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Abstract

Molecular models for capturing the behavior of various entangled polymer
systems were developed based on the physical framework of the tube model
by Doi and Edwards and stochastic slip-link simulations built on similar
ingredients. Using such models, we confronted three problems involving
entangled polymers in this work.

First, we investigated the effects of entanglements on the elastic behavior
of polymer networks using slip-link simulations. In particular, we simulated
randomly-crosslinked networks using the Primitive Chain Network model
of Masubuchi and co-workers. We observed that the obtained stress-strain
behavior for these networks from simulations compared reasonably with the
replica theory of Edwards and Vilgis, which is consistent with experiments.
This contrasts with previous findings in end-linked networks where applica-
tion of the model was less successful. We explored possible mechanisms to
eliminate the discrepancies on predictions for the latter. However, none of
these mechanisms seem physically reasonable in the context of the present
model. We also confronted the issue of thermodynamic inconsistency of the
model by considering an alternative sliding equation based on the chemical
potential. This new sliding equation gave a slightly different stress-strain
response for randomly-crosslinked networks but the difference was minimal
in contrast with the huge discrepancy observed in end-linked systems.

Second, we modeled data on parallel superposition flows of monodisperse
and nearly monodisperse solutions from the experiments of Wang and co-
workers using a simple tube-based constitutive equation with convective
constraint release (CCR). By doing a linear expansion on this equation, we
obtained analytic expressions for superposition spectra as a function of shear
rate and the CCR parameter β. We then compared predictions based on
these expressions with the experimental data. Model agreement was quite
satisfactory and was independent of the choice of β. Predictions on the
shifting of the crossover frequency of these spectra as a function of the shear
rate were also consistent with the empirical trend reported by Wang and
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co-workers which they rationalized using the concept of CCR. However, as
our predictions did not vary with the inclusion or non-inclusion of CCR in
the model, we claim that the observed shifting by Wang and co-workers is
due simply to orientation and flow and not CCR.

Finally, we modified simple tube-based constitutive equations to ac-
count for flow-induced monomer friction reduction (MFR). We then used
these constitutive equations to model data on the elongational rheology
of monodisperse polystyrene melts and solutions from filament stretching
rheometry. MFR has been proposed previously as a mechanism which could
explain the qualitatively different behavior of melts and solutions revealed
by recent experiments. These systems are expected to behave similarly from
the perspective of classical tube models with chain stretch. We show that
inclusion of MFR in combination with CCR and chain stretch in simple
tube models allows for a semi-quantitative fitting of the available data sets
on both polystyrene melts and solutions. We also applied the modified equa-
tions in the analysis of shear flows and stress relaxation after cessation of
flow of PS melts to further understand the MFR mechanism. We find that
the MFR effect is triggered only when the stretching of the system is suffi-
cient to align the Kuhn segments. Further tests of this model by applying it
to bidisperse polystyrene melts would give further credence to this approach.
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Chapter 1

Introduction

1.1 General Introduction and Objectives

The success and advantages of a molecular approach is exemplified by the
problem of entangled polymer rheology, one of the most important bench-
mark problems for both rheology and soft matter physics. While interesting
from a scientific perspective, the problem is simultaneously of industrial
significance – the rheological behavior of polymers is an important consider-
ation in processing such as extrusion, blow molding and fiber spinning where
molten polymers are subjected to large deformations at fast rates.

The supposed origin of the rich mechanical and rheological behavior
exhibited by polymers are the entanglements which arise when chains are
long enough to overlap. Here, topological interactions between the chains due
to their uncrossability start to become relevant in their dynamics. The most
successful approach to this many-body problem is the so-called tube model
by Doi and Edwards [1]. This framework makes use of the concept of the tube
proposed by Edwards [2], the notion of reptation or snake-like motion of the
chain coined by de Gennes [3] and was developed in a constitutive framework
in a series of papers by Doi and Edwards [4, 5, 6, 7]. The basic Doi-Edwards
theory has been refined and improved upon by Marrucci, McLeish and others
for fast flows and nonlinear chain architectures [8, 9] resulting in what is
generally accepted as the standard model for entangled polymer dynamics.

The resulting standard model has been shown to be quite successful in
a wide variety of situations although it is still being continually challenged
by new experimental data, as in the cases considered in this work. These
data must necessarily come from experiments on model polymer systems
with low polydispersity, such as those made by anionic polymerization un-
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der high vacuum [10]. The behavior of such materials with well-defined
structure can then be compared to models which predict ideal behavior.
Likewise, new experimental methods are being continually improved. For
example, new methods for generating extensional flows [11, 12] have been
developed allowing data generation for a wider range of rates and deforma-
tions. This is also being supplemented by other techniques that can be used
to probe microscopic chain dynamics such as dielectric spectroscopy [13, 14]
and neutron scattering techniques [15].

Further, computer simulations are emerging as important tools in under-
standing these systems. At the present, well-developed techniques on doing
molecular dynamics (MD) simulations of polymer systems like the Kremer-
Grest bead-spring model [16], coupled with new modes of analysis using the
concepts of primitive path [17] or mean path [18], can provide further insights
on these entangled systems [19]. In addition, more coarse-grained stochastic
or mesoscopic simulations capable of resolving long-time behavior are being
developed such as the Twentanglement method [20] or slip-link simulations
[21, 22, 23, 24, 25, 26, 27]. Indeed, the latter family of models have been
emerging as more detailed alternatives to tube models [28].

This interplay of the experimental fields of polymer synthesis, rheom-
etry and other probes of tube motion with advances in theory, modeling
and computer simulations has enabled significant advances in the field of
both fundamental and applied nature. Indeed, some work has been done in
developing models that enable the molecular engineering of these complex
materials for industrial application [29] or in simulating actual industrial
processes down to the molecular scale [30]. That being said, some challenges
persist in the field in various directions – some pertaining to challenges on
establishing a more fundamental basis for the tube model [31] while others
pertain to new unobserved phenomena that cannot be explained in terms
of the pre-established framework [32, 33, 34]. Further, some findings are
even at odds with the current framework [35, 36, 37] prompting some to
re-consider the entire tube perspective altogether [38].

This work attempts to shed light on some of the remaining open problems
in the field particularly those concerning large deformation or nonlinear flows
and within the framework of either tube-based constitutive equations or slip-
link simulations. The latter will be used to confront problems on entangled
networks while the former will be applied to entangled liquids (melts and
concentrated solutions) of polymers with linear architectures. The physics
of branched polymers while both interesting and challenging remains beyond
the scope of this work. In at least one occasion, it will be shown that the
physics in the standard model is insufficient to model the data requiring the
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need for further examination of the system and the introduction of some
new physics.

1.2 Outline

This thesis is organized as follows:
The remainder of this chapter is devoted to a brief review of the current

understanding of entangled polymer rheology. The aim is not to provide a
thorough explanation of the subject as this can be found elsewhere [1, 39, 40]
but, rather, to provide some grounding on the present work.

Chapter 2 is on the development of slip-link simulations of entangled
rubbers. The model explored here is the primtive chain network model devel-
oped by Masubuchi and co-workers [22] for entangled polymers and applied
to a variety of systems. The work here builds on previous efforts to apply the
model to entangled rubbers [41, 42] and aims in resolving the observed dis-
crepancy between model predictions and an established constitutive model.
In this work, the problem is explored further by considering other rubber
systems to obtain more insights on why the previous discrepancy exists.
This work was done in collaboration with Prof. Yuichi Masubuchi (Kyoto
University) during a research visit in Japan and has been presented in the
following conferences and meetings:

• HJ Unidad, G Ianniruberto, Y Masubuchi. Primitive Chain Network
Simulations of Entangled Rubbers. XVIth International Congress on
Rheology. Lisbon, Portugal. August 2012

• HJ Unidad, G Ianniruberto, G Marrucci. Slip-link Simulations of
Entangled Polymers: Progress and Challenges. CECAM-DYNACOP
Workshop on Entangled Polymers: Dynamics and Architectures. Anacapri,
Italy. July 2011

• HJ Unidad, G Ianniruberto, G Marrucci. Slip-link Simulations of En-
tangled Polymers. 5th European Polymer Federation Summer School.
Gargnano, Italy. May 2011 [Poster]

Chapter 3 is on the analysis of parallel mechanical superposition ex-
periments on entangled melts and solutions using tube theory. The work
here builds on the superposition experiments done by Wang and co-workers
[43, 44] on monodisperse (or nearly monodisperse) polymer solutions. The
objective is to confront the data from these experiments using tube-based
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constitutive equations to see if the data agrees with these models and is
quantitatively consistent with the idea of convective constraint release(CCR)
[45, 46]. This work is the subject of the following manuscript

• HJ Unidad, G Ianniruberto. The role of convective constraint release
in parallel superposition flows of entangled polymer solutions. [sub-
mitted]

Chapter 4 is on the development of constitutive models for the nonlin-
ear rheology of entangled melts and solutions. Central to this section is
the idea of monomeric friction reduction in flow proposed recently [47] to
explain the observed difference in the elongational behavior of entangled
melts and solutions [32, 33] – systems which according to classical theory
should behave similarly. Here, this idea is developed further by including it
in simple tube-based constitutive equations. These can then be compared
with the available experimental data on entangled polymer solutions and
melts (start-up and steady-state elongational flow, stress relaxation after
cessation of elongational flow and nonlinear shear flow) to see if the findings
are consistent with this proposed theory. The work has been presented in
the following conference

• HJ Unidad, G Ianniruberto. Analysis of Uniaxial Elongational Flows
of Entangled Linear PS Melts. DYNACOP Final Conference. Leeds,
United Kingdom. December 2012

and is the subject of the following manuscript

• HJ Unidad, G Ianniruberto. Simple constitutive equations for entan-
gled polymers with flow-induced monomeric friction reduction. [in
preparation]

Finally, some concluding remarks and future outlook on the work are
given in Chapter 5.

1.3 Entangled Polymer Rheology

This section provides a general overview of the basic concepts and princi-
ples in the molecular rheology of entangled polymers. Readers who have
familiarity on the material are invited to skip this section.
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Figure 1.1: Different chain architectures according to (a) chemistry and (b)
topology

1.3.1 General Description of Polymers

Polymers are large molecules that consist of many repeating units that are
covalently linked. The repeating units could be of different chemical com-
position, resulting in a heteropolymer or of the same chemical composition,
giving rise to a homopolymer. Likewise, the chain architecture or topology
could be simply linear or branched, which can be further categorized de-
pending on the number and arrangement of branching points (as shown in
fig.1.1). The architecture can even be cyclic, the so-called ring polymers
which have interesting dynamics as they have no free ends [48, 49]. While
the presence of different monomer chemistries and branching points give rise
to interesting dynamics and rheology, the focus of this work will be linear
homopolymers.

In rheological modeling, the goal is to develop constitutive equations
that relate the stress within a material with its deformation history. For
molecular rheology, the aim is to derive such relations from the underlying
microscopic physics of the material, in this case, the polymer. To accomplish
this, a physical description of polymer conformation/structure is necessary
rather than an actual chemical description. In such a description of poly-
mer conformation one can represent a polymer chain by a series of i beads
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Figure 1.2: Physical representation of polymer chains: beads and bonds

separated by i− 1 bonds with positions denoted by the vectors ui as shown
in fig. 1.2. This can be justified by the fact that rheology deals more with
large-scale and long-time chain behavior. Hence, microscopic details matter
only as far as the basic units of length and time are concerned. Indeed, it
is a similar philosophy that allows the approach of mapping real polymeric
systems of various chemistries into generic bead-spring models such as the
Kremer-Grest model [16] to run simulations.

An alternative representation would be to use the vectors corresponding
to the bonds between each bead rather than each bead position. Each bond
i can then be represented by the vector ri = ui − ui−1. To specify polymer
conformation, one should then identify either of the following sets:

{ui} = (u0,u1,u2, . . . ,uN ) (1.1)

{ri} = (r1, r2, . . . , rN ) (1.2)

where N here is the number of beads or the degree of polymerization,
essentially a measurement of chain length.

An important vector to define is the end-to-end vector R, which is the
sum of all N bond vectors in a chain,
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R =
N∑
i=1

ri (1.3)

and the mean squared end-to-end distance 〈R2〉, a measure of the chain
size.

〈R2〉 =

〈(
N∑
i=1

ri

) N∑
j=1

rj

〉 =
N∑
i=1

N∑
j=1

〈ri · rj〉 (1.4)

These quantities describing chain (and subchain) conformation can then
be used in a microscopic definition of the stress.

1.3.2 Microscopic Definition of Stress

The macroscopic stress tensor σ is defined as follows

FT = An · σ (1.5)

where FT is the total force acting on the area A and n is the unit vector
normal to the area.

In terms of the microscopic structure of the material, Doi and Edwards
derive and report the Kirkwood expression for the stress [1]:

σαβ = − 1

V

Ns∑
j=1

〈Fj,αuj,β〉 (1.6)

Fj here is the elastic force acting on each material element j located at
position uj and α and β are indices for the principal directions.

For polymers, where each element can be represented by an elastic seg-
ment or a spring with two beads exerting a force Fj on each other as in fig.
1.3, equation (1.6) becomes

σαβ = − 1

V

Ns∑
j=1

((Fj,α)uj1,β + (−Fj,α)uj2,β) =
1

V

Ns∑
j=1

(Fj,α)rj,β (1.7)

which was simplified by using the bond vector for the segment, ui2,β −
ui1,β = ri,β.

If one defines the number of elastic segments per volume ν = Ns/V and
the system is large, one can replace the sum in (1.7) by an ensemble average
as shown below.
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Figure 1.3: Microscopic definition of the stress

σαβ = ν〈Fαrβ〉 (1.8)

For Gaussian chains where the elastic force in a subchain is proportional
to the subchain vector, i.e. F ∼ r, the following proportionality holds

σ ∼ 〈rr〉 (1.9)

where 〈rr〉 is called the conformation tensor. It then follows that one
can intepret the stress on a polymeric material as distortions of polymer
conformation.

1.3.3 Deformation and Flow

Other than a representation of the stress within a material, one also re-
quires a representation of the deformation experienced by the material for
rheological models. For this, one can consider the strain tensor E,

E(t, t′)αβ =
∂u′α
∂uβ

(1.10)

where the running indices α, β represent the principal directions 1 to
3. This tensor represents the displacement of a material element initally
located at u at time t to u′ at a later time t′. The inverse of this tensor,
E−1 is called the deformation gradient tensor.
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One can also consider the rate at which the deformation is applied by
considering the velocity gradient tensor

∇vαβ =
∂vα
∂uβ

(1.11)

whose transpose defined as κ = (∇v)T is also used in literature.
κ is an important representation of the flow fields imposed on a material.

For simple or rheometric flows such as those considered in this study, these
representations are well-known. For shear flows where the deformation plane
is the one spanned by the directions 1 and 2, κ is defined as

κ =

0 γ̇ 0
0 0 0
0 0 0

 (1.12)

where γ̇ is the shear rate.
For uniaxial elongational flows with the elongation in the 1 direction, κ

is

κ =

ε̇ 0 0
0 −ε̇/2 0
0 0 −ε̇/2

 (1.13)

where ε̇ is the elongation rate. For other rheometric flows such as planar
elongation, biaxial elongation or mixed flows (containing both shear and
elongation), the reader is referred to the following [39, 50].

These tensors, as well as others such as the Finger tensor, etc. are often
used in writing constitutive equations [39, 50] for viscoelastic materials such
as polymers.

1.3.4 Viscoelasticity

Polymer materials exhibit complex response to either stress or strain in
between those of classic solids or liquids, often referred to as viscoelasticity.
Classic solids at low strains obey Hooke’s law which in simple shear could
be written as follows

σ = Gγ (1.14)

where γ is the applied shear strain on the material and σ is the resulting
stress with the proportionality constant G being the elastic modulus.
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On the other hand, classic liquids will obey Newton’s law1

σ = ηγ̇ (1.15)

where γ̇ is the applied shear rate and the proportionality constant η is
called the viscosity of the material.

Note the fundamental difference between the two types of response. The
solid response (also called the elastic response) is strain-dependent but rate-
independent. It is also energy-conserving and allows full recovery of the
energy applied through deformation upon release. In contrast, the liquid
response (also called the viscous response) is rate-dependent but not strain-
dependent. It is also fully dissipative and all energy transfered to the liq-
uid through deformation will be fully dissipated. Since polymeric response
would often be in between these extremes, it depends on both the magnitude
of the applied strain and the rate at which it is applied.

Step-Strain Experiment

To emphasize the difference between classic solids and liquids as well as
viscoelastic ones, one can do a simple step-strain experiment as shown in fig.
1.4.

The figure emphasizes the time-dependence of viscoelastic reponse. For
small values of γ, i.e. in the regime of linear viscoelasticity, one can follow
this time-dependent response by monitoring the elastic modulus G(t) which
is defined simply from (1.14) as σ(t)/γ and whose plot has the same profile
as 1.4. Classic solids have a finite value for the modulus while Newtonian
liquids will have a 0 modulus.

For viscoelastic solids, the modulus starts at a certain level and then
decays to reach an asymptotic value (which in fig. 1.4 is σE/γ). The same
decay behavior is observed for viscoelastic liquids except the asymptotic
value is 0, which corresponds to total energy dissipation (only partial viscous
dissipation occurs for solids). As with most physical decay processes, this
can be fit by an exponential function and characterized by a relaxation time
τ written as follows.

G(t) = G0e
−t/τ (1.16)

1For this reason, classic liquids which obey Newton’s law are called Newtonian fluids
while fluids which exhibit behavior more complex than this, e.g. polymer liquids, are
called Non-Newtonian fluids.
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Figure 1.4: Stress response of different materials in a step-strain experiment

Note that (1.16) applies only to liquids and must be modified by an
additive constant on the right-hand side (corresponding to the asymptotic
value of G) to apply to solids.

Oscillatory Shear Experiment

One can also perform an oscillatory shear experiment (also known as a fre-
quency sweep test) in lieu of stress relaxation. One does this by applying a
time-dependent periodic strain γ(t),

γ(t) = γ0 sin(ωt+ δ) (1.17)

where w is the frequency of the strain field. It follows that the strain rate
is also periodic and is 90◦ out of phase of the strain and is thus as follows

γ̇(t) = γ0ω cos(ωt+ δ) (1.18)

where δ is an arbitrary phase constant.
In general, assuming that the deformation starts at δ = 0 for time t = 0,

the material response which depends on the frequency ω can be represented
by the modulus G∗(ω) defined as σ/γ. G∗(ω) can be expressed as a Fourier
series of the powers of the two waveforms which span the entire material
response.

G∗(ω) = Gα,1 sin(ωt) +Gβ,1 cos(ωt) +Gα,2 sin2(ωt) +Gβ,2 cos2(ωt)

+ · · · (1.19)
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where only the first and second-order terms are shown. If the amplitude
γ0 of the deformation is small, i.e. one remains in the linear regime, terms
containing the 2nd and higher powers of A have minimal contribution and
can be neglected. Equation (1.19) then only has two remaining terms.

G∗(ω) = G′(ω) sin(ωt) +G′′(ω) cos(ωt) (1.20)

where the coefficients Gα,1 and Gβ,1 have been replaced by the more
conventional symbols G′ and G′′, respectively. G′, referred to as the storage
modulus, shows the elastic or solid-like response of the material. On the
other hand G′′, called the loss modulus, shows the viscous or liquid-like
response of the material.

The expression (1.20) deserves a few comments. First, the expansion
clearly offers an alternative way of representing the entire linear viscoelastic
response of a material. One can either specify the time-dependent modulus
G(t) or, equivalently, give the pair G′(ω) and G′′(ω), the storage and loss
moduli. One can switch between the two representations by performing a
Fourier transform as follows.

G∗(ω) = iω

∫ ∞
0

e−iωtG(t)dt (1.21)

where G∗ is the complex modulus defined as G∗ = G′ + iG′′.
It then follows from (1.21) that G′ and G′′ can be defined in terms of

G(t).

G′(ω) = ω

∫ ∞
0

sin(ωt)G(t)dt (1.22)

G′′(ω) = ω

∫ ∞
0

cos(ωt)G(t)dt (1.23)

Second, G′ and G′′ are both frequency-dependent hence experiments to
measure both must span a range of frequencies in order to probe the entire
LVE response of the material. In general, higher frequencies probe the elastic
response more, implying that G′ > G′′. Meanwhile, the viscous response is
more dominant for lower frequencies hence G′′ > G′. It also follows that
both curves intersect at a certain critical frequency (ωc) which corresponds
to the terminal relaxation time τ0 for the material - the timescale where the
response switches from being elastic-dominated to viscous-dominated.
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Figure 1.5: Plot of the expression for G’ and G” for a Maxwell mode with
τ = 1 and G0 = 1

General Linear Viscoelastic Model

For a viscoelastic fluid whose relaxation modulus can be fit exactly by the
form (1.16), i.e. for materials with only one characteristic time τ , equations
(1.22) and (1.23) provides expressions for G′ and G′′.

G′(ω) = G0
ω2τ2

1 + ω2τ2
, G′′(ω) = G0

ωτ

1 + ω2τ2
(1.24)

Both these equations, whose plots are shown in fig. 1.5 and equation
(1.16) define the so-called Maxwell model. In fig. 1.5, the curve for G′ shows
a plateau at higher frequencies corresponding to G0, here set to 1. On the
other hand, G’ has a peak about a frequency corresponding to 1/τ , here
also set to 1. This peak is also where the first crossover point occurs, i.e.
where the dominant term in the relaxation changes from elastic to viscous as
one moves from higher frequencies to lower frequencies. The Maxwell model
is applicable for materials with one characteristic time τ and one modulus
G0, represented by a spring (elastic component) and dashpot (viscous or
dissipative component) system in series, shown in fig. 1.6.

However, polymers, even monodisperse ones, exhibit a variety of relax-
ation processes and correspondingly different relaxation times. A simple
and generic model then that can be used to fit their linear viscoelastic
response would be to consider an extended Maxwell model with a set of
relaxation times and fractional moduli {τk, gk}, each operating in parallel,
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Figure 1.6: Schematic diagram of single and multiple Maxwell modes for
describing linear viscoelasiticity

also shown schematically also in fig. 1.6. Each pair can be well-described
by the Maxwell model and can be referred to as one relaxation mode or one
Maxwell mode.

Hence, the relaxation modulus G(t) can be defined as

G(t) =
∑
k

gk exp

(
− t

τk

)
(1.25)

and the dynamic moduli G′(ω) and G′′(ω) can be expressed as follows

G′(ω) =
∑
k

gk
τ2
kω

2

1 + τ2
kω

2
, G′′(ω) =

∑
k

gk
τkω

1 + τ2
kω

2
(1.26)

An example of such a fitting is shown in fig. 1.7 for LVE data for a real
polymer melt [51]. The colored lines show the multimode fit for G′ and G′′

while the curve corresponding to each mode are shown in the various thin
black lines.

This fitting of the linear viscoelastic spectrum by the relaxation spectrum
is the first step in the constitutive modeling of these materials. Then, what
one needs to predict the nonlinear response of the material is a constitutive
model relating the linear viscoelasticity to nonlinear viscoelasticity.

Boltzmann Superposition Principle

Lastly, an important concept in viscoelasticity is the notion of deformation
history since viscoelastic materials, which have time-dependent modulus,
have memory of the previous deformations experienced. This memory de-
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Figure 1.7: Fitting the dynamic moduli for a monodisperse PS melt using
multiple Maxwell modes

cays when time of the order of the characteristic time τ of the material has
elapsed.

For materials which experience successive applications of deformation,
the Boltzmann superposition principle provides an expression for the result-
ing stress,valid in the limit of small or linear deformations. Consider an
incremental strain δγi. The change in the stress would then be

δσi = Gδγi = Gγ̇δti (1.27)

where the strain δγi can also be written in terms of the strain rate γ̇i.
The Boltzmann superposition principle states that the resulting stress

from the combination of such small deformations is simply the linear com-
bination of the stresses from each deformation. Hence, the total stress is
simply (1.27) summed over all i deformations.

σ =
∑
i

δσi =
∑
i

Gδγi =
∑
i

Gγ̇δti (1.28)

One can then rewrite the sum in (1.28) as an integral over the entire
deformation history of the material.
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σ =

∫ t

−∞
G(t− t′)γ̇(t′)dt′ (1.29)

This can also be expressed in terms of the memory function M(t) =
−dG(t)/dt and strain profile in time rather than the strain rate.

σ = −
∫ t

−∞
M(t− t′)γ(t′)dt′ (1.30)

where the minus sign in the definition of M(t) is added to keep the
function positive and is carried over in the integral.

Equations (1.29) and (1.30) form the basic outline of constitutive equa-
tions which relate stress with the deformation history. A molecular approach
for arriving at such a specific model is outlined in the following section.

1.3.5 Tube Model: Doi-Edwards Theory

Basic Concepts

The starting point for any molecular model for polymer viscoelasticity would
be some notion of polymer dynamics – i.e. how polymers move. In the case
of liquids (solutions or melts) of polymers with short chains, a foundational
framework would be the Rouse model [52, 53] which describes the chain
as a series of beads connected by elastic springs. Each bead would move
subject to both Brownian motion and the constraint that it is connected to
other beads by means of the springs imparting elastic forces. This model
predicts a scaling of the characteristic time of Rouse motion τR, also called
the Rouse time, as τR ∼M2 and a scaling of the zero-shear viscosity η0 with
the molecular weight M of the chain as η0 ∼M .

However, it was shown by experiments on flexible polymers spanning a
broad range of M [54, 55] that longer chains (in both melt and solutions) do
not exhibit such scaling. Instead, they exhibit a much stronger dependence
of η0 with M so long as M > Mc where Mc is called the critical molecular
weight. The observed scaling law is η0 ∼ M3.4 [55]. This change in scaling
behavior is attributed to the increasing overlap of the chains that give rise to
topological interactions due to chain uncrossability – so-called entanglements
which slow down chain motion significantly.

Inherently, this problem of polymer dynamics is complex as it is coop-
erative and many-body in nature, unlike in the Rouse regime where the
motion of each chain can be considered in isolation. An important stride in
simplifying the system would be to consider a mean-field approach to reduce
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Figure 1.8: The Tube Model: The presence of constraints (black dots) on a
test chain (blue curve) confine it to a tube-like region (gray area) that can
be represented by the primitive path (red dashed line).

the many-chain problem to problem of a single chain in an effective field.
One can then consider a chain, called the test chain, and identify how these
topological interactions affect or restrict its motion. Considering the case of
a chain in a polymer network, Edwards proposed that chain motion is re-
stricted to a tube-like region [2] due to the presence of constraints provided
by the neighboring chains as shown in fig. 1.8. This tube is characterized
by a primitive path which defines the tube axis and has the same topology
as the tube.

At equilibrium, the primitive path is a random of walk of step length a,
called the tube diameter, and with the same end-to-end vector R as the test
chain. Hence, the following relationship is obtained

Nb2 = Za2 (1.31)

where Z is the number of entanglement segments. If there are Ne

monomers in an entanglement strand and Ne = N/Z, it follows that

Neb
2 = a2 (1.32)

and this is an alternative definition of the tube diamater. Equivalently,
one can define Me, the entanglement molecular weight which also relates to
Z.
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Figure 1.9: Reptation: The presence of the tube-like constraint prevents
lateral chain motion and the only allowed motion of the chain is along the
tube axis. Over time, the chain explores new areas through this motion
reducing the fraction of the original tube constraint still active.

Z =
M

Me
=

N

Ne
(1.33)

Note that the term tube diameter can be a bit misleading since it pertains
to a length scale along the tube axis and not lateral to it unlike a real
“diameter” At equilibrium, the ratio between them is assumed to be of
order 1.

By extending the tube concept to melts, de Gennes identified that poly-
mer motion would be highly restricted laterally from the tube axis and that
the only permissible motion would be the slow snake-like motion of the chain
along the tube-axis. This motion is called reptation [3] and is illustrated in
fig. 1.9. This assertion was certainly a step in the right direction though
its predicted scaling for the zero-shear viscosity is η0 ∼ M3, quantitatively
different from what has been observed in experiments [54, 55]. It does, how-
ever, provide a molecular picture for understanding how stress relaxation in
entangled systems occur. This has been presented by Doi and Edwards [1]
by considering the diffusion of the chain in the tube. The relaxation function
predicted is
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G(t) = G0

∑
p,odd

8

p2π2
exp

(
−p

2t

τD

)
(1.34)

where τD is the reptation time and G0 is the so-called plateau modulus.
In terms of the other molecular parameters, τD is defined as

τD =
ζ0N

3b2

π2kBT

(
a2

b2

)
∼ 3ZτR (1.35)

where ζ0 is the monomeric friction and τR is the Rouse time. Note that
since τD is always larger than τR by a factor of about 3Z, relaxation by
reptation is a longer process than Rouse relaxation. However, it is the one
that governs terminal relaxation and, ultimately, the viscosity. These two
time constants also factor in the behavior of the systems in the nonlinear
regime.

A final comment should be made about the plateau modulus G0 which
is a concept generalized from the modulus of a polymer network. In the
Doi-Edwards model, this is defined as

G0 =
4

5

ρRT

Me
(1.36)

where Me is the molecular weight of an entanglement strand defined
previously. For tube models for linear viscoelasticity, one has to specify two
molecular parameters independent of the molecular weight – one is the basic
length-scale (Me or, equivalently via (1.36), G0) and the other is the basic
timescale (τe) from which expressions for τD and τR can be derived.

τR = Z2τe (1.37)

τD = 3Z3τe (1.38)

Note that as various definitions of these basic parameters have been pre-
sented in literature, one has to be careful in minding parameter consistency
across definitions [56].

Doi-Edwards Constitutive Equation

While the reptation idea forwarded by de Gennes [3] has been explored for
interpreting linear viscoelasticity, the main advance of Doi and Edwards
has been the formulation of a constitutive equation for nonlinear viscoelas-
ticity based on tube and reptation ideas. Not without shortcomings, the
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formulated constitutive equation offers a good example of a bridge between
microscopic physics and macroscopic observables [6, 50].

To understand the idea behind the model, the simplest case for nonlinear
viscoelasticity can be considered – the case of stress relaxation after a large
step-strain. Different from the case of a small step-strain discussed in 1.3.4,
in this case the nonlinear modulus G is a function of both time t and strain
γ. It has been found that this modulus G(t, γ) obeys time-strain separability
or is factorizable into time-dependent and strain-dependent components, i.e.

G(t, γ) = G(t)h(γ) (1.39)

where the strain-dependent part h(γ) is called the damping function.
The damping function is experimentally observed to be a decreasing function
of the imposed strain [5], a fact attributed by Doi and Edwards to the
mechanism of chain retraction active only for nonlinear deformations. This
mechanism controls the strain-dependent component of the response while
reptation governs the time-dependent response of the material.

In the Doi-Edwards model, the retraction process is assumed to be a
Rouse-type process and is therefore governed by the Rouse time τR. How-
ever, considering the case where the stress in chains are due only to the
orientation of tube segments and not to the stretch of the chain in the tube,
this retraction process can be assumed to occur instanteneously while rep-
tation certainly requires a longer time to occur. In this regime where only
retraction has occured, the expression for the stress becomes

σ = 3νkBT 〈uu〉 = 3νkBT

〈
u′ ·Eu′ ·E
|u′ ·E|2

〉
(1.40)

where E is the deformation gradient tensor defined earlier. Under the
independent alignment approximation, this expression can be rewritten as

σ =
3

5
νkBTQ (1.41)

where Q is the universal Doi-Edwards Q-tensor which contains the de-
tails on the chain retraction process due to deformation and the prefactor
3/5 is due to IAA (i.e. if one does not invoke IAA, a different prefactor must
be used to ensure that the stress reduces to the correct linear limit).

In the case of continuously applied deformation or in the general flow
scenario, the stress must then be given by a history integral to account for
the memory of the material due to viscoelasticity. For the Doi-Edwards
model, this integral is as follows
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σ = G0
N

∫ t

−∞
m(t− t′)Q[E(t′, t)]dt′ (1.42)

where m(t − t′) is called the memory function and is defined in the
previous section as m(t− t′) = −dG(t− t′)/dt′. Note the similarity in form
with (1.30) for linear superposition. This is non-trivial since (1.30) was
developed by assuming linearity of deformation. In this case, while the the
deformation is nonlinear, the contribution of the deformation on the stress at
each time interval is assumed to be linear as a consequence of the time-strain
separability of G, shown in (1.39).

The validity of the Doi-Edwards model has been attributed largely to the
success of the model and its consistency with experimental measurements of
the damping function [57, 58] as well as in the mathematical form of (1.42)
which belongs to the K-BKZ family of constitutive equations, sought after
phenomenologically [50]. However, the model does predict some unusual
features not observed previously in experiments such as an instability in
the flow curve in shear [7] shown in fig. 1.10. As will be discussed in the
following section, the issue of this instability has been resolved a few years
ago only by considering additional mechanisms to the basic model.

1.3.6 Extensions of the Doi-Edwards Theory

Contour Length Fluctuations, Constraint Release

From the previous section, it is clear that the basic tube model as formulated
by Doi and Edwards [1] has both successes and shortcomings in predicting
both linear and nonlinear viscoelasticity. Over the years, extensions to the
basic theory have been proposed to amend or improve predictions in var-
ious situations. For linear viscoelasticity, it has been recognized that at
least two additional non-reptative mechanisms must be included to obtain
quantitative predictions, at least in the case of monodisperse melts [59].

The first of these is contour-length fluctuations (CLF) that accounts for
the difference in dynamics experienced by chain segments in the middle of
the chain and chain ends. The latter are obviously less confined and their
short-time motion allows the release of stress since they can renew tube
orientation near the ends. This introduces a 1/Z-order correction to the
relaxation modulus and accelerates reptation since there is only a fraction
of the tube surviving that must be relaxed by reptation [59, 60].

The other correction is constraint release (CR) and accounts for a more
consistent view of the tube of constraints. The idea is that the tube con-
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Figure 1.10: Non-dimensional shear stress-shear rate flow curve illustrating
the Doi-Edwards instability. Calculations are done using a simplified tube
model discussed in 4.2.1 with the nonlinear parameter β. β = 0 corresponds
to the flow curve predicted by the original Doi-Edwards model.
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straining the test chain are formed by other chains as well. Hence, it cannot
be assumed that the tube will remain static, waiting to be relaxed by the
test chain while there is simultaneous relaxation of the other chains. There
are various formulations of this concept proposed in literature, an exhaustive
discussion of which is beyond the scope of this introduction [61, 62, 63, 64].
The point is that, even at equilibrium, the diffusion or relaxation of the ob-
stacles affords local motion of the tube which translates to stress relaxation.

Advanced formulations of both effects are included in a quantitative
version of the tube model by Likhtman and McLeish [59]. Their inclusion
significantly improved model predictions, including the η0 ∼ M3.4 scaling
different from the basic reptation prediction. In particular, it is the single-
chain effect of CLF that is understood to be responsible for this 3.4-power
law [65].

Chain Stretch

For nonlinear viscoelasticity, the basic Doi-Edwards model considers only
the affine deformation of the system in flow and the instantaneous relaxation
of a part of the stress by chain retraction and relaxation of the other part
by reptation. This is valid for flows which are sufficiently strong enough
to orient the chains but not stretch them. As orientational relaxation is
governed by τD while the chain retraction process is governed by τR, this
would be the case for 1/τD < γ̇ < 1/τR.

However, for flows with rates larger than the inverse of the Rouse time,
i.e. γ̇ > 1/τR, chain retraction cannot be assumed to proceed instanta-
neously to preserve tube length. Hence, one must account for the possibility
of chain stretching [1, 66, 67, 68]. In such a case, the stress expression from
(1.42) will then be written as

σ = G0
Nλ

2

∫ t

−∞
m(t− t′)Q[E(t′, t)]dt′ (1.43)

where λ is the chain stretch defined as the ratio between the present
tube length L and the tube length at equilbrium L0.

λ =
L

L0
(1.44)

The physical picture here is that for flows in the chain stretching regime,
the surroundings of the molecule are convected by flow and the molecule
stretches due to drag arising from this convection. This results in an increase
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in the length of the tube as well as a further build-up in the stress beyond
that predicted by the original Doi-Edwards model.

Chain stretching manifests in the transient response in shear flows as
an overshoot in the shear viscosity and in the first normal stress difference
[68] and in the large shear rate branch of the flow curve in steady flows, as
shown in fig. 1.10. Note that while the inclusion of chain stretch in tube
models allow the prediction of these phenomena, earlier models [66, 67] that
include this effect consider chain stretching to be a transient phenomena in
shear. Hence, the instability in the steady shear flows would still exist.

Convective Constraint Release

While chain stretch is an important consideration for very fast flows with
rates γ̇ > 1/τR, another relaxation mechanism that occurs in even slower
flows could be integral in modeling the nonlinear response of entangled poly-
mers. This mechanism proposed previously by Marrucci [45] and further de-
veloped by Ianniruberto and Marrucci [46, 69] is called convective constraint
release (CCR). It is similar to the the constraint release process that occurs
in the linear regime although it is active only in nonlinear flows.

The proposal hinges on the idea that the tube of constraints on a test
chain is formed by other chains. In the linear regime, these other chains can
undergo diffusion or reptation thereby allowing some local renewal of topol-
ogy and local relaxation of the stress [70]. For the nonlinear flow regime,
a similar additional topological renewal could occur when the surrounding
chains undergo convection by flow. Based on the proposal of Marrucci,
these two mechanisms would operate in parallel and give rise to an effective
relaxation time which can be written simply as

1

τ
=

1

τ0
+ βγ̇ (1.45)

The effective relaxation time τ of the system would be due to reptation
and diffusive/thermal constraint release that occurs at a rate of 1/τ0 and
this new effect of convective constraint release has a rate proportional to the
flow rate γ̇ with an unknown proportionality constant β, called the CCR
parameter. In the absence of further understanding of the effectiveness of
CCR, β is unknown and becomes an additional nonlinear parameter for the
system, typically assumed to be of order unity. Note that setting β = 0 will
recover the linear limit.

Since all the quantities in (1.45) are positive, it is easy to see that τ is
much smaller than τ0. Therefore, the over-all effect of CCR is to accelerate

36



the relaxation of orientation (which would otherwise be governed by τ0).
This is the main effect considered in the original proposals [45, 46, 69]. Later,
it was recognized that CCR affects not just orientational but also stretch
relaxation [71, 72, 73]. Hence, more recent constitutive equations would
incorporate both CCR and chain stretching for nonlinear flow predictions.
For sufficiently large values of β, such models could also better predict the
experimentally measured flow curves for shear. For example, the model of
Mead, Larson and Doi which includes both CCR and chain stretch as well
as CLF predict a monotonic flow [71]. This model, as well as others, will be
the subject of the following section.

State-of-the-Art Tube Models

In the previous sections, various additional relaxation mechanisms to im-
prove the predictions of the basic Doi-Edwards tube model have been dis-
cussed. The development of models which account for these important
physics has resulted in reasonable, if not excellent, predictions of experi-
mental data for entangled systems. In the linear regime, the aforementioned
theory of Likhtman and McLeish [59] provides quantitative fitting of linear
viscoelastic data. A similar level of success has also been achieved by the
time-marching algorithm developed by van Ruymbeke and co-workers [74]
by incorporating similar physics. Indeed, it is also worth mentioning that
semi-quantitative models for the linear viscoelasticity of branched polymers
have also been developed for stars [75] and even more complex architectures
[76, 77] by invoking the tube dilation concept for constraint release [63, 78].

For the nonlinear regime, tube models which incorporate CCR and chain
stretch have also been formulated starting from the model of Mead, Larson
and Doi [71]. Simple single-segment constitutive equations which do not
consider fluctuations have also been developed by Ianniruberto and Mar-
rucci [72, 79, 80]. Finally, the most detailed nonlinear tube model that
resolves dynamics below the scale of tube segments has also been formu-
lated by Graham and co-workers [73]. This full model is formulated as a
stochastic differential equation and allows prediction of neutron scattering
patterns in flow [15] but is quite cumbersome for flow solving calculations. A
simplified version, called the Rolie-Poly model [81], was also then presented
and was shown to give similar predictions as the full model. It is also worth
mentioning that models with the same level of description in the case of
branched polymers are far less developed and the most significant advance
in connecting the branching structure to rheology has been the Pom-Pom
model by McLeish and Larson [82].
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The predictions of such models have been examined largely on experi-
ments in shear flows as generating data on monodisperse entangled systems
under extensional flow, particularly at the steady state, has been more chal-
lenging. The advent of improved methods for extensional rheometry [11, 12]
has somewhat changed this situation and there is an increasing data set in
literature with which makes comparison with theories possible. These data
sets will be considered in Chapter IV. The predictions of some of the men-
tioned equations will also be verified on sighly more complex superposition
flows in Chapter III.

Lastly, it is evident that there are a number of effects that one must con-
sider in predicting the viscoelastic behavior of materials. Hence, simulation
methods which have far less assumptions or which can treat these effects
numerically have emerged as an important compliment or alternative at ar-
riving at such predictions. These simulation methods and their applications
will be the subject of the following section.

1.3.7 Molecular and Mesoscopic Simulations

Atomistic Simulations

Methods for molecular simulations are reasonably well-developed. In the
ideal scenario, one would like to do this for atomistically-detailed models,
i.e. models which fully resolve chemical structure to accurately describe the
nuances in the interactions between polymers. However, resolving the full
dynamics of the system, which involves a distribution of timescales all the
way up to the terminal relaxation, would be difficult. Likewise, the system
size which can be handled by present computers is also limited. Hence, such
a luxury is seldom afforded and coarse-graining (or less finer descriptions)
of the system are required [83]. Most simulations of the atomistic type have
been done only for unentangled melts [83] until the work of Harmandaris
and co-workers [84] where the crossover from Rouse to reptation dynamics
was demonstrated for a series of polyethylene melts.

However, atomistic simulations still find application in the resolution of
polymer dynamics problems which could be dependent on monomer chem-
istry. An example is the work by Ianniruberto and co-workers on non-
equilibrium molecular dynamics simulations of polystyrene oligomers [85]
in fast shear flows. The simulations report measurements of the diffusion
coefficients of the oligomers as well as monomer friction coefficients and the
effects of fast flow. They observe the breaking down of the Einstein rela-
tionship between diffusivity and friction coefficient far from equilibrium as
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well as the reduction of the latter due to alignment of the monomers [85],
akin to what occurs in liquid crystals. This observed effect proves to be
important in capturing the rheological behavior of PS melts in extension as
will be shown in Chapter IV.

Coarse-Grained Molecular Dynamics Simulations

Coarse-graining or reduced representations of the system where one parti-
cle represents a collection of subparticles is done to extend the timescales
and system sizes accessible given limited computational power. This allows
substantial increase in the simulation time and allows for a more generic
description of polymers, an example of which is the bead-spring model of
Kremer and Grest [16]. Simulations on entangled systems using this model
have been done both to directly determine the linear viscoelastic behavior of
polymer melts [86] as well as to verify assumptions and constants typically
assumed in tube theories [19]. Methods for projecting these bead-spring
models into primitive paths [17, 28], termed primitive path analysis, have
also been developed and was used to analyze the nature of discrete entan-
glements recently [87]. A less destructive alternative to this analysis, called
mean path analysis, has also emerged recently [88] based on the concept of
a mean path by Read and co-workers [18]. Despite these advances and the
amount of useful information that can be derived from such simulations,
simulations of this type are still limited to light to moderately-entangled
systems at best due to still huge computational costs.

Slip-link Simulations

In terms of computational cost and accessible timescales, the most promising
simulation methods for entangled polymers are the so-called slip-link simu-
lations developed as either single-chain or multi-chain models [28, 83]. Here,
coarse-graining is at the level of tube or primitive path segments, dynami-
cal evolution is made by integrating stochastic equations and entanglement
constraints are incorporated in the form of slip-links. In multi-chain mod-
els such as the Primitive Chain Network model (PCN) by Masubuchi and
co-workers [22], this constraint is placed in real space. This is shown in fig.
1.11 where a network of primitive chains that are made to evolve in time,
similar to MD simulations albeit with less detail. In single-chain models
[21, 24, 26, 27], this constraint is virtual and not explicit.

While the modeling of entanglements as discrete binary slip-links seems
like an ad hoc way of coarse-graining, slip-link models provide a clear rela-
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Figure 1.11: The Slip-link Model: The presence of other chains impose topo-
logical constraints on a test chain (A). These constraints can be represented
by slip-links (gray circles) (B). Effectively, the system is then represented by
a set of primitive chains (lines) and slip-link nodes (meeting point between
lines) (C).
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tionship with tube models and can access the full-range of rheological behav-
ior of systems at low computational cost. Predictions can be obtained for
both linear and branched polymers [23, 89] in linear and nonlinear viscoelas-
tic regimes [90, 91]. In the case of the PCN model which will be discussed
further in the context of entangled rubbers in Chapter 2, predictions can
also be made for heterogeneous polymer systems such as blends and block
copolymers to observe phase separation behavior [92].

Despite the success of some of these models, a shortcoming of these mod-
els is the thermodynamic consistency and fulfillment of the detailed balance
condition for the simulations since a number of the elements and dynamics of
the model are done heuristically through algorithms [93]. This has prompted
the proposal of a new model by Uneyama and Masubuchi drawing from ear-
lier work and with a more solid thermodynamic framework, where dynamics
are derived from a free energy expression [94]. The said model, called the
multi-chain slip-spring model combines elements from earlier models formu-
lated in a consistent manner. Recent results for this model show reasonable
prediction of equilibrium properties [94].

Another model proposed recently is the translationally-invariant slip-
spring model of Chappa and co-workers which is another multi-chain model
[95]. The emphasis of this other model is the preservation of equilibrium
properties of the entangled fluid and translational and rotational invari-
ance. Such models, while under development, hold promise as emerging
alternatives to tube models which invoke some uncontrollable assumptions
in modeling chain dynamics.
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Chapter 2

Slip-Link Simulations of
Entangled Rubbers

2.1 Introduction

Slip-link simulations [21, 22, 24, 26, 27] are emerging as an important ap-
proach for predicting entangled polymer behavior, complementary to more
conventional tube models [1, 59, 71, 72, 73, 74]. In such simulations, en-
tanglements are treated as discrete local entities that constrain chains in
a manner similar to crosslinks in rubbers although slip-links are tempo-
rary. Hence, the entangled system is represented by a network of primitive
paths connected temporarily by slip-links. This slip-link network can then
be made to evolve in time by invoking stochastic dynamics, typically by
using Langevin equations. Observables such as stress can then be calcu-
lated directly from ensemble averages on the network. With such a level of
description, i.e. at the entanglement length scale, slip-link simulations are
considerably cheaper to run than more detailed simulation techniques, e.g.
bead-spring molecular dynamics (MD) simulations [16], and hence can be
used to access the full spectrum of dynamics for moderate and well-entangled
systems.

One successful slip-link model is the primitive chain network model (PCN
model) developed by Masubuchi and co-workers [22, 96, 97]. Unlike other
slip-link models which are single-chain mean-field models that account for
chain connectivity only virtually, the PCN model is a many-chain model that
accounts for real chain connectivity in physical space similar to MD simu-
lations. However, as mentioned, it has considerable gain in computational
power over the latter due to the level of description. Recent formulations of
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the model have been applied to the rheological simulation of entangled fluids
(melts and solutions) in both linear and nonlinear regime, in shear and elon-
gational flows and can quantitatively predict linear viscoelasticity data [90]
and semi-quantitatively predict nonlinear viscoelasticity data [91, 98, 99]
with a level of success at least comparable to (if not better than) advanced
tube-based models.

Oberdisse and co-workers have also previously applied the PCN model to
entangled rubbers [41, 42], specifically end-linked rubbers where crosslinking
occurs only in the chain ends hereby making a network with a monodisperse
distribution of elastic strands between crosslinks. Such systems are sim-
pler than most melts since networks and rubbers have a quenched topology,
i.e. slip-links are fixed, while in melts and concentrated solutions, slip-links
are continually created and destroyed giving rise to topology renewal. As
such, they are the simplest physical system which can show the effects that
entanglements have on polymer behavior.

The work of Oberdisse et al. shows a discrepancy between the results
from simulations and predictions from replica theory [100, 101]. The replica
model by Ball and co-workers [100] and revised by Edwards and Vilgis [101]
is known to give a stress-strain relation that matches experiments well, as
shown for example in fig. 2.1 where it is compared with data on model
PDMS networks by Urayama et al. [102], and molecular dynamics simula-
tions [103]. The discrepancy observed by Oberdisse et al. is more prominent
at large deformations. This is striking since, as mentioned previously, the
model has been quite successful in predicting both linear and nonlinear vis-
coelastic data for melts and solutions which are much more complex systems
where entanglements come into play. Hence, application to entangled rub-
bers remain as a somewhat problematic scenario for the PCN model.

In this work, effort is given towards understanding why this discrepancy
arises and possible ways to improve model predictions for this particular
system are outlined. Two types of entangled rubber systems are confronted:
end-linked systems based on the previous work of Oberdisse and co-workers
[41, 42] and randomly cross-linked systems [104]. For the cross-linked case,
better agreement with a standard constitutive models for rubber elasticity
by Edwards and Vilgis [101] is observed, different from the end-linked case.
Two possibilities for this discrepancy are then considered: (a) the possi-
bility of entanglement stripping in networks at large deformations and (b)
softening of the confinement potential at large strains as argued previously
by Rubinstein and Panyukov [105]. Neither seem operative or sensible in
the context of the PCN model. We also briefly confront the issue of ther-
modynamic consistency of the PCN model as pointed out by Schieber and
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Figure 2.1: Mooney-Rivlin plot of the measured stress-strain curve for a
model end-linked PDMS network and corresponding prediction using the
theory of Edwards and Vilgis.

Horio [93]. In light of this, a new sliding equation is derived based on a
free energy expression for a subchain by Schieber [106, 107] and it is shown
here that this new sliding equation provides a slightly different response for
the randomly cross-linked system. It is clear, however, that even this more
thermodynamically-consistent sliding equation has no bearing in the previ-
ous issue with end-linked systems. Some possibilities on how to resolve this
discrepancy will be given.

The chapter is organized as follows. First, a description of the PCN
model and the methods for preparing the end-linked and randomly cross-
linked networks are given. Results from these simulations are then presented
and discussed. Possible explanations for the results in end-linked systems
are then enumerated, and a derivation for an alternative sliding equation is
also presented. Finally, some new simulation results using this new equation
are presented. A short summary of the findings and some future outlook
make up the conclusion.

2.2 Model Description

2.2.1 Dynamical Equations

In the PCN model, chains are described at the level of primitive path seg-
ments. In this context, each segment will be referred to as a subchain and
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would consist of two slip-links (or nodes) with the positions Ri and Ri+1

respectively and the number of monomers (or Kuhn segments) subsumed in
each subchain ni. These two quantities, node position and monomer number
obey two Langevin equations that govern their dynamics.

Node Motion

The Langevin equation for the position of each node or slip-link Ri is written
as follows.

ζ(Ṙi − κ ·Ri) =

f∑
i=1

Fi + Fo + Fr (2.1)

The left-hand side is the total drag force on the node including the
convection term κ ·Ri with the friction or drag coefficient ζ while the right-
hand side is the balance of all the other forces giving rise to the node motion.
In this work, we consider only step-deformations applied to the networks
instantaneously at t = 0 and released for t > 0. Hence κ = 0 for t > 0.

The Fi term corresponds to the balance of the elastic forces exerted
by each subchain on the slip-link and the index i goes from 1 to f , the
functionality of the node (or the number of subchains participating in the
slip-link). For binary slip-links which constrain two chains, f = 4 while for
chain ends, f = 1. The expression for the elastic force of each subchain is
simply the classical expression for entropic springs as follows.

Fi =
3kT

nib2
f(ri)ri (2.2)

where ni is the number of Kuhn segments in the subchain, ri is the
subchain vector and f(ri) is the finite-extensibility factor that corrects for
non-Gaussian behavior and which is simply 1 for Gaussian subchains. This
comes from the following expression for the inverse Langevin force law for
subchains with finite-extensibility [53]

Fib

kT
= L−1

(
ri
nib

)
(2.3)

where L−1 is the inverse Langevin function. The factor f(ri) is then as
follows

f(ri) =
nib

3ri
L−1

(
ri
nib

)
≈

1− r2
i /3r

2
i,max

1− r2
i /r

2
i,max

(2.4)
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The rightmost side to (2.4) is the so-called Padé approximation [108] to
the inverse Langevin function and ri,max is the maximum extension of the
subchain defined as ri,max = nib.

This force balance expression reduces to simple Rouse-dynamics of un-
connected slip-links (i.e. nodes with only two subchains). For the case
of a binary slip-link, this force balance concept is a correction to the Doi-
Edwards theory proposed previously [109] since the original tube model does
not satisfy this microscopic balance condition.

The term Fr corresponds to a random Brownian force with zero mean
and variance given by the following.

〈Fr(t)〉 = 0 (2.5)

〈Fr(t) · Fr(t′)〉 = 6kTζδ(t− t′) (2.6)

Lastly, the Fo term corresponds to an osmotic pressure term used to
mimic excluded-volume effects in the PCN model, where the subchains are
phantom, to eliminate network inhomogeneities in space. This term is im-
portant in simulations for entangled liquids where there is constraint renewal
by creation and destruction of slip-links but somewhat less important for
rubbers and will not be discussed further.

Monomer Sliding

The Langevin equation governing the sliding or monomer exchange across
two subchains (of the same chain) in a slip-link is governed by the following
equation.

ζmv = Fm + F rm (2.7)

where the left-hand side here is, again, the total drag force in the monomer
exchange process, ζm is the sliding friction coefficient (different from the
node motion friction ζ), v is the velocity of monomer exchange across the
slip-link and Fm and F rm are the one-dimensional analogues of Fi and Fr.
Since there are only two subchains participating in these dynamics as op-
posed to four subchains in node motion, ζm = ζ/2, where we take the friction
contribution of each subchain to be ζ/4. In principle, the values for ζ and
ζm should be determined locally by the number of monomers participating
in a particular slip-link. However, to simplify the model, we simply assume
that these friction coefficients are ensemble-averaged coefficients.
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Here, what is required is an evolution equation for n and, hence, one
must express v in terms of changes in n as follows

v = ṅ
r0

n0
= ṅ

1

ρm
(2.8)

where ρm is the linear monomer density defined as the ratio n0/r0 at
equilibrium.

The term Fm corresponds to the balance of the two elastic forces in each
subchain across the slip-link. This elastic force balance term can be written
as follows.

Fm =
3kT

b2

(
r1

n1
− r2

n2

)
(2.9)

In later versions of the PCN model [91, 97], different choices for the value
of ρm have been made. For instance, one could choose ρm to be the linear
monomer density of the segment which loses monomers based on this force
balance – i.e. from the segment with the larger ratio of ri/ni [91]. One
could also define ρm to be the average of the monomer densities of the two
subchains [97].

The one-dimensional random force F rm like its three-dimensional coun-
terpart has zero mean and variance defined as

〈F rm(t)F rm(t′)〉 = 2kTζmδ(t− t′) (2.10)

For numerical convenience, a minimum cut-off value for ni can be defined,
normally taken to be 0.1, to prevent 0 or negative monomer number values.

Both equations (2.7) and (2.1) can be discretized for stochastic simula-
tions. These forms are presented in non-dimensional form in the following
section.

Nondimensional Equations

For convenience, the equation of motions for Ri and ni derived from the
Langevin equations (2.1) and (2.7) can be nondimensionalized by rewriting
the three main observables {r, n, t} as follows.

r̃ =
r

r0
, ñ =

n

n0
, t̃ =

t

τ0
(2.11)

where the denominators are the equilibrium values. τ0 is defined as
n0b

2ζ/6kT , the equilibration time of the subchain segment, and the square
of the equilibrium length of the subchain r2

0 is defined as n0b
2, similar to the
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tube diameter in Doi-Edwards theory [1]. In terms of these nondimensional
quantities, the equation of motions for Ri and ni derived from (2.1) and
(2.7) are then as follows.

∆R̃ =
∆t̃

2

∑
i

f(r̃i)
r̃i
ñi

+
√

∆t̃W (2.12)

∆ñi = ρm

∆t̃

(
r̃1

ñ1
− r̃2

ñ2

)
±

√
∆t̃

6

 (2.13)

where W is a unit vector with random direction and ρm is the linear
monomer density whose value is determined by the segment losing monomers,
as mentioned previously. For details on the derivation and non-dimensionalization
of these equations, the reader is referred to Appendix B. These equations
are implemented in a numerical scheme for the stochastic simulations of the
PCN model.

Topology Renewal

For topology renewal, we consider here the renewal of entanglements only
at the chain-ends by hooking and unhooking, which corresponds to slip-link
creation and destruction that occurs in entangled liquids (melts and solu-
tions) but not in networks. This process is triggered whenever the monomer
number in the subchain containing a chain end becomes greater than or
less than a numerical threshold. In the original scheme presented [22], the
thresholds are

0.5 < ñ < 1.5 (2.14)

that is to say when the value of ñ departs largely from the the equilib-
rium value of 1, the subchain becomes long enough to form a slip-link with
another subchain and, conversely when the value becomes lower than the
equilibrium value of 1, the subchain is too short to keep the entanglement
and disentanglement occurs.

There are several choices for the actual geometry with which one can im-
plement this creation-destruction process and the details of these schemes
and their effects on equilibrium distributions of Z, r, n have been presented
previously [97]. The main point here is to mention this process as an impor-
tant routine in for topology or constraint renewal in liquids and this point
will be revisited in the following section.
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2.2.2 Network Preparation and Simulation Scheme

In the simulations for this work, we consider two types of entangled networks:
end-linked networks and randomly-crosslinked networks. For the former,
only the previous results generated by Oberdisse [41, 42] are considered and
we review here the details involved in the preparation of these networks and
in the simulation scheme. For the latter case, a different procedure is used
by taking advantage of the full implementation of the PCN model called
NAPLES developed by Masubuchi and co-workers for melts and solutions
and the method of preparation for this case will also be covered here.

End-linked Networks

In the simulations by Oberdisse and co-workers [41, 42], the end-linked net-
work is prepared first by creating chains as instances of random walks in a
3D box with periodic boundary conditions. The chain nodes (that are not
chain ends) are connected with other similar chain nodes in its vicinity to
form slip-links while chain ends are connected with other chain ends in the
vicinity to form the end-links. The resulting nodes (consisting of two or
more previous nodes now sharing a position in space) are then the nodes for
the corresponding slip-link network.

Each slip-link node would have a functionality f or number of subchains
equal to 4 (2 subchains from 2 chains) while each end-link node can have
a functionality of 1, 2, 3 or 4. To form an ideal network with no dangling
ends, the only acceptable values would be 3 or 4 for each node and the global
average functionality is set to be f > 3.95 for the network to be considered
close to ideal.

Note that since the original nodes are being displaced from their orig-
inal positions, the process of creating the network induces some unnatural
stretching, particularly for the chain end subchains since there are fewer
chain ends and they have to travel a larger distance to find a connection.
This unnatural displacement could be relaxed partly by allowing the sys-
tem to equilibriate by switching on the dynamics for both node motion
and monomer sliding discussed in the previous section. This equilibration
releases some of the induced strain during network creation however it is
insufficient in bringing down the ensemble averages of the observables closer
to Gaussian network values shown as follows.

〈r̃2
i 〉 = 〈ni〉b2 = n0b

2 (2.15)
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〈R̃2
j 〉 = Ns〈r̃2

i 〉 (2.16)

where Ns is the number of subchains in each original chain and Ns − 1
is the number of slip-links per chain.

The approach to equilibrium is monitored through the total energy of
the system and the dynamics are run long enough for the fluctuations to
average out and a constant free energy comes out as indication. This free
energy is calculated based on the following expression.

E

kT
=

3

2
〈ñir̃2

i f(r̃i)〉 (2.17)

Equilibration is also understood to be important in eliminating some
artifacts caused by not starting simulations with a random state [110].

After equilibration, the network is now ready for deformation to calcu-
late its mechanical response. The deformation is imposed by moving all
the beads, the box (and its periodic images) affinely, i.e. by applying the
tensor E to each position vector Ri, and letting the network relax. Due to
the periodic boundary conditions, the network would then behave as if the
deformation was imposed at infinity. After letting the network relax, in a
manner akin to equilibration, the stress tensor which is defined as follows is
calculated.

σ = ν〈F̃ir̃i〉 (2.18)

where F̃i is the elastic force of the subchain in terms of the nondimen-
sional subchain length r̃i.

In the case of uniaxial extension, which is the only deformation con-
sidered here, the measured stress is in terms of the stress difference be-
tween the components of σ along the extension and lateral directions, i.e.
σ = σxx − σyy.

Randomly-Crosslinked Networks

For the randomly-crosslinked network, the slip-link network is prepared from
a pre-equilibriated melt of chains [104]. In this melt, the number of slip-
links Z = Ns − 1 in each chain follows a distribution due to fluctuations
[97] arising from the dynamics of node motion, monomer sliding as well
as topological rearrangement, all of which are active during equilibriation.
A fraction of the slip-links here are then converted into crosslinks hereby
freezing topological renewal about that point, as shown graphically in fig.
2.2.
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Figure 2.2: Preparation of a randomly-crosslinked entangled network from
an entangled melt

For sufficiently large values of the converted fraction φc, we expect the
formation of a percolating network which exhibits network behavior. To
illustrate this, we show simulations done previously by Masubuchi for Z = 5
in fig. 2.3 [104]. This figure shows critical gel behavior for φc = 0.25
and a prominent rubbery plateau emerges at φc = 0.5. These findings are
consistent with simple percolation theory [53] which predicts critical gel
formation for φ = 1/(Z − 1). This critical gel also manifests a power law
behavior for both the storage and loss moduli, consistent with findings from
experiments [111]. Note that there is viscous dissipation or relaxation even
if one converts all the slip-links to crosslinks, as shown plot for φc = 1.0 and
this can be due to the presence of chain ends.

In this method, the starting point is an entangled melt equilibriated pre-
viously by switching on all the dynamics and has well-behaved equilibrium
statistics. Hence, the resulting network is clearly in a suitable initial state
for deformation experiments to be performed in a manner similar to that dis-
cussed for end-linked rubbers. The randomly-crosslinked networks prepared
in this way are similar to actual networks where the length of the entan-
glement strand (or the number of entanglements between two crosslinks)
follow distributions. In contrast, the entanglement strands (or the number
of entanglements) in the previous case (end-linked networks) are strictly
monodisperse.

51



Figure 2.3: Storage and loss moduli for an entangled melt Z=5 with a frac-
tion of slip-links converted into crosslinks from previous simulations of Ma-
subuchi [104]
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Figure 2.4: Distribution of the molecular weight between crosslinks for a
melt with Z = 40 as a function of the crosslink fraction

2.3 Results and Discussion

2.3.1 Randomly-Crosslinked Networks

In this section, we present and discuss the results obtained from uniaxial
extension of the randomly-crosslinked networks and compare them with the
previous results of Oberdisse and co-workers [41, 42] for the end-linked case.
Simulations here were done in a cubic cell of of length 8 (in non-dimensional
units, where the equilibrium length of a subchain is 1) with periodic bound-
ary conditions [112]. We maintain a segment density of 10 for all simulations,
hence the number of chains for a simulation with Z segments is given by
5120/Z.

The distribution of the length of the elastic strand in between two
crosslinks (in terms of the molecular weight Mc) is shown in fig. 2.4 as
a function of the crosslink fraction φc for a melt which originally had Z
= 40 slip-links per chain. As expected the distribution becomes narrower
for larger crosslink fractions and is much more broad for smaller crosslink
fractions since longer strands have a likelihood of remaining undivided if
one converts only a few slip-links into crosslinks. Knowledge of this dis-
tribution is relevant in understanding the mechanical behavior of random
networks since shorter strands between crosslinks contribute more towards
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Figure 2.5: Mooney-Rivlin plot of the stress-strain curves for randomly-
crosslinked networks with Z=40 and varying crosslink fraction φc: Curves
are fits using the theory of Edwards and Vilgis.

the elasticity of the network while longer strands which have more slip-links
contribute more towards relaxing stress since slip-links can release some
tension by sliding.

The stress-strain curve for these networks with varying φc are then pre-
sented using the Mooney-Rivlin representation in fig. 2.5. The abscissa for
this plot corresponds to the inverse of the applied elongational strain λ while
the ordinate corresponds to the elongational stress σ normalized by the fac-
tor νkT (λ2 − 1/λ). νkT corresponds to the modulus of the network, where
ν is the volume density of elastic strands for the system, while the factor
λ2 − 1/λ comes from the stress expression for a Neo-Hookean solid [113].
In this plot, a neo-Hookean solid, which follows affine deformation would
have a horizontal curve with a value of 1 for the normalized stress while
materials that deform sub-affinely would have curves below this horizontal
line. In particular, a positive slope in this plot is taken as a signature of
entanglement effects in the elastic behavior [113].

The effect of the crosslink fraction is prominent in this plot. The largest
crosslink fraction case φc = 0.8 manifests an almost horizontal profile from
small to large deformations at the normalized stress level close to 0.5 and
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this reduction is attributed to the fluctuations of the nodes in space [96],
as with phantom networks. The slope in the plot also becomes larger as
the crosslink fraction becomes smaller, i.e. as the proportion of slip-links
increase. This can be attributed to the trapped entanglements which are
expected to induce further strain softening at large deformations. The plot
also shows the divergence of the stress at large strains due to the finite-
extensibility incorporated in the model (Gaussian networks do not exhibit
this divergence).

Fig. 2.5 also shows gray curves corresponding to predictions using the
theory of Edwards and Vilgis [101], a generalization of the replica theory pre-
sented earlier by Ball and co-workers [100] that includes finite-extensibility.
Notice that contrary to findings of Oberdisse and co-workers [41], which are
replotted here in fig. 2.6 , the results from the PCN model are well described
by the calculations using Edwards-Vilgis for the model parameters.

In fig. 2.6 which is based on data reported previously [42] for end-linked
networks, the effect of entanglements can again be seen from the limit of
Z = 0 entanglements, which is a horizontal line with a Mooney-stress equal
to half of the affine value of 1, consistent with phantom network predictions
[53, 96] to increasing number of entanglements which exhibit a progressive
increase in strain softening. The case of Z = 8 clearly compares poorly
at large deformations with the result using the Edwards-Vilgis equation
without finite-extensibility. It is also easy to see that comparison of the
simulation result for Z = 6 with the experimental data of Urayama [102]
for end-linked PDMS would exhibit similar disparity since the slope in the
experimental data is much greater than that exhibited by the simulation
result.

As mentioned previously, the results presented here are striking since the
PCN model predictions for the more complex case of randomly-crosslinked
networks appear to be less problematic than the insufficient strain softening
predicted for end-linked networks. Certainly, the physical systems are dif-
ferent and, subsequently, the modeling scheme used to arrive at predictions
for the two systems are also different, particularly the method of network
preparation, and these differences might be significant. However, they are
temporarily set aside in favor of the possibility that there might be a miss-
ing ingredient in the modeling framework. This ingredient which could be
applied in all cases but only significantly affects the results for the end-
linked system would be a non-trivial modification for the PCN model and
is, hence, worth investigating. In the following sections, we examine two
such possibilities explored in this work.
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Figure 2.6: Mooney-Rivlin plot of the stress-strain curves for end-linked
networks from previous simulations by Oberdisse et al. with varying slip-
link number from Z = 0 to Z = 8: The curve, shown for comparison, is the
calculation for Z = 8 using the theory of Edwards and Vilgis.
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2.3.2 Entanglement Stripping at Large Deformations

The first possibility considered is the idea of entanglement stripping at large
deformations which is based on the idea of weak and strong entanglements
putforward previously. The existence of these strong and weak entangle-
ments have been studied recently by Anogiannakis and co-workers [87] in
both polyethylene networks and melts using molecular dynamics simula-
tions. Hawke and Read also use this concept of strong and weak entangle-
ments in formulating a model for the observed stress overshoots in exten-
sional flows of low-density polyethylene [114] where entanglement stripping
could occur at chain ends. Here, we consider entanglement stripping in the
context of networks (which have no chain ends). While the exact physical
mechanism for this is somewhat loose or uncertain, it is an effect which can
introduced to the model and we can determine its impact on mechanical
behavior here.

The working idea, in the context of the PCN model, is that some entan-
glements are weak or less persistent and are lost or stripped progressively
as deformations become larger, i.e. as one goes from right to left in the
Mooney-Rivlin plot. For instance, for the case of Z = 8, this entanglement
number is valid only at low deformations (where the simulation results co-
incide with theory). At some larger deformation, the elastic response of
the system corresponds to that of a system with Z < 8, as if a few entan-
glements were lost or stripped by applying the deformation. The question
that remains is that of how much disentanglement must occur to obtain the
spread of behavior predicted by Edwards and Vilgis [101].

To examine this working idea, one would ideally generate simulation
results for an end-linked system with Z = 8 and total monomer number
per chain (Z + 1)n0. This would mean a monomer number of n0 for each
subchain. Succeedingly, one would generate results for Z = 7, 6, 5, . . . but
keeping the same total monomer number per chain thereby increasing the
monomer number for each subchain by a factor of (Z + 1)/(Zeff + 1) where
Zeff is the number of slip-links after disentanglement. This would result in
a lower elastic force and a lower stress.

In the absence of a working code for an end-linked network, the other
possibility would be to use the results generated previously by Oberdisse
et al. [42] shown previously in fig. 2.6 and rescale them to obtain the
same level of disentanglement as that proposed in the earlier paragraph.
Specifically, consider the family of curves ranging from Z = 0 to Z = 8
shown in fig. 2.6. These calculations were made using chains with different
total monomer numbers, (Z+1)n0 to be exact, which is specific to the value
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Figure 2.7: Mooney-Rivlin plot of the stress-strain curves for end-linked
networks from previous simulations by Oberdisse et al. with varying slip-link
number from Z = 0 to Z = 8 but rescaled by the factor : The curve, shown
for comparison, is the calculation for Z = 8 using the theory of Edwards and
Vilgis.
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of Z, as well as by implicitly assuming the same density of elastic strands ν
since the measured stress-strain curves for each value of Z are normalized by
the same factor. However, what we require are simulations with varying Z,
as in fig. 2.6, but for the same total monomer number chain corresponding
to Z = 8 or, equivalently simulations for systems with lower densities of
entanglement strands as a result of disentanglement. This rescaling of the
density ν from its equilibrium value will then allow us to generate the desired
family of curves, shown in fig. 2.7.

To obtain this density scaling factor, for the equilibrium Z, the total
number of subchains per chain is Z+ 1, if there are Nc number of chains for
the total volume V , the density ν is given by the expression.

ν = Nc(Z + 1)/V (2.19)

After disentanglement, the remaining number of slip-links becomes Zeff

and, hence, the total number of subchains per chain becomes Zeff + 1 and
hence the density is νeff = Nc(Zeff + 1)/V . The ratio between these two
densities then becomes

ν

νeff
=

Z + 1

Zeff + 1
(2.20)

and this is the rescaling factor. The Mooney stress σ/νkT (λ2− 1/λ) for
Z = 7, 6, . . . should then be multiplied by the factor (Z+ 1)/(Z0 + 1) where
Z0 = 8 in the case considered here to obtain fig. 2.7.

Note that these rescaled results in fig. 2.7 cover the full range predicted
from Edwards-Vilgis theory, which we assume is representative of behavior
observed in experiments. This gives some credence to this disentanglement
or entanglement stripping idea. However, to match the theory at large de-
formations, almost total entanglement release must occur resulting in the
parent chain with Z = 0. Despite the idea that a fraction of the entangle-
ments at equilibrium could be weak and, hence, possible to release or no
longer active at large deformations, it seems physically implausible that all
the entanglements will be released at large deformations.

The connection of this idea of strong and weak entanglements should also
be discussed in light of the recent work of Anogiannakis and co-workers men-
tioned earlier [87]. Using MD simulations and the Creta algorithm [115] for
extracting the primitive path, they investigated the nature of entanglements
in polyethylene networks and melts. In their work, they define the strength
of the entanglement in terms of the persistence of the contact between two
chains. Some contacts are long-lasting and persitent, these are referred to as
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Figure 2.8: The Slip-Spring Model: Entanglement constraints are imposed
on a chain by means of slip-links attached to virtual springs attached to the
elastic background.

strong entanglements while other short-lived and temporary and correspond
to weak entanglements and they hold that the weak entanglements do not
contribute to the mechanical behavior of the material, even at low defor-
mations. It is then clear that the number of entanglements at equilibrium,
which determine the strength of the modulus, are all strong which would
make the earlier approach of entanglement stripping more implausible and
heuristic, at best.

2.3.3 Strain-Dependence of the Tube Potential

The second possibility considered is the strain-dependence of the tube poten-
tial proposed previously for entangled networks by Rubinstein and Panyukov
[105]. In their model, entanglement constraints on a chain are represented
by virtual springs that are attached to the affinely-deforming elastic back-
ground as shown here in fig. 2.8.

Here, the virtual springs represent the harmonic confinement potential
that confine the chain in the tube-like region but allow fluctuations within
the region. These springs do not contribute to the stress (which is only
summed over the elastic forces corresponding to real subchains) though they
do contribute in the fluctuations of the slip-link positions in space.

From renormalization arguments whose details are not presented here,
Rubinstein and Panyukov argue that the strength of this confinement poten-
tial, represented by the monomer number in the virtual spring Nv, weakens
with increasing deformation λ [105]. For instance, if one assumes, initially
that Nv = Ne, where Ne is the monomer number in the elastic strand be-
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tween slip-links, one would find that after a deformation λ that the virtual
springs would stretch with the affinely deforming background and would,
after renormalization, result in an effective confinement equal to λNe. This
would correspond to larger allowed fluctuations of the chain in the weakened
harmonic potential which would lead to strain softening. From this idea, the
same authors also propose a constitutive model for network elasticity [116].

To investigate the strength of this idea, we conducted stochastic simu-
lations using a “toy” single-chain model where the tube constraint on the
chain is represented by virtual springs. Similar to the slip-spring model of
Likhtman [27] though at a more coarse-grained level of description, this is
essentially a numerical version of the system considered by Rubinstein and
Panyukov [105] which we evolve using the same dynamical equations for
node motion and monomer sliding discussed previously in section 2.2.1 for
the Primitive Chain Network model. This is then, essentially, a single-chain
version of the PCN model where the fluctuations of the slip-link in space is
governed by the force balance between the real chains and the virtual spring
(as opposed to only real chains in the full multi-chain PCN model) and
this introduces the parameter Nv in the system which regulates the virtual
spring strength. Note that there is a difference in this “numerical implemen-
tation” with the model proposed by Rubinstein-Panyukov [105] as well as
in the slip-spring simulation of Likhtman [27]. In their formulations, there
is a certain degree of freedom in choosing the number of slip-links/virtual
springs Ns which, based on renormalization arguments, would depend on
the strength of the confinement Nv. In our toy model, we make the choice
for Ns based on the number of entanglements Z for the system and we don’t
vary this choice.

Tentatively, we let Nv = Ne in order to make the effect of the virtual
spring confinement comparable to the elastic forces of the real chains. Then,
we vary the ratio Nv/Ne to see the effects of softening the tube confinement
potential on the mechanical behavior of this ”toy” system. Note that for
Nv � Ne that the introduction of virtual springs would be meaningless and
the chain will simply take on Rouse dynamics, subject to the constraint
that the chain ends are also fixed to the affine background. In contrast for
Nv � Ne, we recover the affine deformation limit since the virtual spring is
infinitely strong and it would pull the chain to the elastic background.

Fig. 2.9 shows the results of the single-chain simulations for various
values of the ratio Nv/Ne. Here, we see that while this slip-spring system
does predict some inherent strain softening without varying Nv, as shown by
the positive slope in the curves that this strain softening is, again, insufficient
to match the softening predicted by the theory of Edwards and Vilgis [101].

61



Figure 2.9: Mooney-Rivlin plot of the stress-strain curves obtained from
single-chain slip-spring simulations with varying virtual spring strength for
Z = 8: The curve show for comparison, is the calculation for Z = 8 using
the theory of Edwards and Vilgis.
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Figure 2.10: Plot of the relative virtual spring strength versus applied strain.
Straight line shows the scaling prediction of Rubinstein and Panyukov Nv ∼
λ2.

This softening would be due to the monomer sliding dynamics which changes
the system response from that of a phantom-like network to the positively
sloped profile showed here.

It is also apparent from the family of curves generated by varying the
ratio of Nv/Ne that the weakening of the confinement potential in this sys-
tem allows full recovery of the predicted stress-strain curve from the replica
theory of Edwards and Vilgis. Again, the underlying physical framework
between the two are different but we are using the results from the latter
as a representative of experimental data (which is somewhat sparse other
than the work of Urayama [102]). At the lowest deformation, i.e. 1/λ ∼ 1,
an 1.5 < Nv/Ne < 2 seems to recover the correct low-deformation value of
the stress and, hence, the modulus. For suceeding deformations, the value
of this ratio must increase to match the theory all the way to Nv/Ne > 10
for larger deformations.

Indeed, if one plots the Nv/Ne ratio as a function of the λ with which
this curve intersects the prediction of Edwards-Vilgis (which we take as
representative of experimental data), one would obtain for the 5 data points
generated here a rough power law with power equal to ∼ 2, as shown in
figure 2.10. This means that Nv ∼ λ2, somewhat consistent with the result
of Rubinstein-Panyukov (see fig. 2c in [105]).
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The connection of this idea to the real multi-chain PCN model, however,
deserves further comment. While we have shown here that the idea allows
recovery of the elastic behavior when applied to the “toy” single chain sim-
ulation we considered here, the connection of this to the multi-chain system
is somewhat less clear since the confinement effect brought about by topo-
logical interactions or entanglements between chains are accounted for by
the slip-link binding two chains together in the PCN model while these were
introduced through virtual springs on the slip-links in one chain. The latter
idea along with the progressive weakening of the virtual spring cannot be
applied to the slip-links in the PCN model since there are 4 subchains par-
ticipating in each link, making it a full network node and introduction of a
weaker 5th spring will not alter its confinement brought about by the other
4 subchains. Hence, it is important to consider other possibilities to amend
this discrepancy.

2.3.4 Chemical Potential-Driven Monomer Exchange in Slip-
links

Lastly, we briefly consider the issue of thermodynamic consistency of the
dynamics of the PCN model as pointed out by Schieber and Horio [93].
They argue that the monomer sliding equation, discussed in section 2.2.1, is
inconsistent with the implied underlying free energy of the system. They put
forward that a more rigorous choice or more thermodynamically-consistent
choice would be to use the chemical potential as a driver of this monomer
exchange.

A similar conclusion has been developed previously by Greco [117] by
analyzing the subchain as a “small system” that is well outside the ther-
modynamic limit of many particles (where the “particles” here are Kuhn
segments) and where fluctuations are important. Greco holds that the con-
dition for inner equilibrium, arrived at by exchange of Kuhn segments across
a slip-link (or what we refer to here as monomer sliding), is better stated by
the condition that the chemical potential µ is equal for the two subchains
– i.e. µα = µβ where α, β refer to the two subchains. This is in contrast
with the other choices one could make, for example that the tension f is
equal for both subchains (as in the case of the PCN model [22]) or that the
linear monomer density ρm is equal for both subchains. He holds that while
all three conditions or choices are equivalent from the perspective of Doi-
Edwards theory [1], they no longer hold when the subchain is more correctly
treated as a “small system”.

To improve the situation regarding this, we consider changing the equa-
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tion for monomer dynamics by basing it on the chemical potential, as pre-
scribed in the arguments of Schieber and Horio as well as Greco. This is one
approach in developing a more thermodynamically-consistent many-chain
slip-link model for entangled polymers. The other more involved approach
is currently being undertaken by Masubuchi and Uneyama in their develop-
ment of a new multichain slip-spring simulation [94] with a clear underlying
thermodynamic framework.

To change the equation for monomer sliding, one would then require a
free energy expression for the subchain, in terms of the observables ri, ni
and from this, one can derive the chemical potential. Here, we use the free
energy expression reported by Schieber for an entangled strand [106, 107].

Fsubchain,i =
3
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kTr2
i

nib2
+

3

2
logNi (2.21)

The chemical potential µi for the subchain i is then given by the following
expression.
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Schieber also presents a sliding equation based on this expression for µ
[107].

∆ni =
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The following non-dimensional observables can then be defined.
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(2.24)

And by using the definitions in (2.24) and combining equations (2.22)
and (2.23) one can obtain the following discrete non-dimensional form for
this new sliding equation.

∆ñ =
3

4
∆t̃

[(
r̃2
i

ñ2
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√

∆t̃ (2.25)

This last equation is then implemented in the numerical scheme for
stochastic simulation in lieu of (2.13). Note that the characteristic time τK
introduced by Schieber in equations (2.23) is the timescale for the motion of
a single Kuhn step. Since it becomes included in the non-dimensionalization
of t in (2.24) and we are only concerned with observables at equilibrium,
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Figure 2.11: Mooney-Rivlin plot of the stress-strain curves obtained from
single-chain simulations with Z = 6 and Nv/Ne = 2.5 for both the affine de-
formation case (triangles) and the fluctuating nodes case (circles): compar-
ison between tension-driven (black) and chemical potential-driven (white)
monomer sliding dynamics.
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Figure 2.12: Mooney-Rivlin plot of the stress-strain curves obtained from
multi-chain simulations of a randomly-crosslinked network with Z = 10 and
φc = 0.4: comparison between tension-driven and chemical potential-driven
monomer sliding dynamics.
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it does not need to be specified for the simulation. Results in using (2.25)
as the monomer sliding equation for the single-chain ”toy” simulation and
multi-chain simulation of a randomly-crosslinked network are shown in fig-
ures 2.11 and 2.12 respectively.

In fig. 2.11, we confront the effects of a different sliding equation on
the single-chain ”toy” model, both in the case of non-fluctuating nodes (i.e.
nodes attached by infinitely stiff virtual springs to the affine background) as
well as in the case of fluctuating nodes (i.e. nodes attached by virtual springs
with strength comparable to the elastic force of the subchain). In the former
case, where the effect of sliding is in isolation, the chemical potential-driven
sliding induces significantly more strain softening than the tension-driven
sliding. The latter leads to very little, though present, strain softening.
However, when coupled with both node fluctuations in space, as in the case
of the virtual spring system, the effect of changing the sliding equation is
less prominent.

Fig. 2.12 also shows the effect of this modification in the context of the
multi-chain simulation discussed previously for randomly-crosslinked net-
works. The simulation here is done for a Gaussian network so there is con-
tinual strain softening at large strains. In this scenario, there is some effect
in changing the sliding equation, particularly an increasing slope at behavior
large deformations. This is essentially due to the change introduced which
modifies the underlying free energy for the model as well as the driving
force derived from this free energy. Given the more rigorous nature of the
new sliding equation, this is clearly the more correct prediction by the PCN
model on the stress-strain behavior. However, this observed change is mi-
nor compared to the discrepancy observed for end-linked networks. Hence,
this change in dynamics probably will not affect the predictions for the end-
linked case drastically, as in the case shown here (for randomly-crosslinked
networks). Hence, the reason behind the discrepancy for that particular
system still remains a mystery.

On a final note, the importance of this work deserves a few comments.
Slip-link simulations or, indeed, many-chain models or treatments of entan-
gled networks are somewhat few in literature. Most theoretical treatments
involve a mean-field approach, except for the work of Ball et al. and Edwards
and Vilgis using the replica formalism. Other than the molecular dynamics
simulations of Grest, Everaers and co-workers [103] and the recent work of
Anogiannakis et al. [87], there are also very few other modeling attempts on
these systems especially at the level of description slip-links and entangle-
ment strands as with the PCN model. To our knowledge, the only attempt
to apply slip-link simulations to the problem of entangled networks has been
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in the recent work of Jensen and co-workers [118] where they applied the
single-chain discrete slip-link model of Schieber et al. [25] on the elastic
behavior of both ideal networks and imperfect networks with dangling ends.
However, their work is different from the direction of this current work in the
sense that (1) their model is a single-chain model and (2) they considered
only the behavior of the networks in the linear range, i.e. at low frequencies,
and not at large strains. Since the slip-link models are significantly more
coarse-grained than the MD simulations work mentioned, it fills a niche for
a simple model that adequately captures the necessary physics for simula-
tion of such systems but at significantly lower computational cost. Hence,
the development of the PCN model along these ranks is important in filling
this niche. This remaining discrepancy problematized here could also be
indicative of some missing ingredients in the basic model formulation, cor-
rections to which might be relevant also for the simulation of more complex
systems such as entangled melts and solutions which the PCN model seems
to adequately describe, as of the present. This would motivate future work
in this direction.

2.4 Conclusions

In this chapter, we have explored the general problem of applying the Prim-
itive Chain Network model in simulating entangled rubbers. This was mo-
tivated by the previous work of Oberdisse and co-workers [41, 42] which
reported a discrepancy between simulation results and predictions from the
well-established replica model of Edwards and Vilgis [101], which has been
validated by experimental data. In this case, we have applied the PCN
model to the case of randomly-crosslinked networks, which have a distribu-
tion of the elastic strand length between crosslinks, as opposed to end-linked
networks, where all strand lengths are equal. We found that simulation re-
sults in this case are more consistent with the Edwards-Vilgis calculations.
Hence, it stands that the PCN model fails only for what is expected to be
the simple case of end-linked rubbers.

To improve model predictions for this case, we considered two possi-
bilities on how to eliminate the discrepancy. The first is by introducing
disentanglement or entanglement stripping based on the idea of strong and
weak entanglements. It was shown however that to capture the full range
predicted by Edwards and Vilgis that full disentanglement is necessary, a
possibility which seems to be physically implausible. The second is by con-
sidering the strain-induced weakening of the confinement potential in the
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chain as proposed previously by Rubinstein and Panyukov [105] and demon-
strated numerically here using a single-chain “toy model”. However, this
idea seems to be effective only for models which explicity account for the
tube confinement via harmonic potentials such as in the “toy model” con-
sidered here as well as in the slip-spring model of Likhtman [27] and the
inclusion of this effect is less straightforward for the case of the PCN model
where the confinement is by chains acting on other chains, consistent with
a many-chain perspective. Hence, this discrepancy for end-linked networks
remains an open problem for the PCN model.

We also confronted the thermodynamic inconsistency of the present slid-
ing model as pointed out by Schieber and Horio [93] similar to ideas pre-
viously put forward by Greco [117]. A more thermodynamically-consistent
monomer exchange equation would be one driven by differences in the chemi-
cal potential of the two subchains and we have presented such a sliding equa-
tion based on some earlier proposals by Schieber [107]. This sliding equation
modifies the strain softening behavior one can observe in the toy single chain
model and in the multi-chain model implemented for a randomly-crosslinked
network. However, the change is somewhat minor and probably will not sig-
nificantly modify the model predictions for end-linked networks.

We suspect that the problem could be connected to the method of net-
work preparation used to obtain the starting equilibriated states for simula-
tion. There is a clear difficulty in obtaining this and there are probably some
techniques which could be picked up from MD simulations [103]. Likewise,
an alternative would be to use networks equilbriated in MD simulations as
direct input to the PCN model by doing primitive path analysis [17, 115] to
convert the system into a primitive path network. The PCN model could
then be used to obtain stress-strain curves for this network for less compu-
tational effort. If the results are in better agreement with those obtained
from MD simulations or with the predictions with Edwards-Vilgis, clearly
the problem is directly connected to network preparation.
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Chapter 3

Tube Models for Parallel
Superposition Flows

3.1 Introduction

Experiments on superposition flows provide effective means for understand-
ing the nonlinear behavior of viscoelastic materials and for verifying the
validity of constitutive models [119, 120, 121]. The idea is to perturb a
system that is already experiencing some background flow by superimpos-
ing another flow field. This perturbation could be in the form of a small-
amplitude oscillatory shear applied either parallel or orthogonal to the flow.
These experiments generate a set of superposition moduli – nonlinear ana-
logues of the dynamic moduli in linear viscoelasticity which depend on the
shear rate. Constitutive equations are then validated by comparing their
predictions with data on such spectra [119, 120].

In the context of entangled polymers, developing constitutive equations
based on molecular models as basis for viscoelastic behavior [1, 9] could
enable the molecular interpretation of results from such experiments. In
the case of nonlinear shear flows, the molecular mechanisms that must be
accounted for in such models include chain retraction [5, 6], chain stretching
[66, 67] and convective constraint release (CCR) [45, 46, 69]. From these
mechanisms, molecular constitutive equations that predict the rheological
behavior have been developed [71, 80, 73, 81, 122]. In general, these models
are quite successful as their predictions compare reasonably with data from
rheometry.

For superposition flows, Somma and co-workers report modeling and
experiments on polydisperse melts [121]. Their experiments were done in
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stress-controlled mode on a polydisperse propylene melt and the modeling
of the results was based on a simple tube-based constitutive equation [80].
They observed that the superposition storage modulus was more drastically
affected by shear flow while the superposition loss modulus barely changed.
Data for both moduli agree with their theoretical model for low to interme-
diate applied stresses.

Similar work on more narrowly-dispersed systems obtained in strain-
controlled mode have also been reported recently by Wang and co-workers
[43, 44]. In their experiments on monodisperse and nearly-monodisperse
polybutadiene solutions, a new feature emerged which is the dynamic crossover
at low frequencies that is observed to shift in flow. In the quiescent state, this
crossover frequency is a signature of the terminal relaxation in monodisperse
systems and the inverse of this crossover frequency is the effective relaxation
time of the system. This relaxation time would be equivalent to the disen-
gagement time τD due to both reptation [3] and tube length fluctuations
[59]. Wang and co-workers observed that this effective relaxation time shifts
universally as a function of shear rate. They then intepreted this as an ac-
celeration of the relaxation of the system due to flow, consistent with the
idea of convective constraint release (CCR) [43, 44].

Finally, others present theoretical predictions on the behavior of these
superposition moduli in flow using other approaches [123, 124]. Uneyama
and co-workers use a generic dynamic model for polymers with an anisotropic
mobility tensor and results from linear response theory to derive expressions
for the superposition moduli [123]. Mead also presented calculations for
these moduli using a polydisperse extension of a tube model with CCR [122]
for both parallel and orthogonal superposition cases [124]. Both papers
report qualitative agreement with previous experiments though no actual
comparisons with data are presented.

In this work, we confront the data from the experiments of Wang and co-
workers [43, 44] on narrowly-dispersed polymer solutions using a molecular
constitutive equation based on the tube model [80] similar to the approach
by [121]. The objectives are two-fold: (1) to validate the approach by Somma
and co-workers by analyzing narrowly-dispersed systems and (2) to inves-
tigate the role of CCR and other molecular mechanisms in understanding
data on superposition flows. In particular, we seek to test the claim of Wang
and co-workers that the shifting of the effective relaxation time with flow is
consistent with CCR.

This chapter is organized as follows. First, we describe the modeling
approach used, particularly the constitutive equation of Marrucci and Ian-
niruberto [80] and the linear expansion approach to obtain expressions for
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the superposition moduli [121]. Then, we compare these results with exper-
imental data by Wang and co-workers on solutions. These results will be
discussed in light of the molecular theory used. Finally, a short summary of
these findings and future outlook on the problem constitute the conclusions.

3.2 Model Description

3.2.1 Constitutive Equation

To model the experimental data, we use the differential tube-based con-
stitutive equation with CCR [80] proposed by Marrucci and Ianniruberto.
While more detailed full-chain models are available, e.g. the integral model
of Mead, Larson and Doi [71] or the full-chain nonlinear model of Graham
and co-workers [73], the simple form of this differential model lends itself
well to perturbation analysis where an analytical expression for the super-
position spectra is desired. Despite its simplicity, this equation has a direct
correspondence to molecular theory since it was based on tube model ideas.

The Marrrucci-Ianniruberto model has an evolution equation for the
tensor A which is defined below as the non-dimensional second moment of
the distribution of subchain end-to-end vectors rr.

A =
〈rr〉
r2

0

(3.1)

The dynamics of A is then given by the following equation.

dA

dt
= κ ·A+A · κT − 1

τ

(
A− trA

3
I

)
− 1

3τR
(trA− 1)I (3.2)

The equation above contains two relaxation times: τR, the Rouse time of
the chain which governs stretch relaxation and τ , which governs orientational
relaxation and is expressed here as a function of τD, the disengagement time
of the chain.

1

τ
=

2

τD
+

(
1

τR
− 2

τD

)
β(trA− 1)

1 + β(trA− 1)
(3.3)

Note that only τR and τD are constant for a given polymer system,
as both are related to the average molecular weight of the chains. Here, τ
varies with flow through the convective constraint release mechanism (CCR)
[45, 80] as regulated by the parameter β, the so-called CCR parameter. β is
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the only nonlinear parameter in this model and is held to be of order unity
in previous CCR models [45, 46, 73, 80, 81].

Finally, the stress tensor σ can be determined from the second moment
of the distribution of subchain end-to-end vectors r and subsequently from
A as follows.

σ = ν〈Fr〉 =
3νkT

r2
0

〈rr〉 = 3νkTA = GA (3.4)

It should be mentioned that this single-mode equation reduces in the
linear limit to the Maxwell equation which has a single relaxation time (in
this case, the orientation relaxation time). For predictions for real polymeric
systems which exhibit a spectrum of relaxation times even in the linear
range, it is inevitable that one must use a multi-mode approach which can
be done, using the present model, treating the stress as a sum of independent
contributions from different modes as follows.

σ =
∑
i

GiAi (3.5)

In such a multi-mode approach, each relaxation mode would be char-
acterized by two parameters from linear viscoelasticity: Gi, the fractional
modulus which gives the weight of the mode contribution, and τ0,i which is
the orientational relaxation time of the mode at equilibrium. Both of these
parameters can be obtained by fitting the linear viscoelastic spectrum using
several Maxwell modes, easily facilitated by software such as Reptate1.

Other than these parameters characterizing the linear viscoelastic spec-
trum and the nonlinear parameter β, one would also need to specify the
stretch relaxation time τR,i. However, this is not an easy task. Hence,
for simplicity we assume that in the situations considered here that stretch
can be reglected, i.e. τR,i = 0, and that stress is determined purely by
orientation. In reality, this would be the case for monodisperse (or nearly
monodisperse) systems with flow rates less than the inverse of the Rouse
time τR though in general not the case for polydisperse systems.

In this case, (3.2) reduces to the no-stretch version given here as follows

dAi

dt
= κ ·Ai +Ai · κT −

1

τi

(
A− 1

3
I

)
− 2

3
(κ : A)I (3.6)

1Reptate: Rheology of Entangled Polymers: Toolkit for Analysis of Theory and Ex-
periment - a free software developed by Jorge Ramirez and Alexei Likhtman. Available
online at http://reptate.com
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and the orientational relaxation times are given by the expression

1

τi
=

1

τ0,i
+ 2βκ : Ai (3.7)

which is a simplified form of (3.3) and close in form to the original
equation proposed by Marrucci for CCR [45]. Other details on this model
can be found in the original paper by Marrucci and Ianniruberto [80].

3.2.2 Linear Expansion Approach

Following the previous work [121], we use a linear expansion of the superim-
posed flow on the constitutive equation to obtain analytical expressions for
the superposition moduli. Here, we outline the procedure for doing this in
detail. A minor difference between the calculation presented here with re-
spect to the previous case is that we consider strain-imposed measurements
while Somma and co-workers used stress-imposed measurements.

The experiment is done by applying a steady shear flow with rate γ̇ and
a small-amplitude oscillatory shear γ0 sinωt with strain amplitude γ0 and
frequency ω on this steady flow. In terms of the velocity gradient tensor κ,
this can be written as follows

κT = κ+ κ|| (3.8)

where κ is the velocity gradient tensor due to the background flow, κ||
is due to the superimposed flow and κT is the total velocity gradient tensor.
In shear flow, the only non-zero components of these tensors are the xy-
components which are related as follows

γ̇T = γ̇ + γ0ω cos(ωt) (3.9)

where γ̇T is the total shear rate from the superposition of the two flows.
In terms of the total shear strain, this can be rewritten as follows.

γT (t) = γ̇t+ γ0 sinωt (3.10)

It follows that the stress response to this superimposed flow can be writ-
ten in terms of two components as well

σT = σ + σ|| (3.11)

where σ is the stress due to the background flow, σ|| is the stress due to
the superimposed flow and σT is the total stress. Again, the component of
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interest in these tensors would be the xy-component. For σ||, in the limit
of small γ0, the xy-component can be written in terms of two parts that are
in-phase and out-of-phase with the applied oscillatory shear

σ|| = G′||γ0 sin(ωt) +G′′||γ0 cos(ωt) (3.12)

where G′|| and G′′|| are the superposition moduli, the quantities of interest.
To obtain the final expressions for the superposition spectra, the defi-

nitions for σT and κT are combined with the constitutive model given by
equation (3.6), which is expressed in terms of the A-tensors.

Return to equation (3.6), the term on the left-hand can be transposed
to the right-hand side as follows.

0 = −dAi

dt
+ κ · Ai + Ai · κT −

1

τi

(
Ai −

1

3
I

)
− 2

3
(κ : Ai)I (3.13)

In (3.13), all the terms in the right-hand side are containing various
powers of γ0, the strain amplitude of the superimposed shear. Considering
that γ0 is small, we can assume that all higher-order powers of γ0 starting
from 2 would be very small and have negligible contribution. Hence, we can
focus our attention on terms that are linear in γ0. By letting these terms be
equal to 0 and focusing on the xy-component, which contains G′|| and G′′||,
we are able to obtain expressions for these superposition moduli in terms of
A′|| and A′′||. For brevity, the exact expressions for each mode are presented
in Appendix C.

Since, we are considering a multimode approach, we sum the contribu-
tions from various modes to obtain the total superposition moduli for the
system which is simply

G′||(ω, γ̇) =
∑
i

GiA
′
||(ω, τi, γ̇) (3.14)

G′′||(ω, γ̇) =
∑
i

GiA
′′
||(ω, τi, γ̇) (3.15)

where Gi are the fractional moduli that give the weight of each mode.
Expressions (3.14) and (3.15) are then used to compare with experimen-

tal data in the following section.
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Table 3.1: Material parameters for PBD solutions

Mw PDI c τD Z Data Source
[kg/mol] [wt. %] [s]

3% PB2.6M 2600 1.625 3% 90.91 29 [44]
5% PB0.7M 750 1.01 5% 29.8 13 [43]
10% PB0.7M 750 1.01 10% 17.7 27 [43]

3.3 Results and Discussion

In this section, we confront the data on polybutadiene solutions from the
experiments of Wang and co-workers [43, 44]. The details on these solutions
are reported in table 3.1 and the relaxation spectrum obtained by fitting
the linear viscoelastic response and used in the multimode calculations are
given in Appendix A.

First, we confront the data presented by Li and Wang on a polybuta-
diene solution with polydispersity of 1.625 [44]. While this system is not
narrowly-dispersed, the linear response of the material still shows the dy-
namic crossover in the low frequency region as shown in the linear viscoelas-
tic response in fig. 3.1. The figure also shows the best fit obtained using
Reptate involving 7 relaxation modes. It was observed that the introduction
of more modes does not significantly improve the obtained fit.

For the superposition experiment, Li and Wang report the superposition
moduli for one shear rate γ̇ = 0.04s−1 where they varied the temperature.
Considering only the spectrum at the reference temperature for the linear
viscoelastic response, we obtained predictions for these moduli using the
analytic expressions obtained from section 3.2.2 shown in fig. 3.2.

Model predictions compare well with the measured superposition moduli
for this shear rate as shown in fig. 3.2. The effect of varying the CCR
parameter β on the model predictions is found to quite subtle as shown in
figure where predictions for β = 0, 0.5 and 1 are shown to be very similar.
The only noticeable effect is near the terminal region of the loss modulus
which is slightly affected by β. However, the dynamic crossover, which is
the region of interest, is barely altered by varying β.

Li and Wang also report data on the reciprocal of the crossover frequency,
taken to be the effective relaxation time of the system, as a function of the
shear rate which is plotted in fig. 3.3. They observed that their data for
this relaxation time τeff scales universally with the applied rate γ̇ with a
prefactor of 5, which is also shown in fig. 3.3 as the solid line. Calculations
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Figure 3.1: Linear viscoelastic response of the 3% PBD solution from the
experiments of Li and Wang. Solid curves are fits using multiple Maxwell
modes.

Figure 3.2: Superposition moduli data for the 3% PBD solution of Li-Wang
with shear rate of 0.04s−1 and calculations using various values of β.
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Figure 3.3: Plot of the effective relaxation time vs. shear rate: Open sym-
bols are data by Li and Wang, closed symbols are calculations and the line
corresponds to 1/τeff = 5γ̇.

similar to that shown in fig. 3.2 were performed for some of values of the
rates they examined and are also plotted in fig. 3.3.

We observe that both data and calculated values for the effective re-
laxation time follow the empirical scaling they reported as shown in fig.
3.3. However, consistent with fig. 3.2, it was observed that these calculated
values were not largely effected by varying the CCR parameter β.

We also considered the more detailed data set reported by Boukany and
Wang [43] from similar superposition experiments on monodisperse ultra-
high molecular weight polybutadiene solutions (5% and 10% weight frac-
tions). These samples are well-entangled and which have a polydispersity
of 1.05, as shown in table 3.1. Their linear viscoelastic response and corre-
sponding curves fitted using relaxation modes are shown in fig. 3.4.

For these samples, Boukany and Wang report both the scaling behavior
of the crossover frequency for both solutions as well as the values of the
superposition moduli for wider range of shear rates. We confront these data
by performing calculations using the analytic expressions obtained for the
superposition moduli by linear expansion, discussed in section 3.2.2.

Figures 3.5 and 3.6 show the comparison between the predictions for the
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Figure 3.4: Linear viscoelastic response of the 5% and 10% PBD solutions
from the experiments of Boukany and Wang. Solid curves are fits using
multiple Maxwell modes.

Figure 3.5: Storage modulus calculation for the 5% monodisperse solution
of Boukany and Wang

80



Figure 3.6: Loss modulus calculation for the 5% monodisperse solution of
Boukany and Wang

Figure 3.7: Storage modulus calculation for the 10% monodisperse solution
of Boukany and Wang
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Figure 3.8: Loss modulus calculation for the 10% monodisperse solution of
Boukany and Wang

storage and loss moduli for the 5% solution and the data from Boukany and
Wang [43]. Here, the previous observation of Somma and co-workers that
the effect of shear flow is more drastic on G′ than on G′′ [121] is verified by
both data and calculations. Similarly, as observed previously in calculations
for the Li-Wang data, the only effect of shear on the latter is near the ter-
minal region. Both data sets seem to be reasonably described by the model
although there is an increasing deviation in the storage modulus predictions
at larger rates. The model predictions are also slightly shifted to higher
frequencies than the data, an effect that is slightly affected by increasing β.
For the case of the loss modulus, the data can also be reasonably captured
by the model although the effect of changing β near the terminal region
causes some unnatural features for the largest rate at β = 0 though well
outside the what is covered by available data.

For the case of the 10% solution, which is more entangled than the 5%
solution (Z = 27 vis-a-vis Z = 13), model agreement seems less favorable
as seen in figures 3.7 and 3.8. For the storage modulus, there is increasing
discrepancy with the data at larger rates, as in the 5% solution, but as
this data set accesses much larger rates (up to γ̇ = 1.0), more features of
this discrepancy are identified. For instance, the discrepancy for the second
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largest rate γ̇ = 0.1 is only for the terminal region and the data is somewhat
more shifted to high frequencies than the model prediction. For this rate,
the model still captures the plateau region. However, this is not the case
for the largest rate γ̇ = 1.0. For this rate, the calculations using the model
hardly fit the data at all and the plateau predicted is much lower than the
plateau exhibited by the data. Note that this discrepancy is not affected
by the choice of CCR parameter whose effect is again observed to be quite
minimal.

For the loss modulus, the model fails to fit the data quantitatively espe-
cially at larger rates similar to the case of the storage modulus. For the 10%
solution, in contrast with the previous systems examined, experimental data
for the loss moduli don’t fully superimpose at large frequencies, especially
for the two largest rates. The theoretical calculations, on the other hand,
superimpose at large frequencies but, expectedly, not near the terminal re-
gion. This discrepancy, which is most drastic for the largest rate γ̇ = 1.0, is
again irrespective of β which has some effect only near the terminal region.

In figures 3.9 and 3.10, both the storage and loss moduli predictions
(β = 1) and data are shown to highlight the effects of CCR and shear on
the dynamic crossover. For the 5% solution (fig. 3.9), data agreement with
the theoretical calculations seems reasonable, except for the largest rate
(γ̇ = 0.1). In closer inspection, the theoretical predictions for this rate come
close but actually do not intersect. As the experimental data for this rate
does show the actual crossover (as well as the second crossover at higher
frequencies), this feature could be limitation of the current approach where
stretch is not considered and the stretch relaxation time, τR, is set to 0.
For this particular rate, owing to the need to obtain an effective relaxation
time, we define the crossover frequency as the frequency where the difference
between G’ and G” is at a minimum (i.e. where the two curves almost
intersect).

It should be mentioned that, while the feature of non-intersecting G’ and
G” may seem unphysical, such profiles have been observed experimentally
by Boukany and Wang in superposition flows of DNA solutions, though at
very large rates [43]. These have been reported in the same paper as the
polybutadiene solutions data though we have not analyzed the data set on
DNA since they are known to exhibit shear banding or non-homogeneous
velocity profiles [43]. While, Boukany and Wang report that the presence
of banded profiles do not affect the superposition flow behavior, we contend
that the non-homogeneity of the velocity field would make any direct or
straightforward constitutive analysis of those data less valid.

For the case of the 10% solution, as shown in fig. 3.10, it was already
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Figure 3.9: Superposition moduli calculations for the 5% monodisperse so-
lution: Open symbols are data, curves are calculations for β = 1.

Figure 3.10: Superposition moduli calculations for the 10% monodisperse
solution: Open symbols are data, curves are calculations for β = 1.
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Figure 3.11: Plot of the relative crossover frequency as a function of the
terminal relaxation time Weissenberg number (Wi = γ̇τ): Closed symbols
are data for the 5% and 10% solutions by Boukany and Wang, labeled Z
= 13 and Z = 27, respectively, open symbols are calculations and the line
corresponds to 1/τeff = 5γ̇.

pointed out that the model fails drastically in fitting the data for the su-
perposition moduli in at the largest rate and this is apparent in the figure.
Meanwhile, the crossover seems to be reasonably captured at the lower rates.
This increase in the level of the loss modulus at high frequencies could be
indicative of stretching which we have neglected in the model on purpose to
keep the expressions simple and to be able to derive an analytical expres-
sion for the moduli. The inclusion of stretch in the model could introduce
two difficulties: the first is in obtaining an analytical solution, though an
alternative would be a numerical solution of the equations, and the sec-
ond is in obtaining a stretch relaxation time for each mode, which is not
straightforward.

Despite these difficulties in obtaining quantitative agreement with the
data on superposition moduli for both 5% and 10% solutions, it still seems
worthwhile to understand the relative scaling of the effective relaxation time
with the shear rate which we show here in fig. 3.11. We plot the crossover
frequency normalized by the crossover frequency without flow versus the
terminal relaxation time Weissenberg number (γ̇τ). We report both data
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and calculations as well as the empirical scaling 1/τeff = 5γ̇, as reported by
Li and Wang [44], as a straight line in fig. 3.11.

It could be observed in fig. 3.11 that the model, in general, underesti-
mates the crossover frequency compared to the data at larger rates (Wi > 1),
particularly for the more entangled case (the 10% solution), though this
seems to be irrespective of inclusion (or non-inclusion) of CCR, which is
known to be important in this regime. The discrepancy, of course, could
be traced back to the detailed analysis of the superposition moduli made
earlier regarding the difficulty of including stretch in this simple approach.

Indeed stretch could be important, for example, in the largest rate con-
sidered for the 10% solution (γ̇ = 1.0) which has a terminal relaxation time
τD = 17.7. This disengagement time is not equivalent to the reptation τrept

time but is shorter due to contour length fluctuations. However, if we take
this to be the reptation time, keeping in mind that the actual reptation time
is longer, and recalling an approximate relationship between the Rouse and
reptation times as follows τrept/τR ≈ 3Z, we can then estimate that the
Rouse time is at least 0.21. This would make the critical rate for stretch-
ing to be γ̇ ≤ 4.58 which is of the same order of magnitude as the rate in
the largest case. It is then strongly likely that stretching effects could be
important.

It should also be mentioned that most predictions and data for all the
monodisperse systems considered here, as shown in fig. 3.12, roughly form a
mastercurve along the line correponding to the empirical scaling pointed out
by Wang and co-workers [43, 44]. The agreement with this relation, however,
should not be taken as validation of the model, for purposes already men-
tioned earlier during the confrontation of the superposition moduli. It has
been shown that some data points especially at large rates actually severely
underestimate the crossover and calculations do not always reasonably cap-
ture the data for superposition moduli.

Lastly, we comment on the main molecular mechanism responsible for
the effective shifting of the superposition moduli in flow. Regarding this,
Wang and co-workers claim that the effective shifting observed is a signa-
ture of convective constraint release (CCR) [43, 44]. The concept of CCR, as
proposed previously by [45], posits that the effective relaxation time of the
entangled system in flow is smaller than its relaxation time at equilibrium
due to the convective release of some entanglements in flow. This accelera-
tion of the relaxation of the system due to flow can be expressed simply as
follows
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Figure 3.12: Master curve of the relative crossover frequency as a function of
the Weissenberg number (γ̇τ) for the monodisperse solutions investigated:
closed symbols correspond to data, open symbols correspond to calculations
while the line corresponds to 1/τeff = 5γ̇.
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1

τeff
=

1

τ0
+ βγ̇ (3.16)

based on the first CCR paper of [45]. Here, β is the parameter regulating
the effectiveness of CCR as a relaxation mechanism.

With equation (3.16) in mind, it is tempting to assume that the universal
scaling of the reciprocal of the relaxation time with the shear rate observed
experimentally by Wang and co-workers is consistent with this equation and
take β = 5 as the prefactor shown by the experiment. This view, however, is
oversimplified as shown here in our analysis of their data. We demonstrated
reasonable model agreement with the data for a range of rates independent
of the choice made for β. In most cases, choosing β = 0, which corresponds
to no CCR in the model, could still reasonably fit the experimental data
as the effect of varying β is mostly on the behavior around the terminal
region. Hence, based on what is left in the model, we claim that this effective
shifting of the superposition moduli and the dynamic crossover is simply due
to orientation of the melt along the shear direction and is not connected
strongly to CCR, opposite to the claim of Wang and co-workers.

It is easy to see how orientation due to flow gives rise to an effective
loss of elasticity, as observed in the shifting of G′||, when the mechanism

of chain retraction is considered [5, 6]. During flow, tube segments along
the shearing direction are deformed affinely. In the regime of non-stretching
flows, retraction of the chain from its deformed state along the tube occurs
to preserve the tube length. This would give rise to an effective loss of
entanglements (and longer effective tube segments) which corresponds to
less elastic objects in the system.

Recently, Mead also identified orientation as one of two effective physical
mechanisms in superposition flows [124] from an analysis of the predictions
of a single-mode constitutive equation [122]. The other mechanism is the
cut-off of the long timescale portion of the relaxation spectrum by flow [124].
Mead attributes this cut-off to CCR which is observed to be relevant in the
behavior of a single relaxation mode. However, in the multimode analysis we
presented here, we note that some of the slow modes indeed shift with flow
while other fast modes do not. Ultimately, the dynamic crossover observed in
flow arises from the intersection of the storage and loss superposition moduli
which are obtained by summing over various modes (some of which shift
while some do not) and we find that CCR is less relevant in this multimode
context.

In general, the idea of convective constraint release is still not fully un-
derstood given that the effect still introduces an adjustable parameter in
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nonlinear models. Indeed, to an extent, β is an important parameter in
nonlinear rheology, more so in light of recent findings on shear banding
and other unusual phenomena [35, 36, 37] by Wang and co-workers. These
findings prompt them to propose the possibility of the breakdown of the
Doi-Edwards tube picture in nonlinear flows [38]. The alternative perspec-
tive to this, however, would be to consider those findings within the tube
framework, where CCR is an important mechanism, to understand which
situations could be captured reasonably [125, 126]. In most of these cal-
culations, β is an important parameter as it regulates the stability of the
resulting flow curve. Some of the phenomena reported by Wang and co-
workers could indeed be captured by the Doi-Edwards theory if there is a
certain degree of instability inherent in the system as shown in literature
[125, 126]. However, while motivational, these topics are beyond the scope
of this work.

3.4 Conclusions

In this chapter, we confronted some recent experiments done on parallel
superposition flows by Wang and co-workers [43, 44] on monodisperse and
nearly-monodisperse polybutadiene solutions. Based on the previous ap-
proach of Somma and co-workers [121], we confronted the data using a
simple tube-based constitutive equation with convective constraint release
(CCR) developed previously by Marrucci and Ianniruberto [80]. Using a
linear expansion approach on this simple constitutive equation allows the
derivation of analytical expressions for the superposition moduli, nonlinear
analogues of the storage and loss moduli for linear viscoelasticity. These
expressions can then be compared with the data.

In comparing with the experimental data by Wang and co-workers, we
observed that the effect of shear flow is more drastic on the storage modulus
than in the loss modulus, where the only effect of flow on the latter is near
the terminal regime. This has also been observed previously by Somma
and co-workers in polydisperse melts. However, the real novelty of doing
the experiments in monodisperse systems, is the observation of the dynamic
crossover of the superposition moduli which is effectively shifted in flow
[43, 44]. Measure data on this shifting, as reported by Wang and co-workers,
empirically follows the trend 1/τeff ∼ 5γ̇ where τeff is the reciprocal of the
frequency where the crossover occurs.

Model agreement with the measurements is quite reasonable given the
simplicity of the approach but only up to intermediate rates. Predictions
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were also observed to be largely independent of the choice for β, which
governs the effectiveness of CCR in the model. The former point is important
as chain stretching could be a crucial effect at larger flow rates, close to the
inverse of the Rouse time for the system. The latter point is important as
well as it invalidates the previous claim of Wang and co-workers that the
observed shifting of the relaxation time is due to CCR.

Indeed, while CCR is an attractive candidate for rationalizing the exper-
iments, such a view is oversimplified given that the choice of β = 0 in the
present model can still reasonably capture, to some extent, this crossover
behavior. Hence, we contend that the observed shifting of the superposition
moduli and the dynamic crossover is due simply to orientation of the melt
in flow and not due to CCR. At large rates, stretch could be important
and, indeed, it could be this combination of stretch and orientation which
governs the data in such rates. However we posit that disentanglement in
flow by CCR or related ideas remain less valid as molecular mechanisms for
rationalizing these data from superposition experiments.
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Chapter 4

Simple Tube Models for
Nonlinear Rheology with
Monomer Friction Reduction

4.1 Introduction

Recent improvements of rheological methods enable the examination of tube
model predictions for nonlinear viscoelasticity. For the case of extensional
flows, advances in filament stretching rheometry generated reliable though
somewhat controversial data on both the start-up and steady response of
entangled linear polystyrene (PS) solutions [127, 128] and melts [129, 130]
with narrow molecular weight distribution.

Contrary to expectations from tube models with chain stretch [66, 71,
72, 73], the data sets show qualitatively different behavior for solutions and
melts. Sridhar and co-workers measured the extensional viscosity ηel of
concentrated PS solutions using this filament stretching technique. Their
data showed a clear upturn for rates larger than the inverse Rouse time
(τR) of the polymer [127, 128]. Meanwhile, measurements by Hassager and
co-workers on PS melts showed no evidence of this upturn [129]. They also
found that for rates between the inverse disengagement time (τD) and the
inverse Rouse time (τR) where orientational relaxation is effectively frozen
that ηel for the PS melts showed a scaling with the elongational rate ε̇
with the power of –1/2 rather than –1 as expected from tube models [129].
Extensional measurements on similar PS melts using a different technique
also confirm this behavior [131]. These remarkable findings have lead some
to question if there are fundamental rheological differences between melts
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and solutions which are expected to behave similarly [32, 33].
Considering this data set on monodisperse PS melts, Marrucci and Ian-

niruberto proposed the interchain/intertube pressure effect (ICP) as an ad-
ditional relaxation mechanism for tube models to remove the discrepancy
between the model and experiments [132]. The model predicts the observed
–1/2 scaling of the extensional viscosity with the extensional rate and intro-
duces another characteristic time, the tube diameter relaxation time (τA).
The inclusion of this effect on a tube-based constitutive model, such as the
molecular stress function (MSF) model, as done by Wagner and co-workers
allowed a satisfactory description of the PS melt data [133]. However, one
shortcoming of this idea was revealed when extensional data on bidisperse
PS melts emerged, again from filament stretching [130]. This new data
set could still be reasonably described by tube-based models including the
tube pressure effect but not without seemingly arbitrary adjustments of τA
[134, 135]. The other shortcoming, which is possibly more significant, is that
it fails to distinguish between the different behavior of melts and solutions.
To put it in another way, it is still unclear why the tube pressure effect is
needed in modeling the data for melts but not for solutions.

Recently, an alternative explanation has emerged also from the original
proponents of the ICP [47] based on the idea of flow-induced monomeric fric-
tion reduction (MFR). This effect has a long history in rheology [136, 137]
but has not been considered within the framework the tube model. The
proponents argue that the assumption of a constant monomeric friction (ζ),
i.e. its value remaining close to its value at equilibrium (ζ0), is valid only
when the flow is not strong enough to change the molecular environment
of a monomer (in this case, a Kuhn segment). In the context of entangled
polymers, this is the case for polymer melts in flows faster than the orienta-
tion relaxation/disengagement time (τD) but slower than the stretch relax-
ation/Rouse time (τR). In this case, the chain structure at the length scale
of a Kuhn segment remains isotropic and it is only the global chain structure
that is perturbed. However, for flows faster than the stretch relaxation time,
the environment at the scale of a Kuhn segment no longer remains isotropic
as the segments start aligning. Hence, there could be some deviation of
the monomeric friction from its equilibrium value. In polymer solutions,
where the environment of the subchain consists of solvent molecules which
remain isotropic even at fast flows, this monomeric friction reduction should
be absent and ζ remains at the equilibrium value.

Yaoita and co-workers [98, 99] explore this idea further by extracting the
reduction from stress relaxation data of a monodisperse PS melt [138]. Then,
they included this friction reduction effect in slip-link simulations of entan-
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gled polymers under elongation, yielding predictions in semi-quantitative
agreement with the data on monodisperse PS solutions [127] and melts [129].
In a later paper, Ianniruberto and co-workers extract the dependence of
the monomeric friction with a sufficiently defined order parameter (S) from
stress-optical data on monodisperse PS melts [131]. The mathematical form
of this behavior was also confirmed by conducting non-equilibrium molecular
dynamics (NEMD) simulations on PS oligomers in fast shear flows [85].

In this work, we show that the inclusion of monomeric friction reduction
in simple tube-based constitutive models allows reasonable description of
the elongational rheology data on monodisperse PS melts and solutions [127,
129, 130], similar to what has been shown by Yaoita and co-workers, albeit
using more detailed slip-link simulations in their case [98, 99]. Further, using
the same modeling approach, we also fit data on nonlinear shear flows of PS
melts [51, 139]. Finally, to further validate the model, we consider data on
the stress relaxation of a PS melt after cessation of flow from the work of
Nielsen and co-workers [138].

This chapter is organized as follows. In the section on theory, we dis-
cuss the modeling approach based on the simple tube-based constitutive
equations that will be used and the description of the order parameter de-
pendence of the monomeric friction presented in previous papers [85, 99].
Then, we compare the resulting predictions of the models with the corre-
sponding data on solutions and melts. These will be discussed in light of the
underlying molecular theory. Some final remarks and an outlook on future
work constitute the last part of the chapter.

4.2 Model Description

4.2.1 Constitutive Equations based on Tube Theory

To predict the nonlinear rheology for the entangled systems, we use two
simple tube-based constitutive models: the Mead-Larson-Doi (MLD) model
[71], which has an integral equation for the orientation, and the differential
approximation by Ianniruberto and Marrucci (IM) [72, 79].

Mead-Larson-Doi Model The MLD model considers the effects of chain
retraction [5, 6], chain stretch [66, 67] and convective constraint release
(CCR) [45, 46] on the stress in fast flows. The model is formulated by
assuming a decoupling of stretch (denoted by the scalar quantity λ) with
orientation (represented by the tensor S) [71]. It is composed of a general
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expression for the stress σ in terms of λ and S and their corresponding
evolution equations shown here

σ =
15

4
G0
Nλ

2S (4.1)

S(t) =

∫ t

−∞
dt′

∂P (t, t′)

∂t
Q
[
E(t, t′)

]
(4.2)

∂P (t, t′)

∂t
= −

[
1

τD
+ β

(
κ: S− λ̇

λ

)]
P (4.3)

λ̇ = λκ: S−

[
1

τR
+ β

(
κ: S− λ̇

λ

)]
(λ− 1) (4.4)

In (4.2), P (t) is the fraction of tube segments that remain oriented at
time t, the tensor Q[E(t, t′)] is the classic Doi-Edwards tensor [1, 5, 6] while
the tensor κ in (4.3) and (4.4) is the deformation gradient tensor.

Note that the expressions for Q[E(t, t′)] in elongation and shear given in
the original Doi-Edwards papers [5, 6] are obtained by invoking the indepen-
dent alignment approximation (IAA). For expressions for Q[E(t, t′)] without
the IAA, we use the expression reported by Marrucci and de Cindio [140]
for the case of extensional flows. Note that this choice for Q also affects the
prefactor in the stress expression (4.1) which is 5 for the case invoking IAA
and 15/4 without IAA.

The time constants τD and τR correspond to the disengagement time
and the Rouse time respectively. The former governs orientational dynamics,
given by equations (4.2) and (4.3), while the latter governs stretch dynamics,
given by equation (4.4). Both are constants for a given material. Hence,
the only parameter in the model is β, which regulates the effectiveness of
CCR as a relaxation mechanism. In the original MLD paper [71], this is
assumed to be 0.5 in (4.4) while replaced by a switch function in (4.3). Note
that since β appears in both orientation and stretch equations, CCR in this
model is assumed to affect both dynamics.

It should be mentioned that equation (4.3) is different from the original
evolution equation for P (t) owing to some simplifications assumed here.
Other than the replacement of the switch function by β, the orientation
relaxation time in (4.3) is simply τD while this is given by λ2τD in the
original model [71]. Here, we assume that stretch has no effect on increasing
this relaxation time.
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The above set of equations can also be extended to a multimode version
which should be used when dealing with real polymer systems which exhibit
a spectrum of relaxation times. In such an approach, one considers several
modes for orientational relaxation (each represented by an orientation tensor
Si) while only considering, for convenience, a single mode for the stretch.
When also considering finite-extensibility, which is important in extensional
flows at very large rates, the stress expression (4.1) then becomes

σ =
15

4
f(λ)λ2

∑
i

GiSi (4.5)

where f(λ) is the finite-extensibility factor to be defined later and Gi is
the weight of each orientation tensor Si. Each mode for the orientation will
obey the following equation, equivalent to (4.2)

Si(t) =

∫ t

−∞
dt′

∂Pi(t, t
′)

∂t
Q
[
E(t, t′)

]
(4.6)

where the quantity Pi obeys an equation analogous to (4.3), as with the
stretch λ to (4.4).

∂Pi(t, t
′)

∂t
= −

[
1

τi
+ β

(
κ : S− λ̇

λ

)]
Pi (4.7)

λ̇ = λκ : S−

[
1

τR
+ β

(
κ : S− λ̇

λ

)]
(f(λ)λ− feq) (4.8)

Notce that an additional orientation tensor S, here referred to as the
average orientation tensor, appears in the term containing β in both (4.7)
and (4.8). This means that the acceleration of relaxation brought about by
CCR applies only on the global or average orientational relaxation and not
on the relaxation of each mode. This tensor evolves following (4.6) similar
to a “regular” orientation tensor for a relaxation mode but with a relaxation
time defined as the average relaxation time τ as follows.

τ =

∑
iGiτ

2
i∑

iGiτi
(4.9)

Finally, there is the finite-extensibility factor f(λ) that accounts for the
departure of the entropic force from Gaussian behavior due to the finite
number of monomers in the chain segments. This correction imposes a limit

95



on the stretching of the chains (λmax) and is defined in terms of the inverse
Langevin function L−1 as follows.

f(λ) =
a

3λb
L−1(

λb

a
) (4.10)

This factor enters both the stretch equation (4.8) as well as the final
expression for the stress (4.5).

Ianniruberto-Marrucci Model Owing to the difficulty of using integral
models in some situations, we consider a differential approximation to the
evolution of the orientation tensor such as that presented by Ianniruberto
and Marrucci (IM) [72, 79].

Still assuming a decoupled representation of stretch and orientation and
including finite-extensibility, the stress can be written as follows.

σ = 6f(λ)λ2
∑
i

GiSi (4.11)

Here, λ obeys equation (4.8) as in the MLD model while Si obeys the
following differential equation.

Si · Ṡi + Ṡi · Si = κ · S2
i + S2

i · κT − 2S2
i κ : Si −

2

τi
Si ·

(
Si −

1

3
I

)
(4.12)

Note that τi in this model corresponds to the effective characteristic
time, as affected by CCR, and not the actual characteristic time for each
mode τ0,i, and is defined as follows

1

τi
=

1

τ0,i
+ β

(
κ : S− λ̇

λ

)
(4.13)

where S is again the average orientation tensor characterized by the
average relaxation time τ , defined by eq. (4.9) and discussed in the previous
section. This tensor also evolves using equation (4.12)

It should also be mentioned that equation (4.12) was derived based on
the assumption of a strain measure Q̃ different from the Doi-Edwards Q-
tensor. This new tensor is defined as

Q̃ =
C−1/2

Tr(C−1/2)
(4.14)
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where C is the Finger tensor. This strain measure was proposed by
Marrucci and co-workers based on arguments on local force balance in the
entanglements [109, 141]. This choice also introduces the prefactor 6 in
the stress expression (4.11), different from the prefactor in the previous
expression (but giving rise to the same stress in the linear limit).

In the succeeding sections, we use both the MLD and IM equations in
predicting the steady-state elongational viscosity for the PS melts in con-
sideration but only the IM equation for building the start-up response for
elongation, shear and stress relaxation as well as in modeling PS solutions.

4.2.2 Order Parameter-Dependence of the Monomeric Fric-
tion

As mentioned in the introduction, Ianniruberto and co-workers propose that
monomeric friction reduction (MFR) occurs when there is change in the
environment of the monomer from isotropic to anisotropic, i.e. when other
monomers start to align. In the framework of the tube model, this would oc-
cur when the chain is both oriented and stretched significantly. Orientation
corresponds to the alignment of tube segments while stretch corresponds to
alignment of subchain segments in scales lower than that of a tube segment.
Both are required to generate an anisotropic environment for the monomer.

In other forms of soft matter such as liquid crystals, alignment is typically
described by an order parameter [1]. In the context of the tube model, it is
clear that the order parameter should be expressed in terms of both stretch
(λ) and orientation (S) as these are the main dynamical variables. Following
Yaoita and co-workers [99], we define this order parameter, S, as follows

S = λ̃2S (4.15)

where λ̃ is the normalized stretch given by the ratio λ/λmax while S is
the orientational anisotropy of the components. For solutions, this is given
by φPSP where φP is the polymer volume fraction while this is simply by SP
for melts (since the φP = 1). SP can then be obtained from the eigenvalues
of the orientation tensor, uu = RR/R0

2, where R is the chain end-to-end
vector. For elongational flows, this is

SP = u2
x − u2

y (4.16)

where x and y denote the components parallel and perpendicular to the
stretching direction. For shear flows, this is
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SP =
√

(u2
x − u2

y)
2 + 4(uxuy)2 (4.17)

where x and y are the shear and gradient directions.
Given the order parameter S, one then needs the dependence of the

monomeric friction ζ on this quantity for incorporation in molecular mod-
els. This has been obtained from assumed rheological signatures of MFR in
previous work: the acceleration of stress relaxation after cessation of elonga-
tional flow in entangled PS melts [138] in the paper of Yaoita et al. [99] and
the departure from the stress-optic law during the elongation of PS melts
[131] in the work of Ianniruberto and co-workers [85]. Following certain as-
sumptions, the latter analysis yields the following power law dependence of
ζ with S after a minimum value S = 0.063 has been reached, before which
the value of ζ is the same as in equilibrium.

ζ

ζ0
= 0.0097S−1.64 (4.18)

This form is simpler than the expression obtained by Yaoita et al. and
predicts a steeper dependence of the monomer friction reduction with the
order parameter [85]. This mathematical form has also been confirmed
by atomistic simulations conducted by Ianniruberto and co-workers on PS
oligomers in nonlinear shear [85] which seems to give an even steeper de-
pendence that approaches this power law (4.18) for longer oligomers. The
stress-relaxation data used by Yaoita et al. [99] also suffers from poor-
resolution of the small-timescale behavior which results in the underpredic-
tion of the friction reduction [85]. Hence, we choose to include this version
of the monomer friction in the tube models which is done by modifying all
the characteristic times in the model as follows

τ

τ0
=

ζ

ζ0
(4.19)

where τ is an effective or shifted characteristic time due to MFR from
its equilibrium value τ0. This corresponds to an effective acceleration of all
physical relaxation processes due to the reduction of the basic monomeric
friction.

Note that our present treatment of this effect assumes an isotropic re-
duction in the basic monomer friction in all the relaxation processes. In
reality, the change in monomer diffusivity (or monomer friction) is in fact
anisotropic, as seen in atomistic simulations [85]. Indeed, the physics of this
new effect we are introducing is much more complicated than what is given
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Table 4.1: Material parameters for PS melts considered

Mw PDI τR τD Tref Data Source
[kg/mol] [s] [s] [K]

50k 51.7 1.03 6.4 5.0 403 [130]
100k 102.8 1.02 22.9 94 403 [130]
200k 200 1.04 91.5 961 403 [129]
390k 390 1.06 329 11351 403 [129]
145k 145 1.03 1160.58 14000 393 [138]
200k 200 1.06 0.091 1.33 448 [139]
182k 182.1 1.03 0.0423 0.21 453 [51]

Table 4.2: Material parameters for PS solutions considered

Mw PDI c τR τD Z Tref Source
[Mg/mol] [wt. %] [s] [s] [K]

7.35% 3.9M 3.9 1.05 7.35% 0.27 1.20 14.8 294 [127]
10% 3.9M 3.9 1.05 10.0% 0.28 4.10 27.4 294 [127]

here in our current treatment. However, as a first attempt to introduce this
modification, we restrict our attention to the isotropic modification of the
relaxation processes. The modifications used in the slip-link simulations of
Yaoita et al. followed a simialr spirit [99].

In the following section, we present the results of including this effect in
the tube-based constitutive equations discussed in the previous section.

4.3 Results and Discussion

4.3.1 Linear Viscoelasticity and Material Parameters

We report the material parameters for the various PS melts and solutions
considered in tables 4.1 and 4.2 respectively. The molecular weight, polydis-
persity and reference temperatures for the experiment done are taken from
the corresponding papers while the relaxation times reported here deserve
further comment.

The terminal relaxation time τD can be obtained directly from linear
viscoelasticity and it corresponds to the reciprocal of the frequency in the
first cross-over point of G′ and G′′ [113]. Meanwhile, the Rouse time τR
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cannot be obtained directly from the linear viscoelastic spectrum and must
be determined through other means. In some cases, previous estimates
for τR are available in literature – e.g. the series of PS melts 50k-390k
as reported by Wagner et al. [133]. For the other melts, the method for
calculating τR presented by Ianniruberto and Marrucci [142] based on the
classical formula by Osaki et al. [57] is applied. The approach is to take
as reference the estimated τR for the shortest PS melt (PS50k) as reported
by Wagner et al. [133] and scale it for the other longer PS melts in terms
of the molar mass (τR ∼M2). Since the τR calculated by Ianniruberto and
Marruci are based on PS melts at 403K, these values must then be shifted to
the corresponding temperature by standard time-temperature superposition
(TTS). This involves shift factors calculated using the WLF equation [113]
whose constants are reported in the published sources for the data mentioned
above.

Note that the scaling relationship τD ≈ 3ZτR commonly used to approx-
imate τR is only accurate if one has the reptation time τrept and not simply
τD since the latter is due to reptation accelerated by tube length fluctuations
[59]. A reasonable estimate for τR using τD should then account for these
fluctuations as done, for example, by Bhattacharjee et al [128].

To compare with theoretical models, the linear viscoleastic (LVE) spectra
reported for the melts must also be fitted by a discrete number of relaxation
modes i, each with a characteristic time τ0,i and a fractional modulus Gi.
This fitting has been done by Wagner and co-workers for the series of PS
50k-390k melts in extension and 200k melt in shear and spectra are reported
in their papers [133, 143]. For the other melts, this fitting was done using the
open-source software Reptate1 a sample result of which was shown earlier
in fig. 1.7. The linear viscoelastic spectra used for modeling all these melts
and solutions are given in Appendix A.

4.3.2 Elongational Flows of Monodisperse PS Melts

Figures 4.1 and 4.2 show data and calculations for the steady-state exten-
sional viscosity for the PS melts in filament-stretching experiments [129,
130]. As discussed previously, this data set has been modeled previously us-
ing tube-based approaches modified to account for the tube pressure effect
[133, 135]. Here, it is our task to show that the same agreement with theory
could be achieved, within the framework of our simple model, by invoking

1Reptate: Rheology of Entangled Polymers: Toolkit for Analysis of Theory and
Experiment - developed by Jorge Ramirez and Alexei Likhtman. Available online at
http://reptate.com
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Figure 4.1: Steady-State Extensional Viscosity Data for PS Melts and Cal-
culations using the Mead-Larson-Doi Model

monomeric friction reduction (MFR) [47, 85, 99].
Fig. 4.1 corresponds to calculations done using the Mead-Larson-Doi

model without CCR (β = 0) and with CCR (β = 0.5). The latter value is
chosen in correspondence with the original MLD paper where it is set to 0.5.
Notice that while both curves follow the general trend of the data, there is
good agreement only for low rates for all polymers and the model predictions
start deviating once stretch begins to enter - i.e. when ε̇ ∼ 1/τR. Once
significant stretching occurs, the monomer friction reduction effect takes
over and effectively reduces the stress. This is more prominent for the lower
molecular weight melts (PS100k and 50k) which show a slight kink in the
plot. The model also has better agreement for the higher molecular weight
melts which is somewhat expected given the stretch-orientation decoupling
invoked in the formulation of the model. This decoupling could be too
severe especially for the lower molecular weight melts since the timescales
for stretch and orientation in those cases are not as well separated. This is
not unique to the simple model, here presented, but also manifests in more
detailed approaches such as in the work of van Ruymbeke et al. [135] which
invokes the same decoupling.

Fig. 4.2 corresponds to calculations done using the Ianniruberto-Marrucci
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Figure 4.2: Steady-State Extensional Viscosity Data for PS Melts and Cal-
culations using the Ianniruberto-Marrucci Model

model again without CCR (β = 0) and with CCR (β = 0.5), where the latter
value of β is chosen to match the previous model. The model, which uses a
differential approximation to the evolution of the orientation tensor, seems
better at describing the data quantiatively, especially for the larger molecu-
lar weight melts (PS200k and 390k). Again, we rationalize this discrepancy
between short and long chain melts by the stretch-orientation decoupling
invoked. It is also observed that model predictions with CCR (β = 0.5)
are slightly worse than those without CCR (β = 0) though still following
the general trend of the data as shown in calculations from both models.
This could indicate that CCR is a less important mechanism for this case of
steady extensional flows. Similar observations regarding this effect of CCR
has also been reported by Dhole and co-workers in their development of a
differential tube model in an attempt to model the same data on PS melts
[144] although by invoking the tube pressure idea [132] in this case. They
report that the inclusion of CCR in their model spoils agreement with the
data.

We also present the model predictions of the transient response of the
higher molecular weight melts, PS200k and PS390k in figs. 4.3 and 4.4.
From these figures, one could see that the general trend of the transient
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Figure 4.3: Start-up of Extensional Flow Data and Calculations for the
PS200k Melt using the Ianniruberto-Marrucci Model

response can be captured by the model. As expected from the results for the
steady-state calculations, the IM model can describe the transient response
well. The effect of CCR is minor on the start-up behavior and the choice
of parameter only affects the steady-value, which for both PS 200k and
390k melts often lie in between the curves corresponding to β = 0 and
β = 0.5. Note also that the theoretical curves do not exactly match the
growth of the start-up data as the increase to steady-state is slightly faster
for the theoretical predictions. This, however, is due to some artefact in the
measurement at the short-time behavior as the slope of the data does not
exactly match the expected slope for a solid-like response (also given by the
linear viscoelastic envelope).

The key result here in this section is that the inclusion of the MFR in
tube models allows reasonable fitting of the extensional viscosity data for
monodisperse PS melts. To gain further insight on the MFR mechanism
in the model, it is useful to look at the behavior of the stretch λ and the
monomeric friction ζ in transient and steady-state situations. Their steady-
state values for the different PS melts considered are showed in fig. 4.5.

Figure 4.5 shows that the steady state values for λ and ζ/ζ0 for all PS
melts collapse into curves that depend only the value of β for the calcula-
tion except for the values corresponding to PS50k, pointing to a generally
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Figure 4.4: Start-up of Extensional Flow Data and Calculations for the
PS390k Melt using the Ianniruberto-Marrucci Model

molecular weight independent mechanism. The exclusion of PS50k is not
unusual since the melt is only mildly-entangled (Z ≈ 3− 4) and there is no
real separation of the time scales for stretch and orientation (i.e. τR ≈ τD)
so the model is not expected to perform well. The figure also shows that
the critical Weissenberg number to trigger chain stretching is slightly lower
than the one needed to trigger the monomer friction reduction. This is con-
sistent with the order-parameter dependence of ζ/ζ0 since a minimum order
and succeedingly a minimum stretch (assuming that orientation has fully
occured) is required to activate the reduction. The presence (or absence) of
CCR in the model, given by the selected β value, also plays an important
role in the MFR mechanism since CCR affects stretch relaxation. It allows
the relaxation of a part of the stretch giving rise to lower stretch values given
an applied rate. In turn, the amount of stretch in the system determines
the reduction of ζ.

Figures 4.6 and 4.7 show the behavior of λ and ζ in the start-up of
extensional flow for PS200k and 390k respectively. First, note that the
departure of λ from 1 is observed to occur at at an earlier time than the
deviation of ζ from ζ0. This stretching is responsible for the upturn of
the transient viscosity from the linear viscoelastic envelope. Once a certain
critical stretch of ≈ 1.4 is reached (orientation is assumed to have occured
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Figure 4.5: Steady-state values of the stretch λ (solid symbols) and the
monomer friction reduction coefficient ζ/ζ0 (open symbols) as a function
of the Rouse time Weissenberg number (Wi = ε̇τR) for PS390k (circles),
PS200k (triangles), PS100k (squares) and PS50k (diamonds)
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Figure 4.6: Behavior of the stretch λ and monomer friction reduction coef-
ficient ζ/ζ0 (open symbols) during start-up of extensional flow for PS200k
for ε̇ = 0.3s−1 and 0.03s−1 (left to right) and β = 0.5 using the IM model

Figure 4.7: Behavior of the stretch λ and monomer friction reduction coef-
ficient ζ/ζ0 (open symbols) during start-up of extensional flow for PS390k
for ε̇ = 0.1s−1 and 0.01s−1 (left to right) and β = 0 using the IM model
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Figure 4.8: Transient shear viscosity during start-up of shear flow for the
PS200k melt and calculations using the modified Ianniruberto-Marrucci
model for rates 1s−1, 3s−1, 10s−1, 30s−1

fully), the MFR mechanism is triggered and ζ decreases in value until it
reaches a steady-state along with λ and η+. This value is also observed to
be invariant with β as expected.

As mentioned earlier, the main result in this section is the reasonable
agreement of predictions from simple tube models modified to incorporate
monomeric friction reduction with experimental data on PS melts in exten-
sion. In the succeeding sections, we confront data on PS melts in other types
of flow (shear, stress relaxation) to further validate this approach.

4.3.3 Shear Flows of Monodisperse PS Melts

We report the results of model predictions for shear flows in figs. 4.8, 4.9,
4.10 and 4.11. The data used for comparison are from the experiments of
Schweizer et al. [139] and Snijkers and Vlassopoulos [51]. Both experiments
use a cone-partitioned-plate fixture to minimize the effects of edge fracture
that may occur in melts at large shear rates. We expect that the monomeric
friction reduction mechanism included in the model is less important here
since the subchains are often not stretched strongly in shear as opposed to
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Figure 4.9: First normal stress difference coefficient in start-up of shear
flow for the PS200k melt and calculations using the modified Ianniruberto-
Marrucci model for rates 1s−1, 3s−1, 10s−1, 30s−1

Figure 4.10: Second normal stress difference coefficient in start-up of shear
flow for the PS200k melt and calculations using the modified Ianiruberto-
Marrucci model for rates 1s−1, 3s−1, 10s−1, 30s−1
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the case in elongation. However, the model with this untriggered mechanism
should still be able to reasonably describe shear data.

Fig. 4.8 shows the shear viscosity growth data for start-up of shear
flow obtained by Schweizer et al. [139]. This data for PS200k shows some
problems in the measurement at short time as the data falls far under the
theoretical prediction. Similarly, there is further decrease in the viscosity
at long time. Hence, the only real useful comparison with the data should
be made in intermediate times. Model agreement here is best at low rates
while the discrepancy increases as one goes to higher rates possibly due to
an overestimation of the stretch since the model only uses a single mode for
the stretch, while a distribution of stretch seems to be closer to reality.

Predictions for the coefficient of the first- and second-normal stress dif-
ferences are in figs. 4.9 and 4.10 respectively. There is similar agreement
with the data at intermediate times and especially at the lower rates. In all
predictions, the choice of β only has a minor effect on the steady shear vis-
cosity though it clearly affects the height of the transient overshoot observed
in the η+, Ψ1 and −Ψ2 calculated.

Fig. 4.11 shows a comparison with the data on a PS182k melt from
the experiments by Snijkers and Vlassopoulos [51]. This data set shows
shear viscosity measurements for a wider range of shear rates. The mea-
sured values are generally consistent with theoretical predictions from low
to intermediate rates while some discrepancies can be observed for the two
largest rates. This discrepancy could be attributed to an overestimation of
the stretch, as mentioned earlier. The choice of β also has a very small
effect on the steady value of the viscosity though there is a stronger effect
in modulating the height of the overshoots. These overshoots are normally
attributed to transient chain stretching which can then be relaxed by CCR,
if included in the model [67]. Both effects are amplified at larger rates since
CCR becomes more active for more modes, while it is less active for the fast
modes at low rates.

We also show flow curves corresponding to the steady values reported
in the start-up curve, fig. 4.11, in figures 4.12 and 4.13, cast in viscosity
and stress forms respectively. Fig. 4.12 shows the shear thinning behavior
typical of entangled liquids as well as correspondence of the data with the
flow curve calculated using the modified constitutive equation presented here
except at the two largest rates. The data also seems to validate the empirical
Cox-Merz rule [46] which relates the steady shear viscosity in flow conditions
to the dynamic viscosity η(ω) from linear viscoelasticity.

In the stress version of the flow curve, fig. 4.13, we observe that the
growth of the stress is purely monotonic and matches well with the theoret-
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Figure 4.11: Transient shear viscosity during start-up of shear flow for the
PS182k melt and calculations using the modified IM model for rates 0.10s−1,
1.78s−1, 3.16s−1, 5.62s−1, 10.0s−1, 17.8s−1, 31.6s−1, 56.2s−1 and 70.0s−1
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Figure 4.12: Steady shear viscosity for the PS182k melt as a function of
disengagement time Weissenberg number (γ̇τD) and calculations using the
modified IM model. The solid curve shows the dynamic viscosity obtain
from linear viscoelasticity.

ical predictions for both β = 0 and β = 0.5 except for the two largest rates.
These two rates show deviation from the earlier figure and are probably a
signature of some artefacts in the measurement. It is possible that these
rates are close to the limit of validity for this fixture. Since the flow curve
is plotted in terms of the Weissenberg number defined based on the Rouse
time (γ̇τR), it can be seen that this deviation starts with the onset of chain
stretching, also predicted by the theory.

Note that Snijkers and Vlassopoulos reported that the rates they ex-
plored are below the onset of stretching based on the Rouse time they esti-
mated using the relationship τD ≈ 3ZτR from the disengagement time τD.
As discussed in section 4.3.1, this estimate is somehow inaccurate since τD
is not equal to the reptation time since it is smaller due to tube length fluc-
tuations and it is the reptation time that scales with the Rouse time via the
factor 3Z. Our estimate of the Rouse time based on a rescaling of the calcu-
lations of Ianniruberto and Marrucci [142] obtained by integrating the total
drag force along the contour of the polymer is probably a better estimate.
Based on this value, the last two rates already access the stretching regime.

The monotonic behavior of the steady stress as a function of the shear
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Figure 4.13: Steady shear stress for the PS182k melt as a function of the
Rouse time Weissenberg number (γ̇τR) and calculations using the modified
IM model.

rate for the value β = 0 may seem peculiar and deserves some comment.
In single mode calculations, the expected behavior for the steady stress if
taking β = 0 is non-monotonic as shown in fig. 1.10 and manifests the
instability predicted by Doi and Edwards [7]. However, when considering a
spectrum of relaxation times, as in this case, this non-monotonicity could
be smeared out by summing over all the modes giving rise to a monotonic
curve as shown here. Similarly, the fact that chain stretch is included in the
model would mean that the stress would continue on increasing well above
WiR ≈ 1. Note that in this regime of large rates, the inclusion of CCR
starts to matter since CCR also operates in stretch relaxation and not just
in orientational relaxation. This gives rise to a lower predicted steady stress
value for larger values of the CCR parameter. However, this regime is only
barely accessed by the data so no further comments can be given.

Finally, the stretch in these shear cases considered do not get larger than
the critical value λcrit required to activate the monomeric friction reduction
mechanism in general. The notable exception is for the two fastest rates
in PS182k γ̇ = 56.2s−1, 70.0s−1 though the reduction here is only transient
and the equilibrium value of ζ is recovered at the steady-state. This is shown
in fig. 4.14.
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Figure 4.14: Transient stretch (λ) and monomer friction reduction (ζ/ζ0)
for the PS182k melt calculated using the modified IM model for rates =
56.2s−1 (red) and 70.0s−1 (black).

4.3.4 Stress Relaxation After Cessation Flow of Monodis-
perse PS Melts

We also consider the data from the experiments of Nielsen and co-workers on
stress relaxation after cessation of elongational flow [138] on a PS145k melt.
This data set shows accelerated stress relaxation for melts that experienced
larger elongational rates. Yaoita and co-workers use this in obtaining the
order parameter-dependence of the monomeric friction and also fit the same
data using slip-link simulations [99].

In figure 4.15, we compare model predictions from the Ianniruberto-
Marrucci differential equation modified to include MFR with the experi-
mental data [138]. Model predictions use β = 0 and β = 0.5 for the CCR
parameter. The choice β = 0 seems to more consistent with steady and
transient elongational viscosities for the melts considered so far, in section
4.3.2. This is verified in fig. 4.15 for the start-up part where the model
agreement with the data is better for β = 0 (except for ε̇ = 0.0003). In
the start-up part, the choice β = 0.5 seems to underestimate the final stress
level.

However, for the stress relaxation part, model agreement is generally
better for β = 0.5 possibly because of this underestimation since the initial
stress before the decay is smaller than the initial stress for the data. For β =
0 where the stress starts at a value comparable to the data, the theoretical
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Figure 4.15: Start-up and relaxation viscosities for the PS145k melt for rates
ε̇ = 0.03, 0.01, 0.003, 0.001 and 0.0003 (left to right). Symbols are data from
Nielsen et al. while curves are predictions using the modified Ianniruberto-
Marrucci model.
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Figure 4.16: Stretch (λ) and monomer friction reduction coefficient
(ζ/ζ0) for the start-up and relaxation of the PS145k melt for rates ε̇ =
0.03, 0.01, 0.003, 0.001 and 0.0003 (left to right).

prediction is consisent only in the initial stage of the stress relaxation and
the deviation broadens at long time. In general, the viscosity η− is observed
to relax faster than this prediction.

We also analyze the start-up and stress relaxation processes in terms of
the stretch λ and the MFR coefficient ζ/ζ0 as shown in fig. 4.15. λ has an
equilibrium value of 1, increases up to a maximum value as the melt is ex-
tended and then relaxes back to 1 during cessation of flow. Conversely, ζ/ζ0

starts at 1 and starts to decrease when the stretch reaches the minimum
critical value and it then relaxes by increasing back to 1 upon cessation of
flow. Note that while the reduction is triggered at a later time (since a crit-
ical value of λ must be reached before reducing the friction), the relaxation
of both λ and ζ/ζ0 occur simultaneously during cessation of flow. However,
ζ/ζ0 reaches the equilibrium value of 1 before λ. This is true for all the rates
considered. The inclusion of CCR in the system, regulated by the value of
β, is also observed to accelerate the relaxation of ζ to its equilibrium value.
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Figure 4.17: Stretch (λ) and monomer friction reduction coefficient
(ζ/ζ0) for the start-up and relaxation of the PS145k melt for rates ε̇ =
0.03, 0.01, 0.003, 0.001 and 0.0003 (left to right).

To highlight the acceleration of the stress relaxation as a function of the
elongation rate ε̇ experienced by the melt before cessation flow, we isolate
and replot the relaxation part of the viscosity curve in fig. 4.17. Here, the
quantity presented is η−(t) normalized by its value upon cessation of flow
η−(0) versus time t. In this plot, we suppress the importance of the initial
values of the stress at the start of relaxation which, from fig. 4.15, do not
perfectly coincide for both data and predictions, particularly for β = 0.5.
Instead, the focus is on the general trend of the relaxation process which is
faster for the larger elongation rates, prior to cessation of flow. In general,
the data seems to confirm the behavior from theoretical predictions though
the calculations for β = 0.5, i.e. including CCR, seems to match the data
better since predictions without CCR only has agreement at early time. We
take this agreement as a validation of the modified constitutive equation we
have presented.

4.3.5 Elongational Flows of Monodisperse PS Solutions

Lastly, we show here that the same modeling approach can also be applied to
PS solutions. The data confronted here are on PS solutions with 7.35% and
10% concentrations of an high molecular weight PS from the experiments of
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Figure 4.18: Steady elongational viscosity as a function of the elongation
rate for the PS solutions. Solid and dashed curves are predictions using the
modified IM model. Two predictions are presented for the 10% solution with
the blue curves corresponding to τR = 0.28 and red curves corresponding to
τR = 0.46.

Sridhar and co-workers [127, 128]. Other details on the materials are given
in table 4.2. Here, we consider data on the steady elongational viscosity
for both solutions reported by Bhattacharjee et al. [127] and data on the
transient stress growth for the 10% solution reported in a subsequent paper
[128].

Figure 4.18 shows data for the steady-state elongational viscosity for
both solutions by Bhattacharjee and co-workers [127] as well as theoreti-
cal predictions from the modified Ianniruberto-Marrucci model. The black
curves are predictions for the 7.35% solution using τR = 0.27. This value
is obtained from the work of Yaoita and co-workers [98] where they exam-
ined the same solutions using slip-link simulations. The prediction using
this value for τR and using β = 0.5 seems to reasonably match the data
while the prediction using the same τR but without CCR, i.e. β = 0, is less
successful in capturing the data.

Yaoita et al. also report a value of τR = 0.46 for the 10% solution [98],
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Figure 4.19: Stretch (λ) as a function of Rouse time Weissenberg number
WiR = ε̇τR for both PS solutions.

corresponding to the red curves in fig. 4.18. The comparison with the red
curves with the data, shown by the blue symbols, is clearly less successful
compared to that for the 7.35% solution. We then considered an alternative
value of τR = 0.28 as reported by Bhattacharjee et al. in a subsequent paper
[128] and predictions for this value correspond to the blue curves in fig. 4.18.
The agreement with the data using this value of τR and β = 0.5 is more
reasonable. For β = 0, the prediction is again very different from the data
and the elongational viscosity minimum and upturn are overestimated.

From these results, two clear points are apparent. The first is the impor-
tance of the parameter choice for the calculations, particularly with respect
to the Rouse time τR. In particular, for the 7.35% solution, we obtained a
value for τR from detailed multi-chain slip-link solutions [98] which seems
to work in capturing the data, if one includes CCR. However, the value ob-
tained using the same simulations for the 10% solution seems less successful,
as shown by the red curves in fig. 4.18. The value for τR that did give a
reasonable prediction was from Bhattacharjee et al. [128] who compared
the data with predictions from the original Ianniruberto-Marrucci model
[72]. In their estimate, which was based on τD, they accounted for contour
length fluctuations using the theory of Milner-McLeish [75] to obtain a rep-
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tation time which is then related to 3ZτR. While reasonable, this estimate
is model-dependent as are all estimates for τR based on τD [127] and this
induces some uncertainty among other possible uncertainties reported pre-
viously by Osaki et al. [145] which could be as much as a factor 5. Note
that the two estimates here differ only by a factor of 1.63 which is not huge
though significant in drastically altering the model predictions.

The second point is regarding the importance of including CCR in the
model. In the previous sections, there is some uncertainty regarding this
when considering PS melts since the choice of β has a very mild effect on
model predictions in those cases with the choice of β = 0 seemingly more
successful in steady and start-up of extensional flow while the choice of
β = 0.5 seems to be preferred in the case of stress relaxation. Here, for the
case of PS solutions, the choice has a clear difference and the inclusion of
CCR in the model seems to be important in matching the data. A reason
for this is apparent when one considers the evolution of the stretch λ as a
function of the non-dimensionalized rate ε̇τR as shown in fig. 4.19.

Note that near the onset of chain stretching (WiR ≈ 1), the curves for
both solutions superimpose though they eventually differ at large rates due
to differences in the finite-extensibility factor. In general, the stretch values
explored in the extension of these solutions for Wi ≈ 1−10 are significantly
larger than the stretch values explored in the melts for similar rates. The
reduced stretching in melts is, of course, due to the MFR which suppresses
the stretching by effectively shifting the stretch relaxation time to lower
values via equation (4.19). This difference in stretch levels is significant in
the issue of CCR since CCR is a mechanism for stretch relaxation and its
inclusion in the model can reduce the predicted stretch, also apparent in fig.
4.19.

Returning to fig. 4.18, it is clear that calculations including CCR in
the model better match the measured data and this reflects the importance
of accounting for CCR in the model. The calculations here for the 10%
solution for both values of τR which does not include CCR has the feature
of having a large growth of the stretch, reflected in fig. 4.19. This induces
the triggering of MFR which causes the change in the slope of λ beyond a
certain WiR. It also manifests in the steady elongational viscosity as the
plateau or slight reduction of ηel. This feature is certainly not exhibited by
the elongational viscosity data and, hence, MFR occuring in the solutions
considered here probably does not occur. Certainly, the inclusion of CCR
in the model reduces this possibility (since the stretch may never reach the
critical value required to trigger MFR) and the corresponding predictions
match the data reasonably.

119



Figure 4.20: Stress growth curve for the 10% PS solution during the start-up
of extensional flow. The x-axis is the total deformation applied. Solid and
dashed curves are predictions using the modified IM model.
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Figure 4.21: Stretch (λ) predictions for the 10% PS solution from the mod-
ified IM model as a function of total deformation applied.

We also consider the transient stress growth curve for one of the solutions
(10% PS) [128], the data for which are presented in fig. 4.20 along with
theoretical predictions using the modified IM model for two values of the
CCR parameter β. Figure 4.20 clearly shows that the inclusion of CCR is
important in matching the data – calculations using β = 0.5 correspond to
the data reasonably while those using β = 0 deviate significantly particularly
at the largest rates. This is again rationalized by the role of CCR in stretch
relaxation. This is also apparent when one considers the stretch calculated
with the model with and without CCR, as in fig. 4.21.

Finally, we summarize the results for the extensional rheology of solu-
tions and melts by plotting the steady stress normalized by the plateau
modulus GN0 versus the nondimensionalized extensional rate for some of
the PS solutions and melts considered here in fig. 4.22. The solution data
for the steady stress clearly manifests an upturn or increase in slope for
Wi = ε̇τR ≈ 1 while the melt data for the steady stress continues increasing
without the upturn and this have lead some to question the fundamental
difference between melts and solutions [32]. Here, we developed the idea of
flow-induced monomeric friction reduction (MFR) for explaining this differ-
ence and we formulated a simple modeling approach that accounts for the

121



Figure 4.22: Normalized steady stress for PS solutions and melts as a func-
tion of their Rouse time Weissenberg number. Data are shown by open
symbols while theoretical predictions using the modified IM model using
β = 0.5 are solid curves.
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MFR. This approach can be applied successfully for both melts and solu-
tions and can reasonably capture the trend of both data sets as shown in fig.
4.22. This monomer friction behavior is not the only difference between the
two, as recently pointed out by Huang and co-workers [33]. The maximum-
extensibility (λmax) which is determined by the number of Kuhn segments
in each entanglement strand (Ne) is also obviously different for melts and
solutions with the latter having a lower maximum-extensibility. This differ-
ence is also included in our model since we incorporate finite-extensibility
effects.

It is important to note that this attempt to model both the data on
PS solutions [127, 128] and on PS melts [129, 130] is not the only one in
literature. Sridhar and co-workers have observed that the PS solutions data
are at least qualitatively consistent with tube models accounting for both
chain stretch and CCR as reported in their original papers [127, 128, 146].
Regarding the PS melts, as mentioned in the introduction, there are models
which invoke the idea of interchain/intertube pressure (ICP) [133, 134, 135]
that can capture the extensional data for the melts. The shortcoming of the
ICP approach, however, is that it does not distinguish between melts and
solutions and it is unclear why the ICP is essential only in melts. There has
also been no reported evidence (rheological or otherwise) corroborating the
idea of tube diameter changes in melts under nonlinear flows.

Recently, Kushwaha and Shaqfeh report results from slip-link simula-
tions done in planar extensional flow which they relate to the measured data
on PS melts [147]. They observed that the primary extensional viscosity in
their simulation exhibited the extensional thinning observed in experiments.
However, the scaling they obtained is ηel ∼ ε̇−0.66 which is somewhat steeper
than what was reported. More importantly, their conclusion is not without
reservation as the simulations were done in planar extensional flow and not
in uniaxial extension. Their simulation method is also derived from the slip-
link model of Masubuchi, et al [22, 91] which has been applied in uniaxial
extension [91, 98] but shows no extensional thinning.

Other than the work of Yaoita and co-workers on slip-link simulations
which invoked the monomeric friction reduction discussed here [98, 99] the
only other reasonable attempt to model the data on both melts and solutions
has been due to Park and co-workers [148]. They considered a configuration-
dependent friction coefficient in their stochastic simulations. This factor is
regulated by a parameter k and affects the relaxation time directly. Results
of their simulation are found to be in agreement with the experimental
data on monodisperse PS melts [129] and PS solutions [127] for the choice
k = 0.99 for both. In their model, this would correspond physically to
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some fully aligned state of the system. Their way for accounting for this
effect is, however, more heuristic and is regulated by the parameter k whose
molecular basis is not nkown. It is also not clear

The difference with their work and in what we present here, however,
is their more heuristic way of accounting for the effect which is based on a
parameter k whose molecular basis is not known. It is also not clear if their
simulations distinguish between melts and solutions since the same value for
k is used for both. In contrast, the approach here has a more solid physical
basis for the modification and the actual MFR effect was extracted directly
from data and confirmed by detailed simulations.

4.4 Conclusions

In this chapter, we confronted nonlinear rheology data on PS solutions
[127, 128] and melts [129, 130]. In extensional flow, the two systems behave
differently with solutions showing extensional thinning followed by an up-
turn in the elongational viscosity, consistent with current tube models, while
the melts showed continuous extensional thinning with no upturn. Here, we
explored the mechanism of flow-induced monomer friction reduction (MFR)
proposed and developed in previous work [47, 99, 85] by incorporating it in
simple tube-based constitutive equations – particularly the integral equa-
tion of Mead, Larson and Doi (MLD) [71] and the differential equation of
Ianniruberto and Marrucci (IM) [72, 79].

Predictions of both models compare well with the available data on PS
melts for both steady-state and transient. For the case of steady-state pre-
dictions, predictions from the IM model are better in fitting the data than
the MLD model particularly for the case of β = 0 corresponding to no CCR
in the system. Predictions with CCR β = 0.5 also capture the general trend
of the data though the fit is better for the calculations without CCR. The
same observation was also true for transient calculations.

To further validate the model, we also confront nonlinear shear rheology
data on PS melts [51, 139] and data agreement was found to be reason-
able though with some deviations are larger rates. This is possibly due to
an overestimation of the stretch. It was also shown that for the largest
rates considered that the MFR mechanism was triggered in transient due
to sufficient stretching. The equilibrium value of the friction was, however,
recovered at steady-state since the steady state stretch was not sufficiently
large.

We also confronted stress relaxation data after cessation of flow on a PS
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melt [138] and predictions are reasonable though the relaxation of the data
was observed to be faster than predicted at long times. We showed that the
triggering of stretch during start-up of flow precedes the triggering of the
monomer friction reduction, as expected from the observed dependence of
the friction with the order parameter. We also showed that the relaxation
of the monomer friction to its equilibrium value is faster than the relaxation
of stretch in the calculations.

Finally, we examined transient and steady-state extensional data on PS
solutions using the same approach. We find that for solutions the inclusion
of CCR in the model is crucial in obtaining the correct steady-state and
transient behavior shown by experimental data. This is reasonable since
there is significantly more stretching in solutions, than in melts, due to the
suppression of stretch by MFR for the latter. For the former, the inclusion of
CCR is important since it is a mechanism not just for orientational relaxation
but also for stretch relaxation.

The main result here is the development of a simple tube-based constitu-
tive equation that is able to simultaneously describe the data on melts and
solutions, as shown in fig. 4.22, using the same parameters. In this case,
the only parameter that does not depend on the molecular structure of the
melt is the CCR parameter β, the choice of value for which was observed to
be more important for solutions and less important in melts.

So far, our model has been applied for monodisperse systems in both
shear and extension. However, more stringent tests of the model and the
monomer friction reduction mechanism are present in literature, in the form
of bidisperse and polydisperse PS melts whose extensional data have been
reported in literature [33, 130]. The application of the model presented here
would require some modification to account for the varied molecular weight
distribution and would constitute future work. However, we anticipate that
the same physics of monomer friction reduction should be operative in the
case of bidisperse and polydisperse melts though this remains to be shown.
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Chapter 5

Conclusions

5.1 Summary

In this work, three problems concerning entangled polymers have been con-
fronted from the perspective of molecular models (tube models or slip-link
simulations).

First, the effect of entanglements on rubber elasticity was investigated
using slip-link simulations. This was based on previous work by Oberdisse
and co-workers [41, 42] who considered end-linked networks which have a
monodisperse distribution of elastic strand length between crosslinks. They
found that the stress-strain curves for those systems do not compare well
with predictions from the replica theory of Edwards and Vilgis [101]. The
latter theory gives rise to a constitutive equation that is known to describe
experiments well.

Here, we considered randomly-crosslinked networks using the Primitive
Chain Network (PCN) model of Masubuchi and co-workers [22, 104]. The
method of preparation for these networks is different and gives rise to a
broad distribution of elastic strand lengths between crosslinks. We observed
that the stress-strain curves obtained from the simulations can be fitted
reasonably by the theory of Edwards and Vilgis. Hence, it becomes puzzling
why there is disagreement of the simulation results with this theory only for
the end-linked case.

To eliminate the discrepancy, we considered two possibilities on modify-
ing the PCN model:

• Entanglement stripping at large deformations

• Strain-dependence of the tube potential, as proposed by Rubinstein
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and Panyukov [105]

These modifications were found to be effective in capturing the predicted
stress-strain behavior for the system though they suffer either from being
unphysical (as in the case of entanglement stripping) or not immediately
applicable (as in the case of the strain-dependent tube potential).

We also confronted the thermodynamic inconsistency of the model based
on ideas from Schieber [106, 107] and Greco [117]. We present a more
thermodynamically-consistent dynamic equation for the monomer exchange
across slip-links which we implemented the PCN simulations for randomly-
crosslinked networks. We found that it gives rise to slightly different strain-
softening behavior for the networks. However, as this only a small difference,
it is unlikely that introducing this correct sliding equation in the simulations
for end-linked systems will remove the previous discrepancy observed.

Second, data on parallel superposition flows of monodisperse solutions
by Wang and co-workers [43, 44] were confronted using a tube-based con-
stitutive equation. The approach followed the previous work of Somma and
co-workers [121] which was applied to polydisperse melts and verified that
the superposition storage modulus is more drastically affected by shear flow
than the superposition loss modulus. The effect of flow on the loss modulus
was observed to be only near the terminal region.

In confronting the monodisperse systems, a new feature that was absent
in polydisperse systems arose in the form of the dynamic crossover of the su-
perposition storage and loss moduli. This crossover would have a frequency
that is related to the effective relaxation time of the system. Wang and co-
workers observed that the reciprocal of this effective relaxation time scales
universally with 5γ̇ as shown by the data. They interpreted this scaling
using the idea of convective constraint release (CCR) proposed previously
by Marrucci [45] and incorporated in current tube models.

We found that confronting the data by Wang and co-workers using a
simple tube-based constitutive equation could allow validation or rejection
of this assertion. By doing a linear expansion on the constitutive equation,
expressions for the superposition moduli are obtained and compared directly
with experiments. Model agreement is satisfactory for low to intermediate
rates while some deviations are observed at larger rates possibly because the
model does not account for stretch. More importantly, we found that model
predictions on the dynamic crossover are invariant of the choice for the CCR
parameter in the model and non-inclusion of CCR could still reasonably
describe the measured data. Hence, we show that the assertion by Wang
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and co-workers is not valid and that shifting of the effective relaxation time
in superposition spectra is due simply to orientation and not CCR.

Finally, data on the nonlinear rheology of entangled PS melts and solu-
tions were confronted using a simple tube-based constitutive equation mod-
ified to account for monomer friction reduction (MFR). The latter idea has
been proposed and developed recently [47, 99, 85] to rationalize the differ-
ent behavior exhibited by melts and solutions in extensional flows. The said
difference was striking, with respect to classical tube models, since the two
systems were expected to behave similarly.

By incorporating the MFR effect in multimode tube-based constitutive
equations [71, 72] with CCR and chain stretch, we showed that the available
data for the PS melts and solutions could be described reasonably using the
same equation. The key is the reduction of the monomer friction induced by
significant changes in its molecular environment. In melts, this occurs when
the other chains are oriented and highly stretched such that other monomers
start to align. In solutions, this seldom occurs even at large stretching since
the environment consists mostly of solvent molecules which relax quickly.

Data agreement with the modified model is quite successful in the va-
riety of situations considered here: transient and steady-state extension,
transient and steady-state shear and stress relaxation after cessation of flow
for melts and transient and steady-state extension for solutions. For melts,
the choice for the CCR parameter seems less crucial since there is no signif-
icant stretching that CCR can relax. This lack of stretching is due to the
presence of the MFR mechanism. For solutions, however, the stretching is
significant and unsuppressed and, hence, CCR plays a more important role.

5.2 Outlook

The molecular rheology of entangled polymers has a number of open prob-
lems in various directions. In this work, some progress has been made in
answering or settling some issues in the three problems confronted. In gen-
eral, there is further work to be done in different directions for each problem
to further validate the conclusions presented here and to further the under-
standing of these systems.

For slip-link simulations, significant progress has been made in develop-
ing the PCN model for entangled melts [22, 91, 98, 99] including branched
polymers [89] and heterogeneous polymers [92]. However, the simulation
of entangled networks is still somewhat problematic as shown here. We
demonstrated that simulation results for the case of randomly-crosslinked
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systems are consistent with predictions from replica theory [101] though the
same level of agreement is absent in end-linked networks [41, 42] which are
supposed to be simpler. In this work, we proposed a new sliding equation
for monomer exchange in slip-links based on the chemical potential balance.
This dynamical equation is more thermodynamically consistent and gives
rise to a slightly different stress-strain behavior when applied to randomly-
crosslinked systems. However, the difference is minimal in comparison with
the large discrepancy observed for end-linked systems. Hence, it is impor-
tant to explore other possible issues why this discrepancy is present.

One such important issue to address is the issue of equilibration and
whether the method of network preparation used in the previous work gives
rise to equilibriated networks, which are important in simulations [110].
Methods for preparing equilibrated networks in other simulations, such as
molecular dynamics simulations [103, 87], could be considered and applied
in the PCN model. Another alternative would be to use a pre-equilibriated
network structure from molecular dynamics and convert the structure into
a network of primitive paths using known methods [17, 115] and use this
network as starting point or input in the slip-link simulations.

For superposition flows, the approach presented here provides a simple
constitutive approach to modeling the data on polydisperse and monodis-
perse melts and solutions. However, the agreement of the model with data
is satisfactory only for intermediate rates and not for rates where chain
stretching might be significant. Chain stretching was ignored in the model
formulation due to two complications it might induce: the necessity of spec-
ifying a stretch relaxation time for each mode and the drawback of having
a non-analytic solution for the superposition spectra. The latter can be cir-
cumvented simply by solving the equations numerically. The former issue is
less straightforward and would deserve further investigation.

For the nonlinear rheology of entangled melts and solutions, the view
that the monomeric friction reduction is important in nonlinear rheology,
particularly in discriminating the behavior of melts from solutions has been
investigated in this work by proposing a simple constitutive equation that
accounts for this effect and that simultaneously describes solution and melt
rheology data. However, this constitutive equation has only been validated
with data on monodisperse systems. Data on bidisperse and polydisperse
systems using the technique of filament stretching rheometry [129, 130] have
also been presented in literature and they provide more rigorous validation
of the modeling framework. As mentioned, the application of the model to
these systems would require further work in accounting for different molec-
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ular weight distributions possibly through the form of mixing rules, some
versions of which were used in previous approaches [134, 135].

It should also be mentioned that the tube-based constitutive equation
considered here is a simple model which involves a number of approxima-
tions such as the decoupling of stretch and orientation and the application
of CCR only at the chain level. A more detailed constitutive equation based
on the tube model have also been proposed previously where CCR is imple-
mented on a finer scale [73]. Another more advanced nonlinear model which
properly resolves the physics of stretch relaxation in bidisperse systems by
considering nested tubes has also been proposed recently [149]. It would
then be interesting to see how the modification of these models by MFR
could alter their predictions in both extension and shear.

Finally, the impact of MFR in the nonlinear rheology of branched poly-
mers should also be appraised. To date, there has only been one data set
reported on the elongational rheology of well-defined branched polymers
[150] though this situation should improve due recent interest on complex
architecture polymers [29]. Beyond the physics proposed by McLeish and
Larson in the successful pom-pom model [82], new ideas on the nonlinear
behavior of branched polymers have also been emerging [142]. An improved
model for the transient and steady-state response of these systems is also
under development and monomer friction reduction could be important in
this model.
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Appendix A

Linear Viscoelastic Spectra

Fitting of the linear viscoelastic spectra was done using the open-source
software Reptate, developed by Ramirez and Likhtman and available online
at http://reptate.com/. The obtained spectra for the melts and solutions
considered in the work are reported in the succeeding tables.
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Table A.1: LVE Spectra for PBD Solutions Considered in Chapter III

Sample Name Source Fitting Method No. of Modes (i) τi gi
[s] [Pa]

3% 2.6M PB [44] Reptate 7 1.46E2 5.48E1
1.12E1 9.53E1
8.59E-1 9.50E1
6.57E-2 1.68E2
5.04E-3 4.23E2
3.86E-4 9.12E3
2.95E-5 8.70E4

5% 0.7M PB [43] Reptate 7 4.93E1 3.90E2
7.50E0 4.63E2
1.14E0 4.21E2
1.73E-1 7.39E2
2.63E-2 1.95E3
4.00E-3 6.22E3
6.07E-4 2.16E5

10% 0.7M PB [43] Reptate 8 8.22E2 1.05E1
1.50E2 3.39E1
2.74E1 1.90E3
4.99E0 1.84E3
9.10E-1 1.33E3
1.66E-1 1.38E3
3.03E-2 6.22E2
5.52E-3 7.89E3
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Table A.2: LVE Spectra for PS Melts Considered in Chapter IV - Part I

Sample Name Source Fitting Method No. of Modes (i) τi gi
[s] [Pa]

50k [130] Wagner [133] 4 6.33E0 1.05E5
9.85E-1 1.40E5
9.61E-2 3.71E5
2.91E-3 9.15E6

100k [130] Wagner [133] 7 1.35E3 1.11E2
8.51E1 7.39E4
1.93E1 6.77E4
3.40E0 7.73E4
4.77E-1 1.47E5
3.06E-2 1.02E7
6.73E-3 4.10E5

200k [129] Wagner [133] 6 1.26E3 4.33E4
4.43E2 4.96E4
9.20E1 5.46E4
1.96E1 2.71E4
5.29E0 3.71E4
4.75E-1 2.38E5

390k [129] Wagner [133] 8 1.71E4 2.28E4
5.97E3 5.15E4
1.14E3 4.31E4
2.35E2 3.33E4
5.16E1 2.55E4
9.70E0 3.00E4
1.07E0 7.79E4
1.04E-1 4.63E5
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Table A.3: LVE Spectra for PS Melts Considered in Chapter IV - Part II

Sample Name Source Fitting Method No. of Modes (i) τi gi
[s] [Pa]

200k [139] Wagner [143] 8 2.65E1 8.05E1
1.49E0 3.06E4
5.48E-1 6.69E4
7.11E-2 6.66E4
7.13E-3 6.67E4
5.09E-4 1.84E5
2.92E-7 1.38E7
2.08E-5 1.58E6

182k [51] Reptate 7 3.39E-1 6.96E4
4.58E-2 7.61E4
6.18E-3 5.93E4
8.34E-4 7.67E4
1.13E-4 2.13E5
1.52E-5 3.4E5
2.05E-6 6.38E6

145k [138] Reptate 7 9.47E4 2.56E2
9.16E3 9.22E4
8.85E2 7.66E4
8.55E1 7.81E4
8.26E0 2.79E5
7.99E-1 5.47E5
7.72E-2 1.37E7
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Table A.4: LVE Spectra for PS Solutions Considered in Chapter IV

Sample Name Source Fitting Method No. of Modes (i) τi gi
[s] [Pa]

7.35% 3.9M [127] Reptate 6 2.29E1 5.75E-2
3.93E0 1.34E2
6.74E-1 1.73E2
1.16E-1 1.49E2
1.98E-2 1.13E2
3.40E-3 3.98E2

10% 3.9M [127] Reptate 5 1.16E1 3.46E2
1.91E0 4.74E2
3.14E-1 3.73E2
5.16E-2 2.75E2
8.47E-3 5.51E2
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Appendix B

Dynamical Equations for
Slip-link Simulations

B.1 Nondimensionalization of the Node Motion
Equation

The Langevin equation for the position of each node or slip-link Ri is written
as follows.

ζ(Ṙi − κ ·Ri) =

f∑
i=1

Fi + Fo + Fr (B.1)

Neglecting the contribution of Fo, setting κ = 0 and introducing the def-
inition of Fi for a Gaussian subchain in section 2.2.1 to (B.1), the following
equation is obtained.

ζṘi =
3kT

b2

f∑
i=1

ri
ni

+ Fr (B.2)

Recall that the amplitude for the random force is given by the correlation
function

〈Fr(t)Fr(t′)〉 = 6kTζδ(t− t′) ≈ 6kTζ

(t− t′)
(B.3)

where the Dirac delta function δ(t− t′) can approximated by 1/(t− t′).
The random force Fr is then given by
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Fr =

√
6kTζ

t− t′
W (B.4)

where W is a unit random vector – i.e. vector of length unity pointing
in a random direction obtained by randomly sampling points along a unit
sphere.

Equation (B.2) can then be written in discretized form by writing the
derivative Ṙi = dRi/dt as ∆Ri/∆t resulting in

ζ∆Ri

∆t
=

3kT

b2

f∑
i=1

ri
ni

+

√
6kTζ

∆t
W (B.5)

where the difference t − t′ was replaced by ∆t in the amplitude of the
random force.

Re-arranging terms, (B.5) becomes

∆Ri =
3kT

ζb2
∆t

f∑
i=1

ri
ni

+

√
6kT∆t

ζ
W (B.6)

Introducting the nondimensional variables r̃ = r/r0, ñ = n/n0 and ∆t̃ =
∆t/τ0, (B.6) can then be written as

r0∆R̃i =
3kT

ζb2
r0

n0
∆t

f∑
i=1

r̃i
ñi

+

√
6kT∆t̃τ0

ζ
W (B.7)

where τ0 = n0b
2ζ/6kT .

Dividing both sides of (B.7) by r0 and using the relationship r2
0 = n0b

2,
we obtain

∆R̃i =
∆t̃

2

f∑
i=1

r̃i
ñi

+
√

∆t̃W (B.8)

which is the non-dimensional discretized equation of motion for the node
i assuming Gaussian elastic forces.

For non-Gaussian chains, as discussed in 2.2.1, the factor f(r) for finite
extensibility must be included. Since f(r) is nondimensional, it can be
introduced without difficulty to equation (B.8).

∆R̃i =
∆t̃

2

f∑
i=1

f(r̃i)
r̃i
ñi

+
√

∆t̃W (B.9)

137



B.2 Nondimensionalization of the Monomer Slid-
ing Equation

The Langevin equation for the sliding or monomer exchange across two
subchains in a slip-link is written as follows.

ζmv = Fm + F rm (B.10)

where v, Fm and F rm have been defined in section 2.2.1.
Introducing these definitions and recalling that ζm = ζ/2, we obtain

ζm

(
ṅ
r0

n0

)
=
ζ

2

(
ṅ

1

ρm

)
=

3kT

b2

(
r1

n1
− r2

n2

)
±
√

kTζ

t− t′
(B.11)

where the linear monomer density ρm = n0/r0 is introduced and the
Dirac delta function δ(t− t′) was again approximated by 1/(t− t′).

Equation (B.11) can then be discretized by writing ṅ = ∆n/∆t.

ζ

2

(
∆n

∆t

1

ρm

)
=

3kT

b2

(
r1

n1
− r2

n2

)
±
√
kTζ

∆t
(B.12)

Re-arranging terms and introducing the non-dimensional variables de-
fined in the previous section, one then obtains

∆ñ = ρm

∆t̃

(
r̃1

ñ1
− r̃2

ñ2

)
±

√
∆t̃

6

 (B.13)

which is the non-dimensional discretized equation of motion for monomer
sliding. Note that in the later versions of the PCN model [91, 97], ρm is taken
determined by the monomer density ñ/r̃ of the subchain winning in the force
balance and not the values at equilibrium.

B.3 Nondimensionalization of the µ-based Monomer
Sliding Equation

The alternative sliding equation proposed in section 2.3.4 is based on the
sliding equation proposed by Schieber [107] recalled here as follows

∆n =
1

kTτK
(µi+1 − µi) ∆t±

√
2∆t

τK
(B.14)
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and the chemical potential µi is defined as

µi =
3

2
kT

(
1

ni
− r2

i

n2
i b

2

)
(B.15)

based on the free energy reported by Schieber [106, 107].
Equation (B.14) is already discretized so the remaining task is to present

it in non-dimensional form. The following non-dimensional variables can
then be introduced ñ = n/n0 and r̃ = r/r0 to rewrite (B.14) as

n0∆ñ =
3

2n0τK

(
1

ñi+1
− 1

ñi
−

r̃2
i+1

ñ2
i+1b

2
+

r̃2
i

ñ2
i b

2

)
∆t±

√
2∆t

τK
(B.16)

where some simplification was made using r2
0 = n0b

2.
Dividing both sides of (B.16) by n0 would lead to a form where the

obvious choice in non-dimensionalizing the time is to define ∆t̃ = ∆t/τ0

with τ0 = τKn
2
0/2.

The non-dimensional equation of motion for the sliding process is then
as follows.

∆ñ =
3

4
∆t̃

[(
r̃2
i

ñ2
i

−
r̃2
i+1

ñ2
i+1

)
+

(
1

ñi+1
− 1

ñi

)]
±
√

∆t̃ (B.17)
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Appendix C

Analytic Expressions for
Parallel Superposition Flows

The following analytic expressions are the results of the linear expansion
approach discussed in 3.2.2 and are used to generate the results for Chapter
3.

The superposition storage modulus G′sup for each mode is given by the
expression

G′sup(ω, τ, γ̇, β) =
C ′1 + C ′2 + C ′3
C ′4 + C ′5

(C.1)

where the quantities C ′1, C
′
2, C

′
3, C

′
4 and C ′5 are defined as

C ′1 = −3τ2(6βA2
xy − 3Ayy + 4γ̇Axy(1 + β(−1 + 6βA2

xy))τ (C.2)

C ′2 = 2γ̇2(Ayy + β(12β2A4
xy +Ayy(−1 + 3Ayy) (C.3)

C ′3 = A2
xy(4 + β(−4 + 6Ayy))))τ

2)ω2 + 9(−2βA2
xy +Ayy)τ

4ω4 (C.4)

C ′4 = (3 + 2γ̇τ(9βAxy + γ̇(1 + β(−1 + 12βA2
xy + 3Ayy))τ))2 (C.5)

C ′5 = 6τ2(3+2γ̇τ(9βAxy+γ̇(−1+β+15β2A2
xy−3βAyy)τ))ω2+9τ4ω4 (C.6)

140



On the other hand, the superposition loss modulus G′′sup is given by the
following expression

G′′sup(ω, τ, γ̇, β) =
C ′′1

C ′′8 + C ′′9
(C.7)

C ′′1 = τω(−288β4γ̇3A5
xyτ

3 + C ′′2 + C ′′3 + C ′′4 + C ′′6 ) (C.8)

C ′′2 = −72β3γ̇2A3
xyτ

2(5Axy + γ̇(−1 +Ayy)τ) (C.9)

C ′′3 = (3Ayy − 2γ̇Axyτ)(3 + 2γ̇2τ2) + 3τ2(3Ayy + 2γ̇Axyτ)ω2 (C.10)

C ′′4 = −4β2γ̇Axyτ(−3γ̇Axy(4 + 3Ayy)τ + γ̇2(1− 3Ayy)τ
2 + C ′′5 ) (C.11)

C ′′5 = 18A2
xy(2 + τ2(γ̇2 + ω2)) (C.12)

C ′′6 = 2β(3γ̇2Ayy(−1 + 3Ayy)τ
2 − 3A2

xy(3 + τ2(8γ̇2 + 3ω2)) + C ′′7 ) (C.13)

C ′′7 = γ̇Axyτ(3 + 27Ayy + 4γ̇2τ2 − 6γ̇2Ayyτ
2 + 3(−1 + 9Ayy)τ

2ω2) (C.14)

C ′′8 = (3 + 2γ̇τ(9βAxy + γ̇(1 + β(−1 + 12βA2
xy + 3Ayy))τ))2 (C.15)

C ′′9 = 6τ2(3+2γ̇τ(9βAxy+γ̇(−1+β+15β2A2
xy−3βAyy)τ))ω2+9τ4ω4 (C.16)

In both expressions, Axy and Ayy are the steady values of the xy and yy
components of A due to the background flow, which could be obtained by
building the transient response up to the steady-state.
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