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Introduction 

The present dissertation is conceived as part of research and technological 

innovation activities performed at the Advanced Materials & Technology 

laboratory of the Italian Aerospace Research Centre (CIRA). This laboratory, 

among other tasks, is involved in developing new manufacturing 

methodologies for the production of composites for aeronautical applications. 

Such a purpose is pursued with both numerical and experimental approaches 

and, often, with an integrated approach. The experimental output may serve as 

input to numerical models for the ultimate design of the material fabrication 

process and numerical models may help in optimizing the experimental 

activities. Once a component is produced, specific testing (mechanical, 

chemical, thermal, etc.) follows in order to optimize the material ingredients 

(type of matrix and reinforce as well as stacking sequence), the manufacturing 

process (hand lay-up, filament winding, etc.) and the curing cycle. 

In this context, non-destructive testing plays a fundamental role. In fact it 

allows, at the end of the manufacturing process, to non-invasively verify the 

integrity of the produced components as well as their compliance with the 

design requirements; usually this is the first feedback about the quality of the 

product. Non destructive testing also acts as support and complement to the 

mechanical tests, because it allows also to verify whether the component has 

been damaged as a consequence of the applied mechanical load. 

The procedure described above is usually adopted also by composites 

manufacturing companies for the optimization and fine tuning of the 

production processes, as well as for the quality control of final products. 

In this context, CIRA, already equipped with instrumentation and trained 

personnel for non-destructive testing with the Ultrasonic technique (UT), has, 

recently, decided to investigate the suitability of InfraRed Thermography (IRT), 

attracted by the considerable advantages offered by such a remote 2D and fast 

inspection technique. To venture into this new field CIRA decided to promote 

and fund a PhD in cooperation with the Department of Aerospace Engineering 



of the University of Naples, Federico II, under the guidance of Ing. Carosena 

Meola who is a well-recognized expert in this field, both in Italy (member of 

ITANDTB and UNI commissions) and abroad (member of European 

Committee CEN/TC). 

InfraRed Thermography is currently adopted in aeronautics in order to check 

the integrity of the components, allowing easily and rapidly the inspection even 

of large surfaces. On the other hand, its employment is still somehow limited, 

due to a partial assessment and due to the lack of an exhaustive validation. 

Specifically the IRT capability to provide a quantitative estimation of porosity is 

still not completely validated by an extensive comparison with the Ultrasonic 

method which is actually the most adopted technique. The possibility to use 

IRT instead of UT is of great interest because it allows a contactless inspection 

without any use of contaminating substances, which potentially may penetrate 

porous materials.  

The main objective of this dissertation is to contribute to the assessment of 

infrared thermography as technique to be used to estimate the porosity amount 

and its distribution in a carbon/epoxy composites, as well as detect thin 

delaminations in presence of porosity. The ultimate goal is to setup an 

experimental arrangement and testing protocol to be used in the industrial 

processes for fast and effective evaluation of the porosity content in composites.  

It is worth noting that porosity, depending on its volumetric percentage and on 

shape and size of pores, can greatly reduce the mechanical properties as well 

the overall performance of composites. On the other hand, as can be seen from 

literature it is possible to affirm that, although UT is the most commonly used 

non-destructive method, it suffers from some limitations in presence of a 

porous medium. In general, results depend on the used equipment and method 

as well as on the material under analysis and its manufacturing process. 

Therefore, UT is most effective when associated to consolidated and repetitive 

manufacturing processes. In addition, UT may be affected by many problems 

linked to the surface finishing and it is not effective in presence of a porous 

surface.  



Recently, scientific literature highlighted IRT, in particular flash thermography, 

as a promising alternative of the UT for porosity measurements. 

The use of flash thermography is therefore herein investigated as a method to 

infer measurements of porosity through measurements of thermal diffusivity.  

The approach and the results discussed in this dissertation may be of 

considerable utility for  aeronautical companies that deal with production of 

CFRPs. In fact, flash thermography is a simple and fast (potentially a few 

seconds more than the time needed to take a picture) to be used for estimation 

of the percentage of porosity within the material. This can be achieved by 

simply performing a calibration process (analogous to the one herein described) 

for  each specific material under analysis. Moreover, flash thermography allows 

also to discover different types of discontinuities in the material, such as 

inclusions and delaminations. 

With regard to the content of the present dissertation, it is subdivided into 

different Chapters. The first Chapter gives a look at the world of composites 

and at the standard non destructive testing techniques which are used in the 

aeronautical industry. Further, the problem of the presence of porosity in CFRP 

is addressed with also a description of the consequences it entails from the 

component mechanical performance point of view. In the subsequent Chapters 

2 and 3, the two non-destructive techniques, UT and IRT, are described from 

both theoretical and experimental points of view. Chapter 4 introduces to the 

core of the experimental activity, which continues on Chapters 5 and 6. In 

particular, a section of Chapter 4 is devoted to the description of specimens, 

which are specifically manufactured with a certain percentage of porosity and 

with also a thin kapton disk to simulate a local delamination. The porosity 

amount is then estimated through destructive and non-destructive methods; in 

particular, results obtained with UT and IRT are shown and discussed in 

Chapters 5 and 6. 

  



Chapter 1 

Composite materials: manufacturing 

methods and characterization 

In the last years, the word composite became of very common use. In fact, 

composite materials are being ever more massively employed in automotive, 

aerospace and naval structures components. The success of composites is 

mainly related to their involved possibility to both choose the raw materials 

and, to conceive the production process so as to obtain a final product that is 

perfectly responding to the design requirements. 

Among the broad variety of composites, Carbon Fibre Reinforced Polymers 

(CFRP) are amongst the most used ones in military as well as in civil aviation, 

for both primary and secondary structures. In civil aviation they are highly 

appreciated especially for their favourable stiffness to weight ratio, because it 

involves a significant decrease of the fuel burnt per seat, per mile and, as a 

consequence, airlines have achieved to substantially reduce CO2 emissions, 

which complies with the modern need of the environment preservation. 

Moreover, CFRP provide the answer to specific issues such as the need of 

improvement of the passengers comfort, related to the noise level on departure 

and landing.  

Due to the complex processes required for CFRP production, special care is 

devoted to the monitoring of the involved parameters, especially in the 

aeronautical industry where very high quality levels are required. Actually, 

during the manufacturing process, some defects, like delamination and/or 

porosity, may be induced in the composite structure. In particular, pores may 

act as starting sites for formation of cracks in service. However, whichever the 

type of defect, it may unpredictably grow when the component (like a vehicle 

structure) undergoes the typical loading of the life in service. Of course, this 

makes the manufactured structure potentially dangerous if flaws are not pre-



emptively detected and evaluated. Besides, flaws in composites may occur on 

aircraft components, during either take-off or landing, when small debris are 

raised against the vehicle, or during maintenance operations, due to drop of 

tools on the structure. This is why Non Destructive Evaluation (NDE) is 

nowadays a fundamental need both for quality assessment in industrial 

production, as well as a mean for defect characterization in order to comply 

with specific part rejection criteria. 

Generally, under the term NDE, several methodologies, competencies as well as 

instruments are included, all having in common the characteristic of allowing 

inspection of materials without damaging them. Some of the NDE techniques, 

which are largely used in aeronautics especially the standardized ones, will be 

illustrated in a section to follow (sect. 1.3).  



1.1 Some basics on composites technology 

 Materials, which are nowadays mostly employed in industrial applications, can 

be grouped into three main families: ceramics, metals and polymers. In order to 

enhance the properties of a single material, two or more of them can be 

combined to obtain a new material, which is generically called composite 

material [1,2]. Most kind of composites [3,4] are obtained by inserting a fibrous, 

or particulate material (reinforce) within a matrix, so as to form a relatively 

homogeneous structure.  

Composites can be classified owing to the type of matrix used, as: Ceramic 

Matrix Composites (CMC), Polymeric Matrix Composites (PMC) and Metal 

Matrix Composites (MMC). Some of them are often named as “advanced” 

because of their enhanced properties as compared to the more traditionally 

used structural materials, like aluminum and steel. Composites are very 

attractive not only for their superior properties, but especially for their 

versatility. Indeed, once specific structural and mechanical requirements are 

assigned, the composite material can be ad hoc designed. In the past, designers 

were accustomed to start with the raw material and after to select a consolidate 

manufacturing process to obtain the desired component. The introduction of 

composite materials changed this approach: once the shape and the purpose of 

a component are assigned, both the raw materials to be used and the 

manufacturing process are conceived and fitted to match the required 

characteristics. Moreover, due to the composite inhomogeneous nature, some 

properties can be strongly not isotropic, so the reinforcement location or 

orientation, as well as its density, can be chosen depending on the final loads 

distribution foreseen during their use. 

Ceramic [5] is particularly appreciated for its resistance to aging and to high 

temperatures. Conversely, it is brittle: defects in its microstructure could be 

responsible for the formation of micro-cracks which can unpredictably grow 

under load, so affecting the component overall effectiveness. Different 

techniques have been used to reinforce this type of material. In particular, in the 
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consequence, to establish rejection/acceptance criteria of components on the 

basis of the designer requirements. On the contrary, CFRPs are strongly 

inhomogeneous and then, many models have been developed to describe their 

behavior related to embedded defects such as interlaminar deboding, matrix 

degradation, fiber rupture and total or partial separation of the matrix from the 

fibres [14]. 

At the moment, none model is able to completely describe the complexity of the 

failure starting point as well as its propagation in composites and, as a 

consequence, it is impossible to establish an a priori rejection/acceptance 

criterion. Consequently, a “Damage Tolerance” approach is preferred and 

continuously under development [15]. 



1.2 Main manufacturing techniques  

Manufacturing processes of composites entail many parameters. Such 

parameters, together with the characteristics of the mixed materials have a 

strong influence on the quality of the final product and on its mechanical and 

structural properties.  

In this section the most used manufacturing processes will be described with 

attention to the related problems that may induce formation of hidden defects.  

CFRPs for structural application are often obtained by lamination of thin layers. 

This method allows choosing the orientation of the  fibres and their percentage 

amount to deal with specific design requirements [16]. 

One of the most used manufacturing technique is the Lay-Up, which is based 

on the superimposition of pre-impregnated laminas, i.e. laminas of 

unidirectional or woven fibres partially impregnated with resin, of thickness in 

the range 0.125 ÷ 0.25 mm. These laminas are generally found in rolls or tapes 

then, they are cut and superimposed according to assigned shape and stacking 

sequence; the latter entails the orientation of fibres and the whole thickness. 

Once the laminas are stacked, a vacuum bag is applied and an autoclave cycle 

curing is performed. Generally, the curing cycle involves cooperation between 

temperature and vacuum in order to reach the correct viscosity level of the resin 

and to allow its flowing to achieve the correct  fibres impregnation, as well as to 

take off the entrapped air or other gases. 

Pre-preg laminas are expensive, to both buy and store; indeed in order to avoid 

room temperature curing of the resin, they require preservation in a cold chest 

at –18 ºC. Moreover, autoclaves are expensive and pose limitation to production 

of very large or complex shape components. That is why new emerging 

manufacturing processes had entered the aeronautical manufacturing industry. 

In the following, some of the mostly used technologies are described. 
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1.3 Main types of defects in composites  

Defects can be inadvertently induced in composites during the manufacturing 

process. Indeed, the manufacturing process is probably the primary responsible 

of defects occurrence, especially for porosity formation, (i.e., presence of voids 

between the fibres and the matrix or within the matrix). Porosity is typically 

produced by an incorrect curing process due to uncontrolled or unexpected 

variations of the several involved parameters, such as temperature, pressure, 

timing, etc. 

As a main effect, the presence of porosity can reduce the Inter Laminar Shear 

Strength causing delamination (inter lamina debonding). On the other side, the 

presence of regions of fibres unsupported by the matrix can induce local stress 

concentration, with consequent severe degradation of strength and stiffness in-

service. That is why the porosity level must be checked, as will be more 

extensively explained in the following paragraphs. 

The typical plies made by fibres pre-impregnated with resin are generally 

prepared by either hands or by automated processes; in both cases the 

introduction of foreign bodies may occur ranging from backing film to just 

greasy marks from fingers or, in case of composites made by moulding 

processes, by slag in the moulds if not perfectly cleaned. 

More recently, low cost manufacturing processes, involving the impregnation 

of dry fibres laying in moulds, have introduced new types of defects as the fibre 

misalignment or waviness, both in, or out, of plane [26,27]. The stitching of 

fibres tows [28], typically used in order to avoid the latter cited defects, are 

themselves responsible of the introduction of voids in the areas close to the 

stitch.  

However, the main weakness of composites is their vulnerability to impact 

damage that may happen during manufacturing and in service. Impacts 

typically occur during take-off and landing due to the rising of small debris 

from the landing strip, or during maintenance due to the drop off of tools. 
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 Furthermore, due to location and volume occupied by the voids, 

inhomogeneous stress concentration may arise in the direction perpendicular to 

the laminate.  

It has also been demonstrated that, generally, bigger voids rise in between the 

plies, so determining local fibre deformation and/or inadequate fibre 

impregnation. Therefore when the tensile stress is applied in the fibre direction, 

the decreasing of the longitudinal tensile strength due to the void amount can 

be explained by taking in consideration the local fibre deformation above cited.  

The effects of voids are similar to micro-debonding between the fibres and the 

matrix, so when matrix, fibres and interfaces are all uniformly loaded, as in the 

case of transverse tensile modulus and strength tests, the local discontinuity 

between matrix and fibres determines the decreasing of both quantities.  

Three point bending tests have demonstrated that, also in the case of identical 

voids amount, flexural and bending modulus can decrease differently. This is 

due to the role played by the voids dimension and shape. Further, ILSS tests 

have demonstrated that the strength is smaller when voids are concentrated 

between the plies and so, as in the previous case, dimension and shape play a 

fundamental role.  

Works devoted to the study of the influence of voids on mechanical properties 

have demonstrated that a porosity of only 4% can determine the failure of 28% 

of coupons during ILSS (Interlaminar Shear Strength) tests [48]. Moreover, it 

has been observed that a 10% decrease of compressive strength can be ascribed 

to a 1% increase of void content [49]. On the contrary, due to their more 

uniform fibre distribution, woven fabric laminates are less influenced by 

porosity with respect to other laminate stacking sequences. 

In spite of the enormous progress in the materials development and the even 

more sophisticated methods for resin reinforcing, the problems related to 

porosity occurrence are still open, that is why scientists are still facing the 

challenge of finding new instruments and more performing methodologies for 

porosity assessment and for prediction of its effects on the affected components. 

 



1.4 Non Destructive Evaluation of CFRPs  

Due to the heterogeneous nature of composite materials and to the continuous 

evolution of the employed raw materials and manufacturing processes, the 

methodologies used for Non Destructive Evaluation (NDE) require continuous 

upgrading. In fact, effective NDE methods are required for assessment of the 

products quality with the consequent rejection of parts not complying with the 

acceptance or rejection criteria, and also for investigation of the causes of failure 

in service. This latter is nowadays gaining a primary role in the aeronautical 

industry with the aim to better understand the behavior of damaged structures 

and to make as reliable as possible their remaining forecasted life.  

Since the introduction of the Non Destructive Inspection (NDI) concept in the 

industrial materials production, many techniques have been developed. With 

the term Non Destructive (ND), one refers, in general, to all the methodologies 

which are able to inspect parts or components, without damaging them. Often, 

acronyms NDT, which stands for Non Destructive Testing, and NDE, which 

stands for Non Destructive Evaluation, are used indifferently with the same 

meaning. Generally, the first action is spent in testing and recording an output, 

while the second consists in the successive data processing, with dedicated 

software, to obtain the evaluation. Owing to the final output, in this chapter, we 

use the term NDE.  

1.4.1 NDE techniques in the Aerospace field  

The today NDE methods for which the certification of personnel can be 

obtained in the Aerospace frame (EN 4179: 2009 Aerospace series - qualification 

and approval of NDT personnel) are the following: 

 Liquid penetrant (PT)  

 Magnetic particle (MT)  

 Eddy current (ET)  



 Ultrasonic (UT)  

 Radiography (RT)  

 Thermography (IRT)  

 Shearography (ST) 

The above listed techniques can be used for a variety of materials ranging from 

metals to complex composites.  

Basically, depending on the type of component to be inspected and on the type 

of defect to be detected, different methodologies could be used [50-52] for 

nondestructive characterization of composite media, in particular, some are 

very effective for CFRP inspection and also certified; others are not yet certified 

but largely employed and especially conceived for materials investigation. In 

the following, each of them will be illustrated with also some historical hints. 

 Liquid Penetrant  

Liquid Penetrant inspection is a method for revealing surface defects 

especially in metals (cracks or welds) and ceramics (cracks). On the surface 

of the inspected part is applied a colored liquid (penetrant) which is 

sucked into defects thanks to the capillarity action. After a period of time, 

named dwell, the excess of liquid is removed and a developer applied. So 

the penetrant is drawn from the flaw to reveal its presence. Two main 

types of penetrants are used: colored, which needs a very good white 

lightening to get the proper contrast, and fluorescent which needs 

ultraviolet light (“black light”) to be revealed. 

This method, although a change of the used substance occurred, is very 

old, since it is possible to trace signs of a similar procedure already in the 

latter part of the 19th century to approximately 1940. To inspect steel and 

iron components of railways, the "oil and whiting" method was used. 

More specifically, parts were submerged in oil diluted with kerosene, then 

after removal and careful cleaning, they were coated with a fine 

suspension of chalk in alcohol, so that a white surface layer formed once 

the alcohol evaporated. The object was then subjected to vibration being 
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UT is very effective in the detection of most of the common CFRP defects, 

such as porosity, slag inclusions and delamination. This method is based 

on the principle that a ultrasonic wave, of a given frequency, is modified 

by passing through a material; in particular, it undergoes both amplitude 

reduction and reflection at interfaces between parts of different acoustic 

impedance (fig. 1.13). The very first application of ultrasonic waves for 

NDE was in between 1929 and 1935, when S.Y. Sokolov [64] demonstrated 

the reliability of metal components examination using methods based on 

ultrasounds; this became the main application of ultrasounds during 

World War II [65]. Since their first use, they have experienced a huge 

enhancement of both instrumentation and techniques, and nowadays 

ultrasounds has become an essential method for materials assessment 

ranging from metals to reinforced plastics [66]. Typically, the used 

techniques are Pulse-Echo and Through-Transmission, respectively 

involving one or two transducers whose effectiveness is of course related 

to the type of the defect and to the possibility to access just only one or 

both sides of the inspected component.  

This technique will be more extensively treated in the next chapter. 

 Radiographic Testing 

The radiographic inspection is perhaps the most effective ND method for 

a huge range of materials.  

Within only a month after the announcement of the discovery of a new 

kind of ray, by Wilhelm Conrad Roentgen in 1895, many medical 

radiographers used it successfully both in Europe and in USA. Industrial 

applications appeared later due to the need of X-ray tubes able to 

withstand the high voltages required to produce rays of satisfactory 

penetrating power. This was reached in 1913 when the high vacuum X-ray 

tubes designed by Coolidge became available. The high vacuum tubes 

were an intense and reliable X-ray source, operating at energies up to 

105eV (hard X rays). This was followed by a rapid development of devices, 
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The load is induced by mechanical or thermal methods e.g., under either 

overpressure, or heating up the whole object. When a defect is located 

near the surface, the interference fringes are there modified due to the 

stress concentration around the defect; the fringes deformation allows the 

flaw detection (fig. 1.16). Defects such as debonding, delaminations [81], 

wrinkles, slag inclusions and out-of-plane deformation can be easily 

detected with an inspection rate of almost 1 m2 per minute. 

Shearography is currently in use on a wide variety of aircraft including F-

22, F-35 JSF, Airbus, Cessna Citation X, Raytheon Premier I and the NASA 

Space Shuttle [82]. 

 

From the above brief description of the most used NDE techniques, it can be 

outlined that not all of them are suitable for composite inspection, especially for 

composites with polymeric matrices and carbon fibres. In a recent ASTM 

standard [83], the most effective techniques for PMC have been analyzed and 

their effectiveness for specific defect detection has been highlighted.  

 

Type	of	Defect	 Infrared	Thermography Radiography Shearography	 Ultrasonics

Delamination	 X X X	 X

Density	Variation	 X X 	 X

Disbond X X X	 X

Fiber	Debonding	 X X X	 X

Fiber	Misalignment	 X X 	

Fractures X X 	 X

Inclusions	 X X 	 X

Microcracks	 X X	 X

Moisture X X 	

Porosity X X 	 X

Thickness	Variation	 X X X	 X

Voids	 X X 	 X

Table 1.1. 



Among the techniques most used for aeronautic inspection, it is possible to 

resume their applicability and effectiveness in the following table 1.1.  

From the table it can be appreciated that radiographic techniques are the most 

effective for the most part of defect detection, nevertheless UT and IRT are 

considered the best solution in terms of balance between costs, health risks and 

easiness to use. 

  



1.5 NDE methods for porosity assessment in CFRP 

Porosity and, in particular, scattered voids are very common defects occurring 

during composite manufacturing, especially in CFRP. Whatever is the reason 

for porosity occurrence in a laminate, its direct consequence is the presence of 

regions where fibres are deprived of resin supporting, or of areas with local 

stress concentration. For this reason porosity is considered one of the main 

causes of degradation of the structures mechanical properties; this is 

dramatically crucial when they undergone the typical loadings of life in service.  

The overall effects of porosity on composites are strongly dependent on its 

extent as, for example, the decreasing of the density of the material as well as of 

moduli and strength. The measure of the level of porosity could be a 

complicated practical problem and generally, within the area of composites 

manufacturers, the percentage of porosity in a material is considered like a 

measure of the overall quality of the latter.  

Porosity is generally assessed in terms of density measurements through 

destructive ways. The most common method is based on the sample’s weight 

per volume (also known as volumetric method), which supplies information by 

statistical inference. Conversely, mainly in the aeronautical field, there is the 

need of having control of porosity distribution on the entire production. Then, it 

is justified the even increasing interest on the development of non destructive 

testing methods (NDT). 

Most of the studies deal with qualitative estimation of porosity. Nevertheless, to 

reach the goal of quantitative measurements, a large data base of cases have to 

be created and the results obtained in different laboratories worldwide must be 

compared to obtain a general data correlation. 

Amongst the NDE techniques for porosity assessment, UT is considered one of 

the most effective. Generally, it is carried out by directly producing ecographic 

images (c-scans), as either by correlation with a single ultrasonic frequency 

(narrowband approach), or by correlation with ultrasonic frequency slope 

(broadband approach). 
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To study the amount of porosity, also the ultrasonic Pulse-Echo technique can 

be used as disclosed in the paper by Steiner [88]. He used a 2 mm thick sample, 

with porosity varying between 1,17% and 3,57% and carried out tests by using a 

robotized probe holder. Within such set up, he was able to perform digitized 

full-volume waveform analysis and to appreciate the effects of porosity of the 

full ultrasonic wave. Specifically, he observed that almost no echoes activity 

was present in low porosity samples between the entry echo and the back-wall 

echo, whereas a huge amount of echoes appear when high porosity samples 

were inspected. 

Laser based Ultrasounds were used by Karabutov, et al. [89]. They used a short 

laser pulse to generate ultrasounds in graphite-epoxy composite materials. The 

inspected samples included different percentages of porosity (<0.1%, 0.4%, and 

1.2%). Laser was used to induce thermo-elastic expansion of the impinged layer 

with the consequent production of acoustic pressure waves, which propagate 

into the absorbing and transparent media as ultrasonic pulses in the range 1-5 

MHz. They observed that the higher the porosity amount the greater the 

acoustic attenuation coefficient and that the noise component of the scattered 

acoustic signal increased with porosity. Then, authors suggest that spectral 

representation should be used to further analyse laser-induced ultrasonic 

signals. 

In a recent study, performed at CIRA, it has been demonstrated, through 

attenuation measure by the Pulse-Echo technique, that porosity, which forms 

during the curing cycle, depends also on the laminate stacking sequence [90]. 

Since the detection of porosity in resin-starved areas of polymer matrix 

composites is very difficult and generally not reliable with the ultrasonic 

method, the attention is being devoted towards infrared thermography. An 

early investigation involving thermography and laser based Ultrasonics has 

been carried out by Steiner et. al. (1996) to monitor porosity in thermoplastic 

composite fabrication [91].  

Later, Grinzato, et al. [92] used Infrared Thermography to inspect an actual 

CRFP aeronautical component and demonstrated that by mapping local 



thermal diffusivity and effusivity, the determination of the amount of voids is 

more effective than the estimation obtained by using ultrasonic based methods.  

A similar study was carried out by Ciliberto et al. [93] who obtained useful 

results for a fuselage panel (manufactured by bonding process between a CFRP 

skin and honeycomb nomex), by comparing thermal diffusivity with ultrasonic 

results.  

In a recent review on NDE methods for porosity assessment in fibre reinforced 

polymers, Brit and Smith [94] stated that none of the current NDE techniques 

can be considered as a reference technique due to the dependence of the 

instrument response to the pores morphology as well as to the intrinsic nature 

of the fibre and matrix in themselves. Nevertheless, in a more recent study 

carried by NASA [95] it is stated that in the industrial production environment 

UT can be the most effective technique for porosity assessment. This can be 

achieved thanks to the use of processes and materials strictly under control, 

which can reduce the generally randomly variable factors, such as the porosity 

morphology, as well as by using well known instrumentation and adequately 

trained personnel. 

On the base of the above considerations and experience by international 

scientists, in this dissertation Ultrasonics and Infrared Thermography are both 

considered for porosity assessment in CFRP samples with different percentages 

of induced porosity; porosity is also measured by the destructive gravimetric 

method for data comparison. 

 

  



Chapter 2 

Ultrasonics: theory and testing 

approaches 

Ultrasonic inspection is one of the most widespread and old approach for 

materials assessment. 

Since World War II, this type of inspection emerged as a fundamental mean for 

metals flaw detection and, thanks to the huge progress in development and 

enhancement of instruments and techniques, is nowadays one of the preferred 

methods in aeronautic and aerospace industries, also for composite inspection. 

It is greatly useful for inspection of components during and at the end of the 

manufacturing process, as well as for rapid and reliable checking of 

components, as parts of a vehicle, during their life in service. 

Several are the ultrasonic techniques conceived to inspect different types of 

materials and structures, but the more used inspection arrangements are known 

as Reflection technique (or Pulse-Echo) and Transmission technique (or 

Through-Transmission).  

Special transducers, which work thanks to the piezoelectric effect, are used for 

producing a ultrasonic wave which is properly forced to travel within the 

material to be inspected. The detected signal, and its changes with respect to the 

originally incident wave, are all elements full of information about the nature of 

the material, and the in-homogeneities which may be present within it. This 

method allows to inspect materials, without damaging them, and to know 

where flaws are present, how much space they occupy in the whole component 

and how deep is their position. This knowledge, allows to apply specially 

conceived acceptance/rejection criteria which are fundamental tools to enhance 

the production quality within the industrial frame. Moreover Ultrasonic 

inspection results can be the base for mathematical models able to foreseen or, 



better, to estimate the future life of the component in the case of the flaw would 

enlarge once the component, as part of a more complex structure, is under use. 

Ultrasonic Testing (UT) is one of the most effective tool to detect the most part 

of the common defects in CFRP, in particular it can be used successfully for 

porosity assessment. 



2.1 UT historical hints  

Ultrasounds are special acoustic waves with frequencies above the upper limit 

of human audibility (approximately 20 kHz).  

At the end of the XVIII century, the speed of sound in air was already measured 

and the sound inability to propagate in vacuum had been demonstrated. The 

existence of sound waves with frequencies inaudible by human hears was 

highlighted in 1794, when the Italian biologist, Lazzaro Spallanzani, 

demonstrated that bats can fly in the darkness thanks to their ability to detect 

echoes, i. e. sound reflections, coming from objects in the environment. Some 

years later, in 1826, the Swiss physicist Jean-Daniel Colladon measured the 

speed of sound in the water of the Geneva Lake (almost 1480 m/s) thanks to his 

underwater bell [96]. In the following years, physicists were working to 

mathematically describe the propagation of sound waves and their interaction 

with matter but only in 1877, the famous treatise "The Theory of Sound” by 

Lord Rayleigh was published [97]. In this treatise, for the first time, sound 

waves were mathematically described, opening the way for the future 

theoretical developments and successive applications. 

The first reproduction of very high frequency sounds is due to the English 

scientist Francis Galton in 1876, when he created his so called Galton whistle 

(fig.2.1) [98], but the real breakthrough in the study of high frequency sounds 

was achieved in 1880 when the direct piezoelectric effect was discovered by Pierre 

Curie and his brother, Paul Jacques, in Paris [99]. They succeeded in measuring 

the electrical charges appearing on the surface of specially prepared crystals 

(tourmaline, quartz, topaz, cane sugar and Rochelle salt among them), when 

subjected to mechanical stress. 

The property that crystals exhibiting the direct piezoelectric effect would also 

exhibit the converse piezoelectric effect (mechanical stress in response to an 

applied electric field) was, firstly, mathematically deduced from fundamental 

thermodynamic principles by Lippmann in 1881 [100] and, subsequently, 

experimentally confirmed by the Curies brothers. 
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In the same years, thanks to the application of diodes and triodes, ultrasonic 

apparatus with enhanced amplification were developed. This led the French 

physicist Paul Langévin and the Russian scientist Constantin Chilowsky (who 

was resident in France), to start developing devices based on ultrasounds to 

detect submarines [102] which were largely used during World War I. Such 

device, called hydrophone included an array of thin quartz crystals between two 

steel plates with a resonant frequency of almost 150 KHz.  

Between 1929 and 1935, S.Y. Sokolov [64] demonstrated the reliability of metal 

components examination using methods based on ultrasonic waves, so he 

introduced the concept of Non Destructive Evaluation, NDE, i. e. materials 

examination without damaging them; this became the main application of 

ultrasounds during World War II. He proved that the ultrasonic signals, 

transmitted through metals, were affected by losses of energy; the ultrasonic 

energy variations were associated with the presence of flaws. Therefore, the 

detection of flaws was obtained by measurements of the ultrasonic energy 

attenuation. At Sokolov time, the resolution of this method was still quite poor, 

then he suggested the use of reflected signals instead of the transmitted ones, so 

he had the intuition of a method nowadays massively used which is the Pulse-

Echo technique. Unfortunately, at that time, the available technology was 

inadequate for the complete exploitation of such idea. 

A method for ultrasonic data visualization was introduced in 1936 in Germany 

by Raimar Pohlman [103]. His system was based on the transmission of acoustic 

waves which were transformed in images by acoustic lenses. This apparatus 

was widely used during World War II in order to allow quality controls of the 

ammunitions for the flak in Berlin. 

During the 1940’s ultrasounds for investigation of materials was improved in 

the United States by Floyd Firestone, who was the inventor of the Reflectoscope 

[104]. He modified a radar instrument and developed an amplified transmitter 

with short pulses (fig. 2.2). 
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were the first steps in human diagnostics which had led to what today is known 

as echography [109].  

Since the introduction on the market of the first ultrasound based instruments, 

it was evident that the primary purpose of using ultrasounds in industrials 

applications was the detection of defects. The possibility of defect detection led 

to develop the "safe life" approach aimed to prevent and reject potentially 

dangerous components from service in order to avoid disruptions. 

During the 1970’s the technological progress allowed improving 

instrumentation performance leading to the detection of smaller defects. In the 

industrial production, this caused the increase in the amount of the rejected 

components although the probability of failure had not changed. Thanks to the 

development of the fracture mechanics theory, it has become possible to predict 

the growth rate of cracks under cyclic loading (fatigue). This has formed the 

basis for the new philosophy of "damage tolerance" design, i.e. the possibility to 

accept structures containing defects, if the characteristics of such defects were 

known and verifiable. Therefore, the evaluation of defect type and size, became 

a mean to establish a critical size below which defects may remain to prevent 

failure. Quantitative details, about flaw size, were used as input for fracture 

mechanics predictions to achieve information on the remaining life of a 

component. This approach was adopted particularly in the military and nuclear 

power industries, leading to the Quantitative Non Destructive Evaluation 

(QNDE) . 

  



2.2 Theoretical principle for application of UT to 

NDE  

As seen in the previous paragraph, the mechanical stress is at the origin of the 

elastic waves, which can propagate in fluids and in solids.  

For NDE applications, ultrasounds are emitted and/or received by transducers, 

whose working mode is based on the piezoelectric effect.  

The ideal elastic wave equation for the completely general (anisotropic) case is 

given by [110]: 

 

ߩ
డమ௨
డ௧మ

ൌ ߣ
డమ௨
డ௫ೖడ௫

        (2.1) 

 

Where in eq. 2.1, ρ is the density, ui are the components of the displacement 

vector, λiklm is the elastic modulus tensor (the Einstein summation convention is 

followed). 

If the material is isotropic and its microstructure can be ignored (i.e. small with 

respect to the wavelength), the same equation becomes: 
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     (2.2) 

 

In eq. 2.2, G and K are respectively the shear and the bulk modulus. So, in a 

unbounded isotropic media, two kind of waves, i.e. modes, can propagate in 

principle, and each of them describes a different type of particle motion along 

the propagation direction [61], which are (fig. 2.4):  

 longitudinal waves (or compressional) – the average particles motion is 

parallel to the propagation direction, i.e. the wave behaves as a 

compression and a consequent expansion of the medium (fig. 2.4, part a);  

  transverse waves (or shear) - the particles motion is orthogonal to the 

propagation direction within the medium (fig. 2.4, part b). 
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Depending on the material and geometry of the part to be inspected, different 

types of modes can propagate. When the particles motion is constrained to the 

surface, a Rayleigh wave is produced (fig. 2.4, part c). In this case the particles 

move on an ellipse around the propagation direction. For a solid with thickness 

less or equal to the wave length, the Rayleigh waves degenerate in Lamb waves 

(plate waves) [111,112]. Moreover, in the inspection of constant cross sectional 

structures, such as railhead or pipelines, the so called guided waves can be 

used, which are obtained by the interference between longitudinal and 

transverse waves in confined structures.  

The basic principle of ultrasonic testing is linked to the reflection/transmission 

phenomena, which occur when ultrasonic waves travel across an interface 

between media of different acoustic impedance.  

The acoustic impedance is defined as: 

 

Z=ρc            (2.3)  

 

being ρ the density of the medium and c the ultrasonic wave velocity. 

Consequently, Z is strictly related to the material nature (table 2.1).  

 

MATERIAL	
		

ULTRASONIC VELOCITY	
Longitudinal Transverse	ሺShearሻ	 Impedance

in	/	s mm	/	s in	/	s mm	/	s	 Z
Fiberglass	 0.124 3.15 0.068 1.727	 6.04
Graphite/Epoxy		 0.117 2.972 0.077 1.956	 4.65
Boron/Epoxy		 0.131 3.327 0.072 1.829	 6.38
Aluminum	2024‐T4	 0.251 6.375 0.124 3.150	 17.6
Steel	4340 0.230 5.842 0.128 3.251	 45.6
Concrete	 0.167‐0.207 4.242‐5.258 0.135 3.429	 12.4
Glass	ሺPlateሻ	 0.227 5.766 No	Shear	Component	 14.5
Quartz,	Natural	 0.226 5.74 0.139 3.531	 15.2
Water	ሺ20Cሻ	 0.058 1.473 No	Shear	Component	 1.48
Air	ሺ20ºCሻ 0.014 0.356 No	Shear	Component	 0.00041

Table 2.1. Some of the most common materials acoustic properties. 

As the Snell’s law for electromagnetic waves allows reconstruction of 

transmitted and reflected waves directions in media with different refraction 

index, similarly for ultrasounds, the angles of the reflected and the transmitted 
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losses at the interfaces. As an example, if longitudinal waves are used, 

considering an air/CFRP interface, which involves an interface between two 

materials with strongly different impedance, the transmitted intensity is almost 

0.03%, otherwise, it increases to 70% if water is used as coupling media instead 

of air.  

These last are not the sole responsible of energy losses. A reduction of intensity 

is also associated with the wave propagation inside the material. In fact, 

materials can absorb and scatter ultrasonic waves, due to their intrinsic 

structure (in which there may be also slag inclusions, impurities or voids).  

In NDE, a defect within a CFRP is schematically represented as an interface 

between different media, then reduction of the ultrasonic intensity is expected. 

Generally, when the defect size exceeds the wavelength, as in the case of 

delaminations or inclusions within laminas, the ultrasonic wave can be totally 

reflected according to the Snell’s law (mirror like reflection). If the defect size is 

smaller than the wavelength, as, for example, could be metallic debris from 

cutting tools (due to manufacturing) or slag inclusions, the wave will be 

scattered under an angle, which depends on the ratio between the size of the 

defect and the wavelength. For very small defects (e.g., pores), the overall effect 

on the ultrasonic wave is a consistent energy attenuation, which is a function of 

the amount of pores. 
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testing, which consists in testing without any media needed to couple the 

material and the transducer. Air is responsible of dramatic energy losses and 

this effect increases with increasing the probe frequency [121], so the major 

attention is put in creating probes and amplifiers able to compensate such 

energy losses. At present, devices for low-frequency applications (30Hz up to 

100Hz) or for medium frequency applications (0.5 MHz up to 3 MHz) are 

available on the market; this last type is particularly useful for honeycomb 

composite inspection [122]. 

  



2.4 Inspection techniques  

Two main techniques are used for ND ultrasonic testing: Through-

Transmission (TT) and Pulse-Echo (PE) [123].  

Through-Transmission, also known more simply as transmission technique, 

requires two transducers coupled at the opposite sides of the component under 

inspection; in such a way they face each other having the material in between. 

One transducer acts as transmitter while the other one as receiver (Fig. 2.8 part 

a). This configuration allows measuring the attenuation variations of the 

received signal, which is due to the passage within the material. Defects are 

outlined through the higher intensity decrease registered in correspondence of 

in-homogeneities with respect to the intensity reduction (attenuation) measured 

in sounds parts of the component. For the effectiveness of the inspection, it is 

important to carefully put the transducers aligned and perfectly orthogonal to 

the sides of the component under inspection. 

TT is particularly suitable for detection of porosity [124], moreover, it has been 

demonstrated that the slope of the attenuation curves, which depends on the 

frequency of the applied ultrasonic signal, can be directly related to the amount 

of porosity in the material under inspection [84-86].  

For the Pulse-Echo, (Fig. 2.8, part b) only one transducer is used, which works, 

alternatively, as transmitter and as receiver. In this way, information about the 

presence of flaws are provided by the amplitude and the time of flight of the 

reflected signal. To effectively carry out the test, the period of the excitation 

pulses of the unique transducer must be long enough, and its duration short, to 

avoid overlapping between transmitted and reflected waves. Thanks to this 

method, knowledge about the planar extension of the defects, their position 

through the thickness, as well as their 3D representation can be obtained [125]. 

The PE technique is widely used for porosity detection, fibre/matrix 

distribution [88], fibres orientation [126], interlaminar debonding as well as for 

detection of impact damage [127]. 
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reflector. In this way, the signal passes through water, the sample material, and 

then to water and vice versa. Being known both the distance of the mirror from 

the sample surface and the ultrasound velocity in water, the attenuation due to 

the material can be measured. Moreover, by DTT, the sample thickness and the 

ultrasound wave velocity in it, can be also measured [130], as well as the 

porosity as shown in Patent US6684701 [131]. 

Thanks to the glass mirror, separated echoes from each interface can be 

displayed, and, as a consequence, more accurate measurements of the interfaces 

position are obtained. In immersion, the transducer must be positioned 

precisely orthogonal to the sample surface that is usually achieved by 

computerized automatisms.  

Regardless of the used technique, the received signals are turned into electrical 

signals by the transducers; thus, they can be amplified and displayed on an 

oscilloscope screen and/or acquired by suitable computer software which 

provides data visualization/representation. 

2.4.1 Imaging techniques 

Once the ultrasonic signal is received by a transducer it can be then easily 

displayed on an oscilloscope screen. This allows to study the signal and to 

understand the nature of the material inspected. In the following the most used 

imaging techniques are described. 

A-scan 

The simple signal representation on the oscilloscope screen, similar to that 

schematically shown in fig. 2.9, is known as A-scan. This imaging method is 

especially useful to assure correct positioning of the transducer, when it is 

required to be located orthogonal to the entry surface of the inspected material. 

Indeed, it can be monitored by moving the probe in order to maximize the 

signal of the echo produced at the entry surface (Entry-Echo, EE) of the material 

(fig. 2.9). Moreover, by choosing a transducer of proper frequency and 

diameter, the echo coming from the opposite side of the material is displayed; 

which is known as Back-Wall-Echo (BWE). When a defect is present, such as a 

delamination, the echo, which is due to the interface between defect and sound 
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2.5 UT for the detection of bulk porosity 

As already stated in Sect. 2.3, the overall effect of porosity on the ultrasonic 

propagation within a media is recognizable through the appreciable reduction 

of the signal intensity across the material under inspection.  

Moreover, it has been shown that there exists a strong correlation between the 

signal attenuation and the amount of porosity in a material. For lack of 

simplicity this result, already shown in the previous chapter (section 1.5), is 

here again reported in fig. 2.11. 

In theory, both TT and PE techniques are suitable for gaining knowledge about 

the decreasing of intensity due to porosity, because both provide accurate 

attenuation measurements.  

For the purposes of this dissertation, PE was chosen because, due to the double 

passage of the signal within the porous samples, the effect of porosity is, de 

facto, amplified. 

In particular, PE in immersion is used. This techniques is performed by 

submerging in water both the transducer and the sample under test. This, 

thanks to the water coupling, assures a continuous and constant impedance 

matching between the piezoelectric transducer, producing and detecting the 

ultrasound, and the material to be analysed. Of course, that implies that specific 

transducers for ultrasonic immersion testing must be used.  

Bearing in mind the schematic arrangement shown in fig. 2.5 (b), it is easy to 

understand that, in a PE inspection, the total attenuation AT, undergone by the 

signal, can be assumed as given by the sum of two principal contributions: 

 

AT=AR+AB           (2.6) 

 

In equation 2.6, AR are the losses due to the reflections of the signal at the 

encountered interfaces, which are water-specimen and specimen-water and AB 

is the total bulk attenuation due to the double passage across the specimen. 

Therefore, the measure of the attenuation of the echo coming from the Back 
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So, the attenuation coefficient in dB, can be obtained from the total attenuation, 

AT, which is the right member of the eq. 2.8, and by dividing it for the thickness 

of the sample material. 

In order to obtain the attenuation coefficient, related to the bulk material, it is 

needed to know the losses, or as the same, the attenuation due to the reflection 

at interfaces. This can be obtained experimentally with several methods; the 

method used in this dissertation will be described in the next chapter 5. 

  



Chapter 3 

Infrared Thermography: theory and 

nondestructive testing techniques 

It is well known that every object at temperature T above absolute zero (i.e., T > 

0 K) emits electromagnetic radiation in the form of rays which mainly fall into 

the infrared portion of the electromagnetic spectrum [133]. Such 

electromagnetic radiation, also called infrared radiation, or thermal radiation, 

moves from one place to another one through electromagnetic waves like 

visible light but of longer wavelength. To the “eye in the infrared” (i.e. an 

infrared imaging device), the world reveals features not apparent to the visible 

eye. In fact, through conversion of the detected energy into thermal images, 

every object, animal, or human being whose temperature is higher with respect 

to its background, can be discriminated regardless of the available visible light. 

In addition, in the infrared,  visibility is improved in adverse conditions such as 

smoke or fog.  

Infrared Thermography has to be considered as a relatively young 

methodology for NDE assessment of materials. Actually, infrared based 

techniques were known since the early part of the ‘900, but their major celebrity 

was achieved starting from the ’80 with the understanding and exploitation of 

heat transfer mechanisms. Since then, a huge improvement followed leading to 

the addition of Thermography among the ASTM recommended practice for 

CFRP inspection; from that, also recommendations for qualification and 

certification of the personnel involved with IRT in NDE have been included in 

the Aeronautical Standard EN4179. 

Infrared Thermography, due to its versatility and variety of applications, can 

also be used for thermo-physical materials characterization. Indeed, there are 

some specific techniques for emissivity coefficient measurement, as well as for 

thermal diffusivity and thermal conductivity. In this dissertation, a technique 



for diffusivity evaluation has been used, as well as Lock-In thermography, both 

in reflection and in transmission modes, for NDE assessment of CFRP. 

  



3.1 Some historical hints on Infrared 

Thermography 

Infrared thermography (IRT) is generally considered a recent inspection 

technique because has been included among the ASTM standardized NDE 

methods only a few years ago. Nevertheless, the Russian scientist Vladimir 

Vavilov [134] has found traces of its use in non-destructive inspection during 

the early years of the ‘900. The first infrared device was patented in 1914 by 

Parker [135], which was used for icebergs detection, although he attempted also 

to distantly distinguish human and animal beings. Twenty years after, in 1934, 

Barker [136], proposed a system for forest fire detection. In the same period, 

Nichols suggested the first industrial application [137], to control the heating 

uniformity in steel strips. 

However, the idea to produce the very first commercial infrared system (named 

AGA Thermovision) was conceived at the Swedish Defence Department (FOA) 

in cooperation with AGA in the 1950s. An almost complete historical evolution 

of infrared imaging devices can be found in [138]; herein, only some of the most 

important steps are reported. The first infrared camera prototype was devoted 

to military applications. It was based on a thermistor bolometer detector type, 

which is the technology mostly used nowadays. The principle of operation was 

pretty simple and smart, but the time required to obtain a thermogram was 

very long (about fifteen minutes). The initial devices, manufactured before the 

second world war, were based on semiconducting diode detectors obtained 

from indium antimonide or lead-tin-telluride materials; the single detector was 

provided with mechanical scanning to form a complete image.  

It is reported of an airborne optomechanical IR imaging system developed by 

Barnes (USA) in 1954. This opened the way to the development of Forward 

Looking Infrared (FLIR) systems, which were mounted on aircraft and operated 

with line scanning only since the frame scanning was assured as due to the 

airplane movement.  
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3.2 IR radiation: theoretical principles  

The theory of InfraRed Radiation is the result of over 40 years of research from 

many scientists starting with the Kirchhoff’s enouncement of his law in 1859 

and his blackbody definition in 1860, followed by the work of Stefan (1879) and 

Boltzmann (1884), the Wien’s law in 1893, among others, and culminated with 

the enouncement of Planck’s law in 1900. 

In a paper published in 1900, Planck proposed a mathematical solution to 

characterize the radiant energy distribution over the entire frequency spectra. 

To explain this results, he conceived the revolutionary idea that energy is 

radiated in discrete units named quanta, rather than as a continuum stream as 

described by classical physics. He introduced a universal constant that he called 

quantum of action, which is better known as the Planck’s constant, h. Although 

not fully understood at that time, Planck’s concepts were gradually adopted by 

the scientific community forming the basis of the Quantum Theory and marking 

the beginning of a new era in Physics. 

Following the Planck’s theory, all matter regardless of its state or composition 

continuously emits Electromagnetic (EM) radiation, if its temperature is above 

the absolute zero. The emitted radiation can be viewed either as the 

transportation of tiny particles called photons or quanta or as the propagation of 

EM waves. This so called Wave-Particle Duality [143], is very convenient in 

describing EM behaviour. 

For instance, the amount of energy radiated by a photon, E (i.e. a particle 

measure), can be directly related to the corresponding wavelength λ, or 

frequency f, of a wave, through the following relationship: 

ܧ ൌ ݄ ∙ ݂ ൌ


ఒ
         (3.1)  

where h = 6.6256 x 10-34 Js is a universal (or Planck’s) constant, and c=2.9979 x 

108 ms is the speed of light. 

 

 



3.2.1 Black Body Radiation 

In 1860, Gustav Robert Kirchhoff (1824-1887) defined a blackbody as a body that 

neither reflects nor transmits incident radiation. Instead, a blackbody absorbs 

all incident radiation coming from all directions and covering the whole 

wavelengths spectra. In addition, to be a perfect absorber, a blackbody is also a 

perfect radiator. Therefore, a blackbody is able to emit 100% of its energy; none 

body can emit more energy than a blackbody. In addition, a blackbody is a 

diffuse emitter, i.e. the emitted radiation is a function of wavelength and 

temperature but independent of the direction. 

Max Planck found an expression describing the spectral distribution of the 

radiation intensity from a blackbody, which is known as the Planck’s Law: 

,ߣఒ,ሺܧ ܶሻ ൌ
భఒషఱ


൬
మ
ഊ൰ିଵ

        (3.2)  

where Eλ,B is the energy spectral density of the blackbody, C1=3.742 x 10-16 

W/m2 is the first radiation constant, and C2=1.4389 x 10-2 mK is the second 

radiation constant. 

Equation 3.2 is plotted in figure 3 as a function of the wavelength for some 

specific temperature values. 

In 1879, Josef Stefan (1835-1893) experimentally determined a simple expression 

relating radiant emission from a surface to its temperature. Stefan’s results were 

theoretically confirmed in 1884 by one of his former students, Ludwig 

Boltzmann, (1844-1906). 

The resulting expression, known as Stefan-Boltzmann Law, states that the total 

radiant emission of a black body, integrated all over the wavelengths, is 

proportional to the fourth power of its absolute temperature: 

 

ܧ ൌ ߪ ∙ ܶସ          (3.3)  

 



where σ=

obtained 

(0<λ<∞). 
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uniformly in all directions and the distribution takes the appearance of semi-

circumferences (fig. 3.6). 

The reflectivity ρ is defined as the fraction of the incident radiation reflected by 

a real surface with respect to G. Although reflectivity depends on the direction 

of both the incident and reflected radiation, it is convenient to work with 

integrated average to avoid complication. If a surface reflects radiation in all 

directions regardless of the direction of the incident radiation, the surface is 

said to be diffuse. Conversely, if radiation is reflected with an angle equal to the 

incident one, the surface is said to be specular. 

Absorptivity and reflectivity are responsible for our perception of colour. 

Colour is not the result of emission, since only objects at high temperature 

(higher than ~800 K) glow in the visible portion of the spectra. Instead, colour is 

the result of a balance between reflection and absorption. A surface is white if it 

reflects all incident radiation in the visible spectra, and it is black if it absorbs all 

the irradiation. Colour, however, does not give an indication of the absorbed or 

reflected radiation which mostly occurs in the IR band. The typical example is 

the snow, which is highly reflective at visible wavelengths (between 350 and 

750 nm), but absorbs and emits IR radiation strongly, approximating a 

blackbody at longer wavelengths. 

The transmissivity  is defined as the ratio of the directly transmitted radiation 

after passing through a participating medium (slab, atmosphere, dust, fog) to 

the amount of radiation that would have passed the same distance through a 

vacuum. Dissolved colloidal and suspended particles cause further attenuation 

by absorbing and scattering effects. Higher attenuations are observed at long 

wavelengths. Transmissivity is of importance when selecting the spectral band 

of operation of the IR equipment. 

So, the behaviour of a body, once it is impinged by a EM radiation, involves all 

the above described phenomena. In general, a body may absorb, reflect, and 

transmit a part of the incident energy G; for the energy conservation law (first 

law of thermodynamics) it follows: 

 

ܩ ൌ ܩߙ  ܩ߬   (3.8)        ܩߩ



 

which in terms of specific properties gives: 

 

ߙ  ߬  ߩ ൌ 1         (3.9)  
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measured and compared to the values of the operating temperature of the 

sensor. 

3.3.1 Thermal detectors 

The working mode of thermal detectors is based on the variation of the 

electrical resistivity of a semiconductor once it is impinged by a radiation. The 

output signal is practically constant regardless of the frequency; the response 

time is higher than the time needed by the photons detectors. Thermal detectors 

can be classified as thermometers, thermocouples, thermopiles, bolometers and 

newer microbolometers and microcantilevers. 

Thermopiles functioning is based on thermoelectric effect. They are obtained by 

a certain number of thermocouples connected in series. Each thermocouple is 

made by a junction between two different materials. Once the junction is 

heated, an electric potential difference rises across it due to the Seebeck effect. 

This electric potential is proportional to the induced temperature variation with 

respect to the ambient which allows to measure the actual temperature. The 

first thermopiles were simply made using thin wires of, as an example, copper-

constantan. Nowadays these devices are made with thin films deposited on a 

substrate allowing reduced dimension, moreover their sensitivity can be 

enhanced by encapsulating the thermopile in a low thermal conductivity 

medium (i.e., to avoid losses to the surroundings).  

Bolometers allow to measure temperature through electrical resistance 

variations induced by temperature changes [149]. Typically they are based on a 

weathstone bridge: once one of the two bridge’s branches is heated by a thermal 

radiation it changes its resistance of a quantity proportional to the change of 

temperature. Today microbolometers can be found which are obtained thanks 

to micromachining of silicon: a grid of vanadium oxide or amorphous silicon 

heat sensors over a porous silicon bridge as thermal isolating and mechanical 

supporting structure. The microbolometer grid is commonly found in two sizes, 

a 320×240 array or less expensive 160×120 array. 

Pyroelectric detectors as their name says, are based on the pyroelectric effect: 

once the temperature of the crystal increases its surface charge varies due to the 



dipole moment changes. For continuous operation, the common technique is to 

incorporate a chopping device inside the optical system and to create an AC 

output signal; the spurious signals caused by low-frequency ambient 

temperature can be filtered. Triglycine sulfate (TGS), lithium tantalate (LiTaO3) 

and polyvinyl fluoride (PVF2) are materials that exhibit the pyroelectric effects. 

Microcantilevers are based on the thermal expansion of bimetals [150] e.g., 

silicon nitride and gold film. Due to the different expansion, when the bimetal 

temperature changes, one element will expand more than the other, causing the 

device to bend out of plane. The actual temperature can be measured if the 

degree of bending is known.  

3.3.2 Photon detectors 

Photon detectors convert incident photons directly into free current carriers by 

photoexciting electrons across the energy band gap of the semiconductor to the 

conduction band. This produces a current, voltage or resistance change of the 

detectors. The photoexcitation is caused by the radiation interacting directly 

with the lattice sites. Therefore, the temperature of the detector must be low 

enough so that the number of carriers thermally excited across the bandgap is 

less significant (i.e. the charges produced by the impinged radiation must be 

higher than the thermal noise charges). To maintain a low temperature, cooling 

systems are required, which increase the system cost.  

Four main types of photodetectors can be found Photovoltaic, Photoconductive 

(intrinsic and exstrinsic) [151], photoemissive and newer QWIPs. 

Photovoltaic (PV) intrinsic detectors structure is based on a P-N junction device. 

Under IR radiation, the potential barrier of the P-N junction leads to the 

photovoltaic effect. An incident photon with the energy greater than the energy 

band gap of the junction generates electron-hole pairs and the photocurrent is 

excited. PV devices operate in the diode's reverse bias region; this minimizes 

the current flow through the device that in turn minimizes power dissipation. 

In addition, PV detectors are low noise because the reverse bias diode junction 

is depleted of minority carriers. The best performances are obtained with 



detectors fabricated from Si, Ge, GaAs, InSb, GaAs and MCT (Mercure-

Cadmium-Telluride). 

The photoconductive (PC) intrinsic detectors mechanism is to produce the 

conductance change under the IR radiation [152]. In this detectors, the free 

carriers generated by the photon energy cause increase of the conductance of 

photoconductive material under an applied constant electric field. The incident 

IR radiation is absorbed to generate holes and electrons. Under the applied 

constant bias, the resultant current level is proportional to the incident photon 

flux. Common materials are lead sulfide (PbS), lead selenide (PbSe) and 

mercury cadmium telluride (HgCdTe) [153].  

Extrinsic detectors are based on Si (Si: X) or Ge (Ge: X) doped with impurities 

such as Boron, Arsenic and Gallium. They are similar to intrinsic detectors. 

However, in extrinsic detectors carriers are excited from the impurity levels and 

not over the bandgap of the basic material [154]. Both PV and PC types exist 

also as extrinsic. They have the advantage of being able to operate at much 

lower wavelengths than intrinsic type. 

To avoid the extreme cooling demand of extrinsic semiconductor detectors and 

in some cases to reach even longer wavelengths, there is a third approach i.e. 

photoemissive detectors (PE), or freecarrier or Schottky-barrier detectors. In 

these detectors, a metallic compound, for example, platinum silicide (PtSi), is 

overlaid by doped silicon. A photon bounces an electron or a hole, out of the 

conductor into the silicon. The advantage of such devices is that the response 

does not depend on the characteristics of the semiconductor but on those of the 

metal, which are extremely uniform, so that high uniformity of response is 

much easier to achieve. However, absorption is proportional to the square of 

the wavelength, so for wavelengths of a few microns, efficiency and sensitivity 

are much less than for extrinsic devices.  

The fourth main type of IR photon detector is the quantum-well IR 

photoconductor (QWIP) [155]. The operating principle is similar to that for 

extrinsic detectors. The dopants are used to alter the band structure. But in 

QWIPs, the dopants are concentrated into microscopic regions, creating 

quantum wells, where the band structure has shifted. Detection occurs when a 
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detection relies on capacitive or resistive bolometers. In all cases, the detector 

signal is coupled into a multiplexer and read out in a video format. 

FPA where firstly conceived for military applications, but they entered the civil 

market in 1995 with the Thermovision 1000 by Agema. FPA is the technology 

mostly used for both cooled and uncooled detectors [156]. 

The performance of a detector is mainly evaluated through three parameters 

[157] that are: Responsivity Rv, Noise Equivalent Power (NEP) and Detectivity D*. 

The Responsivity Rv is a measure of the signal output Sout (voltage, or current) 

per incident radiation Ein over the active area of the detector Adet: 
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The responsivity can also be written as: 

 

ܴ௩ ൌ
ఒఎொ


         (3.11)  

 

with ηq the quantum efficiency, Qe the electron charge, pg the photoelectric gain.  

The Noise Equivalent Power (NEP) defines the intrinsic noise level of the detector, 

or better the detection limit of the detector. It can be expressed by: 
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where Nout the noise output and Δf the noise bandwith.  

Detectivity D* defines the resolving power of the detector and is expressed in 

terms of the signal-to-noise ratio with respect to the incident power: 
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The common units of D* are cm Hz1/2/W; often, in literature, this quantity is 

measured in Jones in honour to D. Clark Jones who defined this quantity in 

1959.  

Generally noise is due to two main causes: the noise intrinsic to the device 

circuits and electronics and to the environment radiation. Generally the first 

contribute is negligible, so the detection limit is evaluated by taking into 

account only the second contribution. This last is called Background Limited 

Infrared Photodetection (BLIP).  

The radiation coming from the environment is known as background photon 

flux density or dark current. The amount of radiation received by the detector 

depends on its responsivity to the wavelengths contained in the radiant source 

and on its Field Of View (FOV) of the background.  

A relevant parameter for infrared systems is the Noise Equivalent Temperature 

Difference (NETD); it is the temperature difference which would produce a 

signal equal to the camera’s temporal noise, NL. It is generally indicated as the 

minimum temperature difference which the camera can resolve and is given by: 
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In which ΔSm is the signal measured for the temperature difference ΔT.  

 

  



3. 5 IRT for NDE 

IRT for NDE is aimed to the detection of subsurface features (presence of 

anomalies/defects), thanks to relevant temperature differences observed on the 

surface with an infrared camera. IRT can be carried out via two concepts: passive 

and active. The passive approach is addressed to test materials and structures 

which are naturally at a different (higher, or lower) temperature with respect to 

the ambient. On the contrary, the active approach involves an external stimulus in 

order to induce relevant thermal contrast in the object (supposing that the part 

under test is at thermal equilibrium with the ambient prior to testing). 

In most of the applications, passive thermography is rather qualitative because its 

function consists of revealing temperature difference ∆T with respect to a 

reference one. However, thanks to proper modeling, also passive thermography 

could allow for quantitative measurements as can be found in literature mainly for 

maintenance of power generation [158] and electric facilities [159], for emissivity 

evaluation [160], for assessing the integrity of part of bridges [161] and so on. 

For NDE purposes, the active approach is generally used. The active approach is 

characterized by the need of using a thermal stimulation source to get the needed 

information about the material, or the structure under inspection.  

It allows, indeed, more accurate knowledge of the subsurface features, although 

an important condition must be accomplished for its effectiveness: the defect must 

be different enough from the rest of the hosting material, beyond a thermo-

physical point of view, (i. e. its response to thermal stimulation must be different 

from the response of the surrounding material).  

There exists not a single IRT technique to get information about the presence of 

flaws, their dimension, their position and so on. Moreover, the effectiveness of a 

test is strongly dependent on the nature of the material and its thickness, that is 

why several techniques have been developed starting from the Heat Diffusion 

Theory, such as Pulsed Thermography (PT), Stepped Heating (SH), Lock-In (LT), 

Pulsed Phase Thermography (PPT) and Vibrothermography (VT).  



PT consists of exciting the material surface with a thermal pulse to increase its 

temperature of few degrees; this may be simply accomplished with a halogen 

lamp (or other methods). The behavior of the specimen is analyzed either during 

the rising surface temperature, or during the decay [162,163]. A transmission 

scheme is possible (infrared detector and stimulation unit on either side of the 

specimen) only if both surfaces are accessible, otherwise the reflection scheme 

must be adopted [164]. Anomalous temperature decay is the indication of 

presence of subsurface features. Stimulation could be of few millisecond duration 

in the case of highly conductive materials (metals) or of seconds in the case of 

lower conductivity materials (such as plastics, CFRP). It is very common due to 

the simplicity of application and interpretation of results.  

SH consists of thermal excitation with a long pulse of low power. The heating 

pulse is long compared to the observation time and acts as a temporal step 

function. The start of the heating is synchronized with the thermal camera 

acquisition which covers the entire heating period. Also in this case variation of 

surface temperature (normalized with respect to the behavior in sound surface 

parts) with time are indication of subsurface anomalies. This technique is 

sometimes referred to as Time-Resolved-Infrared (TRIR) technique [165] and is 

particularly indicated for coating thickness evaluation [166] or of multilayered 

coatings.  

LT is applied with a modulated heating source, such as a halogen lamp connected 

with a function generator, which launches a thermal wave inside the material to be 

inspected. The basic concept of modulated, or lock-in, thermography was 

described by Carlomagno and Berardi [167] and later further investigated by 

Beaudoin et al [168], Kuo et al [169], Busse et al [170] and Balageas et al. [171]. 

Subsurface features reflect the thermal wave, with a specific amplitude and phase 

delay. The term Lock-In refers to the need of monitoring of the exact time 

dependence between the output signal and the reference one (the modulated 

thermal source). This can be done by lock-in amplifier, or, in a more complex 

system, as the one used for this dissertation, by a computer software which 

provides module and phase maps. The phase maps are the major point of interest 

of this technique, due to their insensitivity to non uniform heating and from 



surface features, further its penetration depth is almost twice that for module 

maps. 

PPT combines the advantages of both PT and LT without sharing their drawbacks. 

It was introduced by Maldague and Marinetti in 1996 [172] and later analyzed by 

Vavilov and Marinetti (1999) [173]. For PPT applications the material is heated 

with a Dirak-like thermal pulse, so a mix of frequencies are launched in the object. 

By performing the Fourier transform of the temperature evolution over the field of 

view the phase, or magnitude, image can be presented as in LT. Deeper 

thicknesses can be inspected with less influence of surface infrared and optical 

features. A comparison between PT, LT and PPT applied to the evaluation of 

frescoes was performed by Carlomagno and Meola (2002) [174]. 

Vibrothermography is based on the heat generated by friction in discontinuity 

zones. Then, to apply vibrothermography, the structure under analysis is 

externally induced to vibrate, then heat is released by friction where the defects 

are located, at specific resonance frequency [175]. This local heating is revealed by 

the thermal camera. 

In the following Fourier’s Heat diffusion theory is briefly described since it is 

exploited for data interpretation. Some specific thermographic techniques are 

more deeply described, which are used for the experimental tests reported in this 

dissertation. 

3.5.1 Heat transfer by conduction  

It is known that, anytime there is a temperature difference T1-T2>0 in a physical 

system, a heat flux is generated which is directed from the hotter region to the 

colder one. This process continues until the physical system reaches a uniform 

temperature. 

The way the heat flows depends on the nature of the transport mechanism which 

can be radiation, convection and conduction. In condensed matter the principal 

mechanism is the conductive one; so the rate of heat transferred per unit area in 

the direction x of a homogeneous material is governed by the first Fourier’s law: 

ሶܳ ௫ ൌ െ݇ܶሺݔሻ	         (3.15)  



 

where k, is the thermal conductivity.  

 Using eq. 3.15 in the energy conservation equation (the first principle of 

Thermodynamics) and assuming k constant, we obtain a parabolic differential 

equation, well known as the heat diffusion equation, often called Fourier’s second law: 

 

ሻݔଶܶሺ െ
ଵ

ఈ

డ்ሺ௫,௧ሻ

డ௧
ൌ 0	        (3.16)  

 

The thermal diffusivity  depends on some physical properties of the material: 

 

ߙ ൌ


ఘ
          (3.17)  

 

where ρ is the density and cp is the specific heat at constant pressure. 

Further, the product ρ·cp=C is the specific heat capacity, or heat capacity per unit 

volume. 

In a general sense, thermal diffusivity is the measure of thermal inertia. In a 

substance with high thermal diffusivity, heat moves rapidly through it because the 

substance conducts heat quickly relative to its volumetric heat capacity.  

Another fundamental parameter is the thermal effusivity defined as: 

 

݁ ൌ ඥ݇ܿߩ ൌ


√ఈ
ൌ 	ߙ√ܿߩ       (3.18)  

 

The effusivity determines the surface temperature of a body and its behaviour at 

interfaces in presence of periodic or transient heat sources. 

A valid solution of eq. 3.16 [141, pg. 50] is given by the temperature pulse: 

 

 ܶሺݔ, ሻݐ ൌ
ଵ

ଶ√గఈ௧
݁ି

ೣమ

రഏഀ        (3.19)  

Eq. 3.19 is the well-known Gaussian function, which has the following property: 

    



 ܶሺݔ, ݔሻ݀ݐ ൌ 1	
ାஶ
ିஶ   for all t0     (3.20) 

 

The eq. 3.20 implies that heat diffuses all over the space (in this case along the x 

axis), whatever is t. This is known as the thermal paradox, because it involves the 

concept that heat diffuses with infinite velocity. This paradox, typical of parabolic 

equations, was resolved by Cattaneo [176]. He found that in equation 3.16, a term 

has to be added which is derived by the hypothesis that the heat flux does not 

depend only on the temperature gradient but also on the gradient of the 

temperature change rate: 

 

Φ௫ ൌ െ݇Tሺݔ, ሻݐ  ߬݇ ሶܶ ሺݔ,  ሻ      (3.21)ݐ
 

In eq. 3.21, the time derivative term makes the heat propagation velocity finite, so 

the heat flux does not appear instantaneously but it grows gradually with the so 

called relaxation time, τ [177,178].  

Using the 3.21 instead of the 3.15, we get a new diffusion equation where a second 

derivative of time appears: it is a hyperbolic equation also known as the Cattaneo 

equation: 

 

డమ்ሺ௫,௧ሻ

డ௫మ
െ

ଵ

ఈ

డ்ሺ௫,௧ሻ

డ௧
െ

ଵ

௩మ
డమ்ሺ௫,௧ሻ

డ௧మ
ൌ 0      (3.22)  

 

Here v = (/)1/2 is known as a (finite) velocity of propagation of the thermal signal, 

although it is just a collection of the terms  and . 

For macroscopic solids at ambient temperature this time is of the order of 10−11 

seconds so that for NDE purposes, where typically heating time is highly longer 

than the relaxation time of materials [179,180], the use of eq. 3.16 is adequate. 

3.5.3 Pulse Thermography 

Consider the case of a semi-infinite body of isotropic material, with the surface in 

x=0 which is subjected to a rapid thermal pulse with amplitude Q. The solid 

matter typically treated in NDE inspections, is generally of macroscopic 
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Thermal contrast defined as ΔT= Td - TSa provides a good indication of defect 

characteristics (qualitative and quantitative) [181] when working with relatively 

shallow defects in homogeneous materials, which entail small non-uniformities at 

the surface , and the effect of non-uniform heating is the most reduced  possible. 

Indeed, the major difficulty in the application of PT is to obtain the proper 

uniform heating of the inspected surface. This can be easily reached if the surface 

is small with respect the used lamp, but for larger surfaces arrays of lamps can be 

used or, for some applications, it is convenient the Lateral Heating (LHT) method 

conceived by Grinzato et al. [182]. For the inspection of cavities and channels, 

when a strong heat pulse is required, the pulse thermography with Injecting Water 

Vapour (PTJV) may be convenient. PTJV was proposed by Meola et al. [183] to 

detect ceramic residuals in the tip of turbine blades. 

3.5.2 Flash Thermography for diffusivity measurement  

The measure of thermal properties of materials is constantly a matter of interest 

for scientists, especially in the field of NDE for two main reasons: first of all 

because this knowledge allows to develop models in order to predict the 

behaviour of materials and, as typically occur in experimental science, because 

from the measure of a single parameter many others can be estimated. This is the 

case of thermal diffusivity. 

Due to the definition of thermal diffusivity, its measure can be very useful for 

materials characterization, due to the density and thermal conductivity 

dependence, which are affected by the presence of pores 

This is well known for a specific class of materials such as the ceramic Carbon-

Carbon, for which the linearly dependence between the amount of porosity and 

the diffusivity has been demonstrated [184]. Studies on other types of composites 

for Aeronautical applications have shown that the diffusivity measure is a very 

effective tool to evaluate porosity [185-189]. 

Among the possible methods involving IRT, the following described one is the 

first introduced in 1961, by Parker et al. [190] for the thermal characterization of 

materials through a thermal device and a Dirac-like heating source. It is a special 



application of the Pulse Thermography above described and applied in the 

transmission mode. 

The solution of the  eq. 3.16 for an isotropic slab with parallel surfaces thermally 

insulated and uniform thickness L, will be [141, pg. 101]: 
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           (3.24) 

 

In the case that the side of the slab in x=0 is heated by a thermal Dirac-like pulse Q 

which is instantaneously and uniformly absorbed within a small depth  from the 

front surface in x=0, the following boundary condition can be applied: 

 in 0<x<  

T(x,0)=Q/(ρcp) (heat absorption within ) 

 in <x<L 

T(x,0)=0 (no internal heating) 

Therefore the solution becomes:   
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 being the density, c the specific heat, T0 the initial constant temperature and t the 

time after pulse heating.  

Since δ is very small for opaque materials, therefore it can be made the 

approximation sin(nπ/L)  nπ/L. So the above solution can be rewritten for the 

opposite side x=L, as:  
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modulation results; this can be easily arranged with a halogen lamp connected to a 

function generator for sinusoidal driving. It is basically performed in reflection 

mode. 

If the surface in x=0 of a semi-infinite solid is impinged by a sinusoidal heat source 

with modulation frequency , and its initial temperature is T0, by considering 

photo-thermal methods applied to the lock-in amplifier which allows filtering the 

stationary component, the harmonic heat delivered at the surface (x = 0) of a 

homogeneous and semi-infinite material results in a (time dependent) thermal 

wave which propagates inside the material according to: 
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where ܶሺݔ,  ሻ is the periodic temperature component. It is worth nothing thatݐ

ܶሺݔ, ,ݔሻ should be, more correctly, indicated as ෨ܶሺݐ  ሻ; however, the most simpleݐ

way of ܶሺݔ,  ሻ is largely used by people involved with lockin thermographyݐ

measurements once the meaning is known. The first part of the second term of eq. 

3.30 is related to the steady oscillation (asymptotic) solution, whilst the second term 

is a transient disturbance due to the initial thermal oscillation at the starting time 

t=0 which dies with increasing t.  

Then the used solution is the first part of the second term of the eq. 3.30. 

Eq. 3.30 includes the diffusion length  and the phase  (which is the delay of the 

propagating wave with respect to the thermal stimulation) defined respectively as: 

ߤ ൌ ටଶఈ

ఠ
ൌ ට

ఈ

గ
         (3.31) 

߮ሺݔሻ ൌ ௫

ఓ
          (3.32) 

Since the thermal diffusion length is inversely proportional to the modulation 

frequency, the higher is the frequency the shorter is the distance travelled by the 
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Similarly to the concept of temperature contrast, a definition for the absolute 

phase contrast Δφ, can be found in literature [195] which is defined as: 

 

Δ߮ ൌ ఝೄିఝವ
ఝೄ

         (3.36) 

 

Where S and D are respectively the phase value of sound and defect area. Of 

course, due to eq. 3.32, the phase can change with frequency, and, it can assume 

positive or negative values; further, it varies also because of its dependency to the 

diffusivity of the defect, which can be higher or smaller than that of the sound area 

one. Of course, there exists a frequency for which the contrast is almost zero, 

which is known as blind frequency, fB. 

Thanks to eq. 3.33 the diffusivity of a slab with known thickness can be easily 

calculated. This can be done by putting a benchmark in contact with the rear side 

of the slab. Once the higher stimulation frequency allowing to obtain an 

appreciable Δ in the area occupied by the benchmark is found, this f can be used, 

together with the p, (which, in this case is the thickness of the slab, L) simply by 

inversion of  the 3.33. we obtain: 

 

ߙ ൌ ݂ߨ ቀ


ଵ.଼
ቁ
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         (3.37) 

 

By this approach, similarly, the depth of defects embedded in CFRP laminates can 

be obtained if diffusivity is known, simply through the f (this time using  eq. 3.31 

and 3.33), allowing a Quantitative IRT analysis [196-197]. A drawback of LT 

performed with optical heating is that it is sensitive to thermal boundaries, which 

sometimes does not allow reliable discrimination of the defective area with respect 

to the sound areas. This can be resolved by applying a different thermal 

stimulation source, as the case of mechanical elastic waves (ultrasound) in order to 

induce a selective heating stimulation. Indeed, only the defect areas produces local 

heating due to friction effect [198]. 

  



Chapter 4 

Manufacturing of CFRP with preset 

amount of porosity 

In order to study the effectiveness of Infrared Thermography for porosity 

assessment in CFRP, several coupons with induced porosity were manufactured. 

From literature, it is known that porosity is a problem involved principally within 

the curing cycle, chosen for CFRP laminates, due to non optimized setting of 

pressure-temperature parameters. Specifically, the applied vacuum pressure plays 

a key role for both eliminating air entrapped during the lamination phase (hands-

made)and removal of gases rising during curing of the resin in autoclave. 

This awareness was exploited to perform a curing cycle suitable, contrarily to that 

is commonly done, to deliberately insert porosity within the laminate. Starting 

from the curing procedure suggested by the pre-impregnated laminas provider, 

which of course is conceived for achieving optimal material characteristics, the 

pressure parameter was modified in such a way to obtain specimens with induced 

porosity. More specifically, the pressure was set at different percentages of the 

bulk prescribed one to have specimens with different amount of porosity.  

The obtained porosity percentages were firstly evaluated through destructive 

methods. 

One of the most used and reliable method for porosity assessment is the “acid 

digestion”, which implies elimination of the resin in the whole component in 

order to isolate the contained fibres. Nevertheless, the use of acids entails serious 

safety issues, which lead this method to be discarded in favour of two more 

feasible ones: gravimetric measures for density evaluation and optical microscopy. 

Thus, the volumetric percentage of embedded voids was determined by the 

gravimetric method, while the voids location was highlighted by optical 

microscopy.  

  



4.1 Coupons with induced Porosity 

As previously observed in sections 1.3.1 and paragraph 1.5, porosity is a defect 

which typically rises when the autoclave curing is not perfectly performed. 

Specifically, the vacuum pressure is the parameter primarily responsible for 

entrapment of air in the laminate, as well as for stagnation of gases produced 

during curing of the resin. 

These concepts were used to produce coupons with induced porosity. The idea 

was to apply an incorrect pressure-temperature cycle for the autoclave curing. 

Thus, starting from the optimum cycle, indicated by the provider of the pre-

impregnated laminas, some changes were introduced. In particular, the vacuum 

pressure has been set to a lower value with respect to the recommended value (7 

bar), whilst the temperature evolution versus time was not changed in order to 

allow, in any case, the decreasing of the resin viscosity to allow it flowing and 

melting. 

Further, to obtain coupons with a certain amount of porosity, coupons were 

collected into several groups each of them cured at a different percentage of the 

prescribed pressure (7 bar). Specifically, the first group was cured by applying the 

full pressure in order to get reference laminates; then, the successive groups were 

cured at 75%, 50%, 25% and 0% of the prescribed pressure. A schematic of the 

coupons type produced can be found in the table 4.1. 

4.4.1 Manufacturing procedure 

The coupons were made of shits of unidirectional carbon/epoxy pre-preg laminas 

M21/IM7 (fig. 4.1) provided by HEXCEL, which were cut at established 

dimensions in order to lay up them by hand. To investigate the possible influence 

of the  fibres orientation (fig. 4.2) on the porosity formation, particularly the 

distribution of pores, coupons were conceived of four different stacking sequences 

(table 4.1). Moreover, a kapton® disk, made of two overlapped ones of thickness 

0.0625 mm each, was inserted in the middle of the stacking sequence in order to 

simulate a slag inclusion, or a delamination (fig. 4.3 and 4.4). Then considering the 
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4.2 Induced porosity assessment 

In order to estimate the amount of induced porosity, several techniques can be 

used. As shown in a report by MIT [199], and in many other literature sources, 

three are basically the most reliable techniques: 

1) Volumetric method; 

2) Microscopy; 

3) Acid digestion. 

First of all, the amount of voids can be evaluated by gravimetric analysis, as for 

example by density measures. Another widely used technique is the quantitative 

microscopic examination of a metallurgically polished interior section of the 

material, and last, specifically for CFRP (not for other types of composites), the so 

called acid digestion. All of them are destructive techniques: the first two can be 

applied on samples extracted from the whole component, whilst acid digestion 

can be applied on the whole component. Acid digestion, indeed, involves resin 

removal by acid attack, such as with fulming sulfuric acid, which does not damage 

the carbon fibres. The whole component is initially weighted, and after acid 

digestion, the remained  fibres are weighted again. Then through easy calculations 

[200], the volume percentage of each component, including air (pores) can be 

estimated. 

The latter method implies serious safety issues, for this reason the first two 

methods were herein preferred and applied, in particular, for density measures 

and for visualization of pores distribution. 

4.2.1 Gravimetric measures for density assessment  

For the gravimetric measurements, a mono-plate digital balance Sartorius (fig. 

4.8), was used. The sample was firstly weighted in air and then in water.  

Being known the density of water, the sample density was obtained through the 

following formula (from the Sartorious user manual):  
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4.2.2 Assessment of pores volumetric percentage 

Starting from the obtained average density, the volumetric percentage of the 

embedded porosity was calculated. It was assumed the fiber volume ratio and the 

resin volume ratio to be the same for all the coupons, whereas the introduction of 

the porosity was responsible just only of volume variations. The above 

considerations can be translated into equations; for the theoretical density, ρT, by 

the law of mixtures, we have: 

 

்ߩ ൌ
ఘାఘೝೝ
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         (4.5) 

 

In which ρf, Vf, ρr and Vr are respectively the density and the volume of the lonely  

fibres and the lonely resin part. Due to the hypothesis above stated, the presence 

of the pores is responsible of a volume occupied by the voids, Vv, which is added 

to the volumes of the  fibres and of the resin. So, it can be assumed that the real 

density, measured with the above described method, gives: 
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         (4.6) 

 

where ρ is the real density and Vf+Vr+Vv=VT, e.g. the total volume of the coupon. 

If equations 4.5 and 4.6 are multiplied and divided by VT, the following 

relationships are obtained: 
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In which: 
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The ratio between equation 4.8 and 4.7 gives: 
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And from eq. 4.9 it is: 
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Putting eq. 4.10 into eq. 4.9, it can be obtained: 
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And finally, the volume percentage of the voids is given by: 

 

ܸ% ൌ 1 െ ܸ% െ ܸ%        (4.12) 

 

As a consequence, from eqs. 4.10, 4.11 and 4.12 the volume percentage of the  

fibres, of the resin and of the voids can be calculated, thanks to the provided 

datasheet densities (table 4.3).  

 

ResinDensityρr(g/cm3) 1.28

 fibres Densityρf(g/cm3) 1.78

Pre-preg densityρT (g/cm3) 1.56

Table4.3:Properties of the used pre-preg. 



The obtained porosity percentages, Vv%, are reported in table 4.4 and the 

distribution with the adopted pressure percentage can be appreciated in the 

figures 4.9-4.12. 

Cure	Pressure	

%	

Vv%

P1	 P2 P3 P4

100	 0.68	 0.98 0.99 0.93

75	 1.89	 3.00 2.90 0.89

50	 3.46	 3.78 3.92 6.21

25	 5.45	 6.67 5.60 6.18

0	 5.76	 7.06 7.24 6.18

Table4.4: Percentage of embedded pores for each type of coupons. 

In the figures 4.9-4.12 the measured Vv%, normalized with respect to the porosity 

percentage obtained at a curing pressure Pc=100% is plotted against the applied 

curing pressure, Pc. Comparing the behaviors highlighted through the data 

representation, it can be noticed that the porosity amount is constantly increasing 

with decreasing pressures for all the coupons. In the following table 4.5, the slope 

of the best fitting curves parameters for each group of data are shown, together 

with the coefficient of determination R2. As can be seen, a linear dependence exists 

between Vv% and the decreasing applied Pc, for the coupons P1, P2 and P3; on the 

contrary, the Vv% of the P4 type shows a stepped behavior. Moreover, it seems 

that there is some influence of the  fibres orientation on the porosity occurrence, 

indeed, the P1 type has the larger slope absolute value which entails that this 

lamination sequence is characterized by a quite stronger tendency to retain voids. 

Coupon	type	 Slope R2	

P1	 ‐0.08 0.97	

P2	 ‐0.06 0.96	

P3	 ‐0.06 0.99	

P4	 ‐0.07 0.74	

Table4.5: Best fitting parameters. 



 

Figure 4.9: Normalized percentage of voids vs. Pc. 

 

Figure 4.10: Normalized percentage of voids vs. Pc. 
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Figure 4.11: Normalized percentage of voids vs. Pc. 

 

Figure 4.12: Normalized percentage of voids vs. Pc. 
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The obtained percentages of porosity are resumed in table 4.6. The normalized 

porosity percentages obtained through microscopy are plotted against the curing 

pressure in fig. 4.15-4.18. 

 

Cure	Pressure	%	 Porosity	%

P1	 P2 P3 P4

100	 2.43 4.00 1.92 2.06

75	 3.58 3.92 3.41 11.10

50	 5.99 7.41 12.65	 3.23

25	 9.45 7.18 9.75 13.03

0	 11.45 7.32 11.75	 12.76

Table 4.6: Percentage of embedded pores for each type of coupons by optical microscopy. 

In the following table 4.7, the slope of the best fitting curves for each group of data 

are shown, together with the coefficient of determination R2. 

Coupon	type	 Slope R2	

P1	 ‐0.04 0.98	

P2	 ‐0.01 0.73	

P3	 ‐0.05 0.70	

P4	 ‐0.04 0.50	

Table4.7: Best fitting parameters. 

The obtained graphs and the best fitting parameters shows clearly that just only 

for the coupon P1 a good agreement with a linear dependence by the pressure is 

achieved. It may be concluded that the applied pressure has a very complex 

relation with the induced porosity, nevertheless with decreasing pressures also the 

microscopy confirms that porosity increases as well. However, the obtained 

measures are in contradiction with those obtained with the gravimetric method. 

Actually, the results of both methods, gravimetric and microscopy, are strongly 

related to very small portions of the larger component under analysis; this, of 

course, affects the method reliability. More specifically, this makes the results 

unlikely to be extendable to the whole piece. It can also be observed that, being it 



intrinsic to every statistical method, the analysis of a larger number of samples 

supplied more trustworthiness results.  

It is very probably, that the use of the acid digestion as a method for porosity 

assessment should had supplied more reliable results because it involves the 

analysis of the whole component. Nevertheless the use of dangerous acids 

involves severe safety measures with additional costs for personnel training and 

specific equipment. 

Within the aim of this dissertation and considering the safety issues, the results 

obtained with the gravimetric method have been considered acceptable. 

 

Figure 4.15: Normalized percentage of voids vs. Pc. 

 

Figure 4.16: Normalized percentage of voids vs. Pc. 
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Figure 4.17: Normalized percentage of voids vs. Pc. 

 

Figure 4.18: Normalized percentage of voids vs. Pc. 

From figure 4.19 to figure 4.22 some images obtained with two magnification 

factors M=1100 and M=2750 are reported, in which the presence of the pores can 

be appreciated especially within the plies and among them.  
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Chapter 5 

Ultrasonic testing and data analysis 

In this chapter all the results obtained through the Ultrasonic Testing (UT) 

campaign are shown. 

Firstly, all the lamination sequences adopted have been ultrasonically 

characterized by the construction of the Distance Amplitude Curve, which allows 

to measure the energy losses due to the reflection of the ultrasound wave at the 

interfaces between water and CFRP, as well as a first estimation of the ultrasonic 

attenuation coefficient, i.e. the attenuation per unit length undergone by the signal 

during its passage across the material, has been obtained. 

Then, all the sets of coupons produced with induced porosity were analyzed. 

It has been found that laminates of some specific stacking sequences seem more 

sensible to the pressure used during curing in autoclave. 

Further, it has been shown that potentially ultrasonic testing could be a more 

reliable tool of porosity assessment if compared to the very largely used method, 

which is the gravimetric measure for porosity volumetric percentage estimation.  
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For this reason another special set of coupons was produced. These coupons are 

laminated of several different thicknesses (a different number of laminas) in order 

to get a step wedge. Of course, the ultrasonic signal attenuation will be affected by 

the bulk attenuation at each step of the wedge, and, the higher it is the thickness 

the higher will be the attenuation. This allows to calculate the attenuation per unit 

thickness. Plotting in a graph the measured attenuation against the thickness, as in 

fig. 5.1, the intercept of the almost linear distribution with the orthogonal axis 

gives the total contribution of the surface losses [75]. This kind of graph is known 

as DAC, i.e. Distance Amplitude Correction curve. 

Taking into account the four stacking sequences considered for the construction of 

coupons with induced porosity, 4 different step wedges were manufactured in 

order to create the D.A.C. for each of them.  

5.1.1 Reference specimens for DAC creation 

The step wedges related to the P1 and P2 stacking sequences (see chapter 4) were 

made with four different thicknesses, whilst, P3 and P4 type, by only two different 

thicknesses, because for the latter lamination sequences the minimum number of 

plies and their mutual orientation is fixed in order to obtain a residual stress 

equilibrium during autoclave curing. This care assures their surface planarity after 

the autoclave curing. In order to avoid production of too thick parts, the P3 and P4 

have only two steps. In the following figures 5.2 and 5.3 are shown the schemes of 

the different step wedges as well their lamination sequences.  

The thickness of each step was measured with a Palmer caliper and the average 

values are reported in the following table 5.1 together with the lamination 

sequences. 

Through the ultrasonic c-scan the average attenuation was measured at each step 

for each coupon, taking into account the double passage across the thickness. Then 

the DAC graph has been created for each step wedge by putting on the orthogonal 

axis the average attenuation in dB, and on the x axis the actually covered thickness 

in mm. Due to the linear correlation between the data, by a linear regression the 

slope and the intercept of the graphs are calculated. The slope is the bulk 

attenuation, i.e. the attenuation for unit length, and the intercept is an estimation of 
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 acquire and process the signals provided by the UTxx. 

The unit UTxx is the main part of the system. It can transmit and receive signals 

through two independent channels. The received signal is analogically pre-

amplified and then again amplified. Successively, it is digitized at a sampling 

frequency of 100 MHz and 8 bits of depth, for signals duration of 640 μs. The data 

are stored alternately into two RAM banks of 64 Kbyte memory capacity each, for 

signal processing by means of a Digital Signal Processor (DSP).  

The mechanical part consists of a water pool (2400x2400x1200 mm) and 5 axis (x, 

y, z, α, β) to allow the movement of the probe in almost the whole pool volume. 

The axis are controlled by the NC, while the provided software assigns the 

geometrical coordinates and gives the movement commands. A double encoders 

system allows to assure the correct positioning of the probe and supplies the 

trigger signal for the UTxx. In this way the synchronism among the probe motion 

and the signal acquired is ensured point by point and the superimposition of 

transmitted and received signals (in the case of Reflection mode testing) is 

avoided.  

5.2.1 Cares and criteria used for the test 

As shown in the previous chapter 2, to inspect materials with the reflection 

technique, also commonly known as Pulse-Echo (PE) technique, both the coupons 

and the unique used transducer must be submerged in water. Due to the need to 

submerge also the coupons with induced porosity, their edges were properly 

hermetically sealed in order to avoid water infiltration from the flanks. This 

special caution allows to evaluate the attenuation due to the presence of pores, 

whilst, on the contrary, if the edges were not closed, pores could be partially or 

totally fulfilled with water. This must be avoided because the response of the 

ultrasonic signal at the two interfaces type, water-CFRP and air-CFRP, is 

completely different. 

The coupons, due to the manufacturing process, have a surface smoother than the 

opposite one; the first was chosen as entry side for the ultrasonic signal, further, to 

reduce the influence of any possible surface discontinuity, the chosen ultrasonic 

probe was a planar type. 



The frequency of the probe was selected bearing in mind some prescriptions: 

• when ultrasounds go across a media they are subjected to frequency 

dispersion, and this phenomenon is amplified by the presence of the pores, that is 

why a narrow bandwidth probe was preferred; 

• the graph 1.17 in chapter 1, shows clearly that the frequency of the probe 

has a strong influence on the measured attenuation for a certain level of porosity. 

Of course, the smaller is the wave length of the ultrasound, the higher will be its 

interaction with small pores, and vice versa. Moreover, the higher is the probe 

frequency the smaller will be its penetration capability. The thickness of all the 

coupons ranges from 4.4 mm to 6.5 mm, and in addiction, the pores quantity also 

ranges from smaller values to larger ones (see table 4.4), then, in order to be sure 

to inspect all the coupons with the same probe and to obtain measures comparable 

between them, a Karl Deutsch STS6WB4-20, 4-20 MHz, Flat, transducer was 

chosen with diameter D= 0,25” which was tuned at 5 MHz. 

The probe was properly oriented perpendicularly to the entry surface of each 

coupon at a distance to assure the planar wave approximation within the material, 

i. e. the front wave entering into the material is planar and its intensity is almost 

constant.  

The water in the pool was degassed and its thermal equilibrium was achieved. 

The Greek-fret covered by the probe was designed in such a way to achieve20000 

of acquired points for each coupon. 

The data are acquired by using a gate (an amplitude-time window in which the 

signal peaks with the larger amplitude are acquired) starting from the Entry-Echo 

and not including it, and it stops on the Back-Wall echo, which is included. This 

allows to monitor the whole thickness of the coupons. 

5.2.2 UT Results displaying 

The results are shown in the form of couples of c-scans (false color maps), one for 

the attenuation measures and one for the time of flight (ToF) measures. Each of 

them is provided with a color scale allowing to translate, respectively, the colors of 

the c-scan into attenuation values (in dB) or into the ToF (in s).  



The total attenuation for each coupon is averaged on almost 2000 points. The 

software provides the mean value and the standard deviation for both the attenuation 

and the ToF. 

5.2.3 Criteria for the inclusions/delaminations evaluation 

In all the tested coupons obtained with 100%, 50% and 0% of curing pressure, as 

the manufacturing design was conceived, a kapton disk 20 mm in diameter was 

interleaved in the stacking sequence, whilst in the sets of coupons cured with the 

75% and 25% of the curing pressure, two overlapped disks of the same diameter 

were put. 

For the evaluation of these defects the following facts were beard in mind: 

a) The area of the kapton disk is 314 mm2, so this must be the dimension of the 

defect that will be checked; 

b) If the defect causes just a reduction, i. e. an attenuation, of the back wall 

echo (in the attenuation c-scan) it is classified as an inclusion: a zone where the 

signal simply sees a different material; while if the back wall echo disappears in 

correspondence of the defect (in the ToF c-scans), it is classified as a delamination: 

a strong discontinuity of the material due to an air insertion, causing a mirror like 

reflection.  
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5.3.3 Influence of the special manufacturing process on the UT 

results 

From the attenuation c-scans, the average attenuation was calculated in the 

areas without the kapton disk. Such values are obtained by averaging 2000 

acquired points. The obtained total average attenuation (AT), the bulk 

attenuation, and the attenuation coefficient  of each set of coupons are collected in 

the following tables 5.6-5.9. The AT is affected by an error of at most 15%. 

P1	

Pressure	%	
Aver.	Atten.	ሺdBሻ σ	ሺst.	dev.ሻ	ሺdBሻ

Bulk	atten.	

ሺdBሻ	



ሺdB/mmሻ

100	 22.53 1.18 10.19	 1.14	

75	 22.13 0.94 9.79	 1.075	

50	 25.03 2.17 12.69	 1.38	

25	 25.57 1.07 13.22	 1.37	

0	 33.50 1.73 21.15	 2.18	

Table 5.6. 

P2	

Pressure	%	
Aver.	Atten.	ሺdBሻ σ	ሺst.	dev.ሻ	ሺdBሻ

Bulk	Atten.	

ሺdBሻ	



ሺdB/mmሻ

100	 21.70 1.00 10.20	 1.15	

75	 21.03 0.69 9.53	 1.06	

50	 28.03 2.84 16.53	 1.81	

25	 28.20 1.19 16.70	 1.76	

0	 33.50 1.41 22.0	 2.27	

Table 5.7. 

The bulk attenuation is obtained by subtracting, for each type of lamination 

sequence, the surface losses (AR) from the average (total) attenuation. Then, to 



obtain the attenuation coefficient , the bulk attenuation is divided for the 

double thickness (due to the double passage of the signal across the coupon).  

P3	

Pressure	%	
Aver.	Atten.	ሺdBሻ σ	ሺst.	dev.ሻ	ሺdBሻ

Bulk	Atten.	

ሺdBሻ	



ሺdB/mmሻ

100	 20.73 3.43 12.50	 1.39 

75	 22.50 0.71 14.26	 1.57 

50	 25.60 0.89 17.36	 1.90 

25	 29.13 1.10 20.89	 2.21 

0	 38.3 1.24 30.06	 3.06 

Table 5.8.  

P4	

Pressure	%	
Aver.	Atten.	ሺdBሻ σ	ሺst.	dev.ሻ	ሺdBሻ

Bulk	Atten.	

ሺdBሻ	



ሺdB/mmሻ

100	 23.03 1.85 15.33	 1.31 

75	 26.13 0.72 18.43	 1.53 

50	 28.50 0.91 20.80	 1.73 

25	 32.27 1.05 24.57	 2.01 

0	 42.10 1.35 34.40	 2.65 

Table 5.9.  

For each type of coupons, the obtained attenuation coefficient, are plotted 

against Pc in the graphs reported in the following figures 5.13-5.16. As can be 

seen, in every case an almost linear dependence on the decreasing pressure is 

outlined, although the trends are better fitted by a polynomial of the second 

order. In all the graphs both the linear and polynomial regression lines are 

reported: the first one in red and the second one in black. 



The results of the two types of regression are resumed in table 5.10, where the 

best coefficient of determination R2 is obtained for the polynomial regressions. 

It is interesting to outline that the larger sensitivity to the decreasing pressure is 

obtained for the coupon type P3, whose attenuation increases with the 

decreasing pressure much quickly than for the other stacking sequences. This is 

in partial contradiction with results obtained with the gravimetric method (see 

table 4.5), which shows that the P1 coupon has a stronger tendency to retain 

voids with respect to the other coupons types.  

 

Coupon	

type	

Linear	regression Polynomial	regressionሺyൌabxcx2ሻ	

Slope	 R2 a b c	 R2

P1	 ‐0.0084	 0.73 1.85 0.02 1x10‐4	 0.91

P2	 ‐0.0102	 0.85 1.86 0.01 4x10‐5	 0.86

P3	 ‐0.0115	 0.91 2.17 0.02 1x10‐4	 0.99

P4	 ‐0.0097	 0.93 2.00 0.02 8x10‐5	 0.99

Table 5.10.  

 

Figure 5.13: Normalized attenuation coefficient vs. Pc. 
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Figure 5.14: Normalized attenuation coefficient vs. Pc. 

 

Figure 5.15: Normalized attenuation coefficient vs. Pc. 

 

Figure 5.16: Normalized attenuation coefficient vs. Pc. 
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5.3.4 Comparison of results from UT and the gravimetric method  

In order to check the influence of the volumetric percentage of pores measured 

with the gravimetric method, some graphs are shown in figures 5.17-5.20 . In 

each of them, the obtained ultrasonic attenuation coefficient, for each type of 

coupons, is plotted against the normalized Vv% (see chapter 4). As can be 

appreciated, in every case an almost linear dependence by the decreasing 

pressure is outlined, although the trends are much better fitted by a polynomial 

of the second order. In all the graphs both the linear and polynomial regression 

lines are reported: the first one in red and the second one in black.  

The results of the two types of regression are resumed in table 5.11, where the 

best coefficient of determination R2 is obtained for the polynomial regressions. 

The most regular trend is shown by the P3 coupon, on the contrary the P4 

reflects the stepped behavior shown by the porosity percentage in fig. 4.18 of 

the previous chapter. The apparent discrepancies between the behaviors 

obtained using the two methods, i.e. using the curing pressures as reference, or 

the porosity percentage, can be ascribed to the different response of UT and 

gravimetric methods to the distribution of pores in the coupons.  

However, it must be remarked that UT is also sensitive to other parameters 

connected to the porosity, specifically the scattering of the ultrasonic wave 

beam due to the pores is strongly affected by the pores dimension, density and 

topological distribution. Indeed, if the pores diameter is of the same order of the 

ultrasonic wavelength, the scattering phenomenon is increased, and, in the 

worst case, if the pores are very large, the signal is almost totally reflected. 

The gravimetric method, on the contrary, is practically not affected by the pores 

spatial distribution.  

Moreover, the entire coupons were analyzed with the UT, whereas the 

gravimetric method only allows to evaluate smaller pieces.  

 

 

 

 



Coupon	

type	

Linear	regression Polynomial	regression ሺyൌabxcx2ሻ	

Slope	 R2 a b c	 R2

P1	 0.092	 0.59 1.07 ‐0.08 1.8x10‐2	 0.67

P2	 0.140	 0.67 0.88 0.08 7.5x10‐3	 0.70

P3	 0.170	 0.91 1.02 ‐0.03 2.6x10‐2	 0.99

P4	 0.100	 0.56 ‐4.12 6.10 ‐79x10‐1	 0.62

Table 5.11.  

 

Figure 5.17: Normalized attenuation coefficient vs. the normalized Vv%. 

 

Figure 5.18: Normalized attenuation coefficient vs. the normalized Vv%. 

0,5

1

1,5

2

2,5

0 1 2 3 4 5 6 7 8 9

N
o
rm

. 

Norm. Vv%

P1

0,5

1

1,5

2

2,5

0 1 2 3 4 5 6 7 8 9

N
o
rm

. 

Norm. Vv%

P2



 

Figure 5.19: Normalized attenuation coefficient vs. the normalized Vv%. 

 

Figure 5.20: Normalized attenuation coefficient vs. the normalized Vv%. 

5.3.5 Kapton disk detection 

The nominal area of the kapton disk is 314 mm2. The area of all the detected 

defects was measured by the software provided with the apparatus shown in 

fig. 5.4.  

The detection of the kapton inclusion is more feasible for coupons cured with 

75% and 25% of the curing pressure. This because, the defect was made by two 
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overlapped kapton disks. Indeed the axial resolution of the 5MHz transducer 

was estimated to be 0.5 mm which corresponds to the thickness of almost 2 

plies, while a the detection of defects made by a single kapton disk is almost 

impossible. On the other hand in aeronautics, in order to calibrate the ultrasonic 

testing parameters for detection of delamination, i.e. the lack of adhesion 

between plies, this defect is simulated by two overlapped layers of a material 

different with respect to the pre-preg one.  

Further, the fact that also for the 50% and 0% Pc cured coupons the defect 

detection was very probable is due to the double effect of the kapton disk and 

the local concentration of porosity.  

Regardless the type of coupon and the pressure for which the defect was 

detected, the measured area was generally larger than expected. This is 

generally due to the effect of the interaction between the ultrasonic beam with 

the edges of the defect. This can be fine-tuned by applying a suitable criteria to 

distinguish the defect with respect to a sound area, which is what is generally 

done once the acceptance/rejection criteria are assigned.  

 

Type	 Pc
Defect	area

ሺmm2ሻ

P1
100%

െ
P2 െ
P3 െ
P4 െ
P1

75%
697

P2 495
P3 440
P4 476
P1

50%
െ

P2 െ
P3 458
P4 359
P1

25%
350

P2 399
P3 409
P4 454
P1

0%
െ

P2 204
P3 440
P4 309

Table 5.12.  



5.4 Remarks 

The ultrasonic characterization of the coupons with embedded porosity, has 

allowed to re-demonstrate/confirm some data in literature, and it has open the 

door to some investigation aspects which have not yet been faced. This could 

led to reach a more comprehensive knowledge of the mechanisms involved 

with  the formation of pores during autoclave curing.  

In the following some important remarks are outlined: 

- It is possible to obtain coupons with a different amount of  porosity by 

simply regulating the pressure applied during  autoclave curing. 

Although the smallest applied pressure corresponds to  0% of the prescribed 7 

bar one, which means no pressure applied in the autoclave cycle, the coupons 

were previously put in a vacuum bag and air was sucked off in order to create a 

difference of 1 bar with respect to the ambient pressure. That is why also 

coupons cured with Pc=0% maintained a certain level of compaction. 

Of course, the simple change of pressure does not entail any other effect on the 

pores characteristics, such as distribution, size, and shape. 

- Ultrasonic attenuation measures  not only allow for indirect estimation of the 

pores density, but, involving the whole component,  also provide more reliable 

results as compared to the ones obtained with the gravimetric method. 

- Although the employed material is the same for all the coupons, including 

the step wedges, some discrepancies have been found in terms of surface losses 

and of slopes of the DACs. Surface losses are linked to the roughness of the 

inspected surfaces, which may change from coupon to coupon, depending on 

the manufacturing process. 

The slope differences have to  be ascribed, at this stage, principally to the inner 

structure of the material which attenuates the signal depending on the stacking 

sequence. This point deserves deeper insights . 

- From the obtained results, it can be outlined that the lamination type P3 has a 

higher tendency to attenuate the ultrasonic signal with respect to the others 

lamination sequences. This entails that the different  fibres distribution and 



orientation could be responsible of a different distribution and concentration of 

pores. This last point needs a more deep knowledge of the resin flow 

mechanism involved in the autoclave curing coupled with a very accurate 

fractographic analysis. 

 

  



Chapter 6 

Infrared thermography testing and 

data analysis 

In this chapter are shown all the results, obtained through non destructive 

evaluation with Infrared Thermography, of the porous coupons, which were 

already described in the previous chapter 4. 

Firstly, tests are carried out by using Lock-in Thermography (LT) in order to get 

a general outlook on the detection of defects buried in the composite material 

under inspection. Then, the investigation goes on the measurement of thermal 

diffusivity with the Flash Thermography technique. This is done because the 

thermal diffusivity is directly linked to the density of the material and, in turn, 

to its porosity content.  

The flash thermography measurements required a specific instrumentation and 

set-up, as well as a mathematical tool for processing the huge amount of data. 

On the whole, the obtained results show a clear dependence of the thermal 

diffusivity on the curing applied pressure; specifically, the embedded porosity 

is responsible for a decreasing of the thermal diffusivity. This outcome allows 

for an indirect characterization of the porosity amount in the laminate in a 

simple, fast and completely non-invasive way.  
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6.1.1 Lockin Thermography 

LT is used mainly to outline defects and to gain information about their depth. 

It was used in both reflection and transmission modes owing to the set-up 

schematically described in fig. 6.1. In both cases a halogen lamp (1 or 2) is 

sinusoidally modulated (5) and oriented toward one side of the coupon under 

inspection. This allows to heat up the material and to induce a heat wave 

travelling inside it. The thermal camera (3) acquires images in time sequence 

which account for the surface temperature variations either on the same side 

lighted by the lamp if the reflection mode is operated, or on the opposite side if 

the transmission mode is used. Then a specific software (4) algorithm allows to 

rapidly obtain amplitude and phase maps of the inspected object.  

LT in reflection mode 

The infrared Lock-In testing campaign was initially performed in the classical 

reflection mode (fig.6.1). This was the first chosen technique because, it allows 

(see eq. 3.33 and 3.37 in section 3) for fast determination of the defects depth. 

Unfortunately no significant results were obtained, because of a combination of 

factors such as the large thickness of the inspected coupons and the large 

amount of buried inhomogeneities that prevent a clear outline of the slag 

inclusion.  

The same tests were also repeated at the Department of Aerospace Engineering 

(DIAS) University of Naples, Federico II.  

The used instrumentation includes: 

1. Halogen lamp of 500 W 

2. ThermaCam FLIR SC6000 

3. Computer with Software to process data IrNDT (1.7.0.0); 

4. Frequency Modulator 

Thermacam SC6000 characteristics: 

- 640 x 512 pixels QWIP focal plane array; 

- Spectral range (LWIR): 8÷9.2 μm;  

- Cooling: Stirling pump; Sensitivity < 20mK; 



The first observation to be made regards the power lamp which was smaller, 

but it was also of low encumbrance allowing for a close up heating.  

Also in this case, on the whole, the obtained results were unsatisfactory since it 

was not possible to clearly visualize the kapton disk in all the coupons. 

However, some important information were achieved, which will be discussed 

in the following. To this end, some phase images, relating to the smooth side of 

the P1 coupon cured with curing pressure Pc=100% are reported in fig. 6.2 

It is worth noting that within this technique the used heating stimulation 

frequency is decreased at each test in order to find the best phase contrast able 

to outline the presence of the defects. From the theory shown in section 3.5.3, 

this also allows to reconstruct the depth of the defects. The defect can be seen 

starting from a certain frequency value f, then its contrast improves with 

decreasing f till a critical f value, the so called blind frequency for which the 

defect is no more visible, after that the defect appears again but with a change 

of colour (change of phase angle value with respect to the background) and it 

generally remains visible also for smaller values of the frequency till the entire 

material thickness is traversed. As can be seen, the defect, although of poor 

contrast is detected since at a frequency of 2 Hz (Fig.6.2a); it appears with better 

phase contrast as the frequency is decreased to 1 Hz (Fig.6.2b) and to 0.5 Hz 

(fig. 6.2c). The sign of the phase contrast changes (fig. 6.2d) for f = 0.15Hz 

meaning that the blind frequency has been overpassed. At the stimulation 

frequency of 0.02 Hz (fig. 6.f) the defect practically disappears meaning that the 

entire thickness has been overpassed. These observations are better described 

by the graph in fig. 6.3. The same coupon was inspected also by viewing its 

opposite side which was more rough than the previous one (fig. 6.4). From this 

side it was practically impossible to find out the defect. This is due to a wrong 

positioning of the kapton disk in the lamination sequence: instead of being put 

in the middle of the stacking sequence, it was put one layer more close to the 

smoother surface. This aspect will be recalled later and discussed more in 

depth. Another interesting aspect come out for the P2 coupon cured with 

Pc=100% of the pressure.  
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from the smoother specimen side (fig. 6.6a) and appears almost centered within 

the specimen width. Instead, the second part is only hardly perceptible on the 

right side (indicated by an arrow) also because masked by the wrapping up of 

the carbon  fibres; the latter effect is also clearly visible in the phase image (fig. 

6.6a). Of course, this second part of the kapton disk is better visualized when 

viewing the rear rough specimen side (fig. 6.6 b).  

At last, fig. 6.7 shows a phase map of the P4 coupon cured with Pc=100%. As 

can be seen the defect appears displaced upside, of elliptical shape and of 

smaller size even if a lighter halo might be envisaged accounting for the real 

size. Again the disk was affected by the rolling up force during fabrication of 

the specimen. 

It is worth noting that we are considering a very thin kapton sheet embedded in 

a carbon/epoxy with enclosed also a certain amount of porosity. Owing to the 

fact that, in presence of porosity, the thermal diffusivity of the carbon/epoxy 

laminate decreases substantially towards that of the epoxy resin and that the 

thermal diffusivity of kapton is close to that of the epoxy resin, it is obvious the 

difficulty in discriminating sound areas from defected areas. 

LT in transmission mode 

In the transmission mode, the thermal camera is put framing the opposite side 

of the lighted surface. Therefore, the thermal camera monitors and acquires the 

surface temperature on the side which is not directly warmed up by the lamp. 

Similarly to the reflection mode, also in this case phase maps can be obtained, 

but, being the path travelled by the thermal wave the same in each point of the 

material, the knowledge about the depth of the defect is missing. Nevertheless 

these tests are of interest because the phase delay between the excitation 

thermal wave, produced by the sinusoidal modulated light, and the thermal 

wave exiting from the material under analysis, depends not only on the covered 

path, but also on the material thermal properties. Indeed, as reported in chapter 

3, and rewritten here for convenience, it is: 

߮ሺݔሻ ൌ
௫

ఓ
          (6.1) 



the relation between the phase delay and the diffusion length, which is given 

by: 
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       (6.2) 

 

Then, from eq. 6.1 and eq. 6.2 it can be observed that the phase delay strongly 

depends on the material properties, and, the local changes of the phase maps 

certainly can be ascribed to a different composition of the material in that area.  

Unfortunately, the available acquisition software does not allow to 

quantitatively measure the phase. 

The used set up for the LT in transmission is that shown in fig. 6.1 with the used 

elements being: 

1. halogen lamp (1) emitting at most 1kW light power; 

2. Flir SC5000 Infrared camera with the following main characteristics: 

- 320 x 256 pixels Indium Antimonide (InSb) focal plane array; 

- Spectral range (MWIR): 3.7÷5.1μm;  

- Cooling: Stirling pump;  

- Sensitivity< 25mK; 

- Frequency frame: 5-400 Hz full frame; up to 20kHz in the windowing 

mode; 

3. Software provided by Flir, made by two blocks. One is devoted to the 

acquisition, visualization and several option for data displaying and 

saving (ALTAIR), the other block is devoted to the analysis of the data 

involving the lockin treatment algorithms (ALTAIR LI); this last is the part 

of the software producing, through an FFT like algorithm, both module 

and phase maps; 

4. This part is made by a function generator for the sinusoidal modulation of 

the lamp light emission and by a synchronization block allowing to 

independently drive at most four lamps 1kW each. 

Tests were carried out by putting the halogen lamp almost 50 cm distant from 

the surface of each coupon.  
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From a comparison between all the shown phase images it can be observed 

that: 

 as a general comment the  fibres orientation is clearly distinguishable in 

almost all the coupons whatever is the curing pressure; 

 in all the coupons cured with Pc=100% (fig. 6.10), the kapton disk is clearly 

recognizable; 

 in both the phase maps of the coupons cured with Pc=75% and Pc=50% (fig. 

6.11 and 6.12) the kapton disk is clearly outlined only in the phase maps of P1 

and P3 coupons; 

 in the case of the coupons cured with Pc=25% of the pressure (fig. 6.13) the 

kapton disk can be distinguished in all the coupons, although it is not clearly 

outlined in coupons P1 and P2 ; 

 the phase maps of the coupons cured with Pc=0% of the pressure (fig. 6.14), 

show that the kapton disk is almost wherever detected, but it is difficult to 

establish its real position in the coupon P4.  

6.1.2 Flash thermography 

As already seen in chapter 3, it seems that the most reliable IRT method for 

porosity characterization in CFRP is Flash Thermography .  

The most important condition to be satisfied in order to apply the theory 

described in the paragraph 3.5.2 is that the inspected material is heated by a 

Dirac-like heat pulse which is instantaneously absorbed by the material. This 

requires a very fast and powerful heat source, which may be achieved by using 

special professional photography flash heads. 

So, the set up arrangement used in this case was substantially that described in 

fig. 6.1, with tests performed in the transmission mode and the lamp 1 

substituted with a flash head. Specifically the flash system, made by Hensel 

and provided as a courtesy by Flir systems Italy was assembled as follows: 

 MH 6000 flash head with 6000 J maximum power emission; 

 TRIA 6000 S power supply. 

The synchronism was achieved by a triggering remote control. 
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embedded porosity). This can be better appreciated looking at the average 

thermal diffusivity values reported in the following table 6.1. In particular, the 

mean value of thermal diffusivity is calculated on an area of almost 15000 

points relating to a sound zone without the kapton disk, and it is affected by an 

uncertainty of almost 3%.  

The obtained average values of thermal diffusivity are plotted against the 

applied curing pressures (expressed, as usual, as percentage of the prescribed 

one) in fig. 6.38 and against the volume percentage of porosity obtained by the 

gravimetric method in fig. 6.39. In both graphs a best fitting curve of all the 

experimental points is also reported. 

From table 6.1 and the graphs in figs. 6.38 and 6.39 it can be noticed that:  

 For the coupon P3, the thermal diffusivity tends to reduce by almost 20% 

of its value attained at Pc=100%; 

 a reduction of about 15% and 17% is respectively achieved for coupons 

P2 and P4; 

 the larger reduction value of 23% is registered for the coupon P1. 

 

Pressure	

%	

DIFFUSIVITY	ሺcm2/sሻ

P1 P2 P3 P4	

100	 0.0052 0.0053 0.0055 0.0053	

75	 0.0054 0.0054 0.0047 0.0049	

50	 0.0049 0.0050 0.0047 0.0046	

25	 0.0045 0.0048 0.0045 0.0044	

0	 0.0040 0.0045 0.0044 0.0044	

Table 6.1. 

 For all coupons, the values of thermal diffusivity are normalized with respect 

to the thermal diffusivity relative to the coupons cured with Pc =100%; such a 

normalized values are plotted against Pc and shown in the following figures 

6.38-6.41. As can be seen, in every case an almost linear dependence with the 

decreasing pressure may be individuated, although the trends are slightly 

better fitted by a second order polynomial regression. In all the graphs both 



linear and polynomial regression lines are reported: the first one in red and the 

second one in black.  

The parameters coming up from the two types of fitting are resumed in table 

6.2, as expected, the best coefficient of determination R2 applies for the 

polynomial regressions.  

By the data, it is outlined that the thermal diffusivity for P2 coupon types is 

more sensitive to the increasing of the embedded porosity. 

In addition, it can be noticed that the curves relative to the polynomial 

regressions for P1 (fig.6.38) and P2 (fig.6.39) coupons type have an inverse 

concavity with respect to the curves obtained for the P3 (fig.6.40) and P4 

(fig.6.41) types. 

 

Coupon	type	 Linear	regression Polynomial	regression	ሺyൌabxcx2ሻ

Slope R2 a b c R2	

P1	 0.0022 0.93 0.77 0.0040 2x10‐5	 0.99	

P2	 0.0017 0.90 0.84 0.0030 1x10‐5	 0.94	

P3	 0.0016 0.79 0.82 0.0005 2x10‐4	 0.91	

P4	 0.0017 0.90 0.83 0.0002 2x10‐5	 0.90	

Table 6.2. 

 

Figure 6.38: Normalized diffusivity vs. Pc. 
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Figure 6.39: Normalized diffusivity vs. Pc. 

 

Figure 6.40: Normalized diffusivity vs. Pc. 

 

Figure 6.41: Normalized diffusivity vs. Pc. 
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The same occurs if the normalized thermal diffusivity values are plotted against 

the normalized percentage of porosity Vv%, obtained by the gravimetric 

method (see chapter 4), as can be seen from graphs in figures 6.42-6.45. 

Similarly to the previous graphs, also in this case both a linear and a second 

order polynomial regressions are used to fit data. The regressions parameters, 

as well as the coefficient of determination R2 are reported in table 6.3. Also in 

this case the data are slightly better fitted by the second order polynomial. 

 

Coupon	type	 Linear	regression Polynomial	regression	ሺyൌabxcx2ሻ

Slope R2 a b c R2	

P1	 ‐0.03 0.85 0.98 0.0087 4x10‐3	 0.90	

P2	 ‐0.02 0.80 0.84 0.0077 4x10‐3	 0.86	

P3	 ‐0.03 0.82 0.82 0.0005 5x10‐3	 0.96	

P4	 ‐0.02 0.81 0.46 0.5897 8x10‐2	 0.83	

Table 6.3. 

 

 
Figure 6.42: Normalized diffusivity vs. Vv%. 
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Figure 6.43: Normalized diffusivity vs. Vv%. 

 

Figure 6.44: Normalized diffusivity vs. Vv%. 

It has been proven [196,201] that the thermal diffusivity in a CFRP material 

depends on the  fibres orientation. This may explain the inversion of concavity 

observed when passing from coupons with unidirectional  fibres orientation (P1 

and P2) to coupons with a more complex stacking sequence (P3 and P4).  
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Figure 6.45: Normalized diffusivity vs. Vv%. 

At last, the rate of the diffusivity decrement with respect to the embedded 

porosity (/Vv%) is plotted against the applied pressure in fig. 6.46-6.49. 

Starting from the value relative to Pc = 100%, it can be noticed that, regardless of 

the stacking sequence, the rate drops first rapidly until Pc = 50% and after 

slowly towards an almost constant value as Pc approaches zero.  

 

 

Figure 6.46: Rate of diffusivity decrement with respect porosity vs. percentage of applied 

curing pressure. 
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Figure 6.47: Rate of diffusivity decrement with respect porosity vs. percentage of applied 

curing pressure. 

 
Figure 6.48: Rate of diffusivity decrement with respect porosity vs. percentage of applied 

curing pressure. 
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Figure 6.49: Rate of diffusivity decrement with respect porosity vs. percentage of applied 

curing pressure. 

Quantitative measurements of defects size 

Going back to Figs.6.16-6.37, the thermal diffusivity maps display low values in 

correspondence of the kapton disk. Of course, a clear discrimination of the disk 

is rather difficult because of many factors. One is due to the porosity amount in 

the bulk hosting material which tends to lessen the difference between the 

thermal diffusivity of the buried insert and of the hosting material. Another 

factor is due to an increase of porosity percentage, which, owing to the hand 

lay-up manufacturing technique, is likely to occur around the kapton disk 

making even more difficult the disk discrimination. In addition, to complicate 

the situation, lateral heat diffusion is associated with the heat transfer through 

the material thickness.  

An attempt is made to measure the size of the kapton disk from the maps of 

thermal diffusivity. To this end, measurements are performed from data plots 

along horizontal lines through the defect center as shown in Fig. 6.50. As can be 
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seen, such a line, apart from irregularities due to the non uniform porosity 

distribution, displays a concavity over the defect. By measuring the extension of 

such a concavity as outlined by the two vertical lines intercepting the horizontal 

one through the average thermal diffusivity the diameter of the disk is 

obtained. What indicated in Fig.6.50 is a graphical way to show the criterion 

used, more specifically, an  value below the average one is considered as limit 

between sound and defective areas. All the measured diameter values are 

collected in table 6.4. 

 

 

Figure 6.50: Horizontal line related to the defect in the coupon P3 cured with Pc=100%. 

Pc Coupon	type Diameter	ሺmmሻ	

100%

	

P3 20

P4 22

75%

P1 23

P2 24

P3 24

25%

P1 25

P2 22

P3 25

Table 6.4. 
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From table 6.4 it can be observed that, some values exceed the nominal one that 

is 20 mm; this, as already said, is to be ascribed to different factors and mainly 

to the lateral thermal diffusion within the material. Further, it is obvious that 

the probability to detect and well outline a defect is higher for thicker defects, 

or better when the kapton insert is made by two overlapped disks. Another 

important factor is the depth at which a defect is located since shallow defects 

are more easy detected than the deeper ones. This means that the kapton disk is 

clearly outlined if it is correctly positioned in the middle of the stacking 

sequence due to the strong reduction of thermal diffusivity induced there by 

such a interleaved discontinuity. Instead, the probability to discover the kapton 

disk strongly decreases if one disk slipped away during manufacturing, or the 

disks were not correctly positioned. In general, the defect is better outlined for 

coupons type P3 most probably due to the stacking symmetrical sequence (-

45°/45°) which allowed for a more isotropic distribution of porosity and, in 

turn of thermal diffusivity. 

	

	

 

 

  



6.2 Some general remarks 

The IRT testing of the coupons with embedded porosity, has allowed to re-

demonstrate/confirm that this inspection approach is effective for both 

detection of inclusions and porosity evaluation. Of course, each of the different 

techniques used has shown to be more effective under specific conditions. 

In the following some important remarks are outlined: 

- LT in reflection has allowed detection of defects only in some of the coupons; 

for example, in the P1 cured with Pc=100% in which the kapton insert was 

wrongly positioned. More specifically, the insert was put  closer to the smooth 

surface and not in the middle of the stacking sequence. In the coupons P2 and 

P4 cured with Pc=100% (fig. 6.10, 6.11) the kapton disk appeared of small size 

giving the idea of a probable wrapping up effect, most probably occurred 

during application of the rolling up force, with a resultant local thickening. 

Again, for the coupon P2 cured with Pc=75% two marks are distinguishable 

letting to suppose that a slipping of one kapton disk has occurred accompanied 

also by a local material compactness. For increasing the embedded porosity the 

detection of the defect failed. Further, the general unsuccessful detection can 

also be justified owing to the defect thickness. In fact, as observed by Meola et 

al. the ratio between the thickness and the depth of the defect s/p is a critical 

parameter, which in the present case is much smaller than the value of 0.1 

which was established in [202] as a limit for deep defect detection. In particular, 

the limiting value of s/p = 0.1 was recently further decreased to approximately 

0.06 [203]; however, this was achieved with a Teflon® insert in a low porosity 

CFRP.  

- It is interesting to notice that, the observations made with LT in reflection are 

confirmed by those obtained with LT in transmission and with FT. In fact, the 

best defect detection with LT in reflection (fig. 6.2) in P1 for Pc = 100% comes 

out to be the worst with both LT in transmission (fig. 6.10) and FT (fig. 6.16). 

This because a defect which is shallow when viewing the smooth side (fig. 6.2) 



became deeper when the rough side is observed (figs. 6.10 and 6.16). Again, the 

supposed wrapping effect (figs. 6.5) is confirmed looking at figs. 6.10 and 6.19. 

Conversely, defects which remain undetected through LT in reflection are 

better resolved with the other two techniques to mean that the defect was 

correctly positioned within the limiting s/p value for the given porosity amount.  

- LT in transmission was successful in almost all the cases. Thus it can be used 

to inspect highly porous CFRP when both sides of the part are accessible.  

- Flash Thermography in transmission, from the provided maps of thermal 

diffusivity, is able to supply information about the porosity distribution. The 

study carried out owing to four different stacking sequences has shown that 

thermal diffusivity is quite sensitive to the  fibres orientation.  

This technique has proved also effectiveness in detecting thin inclusions in a 

high porous medium as is the case of coupons cured with only 25% of the 

pressure, or lower. Moreover, this technique is effective for measuring the 

defect size. 

At last, it has been found that LT in transmission and Flash thermography 

provides very similar results with regard to the detection of slag inclusions, 

although in some cases, as for coupons cured with Pc=100%, LT in transmission 

seems to be more effective in outlining the defect contour. Of course, for both 

techniques the effectiveness to discriminate a defect increases as the defect 

thickness increases too. 

  



Conclusions 

The attention of the present dissertation was devised towards the assessment of 

porosity content and distribution in Carbon  fibres Reinforced Polymers (CFRP) 

by non destructive testing techniques. 

As explained in the first Chapter, porosity is a typical defect that can arise 

during production of the component as a consequence of incorrect, or non fully 

optimized, manufacturing procedures. It is responsible of degradation of the 

mechanical properties as well of the overall performance of the manufactured 

structure and so it is matter of great interest.  

Two nondestructive testing techniques have been herein investigated for 

suitability in the evaluation of porosity in CFRP. One is the Ultrasonic Testing 

(UT), which is the most commonly used technique in the aeronautical industry, 

but has some limitations in presence of porous materials. The other one is 

Infrared Thermography (IRT) which is becoming always more attractive due to 

its two-dimensional and non contact character. In particular, flash 

thermography is being investigated as the best candidate for porosity 

assessment. A description of both UT and IRT, from theoretical and practical 

points of view, has been given respectively in Chapters 2 and 3.  

In an attempt to account for the main factors, which may cause the formation of 

porosity, or may affect its detection, special coupons were fabricated by varying 

the stacking sequence and the curing pressure, as described in Chapter 4. The 

amount of porosity in the coupons was firstly ascertained through destructive 

methods as illustrated in Chapter 4. More specifically, gravimetric measures for 

density evaluation and optical microscopy for estimation of the porosity 

percentage were carried out. In particular, the results obtained with the 

gravimetric method show a linear dependence of the volumetric percentage of 

porosity versus the decreasing curing pressure Pc. This may be also regarded as 

further validation to the curing pressure as fundamental parameter to be 

handled for the control of the porosity amount.  



The results obtained with UT and shown in Chapter 5 show that, as a general 

trend, the ultrasonic attenuation coefficient  increases with decreasing the 

curing pressure Pc and with increasing the voids content Vv%. The plots of  

against Vv% display a larger data spread which is mainly due to the random 

character of porosity in terms of both pores size and distribution within the 

material; this may affect ultrasonic data. More specifically, as explained in 

Section 5.3.4, the scattering of the ultrasonic wave beam due to the pores is 

strongly affected by the pores size, density and topological distribution. 

Regarding the detection of local thin delaminations simulated with kapton 

disks, UT is more effective in presence of large amounts of porosity as may 

happen for coupons cured with low pressure values. This because the kapton 

disk, being very thin, does not affect the passage of the ultrasonic signal in a 

well consolidated material. 

From results obtained with IRT and reported in Chapter 6, it is possible to 

observe that each of the used techniques (FT, LT in reflection, or in 

transmission) is more effective under specific conditions. In particular, Lockin 

Thermography in reflection is able to discover the thin insert if the ratio s/p does 

not drop off a critical value. Conversely, the insert is generally recognizable 

with both Flash Thermography and Lockin Thermography in transmission. 

However, the contrast decreases with increasing the defect depth. In addition, 

FT is able to supply information about amount and distribution of porosity 

through measurements of thermal diffusivity .  

From a comparison of data coming out from the different methods used in this 

work, the following general comments can be made.  

Owing to the detection of the thin insert, LT is more effective in presence of a 

well consolidated material contrarily to the UT, which is more effective in 

outlining a thin insert when surrounded by a porous medium. Of course, this 

makes the two techniques complementary in view of a complete nondestructive 

evaluation of CFRP parts involving both porous and more compact materials. 

Regarding the evaluation of porosity, FT is to be preferred since it is effective, 

non contact, fast and it is also not affected by the surface finishing meaning that, 

unlike UT, a part can be inspected viewing indifferently the smooth, or the 



rough side. In addition, flash thermography allows to contemporaneously 

detect manufacturing defects and assess the porosity amount within only one 

test with of course economic advantages. As a last but important remark, 

nondestructive testing with IRT is carried out using a simple and safe (for the 

personnel) set-up arrangement with further advantages in terms of safety at 

work concerns.    
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