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Abstract

Information Retrieval (IR) goal consists in retrieving all the documents in a
collection that are relevant to a given query. A subtask of IR is Information
Extraction (IE) which includes machine learning approaches automatically
extract from the documents information about, for example, entities or re-
lations or events etc. In this thesis a novel type of features, called barrier
features, is introduced. They are based on PoS-tagging. We use these fea-
tures to solve several IR and IE problems. In details we build several IR or
IE systems and overcame both the state-of-art methods and baseline systems
built without these features. Again exploiting syntactic information in the
second part of this thesis we apply constituency and dependency parsing, to
two different areas: to support Concept Location in Software Engineering
and to study the influence of the constituent order on the data-driven pars-
ing in Computational Linguistic. In the former we have evaluated the use of
off-the-shelf and trained natural language analyzers to parse identifier names,
extract an ontology and use it to support concept location; in the latter we use
two state-of-the-art data-driven parsers to study influence of the constituent
order on the data-driven parsing of Italian.
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Chapter 1

Introduction

1.1 Background and motivations

Information Extraction (IE) is a subtask of Information Retrieval (IR) which extracts
structured information from the unstructured or structured texts. For instance several
applications involving text processing require to automatically extract from the text a set
of entities or to build semantic relations between them. In Figure 1.1 some instances
of entities and relations, informations which we could extract in an automatic way, are
reported. Nowadays many approaches of text processing are develop to solve IE task,

Figure 1.1: A sentence extracted by Roth and Yih annotated data set. E1, E2 and E3 are
entities. R1 and R2 are respectively “live in′′ and “located in′′ relations.

extracting automatically information from the texts [11]. Such methods are based on ma-
chine learning techniques in which the input data (entity, tweets, relation, sentence etc.)
are represented using features. The type of a feature is strictly connected with its value. In
literature many types of features exist and the following ones are the most famous:

• Natural features have integer values corresponding, for example, to counts of oc-
currences of a pattern;
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• Real features have values computed, for example, using the standard weighting
schema called tf/idf (term frequency/inverse document frequency) [71];

• Boolean features assume only two values corresponding to the occurrence/absence,
for instance, of words, full stop, comma and capitalized text etc.

Features describe the main characteristics of a input element and therefore the design of
the set of features to include in the input representation is crucial in a machine learning
approach.

Nearly all feature sets used to represent text in some machine learning task include uni-
grams of words. In addition to that, very often also bigrams are included, trying to capture
some simple expressions involving the local context of each word. To include semantic in-
formation into this representation, we usually need manually developed lexical resources,
such as the English Dictionary of Affect in Language [112]. Another possibility is to con-
sider syntactic rather than semantic information, such as the parse tree of the sentence [2].
However, in case of informal language such as that used in tweets, it is very difficult to
automatically obtain a complete parse tree, because sentences are often ungrammatical
and errors are frequent.

In this thesis we define a new type of Boolean features, namely Barrier Features (BFs)
based only on PoS Tagging, which describe a syntactic link between two tokens in a
sentence based their Part-of-Speech (PoS) tags [35]. Moreover we use BFs in several
machine learning approaches which automatically extract different kinds of information:
entities, relations and sentiment expressed in a sentence.

In other machine learning approaches other syntactic information, as dependencies ex-
tracted with a dependency parsers, are employed to find the parts of document which
describe a concept. For example in this thesis we use these dependencies to support a
Software engineering task, namely Concept Location. On the other hand we exploit the
syntactic analysis (constituency and dependency) to study the influence of constituents in
a Morphologically Rich Language, as Italian.

1.2 Contributions of this Thesis

The main contribution of this thesis is the introduction of Barrier Features (BFs) which
characterize a syntactic binding between two tokens in a phrase or sentence. Although
BFs are based on PoS Tagging [35], a Natural Language Processing (NLP) task which
assigns a lexical category (PoS tags) to each token in a sentence, BFs also seem likely to
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be useful to capture the semantic bindings between tokens in a sequence. In fact their in-
troduction in different system is very effective to extract, for instance, semantic relations
between two entities contained in a sentence or to classify if a sentiment expressed in a
tweet (message posted on famous social network Twitter) is positive or negative. More-
over another relevant contribution of this thesis is that we exploit the BFs in different
machine learning approaches to solve several IE and IR tasks, such as entity and relation
classification, relation extraction and the Twitter sentiment polarity classification.

Furthermore since BFs are Boolean features we propose several smoothing strategies to
overcome data sparsity with unsupervised construction of a dictionary in the feature ex-
traction phase or with the introduction of a special features named UNKNOWN and so
on [54].

In the entity classification and relation extraction we give another one of our main contri-
butions building a new probabilistic integration method based on Graphical Model which
merge two information sources: the output of more usual classifier of entities and re-
lations and logical constraints defined in a Knowledge Base (KB). To demonstrate the
effectiveness of this new model we compare two systems: the Pipeline System (PipeLS)

and Jointly Entity and Relation Extraction System (JERES). The first one is composed by
two modules: the entity classifier and the relation classifier combined in a pipeline and
the output of entity classifier is the input of relation classifier. JERES build a probabilistic
integration model based on the Graphical Model in which the output of entity and relation
classifiers are integrated together with the logical constraints of a KB.

In the second part of this thesis we use other syntactic information, different from BFs,
and based on syntactic analysis. In fact we propose to exploit some syntactic analyzers,
the constituency and dependency parsing, in Software Engineering (SE) and Computa-
tional Linguistic (CL) tasks.

In details in the SE field the information captured in program identifiers can be extracted
and used to support program comprehension by resorting to natural language parsing.
More specifically, dependency parsers can determine the dependency relations that hold
between the terms an identifier is composed of. Our contribution is based on training
a natural language dependency parser to work directly on an identifier term list and we
investigate the effect of training on concept extraction. We proposed four types of natu-
ral language analyzers to parse identifiers of a system. Two of the analyzers are adapted
to directly work on identifiers through training while the other two are standard English
analyzers. The training of the analyzers is conducted automatically using a training set
constructed from the documentation of the corresponding system. Specifically, we evalu-
ate such effect when the extracted concepts are used to facilitate the execution of a concept
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location task. The concepts automatically extracted from the dependencies produced by
the parser are represented in an ontology.

In CL we study the influence of the constituent order on the data-driven parsing of one of
Italian, Morphologically Rich Language, using state-of-the-art data-driven parsers. The
experiments are based on an Italian treebank, available in formats that vary according to
two dimensions, i.e. the paradigm of representation (dependency vs. constituency).

1.3 Overview

This thesis is organized in seven chapters. Each one is meant as much as possible to
be self-contained, thus providing an introduction to the problem, background and moti-
vation, the proposed approach, the experimental assessment or case studies, conclusions
and future works.

In Chapter 2 we report the definition of Barrier Features [3], a novel type of features
which defines a link between two tokens in a phrase or sentence. In Chapters 3, 4 and
5 we applied the BFs in three different tasks to evaluate their effectiveness. Moreover in
Chapter 3 BFs are use to train a classifier of semantic relations. We exploit these features
in addition with other usual boolean features such as n-grams of PoS, word suffixes and
prefixes, hypernyms from WordNet etc. In this Chapter we classify only semantic relation
while the correct entities are given in input.

Furthermore in Chapter 4 we employed the same classifier of Chapter 3 to classify both
the entities and relations. Using these classifiers we build two different systems: the
Pipeline System (PipeLS) and Jointly Entity and Relation Extraction System (JERES). The
innovation of this Chapter is the second one system based on the Graphical Models.

In the Chapter 5 an approach for Twitter Sentiment Analysis is proposed based on a Max-
imum Entropy classifier trained with unigrams, bigrams and BFs extracted by a data set
which contains tweets, messages posted on the social network Twitter. The system with
BFs outperform other state-of-art methods demonstrating experimentally that these fea-
tures, based on PoS tagging, are able to distinguish also semantic information to classify,
as negative or positive sentiments expressed in a tweet 1.

In Chapter 6 we have evaluated the use of off-the-shelf and trained natural language
analyzers to parse identifier names. As syntactic analyzer we employ a dependency state-
of-the-art data-driven parsers. Moreover we use the natural language dependencies to

1 Messages posted on social network Twitter.
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extract different ontologies, one for each analyzers, and exploit it to support Concept

Location which uses queries to narrow down the search space and identify the parts of a
program that implement a concept of interest.

In Chapter 7 we study the influence of the constituent order on the data-driven parsing of
one of Italian using state-of-the-art data-driven parsers.

Finally in Chapter 8 we discuss the goals achieved in this work and open questions to be
addressed in the future.
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Chapter 2

Barrier Features

An important original contribution of this Chapter is the definition of Barrier Features

(BFs), presented for the first time in [3]. Barrier Features (BFs) are inspired by the
barrier rules of the constraint grammar framework proposed in [56] for Part-of-Speech
(PoS) tagging, but completely redesigned as Boolean features rather than rules. The basic
idea of BFs is that to find a syntactic binding between two tokens of a sequence.

This chapter is devoted to BFs, and presents the main idea which inspired them. Indeed
the background of BFs is reviewed and eventually we summarizes the IE and IR tasks in
which the BFs are applied in this thesis.

2.1 Background of Barrier Features

The barrier rules of the constraint grammar framework were used in the parser developed
by [56] to improve the PoS tagging, the first step of syntactic analysis. We use the PoS tag
set of Penn Treebank [73] in this thesis. A list of PoS Tags contained in this set is shown
in the appendix A.

A PoS tagger assigns a lexical category to each token: for example given a tokenw=“defect”
a PoS Tagger can labelw with tag VB ifw is a verb or with tag NN ifw is noun. Obviously
this choice strongly depends on the context of the token w. In the [56] a list of suitable
PoS tags has been associated to each token (e.g. for w=“defect” the list was [V B, NN ]).
Afterwards the barrier rules deleted all tags which can not occur to the context of the
token. For instance if the PoS tagger associated to w both VB and NN tags, a barrier rule
deleted the tag VB if there was a determiner (DT) in the context of w. A token context is
usually determined by a window surrounding the token. In our definition of BFs we use
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this idea of context based on a window surrounding the token. In fact the words around a
token are strictly connected with it and indeed they determine the meaning of such token.
Therefore the barrier rules were employed to solve some problems of ambiguity of the
PoS tagger and they were defined between some pairs of PoS tags. In the definition of our
BFs, presented in Section 2.2 we use the same pairs reported in Table 2.1.

In our work we redesigned the barrier rules as features. In general a feature is a measur-
able and important attribute which characterizes an input element of the problem to solve.
A feature is usually represented by a pair (name, value). Its value can be numeric or struc-
tured (e.g. string, set etc.). For example in a Natural Language Processing application,
given the sentence s “The spy , high-ranking official Korean CIA Sohn Young wanted to

defect” in input we can infer that the sequence of two adjacent tokens < Korean CIA >

is bigram and then a feature of s is the pair (bigram, < Korean CIA >).

To solve IE or IR tasks many machine learning approaches transform the input data of
those problems into some new space of variables. This transformation is very important to
make the problem easier to solve and it is a pre-processing step, namely feature extraction.
For example sometimes the input data are represented in Vector Space Model (VSM)
using vectors, called feature vectors. xi ∈ T is the i− th element of the input data set T
and f⃗i is a vector of size m which describes xi.

f⃗i = {fi,1, fi,2, ...fi,m}

is f⃗i ∈ F ⊆ Rm and each component fi,j is a feature. Each feature of vector f⃗i describe
an property (attribute) of the element xi. These feature vectors contains very significant
patterns (features) which characterize the input elements [11]. In some approaches, for
example useful to solve the text categorization task, the input data are represented by
the vector which contains the occurrence of the features (n-grams of PoS, word suffixes
and prefixes, hypernyms from WordNet etc.). In other methods the features are Boolean,
meaning that for each input element, their value is true if the feature occurs in the sen-
tence, false otherwise.

2.2 Definition of Barrier Features

Nearly all feature sets used to represent text in some machine learning task include uni-
grams and bigrams of words trying to capture some simple expressions involving the local
context of each token. To include semantic information into this representation, we usu-
ally need manually developed lexical resources, such as thesaurus or dictionary. Another
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possibility is to consider syntactic rather than semantic information, such as the parse tree
of the sentence [2]. However it is not always possible to automatically compute a com-
plete parse tree, for example in the informal language of tweets, because sentences are
often ungrammatical and errors are frequent.

We therefore need some kind of features able to capture information on the structure of the
sentence without imposing constraints on its grammaticality. BFs are based on hypothesis
that a syntactic binding exists between two PoS tags ad this link is represented by the set
of PoS’s occurring between them. They are Boolean features and then their occurrence is
as important as their absence; in fact their value is true if the BF occurs in the sequence,
false otherwise. Given the following sequence σ of pairs (token, PoS tag)

σ =< (w1, t1) . . . (we, te) . . . (wt, tt) . . . (wn, tn) >

a BF of σ can be defined as a pair β :

β = ((tt, te), δ)

where tt and te are PoS tags respectively of tokens wt and we; the former is called trigger

while the latter endpoint; δ is the BF value, which is the set of PoS’s occurring between
the trigger and endpoint. The choice of the pairs (tt, te) has been inspired by the corre-
sponding barrier rules of the constraint grammar framework as described in Section 2.1.
Such (tt, te) pairs are predefined and depend on the considered language and we reported
all of them in Table 2.1. Actually, while this is the only knowledge based part in BF ex-
traction, the tag pairs introduced for English are quite intuitive. For these reason we think
that the porting of BFs in language different to English would be not too difficult.

Endpoint Trigger
DT NN or NNP
DT or MD or VB or VBP
or VBZ or TO

VBD, VBN

IN VB, VBP
PRP NNS or VBZ
JJ JJR or RBR

Table 2.1: Endpoints and triggers of the barrier features.

The definition of BFs is based on the set of PoS tags in a window surrounding a token
(trigger) belonging to the sequence. The length of the window varies and is based on the
PoS’s of the corresponding tokens: for each token in the sequence (trigger), an endpoint

token is chosen on the basis of the PoS of the trigger. In fact, for each token in the
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considered string the corresponding endpoint is defined as the closest preceding token
having one of the PoS associated with the PoS of the considered token.

In the our experiments all BFs only consider an endpoint token preceding the entity and
therefore are extracted by just considering the left context of the considered token. How-
ever, this is not the only possible case, and the right context could also be included. When-
ever we find an endpoint, we introduce a new BF corresponding to the set of PoS between
the endpoint and this token. An token of a sequence can have several endpoints and a new
BF corresponding to the set of PoS’s between the endpoint and the token is introduced for
every possible endpoint. If no endpoint is found before the trigger token, the set of all the
PoS tags from the beginning of the sequence to this token are considered. As the BFs are
based on sets of tags, order and possible repetitions of tags are not considered.

For the sake of clearness, Table 2.2 reports the BFs extracted from a entity of a sentence
contained in the data set annotated by Roth and Yih for entity and relation classifica-
tion (see Section 3.3.1 for more details about this data set) in experimental assessment of
Chapter 3 and 4. Moreover Table 2.3 shows other BFs extracted from a tweet of Stan-
ford Twitter Sentiment (STS) data set (see Section 5.3.1 for more details about this data
set) exploited in experimental assessment of Chapter 5 for sentiment polarity classifica-
tion.

(DT, NN, {}) The spy
(DT, NNP, { „ JJ, NN}) The spy , high-ranking Korean CIA
(DT, NN, { „ JJ, NN, NNP}) The spy , high-ranking Korean CIA official
(DT, NNP, { „ JJ, NN, NNP}) The spy , high-ranking Korean CIA official Sohn
(DT, NNP, { „ JJ, NN, NNP}) The spy , high-ranking Korean CIA official Sohn Ho
(DT, NNP, { „ JJ, NN, NNP}) The spy , high-ranking Korean CIA official Sohn Young

Table 2.2: BFs extracted from th following PoS tagged entity: The/DT spy/NN COMMA/,
high-ranking/JJ Korean/JJ CIA/NNP official/NN Sohn/NNP Ho/NNP Young/NNP

In semantic relation classification and jointly entity and relation extraction system, de-
scribed respectively in Chapter 3 and 4, we use only some pairs (tt, te) of BFs since the
syntactic context of tokens in entities involved in a relation (see example in in Tables 2.2
and 3.1), can only be nouns or adjectives. Therefore, we only considered patterns for this
PoS, while completely disregarding other important PoS tags including verbs.

While in our approach for Twitter sentiment analysis described in Chapter 5 we use all
pairs (tt, te) reported in Table 2.1 (as we can observe analyzing the example shown in
2.3) probably because the verbs are very relevant to classify the sentiments expressed in
tweets, messages posted on Twitter social network.

Finally BFs require PoS tagging of the considered texts, which can be automatically per-
formed with very high accuracy [35].
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(IN, VBP, {PRP, RB}) I firmly believe
(DT, NNP, {IN, PRP, RB, VBP}) I firmly believe that Obama
(DT, NN, {IN, NNP, PRP, RB, VBP}) I firmly believe that Obama /
(DT, NNP ,{IN, NN, NNP, PRP, RB, VBP,} I firmly believe that Obama / Pelosi
(IN, VBP, {NN, NNP}) that Obama / Pelosi have
(DT, NNP, {IN, NN, NNP, PRP, RB, VBP} I firmly believe that Obama / Pelosi ZERO
(DT, NN, {IN, NN, NNP, PRP, RB, VBP} I firmly believe that Obama / Pelosi ZERO desire
(DT, VB, {IN, NN, NNP, PRP, RB, TO, VBP} I firmly believe that Obama / Pelosi ZERO desire to be
(IN, VB, {NN, NNP, TO, VBP} that Obama / Pelosi ZERO desire to be
(PRP, VBZ, {”} It ’ s
(DT, NN, {} a charade
(DT, NN, {} a slogan
(IN, VBP, {”, „ CC, DT, NN, PRP, VBZ} It ’ s a charade and a slogan , but they want
(DT, VB, {CC, NN, PRP, TO, VBP} a slogan , but they want to destroy
(IN, VB, {”, „ CC, DT, NN, PRP, TO, VBP, VBZ} It ’ s a charade and a slogan , but they want to destroy
(DT, NN, {„ CC, NN, PRP, TO, VB, VBP} a slogan , but they want to destroy conservatism

Table 2.3: BFs extracted from the following PoS tagged tweet: USER/deleted I/PRP
firmly/RB believe/VBP that/IN Obama/NNP //NN Pelosi/NNP have/VBP ZERO/NNP de-
sire/NN to/TO be/VB civil/JJ ./. It/PRP ’/” s/VBZ a/DT charade/NN and/CC a/DT slo-
gan/NN ,/, but/CC they/PRP want/VBP to/TO destroy/VB conservatism/NN.

2.3 Data Sparsity

A very large number of different BFs can occur therefore the choice of the smoothing
strategy is crucial. In this section we illustrate the different smoothing steps which we
apply to mitigate this problem of data sparsity in our proposed systems.

First of all, as the number of potential BFs is extremely large, it is very important to reduce
their number to the ones which are possible in natural language. This is particularly the
case because the BFs are Boolean and both their occurrence and their absence should be
registered. Unlikely real value features, Boolean ones do not assign a weight to the event,
but only register whether it occurs or not. Therefore, it is important to distinguish between
features which are impossible in natural language from possible features which do not
occur in the input we are considering. Indeed, only the second case should correspond
to a null value for the feature, while the former should be simply not considered. For
example, among all possible PoS bigrams, we will only consider some PoS pairs, while
disregarding all the others as impossible or too rare to be significant for any classification
task. On the other hand, for some of the considered types including PoS trigrams and BFs
the number of potential features can be very large.

Therefore, if the BF we observe in the input to the classifier (as effectively happens in the
tasks described in Chapter 3, 4 and 5) does not exist in the set of features collected on the
training set, then we consider all BFs having the same (trigger PoS, endpoint PoS) pair
and a PoS’s set including the considered one. A side effect of this strategy is that more
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than one BF can be “true” at the same time. We verify experimentally in different tasks,
reported in the following Chapters, that this choice based on the inclusion of the PoS’s
set, value of BF, is a smoothing strategy more effective to an exact matching between all
BFs having the same (trigger PoS,endpoint PoS) pair.

2.3.1 Unsupervised Construction of Dictionary

To mitigate data sparsity it is therefore particularly important to include in the set of con-
sidered features all and only the ones which are both possible and not too rare. In other
words, we are splitting the training step in two phases: feature extraction and classifier

training. While the latter requires that the data are annotated with the correct class, the
former only considers the characteristics of the considered language, in our case English,
and therefore can be performed on text only labeled with PoS tags. On the other hand,
feature extraction considers a very large number of potential features, and therefore re-
quire a very large data set. As a very accurate PoS tagging can be obtained automatically
and is therefore quite cheap, the two training phases we are considering separately can
be based on different data sets. For feature extraction a large collection of English texts
automatically labeled with PoS tags. We can build this dictionary in off-line mode and in
unsupervised manner. Afterward, we extract the features defined in the first step from the
training and the test sets corresponding to the specific task we are considering and we use
these data to respectively build and assess the classifier.

As discussed above we define the set of features on a large collection of English texts
and we therefore assume that all features we consider are characteristic of the English
language. However, we train the classifier on a set of sentences including one labeled
relation, and such training set is likely to be much smaller. We therefore need an an-
other smoothing strategy to deal with features having a small number of occurrences in
the training set. We considered the smoothing strategy based on the introduction of an
UNKNOWN label [54] for each type of feature: for example, an UNKNOWN bigram is
considered in addition to all other bigrams. All occurrences of features appearing in the
training set a number of times smaller than a given threshold increment the UNKNOWN
counter. In other words, the UNKNOWN feature has been trained by considering as UN-
KNOWN all features that have a number of occurrences lower than a given threshold.
Again in the case of bigrams, all bigrams occurring a number of times lower than that
threshold value are collected in the same class UNKNOWN, and their occurrences con-
tribute to the UNKNOWN statistics. To classify entity and relation, as describe in Chap-
ter 3 and 4 three different thresholds have been considered: 3 for BFs, 100 for hyperonims
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and 1000 for all other Boolean features: these values has been chosen with 10-fold cross-
validation on the training set of all data sets. While in the sentiment classification (see
Chapter 5) expressed in some tweets we adopted as threshold K = 50 only for BFs. In
the last approach we chose the threshold only for BFs (we also use unigrams and bigrams
in our twitter sentiment system) also because each token of a tweet is very significant
since that the tweets are quite different (e.g. very short, very informal, containing a lot
of misspelled words, etc.) from other texts like product reviews and news articles used,
instead, in the annotated data set for entity and relation classification.

2.4 Applications of Barrier Features

Eventually we perform BFs in several IE and IR tasks to prove effectiveness of BFs in
different application contexts. In the Semantic relation classification, described in Chap-
ter 3 BF contribution to performance is always relevant and on average can be evaluated
in an improvement in F1 in the range [6%, 15%] 1. In Twitter sentiment analysis reported
in Chapter 5 the performance of the sentiment classification improves in the F1 of about
2% using the BFs.

We think that the favorable impact of BFs is connected to their complementarity to simpler
features like bigrams and trigrams on one side and the complete parse tree on the other,
since that their introduction is useful in different application contexts. BFs are character-
ized only with a set of PoS tags including among two determined PoS tags, trigger and
endpoint. Although such set is very simple to build, it manages to capture useful informa-
tion that help to improve the performance of several tasks. Indeed BFs seem enough to be
simple and robust because they are a good compromise respect to the data sparsity.

1 The value of F1 improvement varies in that range because we consider three different datasets in our
experimental assessment (see Section 3.3)
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Chapter 3

Barrier Features for Relation
Classification

Approaches based on machine learning, such as Support Vector Machines, are often used
to classify semantic relations between entities. In such framework, classification accuracy
strongly depends on the set of features which are used to represent the input to the classi-
fier. To classify semantic relations we are proposing here the introduction of the barrier

features (BFs), which we defined in Chapter 2. They can be used in addition to more usual
features, such as n-grams of PoS, word suffixes and prefixes, hypernyms from WordNet
etc., and to the parse tree of the whole sentence. BFs aim at giving a compact representa-
tion of the context of each entity involved in the relation. We use only some BFs in this
task because the syntactic structure of an entity is a noun phrase; for this reason we con-
sider in this Chapter only the BFs which do not involve PoS tags of verbal phrases. For
the sake of clearness, we reported in Table 2.1 the pairs of trigger and endpoint already
shown in Table 3.1 (see the appendix A for more details about PoS tags) but some pairs
have been deleted since we don’t use them in the semantic relation classification.

The effectiveness of the BFs for semantic relation classification is assessed on three data
sets: documents from the TREC data set annotated by Roth and Yih [98] and two SemEval

Endpoint Trigger
DT NN or NNP
PRP NNS
JJ JJR or RBR

Table 3.1: Endpoints and triggers of the BFs employed in the assessment presented in
Section 3.3.
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data sets, namely the Task04 of SemEval2007 [36] and the Task08 of SemEval2010 [46].
The obtained results show not only that the performance of the proposed approach are
state-of-the-art but also that such improvement is due to the introduction of the BFs in the
resolution of semantic relation classification. The main contributions of this Chapter can
be summarized as follows:

• the introduction of BFs in semantic relation classification;

• their contribution to final result.

This Chapter is devoted to the application of BFs in semantic relation classification. In
details after an initial discussion to introduce the task, the focus of the Chapter is the
evaluation of the contribution of BFs and above all their effectiveness in the improvement
of global performance of the classification of semantic relations. We apply the approach
with BFs on the three available data sets for semantic relation classification.

3.1 Background and Motivation

Semantic annotation of documents is one of the main need for a more semantic oriented
information retrieval on the web. Usually concepts and relations employed in the annota-
tion are taken from an ontology, which could have been automatically learned or at least
automatically refined. Therefore, annotation techniques based on manually constructed
information would hamper the possibility of designing a completely automatic process-
ing chain. In addition to that, an effective solution should be easy to port on different
languages, so that it can be used in a multilingual context such as the web.

Different NLP approaches have been proposed for the identification of concepts (also
called entities) and relations in texts. However, among all techniques proposed to solve
such problem, only approaches requiring a minimal manual human intervention are con-
sidered. Most are based on the cascade of two steps, the former considering entities,
the latter relations. Our focus is on relation classification, and therefore we assume that
entities are given to us. We assume that for every considered relation we are given a num-
ber of positive examples, that is, a number of sentences where entities, relation instances
and relation labels are annotated. This could for example be the output of a ontology
refinement process, where the relation has been extracted on the basis of a number of
examples.

On the other hand, several approaches exist for entity recognition [115, 80, 30, 74]. In
this Chapter we focus on the semantic relation classification, where a label taken from a
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finite set is associated to each relation. From a machine learning point of view, for each
possible relation label we have a binary classification problem and we use Support Vector
Machines (SVMs) [109] for such classification. By applying SVMs with different kernel
functions we can handle different kinds of information, both structure-based (the parse
tree of the input sentence) and boolean (features extracted from the words surrounding
each of the involved entities). Indeed, we applied tree kernels [77] to the whole sentence
parse tree and linear kernels to the feature vector associated to the input entities.

We add to more classical features also the focus of our work, namely the BFs, introduced
in Chapter 2. Furthermore, BFs are defined independently of the form assumed by the en-
tities as long as they can be represented as a sequence of words. Preliminary experiments
on the data set used by Roth and Yih [98] less affected by data sparsity gave encouraging
results [3].

However, a characteristic of all Boolean features is that their occurrence is as important
as their absence for classification. Therefore, the design of the set of features to include in
the input representation is crucial. On the other hand, a large part of them, including BFs,
are easily affected by data sparsity, as already discussed in Section 2.3. In the preliminary
assessment of BFs on the Roth and Yih data set considered in [3] the data sparsity did
not affect performance in relevant way probably because of the specific characteristics
of that data set. From the comparison with the experimental results we are presenting
in this Chapter, our opinion is that the explanation is twofold. First of all, in that case
the number of positive examples is larger than on most other data sets. Moreover, most
entities contain proper nouns and then the syntactic variety of entity contexts is lower. On
the other hand, the large scale applicability of the technique requires to face data sparsity.
This was the case for example in both versions of SemEval data sets, which represent the
two most used freely available data sets. Therefore, we used them for assessment, namely
the Task04 of SemEval2007 [36] and the Task08 of SemEval2010 [46]. The solution we
propose uses a large number of English texts to collect all the features. In fact, we only
included features occurring at least a minimum number of times, but we considered a
very low threshold aiming at excluding errors and rare patterns. The effectiveness of the
approach is proven by the experimental assessment described in Section 3.3.

Therefore, while in [3] a preliminary evaluation of BFs effectiveness was considered,
with no strategy to define the actual set of Boolean features, in this Chapter a new way of
collecting the set of features is presented and assessed. Crucially, this new methodology
only uses automatically annotated texts. This allows applying the approach with state-
of-the-art performance to more realistic data sets such as the data of SemEval2007 Task4
and SemEval2010 Task8 and also to data set annotated by Roth and Yih considered in [3].
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Note that while the strategy has been made necessary by the introduction of barrier ones,
it has been successfully applied also to all the other Boolean features.

As said, the focus of this Chapter is the usage of BFs to associate semantic labels to
relations. As we already discussed in Chapter 2, all features used in the assessment are
Boolean features. The definition of such set is based on the automatic analysis of a large
collection of plain texts, different from and much larger than the labeled sets used for
training the classifiers. From this point of view, our approach can be compared to semi-
supervised classification [18]. However, our approach is different in a crucial aspect,
namely the fact that unannotated data are used to collect features independently from the
considered classifier.

On the other hand, the approach we are proposing deal with the semantic relation classifi-
cation, which has been considered by several recent works. Most of the systems aiming at
extracting and classifying semantic relations are based on two steps: they first extract and
label entities and afterwards relations. An important exception to the two pass approach is
represented by [99], where entity and relation extraction and classification are integrated.
Most relation classification systems are based on some machine learning approaches, and
build a classifier which associates a label to a representation of the input sentence. In such
approaches the representation of the input is crucial, as only the information it contains
can be used for classification. Nearly all such systems consider some form of parsing: the
complete parse tree of the input sentence is considered, among the others, by [75], which
is based on a lexicalized, statistical parser, and [55], which considers both constituency
and dependency parse trees obtained by a maximum entropy statistical parser. Systems
that instead of the complete parse tree only consider some form of shallow parsing in-
clude [38] and [116].

Many of the best performing systems use kernel functions. The system presented in [85] is
based on distributional kernels to compare co-occurrence probability distributions. Even-
tually, the system presented in [55] includes different kinds of features from several differ-
ent sources e.g. Word Net, gazetteers, output of other semantic taggers etc.., applied to the
specific task. It has been assessed on the Automatic Content Extraction (ACE) data set1 ,
where it obtained competitive results, but performance on other data sets is not reported.
When the syntactic information is represented by a tree, tree kernels represent the most
direct option. In [26] relations between entities in the ACE corpus of news articles are
detected and classified by applying tree kernels and SVMs to the dependency parse tree
of the input sentence. This approach is characterized by the use of different features such
as WordNet hypernyms, PoS, and entity types and of a dependency tree kernel.

1 The ACE data set is not freely available.
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One of the systems with which we compare our performance on the Task 4 of SemEval2007
is the University of Illinois at Urbana-Champaign (UIUC) system [7], which is based on
SVMs together with a Radial Basis Function (RBF) kernel. The main characteristic of this
approach is that it is characterized by a knowledge intensive feature set. Indeed, the fea-
tures it employs are divided in three subsets: core, context and special features, and their
construction is based on different external resources. Depending on this characteristics,
the system results difficult to port on different domains and languages. Moreover, train-
ing has been performed by using additional examples for all except the instrument-agency

relations.

In addition to the UIUC system, we also compare our performance with the FBK-irst
system on the Task04 of SemEval2007 [37]. They assess both their approach to relation
extraction and classification and the effect of automatic named-entity recognition on its
performance. Their approach is based on shallow linguistic features, which are combined
with semantic information, such as WordNet hypernym relations of the candidate entities.
Kernels are employed to combine two different information sources: the global context
where the two entities appear and (independently) the two local contexts of the entities.
A specific kernel function is associated with each of the different types of information.
Furthermore, we consider the HUJ system, presented in [27] which is the system which
obtains the best performance on the Task04 of SemEval2007 without using the manually
provided WordNet sense disambiguation tags. Their approach is based on a first clustering
step, applied to entities, followed by classification of relations. They did not use the
manually provided WordNet sense disambiguation tags.

In [97] semantic relations are classified by means of SVM by using features to describe
context, semantic role affiliation, and relations between the nominals extracted by Tex-
tRunner. Some of these features are extracted by PropBank and FrameNet, two language
dependent resources available only for English. The approach has been assessed on one
of the data sets we used in our assessment, namely the Task 8 of SemEval2010.

In [51] a new method for semantic relation classification is presented using automatically-
derived grammar rule clusters as a robust knowledge source for relation classification. In
details a features set is built using all POS-tags, syntactic structure, and Cluster ID features
come from the Berkeley Parser [90]. In their experimental assessment they employ the
SemEval 2010 data set, one of data sets used in our assessment. Moreover we don’t
compare our approach with their system because their performance is lower than that of
the approach presented in [97], winner of SemEval2010 competition.
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3.2 Proposed Approach

In the relation classification problem two input entities, Ei and Ej , are connected by a
relation Ri,j and a label l ∈ L is associated with Ri,j . We consider a binary version of
the relation classification problem: a binary classifier is associated with every possible
relation label l ∈ L, to discriminate if the entity pairs for both data sets are connected by
the relation R labeled with l or not. Furthermore, the input representation of our classifier
is composed by two parts: a vector of Boolean features and the input sentence parse tree.
The former refer to the two input entities and are therefore called entity features (local
context), while the latter refers to the whole sentence (global context) using a standard
statistical parser to calculate the complete parse tree.

In the sentence s2 in Table 3.2 the relation corresponding to the entity pair (e1, e2) is
labeled as work for. As entity e2 is composed by two tokens (“Korean CIA”) the corre-
sponding feature vector results from the OR combination of the features corresponding to
each token. If the entity were composed by only one token, the feature vector would only
contain 1’s in correspondence of the features computed for this token.

Thus, features based on words are extracted from the window “The/DT spy/NN ,/, high-
ranking/JJ Korean/JJ CIA/NNP”. BFs construction is based on a window whose length
is not predetermined, but depends on the PoS’s of the tokens preceding the one we are
considering, in this case “CIA”. Since “CIA” PoS is NNP, we apply the first rule reported
in Table 2.1 the endpoint is the closest determiner preceding the token CIA, namely The.
In this case the endpoint does not belong to the entity, but this is not always so. The
resulting BF is then given by the set {JJ, NN, ,}, and contains, as discussed, only one
repetition of JJ, corresponding to the tokens high-ranking/JJ Korean/JJ , spy/NN and
,/,.

For the sake of clarity, let us consider the example sentence s1 of Table 3.2 extracted by the
TREC data set annotated by Roth and Yih . It contains four different relations containing
six entities, namely (e1, e2) with label “work for”, (e2, e3) with label “orgbased in”, (e4,
e5) labeled as “work for”, and (e5, e6) for “orgbased in”. Indeed, entities e2 and e5 are
involved in two different relations.

Let us introduce the following example which is taken from the Task04 of SemEval2007
data set. The sentence S =“The ⟨e1⟩device⟨/e1⟩ uses the newest personal antenna
⟨e2⟩technology⟨/e2⟩.” The relation corresponding to the entity pair
(⟨e1⟩device⟨/e1⟩, ⟨e2⟩technology⟨/e2⟩) is labeled as Instrument-Agency. The second en-
tity, namely ⟨e2⟩technology⟨/e2⟩ is composed by only one token, and therefore the feature
vector only contains 1’s in correspondence of the features computed for this token. If the
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s1 Also being considered are ⟨e1⟩Judge Ralph K. Winter ⟨/e1⟩of the ⟨e2⟩2nd U.
S. Circuit Court of Appeals⟨/e2⟩ in ⟨e3⟩New York City ⟨/e3⟩ and ⟨e4⟩Judge
Kenneth Starr ⟨/e4⟩ of the ⟨e5⟩U. S. Circuit Court of Appeals⟨/e5⟩ for the
⟨e6⟩District of Columbia⟨/e6⟩, said the source, who spoke on condition of
anonymity.

s2 The/DT spy/NN ,/, high-ranking/JJ ⟨e2⟩Korean/JJ CIA/NNP⟨/e2⟩ offi-
cial/JJ ⟨e1⟩Sohn/NNP Ho/NNP Young/NNP⟨/e1⟩ ,/, wanted/VBD to/TO
defect/VB . . . .

Table 3.2: Example sentences taken from the Roth and Yih data set used for assessment.

entity were composed by several tokens, the feature vector would have resulted from the
OR combination of the features corresponding to each token. Thus, features based on
tokens and PoS bigrams are extracted from the window “uses the newest personal an-
tenna technology”. In this case, the two entities are composed by just one token each, and
therefore we take into account only one BF for each of them. BFs always depends on the
PoS’s of the tokens preceding the one we are considering, in this case “technology”. Since
“technology” PoS is NN, we apply the first rule reported in Table 2.1: the endpoint is the
closest determiner preceding the token technology, namely the. In this case the endpoint
does not belong to the entity, but this is not always so. The resulting BF is then given by
the set {JJ, NN}, and contains, as discussed, only one repetition of JJ, corresponding to
the two tokens newest and personal.

3.2.1 Feature Extraction using Unsupervised Dictionary Construc-
tion

In this subsection we describe the approach to build a vector of Boolean features to rep-
resent the context local to entities. As already described in Section 2.3.1, in our approach
we split the training step in two step: feature extraction and the classifier training. Using
text only labeled with PoS tags, namely unsupervised dictionary, the set of Boolean fea-
tures can be built on it. In any case, the feature dictionary construction is performed in an
unsupervised manner, and the crawled texts are processed in a completely automatic way.
These texts are extracted from Wikipedia 2. Before used them for feature extraction we
apply a PoS Tagging.

Afterward, we extract the features to build the entity vector of Boolean features using the
unsupervised dictionary from the training and the test sets, corresponding to the semantic
relation classification, we are considering and we use these data to respectively build and
assess the relation classifier.

2 http://en.wikipedia.org/wiki/Pagina_principale

http://en.wikipedia.org/wiki/Pagina_principale
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Moreover to extract the features we use the smoothing strategies described in Chapter 2.
The entity vector of features has been obtained by merging the feature vectors correspond-
ing to each token in both entities involved in the relation we want to classify. As discussed
in Chapter 2, all features are Boolean, taking a value true of false and the merging applies
an OR operation of each feature.

Entity features are extracted from the substrings of tokens corresponding to the two en-
tities and include BFs, word and PoS unigrams, PoS bigrams and trigrams, word prefix
and suffix, word length, and a set of word features indicating whether the initial letter is
upper case, whether all letters are upper or lower case, whether the token contains a period
or number or hyphen. Furthermore, entity features also include a WordNet3 [31] sense
tag for each token involved in the entity. However, while the SemEval2007 Task04 data
set comes with the correct WordNet sense tag, this is not the case for the SemEval2010
Task08 data set and in the data set annotated by Roth and Yih where we consider the most
likely sense associated to the token. In addition to that, we also include in the features
all the hypernyms. All features we consider in addition to the sentence parse tree are
Boolean, indicating whether the corresponding event occurs in the input considered for
classification.

More precisely, let Ei = wi,1, ...., wi,ki and Ej = wj,1, ...., wj,kj be the two entities we
are considering. To obtain the feature vector used to classify the relation, the OR of the
feature vectors for wi,1, ...., wi,ki and wj,1, ...., wj,kj is computed. For each of these tokens,
we defined a windows made of the 5 preceding tokens and the 2 following ones. Similar
number are often considered in analogous tasks, including PoS tagging, named entity
recognition, etc..

3.2.2 Classification

To perform the classification we adopted SVM’s [109] which in its basic definition is a
binary linear classifier. As it tries to maximize the margin between the two classes, such
classification approach attains a good generalization and usually has a good performance
on different tasks. Moreover, it is able to face non linear cases by adopting kernels. In our
case, as the classifier must be able to process an input composed by two different kinds
of representation, namely a vector of binary values and a tree structure, kernels represent
a smooth way to combine them. Indeed, the problem can be solved by combining a
tree kernel ( [78]) with a more traditional one, in our case a linear kernel. Tree kernels

3 http://wordnet.princeton.edu/

http://wordnet.princeton.edu/
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evaluate the similarity between two trees in terms of the number of fragments they have
in common.

To build the input representation in addition to the feature extraction step discussed in the
previous section, we applied a statistical parser to the input sentence. We chose the Stan-
ford Parser [58, 59]4, with the English grammar distributed together with the parser.

3.3 Experimental Assessment

3.3.1 Data Sets

For experimental assessment we used three data sets: (i) the data set used by Roth and
Yih [98], derived from TREC corpus5, which is freely available; (ii) the data of Task04
of SemEval2007 Classification of Semantic Relations between Nominals of SemEval2007

described in [36]; (iii) the data of Task08 of SemEval2010 Multi-Way Classification of

Semantic Relations Between Pairs of Nominals described in [46].

Roth and Yih data set

The data set used by Roth and Yih [98] includes three types of entities, namely PER
(person), LOC (location) and ORG (organization) and the five types of binary relations
reported in Table 3.3.

Relation Example agent target
work for employ-company PER ORG
kill murderer-victim PER PER
live in Clinton-USA PER LOC
located in Rome - Italy LOC LOC
orgbased in Harvard -USA ORG LOC

Table 3.3: List of relations with the type of the involved entities in the Roth Yih Data set.

The Roth and Yih data set is not divided in training and test set. Therefore assessment is
performed by following the 5-fold cross validation protocol, as in [38, 99].

4 The parser can be freely downloaded from http://nlp.stanford.edu/software/
lex-parser.shtml.

5 The annotated data are freely available at http://l2r.cs.uiuc.edu/~cogcomp/Data/ER/
conll04.corp

http://nlp.stanford.edu/software/lex-parser.shtml
http://nlp.stanford.edu/software/lex-parser.shtml
http://l2r.cs.uiuc.edu/~cogcomp/Data/ER/conll04.corp
http://l2r.cs.uiuc.edu/~cogcomp/Data/ER/conll04.corp
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SemEval data sets

The Task04 of SemEval2007 data set includes seven types of relations [36] as reported in
Table 3.4 together with an example given for each relation.

Relation Example
Cause-Effect virus-flu
Instrument-Agency laser-printer
Product-Producer honey-bee
Origin-Entity rye-whiskey
Theme-Tool soup-pot
Part-Whole wheel-car
Content-Container apple-basket

Table 3.4: Task04 SemEval2007 Data set statistics.

Analogously, Table 3.5 refers to the SemEval2010 Task08 data set, which includes only
nine types of relations [46]. Both SemEval2007 and SemEval2010 data sets do not include
PoS’s tagging and therefore we use the PoS tagging output by the parser also to construct
the features.

Relation Example
Cause-Effect infection-inflammation
Component-Whole elements-configuration
Entity-Destination People-downtown
Entity-Origin lawsuits-fans
Member-Collection student-association
Message-Topic citation-reasons
Content-Container lawsonite-platinum crucible
Instrument-Agency drugs-Adults
Product-Producer products-industry
Other sand-beach

Table 3.5: The SemEval2010 task08 Data set

3.3.2 System tuning and kernel choice

The classification was performed by using the SVM package SVMLight-TK6 [78], which
is based on SVMLight [52], but also includes tree kernels, and offers the possibility of
combining them with other kernels to combine trees with a feature vector. To decide

6 The package is available from http://dit.unitn.it/~moschitt/Tree-Kernel.htm.

http://dit.unitn.it/~moschitt/Tree-Kernel.htm
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which kernel if any should be used to process the entity feature vector, we compare the
performance of different combinations of tree kernels alone or together with other kernels.
These experiments have only be performed on the training set of SemEval2007 by using
a 10-fold cross validation protocol: the best performance has obtained by linear kernel
which has been then adopted in experiments on data sets.

3.3.3 Relation classification assessment on Roth and Yih data set

As discussed above, the first set of experiments has been performed on the Roth and
Yih data set. Assessment considers five classifiers, one for each relation. The data set
is divided in subsets corresponding to the different relations. For each relation, training
has been performed by considering gold positive examples for the considered relation
while negative examples are represented by all the other pairs of entities having labels
compatible with the relation. In this way, the number of negative examples is much larger
than for positive examples. The SVM implementation we used allows to balance the
number of positive and negative examples by a cost factor. We set it to the rate between
the number of negative and positive examples. Table 3.6 reports the comparison between
the performance of our system and the results presented in [38] for theMO|K system. With
the only exception of the located in relation, our system has an F1 larger than MO|K both
on single relations and on average. Although we are not able to estimate the statistical
significance of such comparison because we do not have the output of that system on each
sentence, we think that this consistency is quite convincing. Note however that in two
cases their precision is better than ours, and in three cases their recall is better. However,
the average values are always better for our system. Although we are not reporting the
exact results here, we noticed that the WordNet features (hypernyms of each entity tokens)
do not give any significant improvement on performance. This is probably due to the fact
that most entity tokens are proper nouns, and therefore the WordNet sense does not add
any information. An example entity taken from the data set is Micheal Minns which plays
the role of agent in the relation LiveIn(Micheal Minns, England).

3.3.4 Relation classification assessment on the SemEval datasets

Relation classification assessment on SemEval2007 Task04

The experiments discussed in this and in the next section aim at comparing the perfor-
mance of our system with published results of other systems. Therefore, they have been
designed by strictly following the protocols of the experiments we want to compare our
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OurSystem MO|K
Relation P R F1 P R F1
kill 92.39 75.63 83.17 82.80 81.00 81.89
live in 74.69 73.39 74.33 78.00 65.8 71.38
work for 76.38 86.18 80.99 76.80 80.00 78.37
located in 70.00 75.40 72.60 79.60 76.00 77.76
orgabased in 86.58 77.70 81.90 74.30 77.20 75.72
average 80.01 77.66 78.54 78.30 76.00 77.02

Table 3.6: Comparison of performance of our system (OS) and the best performing one
on the Roth and Yih data set. Bold cases correspond to the best performance.

results with. Performance for the SemEval2007 Task04 data set is reported in Table 3.7
where we consider the two systems with higher performance in the competition, that is
the UIUC system [7], the FBK-irst system [37].

Our Results FBK-irst UIUC
Relation P R F1 P R F1 P R F1
Cause-Effect 68.50 81.70 74.52 67.3 90.2 77.1 69.5 100.0 82.0
Instrument-Agency 73.65 73.82 73.73 76.9 78.9 77.9 68.2 78.9 73.2
Product-Producer 72.21 98.15 83.21 76.2 77.4 76.8 84.5 79.0 81.7
Origin-Entity 63.70 66.14 64.90 62.2 63.9 63.0 86.4 52.8 65.5
Theme-Tool 68.33 74.81 71.42 62.1 65.5 85.7 41.4 55.83 59.4
Part-Whole 80.24 67.17 73.13 65.5 73.1 69.1 70.8 65.4 67.99
Content-Container 77.41 67.69 72.23 78.8 68.4 73.2 93.1 71.1 80.6
average 71.11 76.97 73.48 70.9 73.4 71.8 79.74 69.8 72.4

Table 3.7: Comparison of the performance obtained by our system on the SemEval2007
data set with systems using more knowledge: the cases in which some other system ob-
tained better performance than ours are in bold.

As discussed in Section 3.1, the UIUC system is a very knowledge intensive system, dif-
ficult to port on different domains and languages. Nevertheless, their global performance
is slightly worse than our system, which is only based on features which can be extracted
automatically. As the UIUC system is based on information useful for disambiguation, its
precision is quite high, often higher than the one obtained by our system, which, on the
other hand, has a better recall (bold figures corresponds to the UIUC values outperform-
ing our system). Also on average, UIUC precision is higher than ours, while their recall
is lower. The F1 values are very close, but our system performs better on average.

Eventually, we report FBK-irst system performance, the second best result in SemEval2007,
which is more similar to ours for the type of information used, but with (at least) one im-
portant difference: they only use shallow parsing, while we use a complete statistical
parser. In any case, even if some performance figures are better for FBK-irst system, our
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Our Approach UTD
Relation P R F1 P R F1
Cause-Effect 87.82 87.60 87.71 89.63 89.63 89.63
Component-Whole 74.43 80.52 77.36 74.34 81.73 77.86
Content-Container 82.12 86.34 84.18 84.62 85.94 85.27
Entity-Destination 80.22 92.73 86.02 88.22 89.73 88.96
Entity-Origin 82.42 81.00 81.70 83.77 80.62 82.21
Instrument-Agency 76.76 80.62 78.64 71.83 65.83 68.46
Member-Collection 84.51 85.23 84.87 84.30 87.55 85.89
Message-Topic 82.34 84.16 83.24 81.02 85.06 82.99
Product-Producer 83.77 81.13 82.43 82.38 74.89 78.46
Average 81.60 84.37 82.91 82.25 82.28 82.19

Table 3.8: Comparison of the performance obtained by our system on the SemEval2010
data set with systems using more knowledge: the cases in which some other system ob-
tained better performance than ours are in bold.

performance is globally better. FBK-irst system looks for the best combination of kernels
to combine different information sources at the best, while we think that the strength of
our system is due to the BFs coupled with the strategy we adopted to cope with data spar-
sity. Thus, it would probably be a good idea to try combining their choice of kernels with
this new kind of features, in the hope that performance can still improve.

Relation classification assessment on the SemEval2010 Task08 data set

In Table 3.8 we report the performance for the SemEval2010 Task08 data set and compare
it with the system UTD [97], the winner of the SemEval2010 Task08 competition. For
most relations UTD performs better (e.g. Cause-Effect precision and recall): an explana-
tion could be that they use a word sense disambiguation system while we use the most
likely sense. In addition to that they use semantically annotated resources like PropBank
and FrameNet to extract semantic role features which are language dependent and are not
easily portable to other languages. Also in this case, although F1 values are very close,
our system performs better.

3.3.5 Barrier Features contribution

Last but not least, we tried to understand the contribution of BFs to the global system per-
formance. In order to obtain a numerical estimation, we run exactly the same experiment
with and without BFs. In fact we build the two classifiers (the classifier are described in
details in 3.2.2); the former is trained with an entity vector without BFs and parse tree



28
Barrier and Syntactic Features

for Information Retrieval

of the whole sentence the latter with a feature vector including BFs and with the same
parse tree. Results on the Roth and Yih data set are reported in Table 3.9 and show that
their contribution to performance is always relevant and on average can be evaluated in
an improvement in F1 of nearly the 15%.

One of the main difference of the approach we are proposing with respect to the other
systems proposed in literature consists in the introduction of an approach to overcome data
sparsity when using Boolean features. As in addition to the assessment of the complete
system, we want to evaluate BFs contribution, we compare performance on these two data
sets with and without them. Results, reported in Table 3.10 for the SemEval2007 Task04
and in Table 3.11 for the SemEval2010 Task08, show that their effect is definitely positive
and their contribution to F1 can be evaluated in about 6.6 % for SemEval2007 Task04 and
about 7.6 % for the SemEval2010 Task08 sets.

3.4 Conclusion and Future Works

In this chapter we applied the BFs, defined in Chapter 2 to a new task, the classifica-
tion of semantic relations and shown how they are effective in improving classification
performance. Experimental assessment on the Roth and Yih data set and on two other
data sets, the SemEval2007 Task04 and the SemEval2010 Task08, not only shows that
the performance are state of the art, but also that their contribution is relevant. In other
words the experimental results we obtained on these data sets demonstrated that the BFs
captured information necessary to classify the relations. Furthermore we have proposed
a new approach for the classification of semantic relations which overcame data sparsity
when using Boolean features. Indeed, features are constructed on the basis of a large
automatically tagged English text. By this approach also more precise Boolean features
such as BFs can be effectively adopted and results are definitely competitive with other
approaches.

Note that the whole system can be easily ported to different languages as long as a sta-
tistical parser and PoS tagger are available and a few language specific barrier rules are
defined. Indeed, even if automatic parsing and tagging can introduce errors, the exper-
imental results shown the approach robustness towards them. Note that we used some
WordNet based features in order to compare our system against other state-of-the-art ap-
proaches. However, we plan to port the system on Italian by using a WordNet version for
the target language.
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Without BFs With BFs
Relation P R F1 P R F1
kill 70.30 71.29 70.79 92.39 75.63 83.17
live in 73.26 63.65 68.12 74.69 73.39 74.33
work for 66.22 63.12 64.63 76.38 86.18 80.99
located in 61.53 72.23 71.88 70.00 75.40 72.60
orgabased in 68.13 66.33 67.22 86.58 77.70 81.90
average 69.89 67.32 68.53 80.01 77.66 78.54

Table 3.9: Comparison of performance of our system on the Roth and Yih data set with
and without BFs. Bold cases correspond to the best performance.

No BFs BFs
Relation P R F1 P R F1
Cause-Effect 61.00 80.54 69.42 68.50 81.70 74.52
Instrument-Agency 62.70 72.48 67.24 73.65 73.82 73.73
Product-Producer 71.00 97.91 82.31 72.21 98.15 83.21
Origin-Entity 62.20 63.23 62.71 63.70 66.14 64.90
Theme-Tool 67.85 63.00 65.34 68.33 74.81 71.42
Part-Whole 62.12 66.31 64.15 80.24 67.17 73.13
Content-Container 71.87 67.00 69.35 77.41 67.69 72.23
average 65.53 72.92 68.64 71.11 76.97 73.48

Table 3.10: Comparison of performance on SemEval2007 with and without BFs. Bold
cases correspond to the best performance.

No BFs BFs
Relation P R F1 P R F1

Cause-Effect 73.82 85.60 79.27 87.82 87.60 87.71
Component-Whole 70.43 73.52 71.94 74.43 80.52 77.36
Content-Container 72.25 80.34 76.08 82.12 86.34 84.18
Entity-Destination 70.22 89.23 78.59 80.22 92.73 86.02

Entity-Origin 75.35 79.20 77.23 82.42 81.00 81.70
Instrument-Agency 71.23 78.23 74.57 76.76 80.62 78.64
Member-Collection 70.00 79.25 74.34 84.51 85.23 84.87

Message-Topic 80.21 80.23 80.22 82.34 84.16 83.24
Product-Producer 74.23 80.15 77.08 83.77 81.13 82.43

Average 73.08 80.64 76.59 81.60 84.37 82.91

Table 3.11: Comparison of performance on SemEval2010 with and without BFs. Bold
cases correspond to the best performance.
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Chapter 4

Jointly Entity and Relation Extraction
using Graphical Model

Information Extraction (IE) aim is the extraction of structured or unstructured information
from raw texts of a data set or a corpus, as, for example, entities and relations etc., as we
already discussed in Chapter 3. In Figure 4.1 for example some instances of entities and
relations are reported. The sentence is extracted from the data set annotated by Roth and
Yih and used also in the assessment of Chapter 3.

Figure 4.1: A sentence extracted by Roth and Yih annotated data set. E1, E2 and E3 are
entities. R1 and R2 are respectively “live in′′ and “located in′′ relations.

In Chapter 3 we introduced a new approach to classify only semantic relations (Kill, Lo-

cated In, etc.) between two entities given in input 1. In this Chapter we propose two new
approaches: the former, called Pipeline system (PipeLS), is based on two steps where in
the first step entities are classified and after these entities are the input of relation clas-
sifiers; the latter is a Jointly Entity and Relation Extraction System (JERES) in which

1 Gold standard entities are employed during training and testing phases of relation extraction.
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logical constraints, extracted by a predefined Knowledge Base (KB) (ontology or concep-
tual map) are used together with the classifier outputs to build a probabilistic model based
on Graphical Models (GMs) [11, 53]. The classifiers used in both systems are based on
the same system illustrated in Section 3.2, binary classifiers trained with classical features
and BFs (see details in Chapter 2) and with the parsetree of each sentence.

The pipeline approach PipeLS is composed by two main modules: the former for the
entity classification and the latter to classify the relations between entities. Furthermore
the PipeLS have some limitations as, for example, error propagations between the first
and second phase; indeed in the relation classification (second step of the pipeline) we
can not evaluate again the choices taken by the entity module to change and to correct
any errors. For these reasons we proposed the second system JERES based on GM which
integrate the classifier behaviors with logical constraints of KB to overcome the problems
of PipeLS.

KB-based IE systems are also employed to support the development of Semantic Web
tasks [113]. In fact in several approaches [91, 113, 81] the ontologies (KB) are used to
help the IE processes using its knowledge representation by means of logical constraints
defined in it.

In experimental assessment 4.3 we apply the two systems, PipeLS and JERES, on the data
set described in 3.3.1. In Chapter 3 we also use for relation classification other two data
sets introduced in Section 3.3.1. We can not use these data sets in this Chapter because
the entities of these corpora, involved in the relations (summarized in Tables 3.4 and 3.5)
have not been annotated with specific entity types. (e.g. location or organization). Then
we can not create an entity classifiers without an annotated data set with tags for entity
types.

The main contributions of this Chapter can be summarized as follows:

• a approach to classify the entities is presented based on the classifier already de-
scribed in Chapter 3 for the relation classification;

• PipeLS, a pipeline system, is introduced to extract entities and relations;

• the introduction of a Jointly Entity and Relation Extraction System (JERES) to build
a probabilistic model for each sentence of a corpus, a novel integration between
logical constraints extracted from an ontology or KB and the classifier output, based
on GMs;

• the assessment of these two approaches on the data set annotated by Roth and Yih.
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Eventually in this Chapter we present the two systems, namely PipeLS and JERES and
we experimentally demonstrate that the second one based on the Graphical Model ob-
tained better performance than the first one. Assessment of the systems are performed
on the same data set annotated by Roth and Yih, already used in the semantic relation
classification described in Chapter 3.

4.1 Background and Motivation

Most research approaches to entity and relation extraction are developed using two differ-
ent architectures: pipeline approach or jointly entity and relation extraction. In the former,
which we call PipeLS, each entity is determined independently and the output of entity
extraction is the input to relation extraction; in the latter, called JERES, the extraction of
a part of the information (entity extraction) is influenced by extraction from the other part
(relation extraction) and vice-versa during all information extraction process.

Therefore in the JERES the usage of the logical constraints, extracted by KB or ontology
or conceptual map, are useful to correct some errors of the pipeline systems. Based on
the level of formality, an ontology or KB can vary from a simple taxonomy with almost
no formalization, to one which uses a rigorously formalized theory (see [108]). In this
Chapter KB includes logical constraints which are some properties and axioms enjoyed
by the elements of the reference domain (instance of entities and relations). Indeed in this
work we use the words KB and ontology as synonyms.

In the following paragraphs we summarize some methods proposed in literature and based
on two types of architecture.

In [38], in addition to the method already described in Section 3.1, another pipeline ap-
proach, called MC |KSL has been presented. This system is composed by two modules:
the first one is the entity classifier based on Conditional Random Fields (CRFs); the sec-
ond one takes in input the classified entities, computed in the previous step and classifies
the relations. The second module is an SVM classifier trained with several kernel func-
tions, one for each information source, as we already discussed in Section 3.1. At the
best of our knowledge, their system represents the state-of-the-art on dataset annotated by
Roth and Yih. For this reason in Section 4.3 we compare our system withMC |KSL.

A new approach for joint entity and relation extraction using a graph is presented in [57],
namely ”Card-Pyramid (CP)“. All possible entities and relations in a sentence are en-
coded in such graph; in this way jointly labeling each node of this data structure they
jointly extract the entities and relations. The labeling algorithm is very similar to the
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parsing one and is based on dynamic programming. In the experimental assessment their
joint system overcomes in performance the pipeline standard system proposed by [99],
but not our joint approach JERES, as shown in Section 4.3.

In [114] another joint discriminative probabilistic model with arbitrary graphical structure
is proposed to solve the problem of entity identification and relation extraction from ency-
clopedia articles. They introduce a unified framework based on undirected, conditionally-
trained probabilistic GMs to optimize all relevant subtasks jointly. Moreover, a new infer-
ence method, called collective iterative classification (CIC), is presented to find the most
likely assignments for both entities and relations. We can not compare our performance
with theirs because it has been obtained on a different data set.

An approach for the joint extraction of entities and relations for opinion recognition
and analysis is introduced in [19]. This system aims is to find links between opinion-
related entities, expressions of opinions and sources of opinions. Then this links rep-
resent their relations which have to extract. An integer linear programming method is
exploited to solve the joint opinion recognition task. Moreover the performance of both
relation extraction and the extraction of opinion-related entities significantly improves us-
ing constraint-based inference and with the integration of a semantic role labeling. Our
approach has not been compared with this system because although it is very similar at
JERES, it solves a task a little different of ours. Indeed they use an annotated data set for
Opinion Recognition which we do not use in our experiment assessment.

In the [110] a collective IE approach combining three tasks, Named Entity Recognition
(NER), Relation Extraction (RE) and Coreference Resolution (CR), is proposed based on
linear-chain conditional random fields. They presented an iterative training and labeling
algorithm which uses new iterative and semantic features, based on the positions and the
offsets of words. They build a probabilistic model using an arbitrary structured Condition
Random Field (CRF) in which these features have been encoded. Assessment of their
approach is performed on a dataset written in Slovene language then we do not perform
our approach on it since PipeLS and JERES have been tested on an English data set.

Another joint approach to information extraction is proposed in [91]. This method is a
single integrated inference process in which in a citation matching domain all records and
entity resolution are performed together using Markov logic and the MC-SAT algorithm.
In their solutions they write the appropriate logical formulas and combine them using
Markov logic, a representation language that integrates probabilistic GMs and first-order
logic. In their assessment they use the CiteSeer and Cora citation matching datasets.
Though the JERES approach is very similar to that described in [91] we do not perform it
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on the CiteSeer and Cora citation matching dataset because they are used to solve another
task for retrieving links between the article citations.

Last but not least a general IE system based on logical and statistical rule that exploit
Markov Logic Networks is proposed in [81]. The work focus is the system scaling to large
datasets and the definition of generally applicable rules. In details a compiler finds the
specialized algorithms automatically to solve NER, RE and CR and their task scheduler
can combine all three IE tasks. The specialized algorithms is encoded in the model as
operators and the approach is rule-based. We do not compare our system performance
with their approach because we propose a pipeline method and an integrated probabilistic
model for only Entity and Relation Extraction and we do not solve a CR task. Moreover
their system is performed on a different dataset that we do not employ in our experimental
assessment.

4.2 Proposed Approach

4.2.1 Pipeline system for Entity and Relation classification

While in Chapter 3 we only classify different kinds of relations (e.g. Kill, Located In

etc.) since the correct entity pairs have been given in input, in this Section we introduce
an approach to predict also the types of the entities, namely Location (Loc), Organization
(Org) and Person (Peop). Afterwards the relation classification system extracts relation
between the predicted entities.

To extract entities we use the same classifier illustrated in Section 3.2.2. Moreover to
perform the classification we adopted SVM’s [109] a binary linear classifier which has
an input composed by two different kinds of representation, namely a feature vector of
binary values (entity features) and a tree structure (sentence features)2. Kernels represent
a smooth way to combine them. We train each classifier using a combination of a tree
kernel [78] with a linear kernel, two different kernel functions to elaborate the information
sources, respectively, sentence parsetrees and feature vectors. Afterwards we employ the
predicted entities, outputs of entity classifiers, to classify the relations between them. A
system schema is shown in Figure 4.2 and is used in experimental assessment on data set
annotated by Roth and Yih described in 3.3.1. In the following two sections we describe in
details entity classifier and relation classifier, modules of Pipeline system (PipeLS).

2 This classification system is the same employed in Chapter 3.
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Figure 4.2: Pipeline system schema for data set annotated by Roth and Yih.

Entity Classifier

The CE set is defined as follows:

CE = {c1, c2, c3, ...ck}

where CE is the set of classes (types) to which the entities contained in the sentence smay
belong and Ej ∈ E is a generic entities of s. Furthermore the correct entity boundaries
are given as input. To solve the entity classification task we build an SVM classifier
Cci for each class ci ∈ CE . The classifier input are the parse tree of the sentence and
the feature vector which represents the entity to be classified (Ej). The parse tree is
computed using the Stanford Parser [58, 59] and the feature vector contains several kinds
of features including for example unigrams of words, unigrams, bigrams and trigrms of
PoS, lexical features, BFs etc. (see section 2 for more details about the BFs) . Each SVM
classifier processes the two different inputs using a combination of two kernel functions:
tree kernel [78] for parse tree and a linear kernel for the feature vector. For the sake of
clarity, let us consider the example sentence s extracted by data set annotated by Roth and
Yih and shown also in Figure 4.1:

“Composer Thomas|E1 is native Chisholm|E2 , Minnesota|E3 .′′
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which contains three entities, E = ⟨E1, E2, E3⟩, and we suppose that

CE = {Loc, Peop, Org, Other}

3 is the set of classes (types) to which the entities may belong. We build a classifier for
each entity type CE except for Other for which we can assert the following statement: Ei

belongs to Other if and only if Ei do not belongs to neither Loc nor Org nor Peop.

Then the set of classifiers is:

CE = {CLoc, CPeop, COrg}

. Each classifier is learned independently and we use them to classify E1, E2 and E3.
If the output value of each classifier Cci is greater than 0 then ci is the type of entity Ej

.

Since each classifier is learned independently in the PipeLS, each of them can compute a
positive margin related to entity Ej . Then this means that Ej can belong to more than one
types ci ∈ CE , that is, Ej can be in the same time a Location, a Person or an Organization.
For instance in the sentence s for the entity E1 the margin computed by CPeop is equal to
0.527 and the margin calculated by CLoc is equal to 0.368 by CLoc then E1 belongs to
both types Peop and Loc. On the contrary the JERES solve this semantic ambiguity as we
describe in 4.2.2, choosing suitably the types most likely to E1.

Relation Classifier

As already described in Chapter 3, we consider only the relations between entities within
the same sentence; in other words we do not solve the cross-sentence relation classifica-
tion task because the relations between entities in different sentences are not annotated in
the corpus used for evaluation. Moreover all relations automatically extracted by the data
set are binary and anti-reflexive. No entity is in relation with itself, that is, ∀Ei ∈ E ,¬Ri,i

(self-relations). Furthermore two entities involved in relation R play two different roles
(Agent or Target) given by the position of entities in the relation (Ri,j ̸= Rj,i).

CR = {c1, c2, c3, ...ck′}

is the set of classes (types) to which the relations in a sentence may belong. Each entity
involved in a relation is tagged using entity classifier with one or more types contained in

3 Loc, Peop and Org stand for respectively Location, Person and Organization
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the CE set. As described for entities in the previous Section, we also build an SVM binary
classifier Ccz , one for each class cz ∈ CR for relation classification. We train the classifier
using two kernel functions, employed to combine two different information sources: the
global context where the two entities appear, parse tree of the sentence which contains the
relation and a vector of Boolean features to represent the local context of entities (vector
built as reported in section 3.2.1). If the output margin of Ccz classifier is greater than 0

then a relation R between two entities exists and it is the cz type. For the sake of clarity,
let us consider again the example sentence extracted by the data set annotated by Roth
and Yih and shown also in Figure 4.1:

“Composer Thomas|E1 is native Chisholm|E2 , Minnesota|E3 .′′

CR = {Kill, Located In, Work For, OrgBased In, Live In, No Rel}

is the set of classes to which the relations contained in the sentence s may belong.

CE = {Loc, Peop, Org, Other}

is the set of types, possible labels of the entities involved in the relation. From now on if
a relation Ri,j , defined between two entities (Ei, Ej), is tagged with a class cz ∈ CR then
we say that the entity pair (Ei, Ej) is involved in a relation of cz type. We suppose that
not all relation types can be expressed between some pair of entity types and in particular
each kind of the relation is compatible only with a pair of entity types. Moreover an entity
tagged with label Other can not be involved in any relation. In the Table 3.3 we show the
constraints of entity types for each kind in the relation of data set used in the experimental
assessment. Eventually, to perform relation classification we build one classifier for each
class cz ∈ CR but not for No Rel class since the elements of this class are all relations
which do not belong to any other class.

The set of SVM relation classifier is defined as follows:

CR = {CKill, CLive In, CWork For, CLocated In, COrgBased In}.

Each classifier is applied independently from the other ones and it has for input the parse

tree of the sentence and the feature vector which represent one of the following pairs of
entities: (E1, E2), (E2, E1), (E2, E3), (E3, E2), (E1, E3), (E3, E1). For instance if the
margin computed by CLocated In for the entity pair (E2, E3) is equal to 0.143 then E2 and
E3 are involved in relation Located In.
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As for the entity in PipeLS an entity pair can belong to one or more classes in the same
time since each relation classifier is applied independently from the other ones. For ex-
ample, the entity pairs (E2, E3) can belong to Located In and Work For classes because
CLocated In and CLocated In computed two positive margins for pair (E2, E3). This is another
ambiguity problem of PipeLS which we solve using the integration probabilistic model
built by JERES. As we presented in Section 4.2.2 we define a logical constraint which
assert that the instance of entity and relation in a sentence can only belong to one class.
Therefore if the entity pair (E2, E3), for instance, belongs to more than one class con-
sidering only the outputs of classifiers (in PipeLs), the new probabilistic model based on
GMs (built by the JERES) combines these outputs with the defined logical constraint.
Then in JERES the entity pair (E2, E3) will be ssociated to the more likely class, deleting
the ambiguity problem.

4.2.2 Jointly Entity and Relation Extraction system using Graphical
Models

The use of classification methods, described in the previous paragraph, to solve IE tasks
is not sufficient to fix some problems inherent to natural language such as:

• language ambiguity: in the same sentence one or more language ambiguities may
arise related to different levels of analysis (lexical, syntactic, semantic). Individ-
ual words or phrases can often have more than one interpretation, and although
this does not represent a crucial issue for humans, instead it is a problem for the
development of an automatic approach;

• the incompleteness of information: the information, contained in a sentence, is not
always expressed in a complete and explicit way. It often happens that some con-
cepts are not extensive because they are non-functional in the speech or implied
since they are logical consequence of others. When a concept is non-functional in
the speech, the information is completely absent and not deducible from the context
of the sentence;

• the presence of “negative information”: the information, contained in a sentence,
can be expressed either by a concept or through its negation;

• the presence of contradictory information: there are some cases in which the infor-
mation, contained in the sentence, expresses concepts that are in contrast ones with
others.
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Moreover the PipeLS system has some problems which also depend on the pipeline ar-
chitecture of the system. The errors of entity classifiers (e.g. the same entity or relation
belongs to two or more types) are propagated in the relation classification and besides
they can not be corrected in the relation classification, changing the predictions (output
values) computed by entity classifiers.

Furthermore to overcome the limits of machine learning classifiers we combine two in-
formation sources in a probabilistic model: the output of each classifier and the logical
constraints defined in the ontology (KB). We propose a new method, namely JERES, for
joint entity and relation extraction using GMs [11, 53] and in particular we use Markov

Random Fields [22], with undirected graphs. Each graph node corresponds a random
variable Xk which describes the behavior of a classifier Cpk where pk is a unary or binary
predicate as we explain in the following paragraph. Each edge in the model is induced by
a constraint of a KB (ontology or conceptual map).

Definition of Ontological Constraints

Given a sentence swe consider E = ⟨E1, E2, ...EN⟩ the sequence of entities contained in s
on which several predicates may be expressed, {P (i)}i∈I , with I = 1, 2, 3, ..., identifying
properties and/or relations. In this work we only exploit unary and binary predicates,
P (1) and P (2), the former ones express entity properties and the latter ones specific the
relation between two entities. Let us consider again the running example shown also in
Figure 4.1:

“Composer Thomas|E1 is native Chisholm|E2 , Minnesota|E3 .′′

in which the entities E = {E1, E2, E3} are contained in s. We must extract two types of
information split in two distinct sets of predicates:

P (1) = {Loc(·),Org(·),Peop(·)}

a set of unary predicates which contains entity types and

P (2) = {Located In(·, ·),Kill(·, ·),OrgBased In(·, ·),Live In(·, ·),Work For(·, ·)}

a set of binary predicates whose elements are the types of relation between two entities.
The binary predicates have the semantic properties described in the Table 4.1:
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Relation Entity Type 1 Entity Type 2 Properties
Kill Peop Peop AR, AS, NT

Live In Peop Loc AR, AS, NT
Work For Peop Org AR, AS, NT

Located In Loc Loc AR, AS, T
OrgBased In Org Loc AR, AS, NT

Table 4.1: List of properties of each relation. The acronyms AR, AS, NT, T mean respec-
tively, Anti-reflexive, Antisymmetric, Negative Transitive and Transitive.

• an entity can not belong to two or more different types (classes) in the same time
(in a sentence):
for each Ei ∈ E and pz ∈ P (1)

pz(Ei) ∧


pj∈P (1) con j ̸=z

¬pj(Ei)

• all relations are anti-reflexive:
for each Ei ∈ E and for each p ∈ P (2)

¬p(Ei, Ei)

• all relations are antisymmetric:
for each Ei, Ej ∈ E , with Ei ̸= Ej , and for each p ∈ P (2)

p(Ei, Ej) → ¬p(Ej, Ei)

• all relations, except Located In, are negative transitive:
for each Ei, Ej, Ek ∈ E , with Ei ̸= Ej ̸= Ek, and for each p ∈ P (2), such that
p ̸= Located In(·, ·)

p(Ei, Ej) ∧ p(Ej, Ek) → ¬p(Ei, Ek)

• the relation Located In(·, ·) is transitive:
for each Ei, Ej, Ek ∈ E , with Ei ̸= Ej ̸= Ek

p(Ei, Ej) ∧ p(Ej, Ek) → p(Ei, Ek)

with p = Located In(·, ·)
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• each type of relations is only compliant to one pair of entity type
for each Ei, Ej ∈ E ,with Ei ̸= Ej

Kill(Ei, Ej) → Peop(Ei) ∧ Peop(Ej)

Live In(Ei, Ej) → Peop(Ei) ∧ Loc(Ej)

Work For(Ei, Ej) → Peop(Ei) ∧ Org(Ej)

Located In(Ei, Ej) → Loc(Ei) ∧ Loc(Ej)

OrgBased In(Ei, Ej) → Org(Ei) ∧ Loc(Ej)

Given the properties of the elements of domain, the consistency constraints contained in
the considered fragment of ontological knowledge are formalized as follows:

1. pz(Ei) → ¬pj(Ei)

for each Ei ∈ E and pz, pj ∈ P (1), with z ̸= j

2. p(Ei, Ej) → ¬p(Ej, Ei)

for each Ei, Ej ∈ E , with Ei ̸= Ej , and p = Located In(·, ·) or p = Kill(·, ·)

3. Located In(Ei, Ej) ∧ Located In(Ej, Ek) → ¬Located In(Ek, Ei)

for each Ei, Ej, Ek ∈ E , with Ei ̸= Ej ̸= Ek

4. Kill(Ei, Ej) → Peop(Ei) ∧ Peop(Ej)

for each Ei, Ej ∈ E , with Ei ̸= Ej

5. Live In(Ei, Ej) → Peop(Ei) ∧ Loc(Ej)

for each Ei, Ej ∈ E , with Ei ̸= Ej

6. Work For(Ei, Ej) → Peop(Ei) ∧ Org(Ej)

for each Ei, Ej ∈ E , with Ei ̸= Ej

7. Located In(Ei, Ej) → Loc(Ei) ∧ Loc(Ej)

for each Ei, Ej ∈ E , with Ei ̸= Ej

8. OrgBased In(Ei, Ej) → Org(Ei) ∧ Loc(Ej)

for each Ei, Ej ∈ E , with Ei ̸= Ej

Note that:

• since all the predicates in the set P (1) are mutually exclusive, we can infer first the
constraint;
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• the second constraint describes the antisymmetric property only for Located In and
Kill relations because they are only two relations in which the type of the entities
involved in the relation is the same;

• the third constraint is logical entailment of antisymmetric and transitive properties
of Located In relation;

• since all predicates in P (2) have the anti-reflexive property, the pairs (Ei,Ei) can not
involved in any relations.

Probabilistic Integration Model based on Markov Random Fields

To integrate the classifier output and logical constraints in a probabilistic model based on
Markov Random Fields we have to convert the SVM margins [109], outputs of entity and
relation classifiers, to probabilities normalizing the absolute value of sigmoid function as
follows:

σ(M) =
1

1− e−M

where M represented the absolute value of margin. The integration model is a probabilis-
tic model based on Markov Random Fields. For each sentence s in data set we build in
JERES an undirected graph which contains a variable for each entity Ei ∈ E and a vari-
able for each instance of binary predicates (relation) pk ∈ Ps, namely respectively entity

variable and relation variable. The last one will be represented by the pairs ((Ei, Ej),R)

in which the first element is a ordinated pair of two entities Ei, Ej ∈ E : i ̸= j and the
second element R is the relation type in which the entities are involved. since in our task
each classifier is applied independently, we do not use the Bayesian Network with which
we should decide an a-priori ordering to apply the different classifier Cpk to classify the
instance of pk ∈ Ps. Each variable Xi patterns an application of a classifier and its prob-
ability distribution describe the classifier behavior. The relation variables shape exactly
the binary classifiers, built for relation classification and presented in the paragraph 4.2.1.
On the contrary each entity variable models a multi-class classifier (CEi

with four clas-
sifiers C = {Loc,Peop,Org,Other}) assembled using a right combination of outputs of
three binary classifiers (CLoc(Ei),COrg(Ei) and CPeop(Ei)) for entity classification (para-
graph 4.2.1). Finally the relation variables are all binary and they undertake values in the
set {True, False}, while the default alphabet {Loc, Org, Peop, False} contains the values
of the entity variables. The last ones represent the entity types (the False value corre-
sponds to Other type of entities) and they are mutually exclusive. Every entity type can
be associated to each entity Ei ∈ E with a probability ≥ 0 and a different probability dis-
tribution. The edges which link the nodes of the model are induced only by the constraints
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of KB (ontology). Furthermore a link between two variables exits if there is a constraint
in the ontology such that the value of a variable depends on a value of another one, that
is, two variables are not statistically independent from probabilistic point of view. Indeed
each relation node ((Ei, Ej),R) which involve the Ei and Ej , is linked with entity nodes
Ei and Ej . No edge exits between two entity nodes because the related entity variables

are statistically independent.

For sake of clarity, let us consider the following sentence s 4:

“Composer Thomas|E1 is native Chisholm|E2 . ”

which contains two entities (E = E1, E2) and the set of logical constraint included in the
KB is defined as follows:

1. Located In(E1, E2) → ¬Located In(E2, E1);

2. Kill(E1, E2) → ¬Kill(E2, E1);

3. Kill(E1, E2) → Peop(E1) ∧ Peop(E2);

4. Kill(E2, E1) → Peop(E1) ∧ Peop(E2);

5. Live In(E1, E2) → Peop(E1) ∧ Loc(E2);

6. Live In(E2, E1) → Peop(E2) ∧ Loc(E1);

7. Work For(E1, E2) → Peop(E1) ∧ Org(E2);

8. Work For(E2, E1) → Peop(E2) ∧ Org(E1);

9. Located In(E1, E2) → Loc(E1) ∧ Loc(E2);

10. Located In(E2, E1) → Loc(E1) ∧ Loc(E2);

11. OrgBased In(E1, E2) → Org(E1) ∧ Loc(E2);

12. OrgBased In(E2, E1) → Org(E2) ∧ Loc(E1)

Note that the constraints of mutual exclusion related to the entity types are not included in
the KB because this property is encoded with the construction of the multi-class classifier
of entities. The Markov Random Fields related to previous sentence s is represented in
Figure 4.3: where:

• the edges ‘a’, ‘m’ were induced by constraint 8;

4 In this example we only consider a part of the sentence shown in Figure 4.1 because we want to paint
the readable graph in Figure 4.3
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Figure 4.3: Example of Construction of Graphical Model related to a sentence extracted
by data set annotated by Roth and Yih in 2007 and contained two entity E1 and E2.

• the edges ‘b’, ‘l’ were induced by constraint 14;

• the edges ‘c’, ‘i’ were induced by constraint 10;

• the edges ‘d’, ‘e’ were induced by constraint 12;

• the edges ‘h’, ‘g’ were induced by constraint 11;

• the edges ‘n’, ‘o’ were induced by constraint 6;

• the edges ‘q’, ‘r’ were induced by constraint 5;

• the edges ‘s’, ‘t’ were induced by constraint 7;

• the edges ‘u’, ‘v’ were induced by constraint 13;

• the edges ‘z’, ‘y’ were induced by constraint 9;

• the edge ‘f’ was induced by constraint 1;

• the edge ‘p’ was induced by constraint 2.

Since the model in Figure 4.3 we can observe that an edge corresponds to a single con-
straint, but a constraint may induce one or more edges. The JERES builds this probabilis-
tic model for each sentence extracted by data set used in experimental assessment.
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Maximization of the Joint Probability

To extract the information, entities and relations contained in a sentence, in the JERES an
inference algorithm is applied to compute the assignment of all random variables in the
graph which maximizes the joint probability Pr(X ). After some preliminary experiments
we choose the Loopy Belief Propagation [79, 88, 105], as inference algorithm. The joint
probability Pr(X ) can be decomposed as:

Pr(X ) =
1

Z


C

ψC(XC)

in which ψC(XC) is a potential function defined on maximal cliques (XC) of the graph. To
calculate the joint probability the first step consists in identifying the maximal cliques of
the graph. Each one of them “activates” a number of logical constraints of KB, whose
number and type depend, respectively, by the number of the edges in the clique and the
variables that connect these edges. A specific assignment of the variables in the clique
is considered “valid” only if all the activated constraints are satisfied by the current as-
signment. If an assignment is not valid it means that the expressed information is not
consistent. Each clique is associated to a number of assignments which is the product
of the number of values that each variable can take. Given a valid assignment a score,
namely potential, is assigned which depends on the relevance of the expressed informa-
tion: if such score is high then most likely the variables take locally the current value.
The potential is computed using a potential function ψC . It is strictly positive function
and then it can be defined as an exponential function:

ψC(XC) = exp{−E(XC)}

where E(XC) is energy function defined as follows:

E(XC) =

+1 ·


Xi∈C α(Xi), if the current assignmentC is valid

−1 ·


Xi∈C α(Xi), else

The α value strictly depends on the value which the variable takes in the current configu-
ration (α(Xi = val = γ) and can overlap with:

• log probability (Pr(Xi = val)) given in output by the classifier which corresponds
to Xi variables, if the predicate classified is unary (entity variable);
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• log probability of the following product:

Pr(Xi = vali) · Pr(Xj = valj) · Pr(Xz = valz)

if the predicate classified which defines the variable Xi is binary and where Pr(Xj)

and Pr(Xz) represent the probabilities that the entities, arguments of predicates, are
some type (relation variable).

We calculate two previous different log probably because the probability, computed using
the output score of a classifier built to classify a binary predicate, is a conditional prob-
ability of that predicate given the entity types which are its arguments. Furthermore we
choose the values of the energy function so that if the current assignment of the clique is
not valid the potential value associated with it is between 0 and 1, otherwise it is greater
than 1.

4.3 Experimental Assessment

In PipeLS (a schema is shown in Figure 4.2) each classifier, module of pipeline approach,
is implemented with the SVM package SVMLight-TK5 [78] because these software offers
the possibility of combining tree kernels with other kernels (in our case linear kernel)
to manage two information sources: parse tree and a feature vector. The parse tree is
computed using Stanford Parser [58, 59]6 The Roth and Yih data set is not divided in
training and test set. Therefore assessment is performed by following the 5-fold cross
validation protocol, as in [38, 57]. The Roth and Yih data set has already been described
in details in section 3.3.1.

In JERES to build the probabilistic model based on Markov Random Field for each sen-
tence of the Roth and Yih data set we use GRMM7, a toolkit for computing inference
and learning in GMs of arbitrary structure. We also employ the JAVA implementation of
GRMM of Loopy Belief Propagation, the inference algorithm Loopy Belief Propagation
to compute the maximal joint probability of each graph built for each sentence contained
in the Roth and Yih data set. In Figure 4.4 a schema of JERES is shown. The JERES sys-
tem is composed by the following modules: entity and relation classifiers, a constructor to
build the probabilistic model using the classifiers outputs and the KB logical constraints

5 The package is available from http://dit.unitn.it/~moschitt/Tree-Kernel.htm.
6 The parser can be freely downloaded from http://nlp.stanford.edu/software/

lex-parser.shtml.
7 The software is freely downloaded by http://mallet.cs.umass.edu/grmm/index.php

http://dit.unitn.it/ ~moschitt/Tree-Kernel.htm
http://nlp.stanford.edu/software/lex-parser.shtml
http://nlp.stanford.edu/software/lex-parser.shtml
http://mallet.cs.umass.edu/grmm/index.php
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Figure 4.4: The schema of JERES for entities and relation extraction

and the inference algorithm Loopy Belief Propagation to compute the maximal joint prob-
ability of each graph.

4.3.1 Discussion

In this section the experimental results are reported and discussed for entity and relation
classification. Following related works, performance is evaluated by computing Precision
(P), Recall (R) and F1 as usual. In Tables 4.2 and 4.3 we show the comparison between
pipeline system (PipeLS) based on the SVM classifiers (our baseline introduced in Sec-
tion 4.2.1) and JERES, based on the probabilistic model, obtained with the integration
of classifier outputs and logical constraints using Markov Random Fields (presented in
Section 4.2.2). The JERES performance is better than that of the PipeLS for both entity
and relation classification, except for Precisions of Loc and Located In and accordingly
the micro and macro average precision. Then the experimental results demonstrate that
the novel probabilistic integration model based on GMs corrects some mistakes of the
pipeline system. On the other hand, when we can run both systems we are comparing and
we apply approximate randomization to evaluate statistical significance. Average perfor-
mance is always significantly better for JERES, with the only exception of precision of
entity classification, where there is not statistical significance.
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Peop Org Loc
P R F1 P R F1 P R F1

PipeLS 94.83 90.01 92.35 93.57 78.35 85.29 92.97† 88.05 90.44
JERES 95.03† 90.53† 92.73† 93.92† 78.54† 85.54† 92.09 89.68† 90.87†

micro-average macro-average
P R F1 P R F1

PipeLS 93.78 87.00 90.11 93.79 85.47 89.36
JERES 93.53 88.00† 90.48† 93.68 86.25† 89.71†

Table 4.2: Experimental results to evaluate the Graphical Model contribution on entity
classification task (JERES system). Bold cases correspond to the best performance. Sym-
bol † indicates that the ρ-values, computed by approximate randomization, are smaller
than 0.05 level.

Kill Live In Work For
P R F1 P R F1 P R F1

PipeLS 69.18 85.45 76.46 70.36 66.99 68.63 72.70 71.07 71.88
JERES 69.82† 85.45† 76.85 † 72.03† 68.85† 70.40† 73.30† 72.57† 72.93†

Located In OrgBased In
P R F1 P R F1

PipeLS 71.94† 69.63 70.77 75.95 70.58 73.17
JERES 71.82 71.11† 71.46† 76.92† 70.80† 73.73†

micro-average macro-average
P R F1 P R F1

PipeLS 72.08 72.00 71.80 72.03 72.74 72.18
JERES 72.88† 73.00† 72.75† 72.78 † 73.75† 73.08†

Table 4.3: Experimental results to evaluate the Graphical Model contribution on relation
classification task (JERES). Bold cases correspond to the best performance. Symbol †
indicates that the ρ-values, computed by approximate randomization, are smaller than
0.05 level.

In the Tables 4.4 and 4.5 the performance of baseline system (PipeLS) and JERES is
compared to MC |KSL and Card-Pyramid (CP) approaches, presented respectively in in
[38] e [57]. The performance of JERES for entity classification is less than that obtained
by MC |KSL; on the contrary the integration system JERES based on Markov Random

Fields for relation classification overcome the state-of-art systems in most cases, except
in precision and F1 of Kill and Work For relation and precision of Located In. However
our JERES has an F1 larger than MC|K and CP approach on average.
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Peop Org Loc
P R F1 P R F1 P R F1

PipeLS 94.83 90.01 92.35 93.57 78.35 85.29 92.97 88.05 90.44
JERES 95.03 90.53 92.73 93.92 78.54 85.54 92.09 89.68 90.87

MC |KSL 94.80 96.60 95.70 91.90 88.50 90.20 94.20 94.40 94.30
CP 92.10 94.20 93.20 90.50 88.70 89.50 90.80 94.20 92.40

micro-average macro-average
P R F1 P R F1

PipeLS 93.78 87.00 90.11 93.79 85.47 89.36
JERES 93.53 88.00 90.48 93.68 86.25 89.71

MC |KSL - - - 93.63 93.17 93.40
CP - - - 92.27 92.36 91.70

Table 4.4: Experimental results to compare the performance of our system JERES for en-
tity extraction based on GM and State-of-the-Art System (SoAS). Bold cases correspond
to the best performance.

Kill Live In Work For
P R F1 P R F1 P R F1

PipeLS 69.18 85.45 76.46 70.36 66.99 68.63 72.70 71.07 71.88
JERES 69.82 85.45 76.85 72.03 68.85 70.40 73.30 72.57 72.93

MC |KSL 81.10 79.90 80.50 71.80 60.70 65.80 75.50 70.80 73.10
CP 91.60 64.10 75.20 66.40 60.10 62.90 73.50 68.30 70.70

Located In OrgBased In
P R F1 P R F1

PipeLS 71.94 69.63 70.77 75.95 70.58 73.17
JERES 71.82 71.11 71.46 76.92 70.80 73.73

MC |KSL 73.50 64.90 68.90 65.10 69.50 67.20
CP 67.50 56.70 58.30 66.20 64.10 64.70

micro-average macro-average
P R F1 P R F1

PipeLS 72.08 72.00 71.80 72.03 72.74 72.18
JERES 72.88 73.00 72.75 72.78 73.75 73.08

MC |KSL - - - 73.40 69.16 71.10
CP - - - 73.04 62.66 66.36

Table 4.5: Experimental results to compare the performance of our system JERES for
relation extraction based on GM and State-of-the-Art System (SoAS). Bold cases corre-
spond to the best performance.

4.4 Conclusion and Future Works

In this Chapter we proposed two systems to extract entities and relations: the former is
a pipeline system, namely PipeLS, composed by several binary classifiers and the latter
based on a novel probabilistic integration model based on Markov Random Fields, called
JERES. Experimental assessment on the Roth and Yih data set shows that the JERES per-
formance is better than that of PipeLS and indeed the JERES relation extraction approach
overcome the performance of state-of-art system. In the future we would perform the
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JERES system on other data set in which a structured knowledge base is defined, as for
instance GENIA [49].
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Chapter 5

Twitter Sentiment Analysis using
Barrier Features

In recent years sentiment analysis over Twitter has acquired great importance offering to
companies and organizations an efficient and effective way to understand the audience
feelings (negative or positive) towards their brand, products, business etc. A wide range
of features have then been proposed for training polarity sentiment classifiers. The design
of features is crucial for classification performance, as the classifier can only use the
information they convey. In addition to that, features should be designed in such a way
that they can be automatically extracted. In this work we consider the introduction in a
Twitter sentiment analysis classifier of barrier features (BFs), defined in Chapter 2.

Empirical tests show that such approach overcomes published state-of-the-art perfor-
mance by only using unigrams and bigrams in addition to BFs with a Maximum Entropy
classifier.

The main contributions of this Chapter can be summarized as follows:

• a new application of BFs in the Twitter sentiment polarity classification;

• the assessment of this new approach on three available data sets for Twitter senti-
ment polarity classification.

The goal of this Chapter is the description of the new system for Twitter sentiment polarity
classification based on BFs. Experimental results, discussed in Section 5.4 show that the
usage of BFs improve the performance of both state-of-art system and a system without
BFs.
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5.1 Background and Motivations

Sentiment analysis (SA) [87], or opinion mining, is mainly about finding out the thoughts
of people from data such as product reviews and news articles. Nowadays this process is
very important for both consumers and vendors: the former can look for advices about a
product to make informed decisions in the consuming process and the latter are invest-
ing increasing attention to on line opinions about their products and services. For these
reasons many research communities, including machine learning, data mining and natural
language processing, are working to develop methods to extract these opinions/sentiments
in an automatic way.

In practice, most methods adopt a two-step strategy for SA [87]. In the subjectivity classi-
fication step, the target is classified to be subjective or neutral (objective), and in the polar-
ity classification step, the subjective targets are further classified as positive or negative.
Therefore, two classifiers are trained for the whole SA process, one is called subjectivity
classifier, and the other is called polarity classifier.

Polarity is an aspect of sentiment analysis which can be faced as a three-way classification
problem, associating to each tweet either a positive, negative or neutral polarity. Actually,
most approaches only concentrate on the distinction between positive and negative, disre-
garding the neutral polarity. Many supervised learning approaches to classify positive or
negative sentiment are proposed in literature, namely polarity classifiers.

Twitter is a social network based on microblogging service, and its messages, called
“tweets”, are quite different from other texts like product reviews and news articles. First
of all, tweets are very informal, containing a lot of misspelled words, slang, modal par-
ticles and acronyms. Because of that and of the fact that length can not be greater than
140 characters, expressions in tweets are often ambiguous. All in all, the characteristics
of the employed language are very different from more formal documents and we expect
statistical methods trained on tweets to automatically adapt to such specificities and there-
fore to perform well. On the other hand, tweets are public and therefore a huge amount
of unlabeled material can be freely downloaded and employed to build data sets to train
unsupervised learning devices. By exploiting such material, we want to reduce as much
as possible manual labeling by replacing it with automatic processing. In this way, we
aim at constructing systems which can be effectively ported on new domains and also on
languages different from English. Of course, we need labeled tweets to train the classifier,
but we feel that this is unavoidable because performance of unsupervised approaches in
classification would not be acceptable. However, classifier training do not need a huge
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quantity of data to be trained and the required labeling can be performed by anyone know-
ing the tasks, rather than experts in linguistics and knowledge representation.

Most automatic machine learning approaches recently applied to Twitter sentiment polar-
ity classification belong to two streams: some of them try new ways to run the analysis,
such as performing sentiment label propagation on Twitter follower graphs and employ-
ing social relations for user-level sentiment analysis [103]. Others, not differently from
the one we are proposing here, investigate new sets of features to train the model for
sentiment identification, such as, for instance, microblogging features including hashtags,
emoticons etc. [6, 60]. Indeed, we are proposing to add BFs [3], defined in Chapter 2, to
unigrams and bigrams and input them to a Maximum Entropy (MaxEnt) classifier.

A growing request comes from companies and organizations for systems using SA of texts
extracted from Twitter to analyze the audience feelings towards their brand, business etc..
Consequently, research efforts have been concentrated on the task and, in the last years,
several approaches have been considered. Most of them adopt machine learning tech-
niques, where the input is represented by a feature vector to which a classifier is applied.
In such framework, both the choice of the classifier and the feature design are issues to be
addressed. Most of the existing approaches exploit three types of features, namely lexicon

features (based on entry of lexical resource as WordNet [31]), PoS features (based on PoS
tagging, see the appendix A for more details about PoS tags), and microblogging features

(e.g. re-tweets, hashtags, emoticons and so on) for sentiment analysis.

In [2] a novel set of features, based on PoS tags, lexicon and microblogging informa-
tion, is proposed. The feature set is organized in a hierarchy described as follows. It
can be split into three subsets depending on the type of the value assumed by features:
i) natural features have integer values corresponding to counts of occurrences; ii) real

features have values given by the frequency of use of emoticons included in a dictio-
nary; iii) Boolean features correspond to the occurrence/absence of words, exclama-
tion marks and capitalized text. Each of the previous subsets is furtherly divided in
two categories: polar and non-polar features. A feature is polar whenever it is as-
sociated to an entry in the English Dictionary of Affect in Language [112] (extended
through WordNet [31]); otherwise, it is non-polar. Polar feature values belong to the
interval between 1 (negative) and 3 (positive) indicating the degree of polarity of the cor-
responding word. PoS features are defined among both polar and non-polar features as
those associated to statistics about PoS tags. Features which are not PoS are included
into a generic category other. The experimental assessment considers two classification
tasks, namely the two-way classification Positive versus Negative and the three-way Pos-
itive versus Negative versus Neutral. In both, the best performing features are those com-
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bining prior polarity of words with their PoS tags. More in detail, the best performance
is obtained when these features are combined with unigrams of words. In other words,
they consider lexical information taken from an external knowledge source to integrate
unigrams. As better discussed in the following sections, in this feature taxonomy the
BFs would be classified as PoS features. Unfortunately we can not directly compare our
system performance with the one in [2] as the dataset they used is not available.

While [86, 2] stress the importance of features based on PoS tagging, the approach dis-
cussed in [6, 60] emphasizes the use of microblogging features. The results presented
in [6] demonstrate that features based on word n-grams introduce a noise in the model due
to the large amount of rare words occurring in tweets. So they use microblogging features
such as re-tweets, hashtags, replies, punctuations, and emoticons instead. Assessment,
performed on a dataset which has not been released, shows that a Support Vector Ma-
chine (SVM) classifier trained on the new microblogging features overcame by 2.2% the
accuracy of SVMs trained on only unigram features. A similar approach is presented for
Twitter sentiment classification in [60] again on an unreleased data set. However, the mi-
croblogging features they adopt are different from those in the preceding work and include
emoticons, abbreviations and the presence of intensifiers such as all-caps and character
repetitions. The best performance is obtained by using n-grams together with microblog-
ging and lexicon features, where words are tagged with their prior polarity as in [2]. In
their case, PoS features did not have any positive effect. On the other hand, we used BFs
in place of microblogging and lexicon features, obtaining an improvement.

A completely different kind of input representation is introduced in [103] where mi-
croblogging features are not directly considered, but part of them (e.g. hashtags and
emoticons) are associated to the nodes of a graph together with other information like
users, tweets, word unigrams and bigrams. An edge is inserted between two nodes when-
ever a link between the corresponding labels can be found (e.g., users are connected to
tweets they posted on social network; tweets are linked to word unigrams that they con-
tain and so on). Then label propagation is applied to the graph. In particular, sentiment
labels are propagated from a small set of nodes seeded with some initial label information
throughout the graph. In their experiments, they showed that the label propagation method
outperformed a MaxEnt classifier applied to an input which also includes microblogging
features. Although their approach obtains an accuracy of 84.7%, this performance has not
been estimated on the available Stanford Twitter Sentiment (STS) test set, but only on a
portion of it [39]. Direct comparison is therefore not possible because they do not release
this smaller test set.
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Moreover in [86] another feature-based method is presented to automatically collect a
corpus and use it to train a sentiment classifier. The approach considers a multinomial
Naive Bayes (NB) classifier and N-gram and POS-tags as features. They use the same
unavailable test set as in [39], but the training set is composed by Twitter posts actually
crawled and hand-annotated by the authors. Also in this case, direct comparison is not
possible because of the unavailability of the test set they used. In addition to that, they
consider the three-way classification (neutral/positive/negative) while we only consider
positive versus negative polarities.

The other important issue in these systems, namely the choice of the classification ap-
proach, is considered in [39], where NB, MaxEnt and SVMs are compared by adopting a
standard feature set represented by n-grams of both words and PoS tags. The conclusion
of such comparison showed that the best performing combination was composed by the
MaxEnt classifier applied to an input represented by unigrams and bigrams of words. In
fact, we consider a system based on the same approach as our baseline, referred to as
WithOut Barrier Features System (WOBFS).

The approach discussed in [100] introduces semantic information into a system also based
on NB classification. This is performed in two ways, namely by interpolation with a uni-
gram model and through a new kind of semantic feature, referring to the abstract concept
(e.g. President of United States) corresponding to each entity in a tweet text (e.g. Obama,
Bush, Clinton). The value associated to such features gives its correlation with the positive
or negative tweet polarity. Assessment was performed on the same data sets we consider
in Section 5.3. At the best of our knowledge, their system represents the state-of-the-art,
on the three most widely used data sets, namely STS, HCR and OMD. While discussing
the results, the authors remark that their approach with semantic features obtains better
recall and F1 in the negative sentiment classification, and better precision but worse recall
and F1 on positive sentiment.

Last, but not least, a novel language model has been very recently proposed in [69], the
emoticon smoothed language model (ESLAM), based on a probabilistic framework whose
parameters are estimated from manually labeled data. Smoothing considers the noisy
emoticon data, which are automatically labeled. The experimental assessment showed
that the integration of the two kinds of data in the training set outperformed each of them
when applied separately. However, we could not use this data set because authors have
not released the randomly chosen test set and the training noisy data.
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5.2 Proposed Approach

The approach we are proposing follows the usual framework in two steps, the former
constructing a vector of features from the input and the latter applying a classifier. In our
case, in addition to word unigrams and bigrams, we are also considering BFs which have
been recently introduced for a different task in [3] and described in details in Chapter 2.
For the sake of clearness, Table 5.1 reports again the BFs extracted from a tweet taken
from the STS data set described in Section 5.3.1. Note that the mention USER derives
from the preprocessing step and is deleted before PoS tagging.

(IN, VBP, {PRP, RB}) I firmly believe
(DT, NNP, {IN, PRP, RB, VBP}) I firmly believe that Obama
(DT, NN, {IN, NNP, PRP, RB, VBP}) I firmly believe that Obama /
(DT, NNP ,{IN, NN, NNP, PRP, RB, VBP,} I firmly believe that Obama / Pelosi
(IN, VBP, {NN, NNP}) that Obama / Pelosi have
(DT, NNP, {IN, NN, NNP, PRP, RB, VBP} I firmly believe that Obama / Pelosi ZERO
(DT, NN, {IN, NN, NNP, PRP, RB, VBP} I firmly believe that Obama / Pelosi ZERO desire
(DT, VB, {IN, NN, NNP, PRP, RB, TO, VBP} I firmly believe that Obama / Pelosi ZERO desire to be
(IN, VB, {NN, NNP, TO, VBP} that Obama / Pelosi ZERO desire to be
(PRP, VBZ, {”} It ’ s
(DT, NN, {} a charade
(DT, NN, {} a slogan
(IN, VBP, {”, „ CC, DT, NN, PRP, VBZ} It ’ s a charade and a slogan , but they want
(DT, VB, {CC, NN, PRP, TO, VBP} a slogan , but they want to destroy
(IN, VB, {”, „ CC, DT, NN, PRP, TO, VBP, VBZ} It ’ s a charade and a slogan , but they want to destroy
(DT, NN, {„ CC, NN, PRP, TO, VB, VBP} a slogan , but they want to destroy conservatism

Table 5.1: BFs extracted from th following PoS tagged tweet: USER/deleted I/PRP
firmly/RB believe/VBP that/IN Obama/NNP //NN Pelosi/NNP have/VBP ZERO/NNP de-
sire/NN to/TO be/VB civil/JJ ./. It/PRP ’/” s/VBZ a/DT charade/NN and/CC a/DT slo-
gan/NN ,/, but/CC they/PRP want/VBP to/TO destroy/VB conservatism/NN.

Also the following example is taken from the STS data set, and shows the BF definition
when no endpoint tag precedes the trigger. In this case, all PoS tags from the beginning
of the sentence are included in the feature.

Now/RB I/PRP can/MD see/V B why/WRB Dave/NNP Winer/NNP

screams/NNS about/IN lack/NN of/IN Twitter/NNP API/NNP , /, its/PRP$

limitations/NNS and/CC access/NN throttles/NNS !/.

Two BFs are extracted from this tweet, namely (DT,VB,{MD, PRP, RB}) and (IN,VB,{MD,
PRP, RB}), both corresponding to “Now I can see”.

Also in this approach, as in those presented in Chapters 3 4 and as already discussed
in Section 2.3 when applying the classifier, we set the BFs at true whenever the trigger
and the endpoint PoS tags are the same and the PoS tag set is included in the one of the
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corresponding dictionary feature built on training set. More than one BF can be set at true

at the same time.

In this Chapter the BFs are not been built using unsupervised dictionary of tweets, but in
the future we plan to add it in the system to improve the performance of the classifica-
tion.

since the BFs are based on PoS tags, input is tagged by using SVMtool [35]1 because it is
a SVM-based tagger achieves a very competitive accuracy of 97.2% for English.

5.2.1 System architecture

The global architecture of the approach we are proposing follows the schema depicted in
Figure 5.1. All tweets are preprocessed before feature extraction. In fact, they follow a

Figure 5.1: Our System Schema for Twitter Sentiment Classification. MaxEnt Classifier
is trained with a feature set represented by unigrams and bigrams of word and the BFs.

specific set of conventions, including a maximum of 140 characters for length, the use
of emoticons to express mood, of target to mention other tweet users and of hashtags to
mark topics. When extracting standard features, which in our case are represented by
word unigrams and bigrams, not differently of other works in the field [39], we consider
the following preprocessing steps:

1. all emoticons are deleted2;

2. all HTML entities are removed;

3. all strings composed by three or more repetitions of the same letter are replaced by
a string including only two repetitions;

1 The software can be freely downloaded http://www.lsi.upc.edu/~nlp/SVMTool/
2 Actually, STS dataset comes without emoticons.

http://www.lsi.upc.edu/~nlp/SVMTool/
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4. all URLs are replaced by the token URL;

5. all mentions, characterized by the syntax “@⟨ username ⟩” are replaced by the token
USER;

6. all retweets characterized by the syntax “RT : @⟨ username⟩” are deleted;

7. hashtags, characterized by the syntax “#⟨ some string⟩” are left untouched for uni-
grams and bigrams.

Hashtags are left because they are consistently used, and therefore behave like content
words in normal language. However, tweets are PoS tagged to build BFs. As placeholder
tokens such as URL or USER would not correspond to any PoS, they are deleted before
tagging too.

After that, all BFs corresponding to the (endpoint, trigger) in Table 2.1 are collected from
the training set together with the number of their occurrences. They are then ranked in
descending order of number of occurrences and the top K are inserted in the dictionary.
In the assessment described in this Chapter we adopted K = 50 as already discussed in
Section 2.3.

The Stanford MaxEnt classifier [70]3 is then applied to the feature vector obtained by
integrating unigrams, bigrams, and BFs. The choice of this approach is supported by both
literature [39] and the results of some preliminary tests not reported in this paper.

5.3 Case studies

This section aims at describing the design of the case study and the datasets used to
assess the proposed approach. In the perspective of using our results to realize an actual
system for Twitter sentiment analysis, we aim not only at verifying global performance
with respect to the state-of-the-art, but also at trying to identify the strength and weakness
points of the approach. In particular, we want to minimize the quantity of the training
material necessary and to estimate the contribution of BFs to the global results. All in all,
we consider the following research questions:

RQ1 Which is the minimum training data size which gives the best performance?

RQ2 Is the performance of the proposed approach better than state-of-the-art on the three
considered data sets?

3 The classifier can be freely downloaded from http://nlp.stanford.edu/software/
classifier.shtml

http://nlp.stanford.edu/software/classifier.shtml
http://nlp.stanford.edu/software/classifier.shtml
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RQ3 Which is the contribution of barrier features to the system performance?

Following related works, performance is evaluated by separately computing Precision (P),
Recall (R) and F1 for negative and positive sentiments and averaging the two resulting
values.

5.3.1 Data Sets

Experiments are performed on the three following data sets as they are those generally
considered for this task:

Stanford Twitter Sentiment (STS) The original Stanford Twitter Sentiment (STS) from [39]
4 is composed by 1.6 million general tweets and has been annotated by using a
scraper that periodically queried the Twitter API. The obtained tweets containing
positive emoticons, such as :), :-), : ), :D and =), have been annotated as positive
instances, while the other ones containing emoticons, such as :(,:-(, or : (, have
been annotated as negative instances. The training set comes with all these emoti-
cons stripped off, though. As we need a development set to answer RQ1 without
risking overfitting, we randomly extracted 1, 000 tweet from the training set. The
test set adopted by [100] contains 1, 000 tweets, of which 527 are negative, and 473

positive.

Health Care Reform (HCR) The Health Care Reform (HCR)5 corpus contains the tweets
crawled in March 2010 and the hashtag “#hcr”(health care reform) is included in
them. This dataset is annotated in [103]. A subset of HCR is labeled with three
polarity tags: positive, negative and neutral. Since the focus of our work is the
classification of positive and negative tweets, we consider the two-polar dataset re-
leased by [100]6. In fact, this two-polar version of the HCR dataset is composed by
1, 354 tweets, divided 957 negative and positive 397 instances, obtained by merging
the training set and the test set provided by [100].

Obama-McCain Debate (OMD) The Obama-McCain Debate (OMD) dataset is com-
posed by 3,238 tweets posted on Twitter in September 2008 during the first U.S.
presidential TV debate [101]. Amazon Mechanical Turk is used to obtain senti-
ment ratings of these tweets where each tweet was classified by one or more voter

4 The corpus can be freely downloaded at http://help.sentiment140.com/for-students
5 This data can be freely downloaded at https://bitbucket.org/speriosu/updown/src/

5de483437466a9b134ef7c3e886f5b2b0fdf2fff/data?at=default.
6 This data has been freely downloaded at http://www.tweenator.com/index.php?page_

id=8 in November 2012

http://help.sentiment140.com/for-students
https://bitbucket.org/speriosu/updown/src/5de483437466a9b134ef7c3e886f5b2b0fdf2fff/data?at=default
https://bitbucket.org/speriosu/updown/src/5de483437466a9b134ef7c3e886f5b2b0fdf2fff/data?at=default
http://www.tweenator.com/index.php?page_id=8
http://www.tweenator.com/index.php?page_id=8
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as either positive, negative, mixed, or other which are tweets without any associated
rate. Tweets rated by at least three voters with half of the votes being either positive
or negative have then been included in the data set7, which in total includes 1, 081
tweets, split in 393 positive and 688 negative ones. OMD is not divided in training
and test set.

5.3.2 Experimental set-up

In this section we describe the different systems involved in assessment. The Barrier Fea-
tures System (BFS) implements the approach we are proposing. The WOBFS (WithOut
Barrier Features System) is identical to BFS, except that BFs are not considered. Thus,
its feature vector is composed by unigrams and bigrams of words and it adopts MaxEnt
classification. Eventually, the system presented in [100] shows the best performance on
all three data sets. It is based on NB classification and a feature set composed by unigrams
of words together with a new set of semantic features discussed in Section 5.1. We refer
to this system as the SoAS (State-of-the-Art System).

RQ1 requires the definition of a development set and of a series of training sets of in-
creasing size. Thus, it can be addressed only for the STS data set, because the others
are too small. In general, we use a protocol based on a training set distinct from the test
set, and from the development set when used, only for STS. In this case, training sets
are randomly extracted from the set of data available for training. To minimize possible
bias connected to the random choice, we repeated each experiment 20 times and averaged
performance.

For HCR and OMD, tests are based on a 5-Fold Cross Validation (5-FCV) experimental
protocol, where the data set is randomly split into five partitions. Each 5-FCV experiment
is repeated 10 times and the results are averaged. Note that in [100] 5-FCV was used
only for OMD, while for HCR a split between training and test sets was adopted, but
not released. Furthermore the sizes of the retrieved sets are a bit smaller8 than the ones
exploited in experimental phase of [100].

As every experiment is repeated 10 or 20 times, we can compute confidence intervals
at 95% to decide whether differences with the SoAS are statistically significant. On the
other hand, when we can run both systems we are comparing, such as for RQ3, we apply
approximate randomization to evaluate statistical significance.

7 This data have been freely downloaded at http://www.tweenator.com/index.php?page_
id=8 in November 2012.

8 655 instead of 839 for training set and 699 instead of 839 for test set

http://www.tweenator.com/index.php?page_id=8
http://www.tweenator.com/index.php?page_id=8
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Figure 5.2: Baseline System Schema, called WithOut Barrier Feature (WOBF). In this
system, after the preprocessing step, a MaxEnt classifier is used by adopting a feature
vector of unigrams and bigrams of words.

RQ3 aims at estimating BF contribution and therefore we compare the performance of
our system with a system which is identical except for this point. However, as discussed
in Section 5.1, our baseline system WithOut Barrier Features (WOBF) is implemented by
following [39], that is a MaxEnt classifier applied to a feature set including unigrams and
bigrams of words. WOBF is therefore composed by three modules, namely preprocessing,
feature extraction and sentiment polarity classification, as depicted in 5.2.

5.4 Results

In this section the experimental results are reported and discussed for each research ques-
tion.

5.4.1 Barrier Features contribution

Figure 5.3: Learning curve for STS on the development set.

As discussed in the preceding section, the minimum training set size necessary to obtain
the best performance has been chosen on a development set, to avoid overfitting. From
the resulting learning curve, plotted in Figure 5.3, after a first maximum between 60K and
65K, F1 saturates at a size of about 1, 440K. Therefore, the training set adopted for BFS
has this latter size.
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Table 5.2: Experimental results to compare the performance of our system and State-of-
the-Art System (SoAS). Bold cases correspond to the best performance, while symbol ‡
indicates statistical significance of the comparison, namely that the SoAS performance is
external to the confidence interval at 95% of BFS performance.

Data Set System Positive Sentiment Negative Sentiment Average
P R F1 P R F1 P R F1

STS SoAS 85.80 79.40 82.50 82.70 88.20 85.30 84.25 83.80 83.90
BFS 84.05‡ 89.06‡ 86.48‡ 89.56‡ 84.73‡ 87.08 86.80‡ 86.90‡ 86.78‡

HCR SoAS 53.80 47.20 50.30 84.50 87.60 86.00 69.15 67.40 68.15
BFS 71.62‡ 46.82 56.61‡ 80.71‡ 92.29‡ 86.11 76.16‡ 69.56 72.71‡

OMD SoAS 68.90 75.60 71.70 87.10 82.40 82.20 77.65 79.00 78.20
BFS 82.13‡ 74.25 77.99‡ 86.05‡ 90.77‡ 88.35‡ 84.09‡ 82.50‡ 83.16‡

Table 5.3: Experimental results to evaluate the BF contribution. Bold cases correspond
to the best performance. Symbol † indicates that the ρ-values, computed by approximate
randomization, are smaller than 0.05 level.

Data set System Positive Sentiment Negative Sentiment Average
P R F1 P R F1 P R F1

STS WOBFS 83.71 88.60 86.09 89.14 84.42 86.67 86.42 86.51 86.38
BFS 84.05† 89.06† 86.48† 89.56† 84.73 87.08† 86.80† 86.90† 86.78†

HCR WOBFS 69.57 45.51 55.02 80.23 91.73 85.59 74.90 68.62 71.62
BFS 71.62† 46.82† 56.61† 80.71 92.29† 86.11† 76.16† 69.56† 72.71†

OMD WOBFS 81.42 70.79 75.73 84.30 89.62 86.88 82.86 80.20 81.30
BFS 82.13† 74.25† 77.99† 86.05† 90.77† 88.35† 84.09† 82.50† 83.16†

Table 5.2 compares BFS’s performance on the test set with state-of-the-art. Average per-
formance is always significantly better for BFS, with the only exception of recall for
HCR, where there is not statistical significance. Even when considering that for HCR the
comparison involves two different protocols, namely training and test sets for SoAS and
5-FCV for BFS, the improvement in terms of F1 for BFS is quite important. Moreover,
when we separately consider positive and negative sentiments, F1 is never worse for BFS
than SoAS, although in some cases precision or recall can show a discording trend. All in
all, we can conclude that on these data sets BFS has state-of-the-art performance.

However, for STS, SoAS is trained on a much smaller training set, composed of only 60K
tweets [100]. As they did not release the training set they used, we trained 10 systems on
training sets composed by 60K tweets randomly selected from the initial training data and
averaged the performance. BFS performed F1 = 82.39± 1.87, with a confidence interval
at 95%, to be compared with F1 = 83.90 for SoAS. Also in this case, then, our system
performance is not significantly worse than the SoAS, even if it employs a significantly
smaller knowledge based contribution.
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To answer RQ3 we estimate the contribution of BFs by comparing performance on each
data set of the system with and without them. Results, reported in Table 5.3, show how the
barrier features contribution always improve performance both in terms of precision and
recall, and therefore also in F1. Furthermore, such improvement is statistically significant
in all but one case.

5.5 Conclusion and Future Works

Feature design is crucial in any classification problem as it represents the means for intro-
ducing in the system the necessary information. On the other hand, automatic construc-
tion of this information greatly improves the applicability of the approach. We therefore
explored the effectiveness of BFs for sentiment polarity classification in Twitter posts and
we showed on three different data sets that they can be very effective to obtain a classifi-
cation system which attains state-of-the-art performance with minimum need of manual
intervention.

Indeed, only the pairs (target, endpoint) should be designed by an expert, but in fact they
seem to be very intuitive and even more importantly, they depend on the language rather
than on the task. We plan to explore whether a different choice of these pairs gives better
performance, and to find criteria to design such pairs also for languages different from
English.

Interestingly, two of the considered data sets are quite small. Therefore BFs do not need
a large training set to attain good performance. This is not contradicted by the STS case,
where, even if a better accuracy was obtained by using more training data, the system
shows a competitive accuracy also with a small training set.

In the future we plan to extract the BFs using an unsupervised dictionary, built employing
unlabeled Twitter posts taken from the same domain, as in our approach for the entity and
relation classification described in tha Chapters 3 and 4.
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Chapter 6

Training Natural Language Parsers to
improve Concept Location

Identifier names play a key role in program understanding and in particular concept lo-
cation. Programmers can easily “parse” identifiers and understand the intended meaning.
This, however, is not trivial for tools that try to exploit the information in the identifiers
to support program understanding. To address this problem, we resort to natural language
analyzers, which parse tokenized identifier names and provide the syntactic relationships
(dependencies) among the terms composing the identifiers. Such relationships are then
mapped to semantic relationships.

In this Chapter, we have evaluated the use of off-the-shelf and trained natural language
analyzers to parse identifier names, extract an ontology and use it to support concept lo-
cation. In the evaluation, we assessed whether the concepts taken from the ontology can
be used to improve the efficiency of queries used in concept location. We have also in-
vestigated if the use of different natural language analyzers has an impact on the ontology
extracted and the support it provides to concept location. Results show that using the con-
cepts from the ontology significantly improves the efficiency of concept location queries.
The results indicate that the efficiency of concept location queries is not affected by the
differences in the ontologies produced by different analyzers.

The main contributions of this Chapter as compared are:

1. An approach to train natural language analyzers for use with identifiers.

2. A comparison among the different natural language analyzers investigated in this
work in terms of differences between the extracted ontologies in addition to their
support to concept location.
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In the following Sections we describe: the different types of natural language analyzers
used in this study, the mapping of natural language dependencies and ontological relations
are presented, the steps involved in the concept location task. Section 6.5 presents the
case study, including procedure, results and discussion to compare the different natural
language analyzers in terms of differences between the extracted ontologies

6.1 Background and Motivations

During program understanding, source code exploration in search for a specific concept is
a typical activity. One of the key source code elements which affects this activity is iden-
tifiers. Identifiers serve as a link between the intention of a concept and its extension in
the source code ([94]). Different approaches which take advantage of this fact have been
proposed by various authors to improve code search and support program understanding
(see [72, 48, 33, 1, 96] and [102]).

The intention of a concept in an identifier is reflected in the terms chosen, their relative
order and the relationships among them. For example, an identifier name constructed from
the terms record and event, might convey two different meanings to the reader when the
terms are used in a different sequence: recordEvent, which might mean logging an event,
and eventRecord, a type of record. While this difference is easy to grasp for a human, it is
not obvious for tools that are designed to support program understanding. To address this
problem, we resort to natural language dependency analyzers (see Section 7.3 for details
about dependency parsing), which can be used to extract the semantic relationships among
the identifier terms.

Natural language dependency analyzers present the syntactic relationship between the
identifier terms through natural language dependencies (e.g. noun-specifier or direct-

object) among them. Though these relations are syntactic, very often the terms they
connect are semantically related. Of course this is not always the case, and, for example,
the relation between a determiner and the corresponding noun is not semantically rele-
vant. However, the relation between a verb and its object usually has a semantic nature.
Therefore, we focus on some categories of the dependencies extracted from the analyzer
in order to obtain relevant semantic relations for our aims.

In the work ([1]), such information has been exploited to extract an ontology from iden-
tifiers and support program understanding. The extraction of the ontology is conducted
by parsing sentences constructed from identifiers. In this work, in addition to the natu-
ral language dependency analyzer used in [1], we have considered analyzers which are
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trained on a training set that closely resembles the structure of identifiers. The training set
is constructed from sentences and phrases automatically extracted from the textual docu-
mentation of the system which comes with the source code and is available on-line. The
documentation we considered consists of source code comments, user manuals, system
documentation, and FAQs describing howtos, when available. The extracted sentences
and phrases are automatically converted to identifiers that resemble true code identifiers.
This is achieved by applying a predefined set of rules for identifier construction from nat-
ural language sentences. For these artificially constructed identifiers we know the correct
parse trees, obtained from the parsing of the original sentences or phrases. Hence, we can
use them as a training set.

The natural language dependency trees generated by the analyzers are used to build on-
tologies, which can support program understanding. Based on the level of formality, an
ontology can vary from a simple taxonomy with almost no formalization, to one which
uses a rigorously formalized theory (see [108]). Ontology in our context is a “lightweight
ontology” which is in between these two extremes and does not include axioms support-
ing formal reasoning, but only considers concepts and relations connecting the concepts.
A lightweight ontology which is built using only concepts and relations connecting the
concepts without any formalization is sometimes referred to as “concept map”. In this
Chapter we refer to such lightweight ontology simply as ontology. This definition is op-
posite to that given in Chapter 4 in which the axioms supporting formal reasoning were
very important in the definition of probabilistic integration model for jointly entity and
relation extraction.

In this study, we have assessed the benefits of using ontologies extracted from identifiers
in several subject applications and we have investigated the impact of using different
analyzers to generate the ontologies. The assessment was conducted in the context of
a program understanding task, namely concept location, which uses queries to narrow
down the search space and identify the parts of a program that implement a concept of
interest.

Concept location/assignment problem as described by [9] is a problem related to discover-
ing human oriented concepts and assigning them to their implementation instances within
a program. In the literature various approaches which exploit different information such
as dynamic and textual information are proposed to address this problem. A comprehen-
sive survey of the approaches can be found in [28]. In this section, we discuss approaches
which exploit textual information in the source code to facilitate/improve concept loca-
tion.
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[72] and [33] used information retrieval (IR) based approaches to reduce the effort re-
quired to understand and locate the part of the source code that needs to be changed. In
their approach, they used Latent Semantic Indexing (LSI) to convert source code docu-
ments (composed of identifier terms) and user query to their respective mathematical rep-
resentations. Such formalizations are then used to compute the similarity between them
and get a ranked list of source code documents (by decreasing similarity). The results
of these approaches are dependent on the quality of user queries. To assess the quality
of queries priory to using them and reduce the effort and time required to assess the re-
sults, [44, 45] have proposed query assessment metrics. The metrics are used to evaluate
and classify the query as high-performing query and low-performing query prior to its
execution. [21] have proposed an approach to expand queries using a language model.
The approach uses information flow and term co-occurrence information in the system
documentation to identify terms which can be used to expand the queries.

To reduce the developers’ effort in locating concepts using IR techniques, [92] have com-
bined Formal Concept Analysis (FCA) with LSI. The approach produces a concept lat-
tice using the most relevant attributes (terms) selected from the top n ranked documents
(methods). The evaluation of their approach has shown that the concept lattice is effective
in grouping relevant information. [93] have integrated the Google Desktop Search En-
gine1 into Eclipse, to take advantage of the engine’s features and to facilitate searching of
the source code. [40] have also proposed automated concept location using Independent
Component Analysis (ICA). In this approach, the authors use ICA to identify statistically
independent signals which correspond to concepts. The concepts are then mapped to
methods which are related in functionality.

In other works, parts-of-speech (PoS) of the terms composing the identifiers and natural
language dependencies among them are used to extract information from the source code
and improve the quality of the queries formulated to locate a concept. [48] have generated
noun, verb and preposition phrases from the signatures of program elements to support
context based (re)formulation of queries which are used to search the source code. [102]
have exploited the action oriented identifier graph, which is a natural language represen-
tation of the source code ([32]), to expand user queries and locate a concept. [10] have
employed templates to improve identifier name PoS tagging (see the appendix A for more
details about PoS tags) and have defined rules to improve the structure of field names. In
the work ([1]), they have used the PoS of the terms and the natural language dependencies
to extract an ontology from the source code. The ontology is then exploited to expand the
user queries which are used for concept location. In this work, we have extended it by

1 http://googledesktop.blogspot.com/
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considering three types of natural language analyzers, including analyzers that require
training. To support such training, we have developed a novel approach, presented in this
Chapter. Using this approach we can train a natural language analyzer so that it directly
works on identifier term lists, instead of artificial sentences constructed from identifier
term lists. In the present work we also extend the experimental evaluation of the approach
with additional subject systems, more research questions and additional metrics and data
collected.

In [89] authors have proposed an approach where programmer queries used in concept
location are (re)formulated using the knowledge acquired while manually refining frag-
ments of an ontology related to the concept being searched. Our work is similar to theirs
in that we both utilize ontologies to reduce the search space. However, the ontology they
used is manually constructed while ours is reverse engineered from the identifiers of the
source code using Natural Language Processing (NLP) techniques. [96] have also pro-
posed an approach to extract a domain specific ontology from a graph based representation
of the public interfaces of similar APIs. To extract the domain specific ontology, they have
used a graph matching algorithm. The main difference from our approach is that we aim
at producing a project-specific ontology, while Ratiu et al. try to generate a cross-project
domain ontology. As a consequence, we rely on completely different techniques.

6.2 Identifier Parsing

Identifier names are one of the ways in which developers’ communicate the intention of
the source code, by representing it with a carefully chosen name. To extract and exploit
this information, we use NLP techniques (see [1]). The approach uses a natural lan-
guage dependency analyzer to retrieve a set of dependencies between the different tokens
composing each identifier name. These dependencies are then used to identify ontology
concepts and relations among them. For the sake of clarity, in the following the term
analyzer refers to the tool taking an input sentence, that is a string of words, and return-
ing a syntactic analysis, while the word parser only refers to the last part of this analysis
which takes an input sentence tagged with Parts-of-Speech (PoS). As we will discuss
in the following, the parser can also take as input a set of tagged hypotheses and then
choose among them. The output of the analyzer can be hierarchically organized phrases,
if a constituency based approach is adopted, or a set of dependencies between word pairs
composing a directed graph in case of a dependency based approach. In the latter case,
by dependency relationship we mean an asymmetric binary relationship between a token
called head, and another token called modifier (see [68]).
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While natural language analyzers are mainly conceived to work with full sentences, the
term lists which are obtained by splitting identifiers are different from sentences. In the
work ([1]), they have presented some heuristics to convert an identifier term list into a
sentence, so that it can be handled by a general purpose parser which we call as Standard
English Analyzer (SEA). In the present work, in addition to the analyzer used by [1], we
consider an analyzer constructed to directly work on an identifier term list.

In the following sub-sections, we describe the syntactic analysis approaches followed in
our study with the corresponding analyzers and training sets used. The summary of the
steps involved in the construction of the sentences used in the work ([1]) are also described
below.

6.2.1 Syntactic analysis

In NLP it is well known that a syntactic analysis is necessary to reconstruct the meaning
of the input sentence. In our case, the relations between the entities (concepts) included
in the identifier term list depend on the syntactic and semantic role of each token. A
syntactic parse is therefore necessary for further processing.

The construction of the syntactic analysis for an input identifier can be performed in dif-
ferent ways and requires several steps. The first step in all cases, however, is tokenization.
Tokenization is the process of splitting a text into words or linguistic elements called to-

kens or terms. Identifier names are composed of one or more terms. In order to identify
the composing terms and tokenize identifier names, we have taken advantage of the com-
monly used term separators, such as camel casing (e.g. FileItem) and underscore (e.g.
file_item). This can also be achieved using more sophisticated techniques proposed in
[63]. When the terms used to construct the identifiers are abbreviations or contractions,
they can be expanded using the approaches described by [61, 64] and [47]. For example,
by tokenizing the identifier name fileItem, we get the term list <file, item>.

In our approach, the syntactic analysis includes two modules: PoS tagging and parsing.
The former assigns a label corresponding to the function of the word in the sentence, such
as noun, verb, and so on, to each token, while the latter constructs a syntactic analysis of
the whole sentence. In our case we consider a dependency parser where the analysis is
formed of dependencies between pairs of input words. The dependency parser is chosen
over the constituency parser because it allows a more direct reconstruction of relations
between concepts.
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The two modules can be organized to work in a pipeline or integrated. While in the
pipeline analyzer PoS tagging is completed before the syntactic parse is built, in the in-
tegrated schema a list of possible PoS tags is associated to each token in the input by
consulting the lexicon, and the choice of the best PoS tags is performed during parsing.
In other words, in the integrated analyzer the parser is also involved in the decision of the
PoS tag which is more likely in the considered sentence.

While in the work ([1]) a complete English sentence was constructed from the tokenizer
output and used as an input to a Standard English Analyzer (SEA), in the present approach
we also consider the string of tokens produced by the tokenizer as a direct input to the
analyzer. To directly process the sequence of tokens, three different NLP systems are
considered. These systems use a data-driven natural language parser which requires a
training phase to learn how to process the input text. The advantage of such data-driven
parsers is that they can easily learn how to parse different (novel) languages and their
variants from a collection of suitable parse trees, called treebank.

The first NLP system, which is applied to the token sequence, is similar to the analyzer
of the standard English, SEA. Its two analyzer modules are trained on a largely employed
English treebank, namely the PennTreebank (see [73]). Both remaining NLP systems
involve retraining the two analyzer modules to adapt them to the identifier language, and
only differ in the architecture, being pipeline or integrated.

Training is performed on an annotated set which should be as similar as possible to the
actual input set, hence, in our case, to tokenized identifiers. Indeed, the string of tokens
extracted from an identifier is very different from a natural language sentence as identi-
fiers usually do not correspond to complete sentences. In addition to that, they also have a
different structure depending on their function: method names are more likely to describe
actions and therefore their structure resembles the Verbal Phrases (VPs), while attribute
and class names usually aim at indicating things, in a way similar to Noun Phrases (NPs).
This is, for example, the case of the two examples reported in Figure 6.1 which shows the
analysis of two identifiers: TextPanel and removeFile. The former corresponds to a class
identifier while the latter to a method name. Such distinction is expected to affect the syn-
tactic analysis, but not the PoS tagging. Therefore, we will consider a unique PoS tagger,
but a different parser for each of the two classes of identifiers, namely a VP-parser for
method names and an NP-parser for all the others (classes and attributes). Consistently,
we construct two different training treebanks, one for each parser. In Section 6.2.3, we
present details of the training set construction.

All in all we therefore consider four NLP systems:
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text panel
JJ JJ

root

nn

remove file
VB NN

root

dobj

(a) (b)

Figure 6.1: Examples of dependency analysis for two identifiers: (a) the class name com-
posed by two tokens, text panel, and (b) the method name formed by two tokens, remove
file. Each graph node is labeled by one token of the identifier and the PoS tag assigned to
the token. The edge labels are dependency relationships extracted by the analyzer, namely
dobj - direct object and nn - noun-noun specifier.

1. Untrained Integrated Analyzer (UIA): consists of an SEA integrating PoS tagging
and dependency analysis, applied to complete sentences built by padding the token
sequence produced by the tokenizer. The system architecture is shown in Figure 6.2;

Figure 6.2: Architecture of Untrained Integrated Analyzer (UIA).

2. Untrained Pipeline Analyzer (UPA): to overcome the need for complete English
sentences, a pipeline composed of standard English PoS tagger and parser is directly
applied to the token sequence extracted from the input identifier: the analysis in
this case is obviously more difficult than in the previous case and a more accurate
analyzer is required. The pipeline architecture is depicted in Figure 6.3;

3. Trained Pipeline Analyzer (TPA): both syntactic analysis modules, namely PoS tag-
ger and parser, are retrained to adapt them to the token language and then they are
combined in a pipeline and directly applied to the tokenizer output (see Figure 6.4).
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Figure 6.3: Architecture of Untrained Pipeline Analyzer (UPA): the two analyzer modules
are applied as distributed, without retraining, and in a pipeline.

Note that in this case two different parsers (i.e. VP and NP) are used, depending on
the function of the input identifier;

Figure 6.4: Architecture of Trained Pipeline Analyzer (TPA): a pipeline of the two re-
trained modules is directly applied to the tokenizer output.

4. Trained Integrated Analyzer (TIA): this system is identical to the previous one, ex-
cept that the two syntactic analysis modules are integrated together to improve ro-
bustness towards PoS tagging errors, as depicted in Figure 6.5.

The sentence construction module is adopted only in the UIA, while in all other cases the
analyzer is modified to directly process the tokenizer output. In [1] the steps involved in
the sentence construction of UIA is described in details.

6.2.2 Syntactic analyzers

As our analyzers, we use two tools, namely Minipar which has an integrated PoS tagger
and the Malt parser, which we employ together with the SVMTool PoS tagger. Minipar
is used in UIA while Malt/SVMTool are used in UPA, TPA and TIA. Minipar is quite
robust with respect to natural language variability but is available as is, and can not be
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Figure 6.5: Architecture of Trained Integrated Analyzer (TIA): the two modules are re-
trained and applied in an integrated modality.

adapted in any way to new tasks. Since we aim at adapting the analyzer to identifier
analysis, we consider the combination of the latter two state-of-the-art tools: Malt parser
and SVMTool. Malt parser and SVMTool are based on data-driven NLP approaches.
We have applied them both in their standard English version, referred to as untrained,
and after re-training on a text which is similar to the token sequences generated from
identifiers. Details of these tools are presented in the following sub-sections.

Minipar

Minipar2 is a broad-coverage principle based parser for the English language (see [67]),
in which the grammar is represented as a network. It adopts an integrated strategy: a
list of possible PoS tags is associated to each word in the lexicon and the resulting tag
is chosen during parsing. After parsing a sentence, Minipar outputs information about
the individual components of the sentence and the structural relation between such com-
ponents, including their mutual dependencies. In addition to specifying the relationship
between terms, Minipar labels each term with one of the PoS based on its role in the
sentence.

The PoS which are of interest to us, to extract concepts and relations, and to build the
ontology, are nouns (N), verbs (V) and adjectives (A). Minipar generates a list of tuples.
Each tuple provides information about the term, w, represented by the node, its category
(N, V, A, etc.), the head (root) term it modifies, and the dependency relationship between
the modified term (the head) and w (see [67]). In this study we are mainly interested
in the dependency relations between verbs and their respective objects, and the nouns
and their modifiers. The former dependency relation is referred as object relation (obj)

2 http://webdocs.cs.ualberta.ca/ lindek/minipar.htm
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in Minipar, while the latter as a modifier (mod) or noun-noun specifier (NN) relation.
Figure 6.6 shows a graphical representation of the tuples generated by Minipar for the
sentence Subjects get size.

Subjects get size
N VB N

root

s obj

Figure 6.6: Parse tree for Subjects get size which is generated using SEA (Minipar). The
edge labels are dependency relationships extracted by the analyzer, namely obj - object
and s, subject.

SVMTool PoS tagger

The PoS tagger SVMTool presented in [35] is based on Support Vector Machines (SVMs)
by [109], a machine learning approach largely adopted because of its good performance
on a large set of tasks. The SVMtool tagger for standard English achieves a very com-
petitive accuracy of 97.2%, as reported by [34]. However, the system can be efficiently
trained to be adapted to different languages. In fact, SVMTool is composed of two mod-
ules: SVMLearn and SVMTagger. The former is used to train the models and it is based
on SVM light, a library for SVM implemented by Thorsten Joachims. The latter is used
to tag the input sentences, and in our case it is applied to tokenized sentences. In the UPA
NLP system, the standard English tagger is applied to the token sequence output by the
tokenizer, while in the TPA and TIA systems it is applied after training the models on the
training set, as discussed in Section 6.2.3.

Malt parser

Malt parser3 ([84] and [82]) is a data-driven dependency parser, which, similarly to SVM-
Tool, can be applied either with a standard English model or trained on a training set. In
this case, however, the training set is represented by a collection of sentences annotated
with the corresponding analysis, called treebank. While Minipar also includes a PoS tag-
ger, the input to Malt parser must be tagged. The final output of Malt parser is quite
similar to that of Minipar.

3 Malt parser can be freely downloaded from http://maltparser.org/download.html

http://maltparser.org/download.html
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6.2.3 Training

In NLP tools based on machine learning, a model is learned from a training set and then it
is applied to the input. This is the means we employ in this work to adapt generic natural
language tools to process the list of tokens extracted from an identifier. The crucial point
in this approach, however, is the construction of a training set which can describe the
task at hand. Each training set should be collected from a domain as similar as possible
to the one considered, and then annotated with the information necessary for the model.
In our case, annotation should include both PoS tagging and dependency analysis. We
looked for collections of identifiers available together with their analysis (PoS tags and
parse trees). The closest data we got is the class identifier data set built by [17]. It is a
treebank which has been employed for class and attribute names. This data set contains
120,000 class identifier names extracted from 60 Java open source projects. It has been
used in [17] to understand the Java class identifier naming conventions used in practice.
Since the first step of training is identifying grammatical patterns in names based on a part
of speech (PoS) tagging, we use the identifier names of this data set, which are already
tokenized and tagged using the Stanford Log-linear PoS tagger4.

As larger training sets are usually better than smaller ones, a good training set is obtained
as a trade-off between the need for a large amount of data and the requirement that such
data accurately describe the task at hand. Unfortunately, manual annotation is a very
expensive process, and therefore it is very difficult to obtain large training sets for tok-
enized identifiers. Furthermore no large collection of program identifiers annotated with
PoS tags and associated with the respective parse trees is publicly available. We have
therefore designed automatic procedures to construct the necessary annotations without
manual intervention. We used natural language texts available from the documentation of
the considered software projects to build our training sets. Such documentation typically
includes comments extracted from the source code and user manuals.

As already mentioned above, while only PoS annotations are needed to train the PoS tag-
ger, for the parsers we need a treebank. In a similar way to syntactic parsers, treebanks
can also follow the constituency or dependency framework. The latter suits well ontol-
ogy construction, as it builds dependency relations between words. On the other hand,
the constituency approach produces a sentence parse tree, which is easier to transform to
obtain the kind of simplified sentences corresponding to identifiers. We have used both
approaches during the construction of the training sets for both the PoS tagger and the de-
pendency parser. In fact, the transformations necessary to build a potential identifier from

4 http://nlp.stanford.edu/software/tagger.shtml
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a natural language sentence are more intuitively expressed in the constituency framework.
Eventually, the so obtained constituency treebank has been transformed into an equivalent
dependency one, necessary to train Malt parser.

The construction of the training set by means of transformations applied to a natural lan-
guage treebank has also the advantage of allowing a stronger adaptation to the considered
software system. Indeed, it can automatically be applied to any natural language descrip-
tion of the system, such as comments and documentation. While designing the transfor-
mations to be applied to these texts in order to simulate identifiers, we have considered
the fact that identifiers have different structures depending on their function. For example,
method names are more likely to describe actions and therefore their structure resembles
VPs, while attribute and class names usually aim at indicating things, in a way similar to
NPs. Such distinction is expected to affect the syntactic analysis, but not the PoS tagging.
Therefore, a unique training set including all sentences is considered to train the PoS
tagger, while two different, disjoint training sets (VP-like sentences for method names
and NP-like sentences for class/attribute names) are considered to train two parsers, a
VP-parser and an NP-parser.

First of all, the natural language sentences available from the project documentation are
PoS tagged using SVMTool with the language model for the standard English distributed
with the tagger. Afterwards a constituency parser, namely the Stanford parser discussed
later in Section 6.2.3, is employed to build the constituency parse trees of each sentence.
Although automatic PoS tagging and parsing can introduce errors, it is very cheap and
the error rates of both tools are low enough to be sure that the introduced errors will
not deteriorate too much the resulting treebank. All determiners are then deleted from the
treebank, since no determiner is included in identifiers. Although a similar transformation
could also be applied to other PoS tags, only this one resulted to be effective in some
preliminary tests. This is probably due to the fact that the other infrequent PoS tags are
nearly absent from the simplified text which we use for training the parser. However, the
deletion must be performed in such a way that a consistent parse tree is produced even
after the transformation. An important property of parse trees is that only leafs are labeled
with PoS tags. Therefore, after deletion, every internal node must still have one or more
children.

As noted before, we aim at obtaining two different parsers, namely a VP-parser to apply
to method identifiers and the NP-parser for class/attribute identifiers. Therefore, we need
two different training sets, one containing only parse trees of VP’s and the other of NP’s.
As identifier structures are usually quite simple, we also impose that all NP’s and VP’s
composing our training treebanks are minimal in the sense that they do not contain any
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other subtree with the same root. Such trees are called non-recursive. Then, all non-
recursive VP subtrees are collected from the parsed project documentation to form the
VP training set, while all non-recursive NP subtrees form the NP training set. Eventually,
the parse trees are converted into equivalent dependency graphs, used to train the data-
driven dependency parser

Eventually, we use the whole treebank to train SVMTool, while each of the two treebanks
is used to train the VP-parser and the NP-parser respectively. The so obtained modules
are then introduced in the two trained NLP systems, namely TPA and TIA, as showed in
Figures 6.4 and 6.5 respectively.

Stanford parser

The constituency parser used for the construction of the training treebank is the Stan-
ford parser ([58, 59]) with the English grammar distributed together with the software. It
is based on probabilistic context-free grammars whose probabilities are estimated dur-
ing training and used during parsing to output the most probable derivation with the
Viterbi algorithm. This package is implemented in Java and can be freely downloaded
from http://nlp.stanford.edu/software/lex-parser.shtml. To build
the training treebanks for NP-parser and VP-parser we use another tool distributed by
the Stanford lab, namely the Tsurgeon5, a tree transformation tool which maintains the
consistency of parse trees when non-recursive subtrees are extracted.

6.3 Ontology extraction

The ontology of a program is extracted by exploiting the linguistic information captured
in the program identifiers. The concepts of the ontology are retrieved from the nouns or
noun phrases referred in the parse trees of identifiers, or, in some cases, directly from the
class or program names. The ontological relations are obtained from the natural language
dependencies found in the parse trees of the identifiers and the verbs used in method
names. In our study, we have defined four types of ontological relations which are used
to show the semantic relationships among the concepts in the extracted ontology. Below
we describe each ontological relation in detail. Our examples are taken from the case
studies and the parse trees are represented using an XML notation. In the XML notation,
dependencies are specified as the role attribute of the XML nodes of the parse trees.

5 The tool can be freely download from http://nlp.stanford.edu/software/
stanford-tregex-2012-07-09.tgz

http://nlp.stanford.edu/software/lex-parser.shtml
http://nlp.stanford.edu/software/stanford-tregex-2012-07-09.tgz
http://nlp.stanford.edu/software/stanford-tregex-2012-07-09.tgz
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For instance, subj indicates the subject, dobj (Malt parser, used in UPA, TPA and TIA)
or obj (Minipar, used in UIA) the direct object, det a determiner and nn a noun-noun
specifier.

isA ontological relation: a relation holding between a specific and a general concept.
This relation is mapped to nn (noun noun) or mod (modifier) natural language depen-
dency relations found in the parse trees generated by UIA (Minipar), while when the
parse tree is generated using UPA, TPA and TIA (Malt parser), it is mapped to nn, amod

(adjectival modifier) or partmod (participial modifier) natural language dependencies. In
both cases, the concepts extracted and connected by this relation are the root noun (the
most general concept) which is modified/specified and all the descendant (more special-
ized) sub-concepts, which are obtained by incrementally adding all specifiers/modifiers
down the parse tree. For example, from the UIA and TIA parse trees shown in Figure 6.7,
we can extract the ontological relation isA(text panel, panel), using the natural language
dependency nn.

< r o o t >
<C i d ="E0 " pos ="0" >

<VBE i d ="3" pos ="3" r o l e =" i " p h r a s e =" i s " base =" be ">
<N i d ="2" pos ="2" r o l e =" s " phrase="panel">

<N i d ="1" pos ="1" role="nn" phrase="text" / >
</N>

<N i d ="5" pos ="6" r o l e =" p red " p h r a s e =" t h i n g ">
<N i d ="E2 " pos ="4" r o l e =" s u b j " base =" p a n e l "

a n t e c e d e n t ="2" / >
<Det i d ="4" pos ="5" r o l e =" d e t " p h r a s e =" a " / >

</N>
</VBE>

</C>
</ r o o t >
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
< r o o t >

<NN i d ="2" pos ="0" r o l e =" n u l l " phrase="panel">
<NN i d ="1" pos ="2" role="nn" phrase="text">
</NN>

</NN>
</ r o o t >

Figure 6.7: Parse trees generated by UIA (top) and TIA (bottom) for the sentence text
panel is a thing and text panel, respectively. TextPanel is a JEdit class identifier.

<verb> ontological relation: a context-specific relation holding between a concept, usu-
ally the doer, and the object on which the verb acts. This relation is mapped to a verb term
which is found in the parse tree generated for a method name. The concepts involved in
the relation are those represented by the class name and the object of the verb, if this
exists. Otherwise, the relation is between the concept represented by the program name
and the class name (i.e., the object of the action is considered to be the implicit this
parameter of the method invocation). When it exists, the object of the verb is referred by
UIA using the obj (object) dependency relation while UPA, TPA, and TIA refer to it us-
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ing either dobj (direct object) or pobj (preposition object). This ontological relation is not
extracted if the verb is an accessor (get or set). In method names, the most frequently
appearing prepositions are on and to. On is usually used to mean handle and refers to an
event, while to usually means convert to. Hence, we map these two prepositions to the
verb ontological relations handle and convertTo, respectively.

Figure 6.8 shows the parse trees generated by UIA and TIA for the method name remove-

File of class DirectoryCache found in FileZilla. From these parse trees we can extract the
ontological relation and concepts: remove(directory cache, file).

< r o o t >
<C i d ="E0 " pos ="0" >

<V i d ="2" pos ="2" r o l e =" i " phrase="remove">
<N i d ="1" pos ="1" r o l e =" s " p h r a s e =" S u b j e c t s "

base =" s u b j e c t " / >
<N i d ="E2 " pos ="3" r o l e =" s u b j " base =" s u b j e c t "

a n t e c e d e n t ="1" / >
<N i d ="3" pos ="4" role="obj" phrase="file" / >

</V>
</C>

</ r o o t >
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
< r o o t >

<VB i d ="1" pos ="0" r o l e =" n u l l " phrase="remove">
<NN i d ="2" pos ="1" role="dobj" phrase="file">
</NN>

</VB>
</ r o o t >

Figure 6.8: Parse trees generated by UIA (top) and TIA (bottom) for the sentence Subjects
remove file and remove file, respectively. removeFile is a FileZilla method identifier.

hasProperty ontological relation: a relation holding between a concept and its proper-
ties. This relation is extracted in a similar way as the < verb > relation but only for the
verbs get and set. The concepts connected by this relation are the class name and the
object of the verb, reported as an obj or dobj dependency by UIA or the other analyzers,
respectively.

hasState ontological relation: a relation holding between a concept and its state prop-
erties. This relation is mapped to a be dependency in the parse tree generated by UIA.
The corresponding dependency relations of UPA, TPA, and TIA, which are mapped to
this ontological relation, are auxpass (passive auxiliary), cop (copula), acomp (adjecti-

val complement), and neg (negation modifier). The concepts connected by this relation
are the class name and the predicate verb with the corresponding object, when avail-
able. For example, from the parse trees generated for the method name isClosed of
JEdit class View, we can extract the ontological relation hasState(view, closed) (see Fig-
ure 6.9).
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< r o o t >
<C i d ="E0 " pos ="0" >

<V i d ="3" pos ="3" r o l e =" i " phrase="closed"
base =" c l o s e ">
<N i d ="1" pos ="1" r o l e =" s " p h r a s e =" S u b j e c t " / >
<be i d ="2" pos ="2" role="be" phrase="is"

base =" be " / >
<N i d ="E2 " pos ="4" r o l e =" o b j " base =" s u b j e c t "

a n t e c e d e n t ="1" / >
</V>

</C>
</ r o o t >
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
< r o o t >

<VBN i d ="2" pos ="0" r o l e =" n u l l " phrase="closed">
<VBZ i d ="1" pos ="2" role="auxpass" phrase="is">
</VBZ>

</VBN>
</ r o o t >

Figure 6.9: Parse trees generated by UIA (top) and TIA (bottom) for the sentence Subject
is closed and is closed, respectively. isClosed is a JEdit method identifier.

6.4 Concept location

Concept location is an activity where a programmer searches the source code to identify
a specific part that implements a given concept ([95]). It involves formulating a query
composed of one or more keywords which a programmer thinks are related or refer to the
concept to be searched.

After querying the code base with the initially formulated query, the programmer will
analyze the returned results. If she is not satisfied with the result she may decide to refor-
mulate the query or to further filter the results (see [89], and [48]). Successive filtering of
the query continues until the programmer is satisfied with the result.

To carry out a concept location task, a developer can employ information retrieval (IR)
based approaches or regular expression matching. IR-based approaches treat the source
code as a document corpus and use methods such as latent semantic indexing (LSI) to
index the corpus (see [72], [93], [92], and [33]). In regular expression matching, however,
the query formulated by the developers is directly matched against the content of the files
in the code base using tools such as grep6. IR-based approaches return a ranked list of
documents indicating the relevance of a document to the query, while grep returns a set
of files which contain all the query keywords. In our study, we have used both IR-based
and regular expression matching based approaches to locate concepts.

One of the applications in which concept location is widely used is bug fixing. When
users of a program encounter a problem, they communicate it to the developers of the

6 http://www.gnu.org/software/grep/
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program by filing a bug report. The bug report contains several data, among which a
title, a bug description and (optionally) a set of keywords. It is reasonable to assume that
developers will use this information to formulate a query, used to retrieve files which are
relevant for the bug to be fixed. In our study, we call such queries basic queries.

In the work ([1]), they have proposed to enhance basic queries using concepts taken from
the ontology extracted from the corresponding source code. The enhancement of the
queries is carried out by expanding the set of keywords used for formulating the basic
queries with concept names taken from the ontology. The concept names are selected by
first matching each keyword to the concepts in the ontology and taking the neighboring
concepts of the matched concept. A match is found when the name of a concept is the
same as the keyword. A neighboring concept of a given concept is any concept that is
exactly one edge away from the matched concept, where by edge we mean any ontological
relation (isA, hasProperty, etc.). For example, if we take the portion of ontology shown
in Figure 6.10, for the concept represented by the keyword data, all concepts except http

control socket and external ip resolver will be considered as additional keywords to be
used in formulating the query. In the following, we refer to queries formulated in this way
as enhanced queries.

In our approach, the enhanced queries can be formulated from the ontologies built using
the parse trees of either UIA, UPA, TPA, or TIA. We call the enhanced queries formulated
using concepts taken from the ontology built using parse trees of UIA/UPA/TPA/TIA
respectively as UIA/UPA/TPA/TIA enhanced queries.

The relation between concepts in the ontology are derived from the natural language
dependencies. Since these often represent a semantic relation between the terms they
connect, we argue that the concepts connected in the ontology are also closely related.
Consequently we conjecture that the expansion of the query with the additional closely
related concepts could potentially improve the quality of the query.

6.5 Case studies

To investigate the support programmers can get through ontology extraction, we have con-
ducted a case study. In this case study, we address the following research questions.

• RQ1. Ontology comparison: Do the ontologies produced by different analyzers
differ between each other?
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Figure 6.10: An example portion of ontology built using the steps described in Sec-
tion 6.3. The concepts are presented in the rectangle boxes and the relations connecting
the concepts are shown next to the edges connecting the concepts.

• RQ2. Analyzer impact: Does the choice of the analyzer impact the effectiveness
of concept location?

The concepts used in the enhanced queries are retrieved from different ontologies which
are generated using different analyzers. In RQ1, we compare four ontologies, generated
using the analyzers UIA, UPA, TPA and TIA. To compare the ontologies, we compute the
Jaccard index (|A∩B|/|A∪B|) between them, to see how similar they are, and the ratio of
unique concepts each ontology has to their union (|A\B|/|A∪B|, |B\A|/|A∪B|).

The enhanced queries use concepts taken from different ontologies which are based on
different parse trees of identifiers. The different parse trees are produced using UIA, UPA,
TPA and TIA. In our last research question, RQ2, we investigate whether the choice of the
analyzer impacts the effectiveness of the enhanced queries in concept location and we test
if the impact is statistically significant. The investigation is conducted by comparing the
effectiveness of the enhanced queries formulated using concepts taken from the ontologies
produced using the outputs of the analyzers. To carry out the test, we have formulated the
following null/alternative hypotheses:

H0−RQ2 : There is no statistically significant difference between the effectiveness
of UIA, UPA, TPA, and TIA enhanced queries formulated by expert or average
programmers while using either grep-based or LSI-based approach.

H1−RQ2 : There is a statistically significant difference between the effectiveness
of UIA, UPA, TPA, and TIA enhanced queries formulated by expert or average
programmers while using either grep-based or LSI-based approach.
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To test the hypotheses, we have conducted a two-sided, pair-wise Wilcoxon signed-rank
test. The pair-wise tests computed to test these hypotheses are summarized in Table 6.1.

Table 6.1: Summary of pairs used to answer RQ1 and RQ2 hypotheses. The analyzer
names used in the table correspond to the enhanced queries formulated using the ontology
built from the respective analyzer.

Search LSI-based Grep-based
approach
Query Best Average Best Average
H0−RQ2 UIA vs. UPA UIA vs. UPA UIA vs. UPA UIA vs. UPA

UIA vs. TPA UIA vs. TPA UIA vs. TPA UIA vs. TPA
UIA vs. TIA UIA vs. TIA UIA vs. TIA UIA vs. TIA
UPA vs. TPA UPA vs. TPA UPA vs. TPA UPA vs. TPA
UPA vs. TIA UPA vs. TIA UPA vs. TIA UPA vs. TIA
TPA vs. TIA TPA vs. TIA TPA vs. TIA TPA vs. TIA

In our study, we have conducted multiple tests on the hypotheses formulated for one
research questions (see Table 6.1). To control the false discovery rate and correct for
multiple comparison, we have adjusted the p-values using the [8] (BH) correction.

6.5.1 Data sets: Subject programs

In our case study, we considered three medium size open source systems, FileZilla client7,
JEdit8 and WinMerge9. FileZilla client is a GUI based FTP client which is mainly used
to upload and download files from an FTP server. WinMerge is a merging and differenc-
ing utility for Windows, while JEdit is a cross platform text editor mainly developed for
programmers. FileZilla and WinMerge are written in C++ while JEdit is written in Java.
All systems have a bug tracking system from which we collected closed bug reports with
patch files. From the patches we have collected the names of the classes and files which
are actually modified to fix the bugs. These classes and files are used as our reference to
compute reciprocal rank, precision, and recall (i.e., these are the correct program entities
to be retrieved by means of both basic and enhanced queries).

6.5.2 Procedure

Our case study has three main steps, identifier parsing, ontology extraction and concept

location. Below, we describe each step in detail.

7 http://filezilla-project.org/
8 http://jedit.org/
9 http://winmerge.org/
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Identifier parsing

Before parsing identifier names using the analyzers, they have to be tokenized. If the iden-
tifier names are composed of more than one term, we regard camel casing and underscore
as separators and use them to split identifier names into their composing tokens. Before
splitting an identifier into its composing tokens, prefixes, such as those associated with the
Hungarian notation (e.g., m_ for data members and C for class names) are removed.

Sometimes an identifier’s token is not a word. In such cases we consult a predefined
list of “known abbreviations and contractions” to identify a possible expansion for the
token. If the token is not in the predefined list, we use the longest common sub-string
(LCS) technique to find the most similar expanded form for the token. According to
this technique, an available dictionary of words is accessed to find the most similar word
(i.e., the one with smallest LCS with the given token). For example, the token “remot”
is replaced by “remote” after applying the LCS algorithm. The expansion of a token
to its respective word can also be carried out using the techniques described in existing
works on the topic (see [61, 64, 47, 62]; and [25]). In the following, we assume that the
tokenization step has produced a sequence of valid words.

To automate the tokenization step, we have developed a tool which automatically collects
and produces a tokenized list of class, attribute and method identifier names, following
the procedure described above. In addition to this, the tool produces a fact file, which
is used for further processing in the next step (see Section 6.5.2). The fact file contains
information about all classes in the system and their members. The inputs to our tool are
XML representations of the source code files, produced by the src2srcml tool ([23]) and a
configuration file which contains options and file path information for the files containing
the list of “known abbreviations and contractions” and identifier naming conventions (e.g.,
Hungarian notation in use).

The tokenized list of class, attribute and method identifier names are passed as an input
to three types of syntactic analyzers, namely UPA, TPA and TIA (SVMTool/MaltParser).
The trained analyzers are obtained following the approach presented in Section 6.2.3.
Furthermore the sentences constructed using the same tokenized list is the input of UIA
(Minipar) and they are constructed using the steps described in Section 6.2.2. The output
of the four analyzers is a set of dependency parse trees which are used as an input of the
following step.
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Ontology extraction

In this step, we build four types of ontologies using the information captured in the parse
trees generated by UIA, UPA, TPA and TIA. To build the ontologies from the parse trees,
we have used the natural language dependency to ontological relation mappings described
in Section 6.3. For some of the mappings, such as for the hasProperty ontological relation,
we have to map the identifier containing the ontological relation to the source code where
the identifier is defined (e.g., to determine the containing class). To automate this step
and make it work with all analyzers, we have modified the tool developed in a previous
study ([1]).

To generate ontologies, our tool takes the parse trees produced for all identifiers and the
fact file generated in a previous step (see Section 6.5.2) as an input. The fact file is used
to identify the containing classes of a given identifier which is reconstructed from its
parse tree. The containing classes are required to create some ontological relations, as
described above. For each set of parse trees generated by UIA, UPA, TPA and TIA, our
tool produces four ontologies, which are named after the corresponding analyzers: UIA

ontology, UPA ontology, TPA ontology and TIA ontology.

Concept location

To carry out the concept location task, one of the authors has played the role of the pro-
grammer and has manually collected keywords from each bug title. Bug titles usually
serve as the summary for the problem described in the corresponding bug report and
hence are good sources of keywords. To avoid any bias, the collection of keywords was
conducted prior to computing any results. These keywords are used in the selecting the
concepts to be added when formulating the enhanced queries (see Section 6.4), respec-
tively called UIA enhanced query, UPA enhanced query, TPA enhanced query and TIA

enhanced query. For example, UIA enhanced query is an enhanced query formulated
using concepts taken from UIA ontology which is built using parse trees generated by
UIA.

To query the source code, we have used two different approaches: information retrieval
(IR) and regular expression matching. The IR-based approach uses latent semantic in-
dexing (LSI) to index the document corpus (see [72]). To rank the documents in the
indexed corpus, similarity between the query and every document in the indexed corpus
is computed. If the result of the similarity measure is high, the document is ranked closer
to the top. To compute similarity between the query and the documents, we have used
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cosine similarity. Cosine similarity is the most widely used measure while dealing with
vector-based representation of documents.

For the second approach, we have used the widely used, yet simple method grep. Grep

performs a pattern matching of the query against the content of the files in the code base
and returns all the files which contain all keywords in the query. Hereafter we refer to this
approach as grep-based while we refer to the former, IR-based, approach as LSI-based
approach.

6.5.3 Results

RQ1. Ontology comparison

To answer the RQ1 research question, we have computed the Jaccard index between each
pair of ontologies and the ratio of unique concepts and relations each ontology has to
their union (see Tables 6.2 and 6.3). The comparison of the paired ontologies is done by
considering the union of all concepts, the union of all relations and the union of all paired
concepts.

While the first comparison considers only concepts, the other two focus on pairs of con-
cepts. In the comparisons which focus on pairs of concepts, the union of concept relations

deals with named relations. On the contrary, the union of paired concepts is computed
irrespective of the name of the relation connecting the two concepts. Hence, while two
relations match if both concepts at the end of each relation and the relation names match,
relation names are not taken into consideration while matching paired concepts. In short,
concept relations are named while concept pairs are unnamed.

The Jaccard index computed for all union types of the paired ontologies show that there
is some degree of similarity between the respective ontologies (see Tables 6.2 and 6.3).
From the results, it is also apparent that each type of ontology is characterized by a pecu-
liar set of concepts and relations. Hence, we can say that none of the ontologies subsume
any of the other types of ontologies nor they are exactly the same.

The concepts and relations appearing in some but not all ontologies are due to the different
parse trees generated by the different analyzers. For example, from the parse trees gener-
ated by UPA and TPA for the method name findMatchingBracket in class TextUtilities (see
Figure 6.11), we get different concepts and relations. UPA identifies matching as xcomp

(clausal complement) which is not mapped to any of the ontological relations we defined.
It has considered Bracket as the direct object of <verb> matching, which is mapped to the
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Table 6.2: RQ1: Pair wise comparison between UIA ontology and the remaining three
types of ontologies (UPA, TPA and TIA).

Ontology
UIA ⊔ Only in Common
UPA UIA UPA (Ratio)

FileZilla Concepts 1940 780(0.402) 524(0.27) 636(0.328)
Relations 2676 1254(0.469) 804(0.300) 618(0.231)
Paired cpts 2446 848(0.347)

JEdit Concepts 2911 602(0.207) 562(0.193) 1747(0.600)
Relations 4163 1081(0.260) 1217(0.292) 1865(0.448)
Paired cpts 3875 2153(0.556)

WinMerge Concepts 2648 592(0.224) 809(0.306) 1247(0.471)
Relations 3712 996(0.268) 1305(0.352) 1411(0.380)
Paired cpts 3508 1615(0.460)

UIA ⊔ Only in Common
TPA UIA TPA (Ratio)

FileZilla Concepts 1957 637(0.325) 541(0.276) 779(0.398)
Relations 2718 1042(0.383) 846(0.311) 830(0.305)
Paired cpts 2470 1078(0.436)

JEdit Concepts 2966 564(0.190) 617(0.208) 1785(0.602)
Relations 4267 1081(0.253) 1321(0.310) 1865(0.437)
Paired cpts 3980 2152(0.541)

WinMerge Concepts 2591 594(0.229) 752(0.290) 1245(0.481)
Relations 3583 1061(0.296) 1176(0.328) 1346(0.376)
Paired cpts 3381 1548(0.458)

UIA ⊔ Only in Common
TIA UIA TIA (Ratio)

FileZilla Concepts 1618 610(0.377) 202(0.125) 806(0.498)
Relations 2672 889(0.333) 800(0.299) 983(0.368)
Paired cpts 2351 1304(0.555)

JEdit Concepts 2662 970(0.364) 313(0.118) 1379(0.518)
Relations 4417 1303(0.295) 1471(0.333) 1643(0.372)
Paired cpts 4080 1980(0.485)

WinMerge Concepts 2253 844(0.375) 414(0.184) 995(0.442)
Relations 3409 1078(0.316) 1002(0.294) 1329(0.390)
Paired cpts 3108 1630(0.524)
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Table 6.3: RQ1: Pair wise comparison between UPA, TPA and TIA ontologies
Ontology

UPA ⊔ Only in Common
TPA UPA TPA (Ratio)

FileZilla Concepts 1582 262(0.166) 422(0.267) 898(0.568)
Relations 2096 420(0.200) 674(0.322) 1002(0.478)
Paired cpts 1952 1146(0.587)

JEdit Concepts 2583 181(0.070) 274(0.106) 2128(0.824)
Relations 3558 372(0.105) 476(0.134) 2710(0.762)
Paired cpts 3192 3076(0.964)

WinMerge Concepts 2143 146(0.068) 87(0.041) 1910(0.891)
Relations 2851 329(0.115) 135(0.047) 2387(0.837)
Paired cpts 2758 2480(0.899)

UPA ⊔ Only in Common
TIA UPA TIA (Ratio)

FileZilla Concepts 1499 491(0.328) 339(0.226) 669(0.446)
Relations 2365 582(0.246) 943(0.399) 840(0.355)
Paired cpts 2126 1079(0.508)

JEdit Concepts 2468 776(0.314) 159(0.064) 1533(0.621)
Relations 4121 1007(0.244) 1039(0.252) 2075(0.504)
Paired cpts 3473 2723(0.784)

WinMerge Concepts 2279 870(0.382) 223(0.098) 1186(0.520)
Relations 3608 1277(0.354) 892(0.247) 1439(0.399)
Paired cpts 3395 1652(0.487)

TPA ⊔ Only in Common
TIA TPA TIA (Ratio)

FileZilla Concepts 1557 549(0.353) 237(0.152) 771(0.495)
Relations 2424 641(0.264) 748(0.309) 1035(0.427)
Paired cpts 2169 1290(0.595)

JEdit Concepts 2581 889(0.344) 179(0.069) 1513(0.586)
Relations 4291 1177(0.274) 1105(0.258) 2009(0.468)
Paired cpts 3680 2620(0.712)

WinMerge Concepts 2218 809(0.365) 221(0.100) 1188(0.536)
Relations 3437 1106(0.322) 915(0.266) 1416(0.412)
Paired cpts 3213 1640(0.510)
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ontological relation matching(TextUtilities, Bracket). TPA, on the other hand, has iden-
tified the NN (noun-noun specifier) natural language dependency between Matching and
Bracket, and considered MatchingBracket as the direct object of find. As compared to the
ontological relations produced by UPA, this results in two different ontological relations:
isA(MatchingBracket, Bracket) and find(TextUtilities, MatchingBracket).

If we consider the concepts produced by the two analyzers UPA and TPA, two of them are
common, Bracket and TextUtilities. Concept MatchingBracket is extracted only by TPA,
which, differently from UPA, correctly identifies the specifier dependency relationship
between matching and bracket. In this case, training is crucial in order for the analyzer to
be able to recognize the specifier dependency which is instead missed by the general pur-
pose, untrained analyzer UPA. UPA misses one, potentially relevant concept, as compared
to TPA.

Relations between concepts identified by UPA and TPA are completely disjoint. While
UPA identifies a matching relation between TextUtilities and Bracket, no such relation is
reported by TPA, which, instead identifies two other relations, isA and find, connecting
different pairs of concepts, which also means that the two analyzers do not identify any
common paired concepts. When the extracted relations are used to determine the neigh-
boring concepts that are used to enhance a query, the two analyzers may report different
concepts, because of the difference in the extracted relations. In turn, this might affect the
effectiveness of the enhanced query.

< r o o t >
<VB i d ="1" pos ="0" r o l e =" n u l l " phrase="find">

<VBG i d ="2" pos ="1" role="xcomp" phrase="matching">
<NN i d ="3" pos ="2" role="dobj" phrase="bracket">
</NN>

</VBG>
</VB>

</ r o o t >
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
< r o o t >

<VB i d ="1" pos ="0" r o l e =" n u l l " phrase="find">
<NN i d ="3" pos ="1" role="dobj" phrase="bracket">

<NN i d ="2" pos ="3" role="nn" phrase="matching">
<NN/ >

</NN>
</VB>

</ r o o t >

Figure 6.11: Parse trees generated by UPA (top) and TPA (bottom) for the JEdit method
name findMatchingBracket in class TextUtilities.
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RQ2. Analyzer impact

The different types of ontologies used in this study are built using dependency parse trees
generated by UIA, UPA, TPA and TIA. From the comparison of the ontologies (RQ1),
we have seen that the ontologies are not exactly the same. RQ2 investigates if this dif-
ference has impacted the effectiveness of the enhanced queries used in concept location.
To answer this research question, we have computed the net improvement achieved by
each type of enhanced query over the other for both best and average, LSI and grep-based
queries (see Tables 6.4 and 6.6 for the net improvement and Tables 6.5, 6.7 for a detailed
comparison).

Values (except for the p-values) indicate the number of cases in which the enhanced query
indicated in each column improves the enhanced query indicated in each row. A negative
value indicates that it is the query in the row that improves the query in the column.

Table 6.4: RQ2: Enhanced vs. enhanced queries; best queries. Net improvement of
paired enhanced queries and the corresponding p-values as computed using their top ranks
and best F-measures with the corresponding precision and recall measures. The p-values
computed over values of MRR and F-measure are adjusted for multiple tests.

System FileZilla JEdit WinMerge
Enhanced query UPA TPA TIA UPA TPA TIA UPA TPA TIA

LSI-based Top Ranks UIA 0 0 1 1 1 1 -6 -5 -7
UPA 2 2 1 0 1 -1
TPA 2 -1 -2

P-value UIA 0.99 0.93 1.00 1.00 1.00 1.00 0.11 0.16 0.07
UPA 0.99 0.99 1.00 NaN 1.00 0.58
TPA 0.99 1.00 0.35

Grep-based Precision UIA -4 1 3 0 1 1 0 0 0
UPA 6 6 1 -1 0 -1
TPA 0 -2 -1

Recall UIA 0 -1 0 0 0 1 -2 -2 -2
UPA -1 0 0 1 0 0
TPA 1 1 0

F-measure UIA -4 1 3 0 1 1 0 0 0
UPA 6 6 1 -1 0 -1
TPA 0 -2 -1

P-value (F) UIA 0.99 0.99 0.93 1.00 1.00 1.00 0.57 0.57 0.57
UPA 0.99 0.99 1.00 1.00 NaN 0.94
TPA 0.99 1.00 0.94

For the LSI-based approach, the net improvement of the top rank of one type of enhanced
query over the other is marginal for all systems except WinMerge (see Table 6.4). The
highest net improvements for WinMerge are observed when UIA is compared with UPA,
TPA, and TIA, with net improvements of 6, 5, and 7, respectively. The pair-wise com-
parison result of the median ranks is also marginal for most cases while using LSI-based
approach (see Table 6.6). The highest net improvement in this case is 4; and it is observed
for WinMerge when comparing TIA with TPA. The details of the number of times one
type of enhanced query is better, less than or equal to the other in terms of top and median
ranks are shown in Tables 6.5 and 6.7.
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Table 6.5: RQ2: Detailed comparison of enhanced vs. enhanced queries; best
queries. Enhanced queries are compared on top ranks and best F-measure.

System Enhanced Top ranks Best F-measures
query UIA UIA

Better Less Equal Better Less Equal
FileZilla UPA 4 4 20 4 8 16

TPA 3 3 22 5 4 19
TIA 2 1 25 4 1 23

JEdit UPA 1 0 10 2 2 8
TPA 1 0 10 3 2 7
TIA 1 0 10 2 1 9

WinMerge UPA 0 6 13 3 3 14
TPA 0 5 14 3 3 14
TIA 0 7 12 3 3 14

System Enhanced UPA UPA
query Better Less Equal Better Less Equal

FileZilla TPA 4 2 22 9 3 16
TIA 5 3 20 10 4 14

JEdit TPA 1 0 10 1 0 11
TIA 0 0 11 1 2 9

WinMerge TPA 1 0 18 0 0 20
TIA 1 2 16 1 2 17

System Enhanced TPA TPA
query Better Less Equal Better Less Equal

FileZilla TIA 4 2 22 4 4 20
JEdit TIA 0 1 10 1 3 8

WinMerge TIA 1 3 15 1 2 17
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Table 6.6: RQ2: Enhanced vs. enhanced queries; average queries. Net improvement
of paired enhanced queries and the corresponding p-values as computed using their me-
dian ranks and median F-measures with the corresponding median precision and recall
measures.The p-values computed over values of MRR and F-measure are adjusted for
multiple tests.

System FileZilla JEdit WinMerge
Enhanced query UPA TPA TIA UPA TPA TIA UPA TPA TIA

LSI-based Median rank UIA 3 1 -1 1 1 1 1 -1 0
UPA -1 2 2 1 -2 2
TPA 2 1 4

P-value UIA 0.99 0.99 0.99 1.00 1.00 1.00 0.94 1.00 0.96
UPA 0.99 0.99 0.50 1.00 0.57 0.94
TPA 0.99 1.00 0.75

Grep-based Precision UIA 2 4 5 0 -1 -1 7 6 2
UPA 4 3 -1 -3 -2 -4
TPA 2 -2 -2

Recall UIA 0 -2 0 0 0 0 0 0 -1
UPA -2 0 0 0 0 -1
TPA 2 0 -1

F-measure UIA 4 6 4 0 -1 -1 6 5 1
UPA 5 0 -1 -3 -1 -3
TPA -1 -2 -2

P-value (F) UIA 0.78 0.25 0.26 1.00 1.00 1.00 0.20 0.28 0.99
UPA 0.99 0.99 1.00 1.00 1.00 0.29
TPA 0.99 1.00 0.57

Table 6.7: RQ2: Detailed comparison of enhanced vs. enhanced queries; average
queries. Comparison of enhanced queries on median ranks and median F-measure.

System Enhanced Median Rank Median F-measure
query UIA UIA

Better Less Equal Better Less Equal
FileZilla UPA 11 8 9 10 6 9

TPA 10 9 9 8 2 15
TIA 7 8 13 5 1 19

JEdit UPA 5 4 2 2 2 8
TPA 5 4 2 2 3 7
TIA 5 4 2 1 2 9

WinMerge UPA 8 7 4 9 3 8
TPA 7 8 4 8 3 9
TIA 6 6 7 6 5 9

System Enhanced UPA UPA
query Better Less Equal Better Less Equal

FileZilla TPA 8 9 11 8 3 14
TIA 11 9 8 7 7 11

JEdit TPA 3 1 7 1 2 9
TIA 4 3 4 1 4 7

WinMerge TPA 0 2 17 0 1 19
TIA 7 5 7 2 5 13

System Enhanced TPA TPA
query Better Less Equal Better Less Equal

FileZilla TIA 10 8 10 4 5 16
JEdit TIA 4 3 4 2 4 6

WinMerge TIA 8 4 7 3 5 12
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The net improvements of the best F-measures of one type of enhanced query over the
others while using grep-based approach are also marginal in all pairs except for FileZilla
(see Table 6.4). In FileZilla, TPA and TIA enhanced queries are found more effective than
both UIA and UPA enhanced queries. The highest net improvement, 6, is observed when
comparing the highest F-measures of TPA and TIA with UPA. Like the best F-measures,
the net improvements of the median F-measures are marginal for all pairs except for
some cases of FileZilla and WinMerge (see Table 6.6). The highest net improvement,
6, is observed for FileZilla when comparing TPA with UIA, and for WinMerge when
comparing UPA with UIA. The details of the number of times one type of enhanced
query is better, less than or equal to the other in terms of effectiveness (F-measure) are
shown in Tables 6.5 and 6.7. The results show that in the majority of the cases all pairs
have performed almost equally.

To further analyze if the differences observed are statistically significant, we have for-
mulated the hypothesis stated in H0−RQ2 and we have conducted a two-sided, pair-wise
Wilcoxon signed-rank test (see Table 6.1,H0−RQ2, LSI-based and grep-based approaches).
The results are shown in Tables 6.4 and 6.6. The p-values in the tables indicate that the
observed differences are not statistically significant at α = 0.05 in all the cases.

From the results, we can conclude that the difference in the analyzers used to build the
ontologies has little or no impact on the effectiveness of the respective enhanced queries
in concept location.

6.6 Conclusion and Future Works

We have presented the use of four types of natural language analyzers to parse identifiers
of a system and extract ontologies. Two of the analyzers are adapted to directly work on
identifiers through training while the other two are standard English analyzers. The train-
ing of the analyzers is conducted automatically using a training set constructed from the
documentation of the corresponding system. To evaluate the benefits of using ontologies
constructed from parse trees of identifiers, we have carried out a case study on three open
source systems. The case study was conducted in the context of the support they can give
to concept location while using LSI and grep-based approaches.

The results of the case study, show that using concepts taken from the ontologies extracted
from the respective systems have improved the effectiveness of concept location queries
which can be formulated by experts, while using both LSI and grep-based approaches.
This is achieved irrespective of the type of natural language analyzer used in this study.
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The statistical test conducted on the results also confirms the observation in the majority
of the cases (i.e., the results of at least 8 out of 12 cases for both LSI-based approach
and for grep-based approach are found statistically significant at α = 0.05). For average
queries, improvement in effectiveness of queries is observed only when using the grep-
based approach. The improvements observed in this case are statistically significant at
α = 0.05 in half of the cases.

The comparison of the ontologies generated using different analyzers shows that they are
different, with some concepts and relations in common. However, this did not impact
the support they give to concept location. The comparison on the support they give to
concept location show that in the majority of the cases, they perform equally well and the
observed small differences are not statistically significant.
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Chapter 7

Italian Parsing performance:
Dependecy vs Costituency

7.1 Introduction

The aim of this Chapter is to contribute to the debate on the issues raised by Morphologi-
cally Rich Languages, and more precisely to investigate, in a cross-paradigm perspective,
the influence of the constituent order on the data-driven parsing of one of such languages
(i.e. Italian). The experiments are performed by using state-of-the-art data-driven parsers
(i.e. MaltParser and Berkeley parser) and are based on an Italian treebank, i.e. the Turin
University Treebank (TUT), available in formats that vary according to two dimensions,
i.e. the paradigm of representation (dependency vs. constituency) and the level of detail
of linguistic information.

In the following Sections we summarize the main recent experiences in Italian parsing
both for dependency and constituency giving also a short description of dependency and
constituency syntactic analyses. Afterwards we describe the data used in our experiments
and in particular to the description of the annotation formats of TUT and we present the
experiments and a discussion of the results. Finally, we draw some conclusion and plans
for future work.

7.2 Background and Motivations

In the last years, results for Italian parsing have been reported for both dependency and
constituency paradigms mainly in the context of evaluation campaigns.
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As far as dependency parsing is concerned, Italian was one of the languages on which
parsers were tested during the multilingual track of the CoNLL Shared Task in 2007 [83].
The data set was taken from the Italian Syntactic-Semantic Treebank (ISST) [76], which
has been semi-automatically converted to the CoNLL format using information from its
two annotated levels, i.e. the constituency and the functional structure. Notwithstanding
the relatively small size of the data set (71K tokens), the accuracy for Italian was among
the highest (Labeled Accuracy Score 84.40) together with those for Catalan, Chinese and
English (Labeled Accuracy Scores between 84.40 and 89.61). More recently, dependency
parsers have been tested within the Evalita evaluation campaigns for Italian NLP tools, in
2007, 2009 and 2011 [15, 16, 14]. The data sets were taken from the available releases
of TUT, whose size progressively increased from 2,400 to more than 3,450 sentences
(102,150 tokens in the current version). A version of this treebank in CoNLL format was
created for the Evalita evaluation campaigns. The results reported in the Evalita contests
improved constantly over the years. In 2007, the best reported Labeled Accuracy Score
(LAS) was 86.94 by TULE [65], a rule-based system developed in parallel with TUT.
In 2009, the best LAS was around 88.70 achieved by both TULE [66] and DeSR [4], a
statistical parser1. Finally in 2011, the best performance has been scored with LAS 91.23
and was achieved by the system described in [43].

As far as constituency parsing is concerned, the only recently published results are those
reported with reference to the Evalita campaigns, which have been constantly improved
but still far from those for English. In fact, the best performance attested at the 2011
edition of Evalita was F1 82.96, Bracketing Recall 82.97 and Bracketing Precision 82.94
[13].

The relevance of the comparison between different frameworks is also shown by a re-
cent work [106] on the problem of a fair comparison of performance in different frame-
works.

As far as word order (and, more specifically, constituent order) is concerned, it is usu-
ally included among the features that can motivate the degradation of results in parsing
MRLs, and it has been mainly investigated in the perspective of tasks such as Machine
Translation and Language Generation [5]. It is acknowledged that a combination of sev-
eral factors determines the order of words, e.g. semantic roles, topic, focus, theme/rheme
and communicative events. In free word order languages, the order is used to structure
the information being conveyed to the hearer, while in fixed word order languages the
same role is played by intonation and stress [50]. Nevertheless, a difficulty is related to

1 This contest included also a pilot task with training and testing data from ISST (best LAS 83.38 by
[4]).
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the formal description and processing of free word order languages: instead of a complete
lack of ordering rules, many subtle language specific restrictions apply to the order vari-
ation [41]. Therefore, a large amount of variations can be considered as grammatical in
isolated sentences, but, depending on the context, different word orders are either required
or more natural than others [104].

On the one hand, approaches to language description based on constituency characterize
syntactic structure in predominantly static terms paying minimal attention to the commu-
nicative function that mainly motivates the word order variation [111]. They are usually
considered not adequate for representing orders like VSO (Verb-Subject-Object) or OVS
(Object-Verb-Subject), where the Subject is after the Verb, or where any number of ad-
juncts can be positioned between complements. For instance, in order to represent such
a kind of structures, the Penn format should be increased by new representational tools,
like in TUT–Penn (see Section 7.5.1). On the other hand, dependency approaches do not
explicitly constrain the word order, at least until structures are continuous and projective,
giving a less specified representation of word order. At least in part, this can explain the
different performance in constituency versus dependency parsing for MRLs.

7.3 Constituency and Dependency Parsing

Constituency syntactic analysis (parsing) is based on the decomposition of the sentence
into smaller segments called constituents or phrases. According to their internal structure
these segments are usually categorized in noun phrase, verbal phrase or prepositional

phrase, etc. Figure 7.4 shows a constituency representation of a Italian sentence extracted
by TUT, the data set used in our assessment. Furthermore in dependency syntactic anal-

ysis a sentence is analyzed by linking its words by binary asymmetrical relations, namely
dependency, which are usually classified according to their functional role into subject,
object etc. In the Figure 7.1 a dependency structure for Italian sentence taken also from
TUT. The consequences of such differences in the frameworks are even more evident in
data-driven approaches, especially with sparse data. In fact, constituency approaches im-
pose more constraints on word order and therefore consider a larger number of different
patterns when a lot of variations are possible. This results in a lower number of occur-
rences for each pattern, and therefore in a larger impact of data sparseness. All in all, the
constituency framework will be more seriously hampered by the changes in word order
with respect to the dependency one. In effect, initially methods for constituency parsing
were mainly developed through experimentation on English data and especially the Penn
Treebank [41]. On the contrary, dependency approaches do not explicitly constrain the
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word order, at least until structures are continuous and projective, giving a less specified
representation of word order.

7.4 Data Sets

The experiments presented in this Chapter are based on TUT, i.e. the freely available
Italian resource developed by the Natural Language Processing group of the University of
Turin [12]2. The data currently consist in 102,150 annotated tokens (among which 84,666
words, 10,056 punctuation marks and 7,428 null elements) in TUT native format, which
correspond to around 3,500 sentences3 extracted from texts varying from newspapers, to
legal, to Wikipedia. In the rest of this section, we will describe in detail the formats
available for TUT focusing in particular on the distinctive dimensions of variation which
characterize the annotation of this treebank, namely the paradigm of representation (de-
pendency vs. constituency) and the level of specification of linguistic information.

7.4.1 The dependency formats

The core of the TUT project is a treebank in an original dependency format, henceforth
indicated as native TUT, which has been afterwards enriched by the converted versions in
constituency (see 7.4.2). Native TUT includes a specific format for representing Italian
morphology and syntax.

Moreover, the treebank exploits a rich set of grammatical relations designed to represent
linguistic information according to three different perspectives, namely morpho–syntax,
functional syntax and semantics. Since the information related to each perspective is an-
notated in specially designed part of the relation label of TUT, called component (i.e.
morpho–syntactic, functional–syntactic or syntactic–semantic component), the amount of
linguistic knowledge annotated in the treebank can be easily varied by assuming more
or less detailed relations, i.e. including from one to three of the above mentioned per-
spectives (below referred as 1–Comp, 2–Comp and 3–Comp). This means that each re-
lation label can in principle include all the three components, but can be made more or
less specialized, including information from only one (i.e. the functional–syntactic) or
two of them. For instance, the relation used for the annotation of locative prepositional
modifiers, i.e. PREP–RMOD–LOC (which includes all the three components, in Figure

2 http://www.di.unito.it/~tutreeb
3 Average sentence length 23.90 words per sentence.

http://www.di.unito.it/~tutreeb
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sull’(PREP) 

sull’ (ART)

soffia

il

vento

della (PREP)

della (ART)

VERB-
SUBJ

PREP-ARG

PREP-RMOD-LOC

Anche

Albania

protesta

PREP-ARG

DET+DEF-ARG

DET+DEF-ARG

DET+DEF-ARG

ADVB+CONCESS-   
RMOD

PREP-RMOD

.

END

Figure 7.1: Sentence NEWS–549 in 3–Comp setting: “Anche sull’Albania soffia il vento
della protesta.” (Also on the Albania blows the wind of the revolt.).
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.

END

Figure 7.2: Sentence NEWS–549 in 2–Comp setting.

7.1), can be reduced to PREP–RMOD (which includes only the morpho–syntactic and
the functional–syntactic component, in Figure 7.2) or to RMOD (which includes only the
functional-syntactic component, in Figure 7.3). This works as a means for the annotators
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il

vento

della (PREP)

della (ART)

SUBJ

ARG

RMOD

Anche

Albania

protesta

ARG

ARG

ARG

ARG

RMOD

RMOD

.

END

Figure 7.3: Sentence NEWS–549 in 1–Comp setting.

to represent different layers of confidence in the annotation, but can also be applied to in-
crease the comparability of TUT with other existing resources, by exploiting the amount
of linguistic information more adequate for the comparison, e.g. in terms of number of
relations. For instance, in the Evalita campaigns the 1–Comp setting of the treebank has
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been exploited. Since in more coarse-grained settings several relations can be merged into
a single one (e.g. PREP–RMOD–TIME, used for temporal modifier, and PREP–RMOD–
LOC are merged in RMOD), each setting includes a different number of relations: the
setting based on the single functional–syntactic component (1–Comp) includes 72 rela-
tions, the one based on morpho–syntactic and functional–syntactic components (2–Comp)
140, and the one based on all the three components (3–Comp) 323.

7.4.2 Constituency formats

By applying conversion scripts to the treebank in native TUT format, the constituency
version of TUT has been generated, which includes in particular the TUT–Penn and the
Augmented–TUT–Penn (henceforth APE) formats.

TUT–Penn is an application of the English Penn Treebank (PTB) format to Italian, as
happened for other languages, like Chinese4 or Arabic5, addressing the phenomena typical
of these languages by new specific representational means.

For what concerns morphology, the size of the PoS tag set of the TUT–Penn, if compared
with that exploited in English PTB, clearly reflects the differences between MRLs and
morphologically poorer languages. Nevertheless, even if the representation of morphol-
ogy is more fine-grained with respect to the one adopted for English in PTB, it is reduced
with respect to the PoS tag set used in native TUT in order to avoid serious sparse data
problems [24]. As said above, native TUT exploits a tag set including 16 grammatical
categories, specialized by 43 types and a large variety of features. By contrast, TUT–
Penn adopts a tag set of 68 tags only (versus 36 in the PTB). Beyond the information that
the PTB tag set makes explicit6, TUT–Penn takes into account a richer variety of features
for Verbs, Adjectives and Pronouns. For the amalgamated words, as in native TUT, it
is assumed an explicit representation of each of their parts as separated morpho-syntactic
items, see e.g. the Articled Prepositions “sulla” (on the[fem sing]) and “della” (of the[fem
sing]) in figure 7.4.

As far as syntax is concerned, the annotation in TUT–Penn is structurally the same as
in PTB, but some difference can be observed with respect to the inventory of functional
relations and the use of null elements. In fact, the (very limited set of) functional tags
assumed in PTB is used also in TUT–Penn, but it is increased by some relations used

4 See http://www.cis.upenn.edu/~chinese/.
5 See http://www.ircs.upenn.edu/arabic/.
6 Apart from a few cases of English morphological features which do not exist (e.g. possessive ending)

or do not correspond with Italian forms (e.g. comparative Adjective and Adverb).

http://www.cis.upenn.edu/~chinese/
http://www.ircs.upenn.edu/arabic/
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for representing phenomena related to the flexible Italian word order. For instance, the
label EXTPSBJ is used for the annotation of subjects in post-verbal position. Also the
standard PTB inventory of null elements is adopted in TUT–Penn, but while for English
null elements are mainly traces denoting constituent movements, in TUT–Penn they can
play different roles: zero Pronouns, reduction of relative clauses, elliptical Verbs and also
the duplication of Subjects which are positioned after Verbs (which occurs around 900
times in the corpus).

( (S 
      (PP-LOC (ADVB Anche)
                    (PREP sull') 
                    (NP (ART~DE sull') (NOU~PR Albania)))
      (NP-SBJ (-NONE- *-1))
      (VP (VMA~RE soffia) 
            (NP-EXTPSBJ-1 
                   (NP (ART~DE il) (NOU~CS vento)) 
                   (PP (PREP della) 
                         (NP (ART~DE della) (NOU~CS protesta)))))) 
      (. .)) ) 

Figure 7.4: Sentence NEWS–549 in TUT–Penn.

To expand the possibility of cross-framework and cross-paradigm comparison and assum-
ing the importance of the representation of the predicate argument structure in constituency-
based representations too, we developed also the APE, a format which extends TUT–Penn
by inheriting, when possible, the functional-syntactic knowledge encoded in the native
dependency TUT. Figure 7.5 shows an example where the tags of this format allow to

( (S 
     (PP-RMOD-LOC (ADVB Anche)
                              (PREP sull') 
                              (NP-ARG (ART~DE sull') 
                                             (NOU~PR Albania)))
      (NP-SBJ (-NONE- *-1))
      (VP (VMA~RE soffia) 
            (NP-EXTPSBJ-1 
                  (NP (ART~DE il) 
                         (NOU~CS vento)) 
                  (PP-RMOD (PREP della) 
                                    (NP-ARG (ART~DE della) 
                                                  (NOU~CS protesta)))))) 
      (PUNCT-END .)) ) 

Figure 7.5: Sentence NEWS–549 in Augmented–TUT–Penn.

draw distinctions among modifier and argument functions (e.g. PP–RMOD–LOC instead
of PP–LOC in TUT–Penn, NP–ARG instead of NP to represent the arguments of Prepo-
sitions), and to annotate the function of the final punctuation mark (i.e. END). As in
the native TUT, it is therefore possible to graduate the amount of linguistic knowledge
annotated also in the constituency formats of TUT.
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We conclude this section with some observation on the description of Italian that can be
extracted from an analysis of TUT. This description mainly confirms that Italian has to be
considered among MRLs (see e.g. [107]) since it shows quantitatively the features known
in literature for this kind of languages: rich inflection, amalgamated words, pro–drop and
a relatively free order of words.

order frequency
SVO 79.09
SOV 7.20
OSV 6.61
OVS 5.13
VSO 1.08
VOS 0.89

order frequency
SV 79.10
VS 20.90
OV 18.93
VO 81.07

(a) (b)

Table 7.1: The frequency of permutations of (a) Subject, Verb and Object (SVO) in Italian
declarative clauses and of (b) the Subject and Object preceding and following the Verb in
Italian declarative clauses.

In particular, for word order, the analysis in Table 7.1(a) according to the Greenberg’s six-
ways typology [42], shows that all the six possible permutations of the main constituents
can be found in declarative clauses7 in TUT corpus, with the order SVO strongly prevail-
ing on the others. But, since this analysis takes into account only transitive Verbs, with re-
alized Object, and can be influenced by pro–drop, our observation has to be widened to the
cases where the Verb precedes or follows Subject and Object [29] (see Table 7.1(b)).

7.5 Experimental Assessment

The aim of the experimental assessment is to compare the robustness of dependency and
constituency models with respect to a free constituent order language as Italian and with
respect to the amount of annotated linguistic information. The experiments are performed
on the different TUT formats (i.e. 1|2|3–Comp for dependency and APE and Penn for con-
stituency) discussed in Section 7.4 by using two parsers, namely the Berkeley parser [90]
for the constituency model, and MaltParser [82, 84] for the dependency one. Indeed,
these two parsers have shown state-of-the-art performance during EVALITA 2009 and
2011.

The Berkeley parser is a constituency parser based on a hierarchical coarse-to-fine pars-
ing, where a sequence of grammars is considered, each being the refinement, namely a

7 The term declarative clause refers to clauses where Verb is in tensed form and not playing the role of
relative.



Anita Alicante 107

partial splitting, of the preceding one. Its performance is at the state of the art for English
and for other languages. An interesting characteristic is that porting the Berkeley parser
to a new language requires no additional effort apart from the availability of a treebank.
Constituency parser performance is evaluated as usual by labeled precision (LP) and recall
(LR) and F1.

MaltParser is a data-driven dependency parser showing topmost performance in the mul-
tilingual track of the CoNLL shared tasks on dependency parsing in 2006 and 2007 and in
the EVALITA 2009 dependency parsing task for Italian. Dependency parser performance
is evaluated in terms of Labeled Attachment Score (LAS).

Statistical significance has been evaluated by using Dan Bikel’s Randomized Parsing
Evaluation Comparator8. This test checks whether the following null hypothesis can be
rejected:

H0: the difference in performance between the two experiments is not statistically signif-

icant.

To do so, the performance scores for the single sentences are shuffled between the two
models, and then precision and recall are recomputed. The shuffling is repeated a large
number nt of times (up to 10, 000), and the number nc of times where shuffling induced
a variation in performance larger than the difference between the two models is counted.
Eventually the probability p that the null hypothesis is incorrectly rejected is estimated
by p = nc+1

nt+1
. In other words, the difference in performance between the two models gets

more statistically significant as long as the value of p gets smaller.

In order to study performance variations on sentences with different constituent order, the
data set has been split in two parts: the former (SVO) includes all the sentences where
the SVO constituent order is represented at least once; the latter (noSVO) includes all the

Data set pattern size
training set SVO 646

noSVO 2,379
all 3,025

test set SVO 110
noSVO 390
all 500

Table 7.2: Data set dimensions

other sentences, where all the other constituent orders are represented, but not the SVO.
As shown in Table 7.2, the split of data between the two patterns is strongly unbalanced

8 The tool is freely available from http://www.cis.upenn.edu/~dbikel/software.
html#comparator

http://www.cis.upenn.edu/~dbikel/software.html#comparator
http://www.cis.upenn.edu/~dbikel/software.html#comparator
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in favor of the noSVO, corresponding to nearly four times the number of sentences of
the other pattern, both in the training and in the test sets. To overcome the difficulty
of such unbalance, we therefore decided to randomly subsample the noSVO data sets
to obtain a training and a test set with exactly the same dimensions of the SVO case.
To avoid the risk of biased results, we repeated each experiment 20 times and averaged
the corresponding outputs, obtaining the performance reported in Tables 7.3 and 7.4. A
statistical significance test is applied to each iteration. The TUT data set is not divided in
training and test set. Therefore assessment is performed by following the 10-fold cross
validation protocol.

7.5.1 Constituency Parser

For constituency, parsing performance for Penn and APE formats is depicted in Table 7.3.
The five macro columns correspond to the five different models, obtained by training the

Training Set
All SVO noSVO sub-noSVO balanced

Test Set
Penn LR LP F1 LR LP F1 LR LP F1 LR LP F1 LR LP F1
SVO 81.75 81.37 81.56 72.34 71.49 71.91 79.39 78.10 78.74 69.73 67.95 68.83 76.87 76.41 76.64
noSVO 80.03 80.19 80.11 71.04 70.09 70.56 77.90 77.37 77.64 70.46 69.56 70.01 76.50 76.46 76.48
all 80.51 80.53 80.52 71.42 70.50 70.95 78.32 77.58 77.95 70.26 69.10 69.68 76.60 76.45 76.52

APE
SVO 77.11 76.96 77.04 69.56 70.21 69.88 78.50 78.90 78.70 67.03 65.36 66.18 74.90 74.03 74.46
noSVO 79.26 79.47 79.36 72.02 72.12 72.07 79.18 78.92 79.05 70.12 69.06 69.59 75.71 75.42 75.57
all 78.69 78.88 78.78 71.57 71.47 71.52 79.02 78.92 78.97 69.34 68.12 68.73 75.51 75.08 75.29

Table 7.3: Constituency parser performance: comparisons between all pairs of models are
statistically significant as p ≤ 0.05.

parser on: (i) all the training set (All); (ii) only the SVO and (iii) the noSVO parts of the
training data (SVO and noSVO respectively); (iv) by averaging performance on 20 runs
made by subsampling the noSVO training set (sub-noSVO); and (v) by considering for
training the union of the SVO training set and each of the sets in sub noSVO, and again
averaging performance (balanced). For all the models, performance in terms of LP, LR
and F1 is reported. In all the cases, the null hypothesis can be rejected with values of
p lower than 0.05 and then the comparisons between performance of all pairs of models
result to be statistically significant. Also the standard deviation has been computed for all
averaged cases (sub-noSVO and balanced) and its values are always lower than 3. The
values have not been reported for providing more compact and readable tables.

First of all, note that the first column (All) represents a sort of baseline, where all avail-
able data are exploited. We can see how the addition of more detailed information, in APE
with respect to Penn format, does not help parsing (except when the training set is com-
posed by noSVO parse trees and in the two test sets there are noSVO and All examples),



Anita Alicante 109

probably because of the increased data sparsity. In fact, we would need a bigger treebank
to accurately train the more precise APE labels. Furthermore, when comparing parsing
performance on the SVO and noSVO data sets, we note that the Penn format favors the
SVO pattern, while the APE favors the noSVO. This property is maintained also when
training is performed either on SVO or on noSVO data alone, and this is quite surprising,
but it probably still depends on the influence of the annotation and on the inclusion in the
SVO data set of some noSVO pattern (SVO data set contains all and only the sentences
containing at least one SVO pattern). On the other hand, when we consider the two mod-
els obtained by subsampling, namely sub-noSVO and balanced-train, the former always
performs better on the corresponding noSVO test set. We can therefore conclude that the
better performance of the noSVO model is also related to the fact that the training set is
much larger than in the SVO case.

In general, we can conclude that the best choice is to include all the data available in the
training set: indeed, this is the case with the best performance on both SVO and noSVO
test sets. As a second choice, when the training sets are balanced, the best performance
is obtained, as could have been expected, by training the parser on sentences as similar as
possible to the ones composing the test set.

7.5.2 Dependency Parser

Also for the dependency paradigm, performance deteriorates when the information in the
annotation augments, particularly for 3-Comp. Moreover, 3-Comp performance is much
less stable than the other two cases, suggesting that we are in a data sparsity condition.
We therefore decided to focus our analysis on 1-Comp and 2-Comp.

In general, in the dependency case performance remains more or less the same even when
training is performed on sentences with a different constituent order with respect to the
test set. In fact, in no comparison the value of p is small enough to guarantee the statistical
significance of the differences, with the only exception of the difference between the
models trained on noSVO and on SVO and tested on the SVO test set. In this case there
is no statistical significance both with and without subsampling for the noSVO training
set.

The fact that performance is only slightly sensitive to the different patterns suggests
that the dependency paradigm is more robust than the constituency one with respect to
variability in the constituent order and therefore more suitable to MRLs with such fea-
ture.



110
Barrier and Syntactic Features

for Information Retrieval

Training Set
All SVO noSVO sub-noSVO balanced

Test Set
1-Comp
SVO 88.44 86.13 83.63 83.49 87.34
noSVO 87.62 86.87 82.43 83.95 85.57
all 87.86 86.65 83.63 83.81 86.08
2-Comp
SVO 88.84 86.33 86.25 82.62 86.84
noSVO 86.72 86.45 81.11 82.91 84.77
all 87.34 86.41 82.62 82.82 85.38
3-Comp
SVO 84.60 81.92 86.53 78.09 82.71
noSVO 83.10 82.55 76.87 78.72 80.83
all 83.54 82.86 81.98 78.53 81.38

Table 7.4: Dependency parser performance: Labeled Accuracy Score.

7.6 Conclusion and Future Work

The comparison between the preliminary results obtained with the constituency and with
the dependency approaches suggests that the latter is more effective with respect to the
free order of constituents than the former. The results should be considered as preliminary
because of the limited size of the data set. Indeed, data sparseness hampers the reliability
of results, especially for the most detailed annotation formats. As soon as more annotated
data are available, we will be able to carry on new experiments that exploit more accu-
rate annotation schemata, such as APE for constituency and 3-Comp for the dependency
paradigm.

While we can expect that more annotated data will result in more reliable performance
estimation, we do not think that the difference between constituency and dependency will
substantially reduce. In fact, with more data, the number of different patterns is likely to
grow more rapidly for the constituency paradigm, where different patterns are produced
by different word orders, than for the dependency approach.

Another aspect that we plan to investigate is related to null elements. Usually they are
removed before parsing, both for constituency and dependency9. Given that in Italian null
elements occur quite frequently, it would be interesting to apply to Italian what was done
for Korean in [20], for investigating the effects of taking into account null elements in
parsing.

9 See e.g. the standard CoNLL format, where null elements are not allowed.
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Eventually, when enough data will be available, we could also consider the effect of vari-
ations between the different textual genres. Indeed, the TUT data set even now contains
legal texts which are substantially different from, for examples, the kind of texts extracted
from Wikipedia.
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Chapter 8

Conclusions and Future Works

In this thesis we introduced new Boolean features called Barrier features (BFs), defined in
Chapter 2 and based on PoS Tagging. These features were characterized by a pair ((trig-
ger, endpoint), δ) where trigger and endpoint were two PoS tags and δ was a set of PoS
between trigger and endpoint. Basically BFs were based on the set δ which represented a
link between trigger and endpoint as described in Section 2.2.

BFs are Boolean features and a very large number of different BFs occur in an input
sentence. The problem of data sparsity was solved using appropriate smoothing strategies
as described in Section 2.3.

First of all, to reduce the number of BFs, when applying the classifier, we set the feature
at true whenever the trigger and the endpoint PoS tags were the same and the PoS tag set
was included in the one of the corresponding dictionary feature. This dictionary is built in
unsupervised manner in the approaches for entity and relation classification (Chapters 3
and 4) as described in Section 2.3.1, using a large collection of English texts automatically
labeled with PoS tags. While in the Twitter sentiment polarity classifier we do not use in
this thesis the unsupervised construction of dictionary but we plan to use it in our future
works.

Afterward, we extracted the features defined in the first step from the training and the
test set corresponding to the specific task we were considering and we used these data
to respectively build and assess the classifier. Moreover we considered the smoothing
strategy based on the introduction of an UNKNOWN label [54] for each type of feature.
The UNKNOWN feature has been trained by considering as UNKNOWN all features
that have a number of occurrences lower than a given and chosen threshold in training
set.
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We applied the BFs to different tasks, namely the classification of semantic relations (see
Chapter 3), entity classification and relation extraction (see Chapter 4) and Twitter polarity
sentiment classification (discussed in Chapter 5). Indeed we showed in the experimental
assessments their effectiveness in improving classification performance. The system pro-
posed which employed the BFs overcame the state-of-art system and the same system
trained without BFs. For these reason we can clinch that although BFs are based on PoS
tagging, purely syntactic information, they are able to characterized also semantic aspects
of information, such as the sentiments expressed by tweet or the entities and relations to
classify.

To improve the performance of the entities and relation classifiers and to overcome their
structural limits, as described in Chapter 4, we also proposed a new system, namely Jointly

Entity and Relation Extraction System (JERES) in which the logical constraints, extracted
by an predefined Knowledge Base (KB), are used together with the classifier outputs to
build a probabilistic model based on GMs. JERES overcame the performance of both
state-of-art system and the other our system, called Pipeline system (PipeLs), based on a
pipeline architecture composed by the entity and relation classifiers.

In Chapter 6, we have presented an approach to exploit syntactic information and automat-
ically train a natural language parser for identifiers. The identifier parse trees generated
by applying the trained parser are used to extract concepts and build an ontology that sup-
ports program comprehension. To investigate the impact of parser training on the quality
of the concepts extracted, we conducted a comparative case study on three systems. The
trained parser was compared with two off-the-shelf general purpose parsers, using the
parser outputs to conduct a program understanding task, namely concept location. The
result of the comparison showed that training a parser specifically for identifiers is ben-
eficial for concept location, since the ontological concepts and relations extracted from
the parser dependencies allowed us to formulate efficient queries, that reduced the search
space during concept location.

In the Chapter 7 also studies the importance of syntactic information by comparing the
preliminary results obtained with the constituency and with the dependency approaches
and suggesting that the latter is more effective with respect to the free order of con-
stituents than the former to investigate, in a cross-paradigm perspective, the influence
of the constituent order on the data-driven parsing of Morphologically Rich Languages,
as Italian.

In future we would like to make the porting of BFs in other language, such as Italian.
Furthermore we plan to define new pairs of trigger and endpoint, perhaps based on the
context right of the trigger too.
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We exploit the BFs defined in this thesis in other IE or IR tasks. We perform some
preliminary experiments about the introduction of BFs in another Software Engineering
Task, namely Software Traceability . The traceability task is the process to retrieve a link
(dependency) between two software artifacts (requirement document, test case document
and so on), called traceability link. In our approach we combine some IR-based models,
as Vector Space Model (VSM) and Latent Dirichlet Allocation (LDA), and we represent
the artifacts with feature vectors which contain unigrams, BFs and other syntactic fea-

tures based on dependency parsing. Preliminary experiments show that this approach
overcomes the state-of-art systems.
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Appendix A

Penn Treebank Tag Set

In this appendix we presented the tagset used in PoS tagging step of the BFs and in our
approaches, described in this thesis. It is the Penn Treebank tag set [73]. In the following
table we summarize the main PoS tags contained in this tag set.

ID PoS Tag Lexical Category
1 CC Coordinating conjunction
2 CD Cardinal number
3 DT Determiner
4 EX Existential there
5 FW Foreign word
6 IN Preposition or subordinating conjunction
7 JJ Adjective
8 JJR Adjective, comparative
9 JJS Adjective, superlative

10 LS List item marker
11 MD Modal
12 NN Noun, singular or mass
13 NNS Noun, plural
14 NP Proper noun, singular
15 NPS Proper noun, plural
16 PDT Predeterminer
17 POS Possessive ending
18 PP Personal pronoun
19 PP$ Possessive pronoun
20 RB Adverb
21 RBR Adverb, comparative
22 RBS Adverb, superlative
23 RP Particle
24 SYM Symbol
25 TO to
26 UH Interjection
27 VB Verb, base form
28 VBD Verb, past tense
29 VBG Verb, gerund or present participle
30 VBN Verb, past participle
31 VBP Verb, non-3rd person singular present
32 VBZ Verb, 3rd person singular present
33 WDT Wh-determiner
34 WP Wh-pronoun
35 WP$ Possessive wh-pronoun
36 WRB Wh-adverb
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