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Abstract 

 

Many animal species, including humans, live in groups, which means, in 

general terms, they “live together”. In general, we can interpret “living 

together” more specifically, depending on how two or more individuals live in 

spatial proximity to each others. In this respect, not all animal species live 

equally the group sociality. The social living is a matter of degree. Clearly, two 

individuals of the opposite sex must stay together for mating as well as, parents 

remain close to the children, in many species of animals. However, nowadays, 

it is also clear that some species tend to be more social than others, beyond the 

biological needs of mating and taking care of offspring. So some interesting 

research questions are: What are the adaptive advantages of the social living, 

beyond the reproductive needs or looking after the neighbors? In other words, 

why animals exhibit different degrees and types of sociality? 

The advantages of living in groups have been extensively explored in ethology 

and biology, and they are generally related to the cooperation needs : (a) 

protection from predators, (b) feeding efficiency, (c) competition with other 

groups of con-specifics, and (d) possibility of information sharing. 

Many authors argue that cooperation enables groups of individuals to reach 

common goals that are precluded to a single, as for example, in social 

grooming. Moreover laboratory dyadic cooperation has been analyzed with 

new simplified paradigms such as “The Loose String Task”.  

On the other hand, living in non-dyadic groups (consisting of more than two 

subjects) poses a fundamental problem of social coordination: it is a not simple 

negotiation problem that in the examples. For the ethology, groups of animals 

are autonomous units which allow members to synchronize some activities, 

such as collective foraging and coordination in moving. For this reason, in 

animals world, especially in mammals and virtually always in primates, 

whenever there are groups, there seems to be a leadership / followership 

pattern emergence. Both in ethology and in biology, whenever there are 

moving groups of animals, a leadership arise. Evolutionary biologists use the 
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term leadership for behaviors that influence the type, timing and duration of 

group activity and generally they argue that the reason for the emergence of 

leadership / followership patterns is the need to coordinate. 

A lot of theoretical works focus on how navigational information is exchanged 

between group members and how such information flow depends on the 

knowledge held by each member. Some open issues are : how do groups reach 

consensus and solve the problem of maintaining a collective moving? Is there a 

considerable variation in knowledge of the group members? Is the role of 

individual knowledge level determining for leadership in animal groups?  

Furthermore, game-theoretical analysis has shown how, in some situations, the 

emergence of leadership is almost inevitable. Some experiments, conducted on 

humans, underline, not only how leadership can emerge in human beings as 

well as animals, but variation in temperaments may represent a prerequisite for 

the emergence of leadership. These studies suggest the thesis that evolution has 

fashioned a so large variation of individuals’ personalities to foster the 

emergence of leader-follower patterns that are, in turn, essential for solving all 

the social coordination problems. 

On one hand, our purpose is finding an answer to questions like:  May really 

arise leadership in a group of genetically heterogeneous robots? Who is the 

leader? What are leaders made of? What are characteristics and skill of leader?                                                                     

All mentioned biological and ethological experiments are often hard to be 

performed in laboratory, since social species are not suitable for experiments 

performed in captivity. Therefore, in this approach we use artificial models 

from Embodied Cognitive Science literature and Evolutionary Robotics. In 

particular, we simulate groups of embodied and artificially evolved robots 

which must cooperate in order to reach a collective purpose. In every 

experiment, we try to maintain a strong link between “phenomenon” and “task” 

derived from experiments on animal behavior, in order to get insights from this 

kind of data reciprocally. On the other hand, we can contribute to build a new 

generation of autonomous robotics applications or a new generation of 

software agents which need a coordination and a leadership emergence to work 

properly. Examples are the design of new groups of robots for navigational 
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tasks in unknown environments where spontaneous leadership emergence 

could foster the coordination for the environmental exploration by robots. 

Similarly, evolutionary software could exploit leadership/followership patterns 

and hierarchic structures in order to guarantee the cooperation between 

different components. In this work I illustrate 4 different experimental setups, 

which examine the mentioned problems under different viewpoints.  

Results show that sociality give the groups many advantage: 1) sociality 

facilitate the emergence of more probability to find the food in spite of the 

increased physical obstruction. Moreover, individual physical limits can be 

compensated by an increase of the population members number. The sociality 

fosters the intra-species or intra-race cohesion that allows members (belonging 

to one species or one race group) to be more successful respect to other species 

or other races groups; 2) in dyadic cooperative subjects, sociality contribute to 

the coordination of the group via many communication channels (visual or 

voiced); 3) in non-dyadic cooperative subjects (i.e. in groups of more than 2 

member), social coordination causes the spontaneous emergence of flocking 

behaviors and leadership. Leaders seem to be the most explorative individuals, 

the fastest to reach the food areas, etc.   
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Introduction 

 

Many animal species, including humans, live in groups, which means, in 

general terms, they “live together” [1]. In the common sense, all the individuals 

of same species that live together always share the same physical environment. 

However, we can interpret “living together” more specifically depending on 

how two or more individuals live in spatial proximity to each other, by 

perceiving others and by performing actions that change the environment or 

affect others’ actions. In this respect, not all animal species live equally within 

group sociality. Therefore, the social living is a matter of degree. Clearly, two 

individuals of the opposite sex must stay together, in order to mate, in all 

sexually reproducing species. Moreover, in many species of animals, parents 

take care of the children to help them survive. Nowadays, it is also clear that 

some species tend to be more social than others, beyond the biological needs of 

mating and taking care of offspring. So some interesting research questions are: 

What are the adaptive advantages of the social living, beyond the reproductive 

needs or caring about the neighbors? In other words, why do animals exhibit 

different degrees and types of sociality? 

The advantages of living in groups have been extensively explored in ethology 

and biology, and they are generally related to the cooperation needs: (a) 

protection from predators, (b) feeding efficiency, (c) competition with other 

groups of con-specifics, and (d) possibility of information sharing. 

Many researchers have studied the principles underlying the cooperation in 

animal reign where various and outstanding examples of cooperation can be 

observed. In general, cooperation enables groups of individuals to reach 

common goals that are precluded to a single. For example, social grooming (or 

allo-grooming) [2] is an activity in which individuals in a group clean one 

another's body, as the reciprocal cleaning of hair. This practice, grounded on a 

tension-reduction mechanism [3], shows that primates exhibit some behaviours 

of reciprocal altruism [4], which means the mutual assistance such as “help me, 

so I will help you”. This mechanism can bond and reinforce social structures, 
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family links, and build relationships or the structured social organisation of 

insects such as ants, bees, wasps or termites where every subject covers a 

specific role that sustains the hierarchy feeding the entire group. 

The ethological observation of these phenomena has been recently 

complemented with the study in controlled situation, by using specific 

experimental paradigms: these paradigms represent a simplified version of 

cooperation chances that animals encounter in natural environment. One of 

these, the “Loose String Task”, is an experimental paradigm to study dyadic 

cooperation (regarding to two subjects) developed [5] and used [6,7] in order to 

study chimpanzees, birds, and recently elephants.  

On the other hand, living in non-dyadic groups (consisting of more than two 

subjects) poses a fundamental problem of social coordination. It is a 

complicated negotiation problem that is not often involved in the examples of 

dyadic cooperation. For example, in order to move in a large group, some 

members (not necessarily everybody) must choose the moving direction for the 

whole group and have to coordinate their movements.     

Primatology has been dealing, for a long time, with what may be the conditions 

that lead to the formation of groups in primates. Several authors have 

suggested that grouping provides, to members, such benefits that differences in 

size of groups (either between different races or within the same race) must be 

sought primarily in the disadvantages that a given ecology determines on the 

group development [9]. As a matter of fact, some animals, which have to feed 

on larger areas, require an expansion of the group to match their nutritional 

requirements, with a consequent increase in time and travel costs for the entire 

group [10]. A study on “spider monkeys” has proved that the size of groups is 

conditioned by the distribution, density and size of the food patches spread in 

the environment where primates live and interact [11].  

In ethology, groups of animals are autonomous units, this allows members to 

synchronize some activities, such as collective foraging and coordination in 

movements. For this reason, in the animal world (especially in mammals and 

virtually always in primates), whenever there are groups there seems to be a 

leadership / followership patterns emergence. For both ethology and biology, 
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whenever there are moving groups of animals, a need for leadership arises. 

Evolutionary biologists use the term leadership for behaviours that influence 

the type, timing and duration of group activity [12] and generally argue that the 

reason for the emergence of leadership / followership patterns is the need to 

coordinate [13]. 

A lot of theoretical works focuses on how navigational information is 

exchanged between group members and how such an information flow depends 

on the knowledge held by each member [14]. Some open issues are : how do 

groups reach consensus and solve the problem of maintaining a collective 

moving? Is there a considerable variation in knowledge of the group members? 

Is the role of individual knowledge’s level determining for leadership in animal 

groups?  

Actually, a few experiments have attempted to provide the necessary empirical 

data about the social coordination [15]. These experiments demonstrate that 

during pairing flights, when two pigeons have a conflict in an individually 

preferred route, if they are significantly different (in knowledge), one bird will 

emerge as the leader and the other one as the follower. This means that, in 

order to negotiate joint routes, pigeons make use of a complex decision making 

system based on leadership mechanisms, where, in substance, less homing 

experienced birds are likely to follow more experienced con-specifics.  

Furthermore, game-theoretical analysis has shown how, in some situations, the 

emergence of leadership is almost inevitable. Some experiments, conducted on 

humans, underline, not only how leadership can emerge in human beings as 

well as animals, but even how variation in temperaments may represent a 

prerequisite for the emergence of leadership. These studies suggest the thesis 

that evolution has fashioned (over many millions of years of trials and errors) a 

large variation of individuals’ personalities to foster the emergence of 

leader/follower patterns that are, in turn, essential for solving of social 

coordination problems [16]. 

Therefore, some interesting questions come from a detailed analysis of 

literature: May leadership really arise in a group of genetically heterogeneous 
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robots? Who is the leader? What are leaders made of? What are the 

characteristics and skills of a leader?                                                                      

All mentioned biological and ethological experiments are often hard to perform 

in laboratory, since strongly social species are not suitable for experiments 

which are performed in captivity. These animals tend to need a long time to be 

trained and bred for the laboratory. So it is often difficult to set some 

experimental proves of theories about leadership and grouping emergence by 

the means of only using experimental animals or human subjects. 

In this thesis, I propose an alternative approach (instead of the traditional 

statistical analysis of empirical data) to psychology scientists: this new 

approach is based on artificial models. The idea comes from my readings of 

Embodied Cognitive Science literature [17] and Evolutionary Robotics [18], 

which is the principal methodology that I use in this work for the design and 

implementation of control systems in simulated autonomous robots. In 

particular, I simulate groups of embodied and artificially evolved robots 

(khepera-like) situated in an environment where they must cooperate in order 

to reach a collective purpose.  

In the past, several setups have been experimented with by the means of 

Evolutionary Robotics, for studying the emergence of some cognitive skills in 

robots. A series of experimental setups have been implemented to analyze the 

prerequisites for the emergence of different categorisation abilities in embodied 

agents [19] such as behavioural categorisation, categorical perception, etc. In 

another experiment, authors have investigated the possibility of aggregation 

and controlled motion of self-assembling and self-organizing robots, called 

swarm-bots [20]. Analysis of the evolved controllers shows that these robots 

have properties of scalability and display a swarm intelligence similar to 

groups of insects or other living beings belonging to the animal kingdom. 

Navigational skills of evolved robots have been examined in some setups [21] 

as well as the evolution and the emergence of language [22]. In all these cases 

there is a veiled link between the robots and the nature of living organisms.  

In our view (of my research group), we try to establish a stronger link between 

“phenomenon” and “task derived” from experiments on animal behaviour, in 
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order to get insights from this kind of data reciprocally. For this reason we try 

to model experimental setups, which have been widely used in animal 

behaviour literature. Recently, this approach has been successfully used to 

study phenomena like the evolution of mechanisms behind geometrical 

primacy, in order to understand whether it is innate or affected by the 

environmental interaction [23].  

In my work I will focus on social coordination, decision making problems and 

emergence of Leadership, a new line of research that is not so much explored 

until today, by making use of Evolutionary Robotics. The results, that I have 

achieved, seem to be in excellent agreement with the biological and ethological 

observations. Apart from the scientific relevance in psychology, ethology and 

biology, the present research could provide insights to robotics and software 

design. The genetic differentiation of robots’ control systems may contribute to 

build a new generation of autonomous robotics applications or a new 

generation of software agents where a coordination is needed and leadership is 

necessarily required. For example, the design of a group of robots for 

navigational tasks in unknown environments, such as the surface of a new 

planet. Unpredicted leadership strategies and spontaneous hierarchies could 

foster the environmental exploration by robots. Similarly, evolutionary 

software could exploit leadership/followership patterns and hierarchic 

structures in order to guarantee the cooperation between different components. 
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1 The Social Living 
 

Social Living in groups is a well-known phenomenon within the animal 

kingdom and human societies, since the dawn of time. The question of social 

life among animals has fascinated biologists for centuries. Some of open 

questions are : How do we define sociality? When is it likely to occur? What 

are the patterns involved in social behaviour?  

Sociality means group-living. Recently, the research in grouping behaviour has 

attracted considerable attention in a huge number of fields. The reasons of this 

growing interest in “living together” must be searched in the awareness that 

natural selection is not only concentrated at one single individual’s level. 

Moreover, a lot of scientists have understood that all the aspects of structure 

and function of biological individuals are not solely a product of selection, but 

many of their peculiarities come from the direct relationship between selection, 

behaviour and sociality.  

The first studies on primate social groups are dated from 1960s, when two 

ornithologists [24,25], brought home to primatologists the value of 

comparative analysis. These scientists have developed the first sophisticated 

system-analytical approaches to societal analysis in order to make predictions 

on mating modalities of birds, group formation, group size, etc. However, the 

avian models are not suitable for application to the situation of most of 

primates, because of the distances between the species. For example, more than 

80% of bird species are monogamous. Other studies [26] have tried to classify 

primate social systems, grounding it on mating structure (solitary, 

monogamous, single male, etc.), with primary attention on finding associations 

between mating structures and feeding. A large amount of literature exists 

explaining the existence of grouping as self-organisation consequence [27], for 

reciprocal altruism [28] or producer–scrounger relationships [29]. Lately, the 

aims of researchers have been focused on the mechanisms that govern the 

evolution of grouping and the ecological factors that affect group size and 

group composition [30]. The general idea of these theories is that groups form 
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and persist because all the members gain genetic advantages. The only 

exception, in this theory, concerns the sibling grouping which emerges because 

of reproductive needs. In general, authors of these studies suggest that group 

living only appears since the combination of group benefits, at some point, 

enhances the fitness of individuals (who accept the disadvantages of group 

living) above the fitness of solitary individuals.  

The most accepted suggestions on group forming argue that the significant 

benefits for living in group are : a) more protection from predators, in other 

words, predation pressure fosters group life [30]; b) improving of feeding 

chances [31]; c) competing against con-specific groups [32] d)  exchanging 

information [33]. 

The two most qualified theories are a) and b). First, when individuals 

aggregate, each of them is less likely to be captured since the probability of the 

predator to attack one member depends on the group size. All animals are 

seldom equally at risk and predators can choose according to the vulnerability, 

inexperience, weakness, etc. However, if the animals, in the group, actively 

cooperate, they have more chances of discovering the approaching of one 

predator. In this way, they can become able to transmit this information 

(predator proximity) by postures, chemical signals, vocalisations or other 

means, and everybody can eventually take evasive actions at an earlier stage. 

Second, all these mechanisms also affect, in the same way, the grouping 

behaviour for feeding needs. Group size can increase positively the number of 

chances of finding food in a land where it is scarce. More “eyes” that cooperate 

together in order to find food can discover it earlier. Third, inter-group 

competition for feeding sites is most intense when food occurs in spatially 

restricted patches, when such patches are rare, and when travel costs between 

patches are high. Some measurements have been made about the correlation 

between high rates of aggression and scarcity of resources. Fourth, the elective 

group size concept requires animals to be close enough for continuous 

information exchange between them. Elective group size concept regards to the 

fact that each individual is surrounded by an imaginary circle whose radius 

represents the maximum distance at which effective communication between 
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individuals is possible. A circle is used because it is assumed that 

communication is purely a function of distance, which should be equally 

possible in all directions. Group size is given by the number of overlapping 

circles that are interconnected (see Figure 1.1). 

Grouping could create some disadvantages : a) The cohesion between group 

members, constantly living in close proximity, should increase the dispersion 

of forces due to the consequent and unavoidable increase in the levels of intra-

group competition. When individuals have different skills and motivations, the 

need, to move together in groups, compromises their ability to cohesion. 

Subjects with different ages, sex and reproductive status may have different 

locomotive and nutritional needs, this requires different ways of foraging and  

strategies for defense from predators (lactating females); b) to move in groups, 

some members (not all) must choose the same direction for all and must 

coordinate their movements. This is a negotiation problem, often not easy to 

solve [34]. Other possible detriments, caused by grouping, are the increased 

likelihood of disease and parasite transmission, increased conspicuousness, etc. 

Group life requires associations between individuals, which potentially can 

lead to interactions. Interactions have costs and benefits to each member.   

 

 

 

 

Figure 1.1: Elective Group Size concept.  
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It has been introduced a classification of social organisation : 1) groups of 

unrelated individuals, 2) groups of uniformly related individuals (not siblings), 

3) groups of close and relatively distant individuals (perhaps containing 

siblings), 4) groups of siblings, 5) groups of genetically identical individuals 

(clones). Various definitions exist about what “group of individuals” really 

means. According to one first definition, a group is “any set of organisms, 

belonging to the same species, that remain together for a period of time 

interacting with one another to a distinctly greater degree than with other con-

specifics” [35]. In another definition, a group is “a social unit of two or more 

animals living together” [36]. Searching for a perfect definition of grouping 

can easily produce a sterile list of criteria that are hard to apply and often 

arbitrary. Because of the great diversity of animal grouping behaviours, it 

seems difficult to find a definition that can be applied rigidly to all cases.  

In a group of baboons, individuals forage together for the majority of the time, 

sleep in close proximity, exhibit and maintain friendly relationships within the 

group. Colonially nesting birds display aggregations of thousands of animals 

within a small area forming a compact mass, against the predators. It is 

possible to say that they are social animals. On the other hand, the orangutans 

of Borneo and Sumatra, forage separately, sleep alone, seldom live with the 

opposite sex mates, and mating process lasts no more than seven hours. 

Orangutans could be called solitary. Other species such as sloths, may also live 

together only for brief periods of mating, leading independent lives the rest of 

the time. Therefore, even in solitary species a period of parental care, 

association and interaction may be necessary. Unanimously, a degree of 

proximity in time and space seems to be an essential prerequisite for grouping. 

Anyway, the inter-individual distance between group members looks like a 

function of the trade-off between the costs and benefits associated with group-

living. These costs and benefits have been extensively discussed in hundreds of 

studies [37,38] and it is not easy, even in this case, to comprehend what exactly 

they are and classify them. Indeed, costs and benefits depend on the differences 

between group formation (when and where individuals form a group), group 

size (when and where group of different sizes are created), group composition 
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(which individuals aggregate), and the persistence of the group through the 

time.   

As the result of the group formation, a social behaviour may evolve within 

groups for three reasons: First, sociality empowers the original advantage of 

group living. For example, predator attacks could be contrasted by social 

behaviour like the tightening of a flock, or by alarm shouts, by the clustering of 

females and juveniles near the large males, etc. Second, social behaviour may 

evolve because it can reduce disadvantages and detriments of grouping. For 

example, grouping could decrease the likelihood of disease and parasite 

transmission. Third, and most important, social behaviour can reduce the 

effects of intra-group competition. For instance, the dominant (or leader) 

individual gains some privileges if he has used his superior strength, agility or 

cleverness to maintain individuals grouped closely around him. The 

subordinate members also gains since the dominant is usually informed about 

the surrounding environment, and so they can stay alive by remaining in the 

group.  

 

1.1 The Primatology 

 

The first studies on wild primates were performed in the 1930s and 1940s, 

when on the basis of captive baboons and other species these studies proved 

that sexual instincts provide the social glue that lead to the cohesiveness of 

primate groups [39]. Ten years later, other researchers, analyzing the behaviour 

of howlers monkeys and orangutans, rejected the previous thesis, pointing out 

that the primate groups can remain stable even in species in which sexual 

activity is infrequent and limited [40]. Indeed, as we said, there are theories 

suggesting that the main selective forces for the evolution of group living 

primates are: predation pressure, feeding advantages, competition and 

exchange of information. However, none of these theories has been rigorously 

tested. Anyway, many efforts to identify the critical factors needed in the 
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evolution of primate groups start with an original classification that focuses on 

the question of group size.  

Primate social groups can be classified into three major types: a) monogamous 

pairs, b) single-male polygynous units and c) multi-male polygynous units [41, 

42,43]. 

The issue of the group size is critical, since it seems that group size is 

correlated in some way with environmental resources and social behaviour. In 

fact, all the efforts to identify the critical factors in the evolution of primate 

societies has centered on implicitly and explicitly on the question of group size 

[44]. 

All large groups of primates are multi-male, and, in such concentrations of 

numerous females, the males have apparently evolved to maximize matings, 

accepting a low confidence of paternity and showing less parental care than in 

other social groups. Intermediate-sized and small groups correlate with the 

presence of single-male harems and, when such harems remain in close 

proximity to one another, with herding of females by males [45]. 

With regard to resources, a study on spider monkeys has shown that the size of 

groups is conditioned by the distribution, density and size of the patches of 

food spread in the environment where primates live and interact [46]. In 

particular, two simple general model have been expressed to illustrate two 

different situation of groups dependent on the distribution of food within the 

environment. First, uniform distribution, when food patches are uniformly 

distributed, this means that food is rare and small groups are favored. In that 

case, travel costs are high, and groups, in order to minimize costs, try to feed in 

a small patch for a long period of time and patches are depleted slowly (see 

Figure 1.2a). Second, clumped distribution, when food patches are massed in 

small areas, the average distance to the next patch is small and travel costs are 

consequently low.  At such times, members form a large group and any costs 

can be easily recovered (see Figure 1.2b). 

Some authors have suggested that an increase in group size determines an 

increase of the area that must be traveled to find food. Thus, group members 

travel and spend more energy, if they are in a large group respect to members  
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Figure 1.2: Dependency between group size and distribution, density and size 

of food, in spider monkeys. The predicted group size is indicated in the box.   

 

 

of small groups [9]. Surely, travel costs are correlated with the distribution, 

density and size of patches available in the environment.  

Some academics have proposed that the optimal group size for any primate 

species derives from a balance between the aggregation for safety from 

predators and grouping for access to high quality feeding sites [47].  

On average, group sizes of any species are, in general, smaller than that which 

maximizes predator protection and larger than that which maximizes individual 

feeding success [48]. 

As pointed out earlier, ecology may affect social structure indirectly through its 

effect on group size. On the other hand, the majority of the variations in 
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primate mating systems is directly related to differences in group size. Very 

often, an increasing group size is associated with a transition from solitary 

living to monogamy [49], to uni-male polygyny, and finally to multi-male 

polygyny [50]. However, recently, the relevance of ecology to primate mating 

systems has been supported by a lot of researchers [51,52,53]. 

   

1.2 Social living for cooperating 

 

As we indicated earlier, the advantages of living in groups are generally related 

to the cooperation needs. But some important questions unavoidably raise: 

when should an individual cooperate? And when should an individual be 

selfish? Under what conditions, cooperation emerge in a world of egoists 

without central authority? Generally, it is difficult for each of us to find 

answers to these questions, due to the fact that the problem involves how 

individuals act in social, political and economic interactions with others. We 

have seen that in the primate kingdom, cooperation between group members, 

arises for protection from predators or for feeding needs.  

Theoretically, in nature, the evolution of social living occurs when there is a 

contrast between conflict and cooperation [54]. For example, replicating 

molecules compete with their neighbors for resources. Moreover, every gene, 

every cell and every organism seem to be designed to promote its own 

evolutionary success at the expense of its competitors. On the other hand, every 

cell of multi-cellular organisms cooperate to hold in check some areas and do 

not cause cancer. Ants of many species sacrifice their fertility to take care of 

the queen ant and colony. Lionesses, belonging to a pride, may nurse cubs of 

another pride. Finally, human beings help each other reciprocally, to find food, 

attracting a mate or for the territory defense. Even though, individuals helping 

one another, do not necessarily risk their life, they could forgo some of their 

reproductive potentials to benefit the other. Humans are the champions of 

cooperation, it appears as the decisive organising principle of human society. 

However, for decades, cooperation has represented a great headache for 



14 

 

biologists, as it is very hard to attempt to insert cooperation in an evolutionary 

perspective. Charles Darwin called this competition “an hard fight for 

surviving”, since only the fittest organisms will prevail: “survival of the fittest” 

is a famous phrase originating in evolutionary theory. In fact, natural selection 

implies competition, because evolution is based on a cruel and unscrupulous 

competition between individuals, the best reproduce more than the others and 

can spread in next generations. Thence, evolution should theoretically foster 

selfish behaviour. In other words, according to the Darwin theory, nobody 

should help contenders, and every single individual is justified if he tells lies 

and cons for a living. In the game of life the most important thing should only 

be the victory. As a matter of fact, an English philosopher, Thomas Hobbes has 

argued that, before governments existed, the world was dominated by selfish 

individuals who competed on ruthless terms, that life was “solitary, poor, 

nasty, brutish and short”. In his opinion, cooperation could not emerge without 

a central authority, such as a government. Nevertheless, the majority of today’s 

institutions and nations cooperate without a central authority. Then, why is 

there such a widespread selfless and cooperative behaviour everywhere? Last 

years, a new discipline has been involved in analyzing the paradox of 

cooperation and it is called “Game Theory” [55,56]. The modern Game theory 

is the study of mathematical models of conflict and cooperation between 

“decision makers”, that is the study of those situations in which two or more 

subjects interact with each other, and decisions of one individual may affect 

results of the rival by means of a retroaction mechanism. These decisions are 

finalized to maximize the payoff of an acting subject. Lately, some specialists 

of game theory, have indicated that, cooperation and competition work together 

for the evolution of living beings, rather than to be in contrast with each other 

[57]. No other life form on earth is engaged in the same complex games of 

cooperation and detection, like human life is. Some cooperation theories affirm 

that individuals that pursue self-interests by cooperating are not forced 

necessarily by a central authority.  

A good example of the fundamental problem of cooperation, in the human 

world, is the case in which two nations have created trade barriers to each 
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other’s exports. Since there could be obvious advantages for both nations in 

free trade, these barriers should be removed in every circumstance. Although, 

if either country were to unilaterally eliminate its barriers, it would find that is 

is facing terms of trade that damage its internal economy. As a matter of fact, 

in any case, each country is better off by saving trade barriers. However, 

keeping barriers, could lead to a worse outcome than would have been possible 

if countries had cooperated with each other.  

Clearly, regarding the cooperation, problems occur when the pursuit of self-

interests leads to a poor payoff for all. To better understand the different 

situations that may happen in cooperation issues, a representation has been 

invented, called “Prisoner’s Dilemma game” (see Figure 1.3). In this game 

there are two players, each one having two choices, namely cooperate or 

defect. Each player must choose without knowing the actions of the other 

player. One player can choose a row, either cooperating or defecting while the 

other player chooses a column, at the same time. If both players cooperate, 

both gain generous payoffs R=3 that are the reward for mutual cooperation. If 

one player cooperates and the other defects, the cooperator will get 5 points, 

whereas the defector will get 0 points. In the end, if both defect, they obtain 1 

point, namely the punishment for mutual defection. So if both defect, both do 

worse than if both had cooperated. The Prisoner’s Dilemma is an abstract 

formulation of common situations in which what is best for each person 

individually leads inevitably to mutual defection, whereas everyone would be 

better off with mutual cooperation. 

It is denominated Prisoner’s dilemma because, if we imagine that the two 

players are two prisoners and they must be judged by a public prosecutor, they 

have to decide, whether to cooperate or not. If one prisoner “blabs” while the 

other one collaborates, the cooperative one will be put in prison for 1 year, 

while the defector will be subjected to 4 years of prison. If both cooperate with 

each other they will be punished only with 2 years of imprisonment, whereas if 

each accuse the other one, both will get to prison for three years. Faced with 

the dilemma, it seems that the players (if they play once) will fall unavoidably  
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Figure 1.3: Prisoner’s Dilemma.   

 

 

in the worse situation where they get less than if they had cooperated.  

However, this is not true, if the players interact in the dilemma game an 

indefinite number of times. It is possible to prove that after some number of 

interactions, cooperation can emerge in an iterated Prisoner’s Dilemma. Some 

simulations have been implemented in order to understand the alternation of 

the evolutionary cycles of cooperation and defection [58]. The experiments 

begin from a randomly distributed population of individuals who are always 

cooperative or always defectors. After each game, winners generate a mutated 

offspring who take part to the next game. Each generation consists of a single 

game. After a few generations, it is possible to observe that all the individuals 

defect in every game. If suddenly a new strategy is created: players begin to 

cooperate and imitate movements of their opponents. This stage leads 

inevitably to communities of cooperators. This mechanism of cooperation is 

called “direct reciprocity”. One example of direct reciprocity is displayed in 

groups of vampire bats. In these colonies, whenever a bat has an empty 

stomach it calls to a bat that is full for help. Perhaps the full bat could share its 

food with the unlucky bat, by regurgitating a portion of its precedent meal. 

Some studies show that bats remember which companions helped them in 

times of need. When the day comes, in which a generous bat needs food, it will 

be likely to be helped by the bat which will return the favor. These kind of 

simulations can demonstrate the emergence of other types of direct reciprocity, 
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as the possibility that cooperative players can help, not only other cooperative 

players, but also defectors for short periods of time. In addition to the direct 

reciprocity, another four mechanisms of cooperation may arise, but they will be 

discussed in the next paragraphs.       

   

1.3 Bio-robotics 

 

Recently, they have been developed a whole variety of bio-inspired robots 

which are able to operate autonomously in a physical environment. The field 

which deals with these kinds of bio-inspired robots is called Bio-robotics and it 

aims to produce robots with lots of features that could be commonly identified 

with natural organisms.    

There are many successful robots which have been built using the principles of 

this approach. For example, mobile robots have been implemented and 

evaluated in order to study a hypothesized mechanism of phonotaxis in the 

crickets [59, 60]. Phonotactic behaviour is concerned with all those processes 

which enable a female cricket to get orientated towards a particular tone in 

order to recognize a possible male. The result of the research is a robot that 

successfully locates a specific sound source under a variety of conditions, with 

a range of behaviours that resembles the crickets (see Figure 1.4). Experiments 

has allowed researchers to clarify some hypothesis on real crickets, such as the 

neural mechanism for phonotaxis in crickets does not involve separate 

processing for recognition and location of the signal, as is generally supposed.   

Sahabot (Sahara Robot) is a prototype of a robot capable of walking in the 

desert imitating the moving dynamics of Cataglyphis ants, which are a kind of 

desert ant [61]. In fact, one of the fundamental abilities required in autonomous 

robots is the homing ability. Desert ants solve the moving problem by 

integrating paths with a frame of reference. In order to perform this 

informational integration, ants employ a compass mechanism for determining  
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Figure 1.4: Robotic Cricket   

 

 

direction and the compass precision will have a crucial effect on the precision 

of homing. For deriving compass information, these insects use the pattern of 

polarized light in the sky that arises due to the scattering of sunlight in the 

atmosphere (polarized light compass). The analysis of skylight polarization is 

mediated by specialized photoreceptors and neurons in the visual system. Thus, 

by inspiriting to the ants’ polarized light compass, sahabot is equipped with a 

polarization compass which extracts compass information from the polarization 

pattern of the sky. The robot has been successfully tested in navigation tasks in 

one of the natural habitats of the desert ants in North Africa.    

Some simulated robotic insects have been created in order to study the way a 

few insects walk[62]. In those simulations, they have introduced some 

exemplifications: for instance, insect legs are sticks with no mass and no joints. 

Moreover, these simulated robotic insects are called “esapods” since they are 

equipped with six legs, and each of them is able to get up or down. In this way, 
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legs moving display two stages: a) a first stage, where a leg is down and 

supports the body of the robot; b) a second stage, where a leg is up, and any 

movement of the leg generates a move of the center of mass of the robot’s 

body, and this consequently causes a move forward of all the trunk of the 

robot. Each leg is controlled by effectors, that is a subsystem needed to raise 

the leg up and down, and two effectors which control joint twisting forward 

and backward. After any robot change of position, body keeps placed on only 

three legs (see Figure 1.5a)., and its centre of mass “falls into” the triangle 

depicted by the three current front feet. Esapod robots researchers have been, 

for long time, looking at an artificial evolutionary process which suits the 

insect robots walk, and at the end they used a specific genetic algorithm for the 

evolution of the agent’s control neural network (see Figure 1.5b). Each leg is 

controlled by a recurrent neural network provided with a proprioceptive sensor 

which measures the current angle of one of the joints. Insect robots have been 

evolved to be capable to walk in a natural way that  is similar to that of the 

biological insects they aspire to. 

 

 

 

 

 

 

Figure 1.5: (a) Body and legs of the esapod robot. (b) Neural controller for 

each leg. 
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Another interesting example of bio-inspired robotics is a simulation of robotic 

fish which learn to swim under the water autonomously [63]. Researchers have 

developed an animation that can achieve the intricacy of motion typical of 

natural ecosystems, by means of advanced Computer Graphics techniques, 

such as “non-uniform B-spline curves” (see Figure 1.6). In order to achieve a 

naturalness of robots movements, they have been simulating all the interactions 

between agent and environment and fluid dynamics. The approach is to model 

each animal holistically as an autonomous agent situated in a physical world. 

After a short time of learning, the movements of these fish are surprisingly 

realistic. As in nature, the motions of artificial fishes in their virtual habitat are 

not predictable because they are not programmed. Some general behavioural 

patterns have been investigated such as: training, courting, mating, escaping 

and predator-prey interactions.      

 

 

 

 

Figure 1.6: Artificial Fish diagram 
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Lastly, another intriguing work on more abstract bio-inspired creatures has 

been developed by some researchers in order to build more realistic entities 

[64]. Frequently, the problem with these simulations is the complexity of the 

world that needs hard algorithms to control the dynamics of behaviour and 

morphology evolution. In this approach, researchers have adopted genetic 

algorithms which permit virtual entities to be created without requiring an 

understanding of the procedures or parameters used to generate them. The 

three-dimensional bodies of a creature can adapt to its control system, and vice 

versa, as they evolve together. The “nervous systems” of creatures are also 

completely determined by the genetic algorithm: the number of internal nodes, 

the connectivity, and the type of function related to each neural node are 

included in the genetic description of each creature, and can grow in 

complexity as an evolution proceeds. A genetic language is presented that uses 

nodes and connections as its primitive elements to represent directed graphs, 

which are used to describe both the morphology and the neural circuitry of 

these creatures. In this way, the genetic language is enabled to define an 

unlimited number of possible creatures with different behaviours and shapes.   

In this work, the phenotype embodiment of a virtual creature is made of three-

dimensional rigid parts represented by a directed graph of nodes and 

connections. These evolutionary creatures are evolved for behaviours like 

jumping, walking or swimming, that means in the case of jumping, for 

example, individuals are selected by measuring the maximum height above the 

ground of the lowest part of the creature, and so on. At the end of evolution a 

variety of successful and interesting locomotion strategies emerge, some of 

them are far from the strategies observable in nature, and many of them would 

be difficult to invent or build by design (see Figure 1.7). 

In another work, the same researchers, have investigated the evolution and co-

evolution of virtual creatures that compete in the physically simulated three-

dimensional worlds, as they have to contend to gain control of a common 

resource, such as a food-cube [65]. Most of evolutions have been performed 

using the “all vs. best” competition, including two species where individuals 

compete with members of the opponent species or a “single-species” where all  
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Figure 1.7: (a) Walking strategies. (b) Jumping strategies. (c) Swimming 

strategies. 
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individuals compete and breed with each other. Virtual entities are modeled in 

the same way as the previous work: gravity, collisions, and friction are 

simulated to restrict the actions to physically plausible behaviours and the 

morphology of these creatures and the  neural systems are both genetically 

determined and represented into a directed graphs of nodes and connections.  

After many independent evolutions, interesting and diverse strategies and 

counter-strategies emerge from the simulations (see Figure 1.8). Some evolved 

species display different skills in reaching cubes, as some needs few 

generations to reach it and others need many more. In one case, one species 

was successful quickly, under evolution, so the other species never evolved an 

effective strategy to compete with it (see Fig 1.8c). In other evolutions, more 

interactions occurred between the evolving species: a variety of methods for 

reaching the cube were founded, such as extending arms out onto the cube or 

crawling like an inch-worm (see Fig 1.8f). Interesting results have occurred 

when both species discovered method for reaching the cube, almost in the same 

evolutionary time, this forced a competition to emerge. For example, some 

creatures pushed their opponent away from the cube (see Fig 1.8e), some 

moved the cube away from the initial location and followed it subsequently 

(see Fig 1.8f) or some just kept covering up the cube in order to deny the 

opponent’s access to it (see Fig 1.8g). In some evolutions, two-armed creatures 

use the strategy of batting the cube to the side with one arm and catching it 

with the other arm (see Fig 1.8i, 1.8j and 1.8k). Finally, there are cases, where 

the larger creature wins by a large margin against the opponent because it 

literally walked away with the cube (see Fig 1.8m). In conclusion, some 

observations of the authors are that the individuals with an adaptive behaviour 

could be significantly more rewarded if evolutions were performed with many 

species instead of few. Moreover, to be successful, a single individual would 

need to defeat a larger number of different opposing strategies.  

However, in these simulations cooperation has not been investigated as well as  

the increasing chances of survival of adaptive individuals. So they could be 

examine the cooperation/competition patterns, speciation, mating patterns, and 

relationship between offspring production and ecological niche.  
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Figure 1.8: All the competition strategies evolved by Virtual Creatures with a 

common resource. 
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1.4 Embodied Cognitive Science 

 

The “Embodied” approach in Cognitive Science draws inspiration from ideas 

and insights which have been originated by studies in the 1980s on the origin 

of the behaviour and the intelligence in living organisms. The main idea of 

“Embodied Cognitive Science” is that intelligent behaviour results from 

dynamic multiple interactions between the system which displays the 

intelligent behaviour and the environment where the system acts [66,67,68].  

For the first time, the notion of embodiment has been introduced in order to 

characterise all the systems (artificial or natural) provided with a physical body 

[69, 70, 71]. Therefore, in the opinion of the embodied cognitive science, 

“embodiment” is a prerequisite of “complete” agents (such as living 

organisms) which are able to perceive the surrounding environment by means 

of a sensory system (vision sensors, acoustic sensors, etc…) that lets him  

derive some regularities in the environment. Another critical that complete 

agents have to exhibit is the “situatedness”, meaning they are located in a 

physical environment with which they can interact.  

A consequence of embodiment and situatedness is that agents have to be able 

to display physical characteristics (weight, size and shape), they have to be 

submitted to physic laws (inertia, gravity, energy consumption) and finally they 

have to exploit the energetic exchange, material or informational so that they 

could properly interact with the environment.  

Another effect of the situatedness is that agent’s sensors provide an 

“egocentric” information (that is dependent on the current position and from 

the orientation of the agent into the environment), a “local” information (that is 

related only to the portion of the observed environment), an “incomplete” 

information (for example, because of all the obstacles in the environment 

which prevent to perceive some features) and, at the end, a noisy information. 

The same issues are related to the motor system. Physical limits dependent on 

the embodiment requisite generating constraints for the agents’ movements, but 
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on the other hand, they enable agents to exploit opportunities in order to adapt 

and find robust and parsimonious solutions for the tasks they have to deal with.    

So, from the embodiment standpoint, behaviour is the result of the interaction 

between the nervous system of the agent, the motor-sensory-skeletal system 

and the environment, and it cannot be dependent only on one of those three 

elements (see Fig 1.9).  

To better understand the insights from embodied cognitive science, a metaphor 

has been proposed that is called “fungus eaters game” [72]. Fungus eaters are 

imaginary artificial creatures that have the purpose of collecting rough uranium 

on a far planet and they feed on a kind of mushrooms which grows up only on 

that planet. Those artificial organisms, are equipped with a motion system, and 

intelligence system capable of making decisions and actuators able to gather 

pieces of uranium. Moreover, fungus eaters have a vision sensor and a sensor 

able to perceive rough uranium. Since the extra solar planet is too far from 

earth, fungus eaters cannot be controlled from a remote station, so they have to 

be autonomous: the only information that these artificial creatures have is that 

which comes from their sensors. In other words, those creatures have been 

provided with a body (embodiment) with a  means for them to collect rough 

uranium and, they are autonomous since they cannot count on an external 

intervention for the battery replacement, for example. Finally they live and 

work in a specific environment that is the planet surface (situatedness). 

Therefore, fungus eaters are a clear example of the complete agents theorized 

by the Embodied Cognitive Science. At the base of Embodied Cognitive 

Science there is a theorization called “Theory of Autopoiesis” developed to 

explain behavioural systems of living organisms [73]. According to this theory, 

an autopoietic organization is a dense network of recurrent interactions, which 

self-maintain and operate within clear physical confines. An example of an 

autopoietic system are the cells of living beings, that are characterised by a 

loop of internal chemical reactions on time step t, which produce the same type 

of chemical reactions on the instant time t+1. An autopoietic organisation must 

have two fundamental properties: a) operational closure, that means internal 

processes are independent from the external environment. The environmental  
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Figure 1.9: Schematisation of the interaction between nervous system, the 

body and the environment of an embodied and situated agent, in Embodied 

Cognitive Science. 

 

 

structure is never reproduced inside the system’s structure. For instance, in an 

organism’s cell, the metabolism cannot be modified by all environmental 

processes; b) structural coupling, that means external environmental events are 

not capable of affecting an autopoietic organisation due to the fact the system 

can initiate a series of balancing actions that reset the initial state and preserve 

the integrity. In the cell example, it is always able to modify the membrane’s 

permeability so as to counter-balance the dangerous chemical fluctuations that 

could happen outside in the environment. An autopoietic organisation, in living 

beings, is the outcome of long-running evolutionary processes which formed 

over millions of years and which are, in their turn, independent from the 

evolution itself. Concepts and ideas of autopoieses theory have been recently 

extended to the nervous system of living organisms, as it is made of local loop 

processes, which are structurally independent from the external environment 

(operational closure) and in balanced interaction with it (structural coupling). 

To better illustrate the autopoietic nature of a nervous system, a comparison 
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has been conceived called “methaphor of the submarine”. According to this 

methaphor, a nervous system could be likened to the navigator placed inside of 

a submarine who moves all the control levers and handles all commands by 

following the indicators state and he does not pay attention to the external 

situation directly. In the same way, the nervous system modulates some 

number of parameters which are correlated with the external environment, but 

without any direct awareness of the external events. 

In the Embodied Cognitive Science vision, a simple control architecture of a 

robot may exhibit complex behaviours. An evident example of that is the study 

on Braitenberg’s vehicles, where simple robots, equipped with direct sensory-

motor connections, display complex behaviours like altruism and 

aggressiveness which could be seen  as intentional [74].  

There are 14 vehicles in all, a series of hypothetical, self-operating mobile 

machines that exhibit increasingly sophisticated behaviour similar to that in the 

real biological or neuroscientific world.    

Braitenberg vehicle number 1, for example, is provided with a single sensor 

that is perceptive to a specific physical quantity and a motor directly connected 

to the sensor (see Figure 1.10). The higher the level of the physical quantity 

read by the input sensor, the faster the motor sweeps will be. If the physical 

quantity is the temperature, the effect is that vehicle number 1 will move faster 

in warm areas and slower in cold areas of the environment, by showing  

 

 

 

Figure 1.10: Braitenberg vehicle number 1. 
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apparently and intentionally to move in that way, that is the aim of avoiding 

areas with high temperature that could damage it. If in the environment some 

friction is present, the vehicle will deviate his rectilinear trajectory and it will 

draw a trajectory that for an external observer could be apparently a complex 

and senseless path.   

A variation of the previous vehicle, is the vehicle number 2, that is equipped 

with two sensors and two motors directly linked to each other according to all 

the possible patterns of connections (see Figure 1.11). An example is the 

vehicle which has motors directly connected to light sensors, the right sensor to 

the right motor and the left sensor to the left motor. The effect of this 

configuration of links is that, in the presence of a light source that stimulates 

mainly the right sensor, the right motor is induced to rotate faster than the left 

motor, generating, in this way, the vehicle approaching to the light. By 

inverting the connections between sensors and motors, the effect is that the 

vehicle walks away from the light source. Therefore, the vehicles represent the 

simplest form of behaviour based on artificial intelligence or embodied 

cognition, (i.e. intelligent behaviour) that emerges from sensory-motor 

interaction between the agent and its environment, without any need for an 

internal memory, representation of the environment, or inference. One might 

think that Braitenberg's vehicles are like table-top toys but they behave like 

living creatures that an observing psychologist or philosopher might conclude 

were controlled by concealed human beings. They come to embody the 

instincts of  

 

 

Figure 1.10: Braitenberg’s vehicle number 2. 
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fight or flight, the characteristic behaviours impelled by love and by logic, 

manifestations of foresight, concept formation, creative thinking, personality, 

etc. 

 

1.5 Evolutionary Robotics 

 

In general, robots are the entities closer to the complete agents theorized by 

Embodied Cognitive Science, as they are embodied (they have a body) and 

they are situated in an environment. However, autonomy is not present in every 

type of robot:  for example, robotic arms of assembly lines are not autonomous 

because they could be remote-controlled or they could execute a preset 

program, without any particular decision-making. Moreover, very often, these 

robots are “blind”, when they interact with the environment. From this point of 

view, these robotic arms fully incarnate the concept of robots, which are  pre-

programmed devices for performing the same task in the time, these are tasks 

that could be boring and frustrating for a human executor, as well as too hard to 

do.  

On the other hand, autonomous robotics deals with robots able to be free from 

strict programming and capable for performing multiple tasks, interacting with 

the environment by means of sensors, changing the behaviour depending on the 

context and learning from their errors. One of the first successful outcomes, 

from the autonomous robotics, is the robot Shakey, illustrated in Figure 1.11. 

This robot has been designed at Stanford Research Institute with the aim of 

accomplishing simple actions such as finding an object in the house or moving 

an object from a room to another room [75]. The control system of Shakey is 

based on a language and a search algorithm by means of the definition of 

expressions which translate symbolically to all the descriptions of the world. 

All the reachable solutions by the search algorithm must fulfill some properties 

like efficacy, completeness and consistency as the robot is not able to solve two  
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Figure 1.11: Shakey Robot 

 

 

over the years, dissatisfying results for many reasons. The most important 

reason is that the planner of the robot’s control system is not able to extract 

information from outside of the body, thus it cannot represent a correct and 

precise description of the world. In order to solve these and other problems and 

limitations, a new approach has been proposed and it is known as “behaviour 

based robotics” [76, 77]. This philosophy moves away from classical artificial 

intelligence and robotics approaches, but it underlines that intelligent systems 

design cannot disregard the embodiment. This means that an intelligent system 

must own a body equipped with a sensorial system and a motor system, at 

least. An intelligent system cannot be abstract and completely dissociated from 
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the surrounding world. Definitely, according to the behaviour-based robotics, 

an intelligent system must have a world where “to live” and interact with other 

systems (situatedness). Therefore, in the conceptual elaboration, behaviour-

based robotics has many points in common with the “Theory of Autopoiesis” 

and the Embodied Cognitive Science, in general.  

In traditional Artificial Intelligence approaches, such as planning, robot brains 

are serial processing units as depicted in Figure 1.12a. The Behaviour-Based 

approach states that intelligence is the result of the interaction among an 

asynchronous set of behaviours and the environment. Therefore, from this 

viewpoint, robots brains are not designed by a series of modules that transfer 

information in a serial mode. Instead, in Behaviour-Based Robotics, robots’ 

system controls are made of modules that define complete behaviours, modules 

are connected in parallel and have a direct contact with the external 

environment. This architecture is depicted in Figure 1.12b.  

 

 

(A) 

 

(B) 

 

 

Figure 1.12: Traditional Artificial Intelligence Robots’ Control System 

architecture (A) and Behaviour-Based Robots’ Control System architecture (B).  
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One of the most popular applications in Behaviour-Based Robotics is “The 

Cog Project” [78] a humanoid robot building project based on physical 

embodiment, integration of multiple sensory and motor systems, and social 

interaction. The robot has twenty-one degrees of freedom and a variety of 

sensory systems, including visual, auditory, vestibular, kinesthetic, and tactile 

senses. A variety of visual-motor routines have been implemented such as 

smooth-pursuit tracking, saccades, binocular vergence, and vestibular-ocular 

and opto-kinetic reflexes, orientation behaviours, motor control techniques, and 

social behaviours such as pointing to a visual target, recognizing joint 

attention, etc. The robot is portrayed in Figure 1.13. 

 

 

 

 

Figure 1.13: Cog Robot 
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Another interesting robotics approach is “Developmental Robotics” [79]. 

Developmental robotics is an emergent area of research at the intersection of 

robotics and developmental sciences, such as developmental psychology and 

developmental 

neuroscience. The methodology is interdisciplinary and two-pronged: on the 

one hand, it employs robots to investigate models originating from 

developmental sciences; on the other hand, it aims to develop better robotic 

systems by exploiting insights gained from studies on ontogenetic 

development. The research methodology advocated by developmental robotics 

is very similar to that supported by epigenetic robotics [80]. The two research 

endeavors not only share problems and challenges but also are driven by a 

common vision. One of the most important application of Developmental (and 

Epigenetic) Robotics is the Icub Project [81]. Icub is a humanoid robot 

platform, which has been designed to support collaborative research in 

cognitive development through autonomous exploration and social interaction. 

This robust humanoid robot that offers rich perceptuo-motor capabilities with 

many degrees of freedom, a cognitive capacity for learning and development, a 

software architecture that encourages reuse & easy integration, and a support 

infrastructure that fosters collaboration and sharing of resources. So far, each 

iCub is made of approximately 5000 mechanical and electrical parts and it has 

been delivered to several research labs in Europe and to one in the USA. In 

Figure 1.14 iCub Robot is portrayed. 

All traditional robots’ system control designing approaches require a general 

decomposition of the robotic system in sub-systems which are able to solve a 

single sub-objective. However, system decomposition does not always 

guarantee  

that general systems exactly execute the overall task since there is not always a 

direct correspondence between distal and proximal agent’s behaviour. The 

proximal level is from the system point of view, whereas a distal level 

behaviour is from the viewpoint of the observer or the designer. Behaviours 

that appear complex from a distal point of view can be generated by a control 

system in a relatively simple way at a proximal level. On the other hand, a  



35 

 

 

 

 

Figure 1.14: iCub Robot 

 

 

solution seeming simple and effective from a distal point can turn out to be 

complex  

and/ or ineffective from a proximal point of view. A way to overcome previous 

approaches’ problems is the “Evolutionary Robotics” [82] where the robotic 

control system is able to auto-organise by itself without the requirement of a 

design system decomposition stage. In Evolutionary Robotics, adaptation 

process (i.e. the development of robot capabilities to solve the task in the 

environment) is achieved by means of genetic algorithms and neural networks, 

which are illustrated in Appendixes I and II, in detail. 

In the past, a multitude of experimental setups have been performed by 

Evolutionary Robotics methodology.  In one of the first works, authors explain 

how to evolve neural controllers for a Khepera robot (see Figure 1.15) in 

computer simulations and then how to transfer the obtained agents in the real 

environment [83]. In this way it is possible to reach: a) an accurate model of a 

particular robot-environment dynamics by sampling the real world through the 



36 

 

sensors and the actuators of the robot; b) the performance gap between the 

obtained behaviours in simulated and real environment may be significantly 

reduced by introducing a "conservative" form of noise; c) if a decrease in 

performance is observed when the system is transferred in the real 

environment, successful and robust results can be obtained by continuing the 

evolutionary process in the real environment for a few generations. In further 

work, authors describe the evolution of a discrete-time recurrent neural 

network to control a real mobile robot [84]. The evolutionary procedure is 

carried out entirely on the physical robot without human intervention. Robots 

display the autonomous development of a set of behaviours for locating a 

battery charger and periodically returning to it. The emergent homing 

behaviour is based on the autonomous development of an internal neural 

topographic map (which is not pre-designed) that allows the robot to choose 

the appropriate trajectory as a function of its location and remaining energy. In 

another experimental setup, authors show how a group of evolved physically-

linked robots are able to display a variety of highly coordinated basic 

behaviours (coordinated motion, coordinated obstacle avoidance, coordinated 

light approaching) and to integrate such behaviours into a single coherent 

behaviour [85]. In this way the group is capable of searching and approaching a 

light target in an environment scattered with obstacles, furrows, and holes and 

of dynamically changing its shape in order to pass through narrow passages. 

Coordination of the group relies upon robust self-organising principles based 

on a traction sensor that allows the single robots to perceive the “average” 

direction of motion of the rest of the group. A series of works have been 

performed on the categorisation capabilities in evolutionary robots [86,87,88]. 

Researchers show a set of experiments in which embodied artificial agents 

(namely robots) are evolved for the ability to accomplish simple tasks. In 

particular they focus on how categories might emerge from the dynamical 

interaction between the agent and its environment and on the relation between 

categories and behaviour [89]. Finally, theauthors introduce and discuss the 

notion of action-mediated categories, that is the notion of internal states that 

provide indirect and implicit information about the external environment  
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Figure 1.15: Khepera Robot 

 

 

and/or the agent/ environment relation by exploiting the effects resulting from 

a stereotypic way of interacting with the environment. In a further experimental 

setup, the author investigates how embodied and situated agents perform tasks 

that require skills of categorisation [90]. The task is to categorise different 

shapes of objects using sensory-motor and linguistic input. Results show that 

the autonomous agents are able to solve the categorisation task by integrating 

the sensory-motor experienced states and employing “linguistic” input from the 

environment. This shows that autonomous agents are able to develop some 

"emerging" abilities by exploiting the information present in the environment 

in order to recognize and discriminate objects. Autonomous agents also exhibit 

a "social" behaviour, because they are able to categorize the objects in the 

environment, even when external inputs are unavailable. The purpose of this 

work is to prove the theoretical hypothesis that the “social” information 

(external labels), deriving from another agent or from the trainer, facilitates 
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individual capacity to categorize, by the creation of internal representations. In 

other works, the authors investigate the emergence of communication in 

embodied agents or robots. In particular, in one study, researchers present the 

results of an experiment in which a collection of simulated robots, that have 

been evolved for the ability to solve a collective navigation problem, develop a 

communication system that allows them to co-operate better [91,92]. The 

analysis of the results indicates how evolving robots develop a non-trivial 

communication system and exploit different communication modalities. The 

results also indicate how the possibility of co-adapting the robots’ individual 

and social/communicative behaviour plays a key role in the development of 

progressively more complex and effective individuals. In a further work, the 

authors examine an artificial vision system that is trained with a genetic 

algorithm for categorizing five different kinds of images (letters) of different 

sizes [93]. The system, which has a limited field of view, can move its eye so 

as to visually explore the images. The analysis of the system at the end of the 

training process indicates that correct categorisation is achieved by (1) 

exploiting sensory-motor coordination so as to experience stimuli that facilitate 

discrimination, and (2) integrating perceptual and/or motor information over 

time through a process of accumulation of partially conflicting evidence. 

Finally other authors have examined a few preliminary results on the 

emergence of leadership/followership patterns in a group of autonomous robots 

[94]. 

 

1.6  A neuro-robotic model for the social 

living  

 

In the general introduction to the present work we have wondered whether 

social living is only a mating issue or if there are reasons behind living 

together. In particular, the questions we have asked are: What are the adaptive 

advantages of the social living, beyond the reproductive needs or caring about 
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the neighbors? In other words, why animals exhibit different degrees and types 

of sociality?  

However, there are many disadvantages of social living: resource sharing, 

competition, lack or personal security, social disapprovals, fighting, etc. 

Moreover there seem to be more disadvantages than advantages, as reported in 

literature. Therefore, beyond mating needs, individuals should prefer to live 

alone or in small groups instead of living together in very complex societies 

such as communities, cities or nations.  

Obviously, the present work of course is not intended to explain all the reasons 

and mechanisms related to the biological beings’ social living, this would be a 

difficult and complex challenge.      

However, the simulative model, illustrated below, might be a first attempt to 

identify what could be the factors that lead to an increase of survival chances in 

social living organisms in comparison to the solitary ones.     

 

1.6.1 Experimental Setup 

 

A population of robots lives in a 550cm x 550cm squared area containing some 

food resources located in a corner without any motion (food zone). The food 

zone consists of a 110cm diameter. The environment is surrounded by walls. 

When a robot bumps against the environment’s wall or against another robot, it 

bounces back in the neighborhood of the contact point, with a new random 

direction. Each robot is made of a circular chassis with a diameter of 5.5cm and 

it is equipped with two motors controlling the movements of two wheels. The 

robot simulated for this experimental setup is a Khepera-like robot. The 

Khepera is a small (5.5cm) differential wheeled mobile robot that was 

developed at the LAMI laboratory of EPFL (Lausanne, Switzerland) in the mid 

'90s [95].   

In the simulation, robots are physically unfathomable but the food zone is 

navigable. Each robot is equipped with a smell system to detect the relative 

position of the closest robot. The smell system’s perception distance is limited. 

According to the relative position of the closest robot with respect to a fixed 

http://en.wikipedia.org/wiki/Differential_wheeled_robot
http://en.wikipedia.org/wiki/Autonomous_robot
http://en.wikipedia.org/wiki/EPFL
http://en.wikipedia.org/wiki/Lausanne
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sector of the perceiving robot, smell sensors will be activated with a two digits 

binary code. Each robot is characterised by a green color of the body but they 

cannot perceive the color of the population mates. The robots’ smell system 

code is depicted in Figure 1.12. Moreover, each robot has an additional smell 

system by separate sensors which perceives the relative food zone position. 

This food zone smell system is characterised by an unlimited perception 

distance too, that is it covers all the environment. The codification system of 

food zone smell system works in the same manner of the robots smell system.  

Finally, the sensory system is made of a ground sensor to detect when the robot 

is placed on the food zone.  

The control system (Figure 1.13) of each robot consists of a feed-forward 

neural network with 5 input neurons and 2 output neurons. So they are 

perceptrons. Each layer of neurons is connected to the next layer with a pattern 

of synaptic weights representing the strength of the connection. The input layer 

contains 15 neurons encoding the activation state of the corresponding 

photoreceptors RGB components, 2 neurons that receive smell signals and 1 

neuron that receives output from ground sensor. The output layer is made of 2 

neurons which control the speed of two motors, respectively.  

They have been made for different experiments with this experimental setup, 

by modifying some parameters which have been considered “critical” for the 

 

 

 

 

Figure 1.12:  Representation of the codification of smell inputs. 
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sociality working. These critical parameters are: population size (sub-

experimental setup no.1), perception distance of robots (sub-experimental setup 

no.2) and number of races within one single population (sub-experimental 

setup no.3). In this way it should be possible to understand how a variation in 

social living possibilities could affect performance of living (in terms of energy 

levels and assimilated food during the life) and so the survival likelihood.   

 

 

Sub-experimental setup no.1  

 

In the sub-experiment no.1, named “baseline” (since it will be used as basis 

for comparison for the further experiments), they have compared two robots 

populations: a) a population of robots who live alone in the environment; b) a 

population of robots who live socially in the environment, that is 100 

individuals who act in the same time and in the same environments. The 

environment with robots is illustrated in Figure 1.13, for this first sub-

experimental setup no.1. In both conditions, we have compared a sub-condition 

where the food zone smell system is enabled, with a condition where the food 

zone smell system has been disabled but has the ground sensor on instead. 

In other words, robots have not been  able to perceive the orientation of the 

food zone until they are on top of it. All the conditions are: 

 

1. “Solitary” Evolution, food zone smell system off 

2. “Social” Evolution, food zone smell system off 

3. “Solitary” Evolution, food zone smell system on 

4. “Social” Evolution, food zone smell system on 

 

Basically, in the first condition a) individuals have been left to evolve in the 

environment according to the most traditional genetic algorithm version. That 

means each of 100 individuals of the population (reminding each individual is 

a candidate neural network for controlling the final robots) is singularly 

inserted into the environment. Then individual is allowed to “live” within the 

environment (by freely interacting with it) and its fitness is evaluated at the 
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end. Finally, a ranking is performed on the whole population in order to select 

the best individuals and it is possible to produce a new generation’s population 

starting from the best. Instead, in the second condition b) the whole population 

of 100 individuals is inserted into the environment. All the population’s 

individuals live and interact with each other within the environment, in the 

same time. At the end the ranking is performed on the entire population. In 

both cases a) and b) the control system of each robot is a perceptron whose 

weights and biases are selected by the genetic algorithm throughout the 

evolutionary phase. The life time of each individual is set to 10000 cycles 

whereas the number of generations for each replication is set to 200. I need to 

underline that replication is a synonym of seed because seed is related to the 

random generator that in each replication produces different initial sequences 

of pseudo-random numbers (for genotypes, random positions, etc.). The 

sequence depends on the seed that is different in each replication. That is why I 

will refer to seed as a synonym of replication hereafter.  

Mutation rate is 2%. Robots have been evolved for 20 replications which differ 

for the seed of random numbers generator of initial individuals’ genotypes. 

Results are described in the specific section below.  

 

 

Sub-experimental setup no.2  

 

In this second sub-experiment we try to understand how physical encumbrance 

vary with the increase of the population size. So, 4 conditions have been  

compared by changing the number of population elements: 25, 50, 100 and 200 

individuals. Robots have been evolved according to the same methodology 

already adopted in the sub-experiment no.1. All the parameters have been 

unchanged. The number of replications is 20 as well. Only the amount of 

population’s members vary. The sub-experiment has been evolved in two 

stimulation conditions: in the first robots are not able to sniff the food zone at 

any distance (fz smell system disabled) and in the second they can sniff the  
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Figure 1.13: The environment and the robots of sub-experimental setup no.1 

in two condizions: a) a population of robots who live lonely; b) a population of 

robots who live socially. 
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food zone from everywhere (fz smell system with no distance limit). In both 

cases they still can feel the presence of the food zone whenever they are on top 

of it by the ground sensor. Results are reported below.  

 

 

Sub-experimental setup no.3 

 

In the previous sub-experimental setups, the mechanisms of the physical 

obstruction and food interception probability have been investigated in order to 

understand how they affect fitness in a mono-race population. A third sub-

experimental setup shed a light on how those mechanisms are modified in 

interactions between two different races in the same population. In order to 

reach this objective, we have modified the sub-experimental setup no.1 to have 

a population of 100 individuals divided into two different races. All of the two 

races’ individuals must reach a shared food zone in order to survive. In 

substance, the robots of the two different races interact with each other in the 

same environment, but the final ranking, that is the selection of best individual 

is performed separately: one ranking for the first race and another ranking for 

the second race. In this way, on each generation, 10 of the best are selected 

from the first 50 individuals of the population (i.e. first race) and 10 of the best 

are selected from the last 50 individuals of the population (i.e. second race). 

For each race, each of 10 best generates an offspring of 5 individuals, which 

produce the second generation race. The first 10 produce the first 50 

individuals of the population again, and so on. This mechanism keeps 

separately genetic lineages of each race and make them independent from each 

other. All the other parameters are unvaried from genetic algorithms of the 

previous experiments. However, the only considered condition in this sub-

experimental setup is the “non-perceptual., this means the robots (in both 

races) are not able to sniff the food zone at any distance, but they only feel it 

when they are on top of it. Results are reported in the following paragraph.  
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1.6.2 Results 

 

Sub-experimental setup no.1  

 

By evolving robots for the 4 conditions, they have been produced results which  

mark robots develop two abilities, in the case of enabled smelling system: 

robot seem able to “feel” the food zone presence, and so (1) identify it for 

reaching it and (2) parking on the top of it. In other respects, when robots have 

the smelling system off (but the ground sensor), they develop only one ability: 

standing on it when they perceive it by the ground sensor, but they are not able 

to locate the food zone and reach it. However, we can see that with no smelling 

system evolved robots display marked exploratory inclinations in respect to 

robots equipped with food zone smell system which exhibit a “migration” 

behaviour towards the food zone, because they can perceive it. In Figure 1.16 

Average Fitness Curves of sub-experiment no.1 are depicted, for each 

condition. These curves have been determined averaging Fitness Curves of all 

the replications and normalizing them in a range between 0 and 1 (1 represents 

the maximum number of edible food units in 1 life time, that is 10000). At the 

end, fitness curves have been elaborated with 10 period simple moving 

averages in order to eliminate the typical “ripple” of those tasks that are not 

easy to solve. Analyzing fitness curves is possible to show that the average of  

food quantity (food units) which is eaten by “smelling” robots is greater than 

the quantity of food eaten by “not smelling” robots (as can be expected). For 

this analysis, we consider only the average curve of fitness curves give that  

bests curves are essentially set to 1: this is explicable with the fact that there is 

always an individual who “is born” in the neighborhood of the food zone and 

so this individual needs few time to reach it and acquire almost the maximum 

quantity of food since the first generations. The second and more interesting   

information from charts is that solitary living robots eat more if compared to 

social living robots. If we try to understand reasons which lead to this 

discrepancy between solitary evolution and social evolution, we could suppose 

that physical impenetrability is the key factor which causes this variation. It is  
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1.  

 

3. 

 
2. 

 

4. 

 
  

 

Figure 1.16: Fitness curves related to the 4 simulation conditions: 1. solitary 

evolution/smell system off; 2. social evolution/smell system off; 3. solitary 

evolution/smell system on; 4. social evolution/smell system on. Blue is the 

bests component and red is the average component.  

 

 

possible to pinpoint two different reasons by way of which bodily 

impenetrability influence survival chances of an individual: a) in order to reach 

the energy source, any individual can be a real physical obstacle for other 

individuals, in a crowded environment, similarly to any other mobile obstacle 

into the environment; b) the other reason is that when an individual reaches a 

food zone, it tends to stand there as much as possible, but this causes a physical 
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obstruction and finally probably a saturation of the energetic source, then even 

if it is unlimited in time it is not unlimited in space. In other words, a physical  

encumbrance causes the impossibility to enter the food zone for the other 

robots, in the course of the time. By these preliminary results it seems that it 

should be evolutionary convenience of living solitary rather than living socially 

(beyond of course mating needs that we have not considered in this study).  

In Figure 1.17 it is reported a fitness gap between solitary evolution and social 

evolution in the same condition where robots are able to perceive the food zone 

at any distance (smell system on). In the light of these results we have 

wondered under what conditions the gap between solitary evolution and social 

evolution is not so intense anymore. Moreover, which are the factors involved 

in making sociality a weak point no longer (an obstacle) but a strong point? 

 

  

 

 

Figura 1.17: Visualisation of the gap between average fitness curve of socially 

evolved individuals (below) and  average fitness curve of solitary evolved 

individuals, only for the condition where food zone smell sysyem is disabled. 

The average gap is 1785 f.u. (food units). 
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Therefore, we have thought to introduce a physic limit in food zone smell 

system’s perception distance, that is we have evolved robots in four perceptual 

conditions of distance limit. In other words robots are able to sniff the food 

zone within limited distances of 55cm (experiment a), 110cm (experiment b), 

137.5cm (experiment c) and 220cm (experiment d). The rest of each sub-

experiment is executed with the same procedure of “baseline” experiment.  

Each sub-experiment has been performed for 20 replications in two sociality 

conditions: solitary and social condition. At the end we have plotted the 

average of fitness curves for each condition overlapping solitary evolution’s  

average fitness curve on social evolution’s average fitness curve, for each sub-

experiment. The outcome, of this elaboration, has been reported in Figure 1.18. 

As we can notice in Figure 1.18a (perception distance 55cm) the gap between 

social evolution fitness and solitary evolution fitness is considerably reduced if 

compared to the “baseline”, where there is an unlimited perceptual condition 

(see Figure 1.17). In this case the gap becomes 476 food units on average from 

1785 f.u. in the baseline. From this first data, it seems that sociality is not such  

a great disadvantage such as in the “baseline” experiment, even though social 

evolution still has a slight advantage compared with solitary evolution.   

Surprisingly, the effect persists when perception distance is increased up to 

110cm (Figure 1.18b) with a further reduction of the gap instead of an 

enhancement. Again, redoubling perceptual capability of robots, the cap further 

decrease (Figure 1.18c). Clearly, increasing perceptual distance of smell 

system (and consequently reducing physical limit) there is a reduction of the 

advantage of solitary evolution in respect to social evolution.  

The fitness gap return to enlarge when the physical limit is almost not present 

anymore (220cm) that is the situation closer to the “baseline” (no physical 

limit). This last condition is depicted in Figure 1.18d. In Figure 1.19 is 

represented a bar-plot which marks the growing trend of fitness gap depending 

on robots’ perception distance.  Although it is clearly impossible to analyze the 

correlation between fitness gap and perception distance in continuum, we can 

still make some important observations from these discrete analysis that we 

have made. 
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A.  

 
 

 

Percep dist : 55cm 

GAP : 476 u.c. 

B. 

 
 

 

Percep dist : 110cm 

GAP : 349 u.c. 
C. 

 
 

 

Percep dist : 137.5cm 

GAP : 249 u.c. 

D. 

 
 

 

Percep dist : 220cm 

GAP : 1098 u.c. 

 

Figura 1.18: Representation of the different perceptual condition in the 

experiment no.1 (sub-experiments a,b,c,d). Below each perceptual distance is 

reported the related gap of fitness reached in that condition.  



50 

 

There is a threshold limit of distance beyond which solitary evolution shows a 

great advance in respect to the social evolution, this is when the threshold is 

close to omniscience (perceptual unlimited capabilities). Below this threshold, 

the social evolution is not so harmful and becomes almost equivalent at a 

certain point. We can claim that if there were other evolutionary advantages 

(mating, reproduction, etd.) then the social evolution could surely be advanced.   

A detailed analysis of the simulation could permit us to understand the 

mechanisms of the last discussed effects of perception distance variation. In 

Figure 1.20 there are schematisations of two different evolutionary conditions: 

solitary evolved robots (100 individuals) and socially evolved robots (1 

individual). In both cases the food zone smell system distance is limited to 

55cm. 

Although perceptual distance is limited, socially evolved robots are more likely 

to intercept the food zone presence compared with solitary evolved robots.     

Clearly, those conditions are two outstanding situations of a range of 

possibilities in terms of population’s size. But it can be trivially proved that the 

law is still valid when we compare populations with 10, 50 individuals on one 

side and 100 individuals on the other side.  In summary of this experimental 

setup no.1, when individuals’ physical limits are connected to body limits (i.e. 

perceptual distance) and/or to the environmental limits (i.e. food visibility) then 

the multitude of individuals increases the survival chances since this improves 

the likelihood of a successful perception, such as the probability of finding the 

food. Therefore a good question arising up to this point is: is sociality 

inevitable because it is a direct consequence of the physics laws of the world? 

Does sociality unavoidably derive from the probabilistic nature of individual – 

environment interactions? The question is still open.  

 

Sub-experimental setup no.2  

 

As it is possible to observe, in “non-perceptual” condition, from 25 individuals 

to 50 individuals, population shifts from 1120 food units to 1804 food units.  
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Figura 1.19: In this figure is drawn the variation of the fitness gap (between 

social and solitary evolutions) as a function of smell system perception 

distance.  

 

  

Thus the population shows an increase of fitness (this is the fitness of the 

average population and it is still the average of 20 replications at the end) 

instead of a decrease as we have supposed, because of the increase of physical 

obstruction (i.e. 50 > 25). With 100 individuals the fitness decreased to 1287 

f.u. and then to 763 f.u for 200 individuals. This trend is shown in the plot in 

Figure 1.21a.  

Probably 200 individuals is a threshold limit since there are limits of food 

zone’s physical capacity which is not possible to exceed. We can conclude that, 

in “non-perceptual” conditions, the fitness trend is not positively correlated 

with the population’s size.     

In the “perceptual” condition there is an inversely proportional trend of the 

fitness curve as a function of the population dimension. This is true because 

there is not a substantial increase of food units from 25 individuals to 50 

individuals: fitness goes from 6060 f.u. to 5910 f.u. With 100 population’s 

members the average fitness goes down to 4702 f.u.. With 200 individuals the  
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A                                                                                                   

  

B 

 

 

Figure 1.20:  Schematisation of the perceptual distance’s influence in solitary 

evolution and social evolution.  
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Figure 1.21:  Average Fitness trend in “non-perceptual” condition (A) and 

“perceptual” condition (B).  
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fitness further goes down to 3024 f.u. Figure 1.21b shows the fitness trend of 

“perceptual” condition.  

A simple graphical interpolation has been applied to the points to mark the 

probable curves’ trends.  

These apparently inexplicable differences in the curves’ trends between the two 

conditions, can be elucidated by the effect of the presence of different factors 

which contribute to the production of fitness in condition A (no perception of 

food zone) and condition B (full perception of food zone). 

In substance, in the second condition (B), the only factor that varies by 

increasing the population is the physical encumbrance, namely the obstruction 

deriving from the crowding. In this condition, as individuals can sniff the food 

zone at any distance, they have no troubles detecting the food zone in 

whichever position they are located. After the evolution, individuals learn to 

massively migrate toward the food zone, in this way the population’s size 

weighs on the time in which individuals need for the “migration”. Furthermore, 

the population’s size affects the capacity of the food zone to host individuals in 

any given time, because more individuals are in there, so the more crowded the 

food zone gets, meaning it is more difficult for the others to get in. In this way, 

the decrease of fitness with the increase of size, appears sensible.   

Instead, in the first condition (A) there is not only the obstruction factor which 

affects the group dynamics, but there is also the probability factor of randomly 

reaching the food zone, as individuals are not able to perceive it from afar.  

So the population members are not able to locate the food zone from a distance 

but only feel it when they are on the top of it. In this condition both factors, 

obstruction and probability to find the food zone, are in competition.  

Increasing the population size will increase the chance of obstructions, 

however, conversely there is an increase in the probability of finding the food 

zone and so increasing the fitness. This is the reason that doubling the 

population from 25 to 50 increases the fitness instead of decreasing it: the 

increased probability of finding the food zone is a greater improvement than 

the disadvantage of obstruction. However, if the population is increased much 

more, then the physical encumbrance is more noticeable and so the fitness will 
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decrease. This is clearly seen when the population is again doubled but this 

time from 50 to 100, at this point the detrimental effects of the obstructions 

have increased to the point that it cancels out the positive affect of finding the 

food zone, so the fitness decreases. This is further seen when the increase is 

from 100 to 200 individuals. These observations, with the varying populations, 

would seem to suggest that the optimal population would be somewhere in the 

middle, neither too numerous nor too few. In other words there is a threshold at 

which the trend of increasing fitness reverses and starts to decrease again. 

In Figure 1.22 there is are depictions which are useful to explain the 

phenomenon of the apparently unpredictable fitness trend in condition A. 

In conclusion, also in this second sub-experimental setup, it would seem that an 

increasing of sociality (i.e. increasing of population dimension) leads to a 

success probability increasing and so to more chances of survival. Although, 

this advantage of sociality is counter-balanced by the disadvantage of physical 

encumbrance deriving from an increasing size of population. Therefore where 

a physical limit exists such as in biological organisms (limited perceptual 

distance, environmental obstacles) sociality fosters an improvement of feeding 

chances, which means survival.   

 

 

Sub-experimental setup no.3 

 

Evolving robots for 20 different conditions, we can notice a remarkable 

difference of average fitness between the first race and the second, only in 

some replications. In Figure 1.23 there are represented the comparisons of the 

first 5 replications’ fitness related to both two races. In particular, in replication 

no.1 and no.5 the first race gets a fitness far and away less than second race 

fitness. For this reason the second race can be named as “best” race. To 

understand why there is such a pronounced gap between races fitness in only a 

few replications, robots behaviours have been carefully examined. Immediately 

a dominance of the second race arise from robots behavioural analysis. In 

Figure 1.24 is illustrated the situation over some generations. It is clearly  
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Figure 1.22:  Graphical visualisation about how physical obstruction and the 

likelihood of catching the food zone change on varying of population 

dimension.  
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 Replication 1. 

 
Green Race (First Race) 

 

 
Blue Race (First Race) 

Replication 2. 

 
Green Race (First Race) 

 

 
Blue Race (First Race) 

Replication 3. 

 

Green Race (First Race) 

 

 
Blue Race (First Race) 

Replication 4. 

 
Green Race (First Race) 

 

 
Blue Race (First Race) 

Replication 5. 

 
Green Race (First Race) 

 

 
Blue Race (First Race) 

 

 

 

Figure 1.23:  Fitness comparisons between both two robots races of some 

replications (over 20). In replication 1 and 5, blue race is dominant and green 

race is recessive. In the remaining 3 replications, races are on par.   
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Figure 1.24:  Schmatisation of blue race’s dominance mechanisms. Green race 

is obstacled to get in the food zone, over generations. Finally green race is not 

able to lie in the food zone when ground sensor signals the presence of it.   
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marked that blue individuals (race 2) tend to place themselves all around the 

food zone on the border. They evidently develop this strategy sooner than the 

green race (race 1). This is clear in the picture, as blue individuals tend to 

position on the border of the food zone, since first generations (see generation 

20 and 100 in the Figure 1.24). 

Obviously, if blue robots are faster in displacing all around the food zone they 

will create a “wall” for the green robots which will have denied the access to 

the food zone throughout the generations. In this way, green robots will not be  

capable to develop the only strategy robots can develop in this setup to get 

fitness: learn to stay in the food zone when ground sensor is on. In other words, 

at the end, green robots will not be able to lie in the food zone when they are in 

because their possibility to learn it has been precluded during the evolution, by 

the dominance of blue race. That is why there is a big gap between blue race’s 

fitness and green race’s fitness. Instead, in the other replications, blue robots do 

not generate a so efficient wall around the food zone making green robots able 

to penetrate in there, and vice versa. In this way, green robots learn to stand in 

the food zone when they find it, and average fitness is about the same for both 

races. Therefore, in this sub-experimental setup, a new information emerges on 

how physical obstruction can be exploited by competitive races to predominate 

on the other. 

However, in this case, race’s dominance emergence does not come from 

differences in physical features but from the genetic difference of races from 

the begin of the evolution, because of the random choice of initial genotypes. 

This difference could make one race enough fast to reach the food zone and 

create a barrier to obstacle the other race’s penetration. In this case physical 

encumbrance can foster inter-race competition but at the same time it can 

enhance intra-race cooperation to increase survival chances of own race.      

1.6.3 Future directions  

 

So far, we have examined some advantages and some disadvantages of social 

living and these can be reduced or improved under some conditions. A new 
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series of experiments could shed a light on all the advantages of sociality. We 

could investigate:  

 

1. When individual tend to aggregate to each other? 

2. Which are other factors who foster the cooperation and living in 

group? (predation protection, feeding efficiency, information and 

resource sharing, etc.) 
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2 Dyadic Cooperation 
 

Cooperation allows to reach goals that are precluded to a single agent. This 

principle is well-known in animal reign where various and outstanding 

examples of cooperation can be observed. It is possible to consider for example 

grooming in primates, an activity in which individuals in a group clean one 

another's body by which animals who live in proximity can bond and reinforce 

social structures, family links, and build relationships or the structured social 

organisation of insects such as ants, bees, wasps or termites where every 

subject covers a specific role that sustains the hierarchy feeding the entire 

group.  

In order to cooperate, sometimes, it is not needed being numerous. In nature, 

there are many situations where couples of individuals reciprocally help each 

other to achieve a common benefit. This type of cooperation is named “Dyadic 

Cooperation”, since it is accomplished by two agents: dyad of agents.   

The ethological observation of dyadic cooperation has been recently 

complemented with the study in controlled situation using specific 

experimental paradigms: these paradigms represent a simplified version of 

dyadic cooperation chances that animals encounter in natural environment. The 

“Loose String Task” is an experimental paradigm to study dyadic cooperation 

and it has been explicitly developed for chimpanzees [5, 6], birds [96,8] and 

recently elephants [97].  

 

2.1 Dyadic Cooperation in Corvids and 

“The Loose String Task” 

Recent works have shown that captive rooks are able develop dyadic 

cooperative alliances with their con-specifics. Furthermore, the pressures, 

hypothesized to have favored the social intelligence in primates, also apply to 

the birds family called “corvids” which contains: crows, ravens, rooks, 

jackdaws, jays, magpies, tree-pies, choughs and nutcrackers. Before, the same 

http://en.wikipedia.org/wiki/Crow
http://en.wikipedia.org/wiki/Raven
http://en.wikipedia.org/wiki/Rook_%28bird%29
http://en.wikipedia.org/wiki/Jackdaw
http://en.wikipedia.org/wiki/Jay
http://en.wikipedia.org/wiki/Magpie
http://en.wikipedia.org/wiki/Treepie
http://en.wikipedia.org/wiki/Pyrrhocorax
http://en.wikipedia.org/wiki/Nutcracker_%28bird%29
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studies have been extensively conducted on monkey and chimpanzees. These 

studies, on primates dyadic cooperation, unequivocally prove that monkeys and 

chimps understand when cooperation is necessary. Furthermore, primates 

display behavioural coordination and they have a robust understanding of 

partners’ requirements. These findings have suggested the importance of the 

role of temperament during the evolution of cooperation. Ultimately, the 

difference in the temperament between chimpanzees and humans might reflect 

an important evolutionary step, providing a platform upon which our 

cooperative culture and sophisticated cognition could have evolved. Starting 

from the cooperation results in primates, other authors have tested dyadic 

cooperative problem-solving in rooks to compare their performance and 

cognition with primates. Without previous training, eight rooks have been 

faced to a problem in which two individuals have to pull both the ends of a 

string simultaneously in order to reach a food platform. In literature this dyadic 

test is known as “Loose String Task”. The test is divided in 3 experiments: 

“baseline”, “delay test” and “choice test”. In the first experiment “baseline”, 

two rooks (at a time) are trained to pull the string simultaneously. In the second 

experiment “delay test”, the one-way flap is released (by the experimenter) 

once one of partners enters the test room. In this way, it has been possible to 

verify whether one of rooks waits the companion for the time necessary to 

enter in the testing room. In the end, in the “choice test” rooks must choose 

between a single and a double apparatus. When tested alone, the birds should 

prefer to pull the single apparatus because they are not allowed to individually 

get food from the double apparatus (which only works with two subjects). 

When tested with their partner, rooks should attempt to coordinate their group 

actions and pull in the double apparatus. The three experiments are depicted in 

Figure 2.1. The second and the third experiment have been developed to 

investigate whether corvids have an understanding of the partners’ needs in 

order to have an effective cooperation by delaying acting or checking the 

presence of the partner.  

Similarly to monkeys and chimps, rooks performance has been better when 

within-dyad tolerance levels have been higher. In contrast to primates, rooks  
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A - Baseline 

 

 

B – Delay Test 

 

 

C – Choice Test 

 

 

Figure 2.1:  The Loose String Task: A) “baseline”; B) “delay-test”; C)“choice-

test” 
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have not delayed acting on the apparatus while their partner gained access to 

the test room (delay test). 

Furthermore, given a choice between an apparatus that could be operated 

individually over one that required the action of two individuals (choice test), 

four out of six individuals have showed no preference. These results may 

suggest that cooperation in chimpanzees is based on more complex cognitive 

processes than that in rooks. Such a difference may arise from the fact that 

while both chimpanzees and rooks form cooperative alliances. However, 

Chimpanzees, but not rooks, live in a more complex and variable social 

network made up of competitive and cooperative relationships. 

 

2.1 Dyadic Cooperation in Robotics 

All the “Loose String Task” experiments are often difficult to be executed on 

captivity animals such as rooks in laboratory. These corvids need a preceding 

long term breeding training. Moreover a long training for using the apparatus is 

often necessary for each single rook. Many times, this involves the wounding 

of  the animals and sometimes even their death.  

For these reasons, always more frequently, robots and simulations are being 

adopted in order to prove cognitive theories on cooperation in these animals.    

In one of those artificial experiments, two robots e-puck are simulated within a 

rectangular arena where the robots are initially placed on a wide corridor [98]. 

Once the robots have reached the great central target area, this large area 

disappears and three smaller targets are placed in the corridor. In order to 

accomplish the task, robots have to drive towards one of three small targets. 

The setup is depicted in Figure 2.2. This experimental setup is a simple version 

of the "Loose String Task" (adjusted for the robots) and represents a situation 

in which the robots should coordinate themselves in order to cooperate and 

getting a reward. By evolving robots (by means of Evolutionary Robotics 

techniques), dyads display to be able to accomplish the task, showing  
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Figure 2.2:  First Experimental Setup on Dyadic Cooperation in robots. 

 

 

an efficient behaviour. Results underline that cooperation between robots is 

regulated by social interaction between robots, via communication as a 

medium. The emergence of communication leads to a coordinated cooperation 

behaviour that is anything like cooperation observed in natural organisms such 

as corvids. 

In a second experimental setup, two robots e-puck situated in a rectangular 

arena, with two target areas, are evolved for the task of reaching areas almost 

simultaneously [99]. The experiment is schematised in Figure 2.3. The dyad is 

equipped with communication channels. Finally dyad, with enabled 

communication, becomes perfectly able to reach target areas in the same time. 

Whereas dyad evolved, without communication signals become able to reach 

the target area in different times: each robot enter the target area on its own. 
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Instead, the communicative dyad develop the capability to synchronize by the 

communication, in real time.   

 

 

 

 

 

 

Figure 2.3:  Second Experimental Setup on Dyadic Cooperation in robots. 
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2.2 A neuro-robotic model for “Dyadic 

Cooperation” 

In our artificial approach we always attempt to set a strong link between 

phenomenon and task (that is derived from experiments) in order to obtain 

insights from this kind of data reciprocally. For this reason we model 

experimental set-ups, that has been widely used in animal behaviour literature. 

In others approaches, the main drawback is that attention is focused in 

verifying if a certain ability/capacity can be found in another species or not. In 

other words it seems that a catalogue must be compiled: dogs do this thing, cats 

don’t, etc, whereas there is no interest in understanding if there are different 

strategies in solving that task between species or rather a common underlying 

mechanism. Here, we try to overcome, at least partially, this issue with the 

present contribution in which we describe a dyadic cooperation task solved by 

artificial organisms whose we can analyze the solving strategies and 

mechanism.  

In this new task we have extended previous experiments in order to make these 

simulations even more approximate to the real experiments (Loose String 

Task) on corvids.  

 

2.2.1 Experimental Setup 

  

Two wheeled robots (khepera) must cooperate for obtaining a reward, i.e. food, 

which is clearly visible, but not directly reachable. The dyad gets the reward if 

the two tips of a bar are pushed onto food zones. However, this is still a 

simplified version of the Loose String Task: a bar must be brought on two 

areas, by the two robots, at about the same time to receive a reward. The bar’s 

extremities must be simultaneously on two different areas to generate a reward, 

the setup is depicted in Figure 2.4. A delay of one robot causes the failure of 

both. The robots start from fixed positions inside a T-shaped corridor where, in 

the centre, there is a wall. The environmental arena has a size of 550cm x 

1100cm The environment is surrounded by walls. When a robot bumps against  
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Figure 2.4:  Robots and Environment. 

 

 

environment’s wall or against another robot, it bounces back in the 

neighborhood of the contact point, with a new random direction. Each robot is 

equipped with two motors on the bottom side and three bump sensors, as 

shown in the Figure 2.5. As we can see in the picture, each sensor encodes the 

stimulation in this way: 00 corresponds to no impact, 11 frontal impact, 10 and 

01 lateral impacts. The robot control system consists of three layers: the input 

layers is made up by 2 bump neurons, 18 neurons associated to the visual 

system of the robots and by 1 neuron that encodes the ground sensor. 

The visual system of the robot encodes on a gray-scale the input from the 

artificial retina of the robot whereas the ground sensor signals if the robot is on 

a specific area. The output layer is made up by 2 neurons that control the 

motors. The hidden layer is made up by 5 neurons. The layer that control the 

retina is formed by neurons that receive a value from 0 to 1 according to the 

gray-scale acquired from 1 of the 18 retina photoreceptors. The retina receptive 

field goes from -90 degrees to +90 degrees considering face direction so every   
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Figure 2.5:  Representation of the codification of bumps sensors inputs. 

 

 

photoreceptor cover an area 10 degrees wide. The neural control system is in 

Figure 2.6. Robots are evolved using a genetic algorithm with an initial 

population of 100 dyads of agents whose genotype is randomly varied. At the 

end of their life robots receive a fitness score according to their ability to solve 

the task described above (they can try 20 times) and their chance to reproduce 

themselves depends on this score. This selection procedure has been iterated 

for 300 generations. From one generation to the next, only the 2% of offspring 

genotypes are muted. The whole process has been replicated 10 times with 

different starting conditions. Each dyad consists of clones, that means each 

robot has the same genotype.  

The main purpose of this study is to understand how cooperation evolves with 

different conditions of communication. The task we have described, in fact, 

implies that a subject in the dyad considers the presence of the other and that 

wait each other. It is moreover clear from the ethological observation that 

animal use some channel of communication to coordinate and solve the 

cooperative task correctly.  

We have then compared 4 different conditions: a) no communication and no 

vision; b) communication (with an auditory signal) and no vision; c) no 

communication and vision; d) communication and vision. 
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2.2.2 Results 

 

The first results is about the number of successes by the robots in the four 

conditions, illustrated in Figure 2.6. From the chart, it is clear that the most 

successful condition is the no-communication and vision. For each condition in 

the table in Figure 2.7 there are the average fitness values and standard 

deviation of the best dyads, for each condition. The difference between the 4 

conditions (evaluated with t tests) is statistically significant. 

The results are counterintuitive: one would expect that communication and 

vision together could be more helpful in solving the task. On the contrary 

vision alone works better.  

If we observe the behavioural strategies, we can see that the robot, exploiting 

the lateral vision, sees each other in each moment. If a robot is late, the other 

wait for its partner and then they to go together to push the bar in order to reach 

the reward area simultaneously and solve the task. In other words they 

synchronize by the vision.   

 

 

 

 

Figure 2.6: Number of successes, by the robots 
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 No 

Communication 

No Vision 

No Communication 

Vision 

Communication 

No Vision 

Communicat

ion 

Vision 

Aver

age 

0,0485 (0,052) 0,1291 (0,059) 0,0738 (0,039) 0,0805 

(0,046) 

 

Figure 2.7: Average Fitness and Standard Deviations. 

 

 

On the contrary, the other three conditions do not produce strategies as 

efficient as the one described and this reflect also on the indexes reported 

above. Some examples of behaviours are reported in Figure 2.8. 

How can we explain these puzzling data? In our opinion, the present 

evolutionary process does not allow the signal to become a communication 

signal: in other words, in no case, the dyad arrives to interpret the auditory 

signal as something that can be useful to understand others’ intention. On the 

other side, vision automatically and naturally gives information about others’ 

position, an information that is clearly relevant in this kind of task.  

 

2.2.3 Future directions  

 

What is relevant in our opinion, is that this approach allows us to study the 

cooperation issue trying to go deep inside the mechanisms that regulate it. In 

fact, with the artificial organisms we use, there is the chance to control more 

variables: how can you control the elephant vision? For us it is much easier to 

understand how vision determines cooperation and through which mechanisms. 

In the future, we propose to test other variants of the loose string experiment, 

for example the “choice test”. Furthermore, we could investigate more deeply,  
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Figure 2.8: Behavioural strategy of synchronisation 

 

 

the relation between information absence and communication needs in natural 

and artificial organisms.  
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3 Flocking behaviour and 

Leadership 
 

 

As we stated in the Introduction to the present document, primatology has been 

dealing with the conditions which lead to the grouping in primates, such as 

monkeys and apes. Some authors have argued that grouping provides such 

benefits to the members that differences in size of groups must be sought 

mainly in the disadvantages of the ecology where the members are used to live. 

Beyond mating, reproducing and offspring caring, the most accepted 

advantages of social living in groups are: a) more protection from predators; b) 

improve the chances of feeding; c) compete against con-specific groups d) 

information sharing (resource sharing). However the most significant 

disadvantages of grouping are: a) Intra-group competition increase due to 

constantly living in close proximity; different motivations and skills could 

cause a compromising of group cohesion; b) Coordination needs proportional 

to the group size: in order to move in groups, some members (not necessarily 

all) should choose the same moving direction for all the group’s members. 

Moreover those “elected” sub-set of individuals should coordinate the 

movements of the whole group. This is a negotiation problem, often not easy to 

solve [34]. 

Nowadays, evolutionary biologists generally argue that the reason for the 

emergence of leadership / followership patterns (over the years of evolution) is 

the need to coordinate [13]: they usually use the term leadership to indicate 

those behaviours that influence the type, timing and duration of group activity.  

Specifically, the role of Leadership, that is identified in solving coordination 

and collective action problems, involves different degrees of conflicts. Across 

species, individuals are more likely to emerge as leaders if they have  particular 

morphological, physiological, or behavioural traits increasing their propensity 

to act first in all the coordination problems. 
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3.1 Leadership in living beings 

 

A review of the human and non-human leadership literature suggests five 

major transitions in the evolution of human leadership [100]: 

 

1) Leadership emerged in pre-human species as a mechanism to solve 

simple group coordination problems where any individual initiated an 

action and others followed; 

 

2) Leadership was co-opted to foster collective action in situations 

involving significant conflicts of interest such as internal peacekeeping 

in which dominant or socially important individuals emerged as 

leaders;  

 

3) Dominance was attenuated in early human egalitarian societies that 

paved the way for democratic and prestige-based leadership facilitating 

group coordination; 

 

4) The increase in human group size selected for powerful social cognitive 

mechanisms, such as theory of mind and language, providing new 

opportunities for leaders to attract followers through manipulation and 

persuasion; 

 

5) The increase in social complexity of societies that took place after the 

agricultural revolution produced the need for more powerful and formal 

leaders to manage complex intra- and inter-group relations: the chiefs, 

kings, presidents, and CEOs. In some cases these new forms of leaders 

are best at providing public services, at worst they abuse their position 

of power to dominate and exploit followers. 

 

 

In ethology, groups of animals are autonomous units, that enable members to 

synchronize some activities, such as collective foraging and coordination in 

moving. A lot of theoretical works have focused on how navigational 



75 

 

information is exchanged between group members and how such information 

flow depends on the knowledge held by each member [14]. Some open central 

issues are: how do groups reach consensus and solve the problem of 

maintaining a collective moving, if there is a considerable variation in 

knowledge of the group members? Is the role of an individual’s knowledge 

level determining for leadership in animal groups? Actually a few experiments 

have attempted to provide the necessary empirical data [15]. These 

experiments demonstrate that during pairing flights, when two birds (homing 

pigeons) have a conflict in an individually preferred route, if they are 

significantly different (in knowledge), one bird will emerge as leader and the 

other one will emerge as follower. In another study, the authors have examined 

the factors contributing to the formation of leadership / followership patterns in 

flocks of pigeons, focusing on the role of previous navigational experience 

[101]. The results prove that, in order to negotiate joint routes, pigeons make 

use of a complex decision-making system based on leadership mechanisms, 

where, in substance, less homing experienced birds are likely to follow more 

experienced con-specifics.  

In order to coordinate group movements, primates evolution seems to have 

identified two strategies:  

 

(1) Personal leadership: where a single individual uses its 

dominant status to impose its own choices. In this case, the 

spatial and temporal distribution of the group does not affect 

the initiation likelihood of movements. Moreover, the current 

leader does not constantly take under check its followers 

behaviour. He simply leads and the others follow. In this kind 

of leadership, the leader is the focal point of the group and all 

the group’s members are constantly aware of its position and its 

activities. Before moving, the adult male signals its readiness to 

move, assuming a rigid posture and eyes fixed towards a given 

direction. He moves rushing in the direction chosen, 
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occasionally uttering grunts. Members of the group simply join 

him to follow [102]; 

 

 

(2) Distributed leadership: in this case, individuals continually 

exchange information to reach a collective decision. In this 

type of leadership, several individuals (not necessarily the 

dominant ones) may be the initiators of group movements. 

Spatial and temporal distribution of the group can strongly 

affect the probability of successfully beginning the group’s 

motion. In this context, every member constantly looks for an 

answer by tuning in sound and visual signals, from the other 

members. The greater the number of individuals involved in the 

decision making, the more types of communication signals are 

needed [103]. 

 

In the systems of distributed leadership, the leader is not chosen by status of 

dominance, especially in tolerant species. In this case, even older females may 

be selected. In the wild macaques "Barbary (Macaca sylvanus), for example, 

females usually lead the group, but males become more influential in cases of 

imminent danger. So there seems to be a distinction between a leader who 

guides (chief) and a “de facto” leader (leader). The social organization can 

influence the mechanisms of leadership: the asymmetry degree in dominance 

relationships may play a key role. Some studies have argued that white-faced 

capuchin monkeys which are more socially open and tolerant races of 

monkeys, rely on a distributed leadership [104,105]. Whereas brown-faced 

capuchin monkeys are characterised by a more central role of a higher-ranking 

male, who aggressively controls access to resources, and whose behaviour is 

constantly monitored by other members of the group. In this case, we may say 

that brown-faced capuchin monkeys display a more personal style of leadership 

than white-faced ones [106,107]. In some ethologically strong theories, 

whenever there are moving groups of animals, there always seem to arise a 
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leadership/followership patterns emergence. That’s a stronger restriction 

because it claims that motion is a necessary and sufficient condition for the 

emergence of leadership: in all cases a motion is needed, a leadership would 

arise [108].   

Also the modern biology and psychology seem to agree with ethology on 

leadership operating principles.  In species where individuals prefer to move 

together leaders and followers are more likely to be present in groupings, as a 

consequence of social and ecological pressure. Moreover, in the human case, a 

purely social environment may have selectively created the conditions for 

sophisticated leadership/followership patterns in human life [110]. However, 

literature on evolution of leadership, suggests that we can identify a first stage 

in the emergence of leadership in humans, when pre-human species, that tried 

to solve simple group coordination problems for foraging, developed a 

differentiation of roles, in this way some individuals initiated an action and 

others followed [111]. 

 

3.2 Flocking behaviour 

 

Flocking behaviour can be defined as the capability of a group’s members to 

follow other group’s members drawing those typical “lines” of individuals that 

are exactly called “flocks”. Those behavioural patterns have been extensively 

identified by biologists and ethologists in the animal world: researchers tend to 

make distinctions among the “shoaling” behaviour of fish, the “swarming” 

behaviour of insects or “herding” behaviour of land animals. Generally, 

flocking behaviour is used to mean groups of flying birds, and the lines they 

trace are named “flocks” for this reason [112]. Furthermore, flocking has been 

simulated in many computer simulations with the aim of understanding 

fundamental mechanisms [113]. 
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3.3 A neuro-robotic model for “Prey and 

Predator” 

 

The following work is meant to identify the possible mechanisms and 

conditions involved in the emergence of leadership, in socially living 

organisms. In order to achieve this ambitious purpose, we have simulated a 

neuro-robotics model based on evolving prey robots and predator robots. In 

particular, this “predator-prey” model might shed a light on the probable 

correlation between leadership and group moving (supposed in literature) and 

what is the leadership role in motion coordination. The most significant 

questions to which this simulation is intended to reply are: Under what 

conditions may grouping spontaneously emerge within a colony of robots? 

Does leadership need a group of genetically heterogeneous robots to arise?   

 

3.3.1 Experimental Setup 

 

The artificial system, that I present, consists of a simulation of Khepera 

Robots, whose body is made of a circular chassis with a diameter of 5.5cm, 

visual sensors and two wheels with which the robot moves in the environment. 

In Figure 3.1 there is a schematisation of the robot used in this experimental 

setup. The environment is a squared arena of 550cm x 550cm pixels bounded 

by walls. The environment contains 20 predator robots and 20 prey robots. The 

only physical difference between one predator and one prey consists in the 

color difference, blue for predators and green for prey. Both predators and prey 

are evolving robots by means of the evolutionary robotics methodology.  

Another substantial difference between prey and predators is the different 

fitness function computation: when a predator bumps against a prey robot, this 

disappears from the environment (i.e. it is dead) and the predators fitness 

increase by +1. On the other side, predators cannot die. The Prey’s fitness is 

calculated by the number of time steps in which they stay alive, therefore, the  
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Figure 3.1:  Visualisation of top and bottom view of the robot prey’s and robot 

predator’s chassis. 

 

 

more the prey survive, the more fitness they gain. In conclusion, when a prey 

robot is eaten the total amount of prey (“living” in the environment) decreases.   

The possibility of eating one prey robot is the only behavioural difference 

between predators and prey. To survive and have offspring the predator robots 

must be able to approach and reach (i.e. eat) the prey robots whereas the prey 

robots must be able to avoid predator robots. In other words, predators should 

evolve the skill of running after prey, and prey should evolve the skill of 

escaping. 

When a robot bumps against environmental walls or against another robot, it 

bounces back in the neighborhood of the contact point facing a new (i.e. 

randomly chosen) direction. This experimental setup is depicted in Figure 3.2.  

 The vision system of both prey and predators is based on a linear retina of 9 

(R0-R8) photoreceptors that perceives gray scaled colors. The field of view 

(FOV) of each robot is 90 degrees wide, and it represents the extent of the 

observable world that the robot can see at any moment. The FOV ranges from -

45 degrees to +45 degrees respect to the face direction (0°) that is the robot’s 

moving direction. In this way, each photoreceptor manages a 10° wide portion  
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Figure 3.2: The environment and the predator robots (blue) and prey robots 

(green). 

 

 

of the FOV, the first one is associated to a range of  [-45°,-35°] with respect to 

the face direction, the second one to [-35°,-25°], and so on. When any object 

(such as another robot) is located in front of a photoreceptor (within its vision 

angle), it is activated to a value encoding the color of the object (translated into 

gray scale). So the green color of prey sets photoreceptors to 0.26, that is a 

normalised value (between 0 and 1) related to the gray scaled green. The blue 

color of predators sets photoreceptors to 0.97. This vision system is depicted in 

Figure 3.3. The maximum vision distance of vision sensors is 55cm. So if an 

object is further from a photoreceptor more than 55cm, it cannot be detected. 
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Figure 3. 3: A schematisation of Robot’s Vision System.  

 

 

Each predator robot can live a maximum of 3,000 time steps that represents 1 

epoch of the entire life. Whereas each prey robot can die at any time so prey 

can live less than the maximum epoch’s time.  

As we have previously said, the robot’s control system is evolved by a genetic 

algorithm, even though a different ranking system is applied to prey and 

predators, in order to simulate two different species. At the beginning of each 

epoch, every robot starts from a random position within the environment. Each 

life time is made of 20 epochs. At the end of their life, the 20 predators are 

ranked according to the average number of prey eaten in all epochs. Each of 

the 4 higher-ranking predators generates five predator offspring which inherit 

the genotype of their father. The first offspring individually preserves the 

father’s genotype entirely (elitism) whereas the rest of the offspring receives a 

random mutation with a probability of 2% within the inherited genome. The 
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total number of new predators (4 x 5=20) populates the next generation. 

Similarly, the 20 prey robots are ranked separately, generating 20 new prey 

robots for the next generation. This evolution carries on for 300 generations. 

The number of replications is 10. Each replication is characterised by a 

different initial genotype randomly selected before the beginning of the first 

generation.  

The evolving genotype of each individual consists of a set of binary encoded 

controlling neural network’s free parameters. The neural network (ANN) 

controls the behaviour of each robot. These encoded parameters are the 

synaptic weights of the connections and biases for the neural network. 

Furthermore, these free parameters of ANN are randomly generated in the 

interval between +5 and –5, and each parameter in encoded as a sequence of 8 

bits. 

The controlling neural network consists of 3 layers with 13 neurons for all, 

each one is connected to the other layers without recurrent connections. The 

neural network’s topology is schematised in Figure 3.4. 

The input layer contains 9 neurons which encode the output from the 9 retina’s 

photoreceptors. In other words, input units receive values (normalised in a 

range between 0 and 1) from the retina’s sensors depending on the gray level of 

perceived image. The hidden layer consists of 2 units, and the output layers are 

the controllers of the motor units: output neurons encode the speed of the two 

wheels that enable the robot to move in the environment. The activation of all 

the network’s units are in the range [0,1]. Internal and output neurons are 

distinguished by a sigmoid activation function (logistics).    

Initially, for the first generations, the predator robots are not able to approach 

the prey, to eat them. Similarly, prey robots are not good at avoiding the 

predators. During the generations, the best robots selection and the mutation 

operator cause the predators’ to improve their capabilities to hunt the prey.  On 

the other hand, the prey learns to escape from predators.  

When a biological or artificial organism perceives food (prey robots or 

patches), the organism should approach to and eat the food because this is 

necessary for the survival. But when the organism does not perceive any food,  



83 

 

 

 

 

Figure 3.4: The control system of predator and prey robots. 

 

 

what should it do? The organism should explore the environment and visit as 

many parts of the environment as possible, because this will increase the 

probability that it will perceive food. Therefore, the fitness score of a predator 

robot will depend on two distinct abilities: (a) the ability to approach and reach 

a perceived food token, and (b) the ability to explore the environment when 

there are no food tokens in view.  

Two robots can achieve the same fitness score: but one robot could be good at 

reaching food and less good at exploring the environment. In opposition to this 

another robot could be skilled at exploring the environment and less good at 

reaching the food. We probably expect a specialization of skills like this, after 

the evolution. Both abilities could likely to be developed during evolution. 
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After the evolution phase, we are able to test the evolved robots in an artificial 

experimental laboratory.  

 

 

3.3.2 Results  

 

By evolving predator and prey robots, we observe that the former learn to 

follow and/or eat the prey, while the latter improve their ability to escape from 

the predators. 

Moreover we observe the emergence of a flocking behaviour between 

predators. Instead, prey do not display any specific grouping behaviour, they 

just avoid predators. The flocking is schematised in Figure 3.4.  

The motivation for the flocking behaviour emergence has been roughed out 

previously. As every predator robot has a limited maximum distance of vision, 

when they do not see anything around them they prefer to follow another 

predator robot instead of doing anything else. We have observed that predator’s 

display a significant behaviour of following very different from the behaviour 

of hunting. The behaviour of following another predator because, in this case, 

predators do not tend to bump against the other predators, but they just limit 

themselves to follow with a safe distance. On the other hand, the behaviour of 

hunting consists of following the prey until the predator reaches and bumps 

against it, in order to finally eat the prey. Someone could trivially argue that 

flocking is facilitated by the evolution of a simple following strategy, namely 

chasing everything that is moving. This is not true, because as we have just 

explained, there is a differentiation between the behaviour of following one 

predator and following a prey.  

In conclusion, by virtue of the previous behavioural analysis, we can strongly 

suppose that Flocking Behaviour in this model is caused by “vacuum vision”, 

that is: when I do not see  prey around me, I just prefer to follow another 

individual like me. This is generated by a limit of their vision capabilities.   
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Figure 3.5: Illustration of the Emergence of Flocking Behaviour in the 

“predators-preys” setup. 

 

 

Furthermore, if we take a look at the fitness curves (over the generations) of 

the best and the average populations, we notice that the curves are constant. 

Figure 3.6 is showed the average of the fitness curves of the predator robots.  

The steadiness of fitness curves is true both for predators and prey. However, 

by watching the robots (both predators and prey) behaviours, they seem to 

improve their skills and performances throughout the generations. This effect 

has been explained in some past works by the “arms-races” mechanism that 

can arise in artificial evolution too [113]. Arms-races may emerge in every 

situation where a co-evolution of two species of organisms is involved: 

whenever two competing population of organisms co-evolve they may lead one 

another to increase reciprocally the behaviour complexity by producing an 
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evolutionary “arms-races”, to all intents and purposes. In this case, the 

efficiency of each single organism’s evolved strategies does not influence a co-

evolved group enhancement. In this simulation, for example, prey robots 

become better and better at avoiding predators, meanwhile predators become 

better and better at hunting the prey. The result, is that the predator’s fitness 

score and prey’s fitness score does not increase over the generations, because 

the amount of prey the predators can eat, in one generation, is affected by 

prey’s skill enhancements: if prey get good at escaping the predators, the 

predators will not eat a larger amount of them. That is why the fitness curves 

appear stable. Through evolution, prey become increasingly good at escaping 

from predators, but  predators also become increasingly good at hunting them. 

However, this does not mean that a robots’ strategies and skills do not improve 

and become more efficient during the evolution.  

Another factor that makes the predators fitness curves constant is the fact that, 

at each generation, only 20 prey can be eaten in total, because the prey will not 

be born again after their death. Definitely, the number of prey eaten by 

predators (fitness), through the generations, cannot increase that much. 

Certainly, the speed of the predators to devour prey, can increase during the 

evolution.  

In order to prove this fact, we have conducted an “ecological test” that means it 

was executed in the evolutionary ecological environment. We have measured 

the number of time steps in which predators eat all the 20 prey (i.e. predation 

time). The test has been repeated by loading the genotypes of all the robots 

over the generations. Not all the 300 generations have been considered, but 

only a sample of them, with a step of 10 generations. The test has been 

performed in 20 trials per generation, with 3000 time steps for each one. Then 

the 20 values obtained, have been averaged. We have then achieved 30 values 

(average time steps) per replication. In order to reduce the “arms-races” effect, 

the test has been executed with motionless prey, randomly spread in the 

environment.  

Finally, we have calculated the average of all 10 replications and we have 

plotted these values on the chart depicted in Figure 3.7. The gap between the  
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Figure 3.6: Visualisation of the average of all 10 predators’ fitness curves, 

bests (black) and averages (light grey).  

 

 

 

 

Figure 3.7: Average Predation time in ecology. 
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first generation and last generation time is 451, 57 time steps, that proves a 

decrease of predation time. This means an enhancement in predation skills, in 

spite of the constancy of the fitness curves.  

Obviously, predation time cannot fall below a certain threshold because this 

depends on various factors: such as they cannot exceed the maximum robot’s 

motors speed, there is a limit in the number of edible preys, the limited 

environmental size, and so on. 

To find a single indicator on the fitness reached by robots in each replication, 

we have calculated the average of the last 20 generations’ average fitness. In 

Figure 3.8 there is a bar-plot with all the 10 values of fitness per each 

replication that we call the “Fitness Indicator”. We can observe that in 

replication no.10, predators achieve the highest average fitness, whereas they 

have the lowest average fitness in replication no. 7. 

 

 

 

 

Figure 3.8: Fitness Indicator per replication. 
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Apparently there is an unexpected inter-replication variation of fitness. So the 

first question we have tried to answer is: What is the phenomenon behind this 

substantial variation?  

In order to understand the why of this variation, we have tried to calculate a 

static aggregation measure of the predators’ populations of in ecological 

environment. From this point we only consider the predators population for 

further analysis, as there are no interesting emerging social behaviours in the 

preys population. The “Aggregation Measure” has been calculating by 

measuring the distance between each robot and the nearest robot, in each time 

step. All the 20 measures of distance, for each time step, have been averaged 

returning, in this way, an average distance between each robot and the nearest 

robot, for each time step. Then all the time steps’ distances have been 

averaged. The test has been executed on the last generation robots for 20 trials. 

So the average distance between one robot and the nearest robot has been 

averaged over all the trials. Finally, we have obtained an indication on the 

ability of predators to aggregate. The static Aggregation Measure per 

replication has been reported in a bar-plot in Figure 3.9. The lower values 

correspond to more aggregation and vice versa higher values correspond to less 

aggregation. This is because the aggregation value means the average distance 

of each robot from its neighbour, so the lower value is the average distance, the 

higher should be the aggregation. In this plot, we notice that (on the opposite of 

the Fitness Indicator Plot) in replication no.10, predators achieve the lowest 

value of average distance (higher aggregation), whereas they have the highest 

average distance in replication no. 7. Moreover, we can observe a variabilità 

between replications in the Fitness Indicator chart.  

Therefore we have tried to understand whether there is a possible correlation 

between the Fitness Indicator and the Aggregation Measure, by calculating 

Pearson’s Correlation Coefficient between those two series of data. The result 

has surprisingly returned a ρ = -0.7 that means high anti-correlation between 

Fitness and Aggregation (in statistics, 0.5 < ρ < 1 means high correlation). This 

means that whenever there is a high aggregation then there is a high fitness 

probably, and vice versa. Anti-correlation had been expected as when there is a  
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Figure 3.9: Aggregation Measure per replication. 

 

 

 

 

Figure 3.10: Correlation between Aggregation Measure and Fitness Indicator. 
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high aggregation, then the average distance between a robot and the closest 

robot is low. In Figure 3.10 all the series are reported on a plot with the 

correlation coefficient.  

To better understand the dynamics of the robots aggregation through their life, 

we have plotted the average distance between a robot and the nearest robot on a 

chart in using the life time steps, as those reported in Figure 3.11. On X-axes 

we have the time-steps and on Y-axes we have the Aggregation (average 

distance). In Figure 3.11 there are two examples of aggregation curves related 

to replications no.7 and no.10. As we can see, the 7
th

 replication curve appears 

constant whereas the 10
th

 replication curve appears to be decreasing, that 

means the predators population tends to aggregate at the end of their life in  

replication no.10. Figure 3.12 illustrates the average aggregation curve, namely 

the average of all 10 replications’ aggregation curves. Also in the average case, 

we observe an aggregation reduction at the end of the life. This could mean 

that the predators probably tend to increase the flocking behaviour and 

aggregation as a consequence of the increase of the prey’s scarcity.  

 

 

 

 

Figure 3.11: Aggregation variation through the life.  
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Figure 3.12: Average Aggregation over the replications.  

 

 

As a matter of fact, after the predators eat the prey in the first part of the life 

cycle, then the prey supply become scarce. 

In the first part of a robots’ life, the average aggregation is always less than the 

average aggregation in the second half of its life, in every replication, but in 

replication no.7, where the aggregation trend is always constant as we have 

seen. This situation is clearly depicted in Figure 3.13. Each black bar indicates 

the average aggregation in the first 1000 time steps and the grey bar is the 

average aggregation of the last 1000 time steps. As we can see, in the first 1000 

time steps the average distance between each individual and the nearest 

individual is greater than in the last 1000 time steps. 

The first important issue, we have faced, is trying to understand why there is a 

substantial inter-replication variation, why there is a difference between seed 7 

and seed 10. To find answers to these questions, finding a behavioural measure 

is important even before a behavioural analysis. But in this simulation, we have 

needed to analyze the behaviours before, for indentifying what we need for the 

following numerical analysis.  

By examining the behaviour, we have comprehended that the predators’ 

flocking behaviours are not simply a grouping of robots following each other. 

There are in many cases some special robots which lead the others in some 

way. To identify the underlying mechanism we have tested each single  



93 

 

 

 

Figure 3.13: Average Aggregation over the replications divided into the 1000 

life time steps and last 1000 time steps.  

 

 

predator robot in a smaller environment called “Laboratory”. In this new 

Environment with size of 150cm x 150cm we have inserted one or two 

predators at a time, and we have studied their behaviour. In practice, before, we 

have inserted one single predator, and we have examined the trajectory as 

illustrated in examples in Figure 3.14. As we can notice, in the picture there are 

3 predator exemplars: predator no. 29, 39, and 27. Each of them draw a 

different trajectory and we can say they display a different exploratory ability. 

The prey are numbered between 0 to 19 and the predators are numbered 

between 20 and 39. In all predators we have noticed different trajectories 

differentiated in groups depending on the exploratory ability: robots with a 

small exploratory ability, robots with a medium exploratory ability, and robots 

with a large exploratory ability. By placing the robots side by side in the same  
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Figure 3.14: Trajectories of some predator exemplars. They are predator 

number 27, 29 and 39.  
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Figure 3.15: Trajectories of all matches between predators 27, 29 and 39.  
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environment, individuals 29, 39 and 27, we have obtained the behaviour 

illustrated in Figure 3.15. Basically, we have made all the possible couples 

between robots 29,39 and 27 and we have watched how they interact within the 

environment. Surprisingly, we have immediately noticed that in every couple 

one robot always leads and one robot always follows. This happens whichever 

trial we have run the test in.  But fundamentally, there is a following hierarchy 

between predators and this is predetermined in advance. In any way we change 

the robots positions and orientation, this hierarchy always arises in the same 

preset manner. Furthermore, if we compare Figure 3.15 with Figure 3.14, we 

observe that all the robots with less exploratory capability (i.e. with draw small 

trajectories if tested alone) are the ones who tend to follow then. All the robots 

with more exploratory capability (i.e. which draw big trajectories if tested 

alone) are the ones who tend to lead. In other words, the following hierarchy 

appears to be regulated by every single trajectory, or exploratory ability. In 

fact, the 39 which is the less exploratory in the Figure 3.14 is a follower if 

coupled with the both robots 29 and 27 which draw bigger trajectories. Robot 

29, which appears as leader with the robot 39 is a follower with robot 27. 

Robot 27 seems to be the absolute leader among these 3 robots. Indeed, 27 has 

the maximum exploratory ability. The hierarchy cannot be regulated by the 

color, because  all the 3 robots have the same color. The hierarchy should be 

established by means of the angle of view: by exploiting the retina 

photoreceptors, each robot is able to recognize the angle of movement of 

another robot. So each robot is able to discriminate the arching amplitude of 

the curvilinear trajectory which another robot is able to draw. Exploiting this 

amplitude each robot can recognize the hierarchic degree of another robot. So 

in this way, one robot can establish if it has to follow or to lead. Obviously, the 

genetic algorithm shaped this mechanism to guarantee the emergence of 

leadership, since it is the only strategy we can imagine to reach this purpose.   

Evidently, the leadership has been needed for the group coordination in moving 

toward one direction. In this way, we guess it is possible to conclude that a 

group of artificial agents, like those in the present simulation, needs 

leadership/followership patterns to solve a simple moving task in one direction 
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this is the direction where the prey are. In other words,  a peer-to-peer flocking 

behaviour is not enough on its own to guarantee a smart movement of the 

group in one direction, but it is necessary for the emergence of leadership. The 

evolution has fashioned the following strategies in this interesting way. Lastly, 

in this simulation, the leadership appears to be “relative”, namely each leader is 

not an absolute leader but it is a follower of another robot. Since, the leadership 

position is correlated to the exploratory ability as we have argued, there could 

be an absolute leader among all the 20 predators, this would be the leader with 

the maximum trajectory amplitude. But this does not necessarily happen, there 

could be two maximum leaders of three and so on.  

To support these ideas originated by the previous behavioural analysis we have 

studied a series of measures in order to prove the hypothesis we have made on 

the leadership hierarchy. The first Measure, that we have introduced, is the 

“Leadership Measure by Vision”, that is a measure of each predators leadership 

level by exploiting the vision system. In practice, we have inserted all the 

possible predator couples, into the Laboratory environment. Each of the 20 

predators have been coupled with each of the 19 others. For each sub-test, only 

2 robots are present in the environment each time. Then we have counted how 

many time steps each predator sees something, namely how many time steps at 

least one retinoic photoreceptor is activated. For each predator, the number of 

time steps in vision, has been averaged for all the pairings with the other 19 

predators. The hypothesis is that if there are only two individuals in a small 

laboratory environment, the leader will see less than the follower. The leader 

should more likely be at the head of the following line whereas the follower 

should be on the tail. Therefore, this turns out a sequence of vision parameters, 

for each predator per replication. Each parameter represents the leadership 

ranking of each predator in the group, and the lower the value of the 

“Leadership Measure by Vision”, the higher the leadership effect of one 

predator. The Measure of Leadership by vision is depicted in Figure 3.16.  This 

picture shows the  values of Replication no.7 and Replication no.10, which are 

the ones with the lowest aggregation and highest aggregation respectively, 

according to the Aggregation Measure in Figure 3.9.  
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Figure 3.16: Leadership Measure by Vision. In the picture there are the values 

of Replication no.7 and Replication no.10.  
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Comparing the figures 3.8, 3.9, 3.11 and 3.16, we can argue that: whereas there 

is a low aggregation (replication 7) then the variation between predators 

leadership values are low, the fitness is low and the aggregation evolution 

during the life is constant. On the other hand, when the aggregation is high 

(replication 10), then there is a high variation between leadership values, the 

fitness is high, and the aggregation evolution during the life is decreasing. In 

other words, there is a great correlation between aggregation, fitness and 

leadership. Leadership parameters in replication no.10 suggest that 

leadership/followership patterns appear only when there is a high variation 

between the values: only some individuals are absolute leaders (namely, 21, 24, 

34 in the picture), others are relative leaders (namely, 25, 28, 35, etc.) that 

means they are leaders for some predators and followers in regard to other 

predators. Lastly, only some predator robots are absolute followers (namely, 

22, 39). Leadership variation suggests that leadership emergence is correlated 

with fitness: this should be a winning strategy because whenever there are 

strong leadership/followership patterns there is a higher average fitness 

indicator, and vice versa. All this indicates an operational way to extract a 

unique measure of leadership per replication: measuring the variation intra-

seed of Leadership Measure by vision, we achieve a Leadership Measure per 

replication. For this reason, we have calculated the standard deviations of 

leadership measure for each replication, in this way we obtained a value of 

Leadership for each seed. For example, it should be that there is a high 

emergence of leadership/followership patterns, in seed 10 (high standard 

deviation) and seed 2, while in the seed 7 (low standard deviation) there should 

be a low leadership/followership emergence. Therefore, to measure intra-seed 

Leadership Measure by Vision’s variation, we have calculated the standard 

deviation of it for each replication. “Leadership Measure – standard 

deviations” per replication is illustrated in Figure 3.17. In excellent agreement 

with the previous comparisons between different measures, the Leadership 

Measure per replication draws a situation where replication no.7 (low standard 

deviation) displays a low leadership/followership pattern emergence; whereas 

replication no.10 shows a strong emergence of leadership/followership pattern.  
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Figure 3.17: Leadership Measure by Vision per replication (standard 

deviation).  

 

 

This is in accordance with behavioural observations because in replication 

no.10 we notice a strong presence of following with many special individuals 

who lead the group. Instead, in replication no.7 we observe that each individual 

displays a selfish behaviour and tends to explore the environment 

independently from others. In seed 10 robots tend to be more clustered than in 

seed 7.  

Therefore we have tried to express formally (in a numerical form) the 

correlation we have foreseen (just before by comparisons) between 

Aggregation Measure per replication (Figure 3.9) and Leadership Measure per 

replication (3.17).  
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Figure 3.18: Correlation between Aggregation Measure and Leadership 

Measure. 

 

 

The Pearson’s Correlation Coefficient between those two series of data, has 

returned a ρ = -0.8 that proves a strong correlation.  Figure 3.18 is shown this 

correlation. This means that the higher the leadership presence, the stronger the 

aggregation in the group and vice versa. Obviously, in this case, there is an 

anti-correlation because of the leadership measure design: the leadership is 

stronger when the vision value is lower. 

Another interesting issue we have wondered about is: in what way is the 

leadership role connected with the exploratory ability? Predator robots seem to 

display different exploratory skills. Thus, we have calculated the exploratory 

ability for each single predator in the laboratory. Basically, we have counted 

how many 5.5cm x 5.5cm sized cells each robot visits in the lab environment 

only once. Each test has been performed on the last generation’s predators for 

20 trials lasting 3000 time steps. Each value has been averaged over all the 

trials and reported on a bar plot such as in Figure 3.19, where the “Exploratory 

Ability Measure” is depicted. As we can see in the picture, there is a substantial  
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Figure 3.19: Exploratory Ability Measure. In the picture there are the values of 

Replication no.7 and Replication no.10.  
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difference between seed 7 and seed 10, also in this case. Intra-seed variation is 

low in seed 7, with all the predators appearing strongly exploratory. Again, in 

seed 10, variation between values is high, and only a few predators appear 

exploratory. Also in this case we have thought to find a resumptive measure for 

exploratory ability per each replication. However, in this case, we have tried to 

imagine and  to calculate the average of all the exploratory abilities (instead of 

standard deviation) because we are interested in the average capabilities per 

seed. Therefore at the end we have the Figure 3.20 which shows the 

exploratory ability of the 20 predators in the last generation’s population. As 

expected, replication no.7 displayed the maximum average exploratory ability 

whereas replication no.10 shows a low exploratory ability on average. This 

means that in seed 7 predator robots are selfish and independent of each other, 

they just deal with seeking prey on their own.  

 

 

 

 

Figure 3.20: Exploratory Ability Measure per replication (average).  
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They do not follow and they do not have hierarchies. In the seed 10 predator 

robots are in strong relationship with each other, they follow the higher ranked 

robots basically, and they do not have  high exploratory abilities. In this case, 

there is a leadership hierarchy. Moreover, this numerical analysis is in 

agreement with behavioural observations. 

Another interesting point is understanding the following capabilities of each 

predator and trying to correlate these with all the other capabilities. In other 

words, so far, we have examined the predator’s behaviours from a leadership 

point of view, now we are willing to study them from a followership point of 

view. To reach this purpose we have tried to identify a measure of following 

ability. Therefore we have measured the exploratory ability of each robot in 

ecology by inserting all predators in the ecological environment together. At 

this point we have disabled each robot’s vision system to measure the 

exploratory ability without any influence from their neighbors. The results are 

in perfect agreement with the exploratory ability in the laboratory shown in 

picture 3.19, as expected. This test has been executed on the last generation’s 

predators for 20 trials. Later on, the test has been repeated with the retina 

vision system enabled: in this case each predator starts to follow another one 

according to the leadership system we have earlier illustrated. This following 

behaviour unavoidably causes the increase of exploratory abilities in those 

replications where many robots were not that exploratory. The increase of 

exploratory ability has been schematised in Figure 3.21. In the picture, in grey 

is represented the increase of exploration of the environment from a “no 

vision” condition to a “with vision” condition. As we can observe, in 

replication no.7, most of robots were initially exploratory, so there was no 

evident increase of exploration. On the other hand, in replication no.10, only a 

few robots (leaders) were initially exploratory after the vision reactivation, so 

the less exploratory robots became more exploratory as they follow the leaders. 

In other words, the leadership seems to make followers able to become 

exploratory with regard to the situation in which they are alone. If we compare 

Figure 3.19 (seed 10) with Figure 3.16, all the leaders that emerge in the  
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Figure 3.21: Exploratory Ability Measure after enabling the vision system. In 

grey the increase of robots’ environmental exploration.  
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measure. In other terms, leaders turn out as the most exploratory robots, 

definitely. 

They lead the less exploratory robots and they contribute to enhancing their 

exploratory capability in order to catch some prey. When leadership emerges 

there is a specialization of skills that is not present in seeds like no.7 where 

everyone is rather exploratory. 

I guess, this is the most important information from this simulation. Another 

interesting insight comes from measuring the exploratory gap between the “no-

vision” condition and the “with vision” condition, replication by replication. 

Basically, we have averaged all the values of the ecological “no vision” 

exploratory ability per replication. The result is the bar-plot in Figure 3.20. 

 

 

 

 

Figure 3.22: Exploratory Ability Measure after enabling the vision system. In 

grey the increase of robots’ environmental exploration.  
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Thereafter, we have averaged all the values of the ecological “with vision” 

exploratory ability per replication. Overlapping the two charts, we can visualise 

the bar-plot in Figure 3.22.  

A variable gap appears between replications; that gap can be assumed as the 

average following ability of robots in one replication. This is the following 

ability because from the “no vision” condition robots gain an increase of their 

exploration abilities which is directly proportional to the ability of the robot to 

follow.  

In fact, the new exploratory capability in the “with vision” condition will be as 

high as the following of the robot, because the robot affects its ability to move 

and explore the environment. The grey gap visualised in Figure 3.21 shows this 

following ability per predator robot exactly. Therefore, if we “isolate” this gap, 

we obtain a measure of their following ability per replication, as illustrated in 

Figure 3.23. Absolutely, this is a reliable “Followership Measure”. This picture 

appears to be in agreement with the Leadership Measure by vision, as it shows 

a great following in replication no. 10 and a small following in replication no.7. 

This is what we had expected, as where there is a high leadership component, 

there should be a high followership component and vice versa. To numerically 

formalise this apparent correlation, we have calculated again the Pearson’s 

coefficient between Leadership Measure and Followership Measure and we 

have returned a ρ = -0.79 confirming a strong correlation. 

In Figure 3.24 this correlation is graphically visualised. A careful analysis of 

the exploratory and following abilities by previous charts, shows another 

interesting piece of information: in this simulation, the exploratory ability and 

following ability are reciprocally exceptive, meaning that one ability excludes 

the other one. For example in seed 7 all predators appear to be explorers rather 

than followers, whereas in seed 10 they look like followers rather than 

explorers.  

Therefore, we have implemented an analysis of exploration and following 

abilities depending on different perceptive conditions. Basically, we have 

evolved robots with different conditions of distance vision’s maximum limit: 

13.75cm, 27.5cm, 41.25cm, 55cm, 82.5cm, 165cm and 220cm. Of course, we 
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Figure 3.23: Following Ability Measure per replication.  

 

 

 

 

 

Figure 3.24: Correlation between Aggregation Measure and Leadership 

Measure. 
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have not been able to sample many more conditions of vision because of the 

elevated computational and time costs. 

Anyway, the number of completed samples seemed to be acceptable for the 

present. The limit of 55cm is used as the default condition because it was used 

in the initial evolution. Therefore, we have considered the condition “55cm” as 

basis for comparisons. Again, every simulation has been evolved for 300 

generations and with 10 replications for each one.  

After all the evolutions have been accomplished, we have calculated the 

average of all the “Exploratory Ability Measure per replication” values (as in 

Figure 3.20) and all the “Following Ability Measure per replication” values (as 

in Figure 3.23) over the replications, for each perceptive condition. The result 

for the “Exploratory Ability” and “Following Ability” through different vision 

conditions are depicted in Figures 3.25 and 3.26. 

 

  

 

 

 

Figure 3.25: Exploratory Ability through different Distance Vision Limits.  
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Figure 3.26: Following Ability through different Distance Vision Limits.  

 

 

As we can observe in the Figure 3.25, “Exploratory Ability through different 

Distance Vision Limits” has not a linear trend, but after an initial decrease of 

the average exploratory ability, there is a new increase.  

The condition with 55cm of limit, is the minimum of the curve. We have 

graphically interpolated all the points in order to highlight a data trend. This 

curve can be interpreted as the fact that the role of distance limit is not always 

crucial for the emergence of following (and leadership) abilities. In agreement 

with behavioural observations, we can say that limit of distance can foster the 

followership emergence, because of the “vacuum vision”, as we have 

previously argued. But this is true under a threshold limit: above this threshold, 

vacuum vision is lower, because the robot’s environmental vision is wider. 

This determine a reverse of trend since predator robots prefer to explore 

environment instead of following, because they are able “to see” more details. 
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For example they are able to see pretty more. Finally each predator can prefer 

to follow prey rather than follow other predators. This seems a good 

explanation of the phenomenon. In the matter of the following ability we can 

observe a totally opposite trend: the following has an increasing trend up to 

55cm and then it starts to decrease again, later on. Definitely, following ability 

and exploratory ability appear in contrast: whenever there is a strong presence 

of one of those abilities the other ability is low and vice versa. This is another 

important information coming out from this simulation.  

The last information (we have tried to extract from this experimental setup) is 

related to the number of leaders and followers which are present in every 

evolved population of robots. Moreover, we have tried to understand how the 

number of leaders affect the group’s dynamics. From the interpretation of 

predator robots’ behaviours and the exploration data in all replications (Figure 

3.21), we have realised some clues about the types of individuals which the 

predators’ population is made of: 

 

 Leaders: which are predators characterised by an initial high 

exploratory ability (i.e. in non-social condition when they do not see the 

others). When they are in social condition (with enabled vision) they do 

not display a considerable increase of the exploratory ability. This 

because they are selfish and do not tend to follow other robots (for 

instance robots 21, 27 and 36 in Figure 3.21 - seed 10). 

 

 Followers: which are predators characterised by an initial low 

exploratory ability (i.e. in non-social condition when they do not see the 

others). When they are in social condition, with vision enabled, they do 

display an elevated increase of the exploratory ability. This because 

they tend to follow other robots, and this makes them more exploratory 

(for instance robots 20, 39, 37 in Figure 3.21 – seed 10). 

 

 Non-socials: which are predators characterised by an initial low 

exploratory ability (i.e. in non-social condition when they do not see the 
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others). When they are in social condition (with enabled vision) they do 

not display a high increase of the exploratory ability. The exploratory 

ability keeps the same, more or less. This because non-socials do not 

tend to follow other robots and they are not exploratory initially (for 

instance robots 24, 38 in Figure 3.21 – seed 10). The non-socials’ 

portion (in each replication) seems to be paltry with respect to the 

leaders and followers portions.  

 

These considerations have provided us a “modus operandi” to count the exact 

number of leaders, followers and non-socials predators. We have defined some 

thresholds to separate all the three sets of robots: individuals with high 

exploratory ability initially in “no-vision” condition and with low increase of 

that in “with-vision” condition are the leaders; individuals with low exploratory 

ability initially in “no-vision” condition and with high increase of that in “with-

vision” condition are the leaders; individuals which are not explorative in “no-

vision” condition and with no increase of exploration in “with-vision” 

condition are the non-socials. The results of this analysis are reported in Figure 

3.27 and 3.28 per replication. We can observe that non-social robots in every 

replication are a small part of the totality. On the other hand, all the replications 

which fit with high leadership (Figure 3.17) and high followership (Figure 

3.23) show a small number of leaders with respect to the number of followers. 

In other words, every replication where a strong leadership (and followership 

consequently) arise, displays a small ratio leaders/followers, such as seed 2, 

seed 5, seed 10 (namely comparing in Figures 3.17, 3.23 and 3.27). These 

counting results are in excellent agreement with the literature which asserts this 

law: only a very small proportion of informed individuals (leaders) is required 

to guide a group and to achieve great accuracy [14]. In this case leaders are 

informed individuals since they are more explorative and can experience a 

wider portion of the environment. Namely, there exist a law (in coordinated 

moving groups) according to which, whenever there is strong emergence of 

leadership, only few individuals can lead big groups of robots. The larger the 

group, the smaller the leaders portion.  
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3.3.3  Future directions  

 

Some improvements can be made in the simulation in order to examine, in 

depth, some unclear aspects such as the correlation between leadership 

emergence and fitness. Furthermore the connection between group size and 

leaders portion might be investigated.   

 

 

 

 

Figure 3.27: Count of Leader, Followers and Non-socials in the simulation. 
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Figure 3.28: Count of Leader, Followers and Non-socials in the simulation.  
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4 The underlying mechanisms of 

the Evolution of Leadership 
 

As I have stated in Chapter 3, the reason for the emergence of leadership / 

followership patterns in groups of living beings, is the need to coordinate, in 

evolutionary biology [12,13]. Moreover, I have underlined that a first 

leadership classification identify two categories of leadership: distributed 

leadership (democracy) and personal leadership (despotism). In some species 

followers accept the decision of a specific individual on a regular basis. In 

others, decisions can be achieved via a majority vote, or when a threshold 

number of followers agree with a potential leader’s proposal.  

Another interesting leadership classification is based on the modality according 

to which, the leader can lead a follower. This classification considers two 

categories: a) passive leadership, which occurs as a consequence of the group’s 

emergent properties, such as differences in individuals’ temperaments. This 

variation could determine a variation in information supplying for every 

member. Usually, in this case, leaders and followers do not need to 

communicate directly. Passive leadership is common in large and homogenous 

groups, such as insect swarms, fish, bird flocks, where individuals have little or 

no significant conflict of interest [14, 27]; b) active leadership, which occurs 

when potential leaders explicitly signal their intention to other group’s 

members. Group members can choose to follow, or not. Active leaders’ explicit 

signalling can operate at a global scale, via communication with all group 

members [114]. This type of leadership can be found in some species of 

animals such as ravens that inform group members about the food’s location 

through acrobatic flights [115]. In monkeys species, it can be found a great 

amount of vocal and visual signalling for initiating group movements [103]. In 

human groups there are facial expressions, gestures, rituals, and complex 

language forms to synchronize group activity [116]. In the case of active 

leadership, followers need to agree with leaders to achieve coordinated group 

action [117].  
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Another classification suggest that could there be two types of leadership in 

dependence on environmental factors : structural leadership where the 

individual’s leadership role is not affected social variations or environmental 

interaction. On the other hand, in contextual leadership, roles change 

depending on environmental and social conditions [14] 

. 

4.1 Intra-specific Temperaments 

Variation 

Correlations between leadership and temperament are well documented in the 

animal and human literature. It has been argued that intra-specific differences 

in temperament (or personality) derive from a stable phenotypic or even 

genotypic variation. Personality differences have traditionally been assumed to 

be a non-adaptive variation which affect adaptive population behaviours [16]. 

In a recent experiment, pairs of sticklebacks have coordinated their foraging 

toward a food patch: personality differences have revealed themselves as 

crucial for achieving coordination. Bold fish have emerged as leaders and shy 

fish has emerged as followers. These differences have been enhanced by social 

feedback, namely bold leaders have always inspired faithful followership, and 

shy followers have facilitated effective leadership [118]. A review of the 

human  literature shows that extroversion is correlated with leadership, and this 

trait (an indication of boldness) has a substantial heritable component [119]. 

Furthermore, experiments show that the most talkative members of a group 

often become the group’s leader, more or less regardless of the quality of their 

inputs, this is referred to as the ‘babble effect’.  

To better understand what are the characteristics that make some individuals, 

leaders, and some other individuals, followers, a series of games have been 

invented which prove, without any doubt that, in many situations, leadership is 

almost inevitable.  

In a simple two-player “coordination game”, a pair of individuals have two 

simple goals to reach: one individual have to stay near the partner for 

protection, and the other individual have to seek resources such as food patches 
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and waterholes. In this situation, any trait (physical or behavioural), that 

increases the likelihood of one individual moving first, will make them more 

likely to emerge as the leader, and the other player is left with no option but to 

follow. Furthermore, if this trait difference between players is stable (i.e. if the 

first individual is always hungry first) leadership-follower pattern will be stable 

over time [120]. So it seems that individuals are more likely to emerge as 

leaders if they have a particular physiological or behavioural trait increasing 

their propensity to act first to solve coordination problems. The consistent 

correlation between leadership and personality suggests the intriguing 

possibility that personality differences are maintained in populations, because 

they foster social coordination. In other words, these studies suggest the thesis 

that biological evolutionary process has fashioned individuals genetic 

temperaments differences (over many millions of years of trial and error) in 

order to foster the emergence of leader-follower patterns in animal groups. 

Then, these leadership/followership patterns had an essential role in solving of 

social coordination problems.  

 

4.2 Leadership in Robotics 

All these mentioned biological and ethological experiments are often arduous  

to be performed in laboratory. Frequently, highly social species are not suitable 

for supervised experiments because they typically need long time and 

laboratory breeding. So, getting some experimental proves, of theories on 

leadership and social behaviours, in general, is often hard by adopting 

experimental animals or human subjects.  

Always more and more frequently a synthetic approach is bobbing up. This 

approach is based on the use of artificial models such as collective robots. In 

one of these artificial experiments, authors have evolved a team of four 

homogeneous robots for dynamically allocating roles through bodily and 

communicative interactions [121]. In particular, evolved robots show to 

differentiate both their communicative and non-communicative behaviours so 

that only one robot assumes the role of the leader of the group, sending high 
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value signals, while all the other robots act as non-leader, almost ceasing their 

signaling behaviour. 

In this experiment robots can rely only on the local information provided by 

their infrared sensors and by a one-tone communication channel. Definitely, 

after the evolution, robots are able to choose who is the leader of the group. 

This experiment proves in what way leadership could arise in a team of robots 

trying to accomplish a collective task, in which the presence of a leader could 

be critical. The outcomes from this experiment could facilitate the development 

of robots able to accomplish collective tasks which require the presence of a 

leader because this might significantly improve the performance of the group. 

In another experiment, a group of agents has been simulated for reaching a 

target in a two dimensional environment [122]. The fitness is regulated by the 

time taken by the last agent to reach the target. The simulation compares 

groups with and without a leader. Whenever a leader is a member of the group, 

other members of the group follow it through the environment. Three factors 

have been examined to alter the group performance:  (a) group size; (b) the 

presence or absence of an “able” individual which can detect targets at a 

greater distance than partners; (3) the existence of a communication network 

among group members. The results show that, in groups without 

communication, the leader has a positive influence on the group performance, 

especially in large groups. This is more evident when the “able” individual is 

the leader of the group. However, in situations where group members can 

communicate, the results are in conflict with the first results as leaders are 

damaging, rather than beneficial, for the group performance.  

In another work, researchers have evolved a robot colony to study the 

possibility for the evolution of leadership patterns [123]. Each robot has a 

prearranged  its own social position: leader, follower, and stranger. Leaders 

have the responsibility for the survival of the group while followers choose to 

go after their leaders. Strangers behave independently without a leader or a 

follower. Transitions between social positions are regulated by simple rules. 

Behaviours change adaptively to the environment by means of an evolutionary 

computation. Through experiments, authors have observed that a centralized 
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structure with a leadership always emerges in the evolutionary robot colony: 

only few leaders with safety behaviour policies control the group in a difficult 

situation. 

In my following experiment I have focused on some aspects that have not been 

investigated, in the past, in previous mentioned works. The aim of this 

experiment is to introduce further newness to the literature’s results. In 

particular we have simulated and evolved a group of heterogeneous robots, that 

means they have not the same controller (on the contrary of [121]). This 

means, that each robot has got the same body shape, but it is characterised by a 

different colour and a different genotype which encodes the control neural 

network. So each robot is characterised by different controlling neural systems. 

A “Heterogeneous Evolutionary Algorithm” process is expressly conceived to 

maintain genetic variation between the robot, in order to reproduce conditions 

which can lead to a spontaneous (not pre-programmed as in [123]) leadership 

emergence.  

This could enable us to reply to some questions derived from the previous 

readings on temperaments variation and the correlation with 

leadership/followership patterns emergence. In particular we have tried to reply 

to the following questions: May leadership always emerge in a group of 

genetically heterogeneous robots ? Is heterogeneity a fundamental pre-requisite 

for leadership emergence? Who is the leader ? What are leaders made of ? 

What are characteristics and skill of a leader ?  

 

4.3 A neuro-robotic model for 

“Coordination and Leadership 

Games” 

 

4.3.1 Experimental Setup 
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A group of four simulated robots live in an environment consisting of a 550cm 

x 550cm squared arena surrounded by walls. When a robot bumps against 

environment’s wall or against another robot, it bounces back in the 

neighborhood of the contact point, with a new random direction. 

The food source is located in two target areas placed in a fixed position of the 

environment. The food zone consists of a 110cm diameter. Each robot is made 

of a circular chassis with a diameter of 5.5cm and it is equipped with two 

motors controlling the movements of two wheels, respectively (Figure 4.1). 

Moreover, the robot is geared with two sensors which “smell” the relative 

position of the food zone in respect to the position of the robot body, as 

illustrated in Figure 4.2. According to the position of the food zone with 

respect to a fixed sector of the robot, smell sensors will be activated with a two 

digits binary code.  

Each robot is characterised by a colour of the body: green, blue, light blue and 

yellow and it is equipped with a linear retina system in order to see the position 

and the colour of the other group members. The linear retina is made of five  

 

 

 

 

 

 

Figure 4.1: Visualisation of top and bottom view of the robot chassis. 
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RGB photoreceptors that manage a portion of the robot field of view, and it 

exactly works like prey-predators robots’ retina illustrated in the Chapter 3. But 

in this experimental setup retina has less neurons (5) respect to the prey-

predators setup, as they do not need a detailed information about angle of 

movements of other robots, as in the previous setup has been immediately 

needed.  

The field of view (FOV) of each robot is 90 degrees wide, and represents the 

extent of the observable world that the robot can see at any moment. The FOV 

ranges from -45 degrees to +45 degrees with respect to the direction of 

movement (0°). In this way, each photoreceptor manages a 18 degree wide 

portion of the FOV, the first one is associated to a range of [-45°,-27°] respect 

to the face direction, the second one to [-27°,-9°], and so on.  

Each photoreceptor consists of 3 colour sensitive components, respectively 

Red, Green, and Blue. When an object (such as a robot) is located in the front 

of a photoreceptor, within its vision angle, the sensor is activated to the 

corresponding RGB value for that object. The maximum vision distance of 

receptors is the environment size. The setup is illustrated in Figure 4.3.  

 

 

 

 

 

Figure 4.2: Representation of the activation patterns of the robot smell 

system.  
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Figure 4.3: The environment and the robots. 

 

 

The control system (Figure 4.4) of each robot consists of a feed-forward neural 

network with 18 input neurons, 2 hiddens, and 2 output neurons. Each layer of 

neurons is connected to the next layer with a pattern of synaptic weights 

representing the strength of the connections. The input layer contains 15 

neurons encoding the activation state of the corresponding photoreceptors RGB 

components, 2 neurons that receive smell signals and 1 neuron that receives 

output from ground sensor. The output layer is made of 2 neurons which 

control the speed of two motors, respectively.  
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Figure 4.4:  Neural network architecture  

 

With regard to the adaptation algorithm, for this experimental setup, we have 

expanded a genetic algorithm that would foster the genetic differentiation 

between the evolving robots and so allowed the robots to distinctly evolve their 

behavioural skills. We have called it “Heterogeneous Genetic Algorithm”.  
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In this algorithm, the evolutionary process for the robots is based on the 

ranking type. Each individual is represented by a genotype that encodes the 

sequence of synaptic weights and biases of a neural network controller. Each 

parameter is encoded with 8 bits. In order to provide robots with different 

behaviours, each of the four robots belongs to a different population of 20 

individuals. Thus, the evolution starts with 4 populations of completely “naive” 

robots (i.e. with randomly generated genomes) with no skills about how to 

move and identify the food sources.  

Genotypes are randomly selected within each population: for each generation, 

individuals of each population is numbered by an index (0-19) and a sequence 

of indexes is chosen (i.e 3-4-5-4) from the four populations in order to extract 

the genotype that will control the robots. The first genotype (3), from the first 

population, controls the green robot, the second genotype, from the second 

population (4) controls the blue robot and so on. For 20 trials, a new different 

sequence of individuals is compared in the environment, and robots fitness is 

calculated at the end of life. The same index sequence never will be extracted 

twice. The same individual never will be extracted twice, so that each sequence 

extraction univocally corresponds to one trial. The extraction of sequences is 

depicted in Figure 4.5.  

Each robot is rewarded with +1.0 at a given time step in which the entire group 

stays in the same food zone. Life time consists of 3000 cycles of neural 

network activation.  

At the end of 100 trials (end of one generation), each  individual (neural 

controller) is separately ranked according to the fitness score. The 4 higher-

ranked individuals are selected from the list of genotypes, for each population. 

Every best generates 5 offspring individuals which inherit its genotype . The 

first offspring individual preserves entirely the genotype of the father (elitism) 

while the other four ones receive a random mutation with a probability of 2%. 

The total number of new individuals 20(bests) x 5(off) x 4(pop), will populate 

the next generation. Since, each population evolves  separately: this mechanism 

fosters the genetic differentiation between the four robots and allows the robots 

to evolve distinctly their behavioural skills. 
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Figure 4.5: Schematisation example of index sequence selection.  

 

 

4.3.2 Results  

 

 

The populations of neural networks which are candidate to control the team of 

robots have been evolved for 30 replications by means of the genetic algorithm  

implemented to maintain an heterogeneity between populations (it has been 

described in detail in the previous paragraph). For each replication (which is 

made of 600 generations) it is possible to observe that robots are initially 

“naïve” that means they are not able to coordinate motion in order to solve the 

task. Furthermore, robots don’t exhibit an exploratory behaviour. After some 

tens of generation, robots become explorative. However, only after some 

hundreds of generations robots start to exhibit a “flocking” behaviour. In this 

new simulation, we have not focused much on the flocking but especially on a 

new aspect of group cooperation, that is the emergence of pattern 

leadership/followership. Looking carefully at the flocking behaviour of robots, 

it has been immediately noticed the presence of a special individual who lead 

all the team of robots, while other robots follow him. Individual in question 



126 

 

changes in any replications (that is it has different colour) and it takes different 

behaviours in the direction of the group. At the begin of each trial, the leader 

seems to select one of two food zones on its own initiative, it moves toward the 

food zone, and it affects the behaviour of all the followers which come after it 

unconditionally, without any discretionary independence. The way of leading 

looks varying from replication to replication, in general two different leaders 

groups arise though: a) leaders that move forward, toward the chosen food 

zone, not minding of the fact they are followed by someone. This type of leader 

can be called “passive” for the reasons we will explain after in the chapter; b) 

individuals who moves backward (in reverse) and who constantly hold in 

check the behaviour of the followers. These leaders make use of some actions 

which are necessary for to modify, in real time, their behaviour in order to 

maintain the group cohesive and compact. These leaders are named “active”.  

In addition to the “behavioural analysis” of group’s dynamics, however, it is 

always necessary to produce a “quantitative analysis” by calculating some 

behavioural indicators. Behavioural indicators are usually elaborated with 

some statistical techniques which point out some general rules on the dynamics 

of the simulation that is going to be implemented. These general rules must be 

true for all the replications (since the simulation is structured in different 

replications) and enable the user to derive some general conclusions that 

should be hopefully in agreement with the hypothesis.   

A first needed representation are the fitness curves, which depict how much 

fitness each robot population gets throughout the evolution, generation by 

generation (food units eaten from the food zone in one generation). As each 

generation is repeated for 20 trials (with random robots start positions for each 

trial), each generation’s fitness score, represent the average fitness of all the 

trial. Fitness values can be of two kinds: a) “best” fitness, which is the fitness 

got by the best robot, that is the robot that have totalized the maximum score, 

and for this reason it will be the first after the final ranking; b) “average” 

fitness, which represent the average of the fitness of all the population for each 

generation. Clearly, the average fitness is always less or at worst equal to the 

best fitness, because the population will never get an average fitness greater 
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than the best individual, for the inner design of the genetic algorithm. In the 

current implementation of the algorithm, for each generation 4 populations of 

20 robots are evolved (as previously said), so there will be 8 values of fitness in 

all, 4 values for the bests and 4 for the averages.  

According to the design of the fitness, only groups of individual who reach the 

food zone in the same time are rewarded. In other words, each individual get 

fitness score whenever other individuals get it so the fitness function is 

exclusively made of a “social” component. Therefore, each population’s 

fitness score appears to be identical for each of four populations, both in the 

part of bests and in the part of average. We have intentionally decided to 

eliminate the “individual” component of the fitness within the evolutionary 

fitness function, that is the increase of fitness when a single individual is alone 

in the food zone. Individual fitness has been introduced at the begin of the 

study, but with a double component (individual and social), it is very difficult 

to discriminate between the situation in which one individual is very “good” to 

solve the task individually (reaching the food zone) or the situation where the 

all the group is able to coordinate itself to reach the food zone together. This 

mix of components should involve some further difficulties for indentifying in 

which replications final fitness score depends on the a social coordination, and 

in which replications fitness score depends on the individual component, and 

so on individuals skills. Moreover individual component of fitness might 

contribute to the reduction of the “evolutionary pressure” to the social 

coordination. As a matter of fact, single individuals could be induced to acquire 

“selfish” behaviours for achieving the target going to the detriment of 

cooperative behaviours, that would mean the emergence of few situations of 

leadership/followership patterns. In other terms, with the only social 

component, it is possible to obtain a direct correlation between social 

coordination occurrences (that is the objective needed for the emergence of 

leadership) and higher fitness scores. This condition may simplify the 

identification of the different conditions to examine. Last and certainly not 

least, it is necessary to concentrate to the fitness curves asymmetry that may be 

resulting by an individual fitness component, since there should be a different 
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fitness shape for each of 4 populations, that could imply a hard strenuous 

elaboration of fitness values, in so far as populations should be independently 

considered during the analysis phase.   

Hence, a chart has been plotted with only one of the 4 possible fitness curves 

(for the four populations). In Figure 4.6 fitness curves are depicted for the first 

population of robots (the other ones are identical) for some of all 30 

replications. Each curve represent the sequence of fitness scores got by robots 

for each generation and they are averaged on 20 trials. By this sample of curves 

it can be noticed an increasing monotone trend of the fitness function. The 

fitness growth is generally gradual, that means that the emergence of 

coordination is not instantaneous but a step-by-step process that stabilize 

during the evolution.   

Moreover, it is clear that there is a “ripple” on the “surface” of each curve, 

especially as regards to the average fitness. It is possible to observe local trend 

inversions respect to the global increasing character of the curve. Those effects 

could be explained with the fact that social coordination depends on trial’s 

initial conditions.  

For instance, a non-coordination situation arise if initial positions are wide 

spread into the environment and they are far away and far from food zones. 

This is a situation that do not easily foster the social coordination of the robots, 

as they must look at each other from far, try to get closer and follow the leader 

to move all together toward the chosen food zone.        

It is a different story for the robots who start close to each other and to the food 

zone. They will be obviously facilitated (since the begin) by being cohesive 

and compact and by moving closely to the food zone. This noise or ripple, is a 

component often present in such simulations, where the outcome of the fitness 

depends strongly on initial conditions. At this point, it is needed to open a 

parenthesis: a system of 4 robots which start from random positions within the 

environment (such as the model presented in Figure 4.3) is a classical example 

of “chaotic dynamic system”, that is amply discussed in literature over the 

years [124]    
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Figure 4.6:  Representation of fitness curves of some replications. Best fitness 

are visualised in black, whereas average fitness are depicted in light grey.  

 

 

A dynamic system is defined chaotic if it displays the following properties 

[125] : 

 

 

1. Sensitivity to initial conditions, that means infinitesimal variations of 

surrounding conditions (or in generically of the inputs) produces finite 

variations of the outputs. As trivial example: the smoke of many  
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matchsticks, in glaringly similar conditions (pressure, temperature, 

flows of air) follows trajectories very different, from time to time; 

 

2. Unpredictability, that is it is not possible to foresee, in advance, the 

trend of a system over a long period if they are compared to the 

characteristic time of the system starting from surrounding conditions; 

 

3. The evolution of the system is traced, in the phase space, by 

innumerable orbits (state trajectory), very different from each other, 

with an evident stochastic component from an external observer’s point 

of view. These orbits are all confined within a limited space: the system 

does not evolve to the infinite for none variable; in this case it is 

possible to define attractors or deterministic chaos.  

 

The system described in this experimental setup glaringly suit all three the 

conditions, as a slight variation of initial positions of the robots and a slight 

variation of initial “face direction” produce a remarkable variation of robots’ 

trajectories. Obviously, the process which manage all the system is stochastic 

(second property) as it is impossible to predict all the system evolution by a 

macroscopic point of view. Of course, in theory, it is possible to calculate all 

the states of the system since it is possible to calculate all the positions where 

robots are placed over the time, by determining the outputs from neural 

networks inputs.    

Theoretically, in this way, system evolution could be calculated, and for this 

reason the system may be considered as a deterministic system and thus it 

meets the third requirement as well (deterministic chaos). To determine the 

system state, related variables are so many that the system results complex as 

any complex in real life, even though it can be calculated in theory. 

In the real world, a social or economic system, such as the GDP of a country, 

could always be foreseeable in theory. Effectively, every country is made of 

institutions which deal with calculating the GDP that should recap all the 

economical interactions between imports, exports, etc. Nevertheless, last 
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political happenings has shown that this indicator (GDP) hardly ever reflects 

the real productive context of a country just because one country’s “economic 

cycle” is a chaotic complex dynamic system itself. All that is complex appears 

unpredictable since all variables in question are too many and they do not 

permit an elaboration with traditional informative systems. Anyway, all this 

does not mean that it will not be predicted one day with appropriate means.   

Again with simulation, all this is needed that the evolution of the system of 

robots is unforeseeable without a precise and complex calculation. For this 

reason, simulation needs many trials per each generation with a random 

positioning of the robots, but this causes the ripple that it is possible to observe 

on fitness curves charts.   

The level of noise is as lower as greater the number of trials is for each 

generation. However, we decided to use almost always a reasonable number of 

trials (20 in this model) both for computational costs and for the eventual 

inductive power loss (by increasing the number of trials, but this treatise lies 

outside of the purpose of this document).    

Finally, observing fitness curves, it is possible to catch the presence of a 

“bootstrap problem”, that is individuals start to solve the task (defined by 

fitness function) only after some hundreds of generations. This must be 

explained with the fact that all the 4 populations of the genetic algorithm 

evolve independently and they have separate rankings and they can “converge” 

relatively late throughout the evolution. For convergence is meant the fact that 

robots initially tend to solve the task individually, and so all the separate 

evolutionary processes tend to meet the solution independently. But at a certain 

point, it could happen that some totally unconnected behaviours in the four 

evolutions, could lead to reach a fitness score, not got until that moment, by 

means of essentially selfish behaviours. All this produces every single 

evolutionary process to stay on behavioural patterns which have leaded the 

whole group (of 4 populations together) to take higher fitness scores, that is 

cooperative behaviours that imply the social coordination. These patterns can 

be reached early or late during the evolution, according to the initial genetic 

conditions. Also the evolutionary process can be assumed to be a chaotic 
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system as it can generate totally different effects as a result of a small variation 

of robots' initial genotypes. Anyway, in order to have a global view of fitness 

curves for all 30 replications, it has been calculated the average between each 

set of values (30 values, 1 per each replication) for each generation, both on the 

best fitness curves and on average fitness. The result is depicted in the chart in 

Figure 4.7 where there is an increasing gradual trend of the average fitness 

curves. This indicates, without any doubt, a step-by-step solution of the task 

via social coordination strategies (that will be examined later) which are 

probably acquired in a rather gradual manner.  

This last statement can be justified with the design of the simulation since there 

is a strict correlation between fitness and social coordination (and so leadership 

emergence). Therefore a gradual increase of the fitness corresponds to a 

gradual increase of the social coordination capability during the evolution.   

 

 

 
 

 

Figure 4.7: Visualisation of the average of all 30 fitness curves, bests (black) 

and averages (light grey).  
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An interesting visualisation of system are the “phase space” which is a 

cartesian representation of the system’s states. Phase space is useful to 

highlight the chaotic origin of the system. Clearly, there could be several phase 

spaces for one system according to the variables that are taken into account and 

to the states typology. In the case of this simulation, a possible phase state 

might be the set of all the positions that all the robots are able to cover in one 

test of 3000 cycles. To produce this phase space, all evolved robots (for each 

replication) have been left to act in the environment (in a test of example) and 

all visited positions per each time-step (x-axis and y-axis coordinates). The 

result is illustrated in Figure 4.8 where there are the phase spaces of some 

replications (the same of fitness curves plot’s ones). In the phase space chart, 

each colour is associated to the real colour of each robot into the simulation, 

green for the green robot, yellow is for the yellow robot, and so on. 

Given that the simulation’s dynamic system is continuous, there are continuous 

curves in the phase space for each robot, and not a discrete sequence of points.  

In the figure is possible to identify an attractor (described in the third property 

of chaotic system’s definition) for each replication. In mathematics, an attractor 

is a set toward which all the dynamic system evolves after a adequately long 

time. To define attractor a set of points, all trajectories, that get enough closer 

to it, must be close to each other even though they are slightly perturbed. 

Trajectories of a dynamic system get close up to the unlimited, after the system 

converges to an attractor. Therefore, in the simulation’s phase space picture, 

some small “vortexes” are the end of all the robot’s trajectories, and they are 

definitely the attractors of the spaces. Most likely, attractors correspond to the 

condition in which robots group reach one of the food zones. In the case of 

robots simulations like this, attractors are named “behavioural attractors” as 

every behaviour flows into the same behavioural pattern called attractor. 

Finally, of course, it does not have sense to calculate the average over the 

replications, in the case of the phase space, as it has been done on fitness 

curves. In effect, in the phase space analysis, all the robots’ positions are 

independent in every replications and they do not concern the other positions in 

other replications. 
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Figure 4.8: Visualisation of the phase space per each of 30 replications. Each 

colour is associated to the colour of each simulation’s robot: green for the 

green robot, yellow for the yellow robot, and so on.  

 

 

So a unique description of attractors for any replications is not possible to 

determine, it is necessary to examine phase space case by case.   

To better understand inter-replication fitness differences, we tried to find a 

measure which the level of fitness score got by a robot in one replication. It in 

fact is difficult to compare single fitness curves which are usable at the end of 

the evolution per each replication. It has been noticed that, in the last 20 

generations, every curve get stable on a constant value both regarding to the 

best fitness and to the average (basically it does not considerably increase or 
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decrease). For this reason it has been calculated the average fitness of last 20 

generations for each replications and that gives a measure which has been 

called “Fitness Measure”. In Figure 4.9 there is a bar-plot of fitness measures 

for each replications. As it is not difficult to observe, there is a variation 

between seeds which denotes a significant difference between fitness of a 

replication if compared to the other ones. This differentiation probably is 

associated to the extent of social coordination in a replication rather than 

another one. At this point, it has arisen the necessity to understand what 

happens inside each replication and why they differentiate in this substantial 

way.   

As previously argued, a flocking behaviour arises in all the replications that 

implies robots follow each other in somehow. Moreover, there is always an 

individual who lead the group (leaders) and other individuals who follow 

 

 
 

 

Figure 4.9: Bar-plot of “Fitness Measure” for each replication. 
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 (followers). This behaviour bobs up in a simulation where a group of robots is 

faced to a simple decision-making problem, which concerns all the group. This 

decision-making problem is defined by means of the fitness function and the 

experimental setup. It is immediately appeared evident, so it is necessary to 

find one or more measures about “how much leadership” there is in a 

replications and if this have any sense.  

In general, it is always difficult to capture what leader or follower mean for a 

group of robots. Thus it has attempted to find some numerical and statistical 

measures which enable to get more detailed information on the robots’ 

behaviours from a mathematical point of view.  

In order to achieve that purpose, some definitions are needed such as “who is a 

leader” in the simulation and not in the literature (it has extensively defined in 

literature). Which properties a robot must possess to be called leader? By and 

large, it is possible to define the following properties for an individual called 

“leader”:  

 

1. The leader must affect other individuals’ behaviour in somehow in 

order to optimize the group coordination to solve the task; 

  

2. The leader must aggregate all other individuals around him in a greater 

quantity respect to each other group’s member is capable to do. In other 

words leader’s distance from the group barycenter must be less than all 

other individuals’ distance from the group barycenter.  

 

The second condition provides an operational methodology to identify who is 

the leader at each replication. In effect, to understand “how much leadership” 

there is in one replication, it could be sufficient to calculate the gap between 

the minimum value of leadership measure (among the 4 individuals in 1 

replication) and the average of the other individuals. Larger will be the 

measure’s gap, larger will be the difference between individuals in terms of the 

leadership behaviour they display, in other words grater will be the influence of 

one individual on the others.  
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Hence, a first measure in this sense, which has been devised is by way of the 

calculating the distance between each robot in the group and the centroid (or 

barycenter) of the group itself. By determining which individual has got 

minimum distance from the group’s barycenter it is possible to deduce that this 

group’s member tend to deeply aggregate all the other members around him, 

and for this reason it could be definitely considered as leader of the group. This 

is because a leader is usually the cornerstone of the group since it leads the 

group and the others follow his actions in any moment. 

The test has been essentially performed by holding one robot, in turn, in a fixed 

position into the centre of the environment, and by leaving the other 3 robots to 

act freely in the environment. Surely this test has been imagined to be 

performed on best robots of each different population (related to 1 generation).       

It can be immediately observed, during the barycenter test, that when one 

leader (optically identified during a normal test) is stopped at the centre of the 

environment, all the followers crowd the neighborhood of the leader, waiting 

for an action from him to follow. Moreover followers are careless about the 

fact they have to go in the food zone for feeding and solving the task. On the 

other hand, every time whichever follower is motionless at the center of 

environment, the other 3 individuals group (leader included) go in the direction 

of the food zone, without any care of the motionless follower is not moving 

(with the exception of active leadership that will be examined hereafter). The 

two different situations are depicted in Figure 4.10. The situation is related to 

the replication n.1. In this context, the green robot is the leader of group 

whereas the others colours are followers. In Figure 4.10a the leader is 

motionless, and it is possible to observe the followers surrounding him. In the 

second square, the leader is movable, and it accurately solves the task going to 

one of the food zones whereas the followers follow him without caring for the 

stopped yellow robot. Every time one robot, is stopped, in turn, a sub-test is run 

for calculating the distance of the motionless robot from the barycenter of the 

group. Each sub-test has been performed for 20 trials, for each of 30 

replications. Each trial is made of 3000 time steps, and in each time step the  
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Figure 4.10: Depiction of the Barycenter Test. In Figure a) the Leader is 

stopped whereas in the Figure b) one follower, the yellow robot, is stopped.  

 

 

distance of motionless robot from the barycenter of the group has been 

calculated. The group’s barycenter coordinates are determined by means of the 

following formula: 
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Where    and    are the calculated coordinates of the barycenter whereas    

and    are the coordinates of each robot. Instead, the distance from the 

barycenter of each robot is calculated by “Euclidean Distance” formula:   

 

                                                        

 

Where    and    are the barycenter’s coordinates,    and    are the coordinates 

of each robot, and finally      is the distance from the group’s barycenter of the 

the robot ith.  

All the 3000 distance values calculated in a life time are averaged returning a 

value for 1 single trial. At the end, it has calculated the average on all the 

values of 20 trials, getting 1 single value for 1 generation. The test has been 

repeated for the last 20 generations (loading the bests of the current generation, 

time by time). By averaging all the last 20 generations too, it is possible to get 

a single value which represent the level of individuals crowding around the 

motionless individual. In this way, it has been possible to obtain a sequence of 

30 quadruples of values, where each value represent the distance from the 

barycenter of the group every time the corresponding robot has been fixed in 

the centre of the environment.  

The 30 quadruples of values are plotted in a bar plot such as in Figure 4.11a. 

The green value coincides with the green robot, the yellow value with the 

yellow robot and so on.  

Once the “Leadership Measure” (based on barycenters calculation) is 

determined, it has been necessary to understand another important question: 

Who is the leader? which are the features of a leader? Is the leader the more 

skilled individual in order to solve the task? Or not? To reply to these question 

an Individual Fitness Measure has been imagined to supply a general indication 

about the most capable individual: for example, the speed to approach to the 

food zone, the ability to not being affected by the behaviour of other 
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individuals, etc. This individual fitness is a “virtual” fitness meaning that it 

represents the individual ability of each robot to provide for feeding by himself 

independently from the other robots. It is a virtual fitness as it has not adopted 

for evaluating the individual during the evolution, where a real fitness is 

applied, already illustrated in the previous section. To weigh the individual 

fitness, a test has been implemented, where all the robots move freely into the 

environment in the same way of the evolutionary phase. Although in this test, 

every time a single robot reach the food zone, the robot’s fitness is increased 

independently from the fitness of the other individuals or of the group (which 

is the real fitness used under evolution). In this way, individual fitness is 

correlated with the robot’s velocity to reach the food zone, the ability to feed , 

the ability to not be influenced by other individuals, and so on. Definitely, 

individual fitness measures the level of velocity and smartness of a robot, and 

greater will be the individual fitness, faster and smarter should be the robot.  

Again, the test is executed for 20 trials calculated on last 20 generations. So 

each fitness value represents an average on trials and generations. Finally, a 

Measure of Individual Fitness is returned which is over again a set of 

quadruples of values for each replication. Each value is associated to a colour 

which is the colour of the corresponding robot as illustrated in Figure 4.10b. 

The main idea is that whenever a robot emerges as the leader according to the 

centroid measure, the same robot should have the maximum value according to 

the individual fitness measure.  

Comparing each quadruple of the barycenter measure with the respective 

replication’s quadruple of the individual fitness measure, every time one robot 

has got minimum value for the barycenter measure then it has got maximum of 

individual fitness in the same considered replication. This mean that the leader 

(defined according to the barycenter measure) is the best member of the group 

to feed, the faster to reach the food zone, etc. This is true in the 100% of the 

cases, that is by comparing all the replications, as illustrated in Figure 4.11.  

In other words, without any doubts, another important information that is 

returned by this simulation is that, every leader (defined by barycenter 

measure) is always the most skilled to solve the task individually.   
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Figure 4.11: Comparison between the Barycenter Leadership Measure (A) and 

Individual Fitness Measure (B). 

 

 

Another interesting measure has been drawn by calculating the average of all 

minimum values of the barycenter measure for all the quadruples. Then, the 

average of the second minimum has been calculated, the average of the third 

minimum and so on. 

This elaboration is needed to understand if there is a substantial gap between 

individuals with minimum values (most likely leader?) and the values of other 

individuals. This might mean that in every replication there should always be a 

robot with the minimum distance from the group’s barycenter, who is the main 

one able to collect all the other individuals around it. This new insight is 

depicted in Figure 4.12.  
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Figure 4.12: Representation of the gap between Individuals with minimum 

distance  from the Barycenter and other Individuals. There is a significant gap 

between the two conditions in every replications.  

 

 

Another interesting question that have been asked in the introduction, is 

whether the emergence of Leadership is a winning strategy or not. To respond 

to this question it is needed to understand if it is possible to correlate the 

quantity of leadership (in somehow), of the various replications, with the 

fitness level reached during the evolution. So, a first step is determining a 

measure which represent summarize the influence of the leadership effect in 

one replication, that is “how much leadership” there is in that replication. The 

insight has arisen by analyzing the barycenter measure and from the idea 

(already discussed) that less is the distance from the barycenter and greater is 
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the capability of the individual to join all the individuals around it. Thus, the 

heavier consequence of this reasoning is that stronger is the variation between 

the values of barycenter’s distances, stronger is the influence of leadership in a 

given replication. So it is possible to determine an indicator of the quantity of 

leadership for each replication by calculating the standard deviation of each 

quadruple of leadership measure by barycenters. The outcome of this calculus 

is reported in Figure 4.13, which represents a Measure of Leadership reliable 

enough. At this point it has been possible to evaluate the statistical dependence 

among “leadership – standard deviation” variable and “average fitness” 

variable (respectively taken from the Leadership Measure in Figure 4.13 and 

from Average Fitness Measure in 5.9). For this purpose, two different 

correlation coefficients have been considered: “Pearson’s Correlation 

Coefficient” and “Spearman’s Correlation Coefficient”. Correlating those two 

series of date (Leadership Measure – st. dev and Average Fitness Measure) has 

been returned a Pearson coefficient which shows a great correlation with ρ = 

0.67 between leadership and fitness (in statistics, 0.5 < ρ < 1 means high 

correlation). Moreover Spearman’s coefficient shows a strong correlation with 

ρ = 0.4754 and α = 0,0079. This correlation displays another interesting 

information about this experimental setup: leadership appear a winning 

strategy because whenever there is a strong leadership in one replication then 

there is a gain of high fitness and vice versa. The generally linear correlation 

between fitness and leadership is displayed in Figure 4.14, where on X-axes the 

Leadership Measure (st. dev) is reported whereas on Y-axes the Average 

Fitness is reported.   

Another important issue is discovering how many kinds of leadership exist and 

in which way they influence the followers’ behaviours and group’s dynamics. 

For this fact, it has been distinguished between situations in which the leader is 

selfish and he moves independently from followers and situations where the 

leader take a careful look to the followers’ behaviour every time. In the first 

case it is possible to talk about “passive leadership” (borrowed by literature on 

leadership in living beings) that means the leader is not barely affected by  
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Figure 4.13: Standard Deviation of each quadruple of Leader Measure by 

Barycenters.  

 

 

 
 

Figure 4.14: Visualisation of the correlation between Leadership Measure 

(Standard Deviation) and  Fitness Measure.  
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followers and it does not profit of being followed, only the followers take 

advantage of following the leader. 

In the second condition can be called “active leadership” since the leader take 

advantage of the following because this foster the group’s cohesion and so 

higher fitness. Thus the leader starts up all the necessary actions to make the 

followers able to follow him in any instant of time. To do this a test has been 

designed, where the 3 followers are placed in a fixed position in the centre of 

the environment without any possibility of motion. Then, it has not been 

difficult to distinguish among replications where leaders who totally takes no 

notice of the followers and replications where leaders approach to the followers 

to attempt to “convince” them to follow him. In Figure 4.15 there are some 

phase spaces related to 4 replications. They have been recorded keeping the 

motionless followers into the centre of the environment. As it is possible to 

observe to the upper charts, the leader (yellow in the first and blue in the 

second) does not pay attention to the motionless followers but he run toward 

the food zone which is identified with the attractor (vortex). Instead, in the 

lower charts, the leader (green in both charts) reaches the followers, at least 

once, in order to actively try to let the followers follow him (but it is worthless 

as they are fixed and motionless into the centre of the environment). In the first 

case, the leader approach to the motionless followers only once but in the 

second case the leader travel back and forth as a shuttle between food zone and 

follower positions, until life cycles finish. For this reason in the upper 

quadrants there is an active leadership behaviour whereas in the lower 

quadrants there a passive leadership.    

 

4.3.3 Future directions  

 

A possible of the illustrated experimental setup is in humanoid robotics. 

Indeed, the experimental setup has been originally designed by imagining it for 

a humanoid task, but as we have focused on the mechanisms behind the 

leadership more than robotics issues, we have decided to simplify the setup 

with “khepera-like” robots. 
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Figure 4.15: Illustration of phase space for some replications, with followers 

fixed into the centre of the environment without any motion. Upper diagrams 

depict a classical example of passive leadership and lower diagrams show an 

active leadership.  

 

  

 

However, it is still possible to extend it to an equivalent setup with robots 

“icub-like” where the team is composed of 4 humanoid robots positioned 

around a table. With this setup some new interesting questions rise up: “What 

following does mean for humanoid robots?”, “What leadership is made of in 

humanoid robotics?”. 

In order to reply to those question it has thought to implement a simulator (or 

use one already done, such as the official icub simulator) where it is possible to 
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multiply the number of simulated icubs. Each robot joint and sensor must be 

controlled by a neural network like that one used for khepera robots in the 

previous experimental setup. The task consist in moving a small cylinder to the 

center of the table. Each robot is placed to one side of the table and it has 2 

small cylinders in front of him. Each cylinder is numbered but none robot is 

able to read the number of the cylinder. In any time step, the group of robot is 

rewarded (of +1.0 as in the previous experimental setup) if they move the same 

corresponding cylinder (that is with the same number) from his cylinders 

source area to the middle area of the table in charge of containing those 

cylinders. As robots do not know the number of cylinder could exploit sensory-

motor information to understand with cylinder is on the left of his body and 

which one is on the right. The adaptation algorithm is the same used in the 

experimental setup described in the previous paragraphs, that is an 

“heterogeneous genetic algorithm”. In other words, each robot has a different 

genetic patrimony which makes him able to display different behaviours and 

different skills in reaching the cylinder, moving it, etc. A schematisation of the 

experimental setup with humanoid robots is depicted in Figure 4.16. In the 

figure is illustrated that each robot is governed by a different genotype.  

In this humanoid experimental setup, the individual which sooner emerge as 

faster to move the cylinder into the middle of the table could arise as leader of 

the group, whereas the other individuals follow him in any instant of the life 

time, as well as the experimental setup with wheeled robots. As previously 

indicated, it would be interesting, in this case, understanding what following 

does actually mean for humanoid robots. They of course cannot follow each 

other with body motion, but they can follow partners’ movements with eyes 

(cameras) by moving neck motors which produce head changing of position. In 

this way they can “elaborate” movements of the partners (leader?) and repeat 

their movements in order to make the same actions. From this point of view, in 

humanoid experimental setup, the following takes the meaning of imitating, 

since robots follow others’ movements and reproduce them, that is to imitate. 

Clearly, it is a more complex process if compared to the wheeled robots task, 
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Figure 4.16: Robots and Environment of Humanoid Experimental Setup.  

  

 

since the number of sensory-motor information to integrate in space and time is 

much more: camera photoreceptors are many more, a pre-elaboration of other 

robots’ movements is needed, a translation of the observation in appropriate 

action is needed to follow (imitate), etc.      
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5 Conclusions 
 

These studies have a two-pronged value. In robotics and software design: the 

genetic differentiation of robots control systems can contribute to building a 

new generation of autonomous robotics applications or a new generation of 

software agents where a coordination is needed. This coordination can be 

reached by means of leadership/followership patters emergence. For example, 

it is possible to imagine to use a robots’ group for navigational tasks in an 

unknown environment such as the surface of a new planet. A spontaneous 

hierarchic organisation could arise among robots based on leaders/followers 

patterns that could make more efficient the environmental exploration. This 

might be as useful as more unpredictable are the decision-making problem 

details, which had not been foreseen in design phase.  The Leader robot could 

be, for instance, the one who is genetically suitable for a faster exploration of 

the environment or a smarter selection of needed information. Analogous 

outcomes can be achieved with software controlled by evolutionary threads 

which are genetically differentiated through the medium of the same 

methodology adopted for the robots. In order to cooperate, these threads could 

interact according to a hierarchy using leadership/followership patterns. For 

instance, we may imagine a user interface controlled by different threads (i.e. 

agents in cooperation or competition) which have the task of user preferences 

personalisation (user profiling). Every agent is able to deal with one type of 

preference: icons positioning, windows sizing, widows displacement, events 

priority, etc. Depending on threads are genetically differentiated, some of them 

could emerge as leaders and the others could be the followers within the 

collaborative task of profiling user preferences.  

On the other hand, in social sciences, it could be possible to explain that 

leadership is unavoidable. If we consider a group of genetically differentiated 

robots and they are faced to the choice of accessing a resource, the inevitability 

of leadership could come out. Access to the resource must be contemporary for 

all the group’s members and resources must be correlated in some way to the 

individuals’ survival chances (for example resources may be a food source, a 
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water source, etc.). Actually, we are taking in account the necessity of a 

“social decision-making” that means a decision-making of the entire group. 

We can prove that evolving a group of individuals to a group decision-making 

problem, one or more individuals emerge as leaders moving toward the 

resource which is chosen unconditionally. Other individuals can follow without 

wondering about they have took the right choice or not. Other solutions might 

emerge in addition to leadership/followership one, such as solutions where the 

group coordinate by a minute by minute negotiation and a complex 

communication between individuals. But with this simulative model, it can be 

proved that the leadership is always the most efficient solution. All the 

alternative solutions (respect to leadership) appear inefficient because they are 

slower than a solution where one leads and others follow. At the end, 

distributed solutions end up to become extinct making way for 

leaders/followers in every experimental replication.   

This reasoning might give some insight to those intellectuals who support the 

idea of societies without a central government, factories without a president or 

an administrative committee, etc: in other words groups without a leader. 

Indeed, there is more and more an open debate on the real benefits of 

leadership and on disadvantages. This is because of the fact that, nowadays, 

human societies continue to rely heavily on leaders (political, military, 

professional and religious leaders). However, there is still a consistently high 

rate of leadership failure: for example, 60%-75% is the estimated rate of 

business failures in corporate America [126].  

Ultimately, all this discussion suggests that our modeling approach and 

simulations could be useful for understanding when and why human leadership 

succeeds or fails, and under which conditions it is indispensable or not. This is 

a topical issue.  
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6 Appendix I : Artificial Neural 

Networks 
 

Artificial Neural Networks (ANN) were introduced, for the first time, by 1943, 

in a work on the formalisation of neural activity in propositional logic form 

[127]. In this analysis, authors argue that this new model, called “neural 

networks”, can be described in terms of logical expressions under some 

conditions. Various applications of neural computation were discussed. We can 

define artificial neural networks as a simple model of biological organisms’ 

nervous system. Depending on the way an artificial neuron is modeled and the 

connections’ topology, we can identify different models of neural networks. In 

general, an artificial neuron consists of  N inputs and M outputs y  regulated 

by an “activation function   “ and a threshold   (see Figure 6.1). The 

activation of the neuron j-th is a linear combination of input signals, on the 

base of the following formula:  

.   

(6.1)               



N

i

iiijj XwA
1

  

 

This is a weighted sum of every single neuron activation, where  ijw  is a 

“synaptic weight” of the connection from the neuron i-th to the neuron j-th, 

iX  is the input of the neuron i-th  (pre-synaptic activity) e i  represents the 

“bias” or “activation threshold” of the neuron i-th. 

The j-th neuron’s output is returned by an activation function which is 

expressed by the following formula:  
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Figure 6.1: Graphical comparison between Biological Neuron and Artificial 

Neuron.   

 

 

Where  is the activation function or “logistic”. The logistic function define 

the behaviour of the neuron’s response to some stimulus. As often as not, the 

logistic is implemented by means of non-linear functions such as the sigmoid 

function (see Figure 6.2), which make neural networks a non-linear system.   

The bias can be assumed a synaptic weight related to a virtual input called 0X , 

this input is always set to a constant value of 1.0.  

Depending on the neural network’s topology (the description of neurons 

connections) we can identify two different neural networks architectures: 

 

 Feed Forward Neural Networks : namely, networks which are made 

of two layers of neurons (input layer and output layer) and some layers 

of  internal neurons (hidden layer). There is a layers’ hierarchy with 

oriented connections from input neurons to output neurons, with the 

one only constraint: loop connections within a layer are not allowed.  
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Figure 6.2: Sigmoid Function.  

 

 

 Recurrent Neural Networks : that are neural networks, where 

connections within the same layer are allowed.  These are called loop 

connections and they can be made on the same neuron. Moreover, 

recurrent connections are allowed from a layer to the previous layer. 

These links permit to take back a signal from output to input.  

 

In practical applications, very often, “hybrid” topologies have been used such 

as feed forward neural networks with some recurrent connections. These 

networks can be useful in those applications where we need to provide the 

network with the possibility of create internal states.  

Genetic Algorithms can be adopted with neural networks in a few applications 

such as Evolutionary Robotics (as stated in the paragraph 1.5). Genetic 

algorithms can generate a neural network (from a population of initially 

random neural networks) able to solve a required task. Depending on the 

parameters under evolution, we can identity three different ways to use a 

combination of genetic algorithms and neural networks:   
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 Evolution of synaptic weights : where evolutionary parameters are 

synaptic weights and biases. In this case, the network architecture is 

pre-arranged, that means the number of neurons and connections cannot 

be modified through the evolution, therefore they are not pre-codified 

into the genotype. 

 

 Structure Evolution : where the number of neurons and connections 

are pre-codified into the genotype.  

 

In 1994, some authors have implemented a genetic algorithm to evolve neural 

networks controlling a small mobile robot, in real time [128]. In this work, the 

robot can move autonomously into the environment while the neural network 

acquires signals from robot’s sensors and send electrical signals to wheels’ 

motors. A computer program constantly evaluate the fitness in terms of 

velocity and collisions avoidance. Each genetic algorithm’s individual is 

identified by a neural network controlling the real robot. Next generations’ 

individuals are tested one by one. After 10 hours (i.e. 50 generations) the 

genetic algorithm produces neural networks able to exhibit navigational 

behaviours and obstacle avoidance.   

Because of the elevated computational cost, simulation programs have been 

devised to simulate the environment and the robot’s body as close as possible 

to the real environment and the real robot.  

After the evolution, the best control neural network can be transferred in the 

real robot control system (synaptic weight, bias, etc.). Then, a test of the real 

robot can be executed, by eventually submitting the robot to a further slower in 

the real environment.   

 

 



155 

 

7 Appendix II : Evolutionary 

Robotics and Genetic Algorithms 
 

As we have stated, evolutionary robotics [129] attempts to build robots by 

means of an evolutionary process inspired to the biological evolution:  

 

1. An initial population of control systems (which are named individuals) 

is randomly generated; 

 

2. Only some control systems are selected and reproduced: those ones 

which display a behaviour that mostly approximate the wanted 

behaviour. Each reproduction generates a new generation of individuals 

similar but not identical to the previous generation’s individuals.  

 

3. Phases 1 and 2 are repeated until the control neural network reaches the 

desired accuracy. Thus, this candidate control system becomes the 

definitive control system of the evolved simulated robot and real robot, 

eventually.  

 

The evolutionary approach relegate the programmer to a mere checker of the 

system behaviour, without any design role.  Therefore, evolutionary robots are 

auto-organizing systems able to develop own abilities autonomously, by 

interacting with the environment. Since they are auto-organizing, evolutionary 

robots are characterised by two properties:    

 

1. They can afford to deal with very complex tasks in an unexpected way 

for the trainer. However, very often, they can use simple strategies to 

solve complex tasks. 
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2. They can find parsimonious and unpredictable solutions. In this way 

they can provide new insights to the designer-programmer.   

 

The Evolutionary Process, adopted in evolutionary robotics, is the “Genetic 

Algorithms” [130]. This methodology is based on the manipulation of 

“artificial chromosomes” belonging to an “artificial individual”. An artificial 

chromosome (or genotype) is a string which encodes individual characteristics 

(or phenotype).   

In general, the evolutionary process is structured in generations through the 

following phases: 

 

1. For each generations, individuals are let live (that is interacting with 

the environment), and best genotypes are selected depending on the 

fitness score (selection operator); 

 

2. Individuals are randomly joined by merging genetic material 

(crossover operator); 

 

3. Individuals are mutated (mutation operator).   

 

At the end of each generation, from population of individuals is generated an 

offspring which produces a new individuals populating the new generation. 

The process goes on until a good individual is generated according to the 

required task. The trainer-programmer defines the genetic encoding and the 

fitness function. Genetic encoding represents the relationship between 

genotype and phenotype. The choice of the codification is a critical point for 

the problem which is aimed to be solved and for a better exploiting of genetic 

algorithm functionalities.   

In the case of direct codifications, phenotype parameters are translated in 

genotype values, which are finally encoded in binary code. Instead, in the case 

of indirect codifications, the genotype encode some developmental rules which 

determine how the phenotype is developed from the initial artificial embrion.  
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Evaluation function, or fitness, is a function which is used to evaluate 

individuals performances with respect to the considered problem or the 

designed task. The fitness function is calculated on every phenotype on the 

base of some critical parameters defined by the trainer-programmer. The 

fitness function returns a numerical value which is proportional to the accuracy 

of the solution provided by each individual.   

In evolutionary robotics, the fitness function evaluates the robots’ behaviour 

emerging during their interaction with the environment. Many fitness designing 

methods exist in order to selectively produce individuals. One of the most used 

algorithms is the “roulette wheel”. In roulette wheel, the probability for an 

individual to generate an offspring is given by the following formula:     

 

(7.1)               



N

i i

i
i

f

f
p  

 

where ix is the considered phenotype, and  ii xf   is its fitness score.  

In other words, the likelihood to select an individual is a normalised function of 

the fitness score over the total fitness of a N individuals’ population. The 

selection is accomplished as the individual is selected on a wheel, made of N 

slots and each slot is associated to an individual. The number of the offspring is 

Npi  . 

An alternative is the “rank based” method , where all individuals of one 

generation are sorted by the fitness score. A number of bests are selected and 

the rest is discarded.  

 

 

 

 

 

 

 



158 

 

References 

 

[1] Krause, J., and Ruxton, G. (2002) “Living in Groups”, Oxford: Oxford 

University Press. 

 

[2] Aureli, F., van Schaik, C., and van Hooff, J. (1989), “Functional aspects of 

reconciliation among captive long-tailed macaques (Macaca fascicularis)”, 

American Journal of Primatology, 19, 39-51. 

 

[3] Schino, G., Scucchi, S., Maestripieri, D., and Turillazzi, P.G. (1988), 

"Allogrooming as a tension-reduction mechanism: a behavioural 

approach", American Journal of Primatology. 

 

[4] Schino, G., and Aureli F., 2009. The relative roles of kinship and 

reciprocity in explaining primate altruism, Ecology Letters.  

 

[5] Hirata, S., and Fuwa, K. (2007). “Chimpanzees (Pan troglodytes) learn to 

act with other individuals in a cooperative task”, Primates 48, 13–21. 

 

[6] Melis, A. P., Hare, B., and Tomasello, M. (2006a). “Engineering 

cooperation in chimpanzees: tolerance constraints on cooperation”, Anim. 

Behav. 72, 275–286.  

 

[7] Melis, A. P., Hare, B. and Tomasello, M. (2006b) “Chimpanzees recruit the 

best collaborators”, Science 311, 1297–1300. 

 

[8] Scheid, C., and Noë, R. (2010), “The performance of rooks in a cooperative 

task depends on their temperament”, Animal Cognition, 13, 545-553. 

 

[9] Terborgh, J. and Janson, C.H. (1986), “The socio-ecology of primate 

groups”, Annu Rev, Ecol Syst, 17:111-135. 

 

[10] Chapman, C.A. (1990b), “Ecological constraints on group size in three 

species of neo-tropical primates”, Folia Primatol, 55:1-9. 

 

[11] Chapman, C.A., Wrangham R.W. and Chapman L.J.  (1995), 

“Ecological constraints on group size: an analysis of spider monkey and 

chimpanzees subgroups”, Behav Ecol Sociobiol, 36:59-70. 

 

[12] Reebs, S.G. (2000), “Can a minority of informed leaders determine the 

foraging movements of a fish shoal?” Anim. Behav. 59, 403–409. 

 

[13] King, A. J., Johnson D.P. D., Dominic D.P. Johnson and Van Vugt, M. 

(2009), “The Origins and Evolution of Leadership”, Current Biology. 

 

http://en.wikipedia.org/wiki/American_Journal_of_Primatology


159 

 

[14] Couzin, I. D., Krause, J., Franks, N. R. and Levin, S. A. (2005), 

“Effective leadership and decision making in animal groups on the move”, 

Nature, 433, 513e516. 

 

[15] Guilford, T. and Chappell, J., “When pigeons home alone does flocking 

have a navigational function ?”, Proceedings of the Royal Society B, 263, 

153e156, 1996. 

 

[16] Dall, S.R.X., Houston, A.I. and McNamara, J.M. (2004), “The 

behavioural ecology of personality: consistent individual differences from 

an adaptive perspective”, Ecol. Lett. 7, 734–739 

. 

[17] Clark, A. (1997), ”Being there: putting brain, body and world together 

again”, MIT Press, Cambridge. 

 

[18] Nolfi, S. and Floreano, D. (2000), “Evolutionary Robotics: The 

Biology, Intelligence and Technology of Self-Organizing Machines”, MIT 

Press, Cambridge. 

 

[19] Nolfi, S., and Marocco, D., (2002), “Active perception: A sensorimotor 

account of object categorisation”, In From Animals to Animats 7, 

Proceedings of the Seventh International Conference on Simulation of 

Adaptive Behaviour (pp. 266-271). 

 

[20] Dorigo, M., Trianni, V., Şahin, E., Groß, R., Labella T., H., 

Baldassarre, G., Nolfi,  S., Jean-Deneubourg, J., Mondada, F. and Floreano, 

et al. (2004) “Evolving Self-Organizing Behaviours for a Swarm-Bot”, 

Autonomous Robots, Springer.  

 

[21] Trianni, V., Nolfi, S., and Dorigo, M., (2004), “Hole avoidance: 

Experiments in coordinated motion on rough terrain”, In Intelligent 

Autonomous Systems (Vol. 8, pp. 29-36). Amsterdam, The Netherlands: 

IOS Press. 

 

[22] Cangelosi, A. and Parisi, D. (eds) (2002), “Simulating the evolution of 

language”, Sprinter Verlag, London. 

 

[23] Ponticorvo, M., and Miglino, O. (2009), “Encoding geometric and non-

geometric information: a study with evolved agents”, Animal Cognition, 

Springer-Verlag.  

 

[24] Crook, J., H., (1965), “The adaptive significance of avian social 

organisations”, Symp . Zool. Soc. London 14: 1 8 1-2 1 8. 

 

[25] Orians, G., H., (1969), “On the evolution of mating systems in birds 

and mammals”, Am. Nat. 103:589-603. 

 

http://www.springerlink.com/content/?Author=Marco+Dorigo
http://www.springerlink.com/content/?Author=Vito+Trianni
http://www.springerlink.com/content/?Author=Vito+Trianni
http://www.springerlink.com/content/?Author=Roderich+Gro%c3%9f
http://www.springerlink.com/content/?Author=Thomas+H.+Labella
http://www.springerlink.com/content/?Author=Thomas+H.+Labella
http://www.springerlink.com/content/?Author=Stefano+Nolfi
http://www.springerlink.com/content/?Author=Stefano+Nolfi
http://www.springerlink.com/content/?Author=Dario+Floreano
http://www.springerlink.com/content/p2610765662v5xw1/


160 

 

[26] Eisenberg, J., F ., Muckenhirn, N., A. and Rudran, R. (1972), “The 

relation between ecology and social structure in primates”, Science 

176:863-74. 

 

[27] Couzin, I., D., and Krause, J., (2003), “Self-organisation and collective 

behaviour in vertebrates”, Adv. Study Behav. 32, 1–75 

 

[28] Trivers, R.,L., “The evolution of reciprocal altruism”, Quarterly review 

of biology, 1971, JSTOR. 

 

[29] Mesoudi, A., (2008), “An experimental simulation of the ‘‘copy-

successful-individuals’’ cultural learning strategy: adaptive landscapes, 

producer scrounger dynamics, and informational access costs”, Evol. Hum. 

Behav. 29, 350–363. 

 

[30] Alexander, R., D., (1974), “The evolution of social behaviour”. Annual 

Review of Ecology and Systematics. 

 

[31] Wrangham, R., W., (1980), “An ecological model of female-bonded 

primate groups”, Behaviour, 75, 262–300. 

 

[32] Compete with con-specific – trovare reference 

 

[33] van Schaik, C., P., (1983), “Why are diurnal primates living in 

groups?”, Behaviour, 87, 120–144. 

 

[34] Leca, J.,B., Gunst, N., Thierry, B., Petit, O., (2003), “Distributed 

leadership in semi free-ranging white-faced capuchin monkeys”, Animal 

Behaviour, Elsevier. 

 

[35] Wilson, K.,G., (1975), “The renormalisation group: Critical phenomena 

and the Kondo problem”, Reviews of Modern Physics, APS 

 

[36] Lee, P. C., (1994), “Social structure and evolution”, from Slater, Peter 

James Bramwell (Ed); Halliday, Tim R. (Ed); Barrett, Priscilla , (1994). 

Behaviour and evolution., (pp. 266-303). New York, NY, US: Cambridge 

University Press, x, 348 pp.  

 

[37] Pulliam, H.,R., Caraco, T., (1984), “Living in groups: is there an 

optimal group size”, Behavioural ecology: an …, Blackwell Scientific, 

Oxford, UK. 

 

[38] Wrangham, R., W., (1987), “The significance of African apes for 

reconstructing human social evolution”. In W. G. Kinzey (Ed.), “The 

evolution of human behaviour: Primate models“ (pp. 51-71), Albany, NY: 

SUNY. 

 

http://www.jstor.org/stable/10.2307/2822435
http://www.sciencedirect.com/science/article/pii/S0003347203922767
http://www.sciencedirect.com/science/article/pii/S0003347203922767
http://rmp.aps.org/abstract/RMP/v47/i4/p773_1
http://rmp.aps.org/abstract/RMP/v47/i4/p773_1
http://psycnet.apa.org/psycinfo/1994-98835-008
http://scholar.google.it/citations?user=3SUu-okAAAAJ&hl=it&oi=sra


161 

 

[39] Zuckerman, S., (1932), “The Social Life of Monkeys and Apes”, New 

York: Harcourt, Brace. 

 

[40] Carpenter, C., R., (1942), “Societies of monkeys and apes”, Bioi. Symp. 

8 : 177-204 

 

[41] Crook, J,. H., (1970), “The socio-ecology of primates”, In Social 

Behaviour in Birds and Mammals, ed. 1,. H. Crook, 103-66. London: 

Academic. 

 

[42] Crook, J., H., (1972), “Sexual selection, dimorphism, and social 

organisation in the primates”, In Sexual Selection and the Descent 0/ Man. 

1871-1971. ed. B.Campbell, 23 1 -8 1 . Chicago: Aldine. 

 

[43] Eisenberg, J., F., Muckenhirn, N., A., Rudran, R., (1972), “The relation 

between ecology and social structure in primates”, Science 176: 863-74. 

 

[44] Crook, J., H .,  and Gart1an , J., S., (1966), “Evolution of primate 

societies”, Nature, 2 1 0 : 1 200-3 

 

[45] Nagel, U., (1971), “Social organisation in a baboon hybrid zone”, Proc. 

Third Int. Congr. Primatol. Zurich 3:48-57. 

 

[46] Chapman, C.A., Wrangham R.W. and Chapman L.J.,  (1995) 

“Ecological constraints on group size: an analysis of spider monkey and 

chimpanzees subgroups”, Behav Ecol Sociobiol, 36:59-70. 

 

[47] Van Schaik, C., P ., , Van Hooff, J., A., R., A., M., (1983), ”On the 

ultimate causes of primate social systems”, Behaviour, 85:9 1- 1 1 7. 

 

[48] Terborgh, I., W., (1983), “Five New World Primates: A Study in 

Comparative Ecology”, Princeton: Princeton Univ. Press 

 

[49] Terborgh, I., Goldizen, A., W., (1985), “On the mating system of the 

cooperatively breeding saddle-backed tamarin”, Behav.Ecol. Sociobiol, 

16:293-9. 

 

[50] Southwick, C., H., Siddiqi, M., F., (1974), “Contrasts in primate social 

behaviour”,BioScience, 24:398-406. 

 

[51] Clutton-Brock, T., H ., and Harvey, P., H., (1976), “Evolutionary rules 

and primate Societies”, In Growing Points in Ethology, eds. P. P. G. 

Bateson, R. A. Hinde, pp. 1 65-237. Cambridge: Cambridge Univ. Press. 

 

[52] Rutberg, A., (1983), “The evolution of monogaour in primates”, J. 

Theor. Bioi. 104:93- 1 1. 2. 

 



162 

 

[53] Van Schaik, C., P ., and Van Hooff, J., A., R., A., M., (1983), “On the 

ultimate causes of primate social systems”, Behaviour, 85:9 1- 1 1 7. 

 

[54] Frank, S.,A., (1998), “Foundations of Social Evolution”, Princeton 

Univ, Press; Princeton, NJ. 

 

[55] Myerson, R., B.,  (1991), “Game Theory: Analysis of Conflict”, 

Harvard University Press, p. 1. Chapter-preview links, pp. vii-xi 

 

[56] von Neumann, J. and Morgenstern, O., (1953), “Theory of Games and 

Economic Behaviour”, Princeton University Press; third ed 

 

[57] Nowak, M.,A., and May, R.,M., (1992), “Evolutionary games and 

spatial chaos”, Nature. 

 

[58] Lorens A., I., Fudenberg, D., and Nowak, M., A., (2005), “Evolutionary 

cycles of cooperation and defection”, Edited by Robert M. May, University 

of Oxford, Oxford, United Kingdom. 

 

[59] Webb, B., (1993). Perception in real and artificial insects : A robotic 

investigation of cricket phonotaxis.Unpublished doctoral dissertation, 

University of Edimburgh, Scotland.  
 

[60] Webb, B., (1994). Robotic experiments in cricket phonotaxis. In D. 

Cliff, P. Husbands, J.-A. Meyer, and S. W. Wilson (Eds.), From animals to 

animats : Proceedings of the Third International Conference on Simulation 

of Adaptative Behaviour. (pp. 45-54). Cambridge, MA:MIT Press (A 

Bradford Book). 

 

[61] Lambrinos, D., Maris, M., Kobayashi, H., Labhard, T., Pfeifer, R., and 

Wehner, R., (1997). “An Autonomous agent navigating with polarized light 

compass”, Adaptative Behaviour, 6, 175-506. 

 

[62] Beer, R. D., (1995), “Intelligence as Adaptative Behaviour : An 

experiment in computational neuroethology”, San Diego, CA: Academic 

Press. 

 

[63] Terzopoulos, D., Tu, X., Grzesczuk, R., (1994), “Artificial fishes : 

Autonomous locomotion, perception, behaviour, and learning in a 

simulated physical world”, Artificial Life 1, 327-351. 

 

[64] Sims, K., (1994), "Evolving Virtual Creatures", Computer Graphics, 

Siggraph '94 Proceedings, pp.15-22. 

 

http://en.wikipedia.org/wiki/Roger_B._Myerson
http://books.google.com/books?id=E8WQFRCsNr0C&printsec=find&pg=PA1=onepage&q&f=false#v=onepage&q&f=false
http://books.google.com/books?id=E8WQFRCsNr0C&printsec=find&pg=PR7=onepage&q&f=false#v=onepage&q&f=false
http://it.wikipedia.org/wiki/John_von_Neumann
http://it.wikipedia.org/wiki/Oskar_Morgenstern
http://scholar.google.it/citations?user=aNFzP50AAAAJ&hl=it&oi=sra
http://scholar.google.it/citations?user=ScXat-4AAAAJ&hl=it&oi=sra
http://www.ped.fas.harvard.edu/people/faculty/publications_nowak/Nature92.pdf
http://www.ped.fas.harvard.edu/people/faculty/publications_nowak/Nature92.pdf
http://www.pnas.org/search?author1=Lorens+A.+Imhof&sortspec=date&submit=Submit
http://www.pnas.org/search?author1=Drew+Fudenberg&sortspec=date&submit=Submit
http://www.pnas.org/search?author1=Martin+A.+Nowak&sortspec=date&submit=Submit
http://www.karlsims.com/papers/siggraph94.pdf
http://www.karlsims.com/evolved-virtual-creatures.html


163 

 

[65] Sims, K., (1994), "Evolving 3D Morphology and Behaviour by 

Competition", Artificial Life IV Proceedings, ed.by Brooks & Maes, MIT 

Press, pp.28-39. 

 

[66] Brooks, R., A., (1989), “A robot that walks : emergent behaviours from 

a carefully evolved network”, Neural Computation, 1, 253-262. 

 

[67] Brooks, R. A., (1991a), “Intelligence without representation”, Artificial 

Intelligence, 47,139-159. 

 

[68] Brooks, R. A., (1991a), “Intelligence without reason”, Artificial 

Intelligence, In Proceedings of the International Joint Conference on 

Artificial Intelligence [pp. 569-595]. San Mateo : Morgan-Kaufman. 

 

[69] Maturana, H.R., and Varela, F.J., (1988), “The tree of knowledge : the 

biological roots of human understanding”, Boston : New Science Library. 

 

[70] Clark, A., (1994), “Autonomous agents and real-time success : some 

foundational issues”, In T. Smithers (ed.), Proceedings of the Third  

International Workshop on Artificial Life and Artificial Intelligence [pp. 

19-22]. San Sebastian, Spain : Universidad de Pais Vasco. 

 

[71] Pfeifer, R., Scheier, C., (2001), “Understanding Intelligence”, The Mit 

Press, Cambridge, Massachusetts. 

 

[72] Toda, M., Nijhoff, M., Man, (1982), “Robot and Society: Models and 

Speculations”, Boston, 235 pp. 

 

[73] Maturana, H., R., and Varela, F., J., (1980), “Autopoiesis and cognition 

: the realisation of the living”,  Dordrecht: Reidel.  

 

[74] Braitenberg, V., (1984), “Vehicles: Experiments in synthetic 

psychology”, Cambridge, MA: MIT Press. 

 

[75] Nilsson N. (1984), “Shakey the robot”, Technical Note 323, SRI 

International, Menlo Park, California. 

 

[76] Brooks, R., A., (1991a), "Intelligence without representation", Artificial 

Intelligence, 47,139-159 

 

[77] Brooks, R., A., (1991a), "Intelligence without reason", Artificial 

Intelligence, In Proceedings of the International Joint Conference on 

Artificial Intelligence [pp. 569-595]. San Mateo : Morgan-Kaufman 

 

[78] Brooks, R., A., Breazeal, C., Marjanović, M., Scassellati, B., & 

Williamson, M. M. (1999), "The Cog project: Building a humanoid robot", 

http://www.karlsims.com/papers/alife94.pdf
http://www.karlsims.com/papers/alife94.pdf


164 

 

In Computation for metaphors, analogy, and agents (pp. 52-87), Springer 

Berlin Heidelberg 

 

[79] Lungarella, M., Metta, G., Pfeifer, R., and Sandini, G., (2003), 

"Developmental robotics: a survey", Connection Science, 15(4), 151-190 

[80] Morse, A., F., de Greeff, J., Belpaeme, T., and Cangelosi, A., (2010), 

"Epigenetic robotics architecture (ERA)", Autonomous Mental 

Development, IEEE Transactions on, 2(4), 325-339 

 

[81] Metta, G., Natale, L., Nori, F., Sandini, G., Vernon, D., Fadiga, L., ... 

and Montesano, L., (2010), "The iCub humanoid robot: An open-systems 

platform for research in cognitive development", Neural Networks, 23(8), 

1125-1134 

 

[82] Harvey, I., Husbands, P., and Cliff, D., (1992), "Issues in evolutionary 

robotics", School of Cognitive and Computing Sciences, University of 

Sussex, (pp. 364-373) 

 

[83] Miglino, O., Lund, H. H., and Nolfi, S., (1995), "Evolving mobile 

robots in simulated and real environments", Artificial life, 2(4), 417-434 

 

[84] Floreano, D., and Mondada, F., (1996), "Evolution of homing 

navigation in a real mobile robot. Systems, Man, and Cybernetics, Part B: 

Cybernetics", IEEE Transactions on, 26(3), 396-407 

 

[85] Baldassarre, G., Parisi, D., and Nolfi, S., (2004), "Coordination and 

behaviour integration in cooperating simulated robots", In From Animals to 

Animats V III, Proceedings of the 8 th International Conference on 

Simulation of Adaptive Behaviour 

 

[86] Nolfi, S., Marocco, D., (2000), "Evolving visually-guided robots able to 

discriminate between different landmarks", In J.-A. Meyer, A. Berthoz, D. 

Floreano, H. Roitblat, and S. Wilson, editors, From Animals to Animats VI 

: Proceedings of the Sixth International Conference on Simulation of 

Adaptative Behaviour, pages 413-419. MIT Press, Cambridge, MA, 2000 

 

[87] Morlino, G., Gianelli, C., Borghi, A., M., and Nolfi, S., (2010), 

"Developing the Ability to Manipulate Objects: A Comparative Study with 

Human and Artificial Agents", In Tenth International Conference on 

Epigenetic Robotics (EpiRob10) (pp. 169-170) 

 

[88] Gigliotta, O., and Nolfi, S., (2008), "On the coupling between agent 

internal and agent/environmental dynamics: Development of spatial 

representations in evolving autonomous robots", Adaptive Behaviour, 16(2-

3), 148-165 

 

[89] Nolfi, S., (2005), "Categories formation in self-organizing embodied 

agents", Handbook of categorisation in cognitive science, 869-889., Nolfi, 



165 

 

S. (2005b). "Behaviour as a complex adaptive system: On the role of self-

organisation in the development of individual and collective behaviour", 

Complex Us, 2 (3-4), 195-203 

 

[90] Pugliese, F., (2012), "Development of categorisation abilities in 

evolving embodied agents: a study of internal representations with external 

social inputs", Artificial Life and Evolutionary Computation-Proceedings 

of Wivace 2012 

 

[91] Marocco, D., and Nolfi, S., (2007), "Emergence of communication in 

embodied agents evolved for the ability to solve a collective navigation 

problem", Connection Science, 19(1), 53-74 

 

[92] Cangelosi, A., Riga, T., Giolito, B., and Marocco, D., (2004, May), 

"Language emergence and grounding in sensorimotor agents and robots", 

In First International Workshop on Emergence and Evolution of Linguistic 

Communication (pp. 3-8) 

 

[93] Mirolli, M., Ferrauto, T., and Nolfi, S., (2010), "Categorisation through 

evidence accumulation in an active vision system", Connection Science, 

22(4), 331-354 

 

[94] Francesco Pugliese, Alberto Acerbi, Orazio Miglino, Davide Marocco, 

(2012), "Emergence of Leadership in a Group of Autonomous Robots", 

Proceedings of the Post-Graduate Conference on Robotics and 

Development of Cognition, J. Szufnarowska, Ed. 

 

[95] Mondada, F., Franzi, E., Guignard, A., (1999), “The Development of 

Khepera”, In proceedings of First International Khepera Workshop, 

Paderborn, 10–11, PDF BibTex EPFL Infoscience entry. 

 

[96] Seed, A., M., Clayton, N., S., and Emery, N., J., (2008), “Cooperative 

problem solving in rooks (Corvus frugilegus)”, Proceedings of the Royal 

Society B: Biological Sciences, 275(1641), 1421-1429. 

 

[97] Plotnik, J., M., Lair, R., Suphachoksahakun, W., and de Waal, F., B., 

(2011), “Elephants know when they need a helping trunk in a cooperative 

task”, Proceedings of the National Academy of Sciences, 108(12), 5116-

5121. 

[98] Miglino, O., Ponticorvo, M., Donetto, D., Nolfi, S., and Zucca, P., 

(2009), “Cooperation in corvids: a simulative study with evolved robot”, 

Artificial Life and Evolutionary Computation-Proceedings of Wivace 2008, 

179 

 

http://en.wikipedia.org/wiki/Francesco_Mondada
http://en.wikipedia.org/w/index.php?title=Edo._Franzi&action=edit&redlink=1
http://en.wikipedia.org/wiki/Andr%C3%A9_Guignard
http://infoscience.epfl.ch/getfile.py?recid=89709&mode=best
http://infoscience.epfl.ch/export.py?recid=89709&ln=fr&fm=bibtex
http://infoscience.epfl.ch/search.py?recid=89709&ln=fr


166 

 

[99] Ponticorvo, M., Miglino, O., & Gigliotta, O., (2011), “For Corvids 

together Is Better”, In Advances in Artificial Life. Darwin Meets von 

Neumann (pp. 222-229). Springer Berlin Heidelberg. 

[100] King, A. J., Johnson, D.,P., D., and Van Vugt, M., (2009), “The Origins 

and Evolution of Leadership.”, Current Biology. 

 

[101] Flack, A., Pettit, B., Freeman, R., Guilford, T. and Biro, D., (2012), “What 
are leaders made of ? The role of individual experience in determining 
leader-follower relations in homing pigeons”, Animal Behaviour. 

 

[102] Schaller, G., B., (1963), “The Mountain Gorilla: Ecology and Behaviour”, 
Chicago: University of Chicago Press. 

 
[103] Boinski, S., (1993), “Vocal coordination of group movement among 

white-faced capuchin monkeys, Cebus capucinus”, American Journal of 
Primatology, 30, 85–100. 

 

[104] Fedigan, L., M., (1993), “Sex differences and intersexual relations in 
adult white-faced capuchins, Cebus capucinus”, International Journal of 
Primatology, 14, 853–877. 

 
[105] Leca, J. B., Fornasieri, I. & Petit, O. 2002. Aggression and reconciliation 

in Cebus capucinus. International Journal of Primatology, 23, 979–998. 
 
[106] Janson, C., H., (1985), “Aggressive competition and individual food 

consumption in wild brown capuchin monkeys (Cebus apella)”, 
Behavioural Ecology and Sociobiology, 18, 125–138. 

 

[107] Janson, C., H., (1990), “Social correlates of individual spatial choice in 
foraging groups of brown capuchin monkeys, Cebus paella”, Animal 
Behaviour, 40, 910–921. 

 

[108] Leca J.,B., Gunst, N., Thierry, B., Petit, O. (2003), “Distributed 
leadership in semifree-ranging white-faced capuchin Monkeys”, Equipe 
d’Ethologie et Ecologie Comportementale des Primates, Centre d’Ecologie 
et Physiologie Energe´tiques, Animal Behaviour. 

 

[109] Van Vugt, M., (2008), “Evolutionary origins of leadership and 
followership”, Person. Social Psych. Rev. 10, 354–371. 

 



167 

 

[110] Rands, S.A., Cowlishaw, G., Pettifor, R.A., Rowcliffe, J.M., and 
Johnstone, R.A. (2003). Spontaneous emergence of leaders and followers 
in foraging pairs. Nature 423, 432–434  
 

[111] Barnard, C.,J., (1980), “Flock feeding and time budgets in the house 
sparrow (passer domesticus l.)”, Animal Behaviour, 28, 295-309. 

   
[112] Kwasnicka, H., Markowska-Kaczmar, U., Mikosik, M., (2007), “Open-

ended Evolution in Flocking Behaviour Simulation”, Proceedings of the 
International Multiconference on Computer Science and Information 
Technology pp. 103–120. 

 
[113] Nolfi, S., Floreano, D., (2006), “Coevolving Predator and Prey Robots: 

Do “Arms Races” Arise in Artificial Evolution?”, Mit press Journals.  
 
[114] Franks, N.,R., Richardson, T., (2006), “Teaching in tandem-running 

ants”, Nature 439, 153. 
 

[115] Wright, J., Stone, R.,E., and Brown, N., (2003), “Communal roosts as 
structured information centres in the raven, Corvus corax”, J. Anim. Ecol. 
72, 1003–1014. 

 

[116] Hauser, M.,D., Chomsky, N., and Fitch, W.,T., (2002), “The faculty of 
language: What is it, who has it, and how did it evolve? “, Science 298, 
1569–1579. 

 

[117] Dyer, J.,R.,G., Ioannou, C.,C., Morrell, L.,J., Croft, D.,P., Couzin, I.,D., 
Waters, D.,A., and Krause, J.,  (2008), “ Consensus decision making in 
human crowds”, Anim. Behav., 75, 461–470. 

 

[118] Harcourt, J.,L.,  Ang, T.,Z.,  Sweetman, G., Johnstone,  R.,A., and 
Manica, A., (2009), “Social feedback and the emergence of leaders and 
followers”, Curr. Biol., 19, 248–252. 

 

[119] Judge, T., A., and Bono, J.,E., (2000), “Five-factor model of personality 
and transformational leadership”, J. Appl. Psychol, 85, 751–765 

 

[120] Van Vugt, M., (2006), “Evolutionary origins of leadership and 
followership”, Person. Social Psych, Rev. 10, 354–371. 

 



168 

 

[121] Gigliotta, O., Mirolli, M., and Nolfi, S., (2009), “Who Is the Leader? 
Dynamic Role Allocation Through Communication in a Population of 
Homogeneous Robots”, In Serra R., Villani M., Poli I. (Eds.): Artificial Life 
and Evolutionary Computation. Proceedings of Wivace 2008. Singapore, 
World Scientific: 167-177,2009 

 

[122] Gigliotta, O., and Miglino, O., (2007), “Groups of Agents with a 
Leader”, Journal of Artificial Societies and Social Simulation vol. 10, no. 41 
 

[123] Lee, Seung-Hyun, Si-Hyuk Yi, and Sung-Bae Cho, (2011) "Emergence of 
Leadership in Evolving Robot Colony." Neural Information Processing. 
Springer Berlin/Heidelberg. 

 
[124] Gleick, J., (1989), “Caos. La nascita di una nuova scienza”, Biblioteca 

scientifica Sansoni 
 

[125] Edward, O., (2002), “Chaos in Dynamical Systems”, Cambridge 
University Press, pp. 15-19. 
 

[126] Van Vugt, M., (2008), “Follow me”, New Sci, 198, 42–45. 
 

[127] McCulloch, W., S., and Pitts, W., (1943). “A logical calculus of the 

ideas immanent in nervous activity”, Bulletin of mathematical biology, 

5(4), 115-133. 

 

[128] Nolfi, S., Floreano, D., Miglino, O., and Mondada, F., (1994), “How to 

evolve autonomous robots: Different approaches in evolutionary robotics”, 

In Artificial Life IV (pp. 190-197). Cambridge, MA: MIT Press. 

 

[129] Holland, J., H., (1975), “Adaptation in Natural and Artificial Systems”, 

University of Michigan Press, Ann Arbor. 

 

[130] Nolfi, S., and Floreano, D., (2000)., “Evolutionary robotics: The 

biology, intelligence, and technology of self-organizing machines”, Mit 

Press.  

 

 

 
 
 
 
 



169 

 

Acknowledgments 

 

Completing a PhD is truly a marathon event and I would not have been able to 

complete this journey without the aid and support of people over the past 3 

years. I would express my gratitude to Prof. Orazio Miglino, whose expertise 

and understanding added considerably to my phd experience. Furthermore, 

thanks to him because he let me go abroad to have this amazing one year-long 

experience, at University of Plymouth, in England. I would like to thank the 

phd coordinator Prof. Maura Striano for the quick support in any moment I 

needed. I must express my deep gratitude to Prof. Domenico Parisi for all the 

advices, the guidelines and the fantastic insights he gave me in our long 

discussions and debates.  

A very special thanks goes out to Dr. Davide Marocco, without whose 

motivation and encouragement I would not have considered to continue with 

some issues and researches. Dr. Marocco is a lecturer and researcher who truly 

made a difference in my life since when I was undergraduate to the last part of 

my phd. His humanity joined with expertise has given me a model to follow in 

all the rest of my life. He definitely opened my mind. I must also acknowledge 

Dr. Stefano Nolfi for his insights and helps every time I needed them. 

Moreover, thanks to him for have deeply contributed to the most exciting 

branch of research in my opinion: Evolutionary Robotics. I am very glad to 

have chosen him as my thesis supervisor when I was undergraduate. He 

provided me with direction, technical support and became more of a mentor for 

me. 

A special thanks to Prof. Angelo Cangelosi for his precious suggestions in 

statistics, research and academic world. I think he is a professor model.  

In the life everything has a beginning and an end, but I am not able to not say 

thanks to my ex girlfriend Dr. Loredana Le Pera to have supported me in these 

3 years in good and bad moments. Thanks to have believed in me and to have 

suffered my mood in all this time. Moreover, she is one of the best researcher I 

have ever met.  



170 

 

A special gratitude goes to Dr. Elena Dell’Aquila, one my phd colleague, who 

has provided me a moral support and an unconditional wonderful friendship in 

all this time. 

Thanks to Amber Keats for her moral and linguistic support. Thanks to 

Francesca Stramandinoli for the short but deep chats, to Marek Rucinski, 

Naveen Kuppuswamy for their company.  

Thanks to all my Plymouthian friends of dance group and other groups.  

Thanks to my best friend in Plymouth, Giuseppe Filippone, for his 

company and for computer science talks. He is definitely the best 

programmer and computer scientist I have ever known in my life.  

I am deeply indebted with all the fellows I have met in these years: Dr. 

Onofrio Gigliotta, Giuseppe Morlino, Federico Da Rold, Francesco Rigoli, 

Nicola Catenacci, Marco Mirolli, Valerio Biscione, Tomassino Ferrauto, 

Giuanluca Massera and so on.    

Unfortunately I am not able to mention all of them, but anyway I want to say to 

everybody: thanks to exist in this small window of the Universe time, that is 

my life.  

  

  

 


