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1. Introduction 

 

It has been estimated that global agricultural production is annually reduced by 31-42% 

due to plant pathogens and pests (Agrios, 2008). Currently, the use of chemical 

pesticides is the most common method to protect crops from pathogens, but these 

products may have negative effects on both the environment and consumers. Indeed, 

synthetic pesticides pollute the atmosphere, damage the environment, leave harmful 

residues, and can lead to the development of resistant strains of target pathogens 

(Naseby et al., 2000). A reduction or elimination of synthetic pesticide applications in 

agriculture is highly desirable. One of the most promising means to achieve this goal is 

the use of biocontrol agents (BCAs), or the integration of BCAs with reduced doses of 

chemicals for the control of plant pathogens (Chet and Inbar, 1994; Harman and 

Kubicek, 1998). The most applied BCAs are microbial antagonists of important plant 

pathogens, including bacteria (such as Bacillus, Pseudomonas and Enterobacter), 

numerous yeasts (such as Pichia guillermondii, Candida sake, C. pulcherrima, 

Cryptococcus laurentii and C. flavus), and fungi (including Acremonium breve, 

Trichoderma spp. and Gliocladium spp.). The use of BCAs provides numerous benefits 

compared to other methods, such as the control of pesticide-resistant pathogens, the 

absence of toxic effects on crops, reduced health risks for farmers, no impact on 

beneficial fauna, etc. However, possible disadvantages related to the use of BCAs are 

the specificity towards the microbial target and the difficulty in developing effective 

formulations. Furthermore, abiotic and biotic factors like weather, pressure and 

competition of the indigenous microflora may reduce the performances of biocontrol 

agents. 

Various strains of the filamentous genera Trichoderma spp. are among the most 

successfully applied biocontrol agents in the world. These fungi show enormous 

potentials also in different industrial applications (enzyme production, bioremediation, 

etc.). Recently, several studies have analysed the interactions between Trichoderma 

spp., crop plants, phytopathogens and soil community, thus improving our 
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understanding on the mechanisms and molecular factors involved (Lu et al., 2004; 

Marra et al., 2006; Woo et al., 2006). 

 

1.1. Plant defences against pathogens 
 

Plants have developed a complex system of defence mechanisms based on structural 

and biochemical defences to protect themselves from pathogens. Structural defences act 

as physical barriers that inhibit the pathogen from gaining entrance and spreading 

through the plant, while biochemical defences consist in producing substances that are 

either toxic to the pathogen or create conditions that inhibit the pathogen growth. 

The plant surface is the first line of defence against pathogens. They must adhere and 

penetrate it to cause infection. Some structural defences are present in the plant even 

before the pathogen comes in contact with the plant, for instance, the wax and cuticle 

that cover the epidermal cells, the structure of the epidermal cell walls, the size, location 

and shapes of stomata and lenticels, and the presence of tissues made of thick-walled 

cells that hinder the advance of the pathogen into the plant. 

Although structural characteristics may tool up the plant against attacking pathogens, it 

is clear that the resistance depends not so much on its structural barriers as on the 

substances produced in its cells before or after infection. 

Constitutive biochemical defences as fungitoxic exudates and substances with 

antifungal activity (such as phenolic compounds, caffeic acid and catechol), glycosides 

(saponins, phenolic glycosides) and glucosinolates) prevent pathogen penetration into 

the plant. 

Also after infection, the plants are able to produce defence-related substances, such as 

phytoalexin, ROS (Reactive Oxygen Species), PR proteins (Pathogenesis-Related 

proteins), etc. 

After pathogen attack, plants quickly generate ROS that are chemically reactive 

molecules containing oxygen (i.e. oxygen ions and peroxides). ROS are natural product 

of aerobic metabolism and have important roles in plant cell signalling and homeostasis, 

controlling processes such as growth, development, response to biotic and abiotic 

http://en.wikipedia.org/wiki/Oxygen
http://en.wikipedia.org/wiki/Ion
http://en.wikipedia.org/wiki/Peroxide
http://en.wikipedia.org/wiki/Cell_signaling
http://en.wikipedia.org/wiki/Homeostasis
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environmental stimuli, activation of the Hypersensitive Reaction (HR) and the Induced 

Systemic Resistance (ISR). 

The production of PR proteins in plants is generally the result of biotic and abiotic 

stresses. These proteins include antifungal chitinases, glucanases, thaumatins, and 

oxidative enzymes, such as peroxidases, polyphenol oxidases and lipoxygenases. The 

transgenic expression of one or more constitutive PR proteins determined an increased 

resistance in plant (Broglie et al., 1991; Zhu et al., 1994; Guido et al., 1995), thus 

confirming their involvement in ISR. 

Low-molecular-weight compounds with antimicrobial properties called phytoalexins 

can also accumulate in plants after pathogen attack. Phytoalexins are synthesized ex 

novo by plants and accumulate rapidly around the area of pathogen infection. They 

include chemically different compounds, such as terpenoids, glycosteroids and 

alkaloids, which display a broad spectrum of inhibitory activity. 

A common feature of the plant defense system is the hypersensitive response (HR) that 

is characterized by the rapid death of cells at the site of infection, thus inhibiting the 

pathogen growth. As a result of this localized response, the whole plant develops a 

systemic acquired resistance (SAR) against subsequent infection by the same or other 

pathogens. 

The type and the effects of defence mechanisms that plants use to contrast pathogen 

attacks may vary according to the specific host-pathogen combination, the age of plant, 

the organ or tissue attacked, the nutritional status of the plant, as well as the 

environmental conditions. 

  

http://en.wikipedia.org/wiki/Plant
http://en.wikipedia.org/wiki/Terpenoid
http://en.wikipedia.org/wiki/Glycomics
http://en.wikipedia.org/wiki/Glycomics
http://en.wikipedia.org/wiki/Alkaloid
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1.2. The plant immune system 
 

The plant immune system is based on the innate immunity of each cell and on systemic 

signals produced at the sites of infection (Jones and Dangl, 2006). 

Resistance (R) proteins in plants can be activated indirectly by effectors, which are 

molecules produced by pathogenic organisms that contribute to their virulence. Plant R 

proteins are able to recognize these effectors indirectly by monitoring the integrity of 

host cellular targets and the action of these effectors. There are, essentially, two 

branches of the plant immune system. The first exploits the presence of transmembrane 

receptors (PRRs, Pattern Recognition Receptors) and microbe/pathogen-associated 

molecular patterns (MAMPs/PAMPs), such as the flagellin (Zipfel and Felix, 2005). 

The second acts primarily within the cell, using polymorphic protein compounds (i.e. 

proteins containing NB-LRR,Nucleotide Binding Leucine Rich Repeat domain) 

encoded by R genes (Dangl and Jones, 2001). Interestingly, effectors produced by 

pathogens from diverse kingdoms are recognized by NB-LRR proteins, and activate 

similar defence responses. Disease resistance mediated by NB-LRR proteins is effective 

against pathogens that can live only on living tissue of the host (biotrophs) but not 

against pathogens that kill the host tissue during colonization (necrotrophs). 

The zigzag model (Figure 1.1) described by Jones and Dangl (2006) explains the 

evolution of plant immune system. During the first phase, microbe/pathogen-associated 

molecular pattern (MAMP/PAMP)-triggered immunity (MTI/PTI) is invoked by 

recognition of conserved molecular patterns endemic to the invading pathogen that 

activate host basal defense responses. In the second phase, successful pathogens deliver 

effectors that interfere with PTI, or otherwise enable pathogen nutrition and dispersal, 

resulting in effector-triggered susceptibility (ETS). During the third phase, the effector-

triggered immunity (ETI) is subsequently engaged as a host response to suppression of 

its basic defences. ETI is predicated upon recognition of one or more pathogen-derived 

‘effectors’. This type of response is more intense than PTI’s and determines the 

triggering of the HR. In the phase four, natural selection drives pathogens to avoid ETI 

either by shedding or diversifying the recognized effector gene, or by acquiring 
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additional effectors that suppress ETI. Natural selection results in new R specificities so 

that ETI can be triggered again. 

 

 

Figure 1.1 A zigzag model illustrates the quantitative output of the plant immune system. In this scheme, the 

ultimate amplitude of disease resistance or susceptibility is proportional to [PTI – ETS1ETI]. In phase 1, 

plants detect microbial/pathogen-associated molecular patterns (MAMPs/ PAMPs, red diamonds) via PRRs 

to trigger PAMP-triggered immunity (PTI). In phase 2, successful pathogens deliver effectors that interfere 

with PTI, or otherwise enable pathogen nutrition and dispersal, resulting in effector-triggered susceptibility 

(ETS). In phase 3, one effector (indicated in red) is recognized by an NB-LRR protein, activating effector-

triggered immunity (ETI), an amplified version of PTI that often passes a threshold for induction of 

hypersensitive cell death (HR). In phase 4, pathogen isolates are selected that have lost the red effector, and 

perhaps gained new effectors through horizontal gene flow (in blue)—these can help pathogens to suppress 

ETI. Selection favours new plant NB-LRR alleles that can recognize one of the newly acquired effectors, 

resulting again in ETI. (Jones and Dangl; 2006). 
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1.3. Biological control  
 

Actually plant diseases caused by fungi, bacteria, viruses and nematodes are mainly 

controlled by using synthetic pesticides. However the prolonged use of chemicals 

selects resistant strains and species among pathogens; this may cause new outbreaks of 

the former “controlled/eliminated” disease. Today costumers ask for agricultural 

products that have to be healthy, safe and environmental friendly, that means with no 

chemical residues and having low impact on men and environment. Therefore, the 

interest of a growing number of agricultural industries turned for biologically and 

environmentally acceptable alternative methods of disease control, such as biological 

control or biocontrol. 

Biological control is a method to control pest populations by using natural enemies and 

typically involves an active human role. Biological control methods include: 

 control of pathogen populations through actions on soil and environment; 

 exploitation of the host plant resistance; 

 control of the infection by using microorganisms with antagonistic 

activity(Gabriel and Cook, 1991). 

Biological control is proven to be highly successful and economical. The most common 

and studied beneficial microbial biocontrol agents (BCAs) are bacilli, actinomycetes, 

pseudomonads, agrobacteria, mycorrhizal fungi and fungi of the genera Trichoderma 

and Gliocladium. 

In addition to being involved in the processes of decomposition of organic matter, the 

removal of toxic substances and participation in the nutrient cycle, these organisms are 

able to suppress plant diseases caused by soil-borne pathogens and to stimulate plant 

growth (Kubicek and Harman, 1998). 

 

Bacilli: bacteria belonging to the genus Bacillus are Gram-positive, rod-shaped, aerobic 

or facultative anaerobes. They are ubiquitous but the soil is considered their habitat. The 

bacilli are able to adapt and live in environments characterized by extreme conditions of 

pH, temperature and salinity; they can behave as saprophytes degrading living and non-

living organic matter. Bacilli are often antagonistic against other microorganisms (Table 
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1) through the production of metabolites, antibiotics.These BCA may be also 

pathogenic for animals and insects (Whipps, 2001). 

B. subtilis, B. mycoides and B. cereus produce several antibiotics including polymyxins, 

difficidin, subtilisin, etc., which are active against both bacteria and fungi.  

 

Table 1. Antagonistic bacteria used as biological control agents. 

ANTAGONISTIC 

BACTERIA 

PATHOGEN PROTECTED 

PLANT 

Bacillusspp. G. graminisvar. tritici, R. solani Wheat 

B. subtilis F. oxysporum f. sp. ciceris chickpea 

P. aureofaciens P. ultimum tomato 

A. radiobacterK84 A. tumefaciens Fruit trees, ornamental 

plant 

S. plymuthica P. ultimum cucumber 

 

Actinomycetes: are Gram-positive bacteria. They have similar morphology to that of 

filamentous fungi. They show different types of metabolism, both aerobic and 

anaerobic. The actinomycetes are known to produce secondary metabolites biologically 

active (with antibacterial and antifungal activity). The most important are: actinomycin, 

streptomycin, tetracycline, kanamycin and antifungal substances such as candicidin and 

nystatin (Hornby, 1990). 

In addition, the actinomycetes produce substances that may inhibit or promote the 

growth of other microorganisms, such as vitamins, hormones and siderophores. When 

colonize the rhizosphere, they can behave both as antagonists against other 

microorganisms, as well as promoters of plant growth.  

 

Pseudomonads: many strains of Pseudomonas spp. are antagonist against 

phytopathogenic agents and increase the resistance in plant. Some Pseudomonas strains 

isolated from suppressive soil produce antibiotic compounds (Bloem et al., 2005) such 

as 2,4-diacetilfloroglucinolo, a metabolite with antifungal activity. Furthermore, P. 
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fluorescens, P. chlororaphis, P. aureofaciens and P. syringae are identified as 

biocontrol agents against both bacteria and phytopathogenic fungi. 

 

Agrobacteria are both pathogenic species (A. tumefaciens), and non-pathogenic species 

(A. radiobacter). A. tumefaciens cause the crown gall (the formation of tumors) in over 

140 species of dicotyledons, a disease spread around the world causing serious 

problems, especially in nurseries of fruit trees and ornamental plants, making the plants 

infectedunmarketable. All chemical or physical methods applied to control the disease 

are proved to be unsatisfactory. The best results are obtained with biological control, 

using the non-pathogenic K84 strain of A. radiobacter. This produce sagrocyn 84 that is 

an antibiotic specific to control pathogenic strains of A. tumefaciens. 

 

Fungi: Many fungi live only into the soil, where they colonize plant tissue fragments 

and interact with plant roots, other fungi, bacteria or soil community (Kubicek and 

Harman, 1998). Fungi are able to grow and spread in the soil through the formation of 

hyphae. The interaction that these microorganisms develop with plants and the 

microbial community can be different. Fungi can be obligate parasites, if they need an 

association with the plant for the duration of their life cycle, or not obligate parasites, if 

they need plant for only part of their life cycle, while during the rest of their life are 

saprophytes. Several species of Trichoderma can be used as biocontrol agents against 

many plant pathogens (Harman et al., 2004a; Woo et al., 2006; Benitez et al., 2004; 

Vinale et al., 2008). 

 

1.3.1. Mechanisms of action of biocontrol agents 

 

Many fungal and bacterial antagonistic microorganisms control different plant diseases 

and promote plant development. The biocontrol activity against phytopathogens can be 

expressed through different mechanisms of action: parasitism, antibiosis, competition, 

the induction of plant resistance and the plant growth promotion (PGP). (Benitez et al., 

2004; Harman et al., 2004). 
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Parasitism is a interaction between the antagonist and the pathogen. The antagonist 

establishes an intimate association with the pathogen. This mechanism involves a phase 

of physical contact with the host. This interaction is called mycoparasitism when both 

partners are fungi. Mycoparasites produce cell wall-degrading enzymes (CWDEs), 

including endochitinases, -N-acetylhexosaminidases (N-acetyl--D-

glucosaminidases), chitin-1,4--chitobiosidases, proteases, endo- and exo--1,3-

glucanases, endo-1,6-glucanases, lipases, xylanases, mannanases, pectinases, pectin 

lyases, amylases, phospholipases, RNAses, DNAses, etc. (Lorito, 1998).CWDEs allow 

mycoparasites to penetrate into other fungi and extract nutrients for their own growth 

(Inbar and Chet, 1992). However, many so-called mycoparasites produce also 

antibiotics which may first weaken the fungus they parasitize.Among the examples of 

parasitic fungi there are: Trichoderma spp., which are able to attack many different 

pathogenic fungi (Chet, 1987), Sporidesmium sclerotivorum, which parasitizes the 

sclerotia of Sclerotinia minor (Fravel et al., 1992), and Verticillium biguttatum that 

attacks R. solani (Van den Boogert et al., 1990). 

 

 

Figure 1.2 Electron microscope images of some examples of parasitism [A] Effect of 

parasitization of Trichoderma harzianum (T) on Rhizoctonia solani (R) after 2 days and [B] after 

6 days; [C] hypha of Pythium which penetrates a hypha of Phytophthora; [D] the yeast Pichia 
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guilliermondi on a hypha of Botrytis and [E] on a hypha of Penicillium; [F] the fungus 

Arthrobotrys dactyloides while traps a nematode (photoes by Agrios, 1998). 

 

Antibiosis consists in the production by antagonistic fungi and bacteria of metabolites 

that inhibit the growth and development of pathogenic microorganisms. The most 

important antibiotic producers are: fluorescent Pseudomonas, bacteria able to produce 

phenazines, which were the first antibiotics to be clearly implicated in biocontrol 

activity. The fungal antibiotics, gliovirin and gliotoxin produced by different strains of 

T. virens (Bisset, 1991), are very important.  

 

Competition. Microorganisms compete with each other for space and nutrients (such 

as: carbon, nitrogen, oxygen and iron). Nutrient competition is likely to be the most 

common way by which one organism limits the growth of another. Some fungi and 

bacteria produce molecules called siderophores which are efficient in chelating Fe
3+

. 

Individual strains can have their own particular siderophores and receptors which can 

bind Fe
3+

 in such a way that the iron becomes inaccessible to other microorganisms, 

including pathogens. Siderophores production appears to be important to the survival of 

microorganisms through elimination of microbial competition for nutrient sources, 

which are usually very limited in soil (Velusamy et al., 2006). In some cases, 

siderophore production and competitive success in acquiring Fe
3+

 is the mechanism by 

which biocontrol agents control plant diseases (Benitez et al., 2004). 

 

Induction of plant resistance. Among the biocontrol mechanisms, the induction of 

plant resistance has received considerable attention in the last few decades. Kloepper et 

al. (1992) defined the induced disease resistance as ‘the process of active resistance 

dependent on physical or chemical barriers of the host plants, activated by biotic or 

abiotic agents (inducing agents)’.  

The induction of plant defence responses mediated by the antagonistic fungus 

Trichoderma spp. has been well documented (De Meyer et al., 1998; Yedidia et al., 

1999; Hanson and Howell, 2004; Harman et al., 2004). Various plants, both mono- and 

dicotyledonous, showed increased resistance to pathogen attack when pre-treated with 

Trichoderma spp. (Harman et al., 2004). Plant colonization by Trichoderma spp. 
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reduced disease symptoms caused by one or more different pathogens, both at the site of 

inoculation (induced localized acquired resistance, LAR), as well as when the 

biocontrol fungus was inoculated at different times or sites than the pathogen (induced 

systemic resistance or ISR). The induction of plant resistance by colonization with some 

Trichoderma species is similar to that elicited by rhizobacteria, which enhance the 

defence system but do not involve the production of pathogenesis-related proteins (PR 

proteins) (Van Loon et al., 1998; Stacey and Keen, 1999; Harman et al., 2004). The 

major differences are that PR proteins, such as chitinases, β-1,3glucanases, proteinase 

inhibitors and one or two other rarer types, have not been universally associated with 

bacterially induced resistance (Hoffland et al., 1995), and the salicylic acid (a known 

inducer of SAR) is not always involved in the expression of ISR, but this is dependent 

by the bacterial strain - host plant combination (Pieterse et al., 1996; de Meyer et al., 

1999; Chen et al., 1999). Moreover, the ISR mediated by bacteria may also require 

ethylene responsiveness at the site of inoculation (Knoester et al., 1999). 

Changes that have been observed in plant roots exhibiting ISR include: (1) 

strengthening of epidermal and cortical cell walls and deposition of newly formed 

barriers beyond infection sites, including callose, lignin and phenolics (Duijff et al., 

1997; Jetiyanon et al., 1997); (2) increased levels of enzymes such as chitinase, 

peroxidase, polyphenol oxidase, and phenylalanine ammonia lyase (Chen et al., 2000); 

(3) enhanced phytoalexin production (van Peer et al., 1991; Ongena et al., 1999); (4) 

enhanced expression of stress-related genes (Timmusk and Wagner, 1999). 

In a recent work Alfano et al. (2007) investigated at a molecular level the plant genes 

involved in induction of resistance mechanisms by using a high-density oligonucleotide 

microarray approach. Interestingly, Trichoderma-induced genes were associated with 

biotic or abiotic stresses, as well as RNA, DNA, and protein metabolism. In particular, 

genes that codify for extensin and extensin-like protein were found to be induced by the 

BCA, but not those codifying for proteins belonging to the PR-5 family (thaumatin-like 

proteins), which are considered to be the main molecular markers of SAR. 

Moreover, an ISR effect was also induced by the formation of mycorrhizae that are a 

symbiotic and mutual association between a non-pathogenic or weakly pathogenic 

fungus and the living cells of the plant root (Agrios, 1998). The induction of resistance 
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in plant could be due probably to an early conditioning of the host, called "priming", 

which activates the tissues making them more willing to respond to the attack of a 

pathogen. In fact, the colonization of the roots by mycorrhizal fungi is able to protect 

the tomato plants from infection of Phytophthora parasitica and promote the 

accumulation of phytoalexin, riscitin and solavetivone in potato seedlings infected by 

Rhizoctonia (Yao et al., 2003). 

 

Plant growth promotion. Many saprotrophic fungi, particularly certain isolates of 

Trichoderma species, can promote plant growth (Whipps, 1997; Inbar et al., 1994). For 

example, Trichoderma harzianum 1295–27 was able to solubilize phosphate and 

micronutrients making them available for the plant and thus supporting its growth 

(Altomare et al., 1999). In addition several fungal biocontrol agents, including some 

Trichoderma species, binucleate Rhizoctonia isolates and Pythium oligandrum, can 

stimulate plant growth in the absence of pathogens (Chang et al., 1986; Windham et al., 

1986; Shivanna et al., 1996; Wulff et al., 1998; Harris, 1999). Furthermore, the ability 

to colonize seed or root surface or the endophytes attitude have been frequently 

considered highly desirable traits for biocontrol agents (Kleifeld and Chet, 1992; 

Harman and Bjôrkman, 1998). The relationship between rhizosphere colonization and 

biocontrol activity has been clearly demonstrated in numerous biocontrol fungi such as 

Trichoderma species, non-pathogenic Fusaria, P. oligandrum, Verticillium biguttatum, 

and Talaromyces flavus (Ahmad and Baker, 1988; Couteadieret al., 1993; van den 

Boogert and Velvis, 1992; Al-Rawahi and Hancock, 1997; Lo et al., 1996; Tjamos and 

Fravel, 1997; Nagtzaam and Bollen, 1997; Björkmanet al., 1998). 

Among the microorganisms that establish beneficial interactions with the plant there are 

PGPR (Plant-Growth-Promoting Rhizobacteria), or beneficial bacteria, not symbionts 

that inhabit the rhizosphere. This term is commonly referred to bacteria belonging to the 

genera Pseudomonas, Serratia, Bacillus and Azospirillum. PGPR were classified, 

according to the beneficial effect that determine the plant, in two groups: those involved 

in the metabolism of nutrients (bio-fertilizers and phytostimulants) and biocontrol 

agents of plant pathogens (Bashan and Holguin,1998). PGPR-acting as biofertilisers are 

able to fix nitrogen making it usable by the plant and thus causing an increase in growth 
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even when the quantities of nitrogen in the soil are scarce. They are also responsible for 

the increased availability of nutrients in the soil (particularly phosphate); many 

rhizobacteria and rhizofungi, in fact, solubilize poorly soluble phosphates by the release 

of chelating organic acids (Vessey, 2003). The rhizobacteria phytostimulants, 

represented primarily by members of the genus Azotobacter and Azospirillum, promote 

directly plant growth through the production of phytohormones (auxins,cytokinins, 

gibberellins) rather than through the activity of nitrogen-fixation  

The biocontrol activity shown by some PGPR against soil-borne pathogens is due to 

mechanisms that determine a reduction of the saprophytic growth of pathogens and the 

frequency of infection, competition for nutrients, colonization of habitats, stimulation of 

the systemic resistance (ISR) in the host plant and/or production of antifungal 

metabolites. The rhizobacteria biocontrol agents better characterized belong to the 

genus Pseudomonas, the majority of which produces metabolites toxic, including 

phenazine, pyrrolnitrin, 2,4-diacetylphlorogucinol (DAPG), pyoluteorin and cyclic 

lipopeptides (Haas and Keel, 2003). The synergy between the action of 

lipodepsipeptides of P. syringae pv. syringae and lytic enzymes (CWDEs) of the 

antagonistic fungus Trichoderma atroviride strain P1 can play a key role in the 

antagonism of the rhizobacterium, supporting the hypothesis that a more effective 

control of the disease is obtained by using a combination of several biocontrol agents 

(Fogliano et al., 2002; Woo et al., 2002). 

 

1.4. Trichoderma  
 

Trichoderma spp. are filamentous fungi commonly found in the soil community that are 

facultative saprophytes. They belong to a group of largely asexually reproducing fungi 

that includes a wide spectrum of micromycetes ranging from very effective soil 

colonizers with high biodegradation potential to facultative plant symbionts that 

colonize the rhizosphere. Many strains of Trichoderma have not been associated with a 

sexual state and are believed to be mitotic and clonal. Species of Hypocrea and closely 

related genera in the Hypocreales have anamorphs referable to Trichoderma (Gams and 

Bissett, 1998). 
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Figure 1.3 Examples of Trichoderma cultures grown in Petri dishes.(a) T. atroviride; (b) T. viride; (c) 

T. harzianum. 

 

Trichoderma species use the competition for nutrients and/or space, the antibiosis 

and/or the mycoparasitism to control different phytopathogens. In addition, new 

mechanisms have been found in some species and strains of Trichoderma, such as: the 

inactivation of the enzymes of the pathogen, the detoxification of antibiotic substances 

or antimicrobial compounds produced and released by the fungus host and/or by the 

microflora of the soil, or in an indirect stimulation of defense mechanisms of the host 

plant (Benítez et al., 2004; Elad, 2003; Harman etal., 2004). 

Trichoderma colonizes the root plant protecting by penetration of other pathogens (Elad 

et al., 1999; Elad and Kapat, 1999; Yedidia et al., 1999). Therefore, Trichoderma is 

avirulent having developed a relationship with plants of a symbiotic more than parasitic 

nature (Harman et al., 2004). 

 

1.4.1. Trichoderma-plant interaction 

 

Some Trichoderma species are able to colonize root surfaces and cause substantial 

changes in plant metabolism (Harman et al., 2004). The main effects of this beneficial 

interaction are: 

 

 promotion of plant growth; 
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 increased nutrient availability; 

 induction of disease resistance  

 

Numerous experiments showed that crop productivity increased up to 300% after 

treatments with Trichoderma spp. and promotion of plant growth was clearly detectable 

on different plant species (examples in Figure 1.4 and 1.5). 

 

 

Figure 1.4 Pepper plants treated with Trichoderma spp. 

 

Figure 1.5 Lettuce plants treated with Trichoderma spp. 

 

A yield increase was also observed when plant seeds were exposed to Trichoderma 

conidia that were separated from them by cellophane, suggesting that Trichoderma 

metabolites can affect the plant growth (Benıtez et al., 2004). 

Trichoderma spp. produce organic acids, such as gluconic, citric and fumaric acids, 

which decrease soil pH and allow the solubilisation of phosphates, micronutrients and 

mineral cations (like iron, manganese and magnesium), useful for plant metabolism, 

especially in neutral or alkaline soils (Benitez et al., 2004). 

Iron is an essential nutrient due to its required metabolic function. As a transition metal, 

its redox properties allow it to exist in two oxidation states, ferrous (Fe
2+

) and ferric 

(Fe
3+

) for the donation and acceptance of electrons, respectively. Therefore, sufficient 
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iron supply is a necessity for survival. Although iron is one of the most abundant 

elements on earth, bioavailability is low in aerobic environments (in the presence of 

oxygen and at neutral pH), primarily because ferric iron reacts with oxygen to form 

insoluble ferric hydroxides. To maintain iron homeostasis regulated strategies for the 

careful control of iron uptake, utilization, and storage have evolved in different 

organisms (Expert, 2009). 

Some antagonistic microorganisms react to limiting iron conditions by using a high-

affinity iron uptake system based on the release of Fe
3+

-chelating molecules, called 

siderophores. Although siderophores have an important function in many 

phytopathogens, their production by microorganisms can be beneficial to plants for two 

reasons: i) siderophore formation can solubilize iron unavailable for the plant (Prabhu et 

al. 1996); ii) siderophore production by non-pathogenic microorganisms can also 

suppress growth of pathogenic microorganisms by depriving the pathogens of iron 

(Leong J., 1986). 

A primary method of pathogen control occurs through the ability of Trichoderma to 

reprogram plant gene expression. They can also induce systemic and localized 

resistance to a variety of plant pathogens. 

The ISR effect, triggered by different strains of Trichoderma, determine in plant the 

production of defense metabolites, such as enzymes involved in the biosynthesis of 

phytoalexins, or compounds related to the oxidative stress, or even PR-proteins. 

Trichoderma strains produce different classes of compounds able to induce resistance in 

plants, including: 

 

 proteins with enzymatic or other functions, 

 homologues of proteins encoded by the avirulence (Avr) genes, 

 oligosaccharides and other low-molecular-weight compounds that are released 

from fungal or plant cell walls by the activity of Trichoderma enzymes, 

 secondary metabolites (peptaibols, pyrons, etc.) 
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Trichoderma may affect plant defense against pathogen attack by increasing the 

immunity activated by MAMPs (MTI) and reducing the susceptibility triggered by 

effectors (ETS) (Figure 1.6). 

 

.  

Figure 1.6 Changes in the amplitude of plant defense against pathogen attack caused by effective 

biocontrol strains of Trichoderma, as indicated by using the zigzag model proposed by Jones & 

Dangl (thin blue arrows). Thick blue arrows indicate the plant response in the presence of 

Trichoderma. MAMPs, microbe-associated molecular patterns; PAMPs, pathogen-associated 

molecular patterns; MTI, MAMPs-triggered immunity; PTI, PAMPs-triggered immunity; ETS, 

effector-triggered susceptibility; ETI, effector-triggered immunity; HR, hypersensitive response. 

Trichoderma spp. are able to increase the level of the first response (MTI>PTI) by producing a 

variety of MAMPs. They also contrast the action of pathogen effectors that cause ETS , thus 

limiting the loss of resistance and therefore keeping the plant response to a level above or just below 

the effective threshold (<ETS). Trichoderma can also improve ETI by causing a faster response 

(priming) or activate defense by producing compounds that are specifically recognized (Avr-R) by 

plant receptors and elicit defense mechanisms. Modified from Jones &Dangl. (Lorito et al. 2010.) 

 

In fact, strains of Trichoderma are able to increase plant defense responses more than 

pathogens (MTI> PTI), by producing various types of MAMPs (Navazio et al., 2007). 

Some strains are also able to respond to pathogen effectors that interfere with the MTI, 

for example by inhibiting the pathogenicity factors or by controlling the dispersion and 

nutrition of pathogens. This reduces the susceptibility caused by effectors (ETS), limits 

the loss of resistance and maintains the response of the plant to a level above or just below 

the effective threshold. Trichoderma can also improve the ETI by activating a faster 

defense response (priming), or by releasing the compounds that are specifically 

recognized by receptors plant cells (Avr-R), as it happens for pathogen effectors (Lorito 

et al., 2010). 
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1.4.2. Novel approaches to study the Trichoderma-plant interaction: 

metabolomics 

 

Trichoderma-plant interactions have been extensively studied using a variety of 

analytical approaches, including genomics, transcriptomics, proteomics, metabolomics, 

etc. (Lloyd et al., 2003; Figure 1.9). 

Expressed sequence tag (EST) sequencing and mRNA profiling using either 

microarrays (Kehoe et al., 1999) or serial analysis of gene expression (SAGE) 

(Velculescu et al., 1995) allow a comprehensive analysis of the transcriptome of an 

organism, cell or tissue. Advances in mass spectrometry have enabled the analysis of 

cellular proteins and metabolites (proteome and metabolome, respectively) on a scale 

previously unimaginable. The cumulative utilization of these technologies has advanced 

the fields of functional genomics (Holtorf et al., 2002; Oliver et al., 2002; Somerville 

and Somerville, 1999) and systems biology (Ideker et al., 2001; Kitano, 2000). 

Functional genomics decipher the function of unknown genes. The absence of a single 

database pushes to compare the functions of genes revealed through the similarity with 

the nucleotide sequences of genes of known function with the use of traditional 

empirical methods. 

Proteomic analysis of biotechnologically important fungi has developed significantly 

only in the last decade, with relatively few cases studied compared with the numerous 

species whose genome has been sequenced. 

Although the transcriptome represents the delivery mechanism of a translational code to 

the cellular machinery for protein synthesis, increases in mRNA levels do not always 

correlate with increases in protein levels (Gygi et al., 1999). Furthermore, once 

translated a protein may or may not be enzymatically active. Due to these factors, 

changes in the transcriptome or the proteome do not always correspond to alterations in 

biochemical (i.e. metabolic) phenotypes. In the absence of existing database 

information, transcript or protein profiling often yield only limited information. Based 

on the above limitations, profiling the metabolome may actually provide the most 
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“functional” information of the “omics” technologies. Metabolomics (comprehensive 

analysis in which all the metabolites of an organism are identified and quantified) has 

emerged as a functional genomics methodology that contributes to our understanding of 

the complex molecular interactions in biological systems. As such, metabolomics 

represents the logical progression from large-scale analysis of RNA and proteins at the 

systems level. 

 

 

Figure 1.9 Typical techniques used to study functional genomics 

 

Unfortunately, metabolomics is still in an infant state and many of the necessary tools 

are not available. These tools serve to align, visualize, and differentiate, components in 

large datasets. Individual components then need to be correlated and placed in 

metabolic networks or pathways. 

Computer based applications are required that can differentiate whether or not samples 

are statistically similar or different and what the exact differences/similarities are. 

Ideally, this would be performed in a fully automated manner. For example, a system 
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should be able to automatically compare the UV, NMR, GC/ MS, LC/MS, or CE/MS 

profiles of a sample and immediately highlight the component(s) that are statistically 

different. The chemical identity of these components could then be related to the gene 

function or to the biological response of the system. 

When a sample made up of a few hundred metabolites has to be processed, it is 

important to analyse the data carefully, in order to extrapolate the smallest differences. 

One of the most popular approaches to simplify the data include unsupervised methods 

such as principal component analysis (PCA). This approach summarizes the data based 

on many independent variables measured from the plant response, and groups them to 

smaller sets of derived variables which aids in determining their role in the metabolic 

processes of the plant. 

 

1.5. Secondary metabolites (SMs) 
 

Secondary metabolites (SMs) are generally defined as compounds that are not essential 

for the growth or survival of the producing organism. SMs tend to be more specialized, 

and are usually peculiar to only one organism or species. The production of these 

metabolites is tightly regulated and dependent on the immediate environment and 

developmental stage of the producing organism. While some secondary metabolites are 

designed to attract creatures that can pollinate their flowers or distribute their seeds, 

others protect the plant from the sun’s radiation, or serve as ‘chemical signals’ that 

enable the plant to respond to ‘environmental clues’. Others are defensive compounds, 

designed to deter or kill disease-causing organisms, potential predators or competitors. 

Moreover, different species of the same family, and different isolates of the same 

species, can often produce significantly different compounds leading to the suggestion 

that secondary metabolites “express the individuality of species in chemical terms”. On 

the other hand, widely separate species can produce the same class of secondary 

metabolite and sometimes even the same secondary metabolites. 

In some cases, a SM may be essential for survival under particular environmental 

conditions; for example, siderophores, which are needed for growth at low iron 

concentrations. But in another case SMs production may have evolved for 
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communication with, or defense against, other microbes or multicellular organisms. 

There are many thousands of SMs known in the literature (i.e. pigments, siderophores 

and pheromones, antibiotics). Secondary metabolites are divisible into several 

characteristic groups (polyketides, terpenes, phenols, alkaloids) that reflect their origin 

and biosynthesis. 

 

1.5.1. Trichoderma secondary metabolites 

 

The study of Trichoderma’s mechanism has demonstrated that inhibiting properties 

against other fungi are probably due to the combined action of cell-wall degrading 

enzymes together with the capacity of Trichoderma to produce different SMs. 

The production of SMs by the Trichoderma spp. is strain-dependent and includes 

antifungal substances belonging to different classes of chemical compounds. These 

compounds have been classified by Ghisalberti and Sivasithamparam (1991) into three 

main categories: 

 

 volatile antibiotics; 

 compounds soluble in water; 

 peptaibols linear oligopeptides of  12–22 amino acids rich in amino-isobutyric 

acid, N-acetylated at the N-terminus and containing an amino alcohol (Pheol or 

Trpol) at the C-terminus (Le Doan et al., 1986; Rebuffat et al., 1989). 

 

The different chemical structure of these substances suggests different mechanisms of 

action. The production of molecules of low molecular weight, non-polar and volatile 

(simple aromatic compounds, pyrones, butenolides ect.) determines the presence of high 

concentrations of antibiotics in soil ranging influence on the microbial community even 

at a long distance. In contrast, the short-distance may be associated with the production 

of antibiotics and polar peptaibols acting in the vicinity of the hyphae. Polar metabolites 

of high molecular weight could express their activity as a result of physical contact with 

the pathogen. As regards the peptaibols, given their amphiphilic nature, it is possible 
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that their activity is primarily associated with property like detergents. They influence 

the permeability properties of phospholipid bilayer and exert antibiotic activity against 

Gram-positive and Gram-negative bacteria. Furthermore, it has been shown that the 

peptaibols inhibit the action of the enzyme β glucan synthase and the enzyme chitin 

synthase of the fungus host, preventing the reconstruction of the cell wall of the 

pathogen and facilitating, at the same time, the destructive action of the chitinase. 

Trichoderma strains seem to be an inexhaustible source of bioactive molecules 

(Sivasithamparam and Ghisalberti, 1998). Some of these compounds produce 

synergistic effects in combination with CWDEs, with strong inhibitory activity on many 

fungal plant pathogens (Lorito et al., 1996; Schirmböck et al., 1994). The potential of 

genes involved in biosynthetic pathways of antibiotics [e.g. polyketides (Sherman, 

2002) and peptaibols (Wiest et al., 2002)] with applications in human and veterinary 

medicine is not been explored yet. 

Based on the chemical properties the Trichoderma secondary metabolites are classified 

into the following main categories. 

 

Pyrones 

The pyrone 6-pentyl-2H-pyran-2-one (6-pentyl--pyrone or 6PP – Figure 1.7) is a 

common Trichoderma metabolite with a strong coconut aroma. 6PP, isolated from 

culture filtrate of different species (T. viride, T. atroviride, T. harzianum, T. koningii), 

showed antifungal activities towards several plant pathogenic fungi and a strong 

relationship was found between the production of this pyrone and its antagonistic ability 

(Scarselletti and Faull 1994; Worasatit et al. 1994). 6PP is also involved in plant growth 

promotion and induction of disease resistance (Vinale et al., 2008).  

 

Koninginins 

Koninginins are complex pyranes isolated from T. harzianum, T. koningii, and T. 

aureoviride. Koninginins A, B, D, E and G showed antibiotic activity towards the take-

all fungus Gaeumannomyces graminis var. tritici (Almassi et al. 1991; Ghisalberti and 

Rowland 1993). Koninginin D also inhibits the growth of other important soil-borne 
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plant pathogens such as Rhizoctonia solani, Phytophthora cinnamomi, Pythium 

middletonii, Fusarium oxysporum and Bipolaris sorokiniana (Dunlop et al., 1989). 

 

Viridins 

The steroidal metabolite viridin is an antifungal metabolite isolated from different 

Trichoderma species (T. koningii - Beresteskii et al. 1976 - T. viride - Golder and 

Watson 1980 - T. virens - Singh et al. 2005). This compound prevents the germination 

of spores of Botrytis allii, Colletotrichum lini, Fusarium caeruleum, Penicillium 

expansum, Aspergillus niger and Stachybotrys atra (Brian and McGowan 1945; 

Ghisalberti 2002). 

 

Nitrogen heterocyclic compounds 

Harzianopyridone, a T. harzianum metabolite with a penta-substituted pyridine ring 

system with a 2,3-dimethoxy-4-pyridinol pattern, is a potent antibiotic compound active 

against B.cinerea, R. solani (Dickinson et al. 1989) G. graminis var. tritici and 

P.ultimum (Vinale et al. 2006). 

T. harzianum produce also metabolites with pirrolidindione ring system named 

harzianic acid (Figure 1.7). This tetramic acid derivative showed antibiotic activity 

against P.irregulare, Sclerotinia sclerotiorum and R. solani (Vinale et al., 2009). A 

plant growth promotion on Brassica napus was also observed at low concentrations 

(Vinale et al., 2009). 

 

Butenolides and hydroxy-lactones 

Harzianolide and its derivatives, deydro-harzianolide and T39 butenolide, have been 

isolated from different strains of T. harzianum (Almassi et al. 1991; Claydon et al. 

1991; Hanson et al., 1991; Ordentlich et al., 1992; Vinale et al., 2006). These 

metabolites showed antifungal activities against several plant pathogens (Almassi et al. 

1991; Vinale et al., 2006). 

A novel hydroxy-lactone derivative, named cerinolactone (Figure 1.7), has been 

recently isolated from culture filtrates of T. cerinum. In vitro tests with the purified 
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compound exhibited activity against P. ultimum, R. solani and B. cinerea (Vinale et al., 

2011). 

 

 

Diketopiperazines 

Gliotoxin and gliovirin are two important Trichoderma secondary metabolite of this 

class of compounds. Strains of P group of Trichoderma (Gliocladium) virens produce 

the antibiotic gliovirin which is active against P. ultimum but not against R. solani. 

Strains of the Q group produce the gliotoxin which is very active against R. solani but 

less against P. ultimum (Howell, 1999). In seedling bioassay tests, strains of the P group 

are more effective biocontrol agents of damping off on cotton caused by Pythium, while 

those from the Q group are more effective as biocontrol agents of damping off incited 

by R. solani (Howell, 1991; Howell et al., 1993). These data clearly indicate the role of 

antibiotics production in biocontrol of the gliotoxin/gliovirin producers. 

 

Peptaibols 

Peptaibols are linear oligopeptides of 5-22 amino acids rich in -amino isobutyric acid, 

N-acetylated at the N-terminus and containing an amino alcohol (Pheol or Trpol) at the 

C-terminus (Daniel and Filho, 2007). Lorito et al. (1996) demonstrated that peptaibols 

inhibited -glucan synthase activity in the host fungus, while acting synergistically with 

T. harzianum -glucanases. The inhibition of glucan synthase prevented the 

reconstruction of the pathogen cell wall, thus facilitating the disruptive action of -

glucanases. The most widely known peptaibol is the alamethicin produced by T. viride. 

 

http://en.wikipedia.org/wiki/Alamethicin
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Figure 1.7 Structures of 6PP (A), HA (B), cerinolactone (C). 

 

 

 

Hydrophobines 

Another class of metabolites, isolated from fungi belonging to the Trichoderma genera, 

is the hydrophobines. The hydrophobin Hytra1 (fig. 1.8) is a part of the present thesis 

together with HA and 6PP. This protein is involved in many developmental processes 

including the formation of aerial hyphae, spores and fruiting bodies. Hytra1, purified 

from Trichoderma longibrachiatum MK1 culture filtrates, showed antimicrobial activity 

and was capable of inducing a strong Hypersensitivity Reaction (HR) and systemic 

acquired resistance (SAR) when infiltrated in tomato leaves. Hytra1 applied to the plant, 

could trigger plant defence reactions both locally and systemically. These results clearly 

demonstrated that Hytra1 from Trichoderma T22 is elicitor of plant defence response 

and is a key factor in the molecular dialog between Trichoderma spp. and tomato plants 

(Ruocco M. 2007; Ruocco M. 2008). 
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Figure 1.8 General structure of a hydrophobin 
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1.6. Commercial products used for biological control in 
agriculture 

 

The use of antagonistic microorganisms to control plant pathogens, nematodes and 

weeds began over 50 years ago, and today there are several formulations of fungal and 

bacterial antagonists used as biopesticides. 

To achieve commercial development, an antagonistic strain must meet several criteria: 

absence of toxicity and inability to produce unwanted side effects, adaptation and 

persistence in the environment field for at least one growing season, efficacy in 

different geographical areas, genetic stability and biological easy and inexpensive 

preparation, etc. (Fravel, 2005). After identification of the strain with the best features 

of biocontrol, this must produce a biomass sufficiently stable, even under adverse 

conditions, and application systems to ensure growth and antagonistic activity against 

plant pathogens must be developed. 

The antagonistic fungi can be used in different ways. In general, the biomass of the 

fungal antagonist (cells, mycelium, spores) is treated and embedded in different 

matrices for the preparation of formulated granules, powders, liquids, etc.. Several 

studies have shown that the effectiveness of the product may depend on the type of 

formulation and mode of administration (Fravel, 2005).Today there are hundreds of 

products on the market based on antagonistic strains of bacteria, fungi or yeasts legally 

registered and used in organic agriculture. Approximately half of these products, of 

which some examples are reported in Table 2, is based on Trichoderma and 

Gliocladium species. 

In addition to the products specifically registered for the protection of crops, there are 

on the market several formulations acting as bio-protectives, bio-fertilizers and bio-

stimulants. The spread of these products is very wide due to the need to reduce the use 

of synthetic products for plant protection or to get the certification for organic products. 

For the biological control of phytopathogenic fungi and bacteria, products based on 

bacterial antagonists, such as strains of P. syringae, can be used against Penicillium 

expansum, Botrytis cinerea, Monilinia fructicola, Rhizopus stolonifer, etc. P. 

fluorescens is effective in the control of diseases caused mainly by soil-borne fungi, 
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while various species of Bacillus are especially active on the leaf surface and have the 

characteristic of forming spores sufficiently resistant to be easily usable in commercial 

formulations. 

 

 

Table 2.Some commercial products containing microbial antagonists. 

Organism Application or 

formulation 

Recommended 

use, place and 

culture 

Stated 

activities of 

the product 

Commercial 

products 

Trichoderma 

spp. 

Granular greenhouse crops, 

nurseries, indoor plants 

Combating 

decay of 

seedlings, root 

rot 

Soilgard 12G 

(Certis, USA) 

T. harzianum, 

T. virens (=T. 

lignorum, G. 

virens), B. 

subtilis 

Talc, seed treatment, 

dispersion, foliar 

spray, solution for 

dampening 

Grape, cotton, bean, 

potato, tomato, tobacco, 

cereals 

Control of 

powdery mildew 

and downy 

mildew, leaf 

decay, leaf drop 

Combat (BioAg 

Corporation, USA) 

Different 

species of 

bacteria and 

fungi, including 

Trichoderma 

spp.  

Granules, spray Soils Competition for 

nutrients, 

suppression of 

pathogenicity  

Nutri-Life 4/20 

(Nutri-Tech, 

Australia). Not 

registered as 

pesticide. 

Gliocladium 

spp. 

Granules Horticulture, grasses Growth 

promotion 

Gliomix (Kemira 

Agro Oy, 

Finlandia; Fargro 

Ltd., UK) 

T. harzianum, 

T. koningii 

Seed treatment, 

wetting the soil during 

pre-sowing  

greenhouse crops, 

nurseries, indoor plants 

Control of 

Pythium, 

Phytophtora, 

Rhizoctonia 

Trichoderma 

(Euro Bio Consult, 

Holland)  
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1.6.1. Trichoderma spp. in agriculture 

 

The benefits of using Trichoderma in agriculture are multiple due to their ability to 

protect plants, enhance vegetative growth and contain pathogen populations under 

numerous agricultural conditions (Harman, 2000; Harman et al., 2004; Lorito et al., 

2006). The biocontrol ability of Trichoderma can be attributed to numerous modes of 

antagonism against various disease causing agents and overall to the several beneficial 

effects for the plant. 

In particular, Trichoderma spp. use the mycoparasitism to directly attack the pathogen 

but also it is able to colonize the roots or compete for nutrients thus excluding a 

pathogen from the plant roots or exudates. Moreover, these beneficial fungi produce 

secondary metabolites that inhibit the growth of the pathogens and/or induce plant 

resistance to their attack. Trichoderma species have the ability to create a suppressive 

environment by its interactions in the soil community to produce unfavourable 

ecological conditions that limit the development or multiplication of pathogenic 

populations. 

These abilities represent the main reasons for the commercial success of products 

containing these fungal antagonists used in agriculture. In addition, a large volume of 

viable propagules can be produced rapidly and readily on numerous substrates at a low 

cost in diverse fermentation systems (Agosin et al., 1997). The living microorganisms, 

conserved as spores, can be incorporated into various formulations (liquid, granules or 

powder etc.) and stored for months without losing their efficacy (Jin et al., 1991; 1992; 

1996).  

Actually several commercial products based on microbes are registered worldwide and 

used for the control of bacterial and fungal diseases in field or in post-harvest. The use 

of beneficial microbes has several advantages, in particular: 

 

 have a specific target; 

 are not active on beneficial microorganisms; 

 do not release toxic or harmful residues; 

 reduce both chemical contaminants in food and the environment; 
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 limit the impoverishment of the soil in terms of microflora and organic matter; 

 their production is low cost. 

 

However when compared with chemical pesticides or fertilizers used in agriculture, 

these mixtures have some limitations. In particular the capacity of living microorganism 

to survive on plant surface is limited. Many chemical pesticides tend to not lose their 

effectiveness even after particularly lengthy periods (from a few days to a maximum of 

4 weeks). On the other hand, the relative efficiency of BCAs is short. For some of them 

is limited to 12 hours (commercial preparation of Heliothis NPV). Equally important is 

the mode of preservation. In fact, bioformulation, if not stored correctly they lose the 

effectiveness.  

Finally, a biocontrol agent needs to find favourable environmental conditions. It’s 

possible that the microorganism may have difficulty in colonizing some soils or 

substrates as may be adversely affected by environmental factors or agronomic practices 

are not compatible (use of compounds based on sulfur, copper, etc.). 

 

1.7. Biocontrol products: new perspectives 
 

In addition to antagonistic microorganisms, biological control can use also molecules 

derived from microbial cultures, able to act against pathogens both directly by inhibiting 

the growth and possibly causing their death, and indirectly inducing a defence response 

in the plant. The degrading enzymes produced by antagonistic microorganisms 

represent an excellent alternative for the development of new products and strategies of 

defence against phytopathogenic fungi. They have the ability to synergize the effect of 

various synthetic fungicides. Thus, the enzyme mixtures can either be used as biological 

fungicides, and as adjuvant of chemical synthesis, allowing a significant reduction of 

the concentrations of chemical fungicides. 

Trichoderma spp. are important producers of a large number of secondary metabolites, 

as described above. The use of anti-microbial compounds produced by fungal 

biocontrol agents has numerous advantages over the use of the whole “live” organisms 

in all aspects related to industrial production, commercialization and application. They 
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have the intrinsic characteristic of wide spectrum anti-microbial inhibitory activity that 

can be exploited. Their production can be readily manipulated and regulated at an 

industrial level. Indeed, several advantages are associated with the stability to the 

manufacturing processes downstream (drying or formulation), good shelf-life and the 

final product is stable, easy to store and transport. Furthermore, they are resistant to 

environmental conditions in the field variables (temperature, water, pH, light etc). All 

these conditions are much less restrictive than the use of the living microorganism for 

commercialization and use. 
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2. Aim of the work 
 

Agricultural research has been oriented more and more towards developing biological 

control agents and integrated pest management techniques, with the aim of reducing the 

use of chemical pesticides. Several microorganisms are antagonists of important plant 

pathogens and they include bacteria (Bacillus spp., Pseudomonas spp. and Enterobacter 

spp.), numerous yeasts (Pichia spp., Candida spp.) and fungi (Trichoderma spp., and 

Gliocladium spp.). These agents (BCAs) have been largely used to control disease, 

alone or in combination. 

Many Trichoderma strains utilize highly effective antagonistic mechanisms to survive 

and colonize the competitive environment of the rhizosphere, phyllosphere and 

spermosphere. The biocontrol activity of effective Trichoderma is due also to the 

production of a variety of secondary metabolites that have a toxic or inhibitory effect on 

the phytopathogens as well as induce disease resistance mechanisms in plants. 

The above BCAs are used worldwide as alternative or in combination of conventional 

method of disease management. In most of the cases, the available products are made of 

propagules of the living microbes formulated in a variety of manners. However, the use 

of these biopesticides/biofertilizers has suffered from a few constrains as listed below: 

 

 Loss of efficacy following varieties of environmental conditions (pH, 

temperature, water, light, soil types etc.) 

 Variable effects on different plant cultivar 

 Inconsistent dose-effect response  

 Loss of efficacy upon long storage 

 Susceptibility to chemicals used in agriculture, natural toxins and other 

microbes. 
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Biologically active secondary metabolites are considered a valid alternative to the use of 

living BCA because they are able to produce the same beneficial effect on crops while 

overcoming the problems described above. 

The aim of this work was to investigate the possibility of improving the effectiveness 

and the usefulness of microbial biocontrol agents by using selected secondary 

metabolites able to: 

 inhibit the pathogen,  

 promote BCA antagonistic activity 

 induce systemic resistance in the plant 

 stimulate growth and development of different cultures 

 

To achieve this goal, we combined biochemical characterization of SMs and fungal 

strains with agronomic tests of BCAs, and used agriculturally important plants 

(Solanum lycopersicum, Brassica rapa, Vitis vinifera ) as well as Arabidopsis thaliana. 
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3. Material and Methods 
 

3.1. Fungal strains 
 

All the fungal strains were maintained on potato dextrose agar (PDA) slants at room 

temperature and subculture bimonthly. T. harzianum (M10), T. atroviride (P1) and T. 

longibrachiatum (MK1) have been deposited in the culture collection of Agriculture 

Department – Section of Plant Pathology - University of Naples. 

 

3.2. Liquid culture and metabolite production. 
 

Ten 7 mm diameter plugs of T. harzianum (M10) and T. atroviride (P1), obtained from 

actively growing margins of potato dextrose agar (PDA, SIGMA, St Louis, Mo., USA) 

cultures, were inoculated into 5 L conical flasks containing 2 L of sterile potato dextrose 

broth (PDB, SIGMA). The stationary cultures were incubated for 21 days at 25 °C. The 

cultures were filtered under vacuum through filter paper (Whatman No. 4, Brentford, 

UK). 

 

3.3. Extraction and Isolation of 6-pentyl--pyrone (6PP) 
 

The filtered culture broth of T. atroviride P1 (3 L) was acidified to pH 4 with 5 M HCl 

and extracted exhaustively with ethyl acetate. The combined organic fraction was dried 

(Na2SO4) and evaporated in vacuum at 35 °C. The red residue recovered (500 mg) was 

fractionated by flash column chromatography (Si gel; 200 g Merck, Kiesegel 60, 0.063-

0.2 µm), eluting with a gradient of EtOAc/petroleum ether (1:1 to 10:0). Fractions 

showing similar TLC (Si gel, Kieselgel 60, GF254 di 0,25 mm, Merck, Darmstadt; 

Germany) profiles were combined. 
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Twelve fractions were collected, and of these, fraction 3 consisted of oleaginous 

material that showed the same mass spectra and 1H and 13C parameters as those of 6-

pentyl--pyrone (6PP). 

The compounds were detected on TLC plates using UV light (254 or 366 nm) and/or by 

spraying the plates with 5% (v/v) H2SO4 in EtOH followed by heating at 110 °C for 10 

min. 

1
H and 

13
C NMR spectra were recorded with a Varian 400 instrument operating at 400 

(
1
H) and 125 (

13
C) MHz, using residual and deuterated solvent peaks as reference 

standards. High resolution spectra were recorded using a Waters Alliance e2695 HPLC 

connected to a Waters LCT Premier XE mass spectrometer with an electrospray 

ionisation source (ESI). 

 

3.4. Extraction and Isolation of 2-hydroxy-2-[4-(1-hydroxy-octa-
2,4-dienylidene)-1-methyl-3,5-dioxo-pyrrolidin-2-ylmethyl]-
3-methyl-butyric acid (Harzianic acid HA) 

 

The filtered culture broth (2 L) was acidified to pH 4 with 5 M HCl and extracted 

exhaustively with ethyl acetate (EtOAc). The combined organic fraction was dried 

(Na2SO4) and evaporated in vacuo at 35 °C. The red residue recovered was dissolved in 

CHCl3 and extracted three times with 2 M NaOH. Harzianic acid was then precipitated 

with 2 M HCl. The solid was recovered (135 mg), solubilised and subjected to RP-18 

vacuum chromatography (20 g), eluting with a gradient of methanol 

(MeOH):H2O:CH3CN (1:8:1 to 10:0:0). After the separation, 45 mg of pure HA were 

collected.  

The homogeneity of pure pooled products was verified by analytical reverse-phase TLC 

(glass pre-coated Silica gel 60 RP-18 plates - Merck Kieselgel 60 TLC Silica gel 60 RP-

18 F254s, 0.25 mm) using 3:4:3 CH3CN - MeOH -H2O as eluent (Rf of HA: 0.3). The 

compounds were detected on TLC plates using UV light (254 or 366 nm) and/or by 

spraying the plates with 5% (v/v) H2SO4 in EtOH followed by heating at 110 °C for 10 

min. 
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HA (1). UV, IR, 
1
H NMR, 

13
C NMR and HR-FABMS were identical to those reported 

by Sawa et al. (1994). ESMS (+) m/z 753.3 [M2 + Na]
+
 , 404.2 [M + K]

+
, 388.2 [M + 

Na]
+
,366.2 [M + H]

+
; 264.2 [M +H – C7H18]

+
. 

1
H and 

13
C NMR spectra were recorded with a Varian 400 instrument operating at 400 

(
1
H) and 125 (

13
C) MHz, using residual and deuterated solvent peaks as reference 

standards. High resolution spectra were recorded using a Waters Alliance e2695 HPLC 

connected to a Waters LCT Premier XE mass spectrometer with an electrospray 

ionisation source (ESI). 

 

3.5. CAS agar plates assays 
 

The method to detect siderophore production was previously described by Schwyn and 

Neilands (1987). Orange halos around the colonies, growth on Chrome Azurol S (CAS) 

plates, are indicative of siderophore activity. CAS solution was also used for detection 

of siderophore production in culture filtrate (50 l of culture was added to 950 l of 

CAS solution, after reaching equilibrium the absorbance was measured at 630 nm). The 

CAS assay was also used to test the chelating properties of a solution 10
-3

 M of HA in 

methanol. 

The CAS assay (Schwyn and Neilands 1987) was modified to test the ability of strain 

M10 to produce iron-binding compounds eventually avoiding the growth inhibition 

caused by the toxicity of the CAS-blue agar medium (Milagres et al. 1999). Petri dishes 

(10 cm in diameter) were prepared with the Malt Extract Agar (MEA) medium. After 

have solidified, the medium was cut into halves, one of which was replaced by CAS-

blue agar. The halves containing culture medium (MEA) were inoculated with M10 

plugs. The plates were incubated at 25°C for 6 days. 

 

3.6. Iron binding affinity of HA 
 

In order to measure the iron binding affinity of HA, the method of Kaufmann et al. 

(2005) was used with some modifications. Stock solutions of ferric chloride (10 mM) 



Material and methods 

 

 

41 

 

and HA (10 mM) were prepared with 4:1 MeOH / 0.1 M NaOAc buffer solution (pH 

7.4). Aliquots of both stock solutions were diluted and the absorbances of the formed 

complexes were measured at 290 nm in triplicate in the presence and absence of EDTA 

(10 mM and saturated solution). 

 

3.7. LC/MS of HA–Fe(III) complex 
 

The Fe(III)-binding properties of the HA were investigated by adding 100 l of a Fe(III) 

chloride solution (10 mM) to 100 L of 10 mM HA in MeOH. The solution turned red 

and was directly injected using a syringe pump into the LC/MS system. Full-scans in 

the range m/z 100–1,200 were performed on a Bruker 6340 ion trap mass spectrometer 

equipped with an electrospray ionization source and operating in the positive ion mode. 

High resolution spectra were recorded using a Waters Alliance e2695 HPLC connected 

to a Waters LCT Premier XE mass spectrometer with an electrospray ionisation source 

(ESI). Samples were injected using the onboard injector in 10 µL injection volumes and 

eluted with 20% acetonitrile/water at a flow rate of 0.3 mL/min to the time-of-flight 

mass spectrometer. For the HA-Fe(III) complex, positive ESI-HRMS found m/z 

491.0574  ([C19H27NO6FeCl2 ]
+ 

requires 491.0565)  

 

3.8. Hytra1 purification from culture filtrate 
 

One hundred microliter of a T. longibrachiatum Mk1 spore suspension 10
8
/ml was used 

to inoculate Erlenmeyer flasks containing 100 ml of  Murashige e Skoog (M&S base 

medium) added with 1% of tomato plant tissue. After 7 days of growth at 25 °C and 150 

rpm (revolution per minute) the culture filtrate (CF) was separated from the biomass by 

filtration with Miracloth paper (Calbiochem La Jolla, CA, USA) and subsequently 

centrifugation at 20.000g rpm for 20 min.  The obtained clear CF was poured in a 

separator funnel, vigorously shaken for 5 minutes and decanted for 5 more minutes. At 

this point, two different phases appeared into the funnel, a clear liquid with a consistent 

foam on the surface which was recovered and dissolved in 70% ethanol. Protein 
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concentration was determined by a Bradford Dc protein assay (Bio-Rad, Richmond, 

CA, USA) and samples were stored at -20 °C until use. 

 

3.9. Tomato plant growth promotion 
 

Tomato (Lycopersicum esculentum cv. Roma) seeds were surface sterilized using 70% 

EtOH for 2 min, followed by 2% NaClO for 2 min, thoroughly washed with sterile 

distilled water and used for the following experiments. 

 

3.9.1. In vitro assay 

 

Seed germination  

Sterile tomato seeds were placed on magenta box containing half-strength Murashige 

and Skoog salt (MS) medium (ICN Biomedicals) containing 1 % agar and 1.5% 

sucrose, adjusted to pH 5.7, and vernalized for 2 days at 4°C in the absence of light. 

Sterile solutions of HA, 6PP and Hytra1 were added to the substrate before the 

solidification of agar using these concentrations: 

 

1. Control (only water) 

2. HA 10M 

3. HA 1M 

4. HA 0.1M 

5. 6PP 10M 

6. 6PP 1M 

7. 6PP 0.1M 

8. Hytra1 0.01M 

9. HA 10M/ 6PP 1M 

10. HA 1M/6PP 10M 

11. HA 10M/6PP 10M 
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12. HA 1M/ 6PP 1M 

13. HA 1M/ 6PP 1M/ Hytra1 0.01M 

Each treatment consisted of five replicates and the experiment was repeated four times. 

Data from the experiments were combined since statistical analysis determined 

homogeneity of variance (P 0.05). 

 

Rooting assays  

Sterile tomato seeds were allowed to germinate in the dark in sterile plastic boxes 

containing a salt medium SM Agar plus sucrose 1.5 % for 10 days. The small seedlings 

were cut into small pieces that were transferred to new sterile boxes containing different 

solution listed below: 

 

Exp. N.  Substrates 

1 SM+1.5% sucrose (negative control) 

2 SM +1.5% sucrose + HA 0.1M 

3 SM +1.5% sucrose + HYTRA1 0.01M 

4 Germon E (GE) (L. Gobbi, Italy) +HYTRA1 0.01M 

5 GE +HA 0.1M 

6 GE +HA 0.1M + HYTRA1 0.01M 

7 SM +1.5% sucrose + HA 0.1M + HYTRA1 0.01M 

8 GE (positive control) 

 

The composition of Salt Medium in one liter of water was as follows: KH2PO4 680 mg 

L
-1

, K2HPO4 870 mg L
-1

, KCl 200 mg L
-1

, NH4NO3 1 g L
-1

, CaCl2 200 mg L
-1

, MgSO4. 

7H2O 200 mg L
-1

, FeSO4 2 mg L
-1

, MnSO4 2 mg L-1, ZnSO4 2 mg L
-1

, Sucrose 10 g L
-

1
, agar 10 g L

-1
 (all purchased from SIGMA). Each treatment consisted of five replicates 

and the experiment was repeated four times. Data from the experiments were combined 

since statistical analysis determined homogeneity of variance (P 0.05). 
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3.9.2. In vivo assay 

 

Pot experiments 

Tomato seedlings were placed on plastic pots and grown in a phytotron (16h 

photoperiod); the temperature was maintained at 25 ±1°C with a relative humidity of 

65–75 %. Sterile solutions of HA and 6PP were added (drenched – 50 ml) every two 

days at concentrations of 10M, 1M, 0.1M for tomato plant. Untreated plants were 

used as controls. 

Plant development was measured daily. Each treatment consisted of five replicates and 

the experiment was repeated four times. At the end of each experiment, the whole plants 

were dried and weighed. Data from the experiments were combined since statistical 

analysis determined homogeneity of variance (P 0.05). 

 

Glass plate experiments 

Tomato (Lycopersicum esculentum cv. Roma) seeds were surface sterilized using 70% 

EtOH for 2 min, followed by 2% NaClO for 2 min, thoroughly washed with sterile 

distilled water then placed on sterile glass plates separated by spacers of 2 mm 

containing 20 g of 50% peat and 50% normal soil. The plants were drenched with 5 ml 

of the following metabolite solutions: 

 

HA 1M 

6PP 1M 

Hytra 1 0.01M 

HA 1M/ 6PP 1M 

HA 1M/ 6PP 1M/ Hytra 1 0.01M 

 

Root length was measured daily. Each treatment consisted of five replicates and the 

experiment was repeated four times. Data from the experiments were combined since 

statistical analysis determined homogeneity of variance (P 0.05). 
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3.10. Broccoli plant growth promotion and glucosinaltes analysis 
 

Brassica rapa (subsp. sylvestris var. esculenta ecotype “Sessantino”) seeds were surface 

sterilized with the same protocol used for tomato. Furthermore, 900-1000 broccoli seeds 

were coated with 8 mL of Trichoderma spp. (atroviride strain P1 or harzianum strain 

M10) spore solutions (10
8 

sp/mL) and dried overnight under laminar flow. Then the 

treated and untreated seeds were placed on plastic pots containing sterile 50% peat and 

50% normal soil. The untreated seedlings (no coated) were drenched with sterile 

solutions of HA and 6PP (1 M) every two days. Untreated (no living fungi and no 

metabolites applications) plants were used as controls. 

Seedlings were grown in a phytotron (16h photoperiod); the temperature was 

maintained at 25 ±1°C with a relative humidity of 65–75 %. 

Stem length was measured daily. Each treatment consisted of five replicates and the 

experiment was repeated four times. At the end of each experiment, the whole plants 

were dried and weighed. Data from the experiments were combined since statistical 

analysis determined homogeneity of variance (P 0.05). 

 

3.10.1. Glucosinaltes analysis 

 

Broccoli plants were frozen, lyophilized and the glucosinolates were extracted with 

MAE extraction (Microwave-assisted-extraction). An Ethos-1 laboratory microwave 

system (Ethos 1 labstation, Milestone, USA) equipped with a 12-vessel carrousel 

operated in the closed-vessel mode was used for analytical tests. For the extraction, 

carried out in duplicate in the vessel, 0.180 g of dry-tissue were weighed, to which were 

added 10 mL of an aqueous solution of 70% methanol (v / v). In each vessel were also 

added 20 μL of 2-propenylglucosinolate (sinigrin - 60 mM) as internal standard. Both 

temperature and pressure were monitored in a single vessel during operation through an 

ATC-400 FO automatic control system.  

Glucosinolates were analysed after extraction by HPLC (Shimadzu LC 10, Shimadzu, 

Japan) at a flow rate of 1 ml/min, using a Prodigy column 5 l ODS3 100A, 250 - 4.60 
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mm (Phenomenex, USA). The mobile phase was a mixture of ultra-pure water (A) and 

acetonitrile (B). Compounds elution was achieved using the following linear gradient: 

starting condition 0-15% B (10 min), 15-40% B (5 min), 40-50% B (5 min), 50-0 % B 

(5 min). Flow: 0.8 mL/min. Chromatograms were recorded at 227 nm. 

LC-MS-MS analyses were performed by a LC/MS/MS System (API 3000, MDS 

SCIEX). The mass spectrometer is equipped with a Model 11 syringe pump (Harvard, 

Apparatus, Holliston, MA, USA) and with an APCI interface. The mass spectrometer 

was used exclusively in the triple quadrupole mode. Detection of the compounds was 

performed using IDA (information dependent acquisition), an artificial intelligence-

based product ion scan mode, generating a survey scan, single MS spectra with 

molecular mass information, product ion spectra, and extracted ion fragmentograms 

(XIC). The APCI source was used in negative mode at temperature set at 400 °C. All 

solvents were of HPLC grade. Sinigrin (allyl glucosinolate) was obtained from Sigma-

Aldrich (USA). 

 

3.11. Vitis vinifera plant growth promotion and qualitative 
analysis 

 

3.11.1. In vivo assay 

 

One year old plants of V. vinifera cv. Sangiovese were planted in pots (12 cm of 

diameter) containing sterile peat and soil (1:1 v:v). Plants were grown for 2 months, 

from April to June, in greenhouse at 25°C with a natural photoperiod. Plants were 

treated with purified secondary metabolites (6PP and HA) solution applied at a 

concentration of 10M and 1M, or with spore suspensions of P1 and M10 (applied at 

10
8
 sp/mL). 

Stem length was measured daily. Each treatment consisted of five replicates and the 

experiment was repeated four times. At the end of each experiment, the whole plants 

were dried and weighed. Data from the experiments were combined since statistical 

analysis determined homogeneity of variance (P 0.05). 
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3.11.2. Field experiment 

 

The purified secondary metabolite 6PP and a commercial T.harzianum strain T22 were 

applied in a field of Vitis vinifera. The experimental field consisted of 9 rows each 

containing 12 plants. The 6PP solution was applied at 1M (3 rows) and spore 

suspension of T22 was applied at 10
8
 sp/l (3 rows) and compared to the untreated plant 

(3 rows). Treatments (every 14 days) begun one month after plants sprouted and 

finished with harvest. 

 

3.11.3. Analysis of polyphenols 

 

Polyphenols were extracted from fruits. 5 g of fruit tissues were homogenised for 1min 

in 20 ml of extraction solution containing methanol/water/formic acid (60:37:3 v/v/v) 

and centrifuged for 5 min at 5000 rpm. Aliquots (4 ml) of supernatant were evaporated 

to dryness using a SpeedVac concentrator (ThermoSavant, Holbrook, NY, USA) with 

no radiant heat and resuspended in 1 ml of extraction solution. 

The amount of total polyphenols in the extracts was determined according to the Folin–

Ciocalteau method and using HPLC methods (LC-10Ai - Shimadzu), UV/VIS SCL-

10AVP (Shimadzu) detector and a Prodigy column ODS3 100 Å, 250x4.6 mm, 5 µm 

(Phenomenex, CA, USA). The mobile phase was a mixture of ultra-pure water/ 0.2% 

formic acid (A) and acetonitrile/methanol (60/40 v/v) (B). Compounds elution was 

achieved using the following linear gradient: starting condition 20-30% B (6 min), 30-

40% B (10 min), 40-50% B (5 min), 50-90% B (11 min). Flow: 0.8 mL/min. 

Wavelengths misured : 280 nm, 360 nm e 510 nm. 

Gallic acid was employed as a standard and results were expressed as gallic acid 

equivalents (GAE) (mg GAE/100 g of seeds or skin dry matter (DM)). The absorbance 

was measured using a UV–vis spectrophotometer (Lambda 25, PerkinElmer, Italy) at 

the wavelength of 750 nm. 
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3.11.4. Antioxidant activity 

 

The antioxidant activity was measured using ABTS/HRP decoloration methods. ABTS 

was dissolved in water to a 7 mM concentration. ABTS radical cation (ABTS
•+

) was 

produced by reacting ABTS stock solution with 2.45 mM potassium persulfate (final 

concentration) and allowing the mixture to stand in the dark at room temperature for 

12–16 h before use. Because ABTS and potassium persulfate react stoichiometrically at 

a ratio of 1:0.5, this will result in incomplete oxidation of the ABTS. Oxidation of the 

ABTS commenced immediately, but the absorbance was not maximal and stable until 

more than 6 h had elapsed. The radical was stable in this form for more than two days 

when stored in the dark at room temperature. For the study of phenolic compounds and 

food extracts, the ABTS
•+

 solution was diluted with ethanol to an absorbance of 0.70 

(60.02) at 734 nm and equilibrated at 30°C. Stock solutions of phenols in ethanol were 

diluted such that, after introduction of a 10- ml aliquot of each dilution into the assay, 

they produced between 20%–80% inhibition of the blank absorbance. After addition of 

1.0 ml of diluted ABTS
•+

 solution (A734nm 5 0.700 6 0.020) to 10 ml of antioxidant 

compounds or Trolox standards (final concentration 0–15 mM) in ethanol. Solvent 

blank was run in assay. All determinations were carried out at least three times, and in 

triplicate, on each occasion and at each separate concentration of the standard and 

samples. The percentage inhibition of absorbance at 734 nm is calculated and plotted as 

a function of concentration of antioxidants and of Trolox for the standard reference 

data. The concentration - response curve for 5 sequentially and separately prepared 

stock standards of Trolox is illustrated in Fig. 3.1. 
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Figure 3.1: calibration curve using Trolox (standard) in the ABTS 

method. The assessment of the antioxidant activity is calculated as a 

percentage of decrease in absorbance, also known as "percentage of 

inhibition". 

 

3.12. Arabidopsis thaliana plant growth promotion 
 

3.12.1. In vitro assay 

 

Arabidopsis Thaliana (Columbia-0: Col-0) seeds were surface sterilized using using 

70% EtOH for 2 min, followed by 5% bleach/ 1% SDS solution for 15 min, thoroughly 

washed with sterile distilled water  three times then placed on squared plastic plates 

containing MS agar ( for 2L: 4.8 g/L pH=5.7, 6,4g/L of Agar then autoclaved). Roots 

length was measured daily. treatment consisted of three replicates and the experiment 

was repeated three times. Data from the experiments were combined since statistical 

analysis determined homogeneity of variance (P 0.05). 

 

3.12.2. In vivo assay 

 

Arabidopsis Thaliana (Columbia-0: Col-0) seeds were sown in Levington’s F2 compost 

plus sand (JFC Munro, Devon; http://www.jfcmonro.com) and chilled for 2 days at 4 

°C. Plants were grown under short-day conditions (10 h light) in a controlled-
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environment chamber, at 22 °C during the day and 18 °C at night with 60% relative 

humidity for 5–6 weeks before transplanting. Sterile solutions of HA, 6PP and Hytra 1 

were drenched every two days at concentrations of 0.1 M, 0.1 M, 0.01 M 

respectively for one month. Untreated plants were used as controls. 

At the end of each experiment, fresh and dry weight of the whole rosette was detected. 

Data from the experiments were combined since statistical analysis determined 

homogeneity of variance (P 0.05). 

 

3.13. Arabidopsis thaliana metabolome 
 

Wild type Arabidopsis (Col-0) plants were treated with Trichoderma metabolites (HA, 

0.1mM; 6PP, 0.1mM; Hytra 1, 0.01mM) for one month (five biological replicates for 

each treatment). Then freeze dried leaf powder (10 mg) was extracted in 0.8 ml 20% 

methanol containing an internal standard (36 g ml
-1

 umbelliferone). After 

centrifugation (10 min at 16,100* g, 4°C), the samples were filtered through a 0.2 m 

polyvinylidine fluoride (PVDF) syringe filter (Chromacol, Welwyn Garden City, UK). 

Metabolite profiling was performed using a QToF 6520 mass spectrometer (Agilent 

Technologies, Palo Alto, USA) in MS mode coupled to a 1200 series Rapid Resolution 

HPLC system. 5 L of sample extract was loaded onto a Zorbax StableBond C18 1.8 

m, 2.1 9 100 mm reverse phase analytical column (Agilent Technologies, Palo Alto, 

USA). Mobile phase A comprised 5% acetonitrile with 0.1% formic acid in water and 

mobile phase B was 95% acetonitrile with 0.1% formic acid in water. The following 

gradient was used: 0 min—0% B; 1 min—0% B; 5 min—20% B; 20 min—100% B; 25 

min—100% B; 26 min—0% B; 9 min post time. The flow rate was 0.25 ml min
-1

 and 

the column temperature was held at 35°C for the duration. The source conditions for 

electrospray ionisation were as follows: gas temperature was 350°C with a drying gas 

flow rate of 11 l min
-1

 and a nebuliser pressure of 55 psig. The capillary voltage was 3.5 

kV and the data shown here were collected in negative ion mode. The fragmentor 

voltage was 115 V and skimmer voltage 70 V. Scanning was performed at three scans 

sec
-1

. Features (i.e. predicted compounds with neutral mass and retention time) were 
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extracted from each sample using the molecular feature extraction facility in Mass 

Hunter (Aligent Technologies, Palo Alto, USA). This method extracts ions (of charge 1 

or 2) which have defined chromatographic features above a set peak height (in this case, 

just above the noise level 100 counts peak height). A peak is generated from a 

deconvolution process in mass spectra. Count peak height is the output from Mass 

Hunter and is directly related to the abundance of a feature. The presence of co-eluting 

ions differing by the appropriate m/z values allows the identification of commonly - 

occurring adducts. Adducts are then collapsed into a single feature with a predicted 

neutral mass and retention time. Where a feature is detected in the absence of multiple 

adducts its neutral mass is calculated on the assumption that it is deprotonated or 

protonated. The list of features from each sample is subjected to alignment and PCA 

(Principal component analysis) as reported by Venura and coworkers (2012). 
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4. Results 
 

4.1. Characterization of harzianic acid (HA) and Trichoderma 

harzianum M10. 

 

In the first part of this chapter we purified and characterized the main metabolites (in 

terms of concentration) produced by selected strains of Trichoderma fungi (M10 and 

T22)  

4.1.1. Isolation and chemical characterization of HA 

 

T. harzianum M10 was grown in PDB for 21 days, and the culture filtrate was extracted 

with ethyl acetate, from which HA (98 mg) was isolated as described in the materials 

and methods section. 

The high resolution mass spectrum (figure 4.1) of HA showed a molecular peak [M+H] 

+
 at 366.1892 m/z (calcd for C19H27NO6 + H, 366.1872), and its pattern corresponded to 

that of 2-hydroxy-2-[4-(1-hydroxy-octa-2,4-dienylidene)-1-methyl-3,5-dioxo-

pyrrolidin-2-ylmethyl]-3-methyl-butyric acid described by Sawa et al. (1994) and 

Vinale et al. (2009).  
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Figure 4.4 HR ESI-MS spectrum of harzianic acid 

 

The HA structure was confirmed by NMR experiments (
1
H NMR; 

13
C NMR, COSY; 

TOCSY; DEPT 135; HMBC; HSQC). In figure 4.2 is reported the 
1
H NMR of HA. 
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Figure 4.5 
1
H NMR spectrum of harzianic acid 

 

4.1.2. Iron (III) binding activity of Trichoderma harzianum M10 and HA 

and characterization of HA-Fe (III) complex 

 

Iron (III) binding activity of M10 and of its secondary metabolite HA was evaluated 

with chrome azurol S (CAS)-blue agar assay. The fungus grew on CAS blue agar and 

the iron(III) chelating compounds, secreted by the microorganism, diffused throughout 

the medium producing a color change from blue to orange. 

Purified HA decolorized CAS blue agar, indicating that it could form a complex with 

Fe(III) (figure 4.3). In fact, the compound in aqueous solution was pale orange while the 

addition of Fe(III) resulted in the appearance of a red color, indicating that an iron 

complex was formed. 
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Figure 4.6 Agar plate containing 

chrome azurol S blue agar (CAS 

Agar) media inoculated with: 

Harzianic acid (10 ml of a 

100M solution) (A), 

Trichoderma harzianum M10 

(B). 

 

The interaction of the fungal metabolite HA with iron (III) was further investigated. 

When Fe(III) was added as FeCl3, the mass spectra showed additional signals at 455.1 

m/z and 491.1 m/z (figure 4.4) corresponding to a 1:1 chloride containing complex 

(figure 3.5), [M-H+Fe(III)+Cl2+H]
+
 (m/z 491.1) or [M-2H+Fe(III)+Cl+H]

+
 (m/z 

455.1), as determined by isotopic distribution.  

 

 

 

 

 

 

 

 

 

Figure 4.4: ESI-MS of HA (A) and HA-Fe(III) complex (B). 

 

A B 

A B 
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Figure 4.5: HA-Fe(III) complex 

High resolution mass spectrum of the HA-Fe(III) complex showed signals at m/z 

491.0574 ([C19H27NO6FeCl2 ]
+
 requires 491.0565), confirming the 1:1 HA–Fe complex. 

The resulting mass spectrum is shown in figure 4.6. 

 

 

Figure 4.6: HR ESI-MS of HA-Fe(III) complex 

 

In addition, we investigated the effect of adding different concentrations of ferric 

chloride and tetramic acid and observed the formation of a HA-Fe(III) complex by 

spectrophotometric analysis. These experiments were performed by using a previously 

described protocol based on the competition between HA and EDTA for iron and the 



Results 

 

 

57 

 

detection of the complexes was determined by measuring the characteristic absorption 

(Wang et al., 2002). The loss of HA-Fe (III) absorbance at 340 nm upon addition of 

EDTA was used to calculate the equilibrium constant, presuming the formation of a 1:1 

HA–Fe complex, according to the following equation: 

 

EDTA-Fe + HA = EDTA + Fe-HA 

 

Keq = [EDTA][Fe-HA] / [HA][EDTA-Fe] = Kd;EDTA / Kd;HA 

 

 

By using the known affinity of EDTA for Fe(III) (5.00 x 10
-23

 M), we were able to 

determine the relative affinity (Kd,app) of HA for Fe
3+

:1.79 x 10
-25

 M. 

 

4.2. Isolation and chemical characterization of 6-penthyl--

pyrone (6PP) 

 

The filtered culture broth of T. atroviride strain P1 (3 L) was acidified to pH 4 with 5 M 

HCl and extracted exhaustively with ethyl acetate. The combined organic fraction was 

dried (Na2SO4) and evaporated in vacuum at 35° C. The red residue recovered (500 mg) 

was fractionated by flash column chromatography (silica gel; 200 g), by eluting with a 

gradient of EtOAc/petroleum ether (1:1 to 10:0). Fractions showing similar TLC 

profiles were combined. 

Of the twelve fractions collected, fraction 3 (92 mg) consisted of an oleaginous material 

that showed the same mass spectra and 
1
H and 

13
C parameters as those of 6PP (Moss et 

al., 1975). 

The high resolution mass spectrum of 6PP, showing a molecular peak [M+H] 
+
 at 

167.1061 m/z (calcd for C10H14O2 + H, 167.1027), is reported in Figure 4.7, while the 

1
H NMR is reported in Figure 4.8. 
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Figure 4.7: HR ESI-MS spectrum 6-pentil--pyrone 
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Figure 4.8: 
1
H NMR spectrum of 6PP. 

 

4.3. Effect of purified metabolites, 6PP and HA, on Solanum 

lycopersicum cv. San Marzano 

 

Purified Trichoderma metabolites are applied on tomato seedlings to observe the effect 

on the seed germination and growth. We study also the effect of application with fungal 

metabolites, singly or their combination, on Solanum lycopersicum growth in terms of 

seed germination and root development. 

4.3.1. In vivo assays: seed germination and plant growth promotion 

 

To assess the effects of 6PP and HA at different concentrations (10 M, 1 M, 0.1M) 

on seed germination, shoot growth and fresh-dry weight of tomato in vivo experiments 

were carried out in growth chamber at temperature of 25° C. 
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Both secondary metabolites promoted seed germination. HA had a strong effect at 

10M and 1M while, 6PP incresed seed germination only at 10 M. None of the 

treatments significantly reduced tomato seeds germination (Table 4.1). 

 

Table 4.1 Effect of HA and 6PP at different concentration (10 μM to 0.1 μM per pot) on tomato 

seed germination (percent of the tested seeds). 

Treatment day 1 SD day 2 SD day 3 SD day 4 SD 

Control 0 a 0 16,70 a 3,90 72,20 a 7,90 100,00 a 0 

HA 10 M 0 a 0 88,90 b 3,90 94,40 b 3,90 100,00 a 0 

HA 1 M 0 a 0 72,20 c 7,90 100,00 c 0,00 100,00 a 0 

HA 0.1 M 0 a 0 27,80 d 11,80 72,20 d 11,80 100,00 a 0 

6PP 10 M 0 a 0 44,40 e 7,90 88,90 e 7,90 100,00 a 0 

6PP 1 M 0 a 0 25,00 f 15,70 50,00 f 3,90 100,00 a 0 

6PP 0.1 M 0 a 0 11,10 g 0,00 61,10 g 11,80 100,00 a 0 

Values are means of 3 replicates (20 seeds per pot). SD: standard deviation. Values with the same letter do not 

differ significantly (P < 0.05). 

 

Seven days after, the plants, resulting from treated seeds, showed, in some cases, a 

growth promotion effect in terms of stem length (figure 4.9). The application of HA at 

any tested concentration enhanced the shoots development, while 6PP gave the same 

effect only if applied at 10 M. 

Furthermore, an increase of fresh and dry weight of the plant was observed for the HA 

treatments (10 M to 0.1 M), while 6PP produced only a significant increase of fresh 

weight at 10 M (figure 4.10 and 4.11). 
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Figure 4.9: Effect of 6PP and HA at different concentration on tomato shoot growth. Concentration ranged 

from 10 to 0.1 M. Values are means of 5 replicates. Bars indicate standard deviation. Values with the same 

letter do not differ significantly (P < 0.05). 
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Figure 4.10: Effect of 6PP at different concentration on tomato fresh/dry weight. Concentration ranged from 

10 to 0.1 M. Values are means of 5 replicates. Bars indicate standard deviation. Values with the same letter 

do not differ significantly (P < 0.05). 
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Figure 4.11: Effect of HA at different concentration on tomato fresh/dry weight. Concentration ranged from 

10 to 0.1 M. Values are means of 5 replicates. Bars indicate standard deviation. Values with the same letter 

do not differ significantly (P < 0.05). 

 

4.3.2. Effect of purified metabolites 6PP and HA on Solanum 

lycopersicum cv. San Marzano: seed germination assay 

 

In vitro assays (Figure 4.12) were performed to determine the effect on tomato seed 

germination of different combinations of HA, 6PP and the hydrophobin Hytra1, 

b 

c 

a 

c 

a 

b b b 
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obtained from T. longibrachiatum strain MK1 (Ruocco et al. 2008). As reported in the 

figure 3.13 seed germination was increased by 44% using a mixture of HA 1M and 

6PP 1M, while by 42 % using HA 10 M plus 6PP 10 M. Application of the 

metabolites singly (HA, 6PP and Hytra 1) also stimulated germination at different 

concentration. In particular the percentage values were, respectively, by 39% and 42% 

for HA 10M and 1M, while, by 41% and 27% for 6PP 10M and 1M. 

Unexpectedly, the combination of Hytra 1 (0.01M), HA (1M) and 6PP (1M) 

stimulated seed germination (33%) less than the treatment with the protein alone (49%) 

(Figure 4.13). 

  

Figure 4.12: Effect of HA 10M (A) on tomato seed germination compared with the control (B) 

 

A B 
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Figure 4.13: Effect of Trichoderma metabolites or their combinations on tomato seed germination. 

Concentration ranged from 10 to 0.01 M. Percentages of seed germination relatively to the untreated control 

are indicated. Values are means of 5 replicates. Bars indicate standard deviation. Values with the same letter 

do not differ significantly (P < 0.05). 

4.3.3. Effect of Trichoderma metabolites and their combination on 

Solanum lycopersicum cv. San Marzano cuttings: root growth 

promotion assay. 

 

The effect of Trichoderma metabolites on root development of tomato cuttings was also 

evaluated. Tomato seeds were allowed to germinate in the dark in sterile plastic boxes 

containing a salt medium SM (see Material and Methods section) plus sucrose 1.5 % for 

10 days. The small seedlings were cut into small pieces that were transferred to new 

sterile boxes containing different solutions of the Trichoderma metabolites and the 

commercial formulation GE (Germon E). The figures 4.14, 4.15 and 4.16 show the 

results of this experiment. The effects of the fungal metabolites and of the commercial 

rooting hormone formulation were morphologically different: while the purified 

compounds stimulated the formation of true roots, the hormone preparation induced the 

formation of calli from which an array of new roots was then generated (not shown). 
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Generally, only the treatments containing Hytra 1 at 0.01M and HA alone at 0.1M 

consistently stimulated root length, dry and fresh weight (Figures 4.14, 4.15 and 4.16), 

while the use of the metabolite combinations, also of rooting hormone, inhibited the 

root development, in terms of length. 

 

Figure 4.14: Effect of Trichoderma metabolites or their combination, also the product GE (Germon E), on 

tomato root development (length). Concentration ranged from 0.1 to 0.01 M. Values are means of 5 replicates. 

Bars indicate standard deviation. Values with the same letter do not differ significantly (P < 0.05). 
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Figure 4.15: Effect of Trichoderma metabolites or their combination, also the product GE (Germon E), on tomato 

root development (dry weight). Concentration ranged from 0.1 to 0.01 M. Values are means of 5 replicates. Bars 

indicate standard deviation. Values with the same letter do not differ significantly (P < 0.05). 

 

 
Figure 4.16: Effect of Trichoderma metabolites or their combination, also the product GE (Germon E), on 

tomato root development (fresh weight). Concentration ranged from 0.1 to 0.01 M. Values are means of 5 

replicates. Bars indicate standard deviation. Values with the same letter do not differ significantly (P < 0.05). 

a 

b 

d 

e 
f 

g 

h 

i 

a 

b 

c 

d 

a 

e 

f 

g 



Results 

 

 

68 

 

4.3.4. Effect of Trichoderma metabolites and their combination on 

Solanum lycopersicum cv. San Marzano: root growth promotion 

assay plate experiments. 

 

In vivo experiments were carried out to assess the root growth promotion activity of 

Hytra1, HA and 6PP and their combinations. Tomato seeds were placed between two 

glass plates separated by 2mm of soil as shown in figure 4.17, and the thin layer was 

watered with the metabolite solution (HA 1M, 6PP 1M, Hytra 1 0.01M, HA 1M/ 

6PP 1M, HA 1M/ 6PP 1M/ Hytra 1 0.01M). 

Root length was measured 7 days after the treatment. 

 

Table 4.2 Effect of HA and 6PP at different concentration (10 μM to 0.1 μM per pot) on tomato root length 

(percentage increase compared to control). 

Treatment root length root fresh 

weight 

root dry 

weight 
HA 1M +26% +50% +41% 

HA 1M + 6PP 1M +37% +40% +19% 

HYTRA 1 0.01M M +26% +55% +41% 

HA 1M + HYTRA 1 

0.01M 

+25% +31% +45% 

 

 

Figure 4.17: Effect of HA on tomato seedling placed in soil on the glass plate experiment. HA treatment was at 

1M. 

Water HA 

1M 
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Either HA, Hytra 1 or their combination promoted tomato development in terms of root 

length (table 4.2). 6PP showed significant positive results only in combination with HA 

(data not shown). Moreover, the stems of tomato seedlings treated with the metabolite 

solution, particularly with HA solution or its combination, grew more uniform 

compared to the control. 

 

4.3.5. Effect of Trichoderma metabolites and their combination on 

Solanum lycopersicum cv. San Marzano: plant growth promotion 

assay in pot experiment. 

 

The application of the Trichoderma metabolites (HA, 6PP, Hytra 1 and their 

combinations) in pot experiments affected the shoot and root length of tomato plants 

(Figure 4.18 and 4.19). 

 

 

Figure 4.18: Effect of Trichoderma metabolites or their combination on tomato root growth. Compound 

concentration: HA 0.1M, 6PP 0.1M and Hytra 1 0.01M. Values are means of 5 replicates. Bars indicate 

standard deviation. Values with the same letter do not differ significantly (P < 0.05). 
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Figure 4.19: Effect of Trichoderma metabolites and their combination on tomato shoot growth. Compound 

concentration: HA 0.1M, 6PP 0.1M and Hytra 1 0.01M. Values are means of 5 replicates. Bars indicate 

standard deviation. Values with the same letter do not differ significantly (P < 0.05). 

HA (0.1M), Hytra 1 (0.01M) and 6PP (0.1M) increased the root length by 33%, 

25% and 9% respectively (Figure 4.18). The highest level of promotion (37%) was 

obtained by combining HA (0.1M) and Hytra 1 (0.01M). No significant differences 

were detected with other metabolite combinations except for HA (0.1mM) plus 6PP 

(0.1mM), which increased the root length by 19%. The shoot length was not affected by 

HA application. On the contrary, it was improved by 27% with 6PP (0.1mM) and 21% 

with Hytra 1 (0.01mM) treatment (Figure 4.19). Combinations of metabolites did not 

produce significant differences in comparison with the single compound application. 

 

4.4. Effect of T atroviride P1, T. harzianum M10, 6PP and HA on 

Brassica rapa subsp. sylvestris var. esculenta ecotype 

“Sessantino” (Broccoli) 

 

In this part we have observed the effect of treatment with two Trichoderma strains (T. 

harzianum M10 and T. atroviride P1) and two secondary metabolites (HA and 6PP) on 

Brassica rapa growth. Moreover we measured the effect of application on the 
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glucosinolate production. These are compounds very important in plant defense as well 

as in growth. 

 

4.4.1. Plant growth promotion in vivo 

 

The effect of T atroviride P1, T. harzianum M10, 6PP and HA on Brassica rapa subsp. 

sylvestris var. esculenta ecotype “Sessantino” growth was evaluated by measuring 

shoots length and fresh/dry weight. 

Shoot growth was enhanced by the application of M10, P1 (50 ml at concentration of 

10
9
 spore/ml for pot), as well as purified HA and 6PP (50 ml at concentration of 1 M 

for pot). M10, P1, HA and 6PP increased shoot length by 60%, 63%, 79% and 30% 

(Figure 4.20). 

 

 

Figure 4.20: Effect of M10, P1 (10
9
spore/ml), purified HA (1 M) and purified 6PP (1 M ) on B. rapa  growth. 

Values are means of 5 replicates. Bars indicate standard deviation. Values with the same letter do not differ 

significantly (P < 0.05). 

 

A promoting effect of the living fungi (M10 and P1) and the purified metabolites was 

also observed on both fresh and dry weight of the whole plant (Figure 4.21). 

Trichoderma M10 and 6PP increased fresh and dry weight by around 50% if applied at 

concentrations of 10
9
 spore/ml and 1 M, respectively; while, Trichodema P1 and HA, 

used at the same rate, increased fresh and dry weight by around 30%. 
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Figure 4.21: Effect of M10, P1 (10
9
spore/mL), HA (1 M) and 6PP (1 M ) on B. rapa fresh/dry weigth Values 

are means of 5 replicates. Bars indicate standard deviation. Values with the same letter do not differ 

significantly (P < 0.05). 

4.4.2. Effect on the plant: production of glucosinolates 

 

The effect of treatment with two Trichoderma strains (M10 and P1 used at 

concentration of 10
9
 spore/ml), and two purified metabolites 6PP and HA (1 M) on 

accumulation of 4 different glucosinoletes was determined at different time points (12, 

24, 36 and 72 hours) after the application. The molecular weights and retention times, 

obtained by LC/MS/MS analysis, of the main glucosinolates are shown in the table 4.3. 

 

Table 4.3: Molecular weight and retention time (RT) of the main glucosinolates extracted from Brassica rapa 

GLUCOSINOLATES 
MOLECULAR 

WEIGHT (g/mol) 
RT (min) 

neoglucobrassicin 477 19.03 

glucoiberin 422 18.39 

glucobrassicin 447 17.08 

gluconapin 372 11.48 
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Interestingly the LC-MS/MS analysis of the plant extracts showed a decreased level for 

all the glucosinolates tested at 72 h (end of the experiment) for any of the treatments 

(Figure 4.22 to 4.25). Among the metabolites, only 6PP increased the accumulation of 

neoglucobrassicin, glucobrassicin and gluconapin, which was evident already at 36h 

(Figure 4.24 and 4.25). 

 

 

Figure 4.22 Effect of M10/P1 fungi (10
9
spore/mL) and HA/6PP metabolites (1 M) on B. rapa 

neoglucobrassicin production at different time after treatment 
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Figure 4.23 Effect of M10/P1 fungi (10
9
spore/mL) and HA/6PP metabolites (1 M) on B. rapa glucoiberin 

production at different time after treatment 

 

Figure 4.24 Effect of M10/P1 fungi (10
9
spore/mL) and HA/6PP metabolites (1 M) on B. rapa glucobrassicin 

production at different time after treatment 
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Figure 4.25 Effect of M10/P1 fungi (10
9
spore/mL) and HA/6PP metabolites (1 M) on B. rapa gluconapin 

production at different time after treatment 

 

If the experiment was prolonged until the end of the plant vegetative cycle, different 

glucosinolate levels were found. An increased level of glucosinoletes was found for T. 

atroviride P1 treatment (up to 50%) (neoglucobrassicin, glucoiberin, glucobrassicin and 

gluconapin), T. harzianum M10 treatment (neoglucobrassicin and glucobrassicin), HA 

(neoglucobrassicin, glucoiberin, glucobrassicin and gluconapin) and 6PP (glucoiberin 

and gluconapin). In this case the effect was lower in comparison with living-fungus 

application (Figure 4.26 and 4.27). 
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Figure 4.26: Effect of treatments on glucoiberin, glucobrassicin and gluconapin concentration at the end of 

vegetative cycle.Values are means of 5 replicates. Bars indicate standard deviation.  

 

 

Figure 4.27: Effect of treatments on neoglucobrassicin concentration at the end of vegetative cycle. Values are 

means of 5 replicates. Bars indicate standard deviation. Values with the same letter do not differ significantly 

(P < 0.05). 

 

 

 

 

 

 

g 

a 

b 

c 

d 

e 

a 
b c 

d 

b 

a 
b 

c 

a e 

a 

b 

a 
b 

c 



Results 

 

 

77 

 

4.5. Effects of T atroviride P1, T. harzianum M10, 6PP and HA on 

Vitis vinifera cv. Sangiovese 

 

In this part we investigated if the application of living BCA, belonging to Trichoderma 

genus (used as alternative to synthetic pesticides) applied on V. vinifera (cv. 

Sangiovese) plants, could be improved or substituted by treatments with selected 

bioactive secondary metabolites (obtained from beneficial microbes) able to: i) inhibit 

the pathogen; ii) promote BCA antagonistic activity; iii) induce systemic resistance in 

the plant; iv) stimulate growth and development of different cultures. 

4.5.1. Plant growth promotion in growth chamber.  

 

In vivo experiments on V. vinifera were performed in growth chamber at temperature of 

25 °C. The plants were drenched or sprayed with 50ml of a Trichoderma solution (T. 

atroviride P1 and T. harzianum M10 strains at 10
9
 spores/mL) or with 50 ml of a 

secondary metabolite solution (HA and 6PP) at concentration of 10 and 1 M. The 

effects on the plant appearance were determined 30 days after. The plants treated with 

M10 and P1 were tell, more developed and carried leaves apparently greener as 

compared with untreated controls (Figure 4.28). No significant differences were found 

among treatments applied as spray or drenching. Application of fungi or 6PP (not in the 

case of HA) by spraying or drenching did not produce significant differences between 

same treatments. 
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Figure 4.28: Effects of M10 or P1 (10
8
 spores/ml) on grapevine growth. 

 

6PP improved plant development and increased leaves size compared to controls, with a 

dose-dependent effect (10M > 1M) (Figure 4.29). 

  

 

Figure 4.29: Growth promotion effect on grapevine plants watered with 6PP solutions at concentrations of 10 

and 1 M. 
 

The grapevine growth, in terms of shoot-length and leaves size, was enhanced by 

drenching the soil with HA (50 ml of a HA solution at 10 and 1M) but a phytotoxic 

effect (i.e. chlorosis, irregular development of leaves) was detected when HA was 

sprayed at the concentration of 10 M directly on the leaves. Application of HA at the 
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lower concentration (1M) produced no significant effects neither positive nor negative 

(Figure 4.30). 

 

 

Figure 4.30: Differences between grapevine plants watered (A) and sprayed (B) with HA solutions at different 

concentrations (10 and 1 M.) 

 

4.5.2. Plant growth promotion and other effects in field experiment. 

 

Field experiments (Figure 4.31) were carried out in order to evaluate the effects of 

treatment on V. vinifera of the Trichoderma metabolite, 6PP (5 L applied at a 

concentration of 1 M for 3 rows of plants), in comparison to a commercial formulation 

based on the highly-effective strain T22 of T. harzianum (5 L applied at a concentration 
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of 10
8
 sp/ml for 3 rows of plants). Data were collected only at the end of the 

experiments (90 days after) by evaluating: 

i) Average of grape cluster; 

ii) antioxidant activity in the grape; 

iii) total amount of polyphenols in the grape; 

iv) HPLC profiles of anthocyanins and polyphenols in the grape. 

 

 

Figure 4.31: Field experiment performed at ARBOPAVE department of the 

University of Naples “Federico II” 
 

6PP and T22 treatments increased average of grape cluster (in terms of Kg) by 63% and 

97%, respectively, in comparison to untreated plants (Figures 4.32 and 4.33). 

 

 

Figure 4.32: Effects of 6PP and T22 on grape production. Values are means of 5 replicates. Bars indicate 

standard deviation. Values with the same letter do not differ significantly (P < 0.05). 
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Figure 4.33: Effects of 6PP and T22 on bunch size 

 

In order to evaluate if 6PP and T22 can affect the quality of the fruit, total antioxidant 

activity in the grapes was measured using the ABTS assay. In this method the 

antioxidants present in the sample reduce the absorbance of the pre-formed radical 

cation ABTS depending on the antioxidant activity level, the concentration of the 

antioxidant and the duration of the reaction. Thus, the extent of decolorization as 

“percentage inhibition” of the ABTS
•+ 

radical cation is determined as a function of 

concentration and time and calculated relatively to the reaction of Trolox, used as a 

standard, under the same conditions. 

This activity increased after the treatments with T. harzianum T22 and 6PP by 48.7% 

and 60.3%, respectively (Figure 4.34). 

 

Figure 4.34: Effect of 6PP and T22 on antioxidant activity of the grape. Values are means of 5 replicates. Bars 

indicate standard deviation. Values with the same letter do not differ significantly (P < 0.05). 
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Polyphenol concentration was measured in triplicate for each sample by using the Folin-

Ciocalteu reagent. Gallic acid was used as standard (absorbance measured at 765 nm). 

Results are reported in figure 4.35 as mg equivalents of gallic acid. 

In the control the polyphenol concentration was lower than in the samples obtained by 

the treated plant, with no significant differences between the two treatments. 

 

 

Figure 4.35: Effect of 6PP and T22 on polyphenol production of the grape. Values are means of 5 replicates. 

Bars indicate standard deviation. Values with the same letter do not differ significantly (P < 0.05).  
 

The HPLC analysis showed different chromatographic profiles among the treatments in 

terms of polyphenol concentrations (peaks area). The polyphenols were detected by 

using three different wavelengths: 

 anthocyanins at  510 nm (two peaks) ; 

 flavonols (quercetin and rutin) at  360 nm (two peaks); 

 stilbene (resveratrol) and flavan-3-ols (catechin and epicatechin) at  280 nm 

(two peaks). 

Both treatments increased all peak areas as compared to the control, with the exception 

of two peak areas detected at 360 and 280 nm for the T22 treatment (table 4.4). 

 
Table 4.4: Effect of T22 and HA treatment of grapevine determined with HPLC analysis. In 

the last two raw indicate indicate the percentage of peak area compared to untreated control. 

Wavelength  

(nm
510 360 280 

n. peaks 1 2 1 2 1 2 

RT (min) 16,2 18,5 17,2 18,1 3,4 23,6 

6PP 56 77 46 46 26 73 

T22 49 70 26 -14 8 -18 

a 

b 
b 
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4.6. Effects of 6PP, HA and Hytra 1 on Arabidopsis thaliana 

ecotype Columbia (col-0) 

 

In this part we examined the effect of Trichoderma metabolite treatments on A. thaliana 

(col-0) growth. Moreover, we investigated the plant metabolic changes and measured 

the alterations in the level of hormones related to growth and development, as well as to 

defense response. 

4.6.1. Plant growth promotion 

 

Experiments in vitro were performed by applying on A. thaliana (col-0) the secondary 

metabolites HA and 6PP at concentration of 0.1M, and the Trichoderma protein Hytra 

1 at concentration of 1nM. 

The root length was improved by treatment with the metabolites and the protein 

indicating with HA and Hytra 1 the highest effect (Figure 4.36 and 4.37 A). 

Furthermore, all metabolites stimulated secondary roots production (Figure 4.37 B): 

110% of increment was observed with HA, while 56.4% and 62.5% with 6PP and Hytra 

1, respectively. 

 

 

Figure 4.36: In vitro effect of Trichoderma 

metabolites HA or 6PP (0.1M) and Hytra 

1 (1 nM) on A. thaliana. 

 



Results 

 

 

84 

 

 

Figure 4.37: Effect of Trichoderma metabolites HA, 6PP (0.1M) and Hytra 1 (1 nM) on the root length (A) 

and secondary roots production(B) of A. thaliana, the latest measured as number of later roots per plant 

(LRP). Values are means of 5 replicates. Bars indicate standard deviation. Values with the same letter do not 

differ significantly (P < 0.05).  
 

In vivo tests confirmed the plant growth promotion activity of purified Trichoderma 

metabolites (Figures 3.38 and 3.39). 

 

 

Figure 4.38: in vivo effect of purified Trichoderma metabolites HA, 6PP (0.1M) and Hytra 1 (1 nM) 

on A. thaliana (col-0) 

A 

B 

a 

b 

c 

d 
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Figure 4.39 Effect of Trichoderma metabolites on A. thalina plant fresh and dry weight. Values are means of 5 

replicates. Bars indicate standard deviation. Values with the same letter do not differ significantly (P < 0.05). 

4.6.2. Metabolic changes in A. thaliana. 

 

Leaf tissue from the treated and untreated plants was extracted with methanol/water 

(80/20 v:v). The extract was subjected to LC-MS-Qtof analysis in order to analyze the 

plant metabolome. The multiple output data were processed using the principal 

a 

b b c 

a 

b 
b 

b 
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components analysis (PCA). PCA of full unfiltered data at 95% confidence intervals 

was used to evaluate the major changes in the metabolome (figure 3.40). 

 

 

Figure 4.40 Differences between the effect of Trichoderma metabolites on A. thaliana also versus the untreated 

control determined by PCA (principal component analysis) performend with LC-MS-Qtof assay 80% 

methanol extracts. Data points represent biological replicates (five replicates in each experiment). 

This analysis showed that the treatments were clearly separated and the samples 

clustered along different trajectories. The metabolome was affected by Trichoderma 

metabolites, with HA and 6PP causing a similar global change of the metabolic profile, 

while a strongly different response was obtained for Hytra1. 

The metabolome of A. thaliana (col-0) grown alone was used as a control for 

comparison with the three treatments (HA, 6PP, Hytra 1). More than 224 differential 

plant metabolites were significantly changed (produced ex novo, increased or decreased) 

when A. thaliana was exposed to the Trichoderma metabolites (Figure 4.41). In 

particular, when the HA treatment was compared to the control, 28 compounds 

appeared to be produced ex novo, 45 were up-regulated and 2 down-regulated, 

indicating that the presence of HA induces major changes in the metabolome of treated 

plant. Application of 6PP also determined a differential accumulation of several 

metabolites: 20 new, 15 metabolites were up-regulated and 3 down-regulated 

compounds. 

The unique metabolic response of A. thaliana to Hytra 1, as determined by PCA, 

produced 10 novels, 5 increased and 2 decreased metabolites in the treated plant. 
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Figure 4.41 Changes occurring in the metabolome of A. Thaliana (Col-0) grown alone (H2O = control), with HA 

(HA), with 6PP (6PP) and Hytra 1 (Hytra). The numbers of plant metabolites in common between the different 

treatment (A) are indicated. The numbers of plant metabolites newly found (C) or unfound (B) are also 

indicated. In addition, the numbers of plant metabolites increased (in terms of concentration)(D) or decreased 

(E) compared to the control are indicated. 

A B 

C

  
A 

D E 
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Finally the accumulation of plant hormones related to growth and development, as well 

as to defense response, was determined in the analyzed extracts. 

 

 

 

Figure 3.42: Effect of Trichoderma metabolites treatments (HA, 6PP (0.1M) and Hytra 1 (1 nM)) on 

hormones accumulation: Abscisic acid (ABA) (a), Indolacetic acid (IAA) (b), Jasmonic acid (JA) (c).and 

Salicylic acid (SA) (d)  

 

 

A B 

C D 
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5. Discussion 
 

The interaction of Trichoderma spp. with plants confers several benefits to the 

associated host including: i) the suppression of phytopathogens by using direct 

antagonistic mechanisms (i.e. antibiosis, mycoparasitism, competition for nutrient and 

space); ii) plant growth promotion; iii) enhanced nutrient availability and uptake, and 

iv) induction of plant resistance mechanisms (Howell, 2003; Harman et al., 2004; 

Vinale et al., 2008). In addition, some Trichoderma strains produce compounds that can 

cause substantial changes in the metabolism of the host and enhance the ability of 

Trichoderma spp. to activate defense response and/or regulate plant growth (Vinale et 

al., 2008). 

Harzianic acid (HA), 6-pentyl--pyrone (6PP) and the protein Hytra1 are Trichoderma 

metabolites that showed plant growth promotion activity. In the present study we 

investigated the chemical and biological properties of HA, 6PP and Hytra1 comparing 

the effect of their application on the plants with that of their producing fungi. 

The metabolite, isolated by RP-18 vacuum chromatography of NaOH 2 M extract, 

shows the 
1
H and 

13
C parameters of HA (2-hydroxy-2-[4-(1-hydroxy-octa-2,4-

dienylidene)-1-methyl-3,5-dioxo-pyrrolidin-2-ylmethyl]-3-methyl-butyric acid), a 

compound belonging to the chemical class of tetramic acids. 

The naturally occurring tetramic acid derivatives have attracted significant attention 

because of their wide distribution and remarkable diversity of biological activities, 

including the chelation of Fe(III) (important for ion transport across cell membranes). It 

has been found that in some cases the metal complexes formed have a higher biological 

activity than their ligands taken singly (Royles, 1995; Ghisalberti, 2003; Schobert and 

Schlenk, 2008; Athanasellis et al., 2010). 

Both the living microorganism and the purified HA, when tested in the CAS blue agar 

plates, caused a colour change of the substrate from blue to orange, suggesting that the 

the tetramic acid derivative is involved in the iron(III) binding properties of the fungus. 

Moreover, the LC-MS analysis of a HA – Fe
+3

 solution showed additional signals at 

455.1 m/z and 491.1 m/z corresponding to a 1:1 chloride containing complex, [M-
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H+Fe(III)+Cl2+H]
+
 (m/z 491.1) or [M-2H+Fe(III)+Cl+H]

+
 (m/z 455.1). Since chloride 

is a coordinating ligand for iron, it is possible that the chloride anion is directly bound to 

the metal (Caudel et al., 1994). 

The value of Kd of HA–Fe(III) complex (1.79 x 10
-25

 M) may be directly compared with 

that of other chelators showing a 1:1 Fe:ligand stoichiometry, such as desferrioxamine 

(DFO), EDTA, 3-(1-hydroxydecylidene)-5-(2-hydroxyethyl)pyrrolidine-2,4-dione 

(HPD), pyoverdin and pyochelin (Kaufmann et al., 2005). As shown in Table 1, HA has 

lower affinity to Fe(III) than DFO, pyoverdin and HPD, while it has a stronger affinity 

for iron(III) than EDTA or pyochelin. These data suggest that HA could compete for 

available iron in solution supporting its solubilization by the fungus. 

 

Table 1. Affinity constants of chelators for Fe(III). 

Compound Kd 

EDTA 5.00 X 10
-23

 M 

DFO 2.51 X 10
-26

 M 

Pyoverdin 10
-32

 M 

Pyochelin 10
-5

 M 

HPD 1.6 x 10
-29

 M 

HA 1.79 x 10
-25 

M 

 

 

Siderophores produced by beneficial agents may have important effects on both 

microbial and plant nutrition. Fe3+ - siderophores complexes can be recognized and 

taken up by several plant species, and this activity is considered crucial for root iron 

uptake, particularly in calcareous soils (Weyens et al., 2009; Sharma et al., 2003). Our 

data suggest a role of HA in the competition for iron of Trichoderma with other 

microbes and in iron solubilisation for plant nutrition. Microbial siderophores are iron 

chelating agents that can regulate the availability of iron in the rhizosphere. It has been 

assumed that competition for iron depends on: i) the affinity of the siderophore for the 

metal; ii) the type and the concentration of the siderophores; iii) the kinetics of ion 

exchange; iv) and availability of Fe-complexes to microbes as well as plants.  
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The pyrone 6PP has been isolated from culture filtrate of T. atroviride strain P1 by flash 

chromatography. The chemical structure has been confirmed by NMR and mass spectra. 

6PP was characterized by Collins and Halim (1971), while Moss et al. (1975) isolated 

the pyrone from T. viride and demonstrated its antibiotic activity against Phytophthora 

cinnamomi. Vinale et al. (2008) studied the plant growth promotion effect of this 

compound, highlighting its role in the Trichoderma-plant interaction. 

The hydrophobin Hytra1 has been isolated from T. longibrachiatum strain MK1 culture 

filtrates. It is a protein of 71 aa, with a molecular weight of 7218 Da and 8 cysteine 

residues arranged in the strictly conserved motif Xn-C-X5-10-C-C-X11-44-C-X8-23-C-X5-

9-C-C-X6-18-C-Xm typical of class II hydrophobins. Trichoderma genus is considered to 

have the largest number of class II hydrophobins among ascomycetes (Seidl-Seiboth et 

al., 2011). Hydrophobins are involved in many processes including the formation of 

aerial hyphae, spores and fruiting bodies (Wösten, 2001). Hytra1 shows an 

antimicrobial activity against B. cinerea and R. solani both in vitro and in vivo tests 

(Ruocco et al., 2007). Ruocco et al. (2008) demonstrated that Hytra1 induces a 

hypersensitive reaction (HR) and systemic resistance in tomato plants.. Physiological 

analyses of tomato leaves treated with Hytra1 showed that this hydrophobin can induce 

an oxidative burst in plant cells. Low Hytra1 concentrations also triggered activation of 

the antioxidant system that controls the accumulation of reactive oxygen species 

(superoxide anions and peroxides). Process that leads to the accumulation of 

lipoperoxides and defense-related molecules such as riscitin and PR proteins. 

In vivo assays of tomato plants (Solanum lycopersicum cv. Roma) have shown that HA 

and 6PP application stimulate seed germination and improve development in terms of 

root/stem length and fresh/dry weight. In particular, HA enhanced the plant growth 

when used at three different concentration (10, 1 and 0.1 M), while 6PP showed the 

same effect only when applied at 10 M. This result is in agreement with Cutler et al. 

(1986 and 1989) and Parker et al. (1995 and 1997) that reported the isolation, 

identification and biological activity of some secondary metabolites produced by T. 

koningii (koninginins A-C, E, G) and T. harzianum (6-pentyl--pyrone; 6PP), that 

affect plant growth. These metabolites had a concentration-dependent effect on wheat 

coleoptiles (phytotoxic activity detected at 10
-3

 M, but not at 10
-4

 M). 
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Effect of Trichoderma metabolite combinations on tomato growth has also been 

observed in vitro and in vivo. It has been determined the percentage of seed germination 

by using different metabolite mixtures. The results indicate that all the compounds used, 

singly or in combination, stimulate seed germination. However, only for the 

combination of HA 1M with 6PP 1M a strong synergic effect has been noted, while 

in some cases the other combinations produced an inhibitory effect. 

A rooting-effect on tomato cuttings of HA, 6PP and Hytra1 or their combinations has 

been observed also in comparison with a commercial hormone formulation, the Germon 

E. The effects were different: while the fungal compounds stimulated the formation of 

true roots, the commercial preparation induced the formation of calli from which an 

array of new roots was then generated. However, among the combinations only those 

with Hytra1 stimulated the root development in terms of length. Ruocco et al. (2009) 

demonstrated that Hytra1 induces plant root growth in a dose-dependent manner. The 

protein can affect the auxin pathway because Hytra1 at 0.3 µM stimulate root 

development in terms of length, tomato cuttings immerse in a solution containing 

Hytra1 form de novo roots and cuttings from Hytra1-expressing plants immerse in water 

are stimulated in terms of root formation. 

Application of two Trichoderma strains (P1 and M10) or their metabolite (6PP and HA) 

affected Vitis vinifera growth. In particular, an effect on the plant was observed when 

the fungi or purified compounds were drenched on the soil or sprayed on the leaves. 

The treatments improved the plant development, but a phytotoxic effect was detected 

when HA was applied directly on the leaves at 10 M. Trichoderma secondary 

metabolites may have an auxin-like action, which is typically expressed at low 

concentrations (10
-5

 and 10
-6

 M) while producing an inhibitory effect at higher doses 

(Brenner, 1981 and Cleland, 1972). Moreover, an auxin-like activity was observed on 

etiolated pea (Pisum sativum) stems treated with 6PP, which also affected positively the 

growth of tomato (Solanum lycopersicum) and canola (Brassica napus) seedlings 

(Vinale et al., 2008). 

In field experiments, the application of 6PP (1 M) and T. harzianum T22 (as 

commercial formulation) on V. vinifera increased crop yield as measured in terms of Kg 

of grapes/ plant and bunch size. Similarly, Di Marco and Osti (2007) reported that the 
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treatments with a commercial product based on T. harzianum T22 on grapevine 

improved the quantitative and qualitative characteristics of the root system, and 

increased the grape production. 

Treatments with 6PP and T22 increased the polyphenol contents and the total 

antioxidant activity (in particular with 6PP) in the fruits. These increments are 

associated with plant defense response to an abiotic or biotic stress (Cho et al., 2004; 

Ames et al., 1993). Calderon et al. (1993) studied the ability of an enzymatic elicitor 

obtained from T. viride (used as commercial preparation) to induce HR in a grapevine 

cultivar susceptible to B. cinerea. Together with the beneficial effect on the plant 

physiology and metabolism, the application of the microbial compound increase the 

synthesis and accumulation of resveratrol, a phytoalexin of grapevines belonging to the 

chemical class of polyphenols (Langcake & Pryce, 1977). As reported by Harman et al. 

(2004), Woo et al. (2006 and 2007) and Vinale et al. (2008), different strains of 

Trichoderma may enhance the plant defense in the interaction with the host through the 

production of bioactive molecules (BAMs). These BAMs include: i) proteins with 

enzymatic activity, such as xylanase; ii) avirulence-like gene products able to induce 

defense reactions in plants; iii) some secondary metabolites (i.e. 6PP and peptaibols); 

and iii) low molecular- weight compounds released from either fungal or plant cell 

walls by the activity of Trichoderma enzymes. Our data indicate that the effect of the 

purified 6PP is comparable or, in some cases, better of that observed by using the 

commercial formulation based on the highly-effective strain T22 of T. harzianum. The 

results suggest that the application of metabolites isolated from Trichoderma strains 

may be used in alternative to the living BCAs. 

Plant growth promotion effect have been observed on Brassica rapa treated with two 

Trichoderma strains (T. harzianum M10 and T. atroviride P1) or their secondary 

metabolites (HA and 6PP). Particularly, HA increased stem length better than its 

producing fungus (T. harzianum M10), while in the case of 6PP and T. atroviride P1 the 

opposite was true. 

Compared to untreated control a reduced accumulation of glucosinolates 

(neoglucobrassicin, glucobrassicin, glucoiberin and gluconapin) was also detected in the 

plant 72h after the treatments followed by an increase at the end of vegetative cycle 
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particularly when M10 and P1 were applied. These effects can be related to the plant 

defense response to the fungus or the Trichoderma metabolites as in the case of 

grapevine. 

The effect of three Trichoderma metabolites on A. thaliana growth has been assessed. 

HA, 6PP and Hytra 1, applied at concentration of 0.1, 0.1 and 0.01 M respectively, 

promoted the plant growth both in vivo and in vitro. Moreover, it is interesting to note 

that the metabolite applications in vitro stimulated particularly the production of 

secondary roots. Harman (2000) and Vinale et al. (2008 and 2012) demonstrated that 

some Trichoderma strains or their metabolites, when applied on the plant, were able to 

stimulate lateral root growth through an auxin-dependent mechanism. 

In order to evaluate the effects of Trichoderma metabolite applications on the 

production of plant hormones related to growth and development, as well as to defence 

response, an LC-MS analysis was performed. Our data indicated that: i) HA increased 

the concentration of IAA and ABA; ii) 6PP the level of JA; iii) Hytra1 increased JA and 

ABA. These results suggest that the hormones can be affected by metabolite 

applications, although it is not possible to demonstrate that the Trichoderma compounds 

are directly involved in the specific biosynthetic pathway. 

The plant metabolism changes induced by the application of Trichoderma metabolites 

have been investigated by LC-MS-Qtof and all data were subjected to a principal 

component analysis (PCA). The PCA scores plot revealed a clear separation of the four 

different groups (according to the different treatments: Control, HA, 6PP and Hytra1), 

with the five replicates of each treatment clustering together. This finding demonstrated 

the high reproducibility between the biological replicates and the differential effects of 

the purified compounds on the plant metabolome. These effects are reported in the 

Venny diagrams (results section – Figure 4.41) that compare the number of plant 

metabolites found in the untreated control, with that found in the different treatments. 

HA caused a pronounced increase in the number of plant metabolites, while smaller 

changes were observed in the case of 6PP and Hytra1 treatments. 

Furthermore, as shown in Figure 4.40 HA and 6PP caused a similar global change of the 

metabolic profile, while a different response was obtained with Hytra1. The results 
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indicated that different Trichoderma metabolites produced different effect/changes on 

the plant physiology and metabolome. 

Brotman et al. (2012) demonstrated that Trichoderma root colonization alters the A. 

thaliana metabolic profile, including significant changes of amino acids involved in the 

biosynthesis of plant hormones and plant defence metabolites. The promotion of plant 

growth may require an increased energy supply that is directly correlated with the 

metabolic changes induced by Trichoderma spp. (Brotman et al., 2012). 

Our data suggest that, as reported for the living beneficial fungus known to ameliorate 

the physiological state of the plant, also the purified metabolite can substantially alter 

the metabolic profile by directly modulating several biosynthetic pathways. 

 

6. Conclusion 
 

The data indicate comparable beneficial effect on the plant between treatment with 

Trichoderma metabolites and treatment with the living microbes. These natural 

compounds are involved in regulation of plant growth and development and elicit also 

defence responses against pathogens. 

The isolation and application of bioactive compounds, produced by beneficial microbes 

responsible for the desired positive effects on plants, is a promising alternative to the 

use of living antagonists. These formulations could also include mixtures of enzymes 

and secondary metabolites mixed with microbial propagules. Conditions can be selected 

for the production of substances with high biological activity, and these compounds can 

be made in diverse commercial formulations (i.e. powder, granules, dip, drench), and 

applied directly to vegetation in the field or greenhouse. 

Clearly there is a prospective for the application of Trichoderma metabolites to induce 

host resistance and/or promote plant growth, as they can be i) produced inexpensively in 

large quantities on industrial scale; ii) easily separated from the fungal biomass; iii) 

dried and formulated as spray or drench applications. 
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