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Introduction

In recent years there has been an increasing interest in the theory of defor-

mations in non linear elasticity. Let us quote here the pioneering works of

Antman, Ball and Ciarlet ([4], [5], [14]).

The domain Ω ⊂ R
n is view as a solid body in the space and the mapping

f : Ω → R
n as a deformation of the body Ω to f(Ω).

The questions that naturally arise are the following:

• Does f satisfy Lusin N condition; i. e. does f map null sets to null

sets? That means, is a “new material ”created from “nothing ”?

• If f is invertible, what are the properties of the inverse map f−1?

• If f is sufficiently smooth, what are the properties of its Jacobian?

The central concept running through all the thesis is the definition of

bi–Sobolev mapping, originally proposed in [48]. We recall that a homeo-

morphism f : Ω
onto−→ Ω′ is called a bi–Sobolev mapping if f ∈ W 1,1

loc (Ω,R
2)

and its inverse f−1 ∈ W 1,1
loc (Ω

′,R2).

The thesis is organized as follows.

In Chapter 1 we recall some definitions and properties of the approximate

gradient of a Borel map. Moreover, we focus our attention on the Lusin N
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condition and we discuss what kind of mappings satisfy this property. In [78],

Y. G. Reshetnyak showed that every homeomorphism of class W 1,n satisfies

Lusin N condition. An improvement of this result is due to J. Kauhanen, P.

Koskela, and J. Malý ([62]). Using a result of L. Greco ([33]) on the equality

between pointwise and distributional Jacobian, they relaxed the regularity

assumption f ∈ W 1,n into the setting of the closure of W 1,n into the norm

of Grand Sobolev space. We also investigate connections between Lusin N

condition and area formula.

The main topic of Chapter 2 is the regularity of the inverse of Sobolev

and BV homeomorphisms.

In general, one cannot expect the same regularity for f and its inverse.

Indeed, there are examples of Lipschitz homeomorphisms whose inverse are

not in W 1,1
loc (see Section 2). In the planar case, S. Hencl, P. Koskela and J.

Onninen in [44] proved that if f : Ω
onto−→ Ω′ is a homeomorphism of bounded

variation then so does its inverse map f−1 = (x, y) : Ω′ → Ω. We present a

different proof giving precise formulae for the total variations of the coordi-

nate functions of f−1. Extensions to higher dimension into the Sobolev case

are also considered.

As an application of above results, we study the composition operator of

two Sobolev homeomorphisms. Some of these results can be found in [18],

[22], [35].

In Chapter 3 we investigate how big can be the zero set of the Jacobian de-

terminant of a homeomorphism f . The null set of the Jacobian determinant

of a bi–Sobolev map could have positive measure (see [53], Section 6.2.6).

Moreover, we are able to construct for n ≥ 3 a pathological example of a
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bi–Sobolev map with Jf = Jf−1 = 0 almost everywhere. Such a pathological

homeomorphism cannot exists in dimension n = 2 or with higher regularity

f ∈ W 1,n−1 (see [19]).

In the last Chapter we investigate the continuity in L1 norm of the Ja-

cobian determinant of orientation preserving maps belonging to the Grand

Sobolev space W 1,n)(Ω,Rn). Let us recall that if Jf ≥ 0 a.e., then |Df | ∈

Ln)(Ω) is the weakest assumption to guarantee that Jf is locally integrable

(see [55]).
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Chapter 1

Lusin’s condition N and related

results

The main topic of this chapter is the study of Lusin’s condition N . We focus

our attention on some of its consequences and then investigate what are

the minimal integrability conditions on the partial derivatives of a Sobolev

homeomorphism f ∈ W 1,1
loc (Ω,R

n) needed to guarantee that f satisfies it.

1.1 Basic properties and definitions

Let Ω be a bounded domain in R
n and f : Ω → R

n a mapping of the Sobolev

classW 1,p(Ω,Rn) . Here,W 1,p(Ω,Rn) consists of all p-integrable mappings of

Ω into R
n whose coordinate functions have p-integrable distributional deriva-

tives.

We denote by Df(z) the differential matrix of f at the point z ∈ Ω and
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by Jf (z) the Jacobian determinant of Df :

Jf (z) = detDf(z).

The norm of Df(z) is defined as follows:

|Df(z)| = sup
ξ∈Rn,|ξ|=1

|Df(z)ξ|.

It is easy to see that other norms are equivalent.

We need to recall the definition of approximate gradient of a Borel map

(see [32]).

For any measurable set A ⊂ R
n, the upper density θ∗(A, z) of A at z is

defined as

lim sup
r→0

|B(z, r) ∩ A|
|B(z, r)| .

Similarly, the lower density θ∗(A, z) of A at z is given by

lim inf
r→0

|B(z, r) ∩ A|
|B(z, r)| .

The density of A at z is defined whenever θ∗(A, z) = θ∗(A, z) as the common

value:

θ(A, z) = θ∗(A, z) = θ∗(A, z).

Let u : Ω −→ R be a measurable function. We recall that l is the

approximate limit of u at z when ρ tends to z in Ω, and we write

l = ap lim
ρ→z

u(ρ)
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if for all ε > 0, the set

Ωε = {ρ ∈ Ω | |u(ρ)− l| ≥ ε}

has density 0 at z.

The approximate upper limit of u at z is defined as the number (eventually

+∞ or −∞) given by

ap lim sup
ρ→z

u(ρ) = inf{t | θ∗(E+
t , z) = 0}

where E+
t = {z ∈ Ω|u(z) > t}.

Similarly, the approximate lower limit is given by

ap lim inf
ρ→z

u(ρ) = sup{t|θ∗(E−
t , z) = 0}

where E−
t = {z ∈ Ω|u(z) < t}.

Of course,

ap lim inf
ρ→z

u(ρ) ≤ ap lim sup
ρ→z

u(ρ)

and whenever

ap lim inf
ρ→z

u(ρ) = ap lim sup
ρ→z

u(ρ) = l ∈ R

the approximate limit exists and we have

ap lim
ρ→z

u(ρ) = l.
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We say that u : Ω −→ R is approximately continuous at z if

u(z) = ap lim
ρ→z

u(ρ).

One can also prove

Proposition 1.1. If the function u : Ω −→ R is measurable then u is ap-

proximately continuous at a.e. z ∈ Ω.

The previous Proposition is an easy consequence of the Lebesgue dif-

ferentation theorem in the case of L1 maps. We have in fact

Proposition 1.2. Let u ∈ L1
loc
(Ω). If there exists τ ∈ R such that

lim
r→0

∫

Br(z)

|u(ρ)− τ |dρ = 0 (1.1)

then,

ap lim
ρ→z

u(ρ) = τ. (1.2)

In particular, as a consequence, the approximate limit exists at each

Lebesgue point z.

In the same spirit of approximate limits and approximate continuity, we

may now introduce the notion of approximate differential.

Definition 1.1. Let Ω be a measurable subset of Rn and u : Ω → R be a

measurable map. Suppose that z ∈ R
n be such that θ∗(A, z) > 0. We say

that u is approximately differentiable at z if there exists a linear mapping
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L : Rn −→ R such that:

ap lim sup
ρ→z

|u(ρ)− u(z)− L(ρ− z)|
|ρ− z| = 0.

From the definition, it is not difficult to show that the approximate dif-

ferential, denoted by apDu(z) is unique whenever it exists.

Theorem 1.1. Assume u ∈ W 1,1
loc (R

n). Then u is approximately differen-

tiable a.e. and its approximate derivative equals its weak derivative a.e.:

apDu(z) = Du(z) a. e.

In geometric function theory we are interested in the study of mappings

and their properties. One of the most important properties is the following:

Definition 1.2. Let f : Ω → R
n be a measurable mapping. We say that f

satisfies Lusin’s condition N if for each E ⊂ Ω,

|E| = 0 ⇒ |f(E)| = 0.

This property has the following physical interpretation. If we imagine

that Ω is a body in the space that is subjected to a deformation f , “new

material”cannot be crated from “nothing ”.

For the sake of completeness we review some of the standard results to-

gether with their proofs.

Let Ω and Ω′ be bounded domains in R
nand let us denote by Hom(Ω,Ω′)

the set of all homeomorphisms f : Ω → Ω′ = f(Ω).
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Proposition 1.3. f ∈ Hom(Ω,Ω′) satisfies Lusin’s condition N if, and only

if, f takes measurable sets to measurable sets.

Proof. Let us assume that f satisfies the condition N . If A ⊂ Ω is a measur-

able set, then there exists a Borel set B such that B ⊂ A ⊂ Ω and |B\A| = 0.

Then we have |f(B\A)| = |f(B)\f(A)| = 0 and hence f(B)\f(A) is measur-

able. Moreover, as f is a homeomorphism, f(B) is a Borel set and hence f(A)

is also measurable. Conversely, by contradiction suppose that E ⊂ Ω verifies

|E| = 0 and |f(E)| > 0. If A′ ⊂ f(E) is a non measurable set then, f−1(A′)

is a measurable set of measure zero. By assumption also A′ = f(f−1(A′)) is

measurable as well and there is a contradiction.

Proposition 1.4. f ∈ Hom(Ω,Ω′) satisfies Lusin’s condition N if, and only

if, |f(E)| = 0 whenever E ⊂⊂ Ω is a compact set with zero measure.

Proof. Let E be a compact set with zero measure such that |f(E)| = 0. Then,

there exists a Borel set B ⊃ E such that |B| = 0. Suppose by contradiction

that |f(B)| > 0. Hence, there exists a compact set C ′ ⊂ f(B) such that

|C ′| = |f(B)| > 0. But f is a homeomorphism and f−1(C ′) is compact and

|f−1(C ′)| ≤ |B| = 0. This is not possible by assumption.

The condition N is strongly connected with the validity of the area for-

mula which is crucial in the next developments. An advanced version of the

theorem on change of variables is due to Federer [ [25], Theorem 3.2.3]. It

states that the area formula:

∫

Ω

η(f(z))|Jf (z)| dz =
∫

Rn

(

∑

z∈Ω: f(z)=w

η(w)

)

dw (1.3)
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is valid for all measurable functions η : Rn −→ [0,+∞), if f is a Lipschitz

map.

By Theorem 1.1, the set of points of approximate differentiable of f

AD(f) = {z ∈ Ω | f is approximately differentiable atz}

is a set of full measure.

Let us consider the set:

AL(f) =

{

z ∈ Ω
∣

∣

∣
ap lim sup

w→z

|f(w)− f(z)|
|w − z| <∞

}

.

Trivially, AD(f) ⊂ AL(f). By Theorem 3.1.8 of [25] , AD(f) is the union of

a countable family of measurable sets such that the restriction of f to each

member of the family is Lipschitz and hence the formula (1.3) becomes:

∫

Ω

η(f(z))|Jf (z)| dz ≤
∫

Rn

(

∑

z∈Ω: f(z)=w

η(w)

)

dw (1.4)

Moreover, in (1.4), there is an equality if f satisfies Lusin’s condition N .

Notice that the area formula holds on the set where f is approximately

differentiable; in fact, the Lusin’s condition N holds on AD(f).

From (1.4), we can derive the following:

Theorem 1.2 (Area formula for Sobolev homeomorphisms). Let f : Ω −→

R
n be a Sobolev homeomorphism, η : Rn −→ [0,+∞) be a nonnegative Borel

measurable function and A be a Borel measurable set. Then:

∫

A

η(f(z))|Jf (z)| dz ≤
∫

f(A)

η(w) dw. (1.5)
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The equality:
∫

A

η(f(z))|Jf (z)| dz =
∫

f(A)

η(w) dw (1.6)

is verified if f satisfies Lusin’s condition N .

When (1.6) occurs we say that the area formula holds for f on A.

We note the following consequence of (1.5). If A′ ⊂ f(A) is a Borel subset

with |A′| = 0, then Jf (z) = 0 for a.e. z ∈ f−1(A′). Indeed,

∫

f−1(A′)

|Jf (z)| dz ≤
∫

A′

dw = |A′| = 0.

Moreover, it is well known that there exists a set Ω̄ ⊂ Ω of full measure

|Ω̄| = |Ω|, such that:

∫

Ω̄

η(f(z))|Jf (z)| dz =
∫

f(Ω̄)

η(w) dw. (1.7)

As a consequence, if f is a Sobolev homeomorphism with f−1 satisfying the

N , then Jf (z) > 0 for almost every z ∈ Ω. Indeed, by (1.7),

|f
(

z ∈ Ω̄ : Jf (z) = 0
)

| = 0.

Hence, by the N for f−1 and since Ω̄ has full measure:

|z ∈ Ω : Jf (z) = 0| = |
(

z ∈ Ω̄ : Jf (z) = 0
)

∪
(

Ω \ Ω̄
)

| = 0.

Thus in particular, as AD(f) is a set of full measure, the image of the set
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of all critical points has zero measure:

|f ({z ∈ Ω : f is approximately differentiable at z and Jf (z) = 0}) | = 0.

This is a weak version of the classical Sard theorem.

An interesting application of condition N is the following result on the

inverse of an a.e. approximately differentiable homeomorphism.

Proposition 1.5. Let f ∈ Hom(Ω;Ω′) be approximately differentiable a.e..

If f verifies Lusin’s condition N , then the inverse f−1 is approximately dif-

ferentiable a.e.

Proof. We decompose the set AD(f) of points of approximately differentiable

of f as follows:

AD(f) = Rf ∪ Zf

where

Rf = {z ∈ Ω : f is approximately differentiable at z and Jf (z) 6= 0}

and

Zf = {z ∈ Ω : f is approximately differentiable at z and Jf (z) = 0} .

Moreover, we consider

Ef = {z ∈ Ω : f is not approximately differentiable at z}
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and hence

Ω = Zf ∪Rf ∪ Ef .

By the weak version of the classical Sard Lemma, |f(Zf )| = 0. Since f−1 is

approximately differentiable a.e., Ef has zero measure and by condition N ,

f(Ef ) has zero measure.

We notice that f−1 is approximately differentiable in f(Rf ) which is a

subset of full measure of f(Ω); indeed,

f(Ω) \ f(Rf ) = f(Zf ) ∪ f(Ef )

has zero measure.

1.2 Lusin’s condition for Sobolev homeomor-

phisms

We study conditions under which a map f could satisfy Lusin’s condition N .

Firstly, we consider the case of real- valued functions. A function f is

called absolutely continuous in a set E if the following condition is satisfied:

for every ε > 0, there exists δ = δ(ε) > 0 such that

N
∑

i=1

|f(bi)− f(ai)| < ε
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for every collection {(ai, bi)} of pairwise disjoint intervals with

N
∑

i=1

(bi − ai) < δ.

An absolutely continuous function clearly satisfies Lusin’s condition N and

hence also every Lipschitz function sends sets of measure zero to sets of

measure zero. We note that by Rademacher’s theorem, locally Lipschitz

functions are differentiable almost everywhere. However, differentiability a.e.

is not enough to conclude Lusin’s condition N (see for example the Cantor

function).

In dimension n ≥ 2, the situation is much more complicated. M. Mar-

cus and V. Mizel, in [67], proved that Lusin’s condition N holds if f is a

continuous map in W 1,p provided p > n. The Lusin condition may fail for

continuous mappings inW 1,n. L. Cesari ([13]) demonstrated that there exists

a continuous map f ∈ W 1,n([−1, 1]n, [−1, 1]n) with n ≥ 2 such that

f
(

[−1, 1]× {0}n−1
)

= [−1, 1]n

and hence f does not satisfy the Lusin’s condition N . Moreover, in the paper

[68], O. Martio and W. Ziemer investigated how condition N is related to

mappings in the Sobolev space W 1,n(Ω,Rn) with nonnegative Jacobians. In

particular, they showed that if f is a continuous map in W 1,n(Ω,Rn) with

Jf > 0 a.e. on Ω then, f satisfies Lusin’s condition N .

For a homeomorphism, less regularity is needed: it suffices to assume that

f ∈ W 1,n
loc

(Ω,Rn). This is due to Reshetnyak ([77]). This result is sharp in
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the scale ofW 1,p(Ω,Rn) - homeomorphisms. In fact, in the case p < n, Pono-

marev showed in [76], that for every n > 1 there exists a homeomorphism

f : [0, 1]n −→ [0, 1]n such that:

• the restriction of f to the boundary of the cube [0, 1]n is the identity

mapping;

• for all 0 < p < n, f belongs to the class W 1,p([0, 1]n, [0, 1]n);

• f does not have property N ;

• the inverse map f−1 belongs to the class W 1,p([0, 1]n, [0, 1]n) with any

1 < p <∞.

Another example has been constructed in [62] of a homeomorphism f ∈

∩1≤p<nW
1,p(Ω,Rn) satisfying the condition

sup
0<ε≤n−1

ε

∫

Ω

|Df |n−ε <∞ (1.8)

and such a mapping f does not satisfy condition N .

Let us define the Grand Lebesgue space Ln)(Ω) as the collection of all

measurable functions u with

‖u‖n) = sup
0<ε≤n−1

(

ε

∫

Ω

|u(z)|n−ε dz

) 1
n−ε

<∞.

This Banach space was introduced in [55] for mappings f : Ω ⊂ R
n → R

n (not

necessarily homeomorphisms) in the study of the integrability of nonnegative

Jacobians under minimal integrability assumptions for |Df |.
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We also mention the article [62] by J. Kauhanen, P. Koskela and J. Malý,

where it is shown that the sharp regularity assumption to rule out the failure

of the condition N can be the following one:

lim
ε→0+

ε

∫

Ω

|Df |n−ε = 0 (1.9)

under the condition that the Jacobian determinant is non negative a.e..

When (1.9) occurs, we write |Df | ∈ L
n)
b (Ω). This function space is the

closure of bounded functions in Ln) (see [33]). Moreover, the following inclu-

sions hold:

L
n)
b (Ω) ⊂ Ln)(Ω) ⊂

⋂

p<n

Lp(Ω).

We want underline that if |Df | ∈ L
n)
b then, the weak Jacobian of the mapping

f coincides with the pointwise Jacobian by a result of L. Greco (see [33]).

Let us now introduce a space slightly larger than Ln(Ω) and then we shall

examine some relations between L
n)
b and other classes of functions.

Our main source here will be [53, Section 4.12]. We shall need to consider

the Zygmund space Lp logα L(Ω), for 1 6 p < ∞, α ∈ R (α > 0 for p = 1),

and Ω ⊂ R
n. This is the Orlicz space generated by the function

Φ(t) = tp logα(a+ t) , t > 0 ,

where a > 0 is a suitably large constant, so that Φ is increasing and convex

on [0,∞[. The choice of a will be immaterial, as we shall always consider

these spaces on bounded domains. Thus, more explicitly, for a measurable
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function u on Ω, u ∈ Lp logα L(Ω) simply means that

∫

Ω

|u|p logα(a+ |u|) dx <∞ .

As an example, for α = 0 we have the ordinary Lebesgue spaces. We shall

consider in Lp logα L(Ω) the Luxemburg norm

‖u‖Lp logα L = inf

{

λ > 0 :

∫

Ω

Φ(|u|/λ) dx 6 1

}

.

The following Hölder type inequality for Zygmund spaces will be important

to us:

‖u1 · · · uk‖Lp logα L 6 C ‖u1‖Lp1 logα1 L · · · ‖uk‖Lpk logαk L (1.10)

where pi > 1, αi ∈ R, for i = 1, . . . , k, and

1

p
=

1

p1
+ · · · 1

pk
,

α

p
=
α1

p1
+ · · · αk

pk

The positive constant C in (1.10) is independent of ui.

We shall write u ∈ Lp logα Lloc(Ω) if u ∈ Lp logα L(E), for every compact

subset E of Ω.

For the Zygumund space
Ln

logL
, the following inclusions hold:

Ln ⊂ Ln

logL
⊂ Ln

b ⊂ Ln).

(see [33]).
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Chapter 2

Sobolev and BV

homeomorphism: the regularity

of the inverse.

This chapter is concerned with the regularity of the inverse of a homeomor-

phism f of bounded variation in the planar case. We give precise formulae

for the total variations of the coordinate functions of f−1. Extensions to

higher dimension are also given.

2.1 Bi–Sobolev mappings

Let Ω and Ω′ be domains in R
2. Recently, the relation between a homeo-

morphism f : Ω −→ Ω′ and its inverse has been intensively studied (see [43],

[45], [48]).

In the class of planar homeomorphisms a crucial role is played by bi–
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Sobolev mappings, originally proposed in [48]. We recall that a homeomor-

phism f : Ω
onto−→ Ω′ is called a bi–Sobolev mapping if f ∈ W 1,1

loc (Ω,R
2) and

its inverse f−1 ∈ W 1,1
loc (Ω

′,R2).

A first interesting property of a bi–Sobolev map f = (u, v) in the plane

is that u and v have the same critical points.

Theorem 2.1. Let f = (u, v) : Ω
onto−→ Ω′ be a bi–Sobolev map. Then u and

v have the same critical points:

{z ∈ Ω | ∇u(z) = 0} = {z ∈ Ω | ∇v(z) = 0} a. e.

The same result holds also for the inverse.

The connection between the planar elliptic PDE’s and Function Theory

has been known since pioneering works of .B. Morrey [71], R. Caccioppoli

[11], L. Bers and L. Nirenberg [10], I.N. Vekua [81] and B. Bojarski [7] (see

also ([3],[65]).

A homeomorphism f = (u, v) : Ω −→ R
2 is K–quasiconformal mapping

for a constant K ≥ 1, if f ∈ W 1,2
loc (Ω,R

2) and

|Df(z)|2 ≤ KJf (z) a.e. z ∈ Ω. (2.1)

The smallest constant K for which (2.1) holds almost everywhere is called

the distortion of the mapping f .

Quasiconformal mappings possess many interesting properties, as embod-

ied in the following

Theorem 2.2. Let f : Ω −→ Ω′ be a K– quasiconformal mapping and let
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g : Ω′ −→ R
2 a K ′– quasiconformal mapping. Then

• f−1 : Ω′ → Ω is K– quasiconformal

• g ◦ f : Ω → R
2 is KK ′– quasiconformal

• f satisfy the Lusin’s condition N

• the Jacobian determinant Jf (z) > 0 almost everywhere in Ω.

Some results hold also when the distortion K = K(z) is not bounded. A

mapping f ∈ W 1,1
loc (Ω,R

n) is said to have finite distortion if there exists a

measurable function K : Ω −→ [1,∞) such that

|Df(z)|n 6 K(z) Jf (z) . (2.2)

Moreover, we assume that Jf ∈ L1
loc(Ω).

We note that the existence of a measurable function K finite a.e. and

satisfying (2.2) amounts to saying that

Jf (z) = 0 =⇒ Df(z) = 0 a.e. (2.3)

This condition makes it possible to consider the distortion quotient

|Df(z)|n
Jf (z)

for a.e. z ∈ Ω. (2.4)

Hereafter the undetermined ratio 0
0
is understood to be equal to 1 for z in
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the zero set of the Jacobian:

Kf (z) =























|Df(z)|n
Jf (z)

, if Jf (z) > 0 ;

1 , otherwise.

(2.5)

In other words, Kf is the smallest function greater than or equal to 1 for

which (2.2) holds a.e.

It is well known (see [57]) that if f = (u, v) is a K–quasiconformal map

then u and v lie in W 1,2(Ω) and satisfy the same elliptic equation

divA(z)∇u = 0 and divA(z)∇v = 0 (2.6)

where A = A(z) ∈ L∞(Ω,R2 × R
2) is a symmetric matrix with detA = 1

satisfying the uniform ellipticity bounds

|ξ|2
K

≤ 〈A(z)ξ, ξ〉 ≤ K|ξ|2.

If f = (u, v) is only a bi–Sobolev homeomorphism, there is also an inter-

play with the solutions of (2.6) in the sense of distributions. Indeed, it was

shown in [43] and [15] that each bi-Sobolev mapping in dimension n = 2 has

finite distortion and in [48], it was shown that for any such f = (u, v) there

corresponds a degenerate elliptic matrix A = Af (z) with eigenvalues in the

interval

[

1

K(z)
, K(z)

]

such that u and v are very weak solutions to (2.6),

i.e. u, v ∈ W 1,1 satisfy (2.6) in the sense of distributions.

Theorem 2.3. To each bi–Sobolev mapping f = (u, v) : Ω → Ω′, there
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corresponds a measurable function A = A(z) valued in symetric matrices

with detA(z) = 1 that for a.e. z ∈ Ω and for all ξ ∈ R
2 we have

|ξ|2
K(z)

≤ 〈A(z)ξ, ξ〉 ≤ K(z)|ξ|2.

where K(z) denotes the distortion function of f . The components of f are

very weak solutions of equation (2.6) with finite energy, i.e.

∫

Ω

〈A(z)∇u,∇u〉 <∞ and

∫

Ω

〈A(z)∇v,∇v〉 <∞.

Another important property of bi-Sobolev mappings is the following (see

[43], [48])

Theorem 2.4. Let f : Ω → Ω′ be a bi-Sobolev mapping. Then

∫

Ω

|Df(z)| dz =
∫

Ω′

|Df−1(w)| dw. (2.7)

2.2 Regularity of the inverse of a Sobolev home-

omorphism with finite distortion

A part of the study of mappings of finite distortion which is vital to us is the

regularity of the inverse of a Sobolev homeomorphism, see [15, 43, 44, 48, 74,

28].

The bi-Sobolev assumption rules out a large class of homeomorphisms.

In fact, it is possible to construct a homeomorphism f : R2 −→ R
2 such

that f is Lipschitz, but the inverse f−1 does not belong to W 1,1
loc (R

2,R2). For
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example, the mapping

f0 : (0, 2)× (0, 1)
onto−→ (0, 1)× (0, 1) f0(x, y) = (h(x), y) (2.8)

where h−1(t) = t + c(t) and c : (0, 1) → (0, 1) is the usual Cantor ternary

function, is a Lipschitz homeomorphism whose inverse f−1
0 does not belong

to W 1,1
loc .

Notice that Jf0(z) vanishes in a set of positive area. In fact, a sufficient

condition under which the inverse of a Sobolev homeomorphism belongs to

W 1,1
loc is that Jf > 0 a.e. (see theorem 1.1 of [43]). But, it is not a necessary

condition. Indeed, it is possible to construct a bi–Sobolev homeomorphism

such that Jf = 0 in a set of positive area (see [53], Section 6.5.6).

A necessary and sufficient condition for f−1 ∈ W 1,1
loc (R

2,R2) is thatDf(z) =

0 almost everywhere in the set {z : Jf (z) = 0}, i. e. that f has finite distor-

tion (see [43] and [41]).

Theorem 2.5. Let Ω,Ω′ be planar domains and f : Ω → Ω′ be a Sobolev

homeomorphism. Then, the following conditions are equivalent:

• f−1 ∈ W 1,1
loc (R

2,R2)

• f has finite distortion

• f−1 has finite distortion.

A suitable integrability condition on the distortion function K guarantees

a better regularity for the inverse.
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Theorem 2.6. Let Ω ⊂ R
2 be a domain. If f : Ω → R

2 is a Sobolev homeo-

morphism of finite distortion K ∈ L1(Ω), then f−1 belongs to W 1,2
loc (f(Ω),R

2)

and is a mapping of finite distortion.

We want underline that an integrability assumption of K1−δ for 0 < δ < 1

does not give any better than W 1,1–regularity of f−1. Hereafter, we use the

notation Q0 = [0, 1]× [0, 1] for the unit square in R
2.

Example 2.1. Let 0 < δ < 1. There is a homeomorphism f : Q0 → Q0

of finite distortion such that f ∈ W 1,1
loc (Q0,R

2), K1−δ ∈ L1(Q0) but f−1 /∈

W 1,1
loc (Q0,R

2).

In higher dimension, besides the outer distortion already introduced in

Section 2.1, we shall need to consider the inner distortion. A mapping

f ∈ W 1,1
loc (Ω;R

n) has finite inner distortion if its Jacobian Jf ∈ L1
loc(Ω),

Jf ≥ 0 a.e. and

Jf (z) = 0 =⇒ | adjDf(z)| = 0 a.e. ,

where adjDf is the adjugate of the differential matrix Df of f .

For such a map, we call inner distortion of f the smallest function KI
f > 1

such that

| adjDf(z)|n 6 KI
f (z) Jf (z)

n−1 , (2.9)

for a.e. z ∈ Ω. Clearly, a map of finite outer distortion has also finite inner

distortion and KI
f 6 (Kf )

n−1, as a consequence of Hadamard’s inequality

(| adjDf | ≤ |Df |n−1). In dimension n = 2 the two notions coincide.
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Let us give the statement analogous to planar case examined in Theorem

2.5.

Theorem 2.7 ([28]). Let f : Ω
onto−→ Ω′ be a homeomorphism inW 1,n−1

loc
(Ω,Rn)

with finite inner distortion. Then, f−1 is a W 1,1
loc

(Ω′,Rn) mapping of finite

distortion. Moreover,

|Df−1(w)|n ≤ K(f−1(w))Jf−1(w) for a.e. w ∈ Ω′, (2.10)

and
∫

Ω′

|Df−1(w)|dw =

∫

Ω

| adjDf(z)|dz.

The same conclusion was known by M. Csörnyei, S. Hencl, J. Malý [15]

under the strong assumption that f has finite outer distortion.

The regularity assumption |Df | ∈ Ln−1
loc cannot be weakened in the scale

of Sobolev space. In fact, it is possible to construct a homeomorphism f ∈

W 1,n−1−ε where 0 < ε < 1 such that | adjDf | ∈ L1(Ω) but f−1 /∈ W 1,1,
loc . The

above theorem is also sharp in the setting of Orlicz space (see [39]).

Regarding the higher dimensional setting, in [48] the authors showed:

Theorem 2.8. Let n ≥ 2 and let f : Ω → R
n be a bi–Sobolev map. Suppose

that for a measurable set E ⊂ Ω we have Jf = 0 almost evrywhere on E.

Then, | adjDf | = 0 a.e. on E. If we moreover assume that Jf ≥ 0, it follows

that f has finite inner distortion.

For n > 2 a similar result of Theorem 2.6 has been established in [72].

Theorem 2.9. Let Ω,Ω′ be bounded domains in R
n and f ∈ W 1,n−1 be a

homeomorphism with finite inner distortion such that KI
f ∈ L1(Ω). Then,
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|Df−1| ∈ Ln(Ω′) and

∫

Ω′

|Df−1(w)|ndw =

∫

Ω

KI
f (z)dz.

In [72], it is worth pointing out that the regularity of the distortion influ-

ences the regularity of the inverse mapping also in the scale of Orlicz space.

2.3 Regularity of the inverse of a homeomor-

phism of bounded variation

Let Ω be a domain in R
2. A function u ∈ L1(Ω) is of bounded variation,

u ∈ BV(Ω), if the distributional partial derivatives of u are measures with

finite total variation in Ω: there exist Radon signed measures D1u, D2u in

Ω such that for i = 1, 2, |Diu|(Ω) <∞ and

∫

Ω

uDiφ(z) dz = −
∫

Ω

φ(z) dDiu(z) ∀φ ∈ C1
0(Ω).

The gradient of u is then a vector-valued measure with finite total variation

|∇u| (Ω) = sup

{∫

Ω

udivϕ(z) dz : ϕ ∈ C1
0(Ω,R

2), ‖ϕ‖∞ ≤ 1

}

<∞.

By |∇u| we denote the total variation of the signed measure Du.

The Sobolev space W 1,1(Ω) is contained in BV(Ω); indeed for any u ∈

W 1,1(Ω) the total variation is given by
∫

Ω
|∇u| = |∇u| (Ω).
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We say that f ∈ L1(Ω;Rn) belongs to BV(Ω;Rn) if each component of f is

a function of bounded variation. Finally we say that f ∈ BVloc(Ω;R
n) if f ∈

BV(A;Rn) for every open A ⊂⊂ Ω. In the following, for f ∈ BVloc(Ω;R
n)

we will denote the total variation of f by:

|Df | (Ω) = sup

{

n
∑

i=1

∫

Ω

fidivϕi(z) dz : ϕi ∈ C1
0(Ω;R

n), ‖ϕi‖∞ ≤ 1, i = 1, . . . , n

}

.

The space BV(Ω,Rn) is endowed with the norm

‖f‖BV :=

∫

Ω

|f(z)| dz + |Df |(Ω).

There are equivalent ways to define a norm for BV maps. For example,

|f |BV(Ω) = sup

∣

∣

∣

∣

∫

Ω

[DTϕ(z)]f(z) dz

∣

∣

∣

∣

and the supremum runs over all test mappings ϕ ∈ C∞
0 (Ω,Rn) with ‖ϕ‖∞ =

1.

We will need the definition of sets of finite perimeter (see [1]).

Definition 2.1. Let E be a Lebesgue measurable subset of Rn. For any open

set Ω ⊂ R
n the perimeter of E in Ω, denoted by P (E,Ω), is the total variation

of χE in Ω, i.e.

P (E,Ω) = sup

{∫

E

divϕdz : ϕ ∈ C1
0(Ω;R

n), ‖ϕ‖∞ ≤ 1

}

.

We say that E is a set of finite perimeter in Ω if P (E,Ω) <∞.
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Lemma 2.1. For any open set Ω′ ⊂ R
n and xi ∈ L1

loc(Ω
′) we have

|∇xi| (Ω′) =

∫ +∞

−∞
P ({w ∈ Ω′ : xi(w) > t} ,Ω′) dt. (2.11)

It is a well known fact (see e.g. [1], Section 3.11) that a function g ∈

L1
loc(Ω) is in BVloc(Ω) (or in W

1,1
loc (Ω)) if and only if there is a representative

which has bounded variation (or is an absolutely continuous function) on

almost all lines parallel to coordinate axes and the variation on these lines is

integrable.

We define the variation
∣

∣

∣

∂f
∂xi

∣

∣

∣ (Ω) along the direction xi as follows:

∣

∣

∣

∣

∂f

∂xi

∣

∣

∣

∣

(Ω) = sup

{∫

Ω

f
∂φ

∂xi
dx : φ ∈ C1

c (Ω), ‖φ‖∞ ≤ 1

}

.

In one dimensional setting, each monotone function f ∈ L1(Ω) belongs to

BVand hence also the inverse f−1 ∈ BV. The same holds in two dimensions.

The first paper dealing with properties of the inverse of BV-homeomorphisms

was [45], where the authors proved the following:

Theorem 2.10. Let Ω,Ω′ ⊂ R
2 be open sets and suppose that f ∈ Hom(Ω,Ω′).

Then f ∈ BVloc(Ω,R
2) if, and only if, f−1 ∈ BVloc(Ω

′,R2).

We shall use from now on the following notation:

f(x, y) = (u(x, y), v(x, y)) for (x, y) ∈ Ω

f−1(u, v) = (x(u, v), y(u, v)) for (u, v) ∈ Ω′.

It is possible to improve the result of Theorem 2.10, finding how the variations
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of the components of the inverse map are related to the variation of f . More

precisely:

Theorem 2.11. Let f = (u, v) ∈ BVloc(Ω,R
2) ∩ Hom(Ω,Ω′), with inverse

f−1 = (x, y). Then x, y ∈ BVloc(Ω
′) and

|∇x|(Ω′) =

∣

∣

∣

∣

∂f

∂y

∣

∣

∣

∣

(Ω) (2.12)

|∇y|(Ω′) =

∣

∣

∣

∣

∂f

∂x

∣

∣

∣

∣

(Ω) . (2.13)

The statement of Theorem 2.11 is actually contained in [18] with the

additional assumption for mappings f ∈ W 1,1
loc . However, with some technical

tools, it is possible to prove identities for the wider class of mappings with

bounded variation. Note that under the assumptions of previous Theorem,

we cannot expect a better regularity for the inverse, as it is shown by the

mapping f0 considered in Section 2.2.

Without loss of generality, we can consider Ω = (−1, 1)2 and f = (u, v) : Ω →

Ω′ ⊂ R
2. We denote by:

f(x, ·) : t ∈ (−1, 1) → (u(x, t), v(x, t)) ∈ Ω′

f(·, y) : s ∈ (−1, 1) → (u(s, y), v(s, y)) ∈ Ω′.

the one dimensional restrictions of f along the coordinate axes.

We recall the following result that describes a first link between the vari-

ation along a direction and one-dimension sections.
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Lemma 2.2. Let f ∈ BV(Ω,R2). Then

∣

∣

∣

∣

∂f

∂x

∣

∣

∣

∣

(Ω) =

∫ 1

−1

∣

∣

∣

∣

d

dx
f(·, y)

∣

∣

∣

∣

((−1, 1)) dy. (2.14)

∣

∣

∣

∣

∂f

∂y

∣

∣

∣

∣

(Ω) =

∫ 1

−1

∣

∣

∣

∣

d

dy
f(x, ·)

∣

∣

∣

∣

((−1, 1)) dx. (2.15)

(see [1] Theorem 3.103).

We are in a position to prove Theorem 2.11.

Proof of Theorem 2.11. We start to prove the equality (2.13).

For a general f ∈ BV∩Hom(Ω,Ω′) it is well known that the area formula

(1.5) fails. However, being f(·, y) continuous, the length of the image of the

parametrized curve is the total variation of the restriction of f along the

coordinate axes. In this way, for the restriction of f along the line y = t a

counter part of area formula holds (see [25] Theorem 2.10.13):

∣

∣

∣

∣

d

dx
f(·, t)

∣

∣

∣

∣

(−1, 1) = H
1
(

f ((−1, 1)× {t})
)

.

Since f belongs to BV(Ω,R2) ∩ Hom(Ω,Ω′), f has bounded variation on

almost all lines parallel to coordinate axes and the variation on these lines is

integrable.

Integrating with respect to t , by Lemma 2.2, we obtain:

∣

∣

∣

∣

∂f

∂x

∣

∣

∣

∣

(Ω) =

∫ 1

−1

H
1
(

f ((−1, 1)× {t})
)

dt.
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Since it is clear that

f ((−1, 1)× {t}) = {w ∈ Ω′ : y(w) = t}

then
∣

∣

∣

∣

∂f

∂x

∣

∣

∣

∣

(Ω) =

∫ 1

−1

H
1 ({w ∈ Ω′ : y(w) = t}) dt.

As y is continuous then the set {w ∈ Ω′ : y(w) = t} is the boundary of

the level set {w ∈ Ω′ : y(w) > t}.

By assumptions we know that for a.e. t, H 1 ({w ∈ Ω′ : y(w) = t}) < ∞

and from [1] (p. 209) we have:

H
1 ({w ∈ Ω′ : y(w) = t}) = P ({w ∈ Ω′ : y(w) > t} ,Ω′)

a.e.t ∈ (−1, 1).

Using Coarea Formula from Lemma 2.1, we obtain:

|∇y|(Ω′) =

∣

∣

∣

∣

∂f

∂x

∣

∣

∣

∣

(Ω)

and we deduce that y ∈ BVloc(Ω
′).

The equality (2.12) is proved using the same technique.

As an application of Theorem 2.11, we are able to connect the weak* BV

convergence of a sequence of homeomorphisms with the weak* BV conver-
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gence of their inverse.

We recall the weak* convergence in BV that is useful for its compactness

properties.

Definition 2.2. Let f, fjwith j = 1, 2, . . . ∈ BV(Ω,Rn). We say that {fj}

weakly* converges in BV to f if {fj} converges to f in L1(Ω,Rn) and

lim
h→∞

∫

Ω

φdDfj =

∫

Ω

φdDf ∀φ ∈ C0(Ω)

An useful criterion for the weak* convergence in BV is the following.

Proposition 2.1. Let fj ∈ BV(Ω,Rn). Then {fj} weakly* converges to f

in BV if, and only if, {fj} is bounded in BV(Ω,Rn) and converges to f in

L1(Ω,Rn).

Now we are able to show the connection between the weak* BV conver-

gence of a sequence of homeomorphisms with the weak* BV convergence of

their inverses.

More precisely,

Corollary 2.1. Let fj ∈ Hom(Ω,Ω′) ∩ BV(Ω,R2) with j = 1, 2, . . . . The

sequence fj is locally weakly* compact in BV if, and only if, f−1
j is locally

weakly* compact in BV.

Moreover, if fj → f ∈ Hom(Ω,Ω′) uniformly in Ω, then f−1
j converge

weakly* in BV and locally uniformly to f−1.

Proof. By Theorem 2.11, f−1
j belongs to BV(Ω′,R2) and there exists a con-
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stant C ≥ 1 such that

|Df−1
j |(Ω′) ≤ |∇x|(Ω′) + |∇y|(Ω′)

=

∣

∣

∣

∣

∂fj
∂x

∣

∣

∣

∣

(Ω) +

∣

∣

∣

∣

∂fj
∂y

∣

∣

∣

∣

(Ω)

≤ C|Dfj|(Ω)

(2.16)

Being fj locally weakly* compact in BV, fj admits a subsequence fj(k) that

weakly* converges to a map f ∈ BV(Ω,R2) and fj(k) is bounded in BV.

By the criterion of compactness in BV, we have to prove that

sup
j(k)

‖f−1
j(k)‖BV = sup

{∫

A′

|f−1
j(k)| dx+ |Df−1

j(k)|(A′) : j(k) ∈ N

}

<∞

for all open set A′ ⊂⊂ Ω′.

Since f−1
j(k) are homeomorphism between bounded domains, we need to

control uniformly only the total variation |Df−1
j(k)|(A′). This comes from the

inequality (2.16) and the boundedness of the subsequence fj(k).

The other implication follows by symmetry.

If we assume in addition that fj → f uniformly, the local uniform conver-

gence of f−1
j to f−1 follows from Lemma 3.1 of [28]. Moreover, f−1

j converges

to f−1 in L1
loc(Ω

′,R2) because Ω,Ω′ are bounded domains. Hence, the weak*

convergence in BV(Ω′,R2) easily follows from the Proposition 2.1.

Corollary 2.1 fails in the setting of bi-Sobolev mappings, despite of the

identities of type (2.7) for fj; i.e. the equi-integrability of {Dfj} is not enough

to guarantee the equi-integrability of {Df−1
j }. In [28] the authors consider

a sequence of homeomorphisms of finite distortion whose distortion Kj has
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spherically rearrangement K∗
j satisfying K∗

j ≤ K for a fixed Borel function

K. Under this assumption they prove that if {Dfj} is equi-integrable in Ω,

then {Df−1
j } is equi-integrable in Ω′. The following example shows that the

assumption on the rearrangement K∗
j cannot be removed.

Example 2.2. There exists a sequence {fj} of bi-Sobolev mappings such

that {Dfj} is equi-integrable in Ω, but {D(f−1
j )} is not equi-integrable in Ω′

and Kj = K∗
j are not uniformly bounded by any Borel function.

We consider the one dimensional approximating sequence {cj} of the usual

Cantor ternary function c on the interval (0, 1). Let us now set gj(t) = t+cj(t)

and g(t) = t+ c(t). We note that g fails to be absolutely continuous. On the

other hand, we consider the inverse of g−1
j = hj and g−1 = h. We observe

that h is a Lipschitz function mapping homeomorphically (0, 2) onto (0, 1).

Define fj(x, y) = (hj(x), y). For each positive integer j, let us indicate by

[αj, βj] one of the 2
j intervals of length

(

1
3

)j
which remain after the jth step

in the usual construction of Cantor set.

Since g(βj) − g(αj) = βj − αj + cj(βj) − cj(αj) =
(

1
3

)j
+
(

1
2

)j
, then the

union E ′
j of the 2j intervals [g(αj), g(βj)] has measure 1 +

(

2
3

)j
.

By standard calculation we have:

h′j(x1) =



























1 if x ∈ (0, 2) \ E ′
j

1

1 +
(

3
2

)j if x ∈ E ′
j

It easy to check that |Dfj| =
√

(h′j)
2 + 1 are equi-bounded and also equi-

integrable.
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On the other hand, the inverse mappings f−1
j (u, v) = (gj(u), v) converge

to f−1(u, v) = (g(u), v) only weakly* in BV ((0, 1)2,R2).

We observe that the distortions Kj of fj are:

Kj(z) =
|Dfj(z)|2
Jfj(z)

=



























2 z ∈
(

(0, 2) \ E ′
j

)

× (0, 1)

1 +
(

3
2

)j
+

1

1 +
(

3
2

)j z ∈ E ′
j × (0, 1)

The set E ′
j × (0, 1) = A′

j has positive measure, in particular
∣

∣A′
j

∣

∣ ≥ 1, hence

there exists a set

A′ =
∞
⋂

k=1

⋃

j≥k

A′
j

of positive measure (|A′| ≥ 1) such that

lim sup
j

Kj(z) = +∞ ∀z ∈ A′.

We remark that Corollary 2.1 can be applied to the sequence {fj} of

previous example.

In general, the limit of a converging sequence of homeomorphisms fj :

Ω
onto−→ Ω′ may loose injectivity. Iwaniec and Onninen in [54], proved that the

weak W 1,n− limit of a sequence of W 1,n− homeomorphisms admits a right

inverse everywhere. On this subject, it is possible to extend Theorem 1.4 of

[54] in the following sense.

Theorem 2.12. Let fj ∈ W 1,2
loc ∩ Hom(Ω,Ω′) be such that {fj} converges

weakly in W 1,1
loc and uniformly to f ∈ W 1,1

loc (Ω,R
2). Then f admits a right
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inverse h ∈ BVloc(Ω
′,R2) a. e., that is f(h(w)) = w a. e. and

‖h‖BV ≤ C

∫

Ω

|Df |. (2.17)

The following example shows that under the assumptions of Theorem

2.12 , the existence of a right inverse everywhere is not guaranteed. We can

not expect more than the existence almost everywhere of the weak limit of

Sobolev homeomorphisms.

Example 2.3. There exists a sequence {fj} of W 1,2-bisobolev mappings

converging weakly in W 1,p for all 1 ≤ p < 3/2 and uniformly, whose limit

map does not admit right inverse everywhere.

We consider D = {(x, y) : x2 + y2 ≤ 1, y ≥ 0} and denote by Ba (c) the

ball of center (0, c) and radius a with a < 1
2
.

Let fj : D
onto−→ D be a homeomorphism that maps the ball Ba (a+ εj)

into the ball Ba

(

1
2

)

by a vertical translation. We need to define fj outside

the ball Ba (a+ εj). Let P ∈ D \ Ba (a+ εj) and θ be the angle between the

second coordinate axis and the segment with endpoints P and the center of

Ba (a+ εj); moreover, let ρ be the distance of P from the center of Ba (a+ εj).

Then, using polar coordinates

P = ((0, a+ εj) + ρ (sin θ,− cos θ))

We construct fj that sends P into a point P ′ ∈ D \ Ba

(

1
2

)

, preserving θ.
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More precisely:

fj ((0, a+ εj) + ρ (sin θ,− cos θ)) =

(

0,
1

2

)

+ [α(θ)ρ+ β(θ)] (sin θ,− cos θ) .

To be consistent with the construction of fj, we have to consider three

different cases, depending for which angles θ the lines r and s intersect the

coordinate axis, where r joints P and (0, a+ εj) and s joints P ′ and
(

0, 1
2

)

.

If −θ0 = − arctan 2 ≤ θ ≤ arctan 2 = θ0, then

α(θ) =
1− 2a cos θ

2 (a(1− cos θ) + εj)

β(θ) = a (1− α) .

If − arctan 1
a+εj

≤ θ ≤ −θ0 and θ0 ≤ θ ≤ arctan 1
a+εj

, then

α(θ) =
cos θ

(

cos θ − 2a+
√
3 + cos2 θ

)

2 (a(1− cos θ) + εj)

β(θ) = a (1− α) .

If −π ≤ θ ≤ − arctan 1
a+εj

and arctan 1
a+εj

≤ θ ≤ π

α(θ) =
cos θ − 2a+

√
3 + cos2 θ

2 (a+ εj) cos θ − a+
√

1− (a+ εj)
2 sin2 θ

β(θ) = a (1− α) .
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We consider the Lp norm of the gradient of these mappings using polar

coordinates:
∫

dθ

∫

ρ

[

|Dρfj|p +
|Dθfj|p
ρp

]

dρ. (2.18)

By the expressions of α(θ) and β(θ), it is clear that the most critical case is

when −θ0 ≤ θ ≤ θ0. We consider separately the radial derivatives and the

angular derivatives.

For the radial derivative we observe that

|Dρfj| = α(θ) =
1− 2a cos θ

2 (a(1− cos θ) + εj)

and

∫ θ0

−θ0

dθ

∫

a+εj

cos θ

a

ρ|Dρfj|pdρ =

1

2

∫ θ0

−θ0

dθ

(

1− 2a cos θ

2a (1− cos θ) + εj

)p
[

(

a+ εj
cos θ

)2

− a2

]

=

1

2

∫ θ0

−θ0

dθ

(

1− 2a cos θ

2a (1− cos θ) + εj

)p [(a2 + ε2j − a2 cos2 θ

cos2 θ

)

+
2aεj
cos2 θ

]

The term

∫ θ0

−θ0

(

1− 2a cos θ

2a (1− cos θ) + εj

)p(a2 + ε2j − a2 cos2 θ

cos2 θ

)

is finite for p < 3/2.

Indeed, when θ is close to 0, the other term has the same behaviour of

ε2−p
j arctan

(

θ0√
εj

)p

; that goes to 0 when εj → 0.
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For the derivatives respect to θ, we observe that

α′(θ) =
a sin θ

a(1− cos θ) + εj
− a sin θ(1− 2a cos θ)

2(a(1− cos θ) + εj)2
.

So that
∫ θ0

−θ0

dθ

∫

a+εj

cos θ

a

|Dθfj|pdρ =

∫ θ0

−θ0

dθ

∫

a+εj

cos θ

a

(

(α′(θ))2(ρ− a)2 + (α(θ)ρ+ a(1− α(θ)))2
)p/2

dρ

We observe that the second term on the left hand side is easily controlled

and the first term has the following behaviour near to 0:

∫ θ0

−θ0

dθ

∫

a+εj

cos θ

a

(α′(θ))
p
(ρ− a) =

∫ θ0

−θ0

(α′(θ))
p

[

a2 + ε2j + 2aεj

2 cos2 θ
− a

a+ εj
cos θ

+
a2

2

]

dθ.

Arguing as the radial case, it is just routine to prove that the last integral is

finite when εj → 0.

We observe that fj satisfies all the assumptions of Theorem 2.12, then

the limit f admits right inverse h a.e..

We emphasize that the “right inverse”h is not injective everywhere as

sends the segment of extremal (0, 0) and (0, 1
2
− a) into the origin. The

central point is that the sequence fj does not converge in W 1,2, hence the

Theorem of Iwaniec and Onninen does not apply.

The dimension n = 2 in Theorem 2.11 is crucial. For n ≥ 3, to guarantee

that f−1 has bounded variation, we need stronger assumptions on f (see [44],
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[45],[74]).

It was recently proved in [15] the following:

Theorem 2.13. Let Ω ⊂ R
n be an open set and f ∈ W 1,n−1

loc (Ω,Rn) be a

homeomorphism. Then f−1 ∈ BVloc(f(Ω),R
n).

In previous Theorem the regularity assumption on f , that is f ∈ W 1,n−1
loc ,

is optimal, in fact for each n ≥ 3 and 0 < ǫ < 1, there exists a homeomor-

phism f ∈ W 1,n−1−ǫ
loc ((−1, 1)n,Rn) such that f−1 /∈ BVloc(f(Ω),R

n) (see [45],

Example 2).

Also in higher dimension, it is possible to give the explicit value of the

variations of the components of the inverse map in terms of minors of Jaco-

bian of f .

To state the main in his generality, we follow the notation of [66].

Let I(n, n−1) be the set of all increasing multindices from {1, . . . , n}n−1,

i.e. α = (α1 . . . αn−1) ∈ I(n, n−1) if α, are integers 1 ≤ α1 < . . . < αn−1 ≤ n.

If α ∈ I(n, n− 1), we define the partial Jacobian

∂
(

fα1 , . . . , fαn−1

)

∂(x1, . . . , xl−1, xl+1, . . . , xn)
= det

(

∂fαi

∂xj

)

with i = 1, . . . , n− 1, j = 1, . . . , n, j 6= l.

We define the (n− 1)− dimensional partial Jacobian as:

J
(n−1)
fxi =

√

√

√

√

∑

α∈I(n,n−1)

(

∂
(

fα1 , . . . , fαn−1

)

∂(x1, . . . , xi−1, xi+1, . . . , xn)

)2

(2.19)

We are in position to state:
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Theorem 2.14. Let f ∈ W 1,n−1
loc (Ω,Rn)∩Hom(Ω,Ω′) whose inverse is f−1 =

(x1, . . . , xn). Then xi ∈ BV
loc
(Ω′) ∀i = 1, . . . , n and

|∇xi| (Ω′) =

∫

Ω

J
(n−1)
fxi . (2.20)

A key ingredient for the proof of Theorem 2.14 is the following result

which prove that if f ∈ W 1,n−1 is a homeomorphism, then the area formula

holds on almost all hyperplanes (see [15]).

Lemma 2.3. Let f ∈ W 1,n−1
loc ((−1, 1)n,Rn) be a homeomorphism. Then

for almost every y ∈ (−1, 1) the mapping f|(−1,1)n−1×{y} satisfies the Lusin

(N) condition, i.e., for every A ⊂ (−1, 1)n−1 × {y}, H n−1(A) = 0 implies

H n−1 (f(A)) = 0.

To prove that the inverse is in BV, in [43] and [45], the authors used a

characterization of BV functions (see [71]). The technique in Theorem 2.11

and Theorem 2.14 are completely different; in fact we slice homeomorphism

along coordinate directions. Theorem 2.14 generalizes the result of [18].

2.4 Composition of bi–Sobolev homeomorphisms

In this section the following question has been raised: when does a composi-

tion g ◦ f of two homeomorphisms

f : Ω −→ Ω′ and g : Ω′ −→ Ω′′

of finite distortion also have finite distortion?
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The major difficulty lies in the fact that, also if we assume that f is a bi-

Sobolev map, the map f−1 need not satisfy the N-condition. In other words,

the image of a null set under f−1 may fail to be measurable. This poses se-

rious problems concerning measurability of the composition g ◦ f : Ω onto−→ Ω′′

and forces us to assume that f−1 satisfies the N-condition. In fact, it is well

known ([65] p. 121) that the N-condition on f−1 guarantees that g ◦ f is

measurable.

Concerning the composition map, the following result can be deduced

by [43]. Let f : Ω
onto−→ Ω′ and g : Ω′ onto−→ Ω′′ be homeomorphisms, with

f−1 ∈ W 1,n(Ω′,Ω) with finite distortion and g ∈ W 1,n(Ω′,Ω′′). Then g ◦ f

belongs to W 1,1
loc .

In [80] it has been observed that under the above assumptions also (g ◦

f)−1 = f−1 ◦ g−1 belongs to W 1,1, that is g ◦ f is a bi–Sobolev mapping.

Hence, by Theorem 2.5 for n = 2, the composition has finite distortion.

In [35] we give sharp regularity conditions on f and g in the setting of

Zygmund spaces, under which g ◦ f ∈ W 1,1 (see Section 1.2 for definitions).

Our setting is more general and we recover the previous result when α = 0.

Theorem 2.15. Let f : Ω
onto−→ Ω′ and g : Ω′ onto−→ Ω′′ be homeomorphisms,

with f−1 and g of finite distortion. If |Df−1| ∈ Ln logα Lloc and |Dg| ∈

Ln log−α(n−1) Lloc, with α > 0, then h = g◦f ∈ W 1,1
loc and has finite distortion.

Moreover

Kh(z) 6 Kg(f(z))Kf (z) , for a.e. z ∈ Ω . (2.21)

Proof. Consider first the case g ∈ C∞(f(Ω),Rn). Then, g being locally
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Lipschitz continuous and f continuous, we have g ◦ f ∈ W 1,1
loc and

D(g ◦ f)(z) = Dg(f(z))Df(z) .

Moreover, f has finite distortion ([44, 74]), and hence

Jf (z) = 0 =⇒ D(g ◦ f)(z) = 0 .

Let us prove that for any ball B ⋐ Ω, we have

∫

B

|D(g ◦ f)| dz 6
∫

f(B)

|Dg(w)| |Df−1(w)|n−1 dw . (2.22)

We decompose the domain Ω′ as follows

Ω′ = Rf−1 ∪ Zf−1 ∪ Ef−1

where

Rf−1 =
{

w ∈ Ω′ : f−1 is differentiable at w and Jf−1(w) 6= 0
}

,

Zf−1 =
{

w ∈ Ω′ : f−1 is differentiable at w and Jf−1(w) = 0
}

,

Ef−1 =
{

w ∈ Ω′ : f−1 is not differentiable at w
}

.

Recall [81] that f−1 is differentiable a.e. in Ω′, that is |Ef−1 | = 0. Using the

area formula we see that

∫

f−1(E
f−1 )

Jf (z)dz ≤ |Ef−1 | = 0.
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Therefore, Jf = 0 a.e. in f−1(Ef−1). Furthermore, by Sard’s lemma, |f−1(Zf−1)| =

0 and therefore D(g ◦ f)(z) = 0 for a.e. z ∈ Ω \ f−1(Rf−1). On the other

hand, for all w ∈ Rf−1 , we have

Jf (f
−1(y)) =

1

Jf−1(y)
, Df(f−1(y)) = (Df−1(y))−1 . (2.23)

Now, defining the Borel set A = B ∩ f−1(Rf−1), by area formula (1.5) and

(2.23) we compute

∫

B

|D(g ◦ f)| dz 6

∫

A

|Dg(f(z))| |Df(z)|
Jf (z)

Jf (z) dz

6

∫

f(A)

|Dg(w)| |Df(f
−1(w))|

Jf (f−1(w))
dw

6

∫

f(B)

|Dg(w)| | adjDf−1(w)| dw ,

(2.24)

which implies (2.22).

Using Hölder’s inequality in Zygmund spaces (1.10), we deduce from

(2.22)

∫

B

|D(g ◦ f)| dz 6 C ‖Dg‖Ln log−α(n−1) L(f(B)) ‖Df−1‖n−1
Ln logα L(f(B)) .

Let now g be an arbitrary function in W 1,1
loc (f(Ω),R

n) satisfying the assump-

tions. As in [38], let {gj} be a sequence of smooth mappings which approx-

imate g by standard mollification. We take two indices i, j and we apply

(2.22) to gi − gj. We see that {D(gj ◦ f)} is a Cauchy sequence in L1. Since
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gj converges to g almost everywhere and f−1 satisfies the Lusin N then gj ◦f

converges to g ◦ f almost everywhere (g ◦ f does not depend on the represe-

native of g). Since gj ◦ f is Cauchy in L1
loc, we obtain that gj ◦ f converges

to g ◦ f in L1
loc. This, toghether with the fact that {D(gj ◦ f)} is a Cauchy

sequence in L1 implies that h = g ◦ f ∈ W 1,1
loc .

We only need to prove that h has finite distortion and that (2.21) holds.

The map h is differentiable at every point z in the set of full measure E =

f−1(Rf−1 ∩ (Rg ∪ Zg)), and we have:

Dh(z) = Dg(f(z))Df(z) , Jh(x) = Jg(f(z)) Jf (z) . (2.25)

From these formulas we can deduce that

Jh(z) = 0 =⇒ Dh(z) = 0 , (2.26)

for a.e. z ∈ Ω, that is, the composition map h has finite distortion. To this

end, recall that since g has finite distortion, there exists a set E ′ ⊂ Ω′ such

that |Ω′ \ E ′| = 0 and

Jg(w) = 0 =⇒ Dg(w) = 0 , for every w ∈ E ′ .

By (2.25), Jh(z) = 0 can happen on E only for z ∈ f−1(Rf−1 ∩ Zg), so

that Jg(f(z)) = 0, hence also Dg(f(z)) = 0 and in turn Dh(z) = 0, if

f(z) ∈ E ′. Therefore, (2.26) holds at every point z in the set of full measure

f−1(Rf−1 ∩ (Rg ∪ Zg) ∩ E ′).
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The above argument also gives

Kh(z) =
|Dh(z)|n
Jh(z)

6
|Dg(f(z))|n
Jg(f(z))

· |Df(z)|
n

Jf (z)
= Kg(f(z))Kf (z)

on f−1(Rf−1∩Rg), andKh(z) = 1 a.e. on the complementary, thus inequality

(2.21) follows.

Another question concernig the regularity of the composition is when does

a composition u ◦ f of a map f : Ω → R
n and a function u has bounded

variation?

In the paper [24], we give some conditions on f−1 for which the compo-

sition operator u ◦ f maps one Sobolev space to the space BV.
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Chapter 3

Some pathological examples of

Sobolev homeomorphisms

In this chapter we investigate when the Jacobian determinant does not change

sign; i.e. it is either non–negative almost everywhere or non–positive almost

everywhere. We also construct a bi–Sobolev homeomorphism f such that

Jf = Jf−1 = 0 almost everywhere.

3.1 Sign of the Jacobian

In geometric function theory the non negativity of the Jacobian is ofen taken

as an assumption. We shall examine that this is not a real restriction for

homeomorphisms.

First, we investigate the planar case.

Let Ω ⊂ R
2 be a domain and f : Ω → R

2 be a Sobolev homeomorphism.

By Gehring–Lehto theorem (see for example [3]), every Sobolev homeomor-
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phism is differentiable almost everywhere and moreover the following result

holds:

Theorem 3.1. Let f : Ω ⊂ R
2 → Ω′ ⊂ R

2 be aW 1,1
loc homeomorphism. Then,

the Jacobian determinant Jf does not change sign; that is either Jf ≥ 0 a.e.

or Jf−1 ≤ 0 a.e. in Ω.

In general, for n > 2, the Jacobian determinant does not change sign if f

is a homeomorphism differentiable a.e. in the classical sense.

Recalling that for n > 2, each homeomorphism f ∈ W 1,p with p > n− 1

is differentiable a.e., we have:

Theorem 3.2. Let Ω ⊂ R
n be an open set. Suppose that f ∈ W 1,p

loc with

p > n− 1. Then, either Jf ≥ 0 a.e. or Jf−1 ≤ 0 a.e. in Ω.

This result was improved in [47]. Indeed, when n ≤ 3 the authors showed

that the Jacobian of a homeomorphism f in W 1,1
loc does not change sign and

moreover, in higher dimension, the following statement hold:

Theorem 3.3. Let Ω ⊂ R
n be a domain, n ≥ 2. If f : Ω → R

n is a W 1,p–

homeomorphism for some p >
[

n
2

]

. Then, either Jf ≥ 0 a.e. or Jf−1 ≤ 0

a.e. in Ω.

3.2 Sobolev homeomorphism with zero Jaco-

bian almost everywhere

In this section we examine how big can be the zero set of the Jacobian of a

homeomorphism of the Sobolev class W 1,p(Ω,Rn), p ≥ 1. We recall that it
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is possible to construct a Lipschitz homeomorphism with zero Jacobian on

a set of positive measure (see [53], Section 6.2.6). The construction is based

on the classical “Sierpinski sponge ”. Initially, the holes of the sponge form

a Cantor set of positive measure. Then, they are squeezed down to a set

of positive measure. The homeomorphism constructed lies in every Sobolev

class W 1,p for 1 ≤ p ≤ ∞, has finite distortion K ∈ Lp for all p < 1
n−1

but

not for p = 1
n−1

, its Jacobian vanishes on a set S of positive measure and as

a consequence, f(S) has zero measure.

For a Lipschitz homeomorphism and in general for a homeomorphism

that satisfies the Lusin N condition, the Jacobian cannot vanishes almost

everywhere. In fact, in this case the area formula (1.6) holds as an equality

and

0 =

∫

Ω

Jf (x) dx = |f(Ω)|

Thus, we have a contradiction.

When is it possible to construct a Sobolev homeomorphism f with Jf = 0

almost everywhere? In one dimension, a homeomorphism u in W 1,1 cannot

satisfy u′ = 0 almost everywhere. In fact, we know that for any increas-

ing homeomorphism that belongs to W 1,1, the restriction to each compact

interval is absolutely continuous and for any measurable set A ⊂ R

0 =

∫

A

u′(x)dx = |u(A)|.

This gives us a contradiction.

Moreover, it is easy to see that for n ≥ 2 a homeomorphism of finite

distortion cannot satisfy Jf = 0 a.e. Otherwise, |Df | = 0 a.e. and the
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absolutely continuity on almost all lines gives a contradiction.

A mapping with zero Jacobian almost everywhere has the following con-

sequences. The area formula for Sobolev mappings holds up to a set Z of

zero measure and hence

0 =

∫

Ω\Z
Jf (x)dx = |f(Ω \ Z)|.

Thus, such a mapping f sends a set of measure zero to a set of full measure:

|Z| = 0 and |f(Z)| = |f(Ω) \ f(Ω \ Z)| = |f(Ω)|.

Conversely, f sends a set of full measure to a null set

|Ω \ Z| = |Ω| and |f(Ω \ Z)| = 0.

S. Hencl showed in [40] that such pathological homeomorphism exists for any

1 ≤ p < n.

Theorem 3.4. Let 1 ≤ p < n. There is a homeomorphism f ∈ W 1,p ((0, 1)n, (0, 1)n)

such that Jf (x) = 0 almost everywhere.

Let us note that this example cannot be obtained as a simple iteration

of the Sierpinski’s sponge construction, because the Sobolev norm of such

mapping would grow too fast.

Later, Cerný in [12], with finer choice of parameters and estimates, ob-

tained the best possible integrability of |Df | for a homeomorphism with zero

Jacobian almost everywhere.
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Theorem 3.5. Let n ≥ 2. There is a homeomorphism f ∈ W 1,1 ((0, 1)n, (0, 1)n)

such that Jf = 0 almost everywhere in [0, 1]n, f restricted to the boundary is

the identity mapping and |Df | belongs to Ln) ((0, 1)n).

This examples are based on the following steps. It is essential to con-

struct sequence of homeomorphisms Fj from some rhomboid onto the same

rhomboid (not from the unit cube onto the unit cube for technical reasons),

that converges uniformly to a homeomorphism f . Every Fj has JFj
= 0 on

a particular Cantor set Cj of positive measure.

For n = 2, the mapping Fj for j odd, squeezes the set Cj in the horizontal

direction and the derivative in the vertical direction will be non–zero. On

the other hand, Fj for j even, squeezes the set Cj in the vertical direction

and the derivative in the horizontal direction will be non–zero. At the end

they need to estimate the derivatives of Fj and since they are constructed

as a composition of many mappings the derivative is computed using the

chain rule. The key ingredient of the construction is that all the matrices

are almost diagonall. This means that the stretching in the horizontal and

vertical direction do not multiply and thus the derivative is not big and the

norm is finite.

3.3 Bi–Sobolev homeomorphism with zero Ja-

cobian almost everywhere

In this section we focus our attention on the Sobolev regularity of the inverse

of a Sobolev homeomorphism with zero Jacobian almost everywhere.
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In the previous construction there was no attention on the regularity of

the inverse map. The homeomorphism f with zero Jacobian almost every-

where belonged to the Grand Sobolev space W 1,n) and hence its inverse was

a mapping of bounded variation (see Theorem 2.13 ).

Here, we would like to underline that there is a “pathological ”bi–Sobolev

homeomorphism.

Theorem 3.6. Let n ≥ 3. There is a bi-Sobolev homeomorphism f :

(0, 1)n
onto−→ (0, 1)n such that Jf (x) = 0 and Jf−1(y) = 0 almost everywhere.

Let us note that such a pathological homeomorphism cannot exists in

dimension n = 2. Otherwise, by the strategic characterization of bi–Sobolev

homeomorphism (see Theorem 2.5) we have

Jf (x) = 0 =⇒ Df(x) = 0.

and hence Df = 0 a.e. This gives us a contradiction.

In higher dimension cannot exists a bi–Sobolev homeomorphism such that

Jf = 0 a.e. with W 1,n−1–regularity.

Theorem 3.7. Let n ≥ 2 and let f ∈ W 1,n−1((0, 1)n,RN) be a bi–Sobolev

homeomorphism. Then Jf (x) 6= 0 on a set of positive measure.

Proof. Suppose for contrary that there is a bi-Sobolev homeomorphism f ∈

W 1,n−1 such that Jf = 0 a.e. By Theorem 2.8 we know that each bi-Sobolev

mapping is a mapping of finite inner distortion, i.e. for almost every x we

have

Jf (x) = 0 ⇒ adjDf(x) = 0 a.e..
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Since Jf (x) = 0 a.e. we obtain that adjDf(x) = 0 a.e.

By Theorem 2.7 we know that eachW 1,n−1 homeomorphism of finite inner

distortion satisfies f−1 ∈ W 1,1 and we have the following identity

∫

(0,1)n
| adjDf(x)| dx =

∫

f((0,1)n)

|Df−1(y)| dy .

Since the left hand side equals to zero we obtain that Df−1(y) = 0 a.e. Using

the absolute continuity of f−1 on almost all lines it is not difficult to deduce

that f−1 maps everything to a point which clearly contradicts the fact that

f is a homeomorphism.

The construction of the mapping f in Theorem 3.6 is essentially more

complicated with respect to Theorem 3.4 and Theorem 3.5. It requires several

new ideas and improvements. Moreover, to obtain a map with zero Jacobian

in the previous constructions it was enough to squeeze certain Cantor type

set only in one direction, but we have to squeeze these sets in two directions

to obtain mapping with adjDf = 0 a.e.

In what follows, we will use the usual convention that c denotes a generic

constant whose value may change at each occurrence.

We give the sketch of the construction f = (f1, f2, f3) in dimension n = 3.

In general dimension it is possible to use for example the mapping

f(x1, x2, . . . , xn) = (f1(x1, x2, x3), f2(x1, x2, x3), f3(x1, x2, x3), x4, . . . , xn)

which is again a bi–Sobolev homeomorphism with zero Jacobian a.e.
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BASIC BUILDING BLOCKS

For 0 < w and s ∈ (0, 1), we denote the diamond of width w by

Qz(w) = {(x, y, z) ∈ R
3 : |x|+ |y| < w(1− |z|)}.

We will often work with the inner smaller diamond and the outer annular

diamond defined as

Iz(w, s) = Qz(ws) and Oz(w, s) = Qz(w) \Qz(ws).

Given parameters s ∈ [1
2
, 1), s′ ∈ [1

4
, 1), we will repeatedly employ the

mapping φz
w,s,s′ : Q

z(w) → Qz(w) defined by

φz
w,s,s′ =















(

1−s′

1−s
x+ (1− |z|)w s′−s

1−s
x

|x|+|y| ,
1−s′

1−s
y + (1− |z|)w s′−s

1−s
y

|x|+|y| , z
)

(x, y, z) ∈ Oz,

(

s′

s
x, s

′

s
y, z
)

(x, y, z) ∈ Iz.

If s′ < s, then this homeomorphism horizontally compresses Iz(w, s) onto

Iz(w, s′), while stretching Oz(w, s) onto Oz(w, s′). Note that φz
w,s,s′ is the

identity on the boundary of Qz(w).
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Fig. 1. The restriction of the mapping φz
w,s,s′ to the x, z-plane
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If (x, y, z) is an interior point of Iz(w, s), then

Dφz
w,s,s′(x, y, z) =













s′

s
0 0

0 s′

s
0

0 0 1













(3.1)

If (x, y, z) is an interior point of Oz(w, s) and z 6= 0, then

Dφz
w,s,s′(x, y, z) =













1−s′

1−s
+ 4c s

′−s
1−s

2c s
′−s
1−s

cw s′−s
1−s

2c s
′−s
1−s

1−s′

1−s
+ 4c s

′−s
1−s

cw s′−s
1−s

0 0 1













. (3.2)

using the convention that c denotes an expression which may depend on

x, y, z but we know that |c| ≤ 1. This expression may have a different value

at each occurrence.

Note that by choosing w sufficiently small we can make the first two terms

in the last column arbitrarily small. Later we will rotate this matrix in the

first two coordinates and we obtain almost upper triangular matrix.

We will need also to estimate the derivative of the inverse mapping and

using the same convention as in (3.2), we can write:

D(φz
w,s,s′)

−1(φz
w,s,s′(x, y, z)) =













1−s
1−s′

+ 8c s−s′

1−s′
4c s−s′

1−s′
cw s−s′

1−s′

4c s−s′

1−s′
1−s
1−s′

+ 8c s−s′

1−s′
cw s−s′

1−s′

0 0 1













.

(3.3)

CHOICE OF PARAMETERS

Let C1 and C2 be absolute constants whose exact value we will specify later.
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We can clearly fix t > 1 such that

C1C2

(π2

6

)61

t
<

1

2
. (3.4)

For k ∈ N, we set

wk =
k + 1

tk2 − 1
, sk = 1− 1

tk2
and s′k = sk

k

k + 1
. (3.5)

In this case,

1− s′k
1− sk

=
tk2 + k

k + 1
and

sk − s′k
1− sk

wk =
tk2 − 1

k + 1
wk = 1. (3.6)

It is also easy to check that 0 < sk < 1 and

∞
∏

i=1

si > 0.

We will construct a sequence of homeomorphisms Fj which will eventually

converge to f .

CONSTRUCTION OF F1

Let us denote Q0 := Qz(w1). We will construct a sequence of bi-Lipschitz

mappings

fk,1 : Q0
onto−→ Q0

and our mapping F1 ∈ W 1,1(Q0,R
3) will be later defined as:

F1(x) = lim
k→∞

fk,1(x).
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We will also construct a Cantor-type set C1 of positive measure such that

JF1(x) = 0 almost everywhere on C1.

We define f1,1 : Q0
onto−→ Q0 by

f1,1(x, y, z) = φz
w1,s1,s′1

(x, y, z).

Clearly f1,1 is a bi-Lipschitz homeomorphism. Now each fk,1 will equal to f1,1

on the set Oz(w1, s1) and it remains to define it on R1,1 := Iz(w1, s1). LetQ2,1

be any collection of disjoint, scaled and translated copies of Qz(w2) which

covers f1,1(I
z(w1, s1)) = Iz(w1, s

′
1) up to a set of measure zero. That is any

two elements ofQ2,1 have disjoint interiors, and there is a set E2,1 ⊂ Iz(w1, s
′
1)

of measure 0 such that

Iz(w1, s
′
1) \ E2,1 ⊂

⋃

Qz∈Q2,1

Qz ⊂ Iz(w1, s
′
1).

We define f2,1 : Q0 → Q0 by

f2,1(x, y, z) =















φQz

w2,s2,s′2
◦ f1,1(x, y, z) f1,1(x, y, z) ∈ Qz ∈ Q2,1,

f1,1(x, y, z) otherwise.

It is not difficult to check that f2,1 is a bi-Lipschitz homeomorphism. From

now on each fk,1 will equal to f2,1 on

Oz(w1, s1) ∪ f−1
1,1

(

⋃

Qz∈Q2,1

Os2
Qz

)

∪ (f1,1)
−1(E2,1)
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and it remains to define it on

R2,1 := f−1
1,1

(

⋃

Q∈Q2,1

Is2Qz

)

.

We continue inductively. Assume that Qk,1, fk,1 and Rk,1 have already been

defined. We find a family of disjoint scaled and translated copies of Qz(wk+1)

that cover fk,1(Rk,1) up to a set of measure zero Ek+1,1. Define φk+1,1 : Q0 →

Q0 by

φk+1,1(x, y, z) =















φQz

wk+1,sk+1,s
′

k+1
(x, y, z) (x, y, z) ∈ Qz ∈ Qk+1,1,

(x, y, z) otherwise.

The mapping fk+1,1 : Q0 → Q0 is now defined by φk+1,1 ◦ fk,1. Clearly each

mapping fk+1,1 is a bi-Lipschitz homeomorphism. We further define the set

Rk+1,1 := f−1
k,1

(

⋃

Qz∈Qk+1,1

I
sk+1

Qz

)

.

It follows that the resulting Cantor type set

C1 :=
∞
⋂

k=1

Rk,1

satisfies

|C1| > 0.

It is clear from the construction that fk,1 converge uniformly and hence

the limiting map F1(x) := limk→∞ fk,1(x) exists and is continuous. It is not
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difficult to check that F1 is a one-to-one mapping of Q0 onto Q0. Since Q0

is compact and F1 is continuous we obtain that F1 is a homeomorphism.

WEAK DIFFERENTIABILITY OF F1

Let us estimate the derivative of our functions fm,1. Let us fix m, k ∈ N

such that m ≥ k. If Qz ∈ Qk,1 and (x, y, z) ∈ int(fk,1)
−1(I

s′
k

Qz), then we

have squeezed our diamond k-times. Using (3.1), (3.5) and the chain rule we

obtain

Dfk,1(x, y, z) =
k
∏

i=1













i
i+1

0 0

0 i
i+1

0

0 0 1













=













1
k+1

0 0

0 1
k+1

0

0 0 1













. (3.7)

Moreover, if (x, y, z) ∈ int(fm,1)
−1(O

s′
k

Qz), then we have squeezed our diamond

k − 1 times and then we have stretched it once. It follows from (3.1), (3.5),

(3.2), (3.6) and the chain rule that

Dfm,1(x, y, z) =













tk2+k
k+1

+ 4c tk
2−1

k+1
2c tk

2−1
k+1

c

2c tk
2−1

k+1
tk2+k
k+1

+ 4c tk
2−1

k+1
c

0 0 1

























k−1
∏

i=1













i
i+1

0 0

0 i
i+1

0

0 0 1

























=













tk+1
k+1

+ 4c
k

tk2−1
k+1

2c
k

tk2−1
k+1

c

2c
k

tk2−1
k+1

tk+1
k+1

+ 4c
k

tk2−1
k+1

c

0 0 1













=: Ak.

(3.8)

It is easy to see that the norm of this matrix can be estimated by Ct.

It is possible to check that fk,1 forms a Cauchy sequence in W 1,1. Since

fk,1 converge to F1 uniformly we obtain that F1 ∈ W 1,1. From (3.7) we obtain
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that the derivative of fk,1 on Rk,1 and especially on C1 equals to

Dfk,1(x, y, z) =













1
k+1

0 0

0 1
k+1

0

0 0 1













.

Since Dfk,1 converge to DF1 in L
1 we obtain that for almost every (x, y, z) ∈

C1 we have

DF1(x, y, z) =













0 0 0

0 0 0

0 0 1













and therefore JF1(x, y, z) = 0.

Moreover, also {f−1
k,1} forms a Cauchy sequence in W 1,1

loc and since fk,1

converges uniformly to F1, {f−1
k,1} converges to F−1

1 uniformly (see Lemma

3.1 [28]). Hence, F1 is a bi–Sobolev mapping.

From now on each Fk will equal to F1 on C1 and we need to define it only

on Q0 \ C1. let us underline that, from the construction,

JF1 6= 0 a.e. on Q0 \ C1.

CONSTRUCTION OF F2 AND F3

As before, we construct a sequence of homeomorphisms

fk,2 : Q0
onto−→ Q0

and F2 ∈ W 1,1(Q0,R
3) will be later defined as
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F2(x) = lim
k→∞

fk,2(x).

We construct a Cantor–type set C2 ⊂ Q0\C1 of positive measure such that

JF2 = 0 a.e. on C2. This time we recover F1(Q0 \ C1) up to a set of measure

zero by a collection of disjoint, scaled, traslated and “rotated ”copies of the

diamond Qy(w1) where

Qy(w) = {(x, y, z) ∈ R
3 : |x|+ |z| < w(1− |y|)}.

In Theorem 3.4 and Theorem 3.5, it was essential that all the matrices in-

volved are almost diagonal and thus we can make better estimates of the norm

of their product than simply estimate norm of each matrix. After squeezing

in two directions our mappings are no longer almost diagonal (for example

the matrix from (3.8)) but we repair this using the QR decomposition.

Proposition 3.1. For every n×n matrix A we can find an orthogonal matrix

Q and an upper triangular matrix R such that A = QR.

This linear transformation allows us to make some of the matrices almost

upper triangular which will be sufficient for our estimates.

The mapping F3 is constructed in a similar way using traslated and scaled

copies of Qx(w1) where

Qx(w) = {(x, y, z) ∈ R
3 : |y|+ |z| < w(1− |x|)}.
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CONSTRUCTION OF F4

We will construct a sequence of homeomorphisms f−1
k,4 : Q0 → Q0 and our

mapping F4 ∈ W 1,1(Q0,R
3) will be later defined as F4(x) = limk→∞ fk,4(x).

So far we have constructed disjoint Cantor type sets such that JF1 = 0 a.e.

on C1, JF2 = 0 a.e. on C2 and JF3 = 0 a.e. on C3. Then, we construct a

Cantor type set C̃4 of positive measure in the image so that

JF−1
4

= 0 a.e. on C̃4

and so that |F−1
4 (C̃4)| = 0.

Thus, the sequence of homeomorphisms Fj which will eventually converge

to f is such that

• for j ∈ ⋃k∈N{6k + 1, 6k + 2, 6k + 3}, JFj
= 0 a.e. on Cj with |Cj| > 0

• for j ∈ ⋃

k∈N{6k + 4, 6k + 5, 6k + 6}, JF−1
j

= 0 a.e. on Fj(Cj) and

|Fj(Cj)| > 0.

The mappings F6k+1 and F−1
6k+4 are squeezing the Cantor type set in the

direction of x and y axes, F6k+2 and F
−1
6k+5 are squeezing after rotation in the

directions x and z and finally F6k+3 and F−1
6k+6 are squeezing after rotation

in the directions y and z.

PROPERTIES OF f

Now we define f(x) = limj→∞ Fj(x). Since Fj converges uniformly, f is

a homeomorphism. Moreover, DFj and DF
−1
j is Cauchy in L1 and thus f is
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bi-Sobolev. Moreover, it results,

∣

∣

∣

∣

∣

∞
⋃

j=1

Cj
∣

∣

∣

∣

∣

= |Q0|.

This together with JFj
= 0 on Cj for each j ∈

⋃

l∈N{6l+ 1, 6l+ 2, 6l+ 3}

and Fk = Fj on Cj for each k > j, imply that Jf = 0 almost everywhere on

Q0. Analogously we will deduce that Jf−1 = 0 a.e. on Q0.
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Chapter 4

On the continuity of the

Jacobian of orientation

preserving mappings

In several situations it is necessary to integrate the Jacobian. The usual

hypothesis ensuring this integrability has been f ∈ W 1,n
loc (Ω,R

n). Here we

are concerned on the minimal condition on the regularity of the map that

ensures the local integrability and the continuity property for the Jacobian

determinant. The right setting will be the Grand Sobolev spaceW
1,n)
loc (Ω,Rn).

4.1 The integrability of the Jacobian

Let Ω be a domain of Rn and let f = (f 1, . . . , fn) : Ω → R
n be a locally inte-

grable map whose distributional differential Df is locally integrable. Then,

its Jacobian determinant is defined point-wise at almost every point x ∈ Ω.
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In what follows, in the language of differential forms, we write

Jf (x)dx = df 1 ∧ . . . ∧ dfn(x).

From the Hadamard’s inequality:

|Jf (x)| ≤
n
∏

i=1

|Df i(x)|, (4.1)

follows that |Jf (x)| ≤ |Df(x)|n and hence, the natural assumption to guar-

antee the integrability of the Jacobian is f ∈ W 1,n.

Without any restriction, there is no reason to expect that the degree

of integrability of Jf is different from that of |Df |n. S. Muller in [73] was

the first to observe that the assumption that Jf does not change sign in Ω,

implies higher integrability of the Jacobian.

A map f is said orientation preserving if Jf ≥ 0 almost everywhere. S.

Muller in [73] proved that, if |Df | ∈ Ln(Ω) and Jf ≥ 0 then Jf ∈ L logL(K)

for any compact set K such that 2K ⊂ Ω. The result can be rephrased as

follows:
∫

K

Jf (x) log

(

e+
Jf (x)

JK

)

dx ≤ C(K)

∫

Ω

|Df |ndx

where JK is the integral mean of the Jacobian over K.

T. Iwaniec and C. Sbordone in [55] relaxed the natural assumption on

|Df |, proving that if f is an orientation preserving map, that is Jf (x) ≥ 0

a.e., and |Df | ∈ Ln)(Ω), then the Jacobian of f is locally integrable. The
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key estimate for their proof was the following:

∫

B

Jf (x)dx ≤ c(n) sup
0<ε≤1

[

ε

∫

2B

|Df |n−ε

] 1
n−ε

for concentric balls B ⊂ 2B ⊂ Ω.

At this point it became clear that the improved integrability property of

the Jacobian could be observed also in spaces slightly larger than W 1,n(Ω).

As a matter of fact, under the hypothesis |Df | ∈ Ln log−1 L(Ω) of G. Moscariello,

([71]), the Jacobian of f is even slightly more integrable; indeed, Jf lies in

L log logLloc(Ω).

A result that interpolate between Müller’s result and [55] is given in [9];

namely, if |Df | ∈ Ln(logL)−s(Ω), 0 ≤ s ≤ 1, then Jf ∈ L(logL)1−s(K) for

any K such that 2K ⊂ Ω, see also L. Greco ([33]).

4.2 The continuity of the Jacobian

Until now we have considered the weakest assumption to guarantee that the

Jacobian determinant is integrable and its integrability properties. A ques-

tion that naturally arises is the following: what are the sharpest hypotheses

under which we may guarantee that if fj ∈ W 1,1(Ω,Rn) converges to f then

Jfj → Jf in some sense? It is well known that if fj ⇀ f in W 1,n then

Jfj → Jf in the sense of distributions. This is a classical result due to Mor-

rey ([70]) and Reshetnyak ([78]). The key ingredient is that in W 1,n the

point-wise Jacobian agrees with the distributional one. In this setting, in

[55], it was proved that if fj is a sequence of orientation preserving mapping

73



weakly converging to f in W 1,n then,

lim
j

∫

Ω

ϕJfj =

∫

Ω

ϕJf ∀ϕ ∈ Exp(Ω).

We recall that the exponential class Exp(Ω) is formed by measurable func-

tions u on Ω for which there exists λ = λ(u) > 0 such that

exp(λ|u|) ∈ L1(Ω) .

T. Iwaniec and A. Verde in [60], under the strong convergence in W 1,n of

a sequence fj of orientation preserving mappings, proved that:

‖Jfj − Jf‖L logL(Ω) −→ 0.

Our aim here is to prove a similar result in the case that fj and f are

orientation preserving mappings in the Grand Sobolev space W 1,n)(Ω,Rn)

(see Section 2 for definition). We observe that in this case the distributional

Jacobian is not equal in general to the point-wise one. More precisely,

Theorem 4.1. Let Ω be a bounded domain of Rn. If fj and f are orientation

preserving mappings in W 1,n)(Ω,Rn) such that

fj −→ f in W 1,n)(Ω,Rn)

then

Jfj −→ Jf in L1
loc
(Ω).

The key tool is the following stability result for the Hodge decomposition,
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first established in [49],[55] and [57].

Lemma 4.1. For every vector field ω of class Lr(1−ε)(Ω,Rn) with r > 1 and

−∞ < ε < 1− 1
r
, we can find function η and Du such that

|ω|−εω = η +Du

with u ∈ W 1,r
0 (Ω) and divη = 0. This is called a Hodge decomposition and

the following estimates hold:

• If ω = Dv is a gradient field with v ∈ W
1,r(1−ε)
0 (Ω), then

‖η‖Lr(Ω) ≤ c(n, r)|ε|‖ω‖1−ε
Lr(1−ε) (4.2)

• If ω is divergence free, that is divω = 0, then

‖Du‖Lr(Ω) ≤ c(n, r)|ε|‖ω‖1−ε
Lr(1−ε) (4.3)

From the Hadamard’s inequality (4.1) follows one of the key pointwise

estimate for the Jacobian: for 0 < ε < 1,

|df 1|−ε|Jf (x)dx| ≤
(

1 + |df 1|−1
)

|Jf (x)dx|

≤|Jf (x)dx|+ |df 2| . . . |dfn| ≤ |Jf (x)dx|+ |Df |n−1.

(4.4)

An important application of the Lp-theory of differential form is:

Proposition 4.1. Let Ω be a bounded domain of Rn, u ∈ W
1,n−ε

1−ε

0 (Ω) and
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g ∈ W 1,n−ε
n−1 (Ω,Rn−1), then

∫

Ω

du ∧
(

dg1 ∧ . . . dgn−1
)

= 0 (4.5)

If u ∈ C∞
0 (Ω) and g ∈ C∞(Ω,Rn−1) by Stokes’ theorem

∫

Ω

du ∧
(

dg1 ∧ . . . dgn−1
)

=

∫

Ω

d
(

u ∧ dg1 ∧ . . . dgn−1
)

=

∫

∂Ω

u ∧
(

dg1 ∧ . . . dgn−1
)

= 0.

As n−ε
1−ε

and n−ε
n−1

are Hölder conjugate then, du ∧ (dg1 ∧ . . . dgn−1) ∈ L1(Ω)

and (4.5) follows via an approximation argument (see [55], page 138).

Proof of Theorem 4.1. It is sufficient to prove the theorem for a subsequence.

Hence, without loss of generality, by assumptions, we can assume that

Dfj(x) → Df(x) a.e. x ∈ Ω. (4.6)

Firstly, we prove the following:

lim
j→∞

∫

Ω

ϕJfj =

∫

Ω

ϕJf (4.7)

for every nonnegative test functions ϕ ∈ C1
0(Ω). For technical reason, we

shall consider an auxiliary test function ψ ∈ C1
0(Ω) which is equal to 1 in the

support of ϕ.

Let fj = (f 1
j , . . . , f

n
j ). We consider the compactly supported maps:

gj = (ψf 1
j , . . . , ψf

n−1
j , ϕfn

j ) = (g1j , . . . , g
n
j ) and g = (ψf 1, . . . , ψfn−1, ϕfn) =

(g1, . . . , gn).
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Using the calculus of differential forms, the Jacobian determinant of gj

is:

Jgjdx = dg1j ∧ . . . ∧ dgnj =











d(f 1
j ) ∧ . . . ∧ d(fn−1

j ) ∧ d(ϕfn
j ) on suppϕ

0 otherwise

(4.8)

The telescopic decomposition of the Jacobian ( [53], Section 8) leads to:

(

Jgj − Jg
)

dx =
(

dg1j ∧ . . . ∧ dgnj
)

−
(

dg1 ∧ . . . ∧ dgn
)

=

=(dg1j − dg1) ∧ dg2j ∧ . . . ∧ dgnj +

+dg1 ∧
(

dg2j − dg2
)

∧ dg3j ∧ . . . ∧ dgnj + . . .+

+dg1 ∧ . . . ∧ dgn−1 ∧
(

dgnj − dgn
)

.

(4.9)

Applying the Hodge decomposition to Dgj −Dg, we have:

|Dgj −Dg|−ε(Dgj −Dg) = DGj + Lj (4.10)

with DGj ∈ L
n−ε
1−ε , Lj ∈ L

n−ε
1−ε and

‖Lj‖n−ε
1−ε

≤ c(n, ε)ε‖Dgj −Dg‖1−ε
n−ε. (4.11)

It is important to realize that Lj becomes small as ε goes to zero.

(4.10) can be rewritten as:

|Dgj −Dg|−ε(Dgkj −Dgk) = DGk
j + lkj k = 1, . . . , n (4.12)

where lkj is the 1-form whose coefficients are the entries of the k-th column
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of Lj.

By (4.9) we have:

|Dgj −Dg|−ε
(

Jgj − Jg
)

= |Dgj −Dg|−ε

[

(dg1j − dg1) ∧ dg2j ∧ . . . ∧ dgnj +

+ dg1 ∧
(

dg2j − dg2
)

∧ dg3j ∧ . . . ∧ dgnj + . . .+

+ dg1 ∧ . . . ∧ dgn−1 ∧
(

dgnj − dgn
)

]

.

(4.13)

We focus our attention on the first term of the previous formula; using

(4.12), we have:

|Dgj −Dg|−ε(dg1j − dg1) ∧ dg2j ∧ . . . ∧ dgnj =

= dG1
j ∧ dg2j ∧ . . . ∧ dgnj +l1j ∧ dg2j ∧ . . . ∧ dgnj

(4.14)

Let us estimate both terms in the right hand side of the last formula.

By Proposition 4.1, we find that:

∫

Ω

dG1
j ∧ dg2j ∧ . . . ∧ dgnj =

∫

Ω

d
(

G1
jdg

2
j ∧ . . . ∧ dgnj

)

= 0.

Applying Hölder inequality and (4.11), we can estimate the second term
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in (4.14):

∫

Ω

|l1j∧
(

dg2j ∧ . . . ∧ dgnj
)

| ≤

≤
(∫

Ω

|l1j |
n−ε
1−ε

)
1−ε
n−ε
(∫

Ω

|dg2j ∧ . . . ∧ dgnj |
n−ε
n−1

)
n−1
n−ε

≤c(n, ε)ε‖Dgj −Dg‖1−ε
n−ε‖Dgj‖n−1

n−ε

≤c(n, ε)‖Dgj −Dg‖1−ε
Ln) ‖Dgj‖n−1

Ln) .

(4.15)

Analogously, we can estimate the k-th term in (4.13) as before, to obtain:

∫

Ω

|Dgj −Dg|−ε|dg1 ∧ . . . ∧ dgk−1 ∧ d(gkj − dgk) ∧ dgk+1
j ∧ . . . ∧ dgnj |

≤c(n, ε)ε‖Dgj −Dg‖1−ε
n−ε‖dg1 ∧ . . . ∧ dgk−1 ∧ dgk+1

j ∧ . . . ∧ dgnj ‖n−ε
n−1

≤c(n, ε)ε‖Dgj −Dg‖1−ε
n−ε ‖|Dgk−1| |Dgj|n−k‖n−ε

n−1

≤c(n, ε)‖Dgj −Dg‖1−ε
Ln) ‖Dg‖k−1

Ln) ‖Dgj‖n−k
Ln)

≤c(n, ε)‖Dgj −Dg‖1−ε
Ln)

(

‖Dg‖n−1
Ln) + ‖Dgj‖n−1

Ln)

)

.
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Thus, for every j we get:

∣

∣

∣

∣

∫

Ω

|Dgj −Dg|−ε
(

Jgj − Jg
)

dx

∣

∣

∣

∣

≤n c(n, ε)‖Dgj −Dg‖1−ε
Ln)

(

‖Dg‖n−1
Ln) + ‖Dgj‖n−1

Ln)

)

.

(4.16)

Using telescopic decomposition of the Jacobian and (4.4), we can pass

to the limit under the integral sign by the dominated convergence theorem.

Since, Dgj converges to Dg in Ln) on the support of ϕ, we have:

lim sup
j→∞

(∣

∣

∣

∣

∫

suppϕ

(Jgj − Jg)dx

∣

∣

∣

∣

)

= 0. (4.17)

By (4.8), (4.17) is equivalent to:

lim sup
j→∞

(∣

∣

∣

∣

∫

suppϕ

ϕJfj − ϕJf

+

∫

suppϕ

fn
j (df

1
j ∧ . . . ∧ dfn−1

j ∧ dϕ)− fn(df 1 ∧ . . . ∧ dfn−1 ∧ dϕ)
∣

∣

∣

∣

)

= 0.

Now, we can apply the imbedding of Grand Sobolev space W 1,n) into

Exp(Ω) (see [27]). It means that fn
j , f

n belong to Lp for every 1 < p <∞ and

by assumptions it follows that fn
j converges to fn in Lp for every 1 < p <∞.

This remark together with the telescopic decomposition of the Jacobian and
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Hölder’s inequality gives:

lim sup
j→∞

(∣

∣

∣

∣

∫

suppϕ

fn
j (df

1
j ∧ . . . ∧ dfn−1

j ∧ dϕ)− fn(df 1 ∧ . . . ∧ dfn−1 ∧ dϕ)
∣

∣

∣

∣

)

= lim sup
j→∞

(∣

∣

∣

∣

∫

suppϕ

(fn
j − fn)(df 1

j ∧ . . . ∧ dfn−1
j ∧ dϕ)

+

∫

suppϕ

fn(df 1
j ∧ . . . ∧ dfn−1

j − df 1 ∧ . . . ∧ dfn−1) ∧ dϕ)
∣

∣

∣

∣

)

= 0.

(4.18)

Therefore,

lim sup
j→+∞

(∣

∣

∣

∣

∫

suppϕ

ϕJfj − ϕJf

∣

∣

∣

∣

)

= 0.

Since fj and f are orientation preserving maps, we get:

lim
j→+∞

∫

suppϕ

ϕJfj =

∫

suppϕ

ϕJf . (4.19)

for every non negative ϕ ∈ C1
0(Ω).

Now, we are in position to prove the thesis.

We recall, by a Theorem of Iwaniec and Sbordone ([55]), that Jfj and Jf

belong to L1
loc
(Ω). On the other hand, by assumptions, Jfj converges to Jf

a.e. Hence, an application of Fatou’s Lemma gives, for every measurable set

E ⊂⊂ Ω:

∫

E

Jf ≤ lim inf
j→+∞

∫

E

Jfj ≤ lim sup
j→+∞

∫

E

Jfj

≤ lim
j→+∞

∫

E

ϕJfj

=

∫

E

ϕJf
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where ϕ ∈ C1
0(Ω) can be nonnegative function which is equal to one on E.

Taking infimum with respect to all such functions, we get that:

lim
j→+∞

∫

E

Jfj =

∫

E

Jf , (4.20)

that means:

‖Jfj‖L1(E) −→ ‖Jf‖L1(E) E ⊂⊂ Ω. (4.21)

(4.21) together with the convergence almost everywhere of Jfj(x) to Jf (x)

completes the proof.
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[15] M. Csörnyei, S. Hencl, J. Malý: Homeomorphisms in the Sobolev space

W 1,n−1. J. Reine Angew. Math. 644 (2010), 221-235.

[16] S. Daneri and A. Pratelli, Smooth approximation of bi–

Lipschitz orientation–preserving homeomorphisms, preprint (2011),

arXiv:1106.1192.

[17] G. David: Solution de l’equation de Beltrami avec ‖µ‖∞ = 1, Ann.

Acd. Sci. Fenn. Ser. A I Math. 13:1 (1988), 25-70.

[18] P. Di Gironimo, L. D’Onofrio, C. Sbordone, R. Schiattarella:

Anisotropic Sobolev homeomorphisms, Ann. Acad. Sci. Fenn. Math.,

36, (2011), 593–602.

[19] L. D’Onofrio, S. Hencl and R. Schiattarella, Bi-Sobolev homeomor-

phism with zero Jacobian almost everywhere, Preprint MATH-KMA-

2012/408.

[20] L. D’Onofrio, C. Sbordone and R. Schiattarella, The Grand Sobolev

homeomorphisms and their measurability properties, Advanced Nonlin-

ear Studies, 12 (2012), no. 4, 767–782.

[21] L. D’Onofrio and R. Schiattarella, On the continuity of Jacobian of

orientation preserving mappings in the Grand Sobolev space, preprint.

85



[22] L. D’Onofrio and R. Schiattarella, On the total variations for the

inverse of a BV-homeomorphism, to appear in Adv. Calc.Var, DOI

10.1515/acv-2012-0103.

[23] D. Edmunds, P. Gurka and B. Opic, On embeddings of logarithmic

Bessel potential spaces, J. Funct. Anal. 146 (1997), no. 1, 116–150.

[24] F. Farroni, R. Giova, G. Moscariello and R. Schiattarella: Homeomor-

phisms of finite inner distortion: composition operators on Zygmund-

Sobolev and Lorentz–Sobolev spaces, preprint 2012.

[25] H. Federer: Geometric Measure Theory, Die Grundlehren der math-

ematischen Wissenschaften, Band 153 Springer - Verlag, New York

(1969) (Second edition 1996).

[26] I. Fonseca, G. Leoni and J. Malý, Weak continuity and lower semicon-
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[81] J. Väisälä: Two new characterizations for quasiconformality, Ann.

Acad. Sci. Fenn. Ser. A I Math., 362, (1965), 1-12.

[82] S. K. Vodop’janov and V. M. Gol’dštĕın: Quasiconformal mappings,
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