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Abstract

The activity recognition is a very big challenge for the entire research community. Thus,

there are already numerous techniques able to find occurrences of activities in time-

stamped observation data (e.g., a video, a sequence of transactions at a website, etc.)

with each occurrence having an associated probability.

However, all these techniques rely on models encoding a priori knowledge of either

normal or malicious behavior. They cannot deal with events such as “zero day” attacks

that have never been seen before. In practice, all these methods are incapable of quanti-

fying how well available models explain a sequence of events observed in an observation

stream.

By the way, the goal of this thesis is different: in order to address the issue listed

above, we want to find the subsequences of the observation data, called unexplained

sequences, that known models are not able to “explain” with a certain confidence.

Thus, we start with a known set A of activities (both innocuous and dangerous) that

we wish to monitor and we wish to identify “unexplained” subsequences in an observa-

tion sequence that are poorly explained (e.g., because they may contain occurrences of

activities that have never been seen or anticipated before, i.e. they are not in A).

We formally define the probability that a sequence of observations is unexplained

(totally or partially) w.r.t. A. We develop efficient algorithms to identify the top-k To-

tally and Partially Unexplained Activities w.r.t. A. These algorithms leverage theorems

that enable us to speed up the search for totally/partially unexplained activities. We de-

scribe experiments using real-world video and cyber security datasets showing that our

approach works well in practice in terms of both running time and accuracy.
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Chapter 1

Introduction

1.1 The “Unexplained” Activity Problem

Identifying unexpected activities is an important problem in a wide variety of applica-

tions such as video surveillance, cyber security, fault detection in safety critical systems,

and fraud detection.

For instance, airport baggage areas are continuously monitored for suspicious activ-

ities by video surveillance. In crime-ridden neighborhoods, police often monitor streets

and parking lots using video surveillance. In Israel, highways are monitored for suspi-

cious activities by a central authority. However, all these applications search for known

activities—activities that have been identified in advance as being either innocuous or

dangerous. For instance, in the highway application, security officers may look both for

normal behavior (e.g. driving along the highway in a certain speed range unless traffic

is slow) as well as “suspicious” behavior (e.g. stopping the car near a bridge, taking a

package out and leaving it on the side of the road before driving away).

In cyber security, intrusion detection can monitor network traffic for suspicious be-

havior and trigger security alerts. Alert correlation methods aggregate alerts into multi-

step attack scenarios. However, both techniques rely on models encoding a priori knowl-

edge of either normal or malicious behavior. They cannot deal with events such as “zero

day” attacks that have never been seen before. In practice, all these methods are inca-

pable of quantifying how well available models explain a sequence of events observed in

an observation stream.
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1.2 Thesis goal

In order to address the issues described in section 1.1 , we designed and implemented a

framework (the Unexplained Sequence Detector), able to discover the subsequences of

the observation stream not sufficiently explained by well-known activity models.

Figure 1.1 shows how our framework would work in practice. We start with a set of

activity modelsA for both “good” and “bad” activities. Good activities are activities that

are considered appropriate (e.g., certain permitted behaviors in an airport secure baggage

zone) while bad activities are ones known to be inappropriate (e.g., a baggage handler

opening a suitcase, taking items out, and putting them in a different bag). Techniques

already exist to find occurrences of activities in time-stamped observation data (e.g.,

a video, a sequence of transactions at a website, etc.) with each occurrence having an

associated probability. In this thesis, our goal is to find an unexplained sequence detector,

i.e. to identify subsequences of the observation data, called unexplained sequences, that

known models are not able to “explain” with a certain confidence. In other words, what is

happening in unexplained sequences is not well captured by the available activity models

in A. Once such subsequences have been identified, they can be further analyzed, e.g.,

Figure 1.1: Overall working of unexplained sequences
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to learn new activity models from them. Or, as shown in Figure 1.1, each unexplained

sequence can be shown to a domain expert (e.g., airport security or cyber security expert)

who can then add these observed sequences or generalizations thereof to the currently

known list of good or bad activities.

Unexplained sequences allow an application to identify activities never seen or imag-

ined before by experts, and to add them to an increasing body of such knowledge. For

instance, a new type of terrorist attack at an airport or a zero-day attack on a computer

system, may involve sequences of actions (observations) not seen before—and hence not

captured by past activity models (i.e., those in A). In this thesis, we primarily focus on

the unexplained sequence detector component of Figure 1.1.

We achieve this via a possible-worlds based model and define the probability that a

sequence of observations is totally (or partially) unexplained. Users can then look for

all observation sequences that are totally (or partially) unexplained with a probability

exceeding a threshold that they specify. We show important properties of our mathemat-

ical model that can be leveraged to speed up the search for unexplained activities. We

define algorithms to find top-k totally and partially unexplained activities. We develop

a prototype implementation and report on experiments using two video data sets and a

cyber security dataset showing that the algorithms work well in practice, both from an

efficiency perspective and an accuracy perspective.

1.3 Thesis outline

The paper starts (Chapter 2) with an overview of related work. Chapter 3 provides basic

definitions of stochastic activities slightly extending [1] (section 3.1), defines the prob-

ability that a sequence is totally (or partially) unexplained, the problem of finding the

top-k (totally or partially) unexplained activities and classes (section 3.2) and finally

derives theorems that enable fast search for totally and partially unexplained activities

(subsection 3.2.1). Chapter 4 presents algorithms for solving the problems introduced in

Chapter 3. Chapter 5 describes our prototype implementations developed in the video

surveillance and cyber security domains and the related experiments. Chapter 6 presents

the conclusions of the thesis and the possible future works.





Chapter 2

Related Work

We are not aware of domain-independent prior work on discovering unexplained activi-

ties. However, specific work in the domains of video and cyber-security have focused on

anomalous activity detection.

2.1 Video Analysis

2.1.1 A Priori Definitions.

Several researchers have studied how to search for specifically defined patterns of nor-

mal/abnormal activities [2].

The most relevant approaches following this philosophy are:

• DBN (Dynamic Bayesian Networks)

• HMM (Hidden Markov Models)

2.1.1.1 DBN (Dynamic Bayesian Networks)

Bayesian Networks have been used in many researches; for instance, Buxton used Bayesian

Belief Networks for the video interpretation in an application of traffic surveillance [3].

Huang [4] used them for the video interpretation of an airport scenery, Nevatia [5] to

single out the interactions in a group of people. Intille e Bobick [6] used Bayesian Net-

works to single out numerous activities during a football match. Notwithstanding this,

no information is supplied on how the learning of the net parameters occurs.
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Besides the learning problem, the BN have a further defect. They are not suited

to model temporal relationships. As a matter of fact, the time during which the net

building takes place is to be explicitly pointed out. Particular dynamic Bayesian Nets, the

recurrent Bayesian Networks, have been used for the singling out of human behaviours

through the temporal evolution of facial features. Though the RBN have the advantage

of being independent of the event temporal scale, the learning is still complex and the

difference of representation between the spatial relationships and the temporal ones is

not clear.

They are direct acyclic graphs (DAGs) which, based on Bayesian rules, express rela-

tions of conditional dependence (through direct arcs) among random variables (nodes).

Given two events, A and B, if these are correlated in some way, we can think that know-

ing one of them which has just happened can improve the knowledge of the other event

probability.

Now, we can formalize these networks. Given a probability space (Ω,A,P[]), where:

• Ω is the sample space (the collection of the all possible results of the experiment)

• A is the Event space (which contains Ω)

• P[] is a probability function with domain in A and codomain in [0,1]

Given two Events, A and B, which belong to A, the following expression

P[A|B]

represents that A happens knowing that B has just happened; that is the probability

of A conditioned by B.

Then, we can define the Bayesian rule: for two events, A and B, belonging to set A,

the following relation is valid:

P [A|B] =
P [A,B]

P [B]
, (ifP [B] 6= 0) (2.1)

where:

P [A|B] = P [B|A] ∗ P [A] (2.2)

Generalizing to a generic number of elements, we can derive the same conclusions:



2.1 Video Analysis 7

Given a probability space (Ω,A,P[]), there are:

• B1, B2, ...., Bn belonging to A

• ∀i, P [Bi] > 0; i 6= j, BiBj = 0; Ω =
⋃
iBi

For each event A belonging to the set A, we have the following relation:

P [Bk|A] =
P [A|Bk]P [Bk]

(
∑
i

P [A|Bi]P [Bi])
(2.3)

A Bayesian Network is a graph for which the following properties are valid:

• A set of random variables represent network nodes;

• A set of edges, having a direction, connect the couples of nodes (the intuitive

meaning of an arrow from X node to Y node is that X has a direct influence on Y);

• Each node has a conditional probability table which quantifies the effects that ”par-

ents” have on the node, where for parents we want to denote all the nodes whose

arrows are going to the considered node;

• The graph has not direct cycles;

• A node that has not direct parents has a table of marginal probabilities; if the node

is discrete, it contains a probability distribution on the states of the variable that it

represents; if the node is continuous, it contains a density gaussian function of the

random variable which it represents;

• If a node has no parents, then the node contains a conditional probability table.

The graphic structure of a BN allows a non ambiguous representation of inter-dependence

among variables, which causes the most important feature of such type of networks: in

fact, combined probability distribution X = {X1, X2, ...., Xn} can be factorized in terms

of the product among the network CPTs.

P (X = x) =

n∏
i=1

P (Xi|πi) (2.4)
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2.1.1.2 HMM (Hidden Markov Models)

A HMM is a probabilistic model in which the system to be modelled is taken as a process

of Markov’s with unknown parameters that can be obtained from observable parameters,

while in a regular Markov model the state can be directly seen by the observer and the

only parameters are the probabilities of the transitions among the states, in a hidden

Markov model the state cannot be directly seen but only the variables affected by the

states themselves can be accessed.

Each state has a distribution of probability pertinent to the possible output token. On

the other hand the sequence of the tokens generated by a HMM gives some information

about the sequence of the states. The principle of this approach is the use of Markovian

hypothesis. The probability of being in a given state depends only on the probability of

being in the previous one. HMM have been chosen to recognize the American [7] sign

language [8] within the limits of oral identification or for identification in writing [9].

Using the HMM, Hongeng [10] [5] has presented an approach to recognize mono-state

and multi-state activities in a dynamic scenery. Zhang [11] et al. use them to point out

Anomalous Events. The HMM advantage compared with Bayesian nets is the ability to

recognize a sequence of events, but are not as convenient for activities that involve more

that one person. Coupled Hidden Markov Models have been presented by Brand [12]

et al. to reduce this problem, but, once again, they turn out to be inadequate when the

activity subjects are more than two, a situation that requires too complex a model and

a relevant number of parameters, besides a great learning difficulty during the learning

session.

Figure 2.1: Hidden Markov Model
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HMM are characterized by the presence of nodes and arcs, as we can see in the 2.2

figure.

Figure 2.2: Relations among States in Hidden Markov Model

Each node represents a random variable which can accept a certain number of values.

The random variable x(t) is the value of the hidden variable at ”t” temporal instant.

The random variable y(t) represents the value of the variable observed at ”t” temporal

instant. Arrows in the diagram indicate conditional dependencies. It is easy to deduce,

observing the diagram, that the value of the hidden variable x(t) is only dependent on

the value of the hidden variable x(t-1) (at ”t-1” temporal instant). This theory is called

Markov’s theory. Similarly, the value of the observed variable y(t) only depends on the

value of the hidden variable x(t).

The probability of an observed sequence Y = y(0),y(1),....,y(L-1) of length L is:

P (Y ) =
∑
X

P (Y |X)P (X) (2.5)

where the sum involves all the possible hidden node sequences X = x(0),x(1),....,x(L-

1)

There are three fundamental problems about HMM:

• Given the model parameters, calculate the probability of a particular output se-

quence. This problem can be solved through a forward-backward procedure.

• Given the model parameters, find the sequence of hidden nodes which can have

probably generated a certain output sequence. This problem can be solved by

Viterbi’s algorithm.

• Given an output sequence or a collection of sequences, find the set of transitions
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among states and output probabilities that have probably caused such outputs. In

other words, induce a HMM to establish its parameters for a given sequence of

observations. This problem can be resolved by Baum-Welch’s algorithm.

2.1.1.3 Relevant Works

There are numerous relevant works in literature following DBN and HMM approaches.

For instance, [13] studies how HMMs can be used to recognize complex activites, while

[14] and [15] use coupled HMMs. [16] uses Dynamic Bayesian Networks (DBNs) to

capture causal relationships between observations and hidden states. [1] developed a

stochastic automaton based language to detect activities in video, while [17] presented

a HMM-based algorithm. In contrast, this thesis starts with a set A of activity models

(corresponding to innocuous/dangerous activities) and finds observation sequences that

are not sufficiently explained by the models in A. Such unexplained sequences reflect

activity occurrences that differ from the application’s expectations.

2.1.2 Learning and then detecting abnormality

2.1.2.1 Pattern Recognition and Machine Learning

The problem of searching for patterns in data is a fundamental one and has a long and

successful history. For instance, the extensive astronomical observations of Tycho Brahe

in the 16th century allowed Johannes Kepler to discover the empirical laws of planetary

motion, which in turn provided a springboard for the development of classical mechan-

ics. Similarly, the discovery of regularities in atomic spectra played a key role in the

development and verification of quantum physics in the early twentieth century. The

field of pattern recognition is concerned with the automatic discovery of regularities in

data through the use of computer algorithms and with the use of these regularities to take

actions such as classifying the data into different categories. Consider the example of

recognizing handwritten digits. Each digit corresponds to a 28 ∗ 28 pixel image and so

can be represented by a vector x comprising 784 real numbers. The goal is to build a

machine that will take such a vector x as input and that will produce the identity of the

digit 0, . . . , 9 as the output. This is a nontrivial problem due to the wide variability of

handwriting. It could be tackled using handcrafted rules or heuristics for distinguishing

the digits based on the shapes of the strokes, but in practice such an approach leads to a
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proliferation of rules and of exceptions to the rules and so on, and invariably gives poor

results.

Far better results can be obtained by adopting a machine learning approach in which

a large set of N digits x1, ..., xN called a training set is used to tune the parameters of

an adaptive model. The categories of the digits in the training set are known in advance,

typically by inspecting them individually and hand-labelling them. We can express the

category of a digit using target vector t, which represents the identity of the correspond-

ing digit.

The result of running the machine learning algorithm can be expressed as a function

y(x) which takes a new digit image x as input and that generates an output vector y,

encoded in the same way as the target vectors. The precise form of the function y(x) is

determined during the training phase, also known as the learning phase, on the basis of

the training data. Once the model is trained it can then determine the identity of new

digit images, which are said to comprise a test set. The ability to categorize correctly

new examples that differ from those used for training is known as generalization. In

practical applications, the variability of the input vectors will be such that the training

data can comprise only a tiny fraction of all possible input vectors, and so generalization

is a central goal in pattern recognition. For most practical applications, the original input

variables are typically pre-processed to transform them into some new space of variables

where, it is hoped, the pattern recognition problem will be easier to solve. For instance,

in the digit recognition problem, the images of the digits are typically translated and

scaled so that each digit is contained within a box of a fixed size. This greatly reduces

the variability within each digit class, because the location and scale of all the digits are

now the same, which makes it much easier for a subsequent pattern recognition algorithm

to distinguish between the different classes. This pre-processing stage is sometimes also

called feature extraction. Note that new test data must be pre-processed using the same

steps as the training data.

Pre-processing might also be performed in order to speed up computation. For exam-

ple, if the goal is real-time face detection in a high-resolution video stream, the computer

must handle huge numbers of pixels per second, and presenting these directly to a com-

plex pattern recognition algorithm may be computationally infeasible. Instead, the aim is

to find useful features that are fast to compute, and yet that also preserve useful discrim-

inatory information enabling faces to be distinguished from non-faces. These features
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are then used as the inputs to the pattern recognition algorithm. For instance, the aver-

age value of the image intensity over a rectangular subregion can be evaluated extremely

efficiently, and a set of such features can prove very effective in fast face detection. Be-

cause the number of such features is smaller than the number of pixels, this kind of

pre-processing represents a form of dimensionality reduction. Care must be taken during

pre-processing because often information is discarded, and if this information is impor-

tant to the solution of the problem then the overall accuracy of the system can suffer.

Applications in which the training data comprises examples of the input vectors

along with their corresponding target vectors are known as supervised learning prob-

lems. Cases such as the digit recognition example, in which the aim is to assign each

input vector to one of a finite number of discrete categories, are called classification

problems. If the desired output consists of one or more continuous variables, then the

task is called regression. An example of a regression problem would be the prediction of

the yield in a chemical manufacturing process in which the inputs consist of the concen-

trations of reactants, the temperature, and the pressure.

In other pattern recognition problems, the training data consists of a set of input vec-

tors x without any corresponding target values. The goal in such unsupervised learning

problems may be to discover groups of similar examples within the data, where it is

called clustering, or to determine the distribution of data within the input space, known

as density estimation, or to project the data from a high-dimensional space down to two

or three dimensions for the purpose of visualization.

Finally, the technique of reinforcement learning is concerned with the problem of

finding suitable actions to take in a given situation in order to maximize a reward. Here

the learning algorithm is not given examples of optimal outputs, in contrast to supervised

learning, but must instead discover them by a process of trial and error. Typically there

is a sequence of states and actions in which the learning algorithm is interacting with its

environment. In many cases, the current action not only affects the immediate reward

but also has an impact on the reward at all subsequent time steps. For example, by using

appropriate reinforcement learning techniques a neural network can learn to play the

game of backgammon to a high standard. Here the network must learn to take a board

position as input, along with the result of a dice throw, and produce a strong move as the

output. This is done by having the network play against a copy of itself for perhaps a

million games. A major challenge is that a game of backgammon can involve dozens of
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moves, and yet it is only at the end of the game that the reward, in the form of victory,

is achieved. The reward must then be attributed appropriately to all of the moves that led

to it, even though some moves will have been good ones and others less so. This is an

example of a credit assignment problem. A general feature of reinforcement learning is

the trade-off between exploration, in which the system tries out new kinds of actions to

see how effective they are, and exploitation, in which the system makes use of actions that

are known to yield a high reward. Too strong a focus on either exploration or exploitation

will yield poor results. Reinforcement learning continues to be an active area of machine

learning research. Although each of these tasks needs its own tools and techniques, many

of the key ideas that underpin them are common to all such problems.

2.1.2.2 Relevant Works

Several researchers in the literature followed this approach in order to find abnormal

activities: so, they usually first learn normal activity models and then detect abnor-

mal/unusual events. [18] suggests a semi-supervised approach to detect abnormal events

that are rare, unexpected, and relevant. We do not require “unexplained” events to ei-

ther be rare or relevant. [19] uses HMMs to detect rare events, while [20] defines an

anomaly as an atypical behavior pattern that is not represented by sufficient samples in a

training dataset and satisfies an abnormal pattern. [21] defines abnormality as unseen or

rarely occurring events—an initial video is used to learn normal behaviors. [22] shows

how to detect users with abnormal activities from sensors attached to human bodies. An

abnormal activity is defined as “an event that occurs rarely and has not been expected

in advance”. The same notion of abnormal activity is considered in [23] and [24]. [25]

learns patterns of activities over time in an unsupervised way. [26] detects individual

anomalies in crowd scenes—an anomaly is defined as a rare or infrequent behavior com-

pared to all other behaviors. Common activities are accepted as normal and infrequent

activity patterns are flagged as abnormal. All these approaches first learn normal activity

models and then detect abnormal/unusual events. These approaches differ from ours as

they consider rare events to be abnormal. In contrast, we consider activities to be unex-

plained even if they are not rare and the available models are not able to capture them.

For example, if a new way to break into cars has occurred many times (and we do not

have a model for it), then we want to flag sequences where those activities occur as “un-

explained” even if they are not rare. In addition, if a model exists for a rare activity, we
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would flag it as “explained”, while many of these frameworks would not.

2.1.3 Similarity-based abnormality.

2.1.3.1 Main features

Another category of approaches able to find unusual activities deals with similarity-based

abnormality.

In general, for similarity-based approaches, the main task is to define pairwise dis-

tances between all the data points and identify outliers by examining the distance to an

examples nearest neighbors. An example is the work by Breunig et al. [27], who applied

a density-based clustering algorithm to efficiently detect local outliers. Based on the

distance measure and user-defined density thresholds, these algorithms can efficiently

detect the occurrence of outliers (or abnormal points) in a high-dimensional space. The

basic principle is that if the neighboring points are relatively close, the example is con-

sidered normal; otherwise, the example is considered abnormal. The advantage of these

approaches is that no explicit distribution needs to be defined to determine outliers and

that the methods can be made efficiently for large data sets. However, a difficulty in

these approaches lies in the question of how to define effective similarity measures when

a large amount of uncertainty exists. For example, in the sensor network area, sensor

readings received from sensors vary greatly from time to time, following a stochastic

nature. Thus, it would be very difficult to define a distance measure that is sufficiently

robust in these settings, making it difficult also to define density measures. Another dif-

ficulty lies in the requirement in our problem that the algorithm must be online; that is,

efficient models need to be trained ahead of time in order to efficiently detect abnormal

events as they occur. Therefore, in summary, when the data do not provide clear-cut

shapes, and when the data are stochastic in nature, as in the case of sensor readings, the

similarity- based and distance-based approaches cannot work well.

2.1.3.2 Relevant works

[28] proposes an unsupervised technique in which no explicit models of normal activities

are built. Each event in the video is compared with all other observed events to determine

how many similar events exist. Unusual events are events for which there are no similar

events in the video. Hence, this thesis also considers unusual activity as a rare event
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and a large number of observations is required to verify if an activity is unusual. [29]

uses a similar approach: a scene is considered anomalous when the maximum similarity

between the scene and all previously viewed scenes is below a threshold. In [30], fre-

quently occurring patterns are normal and patterns that are dissimilar from most patterns

are anomalous. [31] learns trajectory prototypes and detects anomalous behaviors when

visual trajectories deviate from the learned representations of typical behaviors. An un-

supervised approach, where an abnormal trajectory refers to something that has never

(or rarely) seen, has been proposed in [32]. A normal trajectory is intended to be one

similar enough to one or more trajectories that the system already knows. In [13], activ-

ities performed by a group of moving and interacting objects are modeled as shapes and

abnormal activities are defined as a change in the shape activity model. In the context of

elder care, [33] proposes an approach that first analyzes and designs features, and then

detects abnormal activities using a method based on the designed features and Support

Vector Data Description. [34] proposes a methodology to characterize novel scenes over

long time periods without a priori knowledge. A hierarchical modeling process, charac-

terizing an activity at multiple levels of resolution, is developed to classify and predict

future activities and detect abnormal behavior.

2.1.4 Other relevant work

In [35], unusual events are detected by monitoring the scene with monitors which extract

local low-level observations from the video stream. The monitor computes the likelihood

of a new observation with respect to the probability distribution of prior observations. If

the likelihood falls below a threshold, then the monitor outputs an alert. The local alerts

issued by the monitors are then combined. [36] automatically learns high frequency

events (taking spatio-temporal aspects into account) and declares them normal—events

deviating from these rules are anomalies. [37] learns storylines from weakly labeled

videos. A storyline includes the actions that occur in a video and their causal relation-

ships. AND-OR graphs are used to represent storyline models.

The first preliminary notion of unexplained activities used in this thesis has been

introduced in [38].
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2.2 Cyber Security

Intrusion detection and alert correlation techniques provide valuable and complementary

tools for identifying and monitoring security threats in complex network infrastructures.

Intrusion detection systems (IDS) can monitor network traffic for suspicious behavior

and trigger security alerts accordingly [39], [40], [41]. Alert correlation methods can

aggregate such alerts into multi-step attack scenarios [42], [43], [44], [39], [45]. Intru-

sion detection has been studied for about thirty years, since it was first identified in the

Anderson report [46], and it is based on the assumption that an intruder’s behavior will

be noticeably different from that of a legitimate user and that many unauthorized actions

are detectable [39].

2.2.1 Intrusion detection

The historical evolution of computer systems along with the Internet has drastically re-

duced the cost of transporting information over the world thanks to more work being

done online. With the apparent effectiveness of internet working, today’s networked

information systems are expanding ubiquitously. Indeed, recent years have seen the

explosive growth in the number of devices interconnected to computer and telecommu-

nication networks. As a result, tremendous amounts of data are transmitted from and

to, processed, and stored at central networked information systems. Without doubts, the

networked information systems play crucial roles for most governments, enterprises, and

even individuals. Therefore, they must remain not only up-and running but also secure

against unwanted harmful actions such as attack, misuse, and abuse. However, the infor-

mation systems have witnessed ever-increasing instances of malicious activities despite

the existence of a variety of security technologies. Attackers attempt to steal, modify,

and destroy valuable information and at worst damage the victim systems. And also,

attackers often attempt to make services merely unavailable to intended legitimate users

by exhausting the system resources DoS/DDoS. In many systems, security cannot al-

low these threats because the impact of such attacks is immeasurable and irrevocable.

Despite of the existence of a variety of security measures, attackers eventually manage

to get through them and this helps attacking techniques to speedily evolve. Thus, even

if a security system fails to defend against an attack, it should be well aware of being

attacked and have a mechanism to perform countermeasures in order to prevent further
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attacks and reduce the damage and loss resulting from the attack. That is the main aim

of Intrusion Detection Systems (IDS).

Thus, intrusion detection is the process of monitoring the events occurring in a com-

puter system or network and analyzing them for signs of possible incidents, which are

violations or imminent threats of violation of computer security policies, acceptable use

policies, or standard security practices. Intrusion prevention is the process of performing

intrusion detection and attempting to stop detected incidents happening again. Intrusion

detection and prevention systems (IDPS) are primarily focused on identifying possible

incidents, logging information about them, attempting to stop them, and reporting them

to security administrators. In addition, organizations use IDPSs for other purposes, such

as documenting existing threats, identifying problems with security policies, and de-

terring individuals from violating them. IDPSs have become a necessary addition to the

security infrastructure of nearly every organization that relies on information technology.

Intrusion detection has been an active field of research for about three decades, start-

ing in 1980 with the publication of John Andersons report, Computer Security Threat

Monitoring and Surveillance. In an informatic system, says Anderson, an intrusion is

any attempt to breach security, dependability and availability of this system.

Intrusion detection is based on the assumption that an intruder’s behavior will be no-

ticeably different from that of a legitimate user and that many unauthorized actions are

detectable. Infact, Anderson states [46]: ”Intrusion detection systems analize informa-

tion about the activity performed in a computer system or network, looking for evidence

of malicous behavior”, that is to say an IDS is a system that detects unauthorized ac-

cess or potential attacks on informatic systems through informations source available

on the system (log) or on the network (network traffic). In addition, IDSs are systems

used mainly for monitoring network traffic through a set of rules and flexible algorithms

in order to detect attacks on the autonomous system (AS) involved. In figure 2.3 the

architecture of a generic IDS is reported , and its principal component are shown:

• Data collection: in this phase the traffic envolved on interested system is collected

and stored.

• Detection: in this step the data are analyzed and a subset of them are detected

according to state information and detection policy.

• Response: in this step the output of IDS is built according to response policy.
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Figure 2.3: IDS architecture

Compared with the modality of analysis selected, it is possible to distinguish two

types of intrusion detection systems [47]:

Signature based: An IDS is called signature based [40] if it uses a knowledge base in

order to detect an attack. An IDS analyzes the collected data and compares them to a set

of attack signatures to discover any anomaly actions. So, an anomaly action is discovered

if it exists by a correspondence between its signature and that of a known attack, stored

in a knowledge base. A signature is a pattern that corresponds to a known threat while

signature-based detection is the process of comparing signatures against observed events

to identify possible incidents. Examples of signatures are the following:

• A telnet attempt with a username of root is a violation of an organization’s security

policy.

• An e-mail with a subject of Free pictures and an attachment filename of freep-

ics.exe, which are characteristics of a known form of malware.

• An operating system log entry with a status code value of 645, which indicates that

the hosts auditing has been disabled.

Usually, an attack signature belongs to only one attack and it is possible that an attack
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signature can be associated with more than one attack. On the one hand the simplicity

of the approach and the possibility to use established techniques and optimized pattern

matching make the use of IDS (misuses based) preferable; on the other hand, its quality

depends only on set of the signature compared.

Anomaly based: An anomaly based IDS [40] tries to build correct models of resources’

normal activity and stores them in a knowledge base. This IDS detects anomaly activi-

ties through a comparison of the stored actions with another knowledge base of known

threats; quantitatively, an action is considered important if some features of actions ex-

ceed the appropriate thresholds. Thus, Anomaly-based detection is the process of com-

paring definitions of what activity is considered normal against observed events to iden-

tify significant deviations. This IDS uses profiles that represent the normal behavior of

such things as users, hosts, network connections, or applications. The profiles are devel-

oped by monitoring the characteristics of typical activity over a period of time. An initial

profile is generated over a period of time (typically days or weeks) sometimes called a

training period. Profiles for anomaly-based detection can either be static or dynamic.

Once generated, a static profile is unchanged unless the IDS is specifically directed to

generate a new profile. A dynamic profile is adjusted constantly as additional events are

observed. Because systems and networks change over time, the corresponding measures

of normal behavior also change; a static profile will eventually become inaccurate, so it

needs to be regenerated periodically. Dynamic profiles do not have this problem, but they

are susceptible to evasion attempts from attackers. For example, an attacker can perform

small amounts of malicious activity occasionally, then slowly increase the frequency and

quantity of activity. If the rate of change is sufficiently slow, the IDS might think the

malicious activity is normal behavior and include it in its profile. So, the anomaly based

IDS depends on the knowledge of the attacks. This is a robust approach and very ef-

fective at detecting previously unknown threats, but it is more difficult to research good

model in order to describe normal actions in heterogeneous contexts.

An other classification of IDS based on the type of sensor is the following:

Network-based: The sensors are placed at strategic points on the internal network and

it is very important that the sniffer can be as invisible and transparent to the attacker

which, otherwise, could take countermeasures, which is why the network interfaces of

the sensors are configured in stealth mode that operate without IP address, and without

sending any traffic. These IDSs have the inherent advantage of being independent from
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the operating system because they need packages coming from the network and not a

resource or as a specific machine. Moreover, their development will not impact the

structure of the existing network as it is to place the sensor (usually a purely passive)

in strategic nodes. This causes the operating costs are relatively low, as there are few

modules to maintain. However, this apparent advantage has also its drawbacks because

these IDSs can only detect attacks visible on the network segment. If for example, the

signature of a certain attack was encrypted, then the IDS would not be able to find it.

From the performance point of view, if these systems need to try to detect fragmented

attacks, the complexity required by the reconstruction is a theoretical problem rather

than a real one (this operation being feasible in theory only, with a processor to arbitrary

power).

Host-based: These systems analyze activities with great level of detail and accuracy to

determine the exact processes involved in a particular attack. Unlike network-based IDS,

host-based ones can directly observe the effects of an intrusion since they have access

and monitor the files and processes that are normally the intended target of such attacks.

When implementing a host-based IDS, being strongly dependent on the operating sys-

tem, development and deployment costs are higher than a network-based IDS ones, as

it requires the installation and configuration on multiple machines, often heterogeneous.

This is ill-suited to today’s network based computer systems, deep and highly distributed

with equal information sources.

Finally, we can classify the IDS in:

On-line: systems that analyze the data while actions occur. They are called real-time

to indicate that the IDS is designed to handle a certain stream of data without losing

packets, and without getting a buffer waiting to be verified.

Off-line: systems that analyze the data retrospectively. The general tendency is to con-

sider the latter more as a tool of computer forensics, that is the verification of intrusion

with general purposes of the judicial police, then intrusion detection.

A relatively innovation in this area are in-line systems that are often called Intrusion

Prevention System (IPS). In essence, if the IDS is in-line, it is positioned as a firewall or

a switch on the path of the packages and its main function is to be able to act as a filter as

well as an analyzer, while the traditional IDS are usually placed on a network port that

has a copy of all traffic.

In summary, signature-based methods have been used extensively to detect malicious
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activities. On the other hand, in profile-based methods, a known deviation from the norm

is considered anomalous (e.g. HTTP traffic on a non-standard port).

In contrast, in this thesis, we consider the case where we have a set A of known ac-

tivities (both innocuous and dangerous)—and we are looking for observation sequences

that cannot be explained by either (if they were, they would constitute patterns that were

known a priori). These need to be flagged as they might represent “zero day” attacks—

attacks that were never seen before and vary significantly from past known access pat-

terns.

2.2.2 Correlation techniques

Since Intrusion Detection Systems (IDS) are increasingly deployed in the network, they

could generate an overwhelming number of alerts with true alerts mixed with false ones.

Most of these alerts are raised independently, making it very hard for the network ad-

ministrator or intrusion response system to understand the real security situation of the

network and provide response to the intrusions. Consequently, alert correlation has be-

come a critical process in intrusion detection and response.

Alert correlation [43] can be very beneficial especially for intrusion response. Firstly,

it reduces the volume of alerts that needs to be handled. IDSs may generate thousands of

alerts per day. One of the main tasks of alert correlation is to aggregate duplicate alerts

and filter low-interest alerts. After these steps, the number of alerts that are presented to

network administrators will be greatly reduced.

Secondly, due to the problem of false positives, it is impossible to respond to every

alert that is reported by IDS. Only those which are detected with high confidence will be

considered for response action. Alert correlation provides a way to increase the detection

confidence. Generally speaking, correlated alerts are less likely to be false alerts, because

they suggest the preparation or continuation of attacks. It is rare for a legitimate user to

trigger multiple alerts, and at the same time, these alerts are correlated as different stages

of an attack. On the other hand, if we get multiple correlated alerts, and they fall into

different stages of an attack, such as scanning, remote to local, denial of service (DoS),

then the possibility of these alerts being true alerts should be higher than the case that

these alerts are independent. Normally, for attacks that have great security impact on

the protected network such as DoS and worms, response actions will be taken without

observing any correlated alerts, because these kinds of attack themselves are not likely
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to be false alerts due to their complexity. Moreover, their severity is high and therefore

should be handled with high priority. However, there are cases where certain types of

alerts can have a high false positive rate, such as password-guessing. In that case, if a

response unit receives such an uncorrelated alert, it knows that it could be a false alert,

and considering its severity, it might choose not to respond at this time. But, if it receives

this alert right after it receives a port scan alert from the same source targeting the same

host, it will have higher confidence that this is a true alert and therefore take appropriate

response actions.

Thirdly, correlated alerts provide a succinct, high-level view of the security state of

the network under surveillance. By knowing the security state, the network administrator

can make an appropriate plan to respond to intrusions. Consider a situation in which one

single host in the network is infected by a certain type of worm, and the situation that

multiple hosts in different subnets are infected in a short period of time indicating the

spreading of the worm. The response action with respect to these two different situations

can be totally different: In the former case, he might just need to disconnect the host

from the network, and remove the malicious program. In the latter case, he might also

need to modify the firewall rules to block the corresponding type of traffic in order to

prevent the worm from spreading outside the network.

Another important use of alert correlation is to recognize the strategies or plans of

different intrusions and infer the goal of attacks. Suppose that the next step or the final

goal of an attacker can be identified by looking at the pattern of the intrusive behavior,

we can take actions to prevent the attack from escalating and therefore minimize the

damage to the asset. Alert correlation provides some means to group different logically-

connected alerts into attack scenarios.

Alert correlation is defined as a process that contains multiple components with the

purpose of analyzing alerts and providing high-level insight on the security state of the

network under surveillance.

In summary, the goal of correlation is to find causal relationships between alerts in

order to reconstruct attacks from isolated alerts. This goal is achieved by providing a

higher level view of the actual attacks [44, 45, 39, 48, 49, 50].

From a conceptual point of view, both intrusion detection systems and alert corre-

lation methods aggregate fine grained information into higher level views of the attack,

although they operate at different levels of abstraction, as shown in Figure 2.4. Moreover,



2.2 Cyber Security 23

Figure 2.4: Conceptual diagram in cyber security domain

both rely on models encoding a priori knowledge of either normal or malicious behav-

ior, and cannot appropriately deal with events that are not explained by the underlying

models. In practice, all these methods are incapable of quantifying how well available

models explain a sequence of events observed in data streams (data packets and alerts

respectively) feeding the two classes of tools.

However, the framework and algorithms proposed for identifying unexplained activ-

ities are domain independent and may be applied to any domain including both activity

detection in video and in cyber-security.





Chapter 3

Activity Detection Models

3.1 Basic Activity Model

The aim of this section is to define a new method to model well-known activities. Such

a goal has been achieved by extending the stochastic activity model of [1] adding a

function δ which expresses a constraint on the maximum “temporal distance” between

two actions in an activity (though we make no claims of novelty for this).

We assume the existence of a finite set S of action symbols, corresponding to ob-

servable atomic actions. For instance, in the video domain, action symbols might be

recognized by sophisticated image processing algorithms, while in the cyber-security

domain, they may simply be read from a log file. Though our unexplained sequence de-

tection framework is domain-independent, in some domains such as video surveillance,

the problem of recognizing low-level actions in video can be a big challenge: for this

reason, we embedded the Unexplained Activity Detector into complete prototype imple-

mentations we designed and implemented (starting from the output of cameras/sensors

for the video surveillance context and from the packets for the cyber security one) in

order to make a complete experimentation on real-world datasets on both the considered

contexts. We will describe in details the whole followed process in Chapter 5.

Definition 3.1.1 (Stochastic activity) A stochastic activity is a labeled directed graph

A = (V,E, δ, ρ) where

• V is a finite set of nodes labeled with action symbols from S;



26 3 Activity Detection Models

!"#$%&'($)*#+

!"#$%&',%-+

!"#$%&',#(+

.!)*/.0$)$!.&+ 1!&(-%,1',%-++

234+5678+

294+5678+

234+56:8+

294+98+

234+5638+

294+56;8+

234+56<8+

-$&$)&=$%#>"+
2;4+98+

Figure 3.1: Example of stochastic activity: ATM deposit

• E ⊆ V × V is a set of edges;

• δ : E → N+ associates, with each edge 〈vi, vj〉, an upper bound on the time that

can elapse between vi and vj;

• ρ is a function that associates, with each node v ∈ V having out-degree 1 or more,

a probability distribution on {〈v, v′〉 | 〈v, v′〉 ∈ E}, i.e.,
∑

〈v,v′〉∈E
ρ(〈v, v′〉) = 1;

• there exists at least one start node in the activity definition, i.e. {v ∈ V | @ v′ ∈
V s.t. 〈v′, v〉 ∈ E} 6= ∅;

• there exists at least one end node in the activity definition, i.e. {v ∈ V | @ v′ ∈
V s.t. 〈v, v′〉 ∈ E} 6= ∅.

Figure 3.1 shows a stochastic activity of deposits at an Automatic Teller Machine

(ATM). Each edge e is labeled with (δ(e), ρ(e)). For an edge e = 〈s1, s2〉, δ(e) specifies

the maximum time between when s1 is observed and when s2 is observed. ρ specifies

the probability of going from one node to another (the probability distribution associated

with a node gives the transition probability from that node). For instance, the two edges

starting at node insertCard mean that there is a 50% probability of going to node in-
sertChecks and a 50% probability of going to node insertCash from node insertCard.

In addition, insertChecks and insertCash must follow insertCard within 2 and 1 time

units, respectively.

In general, each node of a stochastic activity definition is something that can be de-

tected by application code. For instance, if we are tracking activities in video, each node

in a stochastic activity would be something that can be detected by an image processing
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program, e.g. “Detect Person” in Figure 3.1 may be identified as holding only if a prob-

abilistic face recognition program returns a probability over some threshold that a given

frame (or block of frames) contains a face in it. Likewise, in a cybersecurity application,

a node in an activity such as “Attempted login” may only be identified as occurring if

a log file archives a login attempt. For the sake of simplicity, we use “high level” de-

scriptions of nodes in our examples, as opposed to low level descriptions (e.g., the color

histogram of a given image shows over 70% of the colors are a certain shade).

An instance of a stochastic activity A is a path in A from a start node to an end node.

Definition 3.1.2 (Stochastic activity instance) An instance of a stochastic activity (V,E, δ, ρ)

is a sequence 〈s1, . . . , sm〉 of nodes in V such that

• 〈si, si+1〉 ∈ E for 1 ≤ i < m;

• {s | 〈s, s1〉 ∈ E} = ∅, i.e., s1 is a start node; and

• {s | 〈sm, s〉 ∈ E} = ∅, i.e., sm is an end node.

The probability of the instance is
∏m−1
i=1 ρ(〈si, si+1〉).

In Figure 3.1, 〈detectPerson, insertCard, insertCash, withdrawCard〉 is an instance

with probability 0.35. Throughout the thesis, we assume an arbitrary but fixed set A of

stochastic activities.

The preceding definitions do not take observation sequences into account. In order to

define when activity occurrences are detected in a sequence of time-stamped observation

data, we first need to formally define an observation sequence. An observation sequence

is a finite sequence of observation IDs. An observation ID (OID) f has an associated

timestamp, denoted f.ts, and an associated set of action symbols, denoted f.obs. With-

out loss of generality, we assume timestamps to be positive integers. For instance, if our

observation sequence is a video, then the OIDs may be frame IDs with f.ts being the

timestamp associated with frame f and f.obs being the actions detected in frame f . On

the other hand, if our observation sequence is a sequence of transactions at a website, the

OIDs are transaction IDs, f.ts is the timestamp associated with transaction f , and f.obs

are the actions associated with transaction f .
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Example 3.1.1 (Video example) An observation sequence might be a video v = 〈f1, f2, f3, f4, f5〉,
where the fi’s are frame IDs, fi.ts = i for 1 ≤ i ≤ 5, f1.obs = {detectPerson},
f2.obs = {insertCard}, f3.obs = {insertCash}, f4.obs = {withdrawCash}, f5.obs =

{withdrawCard}. Notice that withdrawCash in frame f4 does not appear in the stochas-

tic activity of Figure 3.1. In general, action symbols may be detected in a frame even

if they do not appear in the definition of a stochastic activity because it is irrelevant for

that activity.

Throughout the thesis, we use the following terminology and notation for (general)

sequences. Suppose S1 = 〈a1, . . . , an〉 and S2 = 〈b1, . . . , bm〉 are two sequences. S2
is a subsequence of S1 iff there exist 1 ≤ j1 < j2 < · · · < jm ≤ n s.t. bi = aji for

1 ≤ i ≤ m. If ji = ji+1 − 1 for 1 ≤ i < m, then S2 is a contiguous subsequence of

S1. We write S1 ∩ S2 6= ∅ iff S1 and S2 have a common element and write e ∈ S1

iff e is an element appearing in S1. The concatenation of S1 and S2, i.e., the sequence

〈a1, . . . , an, b1, . . . , bm〉, is denoted by S1 · S2. Finally, |S1| denotes the number of

elements in S1.

We now define an occurrence of a stochastic activity in an observation sequence.

Definition 3.1.3 (Activity occurrence) Let v be an observation sequence andA=(V,E, δ, ρ)

a stochastic activity. An occurrence o of A in v is a sequence 〈(f1, s1), . . . , (fm, sm)〉
such that

• 〈f1, . . . , fm〉 is a subsequence of v,

• 〈s1, . . . , sm〉 is an instance of A,

• si ∈ fi.obs, for 1 ≤ i ≤ m, and 1

• fi+1.ts− fi.ts ≤ δ(〈si, si+1〉), for 1 ≤ i < m.

The probability of o, denoted p(o), is the probability of the instance 〈s1, . . . , sm〉.

When concurrently monitoring multiple activities, shorter activity instances gener-

ally tend to have higher probability. To remedy this, we normalize occurrence proba-

bilities by introducing the relative probability p∗(o) of an occurrence o of activity A as

p∗(o) = p(o)
pmax

, where pmax is the highest probability of any instance of A.

1With a slight abuse of notation, we use si to refer to both node si and the action symbol labeling it.
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Example 3.1.2 (Video example) Consider the video of Example 3.1.1. An occurrence

of the activity of Figure 3.1 is o = 〈(f1, detectPerson), (f2, insertCard), (f3, insertCash),

(f5,withdrawCard)〉, and p∗(o) = 0.875. Notice that if the edge going from insertCash

to withdrawCard was labeled with 1 by δ, then o would not have been an activity oc-

currence because withdrawCard was required to follow insertCash within at most 1 time

unit, whereas it occurs after 2 time units in the video.

We use O(v) to denote the set of all activity occurrences in v. Whenever v is clear

from the context, we write O instead of O(v).

Next section (3.2) describes our framework for discovering unexplained activities in

an application-independent manner. It is worth noting that the actual input of the frame-

work consists of an observation sequence and a set of activity occurrences (each with a

probability). Though our framework is domain-independent, there can be challenges in

providing the observations associated with OIDs in some domains (e.g. video surveil-

lance, where identifying the low level actions in a video frame can be highly non-trivial):

we have built a specific and complete prototype implementation to address this problem

in video surveillance context, as described in Chapter 5.

3.2 UAP Model

This section defines the probability that an observation sequence is unexplained by A.

We note that the occurrence of an activity in an observation sequence can involve con-

flicts. For instance, consider the activity occurrence o in Example 3.1.2 and suppose

there is a second activity occurrence o′ such that (f1, detectPerson) ∈ o′. In this case,

there is an implicit conflict because (f1, detectPerson) belongs to both occurrences, but

in fact, detectPerson can only belong to one activity occurrence, i.e. though o and o′

may both have a non-zero probability, the probability that these two activity occurrences

coexist is 0. Formally, we say two activity occurrences o, o′ conflict, denoted o � o′, iff

o ∩ o′ 6= ∅. We now use this to define possible worlds.

Definition 3.2.1 (Possible world) Let O be the set of all activity occurrences in an ob-

servation sequence v. A possible world for v is a subset w ofO s.t. @oi, oj ∈ w, oi � oj .
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Thus, a possible world is a set of activity occurrences which do not conflict with one

another, i.e., an action symbol in an OID cannot belong to two distinct activity occur-

rences in the same world. We use W(v) to denote the set of all possible worlds for an

observation sequence v; whenever v is clear from the context, we simply writeW .

Example 3.2.1 (Video example) Consider a video with two conflicting occurrences o1, o2.

There are 3 possible worlds: w0 = ∅, w1 = {o1}, and w2 = {o2}. Note that {o1, o2}
is not a world as o1 � o2. Each world represents a way of explaining what is observed.

The first world corresponds to the case where nothing is explained, the second and third

worlds correspond to the scenarios where we use one of the two possible occurrences to

explain the observed action symbols.

Note that any subset of O not containing conflicting occurrences is a legitimate pos-

sible world—possible worlds are not required to be maximal w.r.t. ⊆. In the above

example, the empty set is a possible world even though there are two other possible

worlds w1 = {o1} and w2 = {o2} which are supersets of it. The reason is that o1 and

o2 are uncertain, so the scenario where neither o1 nor o2 occurs is a legitimate one. We

illustrate this below.

Example 3.2.2 (Video example) Suppose we have a video where a single occurrence

o has p∗(o) = 0.6. In this case, it is natural to say that there are two possible worlds

w0 = ∅ and w1 = {o} and expect the probabilities of w0 and w1 to be 0.4 and 0.6,

respectively. By restricting ourselves to maximal possible worlds only, we would have

only one possible world, w1, whose probability is 1, which is wrong.

It is worth noting that the problem of finding possible worlds corresponds to the

problem of finding the independent sets of a graph: occurrences are vertices, conflicts

are edges, possible worlds are independent sets. Thus, algorithms to find maximal inde-

pendent sets can be directly applied to compute possible worlds—all possible worlds can

be simply obtained by taking all subsets of the maximal independent sets. An efficient

algorithm for generating all the maximal independent sets has been proposed in [51],

processing time and memory space are bounded by O(nmµ) and O(n + m), respec-

tively, where n, m, and µ are the numbers of vertices (occurrences in our case), edges
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(conflicts in our case), and maximal independent sets (possible worlds in our case) of a

graph.

We use ∗� to denote the transitive closure of �. Clearly, ∗� is an equivalence relation

and determines a partition ofO into equivalence classesO1, . . . ,Om. Here the basic idea

is to partition the observation sequence into subsequences containing occurrences that

conflict directly or in a “transitive” way (we will formally define this with the notion of a

Conflict-Based Partitioning in Definition 3.2.2 and illustrate it in Example 3.2.4). Equiv-

alence classes that temporally overlap are collapsed into a single one. Two equivalence

classesOi andOj temporally overlap iff [min(Oi),max(Oi)]∩[min(Oj),max(Oj)] 6=
0, where min(Oi) = min{f.ts | ∃o ∈ Oi, (f, s) ∈ o}, max(Oi) = max{f.ts | ∃o ∈
Oi, (f, s) ∈ o}, and min(Oj), max(Oj) are analogously defined.

Example 3.2.3 (Video example) Suppose we have a video v = 〈f1, . . . , f16〉 s.t. five

occurrences o1, o2, o3, o4, o5 are detected as depicted in Figure 3.2, that is, o1 � o2,

o2 � o3, and o4 � o5. There are two equivalence classes determined by ∗�, namely

O1 = {o1, o2, o3} and O2 = {o4, o5}.

f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 f15 f16

o1 o3 o4

o2 o5

Figure 3.2: Conflict-Based Partitioning of a video

The equivalence classes determined by ∗� lead to a conflict-based partitioning of an

observation sequence.

Definition 3.2.2 (Conflict-Based Partitioning) Let v be an observation sequence and

O1, . . . ,Om the equivalence classes determined by ∗�. A Conflict-Based Partitioning

(CBP) of v is a sequence 〈v1, . . . , vm〉 such that:

• v1 · · · · · vm = v, and

• O(vi) = Oi, for 1 ≤ i ≤ m.
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The vi’s are called segments.

Example 3.2.4 (Video example) A CBP of the video in Example 3.2.3 is 〈v1, v2〉, where

v1 = 〈f1, . . . , f9〉 and v2 = 〈f10, . . . , f16〉. Another partitioning of the same video is the

one where v1 = 〈f1, . . . , f10〉 and v2 = 〈f11, . . . , f16〉.

Thus, activity occurrences determine a set of possible worlds (different ways of ex-

plaining an observation sequence). We wish to find a probability distribution over all pos-

sible worlds that (i) is consistent with the relative probabilities of the occurrences, and (ii)
takes conflicts into account. We assume the user specifies a function Weight : A → R+

which assigns a weight to each activity and prioritizes the importance of the activity. For

instance, highly threatening activities may be assigned a high weight. The weight of an

occurrence o of activity A is the weight of A. We use C(o) to denote the set of occur-

rences conflicting with o, i.e., C(o) = {o′ | o′ ∈ O ∧ o′ � o}. Note that o ∈ C(o); and

C(o) = {o} when o does not conflict with any other occurrence. Finally, we assume that

activity occurrences belonging to different segments are independent events. Suppose

pw denotes the (unknown) probability of world w. As we know the probability of occur-

rences, and as each occurrence occurs in certain worlds, we can induce a set of nonlinear

constraints that will subsequently be used to learn the values of the pw’s.

Definition 3.2.3 Let v be an observation sequence and O1, . . . ,Om the equivalence

classes determined by ∗�. We define the non-linear constraints NLC(v) as follows:

pw ≥ 0, ∀w ∈ W∑
w∈W

pw = 1∑
w∈W s.t. o∈w

pw = p∗(o) · Weight(o)∑
oj∈C(o)Weight(oj)

,∀o ∈ O

pw =

m∏
k=1

∑
w′∈W s.t. w′∩Ok=w∩Ok

pw′ ∀w ∈ W

The first two types of constraints enforce a probability distribution over the set of pos-

sible worlds. The third type of constraint ensures that the probability of occurrence o—

which is the sum of the probabilities of the worlds containing o—is equal to its relative
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probability p∗(o) weighted by Weight(o)∑
oj∈C(o)Weight(oj)

. Note that: (i) the value on the right-

hand side of the third type of constraint decreases as the amount of conflict increases,

(ii) if an occurrence o is not conflicting with any other occurrence, then its probability∑
w∈W s.t. o∈w pw is equal to p∗(o), i.e., the probability returned by the stochastic au-

tomaton. The last kind of constraint reflects independence between segments. In general

NLC(v) might admit multiple solutions.

Example 3.2.5 (Video example) Consider a single-segment video consisting of frames

f1, . . . , f9 (cf. Figure 3.2). Suppose o1, o2, o3 have been detected with relative prob-

abilities 0.3, 0.6, and 0.5, respectively. Suppose the weights of o1, o2, o3 are 1, 2, 3,

respectively. Five worlds are possible: w0 =∅, w1 = {o1}, w2 = {o2}, w3 = {o3}, and

w4 = {o1, o3}. Then, NLC(v) is:

pi ≥ 0 0 ≤ i ≤ 4

p0 + p1 + p2 + p3 + p4 = 1

p1 + p4 = 0.3 · 13
p2 = 0.6 · 13
p3 + p4 = 0.5 · 35

which has multiple solutions.

For brevity, we do not explicitly list the independence constraints.

One solution is p0 = 0.4, p1 = 0.1, p2 = 0.2, p3 = 0.3, p4 = 0. Another solution is

p0 = 0.5, p1 = 0, p2 = 0.2, p3 = 0.2, p4 = 0.1.

In the rest of the thesis, we assume that NLC(v) is solvable. This can be easily

checked via both a non-linear constraint solver, as well as methods developed in next

subsection (3.2.1). We say that a sequence S = 〈(f1, s1), . . . , (fn, sn)〉 occurs in an

observation sequence v iff 〈f1, . . . , fn〉 is a contiguous subsequence of v and si ∈ fi.obs
for 1 ≤ i ≤ n. We give two semantics for S to be unexplained in a world w ∈ W .

Intuitively, S is totally (resp. partially) unexplained in w iff w does not explain every

(resp. at least one) symbol of S. More formally:

1. S is totally unexplained in w, denoted w2TS, iff ∀(fi, si) ∈ S, @o ∈ w, (fi, si) ∈
o;

2. S is partially unexplained inw, denotedw2PS, iff ∃(fi, si) ∈ S,@o ∈ w, (fi, si) ∈
o.
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Example 3.2.6 (Video example) Suppose we have a video v = 〈f1, . . . , f9〉 such that

fi.obs = {si}, 1 ≤ i ≤ 9, and two occurrences o1 and o2 are detected (cf. Figure 3.3).

(f1,s1) (f2,s2) (f3,s3) (f4,s4) (f5,s5) (f6,s6) (f7,s7) (f8,s8) (f9,s9) 

o1 o2 

S1 

S2 
S3 

Figure 3.3: Totally and partially unexplained sequences

The four possible worlds are: w0 = ∅, w1 = {o1}, w2 = {o2}, w3 = {o1, o2}.
Let S1 = 〈(f4, s4), (f5, s5)〉, S2 = 〈(f3, s3), (f4, s4)〉, S3 = 〈(f2, s2), (f3, s3)〉 be se-

quences occurring in v. S1 is totally (and partially) unexplained in every world. S2 is

totally unexplained in w0 and w2 but not in w1 and w3; moreover, S2 is partially unex-

plained in every world. S3 is totally and partially unexplained in w0 and w2 but not in

w1 and w3.

We now define the probability of a sequence in an observation sequence being total-

ly/partially unexplained.

Definition 3.2.4 Let S be a sequence occurring in an observation sequence v. The prob-

ability interval that S is totally unexplained in v is IT (S) = [l, u], where:

l = minimize
∑

w∈W s.t. w2TS pw

subject to NLC(v)

u = maximize
∑

w∈W s.t. w2TS pw

subject to NLC(v)

The probability interval that S is partially unexplained in v is IP (S) = [l′, u′], where

l′, u′ are derived in exactly the same way as l, u above by replacing the 2T symbols in

the above optimization problems by 2P .
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Thus, the probability that a sequence S occurring in v is totally (resp. partially)

unexplained w.r.t. a solution of NLC(v) is the sum of the probabilities of the worlds

in which S is totally (resp. partially) unexplained. As NLC(v) may have multiple

solutions, we find the tightest interval [l, u] (resp. [l′, u′]) containing this probability

for any solution. Different criteria can be used to infer a value from an interval [l, u],

e.g. the MIN l, the MAX u, the average (i.e., (l + u)/2), etc. The only requirement

is that this value has to be in [l, u]. We henceforth assume that such criterion has been

chosen—PT (S) (resp. PP (S)) denotes the probability that S is totally (resp. partially)

unexplained.

The following proposition says that the probability that a sequence is totally (resp.

partially) unexplained is no higher (resp. lower) than the probability of any subsequence.

Proposition 3.2.1 Consider two sequences S1 and S2 occurring in an observation se-

quence. If S1 is a subsequence of S2, then PT (S1) ≥ PT (S2) and PP (S1) ≤ PP (S2).

We now define totally and partially unexplained sequences.

Definition 3.2.5 (Unexplained sequences) Let v be an observation sequence, τ ∈ [0, 1]

a probability threshold, and L ∈ N+ a length threshold. A sequence S occuring in v is:

• A totally unexplained sequence if (i) PT (S) ≥ τ , (ii) |S| ≥ L, and (iii) S is

maximal, i.e., there is no sequence S′ 6= S occurring in v s.t. S is a subsequence

of S′, PT (S′) ≥ τ , and |S′| ≥ L.

• A partially unexplained sequence if (i) PP (S) ≥ τ , (ii) |S| ≥ L, and (iii) S is

minimal, i.e., there is no sequence S′ 6= S occurring in v s.t. S′ is a subsequence

of S, PP (S′) ≥ τ , and |S′| ≥ L.

In this definition, L is the minimum length a sequence must be for it to be considered

possibly unexplained. Totally unexplained sequences S have to be maximal because

once we find S, any sub-sequence of it is (totally) unexplained with probability greater

than or equal to that of S. On the other hand, partially unexplained sequences S′ have to

be minimal because once we find S′, any super-sequence of it is (partially) unexplained

with probability greater than or equal to that of S′.
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Intuitively, an unexplained sequence is a sequence of action symbols that are ob-

served in the observation sequence and poorly explained by known activity models. Such

sequences might correspond to unknown variants of known activities or to entirely new—

and unknown—activities. So, in this way, we can discover new activities not sufficiently

explained by the well-known models and that can be further analyzed by final users.

An Unexplained Activity Problem (UAP) instance is a triple I = 〈v, τ, L〉 where

v is an observation sequence, τ ∈ [0, 1] is a probability threshold, and L ∈ N+ is a

length threshold. We want to find the sets Atu(I) and Apu(I) of all totally and partially

unexplained activities, respectively. When I is clear from context, we will drop it.

The following definition introduces the top-k totally and partially unexplained activ-

ities. Intuitively, these are k unexplained activities having maximum probability.

Definition 3.2.6 (Top-k unexplained activities) Consider a UAP instance and let k ∈
N+. Atuk ⊆ Atu (resp. Apuk ⊆ Apu) is a set of top-k totally (resp. partially) un-

explained activities iff |Atuk | = min{k, |Atu|} (resp. |Apuk | = min{k, |Apu|}), and

∀S ∈ Atuk , ∀S′ ∈ Atu − Atuk (resp. ∀S ∈ Apuk , ∀S
′ ∈ Apu − Apuk ) PT (S) ≥ PT (S′)

(resp. PP (S) ≥ PP (S′)).

Suppose we have a UAP instance. For any S, S′ ∈ Atu (resp. S, S′ ∈ Apu), we

write S =T S′ (resp. S =P S′) iff PT (S) = PT (S′) (resp. PP (S) = PP (S′)).

Obviously, =T (resp. =P ) is an equivalence relation and determines a set Ctu (resp. Cpu)

of equivalence classes. For any equivalence class C ∈ Ctu (resp. C ∈ Cpu) we define

PT (C) (resp. PP (C)) as the (unique) probability of the sequences in C.

Compared with the top-k unexplained activities, the top−k unexplained classes find

all the unexplained sequences having the k highest probabilities.

Definition 3.2.7 (Top-k unexplained classes) Consider a UAP instance and let k ∈
N+. Ctuk ⊆ Ctu (resp. Cpuk ⊆ Cpu) is the set of top-k totally (resp. partially) unex-

plained classes iff |Ctuk | = min{k, |Ctu|} (resp. |Cpuk | = min{k, |Cpu|}), and ∀C ∈
Ctuk , ∀C ′ ∈ Ctu − Ctuk (resp. ∀C ∈ Cpuk , ∀C ′ ∈ Cpu − Cpuk ) PT (C) > PT (C ′) (resp.

PP (C) > PP (C ′)).

Table 3.1 summarizes the main notation used in the thesis.



3.2 UAP Model 37

Symbol Description
A Set of stochastic activities
s Action symbol
f Observation ID (OID)
f.ts Timestamp associated with observation ID f
f.obs Set of action symbols associated with observation ID

f
v Observation sequence
o andO Activity occurrence and set of activity occurrences
w andW Possible world and set of possible worlds
〈v1, . . . , vm〉 Conflict-based partitioning (CBP) of observation se-

quence v. Each vi is called a segment
NLC(v) Set of non-linear constraints for observation sequence

v
LC(v) Set of linear constraints for observation sequence v
w2TS Sequence S is totally unexplained in world w
w2PS Sequence S is partially unexplained in world w
IT (S) Probability interval that sequence S is totally unex-

plained
IP (S) Probability interval that sequence S is partially unex-

plained
PT (S) (Point) Probability that sequence S is totally unex-

plained
PP (S) (Point) Probability that sequence S is partially unex-

plained

Table 3.1: Notation

3.2.1 Properties

This subsection derives properties that can be leveraged (in chapter 4) to devise efficient

algorithms to solve UAPs. We first show an interesting property concerning the solution

of NLC(v) (some later results rely on it); the following two sections consider specific

properties for totally and partially unexplained activities.

For a given observation sequence v, we show that if 〈v1, . . . , vm〉 is a CBP, then we

can find solutions of the non-linear constraints NLC(v) by solving m smaller sets of

linear constraints.

This yields some benefits:

• It allows us to solve a smaller set of constraints.

• It allows us to solve linear constraints which are easier to solve than nonlinear

ones.

• Moreover, it allows us to drastically reduce the space of possible worlds consid-

ered, as we can consider each segment vi (and its corresponding possible worlds)
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individually, thereby avoiding the blow up we would get by combining possible

worlds of different segments. This also applies to Theorems 2 and 4.

Let LC(v) be the set of linear constraints of NLC(v) (i.e., all constraints of Defi-

nition 3.2.3 except for the last kind). Henceforth, we useW to denoteW(v) andWi to

denoteW(vi), 1 ≤ i ≤ m. A solution of NLC(v) is a mapping P : W → [0, 1] which

satisfies NLC(v). Likewise, a solution of LC(vi) is a mapping Pi :Wi → [0, 1] which

satisfiesLC(vi). It is important to note thatW = {w1∪· · ·∪wm |wi ∈ Wi, 1 ≤ i ≤ m}.

Theorem 1 Let v be an observation sequence and 〈v1, . . . , vm〉 a CBP. P is a solution

of NLC(v) iff ∀i ∈ [1,m] there exists a solution Pi of LC(vi) s.t. P(
⋃m
i=1wi) =∏m

i=1 Pi(wi) for every w1 ∈ W1, . . . , wm ∈ Wm.

The following example illustrates the previous theorem.

Example 3.2.7 (Video example) Consider the video v of Example 3.2.3 (cf. Figure 3.2).

As shown in Example 3.2.4, one possible CBP of v is 〈v1, v2〉, where v1 = 〈f1, . . . , f9〉
and v2 = 〈f10, . . . , f16〉. Theorem 1 says that for each solution P of NLC(v), there is a

solution P1 of LC(v1) and a solution P2 of LC(v2) s.t. P(w1∪w2) = P1(w1)×P(w2)

for every w1 ∈ W1, w2 ∈ W2, and vice versa.

Consider an observation sequence v and let 〈v1, . . . , vm〉 be a CBP. Given a sequence

S = 〈(f1, s1), . . . , (fq, sq)〉 occurring in v, we say that vi, vi+1, . . . , vi+n (1 ≤ i ≤
i+ n ≤ m) are the segments containing S iff f1 ∈ vi and fq ∈ vi+n. In other words, S

spans the segments vi, vi+1, . . . , vi+n: it starts at a point in segment vi (as vi contains the

first OID of S) and ends at some point in segment vi+n (as vi+n contains the last OID of

S). Sk denotes the projection of S on the k-th segment vk (i ≤ k ≤ i + n), that is, the

subsequence of S containing all the pairs (f, s) ∈ S with f ∈ vk.

Example 3.2.8 (Video example) Suppose we have a video v = 〈f1, . . . , f21〉 such that

fi.obs = {si} for 1 ≤ i ≤ 21. In addition, suppose 8 occurrences are detected as

shown in Figure 3.4. Consider the CBP 〈v1, v2, v3, v4〉, where v1 = {f1, . . . , f5},
v2 = {f6, . . . , f10}, v3 = {f11, . . . , f16}, and v4 = {f17, . . . , f21}. Consider now

the sequence S = 〈(f8, s8), . . . , (f14, s14)〉 occurring in v. Then, v2 and v3 are the

segments containing S. Moreover, S2 denotes 〈(f8, s8), . . . , (f10, s10)〉, and S3 denotes

〈(f11, s11), . . . , (f14, s14)〉.
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o1

o2

o3

o4

o5

o6

o7

o8

f1 f2 f3 f4 f5 f6 f7 f8 f9 f12 f13 f14 f15 f16 f17 f18 f19 f20 f21f11f10

S

Figure 3.4: Conflict-Based Partitioning of a video

3.2.1.1 Totally Unexplained Activities

The following theorem says that we can compute IT (S) by solving LC (which are lin-

ear constraints) for each segment containing S (instead of solving a non-linear set of

constraints for the whole observation sequence).

Theorem 2 Consider an observation sequence v. Let 〈v1, . . . , vm〉 be a CBP and 〈vi, . . . , vi+n〉
the segments containing a sequence S occurring in v. For i ≤ k ≤ i+ n, let

lk = minimize
∑

w∈Wk s.t. w2TSk
pw

subject to LC(vk)

uk = maximize
∑

w∈Wk s.t. w2TSk
pw

subject to LC(vk)

If IT (S) = [l, u], then l =
∏i+n
k=i lk and u =

∏i+n
k=i uk.

The following example illustrates the theorem above.

Example 3.2.9 (Video example) Consider Example 3.2.8, which is depicted in Figure 3.4.

IT (S) can be computed by solving the non-linear program of Definition 3.2.4 for the

whole video v. But Theorem 2 says that IT (S) can be computed as IT (S) = [l2 ×
l3, u2 × u3], where l2, u2, l3, u3 are computed as defined in Theorem 2, i.e. by solving

two smaller linear programs for v2 and v3.

The following theorem provides a sufficient condition for a pair (f, s) not to be in-

cluded in any sequence S occurring in v and having PT (S) ≥ τ .



40 3 Activity Detection Models

Theorem 3 Let 〈v, τ, L〉 be a UAP instance. Given (f, s) s.t. f ∈ v and s ∈ f.obs, let

ε =
∑

o∈O s.t. (f,s)∈o

p∗(o) · Weight(o)∑
oj∈C(o)Weight(oj)

. If ε > 1− τ , then there does not exist

a sequence S occurring in v s.t. (f, s) ∈ S and PT (S) ≥ τ .

If the above condition holds for a pair (f, s), then we say that (f, s) is sufficiently

explained. Note that to check whether a pair (f, s) is sufficiently explained, we do not

need to solve any set of linear or non-linear constraints, since ε is computed by simply

summing the (weighted) probabilities of the occurrences containing (f, s). Thus, this

result yields a further efficiency. An OID f is sufficiently explained iff (f, s) is suffi-

ciently explained for every s ∈ f.obs. If (f, s) is sufficiently explained, then it can be

disregarded when identifying unexplained sequences. Moreover, this may allow us to

disregard entire parts of observation sequences as shown in the example below.

Example 3.2.10 (Video example) Consider a UAP instance 〈v, τ, L〉where v = 〈f1, . . . , f9〉
is s.t. fi.obs = {si} for 1 ≤ i ≤ 9, as depicted in Figure 3.5.

(f6,s6)(f4,s4)(f1,s1) (f2,s2) (f3,s3) (f5,s5) (f7,s7) (f8,s8) (f9,s9)

PDFill PDF Editor with Free Writer and Tools

Figure 3.5: Sufficiently explained frames in a video

Suppose L = 3 and (f1, s1), (f4, s4), (f6, s6) are sufficiently explained. Even though

the theorem is applicable to only a few (fi, si) pairs, we see that no unexplained sequence

can be found before f7 as L = 3.

Given a UAP instance I = 〈v, τ, L〉 and a subsequence v′ of v, v′ is relevant iff (i) v′

is a contiguous subsequence of v (ii) |v′| ≥ L, (iii) ∀f ∈ v′, f is not sufficiently explained,

and (iv) v′ is maximal (i.e., there does not exist v′′ 6= v′ s.t. v′ is a subsequence of v′′ and

v′′ satisfies (i), (ii), (iii)). We use relevant(I) to denote the set of relevant observation

subsequences.

Theorem 3 entails that relevant observation subsequences can be individually con-

sidered when looking for totally unexplained sequences because there is no totally unex-

plained sequence spanning two different relevant observation subsequences.
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3.2.1.2 Partially Unexplained Activities

The following theorem states that we can compute IP (S) by solving NLC for the ob-

servation subsequence consisting of the segments containing S (instead of solving NLC

for the whole observation sequence).

Theorem 4 Consider an observation sequence v. Let 〈v1, . . . , vm〉 be a CBP and 〈vi, . . . , vi+n〉
be the segments containing a sequence S occurring in v. Let v∗ = vi · · · · · vi+n. IP (S)

computed w.r.t. v is equal to IP (S) computed w.r.t. v∗.

We now illustrate the use of the preceding theorem.

Example 3.2.11 (Video example) Consider Example 3.2.8 as shown in Figure 3.4. By

definition, IP (S) can be computed by solving the non-linear program of Definition 3.2.4

for the whole video v. Alternatively, Theorem 4 says that IP (S) can be computed by

solving the non-linear program of Definition 3.2.4 for the sub-video v∗ = v2 · v3.





Chapter 4

Unexplained Activity Detection
Algorithms

We now present algorithms to find top-k totally and partially unexplained activities and

classes. For ease of presentation, we assume |f.obs| = 1 for every OID f in an ob-

servation sequence (this makes the algorithms much more concise – generalization to

the case of multiple action symbols per OID is straightforward). It suffices to consider

the different sequences given by the different action symbols. Given an observation se-

quence v = 〈f1, . . . , fn〉, we use v(i, j) (1 ≤ i ≤ j ≤ n) to denote the sequence

S = 〈(fi, si), . . . , (fj , sj)〉, where sk is the only element in fk.obs, i ≤ k ≤ j.

4.1 Top-k TUA and TUC

The Top-k TUA algorithm computes a set of top-k totally unexplained activities in an

observation sequence. Note that:

• at every time, lowest is defined as follows:

lowest =

{
−1 if |TopSol| < k

min{PT (S) | S ∈ TopSol} if |TopSol| = k

• On line 30, “Add S to TopSol” works as follows:

– If |TopSol| < k, then S is added to TopSol;
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– otherwise, a sequence S′ in TopSol having minimum PT (S′) is replaced by

S.

Algorithm 1 Top-k TUA
Input: UAP instance I = 〈v, τ, L〉, k ≥ 1
Output: Top-k totally unexplained activities
1: TopSol = ∅
2: for all v′ ∈ relevant(I) do
3: start = 1; end = L
4: repeat
5: if PT (v′(start, end)) ≥ τ ∧ PT (v′(start, end)) > lowest then
6: end′ = end
7: while end < |v′| do
8: end = min{end+ L, |v′|}
9: if PT (v′(start, end)) < τ then

10: break
11: else
12: if PT (v′(start, end)) ≤ lowest then
13: end = end+ 1
14: go to line 33
15: s = max{end− L, end′}; e = end
16: while e 6= s do
17: mid = d(s+ e)/2e
18: if PT (v′(start,mid)) ≥ τ then
19: if PT (v′(start,mid)) ≤ lowest then
20: end = mid+ 1
21: go to line 33
22: else
23: s = mid
24: else
25: e = mid− 1
26: if start > 1 ∧ PT (v′(start− 1, s)) ≥ τ then
27: end = s+ 1
28: go to line 33
29: else
30: S = v′(start, s); Add S to TopSol
31: start = start+ 1; end = s+ 1
32: else
33: start = start+ 1; end = max{end, start+ L− 1}
34: until end > |v′|
35: return TopSol

Leveraging Theorem 3, Top-k TUA considers only relevant observation subsequences

of v individually (line 2). When it finds a sequence v′(start, end) of length at least L

having a probability of being totally unexplained greater than lowest (line 5), it makes

the sequence maximal by adding OIDs on the right (lines 7–14). Instead of adding one

OID at a time, v′(start, end) is extended by L OIDs at a time until its probability drops

below τ (lines 9–10); a binary search is then performed to find the exact maximum length

of the unexplained sequence (lines 15–25). While making the sequence maximal, if the
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algorithm realizes that the unexplained sequence will not have a probability greater than

lowest (i.e., the sequence is not a top-k TUA), then the sequence is disregarded and

the process of making the sequence maximal is aborted (lines 12–14 and 19–21). This

pruning allows the algorithm to move forward in the observation sequence avoiding com-

puting the exact ending OID of the TUA thereby saving time. Throughout the algorithm,

PT is computed by applying Theorem 2.

Theorem 5 Algorithm Top-k TUA returns a set of top-k totally unexplained activities

of the input instance.

Algorithm Top-k TUC modifies Top-k TUA as follows to compute the top-k totally

unexplained classes:

• At every time, lowest is defined as follows:

lowest =

{
−1 if |TopSol| < k

min{PT (C) | C ∈ TopSol} if |TopSol| = k

• “Add S to TopSol” (line 30) works as follows:

– If there exists C ∈ TopSol s.t. PT (C) = PT (S), then S is added to C;

– else if |TopSol| < k, then the class {S} is added to TopSol;

– otherwise the class C in TopSol having minimum PT (C) is replaced with

{S}.

• On line 5, PT (v′(start, end)) > lowest is replaced with PT (v′(start, end)) ≥
lowest;

• On line 12, PT (v′(start, end)) ≤ lowest is replaced with PT (v′(start, end)) <

lowest;

• On line 19, PT (v′(start,mid)) ≤ lowest is replaced with PT (v′(start,mid)) <

lowest;

The algorithm obtained by applying the modifications above is named Top-k TUC.

Theorem 6 Algorithm Top-k TUC returns the top-k totally unexplained classes of the

input instance.
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4.2 Top-k PUA and PUC

The Top-k PUA algorithm below computes a set of top-k partially unexplained activities

in an observation sequence. Note that:

• at each time, lowest is defined as follows:

lowest =

{
−1 if |TopSol| < k

min{PP (S) | S ∈ TopSol} if |TopSol| = k

• On line 43, “Add S to TopSol” works as follows:

– If |TopSol| < k, then S is added to TopSol;

– otherwise, a sequence in TopSol having minimum PP is replaced by S.

To find an unexplained activity, Algorithm Top-k PUA starts with a sequence of

length at least L and adds OIDs to its right until its probability of being partially un-

explained is above the threshold. As in the case of Top-k TUA, this is done by adding

L OIDs at a time (lines 5–8) and then performing a binary search (lines 9–27). When

performing the binary search, if at some point the algorithm realizes that the partially

unexplained sequence will not have a probability greater than lowest, then the sequence

is disregarded and the binary search is aborted (lines 17–19 and lines 24–25). Otherwise,

the sequence is shortened on the left making it minimal (lines 28–38) by performing a

binary search instead of proceeding one OID at a time. If the algorithm realizes that the

partially unexplained sequence will not have a probability greater than lowest, then the

sequence is disregarded and the shortening process is aborted (lines 34–36). This allows

the algorithm to avoid computing the exact starting OID of the PUS, thus saving time.

Note that PP is computed by applying Theorem 4.

Theorem 7 Algorithm Top-k PUA returns the set of top-k partially unexplained activi-

ties of the input instance.

Algorithm Top-k PUC modifies Top-k PUA as follows to compute the top-k par-

tially unexplained classes:
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Algorithm 2 Top-k PUA
Input: UAP instance I = 〈v, τ, L〉, k ≥ 1
Output: Top-k partially unexplained activities
1: TopSol = ∅; start = 1; end = L
2: while end ≤ |v| do
3: if PP (v(start, end)) < τ then
4: end′ = end
5: while end < |v| do
6: end = min{end+ L, |v|}
7: if PP (v(start, end)) ≥ τ then
8: break
9: if PP (v(start, end)) ≥ τ then

10: if PP (v(start, end)) > lowest then
11: s = max{end′ + 1, end− L+ 1}; e = end
12: while e 6= s do
13: mid = b(s+ e)/2c
14: if PP (v(start,mid)) < τ then
15: s = mid+ 1
16: else
17: if PP (v(start,mid)) ≤ lowest then
18: start = start+ 1; end = mid+ 1
19: go to line 2
20: else
21: e = mid
22: end = e
23: else
24: start = start+ 1; end = end+ 1
25: go to line 2
26: else
27: return TopSol
28: s′ = start; e′ = end− L+ 1
29: while e′ 6= s′ do
30: mid = d(s′ + e′)/2e
31: if PP (v(mid, end)) < τ then
32: e′ = mid− 1
33: else
34: if PP (v(mid, end)) ≤ lowest then
35: start = mid+ 1; end = end+ 1
36: go to line 2
37: else
38: s′ = mid
39: if PP (v(s′, end− 1)) ≥ τ ∧ |v(s′, end− 1)| ≥ L then
40: start = s′ + 1; end = end+ 1
41: go to line 2
42: else
43: S = v(s′, end); Add S to TopSol
44: start = s′ + 1; end = end+ 1
45: return TopSol

• At every time, lowest is defined as follows:

lowest =

{
−1 if |TopSol| < k

min{PP (C) | C ∈ TopSol} if |TopSol| = k
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• “Add S to TopSol” (line 43) works as follows:

– If there exists C ∈ TopSol s.t. PP (C) = PP (S), then S is added to C;

– else if |TopSol| < k, then the class {S} is added to TopSol;

– otherwise the class C in TopSol having minimum PP (C) is replaced with

{S}.

• On line 10, PP (v(start, end)) > lowest is replaced with PP (v(start, end)) ≥
lowest;

• On line 17, PP (v(start,mid)) ≤ lowest is replaced with PP (v(start,mid)) <

lowest;

• On line 34, PP (v(mid, end)) ≤ lowest is replaced with PP (v(mid, end)) <

lowest;

The algorithm obtained by applying the modifications above is named Top-k PUC.

Theorem 8 Algorithm Top-k PUC returns the top-k partially unexplained classes of the

input instance.



Chapter 5

Experimental evaluation

We implemented Algorithms Top-k TUA, Top-k PUA, Top-k TUC and Top-k PUC, and

experimentally evaluated both running time and accuracy on real-world video and cyber

security datasets.

5.1 Video analysis

We note that identifying frame observations via the development of image processing

algorithms is an extremely challenging task—the goal of our approach is to present a

domain-independent way of identifying unexplained activities that builds upon domain-

specific ways of recognizing actions in observation sequences. Anyway, in order to

address this issue and to make a complete experimentation on real-world datasets, we

have designed and developed a specific prototype implementation for video surveillance

domain, which is able to automatically catch observation IDs with a reasonable accuracy

and to go on with the analysis until the unexplained activities are discovered. Such a

prototype is described in detail in 5.1.1 subsection.

5.1.1 The developed prototype

As we can see in figure 5.1, our prototype consists of:

• an Image Processing Library

• a Video Labeler
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Figure 5.1: The prototype architecture for video context

• an Activity Detection Engine

• the UAP Engine implementing the algorithms described in chapter 4

In particular, the Image Processing Library analyzes the video captured by sensors /

cameras and returns the low level annotations for each video frame as output; the Video

Labeler fills the semantic gap between the low level annotations captured for each frame

and high level annotations, representing the observation sequence as defined in chapter

3; then, we used an Activity Detection Engine to find activity occurrences matching the

well-known models, that can be classified into good and bad ones, as defined in section

1.2: thus, such a module takes as inputs the observation sequence previously caught

by the Video Labeler and the stochastic activity models; finally, our framework, called

UAP Engine in this overall architecture, takes as input the activity occurrences previously

found with the associated probabilities and the observation sequence and discovers the

Unexplained Video Activities.

All these components will be described into subsubsections 5.1.1.1, 5.1.1.2, 5.1.1.3,

5.1.1.4.

5.1.1.1 The Image Processing Library

With recent advances of computer technology automated visual surveillance has become

a popular area for research and development. Surveillance cameras are installed in many



5.1 Video analysis 51

public areas to improve safety, and computer-based image processing is a promising

means to handle the vast amount of image data generated by large networks of cameras.

A number of algorithms to track people in camera images can be found in the literature,

yet so far little research has gone into building realtime visual surveillance systems that

integrate people trackers. The task of an integrated surveillance system is to warn an

operator when it detects events which may require human intervention, for example to

avoid possible accidents or vandalism. These warnings can only be reliable if the system

can detect and understand human behaviour, and for this it must locate and track people

reliably. Thus, a moltitude of Computer Vision algorithms have been developed.

Unfortunately, another issue of this kind of algorithms is due to false alarms and

lost events, which can reduce the system reliability; such a reliability is strongly related

to the environmental conditions in which the system works. Basically, the contribution

of Computer Vision on this kind of applications is based on difference analysis with a

more or less well-known model of reality. For instance, for what concerns the pixel

identification of moving objects, there is made a subtraction between the current image

and the pixels of a background model. Either, when objects are tracked, the object shapes

are compared with some reference models. A main aspect to be taken into account is how

much the environmental variations dissociate from the model. Such variations can be in

some cases due to the noise. While in indoor environments the presence of noises is

quite limited, in outdoor environments such a noise may be unrestrained and excessive

and can cause a considerable degradation of quality performances. There are numerous

applications used for these purposes. Anyway, this kind of processing can be structured

into different layers:

• pixel layer

• frame layer

• tracking layer

At the lowest layer there is located the pixel processing layer, which processes the

images captured from the source in a strictly related to pixel domain. Through the base

algorithms, a pixel identification is made in order to verify if pixels belong either to

objects or to the background of the scene. The proposed video surveillance applications

have used different kinds of pixel processing algorithms in the years. Basically, the pixel
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identification can be made either through background difference techniques or through

frame difference ones or through combinations of both of them. The knowledge at this

layer is limited at the image pixels: so, the nature and the number of the present objects

are not considered. Moreover, noise sources have to be taken into account. As a matter of

fact, a specific tuning phase is needed to restrict the presence of pixels caused by noise.

In the second processing layer (Frame Processing Layer), a first interpretation of the

image supplied by the underlying layer is executed. The relationships between pixels

detected as zone of interest are considered. The techiniques used in this context tend

to cluster the pixel found at the underlying layer, trying to erase pixels not belonging

to the interested objects and representing noise (through size filtering techniques) and

other ones which, though representing movement, belong to not-interested objects, like

shadows or areas due to lighting effects. The main aim of such a layer is to cluster the

pixels belonging to the interested objects (blobs) through different segmentation tech-

niques. Moreover, another Frame Processing task consists of the feature extraction of

the detected objects. This information will be the base for the next layer.

The Tracking layer aim consists of the pursuit and classification of the objects dis-

covered at the previous layer. It needs the knowledge of some information about the

objects previously found. For instance, this information can usually deal with size, area,

shape and all the properties that may help to identify a pixel aggregate present into dif-

ferent and often consecutive frames of the image sequence as an only object. For what

concerns video surveillance systems, there are many aspects to be taken into account for

an effective implementation. Depending on the particular application domain, there are

many constraints that may cause strong consequences on the whole process. Depending

on the application type, it is possible to identify some restricted zone of the image (Re-

gion of Interest), where the overall attention on the video surveillance process is focused.

There are some specific applications for indoor and outdoor environments and other ones

specialized in detections of particular classes of objects (as persons, cars and so on...).

The Image Processing Library used in our prototype implementation is the Reading

People Tracker (RPT) [52], [53]. This library achieved a good accuracy in object detec-

tion and tracking and is very easy to be installed and used on Unix systems. Moreover,

it returns a XML-based output format, that is very easy to understand and process.

More in details, the Reading People Tracker is a software for tracking people in cam-

era images for visual surveillance purposes. It originates from research work on people
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tracking for automatic visual surveillance systems for crime detection and prevention.

It was built within the context of two PhD theses (by AM Baumberg and NT Siebel)

and contains state-of-the art image processing algorithms. It is easily maintainable and

well documented. Therefore it can (and has already been) easily be adapted to new re-

quirements and different projects. The Reading People Tracker contains the necessary

functionality to read video sequences from hard disk or a video camera (IEEE1394/DV),

to manipulate the images with image filters and to analyse them with a number of detec-

tion and tracking modules. The Reading People Tracker as it exists today was developed

by Nils T Siebel in the European Framework V research project ADVISOR. It is based

on the Leeds People Tracker which was developed by Adam Baumberg. Starting from

there it took 3 years of work on software and algorithms to develop what is now called

the ”Reading People Tracker”. Now that the ADVISOR project has finished the Read-

ing People Tracker is still being maintained and available for download. Recent code

changes include better support for newer compilers and a number of bugfixes. There has

also been some support by the community in the form of bugfixes and a few small addi-

tions. This has increased stability and ease of use. The tracking functionality itself has

not changed significantly since release 1.25 in 2003. However, an update to the newest

version is strongly recommended for all current users.

Thus, in order for an automated visual surveillance system to operate effectively

it must locate and track people reliably and in realtime. The Reading People Tracker

achieves this by combining four detection and tracking modules, each of medium to low

complexity. As we said before, the Reading People Tracker can work either standalone

or as a subsystem of the ADVISOR system. The focus here is on tracking, specifically

on how a number of detection and tracking algorithms can be combined to achieve robust

tracking of people in an indoor environment.

Automated visual surveillance systems have to operate in realtime and with a min-

imum of hardware requirements, if the system is to be economical and scalable. This

limits the complexity of models that can be used for detection and tracking. Any attempt

at designing a People Tracker for a surveillance system like ADVISOR therefore has to

consider the realtime aspect during algorithm design.

Figure 5.2 shows the overall system layout, with individual subsystems for tracking,

detection and analysis of events, together with storage and human-computer interface

subsystems to meet the needs of the surveillance system operators. Each of these sub-
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Figure 5.2: People Tracking as one of six subsystems of ADVISOR

systems is designed to run in realtime on off-the-shelf PC hardware, with the ability to

process video input from a number of cameras simultaneously. The connections between

the subsystems are realised by Ethernet. Images are transferred across the network using

JPEG image compression. Other data, such as the output of the People Tracker and the

results of the Behaviour Analysis, are represented in XML formats defined by a number

of XML Schemas.

The Reading People Tracker has been designed to run either as a subsystem of AD-

VISOR or in standalone mode. For its design four detection and tracking modules of

medium to low complexity have been chosen, improved and combined in a single track-

ing system.

Originally based on the Leeds People Tracker, the most important one of the four

modules is a slightly modified version of Adam Baumbergs Active Shape Tracker. The

people tracker has been modified over time to increase tracking robustness, and adapted

for use in ADVISOR. The tracker was ported from a SGI platform to a PC running

GNU/Linux to facilitate economical system integration.

The People Tracking subsystem is itself comprised of four modules which cooperate

to create the overall tracking output, aiding each other to increase tracking robustness and

to overcome the limitations of individual modules. The following passages will focus on
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Figure 5.3: Overview of the four modules of the Reading People Tracker

those aspects of the tracking algorithms which are special to this system.

Figure 5.3 shows an overview of how the four modules comprise the People Tracker.

Here is a brief overview of the functionalities of the individual models.

Motion Detector: This module models the background as an image with no people in

it. The Background Image is subtracted pixelwise from the current video image and

thresholded to yield the binary Motion Image. Regions with detected moving blobs are

then extracted and written out as the output from this module.

Region Tracker: The Regions output by the Motion Detector are tracked over time by

the Region Tracker. This includes region splitting and merging using predictions from

the previous frame.

Head Detector: The Head Detector examines the areas of the binary Motion Image

which correspond to moving regions tracked by the Region Tracker. The topmost points

of the blobs in these region images that match certain criteria for size are output as

possible positions of heads in these Regions.

Active Shape Tracker: This module uses an active shape model of 2D pedestrian out-

lines in the image to detect and track people. The initialisation of contour shapes is done

from the output by the Region Tracker and the Head Detector.

The main goal of using more than one tracking module is to make up for deficiencies

in the individual modules, thus achieving a better overall tracking performance than a

single module could provide. Of course, when combining the information from different

modules, it is important to be aware of the main sources of error for those modules. If

two modules are subject to the same type of error, then there is little benefit in combining
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the outputs. The new People Tracker has been designed keeping this aspect in mind, and

using the redundancy introduced by the multiplicity of modules in an optimal manner.

These are the main features of the system:

• interaction between modules to avoid non- or mis-detection

• independent prediction in the two tracking modules, for greater robustness

• multiple hypotheses during tracking to recover from lost or mixed-up tracks

• all modules have camera calibration data available for their use

• through the use of software engineering principles for the software design, the

system is scalable and extensible (new modules...) as well as highly maintainable

and portable

Each of the modules has access to the output from the modules run previously, and to

the long-term tracking history which includes past and present tracks, together with the

full tracking status (visibility, type of object, whether it is static etc). For each tracked

object, all measurements, tracking hypotheses and predictions generated by different

modules are stored in one place.

So, for all the reasons described above, the Reading People Tracker has been chosen

as Image Processing Library of our prototype implementation. It is very easy to be used

and it takes the frame sequence of the video as inputs and returns an XML file describing

the low level annotations catched in each frame, according to a standard schema defined

in a XML Schema. We have only made some few updates to the RPT’s source code, in

order to be able to get more easily the type of each object detected in a frame (person,

package, car). For instance, figure 5.5 shows the low level annotations associated to

the frame number 18 (figure 5.4) of a video belonging to the ITEA - CANDELA dataset

(http://www.multitel.be/̃va/candela/abandon.html), which has been used to make some

prelimary experiments.

As we can see in figure 5.5, the RPT correctly identifies two objects into the frame

shown in figure 5.4: the former, identified by ID = 5, is a person, while the latter,

identified by ID = 100 is a package.

However, we have manually filtered some errors found into low level annotations, in

order to make a more reliable, correct and, first of all, unconditional experimentation of
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Figure 5.4: A video frame from ITEA-CANDELA dataset

Figure 5.5: The related low level annotations

our Unexplained Activity Detector on real-world datasets, that is the main goal of this

thesis.

5.1.1.2 The Video Labeler

As we said before, the Video Labeler fills the semantic gap between the low level an-

notations captured for each frame and the high level annotations. So, through the Video

Labeler, the observation IDs (as defined in the chapter 3) with the related action symbols

and timestamps are detected; thus, the output of the Video Labeler is the observation

sequence related to the considered video source.
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The Video Labeler has been implemented in Java programming language: it uses the

DOM libraries to parse the XML file containing the output of the Image Processing Li-

brary. The Video Library defines the rules that have to be checked to verify the presence

of each interested high level atomic event in the video. So, a Java method for each action

symbol we want to detect, containing the related rules, has been defined.

There are listed below some examples of rules defined to detect some atomic events

(action symbols) in a video belonging to the ITEA-CANDELA dataset.

Action Symbol A: A person P goes into the central zone with the package

• There are at least two objects in the current frame

• At least one of the objects is a person

• At least one of the objects is a package

• The person identified appears on the scene for the first time

• The distance between the person’s barycenter and the package one is smaller than

an apposite distance threshold

Action Symbol B: A preson P leaves the package

• There are at least two objects in the current frame

• At least one of the objects is a person

• At least one of the objects is a package

• The person was previously holding a package

• The distance between the person’s barycenter and the package one is smaller than

an apposite distance threshold

Action Symbol C: A preson P goes into the central zone

• There are at least one object in the current frame

• At least one of the objects is a person

• The person identified appears on the scene for the first time
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• If there are also some packages on the scene, their distances are greater than an

apposite distance threshold

Action Symbol D: A preson P takes the package

• There are at least two objects in the current frame

• At least one of the objects is a person

• At least one of the objects is a package

• The distance between the person’s barycenter and the package one is smaller than

an apposite distance threshold

• The person was not previously holding a package

Action Symbol E: A person P1 gives the package to another person P2

• There are at least three objects in the current frame

• At least two of the objects are persons

• At least one of the objects is a package

• P1 was previously holding a package

• In the current frame, both the distances of P1 and P2’s barycenters from the pack-

age are smaller than an apposite distance threshold

• In the next frames, P1’s distance from the package is greater than the threshold,

while P2’s one is smaller (it means that P2 has got the package and P1 is not

holding it anymore)

Action Symbol F: A person P goes out of the central zone with the package

• This symbol is detected when a person holding a package does not appear anymore

on the scene for a specified TTL

Thus, the output of the Video Labeler is the list of the action symbols detected in the

video with the related timestamps; it is encoded in comma-separated value format.
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5.1.1.3 The Activity Detection Engine

An Activity Detection Engine is able to find activity occurrences matching the well-

known models: thus, such a module takes as inputs the observation sequence previously

caught by the Video Labeler and the stochastic activity models. So, taking into account

that the activity models must follow the schema defined into chapter 3, a specific soft-

ware able to detect instances matching such models in time-stamped observation data has

been used. Such software, called tMAGIC, is the implementation of a theoretical model

presented in [54].

As a matter of fact, the [54] approach addresses the problem of efficiently detecting

occurrences of high-level activities from such interleaved data streams. In this approach,

there has been proposed a temporal probabilistic graph so that the elapsed time between

observations also plays a role in defining whether a sequence of observations constitutes

an activity. First, a data structure called temporal multiactivity graph to store multiple

activities that need to be concurrently monitored has been proposed. Then, there has

been defined an index called Temporal Multi-Activity Graph Index Creation (tMAGIC)

that, based on this data structure, examines and links observations as they occur. There

are also defined some algorithms for insertion and bulk insertion into the tMAGIC index

and show that this can be efficiently accomplished. In this approach, the algorithms

are basically defined to solve two problems: the evidence problem that tries to find all

occurrences of an activity (with probability over a threshold) within a given sequence of

observations, and the identification problem that tries to find the activity that best matches

a sequence of observations. There are introduced some complexity reducing restrictions

and pruning strategies to make the problem, which is intrinsically exponential, linear

to the number of observations. It is demonstrated that tMAGIC has time and space

complexity linear to the size of the input, and can efficiently retrieve instances of the

monitored activities.

Thus, the output of the Activity Detection Engine are the well-known activity occur-

rences matching the defined models and their probabilities: both have been efficiently

computed through the tMAGIC software.
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5.1.1.4 The UAP Engine

As we have described in the previous chapters, the UAP Engine takes as input the ac-

tivity occurrences previously found by the Activity Detection Engine with the associated

probabilities and the observation sequence and finally discovers the Unexplained Video

Activities. Such a module has been developed in Java programming language and pro-

vides the implementations of algorithms Top-k TUA, Top-k PUA, Top-k TUC. As we

can also see in figure 5.1, the Java module uses some apposite APIs to interact with a

linear and a non-linear program solver. More in details, the QSopt Library has been used

for solving linear programs and the Lingo Library for non-linear ones.

Thus, the subsections 5.1.2 and 5.1.3 show the experimental evaluations we have

made in the video surveillance domain. In particular, we evaluated our framework on

two video datasets: (i) a video we shot by monitoring a university parking lot, and (ii)
a benchmark dataset about video surveillance in a train station [55]. The frame obser-

vations have been generated in a semi-automatic way using both our prototype imple-

mentation we have just described and few human interventions. We have noted that

identifying frame observations via the development of image processing algorithms is

an extremely challenging task—the goal of our work is to present a domain-independent

way of identifying unexplained activities that builds upon domain-specific ways of recog-

nizing actions in observation sequences. In contrast to the difficulty of detecting actions

in video, in cyber-security, it is easy to identify actions in an observation sequence as

they can merely be logged.

5.1.2 Parking lot surveillance video

The set A includes “known” normal activities such as parking a car, people passing, a

person getting in a car and leaving the parking lot, and abnormal activities such as a

person taking a package out of the car and leaving it in the parking lot before driving

away, or a person taking an unattended package in the parking lot. For instance, a model

of a well-known normal activity is shown in figure 5.6.

Examples of detected unexplained activities are two cars stopping next to each other

in the middle of the parking lot with the drivers exchanging something before leaving the

parking lot, or a person strolling around a car for a while before leaving the parking lot.

We compared Algorithms Top-k TUA and Top-k PUA against “naı̈ve” algorithms
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Figure 5.6: Example of a well-known activity model on the parking lot dataset

which are the same as Top-k TUA and Top-k PUA but do not exploit the optimizations

provided by the theorems in Chapter 3.2.1.

Figures 5.7 and 5.8 show that Top-k TUA and Top-k PUA significantly outperform

the naı̈ve algorithms which are not able to scale beyond videos of length 15 and 10

minutes for totally and partially unexplained activities, respectively (with longer videos,

the naı̈ve algorithms did not terminate in 3 hours). Figures 5.9(a) and 5.10(a) zoom in

on the running times for Algorithms Top-k TUA and Top-k PUA, respectively. The

runtimes in Figure 5.7 when k = 5 and k = All are almost the same (the two curves are

indistinguishable) because, up to 15 minutes, there were at most 5 totally unexplained

activities in the video. A similar argument applies to Figure 5.8.

We also evaluated how the different parameters that define a UAP instance affect the

running time by varying the values of each parameter while keeping the others fixed to a

default value.

Runtime of Top-k TUA. Table 5.1 reports the values we considered for each parameter

along with the corresponding default value.

For example, Table 5.1 says that we measured the running times to find the top-1,

top-2, top-5, and all totally unexplained activities (as the video length increases) while

Parameter Values Default value
k 1, 2, 5, All (Top-k TUA) All

1, 5, 10, All (Top-k PUA) All
τ 0.4, 0.6, 0.8 0.6
L 160, 200, 240, 280 200
# worlds 7 E+04, 4 E+05, 2 E+07 2 E+07

Table 5.1: Parameter values (parking lot dataset).
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keeping τ = 0.6, L = 200, #worlds = 2E + 07.

It is important to note that another relevant parameter has also to be considered, that

is the frame rate. It represents the frequency (rate) at which an imaging device produces

unique consecutive images called frames. We can easily deduce that, the higher is the

frame rate, the more complicated is the video, as we need a greater number of frames

per second to represent its informative content. For what concerns the parking lot video,

the frame rate has been set to 4 (4 frames per second). We want also to emphasize that

the sequence length L is measured in frames: so, it is very useful to know the used frame

rate, in order to get precise timing information.

Figure 5.7: Algorithm Top-k TUA vs. Naı̈ve.

Figure 5.8: Algorithm Top-k PUA vs. Naı̈ve.
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Varying k. Figure 5.9(a) shows that lower values of k give lower runtimes. As dis-

cussed in the preceding chapter, Algorithm Top-k TUA can infer that some sequences

are not going to be top-k TUAs and quickly prune: this is effective with lower values

of k because the probability threshold to enter the current Top-k TUAs (i.e., lowest in

Algorithm Top-k TUA) is higher, thus fewer candidates are added to the current Top-k

TUAs, making the pruning of Algorithm Top-k TUA more effective.

Varying τ . Figure 5.9(b) shows that the runtime decreases as the probability threshold

grows. Intuitively, this is because higher probability thresholds enable Algorithm Top-k
TUA to prune more.

VaryingL. Figure 5.9(c) shows that higher values ofL yield lower running times, though

there is not a big difference between L = 200 and L = 240.

Varying Number of Possible Worlds. Finally, Figure 5.9(d) shows that more possible
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Figure 5.9: Running time of Algorithm Top-k TUA on the parking lot dataset.
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worlds leads to higher running times. However, note that big differences in the number

of possible worlds yield small differences in running times, hence Algorithm Top-k TUA
is able to scale well (this is due to the application of Theorem 2 to compute PT (S)).

Runtime of Top-k PUA. The parameter values we used are reported in Table 5.1.

Varying k. The runtimes for k = 1, 5, 10 differ slightly from each other and are much

lower than when all PUAs had to be found (Figure 5.10(a)).

Varying τ . Figure 5.10(b) shows that the runtimes do not change much for different

values of τ .

Varying L. Figure 5.10(c) shows that higher values of L lead to lower runtimes.

Varying Number of Possible Worlds. Figure 5.10(d) shows that higher numbers of

possible worlds lead to higher runtimes. As with TUAs, the runtime of Top-k PUA
increases reasonably despite the steep growth of possible worlds. Runtimes of Top-k
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Figure 5.10: Running time of Algorithm Top-k PUA on the parking lot dataset.
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PUA are higher than for Top-k TUA because computing PP (S) requires solving a non-

linear program whereas PT (S) requires solving linear programs.

Precision/Recall. In order to assess accuracy, we compared the output of our algorithms

against ground truth provided by 8 human annotators who were taught the meaning of

graphical representations of activities inA (e.g., Figure 3.1). They were asked to identify

the totally and partially unexplained activities w.r.t. A. We ran Top-k TUA and Top-
k PUA with values of τ ranging from 0.4 to 0.8, looking for all totally and partially

unexplained activities (L was set to 200). We use {Sai }i∈[1,m] to denote the unexplained

sequences returned by our algorithms and {Shj }j∈[1,n] to denote the sequences flagged as

unexplained by human annotators. Precision and recall were computed as follows:

P =
|{Sai |∃Shj s.t. Sai ≈ Shj }|

m
(5.1)

and

R =
|{Shj |∃Sai s.t. Sai ≈ Shj }|

n
(5.2)

where Sai ≈p Shj means that Sai and Shj overlap by a percentage no smaller than 75%.

Precision and recall when τ = 0.4, 0.6, 0.8 are shown in Tables 5.1(a) and 5.1(b)

and Figure 5.11: we can easily notice that, the higher is the probability threshold value,

the higher is the precision, the lower is the recall and vice versa. That is exactly what

we reasonably expected. In summary, we can say that our framework achieved a good

accuracy.

((a)) Top-k TUA

τ Precision Recall
0.4 62.5 89.17
0.6 66.67 82.5
0.8 72.22 71.67

((b)) Top-k PUA

τ Precision Recall
0.4 59.65 77.38
0.6 64.91 74.6
0.8 70.18 71.83

Table 5.2: Precision and recall (parking lot dataset).

5.1.3 Train station surveillance video

We also tested our algorithms with a train station video surveillance dataset [55]. The set

A of known activities includes normal activities such as people passing, people chatting,
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Figure 5.11: Precision/Recall on the parking lot dataset

people seating, and abnormal activities like a person leaving a package unattended, or a

person taking an unattended package. For instance, a model of a well-known activity is

shown in figure 5.12.

Figure 5.12: Example of a well-known activity model on the train station dataset
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Examples of found unexplained activities are a person typing on a keypad next to

a door with the door closing afterwards, or a person leaving a suitcase on the ground,

standing next to it for a while looking at his watch different times, taking the suitcase,

and leaving the area.

Runtime of Top-k TUA. This data set is far more complex (w.r.t. number of possible

worlds) than the parking lot data set (thus, the frame rate has been set to 25). For this

reason, the “naı̈ve” algorithms did not terminate in a reasonable amount of time, even

with a video of 5 minutes. Thus, we do not show the runtimes of the naı̈ve algorithms.

As in the case of the parking lot data set, we varied the k, τ , L, # worlds parameters, as

shown in Table 5.3.

Varying k. Figure 5.13(a) shows that Top-k TUA’s runtime varies little with k when the

video is up to 15 minutes long. After that, the runtime for k = 1, 2, 5 are comparable,
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Figure 5.13: Running time of Algorithm Top-k TUA on the train station dataset.
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but the runtime for k = All starts to diverge from them.

Varying τ . Figure 5.13(b) shows that the runtime when τ = 0.4 is much higher than

when τ = 0.6 and τ = 0.8 (the latter two cases do not show substantial differences in

running time).

Varying L. Figure 5.13(c) shows that higher values of L yield lower runtimes. Though
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Figure 5.14: Running time of Algorithm Top-k PUA on the train station dataset.

Parameter Values Default value
k 1, 2, 5, All (Top-k TUA) All

1, 5, 10, All (Top-k PUA) All
τ 0.4, 0.6, 0.8 0.6
L 480, 600, 720, 840 600
# worlds 2 E+09, 6 E+20, 1 E+28 1 E+28

Table 5.3: Parameter values (train station dataset).
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the difference is small for videos under 15 minutes, it increases for 20 minute videos.

Varying Number of Possible Worlds. Figure 5.13(d) shows that runtimes for different

numbers of possible worlds are initially close (up to 15 minutes); then, the runtime for

1 E+28 possible worlds gets higher. There is only a moderate increase in runtime cor-

responding to a huge increase of the number of possible worlds—hence, Top-k TUA is

able to scale well when the video gets substantially more complex.

Runtime of Top-k PUA. We varied the k, τ , L, # worlds parameters as reported in

Table 5.3.

Varying k. Figure 5.14(a) shows that the runtime decreases as k decreases.

Varying τ . Figure 5.14(b) shows that the runtimes for τ = 0.4 and τ = 0.6 are similar

and higher than the one for τ = 0.8.

Varying L. Figure 5.14(c) shows that lower values of L give higher running times. The

runtimes are similar for L = 480 and L = 600 (the number of PUAs found in the video

are similar in both cases). Execution times are lower for L = 720 and much lower for

L = 800 (in this case, the number of PUAs found in the video is approximately half the

number of PUAs found with L = 480 and L = 600).

Varying Number of Possible Worlds. Figure 5.14(d) shows that though the runtime

grows with the number of possible worlds, Top-k PUA responds well to the steep growth

of the number of possible worlds.

Precision/Recall. We evaluated the accuracy of Top-k TUA and Top-k PUA in the same

way as for the parking lot data set. Precision and recall are reported in Tables 5.3(a),

5.3(b) and Figure 5.15. We can easily notice also in this case study that, the higher is the

probability threshold value, the higher is the precision, the lower is the recall and vice

versa. In summary, the obtained results show that we achieved high accuracy.

((a)) Top-k TUA

τ Precision Recall
0.4 56.48 80.35
0.6 78.79 76.25
0.8 81.82 73.99

((b)) Top-k PUA

τ Precision Recall
0.4 72.62 77.12
0.6 75 73.59
0.8 76.19 71.5

Table 5.4: Precision and recall (train station dataset).
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Figure 5.15: Precision/Recall on the train station dataset

5.2 Cyber security

As we highlighted before, in contrast to the difficulty of detecting actions in video, in

cyber-security it is easy to identify actions in an observation sequence as they can merely

be logged.

Anyway, in order to execute an extended and complete experimentation on a real-

world dataset, we have designed and developed a specific prototype implementation for

cyber security domain. Such a prototype is described in detail in subsection 5.2.1.

5.2.1 The developed prototype

As we can see in figure 5.16, our prototype consists of:

• A network Sniffer

• A network Intrusion Detection System

• An Alert Aggregation module

• The UAP Engine

In particular, the Sniffer captures network traffic and generates the sequence of pack-

ets, the Intrusion Detection System analyzes such traffic and generates the sequence of
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Figure 5.16: The prototype architecture for cyber security context

alerts. Then, as the number of alerts returned by the IDS may be relatively high, the

Alert Aggregation module, that takes as input the identified alerts, can optionally aggre-

gate multiple alerts triggered by the same event into a macro-alert, based on a set of ad

hoc aggregation rules. For instance, we defined rules to aggregate alerts such that pro-

tocol, source address, and destination address of suspicious traffic are the same, and the

alerts are within a given temporal window. In other words, the events triggering such

alerts will be treated as a single event, thus reducing the amount of data to be processed.

Finally, our UAP Engine takes as inputs the occurrences detected during the previous step

and the whole captured traffic as well and discovers the unexplained cyber activities.

All these modules are described in the next subsections (5.2.1.1, 5.2.1.2, 5.2.1.3,

5.2.1.4).

5.2.1.1 Sniffer

The Sniffer chosen for our prototype has been Wireshark (http://www.wireshark.org/ ).

As a matter of fact, it is a free and open-source packet analyzer. It is used for network

troubleshooting, analysis, software and communications protocol development, and edu-

cation. Originally named Ethereal, in May 2006 the project was renamed Wireshark due

to trademark issues.

Wireshark is cross-platform, using the GTK+ widget toolkit to implement its user

interface, and using pcap to capture packets; it runs on various Unix-like operating sys-

tems including Linux, OS X, BSD, and Solaris, and on Microsoft Windows. There is also

a terminal-based (non-GUI) version called TShark. Wireshark, and the other programs

distributed with it such as TShark, are free software, released under the terms of the GNU

General Public License.

Wireshark is very similar to tcpdump, but has a graphical front-end, plus some inte-

grated sorting and filtering options. It allows the user to put network interface controllers



5.2 Cyber security 73

that support promiscuous mode into that mode, in order to see all traffic visible on that

interface, not just traffic addressed to one of the interface’s configured addresses and

broadcast/multicast traffic. However, when capturing with a packet analyzer in promis-

cuous mode on a port on a network switch, not all of the traffic traveling through the

switch will necessarily be sent to the port on which the capture is being done, so cap-

turing in promiscuous mode will not necessarily be sufficient to see all traffic on the

network. Port mirroring or various network taps extend capture to any point on net;

simple passive taps are extremely resistant to malware tampering.

On Linux, BSD, and OS X, with libpcap 1.0.0 or later, Wireshark 1.4 and later can

also put wireless network interface controllers into monitor mode.

In the late 1990s, Gerald Combs, a computer science graduate of the University of

Missouri, Kansas City, was working for a small Internet service provider. The com-

mercial protocol analysis products at the time were priced around $1500 and did not

run on the company’s primary platforms (Solaris and Linux), so Gerald began writing

Ethereal and released the first version around 1998. The Ethereal trademark is owned by

Network Integration Services. In May 2006, Combs accepted a job with CACE Tech-

nologies. Combs still held copyright on most of Ethereal’s source code (and the rest

was redistributable under the GNU GPL), so he used the contents of the Ethereal Sub-

version repository as the basis for the Wireshark repository. However, he did not own

the Ethereal trademark, so he changed the name to Wireshark. In 2010 Riverbed Tech-

nology purchased CACE and took over as the primary sponsor of Wireshark. Ethereal

development has ceased, and an Ethereal security advisory recommended switching to

Wireshark. Wireshark has won several industry awards over the years, including eWeek,

InfoWorld and PC Magazine. It is also the top-rated packet sniffer in the Insecure.Org

network security tools survey and was the SourceForge Project of the Month in August

2010. Combs continues to maintain the overall code of Wireshark and issue releases of

new versions of the software. The product website lists over 600 additional contributing

authors.

Wireshark is software that ”understands” the structure of different networking proto-

cols. Thus, it is able to display the encapsulation and the fields along with their meanings

of different packets specified by different networking protocols. Wireshark uses pcap to

capture packets, so it can only capture the packets on the types of networks that pcap

supports.
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The main features of Wireshark are listed below:

• Data can be captured ”from the wire” from a live network connection or read from

a file that recorded already-captured packets.

• Live data can be read from a number of types of network, including Ethernet, IEEE

802.11, PPP, and loopback.

• Captured network data can be browsed via a GUI, or via the terminal (command

line) version of the utility, TShark.

• Captured files can be programmatically edited or converted via command-line

switches to the ”editcap” program.

• Data display can be refined using a display filter.

• Plug-ins can be created for dissecting new protocols.

• VoIP calls in the captured traffic can be detected. If encoded in a compatible

encoding, the media flow can even be played.

• Raw USB traffic can be captured.

Wireshark’s native network trace file format is the libpcap format supported by libp-

cap and WinPcap, so it can exchange files of captured network traces with other appli-

cations using the same format, including tcpdump and CA NetMaster. It can also read

captures from other network analyzers, such as snoop, Network General’s Sniffer, and

Microsoft Network Monitor.

Capturing raw network traffic from an interface requires elevated privileges on some

platforms. For this reason, older versions of Ethereal/Wireshark and tethereal/TShark

often ran with superuser privileges. Taking into account the huge number of protocol

dissectors that are called when traffic is captured, this can pose a serious security risk

given the possibility of a bug in a dissector. Due to the rather large number of vulnera-

bilities in the past (of which many have allowed remote code execution) and developers’

doubts for better future development, OpenBSD removed Ethereal from its ports tree

prior to OpenBSD 3.6.

Elevated privileges are not needed for all of the operations. For example, an alterna-

tive is to run tcpdump, or the dumpcap utility that comes with Wireshark, with superuser
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privileges to capture packets into a file, and later analyze the packets by running Wire-

shark with restricted privileges. To make near real time analysis, each captured file may

be merged by mergecap into growing file processed by Wireshark. On wireless networks,

it is possible to use the Aircrack wireless security tools to capture IEEE 802.11 frames

and read the resulting dump files with Wireshark.

As of Wireshark 0.99.7, Wireshark and TShark run dumpcap to do traffic capture.

On platforms where special privileges are needed to capture traffic, only dumpcap needs

to be set up to run with those special privileges: neither Wireshark nor TShark need to

run with special privileges, and neither of them should be run with special privileges.

5.2.1.2 Intrusion Detection System

We have chosen Snort (http://www.snort.org/ ) as Intrusion Detection System in our pro-

totype implementation.

Snort is an open source network intrusion prevention and detection system (IDS/IPS)

developed by Sourcefire. Combining the benefits of signature, protocol, and anomaly-

based inspection, Snort is the most widely deployed IDS/IPS technology worldwide. It

contains many configurable internal components that can vastly influence false positives

and negatives as well as general packet logging performance. Understanding the function

of these internal components will help customize Snort to the analyzed network and

help to avoid some of the common Snort pitfalls. Snort can be divided into five major

components that are each critical to intrusion detection. The first is the packet capturing

mechanism. Snort relies on an external packet capturing library (libpcap) to sniff packets.

After packets have been captured in a raw form, they are passed into the packet decoder.

The decoder is the first step into Snorts own architecture. The packet decoder translates

specific protocol elements into an internal data structure. After the initial preparatory

packet capture and decode is completed, traffic is handled by the preprocessors. Any

number of pluggable preprocessors either examine or manipulate packets before handing

them to the next component: the detection engine. The detection engine performs simple

tests on a single aspect of each packet to detect intrusions. The last component is the

output plugins, which generate alerts to present suspicious activity to users. A simplified

graphical representation of the dataflow is shown in Figure 5.17.

Now, let us briefly describe the five Snort components:

Packet Capturing Mechanism: to get packets into the preprocessors and then the main
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Figure 5.17: Snort component dataflow

detection engine, some prior labor must first occur. Snort has no native packet capture

facility yet; it requires an external packet sniffing library: libpcap. Libpcap was cho-

sen for packet capture for its platform independence. Using libpcap makes Snort a truly

platform-independent application. The responsibility for grabbing packets directly from

the network interface card belongs to libpcap. It makes the capture facility for raw pack-

ets provided by the underlying operating system available to other applications.

A raw packet is a packet that is left in its original, unmodified form as it had traveled

across the network from client to server. A raw packet has all its protocol header informa-

tion left intact and unaltered by the operating system. Network applications typically do

not process raw packets; they depend on the OS to read protocol information and prop-

erly forward payload data to them. Snort is unusual in this sense in that it requires the

opposite: it needs to have the packets in their raw state to function. Snort uses protocol

header information that would have been stripped off by the operating system to detect

some forms of attacks. Using libpcap is not the most efficient way to acquire raw pack-

ets. It can process only one packet at a time, making it a bottleneck for high-bandwidth

(1Gbps) monitoring situations. In the future Snort will likely implement packet capture

libraries specific to an OS, or even hardware.There are several methods other than us-
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ing libpcap for grabbing packets from a network interface card. Berkeley Packet Filter

(BPF), Data Link Provider Interface (DLPI), and the SOCK PACKET mechanism in the

Linux kernel are other tools for grabbing raw packets.

Packet Decoder: as soon as packets have been gathered, Snort must decode the specific

protocol elements for each packet. The packet decoder is actually a series of decoders

that each decode specific protocol elements. It works up the Network stack, starting with

lower level Data Link protocols, decoding each protocol as it moves up. A packet follows

this data flow as it moves through the packet decoder 5.18. As packets move through the

various protocol decoders, a data structure is filled up with decoded packet data. As soon

as packet data is stored in a data structure it is ready to be analyzed by the preprocessors

and the detection engine.

Figure 5.18: Decoder data flow

Preprocessor: Snorts preprocessors fall into two categories. They can be used to either

examine packets for suspicious activity or modify packets so that the detection engine

can properly interpret them. A number of attacks cannot be detected by signature match-

ing via the detection engine, so examine preprocessors step up to the plate and detect

suspicious activity. These types of preprocessors are indispensable in discovering non-

signature-based attacks. The other preprocessors are responsible for normalizing traffic

so that the detection engine can accurately match signatures. These preprocessors defeat

attacks that attempt to evade Snorts detection engine by manipulating traffic patterns.

Additionally, Snort cycles packets through every preprocessor to discover attacks
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that require more than one preprocessor to detect them. If Snort simply stopped check-

ing for the suspicious attributes of a packet after it had set off an alert via a preprocessor,

attackers could use this deficiency to hide traffic from Snort. Suppose a black hat inten-

tionally encoded a malicious remote exploit attack in a manner that would set off a low

priority alert from a preprocessor. If processing is assumed to be finished at this point

and the packet is no longer cycled through the preprocessors, the remote exploit attack

would register only an encoding alert. The remote exploit would go unnoticed by Snort,

obscuring the true nature of the traffic. Preprocessor parameters are configured and tuned

via the snort.conf file.

Detection Engine: is the primary Snort component. It has two major functions: rules

parsing and signature detection. The detection engine builds attack signatures by parsing

Snort rules. Snort rules are read line by line, and are loaded into an internal data structure.

The rules are loaded only when the Snort service is started, meaning that to modify, add,

or delete a rule, the user must refresh the Snort daemon. The detection engine runs traffic

through the now loaded rule set in the order that it loads them into memory. It is possible

to dictate which rules are run first by prioritizing. Rules are split into two functional

sections:

• Rule header: contains information about the conditions for applying the signature.

• Rule option: for the same exploit begins and ends with a parenthetical. The rule

option contains the actual signature, the priority level, and some documentation

about the attack.

The detection engine processes rule headers and rule options differently. The detec-

tion engine builds a linked list decision tree. The nodes of the tree test each incoming

packet for increasingly precise signature elements. A packet is tested to see whether it

is TCP; if so, it is passed to the portion of the tree that has rules for TCP. The packet

is then tested to see whether it matches a source address in a rule; if so, it passes down

the corresponding rule chains. This process happens until the packet either matches an

attack signature or tests clean and is dropped. The important thing to remember is that

Snort commences testing a packet after it has found a signature to match to the packet.

Even if the packet could possibly match another signature, the detection engine moves on

to the next packet. This is why it is valuable to organize rules so that the most malicious

signatures are loaded first.
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Output plugins: Snort’s output plugins are the means Snort has to get intrusion data to

users. The purpose of the output plugins is to dump alerting data to another resource or

file. Multiple outputting plugins can be activated to perform different functions. Loads

of external applications - some even built exclusively for Snort - are designed to read

Snorts output and manage intrusion data. Output plugins can be a major bottleneck

for Snort. Snort can read and process packets quickly, but bogs down when trying to

write to a slow database or over a network. Database output plugins are not used in

high-bandwidth environments. It is recommended to configure Snort to spool to unified

format and let Snort’s unified log application, Barnyard, take over. Snort has 12 output

plugins that push out data in different formats.

5.2.1.3 Alert Aggregation

The main purpose of using alert aggregation [41] is to reduce the redundancy of alerts by

grouping duplicate alerts and merging them into a single one. Alerts are considered to be

aggregated in terms of their attributes, such as timestamp, source IP, target IP, port(s),

user name, process name, attack class and sensor ID, as they are defined in IDMEF.

Normally, the alerts raised by different sensors with the same attributes (e.g., timestamp,

source IP, target IP, port(s), and attack class) can be merged together. Timestamps can

be slightly different but should be close enough to fall into a predefined time window. A

similar method used by Debar and Wespi in their Aggregation and Correlation Compo-

nent (ACC) is called duplicate relationship. The duplicate relationships between alerts

are defined in a duplicate definition file. Based on the definitions defined in such a file,

the attributes of the new alerts are compared with those of the previous alerts for aggre-

gation.

In addition to the aggregation, alert compression is another simple technique for

dealing with duplicate alerts. These techniques use a Run Length Encoding (RLE) to

represent a particular type of repeated alerts, that is, a recurring sequence of alerts is

simply replaced by RLE with a single alert and a run count. In most cases, identifying

redundant or duplicate alerts is not a difficult task, but for more complex cases, some

predefined criteria are required. For example, if an attacker is scanning different ranges

of the IP addresses in a network, this will trigger multiple alerts with different ranges of

target IPs, but they should still be aggregated into an only alert.

In summary, our Alert Aggregation module takes as input the previously identified
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alerts and can optionally aggregate multiple alerts triggered by the same event into a

macro-alert, based on a set of ad hoc aggregation rules. The set of the used aggregation

rules is described below.

Let us introduce the following variables:

m = number of bins

n = number of alerts

yi =

1, if the bin i is used

0, otherwise
for i=1,...,m

xij =

1, if alert j is assigned to bin i

0, otherwise
for i=1,...,m j=1,....,n

Sourcej = Source IP address of alert j

Destinationj = Destination IP address of alert j

Protocolj = Protocol of alert j

tj = Arrival time of alert j

τg = global threshold

τl = local threshold

So, we can give a formal definition of the used aggregation rules.

Rule 1: two alerts i and j are aggregated if they satisfy the following condition:

≺ Source IP,Destination IP, Protocol �i=≺ Source IP,Destination IP, Protocol �j

So, the following is the mathematical model of Rule 1:

z =

m∑
i=1

yi

s.t.
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

tj ∗ xij ≤ (t1 + τg) ∗ xi1 i=1,...,m j=1,....,n

tj ∗ xij ≤ (tj−1 + τl) ∗ xij−1 i=1,...,m j=1,....,n

Sourcej = Sourcej−1 j=1,....,n

Destinationj = Destinationj−1 j=1,....,n

Protocolj = Protocolj−1 j=1,....,n

yi = 0/1

xij = 0/1

Rule 2: two alerts i and j are aggregated if either:

≺ Source IP,Destination IP, Protocol �i=≺ Source IP,Destination IP, Protocol �j

or:

≺ Source IP,Destination IP, Protocol �i=≺ Destination IP, Source IP, Protocol �j

Thus, the output of the Alert Aggregation phase consists of a macro-alert list related

to the analyzed network traffic and encoded in a comma separated value format.

5.2.1.4 The UAP Engine

As we have specified before, the UAP Engine takes as inputs the macro-alert list (corre-

sponding to the occurrences of the well-known models, in the general model) detected

by the Alert Aggregation Module and the whole captured traffic as well and discovers the

unexplained cyber activities. Such a module is, of course, exactly the same as the video

surveillance context.

Next subsection (5.2.2) describes our prelimary experiments conducted on a quite-

simple University dataset.

5.2.2 The ”University of Naples” dataset

We ran some preliminary evaluations with a cyber security dataset consisting of network

traffic from University of Naples network.
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We used the prototype implementation described before to get first packet sequences,

then the alert sequences and finally the aggregated alerts. So, we ran our UAP Engine.

The list of the executed experiments is shown below.

Runtime. We varied the k, τ , L, #worlds parameters as shown in Table 5.5 and used all

Snort rules as the set of activity models. As we can notice through the number of worlds

listed in table 5.5, this dataset is definitely easier than the video surveillance ones, also

because the Alert Aggregation Module significantly prunes the number of alerts which

was at the beginning enormous. Moreover, it is clear that the frame rate parameter does

not make sense in a cyber security context, so L is measured in milliseconds.

Parameter Values Default value
k 1, 2, 5, All (Top-k TUA) All

1, 3, 6, All (Top-k PUA) All
τ 0.4, 0.6, 0.8 0.6
L 180000, 300000, 420000, 480000 300000
# worlds 2341, 65457, 897653 897653

Table 5.5: Parameter values (cyber security dataset).

Running times for Algorithm Top-k TUA and Algorithm Top-k PUA are shown in

Figures 5.19 and 5.20, respectively. They confirm the trend already seen with video data:

runtime decreases as L and τ (resp. k and the number of possible worlds) increase (resp.

decrease).

Accuracy. We measured accuracy as follows. Let A be the set of all Snort rules. First,

we detected all occurrences of A in the data stream. We then ignored a certain subset

A′ of A and identified the unexplained sequences. Clearly, ignoring models in A′ is

equivalent to not having those models available. Thus, occurrences of ignored activties

are expected to have a relatively high probability of being unexplained as there is no

model for them. We measured the fraction of such occurrences that have been flagged as

unexplained for different values of τ .

Specifically, we considered two settings: one where only ICMP rules in A were

ignored, and another one where only preprocessor rules in A were ignored. ICMP rules

are Snort rules designed to analyze ICMP packets (e.g., echo request a.k.a. ping) and

alert on suspicious or malformed ICMP packets. For instance, a ping sweep is a passive

reconnaissance attack that uses multiple echo requests to establish which IP addresses
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Figure 5.19: Running time of Algorithm Top-k TUA on the cyber security dataset.

map to live hosts. Some packets and applications have to be decoded into plain text

for Snort rules to trigger. Prepocessor rules are designed to handle such situations. For

instance, the arpspoof preprocessor is fed a list of IP:MAC addresses. When it detects a

layer-2 attack, it triggers an alarm for a layer-2 event, such as multiple MAC addresses

from a single IP. The results are reported in Tables 5.6 and 5.7 for Top-k TUA and Top-k
PUA, respectively, and show that our framework achieved good accuracy. When ICMP

rules were ignored, unexplained sequences were sequences where ICMP activities were

occurring, and likewise when preprocessor rules were ignored.

5.3 Experimental Conclusions

Our experiments show that:

(i) Runtime increases with observation sequence length (because there are more possible
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Figure 5.20: Running time of Algorithm Top-k PUA on the cyber security dataset.

((a)) Ignoring ICMP rules

τ Accuracy
0.4 85.71
0.6 71.42
0.8 68.17

((b)) Ignoring Preprocessor rules

τ Accuracy
0.4 75.12
0.6 63.84
0.8 59.29

Table 5.6: Accuracy of Top-k TUA (cyber security dataset).

worlds, causing LC(v) and NLC(v) to have more variables and constraints). Despite

the enormous blow-up in the number of possible worlds, our algorithms perform very

well showing quadratic performance in all three datasets.

(ii) Runtime increases with the number of totally or partially unexplained activities present

in the video. This is because determining the exact endpoints of each TUA (resp. PUA)

is costly. Specifically, determining the exact end frame of a TUA requires computing
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((a)) Ignoring ICMP rules

τ Accuracy
0.4 91.24
0.6 83.39
0.8 72.84

((b)) Ignoring Preprocessor rules

τ Accuracy
0.4 88.76
0.6 76.24
0.8 74.85

Table 5.7: Accuracy of Top-k PUA (cyber security dataset).

PT many times: when a TUA is found, Top-k TUA (and also Top-k TUC) need to go

through the while loop of lines 7–14, the binary search in the while loop of lines 16–25,

and the if block of lines 26–31. All these code blocks require PT to be computed. Like-

wise, determining the exact start and end frames of a PUA requires PP to be computed

many times as Algorithm Top-k PUA (as well as Algorithm Top-k PUC) goes through

different loops and binary searches (one to determine the start frame, another to deter-

mine the end frame) requiring multiple computations of PP .

(iii) In general, the number of TUAs and PUAs in the observation sequence decreases as

τ and L increase, because higher values of τ and L are stricter conditions for a sequence

to be totally or partially unexplained.

(iv) Runtime decreases as k decreases because our algorithms use k intelligently to infer

that certain sequences are not going to be in the result (aborting the loops and binary

searches mentioned above).

(v) Precision increases whereas recall decreases as τ increases. The experimental re-

sults have shown that a good compromise can be achieved by setting τ at least 0.6 and

that our framework had a good accuracy with all the datasets we considered.





Chapter 6

Conclusions

Suppose we have a sequence v of time-stamped observation data and a setA of “known”

activities (normal or suspicious). This thesis addresses the problem of finding subse-

quences of v that are not “sufficiently” explained by the activities in A. We formally

define what it means for a sequence to be unexplained by defining totally and partially

unexplained sequences. We propose a possible worlds framework and identify interest-

ing properties that can be leveraged to make the search for unexplained activities highly

efficient via intelligent pruning. We leverage these properties to develop the Top-k TUA,

Top-k PUA, Top-k TUC, Top-k PUC algorithms to find totally and partially unexplained

activities with highest probabilities. We conducted experimentals over three datasets in

the video and cyber security domains showing that our approach has good running time

and high accuracy.

This thesis represents a start towards detecting unexplained activities in a domain

independent way. Much future work is possible. For instance, we may wish to allow

activity occurrences to violate the temporal constraints in the stochastic automata based

activity model by penalizing such activity occurrences via diminished probabilities. This

can be done in many ways.

Second, we would like to increase scalability of our algorithms, possibly through the

development of specialized data structures to support identification of the Top-k TUA,

Top-k PUA, Top-k TUC, Top-k PUC algorithms.

Third, the assumption of independence after conflict-based partitioning is convenient

and follows upon much work in computer science that makes such assumptions—but it
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may not be appropriate for all applications. Relaxing this assumption is also an important

direction for future work.



Bibliography

[1] M. Albanese, V. Moscato, A. Picariello, V. S. Subrahmanian, and O. Udrea, “De-

tecting stochastically scheduled activities in video,” in IJCAI, pp. 1802–1807, 2007.

[2] S. Hongeng and R. Nevatia, “Multi-agent event recognition,” in ICCV, pp. 84–93,

2001.

[3] H. Buxton and S. Gong, “Visual surveillance in a dynamic and uncertain world,”

Artif. Intell., vol. 78, no. 1-2, pp. 431–459, 1995.

[4] T. Huang, D. Koller, J. Malik, G. Ogasawara, B. Rao, S. Russell, and J. Weber, “Au-

tomatic symbolic traffic scene analysis using belief networks,” in PROCEEDINGS

12TH NATIONAL CONFERENCE IN AI, pp. 966–972, AAAI Press, 1994.

[5] S. Hongeng and R. Nevatia, “Multi-agent event recognition,” in Computer Vision,

2001. ICCV 2001. Proceedings. Eighth IEEE International Conference on, vol. 2,

pp. 84–91 vol.2, 2001.

[6] S. S. Intille and A. F. Bobick, “A framework for recognizing multi-agent action

from visual evidence,” in Proceedings of the sixteenth national conference on Arti-

ficial intelligence and the eleventh Innovative applications of artificial intelligence

conference innovative applications of artificial intelligence, AAAI ’99/IAAI ’99,

(Menlo Park, CA, USA), pp. 518–525, American Association for Artificial Intelli-

gence, 1999.

[7] T. Starner, J. Weaver, and A. Pentland, “Real-time american sign language recogni-

tion using desk and wearable computer based video,” Pattern Analysis and Machine

Intelligence, IEEE Transactions on, vol. 20, no. 12, p. 1371–1375, 1998.



90 Bibliography

[8] B. H. Juang and L. R. Rabiner, “Hidden Markov Models for Speech Recognition,”

Technometrics, vol. 33, no. 3, 1991.

[9] A. Kaltenmeier, T. Caesar, J. M. Gloger, and E. Mandler, “Sophisticated topology

of hidden Markov models for cursive script recognition,” pp. 139–142, 1993.

[10] S. Hongeng, R. Nevatia, and F. Bremond, “Video-based event recognition: activ-

ity representation and probabilistic recognition methods,” Comput. Vis. Image Un-

derst., vol. 96, pp. 129–162, Nov. 2004.

[11] D. Zhang, D. Gatica-Perez, S. Bengio, and I. McCowan, “Semi-supervised adapted

hmms for unusual event detection,” in Proceedings of the 2005 IEEE Computer So-

ciety Conference on Computer Vision and Pattern Recognition (CVPR’05) - Volume

1 - Volume 01, CVPR ’05, (Washington, DC, USA), pp. 611–618, IEEE Computer

Society, 2005.

[12] M. Brand, N. Oliver, and A. Pentland, “Coupled hidden markov models for com-

plex action recognition,” in Computer Vision and Pattern Recognition, 1997. Pro-

ceedings., 1997 IEEE Computer Society Conference on, pp. 994–999, 1997.

[13] N. Vaswani, A. K. R. Chowdhury, and R. Chellappa, “”shape activity”: A

continuous-state hmm for moving/deforming shapes with application to abnor-

mal activity detection,” IEEE Transactions on Image Processing, vol. 14, no. 10,

pp. 1603–1616, 2005.

[14] M. Brand, N. Oliver, and A. Pentland, “Coupled hidden markov models for com-

plex action recognition,” in CVPR, pp. 994–999, 1997.

[15] N. Oliver, E. Horvitz, and A. Garg, “Layered representations for human activity

recognition,” in ICMI, pp. 3–8, 2002.

[16] R. Hamid, Y. Huang, and I. Essa, “Argmode - activity recognition using graphical

models,” in CVPRW, pp. 38–43, 2003.

[17] N. P. Cuntoor, B. Yegnanarayana, and R. Chellappa, “Activity modeling using event

probability sequences,” IEEE Transactions on Image Processing, vol. 17, no. 4,

pp. 594–607, 2008.



Bibliography 91

[18] D. Zhang, D. Gatica-Perez, S. Bengio, and I. McCowan, “Semi-supervised adapted

hmms for unusual event detection,” in CVPR, pp. 611–618, 2005.

[19] M. T. Chan, A. Hoogs, J. Schmiederer, and M. Petersen, “Detecting rare events in

video using semantic primitives with hmm,” in ICPR, pp. 150–154, 2004.

[20] T. Xiang and S. Gong, “Video behavior profiling for anomaly detection,” IEEE

Trans. Pattern Anal. Mach. Intell., vol. 30, no. 5, pp. 893–908, 2008.

[21] J. Kim and K. Grauman, “Observe locally, infer globally: A space-time mrf for

detecting abnormal activities with incremental updates,” in CVPR, 2009.

[22] J. Yin, Q. Yang, and J. J. Pan, “Sensor-based abnormal human-activity detection,”

IEEE Trans. Knowl. Data Eng., vol. 20, no. 8, pp. 1082–1090, 2008.

[23] D. H. Hu, X.-X. Zhang, J. Yin, V. W. Zheng, and Q. Yang, “Abnormal activity

recognition based on hdp-hmm models,” in IJCAI, pp. 1715–1720, 2009.

[24] X.-X. Zhang, H. Liu, Y. Gao, and D. H. Hu, “Detecting abnormal events via hier-

archical dirichlet processes,” in PAKDD, pp. 278–289, 2009.

[25] D. Mahajan, N. Kwatra, S. Jain, P. Kalra, and S. Banerjee, “A framework for activ-

ity recognition and detection of unusual activities,” in ICVGIP, 2004.

[26] F. Jiang, Y. Wu, and A. K. Katsaggelos, “Detecting contextual anomalies of crowd

motion in surveillance video,” in ICIP, pp. 1117–1120, 2009.

[27] M. Breunig, H. Kriegel, R. Ng, and J. Sander, “Identifying density-based local

outliers,” in Proc. ACM SIGMOD Intl Conf. Management of Data (SIGMOD 00),

pp. 93–104, 2000.

[28] H. Zhong, J. Shi, and M. Visontai, “Detecting unusual activity in video,” in CVPR,

pp. 819–826, 2004.

[29] C. E. Au, S. Skaff, and J. J. Clark, “Anomaly detection for video surveillance ap-

plications,” in ICPR, pp. 888–891, 2006.

[30] Y. Zhou, S. Yan, and T. S. Huang, “Detecting anomaly in videos from trajectory

similarity analysis,” in ICME, pp. 1087–1090, 2007.



92 Bibliography

[31] A. Mecocci and M. Pannozzo, “A completely autonomous system that learns

anomalous movements in advanced videosurveillance applications,” in ICIP,

pp. 586–589, 2005.

[32] L. Brun, A. Saggese, and M. Vento, “A clustering algorithm of trajectories for

behaviour understanding based on string kernels,” in SITIS’12, pp. 267–274, 2012.

[33] J. Wang, Z. Cheng, M. Zhang, Y. Zhou, and L. Jing, “Design of a situation-aware

system for abnormal activity detection of elderly people,” in Active Media Tech-

nology (R. Huang, A. Ghorbani, G. Pasi, T. Yamaguchi, N. Yen, and B. Jin, eds.),

vol. 7669 of Lecture Notes in Computer Science, pp. 561–571, Springer Berlin Hei-

delberg, 2012.

[34] B. T. Morris and M. M. Trivedi, “Trajectory learning for activity understanding:

Unsupervised, multilevel, and long-term adaptive approach,” IEEE Trans. Pattern

Anal. Mach. Intell., vol. 33, no. 11, pp. 2287–2301, 2011.

[35] A. Adam, E. Rivlin, I. Shimshoni, and D. Reinitz, “Robust real-time unusual event

detection using multiple fixed-location monitors,” IEEE Trans. Pattern Anal. Mach.

Intell., vol. 30, no. 3, pp. 555–560, 2008.

[36] F. Jiang, J. Yuan, S. A. Tsaftaris, and A. K. Katsaggelos, “Video anomaly detection

in spatiotemporal context,” in ICIP, pp. 705–708, 2010.

[37] A. Gupta, P. Srinivasan, J. Shi, and L. S. Davis, “Understanding videos, construct-

ing plots learning a visually grounded storyline model from annotated videos,” in

CVPR, pp. 2012–2019, 2009.

[38] M. Albanese, C. Molinaro, F. Persia, A. Picariello, and V. S. Subrahmanian, “Find-

ing unexplained activities in video,” in IJCAI, pp. 1628–1634, 2011.

[39] P. Ning, Y. Cui, and D. S. Reeves, “Constructing attack scenarios through corre-

lation of intrusion alerts,” in CCS 2002, (Washington, DC, USA), pp. 245–254,

ACM, November 2002.

[40] P. Garcı́a-Teodoro, J. Dı́az-Verdejo, G. Maciá-Fernández, and E. Vázquez,
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