

)
, Meff =

1
ωeff

√〈
P2〉

eq〈
Q2〉

eq
. (3.54)

Expressions for
〈
Q2

〉
eq

and
〈
P2

〉
eq

can be found in [Grabert et al., 1984] and [Haake
and Reibold, 1985], and are reported in (A.19,A.20).

It is worth noticing that the traced canonical equilibrium density matrix (3.52)
can be equivalently written in the form [Hänggi et al., 2008, Hänggi and Ludwig
Ingold, 2006]:

ρ
eq
S =

e−βHMF
S

ZMF
S

, HMF
S = −

1
β

ln
tre−βH

ZB
, ZMF

S =
Z
ZB

, (3.55)
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where an Hamiltonian of mean force HMF
S has been introduced, which differs from

the effective Heq
S by the additive constant −β(ln ZMF

S − ln Zeq
S ). Both partition func-

tions have a well-known analytical expression [Grabert et al., 1984]. For the prac-
tical purpose of evaluating the Breuer entropy flow (2.16) we will use the effective
Hamiltonian. However we emphasize that the use of the mean force Hamiltonian
leads to exactly the same entropy production (since only the density matrix is
involved) and heat flow (since only differences in energies are considered).

The identities (3.50,3.51,3.52) do not generally hold in open quantum systems.
They are however an important feature of our bilinear model and hold indepen-
dently of the choice of the continuous limit strength.
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Chapter 4

Explicit forms of the entropy
production

We report here the explicit forms of the entropy production, according to the P
(2.9), the ELB (2.17) and the ‘Breuer’ expression obtained in (2.13). To evaluate
them one needs to know the expressions of the entropy and the entropy flow.

Since the central oscillator density matrix is Gaussian at each time t, its von Neu-
mann entropy entropy is given by [Agarwal, 1971]

S (t) = −trSρS(t) ln ρS(t)

=

(
∆(t) +

1
2

)
ln

(
∆(t) +

1
2

)
−

(
∆(t) −

1
2

)
ln

(
∆(t) −

1
2

)
, (4.1)

where we have defined

∆(t) = ~−1
(
σ2

q(t)σ2
p(t) −C2

qp(t)
)1/2

, (4.2)

which is a function of the correlation matrix at time t. One notices that S (t) is well
defined if the uncertainty principle is satisfied.

The ‘Poised’ entropy production can be written as

∆iS P = ∆S − ∆eS P; (4.3)
∆eS P = tr (ρS (0) − ρS (t)) ln ρ∗S (t). (4.4)

The ‘Poised’ density matrix ρ∗S (t) is Gaussian with vanishing means of Q and P
(as shown in A.4) and is given by

ln ρ∗S (t) = −
1
2

ln
(
∆∗2(t) −

1
4

)
−

Λ∗(t)
2~2∆∗(t)

ln
∆∗(t) + 1

2

∆∗(t) − 1
2

, (4.5)
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where we have defined

∆∗(t) = ~−1
(
σ∗q

2(t)σ∗p
2(t) −C∗qp

2(t)
)1/2

; (4.6)

Λ∗(t) = σ∗p
2(t)Q2 + σ∗q

2(t)P2 −C∗qp(t){Q, P}. (4.7)

The variances and correlation σ∗q,p
2(t) and C∗qp(t) are given in A.4. Then one ob-

tains

∆eS P =
〈Λ∗(t)〉t − 〈Λ∗(t)〉0

2~2∆∗(t)
ln

∆∗(t) + 1
2

∆∗(t) − 1
2

, (4.8)

where we have defined, for any operator O acting on the Hilbert space of S, 〈O〉t =

trρS(t)O.
As for the Breuer entropy flow, ∆eS Br is straightforwardly given by the change

in the effective energy Heq
S (3.53). Then one only needs to know position and mo-

mentum second moments at time t, which in the finite case are obtained from the
first moments and from the correlation matrix which appear in (A.5)-(A.10), while
in the continuum case one exploits the general expressions (3.32)-(3.30) with the
Ullersma coupling strength (3.34) (see (A.12) and (A.13)). The entropy flow ∆eS
is instead proportional to the change in the bath energy (2.20). To evaluate it, one
needs rather to evaluate the average of the interaction energy term 〈HI〉. By using
the Ullersma strength (3.34) in the large cut-off limit, it turns out that for t � 1/α

〈HI(t)〉 = Dqp(t) − κα
〈
Q2(t)

〉
, (4.9)

where Dqp(t) is the anomalous diffusion coefficient (3.27). This evaluation is re-
ported in A.6. Thus, by comparing definitions (2.20) and (2.16), we obtain the
difference between the two entropy flows is given by

∆S e − ∆eS Br = β
[
∆ 〈HS〉 − ∆

〈
Heq

S

〉
− κα

〈
Q2(t)

〉
+ Dqp(t)

]
. (4.10)

The difference of entropy production is the same with opposite sign.
As already mentioned, the expressions we use in the continuum limit for the

three definitions of entropy only apply for t � 1/α, after the initial slip has taken
place. Their contribution to entropy, which is reported in A.3, implies that the
entropy flows and productions often do not start from 0, as one can observe in the
following figures.

4.1 The Markovian case
Generally, in the limit of short-lived thermal transients, namely Γτβ � 1, the gen-
erator of the dynamics L can be considered time-independent, since the diffusion
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coefficients (3.27) are close to their t = ∞ limit (3.48). As we have seen in section
2.1, in this case the entropy production definition (2.13) and its time derivative
turn out to be consistently positive, as the system equilibrium density matrix ρeq

S
does not depend on time, and the entropy flow is given by the average variation of
the effective system Hamiltonian Heq

S , as already observed in equation (2.16). This
holds both in the high-temperature classical and weak-coupling limits [Haake and
Reibold, 1985].

4.1.1 Classical limit.
In the high-temperature classical limit (3.45) all the quantum features of the sys-
tem disappear and the anomalous diffusion coefficient vanishes, thus recovering
equipartition (3.48), since

〈
P2

〉
eq

= T , and
〈
Q2

〉
eq

= T/Ω2
0. In particular the equa-

tion satisfied by the Wigner has exactly the form of the Kramers equation for an
oscillator in contact with a bath at temperature T [Kramers, 1940, Risken, 1989].
In this limit, since we have ∆(t) � 1, ∀t, the system entropy (4.1) assumes its
classical form for a Gaussian distribution

S (t) ' 1 + ln ∆(t), (4.11)

Moreover the effective equilibrium energy is given by

Heq
S '

1
2

(Ω2
0Q2 + P2). (4.12)

Thus the definition (2.16) of the entropy flow reduces to that of stochastic ther-
modynamics, which is defined as the average variation of the effective energy of
the system, namely the classical one with the renormalized frequency Ω0 in place
of ω0. This means that the corresponding definition of the entropy production co-
incides in this limit with the one introduced in the theory of stochastic thermody-
namics for the Kramers equation [Imparato and Peliti, 2006]. In the overdamped
limit Γ � Ω0 the momentum equilibrates much faster than position and can thus
be traced out. The entropy production assumes in this case the form proposed
in the theory of stochastic thermodynamics for the overdamped Fokker-Planck
equation [Seifert, 2005]. As long as momentum has not yet fully equilibrated,
the latter expression constitutes a lower bound to the former one since it results
from a coarse graining procedure (see, e.g., [Gomez-Marin et al., 2008]). Let us
also note that by taking the weak coupling limit κ → 0 one gets in (4.12) the bare
frequency ω0, and that then the entropy flow becomes exactly equal to the change
in the central oscillator energy, divided by the temperature of the bath.

We show in Figure 4.1 the high-temperature limit (3.45) of the difference be-
tween the different definitions of the entropy production with different coupling
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Figure 4.1: The different expressions for the entropy production (left) and the entropy
flow (right), for different couplings κ (top and center underdamped, bottom overdamped)
in the classical regime. The parameters are: temperature T = 1000, α = 10, ω0 = 1,
σ2

q(0) = 100, σ2
p(0) = 100, Cqp(0) = 10, 〈Q(0)〉 = 100, 〈P(0)〉 = 100.

strengths. In the classical limit the anomalous diffusion term in (4.9) vanishes and
the normal diffusion coefficient is time independent. This means that the Poised
and Breuer expressions for entropy become equal: ∆iS Br = ∆iS P. Considering
also the expression assumed by Heq

S (4.12), the expression (4.10) for the differ-
ence of flows simplifies to

∆eS − ∆eS Br = −
β

2
κα

(〈
Q2(t)

〉
+

〈
Q2(0)

〉)
. (4.13)

The same difference with opposite sign holds for the entropy production. In the
classical limit the thermal part of

〈
Q2(t)

〉
is proportional to 1/βΩ2

0. This means that
the difference between the two expressions for the entropy production diverges,
since for large κ one has

Ω2
0 = ω2

0 − κα→ 0. (4.14)

This appears clearly in the figure, where the different expressions for the en-

48



tropy production ∆iS and for the entropy flow ∆eS are shown for different cou-
pling strengths κ, both in the underdamped and the overdamped regime.

The difference between the definitions is due to the fact that the expression
∆iS and the corresponding expression ∆eS of the entropy flow both diverge in the
limit (4.14) as 1/Ω2

0,

∆eS (∞) = 1 −
1
2
κα

Ω2
0

−
β

2

(
ω2

0

〈
Q2(0)

〉
+

〈
P2(0)

〉)
. (4.15)

However, the expression ∆iS Br diverges only logarithmically like the von Neu-
mann entropy:

∆S (∞) ' | ln βΩ0| − S (0) (4.16)

In fact the expression ∆eS Br does not diverge, since in the effective Hamiltonian
(4.12) only the renormalized frequency appears: Meffω

2
eff
→ Ω2

0.
One notices in Figure 4.1 that both expressions of the entropy productions

are positive, but that the ELB one, ∆iS , exhibits damped oscillations yielding a
nonpositive time derivative. This can be directly seen from the fact that the time
derivative of ∆iS Br is positive, due to the fact that the process is time indepen-
dent (cf. sec. 4.1), and that the ELB one differs from it by a constant plus a term
proportional to

〈
Q2(t)

〉
, which is characterized by damped oscillations.

We remark here that usually in literature the total Hamiltonian is renormal-
ized by a self interaction term, such that no positivity condition similar to equa-
tion (3.8) has to be satisfied. In this case there would not be any divergence of〈
Q2(t)

〉
, which would be proportional to T/ω2

0, but the difference between the
two definitions of the entropy production can be made arbitrarily large by taking
κ → ∞ [Nieuwenhuizen and Allahverdyan, 2002].

4.1.2 Weak-coupling limit
Another case in which the entropy flow is the equal to the one defined in stochastic
thermodynamics is the weak-coupling limit in the general quantum setting Γ �

Ω, τ−1
β . Some care is needed, since the anomalous diffusion coefficient Dqp(t) does

not vanish at long times to first order in the coupling Γ, just as the normal diffusion
coefficient Dpp(t):

Dqp(∞) =
2
π
~Γ Re

[
ψ(1 + λτβ) − ψ(1 + iΩτβ)

]
+ O

(
Γ2

)
; (4.17)

Dpp(∞) = 2ΓE(Ω,T ) + O
(
Γ2

)
, (4.18)

where ψ(z) is the digamma function. Anyway their contribution to
〈
Q2

〉
eq

is differ-
ent as Dpp(t) contributes to order one, while Dqp(t) to order Γ as seen by inverting
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Figure 4.2: Entropy productions ∆iS P, ∆iS Br and ∆iS at different values of the coupling
κ: 0.01 (blue), 0.04 (green), 0.08 (red), 0.09 (cyan) with temperature T = 0.001 (left), and
different temperatures T : 0.001 (blue), 0.01 (green), 0.1 (red), 1.0 (cyan), with κ = 0.09
(right). Initial condition are fixed: σ2

q(0) = 1.0, σ2
p(0) = 1.0, Cqp(0) = 0, 〈Q(0)〉 = 0,

〈P(0)〉 = 0.

(3.48). One gets then equipartition to first order in Γ:〈
Q2

〉
eq

= E(Ω,T )/Ω2 + O (Γ) ,
〈
P2

〉
eq

= E(Ω,T ) + O (Γ) , (4.19)

where Ω can be approximated by Ω0 to first order in Γ. This correspond to an
equilibrium density matrix ρeq

S (3.52) corresponding to the equilibrium Hamilto-
nian

Heq
S =

1
2

(ω0Q2 + P2) (4.20)

which is the same as the central oscillator one (3.1).
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4.2 Low-temperature limit
In the low-temperature limit (3.44) one expects that the Breuer entropy production
expression (2.13), as well as its time derivative, can become negative. The Poised
and ELB expressions (2.17) remain instead positive, while their time derivative
can be negative. As we observe in Figure 4.2, for sufficiently low temperature and
strong couplings, the expression ∆iS Br becomes negative, exhibiting an oscillatory
behavior. At higher temperatures or weaker couplings the amplitude of the oscilla-
tions becomes smaller. Thus in these limits one obtains a positive definite entropy
production, as well as a positive time derivative. We observe that the Poised and
Breuer entropy production have the same asymptotic value, as expected, since
ρ∗S(∞) = ρ

eq
S .

One notices that also in the low-temperature limit (3.44) the ELB expression
can be orders of magnitude larger than the other two, due to the coupling term
κα

〈
Q2(t)

〉
which appears in the entropy flow. This difference can be much larger

respect to the classical case, due to the presence of the quantum terms contained
in

〈
Q2(t)

〉
, which actually become more relevant than the classical one.
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Chapter 5

Poincaré recurrences

When the number N of bath oscillators is finite, the dynamics is characterized by
a recurrent behavior, with a period identified by the Poincaré recurrence time tP ∼

2π/min(zν+1−zν) [Ullersma, 1966], where the zν’s are the normal frequencies. We
can interpret this recurrence as an almost periodic return to the initial decoupled
state. Interestingly, while ∆iS remains positive by definition, one might have a
negative ∆iS Br, even in the classical case. When the size of the bath becomes
larger, the recurrence time grows, and one expects that the entropy approaches
its typical irreversible behavior, eventually relaxing to the equilibrium asymptotic
value.

In the present section we study this behavior in the two specific cases of
uniform and Lorentzian frequency sampling, always assuming that the coupling
strength converges to the Ullersma expression (3.34). Indeed, the density of states∑

i δ(ω − ωi) inside the coupling strength can be arbitrarily chosen. We evaluate
the thermal covariance matrix components σ2

q,T (t), σ2
p,T (t), and the equilibrium

symmetrized autocorrelation function C(t), defined by

C(t) =
1
2
〈{Q(t),Q(0)}〉eq . (5.1)

We can also consider the Fourier transform of the correlation function C(t). In-
deed, in the classical limit, the finite-size correlation function has the expression

CN(t) = T
N∑
ν=0

X2
0ν

z2
ν

cos(zνt). (5.2)

We can thus represent the Fourier transform C̃N(ω) of C(t) by setting it equal to
T X2

0ν/(z
2
ν ∆ν), where ∆ν = zν − zν−1, and considering it as a function of ω = zν.

This quantity should approach, as N → ∞, the Fourier transform of C(t), which
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is given by

C̃(ω) = T
κα2/(2π)

(ω2 − ω2
0)2(α2 + ω2) + κ2α4 + 2κα3(ω2 − ω2

0)
. (5.3)

We will see that the convergence to the large-size irreversible behavior is much
slower for the uniform than for the Lorentzian sampling, and that, in the former
case, the dynamics seems to remain characterized by underdamped oscillations
even at large values of N.

5.1 Sampling

5.1.1 Uniform.
The uniform sampling is obtained by considering N frequenciesω` (` = 1, 2, . . . ,N)
spaced by a constant ∆. The maximal frequency N ∆ will be denoted by ωc. The
corresponding couplings are given by

ε` =

√
∆

2
π

κα2ω2
`

α2 + ω2
`

. (5.4)

Then the continuous-limit Ullersma strength is obtained for N → ∞, ωc → ∞ and
∆ = ωc/N → 0. In this case the Poincaré recurrence time is given by tP ' 2π/∆.

5.1.2 Lorentzian.
In order to obtain a faster convergence with longer Poincaré recurrence times, and
a better agreement with the continuum curve both in the under-damping and in the
over-damping cases, one can adopt a Lorentzian sampling of frequencies. Positive
frequencies distributed with a Lorentzian density centered at ω = 0, with width a0

are defined as

ω` = a0 tan
[

`

N + 1
π

2

]
, (5.5)

with ` = 1 . . .N and with the corresponding couplings

ε` =

√
∆`

2
π

κα2ω2
`

α2 + ω2
`

, (5.6)

where ∆` = ω` − ω`−1, ` = 2, . . . ,N and ∆1 = ω1. This sampling enables a
high density of frequencies in the area around ω = 0, then determining a long
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recurrence time. One can adjust the value of ∆N in such a way as to have, for all
values of N, ∑

`

ε2
`

ω2
`

= κα. (5.7)

We shall refer to this case as the adjusted Lorentzian sampling.

5.2 Results
In Figure 5.1 we report the correlation function and the thermal part of second mo-
ments of the central oscillator in the classical continuum limit both for an under-
damping and an over-damping set of parameters. These are compared with the
results obtained in the finite case with N = 600 bath particles, both with a uni-
form and Lorentzian sampling of the bath frequencies. The parameters ωc and a0

are chosen so that the Ullersma’s spectrum is sampled beyond the cut-off α, and
the recurrence time is of the order of the characteristic relaxation time 1/Γ. Fi-
nally curves obtained with the adjusted Lorentzian sampling are reported, where
the parameter a0 is chosen so that the recurrence time is much longer than 1/Γ.

In the under-damping case, for a finite bath and for times shorter than the
recurrence time, C(t) exhibits the typical damped oscillating behavior of the con-
tinuum limit, apart from a shift in the oscillation frequency Ω. On the other hand,
σ2

q,T (t) and σ2
p,T (t) exhibit in the finite-size case the same dissipative behavior as

in the continuum case, with a characteristic time 1/Γ. However, while σ2
p,T (t)

seems to reach, before the Poincaré recurrence time, the same plateau value kBT
as in the continuum case, σ2

q,T (t) appears to reach a value lower than the one ex-
pected, i.e., 1/(βΩ2

0). These effects are due to the fact that the frequency shift∑
` ε

2
` /ω

2
` is different from the continuous limit one κα, which appears in Ω2

0. In

fact
[
β
(
ω2

0 −
∑
` ε

2
` /ω

2
`

)]−1
is equal to the plateau value of σ2

q,T (t) reached before
the recurrence.

In the over-damping case, as the effect of the frequency shift is larger, one
observes a larger difference between the continuum and the finite case. In fact,
while the continuum limit curves display the typical over-damped behavior with-
out any oscillations, the finite-case curves exhibit the same behavior observed in
the under-damping case. Moreover the difference between the plateau values be-
fore the recurrence for σ2

q,T (t), is also much larger.
It is clear from Figure 5.1 that with the Lorenzian sampling one obtains curves

that behave more similarly to the continuum ones, for the same bath size and recur-
rence times, with respect to the uniform case. This holds both for the oscillation
frequency of C(t) and the plateau value reached by σ2

q,T (t) before the recurrence.

54



0 50 100 150 200
−10000

−5000

0

5000

10000

15000

C
(t

)

Under-damping, κ = 0.09, α = 10.0, ω0 = 1.0

0 50 100 150 200
−100000

0

100000

200000

300000

400000

500000

600000

Over-damping, κ = 0.0998, α = 10.0, ω0 = 1.0

0 50 100 150
−6000

−3000

0

3000

6000

0 50 100 150 200
0

2000

4000

6000

8000

10000

12000

σ
2 q,
T

0 50 100 150 200
0

100000

200000

300000

400000

500000

600000

0 50 100 150
0

2000

4000

6000

0 50 100 150 200

t

0

200

400

600

800

1000

1200

σ
2 p
,T

0 50 100 150 200

t

0

200

400

600

800

1000

1200

Figure 5.1: Plot of C(t), σ2
q,T (t) and σ2

p,T (t) in the continuous limit (dashed), compared
with the corresponding curves obtained for N = 600 with a uniform frequency distribution
with ωc = 30.0 (blue), a Lorentzian distribution of frequencies with a0 = 20.0, (red) and
an adjusted Lorentzian distribution with a0 = 0.1 (green). They are obtained both for an
under-damping set of parameters (left column) and an over-damping one (right column)
in the classical case T = 1000. Insets are magnifications of the finite-size curves with
uniform sampling.
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Figure 5.2: Plot of C̃N(ω) vs. ω for different values of the size N of the bath and of the
maximal frequancy ωc (center) or the width a0, for a uniform (top), Lorentzian (center)
and adjusted Lorentzian (bottom) sampling of bath frequencies. The continuum limit
C̃(ω) corresponds to the dashed line.

One may notice the optimal agreement of the curves obtained with the adjusted
Lorentzian distribution with the continuum ones.

The same qualitative behavior of the finite size frequency sampling appear in
the Fourier transform of C(t). In Figure 5.2, with the same parameters of Fig-
ure 5.1, one notices that in the under-damping regime C̃(ω) is characterized by
a peak corresponding to the oscillation frequency Ω. A similar curve character-
izes X2

0ν/(z
2
ν∆ν), but the position of the peak is shifted. This shift corresponds to

the change in the oscillation frequency of CN(t) with respect to C(t). In the over-
damping case the N = 600 curve maintains the look of the under-damping case,
while the continuous one looses the peak, then confirming that in this case there
is a worse agreement between the continuous and the finite cases.

Things improve when ωc and the size N become larger, keeping the frequency
density constant. In this case the peak shifts towards its continuum position in the
under-damping case, while in the over-damping case the peak tends to disappear.
This improvement is due to the fact that the frequency shift

∑
` ε

2
` /ω

2
` approaches
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Figure 5.3: Entropy production vs. time t, according to the the three definitions ∆iS P,
∆iS Br and ∆iS , for a uniform distribution of bath frequencies with a cut-off ωc = 30,
for different sizes N: 3 (blue), 25 (green), 600 (red), and for the adjusted Lorentzian
distribution with a0 = 0.1 (yellow) for N = 600. The dashed black line corresponds to the
continuum limit. The initial conditions are those of Figure 4.1 in the classical case, apart
from the first moments

〈
Q2(0)

〉
= 10 and

〈
P2(0)

〉
= 10, while they are those of Figure 4.2

in the quantum case.

∫ ∞
0

dωγ(ω)/ω2 = κα. In fact the difference between these quantities is due to two
terms: one given by the difference between the sum

∑
` ε

2
` /ω

2
` and the integral up

to ωc, which is of order 1/N and is negligible for the sizes reported in Figure 5.2,
and one, more relevant, corresponding to the contribution to the integral arising
from frequencies larger than ωc. This term is proportional to κ. Thus, in order to
maintain the difference between

∑
` ε

2
` /ω

2
` and κα constant, ωc must increase as

κ increases. In particular for a given set of parameters, which would correspond
to over-damping in the continuum limit, one would never obtain over-damping
behavior if ωc is too small.

If ωc or a0 are kept fixed, and N increases, the behavior remains the same, only
the recurrence time tP increases and the smallest frequency z1 decreases.

With the Lorentzian sampling of parameters convergence improves both in the
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under-damping and in the over-damping cases. In fact, by choosing a0 and N so
that the recurrence time is of the same order as in the uniform case, the value of
the frequency shift is closer to κα. This is due to the fact that the highest frequency
is much larger. One has to exercise some care in choosing a0 neither too large (in
order to have long recurrence times) nor too small (in order to avoid too sparse a
sampling close to the highest frequency).

We also show in Figures 5.1 and 5.2 the effect of adjusting the coupling with
the highest-frequency oscillator. The behavior of the continuum is optimally
matched with the choice a0 = 0.1 and N = 600.

5.3 Finite-size entropy production
We report in figure 5.3 the behavior of the entropy production according to the
three definitions, i.e., the Poised (∆iS P: eq. (2.9)), the Breuer (∆iS Br: eq. (2.15))
and the ELB (∆iS : eq. (2.17)), for different values of N in the uniform case and
for N = 600 for the adjusted Lorentzian cases. One notices that in the adjusted
Lorentzian case one reaches an almost perfect agreement with the continuum limit
already for N = 600. In the quantum case the expression of the entropy production
∆iS obtained with the adjusted Lorentzian binning does not approximate perfectly
the continuum limit. This is due to the poor convergence of the term 〈Q(t)η(t)〉
which is contained in the averaged interaction energy 〈HI〉 (A.39). The same can
be observed for ∆S P

i , due to the noisy behavior of Ȧ(t) and Ä(t). At finite sizes the
Breuer expression ∆iS Br can assume negative values, whereas both ∆iS and ∆iS P

remain positive. However, in the uniform case one obtains a slower convergence
with respect to the Lorentzian case, both in the adjusted and in the non-adjusted
case (not shown).
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Chapter 6

Bath entropy

The bath entropy at time t is given by

S B(t) = −trρB(t) ln ρB(t), (6.1)

where ρB(t) = trSρ(t) is the reduced bath density matrix. Since the total density
matrix is not a product state ρS⊗ρB at times t > 0, one cannot simply split the total
entropy into system entropy plus bath entropy. Thus one introduces the correlation
entropy S c:

S tot = −trρ(t) ln ρ(t) = S (t) + S B(t) + S c(t). (6.2)

We note that −S c(t) is the mutual information between the central oscillator and
the bath [Nielsen and Chuang, 2000]. Since the total entropy is conserved and the
initial correlations vanish, one has S c(0) = 0 and, according to this definition,

S c(t) = −∆S (t) − ∆S B(t). (6.3)

We can easily verify that [Esposito et al., 2010]

S c(t) = −D

ρ(t)

∥∥∥∥∥∥ρs(t)
∏

r

ρr(t)

 ≤ 0. (6.4)

Thus the correlation entropy is always negative or zero. By comparing this last
equation with eq. (2.17), one finds [Esposito et al., 2010]

∆iS (t) + S c(t) = −β 〈∆HB〉 − ∆S B(t) = D[ρB(t)‖ρeq
B ] ≥ 0. (6.5)

One notices that if the approximation of a bath remaining at equilibrium (ideal
bath) were valid, i.e., ρB(t) = ρ

eq
B , the correlation entropy would be equal to minus

the entropy production S c(t) = −∆iS (t). In this case the variation of the bath
entropy would be equal to the heat flow.
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Figure 6.1: Entropy change in the bath ∆S B, correlation entropy S C and Kulbach-Leibler
distance between ρB(t) and ρ

eq
B in the high temperature T = 1000 regime, for different

values of the coupling κ, for a uniform sampling of frequencies with ωc = 30 (blue), and
for a adjusted Lorentzian one with a0 = 0.1 (red). The bath size is N = 600 and other
relevant parameters are set as for figure (5.3).

The method to numerically evaluate the bath entropy is detailed in A.7. This
calculation relies on the fact that the bath density matrix is Gaussian at each time,
and therefore is fully characterized by the time-evolving bath covariance matrix
(A.8). We now turn to the discussion of the results.

As observed before for the central oscillator entropy, with an adjusted Lorentzian
sampling of frequencies the Poincaré recurrence times are much longer, and one
can observe a convergence toward an asymptotic plateau of the different quan-
tities, as shown for the classical case in figure 6.1. In particular the asymptotic
value of ∆S B does not depend on the coupling constant κ, while, in agreement
with (A.56), it depends on the initial variances of the central system (see A.8).
Interestingly, in the over-damping case ∆S B increases at the beginning, reaching
a maximum independently of the initial conditions, before decreasing to the equi-
librium value, much as minus the interaction energy (4.9) does (not shown). The
relaxation time is longer than that of the central oscillator. This does not happen
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Figure 6.2: Same as figure 6.1 but in the low-temperature case T = 0.001, with the other
parameters set as in figure 4.2.

in the under-damped regime.
Once the bath entropy ∆S B is evaluated, one also gets the correlation entropy

S c using (6.3) and then the distance D[ρB(t)‖ρeq
B ] using (6.5). S c is negative by

definition (6.4), and its absolute value grows with the coupling as − ln(ω2
0 − κα),

since κα approaches ω2
0, similarly to the entropy of the system ∆S (4.16). Like

the interaction energy term (4.9), the asymptotic value of S c does not depend on
the initial conditions of the central system (data not shown). It turns out instead
that the asymptotic value of S c vanishes as κ → 0. This is confirmed by the fact
that the coupling-independent asymptotic value of ∆S B equals minus the central
oscillator entropy change in the limit of vanishing coupling:

∆S B(∞) = − ∆S (∞)|κ→0 = −

[
ln

T
ω0
− ln ∆(0)

]
. (6.6)

The distance D(ρB(t)‖ρeq
B ) increases with the coupling as κα/(ω2

0 − κα), like
the negative entropy flow (cf. equation (4.15)). This quantity does not vanish for
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κ → 0, where it equals the entropy production:

D(ρB(∞)‖ρeq
B )

∣∣∣
κ→0

= ∆S i|κ→0 = [∆S (∞) − ∆eS (∞)]κ→0 (6.7)

= ln
T
ω0
− ln ∆(0) − β

[
T −

1
2

(ω2
0

〈
Q2(0)

〉
+

〈
P2(0)

〉
)
]
.

As a consequence, the bath density matrix operator is always changed and
the Kullback-Leibler distance from the density operator at canonical equilibrium
becomes larger when increasing the coupling. This suggests that for our model
the ideal bath approximation, namely the assumption ρB(∞) ' ρeq

B , which would
imply ∆S B ' −∆eS = β∆ 〈HB〉 (6.5), is not valid even in the thermodynamic
limit. One observes in figure 6.2 that in the quantum case the asymptotic value
of the bath entropy change appears to grow with the coupling, which could be
an effect of the entanglement or quantum correlations between the bath and the
system. The dependence on the coupling is apparently weaker than that exhibited
by the entropy flow. This means that also here the Kullback-Leibler distance
between ρB(t) and ρeq

B is relevant and strongly increases with the coupling. Due
to the quantum contribution in the interaction term, its asymptotic value can be
orders of magnitude larger than the one assumed in the high-temperature limit, in
the same way ELB entropy production does. In the limit of vanishing coupling
analogous considerations of the classical case can be made, since the correlation
entropy S c vanishes.
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Chapter 7

Two Baths QBM

We consider here the case where the harmonic oscillator is bilinearly coupled to
two baths L (left) and R (right) of harmonic oscillators (2.54). The Hamiltonian
of the reservoirs and the interaction terms are written as

HL =
1
2

NL∑
i=1

(
ω2

LiQLi
2 + PLi

2
)
, HR =

1
2

NR∑
i=1

(
ω2

RiQRi
2 + PRi

2
)
,

HIL =

NL∑
i=1

εLiQ0QLi, HIR =

NR∑
i=1

εRiQ0QRi. (7.1)

The Heisenberg solutions for the left and right reservoir particles and for the cen-
tral oscillator reads as in the single bath case (3.3). In this case functions Aµν(t),
with indexes µ, ν = 0, . . .NL + NR, can be expressed in terms of the function:

g(z) = z2 − ω2
0 −

NL∑
i=1

ε2
Li

z2 − ω2
Li

−

NR∑
i=1

ε2
Ri

z2 − ω2
Ri

, (7.2)

whose zeros are the 1+ NL + NR normal frequencies of the total Hamiltonian (7.1).
From (7.2) one gets the condition to be fulfilled in order to obtain a positive

definite Hamiltonian:

Ω2
0 = ω2

0 −

NL∑
i=1

ε2
Li

ω2
Li

−

NR∑
i=1

ε2
Ri

ω2
Ri

≥ 0. (7.3)

By using the Heisenberg solutions for the baths position operators as function of
the solution for the central oscillator, one finds that the central oscillator satisfies
a Quantum Langevin Equation (QLE) of the same form as in the single bath case
(3.10): noise in matrix H(t) (3.11) is now ηT(t) = (0, η(t) = ηL(t) + ηR(t)) with
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component η(t) being just the sum of the components associated to the two baths

ηL(t) =

NL∑
i=1

εLi

[
QLi(0) cosωLit +

PLi(0)
ωLi

sinωLit
]
, (7.4)

ηR(t) =

NR∑
i=1

εRi

[
QRi(0) cosωRit +

PRi(0)
ωRi

sinωRit
]
.

This holds also for the damping kernel K(t) which becomes the sum of the two
following components:

KL(t) =

∫ ∞

0
dω

γL(ω)
ω2 cosωt, KR =

∫ ∞

0
dω

γR(ω)
ω2 cosωt, (7.5)

where γL(ω) and γR(ω) is the coupling strengths to the L and R reservoirs:

γL(ω) =

NR∑
i=1

ε2
Li δ(ω − ωLi), γR(ω) =

NR∑
i=1

ε2
Ri δ(ω − ωRi). (7.6)

Also the forcing term F(t) = (0,K(t)Q(0)) contains the new damping kernel. The
solution of the QLE has then the same form (3.15) with different noise η(t) and
matrix propagator Φ(t). In fact the Laplace transform of A(t) is given by

Â(s) =
1

s2 + sK̂(s) + Ω2
0

, K̂(s) = K̂L(s) + K̂R(s). (7.7)

As in the single-bath case all the moments of the total system can be determined
analytically.

7.1 Initial conditions and evolution
Given initial conditions (2.55), we are going to restrict to a Gaussian density ma-
trix for the central oscillator. Density matrices of the central system and the reser-
voirs are both Gaussian, so that they are completely defined by first and second
moments of momentum and position operators. The covariance matrix and first
moments of the central system S are chosen arbitrarily, and for the baths L and R
we have:

〈QLi(0)〉 = 〈PLi(0)〉 = 〈{QLi(0), PLi(0)}〉 = 0, (7.8)〈
Q2

Li(0)
〉

= E(ωLi,TL) ,
〈
P2

Li(0)
〉

=
E(ωLi,TL)

ω2
Li

,

〈QRi(0)〉 = 〈PRi(0)〉 = 〈{QRi(0), PRi(0)}〉 = 0,〈
Q2

Ri(0)
〉

= E(ωRi,TR) ,
〈
P2

Ri(0)
〉

=
E(ωRi,TR)

ω2
Ri

.
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Similarly to the single-bath case, due to linearity of evolution and the initial
absence of correlations between the central system and the reservoirs, the reduced
Wigner satisfies an equation of the form (3.25). The pseudo-Hamiltonian H(t)
(3.26) and diffusion D(t) (3.27) matrices depends now on a different propagator
A(t) (7.7), and a different noise Kernel

ν(t) =
1
2
〈{ηL(t), ηL(0)}〉 +

1
2
〈{ηR(t), ηR(0)}〉 = (7.9)

=

∫ ∞

0
dω

γL(ω)
ω2 E(ω,TL) cosωt +

∫ ∞

0
dω

γR(ω)
ω2 E(ω,TR) cosωt,

so that the thermal covariance matrix σTLR(t) (3.28) depends from the two bath
temperatures

σTLR(t) =

∫ ∞

0
dω

[
γL(ω)
ω2 E(ω,TL) +

γR(ω)
ω2 E(ω,TR)

]
× (7.10)

×


∣∣∣∣∫ t

0
dt′ A(t′)eiωt′

∣∣∣∣2 1
2

d
dt

∣∣∣∣∫ t

0
dt′ A(t′)eiωt′

∣∣∣∣2
1
2

d
dt

∣∣∣∣∫ t

0
dt′A(t′)eiωt′

∣∣∣∣2 ∣∣∣∣∫ t

0
dt′ Ȧ(t′)eiωt′

∣∣∣∣2
 .

Then the solution for the reduced Wigner in Fourier space has the form (3.31),
with σTLR(t) in place of σT (t). Since it is initially Gaussian, it remains Gaussian
at later times, so that it is specified by first and second moments of the momentum
and position operators:

〈z(t)〉 = Φ(t)z0; (7.11)
σ(t) = Φ(t)σ0Φ

T(t) + σTLR(t). (7.12)

The covariance matrix is the sum of a part depending from initial conditions of
the central system, and the thermal covariance part (7.11).

7.2 Thermodynamic limit
The thermodynamic limit of an infinite number of bath oscillators is obtained
by substituting continuous function γL(ω) and γR(ω) respectively to the discrete
coupling strengths of the left and right reservoirs (3.14). We use in both cases a
Drude-like Ullersma coupling strength

γL(ω) =
2
π

κLα
2ω2

α2 + ω2 , γR(ω) =
2
π

κRα
2ω2

α2 + ω2 . (7.13)

The parameters κL and κR tune the strength of the coupling to the two reservoirs,
while the cut-off α, can be associated to the bath memory time. For simplicity we
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choose it to be equal for the two baths, since we are going still to consider a large
cut-off limit, so that we are not interested in what happens for t < α. Therefore
the damping kernel (3.13) is

K(t) = κLα e−αt + κRα e−αt, (7.14)

and thus decays over times of order α−1.
The general form of the propagator A(t) following from the strength (7.13)

remains the same as in the single-bath case. It is characterized by the three time
scales Γ, Ω and Λ which can be found from equations (3.36), after replacing κ =

κL + κR, so that the damping over the central system depends from the sum of the
couplings to the two baths. In particular in the large cut-off limit

α � κL + κR, ω0. (7.15)

it keeps the form of the Ornestein Uhlenbeck propagator (3.40), and one can ap-
proximate

λ ' α , Γ ' (κL + κR)/2 , Ω2
0 ' Γ2 + Ω2, (7.16)

The pseudo-diffusion matrix splits into two parts

D(t) =
κL

κL + κR
DL(t) +

κR

κL + κR
DR(t), (7.17)

as well as the thermal covariance matrix

σTLR(t) =
κL

κL + κR
σTL(t) +

κR

κL + κR
σTR(t), (7.18)

where the diffusion matrices DL(t), DR(t) and the thermal covariance matrices
σTL(t) andσTR(t) have exactly the same form as in the single bath case (A.41)(A.12)
apart from the fact that time scales Ω and Γ depends now from the coupling
κ = κL + κR.

Basically one can consider here the limits:

The low-temperature limit:

α � 1/τβL , 1/τβR; (7.19)

The high-temperature classical limit:

1/τβL , 1/τβR � α; (7.20)

The weak-coupling limit:

Γ � Ω, 1/τβL , 1/τβR . (7.21)

where the thermal transients for the noise kernels of the two reservoirs (7.9)
1/τβL =, 1/τβR = are defined. Other possible combinations are due to the fact
that couplings and temperatures are different, so one may have one bath strongly
coupled and the other weakly, or one classical bath and the other quantum.
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Late-time covariance matrix
The late-time moments which characterize the steady state are the weighted sum
of the equilibrium moments of the single-reservoir case:〈

Q2(∞)
〉

=
〈
Q2

〉
ss

=
κL

κL + κR

〈
Q2

〉
eq,TL

+
κR

κL + κR

〈
Q2

〉
eq,TR

(7.22)〈
P2(∞)

〉
=

〈
Q2

〉
ss

=
κL

κL + κR

〈
P2

〉
eq,TL

+
κR

κL + κR

〈
P2

〉
eq,TR

, (7.23)

where the analytical expression for the average squared position and momentum
operators at equilibrium are given in (A.19)(A.20). Similarly to the single bath
case (3.52), the corresponding Gaussian steady-state density matrix can be put in
the form

ρS(∞) = ρss
S =

e−φ
ss
S

Zss
S

,Zss
S = trSe−φ

ss
S , (7.24)

where the quadratic operator φss
S is given by

φss
S =

1
2φ1

P2 +
1
2
φ1φ

2
2Q2. (7.25)

The coefficients φ1 and φ2 are expressed as

φ1 =
1
φ2

√〈
P2〉

ss〈
Q2〉

ss
, φ2 =

2
~

coth−1
(
2
~

√〈
Q2〉

ss
〈
P2〉

ss

)
, (7.26)

where terms
〈
Q2

〉
ss

and
〈
P2

〉
ss

are given in (7.22).

7.3 ELB entropy production rate
In the following we recover an analitic expression for the entropy flow rate Ṡ e(t).
By using the Heisenberg equations for left bath oscillators:

Q̇Li = PLi, ṖLi = −ω2
LiQLi(t) − εLiQ(t) (7.27)

the time derivative of the averaged left reservoir energy HL(t) can be written as :

〈
ḢL(t)

〉
= −

NL∑
i=1

εLi 〈PLi(t)Q0(t)〉 . (7.28)

A similar expression holds for the time derivative of the right reservoir energy
HR(t).
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Moreover we define the average energy current JL(t) from the left reservoir to
the central oscillator as:

JL(t) = −

〈∑
i

εLiP(t)QLi(t)
〉
. (7.29)

Then by using (7.29) and (7.28), one finds:〈
ḢL(t)

〉
= −JL(t) −

〈
ḢIL(t)

〉
,

with an analogous expression holding for
〈
ḢR(t)

〉
. This means that the entropy

flow rate, which is defined as the time-derivative of (2.58), is equal to

Ṡ e(t) =
JL

TL
+

JR

TR
+

1
TL

〈
ḢIL(t)

〉
+

1
TR

〈
ḢIR(t)

〉
, (7.30)

which we are able to express explicitly in the large cut-off limit since we have (see
(A.67)(A.70)):

JL(t) '
κL

κL + κR
Dpp,TL(t) − κL

〈
P2(t)

〉
+ κLαCqp(t) (7.31)〈

ḢIL(t)
〉
'

κL

κL + κR
Ḋqp,TL(t) − 2κLαCqp(t) (7.32)

and analogously for JR and
〈
ḢIR(t)

〉
, where diffusion coefficients Dpp,TL and Dqp,TL

are the same as in the single-bath case at temperature TL in the large cut-off limit
(7.15), with coupling coefficient κ = κL + κR.

A complete expression for the entropy flow rate is reported in (A.72). In the
late-time limit one has

Ṡ e(∞) = −Ṡ i(∞) =
κLκR

κL + κR

[〈
P2

〉
eq,TL
−

〈
P2

〉
eq,TR

] ( 1
TL
−

1
TR

)
(7.33)

which is always negative, since the average squared momentum at equilibrium
(A.20) is an increasing function of the temperature. This was expected, since the
late-time value of Ṡ i(t) has to be positive by definition, in order to guarantee the
positivity of ∆iS .

By using general expressions (2.72)(2.73), the ’Breuer’ adiabatic and non-
adiabatic contributions to ELB entropy production rate Ṡ i are given by

Ṡ Br
a (t) = −Ṡ e(t) +

〈
φ̇ss

S (t)
〉
, Ṡ Br

na(t) = Ṡ (t) −
〈
φ̇ss

S (t)
〉
. (7.34)

We have used the averaged operator φss
S (t) (7.25) and the entropy rate

Ṡ (t) = ∆̇(t) ln
∆(t) + 1

2

∆(t) − 1
2

, (7.35)

where ∆(t) was defined in (4.2).
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Conclusions

In this work we studied the thermodynamic description of a process of transient
relaxation in the QBM model where a central harmonic oscillator initially pre-
pared in a Gaussian nonequilibrium state is bi-linearly coupled with a bath of
harmonic oscillators initially prepared at equilibrium.

We compared two ways of defining entropy production during the ensuing re-
laxation process of the central oscillator. Both definitions are expressed as the
difference between the change is the von Neumann entropy of the system minus
an heat divided by the temperature of the reservoir. The ‘ELB’ one is based on
defining this heat as minus the energy change in the bath and thus has a straight-
forward physical interpretation, while the ‘Poised’ one (beyond non-Markovian
transients) defines heat in a less transparent way in term of the change in an ef-
fective “mean force” Hamiltonian. Both expressions are positive by definition but
in a general non-Markovian quantum regime they both may exhibit oscillations.
However, in the Markovian limit, while the ‘ELB’ may still exhibit oscillations,
the ‘Poised’ one becomes a monotonically increasing function of time. The two
definitions coincide for vanishing coupling but we have shown that for finite cou-
pling the ‘ELB’ is always larger than the ‘Poised’ one. Their difference contains
the expectation value of the interaction Hamiltonian and can thus be made arbi-
trarily large. In the low-temperature limit the contribution due to the quantum
corrections in the interaction term can make this difference order of magnitudes
larger than in the classical case. Finally, we showed that in the classical over-
damped regime the ‘Poised’ one converges to the entropy production defined in
stochastic thermodynamics.

We numerically studied the exact dynamics of our system for a finite number
of oscillators in the bath. Using two different samplings of the bath frequencies,
a uniform and a Lorentzian ones. In both cases the period of the Poincaré re-
currences increases with growing density of bath frequencies but the Lorentzian
sampling guarantees a faster convergence to the continuum limit curves as a func-
tion of N.

Finally, we numerically studied the evolution of the von Neumann entropy of
the bath which results from the relaxation process of the central oscillator. This
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enabled us to calculate the evolution of the system-bath correlation entropy (or
minus the mutual information) and the Kullback-Leibler divergence between the
bath density matrix at time t and its initial thermal equilibrium form. We observed
that for a given initial condition of the central oscillator, the asymptotic value of
the bath entropy change does not depend on the coupling in the classical limit,
while it slightly does in the quantum regime. In the limit of vanishing coupling
strength the correlation entropy vanishes, what means that the change in the von
Neumann entropy of the bath becomes equal to minus the change in the central
system entropy. We also observed that the Kullback-Leibler divergence of the
bath density matrix never vanishes, thus indicating that the assumption of an ideal
bath which always remains at equilibrium is not satisfied. As expected, this diver-
gence grows significantly with the coupling, as the ELB expression of the entropy
production does.

While our study revealed important features in the QBM model, it also in-
dicates that no definite formulation of a consistent thermodynamics of out-of-
equilibrium quantum systems in presence of non-vanishing coupling with the bath
is yet available.

In the last chapter we obtained analytical expressions for the entropy produc-
tion rate for the QBM model with two reservoir. A future work could be a detailed
study of the adiabatic and non-adiabatic components of ’ELB’ entropy production
introduced here.

Another step could be a numerical study of the ’ELB’ and ’Lutz’ definitions
for entropy production in the case work is performed by changing the parameters
which characterize the system Hamiltonian or the interaction term, and observing
their behavior depending from the velocity of these transormations.
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Appendix A

Technical complements

A.1 Equivalence of the Ullersma and Fleming solu-
tions

The convolution with the noise in (3.15) corresponds to the sum over the bath
operators in (3.3) and the expression for bath operators in (3.3) correspond exactly
to that in (3.9). This equivalence is recovered thanks to the following equation
relating the quantities Ai0(t) to the propagator A(t), and to the equation relating
quantities Ai j(t) to Ai0(t), where i and j are bath indices:

Äi0(t) + ω2
i Ai0(t) = −εiA(t); (A.1)

Äi j(t) + ω2
j Ai j(t) = −ε jAi0(t). (A.2)

Given the initial conditions Ȧi0(t) = Ai0(t) = Ai j(t) = 0 and Ȧi j(t) = δi j these
equations imply that

Ai0(t) = −εi

∫ t

0
dτA(τ)

sin[ωi(t − τ)]
ωi

; (A.3)

Ai j(t) =
sin(ω jt)
ω j

δi j − ε j

∫ t

0
dτAi0(τ)

sin[ω j(t − τ)]
ωi

. (A.4)

A.2 Covariance matrix
In order to evaluate the covariance matrix of the central oscillator, one evaluates
the first and second moments for position and momentum Heisenberg operators.
From the Heisenberg solutions (3.3), one obtains by averaging over initial condi-
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tions (2.2) (3.19) (3.22) the following expressions:

〈Q(t)〉 = Ȧ(t) 〈Q(0)〉 + A(t) 〈P(0)〉 ; (A.5)
〈P(t)〉 = Ä(t) 〈Q(0)〉 + Ȧ(t) 〈P(0)〉 ; (A.6)
σ2

q(t) =
〈
Q2(t)

〉
− 〈Q(t)〉2

= Ȧ2(t)σ2
q(0) + 2Ȧ(t)A(t)Cqp(0) + A2(t)σ2

p(0) + σ2
q,T (t); (A.7)

σ2
p(t) =

〈
P2(t)

〉
− 〈P(t)〉2

= Ä2(t)σ2
q(0) + 2Ä(t)Ȧ(t)Cqp(0) + Ȧ2(t)σ2

p(0) + σ2
p,T (t); (A.8)

Cqp(t) =
1
2
〈{Q(t) − 〈Q(t)〉 , P(t) − 〈P(t)〉}〉

=
1
2

d
dt
σ2

q(t). (A.9)

The thermal parts of the covariance matrix for a finite bath have the form

σ2
q,T (t) =

N∑
`=1

[
Ȧ2
`0(t)/ω2

` + A2
`0(t)

]
E(ω`,T ); (A.10)

σ2
p,T (t) =

N∑
`=1

[
Ä2
`0(t)/ω2

` + Ȧ2
`0(t)

]
E(ω`,T ). (A.11)

The latter can be also generally written in integral form as shown in (3.30). By
combining equations (A.5)-(A.11) one easily obtains also the second moments of
the momentum and position operators.

With the continuous bath with the Ullersma coupling strength (3.34) and the
high cut-off limit (3.38), by inserting (3.40) in the equations (3.30), one obtains

σ2
q,T (t) = {1 + a2

loc(t)}
〈
Q2

〉
eq

+ A2
loc(t)

〈
P2

〉
eq

+ 2
[
Aloc(t)Ċ(t) − aloc(t)C(t)

]
; (A.12)

σ2
p,T (t) = Ω4

0A2
loc(t)

〈
Q2

〉
eq

+ {1 − Ȧ2
loc(t)}

〈
P2

〉
eq

+ 2
[
Ω2

0Aloc(t)Ċ(t) + Ȧloc(t)C̈(t)
]

; (A.13)

where aloc(t) = Ȧloc(t)+2ΓAloc(t), and the position equilibrium correlation function
(A.14) is given by

C(t) =
1
2
〈{Q(t),Q(0)}〉eq =

∫ ∞

0
dω

γ(ω)
ω2 E(ω,T )

∣∣∣∣∣∫ ∞

0
dt′ Aloc(t′)eiωt′

∣∣∣∣∣2 ; (A.14)∫ ∞

0
dt′Aloc(t′) eiωt′ =

1
(Γ − iω)2 + Ω2

. (A.15)
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When calculated with Aloc(t), it differs from the exact one by corrections of O (1/α):

C(t) =
1
βΩ2

0

aloc(t) +
~

2πΩ
Im

{
e−(Γ+iΩ)t

[
ψ(1 + (Γ + iΩ)τβ)

− ψ(1 + (Γ − iΩ)τβ)
]}

+ Cα,τβ(t), (A.16)

Cα,τβ(t) = κ~

 1
2α2

cot(πατβ)e−αt

((1 + Γ
α
)2 + (Ω

α
)2)((1 − Γ

α
)2 + (Ω

α
)2)

−
1
π

∞∑
`=1

(ατβ)2

(ατβ)2 − `2

`τ2
βe
−`t/τβ

((Ωτβ)2 + (` + Γτβ)2)((Ωτβ)2 + (` − Γτβ)2)

 .(A.17)

In this expression, ψ(z) = d ln ΓE(z)/dz is the digamma function, and τβ was de-
fined in 3.43. The last term contains the so called thermal transients, which vanish
slowly in the low-temperature limit. By discarding terms of O

(
1/α2

)
, in the quan-

tum limit ατβ � 1 it can be approximated for t � 1/α by the series [Haake and
Reibold, 1985]

Cα,τβ(t) '
~

πΩ
Im

∞∑
`=1

`e−`t/τβ

(Γ + iΩ)2τ2
β − `

2
. (A.18)

One should remark however that its second time derivative diverges at t = 0, and
that other terms should be taken in account in order to remove this divergence. We
truncate this sum to 50 terms, what guarantees a good description for t � 1/α.
One has however to take into account the fact that our approximations do not
describe well the behavior for t ≤ 1/α.

The equilibrium second moments one gets from the equilibrium correlation
function (A.14) at t = 0 are given by [Haake and Reibold, 1985]〈

Q2
〉

eq
= C(0) =

T
Ω2

0

+
~

πΩ
Imψ(1 + (Γ + iΩ)τβ); (A.19)〈

P2
〉

eq
= −C̈(0) = T +

2
π
~Γ Re

(
lnατβ − ψ(1 + (Γ + iΩ)τβ)

)
+
~(Ω2 − Γ2)

πΩ
Imψ(1 + (Γ + iΩ)τβ). (A.20)

Here the average is carried over the equilibrium density matrix ρeq (3.52). This
time, in order to correctly evaluate

〈
P2

〉
eq

to O (1/α), one has to consider all the

terms contained in Cα,τβ(t). One should keep in mind that
〈
P2

〉
eq

contains a contri-
bution lnα/ν, what explains the necessity of introducing a high-frequency cut-off.
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A.3 Effect of initial slips
As we have recalled in section (3.3), slips in the averaged momentum operator and
in the correlation matrix are produced by the kick-like force term F(t) in the QLE
(3.10), acting during an inital time interval of duration ∼ 1/α ' 1/λ. The local
propagator (3.40) actually contains such slips from t = 0+, so that it is correct
apart from corrections of O (1/λ) only for t � 1/λ (see eq. 3.47), namely when
the kick vanishes. In fact, while A(0) contains corrections of the kind (1/λ2)e−λt

with respect to Aloc(0), its second time derivative contains a term e−λt, so that it is
negligible only for t � 1/λ. With the local propagator (3.40) we are not going
to consider the detail of the evolution in the initial time interval of duration 1/α,
which is considered to be much shorter than the other time scales in the large
cut-off limit.

The initial slips correspond to a fast shift of the initial conditions:

〈P(0)〉 → −2Γ 〈Q(0)〉 + 〈P(0)〉 ;〈
P2(0)

〉
→ 4Γ2

〈
Q2(0)

〉
− 2Γ

〈
{Q(0), P(0)}

2

〉
+

〈
P2(0)

〉
; (A.21)〈

{Q(0), P(0)}
2

〉
→ −2Γ

〈
Q2(0)

〉
+

〈
{Q(0), P(0)}

2

〉
.

Let us now discuss the effect of the initial slips (A.21) on the Breuer (2.13) and
ELB (2.17) entropy definitions. They appear as a nonvanishing value for

lim
t→0+

∆eS (t) = ∆eS (0+), lim
t→0+

∆S (t) = ∆S (0+). (A.22)

For the Breuer entropy flow one has, by using the expressions of the moments
reported in (A.5):

∆eS Br(0+) = β

[
1

Meff

(2Γ2
〈
Q2(0)

〉
− ΓCqp(0))

]
, (A.23)

which is due to the shift on
〈
P2(0)

〉
. For the entropy change one has

∆S (0+) = (∆is(0) + 1) ln(∆is(0) + 1) − ∆is ln ∆is

−(∆(0) + 1) ln(∆(0) + 1) − ∆(0) ln ∆(0); (A.24)

∆is = (σ2
q(0)σ2

p(0) −Cqp(0)(Cqp(0) − 2Γσ2
q(0)))

1
2 −

1
2
, (A.25)

where ∆(0) is given in (4.1). ∆is > ∆(0) ≥ 0 satisfies the Heisenberg principle,
and therefore ∆S (0+) is always positive.
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For the ELB entropy flow one has

∆eS (0+) = β
[
2Γ2

〈
Q2(0)

〉
− ΓCqp(0)) − κα

〈
Q2(0)

〉]
. (A.26)

Here the sign is determined by the last term, which is generally larger than the first
one, due to the large value assumed by α. In principle one should also consider
a slip term 4

π
~Γψ(1 + λτβ) in

〈
P2(0)

〉
, because we used the approximate formula

(A.18) to calculate (A.13). However, the effect of neglecting this term as well as
the effect of the truncation of the sum in (A.18) are negligible compared to the
slips considered above.

A.4 Calculation of the Poised entropy production
In order to evaluate the Poised entropy production ∆iS P in eq.(2.9), we have to
find the poised density matrix ρ∗S(t). Once it is known, on can evaluate ∆iS P as

∆iS P = ∆S − ∆eS P = ∆S − trS (ρS(0) − ρS(t)) ln ρ∗S(t). (A.27)

In order to evaluate ρ∗S(t), we rewrite equation V(t)ρ∗S(t) = ρ∗S(t) in the Fourier
transform space associated with the corresponding Wigner W∗

S(q, p, t). Using
eq.(3.31) we get

W̃∗
S(ΦT(t)k, t) e−

1
2 kTσT (t)k = W̃∗

S(k, t). (A.28)

Since we only consider initial Gaussian distributions, we have seen that the so-
lution remains Gaussian at any time. Therefore, to solve (A.28), we look for
solutions of the form

W̃∗
S(k, t) = e−

1
2 kTσ∗(t)k−ikT z∗(t), (A.29)

where σ∗(t) is a symmetric 2 × 2 covariance matrix:

σ∗(t) =

[
σ∗q

2(t) C∗qp(t)
C∗qp(t) σ∗p

2(t)

]
, (A.30)

and the vector z∗(t) contains the first moments q∗(t) and p∗(t). By using expres-
sion (A.29) in equation (A.28) one straightforwardly finds the relation between
the covariance matrices and the first moments:

Φ(t)σ∗(t)ΦT(t) + σT (t) = σ∗(t); (A.31)
Φ(t)z∗(t) = z∗(t). (A.32)
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From equation (A.32) one finds z∗(t) = 0 at all times. Equation (A.31) for the
covariance matrix is equivalent to a system of three equations. One gets

σ∗q
2(t) =

σ2
q,T (t)S 11(t) + Cqp,T (t)S 12(t) + σ2

p,T (t)S 13(t)

D11(t)D12(t)D21(t)
; (A.33)

C∗qp(t) =
Cqp,T (t)S 22(t) + σ2

q,T (t)S 21(t) + σ2
p,T (t)S 23(t)

D12(t)D21(t)
;

σ∗p
2(t) =

σ2
p,T (t)S 33(t) + Cqp,T (t)S 32(t) + σ2

q,T (t)S 31(t)

D11(t)D12(t)D21(t)
.

Here

S 11 = S 33 = 1 − 2Ȧ2 + Ȧ4 − AÄ − Ȧ2AÄ; (A.34)
S 12 = −2ȦA(1 − Ȧ2 + AÄ);
S 13 = −A2(1 + Ȧ2 − AÄ);
S 21 = ȦÄ;
S 22 = 1 − Ȧ2 − AÄ;
S 23 = AȦ;
S 31 = −Ä2(1 + Ȧ2 − AÄ);
S 32 = −2ȦÄ(1 − Ȧ2 + AÄ);
D11 = 1 − Ȧ2 + AÄ;
D12 = 1 − 2Ȧ + Ȧ2 − AÄ;
D21 = 1 + 2Ȧ + Ȧ2 − AÄ.

Thus the elements of the matrix σ∗(t) are expressed as linear combinations of
thermal covariance elements, whose coefficients are functions of the propagator
matrix elements. Expressions (A.33) are valid both in the finite-size case and in
the thermodynamic limit. In order to get the poised covariance matrix at t = 0 one
has to evaluate the t → 0+ limit of (A.33).

A.5 Liouvillian operator of the adjoint dynamics
In the adjoint dynamics, the system and bath Heisenberg operators satisfy the
following equations:

Q̇µ(t) = −
i
~

[
H,Qµ(t)

]
, Ṗµ(t) = −

i
~

[
H, Pµ(t)

]
, (A.35)
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where one has a change of sign respect to the usual Heisenberg dynamics (3.2).
By proceeding in the same way as in the usual case, we find the following modi-
fications involving the matrix QLE satisfied by the central oscillator (3.10):

H(t)→ H̃(t) =

[
0 δ(t)

−Ω2
0δ(t) K(t)

]
, (A.36)

η(t)→ η̃(t) =

N∑
i

εi

[
−Qi(0) cosωit +

Pi(0)
ωi

sinωit
]
. (A.37)

This imply that the evolution is given as in equation (3.15), but with a change in
the off-diagonal elements of the matrix propagator (3.16):

Φ(t)→ Φ̃(t) =

[
Ȧ(t) −A(t)
−Ä(t) Ȧ(t)

]
, (A.38)

while the noise kernel (3.42) remains unchanged. By considering the above mod-
ifications, one straightforwardly find from (3.25) the FP-like equation satisfied by
the reduced Wigner for the central oscillator for the adjoint dynamics: it remains
exactly the same except for a change in the signs of the drift term, the harmonic
forcing term and the anomalous diffusion coefficient. This imply that the limits
generally considered in section (3.3) for the usual process do also apply for the
adjoint, moreover the late time density matrix is the same as in (3.3).

In the case of two baths one can show analogously that the same sign changes
characterizes the FP-like equation satisfied by the reduced Wigner associated to
the global adjoint dynamics. This means that also in this case the usual and adjoint
dynamics determine the same steady-state for the central oscillator.

A.6 Interaction energy term
A way to express the average of HI, which is useful in the continuum limit, is the
following. By plugging the Heisenberg formal solutions for the bath operators as
functions of Q(t) (3.9) in the interaction term, one gets

〈HI(t)〉 =

〈∑
i

Q(t)Qi(t)
〉

= 〈Q(t)η(t)〉 +
〈∫ t

0
ds K̇(t − s)Q(t)Q(s)

〉
, (A.39)

where η(t) is the fluctuating force term defined in (3.12).Using (3.15) and the
initial absence of system-bath correlation, which implies 〈Q(0)η(t)〉 = 0, one gets

〈Q(t)η(t)〉 = −

∫ t

0
dt′ A(t − t′) 〈η(t′)η(t)〉

= −

∫ ∞

0
dω

γ(ω)
ω2 E(ω,T )

∫ t

0
ds A(s) cos(ωs). (A.40)
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Interestingly the use of the Ullerma strength (3.34), from which one obtains that
the damping coefficients are time-independent in the large cut-off limit, implies
exactly the same integral form for the anomalous diffusion coefficient, so that
〈Q(t)η(t)〉 = Dqp(t).

In fact in the case of the Ullersma strength (3.34) with large cut-off the diffu-
sion matrix (3.27) can be approximated by [Fleming et al., 2011]

D(t) =
1
2

∫ t

0
dτ

[
ν(t − τ)ΦT(t − τ) +Φ(t − τ)νT(t − τ)

]
. (A.41)

This straightforwardly leads to the equivalence between 〈Q(t)η(t)〉, which is part
of the average interaction term (4.9), and the anomalous diffusion term Dqp(t). The
diagonal term Dpp(t) of (A.41) results equal to − 〈P(t)η(t)〉, which is calculated
later in the appendix (A.69).

The integral (A.40) is done by using the local propagator Aloc(t) (3.40), by first
integrating over time and then in the complex ω plane. One obtains

Dqp(t) =
〈
P2

〉
eq
−Ω2

0

〈
Q2

〉
eq
−

{
Ȧloc(t) + Aloc(t)

(
2Γ −

d
dt

)}
FC(t);(A.42)

FC(t) = −(C̈(t) + Ω2
0C(t) + 2ΓĊ(t)). (A.43)

The time dependent term contained in (A.42) vanishes so that one recovers the
late-time anomalous diffusion coefficient (3.48), which is a positive quantity. Here
we have made use of the approximate equilibrium correlation function (A.16). It
follows that

FC(t) = κ~

−1
2

cot(πατβ)e−αt

(1 + (Γ/α))2 + (Ω/α)2 +
1
π

∞∑
`=1

(ατβ)2

(ατβ)2 − `2

`e−`t/τβ

(` + Γτβ)2 + (Ωτβ)2

 ,
(A.44)

which can be approximated for t � 1/α by

FC(t) '
κ~

π

∞∑
`=1

`e−`t/τβ

(` + Γτβ)2 + (Ωτβ)2 . (A.45)

In the classical limit the anomalous diffusion coefficient vanishes.
To evaluate the second term of the sum in (A.39), we can use the fact that

for large cut-off K̇(t) ∼ −καδ(t). Then one gets for the interaction term complete
expression (4.9).

In the finite case one has, by using the solutions (3.3) and the initial conditions
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(2.2):〈 N∑
i=1

Q(t)Qi(t)
〉

=

N∑
i=1

{
εiȦ00Ȧi0

〈
Q2(0)

〉
+ A00Ai0

〈
P2(0)

〉
+ (Ȧ00Ai0 + Ȧi0A00)Cqp(0)

+

N∑
j=1

(
Ȧ0iȦ ji

ω2
i

+ A0iA ji

)
E(ωi,T )

 . (A.46)

This expression is useful for a numerical calculation in the finite case. By using
the expression of the Ai0(t) and the Ai j(t) in function of the propagator A(t), one
obtains the expressions (A.39,A.40) exploited in the continuum limit.

A.7 Evaluation of the bath entropy
One can straightforwardly evaluate the general quantum bath entropy (6.1) if one
finds a coordinate transformation that puts the density operator ρB in a normal
form, namely a product of independent oscillator thermal states:

ρB =
⊗
`

(1 − e−β`) e−β`n` , (A.47)

where n` = a†`a`, with a` = (q` + ip`)/
√

2, and where the β` are suitable effective
inverse temperatures. In fact, by putting the density operator in this form, the
calculation of entropy is easily obtained by carrying the trace over the space of
the eigenstates of the number operator: |n1, n2, . . . , n`, . . . , nN〉. One obtains

S B =
∑
`

(
(k` + 1/2) ln(k` + 1/2) − (k` − 1/2) ln(k` − 1/2)

)
, (A.48)

where k` = 1
2 coth

(
1
2β`

)
=

〈
q2
`

〉
=

〈
p2
`

〉
= 〈n`〉+ 1

2 . For simplicity we have put here
~ = 1.

We know from (3.2) that the reduced density matrix for the bath is Gaussian.
Here first moments can be shifted to 0, as this transformation leaves the entropy
invariant. Then from an informational point of view the bath is fully characterized
by the covariance matrix σB

i j (A.59).
The normal form (A.47) and values of the k`’s can be actually recovered by a

“pseudo-diagonalization” of the correlation matrix. This can be done using a sym-
plectic transformation, ξ 7→ S ξ where S is a 2N×2N-matrix, i.e. a transformation
preserving the bosonic commutation rules:

β = SβS T, (A.49)
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where

β =

(
0 1
−1 0

)
; 1 = (δk,`), k, ` = 1, 2, . . . ,N. (A.50)

One then choose S such that the correlation matrix in the new basis is diagonal:

σB 7→ σ′B = SσBS T = diag(κ1, κ2, . . . , κN , κ1, κ2, . . . , κN). (A.51)

This can always be done, as affirmed by Williamson’s theorem [Williamson, 1936],
due to the fact that the correlation matrix is symmetric and positive definite. Due
to the particular block form of the correlation matrix, the k`’s are doubly degener-
ate, as shown in [Colpa, 1978].

The pseudo-eigenvalues and the symplectic matrix S can be obtained, as ex-
plained in [Simon et al., 1994], by diagonalizing the symmetric matrix KβσBβTKT,
where the matrix K is obtained by a Cholesky decomposition of the correlation
matrix:

σB = KTK. (A.52)

This can actually be carried out, since σB is positive definite. The eigenvalues one
finds are actually the doubly-degenerate squares of the pseudo-eigenvalues k`.

Given an operator Â, its Wigner transform is defined by [Hillery et al., 1984]

A(p, q) =

∫
dz eipz/~

〈
q −

z
2

∣∣∣∣∣ Â
∣∣∣∣∣q +

z
2

〉
. (A.53)

In the general quantum case, the Wigner transform of ln ρB is −ξTMξ−ln ZB, since
one has

ρB = exp {−ξTMξ}/ZB, (A.54)

where M is a square 2N × 2N matrix. This matrix transforms under a symplectic
transformation of the phase space operators (A.49) like (σB)−1:

M 7→ M′ = (S T)−1MS −1. (A.55)

In the classical limit the diagonalized matrices M′ and (σ′B)−1, coincide and there-
fore also (σB)−1 and M have to coincide. Therefore in the classical limit the
Wigner distribution corresponding to the density operator ρB has the same expres-
sion as the classical probability distribution apart from multiplicative coefficients,
i.e.,

WB(q, p, t) = exp {−
1
2
ξ†(σB)−1ξ}/

[
(2π)N(detσB)1/2

]
. (A.56)

where σB is given in eq. (A.59). Then the entropy of the bath can be easily calcu-
lated via a Gaussian integral:

S B = −

∫
dq dp WB(q, p, t)CL ln

[
(2π)NWB(q, p, t)CL

]
(A.57)

= N + ln(detσB)1/2.
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This result can be also be obtained by noticing that in the classical limit, where
k` � ~/2, the expression (A.48) for the bath entropy reduces to

S B = N + ln
N∏
`=1

k` = N + ln(det SσBS T)1/2. (A.58)

Thus, since det S = 1 (A.49) we recover (A.57).

A.8 Bath covariance matrix
The covariance matrix of the bath is defined as:

σB
i j =

1
2
〈{ξi, ξ j}〉 − 〈ξi〉〈ξ j〉, (A.59)

where ξ = (Q1, ...,QN , P1, ..., PN), i and j identify the bath oscillators.
Using the Heisenberg solutions (3.3), the variance of a bath position operator

with average taken over the initial conditions (2.2) give, with help of (3.22):〈
Q2

i (t)
〉
− 〈Qi(t)〉2 = Ȧ2

i0σ
2
q(0) + A2

i0σ
2
p(0) + 2Ȧi0(t)Ai0(t)Cqp(0)

+

N∑
`=1

 Ȧ2
i`

ω2
`

+ A2
i`

 E(ω`,T ). (A.60)

The last sum can be rewritten, using expression (A.4) for the Ai`’s, as follows:

N∑
`=1

 Ȧ2
i`

ω2
`

+ A2
i`

 E(ω`,T ) =

N∑
`=1

ε2
`

ω2
`

∣∣∣∣∣∣
∫ t

0
dτ Ai0(τ)eiω`τ

∣∣∣∣∣∣2 E(ω`,T )

+
E(ωi,T )
ω2

i

+
2εi

ω2
i

∫ t

0
dτ Ai0(τ) cos(ωiτ)E(ωi,T ). (A.61)

It contains a term explicitly depending on the initial conditions of the central os-
cillator, and a thermal part. The latter one is made of a term explicitly depending
on the initial conditions of the bath oscillator, a sum of the kind

∑
`=1 ε

2
` . . ., which

is easily put into integral form by using the strength (3.14), plus an integral con-
taining Ai0(t) and an oscillating function of time, multiplied by the coupling εi of
the oscillator. The same structure is obtained for every term of the bath covariance
matrix σB

i j between any momentum and bath operators.

A.9 Entropy Flow rate terms
Here we determine the explicit form of the entropy flow rate in (7.30) assumed in
the thermodynamic limit (7.13) with large cut-off (7.15). By plugging the formal
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Heisenberg solution for the left and right bath position operators in the respective
energy interaction terms HIL and HIR one gets:

〈HIL(t)〉 =

〈∑
i

Q(t)Qi(t)
〉

= 〈Q(t)ηL(t)〉 +
〈∫ t

0
ds K̇L(t − s)Q(t)Q(s)

〉
. (A.62)

As for the first term of the sum, we use the solution for Q(t) (3.15), the initial
absence of system-bath correlation, which implies 〈Q(0)η(t)〉 = 0, and the initial
absence of correlation between the left and right reservoirs to show that:

〈Q(t)ηL(t)〉 = −

∫ t

0
dt′ A(t − t′) 〈ηL(t′)ηL(t)〉

= −

∫ ∞

0
dω

γL(ω)
ω2 E(ω,TL)

∫ t

0
ds A(s) cos(ωs) (A.63)

=
κL

κL + κR
Dqp,TL . (A.64)

According to (A.41), Dqp,TL is the anomalous diffusion coefficient associated to the
dynamics of the central harmonic oscillator coupled to a single bath at temperature
TL in the limit of large cut-off α (A.42), with coupling κ = κL + κR. In the large
cut-off limit the other term in the interaction energy (A.39) can be approximated
for t � α−1 to: 〈∫ t

0
ds K̇(t − s)Q(t)Q(s)

〉
' −κLα

〈
Q2(t)

〉
. (A.65)

The time derivative of the averaged left-reservoir interaction term
〈
ḢIL(t)

〉
was

reported in (7.32). A similar expression holds for the right reservoir interaction
energy.

As for the current (7.29), by using Heisenberg solution QLi(t) in the form (3.9),
one gets

JL(t) = − 〈P(t)ηL(t)〉 −
1
2

〈∫ t

0
ds K̇L(t − s){P(t),Q(s)}

〉
. (A.66)

The first term in the rhs can be written as:

〈P(t)ηL(t)〉 = −

∫ t

0
dt′ Ȧ(t − t′) 〈ηL(t′)ηL(t)〉

= −

∫ ∞

0
dω

γL(ω)
ω2 E(ω,TL)

∫ t

0
ds Ȧ(s) cos(ωs) (A.67)

' −
κL

κL + κR
Dpp,TL , (A.68)
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where according to (A.41), Dpp,TL is the diagonal term of the diffusion matrix
associated to the dynamics of the central harmonic oscillator coupled to a single
bath at temperature TL in the large cut-off limit, with coupling κ = κL+κR. Just like
for the anomalous diffusion coefficient (A.42), one can do the integral in (A.67)
and obtain:

Dpp,TL(t) = 2Γ
〈
P2

〉
eq,TL
− (Ω2

0A(t) + Ȧ(t)
d
dt

)FC,TL(t) (A.69)

which is expressed through FC,TL(t) (A.42) in function of the position equilibrium
correlation function CL(t) (A.16).

The second term in the rhs of (7.29) is:〈∫ t

0
ds K̇L(t − s)

{P(t),Q(s)}
2

〉
= (A.70)

=

[
−KL(t − s)

〈
{P(t),Q(s)}

2

〉]∣∣∣∣∣∣s=t

s=0

+

∫ t

0
ds KL(t − s)

〈
{P(t), P(s)}

2

〉
= −κLα

〈
{P(t),Q(t)}

2

〉
+ KL(t)

〈
{P(t),Q(0)}

2

〉
+ κL

〈
P2(t)

〉
+ O (1/α)

' −κLα

〈
{P(t),Q(t)}

2

〉
+ κL

〈
P2(t)

〉
,

where the last equality is valid for t � 1/α. Then by using the identities (7.29)
and (A.70) one gets the analytic expression for JL(t) (7.31). Analogously one
finds the expression for the right current JR(t). Thus in the late-time limit (3.50),
after all the transient terms vanish it remains

JL(∞) = −JR(∞) =
κLκR

κL + κR

[〈
P2

〉
eq,TL
−

〈
P2

〉
eq,TR

]
. (A.71)

By using explicit expressions for the currents and for the derivative of the
interaction energies of the two baths in (7.30) one gets:

Ṡ e = βL

[
κL

κL + κR
(Dpp,TL(t) + Ḋqp,TL(t)) − κL(

〈
P2(t)

〉
+ αCqp(t))

]
+

βR

[
κR

κL + κR
(Dpp,TR(t) + Ḋqp,TR(t)) − κR(

〈
P2(t)

〉
+ αCqp(t))

]
, (A.72)

which is correct apart from corrections of O(1/α).
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