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I N T R O D U C T I O N

The main purpose of this thesis is to illustrate some applications
of symmetrization techniques to problems of geometrical and
analytical flavor.

Symmetrization is a simple but powerful tool, which enables
to gain sharp informations out of many geometric and functional
inequalities. It consists in rearranging given sets or functions
into new sets or functions which have a more symmetric aspect.
This idea dates back to J. Steiner, who used it to give a beautiful
(though incomplete) proof of the plane isoperimetric inequality: in
fact, Steiner invented a method, nowcalled Steiner symmetrization,
aimed at converting a plane figure into another one having same
area, lower perimeter and an extra symmetry.
Some years later, H. Schwarz found a way to extended the method
of Steiner to functions: Schwarz’s aim was to transform both a
function and its domain into a new function defined in a new
domain, both more symmetric than the original ones, in such a
way that neither the measure of the domain nor some norm of
the function would be changed.
The symmetrization method of Schwarz was lately popularized
by Hardy, Littlewood and Polya in the mid-thities and by Polya
and Szegö in the fifties.
In particular, Polya and Szegö showed that Schwarz symmetriza-
tion could be used gain sharp bounds for the values of some im-
portant physical quantities, e.g., the fundamental tone of a mem-
brane, the capacity of a condenser or the torsional rigidity of a rod.
For example, they proved to be true a conjecture in Acoustic for-
mulated by Lord Rayleigh, namely that the fundamental tone
of a circular membrane is the lowest possible among all mem-
branes having fixed area.
In later years, it was shown that Schwarz symmetrization tech-
nique was a useful tool for proving theorems which compare so-
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introduction 2

lutions or other quantities associated to different boundary value
problems for elliptic (or even parabolic) differential equations.
Typically, this technique can be used to make pointwise compar-
ison between PDE solutions, or to get estimates on some of their
norms, or even to compare other quantities associated to a given
problem and the corresponding ones associated to an auxiliary
symmetrized problem.
In the first cases, the basic idea is to get some differential in-
equality for the distribution function of the solution, which will
reduce to an equality on the solution of the symmetrized prob-
lem.
In the latter case, one of the basic techniques consists in proving
that the considered quantity has a variational nature, then using
rearangement inequalities to prove the comparison result.
On the other hand, the geometric symmetrization of Steiner was
used by de Giorgi (among other things) to finally settle the gen-
eral isoperimetric inequality in the fifties.

As stated above, we present some geometric and analytic in-
equalities related to solutions of certain PDEs. In particular, here
we focus on:

• some isoperimetric inequalities satisfied by level sets of
functions which satisfy the Euler–Lagrange equation of a
variational problem related to some Hardy–Sobolev inequal-
ities;

• two stabilty estimates for the symmetrized first eigenfunc-
tion of linear elliptic operators;

• a Faber–Krahn type inequality for the principal weighted
eigenvalue of nonlinear elliptic operators obtained by adding
an indefinite potential to the classical p-Laplacian.

All these results are obtained by means of symmetrization tech-
niques. In particular, we use Steiner symmetrization in the proof
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of the isoperimetric inqualities, while we use Schwarz symmetriza-
tion machineries for the other two points.

The present work is structured into four chapters. The first
one is a general overview onto facts about rearrangements of
sets and functions, while the following three contain the results
of our researches. The latter chapters could be also read indepen-
dently, provided the reader is familiar with some notation and
properties of rearrangements: in fact, each chapter is equipped
with a detailed introduction to problems it deals with.

In chapter 1, we introduce notations and symmetrization tech-
niques which will be used through the paper, namely Steiner
symmetrization for sets, onedimensional and Schwarz rearrange-
ments for functions and their main properties.

In chapter 2, based on the work [32], we prove a family of
isoperimetric inequalities for bodies of revolution which arise in
connection with the problem of finding the extremals in some
Hardy-Sobolev inequality. For these inequalities, we are able to
prove that they are sharp and that a characterization of the equal-
ity case is available, yielding the best constant.
In particular, we prove that for sufficiently smooth bounded bod-
ies of revolution D ⊂ RN with N > 3, the following inequality
holds:[

Per(D) − a(N− 2) Sec(D)
]N

> 2(N− 1)NNωN−1 ϕN(a) VolN−1(D) ,

depending on the parameter a ∈]0, 1], where the symbols Vol(D),
Per(D) and Sec(D) denote respectively the volume, the perime-
ter and a weighted measure with respect to a weight which de-
pends only on the distance of the points of D from the rotation
axis; and ϕN(a) is a suitable nonnegative constant.
Moreover we are able to prove that 2(N − 1)NNωN−1ϕN(a)

is the best constant for inequality (2.1) and to characterize the
equality case.
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Inequalities are proved first for symmetric bodies of revolution;
therefore, their validity is extended by means of Steiner sym-
metrization.

In chapter 3, which is based on our work [33], we prove two
stability-type estimates which involve the symmetrized L∞-norma-
lized first eigenfunction u1 of problem:− div(A(x) · ∇u) + c(x) u = λ u , in Ω

u = 0 , on ∂Ω,

where Ω ⊆ RN be a bounded open domain with unit measure,
the matrix A satisfies an uniform ellipticity condition and the
potential term c is nonnegative.
These estimates apply when the first eigenvalue λ1 := λ

A,c
1 (Ω)

is close to the lowest possible one (i.e., to λ?
1, the first eigenvalue

of the Dirichlet Laplacian in the ball Ω? having the same mea-
sure of Ω); in particular, they give a rough idea of how fast two
quantities related to u?

1 decay in terms of the distance λ1 − λ?
1 or

in terms of the value u?
1 assumes on a specified set.

To be more precise, we prove that if λ1 ≈ λ?
1 then the L∞-distance

between the Schwarz rearrangement u?
1 and the L∞-normalized

positive first eigenfunction U1 of the Dirichlet Laplacian in Ω?

corresponding to λ?
1 is less than a suitable power of the differ-

ence λ1 − λ?
1 times a universal constant, namely that:

0 6 λ1 − λ?
1 6 δ1 ⇒ ‖u?

1 −U1‖∞,Ω? 6 C1 (λ1 − λ?
1)
2/(N+2)

where C1, δ1 > 0 are suitable constants depending only on the
dimension N.
We also show that the L∞-distance between the L∞-normalized
positive first eigenfunction of the Dirichlet Laplacian in a ball B
whose first eigenvalue equals λ1 and the rearrangement u?

1 can
be controlled with a power of the value ε ≈ 0 assumed by u?

1 on
the boundary ∂B, viz. that:

0 6 ε 6 δ2 ⇒ ‖u?
1 − V1‖∞,B 6 C2 ε

2/(N+2) ,
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where again C2, δ2 > 0 are suitable constants depending only on
the dimension N and V1 solves:−∆V1 = λ1 V1 , in B

V1 = 0 , on ∂B

with V1 > 0 in B and ‖V1‖∞,B = 1.

In chapter 4, we prove a generalization of the classical Faber-
Krahn inequality for the principal weighted eigenvalue of p-
Laplace operator plus an indefinite potential.
To be more precise, we consider the nonlinear weighted eigen-
value problem:∆pu+ V(x) |u|p−2u = λ m(x) |u|p−2u , in Ω

u = 0 , on ∂Ω ,

where Ω ⊆ RN is a bounded open domain, p ∈]1,∞[ and the
weight m and the potential V are indefinite measurable func-
tions. Such a problem has attracted some interests in the last
decade, for it arises as a generalization of the classical eigen-
value problem for the p-Laplacian. In particular, it was recently
proved that some principal eigenvalue exists provided m and
V satisfy certain summability assumptions and the variational
quantity:

α(Ω,V ,m) := inf

{ ˆ
Ω

|∇u|p + V(x) |u|p, u ∈W1,p
0 (Ω), ‖u‖p,Ω = 1

and
ˆ
Ω
m(x) |u|p = 0

}

is positive or nonnegative, depending on the sign of m. In the
particular case m > 0 a.e. in Ω, which is the one we are inter-
ested in, such principal eigenvalue, call it λp(Ω,V ,m), is unique.
On the other hand, it is woth noticing that principal eigenvalue
needs not to be unique, but nonuniqueness happens only when
m changes its sign.
Here we show that the unique principal eigenvalue λp(Ω,V ,m)
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decreases under Schwarz symmetrization. In particular, we firstly
prove that potentials can be chosen in such a way that the prob-
lem under investigation and the two symmetrized problems:∆pv+ V•(x) |v|p−2v = λ m?(x) |v|p−2v , in Ω?

v = 0 , on ∂Ω? ,∆pw− (V−)?(x) |w|p−2w = λ m?(x) |w|p−2w , in Ω?

w = 0 , on ∂Ω? ,

(where Ω? is the unique open ball centered in o having the same
measure of Ω, and m?, V•, (V−)? are suitable Schwarz symme-
tral of m, V and V−) simultaneously have a unique principal
eigevalue; then we demonstrate that the three principal eigenval-
ues λp(Ω,V ,m), λp(Ω?,V•,m?) and λp(Ω?, −(V−)?,m?) satisfy
the following inequalities:

λp(Ω,V ,m) > λp(Ω
?,V•,m?) > λp(Ω

?, −(V−)?,m?) .

Moreover, in the spirit of the original Faber–Krahn inequality, we
prove that if λp(Ω?, −(V−)?,m?) > 0 then equality between the
rightmost and the leftmost sides is attained only in the radially
symmetric setting, i.e. when Ω = Ω?, V = −(V−)? and m = m?

modulo translations.
While both chapter 2 and 3 are based on published results, this
final chapter is based on the work in progress paper [34], therefore
it is more sketchy than the previous ones.

Anyway, we refer the reader to the introductions of chapters
2, 3 and 4 for more informations on the technical matters there
treated.
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1.1 introduction

1.1.1 Some Hystorical Remarks

The idea of rearrange “wild”, irregular sets into nicer, more sym-
metric ones dates back to J. Steiner (cfr. [59]), who used it to give
a beautiful (though incomplete) proof of the plane isoperimetric in-
equality:

L2 > 4π A

(where L and A are, respectively, the perimeter and the area of
a plane figure): in fact Steiner invented a method, nowcalled

7



1.1 introduction 8

Steiner symmetrization, aimed at converting a plane figure into
another having same area, lower perimeter and an extra symme-
try, i.e. an axial symmetry with respect to a chosed straighline.
Some years later, H. Schwarz found a way to extended the method
of Steiner to functions: Schwarz’s aim was to transform both a
function and its domain into a new function exhibiting some ex-
tra symmetry defined in a new domain more symmetric than
the original one, in such a way that neither the measure of the
domain nor some norm of the function would be changed. In
particular, he invented the method known as Schwarz symmetriza-
tion, which enables to transform the domain into a ball with
equal measure and the function into a radially symmetric de-
creasing function having the same Lp-norm.
The symmetrization method of Schwarz was lately popularized
by Hardy, Littlewood and Polya [42] in the mid-thities and by
Polya and Szegö [55] in the fifties.
In particular, Polya and Szegö showed that Schwarz symmetriza-
tion was a powerful tool to gain sharp bounds for the values of
some important physical quantities, e.g., the fundamental tone of
a membrane, the capacity of a condenser or the torsional rigidity of
a rod. For example, they gave an alternative proof of a theorem
of Faber [36] and Krahn [46] which answered in the positive a
conjecture in Acoustic formulated by Lord Rayleigh [56], namely
that the fundamental tone of a circular membrane is the low-
est possible among all membranes having fixed area; and they
proved a conjecture of Poincaré in Electrostatic, namely that the
spherical condenser is the one having least capacity among all
condenser having prescribed volume.
On the other hand, Steiner symmetrization was used by de Giorgi
[28] to prove the isoperimetric property of the ball, i.e. that in space
of arbitrary (finite) dimension the ball, and the ball alone, has
the lowest perimeter among all the set sharing the same mea-
sure.



1.2 rearrangements of measurable sets 9

1.1.2 Organization

The present chapter gives an overview of the most basic sym-
metrization techniques, namely Steiner and Schwarz symmetriza-
tion of measurable sets and onedimensional and Schwarz rear-
rangements of measurable functions functions.
In the fisrt two sections we give some definitions and illustrate
the most basic properties of rearrangements.
In the third section, we state some well-known rearrangement
inequalities, as the Perimeter Inequality or Hardy–Littlewood or
Polya–Szegö Inequalities, all of which will be used in the follow-
ing chapters.
In the latter section, we state and give short proofs of three basic
theorems in the theory of elliptic PDEs which can be obtained
using symmetrization techniques, namely the Faber–Krahn and
Talenti Inequalities and Chiti Comparison Lemma, which we
will be referring to in chapters 3 and 4.

1.2 rearrangements of measurable sets

For notations and proofs we refer to [23] and [37] and to the ref-
erences therein.

Let E ⊆ RN be a measurable subset with respect to the Lebesgue
measure | · |.

Definition 1.1: The Schwarz symmetral of E is the unique open
ball E? centered in o having the same measure of E.

Now let u ∈ SN−1 be any direction and Π any hyperplane
othogonal to u.

Definition 1.2: The Steiner symmetral of E with respect to Π is
the unique open set Es having the following property: for any
straightline r orthogonal to Π, the (possibly degenerate) seg-
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ment r ∩ Es is symmetric about Π and has length equal to the
1-dimensional measure of the segment r∩ E.

More precisely, let us label the axis in such a way that u =

(0, . . . , 0︸ ︷︷ ︸
N−1

, 1) and Π is the hyperplane of equation xN = 0, let (x,y)

denote a point in RN = RN−1
x ×Ry and set:

Ex := {y ∈ R : (x,y) ∈ E}

`(x) := m(Ex)

π(E)+ := {x ∈ RN−1 : `(x) > 0} ,

where m(·) is the 1-dimensional Lebesgue measure; then the set
Es is defined as:

Es := {(x,y) ∈ RN : x ∈ π(E)+ and |y| < `(x)} .

Remark 1.1:
Using Fubini theorem it is not difficult to prove that also Es satisfies
|Es| = |E|. ♦

1.3 rearrangements of measurable functions

For notations and proofs we refer to [8, 43, 45, 48, 49, 53] and to
the references therein.

1.3.1 Distribution Function; One-dimensional Rearrangements

Let Ω ⊆ RN be a measurable set with |Ω| < ∞ and f : Ω →
[0,∞] be a measurable function.
For each fixed t > 0, the level set {f > t} := {x ∈ Ω : f(x) > t} is
measurable, thus it is possible to set:

µf(t) := |{f > t}| .
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The function µf : [0,∞[→ [0,∞[ is called distribution function of f.
Such a function is decreasing, right-continuous and satisfies:

lim
t→0

µf(t) = | supp f| = µf(0) ,

suppµf = [0, esssupΩ f] ;

moreover, µf(t) is continuous at t if and only if |{f = t}| = 0, i.e.
if the graph of f has no nonnegligible flat parts at level t, and:

lim
t→∞µf(t) = 0 .

Definition 1.3 (One-dimensional Rerrangements): Let Ω, f and
µf be as above.
The function f∗ : [0,∞[→ [0,∞] defined by:

f∗(s) := inf{t > 0 : µf(t) 6 s}

= sup{t > 0 : µf(t) > s}
(1.1)

is called decreasing rearrangement of f, while the function f∗ :

]0,∞[→ [0,∞] defined by:

f∗(s) := f∗(|Ω| − s)

is called increasing rearrangement of f.

Remark 1.2:
The function f∗ is the socalled generalized inverse of µf. In fact, if
µf is strictly monotone then for all t0 ∈ suppµf, s0 ∈ supp f∗ we
have f∗(µf(t0)) = t0 and µf(f∗(s0)) = 0.
On the other hand, f∗ fails to be a proper inverse of µf when the latter
function is discontinuous: assume that the graph of µf has a discon-
tinuity jump in t0, then f∗ is constant in the nondegenerate inter-
val I0 = [µf(t0),µf(t−0 )], and for s ∈ I◦0 we only get µf(f∗(s)) =

µf(t0) < s. ♦

It is possible to prove that: f∗ is decreasing and right-continuous;
f∗(0) = esssupΩ f; µf∗ = µf, thus f and f∗ are equidistributed.
Using Fubini theorem we can easily prove that decreasing and
increasing rearrangement preserves the Lp-norm for any p ∈
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[1,∞], that is f∗ is an Lp(0, |Ω|) function if f ∈ Lp(Ω) and that
‖f∗‖p,[0,|Ω|[ = ‖f‖p,Ω. Actually, more is true [48, Thm. 6.15]:

Theorem 1.1
Let Ω ⊆ RN be measurable, f : Ω → [0,∞[ be a weakly vanishing
at infinity1 function and Φ : [0,∞[→ [0,∞[ be a Borel function.
Then:

ˆ |Ω|

0
Φ(f∗(t)) d t 6

ˆ
Ω
Φ(f(x)) d x . (1.2)

Equality holds in (1.2) if Φ(0) = 0, or m({f > 0}) < ∞ or both
|{f > 0}| =∞ and |{f = 0}| = 0.

Moreover, the pointwise equality:

(ψ(f))∗ = ψ(f∗) (1.3)

holds a.e. in [0, |Ω|] for any nondecreasing function ψ : R→ R.

1.3.2 Schwarz Rearrangements

From now on, we let ωN = πN/2/Γ(1 +N/2), thus ωN is the
volume of the unit ball of RN.

Definition 1.4 (Schwarz Rearrangements): Let Ω and f be as
above.
The function f? : Ω? → [0,∞] defined by setting:

f?(x) := f∗(ωN |x|N) (1.4)

1 A measurable function f is said to vanish weakly at infinity iff each level set
{f > t} has finite measure; the latter condition ensures that µf is finite for every
t > 0, hence f∗ can be defined as in the Definition above.
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is called Schwarz decreasing rearrangement (or radially symmetric
and decreasing rearrangement) of f, while the function f? : Ω? →
[0,∞] defined by:

f?(x) := f∗(ωN |x|N)

is called Schwarz increasing rearrangement (or radially symmetric
and increasing rearrangement) of f.

Functions f, f? and f? are equimeasurable and therefore, by
Theorem 1.2, f?, f? ∈ Lp(Ω?) if and only if f ∈ Lp(Ω) (for p ∈
[1,∞]); moreover, f and both its Schawarz rearrangements share
the same value of the Lp-norm, i.e.:

‖f?‖p,Ω = ‖f?‖p,Ω? = ‖f?‖p,Ω? .

1.3.3 Signed Rearrangements

In the previous section we defined both onedimensional and
Schwarz rearrangements only for nonnegative measurable func-
tions.
A possible way to provide suitable generalizations of Definitions
1.3 & 1.4 to a sign-changing measurable function f consists in re-
placing the distribution of f in §1.3.1 with the distribution of
the absolute value of f, i.e. µ|f|; then one can set by definition
f∗ := |f|∗ and f? = |f|? to define the descreasing and the Schwarz
rearrangement of f.
If we keeps this way, all the informations concerning the sign
of the original function f would be destroyed. Hence, in many
situations, it is useful to consider a signed rearrangement of a mea-
surable function.

Definition 1.5: Let Ω ⊆ RN be a bounded measurable set and
f : Ω→ [−∞,∞] be a measurable function.
Then the function f◦ : [0,∞[→ [−∞,∞] defined by setting:

f◦(s) := inf{t ∈ R : |{f > t}| 6 s} (1.5)
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is called signed decreasing rearrangement of f; analogously, the
function:

f◦(s) := f◦(|Ω| − s)

is called signed increasing rearrangement of f.

It is easy to see that the following representations:

f◦(s) = (f+)∗(s) − (f−)∗(|Ω| − s)

f◦(s) = (f+)∗(|Ω| − s) − (f−)∗(s) ,

where f+ and f− are the positive and the negative part of f, holds
a.e. in [0, |Ω|].
Using the signed decreasing rearrangement we can also build
the socalled signed Schwarz decreasing and increasing rearrange-
ments simply by setting:

f•(x) := f◦(ωN |x|N)

f•(x) := f◦(ωN |x|N) .

1.4 rearrangement inequalities

1.4.1 Isoperimetric and Perimeter Inequalities

One of the main geometric features of Steiner symmetrization is
the following:

Theorem 1.2 (Perimeter Inequality)
Let E ⊆ RN be a set of finite perimeter.
Then the Steiner symmetral Es (with respect to any hyperplane) has
finite perimeter and Per(Es) 6 Per(E).

Here the perimeter of a set is defined in the sense of Cacciop-
poli as the total variation of its characteristic function, that is:

Per(E) := sup
Φ∈C∞c (RN;RN)

1

‖Φ‖∞
ˆ
E

divΦ d x .
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As remarked in the introduction, Theorem 1.2 was used by de
Giorgi to prove the following:

Theorem 1.3 (Classical isoperimetric inequality)
Let N > 2 and E ⊆ RN be a bounded measurable set.
Then:

PerN(E) > NNωN |E|N−1 . (1.6)

Moreover, E satisfies equality in (1.6) if and only if E is a ball (up to a
negligible set).

Remark 1.3:
Inequality (1.6) can be stated in a slightly different form: in fact, since
the dimensional constantNNωN can be rewritten as Per(E?)/|E?|N−1,
we get:

Per(E) > Per(E?) . (1.7)

The equality condition then implies that the perimeter of E equals that
of E? if and only if E = E? (up to a null set) modulo translations.
As |Es| = |E|, we also have (Es)? = E? and therefore if E has finite
perimeter then Per(E?) 6 Per(Es) 6 Per(E). ♦

We also remark that Theorem 1.3 is false in the case N = 1, for
E = [0,∞[ has finite perimeter but infinite measure.

Equality condition in the classical isoperimetric inequality gives
sharp informations on the shape of the set E. Hence we may
wonder if it is possilble to recover analogous informations on
E when the set satisfies equality in Theorem 1.2, i.e. when
Per(Es) 6 Per(E).
It turns out that Per(Es) = Per(E) implies E = Es (modulo
translations) provided (i) the boundary of Es does not contain
“large” parts which are flat in the direction orthogonal to the
symmetrization hyperplane and (ii) E is connected in a “proper
way”.
To be more precise, the following holds (for notations and proof
we refer to [23]):
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Theorem 1.4
Let E be a set of finite perimeter in RN, N > 2, satisfying Per(Es) =

Per(E).
Assume that:

HN−1
(
{(x,y) ∈ ∂∗Es : νE

s

y (x,y) = 0}× (Ω×R)
)

= 0

˜̀(x) > 0 for HN−2-a.e. x ∈ Ω

(where: ∂∗ is the essential boundary, νy is the outer normal in the y
direction and ˜̀ il the Lebesgue representative of `) are fulfilled for some
connected open subset Ω ⊆ RN−1 such that π(E)+ \Ω is negligible
with respect to the (N− 1)-dimensional Lebesgue measure.
Then E is equivalent to Es (modulo translations along the y-axis).

1.4.2 Hardy–Littlewood Inequality

The following inequalities are classical and go back to [42]:

Theorem 1.5 (Hardy–Littlewood Inequality)
Let Ω ⊆ RN be a bounded measurable set and f,g : Ω → [0,∞] be
measurable functions.
If f ∈ Lp(Ω) and g ∈ Lp′(Ω), with 1 6 p 6∞, then:

ˆ
Ω?
f?(x) g?(x) d x =

ˆ |Ω|

0
f∗(s) g∗(s) d s

6
ˆ
Ω
f(x) g(x) d x

6
ˆ |Ω|

0
f∗(s) g∗(s) d s =

ˆ
Ω?
f?(x) g?(x) d x .

(1.8)

Remark 1.4:
The assumptions on the summability of f and g, which implies that all
integrals in (1.8) are finite, may also be suppressed. See [49]. ♦

Remark 1.5:
We explicitly remark that Hardy–Littlewood inequalities also hold when
functions f and g are allowed to change sign in Ω, with the only dif-
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ference that signed rearrangements are to be used. To be more precise,
we have:

ˆ
Ω?
f•(x) g•(x) d x =

ˆ |Ω|

0
f◦(s) g◦(s) d s

6
ˆ
Ω
f(x) g(x) d x

6
ˆ |Ω|

0
f◦(s) g◦(s) d s =

ˆ
Ω?
f•(x) g•(x) d x .

(1.9)

The proof, which can be found in [45, Theorem 1.2.2], relies on a suit-
able layer–cake representation formula for f and g; nevertheless,
when only one functions changes sign, while the other remains non-
negative, a simpler argument can be used.
In fact, let g be the sign-changing function and let f > 0 in Ω; then:

g◦(s) = (g+)∗(s) − (g−)∗(|Ω| − s)

and:

ˆ
Ω
f(x) g+(x) d x 6

ˆ |Ω|

0
f∗(s) (g+)∗(s) d s

ˆ
Ω
f(x) g−(x) d x >

ˆ |Ω|

0
f∗(s) (g−)∗(s) d s

=

ˆ |Ω|

0
f∗(s) (g−)∗(|Ω| − s) d s

hence:
ˆ
Ω
f(x) g(x) d x =

ˆ
Ω
f(x) g+(x) d x−

ˆ
Ω
f(x) g−(x) d x

6
ˆ |Ω|

0
f∗(s) (g+)∗(s) d s

−

ˆ |Ω|

0
f∗(s) (g−)∗(|Ω| − s) d s

=

ˆ |Ω|

0
f∗(s) g◦(s) d s

=

ˆ
Ω?
f?(x) g•(x) d x ;
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in the same way one can prove the reverse inequality with the increas-
ing rearrangement g• replacing the decreasing one. ♦

For our later purposes, we will need a characterization of the
equality cases in (1.8) and (1.9).
The equality problem for (1.8) was investigated, among others,
in [5, 24]: in those papers it was shown that nonnegative func-
tions which attains equality in the rightmost Hardy–Littlewood
inequality, i.e. which satisfy:

ˆ
Ω
f(x) g(x) d x =

ˆ |Ω|

0
f∗(s) g∗(s) d s , (1.10)

have mutually nested level sets. In other words, the following
holds:

Theorem 1.6
Let Ω, f and g be as in Theorem 1.5.
If f,g > 0 a.e. inΩ and if equality (1.10) holds, then for every t, τ > 0:

either {f > t} ⊆ {g > τ} or {g > τ} ⊆ {f > t}

up to a negligible set.

On the other hand, functions attaining equality (1.10) need
not to be fully characterized by Theorem 1.6. In fact, if we fix a
function g whose graph has a flat part at some level τ, then we
may find (infinitely) many equidistributed functions f yielding
equality (1.10).
Therefore, as far as uniqueness of functions yielding equality
(1.10) for fixed g is concerned, we have to make some suitable
“non-flatness” assumption on g. It turns out that the strict mono-
tonicity of g∗ can get the job done: in fact, a more general and
stronger result than Theorem 1.6 was recently obtained in [25]
(after [57]). We restate it here in lesser generality:

Theorem 1.7
Let Ω, f and g be as above.
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Assume g∗ is strictly decreasing in [0, |Ω|].
Then equality (1.10) holds if and only if:

f(x) = f∗(µg(g(x))) a.e. in Ω .

1.4.3 Polya–Szegö Inequality

We have seen that a measurable function f belongs to Lp(Ω) if
and only if its Schwarz decreasing rearrangement f? belongs to
Lp(Ω?) and that those functions share the same Lp-norm.
Actually, more is true: in fact, if f is sufficiently “smooth” in
its domain, then also f? is “smooth” in Ω?: this is the socalled
Polya–Szegö Principle, which is based onto the following theorem

Theorem 1.8
Let Ω ⊆ RN be a bounded domain, p ∈ [1,∞] and f ∈W1,p

0 (Ω).
Then f? ∈W1,p

0 (Ω) and:

‖∇f?‖p,Ω 6 ‖∇f‖p,Ω . (1.11)

Moreover, the same conclusions holds if Ω is replaced by RN and if
f ∈W1,p(Ω).

Therefore the Lp-norm of the gradient decreases under Schwarz
symmetrization. In general, it turns out that many other types of
functionals depending on the gradient descrease under Schwarz
symmetrization and that they decrease strictly unless the setting
is not already radial: almost classical results in this direction are
the following, due to Brothers and Ziemer [17].

Theorem 1.9
Let p ∈ [1,∞[, Ω a bounded domain, f ∈ W1,p

0 (Ω) be a nonnegative
function and A : [0,∞[→ [0,∞[ be a C2 function with A1/p convex
and A(0) = 0.
Then:

ˆ
Ω?
A(∇f?(x)) d x 6

ˆ
Ω
A(∇f(x)) d x . (1.12)
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The same conclusion holds also in the caseΩ = RN and f ∈W1,p(RN).

Theorem 1.10

Let p, Ω, f and A be as above.
If p > 1 and if the distribution µf = µf? is absolutely continuous,
i.e. if:

|{x ∈ Ω : 0 < f?(x) < esssup f and |∇f?(x) = 0|}| = 0 (1.13)

then equality holds in (1.12) if and only ifΩ = Ω? and f = f? (modulo
translations).
The same conclusions hold also if Ω = RN and f ∈W1,p(RN).

If condition (1.13) does not hold, in general the claim of the
latter Theorem does not hold: for a simple counterexample see
[44].

1.5 rearrangements and elliptic equations

Symmetrization is a useful tool for proving theorems which com-
pare solutions or other quantities associated to different bound-
ary value problems for elliptic (or even parabolic) differential
equations. Typically, we may want to make pointwise compar-
ison between solutions, or to get estimates on some of their
norms, or even to compare other quantities associated to a given
problem and the corresponding ones associated to an auxiliary
symmetrized problem.
In the first cases, the basic idea is to get a differential inequality
for the distribution function of the solution, which will reduce
to an equality when the solution of the symmetrized problem is
considered, and then to deduce from that the comparison result
or the estimate.
In the latter case, one of the basic techniques consists in proving
that the considered quantity has a variational nature, then using
rearangement inequalities to prove the comparison result. When
this approach does not work, several other alternatives are avail-
able; but the core of this kind of techniques remains the use of
rearrangment inequalities.
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1.5.1 Faber–Krahn Inequality

In this section a generalization of the result of Faber and Krahn is
provided as an important example of comparison result. More-
over, this result will be needed later, in chapter 3.

Let us consider the differential operator:

L := − div(A(x) ∇) + c(x)

acting in the weak sense onto functions u ∈W1,2
0 (Ω), whereΩ ⊆

RN is an open bounded domain and A, c satisfy the following
assumptions:

(H1) A := (aij) ∈ L∞(Ω; RN×N) is a symmetric uniformly el-
liptic matrix such that

∑
i,j ai,j(x) ξiξj > |ξ|2 for all ξ =

(ξ1, . . . , ξN) ∈ RN and a.e. x ∈ Ω,

(H2) c ∈ L∞(Ω) is a.e. nonnegative.

The eigenvalue problem for L requires to seek all the possible cou-
ples (λ,u) ∈ R×W1,2

0 (Ω) whose second coordinate solves the
boundary value problem:− div(A(x) ∇u) + c(x) u = λ u , in Ω

u = 0 , on ∂Ω ,
(1.14)

in the weak sense.
If there exists any couple (λ̃, ũ) of the aforementioned type, then
the value λ̃ is called eigenvalue of L (or an eigenvalue of problem
(1.14)) and ũ is called eigenfunction of L (or eigenfunction of problem
(1.14)) associated to λ̃.
Using standard Functional Analytic tools, one can see that there
exists a nondecreasing, positive-diverging sequence (λA,c

n (Ω))

of eigenvalues of L. Moreover, any eigenvalue λA,c
n (Ω) admits
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a variational characterization in terms of the socalled Rayleigh
quotient:

R[u] :=

´
Ω〈A(x)∇u,∇u〉 d x+

´
Ω c(x) u

2 d x´
Ω u

2 d x
;

in particular:

λA,c
n (Ω) = min

{
R[u], u ∈W1,2

0 (Ω),u 6= 0, u⊥Vn−1

}
(1.15)

where V0 = {0} and:

Vn = span
{

eigenfunctions associated to λA,c
1 , . . . , λA,c

n−1

}
for n > 1.
It then follows that problem (1.14) has a smallest eigenvalue,
namely λA,c

1 (Ω).
This eigenvalue always possesses some interesting features: be-
sides being variational because of (1.15), it is also isolated, sim-
ple (i.e., the eigenspace associated to λA,c

1 is one-dimensional)
and principal (i.e., the nontrivial eigenfunctions associated to
it do not change their sign in Ω). In particular, it turns out
that principality characterizes the smallest eigenvalue of (1.14),
in the sense that if λA,c

n is a principal eigenvalue of L, then
λ
A,c
n (Ω) = λ

A,c
1 (Ω).

The variational characterization of λA,c
1 (Ω) allows to use sym-

metrization techniques to prove the following generalization of
the aforementioned theorem of Faber and Krahn:

Theorem 1.11 (generalized Faber–Krahn inequality)
Let λA,c

1 (Ω) be the smallest eigenvalue of problem (1.14) and let λI,01 (Ω?)

be the smallest eigenvalue of the problem:−∆u = λ u , in Ω?

u = 0 , on ∂Ω? .
(1.16)
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Then λI,01 (Ω?) 6 λ
A,c
1 (Ω).

Moreover, equality is attained if and only if Ω = Ω? (modulo transla-
tions), c = 0 a.e. in Ω and the matrix A satisfies the condition:

N∑
j=1

ai,j(x) xj = xi .

Proof. Let u1 be a nonnegative nontrivial eigenfunction associ-
ated to λA,c

1 (Ω). Using the sign assumption on c, the ellipticity
condition on A, the invariance of the L2-norm under Schwarz
rearrangement and the Polya–Szegö Principle, we get:

λ
A,c
1 (Ω) = R[u1]

>

´
Ω〈A(x)∇u1,∇u1〉 d x´

Ω u
2
1 d x

>

´
Ω |∇u1|2 d x´
Ω u

2
1 d x

>

´
Ω? |∇u?

1|
2 d x´

Ω?(u?
1)
2 d x

> λ
I,0
1 (Ω?)

(1.17)

which is the desidered inequality.
If equality λI,01 (Ω?) = λ

A,c
1 (Ω) holds, then it does through (1.17).

In particular, we have equality in the Polya–Szegö Principle, thus
the theorem of Brothers–Ziemer applies (because of the strict
monotony of u∗1) and it gives Ω = Ω?, u1 = u?

1 (modulo trans-
lations). Moreover, equality holds between the second and the
third member of (1.17), hence

´
Ω c(x)u1(x) d x = 0; from this we

infer c(x) = 0 a.e. in Ω, because u1 > 0 inside Ω by Harnack In-
equality (cfr. [40]). Finally, equality holds also between the third
and the fourth member of (1.17), implying

∑N
j=1 ai,j(x) xj = xi

as in [45, §3.2].

Of course, there are may variants and refinements of the result
cited above. For the linear case, for example, there is the one in
[61, §5]; while for the nonlinear case, e.g. operators modelled
onto the p-Laplacian, see [3, 2].
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1.5.2 Talenti Inequality and Chiti Comparison Lemma

In this section we give two exemples of pointwise comparison re-
sults for solutions which can be proved by symmetrization: the
first one due to Talenti [61] and the second due to Chiti [21].
In particular, Talenti’s result gives a pointwise comparison and
a sharp estimate of the norms for the solution of a Poisson
equation with homogeneous Dirichlet BCs. On the other hand,
Chiti’s one gives a pointwise comparison between the decreas-
ing rearrangement of the first eigenfunction of a second order
linear operator with homogeneous Dirichlet BCs and the radial
solution of a suitable symmetric problem.
Both results are isoperimetric, in the sense that equality is attained
only in the symmetric setting, i.e. when the base domain is a ball
and the second member of the PDE (if needed) is radial and de-
creasing (cfr. [5, 45]).
These results will be needed later in chapter 3.

Let us consider the problem of finding u ∈ W1,p
0 (Ω) which

solves in the weak sense the problem:− div(A(x) ∇u) + c(x) u = f(x) , in Ω

u = 0 , on ∂Ω ,
(1.18)

where: Ω ⊆ RN is a bounded domain, A = (ai,j) ∈ L∞(Ω; RN×N)

is a uniformly elliptic matrix in Ω, i.e.:

∀x ∈ Ω,
N∑
i,j=1

ai,j(x) ξiξj > |ξ|2 for all ξ = (ξn) ∈ RN ,

c(x) > 0 a.e. in Ω, and f ∈ Lr(Ω) with r = 2N/(N+ 2) if N > 2

or r > 1 if N = 2. Such a problem has unique solution and the
following comparison result holds:
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Theorem 1.12 (Talenti)
Let u be the solution of problem (1.18) and v be the solution of the
symmetrized problem:−∆v(x) = |f|?(x) , in Ω?

v = 0 , on ∂Ω? .

Then v(x) > |u|?(x) in Ω and therefore:

‖u‖p,Ω 6 ‖v‖p,Ω?

for each p ∈]0,∞].

In particular, if problem (1.18) admits a nonnegative solution,
then |u|? can be replaced with u?.
As mentioned above, the proof of Theorem 1.12 is based on a
differential inequality for the distribution function of |u|, namely
the following:

µ
2−2/N
|u| (t) 6

1

N2ω
2/N
N

(−µ′|u|(t))

ˆ µ|u|(t)

0
|f|∗(s) d s . (1.19)

which holds for a.e. t > 0.
An interesting feature of the proof of inequality (1.19) is that it
can be rewritten almost verbatim when the second member f
is replaced with λ

A,c
1 u, i.e., when we consider the eigenvalue

problem (1.14) associated to the smallest eigenvalue λA,c
1 (Ω).

In such a case, inequality (1.19) becomes:

µ
2−2/N
|u| (t) 6

λ
A,c
1

N2ω
2/N
N

(−µ′|u|(t))

ˆ µ|u|(t)

0
|u|∗(s) d s ;

thus, if one considers the L∞-normalized positive first eigenfunc-
tion u1 and applies Fubini’s theorem to evaluate the integral in
the right-hand side, the inequality rewrites:

c2N

λ
A,c
1

µ
2−2/N
u1 (t) 6 (−µ′u1(t))

(
t µu1(t) +

ˆ 1
t
µ∗u1(τ) d τ

)
,

(1.20)
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(where cN := Nω
1/N
N ) which is the socalled Talenti inequality.

Remark 1.6:
A cheap way to obtain (1.20) in the case when (1.14) reduces to the
eigenvalue problem for the Dirichlet Laplacian inΩ (i.e., when A(x) =

I and c(x) = 0 everywhere in Ω) is the following.
Classical regularity results imply that the first eigenfunction u1 is of
class C∞(Ω), hence the set {x ∈ Ω : |∇u(x)| = 0} is negligible by
Sard’s theorem and the distribution function of u1, say µ1, is continu-
ous in [0, 1].
Cauchy-Schwarz inequality yields:

[
HN−1(∂{u1 > t})

]2
6
ˆ
∂{u1>t}

|∇u1| d HN−1 ×

×
ˆ
∂{u1>t}

|∇u1|−1 d HN−1 for a.e. t ∈ [0, 1].

(1.21)

Applying divergence theorem to equation −∆u = λ
I,0
1 (Ω)u over the

level set {u1 > t} we find:

ˆ
∂{u1>t}

|∇u1| d HN−1 =

ˆ
∂{u1>t}

〈∇u1, |∇u1|−1 ∇u1〉d HN−1

= −

ˆ
{u1>t}

∆u1 d x

= λ
I,0
1 (Ω)

ˆ
{u1>t}

u1 d x ,

so, recalling relation:

µ′1(t) = −

ˆ
∂{u1>t}

|∇u1|−1 d HN−1 for a.e. t ∈ [0, 1]

(see [45, Theorem 2.2.3]) and the isoperimetric inequality:

HN−1(∂{u1 > t}) > cN |{u1 > t}|
1−1/N
N ,



1.5 rearrangements and elliptic equations 27

from (1.21) we infer:

c2N

λ
I,0
1 (Ω)

µ
2−2/N
1 (t) 6 −µ′1(t)

ˆ
{u1>t}

u1 d x . (1.22)

Finally, Fubini’s theorem yields:

ˆ
{u1>t}

u1 d x = t µ1(t)+

ˆ 1
t
µ1(τ) d τ for a.e. t ∈ [0, 1], (1.23)

ergo plugging the righthand side of (1.23) in (1.22) we find (1.20). ♦

In the same spirit of Talenti’s comparison theorem, there are
several other results which allow pointwise comparison between
the rearrangement of the first eigenfunction of problem (1.14)
and the first eigenfunction of a suitable symmetrized problem.
For example, there are the almost classical results of Chiti [21,
22]: in particular, they yield that the Schwarz decreasing rear-
rangement of the first nonnegative eigenfunction u1 of (1.14) can
be pointwise compared with the first nonnegative eigenfunction
V1 of the problem:−∆V(x) = λ V(x) , in B

V(x) = 0 , on ∂B

where B is the unique open ball centered in the origin such that
λ
I,0
1 (B) = λ

A,c
1 (Ω). For sake of precision we have:

Theorem 1.13 (Chiti’s comparison lemma)
Let u1 be a nonnegative, nontrivial eigenfunction associated to the
first eigenvalue λA,c

1 (Ω), let B be the ball centered in the origin such
that λI,01 (B) = λ

A,c
1 (Ω) and let V1 ∈ W1,p

0 (B) be an eigenfunction
associated to λI,01 (B).
If ‖V1‖∞,B = ‖u1‖∞,Ω, then:

u?
1(x) > V1(x) (1.24)

for all x ∈ B.
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Using a simple scaling argument, one can prove that the ball
B has measure not exceeding |Ω|, for its radius equals:

rB =

√√√√λ
I,0
1 (Ω?)

λ
A,c
1 (Ω)

(
|Ω|

ωN

)1/N
6

(
|Ω|

ωN

)1/N
= rΩ? ;

therefore, extending V1 to zero in Ω? \ B one can make inequal-
ity (1.24) hold in the whole of Ω?. Consequently one gets the
comparison also for the norms, i.e.:

‖V1‖p,Ω? 6 ‖u1‖p,Ω

for p ∈ [1,∞].
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2.1 introduction

In this chapter we prove a family of sharp isoperimetric inequal-
ities for sufficiently smooth bounded bodies of revolution D ⊂
RN with N > 3, namely:

[
Per(D) − a(N− 2) Sec(D)

]N
> 2(N− 1)NNωN−1 ϕN(a) VolN−1(D) ,

(2.1)

depending on the parameter a ∈]0, 1].
In (2.1) the symbols Vol(D), Per(D) and Sec(D) denote respec-
tively the volume, the perimeter and the weighted measure with
respect to a weight which depends only on the distance of the
points of D from the rotation axis; and ϕN(a) is a suitable non-
negative constant.
Moreover we are able to prove that 2(N − 1)NNωN−1ϕN(a)

29
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is the best constant for inequality (2.1) and to characterize the
equality case.

2.1.1 Motivations

We were led to inequalities (2.1) while looking for a symmetriza-
tion method to be employed in finding the best constant in the
Hardy-Sobolev inequality:

ˆ
RN

|∇u|p d xdy > c

(ˆ
RN

|u|p
∗(q)

|x|q
d xdy

)p/p∗(q)

, (2.2)

where: RN = Rkx ×RN−k
y ; k, p, q satisfy 2 6 k 6 N, 1 < p < N,

0 6 q 6 p, q < k, with p∗(q) = pN−q
N−p ; u ∈ D1,p(RN), which

is the closure of D(RN) = C∞c (RN) with respect to the norm
‖u‖D1,p(RN) := ‖∇u‖Lp .
In particular, inequalities of the type (2.1) seem to play a role in
the case q = 1.

Inequalities of the type (2.2) with k = N were estabilished as
particular cases in [18], where a more general class of inequali-
ties with weights was proved as interpolation between the clas-
sical Sobolev and Hardy inequalities.
The results of Caffarelli, Kohn & Nirenberg were extended in
various directions: for instance, the full case 2 6 k 6 N was
considered in [7], where it was proved that (2.2) holds and that
the best constant is achieved when q < p.
The shape of the solutions of the variational problem associated
to (2.2) was determined in [4] in the special case N = 3, k = 2,
p = 2, q = 1 combining an inequality satisfied by the Grushin
operator (proved in [10]) and the classical Polya-Szegö principle
for the Steiner rearrangement of a function in D1,p(RN).
Even if the question of the shape of the minimizer in (2.2) for
general values of N, k, p, q was left open, the authors were able
to give a two parameters family of positive solutions of the Euler-
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Lagrange equation associated to the variational problem (which
involves the p-Laplacian operator) in the case q = 1:

u(x,y;α,β) := α
[
(1+β|x|)2 +β2|y|2

]−(N−p)/(2(p−1))
(2.3)

where α,β > 0; moreover, they pointed out that the level sets of
those functions satisfy equality in a geometric inequality of type
(2.1).
Some symmetry properties of the solutions of Euler-Lagrange
equation associated to problem (2.4) in the case p = 2,q = 1, as
well as their connections with other interesting geometric ques-
tions, were estabilished in the series of articles [52], [51], [19] and
[20].

When we want to find the best constant in (2.2) by symmetriza-
tion, we have to solve the problem in two steps: the first one, said
symmetrization result, consists in proving that we can restrict the
analysis to functions having particular symmetry properties; the
second step consists in applying known techniques of Calculus
of Variations to solve a constrained minimum problem.
For instance, this method works when we want to find the best
constant in the classical Sobolev inequality (e.g. [60]), for we can
reduce to a typical one-dimensional problem of the Calculus of
Variations.
In our case, even if we can find the way to restrict the analysis
to functions exploiting the same kind of symmetry of the ones
in (2.3) , the minimum problem reduces to a two-dimensional
problem whose solution is not easy.

However, when we want to prove a symmetrization result,
isoperimetric inequalities play a key role: in fact, they can force
the level sets of extremal functions to have a shape that mini-
mize/maximize some of the terms we are dealing with.
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If the inequality we are looking for has to play a role in minimiz-
ing the ratio:

´
RN

|∇u|p d xdy(´
RN

|u|p
∗(1)

|x| d xdy
)p/p∗(1) , (2.4)

with u ∈ D1,p(RN) and p∗(1) = pN−1
N−p , it has to be stated in

terms of the right quantities.
If we take a function u sufficiently regular with compact support,
Hölder inequality and the classical isoperimetric inequality im-
ply that:

ˆ
RN

|∇u|p d xdy >
ˆ ∞
0

H
p
N−1({u = s})

(−µ ′(s))p
d s

where µ(s) is the N-dimensional Lebesgue measure of the level
set {u > s} (hence it is a volume), HN−1({u = s}) is the (N− 1)-
dimensional Hausdorff measure of {u = s} = ∂{u > s} (hence
it is a perimeter). On the other hand, an application of Fubini’s
theorem shows that:

ˆ
RN

up
∗(1)

|x|
d xdy = p

ˆ ∞
0
sp−1µ1(s) d s

where µ1(s) =
´
{u>s}

1
|x| d xdy is the weighted measure of the

level set {u > s} with respect to the weight 1
|x| .

Hence the ratio in (2.4) can be decreased in a natural way using
geometric quantities related to the shape of the level sets of u;
therefore the isoperimetric inequality we are looking for has to
estabilish a relation between the volume, the perimeter and the
weighted measure µ1 of those level sets.

2.1.2 Organization

We prove at first that isoperimetric inequalities (2.1) hold for
a special class of bodies of revolution, namely the symmetric
ones. We also study the problem of the equality case, giving a
complete characterization of the optimal bodies when equality
is achieved in (2.1). Moreover, we prove that the constant ϕN(a)
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has an explicit elementary form as a function of a and that it
satisfies a differential recurrence relation.
We are able to extend inequalities (2.1) keeping their sharpness
to the larger class of bodies of revolution in RN using Steiner
symmetrization.
Finally, in the last section we consider the case of sets which are
radially simmetric with respect to a h-dimensional affine sub-
space, with 2 6 h 6 N: in particular, we are able to prove a
family of inequalities similar to (2.1) and we conjecture both a
value for the best constant and the shape of the optimal sets.

2.2 sharp isoperimetric inequalities for bodies of

revolution : the symmetric case

From now on, we set N ∈ N fixed and greater than 2; a point
in RN will be denoted by (x,y), with x ∈ RN−1 and y ∈ R; the
Lebesgue measure of the unit ball in RN will be ωN.

Let us consider the set:

C0 :=
{
f : [0, +∞[→ [0, +∞[ : f is nonincreasing,

smooth and satisfies f(0) > 0
}

,

(2.5)

where smooth means that f ∈ Cc([0, +∞[)∩C0,1([0, +∞[).

Definition 2.1: When we choose a function f ∈ C0 and a point
(x0,y0) ∈ RN, the set:

D :=
{

(x,y) ∈ RN : |x− x0| < f(|y− y0|)

and |y− y0| ∈ (supp f)◦
} (2.6)

will be called symmetric body of revolution described by f around
(x0,y0).

Remark 2.1:
A symmetric body of revolution around a point (x0,y0) is axially-
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symmetric about the straight line r0 of equation x = x0 and also sym-
metric about the hyperplane Π0 of equation y = y0.
The point (x0,y0) is the “center of mass” of D. ♦

The volume Vol(D) (i.e. the N-dimensional Lebesgue measure
of D) and the perimeter Per(D) of a symmetric body of revolu-
tion D described by a function f ∈ C0 around (x0,y0) can be
easily computed in cylindrical coordinates:

Vol(D) = 2ωN−1

ˆ ∞
0
fN−1(t) d t , (2.7)

Per(D) = 2(N− 1)ωN−1

ˆ ∞
0

√
1+ |f ′(t)|2fN−2(t) d t .

(2.8)

The inequality that we are going to prove involves also the weighted
measure Sec(D) (with respect to the weight W(x) := 1

|x−x0|
) of

the body D: like Vol(D) and Per(D), the value of Sec(D) can be
computed in cylindrical coordinates:

Sec(D) = 2
N− 1

N− 2
ωN−1

ˆ ∞
0
fN−2(t) d t . (2.9)

Remark 2.2:
Sec(D) is proportional by the factor 2 (N−1)ωN−1

(N−2)ωN−2
to the (N − 1)-

dimensional Lebesgue measure of the sections of D determined by in-
tersection with hyperplanes containing the rotation axis: owing to this,
we can call Sec(D) section measure of D. ♦

Remark 2.3:
Because Vol(D), Per(D) and Sec(D) are translation invariant, from
now on we assume (x0,y0) = o without any loss of generality. ♦

2.2.1 Inequalities

From (2.7)-(2.9) it follows that Per(D) − a(N− 2) Sec(D) > 0 for
each a ∈]0, 1].
But more is true: actually, the classical isoperimetric inequality
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PerN(D) > NNωN VolN−1(D) can be used to show that an
inequality of the type:

[Per(D) − a(N− 2) Sec(D)]N > cVolN−1(D) (2.10)

makes sense for some constant c > 0 and to get a rough lower
bound for the so called best constant, i.e.:

C(N,a) := sup{c > 0 : (2.10) holds}

= inf
D

[Per(D) − a(N− 2) Sec(D)]N

VolN−1(D)
.

(2.11)

In fact, since:

Per(D) − a(N− 2) Sec(D) > (1− a) Per(D)

> (1− a)
(
NNωNVolN−1(D)

)1/N
we also have:

[Per(D) − a(N− 2) Sec(D)]N > NNωN(1−a)NVolN−1(D) ;

hence (2.10) holds with c = NNωN(1 − a)N and the best con-
stant C(N,a) is greater than or equal to NNωN(1− a)N.

The following is a generalization of [4, Theorem 3.1] and it
gives an explicit value for the constant in (2.10):

Theorem 2.1 (Isoperimetric inequalities)
For a ∈]0, 1] there exists a constant ϕN(a) > 0 such that inequality:

[
Per(D) − a(N− 2) Sec(D)

]N
> 2(N− 1)NNωN−1ϕN(a) ·VolN−1(D) ,

(2.12)

holds for all symmetric body of revolution D. Moreover:

ϕN(a) =

ˆ 1−a
0

uN−2
√
1− (u+ a)2 du . (2.13)
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Remark 2.4:
When a ↘ 0, (2.12) approaches the classical isoperimetric inequal-
ity thus we can expect equality in:

lim
a↘0

2(N− 1)NNωN−1ϕN(a) 6 NNωN ,

instead of a strict inequality.
This is actually true, because using [41, 3.197-4] and recalling the
definition of the beta function B(t, s) = Γ(t)Γ(s)/Γ(t+ s), we find:

lim
a↘0

2(N− 1)NNωN−1ϕN(a) = 2(N− 1)NNωN−1×

×
ˆ 1
0
uN−2

√
1− u2 du

= (N− 1)NNωN−1 B
(
N− 1

2
,
3

2

)
= (N− 1)NNωN−1

Γ(N−1
2 )
√
π

2Γ(N2 + 1)

= NNωN−1
Γ(N−1

2 + 1)
√
π

Γ(N2 + 1)

= NNωN .

♦

Proof . If a = 1, Theorem 2.1 becomes trivial because (2.12) and
(2.13) give Per(D) − (N− 2) Sec(D) > 0 which is true in virtue
of the very definition of Per(D) and Sec(D). Hence we can limit
ourselves to give the proof in the case a ∈]0, 1[.
It follows from (2.7)-(2.9) that in order to get (2.12) we have to
prove:

(2(N− 1)ωN−1)
1/NN ϕ

1/N
N (a) 6 inf

f∈C0
Ja[f] , (2.14)

where Ja[·] is the functional:

Ja[f] :=(2ωN−1)
1/N(N− 1)×

×

´∞
0

{√
1+ |f ′(t)|2 − a

}
fN−2(t) d t(´∞

0 fN−1(t) d t
)N−1
N

.
(2.15)
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We divide the proof into two steps.
Step 1. Let f ∈ C0 be normalized as follows:

‖f‖LN−1 = 1 , (2.16)

let β =
f(0)
1−a > 0 and let us define the auxiliary functional Ia[f]:

Ia[f] :=

ˆ ∞
0

{√
1+ |f ′(t)|2 − a

}
fN−2(t) d t

−
1

β

ˆ ∞
0
fN−1(t) d t .

(2.17)

In view of the convexity of
√
1+ z2, for all ζ ∈ R we have:√

1+ |f ′(t)|2 >
√
1+ ζ2 +

ζ√
1+ ζ2

(f ′(t) − ζ) ; (2.18)

in particular, if in the previous inequality we choose:

ζ(f) = −

√
β2 − (f+ aβ)2

f+ aβ
(2.19)

we deduce that the following inequality:

√
1+ |f ′(t)|2 >

β

f(t) + aβ
−
1

β

√
β2 − (f(t) + aβ)2×

×

(
f ′(t) +

√
β2 − (f(t) + aβ)2

f(t) + aβ

)

=
1

β

(
f(t) + aβ−

√
β2 − (f(t) + aβ)2f ′(t)

)
.

(2.20)

holds for a.e. t ∈ [0, +∞[.
Owing to (2.20) we can decrease Ia[f] as follow:

Ia[f] > −
1

β

ˆ ∞
0
fN−2(t)

√
β2 − (f+ aβ)2f ′(t) d t

=
1

β

ˆ β(1−a)

0
fN−2

√
β2 − (f+ aβ)2 d f

= βN−1

ˆ 1−a
0

uN−2
√
1− (u+ a)2 du

= ϕN(a) βN−1 .

(2.21)
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Recalling (2.16) and (2.17), from (2.21) we infer:

ˆ ∞
0

{√
1+ |f ′(t)|2 − a

}
fN−2(t) d t >

1

β
+ϕN(a) βN−1 .

With classical tools of Differential Calculus we can evaluate the
minimum of the righthand side as a function of β: this leads to:

ˆ ∞
0

{√
1+ |f ′(t)|2−a

}
fN−2(t) d t

> N(N− 1)1/N−1ϕ
1/N
N (a)

(2.22)

which, after some algebra, gives our claim.

Step 2. If f ∈ C0 has LN−1-norm different from 1, we can obtain
our claim from Step 1 using a suitable scaling argument: in fact,
putting:

f̂(t) :=
1

σ
f(σt)

with σ > 0 chosen such that (2.16) holds for f̂, one can verify
that:

Ja[f] = Ja[f̂] > γ
1
N
N(a) .

Thus our Theorem is completely proved.

Furthermore we can prove that 2(N− 1)NNωN−1ϕN(a) is in
fact the best constant in (2.10):

Proposition 2.1 (Best constant in (2.10))
Let 0 < a 6 1 and C(N,a) be the best constant in (2.10).

(i) If 0 < a < 1 then there is attainment into inequality:

[Per(D) − a(N− 2) Sec(D)]N

VolN−1(D)
> 2(N− 1)NNωN−1ϕN(a)
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when D is the body of revolution generated by a function of the
type:

wa(t;b) :=


√
b2 − t2 − ab , if t ∈ [0,b

√
1− a2]

0 , otherwise,
(2.23)

where b is a positive parameter.

(ii) If a = 1 there exists a family {Dε}ε>0 of symmetric bodies of
revolution such that:

inf
ε>0

[Per(Dε) − a(N− 2) Sec(Dε)]N

VolN−1(Dε)

= 0

= 2(N− 1)NNωN−1ϕN(1) .

Therefore C(N,a) = 2(N− 1)NNωN−1ϕn(a) for each a ∈]0, 1].

Proof . (i) Assume 0 < a < 1 and let D be generated by a
function of the type wa(·;b). By means of the substitution u =
1
b(
√
b2 − t2 − ab) and of integration by parts, we find:

Vol(D) = 2ωN−1

ˆ ∞
0
wN−1
a (t;b) d t

= 2ωN−1

ˆ b√1−a2
0

(√
b2 − t2 − ab

)N−1
d t

= 2ωN−1 b
N

ˆ 1−a
0

uN−1 u+ a√
1− (u+ a)2

du

= 2ωN−1 (N− 1)bN
ˆ 1−a
0

uN−2
√
1− (u+ a)2 du

= 2(N− 1)ωN−1 b
N ϕN(a) ;
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analogous computations prove that:

Per(D)−a(N− 2) Sec(D)

= 2(N− 1)ωN−1×

×
ˆ ∞
0
wN−2
a (t;b)

(√
1+ |w ′a(t;b)|2 − a

)
d t

= 2(N− 1)ωN−1 b
N−1×

×
ˆ 1−a
0

uN−2 1− a(u+ a)√
1+ (u+ a)2

du

= 2(N− 1)ωN−1 b
N−1×( ˆ 1−a

0
uN−1 u+ a√

1− (u+ a)2
du

+

ˆ 1−a
0

uN−2
√
1− (u+ a)2 du

)

= 2(N− 1)ωN−1 Nb
N−1

ˆ 1−a
0

uN−2
√
1− (u+ a)2 du

= 2(N− 1)NωN−1 b
N−1 ϕN(a) ,

hence:

[Per(D) − a(N− 2) Sec(D)]N

VolN−1(D)
= 2NN(N− 1) ϕN(a) .

(ii) Assume now a = 1 and let Dε be the symmetric double cone
generated by:

gε(t) :=

−1ε (t− ε) , if t ∈ [0, ε]

0 , otherwise.

Explicit computations show that:

Vol(Dε) =
2ωN−1

N
ε

Per(Dε) = 2ωN−1

√
1+ ε2

Sec(Dε) =
2ωN−1

N− 2
ε
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thus:

inf
ε>0

[Per(Dε) − a(N− 2) Sec(Dε)]N

VolN−1(Dε)

= inf
ε>0

2NN−1ωN−1[
√
1+ ε2 − ε]N ε1−N

6 2NN−1ωN−1 lim
ε→∞[

√
1+ ε2 − ε]N ε1−N

= 0

as we claimed.

2.2.2 The case of equality in (2.12)

Once we have proved that 2(N− 1)NNωN−1ϕN(a) is the best
constant in (2.12), we can address the problem of characterizing
the equality case in (2.12), i.e. the problem of finding all the sym-
metric bodies of revolution which satisfy (2.12) with the equal
sign.

It turns out that in the case 0 < a < 1 there is only one class of
nontrivial body of revolution satisfying equality in (2.12), which
elements are related by scaling.
On the other hand, in the case a = 1 it turns out that equality
cannot occur in (2.12).

In what follows we are going to fix the value 2ωN−1 for the
volume of the bodies of revolution we will be dealing with, be-
cause this volume constraint simplifies our computations.
We explicitly remark that there is no loss of generality: in fact, a
standard scaling argument shows that a symmetric body D satis-
fies equality in (2.12) if and only if all of its dilated bodies λD do.

In order to make our arguments more clear, we state the fol-
lowing:

Theorem 2.2 (Equality in (2.12) for 0 < a < 1)
Let 0 < a < 1.
Let D be a body revolution satisfying equality in (2.12) and f ∈ C0 its



2.2 sharp inequalities : the symmetric case 42

generatig function.
Then f(·) = wa(·; (1− a)−1 sup f), where wa(·; ·) is a function de-
fined in Proposition 2.1.

Proof . Because of the volume constraint we have ‖f‖N−1 = 1.
Retracing the steps in the proof of Theorem 2.1, we find that
if equality holds in (2.12) then we have equality in (2.18) with
ζ = ζ(t) given by (2.19); since

√
1+ z2 is strictly convex, equality

occurs in (2.18) only if f′(t) = ζ(t), hence f solves the following
problem:

f ′(t) = −

√
β2−(f(t)+aβ)2

f(t)+aβ

f(0) = β(1− a)

f(t) > 0

(2.24)

in the weak sense inside its support. Moreover, equality has to
hold in (2.22), hence we have:

β =

(
1

NϕN(a)

)1/N
(2.25)

where β = (1− a)−1 sup f.
We explictly remark that uniqueness fails for problem (2.24): in
fact the righthand side fails to be Lipschitz in any neighbour-
hood of the initial condition (0,β(1 − a)), so that a Peano phe-
nomenon occurs.
Neverthless we can state that there exists a nonnegative t0 such
that:

f(t) =

β(1− a) , if 0 6 t 6 t0

wa(t− t0;β) , if t > t0.
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Routine computations yield:

‖f‖N−1
LN−1 = βN−1(1− a)N−1t0 +

ˆ β√1−a2
0

wN−1
a (t;β) d t

= βN−1(1− a)N−1t0

+ (N− 1)βN
ˆ 1−a
0

uN−2
√
1− (u+ a)2 du

= (1− a)N−1βN−1t0 + (N− 1)ϕN(a) βN

therefore t0 has to satisfy the normalization condition:

(1− a)N−1βN−1t0 + (N− 1)ϕN(a) βN = 1 . (2.26)

Owing to (2.25) equation (2.26) implies t0 = 0, hence our claim.

Remark 2.5:
If we try to visualize things in the tridimensional space, then the nor-
malized optimal body for (2.12) resembles a rugby ball or, say, a spindle.
It becomes rounder as a ↘ 0 for it approaches a ball, the optimal set
for the classical isoperimetric inequality. On the other hand, it shrinks
to {o} when a↗ 1. ♦

Remark 2.6:
We also note that a function wa(·;b) describes the boundary of the
level set {u > s} (s > 0) of a function in the family (2.3) if and only if
we choose the parameters a,b as follows:

a = (αs)− p−1
N−p and b =

1

β
(αs)

p−1
N−p .

♦

Proposition 2.2 (Equality in (2.12) for a = 1)
Equality never occurs in (2.12) when a = 1.

Proof. Assume by contradiction that there exists a function f ∈ C0

with ‖f‖N−1 = 1 such that equality occurs in (2.12) for the body
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of revolution generated by f.
Thus we have:

ˆ ∞
0

(√
1+ |f′(t)|2 − 1

)
fN−2(t) d t = 0

and this implies (
√
1+ |f′(t)|2 − 1) fN−2(t) = 0 for a.e. t ∈

[0,∞[.
For t close to 0 we have f(t) > 0, hence it has to be f′(t) = 0 a.e.
and f(t) = f(0) > 0 in a neighbourhood of 0; on the other hand,
for all sufficiently large t it is f(t) = 0, because f is compactly
supported.
Let:

t1 := sup{t > 0 : f is constant and positive in [0, t]}

t2 := inf{t > 0 : f equals zero in [t,∞[} ;

obviously 0 < t1 6 t2 < ∞. We claim t1 = t2: if this were
not the case then f should be positive in [t1, t2[, hence f′ should
be a.e. equal to zero in the same interval; but then f should be
constant in [t1, t2], against the fact that f(t1) = f(0) > 0 = f(t2).
Equality t1 = t2 implies that f has a discontinuity jump in t1,
which is a contradiction.

2.2.3 Properties of the best constant as a function of a

Proposition 2.1 says that 2(N−1)NNωN−1ϕN(a) defined in (2.13)
is indeed the best constant in (2.10), hence it could be interesting
to investigate in details some properties of such a number.
Since the value of the constant depends on the value of the “mys-
terious” term ϕN(a), we are interested into highlighting some
properties of the map [0, 1] 3 a 7→ ϕN(a) ∈ [0,∞[ and the se-
quence of functions N 3 N 7→ ϕN(·) ∈ C(]0, 1]); in particular, we
address the following questions:

1. is it possible to characterize a 7→ ϕN(a) as solution of some
differential problem?

2. is it possible to find some kind of recurrence relation for
N 7→ ϕN(·)?
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3. is it possible to give ϕN(a) an explicit elementary form? That
is, is it possible to write down an explicit expression for
ϕN(a) in terms of elementary functions?

We are going to prove that questions 1-3 can be answered in the
positive.

Proposition 2.3
The function ϕN(·) is the unique solution in [0, 1] of the (N− 2)-th
order ODE:

ϕ
(N−2)
N (a) = (−1)N−2(N− 2)! ·

(
arccosa− a

√
1− a

)
(2.27)

satisfying the homogeneous conditions:

ϕN(1) = 0

ϕ′N(1) = 0

...

ϕ
(N−3)
N (1) = 0

which is positive in [0, 1[, strictly decreasing and convex.

Proof . First of all, note that differentiating the integral:

ϕN(a) :=

ˆ 1−a
0

uN−2
√
1− (u+ a)2 du (2.28)
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in (2.13) with respect to a yields an elementary integral in u,
which can be easily computed by parts: in fact:

ϕ′N(a) = −uN−2
√
1− (u+ a)2

∣∣∣
u=1−a

+

ˆ 1−a
0

uN−2 −(u+ a)√
1− (u+ a)2

du

= uN−2
√
1− (u+ a)2

∣∣∣1−a
0

− (N− 2)

ˆ 1−a
0

uN−3
√
1− (u+ a)2 du

= −(N− 2)

ˆ 1−a
0

uN−3
√
1− (u+ a)2 du

= −(N− 2) ϕN−1(a) ;

(2.29)

in complete analogy, if we differentiate a second time we find:

ϕ′′N(a) =


√
1− a2 , if N = 3

(N− 2)(N− 3)ϕN−2(a) , if N > 4.
(2.30)

Now it is easy to see that if N > 4 we can differentiate ϕN(a)

for k = 3, . . . ,N− 2 times to obtain:

ϕ
(k)
N (a) = (−1)k

(N− 2)!
(N− 2− k)!

×

×
ˆ 1−a
0

uN−2−k
√
1− (u+ a)2 du ,

and in particular:

ϕ
(N−2)
N (a) = (−1)N−2(N− 2)!

ˆ 1−a
0

√
1− (u+ a)2 du

= (−1)N−2(N− 2)!
(

arccosa− a
√
1− a

)
.
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Hence ϕN(a) solves:

ϕ
(N−2)
N (a) = (−1)N−2(N− 2)!

(
arccosa− a

√
1− a

)
, in ]0, 1[

ϕN(1) = 0

ϕ′N(1) = 0

...

ϕ
(N−3)
N (1) = 0

which is (2.27).
Solution of problem (2.27) is obviously unique; moreover, from
(2.29) it follows that ϕN(a) is strictly decreasing and convex in
[0, 1], hence it is positive in [0, 1[.

For N = 3 problem (2.27) has the solution:

ϕ3(a) =
1

6

(
(a2 + 2)

√
1− a2 − 3a arccosa

)
which was already found in [4].
From formula (2.30) and equation (2.27), after some algebra, we
obtain:

Proposition 2.4
The sequence ϕN(a) satisfies the differential recurrence relation:

ϕ3(a) =
1

6

(
(a2 + 2)

√
1− a2 − 3a arccosa

)
,ϕ′N+1(a) = −(N− 1) ϕN(a)

ϕN+1(1) = 0

(2.31)

Finally, we prove that ϕN(a) is an elementary function of a:

Proposition 2.5
For each N > 3 there exist two polynomials PN,QN, respectively of
degree b(N− 1)/2c and b(N− 2)/2c (here b·c is the floor function),
such that:

ϕN(a) = (−1)N−1aχ(N)PN(a2)
√
1− a2

+ (−1)Na1−χ(N)QN(a2) arccosa ,
(2.32)
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where:

χ(N) :=

1 , if N is even

0 , otherwise.

Proof. Using recurrence relation (2.31) we can compute:

ϕ3(a) =
1

6

(
(a2 + 2)

√
1− a2 − 3a arccosa

)
ϕ4(a) =

1

48
π
(

− a(26+ 4a2)
√
1− a2

+ (6+ 24a2) arccosa
)

ϕ5(a) =
1

120
π2
(
(16+ 83a2 + 6a4)

√
1− a2

− a(45+ 60a2) arccosa
)

ϕ6(a) =
1

480
π2
(

− a(226+ 388a2 + 16a4)
√
1− a2

+ (30+ 360a2 + 240a4) arccosa
)

,

hence formula (2.32) holds for N = 3, . . . , 6.
We now use induction. Let us assume (2.32) holds for N > 3:
using [41, 2.260-1], we compute:

ϕN+1(a) =
N− 2

N+ 1
(1−a2) ϕN−1(a)−

2N− 1

N+ 1
a ϕN(a) . (2.33)

Plugging (2.32) into (2.33) gives:

ϕN+1(a) =
√
1− a2(−1)N

(N− 2

N+ 1
a1−χ(N)PN−1(a)

−
N− 2

N+ 1
a3−χ(N)PN−1(a) +

2N− 1

N+ 1
a1+χ(N)PN(a)

)
+ arccosa(−1)N+1

(N− 2

N+ 1
a1−χ(N+1)QN−1(a)

−
N− 2

N+ 1
a3−χ(N+1)QN−1(a) +

2N− 1

N+ 1
a2−χ(N)QN(a)

)
which, with some algebra, turns into:

ϕN(a) = (−1)Naχ(N+1)PN+1(a
2)
√
1− a2

+ (−1)N+1a1−χ(N+1)QN+1(a
2) arccosa
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as we claimed.

2.3 sharp isoperimetric inequalities for bodies of

revolution : the general case

An application of a standard symmetrization technique yields
that inequalities (2.12) hold also for bodies of revolution in RN

which are not symmetric.

Let us put:

C :=
{
f : R→ [0, +∞[: f is smooth and

positive at some point
}

,
(2.34)

where, as in the previous section, “smooth” means Lipschitz and
compactly supported.

Definition 2.2: When we choose a function f ∈ C, a straight line
r ⊂ RN with direction ν ∈ SN−1 and a point (x0,y0) ∈ r, the set:

D :=
{
(x,y) ∈ RN : dist((x,y), r) < f(projr(x,y))

and projr(x,y) ∈ (x0,y0) + ν (supp f)◦
}

(2.35)

will be called body of revolution described by f around the axis r and
the point (x0,y0).

Remark 2.7:
It’s easily seen that if we take f ∈ C, the even extension of f to the whole
real line is in the class C0. Therefore symmetric bodies of revolution
are particular cases of Definition 2.2. ♦

A computation in cylindrical coordinates gives the following
expression for the volume Vol(D), the perimeter Per(D) and the
weighted measure Sec(D) (with respect to the weight W(x) :=
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1
dist((x,y),r) ) of the body of revolution D described by f ∈ C

around the axis r:

Vol(D) = ωN−1

ˆ ∞
−∞ fN−1(t) d t , (2.36)

Per(D) = (N− 1)ωN−1

ˆ ∞
−∞
√
1+ |f ′(t)|2 fN−2(t) d t ,

(2.37)

Sec(D) =
N− 1

N− 2
ωN−1

ˆ ∞
−∞ fN−2(t) d t , (2.38)

which are completely analogous to (2.7)-(2.9).

Remark 2.8:
Note that Vol(D) and Sec(D) are proportional to the LN−1 and LN−2

norms of f respectively.
Moreover, it holds for the weighted measure of a body of revolution
what we wrote in Remark 2.2 about the weighted measure of a symmet-
ric revolution body; hence we can still call Sec(D) section measure
of D. ♦

Next we give the aforementioned generalization of Theorem
2.1:

Theorem 2.3
Inequalites (2.12) hold true even if D is a body of revolution as in
Definition 2.2 instead of a symmetric body of revolution.
The constant 2(N− 1)NNωN−1ϕN(a) is the best one for each a ∈
]0, 1].
Equality is attained only in the case a ∈]0, 1[ and the optimal bodies
are the symmetric ones generated by the functions wa(·;b).

In order to prove our Theorem we need to point out the close
connection between Steiner symmetrization of a body of revolu-
tion described by f ∈ C and the Schwarz rearrangement of the
function f:

Proposition 2.6
If D is a body of revolution described by f ∈ C around the axis r
and the point (x0,y0) then, for all hyperplanes Π orthogonal to r, the
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Steiner symmetral Ds of D with respect to Π is the symmetric body of
revolution described by the function:

fs := f?|[0,∞[

around the intersection point (x1,y1) of r and Π.

Proof . Without loss of generality, we can assume for sake of
semplicity that r coincides with the y-axis, that Π is the coordi-
nate plane y = 0 and therefore that (x1,y1) = o; it then follows:

D = {(x,y) ∈ RN : |x| < f(y) and y ∈ (supp f)◦} .

Let (ξ, 0) ∈ Π and consider the straightline rξ of equation x = ξ

which meets D in Dξ := {y ∈ R : (ξ,y) ∈ D} 6= ∅. From the
definition of D we infer:

Dξ = {y ∈ R : f(y) > |ξ|} ,

hence Dξ is a level set of f and |Dξ| = µf(|ξ|).
On the other hand, if we call fs the function in C0 which gener-
ates Ds, proceeding in the same way as before we infer |Dsξ| =

2µfs(|ξ|) = µg(|ξ|) where we have set g(t) = fs(t/2).
Since |Dξ| = |Dsξ|, functions g and f are equidistributed, and g
is a continuous decreasing function in [0,∞[; a classical unique-
ness result implies that g equals the decreasing rearrangement
f∗, hence fs equals the restriction of the Schwarz rearrangement f?

to [0,∞[.

Remark 2.9:
Since f ∈ C implies f? is Lipschitz, we also have fs Lipschitz therefore
Per(Ds) can be evaluated by means of (2.9). ♦

In view of the properties of Steiner symmetrization and Schwarz
rearrangement stated in chapter 1, of Proposition 2.6, of Remarks
2.8 and 2.9, we can state that the following relations:

Vol(D) = Vol(Ds) , (2.39)

Per(D) > Per(Ds) , (2.40)
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Sec(D) = Sec(Ds) . (2.41)

hold true for each body of revolution D and its Steiner symme-
tral Ds with respect to any hyperplane orthogonal to its axis.
Relations (2.39)-(2.41) lead to a simple proof of Theorem 2.3, as
we now show.

Proof (of Theorem 2.3). Owing to (2.39)-(2.41) and (2.12), we have:

[Per(D) − a(N− 2) Sec(D)]N

> [Per(Ds) − a(N− 2) Sec(Ds)]N

> 2(N− 1)NNωN−1ϕN(a) VolN−1(Ds)

= 2(N− 1)NNωN−1ϕN(a) VolN−1(D)

where Ds is the Steiner symmetral of D with respect to, say, the
hyperplane othogonal to the axis r through the point (x0,y0).

If 0 < a < 1 and D satisfies equality in (2.12) then also Ds

does. In particular, Ds satisfies equality in Per(D) = Per(Ds)
and we infer Ds is a symmetric body of revolution generated by
wa(·;b) for some value of b from Theorem 2.2.
Therefore Ds is a bounded Lipschitz set which meets condition
(i) in [23, Proposition 1.2] with Ω equal to the ball of radius
wa(0;b) = b(1− a) > 0: in fact the set:

{(x,y) ∈ ∂∗Ds : νE
s

y = 0}∩ (B(ox;b(1− a))×R)

= ∂B(ox;b(1− a))× {0}

has zero (N − 1)-dimensional Hausdorff measure. Hence [23,
Theorem 1.3] applies and we can infer D = Ds. The complete
characterization of the equality case follows, together with the
value of the best constant.
On the other hand, if a = 1 strict inequality holds for Ds hence
equality is never attained.
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2.4 remarks on a more general family of inequali-
ties

In this section, we want to point out that inequality of type (2.12)
also holds for symmetric bodies which feature a more general
kind of symmetry.

In fact, starting with a function f ∈ C0 and a point (x0,y0) ∈
Rk ×Rh (with k+ h = N) we can build sets of the type:

D := {(x,y) ∈ Rk ×Rh : |x− x0| < f(|y− y0|)

and |y− y0| ∈ (supp f)◦}

which are symmetric about the k-dimensional affine subspace of
equations y = y0 and radially symmetric about the h-dimensional
affine subspace of equations x = x0. We call a set of the previ-
ous type cylindrically symmetric set described by f around (x0,y0) of
codimension h.
Volume, perimeter and weighted measure with respect to the
weight 1

|x−x0|
of a cylindrically symmetric set D described by f

can be easily computed in cylindrical coordinates:

Vol(D) = hωhωk

ˆ ∞
0
fk(t) th−1 d t ,

Per(D) = hkωhωk

ˆ ∞
0

√
1+ |f ′(t)|2 fk−1(t) th−1 d t ,

Sec(D) = h
k

k− 1
ωhωk

ˆ ∞
0
fk−1(t) th−1 d t .

Considering that we have Per(D) −a(k− 1) Sec(D) > 0 for each
a ∈]0, 1], we can use the classical isoperimetric inequality as in
Remark 2.3 to write:

Per(D) − a(k− 1) Sec(D) > (1− a)Nω
1/N
N Vol(N−1)/N(D) ;

this means that volume, perimeter and weighted measure of
cylindrically symmetric bodies are involved in some isoperimet-
ric inequalities completely analogous to (2.12): hence we can
state:
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Theorem 2.4
For each a ∈]0, 1] there exists at least a constant c > 0 such that
inequality:

[Per(D) − a(k− 1) Sec(D)]N > c VolN−1(D) , (2.42)

holds for all cylindrically symmetric bodies.

Therefore it makes sense to consider the problem of finding
the best constant C(k,h,a) and the shape of the optimal cylin-
drically symmetric bodies (if any!) for (2.42).

For what concerns the value of the best constant in (2.42), we
notice what follows.
For a = 1 we have C(k,h, 1) = 0: in fact a direct calculation with
f = gε (with gε as in the proof of Proposition 2.1-(ii)) shows that:

C(k,h,a) = inf
ε>0

[Per(Dε) − (k− 1) Sec(Dε)]N

VolN−1(Dε)

6 lim
ε→∞ [Per(Dε) − (k− 1) Sec(Dε)]N

VolN−1(Dε)

= 0 .

On the other hand, when a ↘ 0 inequality (2.42) approaches
the classical isoperimetric inequality, hence we can reasonably
expect that lima↘0C(k,h,a) = NNωN for every k,h and that
the optimal sets approach the balls.
Nevertheless we have no clues what to expect when a ∈]0, 1[, ex-
cept that inequality C(k,h,a) > NNωN (1− a)N has to hold.

About the shape of optimal sets in (2.42) in the case a ∈]0, 1[,
we remark that the functions (2.23) solve Euler-Lagrange equa-
tion relative to the constrained minimum problem associated to
(2.42): in fact the equation is:

d
d t

[
f ′(t)√

1+ |f ′(t)|2
fk−1(t) th−1

]
− (k− 1){

√
1+ |f ′(t)|2 − a}×

× fk−2(t) th−1 + λk fk−1(t) th−1 = 0 ,
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and wa(·;b) solves it with λ = k+h−1
bk . The lack of convexity

of the integrand generating the previous equation doesn’t allow
us to claim that functions wa(·;b) actually solve our minimum
problem for a ∈]0, 1[.
Moreover, for each fixed b > 0, the cylindrically symmetric body
D generated by the profile wa(·;b) has:

[Per(D) − a(k− 1) Sec(D)]N

VolN−1(D)
= kNNωhωk×

×
ˆ 1−a
0

uk−1
[
1− (u+ a)2

]h/2
du

and letting a↘ 0 we find:

lim
a↘0

kNNωhωk

ˆ 1−a
0

uk−1
[
1− (u+ a)2

]h/2
du

= NNωhωk

ˆ 1
0
uk−1(1− u2)h/2 du

= kNNωhωk B(k/2, 1+ h/2)

= NNωN ,

hence the value of the ratio [Per(D)−a(k−1) Sec(D)]N Vol1−N(D)

approaches the isoperimetric constant when a becomes small.

Thus we were led to make the following:

Conjecture: when a ∈]0, 1[ the best constant in (2.42) is:

C(k,h,a) = kNNωhωk

ˆ 1−a
0

uk−1
[
1− (u+ a)2

]h/2
du

and the functions wa(·;b) give the profiles of the optimal bodies
in (2.42).

Unfortunately we were not able to prove such a claim.
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3.1 introduction

3.1.1 Motivations

Let Ω ⊆ RN be a bounded open domain with unit measure and
let us consider the eigenvalue problem:− div(A(x) · ∇u) + c(x) u = λ u , in Ω

u = 0 , on ∂Ω
(3.1)

where the matrix A and the potential term c satisfy assumptions
from §1.4.1, i.e.:

(H1) A := (aij) ∈ L∞(Ω; RN×N) is a symmetric uniformly el-
liptic matrix such that

∑
i,j ai,j(x) ξiξj > |ξ|2 for all ξ =

(ξ1, . . . , ξN) ∈ RN and a.e. x ∈ Ω,

56
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(H2) c ∈ L∞(Ω) is a.e. nonnegative.

By the classical results recalled in §1.4.1, there exists only one
nonnegative eigenfunction u1 corresponding to λ

A,c
1 (Ω) such

that ‖u1‖∞,Ω = 1: in what follows we call u1 the first eigen-
function of the problem (3.1).

Moreover, let Ω? be the ball centered in the origin with the
same measure of Ω and let λ?

1 := λ
I,0
1 (Ω?), U1 ∈ W1,2

0 (Ω?) be
the first eigenvalue and the first eigenfunction of the Dirichlet
Laplacian in Ω?, i.e. the solution of:−∆U1 = λ?

1 U1 , in Ω?

U1 = 0 , on ∂Ω?
(3.2)

normalized in such a way that ‖U1‖∞,Ω = 1.
It is well known that λ?

1 = ω
2/N
N j2N/2−1,1, where jN/2−1,1 is

the first nontrivial zero of the Bessel function JN/2−1, and that
U1 is spherically symmetric and radially decreasing. On the
other hand, the Faber-Krahn inequality of section §1.3.1 states
that λA,c

1 (Ω) > λ?
1.

Finally, let B be the ball centered in the origin such that the
first eigenvalue of the Dirichlet Laplacian in B coincides with
λ
A,c
1 , i.e., λI,01 (B) = λ

A,c
1 (Ω), and let V1 ∈ W1,2

0 (B) be the first
eigenfunction corresponding to λI,01 (B), so that V1 solves:−∆V1 = λ

A,c
1 (Ω) V1 , in B

V1 = 0 , on ∂B
. (3.3)

As remarked in section §1.4.2, dimensional analysis shows that
B = (λ?

1/λ
A,c
1 (Ω))1/2 Ω?, therefore B ⊆ Ω? and u?

1 > 0 on ∂B,
with equality if and only if λA,c

1 = λ?
1; moreover, V1 is related to

U1 by scaling.

In the present chapter we prove two stability-type theorems
for the symmetrized first eigenfunction of problem (3.1).
In our first result, we show that the difference between the Schwarz
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rearrangement of such a function and the first eigenfunction of
problem (3.2) can be estimated in terms of the difference between
the corresponding eigenvalues; more precisely, if we denote the
Schwarz rearrangement of u1 with u?

1 (see §2), we have the fol-
lowing:

Theorem 3.1
Let Ω ⊆ RN be a bounded domain with unit measure, λA,c

1 , u1 and
λ?
1, U1 be the first eigenvalue and the first eigenfunction of (3.1) and

(3.2) respectively.
There exist two positive constants δ1 = δ1(N) and C1 = C1(N)

depending only on N such that:

λ
A,c
1 − λ?

1 6 δ1 ⇒ ‖u?
1−U1‖∞,Ω? 6 C1 (λA,c

1 − λ?
1)
2/(N+2) .

(3.4)

The second result gives an estimate for the difference between
the Schwarz rearrangement u?

1 and the first eigenfunction V1 of
the Dirichlet Laplacian in B in terms of the value of u?

1 on the
boundary of B; more precisely:

Theorem 3.2
Let Ω, λA,c

1 and u1 be as in Theorem 3.1 and let B, V1 be as in (3.3).
Assume that u?

1 = ε > 0 on ∂B.
There exist two positive constants δ2 = δ2(N) and C2 = C2(N)

depending only on N such that:

ε 6 δ2 ⇒ ‖u?
1 − V1‖∞,B 6 C2 ε

2/(N+2) . (3.5)

In the N = 2 case the above results have both already been
proved in [13] and our Theorems 3.1 and 3.2 reduce to [13, The-
orems 4.1 and 5.1] when the bidimensional eigenvalue problem
is considered.

Stability properties of the first eigenvalue of Dirichlet elliptic
operators with respect to variations of the domain has been stud-
ied, among others, in [12] and [38]; while stability of the eigen-
functions of (not necessarily linear) elliptic operators with differ-
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ent kinds of boundary conditions has been recently addressed
in some papers, as [15], [16], [35] and [9], and also in [54].
We also observe that results like Theorem 3.1 can be applied
in different contexts; for example, in [14] authors used them to
prove the sharpness of some Payne-Rayner type inequality for
the solution of a Neumann eigenvalue problem in the plane.

The proofs of both Theorems rely on some classical symmetriza-
tion results, i.e. the comparison lemma by Chiti and the inequal-
ity by Talenti stated in §1.3.
In particular, Talenti’s inequality can be succesfully used to find
bounds for the L∞ distance between the Schwarz rearrangements
of u1, U1 and V1: in order to do this we use the method of maxi-
mal solutions developed in [13] with some modifications.
Originally, i.e. in the case N = 2, this method consisted in build-
ing continuous decreasing functions z as solutions of a suitable
IVP for a parametric integro-differential equation derived from
Talenti’s inequality and in proving suitable estimates for them.
Such estimates were used to find upper bounds for the differ-
ences u?

1 −U1 and u?
1 − V1 via some elementary inequalities for

the generalized inverse of the socalled maximal solution.
In the case N > 2, which is the one we mainly address here, we
replace some bounds for the z with analogous bounds for their
generalized inverses. Of course, this modification can be used
also in the case N = 2.

3.1.2 Organization

This chapter is organized as follows.
In §3.2 we analyse two integro-differential boundary value prob-
lems arising from Talenti inequality: in particular, we prove exis-
tence result for a more general class of problems and then derive
some fundamental properties and estimates for the functions z
and their inverses.
These estimates, whose proofs rely onto the linear structure of
the integro-differential equations, will be used in the proofs of
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both Theorems 3.1 and 3.2.
Finally, in §3.3 we provide the proofs of our main results.

3.2 an integro-differential problem

From Talenti inequality of chapter 1, we infer that the distri-
bution function µ1 of u1 is an a.e. subsolution of the integro-
differential initial value problem:

c2N
λA,c
1

z2−2/N(t) = −z′(t)
(
t z(t) +

´ 1
t z(τ) d τ

)
, in [0, 1]

z(0) = 1 .
(3.6)

On the other hand, it is easy to prove that the distribution func-
tion of U1 does solve the problem:

c2N
λ?
1
z2−2/N(t) = −z′(t)

(
t z(t) +

´ 1
t z(τ) d τ

)
, in [0, 1]

z(0) = 1

in the classical sense and it is also a classical subsolution of (3.6),
because of the Faber-Krahn inequality (Theorem 1.11 of chapter
1); using Talenti’s inequality, we can also prove that the distri-
bution function of V1 solves in the classical sense the problem:


c2N
λA,c
1

z2−2/N(t) = −z′(t)
(
t z(t) +

´ |B|N
t z(τ) d τ

)
, in [0, |B|N]

z(0) = 1 ,

(3.7)

and Chiti’s lemma states that the two aforementioned solutions
of problems (3.6) and (3.7) are pointwise comparable and the
second is less than the first.
Therefore it seems reasonable to introduce a parameter λ > 0

in place of λA,c
1 in (3.6) with the aim of studying the relations

between solutions of the parametric problem corresponding to
different values of λ.
In what follows we prove the existence of solutions for a more
general class of parametric problems, as well as some properties
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of the solutions which will be useful to prove our main results.

3.2.1 Existence of positive solutions

We are led to consider the integro-differential problem:


c2N
λ z2−2/N(t) = −z′(t)

(
t z(t) +

´ 1
t z(τ) d τ

)
, for t ∈ [0, 1[

z(0) = 1
,

(3.8)

hence we have to provide a suitable definition of solution for
(3.8):

Definition 3.1: We say that a function z : [0, 1] → R is a positive
solution of (3.8) if it is continuous in [0, 1], positive in [0, 1[, of
class C1([0, 1[) and satisfies (3.8).

Remark 3.1:
As a matter of fact, a positive solution z of (3.8) satisfies also the inte-
gral equation:

ln z(t) = −
4π

λ

ˆ t
0

(
τz(τ) +

ˆ 1
τ
z(ϑ) d ϑ

)−1
d τ

λ

c2N

N

N− 2
z2/N−1(t) =

λ

c2N

N

N− 2
+

ˆ t
0

(
τz(τ) +

ˆ 1
τ
z(ϑ) d ϑ

)−1 d τ

(3.9)

(the former if N = 2, the latter if N > 3) which is obtained integrating
(3.8) over [0, t]; on the other hand, if z ∈ C([0, 1]) is positive in [0, 1[
and satisfies (3.9), then z ∈ C1([0, 1[) and it is a positive solution of
(3.13). ♦

Remark 3.1 motivates the following general existence result,
from which we can recover the existence of positive solution of
(3.8) and other related problems:
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Theorem 3.3
Let β, µ, t0 and ζ0 satisfy the following assumptions:

(i) β : [0, +∞[→ [0, +∞[ and ϕ : [0, +∞[→]0, +∞[ continuous
functions;

(ii) µ : [0, 1]→ [0, +∞[ a continuous decreasing function such that.:

(1+β(t))ϕ(µ(t)) 6 −µ′(t)

(
tµ(t) +

ˆ 1
t
µ(τ) d τ

)
a.e. in [0, 1];

(iii) t0 ∈ [0, 1[ and ζ0 ∈ [µ(t0), +∞[.

Then there exist functions z defined in [t0, 1] which are positive in
[t0, 1[, of class C([t0, 1])∩C1([t0, 1[) and solve problem:

(1+β(t)) ϕ(z(t)) = −z′(t)
(
tz(t) +

´ 1
t z(τ) d τ

)
, in [t0, 1[

z(t0) = ζ0 .

(3.10)

Moreover, there exists a unique solution Z(t) of (3.10), called the max-
imal solution, s.t. z(t) 6 Z(t) in [t0, 1] for each other solution z(t)
of (3.10).

Proof. The proof is based on properties of monotone functions
and on an iterative method of Picard type, whose convergence
to a nonnegative function is guaranteed by (ii).
Define:

Φ(z) :=

ˆ z
ζ0

du
ϕ(u)

,

thus Φ is a positive increasing function.
Arguing as in Remark 3.1, a positive continuous function z is a
solution of equation (3.10) if and only if it solves:

Φ(z(t)) = Φ(ζ0) −

ˆ t
t0

(1+β(τ))

(
τz(τ) +

ˆ 1
τ
z(ϑ) d ϑ

)−1

d τ

(3.11)
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for t ∈ [t0, 1], therefore it suffices to prove that equation (3.11)
has a solution in C([t0, 1]) ∩C1([t0, 1[) positive in [t0, 1[ to have
the claim.
Set z0(t) := ζ0 in [t0, 1] and, for each n ∈N, let zn+1 be defined
by:

Φ(zn+1(t)) := Φ(ζ0)−

ˆ t
t0

(1+β(τ))

(
τzn(τ) +

ˆ 1
τ
zn(ϑ) d ϑ

)−1

d τ .

By induction we see that zn(t) > µ(t) for each n > 0 and t ∈
[t0, 1[. In fact, z0(t) = ζ0 > µ(t0) > µ(t) for (iii). Now, assume
that for some n we have zn(t) > µ(t) for all t ∈ [t0, 1]; then from
(ii) and known properties of monotone functions we derive:

Φ(µ(t0)) −Φ(µ(t)) > −

ˆ t
t0

[Φ(µ(τ))]′ d τ

=

ˆ t
t0

µ′(τ)

ϕ(µ(τ))
d τ

>
ˆ t
t0

(1+β(τ))

(
τµ(τ) +

ˆ 1
τ
µ(ϑ) d ϑ

)−1

d τ ;

since we are assuming zn(t) > µ(t) we have:(
τµ(τ) +

ˆ 1
τ
µ(ϑ) d ϑ

)−1

>

(
τzn(τ) +

ˆ 1
τ
zn(ϑ) d ϑ

)−1

thus from the definition of zn+1 we infer:

Φ(µ(t)) 6 Φ(µ(t0)) −

ˆ t
t0

(1+β(τ))

(
τµ(τ) +

ˆ 1
τ
µ(ϑ) d ϑ

)−1

d τ

6 Φ(ζ0) −

ˆ t
t0

(1+β(τ))

(
τzn(τ) +

ˆ 1
τ
zn(ϑ) d ϑ

)−1

d τ

= Φ(zn+1(t)) ,

therefore zn+1(t) > µ(t) as we claimed. In particular, zn(t) > 0

in [0, 1[.
Using the same argument, one can prove that zn(t0) = ζ0, that
zn(t) is continuous and decreasing in [t0, 1] and that zn(t) >



3.2 an integro-differential problem 64

zn+1(t) in [t0, 1] for each index n.
Since zn is monotone decreasing we can set Z(t) := limn zn(t):
function Z decreases and satisfies Z(t) > µ(t) in [t0, 1[, thus Z
is positive and satisfies equation (3.11); a bootstrap argument
shows that Z is in fact of class C∞([t0, 1[); moreover Z(t0) =

limn zn(t0) = ζ0 and Z(t) is continuous up to 1.

Now, let z be any solution of (3.10) of class C([t0, 1])∩C1([t0, 1[)
positive in [t0, 1[. Replacing µ(t) with z(t) in the previous argu-
ment, we have Z(t) > z(t) in [t0, 1]; thus Z(t) is also the maximal
solution of (3.10).

Remark 3.2:
Theorem 3.3 proves the existence of both positive solutions and max-
imal solution for problem (3.8). In fact, it suffices to set β(t) := 0,
ϕ(t) :=

c2N
λ t
2−2/N to recover (3.8) from (3.10); therefore we have to

take µ(t) = µ1(t), t0 = 0, ζ0 = 1 in order to apply the theorem to
(3.8).
From now on the maximal solution of problem (3.8) corresponding to
the parameter λ will be denoted by Zλ. ♦

Remark 3.3:
In what follows we will consider, together with solutions z and maxi-
mal solution Zλ of problem (3.8), also the maximal solution Gε of the
problem:


c2N
λA,c
1

g2−2/N(t) = −g′(t)
(
tg(t) +

´ 1
t g(τ) d τ

)
, in [ε, 1[

g(ε) = (λ?
1/λ

A,c
1 )N/2

,

(3.12)

because estimates for solutions of (3.12) will be needed in the proof of
Theorem 3.2.
Existence of Gε is a straightforward consequence of Theorem 3.3, for it
suffices to set t0 = ε, ζ0 = (λ?

1/λ
A,c
1 )N/2 and ϕ(t) :=

c2N
λA,c
1

t2−2/N.
♦
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3.2.2 Some properties and estimates of positive solutions

All positive solutions of (3.8) share some good properties. The
first ones are listed in the following:

Proposition 3.1
Let z(t) be positive solution of (3.8).
Then z(t) is strictly decreasing and strictly convex in [0, 1] and it is
C∞ in [0, 1[. Moreover:

z′(1−) =

−4πλ , if N = 2

−
c2N
λ z1−2/N(1) , if N > 3.

Proof. For N = 2 the result is proved in [13, Theorem 2.1], hence
here we focus on the case N > 3.
From the equation in problem (3.8) it follows z′(t) < 0 in [0, 1[,
thus z decreases strictly in [0, 1].
Bootstrapping we see that z is of class C∞([0, 1[).
Moreover t z(t) +

´ 1
t z(τ) d τ > 0 for t ∈ [0, 1[ and we can write

equation (3.8) as:

−z′(t) =
c2N
λ
z2−2/N(t)

(
t z(t) +

ˆ 1
t
z(τ) d τ

)−1

;

differentiating both sides, previous equation gives:

−z′′(t) =
c2N
λ
z′(t) z1−2/N(t)

(
t z(t) +

ˆ 1
t
z(τ) d τ

)−2

(
(1− 2

N) t z(t) + 2(1− 1
N)

ˆ 1
t
z(τ) d τ

)
,

therefore z′′(t) > 0 for t ∈]0, 1[ and z is strictly convex in [0, 1].
Finally, assume N > 3. If z(1) 6= 0, then equality z′(1−) =

limt→1− z′(t) = −
c2N
λ z1−2/N(1) follows straightforwardly from

(3.8). On the other hand, if z(1) = 0 we compute:

lim
t→1−

z′(t)

−
c2N
λ z1−2/N(t)

= lim
t→1−

z(t)

tz(t) +
´ 1
t z(τ) d τ

= lim
t→1−

z′(t)

tz′(t)
= 1 ,
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hence relation z′(1−) = −
c2N
λ z1−2/N(1) = 0 follows.

Remark 3.4:
The same hold for positive solutions of problem (3.12): actually, if g is
a positive solution of (3.12), then it is strictly decreasing and convex
in [ε, 1] and g′(1−) = −

c2N
λA,c
1

g(1). ♦

The following theorem generalizes [13, Theorem 3.1]:

Theorem 3.4
Let z(t) be a positive solution of (3.8). Then:

z(N+2)/(2N)(1) JN
2 +1

(√
λ ω

−1/N
N z1/N(1)

)
= − JN

2 −1

(√
λ ω

−1/N
N

) ˆ 1
0
z(t) d t .

(3.13)

Proof. Let α > 0. Multiplying the equation in (3.8) by zα(t) and
integrating both sides we get:

c2N
λ

ˆ 1
0
z2−2/N+α(t) d t

= −

ˆ 1
0
zα(t) z′(t)

(
t z(t) +

ˆ 1
t
z(τ) d τ

)
d t

= −
1

α+ 1

([
zα+1(t)

(
t z(t) +

ˆ 1
t
z(τ) d τ

)]1
0

−

ˆ 1
0
t zα+1(t)z′(t) d t

)

= −
1

α+ 1

(
zα+2(1) −

ˆ 1
0
z(t) d t−

1

α+ 2

[
t zα+2(t)

]1
0

+
1

α+ 2

ˆ 1
0
zα+2(t) d t

)
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= −
1

α+ 1

(
zα+2(1) −

ˆ 1
0
z(t) d t−

1

α+ 2
zα+2(1)

+

ˆ 1
0
zα+2(t) d t

)

=
1

α+ 1

ˆ 1
0
z(t) d t−

1

α+ 2
zα+2(1)

−
1

(α+ 1)(α+ 2)

ˆ 1
0
zα+2(t) d t ,

hence, setting Iα :=
´ 1
0 z

2−2/N+α(t) d t, previous equality reads:

Iα =
λ

c2N

(
1

α+ 1
I 2
N−1−

1

α+ 2
zα+2(1)−

1

(α+ 1)(α+ 2)
Iα+ 2

N

)
.

(3.14)

We now use (3.14) recursively. We start setting α = α1 := 2
N − 1

in (3.14): rearranging we write:(
1−

λ

c2NA1

)
Iα1 = −

λ

c2NB1
zα1+2(1) −

λ

c2NA1B1
Iα2 , (3.15)

where A1 := α1 + 1, B1 := α1 + 2 and α2 := α1 + 2
N ; setting

α = α2 in (3.14) yields:

Iα2 =
λ

c2N

(
1

α2 + 1
Iα1 −

1

α2 + 2
zα2+2(1)−

1

(α2 + 1)(α2 + 2)
Iα3

)
,

(3.16)

where α3 := α2+ 2
N = α1+ 4

N , hence plugging the lefthand side
of (3.16) in (3.15) we get:(

1−
λ

c2NA1
+

λ2

c4NA2B1

)
Iα1 = −

λ

c2NB1
zα1+2(1)

+
λ2

c4NA1B2
zα2+2(1) +

λ2

c4NA2B2
Iα3 ,

(3.17)
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with A2 := A1(α2+ 1), B2 := B1(α2+ 2). Setting α = α3 in (3.14)
we get:

Iα3 =
λ

c2N

(
1

α3 + 1
Iα1 −

1

α3 + 2
zα3+2(1)−

1

(α3 + 1)(α3 + 2)
Iα4

)
(3.18)

where α4 := α3 + 2
N = α1 + 6

N , therefore plugging the lefthand
side of (3.18) into (3.17) and rearranging, we find:

(
1−

λ

c2NA1
+

λ2

c4NA2B1
−

λ3

c6NA3B2

)
Iα1

= −
λ zα1+2(1)

c2NB1
+
λ2 zα2+2(1)

c4NA1B2

−
λ3 zα3+2(1)

c6NA2B3
−

λ3

c6NA3B3
Iα4 ,

(3.19)

with A3 := A2(α3 + 1) and B3 := B2(α3 + 2). . .
After n steps we get:

n∑
k=0

(−1)k
λk

c2kN AkBk−1
Iα1 =

n∑
k=1

(−1)k
λkzαk+2(1)

c2kN Ak−1Bk

+ (−1)n
λn

c2nN AnBn
Iαn+1

(3.20)

where:

An :=

1 , if n 6 0∏n
h=1(αh + 1) , if n > 1

, (3.21)

Bn :=

1 , if n 6 0∏n
h=1(αh + 2) , if n > 1

. (3.22)
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In fact, (3.20) holds when n = 1, 2, 3 by (3.15), (3.17) and (3.19).
If we assume (3.20) holds for n then from (3.20) and (3.14) with
α = αn+1 = α1 + 2(n+ 1)/N, i.e.:

Iαn+1
=
λ

c2N

(
1

αn+1 + 1
Iα1 −

1

αn+1 + 2
zαn+1+2(1)

−
1

(αn+1 + 1)(αn+1 + 2)
Iαn+2

) (3.23)

where αn+2 = αn+1 + 2/N, we get:

n∑
k=0

(−1)k
λk

c2kN AkBk−1
Iα1 =

n∑
k=1

(−1)k
λkzαk+2(1)

c2kN Ak−1Bk

+ (−1)n
λn+1

c
2(n+1)
N AnBn

×

×
(

1

αn+1 + 1
Iα1 −

1

αn+1 + 2
zαn+1+2(1)

−
1

(αn+1 + 1)(αn+1 + 2)
Iαn+2

)
which, after some algebra, becomes (3.20) for n+ 1. This com-
pletes the justification by induction of (3.20).
Now, it is easy to see that:

αn =
2n

N
− 1 for n = 1, 2, . . . (3.24)

hence:

An =

n∏
h=1

2h

N
=
2n

Nn
n! for n = 1, 2, . . .

(3.25)

Bn =

n∏
h=1

(
2h

N
+ 1

)
=
2n

Nn
Γ(n+ 1+N/2)

Γ(1+N/2)
for n = 1, 2, . . .

(3.26)

therefore (3.20) reads:(
1+

n∑
k=0

(−1)k
λkN2k−1Γ(1+N/2)

c2kN 2
2k−1k! Γ(k+N/2)

)
I 2
N−1
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=

n∑
k=1

(−1)k
λkN2k−1Γ(1+N/2)

c2kN 2
2k−1(k− 1)! Γ(1+ k+N/2)

z1+2k/N(1)

+ (−1)n
λnN2nΓ(1+N/2)

c2nN 2
2nn! Γ(1+n+N/2)

I 2(n+1)
N −1

.

Remembering that cN = Nω
1/N
N , we obtain:

(
1+

n∑
k=1

(−1)k
Γ(1+N/2)

k! N2 Γ(k+N/2)

( √
λ

2ω
1/N
N

)2k)
I 2
N−1

=

n∑
k=1

(−1)k
λkΓ(1+N/2)

ω
2k/N
N 22k−1N

2 (k− 1)! Γ(1+ k+N/2)
z1+2k/N(1)

+ (−1)n
λnΓ(1+N/2)

ω
2n/N
N 22nn! Γ(1+n+N/2)

I 2(n+1)
N −1

(3.27)

and, since yΓ(y) = Γ(1+ y), after some algebra we find:

(
n∑
k=0

(−1)k
Γ(1+N/2)

k! Γ(1+ k+N/2)

( √
λ

2ω
1/N
N

)2k)
I 2
N−1

=

n∑
k=1

(−1)k
λkΓ(1+N/2)

ω
2k/N
N 22k−1(k− 1)! Γ(2+ k+N/2)

z1+2k/N(1)

+ (−1)n
λnΓ(1+N/2)

ω
2n/N
N 22nn! Γ(1+n+N/2)

I 2(n+1)
N −1

. (3.28)

Because 0 6 z(t) 6 1 in [0, 1], using dominated convergence and the
asymptotic Γ(n+ 1+N/2) ≈

√
2π e−nnn+(N+1)/2 ([1], §6.1.39),

we can pass to the limit for n→∞ in (3.28) to get:

(
+∞∑
k=0

(−1)k
Γ(1+N/2)

k! Γ(1+ k+N/2)

( √
λ

2ω
1/N
N

)2k)
I 2
N−1

=

+∞∑
k=1

(−1)k
λkΓ(1+N/2)

ω
2k/N
N 22k−1(k− 1)! Γ(2+ k+N/2)

z1+2k/N(1) ;

(3.29)

remembering the series expansions for Bessel functions of the
first kind [65], (3.29) reads:
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Γ(1+N/2)2N/2

N

( √
λ

ω
1/N
N

)1−N/2
JN
2 −1

(
√
λ ω

−1/N
N

)
I 2
N−1

= −
Γ(1+N/2)2N/2

N

( √
λ

ω
1/N
N

)1−N/2
z(N+2)/(2N)(1)×

× JN
2 +1

(√
λz1/N(1)

ω
1/N
N

)
, (3.30)

which, after some more algebra, is the claim.

Relation (3.13) can be generalized further: for example, if in
Theorem 3.4 we integrate from a variable endpoint t to 1 (instead
of from 0 to 1) we obtain:

Theorem 3.5
Let λ and z(t) satisfy the hypotheses of Theorem 3.4. Then:

t z(t) JN
2 +1

(√
λ ω

−1/N
N z1/N(t)

)
= JN

2 −1

(√
λ ω

−1/N
N z1/N(t)

) ˆ 1
t
z(τ) d τ

− z1/2−1/N(t) JN
2 −1

(√
λ ω

−1/N
N

) ˆ 1
0
z(τ) d τ . (3.31)

We explicitly remark that equalities of this type can be proved
in a more general setting, e.g. for the positive solutions of prob-
lem (3.10) when ϕ(t) is a power function with exponent greater
than 1.
Formula (3.13) implies:

Proposition 3.2
If λ < λ?

1 then (3.8) has no positive solutions.
Moreover, if z is a positive solution of (3.8) such that z(1) = 0 then
λ = λ?

1 and z = Zλ?
1
.

The proof can be worked using the interlacing property of the
zeros of Bessel functions JN/2−1 and JN/2+1 as in the proofs of
[13, Theorem 3.3 and Corollary 3.1].



3.2 an integro-differential problem 72

Equality (3.13) yields the following estimates that will be fun-
damental in the next section:

Proposition 3.3
There exist two positive constants δ1 = δ1(N),M1 = M1(N) depend-
ing only on N such that:

λ?
1 6 λ 6 λ?

1 + δ1 ⇒ z(1) 6 M1 (λ− λ?
1)
N/(N+2) . (3.32)

for each positive solution z of (3.8) corresponding to λ.

Proof. Let Zλ be the maximal solution to (3.8) corresponding to
λ; then z(1) 6 Zλ(1), hence it suffices to prove (3.32) with Zλ
replacing z.
By [11, Lemmata 3.1-3.3], the function λ 7→ Zλ(1) decreases to
zero when λ↘ λ?

1.
Remembering the series expansion of JN

2 +1 and that
√
λ?
1 ω

−1/N
N

equals the first nontrivial zero of JN
2 −1, we obtain:

lim
λ↘λ?

1

Z
(N+2)/(2N)
λ (1) JN

2 +1

(√
λ ω

−1/N
N Z

1/N
λ (1)

)
Z

(N+2)/N
λ (1)

(√
λ ω

−1/N
N

)(N+2)/2
= 1 ,

therefore there exists δ1 > 0 such that:

Z
(N+2)/(2N)
λ (1) JN

2 +1

(√
λ ω

−1/N
N Z

1/N
λ (1)

)
>
1

2
Z

(N+2)/N
λ (1)

(√
λ ω

−1/N
N

)(N+2)/2
.

on the other hand:∣∣∣JN
2 −1

(√
λ ω

−1/N
N

)∣∣∣ = ∣∣∣JN
2 −1

(√
λ ω

−1/N
N

)
− JN

2 −1

(√
λ?
1 ω

−1/N
N

)∣∣∣
6 c (λ− λ?

1) ,

where the positive constant:

c = sup
λ>λ?

1

∣∣∣∣ d
d λ

[
JN
2 −1

(√
λ/ω

1/N
N

)]∣∣∣∣ < +∞
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depends only on N.
Therefore using (3.13) we infer there exists M1 = 2c > 0 such
that inequality:

Z
(N+2)/(N)
λ (1) 6 M1

(√
λ?
1 ω

−1/N
N

)−(N+2)/2
(λ− λ?

1)

holds when λ ≈ λ?
1, which is our claim.

Remark 3.5:
Using the same iterative scheme as in the proof of Theorem 3.4 we can
prove that an equality of the same type of (3.13) holds also for the
positive solutions of (3.12) (and in particular for the maximal solution
Gε). Namely, we find:

(√
λ
A,c
1 ω

−1/N
N ζ

1/N
0

)1−N/2
JN
2 −1

(√
λ
A,c
1 ω

−1/N
N ζ

1/N
0

)
×

×
ˆ 1
ε
g(τ) d τ

= ε ζ0

(√
λ
A,c
1 ω

−1/N
N ζ

1/N
0

)1−N/2
×

JN
2 +1

(√
λ
A,c
1 ω

−1/N
N ζ

1/N
0

)
− g(1)

(√
λ
A,c
1 ω

−1/N
N g1/N(1)

)1−2/N
×

JN
2 +1

(√
λ
A,c
1 ω

−1/N
N g1/N(1)

)
;

(3.33)

and, remembering that ζ0 = (λ?
1/λ

A,c
1 )N/2 as in Remark 3.3, equality

(3.33) yields:

ε (λ?
1/λ

A,c
1 )N/2

(√
λ?
1 ω

−1/N
N

)1−N/2
JN
2 +1

(√
λ?
1 ω

−1/N
N

)
= g(1)

(√
λ
A,c
1 ω

−1/N
N g1/N(1)

)1−N/2
×

× JN
2 +1

(√
λ
A,c
1 ω

−1/N
N g1/N(1)

)
,

(3.34)

where
√
λ?
1ω

−1/N
N = jN/2−1,1 is the first nonzero zero of JN/2−1.

Equation (3.34) is a generalization of the one in [13, Lemma 5.1].
Thus, from the interlacing properties of the zeros of JN/2−1 and JN/2+1,
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the formulas for the derivatives of zN/2+1 JN/2+1(z) and the asymp-
totic of JN/2+1 in 0, from (3.34) we infer limε↘0 g(1) = 0 and that
there exist δ2 = δ2(N),M2 = M2(N) > 0 such that:

0 6 ε 6 δ2 ⇒ g(1) 6 Gε(1) 6 M2 ε
N/(N+2) . (3.35)

♦

3.2.3 Estimates for the inverse functions of maximal solutions of (3.8)

Let λ > λ? and z a positive solution of (3.8) corresponding to λ;
we denote ξ the generalized inverse function of z, i.e.:

ξ(s) :=

‖z‖∞ , if s = 0

inf{t ∈ [0, 1] : z(t) < s} , if s ∈]0, 1],
(3.36)

and set s̄ := z(1).
Function ξ is constant in the whole interval [0, s̄], which reduces
to {0} if and only if z(1) = 0, i.e. if and only if λ = λ?

1 and
z = Zλ?

1
.

Furthermore, ξ is of class C([0, 1]) and piecewise C∞ in ]0, 1[,
its only singular point being s̄, and ξ is a positive decreasing
classical solution of the following problem:

s2−2/N ξ′(s) = − λ
c2N

´ s
0 ξ(σ) dσ , for s ∈]s̄, 1[

ξ(s) = 1 , for t ∈ [0, s̄]

ξ(1) = 0 ,

(3.37)

which can be deduced from (3.8) via a change of variable; more-
over Theorem 3.1 implies that ξ is strictly convex in [s̄, 1].
Obviously we can read Theorems 3.4 and 3.5 in terms of ξ in-
stead of z, hence we have:

s̄(N+2)/(2N) JN+2
2

(√
λ ω

−1/N
N s̄1/N

)
(3.38)

= − JN−2
2

(√
λ ω

−1/N
N

) ˆ 1
0
ξ(s) d s ,

s ξ(s) JN
2 +1

(√
λ ω

−1/N
N s1/N

)
(3.39)
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= JN
2 −1

(√
λ ω

−1/N
N s1/N

) ˆ s
0
ξ(σ) dσ

− s ξ(s) JN
2 −1

(√
λ ω

−1/N
N s1/N

)
− s1/2−1/N JN

2 −1

(√
λ ω

−1/N
N

) ˆ 1
0
ξ(σ) dσ ;

on the other hand Theorem 3.3 reads:

λ?
1 6 λ 6 λ?

1 + δ1 ⇒ s̄ 6 M1(λ− λ?)
N
N+2 . (3.40)

Proposition 3.4
Let Λ > λ > λ?, ξ the generalized inverse of a positive solution of
(3.8) corresponding to λ and Ξ the generalized inverse of the maximal
solution ZΛ; finally, let s̄ < S̄ ∈ [0, 1[ be the discontinuity points of
the derivatives of ξ and Ξ respectively.
Then:

0 6 Ξ(s) − ξ(s) 6 1− ξ(S̄) for s ∈ [0, 1]. (3.41)

Proof. By construction we have Ξ(s) > ξ(s) in [0, 1], hence Ξ(s) −

ξ(s) > 0.
By (3.37) we have Ξ(s) = 1 = ξ(s) in [0, s̄] and ξ(S̄) 6 1 in [0, 1],
therefore Ξ(s) − ξ(s) = 0 6 1− ξ(S̄).
If s ∈]s̄, S̄] then Ξ(s) = 1 and ξ(s) > ξ(S̄) (for ξ(s) decreases),
hence Ξ(s) − ξ(s) 6 1− ξ(S̄) again.
Finally, if s ∈]S̄, 1] then:

0 6
λ

c2N

ˆ s
S̄

1

σ2−2/N

ˆ σ
0

[Ξ(ϑ) − ξ(ϑ)] d ϑdσ

6
Λ

c2N

ˆ s
S̄

1

σ2−2/N

ˆ σ
0
Ξ(ϑ) d ϑdσ−

λ

c2N

ˆ s
S̄

1

σ2−2/N

ˆ σ
0
ξ(ϑ) d ϑdσ

= −

ˆ s
S̄
Ξ′(σ) dσ+

ˆ s
S̄
ξ(σ) dσ

= [Ξ(S̄) − ξ(S̄)] − [Ξ(s) − ξ(s)]

= [1− ξ(S̄)] − [Ξ(s) − ξ(s)] ,

which concludes the proof.
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Remark 3.6:
An analogous result holds when we consider the generalized inverse
T of the maximal positive solution Gε of problem (3.12) and the rear-
rangement of the first eigenfunction V1 of problem (3.3). In fact, the
same argument applies with minor modifications and it yields:

0 6 T(s) − V∗1(s) 6 1− V∗1(Gε(1)) .

♦

Now, if we let λ = λ?
1 in Proposition 3.4 then ξ becomes the

decreasing rearrangement of the first eigenfunction of the Lapla-
cian in the ball Ω?, say U∗1; therefore we can write an explicit
expression of U∗1(s) in terms of the Bessel function of the first
kind, i.e.:

U∗1(s) = k s1/N−1/2 JN
2 −1

(√
λ?
1 ω

−1/N
N s1/N

)
(where k > 0 is a suitable normalization constant) from which
we infer that U∗1(s) is a Hölder continuous function with expo-
nent 2/N: in fact the derivative (U∗1)

′ is continuous in ]0, 1] and
behaves like s2/N−1 around 0.
Hence we have:

Proposition 3.5
Let Ξ(s) be the generalized inverse of the maximal solution Zλ(t) cor-
responding to λ > λ?

1.
Then there exists a constant γ1 = γ1(N) > 0 depending only on N
such that inequality:

Ξ(s) −U∗1(s) 6 γ1 S̄
2/N (3.42)

holds for all s ∈ [0, 1]

Proof. By Proposition 3.4 we have Ξ(s)−U∗1(s) 6 1−U∗1(S̄). Now
1 = U∗1(0) and U∗1(s) is Hölder continuous, hence 1−U∗1(S̄) 6

γ1 S̄
2/N for a suitable positive constant γ1 depending only on

N, and the claim follows.
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Remark 3.7:
Again, analogous result holds when we deal with the rearrangement of
V∗1 and the generalized inverse T of the maximal positive solution Gε
of problem (3.12): in fact, we find:

T(s) − V∗1(s) 6 γ2 G
2/N
ε (1)

where γ2 = γ2(N) > 0 is a suitable constant depending only on N.♦

3.3 proofs of the main results

3.3.1 Proof of Theorem 3.1

Proof. Let λA,c
1 − λ?

1 6 δ1, with δ1 > 0 as in Theorem 3.3.
Let V be the generalized inverse of the maximal solution ZλA,c

of (3.8).
Chiti’s comparison lemma and the construction of Z

λA,c
1

imply
that V∗1(s) 6 u∗1(s) 6 V(s) in [0, 1] (V∗(s) is extended to 0 outside
[0, |B|N]), hence:

‖u?
1 −U1‖∞,Ω? = ‖u∗1 −U∗1‖∞,[0,1]

6 max
{
‖V∗1 −U∗1‖∞,[0,1], ‖V −U∗1‖∞,[0,1]

}
.

(3.43)

Thus, in order to prove our claim it suffices to find suitable esti-
mates for the two norms in the rightmost side of (3.43).

Let us consider V −U∗1: since V is the generalized inverse of
the maximal solution ZλA,c , Proposition 3.5 and (3.40) apply and
we get:

‖V −U∗1‖∞,[0,1] 6 γ1 M1 (λA,c
1 − λ?

1)
2/(N+2) . (3.44)



3.3 proofs of the main results 78

Now we turn to V∗1 −U∗1. Since V∗1 and U∗1 are both rearrange-
ments of first eigenfunctions of the Laplacian in concentric balls,
they are related via scaling:

V∗1(s) =

U∗1(hs) , if s ∈ [0,h−1[

0 , if s ∈ [h−1, 1]

with h := (λA,c
1 /λ?

1)
N/2 = |B|−1N > 1; thus:

V∗1(s) −U∗1(s) =

U∗1(hs) −U∗1(s) , if s ∈ [0,h−1[

−U∗1(s) , if s ∈ [h−1, 1]
.

Now let s ∈ [0,h−1]: using Hölder continuity of U∗1, the elemen-
tary inequality:

(1−τα)1/α 6 α1/α (1−τ)1/α for 0 6 τ 6 1 and α > 1 (3.45)

and the Faber–Krahn inequality we find:

|V∗1(s) −U∗1(s)| 6 γ1 (hs)2/N|1− h−1|2/N

6 γ1

∣∣∣1− (λ?
1/λ

A,c
1 )N/2

∣∣∣2/N
6 γ1

(
N

2λ?
1

)2/N
(λA,c
1 − λ?

1)
2/N .

On the other hand, if s ∈ [h−1, 1], then V∗1(s)−U∗1(s) = −U∗1(s) =

U∗1(1) −U∗1(s) and using again Hölder continuity, (3.45) and the
Faber–Krahn inequality we obtain:

V∗1(s) −U∗1(s) 6 γ1 |1− s|2/N

6 γ1

∣∣∣∣1−
1

h

∣∣∣∣2/N
6 γ1

(
N

2λ?
1

)2/N
(λA,c
1 − λ?

1)
2/N ;

a comparison of the last two inequalities yields:

‖V∗1 −U∗1‖∞,[0,1] 6 γ1

(
N

2λ?
1

)2/N
(λA,c
1 − λ?

1)
2/N . (3.46)
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Thus inequalities (3.43), (3.44) and (3.46) imply:

‖u?
1 −U1‖∞,Ω 6 C1 (λA,c

1 − λ?
1)
2/(N+2) (3.47)

for some C1 > 0 when λA,c
1 − λ?

1 6 δ1, which was our claim.

Remark 3.8:
From Theorem 3.1 we deduce:

‖u?
1 −U1‖∞,Ω? = O

(
(λA,c
1 − λ?

1)
2/(N+2)

)
as λA,c

1 ↘ λ?
1. ♦

3.3.2 Proof of Theorem 3.2

Proof. Let ε 6 δ2, with δ2 > 0 as in Remark 3.5.
Reasoning as in the previous proof, we find that the norm ‖u?

1−

V1‖∞,B is less than ‖T − V∗1‖∞,[0,λ?
1/λ

A,c
1 ]

, which in turn can be

controlled by G
2/N
ε (1) times a suitable universal constant for

small values of Gε(1) as stated in Remark 3.7.
Since Gε(1) 6 M2 ε

N/(N+2) for small values of ε, as in Remark
3.5 (3.35), we have the claim.

Remark 3.9:
From Theorem 3.2 we deduce:

‖u?
1 − V1‖∞,B = O

(
ε2/(N+2)

)
as ε = u∗1((λ

?
1/λ

A,c
1 )1/2)↘ 0. ♦
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4.1 introduction

4.1.1 Motivations

In the present chapter we deal with the following weighted eigen-
value problem for the p-Laplacian operator:∆pu+ V(x) |u|p−2u = λ m(x) |u|p−2u , in Ω

u = 0 , on ∂Ω
(4.1)

where Ω ⊆ RN is a bounded open domain, p ∈]1,∞[ and the
weight m and the potential V are measurable functions in Ω

such that:

(H1) m,V ∈ Lr(Ω) with:

r

> N/p , if1 < p 6 N

= 1 otherwise;

80
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(H2) m > 0 a.e. in Ω.

Eigenvalue problems of the type (4.1) have attracted some in-
terests in the last decade, for they arise as generalization of the
classical p-Laplacian eigenvalue problem which have been ex-
tensively studied from the eighties (see [30, 39, 6, 50], just to
mension a few) until today. In particular, the case V = 0 and
m indefinite was studied in [26], where principality, simplicity,
isolation in the spectrum properties of the first positive weighted
eigenvalue of problem (4.1) were estabilished. More recently, in
[27] the same properties were studied for the first eigenvalue in
the fully indefinite case, i.e. the case with m,V 6= 0 both indefi-
nite in sign. In the latter paper authors proved that, for general
indefinite weights and potentials, problem (4.1) possesses some
principal eigenvalues provided a certain variational quantity as-
sociated to m and V has positive or nonnegative infimum (de-
pending on the sign ofm) over a manifold contained inW1,p

0 (Ω);
moreover, the first eigenvalue is variational, principal, simple
and isolated. It is worth noticing that principal eigenvalue needs
not to be unique; but nonuniqueness may arise only when the
weight m is indefinite, which is not addressed here.

Under assumptions (H1) and (H2), the general result of [27]
can be used to prove that problem (4.1) has a principal eigen-
value if and only if inequality:

αp(Ω,V ,m) = inf
{ ˆ

Ω
(|∇u|p + V(x) |u|p) d x, ‖u‖pp,Ω = 1

and
ˆ
Ω
m(x) |u|p d x = 0

}
> 0

(4.2)

holds (see [27, Thm. 1 & 3-(i)]).
Assuming condition (4.2) is fulfilled, let λp(Ω,V ,m) denote the
first eigenvalue of problem (4.1). As said above, such an eigen-
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value is also simple, isolated and variational, i.e. it is the mini-
mum of a nonlinear Rayleigh quotient:

λp(Ω,V ,m) = min

{´
Ω |∇u|p + V(x) |u|p´

Ωm(x) |u|p
, u ∈W1,p

0 (Ω)

and
ˆ
Ω
m(x) |u|p > 0

}
.

(4.3)

Moreover, λp(Ω,V ,m) is the only principal value of (4.1) and
any other eigenvalue of (4.1) is strictly greater than it: hence we
will usually refer to λp(Ω,V ,m) as to first weighted eigenvalue of
the operator L[u] = −∆pu+ V(x)|u|p−2u.

Since the situation is very similar to the one arising in the lin-
ear case (see chapter 1), in the spirit of the classical Faber-Krahn
inequality we can ask whether or not there exist domains, poten-
tials and weights which minimize the functional λp(·, ·, ·) under
suitable “geometric–analytical” constraints.

This kind of minimization problem was firstly studied in [3]
for the first eigenvalue of the p-Laplacian (i.e., in the case m = 1

and V = 0): in their paper, authors proved that, among domains
sharing the same measure, the first eigenvalue is minimized by
the ball alone.
Then, in [2] the weighted eigenvalue case with 1 < p < N, m > 0

and V = 0 was addressed: under the aforementioned assump-
tions, authors showed that, among domains having the same
measure and among equidistributed weights, the first weighted
eigenvalue of the p-Laplacian is minimized in the radially decreas-
ing setting, viz. when the domain Ω is a ball and the weight m
(if not constant) is a radially symmetric and decreasing function.
More recently, work in another direction appeared in [29], in
which authors proved that the first eigenvalue of problem with
m = 1 a.e. in Ω can be maximize or minimized over a con-
vex set of potentials B ⊂ Lr(Ω) by choosing suitable potentials
V∗,V∗ ∈ B.
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Our aim is to extend the results of [3] and [2] to problem of
the type (4.1).
In particular, we prove that, among domains sharing the same
measure and among equidistributed weights and potentials, the
eigenvalue λp(Ω,V ,m) is minimized in the radially symmetric set-
ting, i.e. when Ω is a ball and m, V are radially symmetric
functions, the first decreasing and the latter increasing.
We stress that the main point here is that we work with a (possi-
bly) indefinite potential. In other words, we do not assume V > 0

in order to get rid of the term V(x)|u|p−2u in the symmetrized
problem (as we did in the prototype of Faber–Krahn inequality
of chapter 1); instead, we prefer to keep memory of the sign of
V in the symmetrization process.

For sake of precision, in what follows we will make a com-
parison between the first eigenvalue λp(Ω,V ,m) of (4.1) and the
first eigenvalues λp(Ω?,V•,m?) and λp(Ω?, −(V−)?,m?) of the
symmetrized problems:∆pv+ V•(x) |v|p−2v = λ m?(x) |v|p−2v , in Ω?

v = 0 , on ∂Ω? ,
(4.4)

(where V• and m? are, respectively, the increasing signed radi-
ally symmetric rearrangement of the potential V and the classical
Schwarz rearrangement of the weight m) and:

∆pw− (V−)?(x) |w|p−2w = λ m?(x) |w|p−2w , in Ω?

w = 0 , on ∂Ω? ,

(4.5)

(where (V−)? is the decreasing Schwarz rearrangement of the
negative part of V and mstar is as above).
The main reason which leads us to consider such symmetrized
problems is that they arise quite naturally when symmetrization
inequalities are applied to the minimization of the Rayleigh quo-
tient in (4.3).
Of course, in order to λp(Ω?,V•,m?) and λp(Ω?, −(V−)?,m?) to
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exist, problems (4.4) and (4.5) have to satisfy αp(Ω?,V•,m?) > 0

and αp(Ω?, −(V−)?,m?) > 0, where αp is defined as in the equa-
tion (4.2) above.

4.1.2 Organization

Our plan is the following.
We firstly give some motivations for the choice of the symmetrized
problems (4.4) and (4.5). Then we prove that there actually exist
potentials such that the three quantities αp(Ω,V ,m), αp(Ω?,V•,m?)

and αp(Ω?, −(V−)?,m?) are positive, thus problems (4.1), (4.4)
and (4.5) have unique principal eigenvalue.
Finally, we prove the Faber–Krahn inequalities and discuss the
equality case.

4.2 about the symmetrized problems

4.2.1 Construction of the Symmetrized Problems

As we said above, the first eigenvalue of (4.1) is variational and it
coincides with the minimum of the nonlinear Rayleigh quotient
associated with (4.1), viz.:

λp(Ω,V ,m) = min

{´
Ω |∇u|p + V(x) |u|p´

Ωm(x) |u|p
, u ∈W1,p

0 (Ω)

and
ˆ
Ω
m(x) |u|p > 0

}
.

Aiming to minimize the functional λp(·, ·, ·) under the measure
constraint for the domain and the equimeasurability constraint
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for both potential and weight, we can apply Hardy–Littlewood
and Polya–Szegö inequalities to get:

´
Ω |∇u|p + V(x) up´

Ωm(x) up
>

´
Ω? |∇u?|p + V•(x) (u?)p´ ?

Ωm
?(x) (u?)p

>

´
Ω? |∇u?|p − (V−)?(x) (u?)p´ ?

Ωm
?(x) (u?)p

for each positive eigenfunction u ∈W1,p
0 (Ω); recalling that u? ∈

W
1,p
0 (Ω?), previous inequalities entail:

λp(Ω,V ,m) > inf

{´
Ω? |∇v|p + V•(x) |v|p´

Ω? m?(x) |v|p
, v ∈W1,p

0 (Ω?)

and
ˆ
Ω?
m?(x) |v|p > 0

}

> inf

{´
Ω? |∇w|p − (V−)?(x) |w|p´

Ω? m?(x) |w|p
, w ∈W1,p

0 (Ω?)

and
ˆ
Ω?
m?(x) |w|p > 0

}
.

The two latter members in previous inequalities are the infima
of the nonlinear Rayleigh quotients associated to problems (4.4)
and (4.5), hence they are finite and coincide with the principal
eigenvalues λp(Ω?,V•,m?) and λp(Ω?, −(V−)?,m?) provided both
αp(Ω

?,V•,m?) and αp(Ω?, −(V−)?,m?) are positive.
Therefore, it seems natural to make a comparison between the
values of λp(Ω,V ,m), λp(Ω?,V•,m?) and λp(Ω

?, −(V−)?,m?),
assuming the latter quantities exist.

4.2.2 The Choice of the Potential

Once we found suitable symmetrized problems, we need to prove
that there actually exists at least one potential V such that (4.1),
(4.4) and (4.5) have a principal eigenvalue, i.e such that αp(Ω,V ,m),
αp(Ω

?,V•,m?) and αp(Ω?, −(V−)?,m?) are positive.
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From the definitions, it follows that αp(Ω,V ,m) = αp(Ω
?,V•,m?)

= αp(Ω
?, −(V−)?,m?) = +∞ > 0 whenever m > 0 a.e. in Ω (for

in such a case the set in the rightmost side of (4.2) is always
empty).

On the other hand, when the zero-level sets of m (and of m?)
are not negligible, we cannot say “a priori” that αp(Ω,V ,m),
αp(Ω

?,V•,m?) and αp(Ω?, −(V−)?,m?) are positive, neither that
the positiveness of one of them implies the positiveness of the
others.
Neverthless, we can use Sobolev or Poincaré inequalities to prove
that the positivity of the three values of αp(·, ·, ·) can be obtained
under suitable smallness conditions on V−: in fact, we have the
following:

Proposition 4.1
Let V andm satisfy assumptions (H1) and (H2) and let |{m = 0}| > 0.
If 1 < p < N, then there exists a constant C(p,N,Ω) > 0 such that
αp(Ω,V ,m), αp(Ω?,V•,m?) and αp(Ω?, −(V−)?,m?) > 0 when
‖V−‖N/p,Ω < C(p,N,Ω).
If p > N, then there exists a constant C(p,N,Ω) > 0 such that
αp(Ω,V ,m), αp(Ω?,V•,m?) and αp(Ω?, −(V−)?,m?) > 0 when
‖V−‖∞,Ω < C(p,N,Ω) a.e. in Ω.

Proof. We have:

αp(Ω,V ,m) = inf

{ ˆ
Ω

|∇u|p + V(x) |u|p, u ∈W1,p
0 (Ω),

‖u‖p,Ω = 1 and
ˆ
Ω
m(x) |u|p = 0

}
.

Assuming 1 < p < N, Sobolev inequality ‖∇u‖p > γ ‖u‖pp∗,Ω
(with γ = γ(p,N,Ω) > 0) applies and it yields:

αp(Ω,V ,m) > inf

{ (
γ− ‖V−‖N/p,Ω

)
‖u‖pp∗,Ω, u ∈W1,p

0 (Ω),

‖u‖p,Ω = 1 and
ˆ
Ω
m(x) |u|p = 0

}
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thus αp(Ω,V ,m) > 0 if ‖V−‖N/p,Ω < γ; analogous arguments
imply that αp(Ω?,V•,m?) > 0 and αp(Ω?, −(V−)?,m?) > 0 if
‖(V•)−‖N/p,Ω, ‖(V−)?‖N/p,Ω? < γ? = γ(p,N,Ω?). Owing to
equimeasurability, we have ‖(V•)−‖N/p,Ω? = ‖(V−)?‖N/p,Ω? =

‖V−‖N/p,Ω and the claim follows.
On the other hand, if p > N, Poincaré inequality ‖∇u‖p >

ϑ ‖u‖pp,Ω (with ϑ = ϑ(p,N,Ω) > 0) applies and it yields:

αp(Ω,V ,m) > inf

{ ˆ
Ω

(ϑ− V−(x)) |u|p, u ∈W1,p
0 (Ω),

‖u‖p,Ω = 1 and
ˆ
Ω
m(x) |u|p = 0

}

thus αp(Ω,V ,m) > 0 if ‖V−‖∞,Ω < ϑ; analogous arguments
yield αp(Ω?,V•,m?) > 0 and αp(Ω?, −(V−)?,m?) > 0 if ‖(V•)−‖∞,Ω? ,
‖(V−)?‖∞,Ω? < ϑ? = ϑ(p,N,Ω?). Since ‖(V•)−‖∞,Ω? = ‖(V−)?‖∞,Ω? =

‖V−‖∞,Ω, the claim follows.

4.3 faber–krahn type inequalities

Proposition (4.1) above shows that the class P of measurable po-
tentials satisfying (H1) & (H2) for which the comparisons sug-
gested in §4.1 make sense is nonempty.
From now on we assume V ∈ P, thus (4.1), (4.4) and (4.5) have a
principal eigenvalue.

The argument in the previous section alone would suffice in
proving the following:

Theorem 4.1 (Faber–Krahn inequalities)
Let Ω, p, V and m satisfy all the assumptions above and let V ∈ P.
Then:

λp(Ω,V ,m) > λp(Ω
?,V•,m?) > λp(Ω

?, −(V−)?,m?) . (4.6)

Anyway, for sake of completeness, we write a one-line proof
of the stated inequalities here.
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Proof. For any positive eigenfunction u ∈ W1,p
0 (Ω) associated

with λp(Ω,V ,m) we have u? ∈W1,p
0 (Ω?) and:

λp(Ω,V ,m) =

´
Ω |∇u|p + V(x)|u|p´

Ωm(x)|u|p

>

´
Ω? |∇u?|p + V•(x)|u

?|p´
Ω? m?(x)|u?|p

> λp(Ω
?,V•,m?)

(4.7)

by Hardy–Littlewood and Polya–Szegö inequalities; thus the left-
most inequality follows.
Getting rid of the positive part of V• in the nonlinear Rayleigh
quotient, i.e. (V+)?, we obtain the rightmost inequality.

Obviously, equality holds in the leftmost inequality (4.6) if we
are in the radially symmetric setting, i.e. if Ω = Ω?, V = V• and
m = m? (modulo translations); on the other hand, equality holds
in the rightmost inequality if V• = −(V−)? and it holds through
(4.6) if Ω = Ω?, V = −(V−)? and m = m? (modulo translations).
In the spirit of [36, 46, 3, 2], we may wonder if the latter is the
only setting which gives equality through (4.6).

The characterization of the equality case in (4.6) will be proved
in a while, under a sign condition on λp(Ω?, −(V−)?,m?).
We have:

Theorem 4.2 (Equality case in Faber–Krahn inequality)
Let Ω, p, V and m be as in the Theorem above.
Assume further that λp(Ω?, −(V−)?,m?) > 0.
Then equality holds in (4.6) if and only if Ω = Ω?, V = −(V−)? and
m = m? (modulo translations).

Proof. For sake of simplicity, let λp and λ?
p denote respectively

the leftmost and the rightmost side of (4.6).
If λp = λ?

p, then equality holds also through (4.7). Thus, if u is a
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positive eigenfunction associated to λp, we have equality in each
of the following:

ˆ
Ω

|∇u|p >
ˆ
Ω?

|∇u?|p (4.8)
ˆ
Ω
V+(x)up >

ˆ
Ω?

(V+)?(x)(u
?)p > 0 (4.9)

ˆ
Ω
V−(x)up 6

ˆ
Ω?

(V−)?(x)(u?)p (4.10)
ˆ
Ω
m(x)up 6

ˆ
Ω?
m?(x)(u?)p (4.11)

(because otherwise we would get a contradiction) and u? is a
positive eigenfunction of (4.5) associated with λ?

p, viz. it satisfies:

−∆pu
? − (V−)?(x) (u?)p−1 = λ?

p m
?(x) (u?)p−1 , in Ω?

u? = 0 , on ∂Ω? .

(4.12)

Standard regularity theorems [47, 58] apply and they yield u? ∈
L∞(Ω?) ∩C0,α

loc (Ω?) (though stronger C1,α-regularity can be ob-
tained in some cases using [31, 63]).
Moreover, using Harnack inequality [64, 40] we infer u? > 0 in
Ω?.

Step 1. Ω = Ω? and u = u? (modulo translations).
Since u?(x) = u∗(ωN|x|N) and since u? is positive in Ω?, then
u∗ does also.
Moreover, standard computations (e.g., [62]) can be used to prove
that the onedimensional decreasing rearrangement u∗ satisfies
the following integro–differential problem written with respect
to the “measure coordinate” s = ωN|x|N:


u̇∗(s) = − 1

(cN s1−1/N)p/(p−1)

(´ s
0 (λ?

pm
∗ + (V−)∗)up−1 dσ

) 1
p−1

u∗(0) = ‖u‖∞,Ω

u∗(|Ω|) = 0 .

(4.13)
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We will now prove that the graph of u∗ has no flat parts at level
ū ∈]0, ‖u‖∞,Ω[ inside [0, |Ω|].
By contradiction, we assume there exists an interval [s1, s2] ⊂
]0, |Ω|[ in which u∗(s) = ū for some 0 < ū < ‖u‖∞,Ω; hence
u̇∗(s) = 0 in ]s1, s2[ and:

0 =

ˆ s
0

(λ?
pm
∗ + (V−)∗) dσ

in the same interval.
Setting:

M(s) :=

ˆ s
0
λ?
p m

∗(σ) dσ

V(s) := −

ˆ s
0

(V−)∗(σ) dσ

for each s ∈ [0, |Ω|], previous equality reads:

M(s) = V(s) for s ∈ [s1, s2] . (4.14)

If λ?
p = 0, then M(s) = 0 everywhere in [0, |Ω|] and (4.14) yields

V(s) = 0 in [s1, s2]; on the other hand, V is convex in [0, |Ω|] and
V(0) = 0, therefore V(s) = 0 in the whole of [0, s2]. Thus from
(4.13) we infer u̇∗(s) = 0 in ]0, s2[ and u∗(s) = u∗(0) = ‖u‖∞,Ω

in [0, s2].
If λ?

p > 0, owing to the concavity of M and the convexity of V

in [0, |Ω|], from (4.14) we infer that both M and V are linear in
[s1, s2], i.e. that there exist α,β ∈ R such that:

M(s) = α s+β = V(s) for s ∈ [s1, s2] . (4.15)

Since V is convex and M is concave, we have M(s) 6 α s+ β 6

V(s) in [0, s2], hence 0 = M(0) 6 β 6 V(0) = 0; therefore (4.15)
rewrites:

M(s) = α s = V(s) for s ∈ [s1, s2] , (4.16)

and condition M(0) = 0 = V(0) implies that (4.16) holds in the
whole of [0, s2]. Thus from (4.13) we infer again u̇∗(s) = 0 in
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]0, s2[, hence u∗(s) = u∗(0) = ‖u‖∞,Ω.
In both cases, the conclusion is in sound contradiction with the
assumption u∗(s) = ū < ‖u‖∞,Ω.
It follows that u∗ decreases strictly in [0, |Ω|], thus u? is strictly
radially decreasing and the set:

{x ∈ Ω? : u?(x) ∈]0, ‖u‖∞,Ω[ and |∇u?(x)| = 0}

is a null set. Therefore, Brothers & Ziemer theorem applies in
(4.8), yielding Ω = Ω? and u = u? (modulo translations).

Step 2. m = m? and V = −(V−)? (modulo translations).
Equality in the rightmost inequality of (4.9) and u > 0 in Ω yield
(V+)? = 0 and therefore V+ = 0 in Ω.
By previous Step, equalities in (4.10) and (4.11) become:

ˆ
Ω
V−(x) up =

ˆ
Ω

(V−)?(x) up =

ˆ |Ω|

0
(V−)∗(s) (u∗(s))p d s

ˆ
Ω
m(x) up =

ˆ
Ω
m?(x) up =

ˆ |Ω|

0
m∗(s) (u∗(s))p d s .

Since m and u are both nonnegative and since u is strictly radi-
ally decreasing, the equality condition in Hardy–Littlewood in-
equality with nonnegative functions Theorem 1.7 yields m = m?

(modulo translations). Analogously we get and V− = (V−)?

(modulo translations) and adding V+ we finally find V = −(V−)?

(modulo translations).
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