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ABSTRACT 
 

Germline point mutations of the RET gene (REarranged during Transfection) are 

present in about 70% of sporadic medullary thyroid carcinoma (MTC), a 

malignant tumor that arises from calcitonin-secreting C cells of thyroid gland, and 

in almost 100% of the dominantly inherited multiple endocrine neoplasia (MEN) 

type 2A and 2B and the familial medullary thyroid carcinoma (FMTC). The 

calcium-calmodulin dependent kinase II (CaMKII) is an ubiquitous 

serine/threonine protein kinase involved in multiple signalings and biological 

functions. In epithelial and mesenchimal cells, CaMKII participates with Ras to 

Raf-1 activation, phosphorylating Raf-1 at S338, a phosphorylation necessary for 

ERK activation upon different physiologic and pathologic stimuli in the mitogen 

activated protein kinase (MAPK) cascade. In papillary thyroid carcinoma, CaMKII 

is activated by BRafV600E, oncogenic Ras and by RET rearrangements (RET/PTC) 

and participates to the activation of the ERK pathway by oncogenic Ras and 

RET/PTC, thus modulating tumor cell proliferation. The main aim of this thesis is 

to determine whether CaMKII is involved also in MTC harboring activating point 

mutation of RET. Recently it has been shown that an endogenous inhibitor of 

CaMKII (hCaMKIIN) is expressed in several cell types. Its expression is 

negatively correlated with the severity of human colon adenocarcinoma, 

suggesting a pivotal role of CaMKII in the development and progression of 

carcinomas with oncogenic activation of the MAPK pathway. To determine the 

role of CaMKII in the RET signaling and in MTC, two activated RET mutants 

(C634W and M918T) have been expressed in NIH-3T3 cells, observing the 

following CaMKII activation. MTC cell lines (TT and MZ-CRC1) harboring the 

most frequent MEN2A and MEN2B mutations (C634W and M918T respectively), 

have been treated with the CaMKII selective inhibitor KN93 and the following 

effects on the MAPK pathway and cell cycle have been monitored. Accordingly 

with results of the RET mutant expression in NIH-3T3, CaMKII was activated in 

MTC cell lines. Inhibition of CaMKII in these cells induced a decrease of Raf-1 

phosphorylation at ser338. Accordingly, also the dephosphorylation of MEK and 

ERK was observed. CaMKII inhibition was followed by a reduced cyclin D and 

p27 accumulation, and by a reduction of cell proliferation. These results 

demonstrate that CaMKII is involved in cell cycle and proliferation in MTC cell 

lines harboring the RET oncogene. To confirm the actual role of CaMKII in the 

development and progression of MTC, I determined the relative hCaMKIINα 

mRNA expression in primary MTC tumors and its correlation with some 

clinicopathological parameters at surgery. In MTC affected patients hCaMKIINα 

mRNA expression was inversely correlated with serum calcitonin, tumor 

extension, tumor staging and presence of metastatic lymph nodes. The results of 

this thesis indicate that CaMKII has a role in cancers harboring oncogenic point 

mutation of RET and could represent a new therapeutic target for pharmacological 

intervention in these tumors. 
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1.INTRODUCTION 

 

1.1 THYROID CARCINOMAS  

 

The thyroid gland consists of two lobes, connected by an isthmus and consists of 

two types of cells: the epithelial follicular cells, arranged in spheres around a 

protein-rich colloid, forming the follicle a functional unit of the gland. Follicular 

cells take up iodide, which is oxidized to active iodine and incorporated into 

thyroglobulin. The combination of two iodinated tyrosine residues is required for 

the synthesis of the thyroid hormones tetra-iodothyronine or thyroxine (T4) and in 

the liver and kidney, T4 is further converted to T3, the biologically active 

hormone. Thyroid hormones activate transcription by binding to nuclear hormone 

receptors, regulating protein synthesis and metabolism in many different organs 

(Braverman and Roti, 1996). 

The second cell type are the neuroendocrine C-cells, embryonically derived from 

the neural crest. C-cells when stimulated by calcium produce and secrete the 

polypeptide hormone calcitonin (CT), a 32 amino acids long protein, which 

inhibits osteoclast secretory activity (Fugazzola et al., 1994). 

The majority of thyroid cancers originate from follicular cells; papillary thyroid 

carcinoma (PTC), follicular thyroid carcinoma (FTC) defined well differentiated 

carcinomas and the undifferentiated anaplastic thyroid carcinoma (ATC)(Santoro 

et al., 2006). 

Papillary thyroid carcinoma is the most frequent form of thyroid carcinoma 

representing the 80% of all thyroid tumors. The incidence of PTC is correlated to 

the ionizing radiation exposition. Molecular biology studies of post-Chernobyl 

thyroid tumors revealed a high prevalence of rearrangements of the RET proto-

oncogene (57–76%) in PTC (Grieco et al., 1990). The most common genetic 

alterations in PTC include BRAF and RAS point mutations, and RET/PTC 

rearrangements which are involved in the Ras/Raf/MAPK signal pathway. The 

substitution of the valine with a glutamic acid at position 600 of BRAF 

(BRAF
V600E

 mutation) strongly increases its kinase activity eliciting ERK1/2 

phosphorylation (Wan et al., 2004). Chromosomal rearrangements that generate 

the juxtaposition of the C-terminal region of the RET protein with an N-terminal 

portion of another protein (RET/PTC rearrangement), can also lead to the 

constitutive activation of the RET kinase and the downstream signaling including 

PI3K/Akt, MAPK, JNK, and PLCγ (Knauf et al., 2003). 

Follicular thyroid carcinoma (FTC) represents the 10-30% of thyroid tumors. The 

most frequent genetic alterations include point mutations of Ras and the 

PAX8/PPARγ rearrangement. Anaplastic thyroid carcinoma (ATC) is the most 

rare thyroid tumor (2-5% of thyroid tumors) and is undifferentiated. ATC cells are 

not capable to synthesize thyroglobulin and to pick up iodine. Patients affected by 

ATC have a poor diagnosis, 75% of which present metastasis at diagnosis. ATC 

may have Ras, BRAF, β-catenin and p53 mutations. Recent evidence suggest that 
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one subset of anaplastic thyroid carcinomas are derived from papillary or follicular 

carcinomas due to BRAF and p53 mutations (Quiros et al., 2005). 

A germline point mutation in the RET gene on chromosome 10q11.2 is responsible 

for the hereditary MTC(Nose, 2011). About 5-10% of thyroid cancer is 

represented by medullary thyroid carcinoma (MTC), which originates from the C-

cells. Medullary thyroid carcinoma (MTC) is a C cell-derived calcitonin-producing 

tumor, that occurs either in sporadic (75% of all MTC) or in familial forms (25%). 

CT detection in tumor biopsies and elevated plasma CT levels are hallmarks of 

MTC (Bussolati et al., 1969; Melvin and Tashjian, 1968). All principle oncogenes 

find in thyroid carcinomas are reported in Table1. 

 

 
Tumor type Oncogene 

PTC RET/PTC 

NTRK1 

BRAF 

PI3KCA 

RAS 

FTC PAX8/PPAR  

RAS 

PI3KCA 

ATC RAS 

BRAF 

PI3KCA 

RET/PTC 

CTNNB1 

MTC RET 

 

 

Table 1. Major genetic alterations in thyroid cancer 

 

The hereditary form of MTC is a dominantly inherited cancer syndrome known as 

familial medullary thyroid carcinoma (FMTC) when solitary, or multiple 

endocrine neoplasia type 2A and 2B (MEN2A, MEN2B) when occurs associated 

to other endocrine tumors derived from neural ectoderm (Gardner et al., 1993). 

MTC are known to spread to lymph nodes in the neck and mediastinum at early 

stages, and eventually also to distant sites, like bone, liver and lung. The 

classification of MTC is based on the pathological Tumor, Node, Metastases 

system (pTNM) and is also referred to as stage I (tumor less than 2 cm in diameter 

without evidence of disease outside of the thyroid gland), stage II (any tumor 

between 2 and 4 cm without evidence of extrathyroidal disease), stage III (any 

tumor greater than 4 cm, or level VI nodal metastases or microscopic 

extrathyroidal invasion regardless of tumor size) and stage IV (any distant 

metastases, or lymph node involvement outside of level VI, or gross soft tissue 

extension). The appropriate initial treatment for patients who are diagnosed with 
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MTC is total thyroidectomy and careful lymph node dissection of the central 

compartment of the neck (Moley and Fialkowski, 2007). Measurement of 

postoperative plasma CT levels is a sensitive method to determine whether the 

operation has been curative (Lips et al., 2001). In contrast to the thyroid follicular 

cells, C-cells do not take up and store iodine. For this reason, in contrast to 

papillary and follicular thyroid carcinoma, additional treatment with radioactive 

iodine is not effective for MTC (Saad et al., 1983). Furthermore, chemotherapy 

and radiotherapy are usually ineffective for MTC (Marsh et al., 1995). An 

effective systemic treatment in addition to surgery is currently not available for 

MTC patients.  

 

1.2- RET (REarranged during Transfection) 

 

The RET protooncogene has 21 exons distributed over 60 kb and encodes for a 
receptor tyrosine kinase, which is expressed in neuroendocrine cells (including 

thyroid C cells and adrenal medullary cells), neural cells (including 

parasympathetic and sympathetic ganglion cells), urogenital tract cells, and testis 

germ cells. RET protein is structured with an extracellular portion (which contains 

four cadherin-like repeats, a calcium binding site, and a cysteine-rich region), a 

transmembrane portion, and an intracellular portion, which contains two tyrosine 

kinase subdomains (TK1 and TK2) that are involved in the activation of several 

intracellular signal transduction pathways. 

Ligand stimulation leads to activation of the RET receptor with dimerization and 

subsequent autophosphorylation of intracellular tyrosine residues, which serve as 

docking sites for various adaptor proteins (Santoro et al., 2004). Normally, RET is 

activated by binding of a ligand-coreceptor complex. The family of RET-

coreceptor ligands consists of glial cell-line derived neurotrophic factor (GDNF), 

neurturin (NRTN), artemin (ARTN) and persephin (PSPN). The coreceptors, 

GDNF family receptor alpha (GFRα)-1, GFRα-2, GFRα-3 and GFRα-4, belong to 

a glycosyl-phosphatidyl inositol (GPI)-linked receptor family. GDNF primarily 

associates with GFRα1, whereas neurturin, artemin, and persephin preferentially 

bind GFRα2, GFRα3, or GFRα4, respectively. RET protein dimerization results in 

autophosphorylation of several intracellular RET tyrosine residues. Ten 

autophosphorylation sites are found on both major RET isoforms (RET9 and 

RET51), and an additional two are found on the longer isoform, RET51. Several 

are binding sites for a variety of docking proteins. The tyrosine Y1062 has been 

shown to bind Src homology and collagen (SHC), insulin receptor substrate 1 and 

2 (IRS1/2), fibroblast growth factor receptor substrate 2 (FRS2), and protein 

kinase Cα (PKCα). These proteins are able to activate multiple signaling 

pathways, including mitogen activated protein kinase (MAPK), phosphoinositide 

3-kinase (PI3K)/AKT, RAS/extracellular signal regulated kinase (ERK), and 

Rac/c-jun NH, kinase (JNK). These pathways are mediators of cell motility, 

proliferation, differentiation, and survival. DOK 1/4/5/6 (downstream of kinase 
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1/4/5/6) also binds phosphorylated Y1062, and DOK4 binding has been implicated 

in GDNF-dependent outgrowth. Binding of c-Src or SH-2Bβ to phosphorylated 

Y981 promotes survival and differentiation. Other binding sites have also been 

shown to be important. SHC preferentially binds to activated RET outside lipid 

rafts, whereas FGF receptor substrate 2 (FRS2) preferentially binds when RET is 

within the raft. FRS2 activates ERK through both Grb2 and Shp2. The tyrosine 

Y1015 has been shown to bind phospholipase C  (PLC ), then subsequently 
generates inositol phosphates, modulates the intracellular calcim concentration and 

activates the protein kinas C (PKC). 

In PTC, RET can be activated by chromosomal rearrangement known as RET/PTC 

rearrangement. In RET/PTC, the 3′ portion of the RET gene is fused to the 5′ 

portion of various unrelated genes. At least 13 types of RET/PTC have been 

reported to date, all formed by the RET fusion to different partners (de Groot et al., 

2006b). 

The two most common rearrangements, RET/PTC1 and RET/PTC3, account for 

the majority of all rearrangements found in papillary carcinomas. RET/PTC1 is 

formed by fusion with the H4 (D10S170) gene, and RET/PTC3 by fusion with the 

NCOA4 (ELE1) gene (Pasini et al., 1995). Several studies suggest that the 

oncogenic effects of RET/PTC require signaling along the MAPK pathway and the 

presence of the functional BRAF kinase. Indeed, BRAF silencing in cultured 

thyroid cells reverses the RET/PTC-induced effects (Mitsutake et al., 2006). 

Papillary carcinomas with RET/PTC rearrangements typically present at younger 

age and have a high rate of lymph node metastases, classic papillary histology, and 

possibly more favorable prognosis, particularly those harboring RET/PTC1. In 

tumors arising after radiation exposure, RET/PTC1 was found to be associated 

with classic papillary histology, whereas RET/PTC3 type was more common in the 

solid variants (Nikiforov et al., 1997; Powell et al., 1998). Several studies 

demonstrated that RET/PTC rearrangement could be a unique marker for papillary 

thyroid carcinoma, however RET/PTC has been found in benign lesions including 

Hashimoto's thyroiditis (HT) and adenomas (Elisei et al., 2001; Ishizaka et al., 

1991; Nikiforova et al., 2002). The finding that RET/PTC expression is not an 

absolute PTC marker raises concerns on its clinical utility in inconclusive 

cytology. Moreover, the finding that RET rearrangements can occur only in a 

fraction of the cells in some PTC raises the alternative hypothesis 

that RET/PTC may also be a common secondary event in the process of thyroid 

carcinogenesis (Unger et al., 2004). 

The subclonal occurrence of RET rearrangement in PTC can influence the 

sensitivity of some methods and might explain why the reported prevalence 

of RET/PTC in papillary carcinomas varies in different studies from 0 to 87%. 

(Tallini and Asa, 2001; Zhu et al., 2006). 

Very recent studies demonstrated that RET rearrangement in benign thyroid 

nodules is not an uncommon occurrence and suggested that its presence could be 
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associated with a faster nodular enlargement (Guerra et al., 2011; Marotta et al., 

2010; Sapio et al., 2011). 

Somatic RET point mutations have been identified in about 50% of patients with 

sporadic MTC (Chiefari et al., 1998). MEN2A, MEN2B and FMTC represents the 

familial forms of MTC. MEN2A is associated with mutations involving the 

extracellular cysteine codons 609, 611, 618, 620 (exon 10) 630, or 634 (exon 11). 

The mutations associated with FMTC involve a broad range of codons including 

some associated with MEN2A, particularly, 609, 618, and 620, as well as others: 

768, 790, and 791 (exon 13), 804 and 844 (exon 14), or 891 (exon 15) (Wells and 

Santoro, 2009). In 95% of patients with MEN2B there is a point mutation in codon 

918 (exon 16, Met918Thr) within the intracellular domain of RET (Myers et al., 

1995). A few patients with MEN2B have a mutation in codon 883 (exon 15) 

(Gimm et al., 1997). Single MEN2B patients with double RET mutations 

Val804Met + Ser904Cys and Val804Met + Tyr806Cys have been reported 

(Iwashita et al., 2000). In MEN2A and FMTC the RET mutations lead to a ligand-

independent homodimerization and constitutive kinase activity such 

that RET becomes a dominant oncogene. In MEN2B RET mutations activate the 

RET receptor in its monomeric state, leading to phosphorylation of Y1062 and 

other tyrosines, and also causing a change in substrate specificity (Baloh et al., 

1998). Phosphorylation of tyrosine 1062 (Tyr1062) located in the RET carboxyl-

terminal tail is important for transforming activity of both RET-MEN2A and RET-

MEN2B mutant proteins (Asai et al., 1996). Tyr1062 acts as a docking site for 

many adaptor or effector proteins such as SHC, FRS2, DOK1/4/5/6, IRS1/2, 

Enigma, protein kinase C α (PKCα) and Shank (Schuetz et al., 2004). Among 

these, SHC binding plays a crucial role in activation of both the RAS/ERK and 

phosphatidylinositol 3-kinase (PI3)-K/AKT pathways (Besset et al., 2000). When 

SHC binds to phosphorylated Tyr1062, Grb2/SOS and Grb2/GAB complexes are 

recruited to SHC, leading to activation of the RAS/ERK and PI3-K/AKT 

pathways, respectively. In addition, Jun N-terminal kinase (JNK), p38 mitogen-

activated protein kinase (p38MAPK) and ERK5 pathways are also activated via 

Tyr1062 (Murakami et al., 2002) although the precise activation mechanisms 

remain elusive. (Figure 1) 
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Figure 1. Principle docking sites for intracellular pathways in RET receptor 

(de Groot et al., 2006a) 

 

It has been shown that AKT and JNK phosphorylation was increased in RET-

MEN2B-expressing cells compared to RET-MEN2A-expressing cells(Murakami 

et al., 1999). In addition, it was reported that the JNK pathway is involved in the 

ability of RET-MEN2B to metastasize (Marshall et al., 1997). These findings 

suggest that high levels of AKT and JNK activation may be associated with the 

aggressive properties of MEN2B.  

RET gene mutations have a high phenotype-genotype correlation, corresponding 

with MTC behavior and directly affecting treatment and surveillance. Generally, 

the least aggressive tumors arise in FMTC, which is characterized by only the 

development of MTC without other abnormalities. MEN2A tumors are slightly 

more aggressive, and patients may develop pheochromocytomas, parathyroid 

hyperplasia, and rarely, cutaneous lichen amyloidosis. MEN2B tumors are the 

most aggressive, and the syndrome is characterized by pheochromocytomas, 

skeletal abnormalities, mucosal neuromas, and a marfanoid habitus but not 

parathyroid hyperplasia. Presently, 500 to 1,000 MEN2 families are recognized 

worldwide (Brandi et al., 2001). The optimal treatment for MTC in patients with 

MEN2 is prophylactic thyroidectomy, ideally just prior to extra-thyroidal spread. 

Because of a good correlation between MTC clinical aggressiveness and the 

specific RET genotype, the timing of surgical intervention varies depending on the 

specific mutation. The American Thyroid Association has recently refined the 

categorization of all known mutations into four levels to recommend an age for 

prophylactic surgery (American Thyroid Association Guidelines Task et al., 2009). 

Patients with the highest risk are in level D, with mutations in codons 

corresponding to MEN2B, and should have surgery by age 6 months. Level C 
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consists of mutations in codon 634, and patients should have prophylactic surgery 

before age 5 years. Level B consists of mutations in codons 609, 611, 618, 620, 

and 630. Surgery should be considered before age 5 years, but may be delayed if 

stringent criteria are met (normal serum calcitonin, normal neck ultrasound, and 

less aggressive family MTC history). Level A mutations are characterized by MTC 

with the least aggressive behavior, and surgery may be delayed after age 5 years 

on the basis of the stringent criteria previously described and the clinician's 

discretion. (Figure 2). 

 

 

 
 

 

Figure 2. Schematic diagram of the RET receptor and distribution of mutated 

codons associated with different risk levels for aggressive MTC in MEN2 

syndromes. The most common MEN2-associated mutations are reported. Other 

rare germline or somatic mutations, alone or in combination, have been found at 

different RET codons. (Lanzi et al., 2009) 

 

Several multi-kinase inhibitors have significant activity against RET. Several have 

shown inhibition of RET kinase and tumor growth in preclinical models of MTC. 

Vandetanib (ZD6474) was originally developed as a second generation epidermal 

growth factor receptor (EGFR) TKI, but subsequently was found to have more 

potent inhibitory effects against VEGF receptor (VEGFR; IC50 = 40 nM) and RET 

(IC50 = 130 nM) than EGFR (IC50 = 500 nM) (Schlumberger et al., 2008). 

Vandetanib blocks autophosphorylation of codon 918 mutant RET kinase in intact 

cells (Carlomagno et al., 2002). Certain mutations in RET codons 804 and 806 

have been shown to confer resistance to vandetanib, which may be a concern for 
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secondary resistance to the drug (Carlomagno et al., 2004). Sorafenib (BAY 

43‐9006) is another multikinase inhibitor targeting RET, as well as BRAF, 
VEGFR, and platelet-derived growth factor receptor (PDGFR). In vitro, sorafenib 

inhibits oncogenic RET kinase with an IC50 of < 50 nM and decreased tumor 

volume of TT cells (MTC cell line harboring a codon 634 RET mutation) in 

athymic mice (Carlomagno et al., 2006). 

Overall success seen in these trials represents a major breakthrough in treatment of 

patients with widespread metastatic MTC. However, current clinical trials of RET-

targeted therapies are only the first step in discovering effective therapies for 

patients with MTC. Further progress in understanding the molecular pathogenesis 

of MTC is critical to elucidate the role of the RET kinase signaling pathway in 

tumor progression and maintenance, other critical targets or signaling pathways 

important in MTC, and mechanisms of primary and secondary resistance to TKIs 

by potential redundant signaling pathways or by developing “resistance” mutations 

in RET (Phay and Shah, 2010). 
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1.3- THE CALCIUM CALMODULIN DEPENDENT KINASES (CAMKs) 

 

Calcium is an ubiquitous intracellular messenger responsible for controlling 

numerous cellular processes including fertilization, mitosis, neuronal transmission, 

contraction and relaxation of muscles, gene transcription, and cell death. At rest, 

the cytoplasmic calcium concentration [Ca]i is approximately 100 nM, but this 

level rises to 500–1,000 nM upon activation. In osteoblasts, the elevation of [Ca] i 

is a result of an increase in the release of calcium from endoplasmic reticulum 

and/or extracellular calcium influx through voltage gated Ca channels. Many of the 

cellular effects of calcium are mediated by the calcium binding protein, 

calmodulin (CaM) (Hook and Means, 2001). 

The predominant intracellular receptor for Ca
2+

 is calmodulin (CaM), a small, 

highly conserved Ca
2+

 sensor that is ubiquitously expressed in mammalian cells 

(Bito, 1998). CaM serves as a receptor to sense changes in Ca
2+

 concentration and, 

in this way is the second messenger of these ion. Ca
2+

 binds to CaM by a structural 

motif called EF-hand, and a pair of these structures are located in both globular 

ends of the protein. When the four binding sites are filled, CaM undergoes a 

conformational change exposing a flexible eight-turn  helix, which separates the 
hydrophobic pockets that form in each of the globular ends of the protein. CaM 

thus become “loaded” with Ca
2+ 

and capable to interact with one of its many target 

protein in the cell. The interaction with target proteins, while usually of high 

affinity, is rapidly reversible upon a decline in Ca
2+

 concentration (Means, 2000). 

One of the major family of Ca
2+

/CaM effectors is represented by the Ca
2+

/CaM 

dependent protein kinases (CaMKs) which can be divided into dedicated CaMKs 

that phosphorylate a single specific substrate such as myosin light chain kinase 

(MLCK) and the multifunctional CaMKs including CaMKI, CaMKII and 

CaMKIV that phosphorylate a large number of protein (Braun and Schulman, 

1995).  

All of the CaMKs, except CaMKIII, have similar overall domain organizations of 

their 50–60 kD subunits and crystal structures for CaMKI and CaMKII (Hudmon 

and Schulmann, 2002) have been published. CaMKII contains a unique C-terminal 

subunit association domain and electron microscopy reveals that it exists as 

heteromeric dodecamers of α, β, γ, and δ subunits with two hexameric rings 

stacked one on top of the other (Gaertner et al., 2004). This complex oligomeric 

structure allows for unique regulatory mechanisms and protein-protein interaction 

domains that are essential to its functionality, especially in paradigms of learning 

and memory (Lisman  et al, 2002). Activation of CaMKII by Ca
2+

/CaM allows 

intramolecular autophosphorylation of several sites, including Thr286, Thr305, 

and Thr306. Autophosphorylation of Thr286 has two primary consequences: (1) 

the subsequent dissociation of bound Ca
2+

/CaM (i.e., when intracellular Ca
2+

 

concentration is reduced) is decreased by several orders of magnitude, thereby 

prolonging its activation, and (2) even after full dissociation of Ca
2+

/CaM, the 

kinase retains partial (30%–60%) activity (i.e., Ca
2+

-independent or 

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2664743/#R131
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2664743/#R91
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constitutive/autonomous activity) Thus, transient elevations of intracellular 

[Ca
2+

]i can result in prolonged CaMKII activity until protein phosphatases 

dephosphorylate Thr286 (Colbran,2004). The mechanism of activation of CaMKII 

is illustrated in figure 3. 

 

 

 
 

Figure 3. Ca
2+

/CaM-dependent kinase II structural domains and activation. 

Under resting conditions the catalytic domain is constrained by the regulatory 

domain. After  intracellular  Ca
2+

  rises  the Ca
2+

/CaM binds to the C terminal 

portion of the CaMKII regulatory domain to prevent autoinhibition of the 

regulatory domain on the catalytic domain, activating  CaMKII.  With  sustained  

Ca
2+

/CaM  or  increased  oxidation, CaMKII transitions into a Ca
2+

/CaM-

autonomous active enzyme after autophosphorylation (at Thr 287) or oxidation (at 

Met281/282) of amino acids in the regulatory domain (Anderson, 2005) 

 

Moreover, the extent of CaMKII autonomous activity can be dictated by the 

frequency of Ca
2+

 oscillations (Rich and Schulman,1998). This mechanism is 

thought to be critical in several physiological situations, especially potentiation of 

synaptic transmission during learning and memory (Lisman et al., 2002). Thus, 

transgenic mice in which Thr286 is mutated to Ala or Asp exhibit multiple 

behavioral and learning deficits. Members of the CaMK cascade (CaMKK α and 

β, CaMKI α, β, δ, and γ, and CaMKIV) are monomeric and, apart from activation 

by Ca
2+

/CaM, show very different modes of regulation by phosphorylation 

compared to CaMKII. These CaMKs, like most other Ser/Thr protein kinases, 

have an “activation loop” phosphorylation site that is absent in CaMKII. Binding 

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2664743/#R39
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of Ca
2+

/CaM to CaMKI and CaMKIV exposes this activation loop site to allow 

phosphorylation by the upstream CaMKK when simultaneously activated by 

Ca
2+

/CaM. Phosphorylation of the activation loop in CaMKI and CaMKIV 

primarily increases their Ca
2+

/CaM-dependent activities. CaMKIV, but not 

CaMKI, can also exhibit significant Ca
2+

-independent activity (Tokumitsu et al., 

2004) In neurons, CaMKK-mediated phosphorylation/activation of CaMKIV 

appears to be quite transient, lasting for only a few minutes (Uezu et al., 2002) 

whereas CaMKI phosphorylation can persist up to an hour or more (Schmitt et al., 

2005). Although CaMKI and CaMKIV have overlap in substrate specificity 

determinants, they can also exhibit unique phosphorylation site preferences even 

in the same protein substrates (Schmitt et al., 2005). Cellular substrate specificities 

of CaMKI and CaMKIV are often dictated by different subcellular localizations. 

The primary substrates of CaMKK are CaMKI and CaMKIV, but CaMKK can 

also activate PKB/Akt (Yano et al., 1998) and AMP-kinase. PKB and AMP-kinase 

are referred to as secondary substrates because their phosphorylation/activation by 

CaMKK is very slow. For example, activation of CaMKI upon NMDA receptor 

stimulation occurs in less than 5 min, whereas PKB/Akt activation by CaMKK is 

maximal in about 60 min (Schmitt et al,2005). CaMKK-mediated activation of 

PKB upon prolonged elevation of [Ca
2+

]I results in PKB phosphorylation and 

inactivation of the proapoptotic factor BAD, thereby protecting neurons from 

apoptosis(Yano et al., 1998).AMP-kinase is critical for regulation of cellular 

energy metabolism in many tissues, and its function(s) in brain is just beginning to 

be explored.  

Apart from the activation features, the CaMKs differ from tissue and subcellular 

localization. CaMKII and CaMKI are ubiquitously expressed, while CaMKIV is 

tissue specific and expressed mainly in brain, thymus, testis, ovary, bone marrow 

and adrenal gland (Wang et al., 2001). While CaMKIV is predominantly nuclear 

(Jensen et al., 1991) and CaMKI appears to be a cytosolic enzyme(Jensen et al., 

1991; Picciotto MR, 1996; Picciotto et al., 1995), the subcellular distribution of 

CaMKII can vary (Heist and Schulman, 1998). Four types of subunits of CaMKII 

have been identified ( ) that are encoded by different genes with differing 
tissue-specific expression. Alternative splicing within the C-terminal sequence of 

each gene produces further isoforms. Although the biochemical characteristics of 

CaMKII purified from many tissues are practically identical, the subunit 

composition, that is dependent on the source, seems to determine the subcellular 

localization of the complex. The most studied forms of CaMKII in the nervous 

system are rich in  and  subunits, and are mainly cytoplasmic enzymes. Some 

splice variants of the  and  CaMKII genes contain a nuclear localization 
signal (NLS) (Brocke et al., 1995; Srinivasan et al., 1994), resulting in targeting of 

the kinase to the nucleus. Expression of the  isoform together with cytoplasmic 

isoforms of CaMKII can direct the heteromultimeric enzyme complex to the 

nucleus, suggesting that the relative abundance of cytoplasmatic or nuclear-

targeted subunits may determine the subcellular localization (Heist et al., 1998). 

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2664743/#R140
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The nuclear entry of CaMKII can also be regulated by other kinases. In all 

mammalian nuclear CaMKII isoforms, the NLS is followed by a string of four Ser 

residues. Phosphorylation of the four Ser by CaMKI or CaMKIV blocks both 

nuclear translocation of  subunit and binding of CaMKII to importin (Griffith et 
al., 2003).  

CaMKII exerts a broad range of biological function such as regulation of gene 

expression, cell cycle, proliferation and a number of neuronal functions. 

CaMKII is one of the most abundant proteins in the brain, comprising 1% of the 

total protein in the forebrain and 2% in the hippocampus, a region associated with 

memory. The first of the CaMKII isoforms to be identified, CaMKII  is a major 

component of the postsynaptic membrane (PSD) in pyramidal neurons. In the 

PSD, CaMKII is thought to increase synaptic strength by phosphorylating ion 

channels and signalling proteins such as glutamate receptors and N-metyl D-

aspartate (NMDA) receptors (Cruzalegui and Bading, 2000). Thus, CaMKII is 

involved both in the maintenance of dendritic architecture and synaptic plasticity. 

In addiction CaMKII is required for long lasting changes in synaptic strength such 

as long-term potentiation (LTP), a process involved in learning and memory 

(Giese et al., 1998).  

One of the studies that have addressed the nuclear functions of CaMKII was based 

on the Ca
2+

 stimulation of immediate early genes that are regulated by cAMP 

response element (CRE) such as c-fos (Means,2000). Phosphorylation of CREB 

(CRE binding protein) on Ser133 is essential for transcription because it is 

required for binding of the ubiquitously expressed CREB binding proteins CBP 

and p300. (De Cesare et al., 1999) Ser-133 was originally identified as the target 

of protein kinase A (PKA), thus explaining the role of cAMP in transcriptional 

activation. However CaMKII can also phosphorylate this residue leading to the 

speculation that CAMKII mediates Ca
2+

 requirement for expression of the 

immediate early genes (Means,2000). Interestingly, the nature of the effects of 

CaMKII on transcription seems to be both cell and promoter dependent (Nghiem 

et al., 1994). 

Studies from multiple groups have identified an association between CaMKII and 

heart disease, suggesting that CaMKII signaling may provide a unique opportunity 

for the development of novel therapies. The use of inhibitors to block CaMKII 

activity has been instrumental in understanding this enzyme's role in Ca
2+

 signal 

transduction. To examine the role of CaMKII specifically in signal transduction, 

reagents that possess relative specificity for the isoforms of CaMKII were 

identified. A family of reagents is known as the KN series of inhibitors, with KN-

62 being the first described: an isoquinolinesulphonamidederivative ²1-[N,O-bis(5-

isoquinolinesulphonyl)-N-methyl-l-tyrosyl]-4-phenylpiperazine´ with a Ki value of 

0.9 lM. KN-93, a methoxybenzenesulphonamide, has improved solubility with a 

slightly better inhibitory potency (Ki= 0.37 lM). Otherwise many intracellular 

kinases contribute to inhibit CaMII like PKA, the cyclin-dependent kinases, and 

the mitogen-activated protein kinase JNK. 
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Moreover, the KN drugs interfere competitively with activation by CaM, and thus 

they do not inhibit the autonomous activity of the kinase (Sumi et al., 1991; 

Tokumitsu et al., 1990).  

Endogenous inhibitors of CaMKII were first identified in 1998 and 2001 from 

brain rat extracts, in Cos-7 cell line and in neurons. Up to now, four endogenous 

CaMKII inhibitory proteins (CaMKIINs) have been identified. Rat CaMKII 

inhibitory protein α (rCaMKIINα) and β (rCaMKIINβ), both identified from rat 

brain and human CaMKII inhibitory protein α (hCaMKIINα) and β (hCaMKIINβ) 

were highly selective in inhibiting CaMKII activity, and some biological functions 

have been elucidated (Ma et al., 2009; Wang et al., 2008). Identification of the T-

site as the CaM-KIIN interaction site on CaMKII provided two mechanisms for 

this novel differential inhibitor effect: CaMKIIN was competitive with the region 

around T286 in an isoforms independent manner, and strengthened the CaM 

binding required for presentation of T286 as a substrate. The natural CaMKII 

inhibitors protein hCaMKIINs provides a promising alternative to pharmacological 

inhibitors because they potently inhibits CaMKII but not CaMKI, CaMKIV, PKA, 

or PKC (Chang et al., 1998, 2001). The two CaMKIIN isoforms (  and )are 
highly homologous to each other and colocalize with microtubules in neurons. 

Both bind selectively to CaMKII only in its activated states (Chang et al,1998; 

2001). CaM-KIIN–derived peptides could provide superior CaMKII inhibitors, 

especially if they are short enough to be synthesized easily.  

 

 

1.4-CAMKII AND hCaMKIIN IN THE MAPK SIGNALING IN NORMAL 

AND CANCER CELLS  

 

In the last decade, studies performed in the laboratory of Prof. Vitale, 

demonstrated that the MAPK pathway activated by several stimuli, is controlled 

by CaMKII through the regulation of Raf-1 activity. Fibronectin (FN) binding to 

integrins in thyroid cells, activates the Ras/Raf/MEK/ERK pathway, through the 

formation of the FAK/Grb-2/Sos complex. Concurrently, integrins binding to FN 

increases the intracellular Ca
2+ 

concentration, that leads to a Ca
2+

/CaMKII signal. 

Integrin activation induces Raf-1 and CaMKII to form a protein complex, 

indicating that intersection between Ras/Raf/MEK/ERK and Ca
2+

/CaMKII 

signaling pathways occurs at Raf-1 level. Inhibitory experiments demonstrated that 

the Ca
2+

/CaMKII signal is necessary for ERK activation in this context. 

Interruption of the Ca
2+

/CaMII pathway using pharmacological (KN93) or peptidic 

(ant-CaNtide) inhibitors of CaMKII, arrested cell proliferation induced by FN in 

thyroid cells (Illario et al., 2003; Illario et al., 2005)(figure 4). The cross talk 

between CaMKII and MAPK pathway, has been demonstrated also in human 

fibroblasts and in L6 skeletal muscle cells following insulin stimulation. In these 

cells, insulin induces activation of CaMKII and its association with Raf-1. This 

event is necessary for the following ERK dependent-DNA synthesis, 
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demonstrating the role of CaMKII also in the selective control of insulin signaling 

(Illario et al., 2009). A very recent paper demonstrates that the molecular event 

following CaMKII/Raf-1 binding is the Raf-1 phosphorylation at S338 (Salzano et 

al., 2012). This phosphorylation is a necessary step of Ras-mediated Raf-1 

activation, occurring upon different physiologic and pathologic stimuli of the 

MAPK cascade.  

 

 
 

Figure 4. CaMKII binding to Raf-1 is necessary for activatation of the 

Ras/Raf/MEK/ERK pathway after fibronectin (FN) stimulation in thyroid 

cells (Illario et al,2003) 

 

 

In most of the cells, in the absence of extracellular stimuli (i.e. hormones, 

cytokines, integrins), CaMKII is not activated or is in a minimal activation status. 

This kinase has been found activated in basal unstimulated conditions in some 

tumors. CaMKII has been found constitutively activated in absence of any 

stimulation in primary cultures of PTC and in PTC cell lines harboring the 

oncogenes RET/PTC1 or BRafV600E. The expression of recombinant RET/PTC3, 

BRafV600E or RasV12 in COS-7 cells, induced CaMKII activation, in a 

phospholipase C/Ca
2+ 

dependent manner. In the PTC cell line TPC-1, harboring 

RET/PTC1, CaMKII inhibitors attenuated ERK activation and DNA synthesis, 

indicating that CaMKII is a component of the ERK signal cascade in this cell line 

(figure 5). Taken together, these data demonstrated a new role of CaMKII in the 

modulation of tumor cell proliferation and that the PLC/CaMKII pathway could 

therefore provide appropriate targets for therapeutic intervention of tumors 

harboring RET/PTC (Rusciano et al., 2010). 
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Figure 5. Oncogenic RET/PTC and KRas
V12

 activate CaMKII in Cos-7 cell 

line (Rusciano et al,2010) 

 

A role for CaMKII in the regulation of cell cycle and cell proliferation have been 

recently extended to other cellular systems, extending the biological role of this 

kinase.  

Tombes et al. demonstrated that CaMKII mediates Ca
2+

/CaM-dependent G1 phase 

progression in fibroblasts. Indeed, the inhibition of the endogenous cellular 

CaMKII by KN93 completely prevented DNA synthesis and led to decreased 

levels of cyclin D1, a critical regulatory molecule of the G1 phase protein kinase 

cdk4. More recent studies showed that CaMKII regulates cell proliferation in 

different cell types. The role of CaMKII has been investigated in prostate 

carcinoma and has been shown that AR-positive prostate cancer cells can escape 

apoptosis after inhibition of the CaMKII mediated PI3K-independent activation of 

Akt (Rokhlin et al., 2007). Moreover, CaMKII can affect apoptotic response of 

prostate cancer cells by an Akt-independent mechanism. KN93 sharply decreased 

the level of anti-apoptotic protein Mcl-1 whereas different inhibitors of PI3K/Akt 

pathway did not change the Mcl-1 expression. In the same cell system, KN93 

induced p53 expression and p53-dependent pro-apoptotic protein PUMA (Rokhlin 

et al., 2010). In colorectal carcinoma Wnt-specific inhibitors SFRP and DKK-1 

can block the ability of CaMKII to trigger TCF-1 export (Najdi et al., 2009). In the 

hepatoma cancer cell line Hep3B, overexpression of constitutively active CaMKII 

enhanced HIF-1α activity and the CaMKII inhibitor KN93 counteracted this effect. 

The involvement of CaMKII in HIF-1α activation was also demonstrated in 

macrophages. CaMKII inhibitors SMP-114 and KN93 down-regulated HIF-1α and 

VEGF in THP-1 monocytic cells (Westra et al., 2009) However, the role of 

CaMKII in HIF-1α regulation remains controversial because a specific CaMKII 

inhibitor SMP-114 had no effect on HIF-1α and VEGF expressions in rheumatoid 

synovial fibroblasts (Westra et al.,2009). Therefore, the CaMKII regulation of 

HIF-1α is a cell type-dependent event. All these data demonstrate the pivotal role 
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of CaMKII in most important signalings ruling the cell fate of normal and tumoral 

cells. 

More recently, an important cancer regulatory role has been proposed for the 

endogenous inhibitors of CaMKII (hCaMKIINα and β). It has been proposed that 

hCaMKIINα has a biological role in colo-rectal carcinogenesis (Wang et al., 

2008). In this study, hCaMKIINα expression induced a decrease of ERK activity, 

accumulation of p27 and arrest of cell cycle. In this paper, the authors also showed 

that hCaMKIIN expression in primary colon adenocarcinoma was negatively 

correlated with the severity of the disease. Ma et al. demonstrated that intratumoral 

gene transfer of hCaMKIINβ inhibited the growth of human ovarian cancer in vivo 

and that hCaMKIINβ overexpression affected the expression of cell cycle- and 

apoptosis-related proteins, and Akt/HDM2 pathway in human ovarian cancer. Also 

in  ovarian adenocarcinoma hCaMKIIN  expression was negatively correlated 
with the severity of the disease, suggesting that this could be a more general 

phenomenon. These observations, let hypothesize that hCaMKIINα and β-

mediated CaMKII inhibition might provide a promising approach for the drug 

design of novel cancer therapeutics (Ma et al., 2009; Wang et al., 2008). 

 

 

 
 

Figure 6. A model depicting the mechanisms for the induction of human 

ovarian cancer cell cycle arrest and apoptosis by hCaMKIINβ-mediated 

inhibition of CaMKII.  

Inhibition of CaMKII by hCaMKIINβ inactivates PI3K/Akt, which de-regulates 

the HDM2 expression, leading to the stabilization of p53 protein. p53 then 

regulates the transcription of target genes, such as p21, resulting in the cell cycle 

interference. On the other hand, p53-dependent induction of Bax and direct 

inhibition of Bcl-2, as well as p53-independent signals, promote the cellular 

apoptosis. (Wang et al,2008) 
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2.AIM OF THE THESIS 

 

 

The aim of this doctorate thesis is to clarify the role of CaMKII in medullary 

thyroid carcinoma, in particular I focused my study on the following specific 

questions: 

 

1- Whether RET mutants activate CaMKII  

2- Whether CaMKII is stably activated in MTC cell lines, and if so, whether 

CaMKII activation is RET mediated 

3- Whether CaMKII is involved in the MAPK signaling in MTC cells and 

whether it modulates cell cycle and proliferation 

4- Whether CaMKIINα mRNA relative expression in primary MTC, 

correlates with clinicopathological features of the disease 

 

The answers to these questions represent the main body of a manuscript in 

preparation, however during my doctorate program I have been involved in other 

projects, the published one are attached at the end of this thesis. 
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3-MATERIALS AND METHODS 

 

3.1-Cell cultures 

 

Parental murine NIH3T3 fibroblasts and NIH3T3 cells stably transfected with the 

RET mutants RET/C634R and RET/M918T, were cultured in Dulbecco's modified 

Eagle's medium (DMEM) supplemented with 5% fetal bovine serum. TT cells 

were from American Type Culture Collection (Manassas, VA, USA). TTs were 

derived from the primary tumor of an apparently sporadic MTC. TTs harbor a 

cysteine 634 to tryptophan (C634W) exon 11 RET mutation (Carlomagno et al., 

1995) as well as a tandem duplication of the mutated RET allele (Huang et al., 

2003) MZ-CRC1 cells were derived from a malignant pleural effusion from a 

patient with a metastatic MTC (Cooley et al., 1995). MZ-CRC1 cells revealed a 

heterozygous (ATG to ACG) transition in RET exon 16 resulting in MEN2B-

associated substitution of threonine 918 for methionine (M918T). 

TT cells were grown in RPMI 1640 supplemented with 16% FBS (Gibco). MZ-

CRC1 cells were grown in DMEM supplemented with 10% FBS. All media were 

supplemented with 2 mM L-glutamine and 100 U/ml penicillin–streptomycin 

(Gibco). All cell lines were maintained at 37°C 5%CO2.  

 

3.2-MTT assay 

 

TT and MZ-CRC1 cells were plated at a density of 1×10
4
 cells/well in 96-well 

plates in 100 L medium. After overnight culture, KN93 was added and the cells 
were cultured up to 9 days. The medium and the inhibitors were renewed every 3 

days. Following the designated treatment, the culture medium was removed and 20 

μl of 3-(4, 5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide, (MTT) 

(Sigma Chemical Co., St. Louis, MO), 0,5 mg/mL were added to each well. After 

4 h at 37 °C of incubation in darkness, the dissolved MTT crystals were 

quantitated. Optical densities were obtained using a test wavelength of 490 nm 

(Dynatech MR5000 microelisa spectrophotometer, Chantilly, VA). 

 

3.3-Western blot 

 

For Western blot analysis, cells were lysed in Laemmli buffer [0.125 mol/liter Tris 

(pH 6.8), 5% 95 glycerol, 2% sodium dodecyl sulfate(SDS),1%βmercaptoethanol, 

and 0.006% bromophenol blue]. Proteins were resolved by 7–15% SDS-PAGE 

and transferred to a nitrocellulose membrane (Immobilon P; Millipore Corp., 

Bedford, MA). Membranes were blocked by 5% nonfat dry milk,98 1% 

ovalbumin, 5% FCS, and 7.5% glycine in PBS, washed, and incubated for 

overnight at 4 C with primary antibodies and then washed again and incubated for 

1 h with a horseradish peroxidase conjugated secondary antibody. Finally, protein 



27 

 

bands were detected by an enhanced chemiluminescence system (Amersham 

Biosciences, Piscataway, NJ). Computer-acquired images were quantified using 

ImageJ 1.39u, National Institutes of Health, U.S.A. Anti-mitogen-activated protein 

kinase (MAPK) (1 : 1000) and anti-phospho-MAPK (1 : 1000), which recognizes 
p44/42MAPK (ERK1/2) phosphorylated at Thr202/Tyr204, were rabbit polyclonal 

antibodies from Cell Signaling (Beverly, MA). Anti-RET (1 : 1000) is a rabbit 
polyclonal antibody raised against the tyrosine kinase protein fragment of human 

RET (Santoro et al., 1995). Anti-phospho905 is a phospho-specific polyclonal 

antibody that recognizes RET proteins that are phosphorylated at 

Y905 (Carlomagno et al., 2003). Blots were incubated with primary antibodies for 

1 hour at room temperature, followed by three washes in buffer (20 mM Tris-HCl 

at pH 7.5, 150 mM NaCl, and 0.05% Tween 20). The blots were then incubated 

with the goat anti-rabbit secondary antibody (1 : 3000) coupled to horseradish 
peroxidase (Santa Cruz Biotechnology) for 1 hour at room temperature followed 

by three washes in buffer (20 mM Tris-HCl at pH 7.5, 150 mM NaCl, and 0.05% 

Tween 20). Mouse monoclonal antibodies to total- and phospho- ERK-1/2 and 

polyclonal; antiphospho-CaMKII antibody (pT286-CaMKII) were from Cell 

signaling; anti-phospho Raf-1 S338 was purchased by Upstate. 

Each experiment was performed at least three times. 

 

3.4-Reagents and inhibitors 

  

To inhibit CaMKII activity a pharmacologiacal inhibitor has been used: KN93. 

KN93 is a potent, selective and cell permeant pharmacological inhibitor of the 

CaMKs (IC50=370 nM; Rezazadeh,2006). This drug is an 

isoquinolonesulfonamides and functions as a competitive ATP antagonist 

(Tokumitsu et al., 1990).  

The CaMK inhibitor KN93 and the CaM inhibitors N-(6 aminohexyl)-5-chloro-1-

nafthalene-sulfonamide (W7) were purchased from Sigma Aldrich. 

ZD6474 (Vandetanib) has demonstrated potent inhibition of ligand-dependent 

RET receptor tyrosine kinase activity (IC50=100 nM) and selective inhibition of 

RET-dependent thyroid tumour cell growth in vitro (Carlomagno et al., 2004; 

Carlomagno et al., 2002) ZD6474 inhibited the majority of mutated, activated 

forms of RET receptor tyrosine kinase and also inhibited the wild-type enzyme. 

Therefore, in addition to inhibition of VEGFR-2 tyrosine kinase and EGFR 

tyrosine kinase, inhibition of RET tyrosine kinase by ZD6474 may provide 

particular additional antitumour effects in the treatment of tumours with genetic 

changes in the RET gene (mutation or translocation) that lead to RET receptor 

signalling-dependent tumour cell growth (Santoro et al., 2002). ZD 6474 was 

kindly provided by AstraZeneca (Macclesfield, UK). 
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Ionomycin (IC50=100nM) is a selective calcium ionophore produced by 

the bacterium Streptomyces conglobatus. It is used as a research tool to understand 

Ca
2+

 transport across biological membranes.  

BAPTA-AM is a highly selective Ca
2+

 chelator over Mg
2+

. This product has a total 

of six possible protonation sites. All four carboxyl groups are considered 

unprotonated at physiologic pH. Ionomycin and BAPTA were provided by Sigma 

Aldrich. 

 

3.5-RNA extraction and relative mRNA extraction 
 

Total RNA was extracted from TT and MZ-CRC1 cell lines using 500 μl TRI 

Reagent, resuspended in 10 μl DEPC water, and reverse-transcribed with 

SuperScript III (Invitrogen, Milan, Italy) in a 20-μL reaction volume with random 

primers.. mRNA was reverse-transcribed into cDNA and analyzed by real-time 

RT-PCR with the cDNA of the MTC patients. Real-time PCR was performed 

using SYBR Green PCR reagents (Fermentas) and primers specific for CaMKIIα, 

hCaMKIINα and β-actin. The CAMKII alpha forward primer (5’to 3’) was 

GGGGGAAACAAGAAGAGC and the reverse primer (5’to 3’) was 

GTGCTCTCTGAGGATTC.  

The hCaMKIINα forward primer(5’to 3) was TACGGCGACGAGAAGCTGAG, 

the reverse (5’ to 3’) TCAGCACGTCATCAATCCTATC. 

The β-actin forward primer (5’to 3’) was 5’-TTC CTT CCT GGG CAT GGA GT-

3’; the reverse primer (5’to 3’) was 5’-TAC AGG TCT TTG CGG ATG TC-3’. 

The samples were analyzed with Biorad iCycler with the following protocol: 95°C 

x 5’; 95°C x10”-60°C x60” (x 40 cycles). The levels of relative mRNA expression 

were determined by normalizing to β-actin expression and adopting the ΔΔCt 

method. (Livak et al,2001) 

 

3.6 TNM and staging classification of tumors. 

MTC were classified according to the American Joint Committee on Cancer 

(AJCC) TNM system. T1: The tumor is 2 cm (slightly less than an inch) across or 

smaller and has not grown out of the thyroid. T2: The tumor is more than 2 cm but 

not larger than 4 cm (slightly less than 2 inches) across and has not grown out of 

the thyroid. T3: The tumor is larger than 4 cm across, or it has just begun to grow 

into nearby tissues outside the thyroid. T4: The tumor is any size and has grown 

extensively beyond the thyroid gland into nearby tissues of the neck, such as the 

larynx (voice box), trachea (windpipe), esophagus (tube connecting the throat to 

the stomach), or the nerve to the larynx. Stage I (T1, N0, M0): The tumor is 2 cm 

or less across and has not grown outside the thyroid (T1). It has not spread to 

nearby lymph nodes (N0) or distant sites (M0). Stage II: One of the following 

applies: T2, N0, M0: The tumor is more than 2 cm but is not larger than 4 cm 

across and has not grown outside the thyroid (T2). It has not spread to nearby 

lymph nodes (N0) or distant sites (M0). T3, N0, M0: The tumor is larger than 4 cm 

http://en.wikipedia.org/wiki/Ionophore
http://en.wikipedia.org/wiki/Bacterium
http://en.wikipedia.org/w/index.php?title=Streptomyces_conglobatus&action=edit&redlink=1


29 

 

or has grown slightly outside the thyroid (T3), but it has not spread to nearby 

lymph nodes (N0) or distant sites (M0). Stage III (T1 to T3, N1a, M0): The tumor 

is any size and might have grown slightly outside the thyroid (T1 to T3). It has 

spread to lymph nodes around the thyroid in the neck (N1a) but not to other lymph 

nodes or to distant sites (M0). Stage IV: One of the following applies: T4, any N, 

M0: The tumor is any size and has grown beyond the thyroid gland and into 

nearby tissues of the neck (T4a). It might or might not have spread to nearby 

lymph nodes (any N). It has not spread to distant sites (M0). T1 to T3, N1b, M0: 

The tumor is any size and might have grown slightly outside the thyroid gland (T1 

to T3). It has spread to certain lymph nodes in the neck (cervical nodes) or to 

lymph nodes in the upper chest (superior mediastinal nodes) or behind the throat 

(retropharyngeal nodes) (N1b), but it has not spread to distant sites (M0). Any T, 

any N, M1): The tumor is any size and might or might not have grown outside the 

thyroid (any T). It might or might not have spread to nearby lymph nodes (any N). 

It has spread to distant sites (M1). 

 

3.6-Statistical analysis 

 

Results are presented as the mean ± SD. Statistical analysis was performed by 

using the t test, ANOVA test and Ranking test for hCaMKIINα experiments. Each 

experiment was performed at least three times. The level of significance was set at 

P less than 0.05. 
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4.RESULTS 

 

4.1-RET MUTANTS ACTIVATE CaMKII BY A Ca
2+

/CaM-MEDIATED 

SIGNAL 

 

Murine NIH3T3 fibroblasts were serum starved for 24 hours and then incubated 

with the calcium ionophore ionomycin 2  for 5 minutes. The cells were then 
lysed in RIPA buffer, the protein were resolved on SDS PAGE, and the 

phosphorylation of Thr 286 of CaMKII was evaluated by Western Blot with a 

phospho-specific antibody (p-CaMKII-T286).  

In parental NIH3T3 harbouring the wild type RET gene, a minimal CaMKII 

phosphorylated was observed at basal condition, as compared to the kinase  

phosphorylation induced by ionomycin treatment (Figure 7A).  

NIH3T3 cells stably transfected with the RET mutants RET/C634R, and 

RET/M918T were starved from serum for 24 hours and then treated with the 

calcium ionophore ionomycin 2  for 5 min and with the calcium chelator 

BAPTA-AM for 30 minutes at two different concentrations (5 and 10 ). The 
cells were then lysed in RIPA buffer and the phosphorylation on thr 286 of 

CaMKII was evaluated as before (Figure 7B). In the absence of stimuli the 

activation of CaMKII was evident. The treatment with ionomycin had no effect, 

while the treatment with BAPTA-AM decreased CaMKII phosphorylation in a 

dose dependent manner. These results demonstrate that CaMKII is activated by 

RET mutants in a calcium-dependent manner. 
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Figure 7- RET mutants activate CaMKII. 
Parental murine NIH3T3 fibroblasts (A) and  NIH3T3 cells stably transfected with 

the RET mutants RET/C634R (NIH2A) and RET/M918T (NIH2B) (B) were 

serum starved for 24 hours and then treated with the calcium ionophore ionomycin 

2  for 5 minutes or with with BAPTA-AM at different concentration (5, 10 

) for 30 minutes. The phosphorylation on thr 286 of CaMKII was evaluated by 

Western Blot with a phosphor-specific antibody (p-CaMKII-T286).  

 

 

4.2-CaMKII IS ACTIVATED IN MTC CELL LINES 

 

The MTC derived cell lines TT and  MZ-CRC1 contain a cysteine 634 to 

tryptophan (C634W) transversion at exon 11 of the RET gene (Carlomagno et al., 

1995) with concurrent tandem duplication of the mutated RET allele (Huang et al., 

2003), or a methionine 918 to threonine (M918T) transversion at exon 11 of the 

RET gene, respectively. 

Both cell lines were starved from serum for 24 hours and incubated in suspension 

with the calcium chelator BAPTA-AM or the ionophore ionomycin for 30 minutes 

at different concentrations. The cells were then lysed in RIPA buffer, the protein 
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were resolved on SDS PAGE, and the phosphorylation on Thr 286 of CaMKII was 

evaluated by Western Blot. (Figure 8) 

In unstimulated cells, CaMKII was strongly phosphorylated. Ionomycin treatment 

produced a paradoxical effect reducing CaMKII phosphorylation. The kinase 

activation was calcium sensitive as demonstrated by a dose-dependent inhibition 

with the calcium chelator BAPTA.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. CaMKII is activated in unstimulated MTC cell lines 

TT and MZ-CRC1 were starved from serum for 24 hours and incubated in 

suspension with the calcium chelator BAPTA-AM or the ionophore ionomycin for 

30 minutes at the indicated concentrations. Phosphorylation of CaMKII at Thr 286 

was evaluated by Western Blot.  

 In unstimulated cells CaMKII was strongly phosphorilated. Ionomycin treatment 

produced a paradoxical effect reducing CaMKII phosphorylation. The kinase 

activation was calcium sensitive as demonstrated by a dose-depemdemt inhibition 

with the calcium chelator BAPTA. 

 

 

4.3-CaMKII ACTIVATION IS RET AND PLC-γ MEDIATED IN MTC 

CELL LINES 

 

TT cells were starved from serum for 24 hours and incubated in suspension with 

increasing concentration of the RET inhibitor ZD6474 (Vandetanib) for 60 

minutes. The cells were then lysed in RIPA buffer, the protein were resolved on 

SDS PAGE, and the phosphorylation of RET-Y1062, CaMKII and MEK, were 

evaluated by Western Blot with the phosphor-specific antibodies. (Figure 9 A). 

Similar results were obtained in MZ-CRC1 cells not shown. 

PLC  is activated by RET and increases intracellular Ca
2+

 concentration. Thus, 

CaMKII activation by RET might be PLC  mediated. To elucidate this issue, TT 

and MZ-CRC1 cells were starved from serum for 24 hours and incubated with 
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increasing concentrations of the PLC-γ inhibitor U73-122 for 2 hours. The cells 

were then lysed and the proteins were analyzed by Western Blot (Figure 9B). In 

MZ-CRC1 cells, 15 M U73-122 was sufficient to induce a dramatic CaMKII 

dephosphorylation, whereas in TT cells the same effect was obtained with 45 M. 

The different result between the two cell lines evidences a major sensitivity of 

MZ-CRC1 cell line to calcium deprivation and confirm that in these cells CaMKII  

activation is RET/ PLC  mediated. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9. CaMKII activation in TT cells is RET mediated 

A, TT cell line was starved from serum for 24 hours and incubated in suspension 

with increasing concentration of the RET inhibitor ZD6474. The protein were 

resolved on SDS PAGE, and the phosphorylation of RETY1062, CaMKII and 

MEK, were evaluated by Western Blot with the phosphor-specific antibodies.  

B, TT and MZ-CRC1 were starved from serum for 24 hours and incubated for 2 

hours with increasing concentration of the PLC-γ inhibitor U73-122 (15-30-45 

). The cells were then lysed and CaMKII phosphorylation was evaluated by 

Western Blot. 
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4.4-ERK ACTIVATION IN MTC CELL LINES IS CALCIUM-

CALMODULIN MEDIATED 

 

TT and MZ-CRC1 cells were serum starved for 24 hours and treated with the 

calcium chelator BAPTA-AM or the inhibitor of calmodulin W7 at different time 

(15 and 30 minutes) and concentration (15-30-45 ). The cells were then lysed 
in RIPA buffer, the protein were resolved on SDS PAGE, and ERK 

phosphorylation was evaluated by Western Blot with the phosphor-specific 

antibodies (Figure 10). 

ERK phosphorylation was evident in unstipulated cells and remained unchanged 

following ionomycin treatment. BAPTA-AM treatment completely abrogated 

ERK phosphorylation in MZ-CRC1 cells. The ERK phosphorylation inhibitory 

effect of BAPTA in TT cells was minor and unexpectedly inconstant. In Figure 9 a 

minor inhibition is displayed. W7 displayed a powerful reproducible inhibitory 

effect of ERK phosphorylation, demonstrating that CaMKII activation in these 

cells is calcium/calmodulin dependent. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10. ERK activation in MTC cell lines is calcium/calmodulin mediated 

TT and MZ-CRC1 cells were serum starved for 24 hours and treated with the 

ionomycin or BAPTA-AM for 30 minutes, or with the calmodulin inhibitor W7 

for 15 or 30 minutes. The cells were then lysed in RIPA buffer and ERK 

phosphorylation was evaluated by Western Blot. 
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4.5-ERK ACTIVATION IN MTC CELL LINES IS CAMKII MEDIATED 

 

 

TT and MZ-CRC1 were starved from serum for 48 hours and incubated in 

adhesion with the pharmacological CaMKII inhibitor KN93 10  for 24 and 48 
hours. The cells were then lysed in RIPA buffer, the proteins were resolved on 

SDS PAGE, and the phosphorylation of RET-Y1062, CaMKII-Thr286, Raf-1 Ser 

338 and ERK were evaluated by Western Blot with the phospho-specific 

antibodies (Figure 11). 

KN93 was ineffective on RET phosphorylation, ensuring that the effects on the 

phosphorylation status of other kinases was not a direct effect on RET. A time-

dependent inhibition of CaMKII phosphorylation was evident. A substantial 

dephosphorylation of Raf-1 at Ser 338 and ERK occurred by 24 h.  These results 

demonstrate that ERK activation in TT and MZ-CRC1 cell is CaMKII mediated.  

 

 

 
 

Figure 11. ERK activation in MTC cells lines is CaMKII mediated 

MTC cell lines were starved from serum for 48 hours and incubated in adhesion 

with the pharmacological CaMKII inhibitor KN93 10  for 24 and 48 hours. The 

cells were then lysed and the phosphorylation of  RET-Y1062, CaMKII-T286, 

Raf-1-S338 and ERK was evaluated by Western Blot. 
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4.6- INHIBITION OF  CaMKII BLOCKS CELL CYCLE IN MTC CELLS. 

 

TT and MZ-CRC1 were starved from serum for 48 hours and incubated in 

adhesion with the pharmacological CaMKII inhibitor KN93 for 24 and 48 hours. 

The cells were then lysed and the levels of cyclin D and p27
Kip1

 were evaluated by 

Western Blot (Figure 12) 

A remarkable decrease of cyclin D expression was evident in both cell lines, with 

a time dependent fashion. Following the treatment with KN93, a modest 

accumulation of p27
Kip1, 

more evident in TT cells, could be observed.  

 

 
 

Figure 12. Inhibition of CaMKII modulates cell cycle machinery in MTC cell 

lines.  

MTC cells were starved from serum for 48 hours and incubated with the CaMKII 

inhibitor KN93 10  for 24 or 48 hours. The levels of cyclin D and p27
Kip1

 were 
evaluated by Western Blot with the specific antibodies.  

 

 

4.7-CaMKII INHIBITION INDUCES MTC CELL GROWTH ARREST 

 

The MTC cell lines TT and MZ-CRC1 were plated in 96 well 10.000 cells/well 

and treated with KN93 at different concentration (2.5, 5 and 10 ) for 9 days. 

Every three days the medium and the inhibitor were renewed and MTT assay was 

performed (Figure 13).  

In TT cells, a significant reduced number of viable cells was observed after 9 days 

of treatment with 5 M KN93. At 10 M concentration, KN93 strongly inhibited 
cell viability/proliferation already by 3 days in both cell lines. Microscopic 

observation of MZ-CRC1 cells treated with 10 M KN93, revealed a considerable 

number of  floating cells and adherent round shaped cells already by 3 days of 
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culture, indicating a toxic effect of the treatment. MTT assay indicated a great 

reduction of viable MZ-CRC1 cells after 9 days of treatment with 10 M KN93. 
TT cells appeared more resistant to the toxic effect of KN93. 

 

 

 

 
 

 

 

Figure 13. Effects on cell proliferation and viability of CaMKII inhibition. 

TT and MZ-CRC1 cells were plated in 96 well 10.000 cells/well and treated with 

the CaMKII inhibitor KN93 at different concentration (2.5, 5, 10 ) for 9 days. 

Every three days the medium and the inhibitor were renewed. At the end of the 

culture, the plates were incubated with MTT in the dark for 3 hours at 37°C 5% 

CO2. The absorbance at 490 nM was recorded and the data were analyzed to report  

the cell viability. 

 

 

4.8- hCaMKIINα EXPRESSION IN PRIMARY MTC AND MTC CELL 

LINES 

 

The hCaMKIINα mRNA relative expression was assessed by real time PCR in 21 

tissue samples of primary MTCs. Relative mRNA expression level was 

determined as previously reported (Livak and Schmittgen, 2001) and normalized 

with β-actin. hCaMKIINα was found in all tissues with a remarkable variable 

expression level (Figure 14). hCaMKIINα mRNA expression in MZ-CRC1 was 

about two fold than in TT cells. This result pursued us to investigate about a 

possible correlation between hCaMKIINα mRNA expression and 

clinicopathological features in MTC patients. 
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Figure 14. hCaMKIINα expression in primary MTC and MTC cell lines. 

hCaMKIINα mRNA relative expression was assessed by real time PCR in 21 

tissue samples of MTC. Relative mRNA expression level was normalized with β-

actin. The sample with minor relative expression (sample n° 261) was the 

standard. In MZ-CRC1 was two-fold  then TT cells. 

 

 

4.9- hCaMKIINα EXPRESSION IS INVERSELY CORRELATED WITH 

SERUM CALCITONIN LEVEL, LOCAL TUMOR EXTENSION, 

STAGING, AND LYMPH NODE METASTASIS. 

 

The association between clinicopathological characteristics at surgery time and 

hCaMKIINα mRNA expression was determined. hCaMKIINα mRNA expression 

was inversely correlate with the serum calcitonin concentration measured at 

surgery time (R2=0.032 in Spearman rank correlation p=0.017) (Figure 15A). The 

local tumor extension was classified following the American Joint Committee on 

Cancer (AJCC) TNM system. hCaMKIINα mRNA expression was significantly 

correlated to the inverse of the local tumor extension (T) (F=5.276, P=0.0094 by 

ANOVA) (Figure 14B) and tumor staging (F=5.158, P=0.0043 by ANOVA) 

(Figure 14C).  Inverse correlation was also observed between hCaMKIINα mRNA 

expression and lymph node metastasis at surgery time. (Student’s t-test; p=0.0297) 

(Figure 14C). 

These results indicate that hCaMKIINα expression is inversely correlated with a 

more aggressive disease at diagnosis, suggesting that inhibition of CaMKII by its 

endogenous inhibitor protects patients from more aggressive medullary thyroid 

carcinoma. 
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Figure 14. hCaMKIINα expression is inversely correlated with disease 

extension.  

hCaMKIINα mRNA relative expression was assessed by real time PCR in 21 

tissue samples of MTC and correlated with serum calcitonin (A); T classification 

of the TNM system (B); tumor staging (C); lymph node metastasis (D). The 

ordinates report relative hCaMKIINα mRNA expression. CT, calcitonin; Bars are 

averages. 
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5. DISCUSSION AND CONCLUSIONS 

 

MTC is a rare C-cell derived, calcitonin-producing tumor that occurs either in 

sporadic (75% of all MTCs) as well as in familial forms (25%). Germline point 

mutations in the RET gene on chromosome 10q11.2 are responsible for the 

hereditary MTC and occurs in about 70% of the sporadic form (Nose, 2011). RET 

point mutations are associated with the familial medullary thyroid carcinoma 

(FMTC) and with multiple endocrine neoplasia type 2A and type 2B (MEN2A and 

MEN2B). MEN2A is associated with mutations involving the extracellular 

cysteine codons 609, 611, 618, 620 (exon 10) 630, or 634 (exon 11). The 

mutations associated with FMTC involve a broad range of codons including some 

associated with MEN2A, 609, 618, and 620, as well as 768, 790, and 791 (exon 

13), 804 and 844 (exon 14), or 891 (exon 15) (Wells and Santoro,2009). A point 

mutation at codon 918 (exon 16, Met918Thr) within the intracellular domain 

of RET, accounts for the 95% of genetic alterations in patients with MEN2B 

(Myers et al., 1995). A few patients with MEN2B have a mutation at codon 883 

(exon 15) (Gimm et al., 1997). In MEN2A and FMTC, RET mutations lead to a 

ligand-independent homodimerization and constitutive kinase activity so that RET 

becomes a dominant oncogene.  

 

All these genetic alterations have in common the ability to confer to RET receptor 

an constant ligand-independent activity, transforming an hormone receptor into an 

oncogene. In MEN2B, RET mutations activate the RET receptor in its monomeric 

state, leading to phosphorylation of Y1062 and other tyrosines,  (Baloh et al., 

1998). Phosphorylation of tyrosine 1062 (Tyr1062) located in the RET carboxyl-

terminal tail is important for transforming activity of RET mutant proteins (Asai et 

al., 1996). Tyr1062 acts as a docking site for many adaptor or effector proteins 

such as SHC, FRS2, DOK1/4/5/6, IRS1/2, Enigma and protein kinase C α (PKCα) 

(Schuetz et al., 2004). Among these, SHC binding plays a crucial role in activation 

of both the RAS/ERK and phosphatidylinositol 3-kinase (PI3)-K/AKT pathways 

(Besset et al., 2000). When SHC binds to phosphorylated Tyr1062, Grb2/SOS and 

Grb2/GAB complexes are recruited to SHC, leading to activation of the RAS/ERK 

and PI3-K/AKT pathways respectively. In summary, ligand-activated RET and 

oncogenic RET signaling comprises the RAS/RAF/MEK/ERK1/2, the PI3K/Akt, 

the PI3K/Rac/JNKp38/ERK5, the PLC /inositol/Ca
2+

 and PLC /PKC pathways. 
 

CaMKII is an ubiquitous serine-threonine kinase, one of the most abundant 

proteins in the brain, comprising 1% of the total protein in the forebrain and 2% in 

the hippocampus, a region associated with memory. The first of the CaMKII 

isoforms to be identified, CaMKII  is a major component of the postsynaptic 

membrane in pyramidal neurons. CaMKII exerts a broad range of biological 

function such as regulation of gene expression, cell cycle, proliferation and a 

number of neuronal functions. A novel function assigned to CaMKII is its 

http://clincancerres.aacrjournals.org/search?author1=Massimo+Santoro&sortspec=date&submit=Submit
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regulatory effect in the MAPK signaling. CaMKII binds to Raf-1 and 

phosphorylates this kinase at Ser338 (Salzano et al., 2012). This phosphorylation 

is necessary for Raf-1 full activation and is necessary for up-stream effectors to 

activate the MAPK kinase pathway leading to ERK1/2 activation. The 

CaMKII/Raf-1 interplay has important cellular effect on different cellular 

functions in a cell type-dependent fashion. In thyroid cells stimulated with 

fibronectin, CaMKII is necessary to integrin-stimulated proliferation and survival 

(Illario et al., 2003). In L6 skeletal muscle cells and in fibroblasts, CaMKII is 

necessary to insulin stimulated proliferation and modulates Glut-4 translocation to 

the cell plasma membrane (Illario et al., 2009).  

 

In different tumors, CaMKII has been found constitutively activated in absence of 

any stimulation.  In PTC primary cultures and in PTC cell lines harboring the 

oncogenes RET/PTC1 or BRafV600E, CaMKII was activated also in the absence 

of extracellular stimulation (Rusciano et al., 2010). The expression of recombinant 

RET/PTC3, BRafV600E or RasV12 in COS-7 cells, induced CaMKII activation, 

in a PLC/Ca
2+ 

dependent manner. Based upon these data, we hypothesized that 

also in MTC cells, CaMKII might be activated by RET oncogene and might 

participate to the oncogenic signaling leading to transformation of the C cell. 

Previous experiments demonstrated that the RET/PTC3 activate CaMKII trough 

two pathways: Y1062/RAS/PLC /Ca2+/CaMKII  and 

Y1015/PLC /Ca2+/CaMKII. This conclusion arises from the observation that 

inhibition of CaMKII activation is achieved by both RAS and PLC  inhibition and 
by calcium chelators. The NIH3T3 mutants carrying the RET mutants used in my 

experiments, provided us with convincing evidence that oncogenic RET activates 

CaMKII though a calcium mediated signal. In these cells, CaMKII resulted in an 

active state of a magnitude comparable with that obtained by the calcium 

ionophore ionomycin, and was inhibited by the calcium chelator BAPTA. 

However, while the NIH3T3 is a good cell model, suitable to study signal 

transduction pathways, it is a model too distant from MTC cells and epithelial 

cells-derived tumors. The biological effects of CaMKII are cell type dependent 

and results obtained in NIH3T3 cannot be transferred to other cell types without a 

direct experimental validation. Indeed, inhibition of CaMKII in NIH3T3 and in 

some prostate cancer cells, does not prevent cell proliferation as observed in other 

cell types such as normal thyroid cells, thyroid cancer cells of fibroblasts. For this 

reason I choose to investigate the role of RET-activated CaMKII in MTC cell 

lines. TT and MZ-CRC1 are the best characterized and most used MTC cells, 

although these cells are difficult to use because they have a long doubling time and 

are resistant to most of transfection methods. Another difficulty of my study is 

represented by the limitation of tools available for CaMKII inhibition. Indeed, 

because of the expression of four different isoforms and several splicing variants, 

interfering RNA has a limited efficacy, so that CaMKII inhibition in most of the 

studies in the literature is obtained pharmacologically by KN93. In most of the 
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experiments that I performed, the results obtained in the two MTC cell lines were 

identical or similar, with only a quantitative difference. In both cell lines, CaMKII 

was in an active state also in the absence of extracellular stimuli. Calcium 

chelation and calmodulin inhibition abrogated the kinase phosphorylation, 

indicating that CaMKII in these cells was not mutated and that its activity was 

depended by a calcium/calmodulin mediated signaling. CaMKII activation was 

induced by RET mutants C634W and M018T as demonstrated by its inhibition 

induced by the RET inhibitor ZD6474. The effect of this inhibitor was more 

evident in TT than in MZ-CRC1 cells, suggesting some difference between the 

two RET mutants or the existence in MZ-CRC1 cells of an alternative pathway 

modulating the intracellular calcium concentration. Regardless the mechanisms by 

which the calcium/calmodulin signaling is generated in these MTC cell lines, the 

experiments performed with U73-122 demonstrated that CaMKII activation was 

mediated by PLC . As in the other cell types investigated previously, also in MTC 
cells, active CaMKII binds and phosphorylates Raf-1 at Ser 338, participating to 

the MAPK pathway, leading to cell proliferation and survival. CaMKII per se is 

not an activator of the MAPK pathway. Indeed, it has been demonstrated that 

phosphorylation of Ser338 potentiates Raf-1 activation and that full Raf-1 

activation is achieved by concurrent S338 and Y341 (i.e. by Src) phosphorylation. 

Accordingly, direct evidence in COS-7 cells demonstrated that expression of 

constitutively activated CaMKII did not induce ERK activation. These data, 

together with the evidence provided by the present study, indicate that CaMKII is 

required for ERK activation by other signal/s generated by RET mutants in MTC. 

 

A role for CaMKII in the regulation of cell cycle and cell proliferation in some 

tumors has emerged by studying its endogenous inhibitors. The endogenous 

inhibitors of CaMKII (CaMKIIN  and ) were first identified from brain rat 

extracts, in Cos-7 cell line and in neurons. It has been hypothesized that CaMKIIN 

competes with the region around T286 in an isoforms independent manner (Ma et 

al.,2009). The endogenous CaMKII inhibitor hCaMKIINα induces accumulation 

of p27
Kip1

, deactivation of ERK and cell cycle arrest in colorectal carcinoma. 

hCaMKIIN  expression is resulted negatively correlated with the severity of 
human colon adenocarcinoma, while hCaMKIINβ expression was negatively 

correlated with the severity of ovarian adenocarcinoma (Ma S et al.,2009). 

These evidence suggested that the counteracting role of hCaMKIIN could be a 

more general phenomenon and that amplifying hCaMKIINα and β-mediated 

CaMKII inhibition might provide a novel approach for cancer therapy (Ma et 

al.,2009; Wang et al.,2008) 

The analysis of hCaMKIINα expression in 21 MTC revealed a broad variability. 

Notably, I found a strong correlation between hCaMKIINα expression levels and 

the disease extension in patients affected by MTC. Although the sample number 

was low, a highly significant inverse correlation was found between hCaMKIINα 

mRNA expression in the tumors and the serum calcitonin levels, tumor extension, 
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staging and lymph node metastasis. All these findings suggest that attenuation of  

CaMKII activity is correlated with a less aggressive tumor. 

 

These results, when confirmed in a larger cohort of patients, suggest that 

hCaMKIINα might be used as a prognostic factor useful for tailoring the therapy 

of MTC. As a  final consideration, CaMKII could represent a new therapeutic 

target for pharmacological intervention in MTC. 
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