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1. Preface and aim of the thesis 

 

"The concept of epigenetics includes those heritable changes that do not 
involve an alteration of the genome at the level of nucleotide sequences" 
(Guil and Esteller 2009). 

The credit for coining the term epigenetics in 1942 goes to Conrad 
Waddington (1905-1975). He defines it as "the branch of biology which 
studies the casual interactions between genes and their products, which 
bring the phenotype into being". 

Many are the fields in which a key role for epigenetics has been proved in 
the last years, spanning from cancer biology, personalized health care and 
drug response, embryogenesis, behavioral studies, environmental effects on 
human health, biological processes like imprinting, X chromosome 
inactivation and the definition and maintenance of cell identity.  

The main actors in the epigenetic regulation of cell functions are DNA 
methylation, histone modifications, non-coding RNAs (lincRNA) and the 
tridimensional structure of the chromatin in the nucleus. All of those factors 
contribute to the gene expression regulation, activating and repressing it in 
specific temporal windows of the cell life and in response to specific stimuli. 
Consequently a disruption of this regulation can cause as much damage as a 
single gene mutation, but with less distinctive and identifiable pathways. 
Moreover, a single mutation in a gene that codify for one of the epigenetic 
regulators can cause extensive damage in the cell, because it has more than 
one target. These genetic pathologies are called "chromatin diseases" as the 
whole chromatin structure is disrupted. 

Until about 10 years ago all the studies on those epigenetic marks have 
been performed with genomic regions-specific techniques, like bisulfite 
conversion of DNA and single molecule sequencing, to identify non-
converted sites marking DNA methylation, or ChIP (Chromatin Immuno-
Precipitation) coupled to real-time PCR (Polymerase Chain Reaction) or 
microarrays (ChIP on chip), to identify single or multiple binding sites for 
transcription regulators or histone modifications. On the other side, real-
time PCR and, more recently, microarrays, have been the sole techniques 
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supporting us in the study of the effects of those variations on the 
regulation of gene expression. All those methods have a characteristic in 
common, that is the need to be target-specific. Even the microarrays, 
despite allowing the study of the expression of all the annotated genes, 
show their intrinsic limit in the need of knowing the sequence of the genes 
themselves. 

The recent development of the Next Generation Sequencing (NGS) helped 
the biologists interested to epigenetics to overcome the problems of 
addressing the strong theories at the basis of their experiments and of 
limiting their action field on single, specific targets. The multiple 
applications of these technologies marked the beginning of the "-omic" era, 
including the epigenomic one. 

NGS is a general term for describing a set of different techniques with 
different aims. The basis of the system (translated in different chemistries 
from the bunch of companies competing the market) involves the 
sequencing from scratch of any DNA or RNA sequence in massive scale and 
in surprisingly short time, compared to the older technologies. 

The applications range from transcriptome analysis to ChIP-sequencing, 
from Single Nucleotide Polimorphism (SNP) genotyping and Copy Number 
Variations (CNV) analysis to whole-genome sequencing. All these 
applications will be described later in the introduction on NGS systems.  

It is clear, then, how this technology boosts the chances for new discoveries 
in the epigenetics field, but, as all novelties, creates a new, even more 
challenging problem, for the biologists involved: the data analysis. All the 
DNA sequences produced by those machines need to be assembled, 
mapped, compared, reconstructed, therefore analyzed. This process 
involves more than a simple desktop computer, and the competences 
needed to face it span the computational and the statistics areas, not fully 
covered by the classic biologic formation. This novel necessities led to new 
exciting collaborations among the different areas of studies and to the birth 
of new professional figures, the computational biologists, who, forming 
their competences in the different fields of biology, statistics and 
computational sciences, try to integrate the knowledge to the purpose of 
facing the -omics era. 
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During my PhD I studied the epigenomic alterations occurring in ICF patients 
(Immunodeficency, Centromere instability and Facial anomalies) derived 
lymphoblastoid cell lines. These studies put me in front of a new challenge, 
which is the data analysis and interpretation. ICF cells are particularly 
interesting because they are mutated in the de novo DNA methyltransferase 
3B gene (DNMT3B) and show a peculiar pattern of hypomethylation only in 
pericentromeric chromatin. The literature available until now was focused on 
specific portions of the genome, targeted by specific changes in expression. 
These studies led us to understand that big changes not only happen in the 
DNA methylation, but that the interplay between this epigenetic mark and 
histone modifications was altered. Thanks to the NGS technologies we could 
then perform whole-genome studies of histone marks enrichment linked to 
gene expression (H3K4me3 and H3K27me3) and to highly repetitive 
sequences (H3K9me3). Moreover, we could integrate this information with 
gene expression through RNA-seq and to DNA methylation with bisulphite-
seq (performed by our collaborators). At the same time, the analysis of 
these data marked for me the opportunity to develop new and appropriate 
pipelines for the analysis. I will show in this work how I analyzed and 
integrated microRNA expression (from microarrays), ChIP-sequencing, RNA-
sequencing and bisulphite-seq data from SOLiD and Illumina platforms. 
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2. Introduction 

 

Next generation sequencing 

DNA sequencing technologies help biologists in a broad range of 
applications such as molecular cloning, breeding, finding pathogenic genes, 
studying of gene regulations and comparative and evolutionary studies. 
DNA sequencing technologies ideally should be fast, accurate, easy-to-
operate, and cheap. In the past thirty years, DNA sequencing technologies 
and applications have undergone tremendous development and act as the 
engine of the genome era which is characterized by vast amount of genome 
data and subsequently broad range of research areas. It is necessary to look 
back on the history of sequencing technology development to understand 
the utility and innovation of NGS systems (454, GA/HiSeq, and SOLiD) and to 
discuss the various applications (Liu, Li et al. 2012).  

Since DNA discovery and characterization between the end of the XIX 
century and the beginning of the XX (Church 1984) many drastic 
improvements have been done in the DNA sequencing field (a simplified 
roadmap is tracked in Fig 1).  

 
Figure 1. Brief history of DNA sequencing. Adapted from (Llaca and Messing 1998). 

First Sanger introduced the possibility to sequence specific pieces of DNA 
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with a simple principle but a quite complex and laborious technique (Sanger 
method) (Maxam and Gilbert 1977; Sanger, Nicklen et al. 1977). Then the 
automated Sanger method (Hutchison 2007), using the capillary 
electrophoresis dominated the industry for almost two decades and led to a 
number of monumental accomplishments, including the completion of the 
only finished-grade human genome sequence (Lander, Linton et al. 2001; 
Venter, Adams et al. 2001). This method, though, still relied on big libraries 
of sheared DNA cloned into plasmids and fosmid subclones, requiring long 
time of sample preparation and analysis and also was not efficient enough 
to cover the gaps in highly polymorphic or repeated genomes. Despite many 
technical improvements during this era, the limitations of automated Sanger 
sequencing showed a need for new and improved technologies for 
sequencing large numbers of human genomes.  

The Next Generation Sequencing technologies (NGS) replaced in many fields 
the use of the automated Sanger sequencing because of their ease of use, 
rapidity and sensitivity. Basically, they allowed parallelizing the sequencing 
process, producing thousands or millions of sequences at once. 

With the introduction in the market of these new instruments the number of 
projects aiming to cover the entire genomic and epigenomic characteristics 
of all the different cell types, organs and organisms multiplied. The National 
Human Genome Research Institute (NHGRI) launched a public research 
consortium named ENCODE, the Encyclopedia Of DNA Elements, in 
September 2003, to carry out a project to identify all functional elements in 
the human genome sequence, that reached a productive phase in 2007, with 
the help on the new technologies (http://www.genome.gov/10005107). On 
its side many other projects came out, like the 1000 Genomes Project 
(http://www.1000genomes.org/) on human genetic variations, or the 
Genome 10K project (https://genome10k.soe.ucsc.edu/) to characterize 
genomes from 100 vertebrate genuses, or the BluePrint 
(http://www.blueprint-epigenome.eu/) to provide around 100 
hematopoietic epigenome, or the Italian Epigen (http://www.epigen.it/) to 
characterize epigenomes from different human pathologies. 

The first NGS platforms came out some years after the human genome 
project starting from 454 company in 2005, that launched the 454 platform 
(now Roche). Solexa released Genome Analyzer the next year, followed by 
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(Sequencing by Oligo Ligation Detection) SOLiD provided from Agencourt 
(now respectively Illumina and Life technologies) These are three most 
typical massively parallel sequencing systems in the NGS that shared good 
performance on throughput, accuracy, and cost.  

These three platforms rely on different chemistries for sequencing and 
different outputs in terms of throughput and applications, each one with its 
pros and cons. They also have different outputs and accuracy (Fig 2).  

 
Figure 2. Representation of different techniques for DNA sequencing, based on amount of 
output and read length.  

The most powerful and popular platforms available on the market today are 
the ones that came out first, Roche/454 FLX Pyrosequencer, 
Illumina/Genome Analyzer - HiSeq and Life/SOLiD.  

The Illumina HiSeq 2000 features the biggest output, that was 200G per run 
initially, improved to 600G per run currently which can be finished in 8 days. 
It can have a 2% error rate and it is also the cheapest system in the market 
at the moment. With multiplexing incorporated in P5/P7 primers and 
adapters, it can handle thousands of samples simultaneously, that is 
another advantage of this system. 

The SOLiD system has the highest accuracy among the others. The last 
version, SOLiD 5500xl, realized improved read length, accuracy, and data 
output of 85-100 bp, 99.99%, and 120G per run, respectively. A complete 
run can be finished within 7 days. 
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The Roche 454 system has the longest read length and fastest machine 
time. 454 GS FLX Titanium system give a read length of 700bps with 
accuracy 99.9% after filtering and outputs 14G data per run in 24 hours. 
One of the shortcomings is that it has relatively high error rate in terms of 
poly-bases longer than 6 bp. 

454 system is the most used in applications where sequence coverage is 
highly important, for example in large genomes and de novo sequencing. 
On the contrary, the other two are mainly used for resequencing and in 
applications where the accuracy is important, as for mutation detection. This 
results in uses of the systems for different applications.  

After years of evolution, these three systems exhibit better performance and 
their own advantages in terms of read length, accuracy, applications, 
consumables, man power requirement and informatics infrastructure, and 
so forth (Liu, Li et al. 2012).  

In the present research project, only Illumina and SOLiD platforms have 
been used, specifically reflecting the scientific aims to pursue. In fact, the 
two experiments performed, the Chromatin Immuno-Precipitation (ChIP)-
sequencing and RNA-sequencing, both need good accuracy and do not 
necessarily require long reads. 

• New and future approaches in sequencing 

NGS technologies are nowadays spreading more and more in labs all over 
the world, and the number of platforms is increasing year after year (Fig 3, 
omicsmaps.com). 

 
Figure 3. World distribution of NGS sequencers, which are becoming more diffused every 
day.  
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More compact sequencer, like Ion/Ion Personal Genome Machine (PGM) and 
Illumina/MiSeq came recently on the market featuring small size and fast 
turnover rates but limited data throughput. They are targeted to clinical 
applications and small labs. HeliScope is working with the technology true 
single molecule sequencing (tSMS). Pacific Bioscience introduced technology 
called single molecule real-time detection (SMRT). Both of them use some 
sort of nucleotide microscope, which is directly detecting incorporated 
nucleotide and thus avoiding many types of possible bias produced by other 
methods. Also it is supposed to be much much faster. Ion Torrent Systems, 
one of the newest companies, has developed technology based on a 
detection of hydrogen ions that are released during DNA polymerization 
(there is no need for optical detection systems). An advantage of this 
technique is a low cost of its reagents. A disadvantage is that only small 
fragments can be sequenced (Carneiro, Russ et al. 2012; Ginolhac, Vilstrup 
et al. 2012). 

The applications to these technologies are as many as one can think (Table 
1) and nowadays are the most diffuse methods for large-scale sequencing.  

 

Table 1. Applications of NGS 
Genome de novo-seq: assembly of bacteria and lower eukaryotic 

genomes, metagenomics studies 
 re-seq: Copy Number Variations (CNV) analysis, new 

variants discovery, Single Nucleotide Polimorphism (SNP) 
genotyping, association studies, cancer genomes 

 targeted re-seq: exosome, closing of gaps 
Transcriptome mRNA-seq or total RNA-seq: quantitative and qualitative 

method for transcriptome analysis 
 small RNA-seq 
Epigenome ChIP-seq: (Chromatin Immuno-Precipitation) transcription 

factors binding, motif discovery, histone modifications 
binding, effector proteins binding 

 DNA methylation: bisulfite-converted DNA sequencing, 
methylation-sensitive restriction digest-enriched 
fragments, anti-methyl C-precipitated fragments, 
chromatin immunoprecipitates of methyltransferases 
trapped to aza-labeled DNA 

 Higher order chromatin structures identification: MNase-
seq, FAIRE-seq, DNase-seq, Hi-C  
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In the next section I will introduce the biological concepts underlying the 
working hypothesis of my research project. 

Epigenetics and epigenomics 

Epigenetics is one of the most rapidly expanding fields thanks to the recent 
technological breakthroughs in next generation sequencing. The advances 
of NGS technology made it possible to assess epigenetic marks at genome-
wide scale, unveiling obscure aspects of gene expression regulation. 

Epigenetic marks are classically defined as modifying factors of the 
chromatin, the highly structured DNA-protein complex organizing the 
genome of multicellular organisms (Espada and Esteller 2007). The main 
examples of modifying factors are the DNA methylation and histone H3 and 
H4 methylation and acetylation (Fig 4). 

 
Figure 4. Beyond the sequence. DNA methylation and chemical modifications to histones can 
influence the rate of transcription of DNA into RNA molecules. Long-range chromatin 
interactions, such as looping, alter the relative proximities of different chromosomal regions 
in three dimensions and also affect transcription. Furthermore, the binding activity of 
transcription-factor proteins and the architecture (location and sequence) of gene-regulatory 
DNA elements, and more distant (long-range) regulatory elements play a role in transcription 
regulation. Accessible regions, called DNase I hypersensitive sites, are thought to indicate 
specific sequences at which the binding of transcription factors and transcription-machinery 
proteins has caused nucleosome displacement. From ENCODE explained (Ecker, Bickmore et 
al. 2012). 
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The levels of organization of the chromatin depend on the tridimensional 
positioning of the nucleosomes, the basic repetitive unit of the chromatin. 
Each nucleosome is formed by an octamer of proteins, composed of 4 
groups of histones: one H3-H4 tetramer and two H2A-H2B dimers (Luger, 
Mader et al. 1997). All the proteins are wrapped in two turns of DNA 
filament (around 147 base pairs). A fifth histone type, H1, is the linker 
histone that connects each nucleosome to the next.  

A simplistic model of the activity of the chromatin involves two basic states: 
the euchromatin, open and transcriptionally active, and the 
heterochromatin, highly condensed and transcriptionally repressed. In the 
genome we can find structures of constitutive heterochromatin (condensed 
mainly in centromeres) and regions that can undergo a transition from 
active to inactive state and vice versa. 

These changes of state are fundamental in the regulation of the different 
transcriptional programs during the embryonic life, the development and 
the adult life. Moreover, they depend mainly from the epigenetic control 
mediated by histone modifications and DNA methylation.  

Aberrant establishment of DNA methylation patterns is associated with 
several human disorders including chromatin diseases (Matarazzo, De Bonis 
et al. 2009), imprinting syndromes (Hirasawa and Feil 2010), psychiatric and 
neurodevelopmental defects, and immunological diseases (Portela and 
Esteller 2010). It also contributes both to the initiation and to the 
progression of various cancers (Jones 2002; Scarano, Strazzullo et al. 2005). 

• DNA methylation 

DNA methylation is present in almost all living organisms, from bacteria to 
plants and fungi, from invertebrates to vertebrates (Scarano, Strazzullo et al. 
2005). Its abundance and its role vary markedly among the genomes, from 
the unmethylated genome of C. elegans to the heavily methylated genome 
of vertebrates. Different profiles of methylation in different species reveal 
the different role this DNA modification covers in their genomes. At an 
evolutionary level it has been proposed that DNA methylation developed as 
a generalized mechanism of repression in complex genomes (Bird 1995).  

In mammals, DNA methylation represents a key layer of the transmitted 
epigenetic information mostly correlated with transcriptional gene silencing. 
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Cytosine methylation is required for embryonic development during which it 
plays a critical role in maintaining genomic integrity and regulating gene 
expression programs (Bird 2002; Li 2002; Mohn and Schubeler 2009). X 
chromosome inactivation, genomic imprinting, and the control of lineage 
specificity and pluripotency programs all represent processes for which 
proper DNA methylation is essential (Oda, Yamagiwa et al. 2006; Mohn, 
Weber et al. 2008; Borgel, Guibert et al. 2010). The role of DNA methylation 
in the tissue-specific expression of genes in somatic cells has more recently 
been uncovered.  

Additionally, 5-hydroxymethylcytosine (5-hmC), which arises from the 
oxidation of the methyl group of 5-hmC, has recently been discovered in 
the mammalian genome (Kriaucionis and Heintz 2009; Tahiliani, Koh et al. 
2009). Mechanisms and biological roles of non-CpG methylation and 5-
hydroxymethylation remain unclear. 

In the mammalian genome, DNA methylation occurs predominantly at the 
CpG dinucleotides and only occasionally at non-CpG sites. However, only 
certain CpG sites are methylated, resulting in the generation of a tissue- 
and cell-type-specific pattern of methylation.  

CpGs are normally underrepresented in the genome, being usually quite 
rare. However, they can be found at a frequency closer to the statistical 
expectation in specific genomic regions, termed CpG islands (Gardiner-
Garden and Frommer 1987). These represent 1% of the genome and are 
found in promoter regions of about 70% of all human genes and are usually 
unmethylated in normal cells. CpG islands generally show a relaxed 
chromatin without histone H1 and associate to nucleosomes with acetylated 
forms of histones H3 and H4 (Robertson and Wolffe 2000). However, about 
6% of them become methylated in a tissue-specific program during early 
development or differentiation (Straussman, Nejman et al. 2009) (Fig 5a).  

DNA methylation does not occur exclusively at CpG islands. Regions of 
lower CpG density lying in close proximity (~2 kb) of CpG islands, defined as 
CpG island shores, are methylated when associated with transcriptional 
inactivation (Fig 5b). Most of the tissue-specific DNA methylation seems to 
occur at CpG island shores (Doi, Park et al. 2009), which are also conserved 
between human and mouse. Furthermore, 70% of the differentially 
methylated regions during reprogramming are associated with CpG island 
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shores (Ji, Ehrlich et al. 2010). DNA methylation is less frequently correlated 
with permissive transcription, and in that case, it occurs at gene bodies 
(Ball, Li et al. 2009) (Fig 5c). Gene body methylation is common in 
housekeeping genes (Hellman and Chess 2007), and it is thought to be 
related to elongation efficiency, prevention of spurious initiations of 
transcription (Zilberman, Gehring et al. 2007) and to splicing regulation 
(Shukla, Kavak et al. 2011). A significant fraction of deeply methylated CpGs 
is also found in repetitive elements (Fig 5d). 

 
Figure 5. DNA methylation patterns. DNA methylation can occur in different regions of the 
genome. The alteration of these patterns leads to disease in the cells. In a, b, c, d are 
depicted the different methylation states with methylated cytosine in red and unmethylated 
in green. Refer to the text for a more detailed description. (From Esteller & Portela 2010) 

This DNA methylation is necessary to protect chromosomal integrity, which 
is achieved by preventing reactivation of endoparasitic sequences that cause 
chromosomal instability, translocations and gene disruption (Esteller 2007). 

The enzymes responsible for DNA methylation patterns are grouped in a 
family of cytosine C5-DNA methyltransferases (DNMTs) which act by 
transferring a methyl group from the universal methyl group donor, S-
adenosyl-l-methionine (SAM), onto DNA (Fig 6) (Bestor 2000; Jurkowska, 
Jurkowski et al. 2011). In mammals, three enzymatically active members of 
the DNMT family have been reported (DNMT1, 3A, and 3B) and one related 
regulatory protein, DNMT3L, which lacks catalytic activity. DNMT3A and 
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DNMT3B have been considered as 
mainly devoted to the de novo 
methylation, being responsible for 
establishing the pattern of DNA 
methylation during embryonic 
development, whereas DNMT1, with 
preferential activity for 
hemimethylated DNA, acts mainly as 
maintenance methyltransferase. Null 
mutations of the three DNA methyltransferases are lethal in mice (Li, Bestor 
et al. 1992; Okano, Bell et al. 1999), clearly demonstrating that DNA 
methylation is essential for mammalian survival. Moreover, the recently 
produced triple KO mouse embryos (Dnmt1, 3A, and 3B mutant; TKO) 
unveiled the need of those enzymes for tissue-specific survival (Sakaue, 
Ohta et al. 2010).  

The de novo DNMTs are highly expressed in embryonic tissue and stem (ES) 
cells and become downregulated in differentiated cells (Esteller 2007). Both 
DNMT3A and DNMT3B are stably associated with chromatin containing 
methylated DNA (Jeong, Liang et al. 2009) and localize to pericentromeric 
heterochromatin (Hansen, Wijmenga et al. 1999). DNMT3L acts as a 
stimulatory factor for DNMT3A and DNMT3B and interacts with them, being 
co-localized in the nucleus (Chen, Mann et al. 2005; Holz-Schietinger and 
Reich 2010). 

The maintenance methyltransferase, DNMT1, shows a strong preference for 
hemimethylated DNA (Jeltsch 2006) due to its SET- and RING-associated 
(SRA) domain or the PHD (Bostick, Kim et al. 2007; Achour, Jacq et al. 2008). 
It is the most abundant DNMT in the cell and is localized at DNA replication 
foci during the S phase of the cell cycle; it is mostly required to methylate 
hemimethylated sites that are produced during semiconservative DNA 
replication. However, it also has de novo DNMT activity; in this latter 
function, DNMT1 might support DNMT3A and DNMT3B by using 
hemimethylated CpG sites produced by the DNMT3 enzymes as substrates 
(Fatemi, Hermann et al. 2002). 

However, the distinction of functions between de novo and maintenance 
methylation is not always so clear, and several observations suggested an 

Figure 6 Cytosine methylation mediated 
by DNMT proteins, with SAM as methyl 
group donor. 
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active involvement of DNMT3 enzymes in the preservation of DNA 
methylation after DNA replication, especially in densely methylated or 
repetitive sequences. Accordingly, a revised and updated model has recently 
been proposed (Fig 7). This model still sustains the idea that the bulk of 
DNA methylation in replicating cells would be maintained by DNMT1 
together with UHRF1 and PCNA. However, it also proposes that DNMT3A and 
DNMT3B, which have been shown to anchor strongly to nucleosomes 
containing methylated DNA, contribute to the maintenance of methylation at 
heterochromatic regions, de novo methylating the sites missed by DNMT1 at 
the replication fork (Jones and Liang 2009). 

 

 
Figure 7. Up-to-date model for the maintenance of DNA methylation patterns after 
replication. DNMT1 localizes at the replication fork, and its methyltransferase activity on 
hemimethylated cytosines is promoted through its interaction with PCNA and UHRF1 
proteins. DNMT3 enzymes actively participate also in the maintenance process of heavily 
methylated regions, ensuring methylation at CpG sites, which are missed by DNMT1. (From 
Gatto et al., 2011) 

As is also emerging from the genome-wide methylome studies, the novel 
view is that “maintenance DNA methylation” implies the preservation of 
average levels of DNA methylation at certain regions rather than the 
accurate copy of individual CpG sites. That would be sufficient to ensure the 
inheritance of the epigenetic information in a stable manner (Gatto 2012). 

• Histone modifications 

The histones are small basic proteins formed by a globular domain and a 
flexible and charged NH2-terminal tail that hangs out of the nucleosomal 
structure. Histone tails can be subject to a great number of reversible 
enzymatic modifications in specific positions, mainly acetylation, 
methylation and phosphorylation (Margueron, Trojer et al. 2005; 
Nightingale, O'Neill et al. 2006).  
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These modifications alter DNA-histones interactions and have a strong 
impact on chromatin structure. In particular, lysine acetylation is catalyzed 
by histone acetyl-transferases (HAT) and marks the opening of the 
chromatin, while deacetylation of those residues from histone deacetylases 
(HDAC) is associated with transcriptional repression. Methylation of arginine 
and lysine occurs in histones H3 and H4 in the mono-di and tri-methylated 
form and histone methyltransferases (HMTs) catalyze this reaction. 
Depending on the histone type and the specific methylation site this 
particular modification can have different functional meanings. H3K9, 
H4K20 and H3K27 methylation is generally connected to heterochromatin 
formation and gene silencing respectively, while H3K4, H3K36 and H3K79 
methylation is generally associated to euchromatin and transcriptionally 
active regions (Barski, Cuddapah et al. 2007; Portela and Esteller 2010). 

 
Figure 8. Histone modifications, DNA methylation and nucleosome positioning patterns. 
Transcriptionally active gene promoters (below) possess a nucleosome-free region at the 5′ 
and 3′ untranslated region, providing space for the assembly and disassembly of the 
transcription machinery. Methylated DNA (red dots) seems to be associated with ‘closed’ 
chromatin domains, where DNA is condensed into strictly positioned nucleosomes, thereby 
impeding transcription. Conversely, unmethylated DNA (green dots) is associated with 
‘opened’ chromatin domains, which allow transcription. Histone acetylation (A) and 
methylation (M) have specific roles in the opening and closing of the chromatin. From (Portela 
and Esteller 2010). 

Histone modifications can influence each other and interact with DNA 
methylation and drive the nucleosome repositioning (Fig 8). This 
combination of information is finely tuned in time and space and aims to 
appropriately program the expression profile in each single cell of the 
organism.  

Two types of protein complexes participate with different roles to histone 
code regulation: one contains proteins of Trithorax group (TrxG) and the 
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other has Polycomb group proteins (PcG). Some of the components of the 
two groups have histone methyl-tranferase activity, while others have a 
reader role, interpreting the histone signals playing a central role in the 
epigenetic regulation of gene expression. Those complexes coordinate DNA 
accessibility during development and differentiation modulating the balance 
between silenced heterochromatin (bound by PcG) and transcriptionally 
competent euchromatin (bound by TrxG) (Schuettengruber, Chourrout et al. 
2007).  

One of the most heavily characterized markers of heterochromatin is 
trimethylated lysine 9 on H3 (H3K9me3). H3K9 can exist in a mono- 
(H3K9me1), di- (H3K9me2), or trimethylated state, in which multiple 
methyltransferase and demethylase enzymes act in concert to control 
distinct methylation profiles. Di- and trimethylation of H3K9 create binding 
sites for chromodomain containing proteins, including those of the 
heterochromatin protein 1 (HP1) family and are believed to promote 
transcriptional repression and genomic silencing through alterations in 
higher order chromatin structure throughout euchromatic and constitutively 
heterochromatic genomic loci (Bannister, Zegerman et al. 2001; Lachner, 
O'Carroll et al. 2001). 

Although rare exceptions exist, the H3K9me3 mark, unlike H3K9me2 or 
H3K9me1, is thought to primarily reside in silenced, noncoding regions of 
the genome (Rosenfeld, Wang et al. 2009). Recent ChIP-Sequencing analyses 
have demonstrated that H3K9me3 is prevalent at many non-genic regions 
including the repetitive satellite DNA, centromeric and pericentromeric DNA 
and long terminal repeats of transposons (Mikkelsen, Ku et al. 2007; 
Rosenfeld, Wang et al. 2009). 

• Epigenetic cross-talk between DNA and histone 
methylation 

All the epigenetic factors, besides having a specific role defined by their 
intrinsic functions, have the capacity to interact to modulate each other's 
activity. DNA methylation, for example, can express its repressive activity 
through different mechanisms. Delivery of DNMTs to target genes through 
interaction with sequence-specific transcription factors or chromatin-
interacting proteins has already been demonstrated in several examples. 
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DNMT3A has been reported to interact with several transcription factors, 
such as PU.1 (Suzuki, Yamada et al. 2006), Myc (Brenner, Deplus et al. 
2005), and p53 (Fuks, Burgers et al. 2001; Wang, Kamarova et al. 2005). 
Additionally, the mammalian H3K9/H3K27 histone methyl transferase 
(HMT), G9a, is required for the recruitment of de novo DNMTs to gene 
promoters during mouse ES cells differentiation (Feldman, Gerson et al. 
2006), whereas EZH2 (enhancer of zeste homologue 2), an H3K27-specific 
HMT, is involved in the recruitment of DNMT3A and 3B in cancer cells (Vire, 
Brenner et al. 2006). Variable interactions between H3K27me3 and DNA 
methylation have been also recently found in bisChIP-seq studies (ChIP 
followed by bisulfite-sequencin) (Brinkman, Gu et al. 2012; Statham, 
Robinson et al. 2012), where the histone mark is found alternatively in 
association with fully methylated or unmethylated DNA, depending on the 
sequence characteristics and the cell type. Finally, histone deacetylases 
(HDACs) and heterochromatin protein 1 (HP1) directly interact with DNMTs, 
and it has been suggested that they participate in the delivery of DNMTs to 
silenced chromatin regions (Fuks, Hurd et al. 2003). 

Moreover, DNMT enzymes are also interacting with other histone 
modifications (Ooi, Qiu et al. 2007; Tachibana, Matsumura et al. 2008; 
Jeong, Liang et al. 2009) that influence their activity. Recent data have 
reported that DNMTs can directly read histone modifications through their 
N-terminal domains and apparently could be recruited to the nucleosomes 
containing unmethylated H3K4 (Ooi, Qiu et al. 2007; Otani, Nankumo et al. 
2009; Zhang, Jurkowska et al. 2010). Because methylation of H3K4 is a 
chromatin mark associated to transcribed genes, the absence of this 
modification in specific regions could be read as a signal for their 
inactivation, whereas its presence could reject DNA methyltransferases. 
Moreover, targeting of DNA methylation by H3K36me3 is consistent with 
many studies indicating that this histone mark accumulates in the bodies of 
active genes (Vakoc, Sachdeva et al. 2006; Barski, Cuddapah et al. 2007), 
accordingly to the observation that active gene bodies are strongly 
methylated compared to inactive ones. Besides, more results suggest that 
DNA methylation and H3K36 methylation might have a role in regulating the 
splicing, with exons having increased levels of both H3K36me3 and DNA 
methylation compared to introns. Overall this suggests that the targeting of 
DNMTs by DNA- or chromatin-binding proteins is a widespread and general 
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mechanism for the generation of specific DNA methylation patterns within a 
cell.  

Viceversa, DNA methylation can itself influence the binding of proteins that 
can modify the chromatin according to the transmitted signal. For instance, 
DNA methylation on specific cytosines recruits regulatory proteins, such as 
methyl group binging proteins (MBP). Methyl-CpG-binding proteins (MBPs) 
directly recognize methylated DNA and recruit co-repressor molecules to 
silence transcription and to modify surrounding chromatin (Klose and Bird 
2006). These MBDs belong to three structural families: the MBD family, the 
SRA family (SET and RING-finger associated domain) and the zinc finger 
family (Buck-Koehntop and Defossez 2013).  

The MBD is a family of seven proteins cointaining a methyl-CpG binding 
domain (MBD) that convert the methylation signal of DNA to a repressed 
state of the chromatin recruiting in turn other big regulatory complexes 
(Jones, Veenstra et al. 1998; Nan, Ng et al. 1998). 

The first identified MBD, the methyl-CpG binding protein 2 (MECP2) 
selectively recognizes methylated DNA (Lewis, Meehan et al. 1992), and 
directly interacts with mSin3A, a co-repressor complexed with histone 
deacetylases (HDAC) (Jones, Veenstra et al. 1998; Nan, Ng et al. 1998). It 
also directly binds the histone methyltransferases (Yu, Thiesen et al. 2000; 
Fuks, Hurd et al. 2003) and interacts with transcriptional factors (as TFIIB) 
(Yu, Thiesen et al. 2000).  

The second family of MBPs, the SRA family, includes UHRF1 and UHRF2, two 
related proteins that are thought to bind methylated DNA via their SRA 
domains. UHRF1 is an essential protein that binds hemimethylated DNA and 
recruits DNMT1 to facilitate maintenance DNA methylation; in the absence 
of UHRF1, there is a precipitous loss of DNA methylation (Unoki, Nishidate 
et al. 2004; Bostick, Kim et al. 2007; Sharif, Muto et al. 2007). 

The third, and currently last, family of MBPs includes the zinc finger protein 
Kaiso, which is able to discriminate methylated from unmethylated DNA 
(Prokhortchouk, Hendrich et al. 2001). Kaiso has two close paralogs in 
mammalian genomes: Zbtb4 and Zbtb38 (Sasai and Defossez 2009). These 
proteins, like Kaiso, bind methylated DNA but can also bind a non-
methylated consensus (Filion, Zhenilo et al. 2006; Sasai, Nakao et al. 2010). 
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Very recently, another zinc finger protein, ZFP57, was also shown to bind 
methylated DNA and to act in DNA methylation-dependent maintenance of 
imprinted genes (Quenneville, Verde et al. 2011). 

Chromatin diseases and ICF syndrome 

The functional meaning of the role of epigenetics is even clearer studying 
cells where these mechanisms are disrupted. Many human pathologies are 
caused by impairment of gene expression; DNA and chromatin 
modifications, epigenetics signals, take care of the regulation and control of 
the correct functioning of gene expression in mammalian cells. Somatic 
mutations of chromatin structural components or regulatory proteins can 
cause cancer in many different tissues. Germinal mutations, instead, can be 
inherited and transmitted to all the cells in the body and are therefore 
causing chromatin genetic diseases.  

The study of this category of diseases allows us to understand more about 
the epigenetic regulation of gene expression and its direct effect on 
development. Moreover, this type of studies allows us to understand more 
about the molecular mechanisms underneath the illnesses and to uncover 
new therapeutic approaches to improve the pathological phenotypes. 

As I mentioned before, the epigenetic regulation machinery is formed by a 
complex and entangled structure in which specific components 
combinations have specific roles. Depending on which piece of the network 
is impaired it can result on a different phenotype. Moreover, in some 
diseases, different mutations in the same protein cause high complexity and 
variability of the phenotype from a subject to the other and this can reflect 
the complex function of these proteins, whose impairment can have effects 
on multiple downstream targets. 

 

The genetic chromatin disease I focused my studies on is the ICF syndrome 
(Immunodeficiency, Centromere instability and Facial anomalies, OMIM 
#242860). The ICF syndrome is a very rare autosomal recessive disease that 
severely damages the immune system of the affected subjects and exhibits 
a diffuse hypomethylation of specific heterochromatic regions of the DNA 
(Tiepolo, Maraschio et al. 1979; Maraschio, Zuffardi et al. 1988). 
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So far, around 60 ICF patients have been reported worldwide, and they have 
been classified in two distinct disease classes, ICF types 1 and 2, due to 
their genetic and epigenetic features (ICF1 and ICF2, Fig 9) (Hansen, 
Wijmenga et al. 1999; Jiang, Rigolet et al. 2005). Both classes present the 
same clinical phenotype, and until early 2011, their distinction criteria were 
the presence of mutations in the DNA methyltransferase 3B gene (DNMT3B) 
for ICF1 and hypomethylation of alpha satellites in centromeric 
heterochromatin for ICF2 patients (Jiang, Rigolet et al. 2005). Recently, de 
Greef, Wang et al. (2011) and Chouery, Abou-Ghoch et al. (2012) identified 
several mutations in the zinc-finger- and BTB (bric-a-bric, tramtrack, broad 
complex)-domain-containing 24 (ZBTB24) gene at 6q21 highly associated 
to ICF phenotype in some ICF2 patients (Fig 9d). With this finding, the ICF 
type 2 is now split in two subcategories, where alpha satellite 
hypomethylation is present, but ZBTB24 can either be mutated or not (Fig 
9e).  

 
Figure 9. ICF syndrome molecular features. a. Hypomethylation of juxtacentromeric 
heterochromatin of chromosomes 1, 9, 16, and Y and of the inactive X chromosome. Regions 
of interest are marked in yellow. b. Mutations in the DNMT3B gene causing ICF type 1. In 
green are the active sites of the catalytic domain. c. Alpha satellite of centromeric 
heterochromatin is hypomethylated only in ICF type 2 on all chromosomes. d. Mutations in 
ZBTB24 are mostly nonsense and represent the hallmark of ICF type 2a. e. ICF type 2b has yet 
to be well characterized. It can be only de fi ned as neither type 1 nor 2.  

ICF1 subjects present biallelic mutations in the DNMT3B gene at 
chromosomal locus 20q11.2, all leading to the hypofunctioning of the 
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protein. Twenty-three mutations have been reported until now, and they are 
listed in Fig 9b (Jiang, Rigolet et al. 2005; Hagleitner, Lankester et al. 2008). 
DNMT3B mutations are mainly missense and mostly concentrated in the C-
terminal portion where they partially affect the catalytic function of the 
protein. All the major mutations, like the nonsense ones, appear in the N-
terminal regulatory part of the protein and are always found as compound 
heterozygous, as the complete loss of function in the homozygous state is 
probably incompatible with life, analogous to the situation in mice. ZBTB24 
(also known as ZNF450, BIF1, or PATZ2) is a member of the ZBTB family of 
transcriptional factors with a prominent role in hematopoiesis (Edgar, Dover 
et al. 2005; de Greef, Wang et al. 2011). Mutations of this protein in ICF2 
are always biallelic and mostly nonsense, leading to the loss of function of 
the protein (Fig 9d). Up to now, eight mutations have been identified, only 
one missense, and only two of ten mutated patients are compound 
heterozygous, with the rest being homozygous. Both DNMT3B and ZBTB24 
are ubiquitously expressed and apparently have different functions in the 
cell, but mutations in both lead to the same phenotype. The effects of 
DNMT3B mutations have been studied more in depth, and more information 
is available on their pathogenic effects, while, due to the only recent 
discovery of ZBTB24 mutations, their pathogenic mechanisms are still 
obscure. 

• Clinical and cytological phenotype 

ICF patients are mostly diagnosed during childhood due to recurrent 
infections, the characteristic symptom of the syndrome. In the blood 
biochemical analysis, they all show a combined immunodeficiency with 
reduction or absence of serum immunoglobulins of all subtypes (in different 
combinations) with a normal number of B and T cells (Blanco-Betancourt, 
Moncla et al. 2004). ICF patients, thus, are prone to recurrent severe 
respiratory and gastrointestinal infections that often cause death at young 
age. To complete the heterogeneous picture of the ICF phenotype, only 
some patients show facial anomalies and the other symptoms have an even 
more reduced penetrance, being present only in few individuals. Few ICF 
patients present congenital defects, hematological abnormalities, or 
malignancies (see Hagleitner, Lankester et al. (2008) for a complete 
description of the range of phenotypes).  
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The hallmark of this syndrome lays in the karyotype of the affected subjects, 
where chromosomes 1, 9, and 16 show evident decondensation of 
juxtacentromeric heterochromatin causing chromosome breaks and 
rearrangements in radial structures only in phytohemagglutinin-stimulated 
peripheral blood lymphocytes. The molecular basis of this phenomenon has 
mainly been addressed to the loss of DNA methylation within classical 
satellites (Sat 2 and 3) at the juxtacentromeric heterochromatin of the long 
arms of chromosomes 1, 16, sometimes 9 and Y in males (Fig 9a). DNA 
hypomethylation is also present in the nonsatellite repeats NBL2 on 
acrocentric chromosomes and D4Z4 in the subtelomeres of the long arms of 
chromosomes 4 and 10 (Jeanpierre, Turleau et al. 1993; Kondo, Bobek et al. 
2000; Tuck-Muller, Narayan et al. 2000). Additional hypomethylation, 
localized in the alpha-satellite repeats of the centromeres, is found only in 
ICF2 patients (Miniou, Jeanpierre et al. 1997; Jiang, Rigolet et al. 2005) (Fig 
9c). This DNA hypomethylation is present in all analyzed cell types, but it 
gives rise to rearrangements only in lymphoblasts, probably playing a 
specific role in the onset of the immunologic phenotype (Jeanpierre, Turleau 
et al. 1993). 

• Molecular phenotype 

Despite the disease has been described more than twenty years ago, the ICF 
syndrome pathogenesis is not clear yet. Particularly, it is not known why the 
impaired DNMT3B activity mainly leads to an immune-specific phenotype 
and to what extent the activity of DNMT3B on its specific genomic targets in 
lymphocytes is altered. Besides its biomedical interest, ICF syndrome 
represents an ideal model system to study the intricate interactions between 
chromatin regulating layers. 

Bioinformatics analysis of gene expression microarrays on lymphoblastoid 
cell lines (LCLs) showed that most of the affected genes were critical for 
immune function, development and neurogenesis, which are highly relevant 
to the ICF phenotype (Ehrlich, Buchanan et al. 2001; Jin, Tao et al. 2008). To 
better understand the molecular derangement observed in ICF syndrome, a 
number of epigenetic aspects have been analyzed by our group over the 
years, ranging from the contribution of the higher-order nuclear 
organization to the microRNA epigenetic regulation. At the present, the 
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genome-scale chromatin modifications in ICF cells is the next challenging 
step that needs to be explored. 

The dysregulated genes in ICF cell lines have been found mainly associated 
to changes in chromatin modifying proteins and rarely to aberrant 
methylation, as it would be expected (Jin, Tao et al. 2008). Some other 
genes did not show any change at all by ChIP-qPCR and targeted bisulfite 
sequencing analyses. On another level of regulation, miRNA expression has 
been tested with a microarray, finding eighty-nine dysregulated miRNAs, 
some of which involved in immune function, development and 
neurogenesis. Again, significant DNA hypomethylation of miRNA CpG 
islands was not observed in all cases of miRNA up-regulation in ICF cells, 
suggesting a more subtle effect of DNMT3B deficiency on their regulation; 
however, a modification of histone marks, especially H3K27 and H3K4 
trimethylation, was observed concomitantly with changes in microRNA 
expression. Functional correlation between miRNA and their target gene 
expression suggested a regulation either at mRNA level or at protein level 
(Gatto, Della Ragione et al. 2010).  

Although doubtless perturbed, how broadly the histone modifications 
change as a consequence of the impaired DNMT3B activity and the entity of 
the damages that they cause to gene expression is still unclear. With Next-
Generation Sequencing it is finally possible to dig deeper into the multiform 
molecular phenotype of this syndrome. The first whole-genome experiment 
performed on cells from one ICF patient has been the bisulfite-seq from 
(Heyn, Vidal et al. 2012). They detected a decrease of methylation level of 
42% (much higher than the 7% detected with the old techniques), with the 
most profound changes occurring in inactive heterochromatic regions, 
satellite repeats and transposons. Interestingly, transcriptional active loci 
and ribosomal RNA repeats escaped global hypomethylation. Despite a 
genome-wide loss of DNA methylation the epigenetic landscape and crucial 
regulatory structures were conserved. Remarkably, a mislocated activity of 
mutant DNMT3B to H3K4me1 loci was detected resulting in 
hypermethylation of active promoters.  
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3.  Results - Part I - The Pipeline 

As I mentioned in the preface the aims of my work during my PhD were two. 
The first was to build a reliable pipeline for the analysis and the integration 
of ChIP- and RNA-seq data; the second was to uncover new large-scale 
aspects of the epigenetic perturbation in ICF lymphoblastoid cell lines 
through the comparison of histone modifications (with ChIP-seq), gene 
expression (RNA-seq and miRNA array) and DNA methylation (bisulfite-seq). 
In this section of the results I will first introduce the NGS data characteristics 
and some general concepts regarding the analysis, then I will describe the 
definition of an appropriate pipeline for my purposes. 

Data analysis for ChIP-
seq and RNA-seq is a 
bottom-up process that 
begins with mapped 
sequence reads and 
proceeds upward to 
produce increasingly 
abstracted layers of 
information. In Fig 10 
there is a generalized 
pipeline (Pepke, Wold et 
al. 2009) that describes 
the numerous passages 
that lead to a complete 
analysis of sequencing 
data. A pipeline can be 
defined as a combined set of instructions and programs that connects raw 
data (input) with a certain results. It can be easily described by a direct 
graph whose nodes are programs and whose arcs are intermediate results. 
Intermediate results are the partial output of a program that become the 
input of another program, sometimes intermediate results are by 
themselves of interest. A pipeline can be then applied automatically to 
perform analogous actions and analysis on several dataset. The workflow 
has to be adapted then to the characteristics of the data obtained and to the 

Figure 10. A hierachical overview of ChIP-seq and RNA-
seq data analyses. The bottom-up analysis of ChIP-seq 
and RNA-seq data typically involves the use of several 
software packages whose output serves as the input of 
the higher level analyses. (From Pepke, Wold et al. 
(2009)).  
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specific purposes driven by the biological questions of the project. Each 
passage has to be carefully performed and tuned to avoid repercussions on 
the final interpretation of the data; a careful evaluation of each step will lead 
to a correct and reliable result. 

The data analysis can be divided in three main steps, that can be named 
primary, secondary and tertiary analysis. The primary analysis is performed 
by the sequencing machines, which output the raw sequence files and 
perform the first quality control. In the secondary analysis the short 
sequences need to be mapped to a reference genome or transcriptome (for 
species with a fully-sequenced genome). It is not a small task to optimally 
align tens or even hundreds of millions of sequences to multiple gigabases 
for the typical mammalian genome, and this early step remains one of the 
most computationally intensive in the entire process. At last, the tertiary 
analysis concerns the actual information extraction and can vary 
significantly from one experiment to the other. 

In this work ChIP-seqs and an RNA-seqs have been performed on human-
derived cell lines. Before mapping them on the human genome the quality 
assessment of all the raw files has been performed. 

All data analyses have been performed on Lilligrid, a cluster of 20 64 bits 
dual-processor nodes in rack configuration from the Istituto per le 
Applicazioni del Calcolo "Mauro Picone" (IAC-CNR, "Institute for Calculus 
Applications"). 

All the tools used in this work are listed in Table 2. 

 Version Application Link 

BioScope 1.2 ChIP-seq mapper New site: http://www.lifescopecloud.com/ 

bowtie 0.12.7 ChIP-seq mapper http://bowtie-
bio.sourceforge.net/index.shtml 

SAMtools 0.1.17 SAM-BAM manipulation 
tools 

http://samtools.sourceforge.net/ 

bedtools 2.9.9 BED manipulation tools http://code.google.com/p/bedtools/ 

FastQC 0.10.0 Quality control tool http://www.bioinformatics.babraham.ac.u
k/projects/fastqc 

SICER 1.1 Unsupervised peak finding 
for ChIP-seq 

http://home.gwu.edu/~wpeng/Software.h
tm 

EpiCHiP 0.9.7-e Supervised peak finding for 
ChIP-seq 

http://epichip.sourceforge.net/ 

DESeq 1.10.1 Differential gene expression 
and peak enrichment 

http://bioconductor.org/packages/2.11/b
ioc/html/DESeq.html 

ChIPpeakAnno 2.6.0 Sequence annotator http://www.bioconductor.org/packages/2
.11/bioc/html/ChIPpeakAnno.html 
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PeakAnalyzer 1.4 Sequence annotator http://www.bioinformatics.org/peakanaly
zer/wiki/ 

TopHat 1.3.1 RNA-seq mapper http://tophat.cbcb.umd.edu/ 

HTseq 0.5.3.p1 ChIP-seq data manipulation http://www-
huber.embl.de/users/anders/HTSeq/doc/i
ndex.html 

Table 2. List of all programs used in this work, with version number, application and link. 

 

Data formats 

Several specific formats have been proposed for storing genomic data, few 
of them become de-facto standard and are now commonly used. Being able 
of converting and manipulating different data format is fundamental for 
building the computational pipeline. 

Indeed a pipeline need to define at each step the input data format and the 
output data format, data conversion is required to make an intermediate 
output suitable for the next input. The advantages of having few de-facto 
standard for data format and some tools for their manipulation and 
conversion significantly facilitate the construction of efficient pipeline. 

• Raw data -fastq, csfasta, qual 

Before facing the issue of the pipeline construction for the secondary 
analysis it is important to briefly introduce the format of the output 
produced by the NGS machines. Image acquisition and processing is a 
fundamental process that can vary depending on the technology (see 
chapter 5, materials and methods); from the processed image the software 
outputs a raw results file containing the sequences with the quality 
assessment of every single base read. 

This information is stored in different file formats, depending on the 
machine. Illumina uses the format fastq that is a simple fasta file with the 
integration of the quality scores. An example is shown here: 

.fastq 

@DBV2SVN1:119:C1BFAACXX:7:1101:1226:2107 1:N:0:GGCTAC 

AGGATTAATATAGTAAAAATGGCCATTTTCCAAAAGCAATCTAAAGATTCA 

+ 

@CCFFFFFHHHGHIIIJJJGCGGIJJJJJIJJJJJGAFHIJIJJJJJJJJI 
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Example Description 

DBV2SVN1 unique instrument name 

119 run id 

C1BFAACXX flowcell id 

7 flowcell lane 

1101 tile number within the flowcell lane 

1226 'x'-coordinate of the cluster within the tile 

2107 'y'-coordinate of the cluster within the tile 

1 member of a pair, 1 or 2 (paired-end or mate-pair reads only) 

N Y if the read fails filter (read is bad), N otherwise 

0 0 when none of the control bits are on, otherwise is an even number 

GGCTAC index sequence 

Table 3. Fastq format 

 

The first line represents the description of the sequence. This description 
has changed with the different versions of the analysis software and this is 
how it appears now with the current version (v1.8, Table 3). 

The second line contains the proper sequence, while the fourth line encodes 
the quality values for the sequence in line two, and must contain the same 
number of symbols as letters in the sequence. 

SOLiD systems also use a similar format, but, like 454, it stores the quality 
information in a different file. The main difference between the two systems, 
though, resides in the nature of the data, as 454 reads the sequence in 
base-space, while SOLiD uses the color space, where colors represent 
unique couples of bases (see Materials and methods for more information 
on color space). Consequently, 454 stores the sequence in a fasta file, with 
the actual sequence in bases, while SOLiD uses the csfasta, with numbers 
representing colors. csfasta and _QV.qual files are here described: 

.csfasta 

>931_29_9_F3 

T01121312220022112303211122102121.131332222101 

_QV.qual  

>931_29_9_F3 

31 32 29 31 31 31 33 31 31 33 30 22 31 30 30 32 29 30 31 26 33 

33 31 24 33 26 22 24 32 21 29 30 31 30 29 29 27 -1 28 26 29 22 

31 26 29 32 29 25 29 24 
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The first line, starting with > indicates the description of the sequence, with 
position coordinates and primer used for sequencing (F3 in this case). 

If a read has a "." like in the example it means that the color calling was 
ambiguous (this would have been an N if it was in base space). In this case, 
the workflow simply cuts off the rest of the read, since there is no way to 
know the right phase of the rest of the colors in the read. If the read starts 
with a dot, it is not imported. In the quality file, the equivalent value is -1, 
and this will also cause the read to be clipped. 

• Mapping Output - SAM, BAM, BED 

The mapping pipeline can output different kinds of files, depending on the 
software used. The SAM/BAM format (Sequence Alignment/Map or Binary 
AM) was created by a team at the Sanger center to support 1000 Genome 
Project and now is becoming the most diffuse file format for mapped 
sequences. The SAM and BAM files contain the same information but in 
different formats. While SAM is a tab-delimited text file storing sequence 
data in a series of tab delimited ASCII columns, BAM is its binary form. SAM 
files can have headers and must have alignment information. Each header 
line begins with character @ followed by a two-letter record type code 
(@HD, @SQ, @RG, @PG, @CO). In the header, each line is TAB-delimited and 
except the @CO lines, each data field follows a format `TAG:VALUE' where 
TAG is a two-letter string that defines the content and the format of VALUE. 
It contains information about the alignment. The alignment section is 
mandatory and has to contain at least 11 tab-separated fields. 

An example of the alignment section of a SAM file is below. In table 4 the 
details of the sequence format. 

1303_20_178_F3 0 chr2 120416180 255 48M * 0 0 

AGCCCCCCTCAACACGCACACACACACACACACACACACACATTTTCA

 PGLMU?5AB67PSW]YLKSXVSSUYVSS:?Z<<V;8POTTL)!-<1.A XA:i:2 MD:Z:48

 NM:i:0 CM:i:7 

 

Field  Alignment Description 
QNAME 1303_2_221_F3 

Query template NAME 
FLAG 4 

bitwise FLAG 
RNAME chr2 

Reference sequence NAME (chromosome) 
POS 120416180 

1-based leftmost mapping POSition 
MAPQ 255 

MAPping Quality 
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CIGAR 48M 
CIGAR string 

RNEXT  * 
Ref. name of the mate/NEXT segment 

PNEXT  0 
Position of the mate/ NEXT segment 

TLEN  0 
observed Template LENght 

SEQ  AGCCCCCCTCAACACGCACACACACACACACAC
ACACACACATTTTCA segment SEQuence 

QUAL  PGLMU?5AB67PSW]YLKSXVSSUYVSS:?Z<<
V;8POTTL)!-<1.A ASCII of Phred-scaled base QUALity 

TAG XA:i:2 MD:Z:48 NM:i:0 CM:i:7 
Tags with format TAG:TYPE:VALUE 

Table 4. SAM format 

 

More information on SAM/BAM formats can be found in The SAM Format 
Specification (v1.4-r985; http://samtools.sourceforge.net/SAM1.pdf). 

The set of tools that allows the manipulation of these data is SAMtools (Li, 
Handsaker et al. 2009). SAMtools provides various utilities for manipulating 
alignments in the SAM format, including sorting, merging, indexing and 
generating alignments in a per-position format.  

Most of the event along the genome can be described in terms of intervals 
(e.g., mapped reads, peaks position, genes, or other annotations such as 
CpG islands, etc); the BED format is a simple tab-delimited text file suitable 
for containing this type of information. Each line of the file represent an 
interval, described in terms of chromosome, start and end position of the 
interval along the sequence. Additionally the interval can then have a name 
describing the annotated feature, a score and strand information.  

More in general BED format provides a flexible way to define the data lines 
that are displayed in an annotation track in a genome browser. BED lines 
have three required fields and nine additional optional fields. The number of 
fields per line must be consistent throughout any single set of data in an 
annotation track. The order of the optional fields is binding: lower-
numbered fields must always be populated if higher-numbered fields are 
used.  

Below there is an example. In Table 5 a detailed description. 

chr7    127471196  127472363  Pos1  0  +  127471196  127472363  255,0,0 

chr7    127472363  127473530  Pos2  0  +  127472363  127473530  255,0,0 

 

Field Example Description 
Chrom chr1 chromosome 
ChromStart 1000 start position of feature 
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ChromEnd 2000 end position of the feature 
Name seq1 name of the feature 
Score 960 a score between 0 and 1000 
Strand + strand, can be + or - 
thickStart 1000 starting position at which the feature is drawn thickly 
thickEnd 2000 ending position at which the feature is drawn thickly 
itemRgb 255,0,0 RGB color of the feature to display 
blockCount 2 Number of blocks in the line 
blockSizes 345,45 Sizes of blocks in the line 
blockStarts 500,1300 Starts of blocks in the line 

Table 5. BED format 

 

In order to deal with bed files and therefore with genome data, Bedtools is 
the most used, fast and flexible toolset for genome arithmetic (Quinlan and 
Hall 2010). It supports a wide range of operations for interrogating and 
manipulating genomic features. One of its tools is called bamToBed and 
converts files from bam to bed format. 

• Coverage - wig 

Another, very meaningful way to summarize the data is to calculate the 
coverage, the enrichment of the reads on windows, or portions, of the 
genome. This information is stored in the wiggle format (wig), which is 
compact and displays data at regular intervals. The bigWig file is a derived 
version of the wiggle, is an indexed binary file and its main advantage is 
relative to the visualization of sequencing tracks on the UCSC browser. In 
fact, only the portions of the files needed to display a particular region are 
transferred to UCSC, so for large data sets bigWig is considerably faster than 
regular wiggle files. A two step format conversion is needed to make a 
bigWig file from mapped data, first with the help of BEDtools with 
genomeCoverageBed (-split -bg -ibam), that converts a bam file to a 
bedgraph file. Similar to Wiggle files, bedgraph are used to display 
quantitative data across genomic regions. They use variable length intervals 
instead of constant intervals found in wiggle files, and are usually a little 
bigger in size. Subsequently, a utility provided from UCSC Browser itself, 
called bedGraphToBigWig converts the bedgraph file in bigWig format, ready 
to be uploaded. 
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Visualization of mapped reads and peaks 

One step that should never be skipped and that is common to all kinds of 
applications is the visual inspection of the data (Landt, Marinov et al. 2012). 
Local inspection of the profile of the mapped reads over a genome looking 
for positive controls (i.e. regions already known to be enriched or expressed 
in some conditions) helps to assess the quality of the sequencing 
experiment. Moreover, after the peak finding in ChIP-seq, it is important to 
look at the actual peaks pointed out by the software. There are many 
available browsers to visualize the data, but the most used ones are the 
UCSC Browser (Kent, Sugnet et al. (2002); http://genome.ucsc.edu/) and the 
IGV browser (Integrative Genomics Viewer; Robinson, Thorvaldsdottir et al. 
(2011); Thorvaldsdottir, Robinson et al. (2013)). The main difference 
between the two is that the first is on-line, virtually unlimited in terms of 
hosted data (from many international projects) and works at a good speed. 
The second, instead, is handy because is simple to use and runs locally on 
personal computers. Its limit is that it needs some RAM to run smoothly and 
it only contains user's uploaded data. On both browsers it is possible to 
upload many different file types, but the most used for ChIP-seq and RNA-
seq are the bed file (for peaks) and the wiggle (or bigWig) for a graphic 
dense distribution of sample enrichment. Thie bigWig file is big enough that 
UCSC browser doesn't allow to upload it directly on their servers, thus an 
http, https or an ftp server is necessary to store the data in order to be 
visualized. UCSC Browser will only temporarily store the data that is 
visualized from the user. Small bed files, like the ones of the peaks, can be 
uploaded directly from the personal computer to the server. 

The bigWig files have to be uploaded with a track line like this on the upload 
page of the browser: 

track type=bigWig name="ctrlSample" description=" ctrl Sample" 
bigDataUrl=http://123.456.78.910/~FTP/ctrl_sample.bw 
color=255,0,0 

 

This indicates the type of track, the description and name of the track that 
will be visualized on top and side of the track, the place where the file is 
stored and the color that we want to assign to the track (in RGB scale). For 
the bed files, instead, a track line can be pasted as header of the file and 
then the file can be uploaded from the upload button. Example: 
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track name=sample1_peaks description="Sample1 peaks" 
color=255,0,255 

 

In Fig 11 there is an example of a bigWig file and a bed file representing a 
histone modification. 

 
Figure 11. Screenshot of H3K4me3 profile on UCSC browser. From the top the representation 
of a gene, with arrows indicating the direction of transcription. In green bars predicted CpG 
island from UCSC database. In blue the bigWig file representing the enrichment of the histone 
modification. In black the BED file depicting the peak detected on the gene TSS. 

Quality control 

Assessing the quality of the sequence files is important in order to be able 
to rely on the results extracted from them. For this process two different 
tools have been used, one developed at the Istituto per le Applicazioni del 
Calcolo (IAC-CNR), for SOLiD data, and the other for Illumina data is the 
FastQC tool (http://www.bioinformatics.babraham.ac.uk/projects/fastqc/). 
The quality assessment is done using the quality codes in the raw files, 
translated to quality statistic reports and plotted as boxplots (see examples 
in Fig 12 for SOLiD (a) and Illumina (b) data).  

 
Figure 12. Boxplot representation of reads quality from a. SOLiD, b. Illumina raw files.  
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The range is different because of the different scales used by the machines; 
both the results shown are considered to be in a good range. 

The utility of looking at the single base quality in the reads stays in the 
ability we have to trim the reads if the quality drops suddenly towards the 
end of the sequence for most of them (i.e. due to a technical problem). This 
helps increasing the mapping quality. 

The quality control is the same for all kind of sequencing data (even if 
technology-dependent), but the consequent steps, starting from the 
mapping, become application-specific.  

ChIP-Seq 

RNA- and ChIP-seq follow two different data analysis paths that can be 
downstream integrated. The pipeline in Fig 13 represents the principal steps 
of the analysis performed in this work, which will be further discussed below 
more in depth. For the analysis of the repetitive sequences the workflow 
deviates from the principal one and it will be discussed in the dedicated 
section.  

 
Fig 13. Data analysis pipeline for ChIP-seq and mRNA-seq. In the boxes, in bold are 
indicated the tools of choice. 

• Mapping 

The alignment of the reads to the genome is not a trivial process. It is the 
fundamental step that has to accurately assign the sequenced reads to the 
right position in the genome where they were generated.  
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There are many programs nowadays with 
the sole purpose to map short sequences to 
the genomes. Old aligners, like BLAST, do 
not ensure adequate performance anymore, 
as they are not efficient enough to map 
millions of short sequences (50bps) to very 
large genomes (many Gb). Moreover 

possible mismatches have to be considered and with the new tools there 
may be some loss of sensitivity, with gain of mapping capacity. Some of 
those new alignment tools are provided by the companies that produce the 
platforms (i.e. BioScope from Life technologies and ELAND from Illumina), 
and come with the machines; some others are free software developed by 
users that can be downloaded from the Internet and freely used (like bowtie, 
BWA, MAQ, SOAP and many others). 

Two programs were tested and compared to map the ChIP-seq reads to the 
reference genome (GRCh37/hg19) (Fig 14). The test was performed on one 
of the ChIP-seq performed on SOLiD machine to be able to choose the best 
one for further experiments. The first used was BioScope™ Software (SOLiD 
system integrated mapper, Life technology), which consists of a framework 
and a group of tools. The advantage of BioScope™ is that it is specifically 
designed to map color space reads to the genome, using all information 
from this technology. It has a mismatch control that takes advantage of the 
SOLiD chemistry, considering two neighboring mismatches as one. On the 
other side, it can't map base space sequences. The other software used was 
bowtie (Langmead, Trapnell et al. 2009), a short read aligner designed to be 
ultrafast and memory-efficient. It aligns short DNA sequences (reads) to the 
human genome at a rate of over 25 million 35-bp reads per hour. bowtie 
indexes the genome with a Burrows-Wheeler index to keep its memory 
footprint small: typically about 2.2 GB for the human genome (2.9 GB for 
paired-end). There are many advantages of the use of this tool, from the 
speed, to the number of different input formats you can submit, to the 
frequent updates that are performed by the maintenance team. Moreover, 
nowadays, it is one of the most used mapping software in literature. 

Each of the two programs has many parameters to set, but, while bowtie 
only requires some options passed through command line to be launched, 

Fig 14. ChIP-seq mapping step. 
The inputs for Bowtie and 
BioScope are fastq or csfasta and 
qual samples and in output are 
SAM or BAM files. 
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BioScope use includes the manipulation of four main files (globalC.ini, 
mappingClassic.ini, matobam.ini and Classic.plan) in order to set its 
parameters. This, of course, makes BioScope usage more complex.  

BioScope outputs a ".ma" file, that is immediately converted to a ".bam" file. 
bowtie, on the other hand, has its own output format (one alignment per 
line - each line being collection of 8 fields separated by tabs) but can also 
convert the output into SAM format (declaring the option -S/--sam).  

In table 6 is a comparison of mappings of the same samples with bowtie or 
BioScope.  

 
Table 6. Mapping results from bowtie and BioScope tools for the same samples, sequenced 
in duplicates (A1-2, B1-2, etc). Percentages of uniquely mapped reads over the total reads 
are in % mapped column. 

In the "# usable reads" column I reported the reads that passed the quality 
control in the primary analysis and are considered usable for subsequent 
analyses. The mapped reads indicated are the uniquely mapped reads and 
the percentage of the usable reads. 

It is noticeable, then, that bowtie gives a higher percentage of mapped 
reads than BioScope, probably because of its more relaxed definition of 
uniquely mapped reads. For the purposes of our analyses we prefer to have 
more aligned reads with some mismatches due to technical errors than less, 
perfectly aligned reads. Moreover bowtie is significantly faster in analysis 
than BioScope. All experiments have been performed in duplicates and both 
replicates have been sequenced. 

To compare the results from the two aligners, the correlation between the 
counted the reads in windows of 1000bps in the duplicates within one 
analysis and the same sample in the two analyses was calculated. The 
results are shown in Fig 15.  
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Figure 15. Measurement of the consistency of two different mapping tools on real data. The 
numbers in tables are the Pearson's correlation values between the counts of mapped reads 
in 1Kb windows of the genome coming from BioScope or bowtie. a. Pearson's correlation 
between the same samples (r=1) and the duplicates (r<1) analyzed with bowtie. b. Same as a. 
but with BioScope. c. Comparison of the two tools. 

A good consistency of the results among the duplicates within the same 
analysis was observed (Fig 15 a-b), but the correlation degree reduced when 
comparing the two analyses (Fig 15 c). This was of course expected, and it 
does not tell that the results are not comparable, but it shows the algorithm 
variations between the two tools. bowtie was, therefore, the selected tool for 
mapping mainly because of the need to compare results from Illumina and 
SOLiD sequencing, not allowed by BioScope.  

Clearly, the comparison of the tools could have been done in a more 
comprehensive and sensitive way, using, for example, SEAL (SEquence 
ALignment evaluation suite), a comprehensive sequencing simulation and 
alignment tool evaluation suite (Ruffalo, LaFramboise et al. 2011). This kind 
of more intensive and specific analysis, though, was not considered among 
the aims of this work, so we made a choice based exclusively on our data 
and also general practice from the literature. 

In bowtie the "-n" mode of alignment was used, with maximum 2 
mismatches allowed in the first 28 bases of the sequence. The software was 
then restricted first to report only those reads having up to 3 alignments on 
the genome and then only the first best mapped read, with the best 
"stratum" (those having mismatches just in the "seed" portion of the 
alignment). In this way the output contains only those reads defined as 
uniquely mapped with a less stringent criteria. 

All results are listed in Table 7. 
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Table 7. Mapping results from bowtie for ChIP-seq data for H3K4me3 and H3K27me3 from 
SOLiD and H3K9me3 from Illumina. Reads with at least 1 reported alignment are the uniquely 
mapped reads in this case. 

Two more steps are necessary to proceed to the peak calling after the 
mapping: the first step eliminates duplicate reads, leaving to the following 
analyses only one read for each mapping start site. With this expedient, 
miscalculations due to amplification biases of the PCR step of the library 

preparation can be avoided (see Materials and 
methods for libraries preparation details). This 
can be easily accomplished with SAMtools with 
the tools view -bS (to convert from SAM to BAM) 
and rmdup -s (to remove duplicate reads in 
BAM file). Once obtained this last, polished, file, 
the second step is to convert the bamfile to BED 
file, which most alignment tools require (even 

though some use BAM, too) (Fig 16). 

The H3K4me3 and H3K27me3 ChIP-seq have 
been performed with the SOLiD4 machine at the 

Institute of Genetics and Biophysics (IGB-ABT) in Napoli, while the H3K9me3 
ChIP-seq has been sequenced with Illumina HiSeq in NCMLS in Nijmegen 
(Nijmegen Center for Molecular Life Sciences) and at the IGA (Institute of 
Applied Genomics) in Udine within the Epigen consortium. 

 

 

Fig 16. File polishing and 
conversion prior to peak 
calling. 
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• Peak calling 

The second and most important step of the ChIP-seq analysis is the 
detection of regions of the genome significantly enriched with sequences 
due to the protein binding (commonly called "peak finding"). The peak will 
represent the site of the genome that is bound by the immunoprecipitated 
protein and therefore carries more sequences than it would if it was just 
casual enrichment. The critical point of the analysis of these data is to be 
able to distinguish the significant increase of sequence read tag density 
along the genome of these regions compared to the random enrichment 
that can occur in the background. The background can either be the input 
from the ChIP, or the negative IP, performed in parallel with an aspecific 
antibody. It is also possible to estimate the background in silico, but this is 
not the best direction to take for clean data. During the last years many 
developers have produced their own tools to make the peak calling 
operation automated. There are many difficulties in standardizing this 
process, among which are the different profiles of the peaks characterizing 
different protein bindings on the DNA. Transcription factors usually show 
more peaked regions, spanning few hundreds of bases, while histone 
proteins, mainly the ones correlated to heterochromatin, cover bigger 
regions, with less defined profiles. Moreover, depending on the goal of the 
experiment, the "supervised" and "unsupervised" approaches can be taken 
into account. The unsupervised approach is the one I have described before, 
that is the search for peaks without previous assumptions about where the 
peaks should be located. The supervised approach, instead, looks for 
enrichments in specific positions of the genome, for example, transcription 
start sites of genes (TSS). To see which could be revealed to be the best 
approach for me I took into closer consideration two programs: EpiChIP 
(Hebenstreit, Gu et al. 2011) and SICER (Zang, Schones et al. 2009). Both 
these tools are focused on the analysis of histone modifications, therefore 
seemed to be appropriate for my analysis workflow. 

EpiChIP is centered on the correlation of the histone modifications with the 
genes and their expression. It quantifies the enrichment of the histone 
binding on a defined portion of the gene (TSS, exon, intron, etc.) and also 
makes a distribution-based distinction between noise and signal.  
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On the other side, SICER, based on the biological observation that histone 
modifications tend to cluster to form domains, identifies spatial clusters of 

signals unlikely to appear by chance. SICER 
computes probability scores in non-
overlapping windows, and then aggregates 
windows into ‘islands’ of sub-threshold 
windows separated by gaps in order to 
capture broad enrichment regions (Fig 17). 
The advantage of using SICER is more than 
one. First of all, it takes into consideration the 
fact that the peaks are not supposed to be 
narrow and separated one from each other (it 
allows to define the gap in which the peaks 
have to be considered joint). Moreover, it does 

not look for peaks only in defined regions, as genes TSS, but outputs a 
complete list of statistical significant peaks in all genome. These peaks can 
later be associated to the closest genes. The cons of both methods is that 
they do not consider duplicates in the analyses, thus each sample has to be 
analyzed separately or the two samples have to be pooled together. SICER, 
anyway, takes into account the possibility of pooled samples, allowing a 
redundancy threshold of the reads equal to two. It also allows samples 
comparisons, but without the use of duplicates. 

SICER was the software of choice to identify the enriched islands in 
H3K4me3, H3K27me3 and H3K9me3 samples for its major pertinence to the 
analysis of histone domains. The fragment size we selected while preparing 
the libraries was used as a parameter, and different windows and gaps were 
chosen depending on the histone modification. FDR was equal to 1e-5 for 
all of them (False Discovery Rate).  

 

Histone 
modification 

Fragment lenght 
(bps) 

Window Gap FDR 

H3K4me3 200 200 200 1e-5 

H3K27me3 200 1000 3000 1e-5 

H3K9me3 350 200 400 1e-5 

Table 8. SICER peak calling used parameters for different histone modifications. 

Fig 17. Peak calling with 
SICER. Input files contain the 
mapped reads of the ChIP 
sample and the negative 
control sample (input). The 
output is a bed file of the 
significantly enriched peaks in 
the ChIP compared to the 
input. 
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In table 8 are the parameters I used, in the Results - Part II chapter are the 
results.  

SICER detected an approximate average of 7000 peaks for H3K27me3, 
29000 for H3K4me3 and 25000 for H3K9me3. Only the peaks present in 
both duplicates were considered for further analyses. 

Both output and input from SICER are bed files, so either BEDTools or R (R 
Development Core Team (2012). R: A language and environment for 
statistical computing. URL http://www.R-project.org/) were used for all 
further manipulations. 

• Peaks comparison with DESeq  

In this project it was very important to be able to distinguish quantitative 
increases or decreases of the same histone modification in the patient's 
sample compared to the control, due to the nature of the pathology and the 
previous knowledge in literature (see results - Part II). Most projects only 
require identifying peaks that are appearing of disappearing in different 
biological conditions in their ChIP-seq 
experiments. For this reason there are 
not many tools that support a 
statistical approach to verify the 
quantitative differences between the 
samples and there is no consensus on 
how it should be accomplished. 

To assess the enrichment differences 
among the different samples DESeq 
(Anders and Huber 2010) is a tools 
that seems to have a good 
performance. It is an R package for 
analyzing count data from high-
throughput sequencing assays and 
tests for differential expression or 
enrichment. This package needs a list of regions (or genes) as input and the 
count of reads that map in them. It calculates the variance for each gene (or 
region) using the duplicates variability and the uncertainty in measuring a 
concentration by counting reads, known as Poisson noise, which is the 

Fig 18. Peak enrichment quantification 
and comparison between samples. 
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dominating noise source for lowly expressed genes. The sum of both, shot 
noise and dispersion, is considered in the differential expression inference. 
The method to test for differential expression or enrichment uses the 
negative binomial distribution.  

For the experiments described in this work the pipeline in Fig 18 was 
developed. A bed file was created with all the possible peaks for each 

modification, merging all peaks from all the samples (intersectBed for the 

duplicates, then cat for all the 
intersected files, sortBed and 

mergeBed to eliminate replicate 
regions). Then the reads spanning the 
regions for all samples were counted 

(with coverageBed). Those count files 
were assembled into a matrix of 
counts to input to DESeq on R (see 
code in Appendix A). Running DESeq 
and only differentially enriched 
regions with p-value<0.05 were 
considered. In Fig 19 there is the MA-
plot, representing in red the 
differentially enriched genes 
comparing two samples. 

After this first selection of regions other two filters were applied, to make 
the list more reliable and eliminate some false positives and false negatives. 
Among the regions more enriched in one sample compared to the control in 
DESeq analysis were eliminated those that in the first place were not 
considered enriched from SICER in that specific sample (3-10%). Then I 
added to these regions those that, making a simple intersection of the 
peaks data were considered present in one sample and not in the other from 
the firt SICER analysis. Thus the final list of differentially enriched peaks was 
obtained. 

 

 

 

Fig 19. Example of MA-plot of 
differentially enriched peaks. On x axis 
there is the mean of the enrichment, on y 
axis the log2 of the fold change between 
the two compared samples. Red dots 
have pval<0,01. 
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• Peaks annotation and Gene Ontology 

Once the enriched regions are defined and differences between the samples 
spotted, it is necessary to correlate those regions to specific features of the 
genome, as genes, CpG islands, and so on. 

Again, for this task, many tools are available and the most diffused will be 
described. The first is again an R package, ChIPpeakAnno (Zhu, Gazin et al. 
2010), that is very flexible, allowing to associate not only regions to genes, 
but also to any list of features the user is interested in comparing. Another, 
more simple, tool is PeakAnnotator from PeakAnalyzer (Salmon-Divon, 
Dvinge et al. 2010), developed in Java and C++ in the Sanger institute and 
widely used in literature; it allows very simple operations with graphical 
outputs and with a user-friendly interface. The third tool that is worth a 
mention is GREAT (Genomic Regions Enrichment of Annotations Tool; 
McLean, Bristor et al. (2010)), that integrates the association of regions to 
genes and the gene ontology of the subset of genes detected. The basic and 
innovative idea of this tool is that it models the cis-regulatory landscape 
through the use of long-range regulatory domains and a genomic region–
based enrichment test, allowing analyses that take into consideration the 
large number of binding events that occur far beyond proximal promoters. 

ChIPpeakAnno was mainly used for analyses in this work, as there was more 
interest in correlating peaks to genomic features other than genes. A simple 
script I wrote in R allows invoking ChIPpeakAnno directly from the command 
line to annotate peaks on hg19 genome (see Appendix A). For other 
annotations features, like CpG islands, sites of hyper- and hypo-
methylation and miRNAs this script was modified removing the step of data 
extraction of the human genome and creating IRange objects from other 
specific lists of features. 

The association between genes and histone modifications peaks was 
observed with respect to the TSS of the genes. For H3K4me3 were 
considered associated those peaks within 5Kb upstream or downstream of 
the TSS. For H3K27me3 and H3K9me3 this number was increased to 10Kb 
as those modifications show broader regions on the TSS.  

The distribution of the peaks on specific features of the genome, like 3' 
UTR, 5'UTR, introns, exons and not genic regions was performed with 
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PeakAnnotator from PeakAnalyzer, with all coding and non coding genes. 
The results from annotation will be discussed in the next chapter, Results-
Part II. 

The following step, after correlating the peaks to the genes, is to infer the 
functional classes in which these genes are more enriched. This information 
can be crucial to understand which biological functions are altered in the 
studied system and which gene categories. There are many tools that, given 
a list of genes, can calculate their enrichment in cellular components, 
functional categories or biological processes (see Huang da, Sherman et al. 
(2009) for a complete overview of the available tools). 

DAVID (the Database for Annotation, Visualization and Integrated Discovery) 
(Huang da, Sherman et al. 2009), is the tool used in this work for gene 
ontology. DAVID is able to extract biological features/meaning associated 
with large gene lists. It provides typical batch annotation and gene-GO term 
enrichment analysis to highlight the most relevant GO terms associated with 
the gene list. It assembles data from more than 40 annotation categories 
and calculates the enrichment of gene lists cross-referencing the different 
categories. It evaluates the enrichment with a modified, more stringent, 
Fisher's exact test (EASE). 

mRNA-seq 

• Mapping - TopHat 

Transcriptome analysis has multiple functions, broadly divided between 
transcript discovery and mapping on the one hand and RNA quantification 

on the other. This work is centered on 
transcriptomes from human cell lines and my 
interest is mainly focused on RNA 
quantification and comparison among samples. 
While mapping for ChIP-seq sequence tags is 
fairly simple, because it is made of fragments 
of genomic DNA, RNA-seq mapping is more 
complicated, being the mRNA subject to introns 

removal during the splicing process. For this reason it is necessary to take 
into account those reads covering the junctions between two exons, which 
result not mappable on the genome. Known splice junctions, based on gene 

Fig 20. RNa-seq mapping 
step. The input for TopHat can 
be fastq or csfasta and qual 
samples and in output are 
SAM or BAM files. 
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models and ESTs can be handled by incorporating them computationally in 
the primary read mapping, whereas newly inferred junctions are considered 
later. 

TopHat (Trapnell, Pachter et al. 2009) 
is a fast splice junction mapper. It 
aligns mRNA-Seq reads to 
mammalian-sized genomes using the 
ultra high-throughput short read 
aligner bowtie, and then analyzes the 
mapping results to identify splice 
junctions between exons (Fig). By first 
mapping RNA-Seq reads to the 
genome, TopHat identifies potential 
exons, since many RNA-Seq reads 
will contiguously align to the genome. 
Using this initial mapping 
information, TopHat builds a database 
of possible splice junctions and then 
maps the reads against these 
junctions to confirm them. It is widely 
used and cited in literature and 
updates are released with high 
frequency.  

TopHat outputs three result files, a bam file with all the mapped reads 
(accepted_hits.bam) and three UCSC bed track files with the junctions, the 
insertions and the deletions. Moreover it outputs summary files: 

less left_kept_reads.info 

 min_read_len=50 
 max_read_len=50 
 reads_in =74262816 
 reads_out=74139815 

less bowtie.left_kept_reads.fixmap.log  
 # reads processed: 74139815 
 # reads with at least one reported alignment: 37156205 (50.12%) 
 # reads that failed to align: 27858377 (37.58%) 

 # reads with alignments suppressed due to -m: 9125233 (12.31%) 
 Reported 37156205 alignments to 1 output stream(s) 

Fig 21. TopHat pipeline. RNA-Seq reads 
are mapped against the reference 
genome; reads that do not map are set 
aside. An initial consensus of mapped 
regions is assembled. Sequences flanking 
potential donor/acceptor splice sites 
within neighboring regions are joined to 
form potential splice junctions. The IUM 
reads are indexed and aligned to these 
splice junction sequences. From Trapnell, 
Pachter et al. (2009) 
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With some default parameters except segment length = 17 (minimum 
length of the segments in which the read is cut in order to map it correctly) 
and max multi-hits = 1 (number of mapping sites allowed for the read to be 
considered uniquely mapped). In Table 9 are summarized the results from 
the samples used in this work. 

 
Table 9. Mapping results from TopHat on ICF, RC and UC samples. 

• Estimating differential gene expression - HTseq and 
DESeq 

One of the most diffused aims of works with transcriptomics data is to 
detect genes with differential expression in different samples or treatment 
conditions. To address that, there is the need to correctly quantify the 
expression of each gene in order to be able to compare them in an unbiased 
manner. The normalization of these data is still a matter in discussion; many 
methods have been proposed to correctly account for samples technical and 
biological variations. One of the first proposed methods was the calculation 
of the RPKM (Reads Per Kilobase per Million mappable reads; Mortazavi, 
Williams et al. (2008)). It takes into account that the number of reads from a 
gene is a function of the length of the mRNA as well as its molar 
concentration. RPKMs for genes are then directly comparable within the 
sample by providing a relative ranking of expression. Other methods such 
as Tags/Transcripts per million (TPM) and new metrics such as FPKM 
(Trapnell, Williams et al. 2010), per-lane upper quartile correction metric 
(UQUA) (Bullard, Purdom et al. 2010), and trimmed mean of M values (TMM) 
(Robinson and Oshlack 2010) have been developed to compare expression 
levels both between and within samples. 

The count nature of the next-generation data has necessitated the 
development of new algorithms (or rediscovery of SAGE analysis techniques) 
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to accurately estimate differential expression. The early RNA-seq papers 
frequently used the Poisson model to identify differentially expressed genes. 
This approach has increasingly been recognized as inappropriate. The most 
commonly used methods have been parametric methods utilizing variants of 
the negative binomial distribution such as edgeR (Robinson, McCarthy et al. 
2010), DESeq (Anders and Huber 2010), and bayseq (Hardcastle and Kelly 
2010). Nonparametric methods such as NOISeq (Tarazona, Garcia-Alcalde et 
al. 2011) and Samseq (Li and Tibshirani 2011) and expectation–
maximization methods such as RSEM (Li and Dewey 2011) have also been 
applied to this problem. The Fisher Exact Test (FET) also performs well in 
some comparisons. No consensus has yet emerged as to the best algorithm 
or pipeline to use (Bullard, Purdom et al. 2010; McGettigan 2013). Therefore 
in this work DESeq was chosen for the consensus it receives in the field and 
for the ability to efficently use duplicates.  

The R package DESeq is a parametric 
method, derived from edgeR, that uses 
negative binomial distribution as a model 
for differential expression analysis (check 
Peak comparison with DESeq paragrah). 
This package expects count data in the 
form of a matrix of integer values. Each 

column corresponds to a sample, the 
rows correspond to the entities for which 

you want to compare coverage, in this case genes. The counts can be 
derived with the use of htseq-count script distributed with HTSeq 
(http://www-huber.embl.de/users/anders/HTSeq/doc/count.html#count). 
The script used to quantify differential gene expression is the same used for 
ChIP-seq samples (see Peak comparison with DESeq paragraph and 
Appendix A). 

Association of mRNA-seq, ChIP-seq, Bis-seq and 
miRNA microarray data 

Given the complex nature of the ICF phenotype and the interplay among all 
the epigenomic regulators that is clearly disrupted in this pathology, it 

Fig 22. Gene expression 
quantification and comparison 
between samples. 
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resulted interesting to integrate all epigenetic and transcriptional data from 
these cell lines. Differentially expressed genes were checked for differences 
in enrichment in histone modifications around their TSS. Differentially 
enriched peaks for H3K4me3 were searched +/-5Kb around the TSS of 
genes, while broader modifications like H3K27me3 and H3K9me3 were 
searched +/-10Kb around the TSS.  

CpG islands are mostly positioned close to gene TSS, influencing gene 
expression, therefore genes were considered CpG rich when a UCSC 
annotated CpG island was found +/-5Kb around its TSS. DNA methylation 
changes detected in Heyn et al., 2012, were integrated to genes expression 
and histone modifications changes using the differentially methylated 
regions (DMRs) defined as regions of at least five consistently differentially 
methylated CpG sites between the control and ICF sample. These hyper- and 
hypo-methylated regions were physically correlated to genes TSS and 
histone modifications binding sites as described in the next chapter. 

From previous miRNA expression profiling carried out through microarray 
platform (Gatto et al., 2010), 40 microRNAs were detected as differentially 
expressed comparing the same ICF cell line and control (RC) used in this 
work; here, their predicted or validated TSS have been associated to changes 
in DNA methylation and histone modifications enrichment. The results are 
shown in Results -Part II. 

Transcription and histone methylation at repetitive 
sequences 

In order to analyze the H3K4me3, H3K27me3 and H3K9me3 profile at 
repetitive regions and their transcription it was not possible to follow the 
"classic" pipeline, because of the intrinsic nature of these genomic regions. 
It is important to take into account also the multiple mapped reads, left out 
from standard analysis. Few experiments of this type have been performed 
and there is no standard for this kind of analysis (Maze, Covington et al. 
2010), therefore a new pipeline was built (Fig 23). 
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Figure 23. Data analysis pipeline for ChIP-seq and mRNA-seq on genomic repetitive 
sequences. In the boxes, in bold are indicated the tools of choice. 

• H3K4me3, H3K27me3 and H3K9me3 enrichment 

It is known that in ICF syndrome cell lines the most striking characteristic is 
the hypomethylation and decondensation of the pericentromeric regions, 
mainly in Sat2 and 3 (Jeanpierre, Turleau et al. 1993), that leads to 
chromosomal rearrangments. The telomeric regions too are affected in ICF 
syndrome, being hypomethylated, failing to establish proper 
heterochromatin and influencing transcription (Sawyer, Swanson et al. 1995; 
Deng, Campbell et al. 2010). For these reasons it resulted very interesting to 
analyze all kinds of repetitive regions with differential enrichment of histone 
modifications. 

As the repeated sequences are interspersed in the whole genome, this 
causes all the reads coming from those regions to fall into the multiple 
mapped reads and to be excluded from the analysis. Therefore re-mapping 
the sequenced reads with bowtie was necessary, this time raising the 
number of allowed multiple mapped reads from 3 to 50. Adjusting this 
parameter, were included also those reads probably falling in repetitive 
regions (in this case, mapping in up to 50 places in the genome) that could 
be missed in the first place. In any case, I only kept the best mapping site in 
order to be able to correctly quantify them. Subsequently, the reads falling 
in repetitive regions were counted. A perl script that was developed in Henk 
Stunnenberg's lab in Nijmegen (RepeatCount.pl, see Appendix A) counts the 
reads in the UCSC RepeatMasker collection of interspersed repeats and low-
complexity DNA sequences (http://www.repeatmasker.org). The repetitive 
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regions annotated in RepeatMasker are classified as Repeats, Families and 
Classes. Each category groups elements of the previous one. The script 
outputs the counts for each element in all the categories, either raw or 
normalized by the total number of reads. To assess whether these 
categories were differentially enriched among the samples two parallel 
paths have been followed. First it was tested whether the repeat (or family 
or class) was more enriched in the sample than in the input. Then it was 
verified if those repeats showed differential enrichments comparing the 
samples with a t-test.  

The raw count nature of the repeats allowed the use of DESeq once again, 
testing the differences between the ChIP samples and the inputs, using the 
duplicates. Then a Student's t-test was performed between the log ratio of 
the normalized counts between the ChIP sample and its input, using the 
duplicates. Those repeats, families or classes whose pvalue in the t-test was 
< 0.05 and log ratio > |1.5| were considered differentially enriched. 
Moreover, these features had to show a p-value from DESeq analysis < 0.05. 

Those differences were represented plotting the mean log ratio for each 
sample and its standard deviation. 

• Transcriptional profile 

Roughly half of the human genome is comprised of repetitive elements; 
these elements range from the 6Kb LINE1 to micro and minisatellites 
(Richard, Kerrest et al. 2008). The biological role of repetitive elements is 
not known and in general they are believed to be nonfunctional sequences. 
It is known that repetitive elements in the DNA are expressed, but their 
profile remains largely uncharacterized. Very few transcriptomic 
experiments have been performed to analyze the expression of repetitive 
elements (Tyekucheva, Yolken et al. 2011) and no best practice exists for 
those. The mapping of the RNA-seq reads was performed with bowtie, again 
(as for ChIP-seq reads) with 50 allowed multiple mapped reads. The reads 
falling in the RepeatMasker repeats, families and classes where then 
counted and DESeq was used to assess the statistical significance of the 
difference between the enrichments in the different samples. Results are 
represented as mean and standard deviation of normalized counts (see 
results - Part II). 
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4. Results - Part II - ICF cells epigenomic profile 

 

In this work we characterized the transcriptomic and epigenomic landscape 
of lymphoblastoid cell lines (LCLs) isolated from one ICF (Immunodeficiency, 
Chromosomal instability and Facial anomalies) patient (GM08714, from now 
on called ICF) and two control subjects, GM08728 (ICF patient's mother, 
related control, RC) and LDA (normal subject, unrelated control, UC).  

High-throughput ChIP sequencing (ChIP-seq) was performed on those cells 
to observe the binding of three different histone modifications, such as 
H3K4me3, H3K27me3 and H3K9me3. Moreover, RNA-seq has been 
performed on them. Each experiment has been performed at least in 
duplicates on Illumina and Life technologies platforms. We obtained an 
average of 16-31·106 mapped reads for the ChIP experiments and 18-
27·106 for the RNA-seq.  

For ChIP-seq analysis of enriched regions we mapped the reads with bowtie 
(Langmead, Trapnell et al. 2009), then we run SICER (Zang, Schones et al. 
2009) for peak finding and counted the reads in each peak with bedtools. 
Subsequently we used DESeq (Anders and Huber 2010), an R package that 
tests for differential expression by use of the negative binomial distribution 
and a shrinkage estimator for the 
distribution's variance, to detect 
the differentially enriched peaks 
among the samples (see Results - 
Part I for a more detailed 
explanation of the analysis). Out 
of the 25-29·103 peaks of H3 
trimethylated in K4, and K9, and 
4-10·103 of H3 trimethylated K27 
detected in the samples we found 
many of them differentially 
enriched comparing the samples 
(Fig 24). To quantify the 
differential enrichment we 
calculated the percentage of the 

Figure  24. ChIP-seq and RNA-seq differences 
among the samples. For ChIP-seq (H3K4me3, 
H3K27me3, H3K9me3) are indicated the 
number of peaks differentially enriched 
comparein ICF and the controls, for RNA-seq 
the genes differentially expressed. In red is 
the comparison ICF/unrelated controls, in 
green the ICF/related control. 
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bases enriched in all samples that is covered by differentially enriched peaks 
(as we don't consider comparable the numbers of peaks). Following this, we 
see that 32-36% of the area covered by H3K4me3 peaks is differentially 
enriched in the two comparisons, and the common differentially enriched 
peaks represent the 18,7% of the total. For H3K27me3 the changes cover 
81-47% of the area and share 37,9% of it. H3K9me3 differences in binding 
emerge in 61-48% of the total area and the commonly deregulated are the 
28%. 

Interestingly, the related control (RC) showed always fewer differences with 
the ICF samples that the unrelated control (UC) as expected. Many 
differentially enriched peaks, moreover, were shown to be common to the 
two comparisons (Fig 24), indicating the partially common nature of the 
controls. RNA-seq differentially expressed genes are also shown in Fig 24, 
highlighting again the higher similarity of the ICF sample to the RC than to 
the UC.  

Genomic distribution of H3K4me3, H3K27me3 and 
H3K9me3 in ICF and control cells 

The H3K4me3 genomic distribution (Fig 25a), as expected, results more 
enriched at gene promoters than at other regions (promoter regions defined 
as regions flanking +/-5Kb the transcription start site - TSS).  

 
Figure 25. Genomic distribution of methylated histones binding sites. a. Measure of the 
association of the peak to the TSS of the genes. b. Detailed distribution in 3' or 5' UTR, 
introns, exons and intergenic regions. 
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Noticeable is that the differentially 
enriched H3K4me3 peaks among the 
samples exhibit a skewed distribution 
towards the non-promoter regions. In a 
more detailed classification of the 
distribution of the peaks (Fig 25b) the 
regions that score as differentially 
enriched peaks in ICF compared to the 
controls mainly reside in the intronic 
regions. The explanation might be that 
some of these regions are misclassified 
and there are TSS not yet reported in the 
reference genome. Moreover, genes characterized by H3K4me3 peaks, are 
also associated to CpG islands for the 70% in all samples, which is the 
distribution in the total genome (Fig 26). The differentially enriched peaks 
also maintain the same casual distribution, demonstrating that there is no 
change in distribution of this histone mark correlated to CpG islands 
methylation. 

Differently from H3K4me3, the repressive histone mark H3K27me3 shows a 
differential distribution already among the three samples (Fig 25a), where 
the unrelated control has fewer peaks associated to genes (here we picked a 
broader region to associate peaks to the TSS, +/-10Kb, due to the nature of 
the histone modification broader peaks). At the same time, the peaks more 
enriched in ICF compared to the controls keep the same distribution of 
peaks in ICF sample alone, while the ones more enriched in the controls are 
more associated to non-promoter regions. Moreover, the annotation in Fig 
25b shows that H3K27 in ICF seems to re-localize from intragenic regions 
to intergenic regions. In fact, the majority of the peaks more enriched in ICF 
resides in the intergenic portion. Another interesting variation observed 
regarding H3K27me3 peaks consists in the slight reduction of peaks width 
in ICF sample compared to controls, highlighted by the shift of the means of 
the distributions in Fig 27. Changes in the size of large regions covered by 
H3K27me3 were also recently described in triple knock out cells for DNMTs 
(DNMT1, 3a and 3b), where instead they appear to broaden (Brinkman, Gu et 
al. 2012). Regardless the functional meaning of these two opposite results 

Figure 26. Percentage of CpG rich 
genes associated with H3K4me3 
marks or showing increase or 
decrease of this mark. CpG rich 
genes have a CpG island +/-5Kb 
from their TSS. 
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reported in two different cell contexts, these findings clearly indicate that 
there is interdependence between DNA methylation and H3K27me3. 

 
Figure 27. Distribution of H3K27me3 peaks width. On x-axis is the log of the width of the 
peaks, on y-axis is the density of peaks showing that width. The variation of the width of the 
peaks among ICF and controls is shown by the shift of the means of the distributions, 
represented by dashed lines. 

Concerning H3K9me3 modification, we found that it is poorly associated to 
gene TSS (+/-10Kb around it) and covers mainly the gene body, as 
expected. The localization of this histone modification does not appear to 
be affected in DNMT3B hypomorphic cells compared to the controls, even 
when its enrichment changes among the samples. The unexpected, 
apparent absence of H3K9me3 in intergenic portions of the genome is 
probably due to the fact that it mainly binds highly repetitive sequences and 
with this mapping this portion is lost. The extent of H3K9me3 enrichment at 
repetitive sequences is described below. 

Correlation between gene expression and histone 
methylation profile 

By integrating the results of ChIP-Seq and RNA-Seq, we found that the 
differences in H3K4 and K27 trimethylation level at genes transcriptional 
start sites (TSS) correlates with the expression of the genes. Indeed, many 
genes show an increase or decrease of expression that mirrors the increase 
or decrease of the corresponding histone variation. Remarkable is that only 
a small percentage of histone marks variations at genes reflects a change in 
expression (1-6%), while a more consistent fraction of genes with altered 
transcription shows a modified chromatin marker (5-50%, Fig 28a-b)). 
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Figure 28. Correlation between variation of histone marks enrichment and variation of 
expression of the marked genes. a. On y-axis is the percentage of differentially enriched 
peaks associated to genes with differential expression. b. On y-axis is the percentage of 
differentially expressed genes associated with differentially enriched peaks. 

Functional gene ontology reveals that transcriptionally deregulated genes 
show enrichment in biological processes like cell adhesion, neuron 
development, cell-cell signaling, cell morphogenesis involved in 
differentiation, immune response and cell motility (Fig 29) and the 
enrichment of these categories does not vary in those marked by changes in 
histone modifications. The most enriched gene functional categories among 
the deregulated genes are the immunoglobulins and proteins for cell 
adhesion and inflammation response (Fig 30). However, the subgroup of 
genes differentially expressed and marked by variations in H3K4me3 is 
enriched in the category of zinc finger proteins (ZF), which is also marked by 
changes in H3K9me3 even though to a lesser extent. It is known that in 
double knock out cells for DNMT1 and DNMT3B, ZF genes show increased 
expression and lower levels of H3K9me3 in promoter regions and gene 
bodies (Hahn, Wu et al. 2011). 

 
Figure 29. Biological processes of transcriptionally deregulated genes (TDR) and of TDR 
differentially enriched of histone marks. 
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Figure 30. Gene functional categories of transcriptionally deregulated genes (TDR) and of 
TDR differentially enriched of histone marks. 

In line with this finding, our data suggest that the effect on the trascription 
and histone marks of this specific family of genes is directly regulated by 
DNMT3B. Moreover, the H3K4me3 appears to play an even more important 
role than the H3K9me3 for what specifically concerns the ZF gene family. 
This functional category seems to be particularly important in the 
pathogenesis of the ICF disease, as it is known now that the ICF type 2, 
phenotypically similar to the ICF1 studied in this work, is mutated in a zinc 
finger protein (ZBTB24, see Chapter 2). Furthermore, it is well known how 
this protein family plays an important role in interpreting the DNA 
methylation signals and maybe also affected by changes in the epigenetic 
regulation of DNMT3B mutated cells. 

Correlation between gene expression, DNA 
methylation and histone methylation  

DNA methylation in ICF cells has been studied for long time and only 
recently a genome-wide profile has been performed (Heyn, Vidal et al. 
2012). DNA methylation levels result significantly lowered in ICF cells and 
this reduction occurs mainly at heterochromatic regions. We found that 22% 
differentially methylated regions (DMR) are associated to genes (9% 
hypermethylated, 13% hypomethylated, data not shown). Of the genes 
associated to the hypo- and hyper-methylated regions, only 0,4-0,9% 
shows differential expression compared to the controls (Fig 31a). From a 
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different point of view, of the total of the differentially expressed genes, 
only 7-15% show differential methylation on the promoter (Fig 31b). This 
brings us again to the conclusion that the defects associated to deficient 
activity of the DNA-methyltransferase DNMT3B directly target 
predominantly intergenic regions, which have then secondary effects on 
gene expression.  

 
Figure 31. Correlation of gene expression and changes in DNA methylation on the TSS. a. On 
y-axis is the percentage of genes hyper- or hypo-methylated on TSS that show differential 
expression. b. On y-axis is the percentage of differentially expressed genes associated to 
hyper- or hypo-methylated DMRs on the TSS. 

 
Figure 32. Overlap between differential histone marks enrichment and DMRs. ICF>UC and RC 
are peaks more enriched in ICF than in control and vice versa ICF<UC and RC. The red and 
blue areas on the graph represent the percentage of overlap between hyper- or hypo-
methylated regions and the differentially enriched histone marks. 

On the other hand, independently from gene proximity, there is a good 
correlation between changes in H3K27me3 and changes in methylation (Fig 
32). A significant portion (22-25%) of H3K27me3 peaks more enriched in 
ICF than in the controls overlap at least one hypomethylated region in ICF, 
whereas 11% of H3K27me3 peaks overlap hypermethylated sites. Also in 
regions showing decrease of this histone mark in ICF compared to controls 
there is an 11-14% of hypomethylation and 2-3% of hyper. The association 
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between the methylation and this histone mark in ICF cells was only 
predicted from Heyin et al., but we show here that there is an interplay 
between the two, probably causing part of the ICF phenotype. For what 
concerns the other two histone modifications there seems to be no overlap 
between their enrichment variations and DNA methylation increase or 
decrease in presence of DNMT3B mutations. 

Correlation between miRNA expression, DNA 
methylation and histone methylation 

An important role in ICF syndrome is probably played by microRNAs, of 
which a number around one hundred change their expression in ICF 
compared to controls. Their epigenetic profile, though, does not vary 
significantly for those tested for changes in methylation and histone 
modifications enrichment (Gatto, Della Ragione et al. 2010). In order to 
compare the previous expression results with the new epigenomic profiles 
described in this work, only the miRNAs differentially expressed between 
the ICF line 8714 (ICF in this work) and the control line 8728 (RC) were 
considered (40 genes).  

 
Figure 33. Heatmap representing the epigenetic profile of differentially expressed 
microRNAs. Each modification is indicated as "UP" or "DOWN", the color is not indicative of 
the amount of increase or decrease.  

Taking advantage of the new data provided by these new NGS experiments, 
we could confirm, that the previously analyzed regions with targeted 
sequencing after bisulfite conversion and found unchanged were actually 
not marked by changes in methylation. However, we found that many of the 
differentially expressed miRNAs show changes in methylation in other sites, 
which are not corresponding with the previously identified CpG islands. 
Interestingly only less than half of the miRNAs shows differences in DNA 
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methylation and histone modifications (Fig 33). H3K4me3 changes always 
correlate with expression changes and most H3K27-K9me3 variations fit 
with the expression. Surprisingly, there is no strict correlation between 
changes of expression of microRNAs and their methylation profile, with 
many over-expressed genes showing hypermethylation on the predicted TSS 
and hypomethylation in the gene body (in case of intragenic miRNAs).  

Epigenomic and transcriptomic alterations at 
repetitive regions 

To better address the possible function or meaning of histones enrichment 
in regions depleted of genes, we analyzed alterations occurring in 
pericentromeric and gene desert regions in the ICF patient in more detail. 
The enrichment of all histone modifications in these regions compared to 
the background, represented by the input sample, genomic DNA, is shown 
in Fig 34. Among the studied histone marks, H3K9me3 is best known for its 
abundance in intergenic regions; in pericentromeres there seems not to be 
enrichment of H3K4me3 and H3K27me3 (ratio<1), while the enrichment of 
H3K9me3 does not vary among the samples (Fig 34a). In gene deserts, 
instead, the enrichment of H3K9me3 seems to be decreased in the ICF 
sample compared to the controls (Fig 34b). Although it needs to be verified 
by qPCR, this result might be interesting to define the connection of 
H3K9me3 and DNMT3B methylation in these cells. 

 
Figure 34. Pericentromeres and gene desert histone marks enrichment over the background 
(log of ChIP/input ratio). 

Many of the intergenic sites correspond to regions containing a high 
abundance of genomic repeats, therefore we assessed systematically the 
occurrence of differential histone binding at repetitive elements genome-
wide. For this purpose we calculated the relative enrichment of histone 
modification binding over the background on all repetitive elements, 
families and classes from RepeatMasker (http://www.repeatmasker.org).  
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Figure 35. Histone marks enrichment at repetitive sequences in the genome 

Although we couldn't identify any difference the distribution of the reads 
over the different classes of repeats among the samples (as shown in Fig 
35), some differential enrichment was found in specific repeats.  

Histone modifications enrichment and RNA expression were measured as 
described in Results - Part I section. For the ChIP-seq the mean fold 
enrichment of the modification over the background was calculated, while 
for RNA-seq the mean number of the reads mapping in repetitive regions, 
normalized by the total number of reads, are a measure of the expression of 
the region (Fig 36). 

H3K4me3 is mainly increased in ICF compared to control cells in simple 
repeats, satellite, low complexity repeats, LTR, snRNA and tRNA. H3K27me3 
changes mostly in satellites, tRNAs and simple repeats, but we also show 
that entire families and classes are differentially enriched of this 
modification, such as tRNA, rRNA, acro and SINE. H3K9me3 as well shows 
differences in simple repeats and LTRs, but also in SVA repeats. A strong 
reduction of DNA methylation has been found in the same categories, like 
satellites, LTRs, tRNA, rRNA, low complexity, simple repeats, SINE, SVA 
(Heynes et al).  

The effect of these variations is reflected in RNA expression as well. Single 
repeats seem to highly increase in controls compared to ICF, while satellites 
are more enriched in ICF sample, particularly in Tar1, the repeat 
characterizing the telomeric sequences, particularly affected in ICF 
syndrome (Deng, Campbell et al. 2010).  
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Figure 36. Histone marks differential enrichment in repetitive regions and their differential 
expression. From the top is represented the enrichment of H3K4me3, H3K27me3 and 
H3K9me3 over the background (as log of ChIP/input ratio). RNA expression is measured in 
average number of reads in the regions. Significant differences are marked with ** (p-
val<0.01) and ** (p-val<0.05). 
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5. Materials and methods 

Cell lines 

The ICF syndrome cell line used in this study is the Epstein-Barr virus-
transformed lymphoblastoid cell line (LCL) GM08714 (ICF). These cells come 
from the heterozygous ICF patient P4 [A603T and intron 22 G to A mutation 
resulting in insertion of three amino acids (STP) in DNMT3B]. Control cells 
include LCLs derived from normal individuals, GM08728 and LDA (Unrelated 
Control, UC). GM08728 is heterozygous for one ICF mutation (wt/A603T), 
being ICF patient's mother (Related Control, RC). LCLs were grown in 
RPMI1640 media (Euroclone) supplemented with 2 mM L-glutamine and 10% 
heat-inactivated fetal bovine serum (Euroclone).  

Chromatin Immuno-Precipitation (ChIP) 

The Chromatin Immuno-Precipitation (ChIP) is used to identify the DNA 
binding sites of a specific protein of interest. This technique is based on the 
cross-linking, that is the formation of reversible bonds among primary 
aminic groups in close proximity to one each other in the proteins (mainly 
lysines) and DNA and RNA bases (cytosine, adenine and guanine) through 
the activity of formaldehyde. The cross-linked DNA is then sonicated to 
small fragments (300-600bps) and one part (generally the 1%) of it is saved 
as input, to be used as control, and the rest is immunoprecipitated with a 
specific antibody and an unspecific one as a negative control. The antibody 
is precipitated adding protein A/G PLUS-AGAROSE beads to the mix; these 
beads bind the constant portion of the antibody and are separated through 
centrifugation from the rest of unbound chromatin. After the precipitation 
all the bonds are reversed through de-crosslinking at high temperatures 
(65°C) and the DNA is then purified from the proteins. 

The fraction of DNA bound by the protein of interest can then be used in 
two applications. It can be amplified by Real Time-PCR to target specific 
regions that we are interested in studying, or it can be sequenced by Next 
Generation Sequencing, to be able instead to scan all the regions bound by 
that specific protein (Fig 37). 

For each ChIP 106 cells (or 1,5x106 for H3K9me3) were fixed with 
Formaldehyde 1% at a concentration of 5x105 cell/ml.  
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Figure 37. Chromatin Immuno-Precipitation. A. Formaldehyde-crosslinked DNA is sonicated. 
B. Specific antibody binds the protein of interest. C. Protein A/G beads bind the antibody and 
precipitate the DNA-protein complex. D. The immunoprecipitated complex is de-crosslinked 
at high temperature. E. DNA is purified. F. Real Time PCR is used to evaluate the protein 
binding on specific DNA regions. G. Adapters are ligated to DNA fragments and amplified on 
solid supports to perform Next Generation Sequencing for the genome-wide assessment of 
DNA binding sites for the specific protein. 

After crosslinking the chromatin wa sonicated either with COVARIS (30 
cycles of 30sec ON and 30 sec OFF, intensity 6) or Bioruptor (10 cycles of 
30sec ON and 30 sec OFF, high power) instrumentations, depending on the 
availability. The antibodies used for the ChIPs are Anti-H3K27me3 (Abcam, 
mAb, ab6002, 10ug), Anti-H3K4me3 (Abcam, ab8580, 10ug) and Anti-
H3K9me3 (Abcam, ab8898, 2ug). Protein A/G PLUS-Agarose beads from 



 66 

Santa Cruz (sc-2003) was used for antibody precipitation. The eluted and 
purified DNA was sequenced with alternatively SOLiD and Illumina Next 
Generation Sequencing. 

RNA extraction 

RNA extraction was performed with a standard QIAzol (Lysis reagent from 
QIAGEN) protocol. RNA from 106 cells was isolated and resuspended in 
nuclease-free water. This RNA was used to perform libraries by the IGA 
facility in Udine. 

For the RNA-seq performed in Cambridge the poly-A mRNA was extracted 
directly from cells. Oligotex kit from QIAgen was used. 106 lymphoblastoid 
cells were first lysed and homogenized in the presence of a highly 
denaturing guanidine-isothiocyanate (GITC) buffer, which immediately 
inactivates RNases to ensure isolation of intact mRNA. Oligotex Suspension 
was added, and hybridization took place between the oligo dT30 of the 
Oligotex particle and the poly-A tail of the mRNA. Contaminants are then 
washed away, and high-quality poly A+ RNA was eluted. 

NGS Platforms - basics 

NGS platforms rely on a combination of template preparation, sequencing, 
imaging and data analysis. In this study I only used the Illumina/HiSeq and 
the Life/SOLiD for sequencing in this work. The last step, the data analysis, 
is described in detail in the Result - Part I section. 

The principal steps of the functioning of the machines are summarized here: 

a. Template preparation 

All the three systems clonally amplify the templates to obtain a higer 
representation of the single DNA molecules. For the 454 and SOLiD 
platforms the DNA libraries with specific adaptors are denatured into single 
strand and captured by amplification beads followed by emulsion PCR (Fig 
38a). In Solexa protocol instead, the library with fixed adaptors is denatured 
to single strands and grafted to the flowcell, followed by bridge 
amplification to form clusters that contains clonal DNA fragments (Fig 38b). 
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Figure 38. Sequencing library preparation for Life (a) and Illumina (b) technologies. From 
Metzker (2010). 

b. Sequencing and imaging 

This is the step that mainly differs among the three systems; here are the 
basics of sequencing and imaging for Roche/Life/Illumina sequencers. 

• Cyclic reversible termination (HiSeq) 

 
Figure 39. Sequencing through cyclic reversible terminators from Illumina. From Metzker 
(2010). 

This technique somehow recalls the automated Sanger sequencing. Before 
sequencing, the library splices into single strands with the help of a 
linearization enzyme, and then four kinds of nucleotides 
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(dideoxyATP/ddATP, ddGTP, ddCTP, ddTTP) which contain different 
cleavable fluorescent dye and a removable blocking group complement the 
template one base at a time, and the signal is captured by a (charge-
coupled device) CCD. One image is acquired at each cycle of addition of 
nucleotide, then the block is removed and a new base can be added to the 
sequence (Fig 39a-b). 

• Sequencing by ligation (SOLiD) 

 
Figure 40. Sequencing by ligation from SOLiD. From Metzker (2010). 

On a SOLiD flowcell, the libraries are sequenced by 8 base-probe ligation 
(Fig 40a, box), which contains one ligation site (the first base), one cleavage 
site (the fifth base), and four different fluorescent dyes (linked to the last 
base). The fluorescent signal is recorded when the probes are 
complementary to the template strand and removed by the cleavage of 
probes’ last 3 bases. The sequence of the fragment can be deduced after 5 
round of sequencing using ladder primer sets (Fig 40b). 

Library preparation 

All the experiments, ChIP- and RNA-seq, were performed in duplicates. 
H3K4me3 and K27me3 samples were sequenced using the SOLiD4 system, 
whereas H3K9me3 samples were sequenced using the Illumina GAII or 
HiSeq1000 system. The two RNA-seq duplicates were performed both with 
Illumina platforms (HiSeq1000). Here is a list of the samples we sequenced 
(Table 10, in red the samples sequenced in this work). 
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Table 10. Genome wide experiments performed on ICF and control cell lines for the study of 
gene expression and epigenomic alterations. In red are the experiments performed within 
this work. 

The relevant steps of the library preparation are summarized below. 

• ChIP-seq 

1. End repair. This step converts the overhangs into phosphorylated blunt 
ends, using T4 DNA polymerase, E. coli DNA Pol I large fragment (Klenow 
polymerase), and T4 polynucleotide kinase (PNK). The 3’ to 5’ exonuclease 
activity of these enzymes removes 3’ overhangs and the polymerase activity 
fills in the 5’ overhangs. It includes the purification with QIAquick columns. 

2. Add ‘A’ Bases to the 3’ End of the DNA Fragments. This step adds an ‘A’ 
base to the 3’ end of the blunt phosphorylated DNA fragments, using the 
polymerase activity of Klenow fragment (3’ to 5’ exo minus). This prepares 
the DNA fragments for ligation to the adapters, which have a single ‘T’ base 
overhang at their 3’ end. The DNA is then purified on MinElute columns. 

3. Ligate adapters to DNA fragments. This is a 
fundamental step of the library prep. Adapters 
are ligated to the ends of the DNA fragments, 
preparing them to be hybridized to a flow cell. 
The DNA is again purified on MinElute columns. 

4. Size selection. This step removes excess 
adaptors and selects a size range of templates 
that have to be sequenced. In this work a size 
of 350bps was chosen. 2% E-Gel SizeSelect 
Agarose Gels are used for size selection, with 
pre-cut wells for collection of DNA. 

5. Amplification of the DNA library with PCR. 
Afterwards a qPCR with specific primer was performed as a quality control. 
The samples were tested with the BioAnalyzer (capillary electrophoresis) for 
size (Fig). 

Figure 41. Bioanalyzer 
run. On the left column 
there is the size marker, 
the other three are the 
libraries. The color black 
indicates higher DNA 
amount. 
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• RNA-seq 

Library preparation for RNA-seq for Illumina platforms was performed in 6 
steps: 

1. RNA Sonication. The RNA was then sonicated in order to have smaller 
fragments for the library preparation. 

2. Synthesis of double-strand cDNA. This cDNA was synthesized with the 
Just cDNA Double-Stranded cDNA Synthesis Kit from Agilent.  

3. Steps 1-3 and 5 from ChIP-seq library synthesis were performed. 
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6. Discussion and conclusions 

 

In this work the development of customized pipelines for Next Generation 
Sequencing (NGS) data analysis and integration was described. These 
workflows were tested on ChIP-seq, RNA-seq, Bisulfite-seq and microRNA 
(microarray) expression data from lymphoblastoid cell lines deriving from 
individuals affected by the human genetic disease ICF and from healthy 
individuals. 

Next generation sequencing revolutionized the field of genomics in the last 
ten years. These new high-throughput sequencing technologies made it 
possible to apply sequence-based approaches in an unanticipated number 
of fields. In the epigenomic field for example, where the interests are mainly 
focused on transcriptional regulation in biological systems mediated by 
non-genomic factors, NGS technology allowed to observe from a novel, 
wider point of view differenti epigenetic marks. Some relevan examples are 
the distribution of DNA binding proteins, as transcription factors or histones 
isoforms, or the DNA methylation landscape. In their infancy, these new 
technologies have been largely used to profile the epigenomic patterns 
characterizing specific cell types, as histone modifications binding in T cells 
(Barski, Cuddapah et al. 2007) and pluripotent and committed cells 
(Mikkelsen, Ku et al. 2007; Hawkins, Hon et al. 2010). These works have 
shed new light on the specific roles of each histone modification on 
transcriptional regulation and on their distribution pattern across the 
genome. Lately, an enormous work has been done to correlate these marks 
with DNA methylation changes in cancer (Jin, Ernst et al. 2012) and in 
human pathologies (Heyn, Vidal et al. 2012). Moreover, studies on 
microRNAs roles in cancer are evolving rapidly towards a better 
understanding of the complex alterations leading to the pathology thanks to 
NGS techniques (Lopez-Serra and Esteller 2012).  

Nowadays, many new research branches are developing due to the 
introduction of NGS technologies. One of these branches is driven by 
computational sciences applied to biologic concepts, to support the novel, 
overwhelming, amount of sequencing data available and to give biologists 
the right instruments to confidently extract information from such data; 
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another, completely innovative, branch bases its studies on published and 
freely available data, supporting the idea that there is no limit to the 
information that can be extracted from high-throughput sequencing. 
Moreover, other groups are still producing new data, which will then enrich 
our knowledge and our databases. 

One of the first problems that biologists face when approaching sequencing 
is merely technical, and it concerns the infrastructures and the knowledge 
needed to handle data. Raw data have significant sizes and can occupy 
many Gb of hard disk, not generally handled by a common desktop 
computer. Moreover, the first mapping step requires a consistent amount of 
space, memory and time to run. This is the reason why a researcher 
approaching such a task has to be prepared and evaluate the solutions to 
the problem. Nowadays many companies that produce sequencing data are 
also offering data analysis and storage service for customers, requiring, of 
course, an additional fee to the already not indifferent one paid for the 
sequencing itself. Many institutions (or even single labs) also start to 
consider the global interest of people working on NGS data and begin 
providing internal services. Another, very often used, way of dealing with 
this issue is to train an internal person to handle the data and either rent the 
computers externally or start a collaboration with already equipped 
laboratories. 

In this work the epigenomic regulation of transcription in a rare genetic 
monogenic disease (ICF syndrome) was investigated by integrating 
published data of bisulfite-sequencing and microRNA expression with newly 
produced data of ChIP-sequencing for histone H3 trimethylated in lysines 
K4, K27 and K9 and gene expression data from mRNA-seq. In order to 
efficiently analyze this data many existing tools have been tested and linked 
by custom scripts or data manipulation mediated by bedTools and 
SAMtools. The two pipelines here produced and discussed (Fig 13 and 23) 
have been built around the data, hence tested through the biological 
validation of the data (part of which was already published in previous works 
and part is currently ongoing).  

Bioinformatics tools for NGS data analysis are continuously in development 
and every month new tools are available. Moreover, all the current 
international sequencing projects (like ENCODE, 1K genome project, etc.) 
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require every day more and more standardized workflows for seek of 
consistency and reproducibility of the data (Landt, Marinov et al. 2012; 
Dobin, Davis et al. 2013). Subsequently, one of the future steps that should 
be considered is to test each single part of the pipelines with synthetic data 
sets and compare the used tools with the new, more advanced and efficient 
ones. Moreover, it would be important to improve the pipeline stream in 
order to make it easier for all users in a lab to take advantage of it and to 
integrate this part of work in the commonly used tools of the lab.  

The use of high throughput sequencing in this work had a very specific 
biological aim. To our knowledge, this is the first time that the global 
distribution and enrichment of histone modifications in lymphoblastoid cell 
lines from patients with a mutation in the DNA methyltranferase 3B is 
reported. It was already known for some specific loci that the histone H3 
trimethylated in K4, K27 and K9 marks vary mainly in terms of enrichment 
and are not completely erased or rewritten, and it was confirmed at a 
genome-wide scale. The novel observation we could make is that the 
differentially enriched peaks for trimethylated H3K4 and K27 have a skewed 
genomic distribution with respect to the one observed in all detected peaks 
in the samples. This may mean, for example, that peaks of H3K4me3 in 
gene bodies are more targeted by DNMT3B hypofunctioning than the ones 
in intergenic regions; conversely, the intergenic regions show an increase of 
H3K27me3 compared to the control. Only H3K9me3 distribution does not 
change its genomic distribution, even when its enrichment is altered. 

The changes in enrichment are reflected only partially in gene expression. 
Of the genes bound by these marks on their transcription start sites only a 
small percentage (1-6%) changes its expression; but many differentially 
expressed genes (5-50%) are marked by changes in histone modifications. 
This can have different explanations. One of these is that probably not all 
changes in enrichment are directly effective on gene expression and may be 
balanced from other factors we did not analyze in this work. On the other 
side, is also true that not all changes in expression occur in presence of 
changes of the analyzed histone modifications, therefore also these 
alterations could be due to other factors. Moreover, we did a very stringent 
RNA-seq analysis, considering as duplicated sequencing data from two 
different places, ending with only 544 total differentially expressed genes. 
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This factor could have led to the underestimation of the deregulated genes, 
restricting the group to the ones with the biggest difference in expression, 
thus resulting also in an underestimation of genes with changes in 
epigenetic profile.  

The annotation of all differentially expressed genes (TDR, transcriptionally 
deregulated) and of those associated to differentially enriched peaks of 
histone modifications revealed important enriched gene categories. The 
biological processes and gene functional categories enriched in TDR genes 
and in TDR genes associated to changes in histone marks are, as expected, 
mainly enriched in immunological regulation, cell motion and migration, 
development and neuronal pathways. Only the TDR genes with alterations in 
H3K4me3 show enrichment in two novel categories, the regulation of 
transcription and zinc-finger protein family. This is a novel finding, as it was 
known that the general transcription pathway is altered in these cells, but 
the link between DNMT3B function, the zinc-finger proteins, the H3K4me3 
mark and transcription was still uncovered.  

H3K9me3 plays an important role in zinc-finger proteins transcription 
regulation (Hahn, Wu et al. 2011). However, in our cells only a weak 
enrichment has been found at these genes, although consistent with their 
expression changes. The correlation between this mark and this gene 
family, though, has been proven at the level of the gene body, while the 
association displayed in Fig 30 is done with gene TSS. It is possible that 
extending the correlation to the gene body of the differentially expressed 
genes could also increase the number of differentially expressed zinc 
fingers marked by changes in H3K9me3.  

A very interesting link between the ICF syndrome and the zinc-finger 
protein family has arisen when the ICF type 2 genetic origin was described 
(de Greef, Wang et al. 2011) and the ZBTB24 gene was pointed out as 
responsible for another form of ICF, characterized by hypomethylation in 
alpha satellites. This gene is part of the ZBTB family, whose involvement in 
hematopoiesis, and in particular in regulation of lymphoid development and 
function, mainly in GC B cells (Germinal Center), has lately been 
characterized (Lee and Maeda 2012). ZBTB24 is not deregulated in ICF (type 
1) cells, but another member of the family, ZBTB32 (among many others) is 
less expressed compared to control cells. This protein is a key regulator of 
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the differentiation of B cell to plasma cells, acting as a repressor of CIITA in 
complex with another protein, Blimp1, to stimulate the progression of state 
of the B cells to plasma cells (Yoon, Scharer et al. 2012). It has been proven 
that the reduction of this protein delays kinetics in B cells progression 
toward active, immunoglobulin-producing cells. The connection with the ICF 
phenotype is clear, as the main symptoms of this disease are 
agammaglobulinemia and lack of mature cells and plasmacells in patients. 
With this observation we have probably moved a step forward towards the 
better understanding of the phenotype of the syndrome. 

A very interesting observation coming from the correlation of bisulfite-
sequencing data and RNA-seq data is that DNA methylation can be both 
increased or decreased on the promoters of upregulated genes or 
microRNAs, and the same is observed in less expressed genes or microRNAs 
in ICF versus controls. This may mark a misguided activity of the mutated 
DNMT3B, or a compensatory mechanism, that does not seem to have a 
direct and clear effect on genes transcription.  

Defects in the proper DNMT3B targeting would be compatible with the 
specific mutations described in ICF patients. Indeed, in the ICF variants the 
binding of DNMT3L regulating the targeting of DNMT3B is disrupted, thus 
presumably explaining the defects in methylation profile.  

Moreover, DNA hypomethylation in ICF syndrome was before correlated to 
H3K27me3 and H3K9me3 histone marks, but it was never observed in 
correlation with their changes in the same cells. We clearly observe that only 
changes in H3K27me3 co-localize with changes of DNA methylation, while 
H3K9me3 alterations are poorly overlapping with hyper- or hypo-
methylation in ICF cells. This observation may reinforce the hypothesis that 
these two epigenetic factors are strictly interconnected and that the mutated 
DNMT3B can influence both of them.  

Overall, of all the disregulated genes, 60-62% of them showed alterations in 
DNA methylation or variations in enrichment of at least one of the histone 
marks on the TSS, while the rest did not show any alteration in this analysis. 
It is possible that these genes are direct target of altered transcription 
factors or target of disregulated microRNAs. In Gatto, Della Ragione et al. 
(2010), 40 microRNAs were detected as differentially expressed comparing 
ICF cell line and the control (RC); their predicted or validated TSS were here 
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associated to changes in DNA methylation and histone modifications 
enrichment. Again, 60% of differentially expressed microRNAs showed 
alterations in DNA methylation or histone marks enrichment, some to 
attribute to mistaken prediction of the TSS and some probably due to 
factors not included in this study. At the time the miRNA expression 
microarray was performed there was little information about the real TSS of 
the miRNAs and also a small number of them were discovered, compared to 
now. In 2009 there were 735 human microRNA on the expression 
microarray (Sanger miRNA db v 9.0-9.1, Berezikov, van Tetering et al. 
(2006)), while now only MirBase (Kozomara and Griffiths-Jones (2011), 
www.mirbase.org, release 19, Aug 2012) contains 1600 sequences. 
Moreover, thanks to the NGS technologies more detailed information is now 
available to identify the TSS of those genes and specific databases are born 
to collect data from the literature (mirT, 
http://www.isical.ac.in/~bioinfo_miu/miRT/miRT.php, Bhattacharyya, Das et 
al. (2012); miRStart, http://mirstart.mbc.nctu.edu.tw/). For this reason, we 
probably miss some part of information about those miRNAs that were not 
tested for expression. 

ICF syndrome is mainly affected by hypomethylation in heterochromatin, 
such as pericentromeric regions and satellites, and repetitive regions (Heyn, 
Vidal et al. 2012). This hypomethylation is not reflected into changes in 
histones enrichment in pericentromeric regions, but a decrease of H3K9me3 
is observed in gene deserts, where repetitive regions are mostly 
concentrated. A deeper analysis of such repetitive sequences in the genome 
showed that many repeat sequences are differentially enriched in H3K4me3, 
H3K27me3 and H3K9me3 and some are also differentially expressed, like 
telomere repeats TAR1. Some classes and families, like satellites, LTR, 
simple repeats, rRNA and tRNA are differentially enriched in more than one 
histone modification, are differentially expressed and are hypomethylated. 
DNMT3B defective activity seems to have a strong impact on those regions 
and it would be highly interesting to study in greater detail the effect that 
those changes cause in the cells. 

In conclusion, the use of ChIP-seq and RNA-seq in this work, joint with 
bisulfite-seq and microRNA microarray data, allowed to create a wider 
picture of the epigenetic landscape in cells affected by mutations in 
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DNMT3B. This new information will provide new insights on ICF syndrome 
pathogenesis, better dissecting its molecular phenotype. Moreover, the big 
amount of data produced is a long-lasting source of information, and will 
serve to answer even more questions than the ones already answered here. 
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Appendix A 

Here listed are some examples of codes in R or Perl that have been used in 
data analysis for this work. 

Differential peaks enrichment evaluation using DESeq package. 
library("preprocessCore") 
 
setwd("/Users/path/m3_Counts") 
 
#Load counts files  
ICF1K27=read.table("Counts_ICF1_K27_all_regions.coverage") 
ICF2K27=read.table("Counts_ICF2_K27_all_regions.coverage") 
ICF3K27=read.table("Counts_ICF3_K27_all_regions.coverage") 
LDA1K27=read.table("Counts_LDA1_K27_all_regions.coverage") 
LDA2K27=read.table("Counts_LDA2_K27_all_regions.coverage") 
MOM1K27=read.table("Counts_MOM1_K27_all_regions.coverage") 
MOM2K27=read.table("Counts_MOM2_K27_all_regions.coverage") 
MOM3K27=read.table("Counts_MOM3_K27_all_regions.coverage") 
 
#Create reference file of regions with fictious names and matrix of counts 
regK27= paste("Region",1:nrow(ICF1K27), sep="") 
regionsK27=data.frame(ICF1K27[,1:3], row.names=regK27) 
write.table(regionsK27, file="regionsK27.txt", sep="\t", dec=",", quote=FALSE) 
 
M_K27=data.frame(ICF1=ICF1K27[,4], ICF2=ICF2K27[,4], ICF3=ICF3K27[,4], 
LDA1=LDA1K27[,4], LDA2=LDA2K27[,4], MOM1=MOM1K27[,4], MOM2=MOM2K27[,4], 
MOM3=MOM3K27[,4] row.names=regK27) 
write.table(N_K27, file="MatrixK27.txt", sep="\t", dec=",", quote=FALSE) 
 
# Evaluate enrichment differences: 
library("DESeq") 
print("Running DESeq...") 
 
# estimate variance - differs based on if you have replicates or not... 
countsTableMatrixK27 <- as.matrix(M_K27) 
condsK27 = c("I", "I", "I", "L", "L", "M", "M","M") 
dlistK27 = unique(condsK27) 
cdsK27 <- newCountDataSet(countsTableMatrixK27, condsK27) 
cdsK27 <- estimateSizeFactors(cdsK27) 
cdsK27 <- estimateDispersions(cdsK27, method="pooled") 
 
# Calculate differential enrichment between all pairs of samples 
tmax = length(dlistK27) 
for (i in 1:tmax) 
{ 
 for (j in 1:tmax) 
 { 
  if (i != j) 
  { 
   a = dlistK27[i] 
   b = dlistK27[j] 
#First create the output folder where to save file! 
   tname = paste("DESeq24Nov12/K27/", a, "-", b, ".deseq", sep="") 
   print(tname) 
   res = nbinomTest(cdsK27, a, b) 
   write.table(file = tname, res, quote = F, sep="\t", row.names=F) 
   res_Pvalue0.01 <- res[res$pval < 0.01, ] 
   tname2 = paste("DESeq24Nov12/K27/", a, "-", b, "pValue0.01.deseq", 
sep="") 
   print(tname2) 
   #Save only regions with p-value<0.01 
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   write.table(file = tname2, res_Pvalue0.01, quote = F, sep="\t", 
row.names=F)  
   res_Pvalue0.05 <- res[res$pval < 0.05, ] 
   tname4 = paste("DESeq24Nov12/K27/", a, "-", b, "pValue0.05.deseq", 
sep="") 
   print(tname4) 
   #Save only regions with p-value<0.05 
   write.table(file = tname4, res_Pvalue0.05, quote = F, sep="\t", 
row.names=F)  
   tname3 = paste("DESeq24Nov12/K27/", a, "-", b, ".jpg", sep="") 
   jpeg(file=tname3) 
   plot(res$baseMean, res$log2FoldChange, log="x", pch=20, cex=.1, col = 
ifelse( res$pval < .01, "red", "black" ) ) 
   dev.off() 
  } 
 } 
} 
 
print("Done K27!") 

 

Annotation of peaks on genomic features. 
# RunChIPpeakAnno.R 
################################################## 
### Script for annotation 
################################################## 
# Parse and use command line arguments 
# Invoke % R --slave --args path/fileame.bed < RunChIPpeakAnno.R 
 
#take arguments 
Args <- commandArgs() 
regions <- read.delim(Args[4], header=FALSE, stringsAsFactors=TRUE) 
library(ChIPpeakAnno) 
 
#extract regions information 
starts = regions$"V2" 
ends = regions$"V3" 
chrs = regions$"V1" 
 
#create an IRange object 
myPeak = RangedData(IRanges(start=starts, end=ends), space=chrs) 
 
#Extract data from human genome GRCh37/hg19 
data(TSS.human.GRCh37) 
 
print("running annotation") 
annotatedPeak = annotatePeakInBatch(myPeak, AnnotationData=TSS.human.GRCh37, 
PeakLocForDistance="middle", FeatureLocForDistance="TSS") 
 
print(head(as.data.frame(annotatedPeak))) 
 
print("writing tables and images") 
input=as.character(Args[4]) 
name=unlist(strsplit(input, "\\.")) 
 
jpeg(paste(name[1],'_pie.jpg')) 
pie(table(as.data.frame(annotatedPeak)$insideFeature)) 
dev.off() 
 
write.table(as.data.frame(annotatedPeak), file= 
(paste(name[1],"_annotatedPeakList.xls")), sep="\t", dec=",", row.names=FALSE) 
 
anno=as.data.frame(addGeneIDs(annotatedPeak, "org.Hs.eg.db", "symbol")) 
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write.table(anno[anno$distancetoFeature < 5000 & anno$distancetoFeature> -5000,], 
file= (paste(name[1],"_associatedPeaks5000.xls")), sep="\t", dec=",", 
row.names=FALSE) 
write.table(anno[anno$distancetoFeature < 10000 & anno$distancetoFeature> -10000,], 
file= (paste(name[1],"_associatedPeaks10000.xls")), sep="\t", dec=",", 
row.names=FALSE) 
 
jpeg((paste(name[1],'_pie_associated.jpg'))) 
pie(table(as.data.frame(anno[anno$distancetoFeature < 5000 & anno$distancetoFeature> 
-5000,])$insideFeature)) 
dev.off() 
 
jpeg((paste(name[1],'_hist_TSS.jpg'))) 
y1=annotatedPeak$distancetoFeature 
[!is.na(annotatedPeak$distancetoFeature)&annotatedPeak$fromOverlappingOrNearest == 
"NearestStart"] 
hist(y1, xlab="Distance To Nearest TSS", main="", breaks=1000, xlim=c(min(y1)-100, 
max(y1)+100)) 
dev.off() 
 
jpeg((paste(name[1],'_hist_TSS_zoom.jpg'))) 
hist(y1, xlab="Distance To Nearest TSS", main="", breaks=10000, xlim=c(-2e+04, 
2e+04)) 
dev.off() 
 
print("Done!!!") 

 

Perl script for reads count in repetitive regions from RepeatMask - Adapted 
from A.Brinkman 
#!/usr/bin/perl 
# 
use warnings; 
use strict; 
use Getopt::Long; 
use File::Basename; 
 
our $title = "repeatAnalysisSole.pl v1.0 Sun Feb 13 23:13:21 CET 2011 -- Sole Gatto -
- Adapted from Arjen Brinkman"; 
our $scriptname = "repeatAnalysisSole.pl"; 
 
#set some general variables 
my $pathRefGenome = "/home/gatto/rseg/hg19/hg19.fasta"; 
my $pathToRepeatClasses = "/home/gatto/RepeatMask_hg19"; 
my $name; 
my $infile; 
my $outfile; 
my $totalReadsNoDuplicates; 
 
#Process the options 
our($opt_f, $opt_r); 
&Process_Options; 
 
my $totalReadsMapped = `cat $opt_f | wc -l`; 
chomp $totalReadsMapped; 
 
print "$totalReadsMapped\n"; 
 
#create temporary storage place 
our $tmp=`mktemp -d`; 
chomp $tmp; 
 
#count reads within repeatclasses 
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&getName; 
 
system `cat $pathToRepeatClasses |grep -v "#" |sort -k1,1 -k2g,2 |cut -f1,2,3 
>"$tmp"/repeatclasses`; 
system `cat $pathToRepeatClasses |grep -v "#" |sort -k1,1 -k2g,2 |cut -f4- 
>"$tmp"/repeatclassNames`; 
system `/usr/bin/peakstats.py -p "$tmp"/repeatclasses -d $opt_f -z -f number |cut -f4 
>"$tmp"/tagcountInRepeats.peakstats`; 
system `paste "$tmp"/repeatclassNames "$tmp"/tagcountInRepeats.peakstats 
>"$tmp"/countedRepeats`; 
 
#compile counted data 
my %nameCount; 
my %classCount; 
my %familyCount; 
$infile = $tmp . "/countedRepeats"; 
open IN, "<$infile" or die "Could not open $infile:$!\n"; 
while (<IN>) { 
        chomp $_; 
        my @line = split(/\t/, $_); 
        my $repName = $line[0]; 
        $repName =~ s/\?//g; 
        $repName =~ s/_$//; 
        my $repClass = $line[1]; 
        $repClass =~ s/\?//g; 
        $repClass =~ s/_$//; 
        my $repFamily = $line[2]; 
        $repFamily =~ s/\?//g; 
        $repFamily =~ s/_$//; 
        my $readCount = $line[3]; 
        $nameCount{$repName} += $readCount; 
        $classCount{$repClass} += $readCount; 
        $familyCount{$repFamily} += $readCount; 
 
} 
close(IN); 
 
#divide readcount by total mapped reads / 1 million 
my $corrFactor = $totalReadsMapped/1000000; 
 
#print name count 
&getName; 
$outfile = $name . ".repeatCount"; 
open OUT, ">$outfile" or die "Could not open $outfile:$!\n"; 
my @names = keys %nameCount; 
@names = sort(@names); 
foreach(@names) { 
        my $corrCount = sprintf("%.2f", ($nameCount{$_}/$corrFactor)); 
 print OUT "$_\t$corrCount\n"; 
} 
close(OUT); 
 
#print class count 
&getName; 
$outfile = $name . ".repeatClassCount"; 
open OUT, ">$outfile" or die "Could not open $outfile:$!\n"; 
my @classes = keys %classCount; 
@classes = sort(@classes); 
foreach(@classes) { 
 my $corrCount = sprintf("%.2f", ($classCount{$_}/$corrFactor)); 
 print OUT "$_\t$corrCount\n"; 
} 
close(OUT); 
 
#print family count 
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&getName; 
$outfile = $name . ".repeatFamilyCount"; 
open OUT, ">$outfile" or die "Could not open $outfile:$!\n"; 
my @families = keys %familyCount; 
@families = sort(@families); 
foreach(@families) { 
 my $corrCount = sprintf("%.2f", ($familyCount{$_}/$corrFactor)); 
        print OUT "$_\t$corrCount\n"; 
} 
close(OUT); 
 
system `rm -r $tmp`; 
 
# Process the flags 
sub Process_Options { 
        my $stop; 
        my @flags; 
        my $tempopt; 
        my $flag; 
 
        GetOptions( 
                "b=s" => \$opt_f, 
  "r=s" => \$opt_r, 
        ); 
 
        # Check if the essential options are set 
        if ( !$opt_f ) { 
                $stop .= "--- Please specify input file   ---\n"; 
        } 
        if ($opt_f && !-e $opt_f) { 
                $stop .= "--- ERROR: $opt_f does not exist   ---\n"; 
        } 
 if (!$opt_r) { 
  $opt_r = 1e06; 
 } 
 if (!-e $pathRefGenome) { 
  $stop .= "--- ERROR: $pathRefGenome does not exist   ---\n"; 
 } 
 if (!-e $pathToRepeatClasses) { 
  $stop .= "--- ERROR: $pathToRepeatClasses does not exist   ---\n"; 
 } 
        if ( $stop ) { 
                print "$stop\n"; 
                &Usage("I"); 
        }     
} 
 
# Print the program usage 
sub Usage { 
        my $flag = shift @_; 
        if ( $flag eq "I" ){ 
                print "$title\n\n"; 
                print "usage: $scriptname -f inputfile\n\n"; 
                print "\t-b bed file containing aligned reads (chr start end)\n\n"; 
  print "\t-r number of randomly selected reads to process (default = 1 
million)\n\n"; 
                print "3 output files are produced, giving readcounts per 
repeat/class/family\n"; 
  print "output represents readcounts per million mapped reads\n\n\n"; 
        } 
        exit; 
} 
 
 
#get a name for outputfiles 
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sub getName { 
        $name = basename($opt_f); 
        $name =~ s/\.gz//i; 
        $name =~ s/\.sequence\.txt//i; 
        $name =~ s/_sequence\.txt//i; 
        $name =~ s/sequence\.txt//i; 
        $name =~ s/\.fastq//i; 
} 
 


