
Dottorato di Ricerca in Ingegneria Informatica ed Automatica

XXV Ciclo

Change to survive:
a Moving Target Defense approach to secure

resource-constrained distributed devices

Author:

Alessandra De Benedictis

Supervisor:

Prof. Valentina Casola

Coordinator:

Prof. Franco Garofalo

A thesis submitted in fulfillment of the requirements

for the degree of Doctor of Philosophy

in the

Department of Electrical Engineering and Information Technology

April 2013

“I hear and I forget. I see and I believe. I do and I understand.”

Confucius

UNIVERSITY OF NAPLES FEDERICO II

Abstract

Faculty of Computer Engineering

Department of Electrical Engineering and Information Technology

Doctor of Philosophy

Change to survive:

a Moving Target Defense approach to secure resource-constrained

distributed devices

by Alessandra De Benedictis

This doctoral thesis has been developed with the aim of defining a design methodology

for monitoring architectures composed of resource-constrained devices (sensor nodes,

FPGAs, smartphones...), able to take into account both functional and non-functional

requirements. Even if our primary focus was on security, our activity was aimed at

identifying a holistic approach able to meet even other quality requirements, such as

performance and energy consumption, as they are fundamental in real world applica-

tions.

Security, performance and energy consumption requirements are closely related to one

another and are often conflicting, and typically in complex real-world scenarios they

change over time, thus requiring the ability to adapt dynamically. These features make

the definition of a comprehensive approach very challenging in constrained networks, and

require the introduction of a more flexible strategy to achieve security while preserving

the overall quality of the system.

In order to cope with these issues, we proposed a reconfiguration approach based on

the Moving Target Defense paradigm, an emergent technique aimed at continuously

changing a system’s attack surface for thwarting attacks. Such mechanisms increase the

uncertainty, complexity, and cost for attackers, limit the exposure of vulnerabilities, and

ultimately increase overall resiliency, with the result of decreasing the attack probability.

We defined a reconfiguration model for a generic embedded node, identifying some of the

possible reconfigurable parameters – namely the firmware, the APIs and the cryptosys-

tem adopted to secure exchanged data – and characterized a reconfiguration strategy,

aimed at choosing the new configuration to activate based on given requirements. In

order to do that, we introduced a coverage-based security metric to quantitatively mea-

sure the level of security provided by each system configuration; such metric, along

with the commonly adopted performance metrics, is used by the reconfiguration strat-

egy to identify the configuration to activate in the system that best meets the current

requirements.

In order to show the feasibility of our approach in real applications, we considered

a Wireless Sensor Networks (WSNs) case study. We defined a reconfiguration model

characterized by two different cryptosystems, based on Elliptic Curve Cryptography

(ECC), at the security layer, and two different firmware versions at the physical layer. We

developed and implemented two ad-hoc reconfiguration mechanisms to perform security-

level and physical-level reconfiguration, and conducted specific analyses on the security

layer to show how reconfiguration can help increase, or at least control, the security level

provided by a system.

At this aim, we first analyzed the performance, consumption and intrinsic security level

provided by the two considered cryptosystems, and then conducted theoretical and ex-

perimental evaluations to show that reconfiguration is effective in increasing the com-

plexity for the attacker.

Current MTD designs lack quantitative metrics to measure the effectiveness of the pro-

posed mechanisms in terms of enhanced security. We adopted the attack probability to

indirectly measure the level of security provided by each configuration and show that

our approach is capable of reducing the probability of successful attacks, compared to a

baseline scenario where configurations are static.

Keywords: Moving Target Defense, Wireless Sensor Networks, Reconfiguration, Secu-

rity Metrics.

Preface

Some of the research and results described in this Ph.D. thesis has undergone peer

review and has been published in, or at the date of this printing is being considered for

publication in, academic journals, books, and conferences. In the following I list all the

papers developed during my research work as Ph.D. student.

1. A. De Benedictis, A. Gaglione, N. Mazzocca. Securing a Tiered Re-Taskable Sens-

ing System. In Proceedings of the 6th International Conference on Information

Assurance and Security (IAS 2010), August 23-25, 2010, Atlanta, Georgia, USA.

IEEE Computer Society. pp. 260-264.2010.

2. A. De Benedictis, A. Gaglione, N. Mazzocca. A Secure Architecture for Re-

Taskable Sensing Systems. In Journal of Information Assurance and Security,

Vol. 6, Issue 4, 2011 pp. 240-247.

3. V. Casola, A. De Benedictis, A. Mazzeo, N. Mazzocca. SeNsIM-SEC: security in

heterogeneous sensor networks. In Proceedings of the 6th Conference on Network

Architectures and Information System Security (SAR-SSI 2011), May 17-21 2011,

La Rochelle, France. IEEE Computer Society, pp.17-24.

4. V. Casola, A. De Benedictis, A. Drago, and N. Mazzocca. Analysis and comparison

of security protocols in wireless sensor networks. In Reliable Distributed Systems

Workshops (SRDSW), 2011 30th IEEE Symposium on, pages 52-56, oct. 2011.

5. V. Casola, A. De Benedictis, A. Drago, M. Esposito, F. Flammini and N. Mazzocca.

Securing freight trains for hazardous material transportation: a WSN-based moni-

toring system. In International Defence and Homeland Security Simulation Work-

shop (DHSS 2012), in cooperation with the I3M 2012 MultiConference, September

19-21 2012, Wien, Austria.

6. M. Albanese, A. De Benedictis, S. Jajodia, and P. Shakarian. A Probabilistic

Framework for Localization of Attackers in MANETs. In Proceedings of the

17th European Symposium on Research in Computer Security (ESORICS 2012),

September 10-12 2012, Pisa, Italy.

7. M. Albanese, A. De Benedictis, S. Jajodia, and K. Sun. A Moving Target Defense

Mechanism for MANETs Based on Identity Virtualization. Submitted to the 1st

IEEE Conference on Communications and Network Security (CNS 2013)

8. M. Albanese, A. De Benedictis, S. Jajodia, D. Torrieri. A Probabilistic Framework

for Jammer Identification in MANETs. Submitted to Ad Hoc Networks, Elsevier,

January 2013

iv

9. V. Casola, A. De Benedictis, A. Drago, and N. Mazzocca. SeNsiM-SEC: secure

sensor networks integration to monitor rail freight transport. Submitted to the

Special Issue Situation Awareness: Theory and Methodology - International Jour-

nal on System of Systems Engineering (Inderscience)

Contents

Abstract ii

Preface iv

List of Figures viii

List of Tables ix

1 Introduction 1

2 An MTD approach to secure resource-constrained distributed devices 7

2.1 Moving Target Defense . 7

2.2 The proposed MTD approach . 12

2.2.1 The reference reconfiguration model 13

2.2.2 Security Level Evaluation . 16

2.2.3 Security level dependency on time 20

2.2.4 Reconfiguration Strategies . 23

3 A case study: WSN security 26

3.1 Wireless Sensor Networks: an overview . 26

3.2 WSN security issues . 28

3.3 Security vulnerabilities in WSNs . 29

3.3.1 Attacks classification based on attacker capabilities 29

3.3.2 Attacks classification based on attackers goals 30

3.3.3 Attacks classification based on protocol stack 31

3.3.3.1 Physical Layer . 31

3.3.3.2 Data Link Layer . 33

3.3.3.3 Network Layer . 34

3.3.3.4 Transport Layer . 37

3.3.3.5 Application Layer . 37

3.4 Existing approaches to securing a WSN 38

4 Building a reconfigurable security layer for WSNs 42

4.1 The adopted security layer configurations 42

4.1.1 The WM-ECC-based cryptosystem 42

vi

Contents vii

4.1.2 The TinyPairing-based cryptosystem 46

4.2 Security and Performance Analysis . 48

4.2.1 Performance evaluation . 49

4.2.1.1 Latency . 50

4.2.1.2 Packet overhead . 51

4.2.1.3 Memory occupancy . 51

4.2.2 Power consumption evaluation . 53

4.2.3 Security evaluation . 53

5 Enforcing WSN reconfiguration: implementation details and evalua-
tion 55

5.1 WSN reconfiguration in literature . 55

5.2 Our approach to reconfiguring WSNs . 58

5.2.1 Security Layer Reconfiguration . 61

5.2.2 Physical Layer Reconfiguration . 64

5.3 Theoretical Evaluation . 67

5.4 Simulation experiments . 70

6 Conclusion and future directions 77

Bibliography 79

List of Figures

2.1 A layered view of an embedded node . 13

2.2 Level of security through reconfigurations 21

3.1 A monitoring system layered view . 28

4.1 Query execution in a network secured with the WM-ECC-based cryp-
tosystem . 46

4.2 Query execution in a network secured with the TinyPairing based cryp-
tosystem . 47

4.3 Packet length in bytes . 51

4.4 RAM occupancy in bytes for master and mote applications 52

4.5 ROM occupancy in bytes for master and mote applications 52

5.1 Reconfiguration sequence . 60

5.2 Security protocol reconfiguration . 63

5.3 Reconfiguration Application components 65

5.4 Worst case attack time cdf for large validity intervals 73

5.5 Worst case attack time cdf for short validity intervals 74

5.6 Probability of successful attack vs. length of validity interval 75

5.7 Worst case attack time cdf when (a) using the same cryptosystem with
different keys - (b) using three different cryptosystems 75

5.8 Comparison between worst and intermediate case for T = 5, 36E + 45ms . 76

viii

List of Tables

2.1 An example of Attacks Coverage Table . 20

4.1 Latency in seconds . 50

4.2 Power consumption in Joules . 53

4.3 Attacks Coverage Table for the considered cryptosystems 54

5.1 Characteristics of the cryptosystems used in the experiments 73

5.2 Key lengths set . 76

ix

To all who believe in me

x

Chapter 1

Introduction

The research activity conducted during my Ph.D. program had the main goal of

defining a design methodology for monitoring architectures composed of resource-

constrained devices (sensor nodes, FPGAs, smartphones...), able to take into ac-

count both functional and non-functional requirements. Even if our primary focus

was on security, our activity was aimed at identifying a holistic approach able to

meet even other quality requirements, such as performance and energy consump-

tion, as they are fundamental in real world applications.

The methodological approach adopted to achieve this goal encompasses two as-

pects: (i) introduction of a mechanism to quantitatively evaluate the overall quality

of a system, defined in terms of security, performance and energy consumption,

and (ii) implementation of proper strategies aimed at controlling the quality of a

system during its operation.

Security, performance and energy consumption requirements are closely related

to one another and are often conflicting: security protocols for example have an

impact on the number and the size of exchanged messages and on the elaboration

time, computational load and packet flow negatively impact on nodes lifetime and

performance and, in turn, nodes lifetime affects failure rate. The design activity

typically aims at fulfilling a subset of these requirements, sacrificing the others, to

get feasible solutions in real applications: often, due to the HW/SW limitations

of the considered devices, security must be sacrificed to performance.

1

Introduction 2

Moreover, in complex real-world scenarios, security and performance requirements

may change over time, thus requiring the ability to adapt dynamically: a specific

solution adopted at deployment time may result no more adequate later, due

for example to uncovered malicious activities detection, or to performance decay

caused by battery exhaustion.

Finally, it must be considered that security degrades over time: each security so-

lution is designed to cope with a specific set of attacks and provides an intrinsic

level of security, depending on the cryptographic scheme, the algorithm, the length

of the keys, etc.. After deployment, the probability of having a successful attack

increases, as the system’s attack surface, defined as “the subset of the system’s

resources (methods, channels, and data) that can be potentially used by an at-

tacker to launch an attack” [1], is exposed to attackers. The longer a systems

attack surface is exposed to attackers, the greater is the attackers’ opportunity to

gain knowledge about the system, its topology and vulnerabilities, to complete an

attack.

In order to be able to cope with the above discussed issues, a more flexible way to

achieve security, inspired by the Moving Target Defense (MTD) paradigm [2–4],

can be devised. MTD is based on continuously changing a system’s attack surface

in order to increase the attacker’s uncertainty about it, and limit the exposure

of vulnerabilities and opportunity for attack. An intuitive means to implement

MTD is reconfiguration, that could be performed both at a physical level, that is by

actually changing some system parameters (firmware, implemented cryptosystem,

message format, etc.), and at a virtual level, that is by adopting mechanisms to

give the attackers a virtual view of the system that does not correspond to the

real one.

We introduced a MTD approach based on fine-grained physical reconfiguration,

that takes into account the specific security and performance requirements depend-

ing on the deployment scenario while having in mind the HW and SW constraints

of the nodes. We defined a reconfiguration model, identifying the reconfigurable

parameters of a system, and characterized a reconfiguration strategy, aimed at

Introduction 3

choosing the new configuration to activate, given input requirements. Finally, we

devised different reconfiguration mechanisms for a WSN case study to practically

execute the reconfiguration operation.

As the main goal of reconfiguration is to increase the overall quality of a sys-

tem, proper metrics must be defined to measure the level of security provided by

each configuration, as well as the overall performance and the energy consump-

tion profile, in order to be able to compare different configurations and choose

the most appropriate one to meet the given requirements. While several metrics

exist and are commonly adopted to measure a system’s performance and power

consumption, providing a quantitative measure of the level of security of a system

is not straightforward: some security metrics have been proposed in the litera-

ture, mostly based on the analysis of attack graphs or on risk quantification, but

they are generally hard to link to the adopted definition of configuration, that

is centered on the mechanisms that are available to enforce a subset of security

requirements.

We adopted a different metric, based on the coverage of a set of known attacks:

once the admissible configurations and the attacks of interest have been identified,

it is possible to build an Attack Coverage Table, that helps define the level of

security provided by each configuration, by identifying the degree of coverage of

each configuration with respect to specific attacks, or equivalently with respect

to specific requirements. As said, security metric should be combined with other

metrics dealing with energy consumption, response time or memory occupancy, to

give an overall score to each configuration. The resulting score can be used by the

reconfiguration scheduler to choose the new configuration to implement in order

to meet the given requirements.

Even though all networks composed of limited computational, storage and power

resources share the same issues, the analysis we conducted has been focused on

Wireless Sensor Networks (WSNs), that are widely adopted in critical scenarios

and present several security issues to be addressed by means of proper security

policies and mechanisms.

Introduction 4

Different security mechanisms have been implemented to secure WSNs, primarily

based on symmetric key cryptography and Elliptic Curve Cryptography (ECC)[5],

designed in order to limit power consumption and the computational/storage ef-

fort. We analyzed some of the most recent solutions proposed in the literature to

protect data exchanged among sensor nodes, and selected two available libraries,

namely WMECC [6] and TinyPairing[7], both based on ECC, providing different

levels of security and having different resource utilization profiles.

We adopted the two libraries to build a cryptosystem used to secure a monitoring

application and conducted specific analyses aimed at:

• measuring and comparing performance and power consumption of the two

different cryptosystems,

• defining the intrinsic level of security provided by each cryptosystem, based

on the security requirements they are able to ensure (static security analysis),

• showing how reconfiguration can help decrease the probability of attack for

a brute force attack case.

We designed two reconfiguration mechanisms for WSN, respectively able to recon-

figure the cryptosystem adopted to secure the communication, and the firmware

installed on sensor nodes. The theoretical and experimental analyses that we con-

ducted showed that, by periodically reconfiguring the nodes, the proposed mecha-

nisms are effective in increasing the complexity for the attacker and, consequently,

in decreasing the probability of completing a successful attack when the reconfig-

uration frequency is properly chosen.

Although many interesting activities have been conducted with respect to the

above discussed topics, several issues are still open and need to be investigated.

Our future plans include the design of a fully-automated reconfiguration strat-

egy capable of identifying the system configuration that can best meet specific,

dynamically changing requirements in terms of security, performance and power

consumption. In order to do this, an innovative security metric for the compari-

son of different configurations must be defined; the most challenging aspect is the

Introduction 5

identification and modeling of the dependency relations existing between security

and time, that constitutes a relevant and still unexplored topic. We also plan to

perform a deep evaluation of the optimal reconfiguration frequency and to intro-

duce automatic mechanisms to map the existing requirements onto the available

configurations (technological mapping).

This thesis work is organized as follows.

Chapter 2 describes the MTD approach adopted to control the level of security of a

monitoring architecture composed of resource-constrained devices. We define a re-

configuration model for embedded systems, characterize a reconfiguration strategy

and discuss about mechanisms to enforce the new configuration. In this chapter

we also discuss about the dependency of security on time, and show how reconfig-

uration can help increase, or at least control, not only the security level provided

by a system, but also its performance and consumption. In order to measure the

level of security provided by each configuration, we introduce a coverage-based se-

curity metric, relying upon an Attack Coverage Matrix, that identifies the attacks

covered by each available configuration.

Chapter 3 addresses the main security issues arising in networks composed of

resource-constrained devices, focusing on the WSN case study. An overview of

WSNs is given: the peculiar HW/SW features of sensor nodes are described,

highlighting the main consequent challenges for security and performance, and

the most common attacks against WSNs are presented, along with some of the

most relevant security solutions proposed in the literature.

Chapter 4 describes the experimental setup: an overview is given of the WM-ECC

and TinyPairing libraries, selected among the most recent solutions based on ECC

to build a cryptosystem on top of a reference monitoring application. The chapter

presents and discusses the analysis conducted on performance, consumption and

intrinsic security of these two cryptosystems.

Chapter 5 shows the theoretical and experimental analysis conducted to prove that

the proposed reconfiguration mechanisms are effective in increasing the complexity

Introduction 6

for the attacker and, consequently, in decreasing the probability of completing a

successful attack.

Finally, some concluding remarks and future directions are given in Chapter 6.

Chapter 2

An MTD approach to secure

resource-constrained distributed

devices

In this chapter, we describe the MTD approach adopted to control the level of se-

curity of a monitoring architecture composed of resource-constrained devices. We

define a reconfiguration model for embedded systems, characterize a reconfiguration

strategy and discuss about mechanisms to enforce the new configuration. We dis-

cuss about the dependency of security on time, and show how reconfiguration can

help increase, or at least control, not only the security level provided by a system,

but also its performance and consumption. We also introduce a coverage-based se-

curity metric, relying upon an Attack Coverage Matrix, that identifies the attacks

covered by each available configuration.

2.1 Moving Target Defense

In recent years, we have witnessed a growing interest in techniques aimed at con-

tinuously changing a system’s attack surface in order to prevent or thwart attacks.

This approach to cyber defense is generally referred to as Moving Target Defense

(MTD)[3, 4], and it is currently considered one of the game-changing themes in

7

An MTD approach to secure resource-constrained distributed devices 8

cyber security by the Executive Office of the President, National Science and Tech-

nology Council. As stated in [2], Moving Target Defense “enables us to create,

analyze, evaluate, and deploy mechanisms and strategies that are diverse and that

continually shift and change over time to increase complexity and cost for attack-

ers, limit the exposure of vulnerabilities and opportunities for attack, and increase

system resiliency”.

MTD provides a way to make it more difficult for an attacker to exploit a vulner-

able system. The idea is to change one or more properties of a system in order

to present attackers with a varying attack surface, so that, by the time the at-

tacker has gained enough information about the system for planning an attack,

the system’s attack surface will be different enough to disrupt it. According to

the definition of [1], “A system’s attack surface is the subset of the system’s re-

sources (methods, channels, and data) that can be potentially used by an attacker

to launch an attack”. It depends on the system’s HW and SW features, and can

be changed by dynamically reconfiguring such characteristics, working at different

levels of granularity.

As suggested by [8], MTD approaches (also referred to as diversity techniques)

may be applied both at a low level (e.g. working on code location in memory) and

at the application level. The advantage of applying low-level diversity is that it

does not require the understanding of the application’s behavior and can be done

automatically, but it is only capable of thwarting specific classes of attacks, such

as code injection and memory corruption attacks.

Several low level MTD techniques have been proposed in the literature, based

on the idea of automatically generating diverse variants of a program to disrupt

exploits (diversity in program execution), first introduced in [9].

A widely deployed example is Address Space Randomization, that was introduced

in 2000 by the PAX Team for Linux [10], and has been implemented in most

modern operating systems. The basic idea is to randomize the locations of objects

in memory so that an attack depending on the knowledge about the address of

these objects will fail.

An MTD approach to secure resource-constrained distributed devices 9

Instruction Set Randomization [11] is another technique for obfuscating the lan-

guage understood by a system to protect against code-injection attacks: by ran-

domizing the underlying systems instructions, foreign code introduced by an attack

would fail to execute correctly, regardless of the injection approach.

Another type of low-level diversification is altering how data is stored in memory:

in [12] authors present Data Randomization, a technique that provides probabilis-

tic protection against attacks that exploits memory errors by XOR-ing data with

random masks. Data randomization uses static analysis to partition instruction

operands into equivalence classes: it places two operands in the same class if they

may refer to the same object in an execution that does not violate memory safety.

Then it assigns a random mask to each class and it generates code instrumented

to XOR data read from or written to memory with the mask of the memory

operands class. Therefore, attacks that violate the results of the static analysis

have unpredictable results.

Jackson et al. present in [13] a diversity technique based on the generation, during

the compilation phase, of multiple functionally equivalent machine codes for the

same high-level source: with massive-scale software diversity, every user could get

its own diversified program version, so that it is impossible for attackers to run a

successful attack.

Looking at higher-level MTD techniques, several approaches have been proposed,

aimed at thwarting the reconnaissance effort of attackers: reconnaissance enables

an adversary to gather information about network topology, network dynamics,

and even critical system and service information of the target system. This infor-

mation can be used to identify system vulnerabilities, and to design and execute

specific exploits on the system or services.

In this regard, several approaches for dynamically changing nodes IP addresses for

proactive security have been proposed in the literature. In 2001 Kewley et al. [14]

presented a technique called DYNAT (Dynamic Network Address Translation),

aimed at confusing any adversary sniffing the network by obfuscating host iden-

tity information in TCP/IP packet headers when packets enter public parts of the

An MTD approach to secure resource-constrained distributed devices 10

network. Whenever a client host wants to communicate with a protected server

host, the addressing information contained in the header of its request packets is

translated (encrypted) by a DYNAT shim before routing the packet to the server.

A server gateway receives the packets, reverses the translation in the header fields

(decryption) and obtains the true host identity information, used to pass the pack-

ets to the target server. Both the client and the server gateway must share a secret

seed value, that is used to encrypt the identity information at sender side and de-

crypt them at the recipient. They are synchronized to periodically change the

secret, and thus change the translation results, making it difficult for the adver-

sary to create and maintain a map of the network. Although this technique has

the advantage of providing a transparent approach to protect node identities from

sniffing, it has been designed to protect a set of static nodes deployed behind a

centralized gateway, that represents an interface between the protected network

and the external world and performs the translation of addressing information

for all incoming and outgoing packets. When considering more complex scenar-

ios, characterized by highly dynamic network configurations, this approach would

not work as it might be impossible to manage all communications through the

centralized gateway and achieve node synchronization.

Another work funded by DARPA is presented in [15] by Atighetchi et al., that

give an overview of current set of network-level defenses in the DARPA APOD

(Application That Participate in Their Own Defense) project. Among the pro-

posed network-centric defense mechanisms, the APOD toolkit also provides a port

and address hopping mechanism, based on constantly changing a service’s TCP

identity to both hide the service’s real identity and confuse the attacker during

reconnaissance. Packets intercepted by attackers will reveal random addresses,

which are valid only for a small period of time, e.g., 1 minute. For a port attack to

be successful, the attacker must discover the current ports and execute the attack

all within one refresh cycle. Similarly to the previous described approach, the

hopping mechanism is implemented by a client component, directly located on the

client machine, that intercepts higher level calls to the real server, and replaces all

(realaddress:realport) header information with (fakeaddress:fakeport). The NAT

An MTD approach to secure resource-constrained distributed devices 11

gateway is located either on the servers LAN or directly on the server host and per-

forms the reverse mapping from (fakeaddress:fakeport) to (realaddress:realport).

Even if this approach provides better unpredictability of identities than DYNAT,

it also requires synchronization among the two communicating components, and

the same considerations previously made apply in this case.

Antonatos et al. [16] introduce a proactive defense mechanism called Network

Address Space Randomization (NASR) whose objective is to harden networks

against worms that use precomputed hitlists of vulnerable targets, by forcing nodes

to frequently change their IP addresses. In order to achieve this goal, the authors

implemented an advanced NASR-enabled DHCP server to expire DHCP leases

at intervals suitable for effective randomization. As the addresses are actually

changed at the end-points of a communication, active connections are disrupted

during the update; moreover, NASR is limited in the address space as it uses LAN

addresses, and requires changes to the end-host operating system, thus making

the deployment costly.

In [17] the authors introduce an MTD technique called OpenFlow Random Host

Mutation (OF-RHM): each host is assigned an address range, selected from the

entire unused address space in the network, and at each mutation interval, a

virtual IP is chosen from this range and associated with the host. A Software-

Defined Networking (SDN) approach is adopted for range allocation and mutation

coordination: a centralized controller (NOX) properly installs flows in OpenFlow

switches to forward requests and perform the address translation actions.

If considering some of the most adopted security solutions for networked systems,

a common MTD practice consists in updating the cryptographic keys used for en-

cryption of communication channels; this introduces some uncertainty for attackers

but presents the problem of key distribution, that is a critical phase particularly

subject to attacks.

As shown in details in the following section, in this thesis we propose an MTD-

inspired framework, based on reconfiguration at different levels, with the reconfig-

uration granularity chosen at runtime based on current requirements. We focus

An MTD approach to secure resource-constrained distributed devices 12

on physical reconfiguration, consisting in actually changing some of the system’s

parameters; by the way, virtual reconfiguration strategies aimed at presenting at-

tackers with a virtual view of the system (about nodes ID, topology, traffic pattern)

can be devised, and easily plugged into our framework.

2.2 The proposed MTD approach

As anticipated, an intuitive means to implement MTD is reconfiguration, that

could be performed both at a physical level, that is by actually changing some

system parameters (firmware, implemented cryptosystem, message format, etc.),

and at a virtual level, that is by adopting mechanisms to give the attackers a

virtual view of the system that does not correspond to the real one. We intro-

duced an MTD strategy based on fine-grained physical reconfiguration, that takes

into account the specific security and performance requirements depending on the

deployment scenario while having in mind the HW and SW features of the nodes.

By reconfiguring a system, it is possible to increase the overall level of security

provided by the system, both pro-actively, by periodically switching to a new

configuration to reduce the time each system configuration is exposed to malicious

observers, and re-actively, by scheduling a new configuration either after some

detection event (e.g. in order to cope with specific attack typologies), or to meet

new security requirements. Moreover, reconfiguration should take into account

the current resource consumption and elaboration time, evaluating if and how this

negatively affects the security level.

A reconfiguration approach can be formalized by defining the following items:

• Reconfiguration Model: identification of the system’s reconfigurable pa-

rameters and of the admissible configurations;

• Reconfiguration Strategies: scheduling of the new reconfiguration based

on the security and performance requirements;

An MTD approach to secure resource-constrained distributed devices 13

• Reconfiguration Mechanisms: enforcement of the new configuration,

through proper mechanisms.

In order to refer our examples to specific physical parameters for reconfiguration

and specific mechanisms, in our discussion we will explicitly refer to a network of

embedded nodes (e.g. WSNs, Smartphones, FPGA). Embedded nodes are systems

designed to perform specific functions, that can be interconnected in order to

achieve greater system design flexibility, improve diagnosability, and reduce wiring

cost. In the following subsections, we present a reconfiguration model for a generic

embedded node, and discuss about the level of security provided by a configuration

and its dependency on time.

2.2.1 The reference reconfiguration model

An embedded node could be considered as structured into several architectural

layers, as shown in Figure2.1.

Figure 2.1: A layered view of an embedded node

Among them, we identified three main reconfigurable layers:

• Security layer. Application security in an embedded network can be achieved

by implementing a proper cryptosystem to secure data exchanged among

An MTD approach to secure resource-constrained distributed devices 14

nodes; security-level reconfiguration could be performed by switching among

different cryptosystems, that satisfy specific security requirements while meet-

ing certain performance and energy consumption constraints.

• Application layer. In order to perform complex tasks, embedded nodes com-

municate with one another according to specific application interfaces (APIs),

defining the format of the exchanged messages and the communication pro-

tocols. Reconfiguration could be applied at this level by providing different

APIs for the same application.

• Physical layer. In embedded systems, the software is embedded in the node

firmware, that is typically preloaded on internal read-only memory (ROM)

chip, in contrast to a general-purpose computer that loads its programs into

random access memory (RAM) at run-time. Firmware provides the con-

trol program of the device and represents the skeleton where the different

libraries for the implementation of the available cryptosystems and APIs

can be plugged and activated via proper software switches. Nodes could be

equipped with several versions of the firmware in order to perform physical

reconfiguration when needed.

Clearly, further parameters could be considered for reconfiguration, such as the

hardware configuration or the topology, as long as their reconfiguration is feasible

from a technical and energy consumption point of view. Hardware reconfiguration

is expensive and not feasible on most of the available devices but needed in case of

damage. Network topology could be reconfigured in terms of the view offered to

external observers; this could be achieved by implementing a mechanism that, for

instance, presents virtual identities or introduces additional fake nodes into the

network. Such a mechanism would need additional protocols and algorithms that

are often too expensive for the considered nodes.

Consider an embedded network composed of N nodes. Let IM be the set of

firmware versions available, API be the set of possible application interfaces, and

An MTD approach to secure resource-constrained distributed devices 15

SEC be the set of available security mechanisms. The set of possible node con-

figurations is defined as:

Cnode = IM × API × SEC (2.1)

The set of possible network configurations is then defined as a subset of the N -ary

Cartesian power of the set Cnode.

Cnet ⊆ Cnode × Cnode · · · × Cnode = CN
node (2.2)

The choice of the reconfiguration level impacts both the system performance and

the provided level of security. From the performance point of view, changing the

firmware of the whole network or of a subset of it, is much more expensive, in

terms of latency and power consumption, than changing the APIs or the cryp-

tosystem, whose reconfiguration could be handled in software. On the other side,

by changing the entire application running on a node, it becomes harder for an

attacker to exploit software vulnerabilities in order to gain complete control of the

node. Similarly, APIs’ reconfiguration could be useful to confuse an attacker that

is observing the communication protocol in order to find an exploit to disturb or

control the communication.

At the security layer, the cryptosystem itself is designed to cope with a specific

set of attacks and provides an intrinsic level of security, depending on the cryp-

tographic scheme, the algorithm, the length of the keys, etc. Cryptosystem’s

reconfiguration can increase the level of security in two ways, that is:

• by switching to a cryptosystem that has itself a higher intrinsic level of

security, absolutely or with respect to a specific set of attacks (that have

been currently detected for example, and were not covered by the previous

configuration), or

An MTD approach to secure resource-constrained distributed devices 16

• by selecting an equivalent cryptosystem that uses different parameters – e.g.

by updating the cryptographic key while keeping the same cryptographic

algorithm.

Given a certain configuration, the more an attacker is able to observe, the more

she will be able to infer about the system; by continuously changing the system

configuration, the attacker will be presented with different view of the system over

time, and will have to start from scratch many times to find an exploit.

While the choice of the firmware does not influence the way nodes communicate,

cryptosystem and APIs reconfiguration has a direct impact on the format of ex-

changed packets and communication protocols. For this reason, some combinations

of node configurations may not be valid as they would interfere with normal net-

work operation. In order to preserve communication, a proper mechanism must be

designed to ensure consistency among legitimate nodes through reconfigurations.

Once the reconfiguration model has been defined, it is possible to design a recon-

figuration strategy able to select the reconfiguration granularity and the specific

configuration to activate depending on given quality requirements. In the follow-

ing sections we discuss about security level evaluation and security metrics, that

constitute the fundamental parameter considered by the reconfiguration strategy.

2.2.2 Security Level Evaluation

In this section, we will formalize the notion of level of security associated with a

node/network configuration, and will show its dependency on time. Based on the

analysis of security and efficiency requirements, we will later define the reconfig-

uration function, aimed at preserving or increasing the level of security provided

by a node or a network.

The security of complex systems depends on many technical and organizational

issues that must be properly addressed. The need for a clear definition and se-

lection of security rules has led system administrators to set up security policies

trying to adopt formal approaches to describe system security configurations. In

An MTD approach to secure resource-constrained distributed devices 17

spite of the ambiguity of such policies, a common approach to evaluate a system’s

security is through evaluation of its security policy. At present, such an evalua-

tion is performed by hand whenever enterprises endeavor to extend their trusted

domain and cooperate [18].

This approach also includes the well known standards as Common Criteria and

TCSEC [19, 20], that are very suitable to assess and audit the security level pro-

vided by a company, by a specific procedure or, in general, by a system. The

Common Criteria (CC) for Information Technology Security Evaluation (Common

Criteria or CC) [19] are an internationally approved set of standard for computer

security certification. They are used by Government customers in the USA and

the NATO community along with other organizations, particularly in the pub-

lic sector, to determine the level of security and assurance of various technology

products. However, the assurance levels provided by CC (from EAL1 to EAL7)

do not measure the security of the system itself, but simply state at what level

the system was tested, and do not find a direct application in our approach.

Defining a quantitative measure of the level of security provided by a system is a

complex task. Several security metrics have been proposed in literature, mostly

based on the analysis of attack graphs or on risk quantification.

In [21], the authors present a stochastic model for quantifying security of networked

systems. A vulnerability graph is used to abstract a networked system: a vertex

may represent a vulnerability or a system with possibly multiple vulnerabilities,

and an edge captures the relation that the exploitation of one vulnerability could

lead to the exploitation of the other. A stochastic process (specifically, a renewal

process) is used to model the evolution of a randomly picked vertex: each cycle of

the renewal process is composed of the time interval corresponding to the secure

state, and the time interval corresponding to the compromised state. The security

metric used is ”‘the probability that a randomly picked vertex is compromised

when the system enters its steady state”’; the authors aim to capture the impact

of the state of the neighbors of a node on its own state, because a node may get

compromised through an attack that is launched from one or multiple neighbors.

An MTD approach to secure resource-constrained distributed devices 18

Barth et al. in [22] study the efficacy of security reactive strategies, considering

a game-theoretic model with a strategic attacker who responds to the defenders

strategy. They make worst case assumptions about the attacker (she holds com-

plete knowledge of the defenders strategy and is not required to act rationally),

and assume that the defender can observe the attackers past actions. Authors

evaluate the defenders strategy by measuring the attackers cumulative return-on-

investment, the return-on-attack (ROA). The focus is on defenders who seek to

reduce the attackers incentives for attacking the enterprise. Authors compare the

payoff the attacker receives from her attack with the cost of performing it.

The Common Vulnerability Scoring System (CVSS)[23] is a widely used and well-

established standard for classifying the severity of security vulnerabilities. It

provides a universal open and standardized method for rating IT vulnerabilities:

CVSS consists of 3 groups of metrics: Base, Temporal and Environmental. Each

group produces a numeric score ranging from 0 to 10, and a Vector, a compressed

textual representation that reflects the values used to derive the score. The Base

group represents the intrinsic qualities of a vulnerability. The Temporal group

reflects the characteristics of a vulnerability that change over time. The Environ-

mental group represents the characteristics of a vulnerability that are unique to

any user’s environment. A final score is computed by combining the score of each

group. Generally, the base and temporal metrics are specified by vulnerability

bulletin analysts, security product vendors, or application vendors because they

typically have better information about the characteristics of a vulnerability than

do users. The environmental metrics, however, are specified by users because they

are best able to assess the potential impact of a vulnerability within their own

environments.

In [24] Ahmed et al. propose a novel security metric framework that identifies

and quantifies objectively the most significant security risk factors, which include

existing vulnerabilities, historical trend of vulnerability of the remotely accessible

services, prediction of potential vulnerabilities for any general network service and

their estimated severity and finally policy resistance to attack propagation within

the network. Security is measured based on two critical risk aspects - the risk of

An MTD approach to secure resource-constrained distributed devices 19

having a successful attack and the risk of this attack being propagated within the

network.

Finally, Jajodia et al. present in [25] a novel quantitative metric for the security

of computer networks that is based on an analysis of attack graphs. The metric

measures the security strength of a network in terms of the strength of the weakest

adversary who can successfully penetrate the network. They present an algorithm

that computes the minimal sets of required initial attributes for the weakest ad-

versary to possess in order to successfully compromise a network, given a specific

network configuration, set of known exploits, a specific goal state, and an attacker

class.

All the above metrics are generally hard to link to the adopted definition of config-

uration, that is centered on the mechanisms that are available to enforce a subset

of security requirements. For this reason, we adopt a different metric, based on

the coverage of a set of known attacks.

An attack could have several objectives, such as physically taking possession of

a node, interfering with communication at the physical level, exploiting software

vulnerabilities to take control of a node, disturb network operation at routing/ap-

plication level or intercept sensitive data. In this discussion we are interested

in attacks aimed at interfering, steering or eavesdropping communications at the

application layer among nodes, and at exploiting vulnerabilities of the firmware

installed on nodes.

Let Threats define the set of threats of interest, belonging to the above discussed

set of attacks. A configuration c is said to cover a threat t ∈ Threats, if either the

cryptosystem implemented at the security layer or the specific firmware version

running on the node include mechanisms to protect the node from such threat.

Once the admissible configurations and the attacks of interest have been identi-

fied, it is possible to build an Attack Coverage Table, that helps define the levels

of security provided by each configuration [26]. Table 2.1 shows an example of at-

tack coverage table relative to configurations {c1, c2, c3, c4}, under the hypothesis

that three attacks of interest have been identified, namely AttackA, AttackB and

An MTD approach to secure resource-constrained distributed devices 20

Conf Attack A Attack B Attack C SL

c1 × L1

c2 × × L2

c3 × × × L3

c4 × × L2

Table 2.1: An example of Attacks Coverage Table

AttackC. An increasing level of security (from L1 to L4 in the example) can be

assigned to configurations, based on the risk associated with the attacks and their

coverage properties.

Coverage can be defined either as a ON/OFF property (that is an attack is covered

or uncovered), or in terms of the degree of satisfaction of specific requirements

(e.g. authentication, integrity, confidentiality, key distribution...), using a scoring

system (similar to CVSS for vulnerabilities).

The level of security associated with a configuration could simply depend on the

number of covered threats, or it could be set depending on the risk associated

with each threat, either in a static way (the risk associated with a threat is set

at deployment and remains unchanged for the entire operation of the network) or

dynamically (the risk associated with a threat changes dynamically during network

operation depending on current conditions and possible detection events).

2.2.3 Security level dependency on time

As already said, the level of security provided by a configuration depends on

the implemented cryptosystem (cryptographic scheme, algorithms and keys) at

the security layer and the installed firmware version at the physical layer, and is

characterized by an intrinsic value that quantifies the effort needed by an attacker

to break it. Indeed, the more a system configuration is exposed to malicious

observers, the more the actual level of security decreases; for this reason, the

security level is a monotonically decreasing function of time, having its maximum

in the intrinsic value associated with the particular configuration.

An MTD approach to secure resource-constrained distributed devices 21

L1

L2

L3

T0 T1 T2 t

Security
level

C1 C2 C3

C1 C2 C3

reconf reconf

Figure 2.2: Level of security through reconfigurations

As graphically illustrated in Figure 2.2, thanks to reconfiguration, it is possible

to avoid that the level of security goes below a certain threshold, and periodically

re-start from the intrinsic value associated with the new configuration. Dually,

thanks to reconfiguration, we avoid that the probability of successfully completing

an attack increases. In fact, such probability depends on the considered type

of attack and is represented by an increasing function: the longer an attacker

can try to exploit a system, the higher the probability of success. Clearly, if

the attacker has unlimited time, eventually she will be able to break the system.

By introducing reconfiguration, as we will theoretically prove in section 5.3, the

probability of performing a successful attack is decreased, as the attacker’s effort

is nullified each time a new configuration is activated.

In the following, we will refer to the level of security as a security metric to

express how secure a configuration is with respect to the considered attacks. A

security value can be assigned, based on the attacks coverage table, both to a

single node and to a link, defined as a connection between communicating nodes.

Node security is related primarily to the physical layer (e.g., tamper resistant HW,

protected external ROM), while subnet security depends on the security layer (e.g.,

cryptographic algorithm, key length, key agreement mechanisms); as previously

discussed, both also depend on the reconfiguration mechanism itself, that is on

time.

An MTD approach to secure resource-constrained distributed devices 22

Assume that the set of available cryptosystems is a totally ordered set: given

s1,s2 ∈ SEC, there is an ordering relation between them, and s1 ≤ s2 means that

the cryptosystem s1 is not more secure than the cryptosystem s2. It is possible to

have elements in SEC that are equivalent from the security point of view, adopting

for instance the same algorithm but using different parameters (e.g. different keys).

Assume the sequence of the M configurations adopted by a node n is given

by 〈C1(n), . . . , CM(n)〉, and the sequence of time instants in which such con-

figuration were activated is 〈T1(n), . . . , TM(n)〉. Let the configurations Ci(p) =

(imi(p), apii(p), si(p)) and Ci(q) = (imi(q), apii(q), si(q)) be the i-th active con-

figurations respectively on node p and q. Note that in order for the nodes to be

able to communicate, they should either share the same security and API config-

urations, or they should be provided with a mechanism to always know what is

the configuration currently used by other legitimate nodes. Let Ti(p, q) identify

the initial time instant when the status of p and q is such that they are able to

communicate.

In the following, we will refer to a link as a directed edge (p, q) connecting two

nodes involved in a communication, with packets traveling from p to q. A link

configuration is defined as Ci(p, q) = (Ci(p), Ci(q)).

Let us refer to SL(p,q)(t) as the level of security, at time t, of a link (p, q). It is the

level of security associated with the cryptosystem used to secure data flow from p

to q, denoted with si(p, q). With SLp(t) we identify the level of security of node

p, depending on its physical configuration imi(p) and on time.

Definition 2.1 (Level of security of a link). According to the previous consider-

ations, the level of security SL(p,q)(t) of a link (p, q), provided by Ci(p, q) at time

t ∈ [Ti(p, q);Ti+1(p, q)], can be expressed as a function of the specific cryptosystem

adopted si(p, q) and the time elapsed since the current configuration was activated.

SL(p,q)(t) = f(si(p, q), t− Ti(p, q)) (2.3)

Definition 2.2 (Level of security of a node). Similarly, the level of security SLp(t)

of a node p can be expressed as a function of the specific firmware adopted imi(p)

An MTD approach to secure resource-constrained distributed devices 23

and the time elapsed since the current physical configuration was activated.

SLp(t) = f(imi(p), t− Ti(p)) (2.4)

Definition 2.3 (Level of security of the network). Assuming that the network is

partitioned in different subnets, each composed of nodes communicating with one

another with a certain interface (security and application layer), the overall level

of security of the network depends both on the security of nodes composing the

network, and of the different subnets, other than on time.

SLnet(t) = A ·
N−1∑
i=0

N−1∑
j=0,j 6=i

αij · SL(i,j)(t) · xij +B ·
N−1∑
i=0

βi · SLi(t) (2.5)

A and B respectively represent the relative importance of the set of links and the

set of network nodes respectively, and satisfy the following constraint: A+B = 1.

The αij represent link weights, while βi are node weights and are useful to give

more importance to critical nodes or portions of the network. They are subject to

the following constraints:

∑N−1
i=0

∑N−1
j=0,j 6=i αij = 1 and

∑N−1
i=0 βi = 1 (2.6)

The xij variables represent the existence of links and are defined as follows.

xij =

 1 if i 6= j and ∃ a link between node i and j

0 if i 6= j and @ a link between node i and j

 (2.7)

2.2.4 Reconfiguration Strategies

Once the notion of level of security associated with a configuration has been for-

malized, it is possible to define the reconfiguration strategy, that depends not only

on specific security requirements, but also on additional performance parameters.

An MTD approach to secure resource-constrained distributed devices 24

The selection of the new configuration to activate is performed by a security driven

scheduler. The scheduler can be either a centralized entity making decisions on

the global network configuration, or a decentralized component, independently

deployed on each network node, making local reconfiguration decisions.

In a centralized approach, a central entity triggers a configuration update based

on some events – e.g., timer expiration, detected security threat – and transmits

its decision to all nodes involved in communication.

In a de-centralized approach, each node is able to schedule, independently from

other nodes, when to update its own configuration. Communication among legiti-

mate nodes is preserved adopting additional mechanisms; we will give some details

about a possible reconfiguration protocol in the following chapters.

A local or global reconfiguration task can be triggered either periodically or after

the detection of an attack. In the second case, the detection of an ongoing attack

could create new security requirements, thus influencing the selection of the new

configuration. Second, each reconfiguration task is associated with a cost, rep-

resenting the effort needed to switch to the new configuration, in terms of both

energy consumption and delays introduced into network operation.

The current battery level is a fundamental parameter to decide about the new con-

figuration: for example, if the node battery is low, a reconfiguration may not be

possible in practice. Let Battery = {lo,med, hi} be the set of possible battery lev-

els of a node. As for performance, the distributed application running on the net-

work may have specific requirements with respect to the delays that can be toler-

ated when switching among different configurations. Delay = {restart tolerated,

restart not tolerated} is an example of the delay allowance levels.

The node reconfiguration function can be denoted as:

node reconf : Cnode × L× L×Battery ×Delay × Threats→ Cnode (2.8)

where the input arguments are respectively: the current configuration ccurr(i) ∈

Cnode, the current level of security Lcurr(i) ∈ L, the desired level of security

An MTD approach to secure resource-constrained distributed devices 25

Lnew(i) ∈ L, the current battery level b(i)

inBattery, an indication of the delay allowance level d(i) ∈ Delay, and a detected

alert threat(i) ∈ Threats.

The network reconfiguration function is similarly defined as:

net reconf : Cnet × L× L×Delay → Cnet (2.9)

Chapter 3

A case study: WSN security

In this chapter, we address the main security issues arising in networks composed

of resource-constrained devices, showing that providing high levels of security in

those networks is a complex and challenging task, due to the inescapable trade-off

among security and performance. Even if most of the considerations apply to a

wide range of constrained architectures, in order to be able to refer to real appli-

cations, we will explicitly refer to Wireless Sensor Networks. In this chapter in

particular, the peculiar HW/SW features of sensor nodes are described, highlighting

the main consequent challenges for security and performance, and the most com-

mon attacks against WSNs are presented, along with some of the most relevant

security solutions proposed in the literature.

3.1 Wireless Sensor Networks: an overview

Wireless Sensor Networks (WSNs) are usually composed of several sensor nodes

(also called motes), typically self-powered and provided with simple sensing and

forward capabilities, and one or more base stations (BS), often represented by more

powerful devices that act as gateways towards the external world. A high-level

monitoring application usually interacts with the BSs, by sending them commands

or queries, that are spread into the network through radio links.

26

A case study: WSN security 27

A sensor node is composed of several parts: a radio transceiver with an internal

antenna or connection to an external antenna, a microcontroller, an electronic

circuit for interfacing with the sensors and an energy source, usually a battery or

an embedded form of energy harvesting.

TinyOS [27] is the most commonly adopted operating system for WSNs. TinyOS

applications and the OS itself are built by connecting so called components,

that represent functional building blocks such as communication protocols, de-

vice drivers, or data analysis modules. During the default compilation process of

TinyOS, these building blocks are converted into a monolithic, static binary, to

enable code optimization and ensure a small memory footprint.

Sensor nodes typically have a small form factor with a limited amount of bat-

tery power, are equipped with small programming memories and microprocessor

boards with limited computational capabilities. The communication range of sen-

sor nodes is also limited, both because of technical constraints and by the need to

conserve energy; sensor nodes are prone to failure due to loss of power, and are

often left unattended because they are typically deployed in hostile and harmful

environments.

A typical monitoring system is made of different sensor networks that can be

heterogeneous in the technology aspects, in the data formats, in synchronization

and localization standards and so on. They can be connected in different ways

and their data are elaborated by the same application to enrich the knowledge of

observed complex phenomena. As illustrated in Figure3.1, such an architecture

can be considered as structured into two main layers, namely the sensor network

layer and the distributed application layer.

The sensor network layer can be further divided into two levels:

• Physical level: is responsible of the processing of the locally generated data

at the node level.

• Transport level: controls the communication between the nodes of the net-

work.

A case study: WSN security 28

The application layer deals with the fusion and high level management of the data

sensed by the different heterogeneous networks; it can be considered as structured

into two levels:

• Integration level: is responsible of the integration of data belonging to dif-

ferent sensor networks; it typically enforces a translation in a common data

model.

• User level: executes the user distributed applications, which typically query

the underlying networks and sensor features and manipulate the retrieved

results for aggregation and decision purposes.

Figure 3.1: A monitoring system layered view

3.2 WSN security issues

WSNs are widely used in several application domains as environmental moni-

toring, detection and classification of objects in military and civil settings, agri-

culture procedures, automotive and health monitoring. Their decentralized and

self-organizing nature makes the deployment very easy and this facilitates their

A case study: WSN security 29

adoption in any context without requiring the existence of any supporting infras-

tructure. Furthermore, they are widely employed in critical scenarios and security

issues are becoming a fundamental concern to be addressed by means of proper

security policies and mechanisms.

Referring to the Figure3.1 in the previous section, security issues arise at all the

architectural levels depicted in it: at the application layer, data retrieved from the

different networks are typically processed in a distributed manner, thus raising

well-known issues dealing with secure network communication and access control;

as this kind of processing is usually done by PC-class devices, the application layer

does not suffer of the problems related to the limited resources of sensor nodes,

and the well-known security protocols can be directly applied.

As for the sensor network layer : at the transport level it is necessary to secure

data exchanged between nodes, and this can be achieved with the adoption of

proper security protocols and mechanisms that take in consideration the limited

resources; at the physical level, it is necessary to provide mechanisms for protecting

nodes against physical tampering and DOS and jamming attacks.

3.3 Security vulnerabilities in WSNs

The wireless nature of WSNs communications makes it possible to wage different

types of attacks ranging from passive eavesdropping to active interfering. In this

section we present a classification of WSN security threats, based on recent surveys

[28–30].

3.3.1 Attacks classification based on attacker capabilities

External Vs. Internal. External attacks are waged by nodes that do not

belong to the WSN, while internal attacks occur when legitimate nodes of a WSN

are compromised and behave in unintended or unauthorized ways.

A case study: WSN security 30

Mote-class Vs. Laptop-class. In mote-class attacks, an adversary attacks

a WSN by using a few nodes with similar capabilities to the network nodes; in

laptop-class attacks, an adversary can use more powerful devices (e.g., a laptop) to

attack a WSN. These devices have greater transmission range, processing power,

and energy reserves than the network nodes.

3.3.2 Attacks classification based on attackers goals

Eavesdropping. In a sensor network, the base station typically sends commands

and queries to sensors, that monitor specific physical phenomena and report to

the base station accordingly. Eavesdropping threatens confidentiality as it aims

at gaining unauthorized access to data contained in exchanged packets.

Node capture. This attack aims at compromising a network node by tampering

with the hardware to extract the program code, data and keys stored within a

sensor node, or by attempting to load the attacker program in the compromised

node. It also involves breaking the software running on the sensor nodes. Once a

node is captured, the attacker becomes an insider and can use the node to perform

internal attacks.

Interruption. This attack threatens service availability, as it aims at making

communication links in sensor networks become lost or unavailable. The main

purpose is to launch denial-of-service (DoS) attacks.

Modification. An unauthorized party not only accesses the data but also tampers

with it. This threatens message integrity. The main purpose is to confuse or

mislead the parties involved in the communication protocol.

Fabrication. An adversary injects false data and compromises the trustworthi-

ness of information. This threatens message authenticity. The main purpose is

to confuse or mislead the parties involved in the communication protocol. This

operation can also facilitate DOS attacks, by flooding the network.

A case study: WSN security 31

Replay existing messages. This operation threatens message freshness. Again,

the main purpose of this operation is to confuse or mislead the parties involved in

the communication protocol that is not time-aware.

Protocol-specific compromise. This includes all the attacks on information

in transit, and also includes deviating from protocols: when the attacker is, or

becomes an insider of the network, and the attackers purpose is not to threaten

the service availability, message confidentiality, integrity and authenticity of the

network, but to gain an unfair advantage for itself in the usage of the network,

the attacker manifests selfish behaviors, behaviors that deviate from the intended

functioning of the protocol.

3.3.3 Attacks classification based on protocol stack

WSN attacks can be classified based on the layer in the protocol stack that they

are targeted at. As classical wireless networks, WSN architectures follow the OSI

Model, consisting in five layers: application layer, transport layer, network layer,

data link layer and physical layer.

3.3.3.1 Physical Layer

The physical layer is responsible for frequency selection, carrier frequency genera-

tion, signal detection, modulation, and data encryption. Sensor networks typically

operate in hostile outdoor environments. In such environments, the small form fac-

tor of the sensors, coupled with the unattended and distributed nature of their

deployment make them highly susceptible to physical attacks, i.e., threats due to

physical node destructions.

Attackers can extract cryptographic secrets, tamper with the associated circuitry,

modify programming in the sensors, or replace them with malicious sensors under

the control of the attacker.

Jamming: This is one of the Denial of Service attacks in which the adversary

attempts to disrupt the operation of the network by broadcasting a high-energy

A case study: WSN security 32

signal. Jamming attacks in WSNs can be waged in different ways, that is by

corrupting packets as they are transmitted, sending a constant stream of bytes into

the network to make it look like legitimate traffic, randomly alternating between

sleep and jamming to save energy, and transmitting a jam signal when it senses

traffic.

There are several attack techniques:

• Spot Jamming: the attacker directs all its transmitting power on a single

frequency that the target uses with the same modulation and enough power

to override the original signal. Spot jamming is usually very powerful, but

since it jams a single frequency each time it may be easily avoided by changing

to another frequency.

• Sweep Jamming : a jammer shifts rapidly from one frequency to another.

While this method of jamming has the advantage of being able to jam mul-

tiple frequencies in quick succession, it does not affect them all at the same

time, and thus its effectiveness is limited.

• Barrage Jamming : a range of frequencies is jammed at the same time.

Its main advantage is that it is able to jam multiple frequencies at once

with enough power to decrease the SNR of the enemy receivers. However as

the range of the jammed frequencies grows bigger the output power of the

jamming is reduced proportionally.

Algorithms that combine statistically analyzing the received signal strength indi-

cator (RSSI) values, the average time required to sense an idle channel (carrier

sense time), and the packet delivery ratio (PDR) techniques can reliably identify

jamming. As a defense against jamming attack, spread-spectrum techniques for

radio communication are adopted.

Radio interference. In this type of attack the adversary produces large amounts

of interference either intermittently or persistently. To handle this issue it is

possible to use symmetric key algorithms in which the disclosure of the keys is

delayed by some time interval.

A case study: WSN security 33

Tampering or destruction. Given physical access to a node, an attacker can

extract sensitive information such as cryptographic keys or other data on the node.

One defense to this attack involves tamper-proofing the nodes physical package,

adopting for example Self Destruction (tamper-proofing packages) devices. In

such devices, whenever somebody accesses the sensor nodes physically the nodes

vaporize their memory contents and this prevents any leakage of information.

3.3.3.2 Data Link Layer

The link layer is responsible for multiplexing of data-streams, data frame detection,

medium access control, and error control. Attacks at this layer include purposefully

created collisions, resource exhaustion, and unfairness in allocation.

Continuous Channel Access (Exhaustion). A malicious node disrupts the

Media Access Control protocol, by continuously requesting or transmitting over

the channel. This eventually leads a starvation for other nodes in the network with

respect to channel access. One of the countermeasures to such an attack is Rate

Limiting to the MAC admission control, such that the network can ignore excessive

requests, thus preventing the energy drain caused by repeated transmissions. A

second technique is to use time-division multiplexing where each node is allocated

a time slot in which it can transmit.

Collision. This is very much similar to the continuous channel attack. A collision

occurs when two nodes attempt to transmit on the same frequency simultaneously.

When packets collide, a change will likely occur in the data portion, causing a

checksum mismatch at the receiving end. The packet will then be discarded as

invalid. A typical defense against collisions is the use of error-correcting codes.

Unfairness. Repeated application of these exhaustion or collision based MAC

layer attacks or an abusive use of cooperative MAC layer priority mechanisms,

can lead into unfairness. This kind of attack is a partial DOS attack, but results

in marginal performance degradation. A defensive measure against such attacks

is the usage of small frames, so that any individual node seizes the channel for a

smaller duration only.

A case study: WSN security 34

Interrogation. Exploits the two-way request-to-send/clear to send (RTS/CTS)

handshake that many MAC protocols use to mitigate the hidden-node problem.

An attacker can exhaust a nodes resources by repeatedly sending RTS messages

to elicit CTS responses from a targeted neighbor node. To thwart such type of

attacks, a node can limit itself in accepting connections from same identity or use

anti-replay protection and strong link-layer authentication.

Sybil Attack. In this attack a single malicious node assumes several identities,

known as Sybil nodes. Many MAC protocols adopt voting for finding the better

link for transmission from a pool of available links. The Sybil Attack could be

used to steer the voting process.

3.3.3.3 Network Layer

The major function of this layer is routing. This layer presents many challenges,

due to limited power, memory and computational capability resources, and is

subject to several attacks.

Sinkhole. In a Sinkhole attack a compromised node tries to draw all or as much

as possible traffic from a particular area, by making itself look attractive to the

surrounding nodes with respect to the routing metric. As a result, the adversary

manages to attract all traffic that is destined to the base station. By taking part

in the routing process, she can then launch more severe attacks, like selectively

forwarding, modifying or even dropping the packets coming through.

Hello Flood. This attack exploits Hello packets that are required in many pro-

tocols to announce nodes to their neighbors. A node receiving such packets may

assume that it is in radio range of the sender. A laptop-class adversary can send

this kind of packet to all sensor nodes in the network, so that they believe the com-

promised node belongs to their neighbors. This causes a large number of nodes

sending packets to this imaginary neighbor and thus into oblivion. Authentication

is the key solution to such attacks.

A case study: WSN security 35

Selective Forwarding / Black Hole Attack. WSNs are usually multi-hop net-

works and hence based on the assumption that the participating nodes will forward

the messages faithfully. Malicious or attacking nodes can however refuse to route

certain messages and drop them. If they drop all the packets through them, then

it is called a Black Hole Attack. However if they selectively forward the packets,

then it is called selective forwarding. To overcome this, Multi-path routing can

be used in combination with random selection of paths to destination, or braided

paths can be used which represent paths which have no common link or which do

not have two consecutive common nodes, or use implicit acknowledgments, which

ensure that packets are forwarded as they were sent.

Sybil Attack. A previously said, in this attack, a single node presents multiple

identities to all other nodes in the WSN. This may mislead other nodes, and hence

routes believed to be disjoint with respect to node can have the same adversary

node. A countermeasure to Sybil Attack is by using a unique shared symmetric

key for each node with the base station.

Wormhole Attacks. An adversary can tunnel messages received in one part of

the network over a low latency link and replay them in another part of the network.

This is usually done with the coordination of two adversary nodes, where the nodes

try to understate their distance from each other, by broadcasting packets along

an out-of-bound channel available only to the attacker. To overcome this, the

traffic can be routed to the base station along the geographically shortest path,

or it is possible to use very tight time synchronization among the nodes, which is

infeasible in practical environments.

Spoofed, Altered, or Replayed Routing Information. The most direct at-

tack against a routing protocol in any network is to target the routing information

itself while it is being exchanged between nodes. An attacker may spoof, alter,

or replay routing information in order to disrupt traffic in the network. These

disruptions include the creation of routing loops, attracting or repelling network

traffic from select nodes, extending and shortening source routes, generating fake

error messages, partitioning the network, and increasing end-to-end latency. A

A case study: WSN security 36

countermeasure against spoofing and alteration is to append a message authen-

tication code (MAC) after the message. Efficient encryption and authentication

techniques can defeat spoofing attacks.

Acknowledgment Spoofing. Routing algorithms used in sensor networks some-

times require Acknowledgments to be used. An attacking node can spoof the

Acknowledgments of overheard packets destined to neighboring nodes in order to

provide false information to those neighboring nodes. The most obvious solution

to this problem would be authentication via encryption of all sent packets and also

packet headers.

Misdirection. This is a more active attack in which a malicious node present

in the routing path can send the packets in wrong directions through which the

destination is unreachable. Instead of sending the packets in correct direction the

attacker misdirects them towards one node that can thus become the victim of

a DOS attack. If it gets observed that a node’s network link is getting flooded

without any useful information then the victim node can be scheduled into sleep

mode for some time to over come this.

Internet Smurf Attack. In this type of attack the adversary can flood the victim

node’s network link. The attacker forges the victim’s address and broadcasts

echoes in the network and also routes all the replies to the victim node. This

way the attacker can flood the network link of the victim. If it gets observed that

a node’s network link is getting flooded without any useful information then the

victim node can be scheduled into sleep mode for some time to over come this.

Homing. It uses traffic pattern analysis to identify and target nodes that have

special responsibilities, such as cluster heads or cryptographic-key managers. An

attacker then achieves DoS by jamming or destroying these key network nodes.

Header encryption is a common prevention technique. Using dummy packets

throughout the network to equalize traffic volume and thus prevent traffic analysis.

Unfortunately, this wastes significant sensor node energy, so it can be sued only

when preventing traffic analysis is of utmost importance.

A case study: WSN security 37

3.3.3.4 Transport Layer

The function of this layer is to provide reliability and congestion avoidance to the

communication. The attacks that can be launched on the transport layer in a

WSN are flooding attack and de-synchronization attack.

Flooding. An attacker may repeatedly make new connection requests until the

resources required by each connection are exhausted or reach a maximum limit.

One proposed solution to this problem is to require that each connecting client

demonstrates its commitment to the connection by solving a puzzle. As a defense

against this class of attack, a limit can be put on the number of connections from

a particular node.

De-synchronization Attacks. In this attack, the adversary repeatedly forges

messages to one or both end points which request transmission of missed frames.

Hence, these messages are again transmitted and if the adversary maintains a

proper timing, it can prevent the end points from exchanging any useful infor-

mation. This will cause a considerable drainage of energy of legitimate nodes in

the network in an endless synchronization-recovery protocol. A possible solution

to this type of attack is to require authentication of all packets including con-

trol fields communicated between hosts. Header or full packet authentication can

defeat such an attack.

3.3.3.5 Application Layer

This layer is responsible for traffic management, and provides software for different

applications that translate the data in an understandable form or send queries to

obtain certain information.

Overwhelm attack. An attacker might attempt to overwhelm network nodes

with sensor stimuli, causing the network to forward large volumes of traffic to a

base station. This attack consumes network bandwidth and drains node energy.

We can mitigate this attack by carefully tuning sensors so that only the specifi-

cally desired stimulus, such as vehicular movement, as opposed to any movement,

A case study: WSN security 38

triggers them. Rate-limiting and efficient data-aggregation algorithms can also

reduce these attacks effects.

Path-based DOS attack. It involves injecting spurious or replayed packets into

the network at leaf nodes. This attack can starve the network of legitimate traffic,

because it consumes resources on the path to the base station, thus preventing

other nodes from sending data to the base station. Combining packet authentica-

tion and anti-replay protection prevents these attacks.

Deluge (reprogram) attack. Network-programming system let you remotely

reprogram nodes in deployed networks If the reprogramming process is not secure,

an intruder can hijack this process and take control of large portions of a network.

3.4 Existing approaches to securing a WSN

As previously said, WSN nodes are typically provided with constrained processing

and storage capabilities and limited energy resources; they are prone to failures

due to harsh deployment environments and are easy to be compromised due to typ-

ically unattended operations. Finally, a WSN is often characterized by a dynamic

topology due to node joining, mobility or failure, thus introducing further secu-

rity and reliability issues. The specific features of the sensor nodes make difficult

the direct application of the existing security approaches to the area of wireless

sensor networks: most security protocols are based on cryptographic operations,

which massively involve the adoption of keys and complex mathematical functions

that require dedicated computational resources and turn out to be critical from a

performance and power consumption point of view.

The security of a cryptographic system relies mainly on the secrecy of the key it

uses. Keys for these cryptographic operations must be set up by communicating

nodes before they can exchange information securely. Key management schemes

are mechanisms used to establish and distribute various kinds of cryptographic

keys in the network, such as individual keys, pair wise keys, and group keys.

A case study: WSN security 39

Key management is an essential cryptographic primitive upon which other security

primitives are built. If an attacker can find the key, the entire system is broken. In

fact, a secure key management scheme is the prerequisite for the security of these

primitives, and thus essential to achieving secure infrastructure in sensor networks.

In sensor networks end-to-end encryption is impractical because of large number

of communicating nodes and each node is incapable of storing large number of

encryption keys. Therefore hop-by-hop encryption mechanism is usually used in

which each sensor node stores only encryption keys shared with its immediate

neighbors.

So, the main problem to face with when setting up a secure communication be-

tween nodes is the way cryptographic keys are established at each node. There

are two main well-known mechanisms to handle this problem: in Symmetric Key

Cryptography (SKC) a unique secret shared key is used for both encrypting and

decrypting messages, while in Public Key Cryptography (PKC) each node man-

ages a couple of keys.

The process by which public key and symmetric key cryptography schemes should

be selected is based on the following criteria:

• Energy: how much energy is required to execute the encrypt/decryption

functions

• Program memory: the memory required to store the encryption/decryption

program

• Temporary memory: the required RAM size or number of registers required

temporarily when the encryption/decryption code is being executed

• Execution time: the time required to execute the encryption/decryption code

• Program parameters memory: the required memory size to save the required

number of keys used by the encryption/decryption function

Due to WSN nodes constraints, asymmetric cryptography is often too expensive for

many applications. Thus, a promising approach is to use more efficient symmetric

A case study: WSN security 40

cryptographic alternatives. However, symmetric cryptography is not as versatile

as public key cryptographic techniques, which complicates the design of secure

applications. Applying any encryption scheme requires transmission of extra bits,

hence extra processing, memory and battery power, which are very important

resources for the sensors longevity. Applying the security mechanisms such as

encryption could also increase delay, jitter and packet loss in WSNs.

Several implementations of Symmetric Key Cryptography (SKC) algorithms in

WSN have been proposed in literature (TinySec [31], MiniSec [32], ZigBee [33]

and SNEP [34]), thanks to their low computational costs that make them well

suited for realization on sensor devices. Even if symmetric schemes are very at-

tractive for their energy and memory efficiency, they require complex and resource

expensive key distribution and management protocols, resulting in a heavy traffic

in the network and in complex and not scalable architectures. Moreover, symmet-

ric cryptography only fulfills confidentiality requirements, while not considering

other security issues such as authentication and integrity. As a matter of fact, an

important security requirement which arises within the sensor network domain is

the broadcast authentication, that is the capacity of a sender to broadcast mes-

sages to multiple nodes in an authenticated way, which can be achieved only via

asymmetric schemes.

The use of asymmetric schemes in sensor networks has been usually considered

as “nearly impossible” because they are power consuming and require a large

amount of computational and storage resources. However, such schemes are very

attractive, because they can ensure a higher degree of security while guaranteeing

a greater flexibility and manageability than symmetric ones: thanks to them,

any two sensors can establish a secure channel between themselves; moreover, as

nodes do not share the same common key for encrypting/decrypting messages,

the “capture” of some sensor devices will not affect the security of others. Rivest-

Shamir-Adelman (RSA) algorithm [35] and Elliptic Curve Cryptography (ECC)

[5] are among the most well known public key algorithms used in security systems,

the latter being an approach to public-key cryptography based on the algebraic

structure of elliptic curves over finite fields.

A case study: WSN security 41

Many protocols have been developed based on the ECC operations, as the Elliptic

Curve Diffie-Hellman (ECDH) key agreement technique [5], which provides two

communicating nodes with the possibility of achieving the same secret key with-

out physically exchanging it across the network, and the Elliptic Curve Digital

Signature Algorithm (ECDSA) [5] a variant of the Digital Signature Algorithm

(DSA) that operates on elliptic curve groups, which can be used for signature

generation and verification.

We analyzed some of the most recent solutions proposed in the literature to protect

data exchanged among sensor nodes, and selected two available libraries, namely

WMECC [6] and TinyPairing[7], both based on ECC, providing different levels

of security and having different resource utilization profiles. We adopted these

two libraries to build two different cryptosystems for securing data exchanged

among nodes running a reference monitoring application (details are given in the

next Chapter). The two developed cryptosystems were made available to the

reconfiguration framework to build a reconfigurable security layer.

The next Chapter gives an overview of the chosen libraries, and presents and

discusses the analysis conducted on their performance, energy consumption and

intrinsic security level.

Chapter 4

Building a reconfigurable security

layer for WSNs

This chapter describes two different possible configurations of the security layer

of a WSN, based on the WM-ECC and TinyPairing libraries respectively. Such

libraries have been selected among the most recent solutions based on ECC and

were adopted to secure data exchanged among nodes running a reference moni-

toring application. The chapter presents and discusses the analysis conducted on

performance, consumption and intrinsic security of these two cryptosystems.

4.1 The adopted security layer configurations

In this section we will give some details about the two cryptosystems (WM-ECC

and TinyPairing) adopted to secure our reference monitoring application and used

as the available configurations at the security layer in our reconfiguration strategy.

4.1.1 The WM-ECC-based cryptosystem

The first considered cryptosystem is based on the WM-ECC library [6], a publicly

available open source implementation of a 160-bit ECC cryptosystem targeted to

42

Building a reconfigurable security layer for WSNs 43

MICAz, TelosB and Tmote Sky platforms, based on recommended 160-bit SECG

elliptic curve parameters [secp160r].

Fundamental ECC operations are based on large integer arithmetic operations

over finite fields as multiplication, division and modular reduction; in order to

improve the performances of encrypting/decrypting operations, authors of WM-

ECC library have exploited several optimizations and implemented parts of such

operations directly in assembly language, in order to have a complete control of

the register utilization.

WM-ECC provides support for all the ECC operations and gives an optimized

implementation of the ECDSA protocol for digital signature generation and veri-

fication, relying upon techniques such as sliding-window and Shamir trick; it does

not provide an implementation of the ECDH protocol, which we supplied by ex-

ploiting the basic ECC primitives and the main TinyOS components.

WM-ECC has been proved to be more computationally efficient than its ma-

jor counterparts like TinyECC and EccM2.0: for example, on MICAz platform,

TinyECC is 42% slower in signature generation, and on TelosB platform, the per-

formance gap increases to 180%.

From an implementation point of view, WM-ECC is composed of 3 modules:

• Bint - provides optimized subroutines for large integer operations;

• ECC - based on the Bint module, implements all ECC operations;

• ECDSA - provides digital signature generation and verification primitives.

The WM-ECC library has been used to:

• implement the ECDH protocol for achieving a common secret key to be used

for establishing a secure communication channel between the master and

each of the motes;

• provide digital signature generation at the master side and verification at the

mote side, by using the ECDSA primitives;

Building a reconfigurable security layer for WSNs 44

The secret shared key achieved via the ECDH protocol is used as a symmetric key

for encrypting and decrypting the messages exchanged between the master (base

station) and the motes with the Skipjack cypher [36], characterized by 80 bit keys

and 64 bit blocks. The cypher has been used in such a way that the motes encrypt

the result messages’ payload after verifying the signature sent by the master, and

the master decrypts such messages in order to get the results and forward them

via the UART interface to the overlying application.

Let’s first consider the implementation of the key agreement protocol. In order

to implement the ECDH protocol the EcdhC component has been added to the

WM-ECC library: this component uses the key agree function implemented in the

EcdhM module and accessible via the Ecdh interface; it is connected to the EccC

component, providing all the ECC operations, and to the SHA1M ncsu module,

which provides the implementation of SHA-1 used by the Key derivation function

(KDC).

The main steps performed by the protocol are the following:

1. after an initialization phase, the master generates a random key KM in the

[1,n-1] interval, and performs a scalar product to calculate its own public

point Q1=KM*P, where P is the base point on the curve.

2. at the same time the mote, after an initialization phase, generates a random

key Km in the [1,n-1] interval, and calculate its own public point Q2=Km*P.

3. the master inserts Q1 into a message and sends such message to the mote.

4. the mote receives the message from the master, extracts Q1 and performs

a scalar product in order to obtain the secret S=km*Q1; then it sends its

public point to the master in a message.

5. the master receives the message from the mote, extracts Q2 and calculates

the shared secret S=KM*Q2.

As for digital signature operations, we used the ECDSA primitives in order that:

Building a reconfigurable security layer for WSNs 45

1. the master node, at the arrival of a query from the UART interface, con-

structs a query packet with the received parameters, digitally signs it and

then broadcasts it to the motes via the radio channel;

2. when receiving a query packet, a mote first verifies the digital signature and,

if it turns to be successful, starts to sample the required physical values

according to the query parameters; the retrieved results are collected and in-

serted into the payload of the response packet, which is previously encrypted

before being sent back to the master with the secret key obtained after the

ECDH protocol.

3. the master receives the response packet, extract its payload and decrypts it

by using the shared secret obtained after the ECDH protocol. Then, the

master returns the result values to the querying wrapper through the UART

interface.

The encryption/decryption operations are carried out by means of the Skipjack

cypher, realized by a custom TinyOS component implementing the BlockCypher

TinyOS interface; such cypher uses the key derived by the ECDH protocol as the

cryptographic key for encrypting the communication channel between the master

and the motes. In order to reduce the overhead resulting by the cryptographic

operations, we have chosen to encrypt only response packets sent by the motes to

the master, and let only the master do decrypting operations to get the requested

data.

We developed two different applications, respectively for the master and the mote

side. The master application has been implemented so that it starts the ECDH

protocol (step 1) when a timer expires: at the system setup a timer starts to

run, and after 5 seconds an event is generated, handled by the master application

which will calculate the master’s public point and send it to the motes. The master

application has been configured in order to digitally sign outgoing query packets

addressed to the motes and decrypt the incoming response packets before sending

the results to the wrapper. The mote application in turn, has been configured in

order to be able to perform the ECDH protocol initiated by the master, verify the

Building a reconfigurable security layer for WSNs 46

digital signature of the incoming query packets, and encrypt all outgoing response

packets.

In Figure 4.1 the execution of a query in a network, secured with the presented

WM-ECC-based cryptosystem, is shown: at the system startup (red box in figure)

the master node starts the ECDH protocol in order to achieve a common shared

secret with each of the motes, then digitally signs every outgoing query packet

and decrypts the incoming response packets before sending the results to the high

level querying application. The mote in turn, is able to verify the digital signature

of the incoming query packets, and to encrypt all outgoing response packets.

Figure 4.1: Query execution in a network secured with the WM-ECC-based cryp-
tosystem

4.1.2 The TinyPairing-based cryptosystem

TinyPairing [7] is an open-source pairing-based cryptographic library for wireless

sensors, designed to reduce memory occupancy (both ROM and RAM). It pro-

vides efficient and lightweight implementation of bilinear pairing, pairing-related

functions and associated elliptic curve arithmetic operations such as scalar multi-

plication, point addition and more, and is the most efficient pairing based NesC

implementation currently available.

Building a reconfigurable security layer for WSNs 47

In their implementation, the authors include three well-known pairing-based cryp-

tographic schemes which have been employed in some recent solutions to secure

WSNs: Boneh-Franklin Identity-Based Encryption (BF IBE) basic scheme [37],

Boneh, Lynn and Shacham’s Short Signature (BLS SS) scheme [38], and Boneh

and Boyen’s Short Signature (BB SS) scheme [39].

The entire library is written in nesC for TinyOS v2.x without using any hardware-

dependent code, so it is easy to port to most of sensor platforms. Figure 4.2 shows

the sequence of operations needed for executing a query in the TinyPairing-based

cryptosystem that we set up.

Figure 4.2: Query execution in a network secured with the TinyPairing based cryp-
tosystem

• In the pre-deployment phase (red box in figure), carried out in a protected

environment, the master node is assigned a unique 8 byte identifier based on

manufacturer and serial number information and performs two operations:

in the key setup operation it uses a randomly chosen large integer (secret

master key) and generator point to obtain a public point ; in the key extract

operation, the master key and the unique 8 byte ID are used to achieve the

master private key (dID) associated with its public ID, which will be used in

decrypting operations.

Building a reconfigurable security layer for WSNs 48

The master ID, its public point and the random generator point are sent to

each of the motes, as this information is necessary in signature verifying and

response encrypting operations.

• At the arrival of a query from the UART interface, the master builds a query

packet with the received parameters, digitally signs it with its master key

(according to the BLS SS scheme) and then broadcasts it to the motes via

the radio channel;

• When receiving a query packet, a mote first verifies the digital signature

using the master public point and generator point, achieved during the pre-

deployment phase and, if the verification turns to be successful, starts to

sample the required physical values according to the query parameters; each

retrieved sample is collected and inserted into the payload of a response

packet, which is encrypted using the master ID (according to the BF IBE

scheme) before being sent back to the master;

• The master receives the response packet, extract its payload and decrypts it

with its private key dID ; then, the master returns the result values to the

high level querying application through the UART interface.

As illustrated, the query process is very similar to the WM-ECC based protocol,

except for the key agreement phase that is more secure: only the master node

calculates key information and sends the necessary parameters to the motes in

order to let them perform cryptographic operations.

4.2 Security and Performance Analysis

The introduction of security mechanisms within a sensor network is a desirable

feature but it may introduce a very heavy overhead that must be addressed by

any sensor networks developer and deployer.

We conducted specific analysis aimed at:

Building a reconfigurable security layer for WSNs 49

• measuring and comparing performance and power consumption of the two

proposed cryptosystems

• defining the intrinsic level of security provided by each cryptosystem, based

on the security requirements they are able to ensure (static security analysis)

These information, in fact, should be taken into account by any designer to meet

her security and performance requirements.

For our experiments we adopted two different hardware platforms, commonly used

by the scientific community, and both provided by CrossBow:

• TelosB motes, provided with a MSP430, 16 bit-processor, a CC2420 ra-

dio chip, 10kB internal RAM, 48kB flash programming memory and 1024k

memory for measurements,

• MicaZ motes, based on a MPR2400, 8 bit-processor, a CC2420 radio chip,

4k byte RAM, 128k flash programming memory and 512k memory for mea-

surements.

The following sections discuss the experimental results obtained from performance,

power consumption and security level evaluation for the proposed cryptosystems.

4.2.1 Performance evaluation

In order to evaluate the performance of the two given cryptosystems, we measured

the following parameters on both hardware platform introduced in the previous

section:

• latency introduced in the whole monitoring architecture

• overhead introduced by the protocol

• resource occupation to elaborate cryptographic functions on single nodes

Details about the achieved results are given in the following.

Building a reconfigurable security layer for WSNs 50

4.2.1.1 Latency

Cryptosystem WM-ECC TinyPairing
TELOSB MICAZ TELOSB MICAZ

Initialization 1,428436 1,258555 17,083984 10,180664

Key Exchanging 1,583069 0,062666

Sign 1,49704 1,344894 8,694336 5,540033

Verify 2,24049 1,984192 30,163086 17,867188

Data Encrypting 0,001221 0,00034 27,884766 15,972656

Data Decrypting 0,001252 0,000334 13,019531 7,838867

Table 4.1: Latency in seconds

In Table 4.1 the latency introduced by the security protocols is reported and com-

pared. As illustrated, WM-ECC presents much better performance than Tiny-

Pairing, thanks to the adoption of a hybrid approach relying on a fast symmetric

cypher, compared to the asymmetric scheme adopted in TinyPairing. As expected,

increasing the security of the protocols is paid against a performance loss. From

a network designer point of view, an encryption time of abut 28 seconds (Tiny-

Pairing) implies that we cannot choose a sample period shorter than this interval,

otherwise, without buffering capabilities, we will loose samples. Clearly, this could

have a high impact on the monitoring application functional requirements.

By observing the table, it can be easily noted that signature and verification as well

as encryption and decryption operations are strongly asymmetric in computation

time for the TinyPairing cryptosystem. This is due to the specific sequence of

additional operations that are needed to implement the TinyPairing mechanism.

As for the signature verification, in fact, it requires a double call of the same

pairing function with different input parameters; as for the encryption, it requires

a sequence of different operations to initialize the ECC-based algorithm (hash-to-

point, point scalar multiplication, ...) as illustrated in [7].

Latency could be reduced by buffering some samples and encrypting them all

together (at most 4 samples in this case, as the maximum data block that can be

encrypted in a single step is 8 bytes and a single sample only occupies 2 bytes).

Building a reconfigurable security layer for WSNs 51

4.2.1.2 Packet overhead

Figure 4.3: Packet length in bytes

In Figure4.3 the packet overhead introduced by the two cryptosystems is compared

with the not secure version. In order to make the security application feasible, we

had to increase the payload length in both cases from the default 29 bytes.

In particular, for the WM-ECC based network, we sized the packet to 80 bytes

to enable the transmission of the public points and digital signatures; for the

TinyPairing based network, we sized the packet to 60 bytes for the transmission

of the encrypted packets. In general, packet size is a very crucial parameter as

this also has a bad impact on battery consumption, usually very high during the

transmission phase; it could be reduced by performing a little variation in the

protocol consisting in splitting packets in two or three portions in order to fit

smaller dimensions.

4.2.1.3 Memory occupancy

As for resource occupancy, encryption and authentication operations produce an

additional cost in terms of memory and CPU. In Figures 4.4 and 4.5 the memory

overhead is reported in terms of RAM and ROM usage respectively on master and

end-nodes.

Building a reconfigurable security layer for WSNs 52

Figure 4.4: RAM occupancy in bytes for master and mote applications

Figure 4.5: ROM occupancy in bytes for master and mote applications

As illustrated, the secure query applications imply a higher RAM and ROM usage

both on master and mote sides (even 5 times more), compared to the simple query

application without security. Anyway, this is not a problem as Telosb motes have

48K bytes of memory and other common platforms, as MicaZ, have even more

storage capabilities (128K).

As final remark, from a design point of view, the resulting values can be considered

acceptable assuming to deploy sensor nodes that only run a monitoring application

at a time, and depending on the available resources and on the security require-

ments, many solutions can be adopted based on different cryptographic schemes

and protocols.

Building a reconfigurable security layer for WSNs 53

4.2.2 Power consumption evaluation

In order to measure the power consumption associated with the two cryptosystems,

we adopted AVRORA [40], a set of simulation and analysis tools for programs

written for the AVR microcontroller produced by Atmel (installed on the Mica2

sensor platforms).

We considered separately the three phases of initialization, signing and sampling,

and measured the energy consumption associated to CPU and radio transceiver

for these phases. Results are shown in Table4.2.

Cryptosystem WM-ECC TinyPairing
CPU RADIO CPU RADIO

Initialization 2,48423E-09 5,64598E-09 2,27555E-10 1,04346E-09

Sign 1,92191E-09 6,95544E-09 1,25765E-09 4,67708E-09

Sampling 1,92203E-09 6,9554E-09 2,135E-09 7,5457E-09

Table 4.2: Power consumption in Joules

As expected, the cryptosystem based on TinyPairing is characterized by an higher

energy consumption, especially in the sampling phase, that is the most critical

one as it is performed periodically and constitutes the main operation executed

by sensor nodes.

4.2.3 Security evaluation

From the security point of view, the cryptosystem based on WM-ECC does not

authenticate the public keys, thus allowing man-in-the-middle attacks in the key

exchange phase. Moreover, sensitive data are encrypted with a symmetric cipher,

that increases vulnerability of the network.

TinyPairing instead, adopts an asymmetric scheme and is much more secure in

the initialization phase as it does not use a key exchange mechanism. As stated

in Chapter 2, the intrinsic level of security of the two configurations can be rep-

resented by an attack coverage table, identifying, for each configuration, what

attacks it is able to thwart or, dually, what requirements it is able to satisfy.

Building a reconfigurable security layer for WSNs 54

Conf Man-in-the-middle Eavesdropping Brute force Replay attack

WM-ECC non-auth key yes weak symm no
TinyPairing auth key yes asymm no

Table 4.3: Attacks Coverage Table for the considered cryptosystems

In table 4.3, coverage is not defined as an ON/OFF property, but it is defined

through a score that corresponds to the level of protection provided by the con-

figuration with respect to each considered attack.

Chapter 5

Enforcing WSN reconfiguration:

implementation details and

evaluation

This chapter first discusses some existing approaches to WSN reconfiguration and

then proposes two reconfiguration mechanisms, designed to perform security layer

and physical layer reconfiguration respectively. Finally, it discusses the theoreti-

cal and experimental analyses conducted to prove that the proposed reconfiguration

mechanisms are effective in increasing the complexity for the attacker and, conse-

quently, in decreasing the probability of completing a successful attack.

5.1 WSN reconfiguration in literature

Several reconfiguration mechanisms have been proposed for WSNs, mainly based

on network reprogramming. Embedded systems reprogramming has been widely

addressed in the literature, as it is fundamental to perform management and main-

tenance tasks – e.g., software updates, bug fixes, parameter tuning – in those ap-

plications where it is not possible or convenient to physically access and manually

reconfigure deployed nodes.

55

Enforcing WSN reconfiguration: implementation details and evaluation 56

In [41], authors provide an interesting review of reprogramming frameworks, de-

sign challenges, existing systems and approaches, and evaluation metrics for WSN.

They highlight the importance of providing algorithms and protocols that take into

account the limited resources of sensor nodes, the typical unreliability due to wire-

less channels and dynamic topology and the scalability problems, as well as the lim-

itations of the most common operating system running on sensor nodes, TinyOS: it

does not provide reliable memory allocation mechanisms or multi-threading mod-

els, and generates monolithic compiled programs so that components cannot be

separated and reprogrammed independently.

Several existing approaches for sensor network reprogramming perform a full-

image replacement, consisting of completely updating the image of the application

running on nodes.

Deluge [42] is a reliable data dissemination protocol for propagating large data

objects (larger then the RAM size of a node) from one or more source nodes to

many other nodes over a multi-hop network. The protocol operates as a state ma-

chine where each node can be in one of three states at any time: MAINTAIN, RX,

or TX. Deluge implements a three phase Advertise-Request-Data gossip protocol,

in which data is only pushed by a sender upon receiving an explicit request for

data from an immediate neighbor. A node in the MAINTAIN state is responsible

for ensuring that all nodes within communication range have the newest version

of the object profile and all available data for the newest version and this is ob-

tained by occasionally advertising a summary representing the current version of

its object profile and the set of pages (transfer units) from the object which are

available for transmission. When receiving an advertisement for a needed page,

a node moves to the RX state and is responsible for actively requesting the re-

maining packets required to complete page; after a node makes a request, it waits

for a response and makes subsequent requests if some of the data was lost in the

process by using a negative ack mechanism. Deluge limits a node to λ requests

before returning to MAINTAIN; however, if progress (measured as reception rate

of data) is above some threshold Deluge allows the node to continue making re-

quests. While being in the MANTAIN state, if a node receives a request for a

Enforcing WSN reconfiguration: implementation details and evaluation 57

given page locally available, it makes a transition to the TX state, in which it

is responsible for broadcasting all requested packets for the page (continuing to

service any subsequent requests for data from the same page) until all requested

packets have been broadcast; then it goes back to MAINTAIN state. In [?] a

secure version of Deluge is provided.

Differential image replacement consist of disseminating only changes between a

deployed executable and a new image, reducing overhead. In [43], authors present

an incremental hardware-independent network programming mechanism which re-

programs one-hop wireless sensors quickly by transmitting the incremental changes

for the new program version using the Rsync algorithm, which finds the shared

code blocks between the two program images and allows to distribute just the key

changes.

Zephyr [44] uses an optimized version of the Rsync algorithm to perform byte level

comparison between the old and new executables and provides a multi-hop repro-

gramming protocol; moreover, before performing byte level comparison, Zephyr

performs application level modifications on the old and new versions of the soft-

ware to mitigate the effect of function shifts so that the similarity between the two

versions of the software is increased and the delta size is decreased.

In [45] R2 is proposed, being a unified approach to mitigate both effects of function

shifts and data shifts by using relocatable code: this approach obtains a higher

degree of similarity by keeping all references in the instructions the same in both

program versions and it also makes efficient use of the memory while not degrading

the program quality.

Different approaches are based on dynamic Operating Systems, aimed at obtaining

a modular structure for compiled applications in order to be able to update only

components that actually change.

TinyCubus [46] is based on TinyOS, which is primarily used as a hardware ab-

straction layer. For TinyOS, TinyCubus is the only application running in the

system, and all other applications register their requirements and components

Enforcing WSN reconfiguration: implementation details and evaluation 58

with it. TinyCubus provides a set of management components that make it pos-

sible for several implementations of an application to coexist on a node, and it is

responsible for dynamically loading components into the sensor’s memory on an

as-needed basis.

Finally, Dynamic TinyOS [47] alters the compilation process of TinyOS in order

to generate an executable consisting of multiple, replaceable objects, so that, after

deployment, updates can be disseminated to replace existing objects on sensor

nodes.

All these replacement techniques are based on dissemination of application binary

images over the network, thus arising security concerns and a substantial overhead

in terms of delays and power consumption and, at the state of the art, they are

not very suitable for the MTD approach.

5.2 Our approach to reconfiguring WSNs

In this section we provide two reconfiguration mechanisms for security layer and

physical layer respectively. To this aim, we will explicitly refer to a WSN architec-

ture, but the discussion can be easily generalized to any distributed architecture

having analogous constraints.

As previously highlighted, security is a fundamental concern in WSNs, as they

are widely adopted in several critical application domains; nevertheless, because

of their peculiar features – constrained processing and storage capabilities, limited

energy resources, highly dynamic topology and mobility, frequent and failures,

– providing security is not a straightforward task. The introduction of security

mechanisms has a strong impact on performance and resource consumption, that

often represent a limiting factor. For this reason, the adoption of a complex

cryptosystem (i.e. based on public key primitives) for the entire network life could

be desirable by a security point of view but not recommendable or not feasible in

practice.

Enforcing WSN reconfiguration: implementation details and evaluation 59

The proposed reconfiguration approach is able to overcome these concerns, as it

allows to keep an acceptable level of security in the network, by leveraging not

only the intrinsic features of the running cryptosystem, but also other features,

such as the physical configuration and the application interfaces, other than the

reconfiguration mechanism itself, as previously shown. This way, the use of simpler

cryptosystems for a short period of time can be preferred to the adoption of a single

strong but high-consuming cryptosystem. Indeed, a more secure and complex

cryptosystem is still worthy of implementation and use, to cope with new security

requirements for instance, or to thwart specific detected attacks.

Referring to TinyOS, the most commonly adopted operating system for WSNs,

security mechanisms could be implemented either as independent TinyOS compo-

nents or as different static libraries wired in the same component, whose functions

are called by applications to ensure security requirements. Reconfiguration of the

security layer and of the application interfaces could be easily achieved by includ-

ing the implementation of all the available solutions into the firmware installed on

the device, and activating the desired configuration through software switches and

proper protocols. Firmware reconfiguration instead, can be performed by adopting

node reprogramming techniques, that will be shown in details later.

Figure 5.1 shows a sequence diagram representing the network operation in pres-

ence of the reconfiguration mechanism. In the INIT phase each node is loaded

with the application image: according to the above discussed strategies, this could

be either an enriched application featuring different cryptosystems, or a collection

of different application images, each implementing a different cryptosystem and

allocated in the node’s flash memory. Each of the available cryptosystems must

be initialized in order to be used; this is also performed in the INIT phase, which

usually is carried out in a protected environment.

At each time, only one of these cryptosystems will be considered valid for a given

node and used for actual communication. The time interval between two subse-

quent updates is referred to as the validity interval.

Enforcing WSN reconfiguration: implementation details and evaluation 60

Monitoring
Application Base Station Mote

Init Cryptosystems

Query

 Digital signature
 generation

Signed Query
Signature
verification

Sampling

Data
Encryption

Decryption
Query Results

Scheduling

Reconfig_cmd

INIT

Encrypted data

MONITOR

RECONFIG

 Application loading
 Application
 loading

Figure 5.1: Reconfiguration sequence

As illustrated in the MONITOR phase of Figure 5.1, all queries sent by the base

station in a validity interval will be signed using the valid cryptosystem’s signature

protocol, and the signature will be verified by motes adopting the current valid

cryptosystem associated with the base station. Similarly, all responses sent by

a mote in a validity interval will be encrypted using its valid cryptosystem’s en-

cryption method, and decrypted by the base station using the decryption method

belonging to the cryptosystem currently associated with that node.

As illustrated in the RECONFIG phase of Figure 5.1, the update process executed

by a node consists in switching to a selected image or to another cryptosystem from

the available pool (either after receiving a command or making its own decision).

Required cryptographic operations on future outgoing messages will be performed

using the newly selected cryptosystem.

The selection of a new configuration is performed by a security-driven scheduler,

aiming at increasing the level of security which can be measured in terms of the

probability of successfully completing an attack, as shown later. In particular, the

Enforcing WSN reconfiguration: implementation details and evaluation 61

scheduler will define both the reconfiguration frequency and the new configura-

tions.

In the following subsections, we will focus on the security layer and firmware

reconfiguration respectively, presenting two innovative approaches to provide re-

configuration, with some implementation details.

5.2.1 Security Layer Reconfiguration

In our reference monitoring application, queries are signed by the base station for

authentication purposes, and reply messages are encrypted for ensuring confiden-

tiality and integrity, as shown in the previous Chapter with respect to the adopted

cryptosystems. The security layer performing these operations can be designed to

implement different cryptographic protocols, depending on the required security

level and on available resources. As previously said, the basic idea of the proposed

approach is to dynamically change the security layer, by switching between two

or more different available implementations.

As said in Section 2.2.4, both the base station and the motes can trigger an

update in response to an event, such as detection of malicious activity or timer

expirations. In the simplest scenario, nodes could decide to perform an update by

selecting, based on a shared strategy, the next valid cryptosystem once a shared

timer expires; this approach does not require to exchange information about the

adopted cryptosystems, but it relies upon strict synchronization, which itself can

not be achieved without adding considerable overhead.

In order to control the overhead and increase network flexibility and diversity, we

introduce a different reconfiguration protocol: each node can decide independently

when to update, and an identifier of the cryptosystem used to encrypt a message is

coded in the message itself, so that each receiving node, sharing the same security

configuration, is able to properly handle it.

Enforcing WSN reconfiguration: implementation details and evaluation 62

As illustrated in Figure5.2, the cryptosystems’ parameters (i.e. the cryptographic

keys) could be either pre-loaded on all network nodes in the INIT phase, or dy-

namically determined in each RECONFIG phases according to the available key

agreement mechanism.

In the first solution all the cryptographic keys are stored in each node for the

whole lifetime of the network, and they can be used as master keys for generating

new keys.

In the second solution, instead, each time a node triggers a local update, it has to

start an initialization procedure according to the chosen cryptosystem to estab-

lish the cryptographic parameters. The initialization procedure usually involves

exchanging messages between the base station and each of the motes, thus expos-

ing the procedure itself to attacks (such as the man-in-the-middle attack for key

agreement operations) and introducing delay in delivering response packets from

the motes’ point of view.

In Figure 5.2, a typical scenario of security protocol reconfiguration is illustrated.

Assume that each node is provided with a pool of different cryptosystem implemen-

tations, which are identified by a unique ID. In the INIT phase, the base station

and the motes agree on cryptosystems’ parameters; initialization depends on the

specific adopted cryptosystem (they can be public points for an ECC based cryp-

tosystem, or system parameters for an identity based [48]) and can be performed

in a secure environment in the pre-deployment phase or later.

As shown in Figure 5.2, after initializing the N available cryptosystems, each node

can independently choose the valid cryptosystem to adopt in order to perform

cryptographic operations in the current validity interval. In particular, the base

station choses the cryptosystem it will use to digitally sign the outgoing queries

in order to assure authentication (CRYPTO(i) in figure); any mote receiving the

query message will use the cryptosystem whose ID is included in the message itself

to verify the signature. Similarly, after verifying the signature, any mote encrypts

data according to the local selected cryptosystem (CRYPTO(j) and CRYPTO(w)

Enforcing WSN reconfiguration: implementation details and evaluation 63

Monitoring
Application Base Station Mote

Init CRYPTO(1)

....
Init CRYPTO(N)

Valid cryptosystem
selection (CRYPTO(i)) Query

Digital signature (i)
(Signed Query , i)

Signature
Verification (i)

Sampling

Data
Encryption (j) (Encrypted Message , j)

Decryption (j)
Query Results Valid cryptosystem

Selection (CRYPTO(w))

Sampling

Data
Encryption (w)

Decryption (w)
Query Results

Valid cryptosystem
selection (CRYPTO(j))

 (Encrypted Message , w)

Figure 5.2: Security protocol reconfiguration

in figure), and the base station will use the ID included in the reply messages to

decrypt them.

The main advantages of this solution relate to improved overall performance. In

fact, there is no latency to swap from a cryptosystem to another and we do not

need to stop the monitoring application during the reconfiguration; even battery

consumption is not affected by this solution.

As for the security of this strategy, if an attacker is aware of the packet format,

she could try to manipulate some fields of the packet, such as those coding the

cryptosystem ID and its parameters, so that nodes are no longer able to communi-

cate. As for query messages, their payload is signed with the base station’s private

key, so that if any field is altered during transmission the signature verification

at mote’s side will not succeed. This could lead to a denial of service attack, as

Enforcing WSN reconfiguration: implementation details and evaluation 64

motes will not be able to verify the authenticity of queries and will not perform

the required actions. To detect this attack, a timeout could be set by the base

station each time a query is sent; if no results come before the timeout expires,

the query could be sent again to cope with possible message losses; if no results

are returned after few attempts, an alert could be raised. The cryptosystem ID

and information about its parameters are coded in the response messages, too,

as they are necessary to decrypt the message. An attacker could alter such fields

as the messages are not authenticated, but the base station will not be able to

decrypt them causing the loss of some response messages (denial of service). As

a typical network is composed of many redundant mote nodes, this situation can

be considered as not critical.

5.2.2 Physical Layer Reconfiguration

As mentioned in Section 5.1, the Deluge T2 Network reprogramming framework

enables the reconfiguration of a node by sending via radio the new binary image

that should be loaded on the node. As Dutta et al. pointed out in [49], this ap-

proach is unsafe and too battery consuming. We implemented a different approach

to remotely reconfigure each node in the network; we decoupled the reconfigura-

tion mechanisms from the components to enforce the new configuration according

to a scheduling policy.

To this aim, we designed a reconfiguration application by augmenting several

components of the Deluge framework. In particular, we implemented new recon-

figuration functionalities to enable a single node to swap to a new image that was

previously pre-loaded on its storage. The reconfiguration application is defined by

wiring new components specifically designed to manage external reconfiguration

commands, and components designed to manage the images loaded on the node

storage.

As illustrated in the right part of Figure 5.3, the proposed reconfiguration appli-

cation consists of three main components:

Enforcing WSN reconfiguration: implementation details and evaluation 65

External Flash Memory

Hardware Components

Image1 Imagen …

BootLoader

M
anagem

ent

Reprogramming

 ReProg Store
Manager

Figure 5.3: Reconfiguration Application components

1. a bootloader component,

2. a reprogramming component,

3. a management component.

The bootloader component is a persistent layer in the architecture, which can

enforce the chosen reconfiguration mechanisms. This component is intended for

TinyOS and it provides needed functionalities to program the node with an already

stored program image. The parameters passed to this component are specified in

the external command and indicate the location of the binary in the external

flash memory to program the node’s microcontroller. When reprogramming is

requested, the bootloader will erase the program flash and write the new binary

to it. On completion, it jumps to the first instruction of the new application.

The reprogramming component is the core of the reconfiguration application; in

this implementation it accepts commands from the base station, but can be ex-

tended to implement a de-centralized reconfiguration approach. This component

is built by connecting two primary subcomponents: the ReProg and the Storage-

Manager. The ReProg component is an extension of the NetProg component of

Deluge T2. It handles a reprogramming request from the network by providing

a dedicated API to initialize a reconfiguration process. When a node wants to

perform a reconfiguration, it only has to invoke this API by specifying the name

of the new binary in the flash memory to load. Subsequently, the ReProg sets

the environment variables needed by the bootloader component and reboots the

Enforcing WSN reconfiguration: implementation details and evaluation 66

node. The StorageManager component deals with image name resolution, map-

ping names of program images to their respective physical addresses in the external

flash memory.

The management component has a master (base station) and mote side; it is used

to initialize the mote and deploy different images. Usually this operation is done in

a secure environment and it is accessible only during the initialization. The master-

side management component has been derived from the tos-deluge application of

the Deluge T2 Framework, and it is called mote-manager. This component allows

to inject one or more images into the mote by writing directly into nodes’ external

flash memory volumes. It is also possible to erase a volume and ping the status of

a mote to get information about already injected images.

Finally, the reconfiguration application runs on a workstation connected to the

base station, which implements the reprogramming scheduler. As discussed in the

next section, the reprogramming frequency and the new configuration to load can

be chosen to balance overhead and attack probability.

The proposed solution introduces considerable advantages in terms of security

and overall performance with respect to WSN reprogramming approaches based

on code dissemination. In fact, the reconfiguration time is now not dependent

on the image size and the network topology as the images are not sent over the

network but pre-loaded via a serial interface. Furthermore, this approach avoids

any security risk in the dissemination and reduces the battery consumption as the

messages sent are just commands to swap from an image to another one.

The swapping latency is considerably reduced, too; we experimented a reduction

of one order magnitude with respect to the original Deluge approach: from 50

seconds to send a 40Kb image implementing a monitoring application secured

with WM-ECC, to about 6 seconds to perform the swap. The only drawback is

that we need to stop the monitoring application and any query being executed

in order to swap to another cryptosystem. However, any approach based on full

image replacement presents a similar issue. Furthermore, due to storage limitation,

we can only pre-load a limited number of images on board.

Enforcing WSN reconfiguration: implementation details and evaluation 67

Let us consider attacks aimed at undermining this reconfiguration mechanism. An

attacker could perform a replay attack on control packets sent by the base station

and containing a reconfiguration command, in order to control communication

or just perform a denial of service attack by forcing the motes to continuously

swapping images. Again, this could be avoided by introducing a sequence number

for reconfiguration commands.

5.3 Theoretical Evaluation

The objective of our approach to WSN security is to increase the complexity for

attackers and impair their ability to successfully discover cryptographic keys or

complete various other types of attacks. In the following we show theoretically

how the proposed approach decreases the probability of an attacker successfully

discovering cryptographic keys by brute force attacks.

We assume that the attacker sequentially tests all possible keys for a given cryp-

tosystem. In the worst case for the defender, the attacker can recognize that the

cryptographic system has changed and restart the attack. The attacker may not

know what specific cryptosystem is being used in each interval. In this case, he

will try all cryptosystems from a set of possible candidates. Clearly, more sophisti-

cated types of brute force attacks exist today, compared to the one described here.

Such types of attacks leverage specific properties of a given cryptographic system.

However, our goal here is to evaluate the benefits of the proposed mechanism with

respect to the case where the cryptographic system is never changed during the

lifetime of the wireless network. Therefore, the specific method of attack is not

relevant in our analysis.

Given a time interval [ti, tj], we use Pr(success([ti, tj])) to denote the probabil-

ity that the attacker will successfully discover the key between ti and tj when a

single cryptographic system is used during the interval [ti, tj]. Similarly, we use

Pr(success([ti, tj], n)) to denote the probability that the attacker will successfully

discover the key between ti and tj when the interval [ti, tj] is broken down into

Enforcing WSN reconfiguration: implementation details and evaluation 68

n validity intervals and a different cryptosystem is used in each such intervals.

Clearly, Pr(success([ti, tj], 1)) = Pr(success([ti, tj])). We can prove the following

theorem.

Theorem 5.1. Let [0, T] be an observation interval, and let n ∈ N be and integer

greater than or equal to 2. Then the following inequality holds.

Pr(success([0, T], n)) ≤ Pr(success([0, T])) (5.1)

Proof. The probability that the attacker will successfully break the cryptosystem

between 0 and T when the interval [0, T] is broken down into n validity intervals

– and a different cryptosystem is used in each such intervals – can be written as

Pr(success([0, T], n)) = 1− Pr(¬success([0, T], n)) (5.2)

The probability Pr(¬success([0, T], n)) that the attacker does not succeed by time

T is the probability that he does not succeed in any of the n validity intervals.

Pr(¬success([0, T], n)) = Pr
(
¬success

([
0, 1

n
· T
])

∧¬success
([

1
n
· T, 2

n
· T
])

∧ . . . ∧ ¬success
([

n−1
n
· T, T

]))
(5.3)

The events ¬success
([

0, 1
n
· T
])

, ¬success
([

1
n
· T, 2

n
· T
])

, . . ., ¬success
([

n−1
n
· T, T

])
are clearly independent, thus Pr(¬success([0, T], n)) can be computed as follows.

Pr(¬success([0, T], n)) =∏n−1
i=0

(
1− Pr

(
success

([
i
n
· T, i+1

n
· T
]))) (5.4)

As the probability that the attacker can break the system in a given interval is

directly proportional to the length of the interval itself, we can conclude that, for

Enforcing WSN reconfiguration: implementation details and evaluation 69

all i ∈ [0, n − 1], Pr
(
success

([
i
n
· T, i+1

n
· T
]))

= Pr(success([0,T]))
n

. This conclusion

relies on the simplifying assumption that the different cryptosystems used in our

framework are equivalent in terms of attack time. Generalizing this result to

the case of heterogeneous cryptosystems is straightforward, but it is omitted for

reasons of space. Additionally, the above conclusion assumes that the interval

[0, T] is larger than the time needed to complete a full brute force attack1. Then,

Equation 5.4 can be rewritten as follows.

Pr(¬success([0, T], n))=
∏n−1

i=0

(
1− Pr(success([0,T]))

n

)

=
(

1− Pr(success([0,T]))
n

)n (5.5)

In order to complete the proof, we need the results of another theorem:

Theorem 5.2. Let x ∈ [0, 1] be a real number and let n ∈ N be an integer number.

The following inequality holds.

(
1− x

n

)n
≥ 1− x (5.6)

Proof. Using the binomial theorem, the expression
(
1− x

n

)n
can be expanded as

follows.

(
1− x

n

)n
=

n∑
k=0

(
n

k

)(
−x
n

)k
=1− x+

n∑
k=2

(
n

k

)(
−x
n

)k
(5.7)

To complete the proof, it is sufficient to show that the alternating series
∑n

k=2

(
n
k

) (
−x

n

)k
is greater than or equal 0. As the first term in the series is positive, we only need

to show that all the terms have decreasing absolute values. In order to do so, we

now show that the ratio between two consecutive terms is greater than 1.

1If Pr(¬success([0, T])) = 1, then there may exist a sub-interval [ti, tj] of [0, T] such that
Pr(¬success([ti, tj])) = 1.

Enforcing WSN reconfiguration: implementation details and evaluation 70

∣∣∣∣∣
(
n
k

) (
−x

n

)k(
n

k+1

) (
−x

n

)k+1

∣∣∣∣∣=
n!

k!·(n−k)!
n!

(k+1)!·(n−k−1)! ·
x
n

=
n · (k + 1)

(n− k) · x
(5.8)

It is clear that the quantity at the right end side of Equation 5.8 is greater than

1, as n · (k + 1) ≥ n and (n− k) · x ≤ n.

Using Theorem 5.2, we can conclude that

(
1− Pr (success ([0, T]))

n

)n

≥ 1− Pr (success ([0, T])) (5.9)

Combining Equations 5.2, 5.5, and 5.9, we can write

1− Pr (success ([0, T] , n)) ≥ 1− Pr (success ([0, T])) (5.10)

Equation 5.1 follows directly from Equation 5.10.

In conclusion, Theorem 5.1 shows that, in theory, the proposed mechanism is

effective in reducing the probability that the attacker will successfully discover

currently used cryptographic keys in a given amount of time. In other words, it

will take more time for the attacker to break the system. Experiments reported

in the next section confirm this result.

5.4 Simulation experiments

In this section, we show, through simulation experiments, that the proposed mech-

anisms are effective in increasing the uncertainty and complexity for the attacker,

thus confirming the theoretical results illustrated in the previous section. We as-

sume that the attacker’s goal is to break the system by attempting to discover

the cryptographic keys used to protect communication. Additionally, in this set

of experiments, we assume that security reconfiguration is performed by randomly

Enforcing WSN reconfiguration: implementation details and evaluation 71

switching among three different cryptosystems. In order to evaluate the effec-

tiveness of security-driven reconfiguration – even in some adverse conditions –

we assume that an attacker is able to understand when the adopted cryptosystem

changes and what kind of cryptosystem is used at each time (e.g., by observing con-

trol messages sent over the network by the base station in the node reconfiguration

strategy, or control flags present in data packets in the protocol reconfiguration

strategy).

Many types of cryptographic attacks can be considered. In our case, an attacker

can only observe encrypted packets traveling on the network, containing infor-

mation about sensed data, and it can perform a brute force attack on captured

packets by systematically testing every possible key for the current (known) valid

cryptosystem – assuming that it is able to determine when the attack is successful.

Given a finite key length and sufficient time, a brute force attack is always suc-

cessful; depending on the adopted algorithm, some well-known weaknesses can be

exploited (e.g., weak keys or equivalent keys) to run a more efficient type of attack.

Nevertheless, for ease of presentation, we consider brute force attacks carried out

by sequentially testing all possible keys.

In particular, we consider two possible cases:

1. the attacker knows the encryption algorithm and the key length associated

with the algorithm, therefore he systematically tries all the possible keys of

that length;

2. the attacker knows the encryption algorithm but does not know the key

length associated with it, thus he systematically tries all the possible keys

for a given set of key lengths.

Case 1 represents the worst case for the defendant, as the attacker has the deepest

knowledge about the adopted cryptosystem. Case 2 will be referred to as the inter-

mediate case in the following discussion. The best case for security is represented

by an attacker who does not know anything about the adopted cryptosystems,

and therefore tries all the possible keys for a given set of key lengths and a given

Enforcing WSN reconfiguration: implementation details and evaluation 72

set of cryptosystems. In the following we do not discuss this case explicitly, as it

can be considered as a generalization of the intermediate case.

The time to complete a brute force attack clearly depends on many factors, in-

cluding the cryptographic algorithm, the key space, and the attacker’s elaboration

resources. Commonly adopted cryptosystems use large keys, and require a huge

computational effort to be broken with a brute force attack, especially when the

attacker is not provided with a complex computational infrastructure.

We evaluated our approach with respect to the security layer configurations de-

scribed in Chapter 4. The features of the considered cryptosystems are summarized

in Table 5.1. The WM ECC sk and WM ECC rc5 cryptosystems are both based

on the WM-ECC library, used to execute key exchange and digital signature op-

erations. They both perform symmetric encryption using respectively a Skipjack

cipher with a 80 bit key and an RC5 cipher with a key of 160 bits. The TinyPairing

cryptosystems is based on TinyPairing and uses a 208 bit key. In Table 5.1, the

time needed to test a single key is reported for each cryptosystem, along with the

maximum attack time, that is the time necessary to test all the possible keys.

The reported elaboration time refers to the execution of the decryption operation

on TelosB devices, characterized by a 4.15 MHz MSP430 microcontroller and a

CC2420 radio chip and having a 10 kB internal RAM and a 48 kB program Flash

memory.

It is important to point out that, due to the computational complexity of attacks,

we will refer to simple attack scenarios where an attacker is able to gather partial

information on the adopted cryptosystem but it does not have enough computa-

tional capabilities. As a consequence of these assumptions, in our experimental

results, the resulting attack time will be significantly high but this will not affect

the validity of the proposed approach as we are interested in illustrating how the

probability of successfully completing an attack decreases.

We carried out our simulation experiments considering both worst and interme-

diate cases, and analyzed the cumulative distribution function (cdf) of the attack

time. In both cases, we simulated an attacker sequentially exploring the key space.

Enforcing WSN reconfiguration: implementation details and evaluation 73

Cryptosystem key len (bits) time(ms) max attack time(ms)

WM ECC sk 80 0.001251 1,5123E+21
WM ECC rc5 160 0.001221 1,7845E+45
TinyPairing 208 13.019531 5,3560E+63

Table 5.1: Characteristics of the cryptosystems used in the experiments

We considered an observation interval as long as the attack time of the most com-

plex cryptosystem, TinyPairing, and validity intervals of decreasing length. During

an observation interval, we randomly generated 1000 different sequences of valid

cryptosystems and recorded the time of successful attacks. The sequence length

depends on the chosen validity interval.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1,E+00 1,E+06 1,E+12 1,E+18 1,E+24 1,E+30 1,E+36 1,E+42 1,E+48 1,E+54 1,E+60

Attack time (milliseconds)

T = 5,35e+63 ms T = 5,35e+45 ms T = 2,68e+21 ms

WM-ECC_SK

WM-ECC_RC5

TINYPAIRING

Figure 5.4: Worst case attack time cdf for large validity intervals

Figure 5.4 shows the attack time’s cdf in the worst case; we chose three validity

interval lengths in such a way to be comparable to the maximum attack times of the

three different cryptosystems. The labels in the figure – note that the x-axis is on

a logarithmic scale – identify three inflection points in the middle of the maximum

attack times of each cryptosystem. These correspond to the maximum values of

the attack time probability distribution functions (pdf) for each cryptosystem.

When analyzing the chart, a seemingly counterintuitive behavior can be identified:

when considering smaller validity intervals the attacker seems to benefit. This is

due to the fact that – in the considered scenario – when randomly choosing 1000

different cryptosystem sequences, the weakest cryptosystem WM ECC sk will be

selected with 33% probability; in this case, considering the attack times reported

Enforcing WSN reconfiguration: implementation details and evaluation 74

in Table 5.1, the attacker will always succeed for validity intervals longer than

1,5123E+21 milliseconds (worst case for WM ECC sk).

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1,E+00 1,E+06 1,E+12 1,E+18 1,E+24 1,E+30 1,E+36 1,E+42 1,E+48 1,E+54 1,E+60

Attack time (milliseconds)

T = 2,68e+21 ms T = 1,34e+21 ms T = 3,35e+20 ms

Figure 5.5: Worst case attack time cdf for short validity intervals

As illustrated in Figure 5.5, when further reducing the validity interval below the

maximum attack time of the weakest cryptosystem, the trend changes and the

attack time becomes higher, with the percentage of successful attacks reducing

dramatically. The same behaviour is highlighted in Figure 5.6, that shows how

the probability of completing a successful attack in a time t – with t equal to

5.36e+19, 1.34e+21, 2.68e+21 and 5.35e+45 milliseconds respectively – varies as

the length of the validity interval changes: as soon as the validity interval goes

below the maximum attack time of the weakest cryptosystem, the rate at which

probability decreases becomes higher.

It is sufficient to consider validity intervals reasonably smaller than this critical

value (threshold) to ensure both a low attack probability and a limited reconfigu-

ration overhead. Due to the proposed attack model, the identified thresholds are

significantly high but, as said, this does not affect the validity of the approach.

Analogous results can be obtained when reconfiguration is performed by select-

ing an equivalent cryptosystem that uses different parameters (i.e different keys).

Figure 5.7 (a) shows the attack time cdf in the worst case when reconfiguration

is performed by switching among three cryptosystems that implement the WM-

ECC library with the Skipjack cipher, but have different keys. As shown, when

0%

20%

40%

60%

80%

3,E+19 5,E+20

Validity Interval (milliseconds)

t = 5,35e+45 ms t = 2,68e+21 ms t = 1,34e+21 ms t = 5,36e+19 ms

Figure 5.6: Probability of successful attack vs. length of validity interval

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1,E+00 1,E+06 1,E+12 1,E+18 1,E+24 1,E+30 1,E+36 1,E+42 1,E+48 1,E+54 1,E+60

Attack time (milliseconds)

T = 1,34e+21 ms T = 3,35e+20 ms T = 8,37e+19 ms

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1,E+00 1,E+06 1,E+12 1,E+18 1,E+24 1,E+30 1,E+36 1,E+42 1,E+48 1,E+54 1,E+60

Attack time (milliseconds)

T = 1,34e+21 ms T = 3,35e+20 ms T = 8,37e+19 ms

Figure 5.7: Worst case attack time cdf when (a) using the same cryptosystem with
different keys - (b) using three different cryptosystems

reducing the validity interval, the probability of successfully complete an attack

sensitively reduces as the intrinsic security level is restored each time a new key

is activated. For comparison purposes, in Figure 5.7 (b) the attack time cdf of

Figure 5.5 is reported; as expected, having more complex cryptosystems helps to

achieve a lower probability of attack.

The worst case is very unlikely to occur. A more realistic assumption is that the

attacker knows or is able to infer which kind of cryptosystem is currently used, but

it does not know the key length associated with it. We assume that the attacker

systematically tries all the possible keys for a given set of key lengths. Figure 5.8

compares the attack time cdf for the intermediate and the worst cases, under the

assumption that the attacker performs a brute force attack using the set of key

lengths in Table 5.2. As illustrated with respect to a validity interval of 5,36E+45

Enforcing WSN reconfiguration: implementation details and evaluation 76

Cryptosystem key len (bits) time(ms)

WM ECC sk [80] [0.001251]
WM ECC rc5 [120,160] [0.001120,0.001221]
TinyPairing [180,208] [11.023211,13.019531]

Table 5.2: Key lengths set

milliseconds, that is long enough to allow the attacker to break both WM ECC sk

and WM ECC rc5 , the attacker’s success probability is smaller in the intermediate

case than in the worst case. Clearly, when the attacker’s uncertainty about the

used cryptosystem is higher, more key lengths will be tested, making the proposed

approach even more effective.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1,E+00 1,E+07 1,E+14 1,E+21 1,E+28 1,E+35 1,E+42 1,E+49 1,E+56 1,E+63

Attack Time (milliseconds)

worst case intermediate case

T = 5,36e+45 ms

Figure 5.8: Comparison between worst and intermediate case for T = 5, 36E + 45ms

Chapter 6

Conclusion and future directions

In this thesis we addressed monitoring architectures composed of resource-constrained

devices and developed a Moving Target Defense-inspired framework, based on re-

configuration at different granularity levels, to ensure security, performance and

consumption requirements.

We formalized our reconfiguration approach by providing a reconfiguration model,

identifying the reconfigurable parameters for a generic embedded node, a recon-

figuration strategy for the selection of the new configuration to activate based on

input requirements, and two different reconfiguration mechanisms referred to a

WSN case study.

In order to define the reconfiguration strategy, we introduced a security metric

based on attack coverage, able to measure the level of security provided by each

configuration. Such metric, along with the commonly adopted performance and

power consumption metrics, is used by the reconfiguration strategy to select the

configuration that best meets the current quality requirements.

We developed a WSN case study to show the feasibility of the reconfiguration ap-

proach on real architectures and conducted theoretical and experimental analyses

to prove its effectiveness in decreasing the probability of attack.

Although many interesting activities have been conducted with respect to the

above discussed topics, several issues are still open and need to be investigated.

77

Conclusion and future directions 78

Our future plans include the design of a fully-automated reconfiguration strat-

egy capable of identifying the system configuration that can best meet specific,

dynamically changing requirements in terms of security, performance and power

consumption. In order to do this, an innovative security metric for the compari-

son of different configurations must be defined; the most challenging aspect is the

identification and modeling of the dependency relations existing between security

and time, that constitutes a relevant and still unexplored topic.

We also plan to perform a deep evaluation of the optimal reconfiguration frequency

and to introduce automatic mechanisms to map the existing requirements onto the

available configurations (technological mapping).

Bibliography

[1] Pratyusa K. Manadhata and Jeannette M. Wing. An attack surface metric.

IEEE Transactions on Software Engineering, 37:371–386, 2011. ISSN 0098-

5589.

[2] Executive Office of the President, National Science and Technology Council.

Trustworthy cyberspace: Strategic plan for the federal cybersecurity research

and development program, December 2011.

[3] Sushil Jajodia, Anup K. Ghosh, Vipin Swarup, Cliff Wang, and Xiaoyang Sean

Wang, editors. Moving Target Defense - Creating Asymmetric Uncertainty

for Cyber Threats, volume 54 of Advances in Information Security. Springer,

2011. ISBN 978-1-4614-0976-2.

[4] Sushil Jajodia, Anup K. Ghosh, V. S. Subrahmanian, Vipin Swarup, Cliff

Wang, and Xiaoyang Sean Wang, editors. Moving Target Defense II: Appli-

cation of Game Theory and Adversarial Modeling, volume 100 of Advances in

Information Security. Springer, 2013. ISBN 978-1461454151.

[5] Certicom Research. SEC 2: Recommended Elliptic Curve Domain Parame-

ters. In Standards for Efficient Cryptography, 2000. URL http://www.secg.

org/download/aid-386/sec2-final.pdf.

[6] C.C. Tan H.Wang, B. Sheng and Qun Li. Wm-ecc: an elliptic curve cryp-

tography suite on sensor motes. Technical Report WMCS-2007-11, October

2007.

[7] Xiaokang Xiong, D.S. Wong, and Xiaotie Deng. Tinypairing: A fast and

lightweight pairing-based cryptographic library for wireless sensor networks.

79

http://www.secg.org/download/aid-386/sec2-final.pdf
http://www.secg.org/download/aid-386/sec2-final.pdf

Bibliography 80

In Wireless Communications and Networking Conference (WCNC), 2010

IEEE, pages 1 –6, april 2010.

[8] David Evans, Anh Nguyen-Tuong, and John C. Knight. Effectiveness of mov-

ing target defenses. In Moving Target Defense - Creating Asymmetric Uncer-

tainty for Cyber Threats, pages 29–48. 2011.

[9] Stephanie Forrest, Anil Somayaji, and David H. Ackley. Building diverse

computer systems. In Workshop on Hot Topics in Operating Systems, pages

67–72, 1997.

[10] Pax team. URL http://pax.grsecurity.net/.

[11] Gaurav S. Kc, Angelos D. Keromytis, and Vassilis Prevelakis. Countering

code-injection attacks with instruction-set randomization. In Proceedings of

the 10th ACM conference on Computer and communications security, CCS

’03, pages 272–280, New York, NY, USA, 2003. ACM. ISBN 1-58113-738-9.

doi: 10.1145/948109.948146. URL http://doi.acm.org/10.1145/948109.

948146.

[12] Manuel Costa Jean-Philippe Martin Cristian Cadar, Periklis Akritidis and

Miguel Castro. Data randomization. Technical report, Microsoft Research,

2008.

[13] Todd Jackson, Babak Salamat, Andrei Homescu, Karthikeyan Manivan-

nan, Gregor Wagner, Andreas Gal, Stefan Brunthaler, Christian Wimmer,

and Michael Franz. Compiler-generated software diversity. In Sushil Jajo-

dia, Anup K. Ghosh, Vipin Swarup, Cliff Wang, and X. Sean Wang, ed-

itors, Moving Target Defense, volume 54 of Advances in Information Se-

curity, pages 77–98. Springer New York, 2011. ISBN 978-1-4614-0976-

2. doi: 10.1007/978-1-4614-0977-9 4. URL http://dx.doi.org/10.1007/

978-1-4614-0977-9_4.

http://pax.grsecurity.net/
http://doi.acm.org/10.1145/948109.948146
http://doi.acm.org/10.1145/948109.948146
http://dx.doi.org/10.1007/978-1-4614-0977-9_4
http://dx.doi.org/10.1007/978-1-4614-0977-9_4

Bibliography 81

[14] D. Kewley, R. Fink, J. Lowry, and M. Dean. Dynamic approaches to thwart

adversary intelligence gathering. In DARPA Information Survivability Con-

ference amp; Exposition II, 2001. DISCEX ’01. Proceedings, volume 1, pages

176 –185 vol.1, 2001. doi: 10.1109/DISCEX.2001.932214.

[15] M. Atighetchi, P. Pal, F. Webber, and C. Jones. Adaptive use of network-

centric mechanisms in cyber-defense. In Object-Oriented Real-Time Dis-

tributed Computing, 2003. Sixth IEEE International Symposium on, pages

183 – 192, may 2003. doi: 10.1109/ISORC.2003.1199253.

[16] S. Antonatos, P. Akritidis, E.P. Markatos, and K.G. Anagnostakis. De-

fending against hitlist worms using network address space randomiza-

tion. Computer Networks, 51(12):3471 – 3490, 2007. ISSN 1389-1286.

doi: 10.1016/j.comnet.2007.02.006. URL http://www.sciencedirect.com/

science/article/pii/S1389128607000710.

[17] Jafar Haadi Jafarian, Ehab Al-Shaer, and Qi Duan. Openflow random

host mutation: transparent moving target defense using software defined

networking. In Proceedings of the first workshop on Hot topics in soft-

ware defined networks, HotSDN ’12, pages 127–132, New York, NY, USA,

2012. ACM. ISBN 978-1-4503-1477-0. doi: 10.1145/2342441.2342467. URL

http://doi.acm.org/10.1145/2342441.2342467.

[18] V. Casola, A. Mazzeo, N. Mazzocca, and V. Vittorini. A policy-based method-

ology for security evaluation: A security metric for public key infrastructures.

Journal of Computer Security, 15(2):197–229, 2007.

[19] Common criteria project: Common criteria for information technology secu-

rity evaluation 2.1. Technical report, US NIST, 1999.

[20] Trusted computer system evaluation criteria. Technical Report DoD 5200.28-

STD, US Department Of Defense, 1985.

[21] Xiaohu Li, Timothy Paul Parker, and Shouhuai Xu. A stochastic model for

quantitative security analyses of networked systems. IEEE Trans. Dependable

Sec. Comput., 8(1):28–43, 2011.

http://www.sciencedirect.com/science/article/pii/S1389128607000710
http://www.sciencedirect.com/science/article/pii/S1389128607000710
http://doi.acm.org/10.1145/2342441.2342467

Bibliography 82

[22] Adam Barth, Benjamin I. P. Rubinstein, Mukund Sundararajan, John C.

Mitchell, Dawn Song, and Peter L. Bartlett. A learning-based approach to

reactive security. IEEE Trans. Dependable Sec. Comput., 9(4):482–493, 2012.

[23] Peter Mell, Karen Scarfone, Sasha Romanosky, Peter Mell, Karen Scarfone,

Sasha Romanosky, Carlos M. Gutierrez, and William Jeffrey Director. The

common vulnerability scoring system (cvss) and its applicability to federal

agency systems, 2007.

[24] Mohammad Salim Ahmed, Ehab Al-Shaer, and Latifur Khan. A novel quan-

titative approach for measuring network security. In INFOCOM, pages 1957–

1965, 2008.

[25] Joseph Pamula, Sushil Jajodia, Paul Ammann, and Vipin Swarup. A weakest-

adversary security metric for network configuration security analysis. In QoP,

pages 31–38, 2006.

[26] Simon N. Foley, William Fitzgerald, Stefano Bistarelli, Barry OSullivan, and

Mchel Foghl. Principles of Secure Network Configuration: Towards a For-

mal Basis for Self-configuration, volume 4268 of Lecture Notes in Computer

Science. Springer Berlin Heidelberg, 2006. ISBN 978-3-540-47701-3.

[27] Philip Levis, Sam Madden, Joseph Polastre, Robert Szewczyk, Alec Woo,

David Gay, Jason Hill, Matt Welsh, Eric Brewer, and David Culler. Tinyos:

An operating system for sensor networks. In in Ambient Intelligence. Springer

Verlag, 2004.

[28] Alexander Becher, Er Becher, Zinaida Benenson, and Maximillian Dornseif.

Tampering with motes: Real-world physical attacks on wireless sensor net-

works. In Proceeding of the 3rd International Conference on Security in Per-

vasive Computing (SPC, pages 104–118, 2006.

[29] G. Padmavathi and D. Shanmugapriya. A survey of attacks, security mech-

anisms and challenges in wireless sensor networks. CoRR, abs/0909.0576,

2009.

Bibliography 83

[30] T. Kavitha and D. Sridharan. Security vulnerabilities in wireless sensor net-

works: A survey. Journal of Information Assurance and Security, 5(1):31–44,

2010.

[31] Chris Karlof, Naveen Sastry, and David Wagner. Tinysec: a link layer se-

curity architecture for wireless sensor networks. In Proceedings of the 2nd

international conference on Embedded networked sensor systems, SenSys ’04,

pages 162–175, New York, NY, USA, 2004. ACM. ISBN 1-58113-879-2. doi:

10.1145/1031495.1031515. URL http://doi.acm.org/10.1145/1031495.

1031515.

[32] Mark Luk, Ghita Mezzour, Adrian Perrig, and Virgil Gligor. MiniSec: a secure

sensor network communication architecture. In IPSN ’07: Proceedings of the

6th international conference on Information processing in sensor networks,

pages 479–488. ACM Press, 2007. ISBN 978159593638X. URL http://dx.

doi.org/10.1145/1236360.1236421.

[33] Shahin Farahani. ZigBee Wireless Networks and Transceivers. Newnes, New-

ton, MA, USA, 2008. ISBN 0750683937, 9780750683937.

[34] Adrian Perrig, Robert Szewczyk, J. D. Tygar, Victor Wen, and David E.

Culler. Spins: security protocols for sensor networks. Wirel. Netw., 8(5):

521–534, September 2002. ISSN 1022-0038. doi: 10.1023/A:1016598314198.

URL http://dx.doi.org/10.1023/A:1016598314198.

[35] R.L. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital

signatures and public-key cryptosystems. Communications of the ACM, 21:

120–126, 1978.

[36] Ernest F. Brickell, Dorothy E. Denning, Stephen T. Kent, David P. Maher,

and Walter Tuchman. Building in big brother. chapter SKIPJACK review:

interim report, pages 119–130. Springer-Verlag New York, Inc., New York,

NY, USA, 1995. ISBN 0-387-94441-9. URL http://dl.acm.org/citation.

cfm?id=212412.212424.

http://doi.acm.org/10.1145/1031495.1031515
http://doi.acm.org/10.1145/1031495.1031515
http://dx.doi.org/10.1145/1236360.1236421
http://dx.doi.org/10.1145/1236360.1236421
http://dx.doi.org/10.1023/A:1016598314198
http://dl.acm.org/citation.cfm?id=212412.212424
http://dl.acm.org/citation.cfm?id=212412.212424

Bibliography 84

[37] Dan Boneh and Matt Franklin. Identity-based encryption from the Weil

pairing. SIAM J. of Computing, 32(3):586–615, 2003. extended abstract

in Crypto’01.

[38] Dan Boneh, Ben Lynn, and Hovav Shacham. Short signatures from the weil

pairing. In Proceedings of the 7th International Conference on the Theory and

Application of Cryptology and Information Security: Advances in Cryptology,

ASIACRYPT ’01, pages 514–532, London, UK, UK, 2001. Springer-Verlag.

ISBN 3-540-42987-5. URL http://dl.acm.org/citation.cfm?id=647097.

717005.

[39] Dan Boneh and Xavier Boyen. Short signatures without random oracles and

the sdh assumption in bilinear groups. J. Cryptology, pages 149–177, 2008.

[40] Ben L. Titzer, Daniel K. Lee, and Jens Palsberg. Avrora: scalable sen-

sor network simulation with precise timing. In Proceedings of the 4th in-

ternational symposium on Information processing in sensor networks, IPSN

’05, Piscataway, NJ, USA, 2005. IEEE Press. ISBN 0-7803-9202-7. URL

http://dl.acm.org/citation.cfm?id=1147685.1147768.

[41] Qiang Wang, Yaoyao Zhu, and Liang Cheng. Reprogramming wireless sensor

networks: challenges and approaches. Network, IEEE, 20(3):48 – 55, May-

June 2006.

[42] Jonathan W. Hui and David Culler. The dynamic behavior of a data dissem-

ination protocol for network programming at scale. In Proceedings of the 2nd

international conference on Embedded networked sensor systems, SenSys ’04,

pages 81–94, 2004. ISBN 1-58113-879-2.

[43] Jaein Jeong and D. Culler. Incremental network programming for wireless

sensors. In Sensor and Ad Hoc Communications and Networks, 2004. IEEE

SECON 2004. 2004 First Annual IEEE Communications Society Conference

on, pages 25 – 33, oct. 2004.

http://dl.acm.org/citation.cfm?id=647097.717005
http://dl.acm.org/citation.cfm?id=647097.717005
http://dl.acm.org/citation.cfm?id=1147685.1147768

Bibliography 85

[44] Rajesh Krishna Panta, Saurabh Bagchi, and Samuel P. Midkiff. Zephyr:

efficient incremental reprogramming of sensor nodes using function call indi-

rections and difference computation. In Proceedings of the 2009 conference

on USENIX Annual technical conference, USENIX’09, pages 32–32, 2009.

[45] Wei Dong, Yunhao Liu, Chun Chen, Jiajun Bu, and Chao Huang. R2: In-

cremental reprogramming using relocatable code in networked embedded sys-

tems. In INFOCOM, 2011 Proceedings IEEE, pages 376–380, 2011. doi:

10.1109/INFCOM.2011.5935186.

[46] P.J. Marron, A. Lachenmann, D. Minder, J. Hahner, R. Sauter, and

K. Rothermel. Tinycubus: a flexible and adaptive framework sensor net-

works. In Wireless Sensor Networks, 2005. Proceedings of the Second Euro-

pean Workshop on, pages 278 – 289, jan.-2 feb. 2005.

[47] W. Munawar, M. H. Alizai, O. Landsiedel, and K. Wehrle. Dynamic tinyos:

Modular and transparent incremental code-updates for sensor networks. In

Communications (ICC), 2010 IEEE International Conference on, pages 1 –6,

may 2010.

[48] V. Casola, A. De Benedictis, A. Drago, and N. Mazzocca. Analysis and

comparison of security protocols in wireless sensor networks. In Reliable Dis-

tributed Systems Workshops (SRDSW), 2011 30th IEEE Symposium on, pages

52 –56, oct. 2011.

[49] P.K. Dutta, J.W. Hui, D.C. Chu, and D.E. Culler. Securing the deluge net-

work programming system. In Information Processing in Sensor Networks,

2006. IPSN 2006. The Fifth International Conference on, pages 326 –333, 0-0

2006.

	Abstract
	Preface
	List of Figures
	List of Tables
	1 Introduction
	2 An MTD approach to secure resource-constrained distributed devices
	2.1 Moving Target Defense
	2.2 The proposed MTD approach
	2.2.1 The reference reconfiguration model
	2.2.2 Security Level Evaluation
	2.2.3 Security level dependency on time
	2.2.4 Reconfiguration Strategies

	3 A case study: WSN security
	3.1 Wireless Sensor Networks: an overview
	3.2 WSN security issues
	3.3 Security vulnerabilities in WSNs
	3.3.1 Attacks classification based on attacker capabilities
	3.3.2 Attacks classification based on attackers goals
	3.3.3 Attacks classification based on protocol stack
	3.3.3.1 Physical Layer
	3.3.3.2 Data Link Layer
	3.3.3.3 Network Layer
	3.3.3.4 Transport Layer
	3.3.3.5 Application Layer

	3.4 Existing approaches to securing a WSN

	4 Building a reconfigurable security layer for WSNs
	4.1 The adopted security layer configurations
	4.1.1 The WM-ECC-based cryptosystem
	4.1.2 The TinyPairing-based cryptosystem

	4.2 Security and Performance Analysis
	4.2.1 Performance evaluation
	4.2.1.1 Latency
	4.2.1.2 Packet overhead
	4.2.1.3 Memory occupancy

	4.2.2 Power consumption evaluation
	4.2.3 Security evaluation

	5 Enforcing WSN reconfiguration: implementation details and evaluation
	5.1 WSN reconfiguration in literature
	5.2 Our approach to reconfiguring WSNs
	5.2.1 Security Layer Reconfiguration
	5.2.2 Physical Layer Reconfiguration

	5.3 Theoretical Evaluation
	5.4 Simulation experiments

	6 Conclusion and future directions
	Bibliography

