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Abstract 
 

 

Pure essential oils have been purified and chemically characterized from cinnamon, clove and black 

pepper. All these oils have antifungal properties and when applied to apple fruits in post harvest can 

efficiently control Botrytis cinerea, Alternaria alternata or Penicillium expansum. In addition, 

application of these compounds or Trichoderma culture filtrate can induce systemic resistance 

mechanisms in apple fruit. This has been confirmed through phytoalexins and proteomic analysis. 

The accumulation of the phytoalexins scopoletin, umbelliferone, and scoparone was induced by the 

three essential oils or Trichoderma CF. Proteomic analysis indicated many changes in protein 

production caused by the treatment with the oils, Trichoderma CF and the pathogens. The 

differential spots (TOTD) obtained were up to 166 in clove plus P. expansum treatment. Twenty 

nine of the most interesting differentially expressed proteins were further analysed by MALDI-TOF 

MS. The protein groups identified included: pathogenesis-related proteins belonging to the PR-10 

sub-family, some antimicrobial proteins, enzymes involved in the biosynthesis of antimicrobial 

compounds pathway and ribosomal proteins. The most interesting essential oil was the one 

extracted from black pepper because it was not phytotoxic on tomato seedlings and apple fruits at 

all the tested concentrations and showed a good disease control activity.  A new bio-formulate for 

post-harvest application, based on a combination of three different active ingredients (black pepper 

oil, Trichoderma CF and a natural ISR-inducing agent also used  as emulsifier) was designed and 

successfully tested as a synergistic mixture.  
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Introduction 

 

1. Apple fruits post-harvest diseases control  

 

Apple (Malus domestica Borkh.) is a member of Rosaceae family and considered one of the most 

economically important fruit tree crop of temperate zones (Martinelli et al., 2008). Italy ranks as the 

sixth producer of apple fruits after China, USA, India, Turkey and Poland (http://faostat.fao.org, 

2012) with approximately 2,411,200 tons/year. Apples are one of the most widely consumed fruits, 

due in part to their wide-range of beneficial effects on human health. A high intake of apples has 

been shown to prevent a variety of chronic diseases and reduce the risk of lung cancer, asthma, 

type-2 diabetes, thrombotic stroke, and ischemic heart disease (Hansen et al., 2009; Chai et al., 

2011). These benefits are associated with the large content of structural cell walls and 

polysaccharides (Sun-Waterhouse et al., 2008), as well as various phytochemical antioxidants 

(Devic et al., 2010; Lee et al.,2003; McGhie et al., 2005). 

Apple production has a great economic importance but it is affected by several pre- and post-

harvest diseases. Despite of the use of modern storage facilities, losses from 5 to 25% of apples and 

pears are still being recorded. Fungal pathogens such as Botrytis cinerea, Penicillium expansum and 

Alternaria alternata are responsible for the main economical losses. After harvest, apples are stored 

at low temperature (0-1°C) to maintain quality and to minimize spoilage. However, development of 

fungal diseases, caused mainly by P. expansum and B. cinerea, cannot be avoided. Control 

measures are still principally based on the protection of fruits from pre- and post-harvest infection 

by using fungicide treatment. However, in the context of consumer reluctance to accept chemical 

residues in food and of public concern for environmental safety, there is an increasing demand to 

develop alternative disease control methods. This becomes a critical issue with respect to the de-

registration of effective and widely used fungicides and the development of fungicide-resistant 

strains of post-harvest pathogens. In this regard, biological control has been developed as a valid 

alternative. Biocontrol is generating a great enthusiasm as a key player in sustainable agriculture 

although the relevance of biological control agents (BCAs) in plant disease management appears to 

be limited until now. Post-harvest biological control could be considered as particularly promising 

because: 1) the application sites are limited to the harvested commodities and the BCA is not spread 

into the environment, 2) the environmental conditions are defined and stable in storage rooms, 3) 

the harvested commodities could be considered high value crops. BCAs are   mainly   targeting   the  

 

http://en.wikipedia.org/wiki/Rosaceae
http://en.wikipedia.org/wiki/Family_(biology)
http://faostat.fao.org/
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post-harvest diseases that develop through wounds in the fruits (such as B. cinerea, P. expansum, A. 

alrernata, Rhizopus spp.). However, latent infections are not reported to be controlled by BCAs. 

The most widely used are yeasts followed by bacteria, with only a few species belonging to 

mycelial fungi been applied. Table 1 lists the most common biopesticides (formulated BCAs) for 

post-harvest diseases already on the market. Three bacteria and four yeasts have acquired full 

registration. Among the bacteria, Pseudomonas syringae strains specifically target post-harvest 

diseases, while a Bacillus subtilis strain is reported as and effective BCA also against pre-harvest 

diseases. Formulations based on P. syringae strains may be considered the oldest on the market. 

The B. subtilis product is the only one to be registered both in USA and Europe. 

 

Table 1: Commercially available biological control products to manage post-harvest fruit diseases. 

 

 

 

Integrated Pest Management (IPM) is an ecologically safe method aimed at minimizing the 

undesirable side effects of agrochemicals thus protecting the environment and the human health 

(Roth et al., 2007; Smilanick et al., 1995, 1997). In this contest, alternative methods for plant 

disease control, including the use of microbes, their metabolites and products derived from plants, 

are highly desirable considering that the number of biological products available on the market for 

post-harvest diseases control is still very limited (Tab.1). 
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2. Trichoderma spp. as biocontrol agents 

 

Trichoderma spp. are asexually reproducing fungi that are often the most frequently isolated from 

soil. They are very useful microbes, by producing beneficial effects on crops and they may have 

naturally sustained the agricultural yields that have supported the human population over the 

millennia (Lorito et al., 2010). Many strains have been exploited as biocontrol agents (BCAs) 

successfully used worldwide as biopesticides and biofertilizers. It is typical of several species to be 

active producers of secondary metabolites with antibiotic activity (Sivasithamparam and Ghisalberti 

1998; Harman 2000; Harman et al., 2004; Walters et al., 2005; Lorito et al., 2006; Woo et al., 

2006). Various Trichoderma–based formulations are available commercially for crop production 

(Harman 2000). For instance, T. harzianum strain T-39, the active ingredient of the commercial 

product Tricodex
TM

, induces resistance towards B. cinerea in tomato, tobacco, lettuce, pepper and 

bean plants, with a symptom reduction ranging from 25 to 100% (Abadi 2008). Moreover, 

Trichoderma spp. function as biocontrol agents for a wide range of economically important aerial 

and soil borne plant pathogens (Brunner et al., 2005). The biocontrol mechanism of T. harzianum is 

a complex process mediated by the secretion of extracellular enzymes, such as chitinases, 

glucanases and proteinases, as well as secondary metabolites (Vinale et al., 2006).  The mechanisms 

that Trichoderma spp. use to antagonize phytopathogenic fungi include competition, colonization, 

antibiosis and direct mycoparasitism (Harman 2006, 2011; Howell 2003). This antagonistic 

potential serves as the basis for effective biological control applications against a wide spectrum of 

plant pathogens (Harman et al., 1991; Lorito et al., 2010). 

The colonization of the root system by rhizosphere competent strains of Trichoderma results in 

increased development of root and/or aerial systems and crop yields (Bae et al., 2011; Chacon et al., 

2007; Kubicek et al., 1998; Yedidia et al., 2003). Trichoderma has also been described as being 

involved in other biological activities such as the induction of plant systemic resistance (Shoresh et 

al., 2010; Tucci et al., 2011) and antagonism against plant pathogenic nematodes (Jegathambigai et 

al., 2008; Sharon et al., 2001). Some strains of Trichoderma have also been noted to be aggressive 

biodegraders in their saprophytic phases, in addition to acting as competitors to fungal pathogens, 

particularly when nutrients are a limiting factor in the environment (Worasatit et al., 1994). The 

molecular cross-talk that occurs between the fungal BCA and the plant is important for producing 

the desired beneficial effects. Somehow the plant is able to sense, possibly by the detection of the 

released fungal compounds, that Trichoderma is not a hostile presence (Woo and Lorito 2007). 

Molecules  produced  by  Trichoderma  and/or  its  metabolic   activity   also   have    potential    for  
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applications to promote plant growth (Chacon et al., 2007; Vinale et al., 2008a; 2008b; Yedidia et 

al., 1999). The induction of systemic resistance (ISR) observed in planta determines an improved 

control of different classes of pathogens (mainly fungi and bacteria), which are spatially and 

temporally distant from the Trichoderma inoculation site. This phenomenon has been observed in 

many plant species, both dicotyledons (tomato, pepper, tobacco, cotton, bean, cucumber) and 

monocotyledions (corn, rice). For example, Trichoderma induces resistance towards B. cinerea in 

tomato with a symptom reduction ranging from 25 to 100% (Tucci et al., 2011). Moreover, 

Trichoderma determined an increased production of defence-related plant enzymes, including 

various peroxidases, chitinases, β-1,3-glucanases, and hydroperoxide lyase involved in the 

lipoxygenase pathway (Harman et al.,2004; Howell et al., 2000; Yedidia et al.,1999).  

Trichoderma is able not only to produce toxic compounds with a direct antimicrobial activity 

against pathogens, but also to generate molecules that stimulate the plant to produce its own defence 

metabolites. In fact, the ability of T. virens to induce phytoalexins accumulation and localized 

resistance in cotton has been reported (Hanson and Howell 2004). In cucumber, root colonization 

by strain T-203 of T. asperellum caused an increase in the leaf level of phenolic glucoside, where 

the corresponding aglycones (phenolic glucosides with the carbohydrate moieties removed) are 

strongly inhibitory of a range of bacteria and fungi (Yedidia et al., 2003).  

Trichoderma spp. produce a variety of lytic enzymes that have a high diversity of structural and 

kinetic properties, thus increasing the probability of counteracting the defense mechanisms of 

neighbouring microorganisms. Further, Trichoderma hydrolytic enzymes have been demonstrated 

to be synergistic, showing an augmented antifungal activity when combined with themselves, other 

microbial enzymes, PR proteins of plants and some xenobiotic compounds (Fogliano et al., 2002; 

Lorito et al.,1994a, 1994b, 1994c, 1996, 1998; Schirmbock et al.,1994; Woo et al., 2002). In fact, 

the inhibitory effect of chemical fungicides for the control of the foliar pathogen B. cinerea was 

substantially improved by the addition of minute quantities (10-20 ppm) of Trichoderma CWDEs to 

the treatment mixture (Lorito et al., 1994c).  

Extensive testing of T. harzianum strain T22 conducted for the registration of this biocontrol agent 

in the USA by the Environmental Protection Agency (EPA) has found that the CWDEs do not have 

a toxic effect on humans and animals (ED50 and LD50), and that they do not leave residues. These 

enzymes can be used as single or mixed combinations of CWDEs having a high antifungal effect, 

and obtained from fermentation in inducing conditions, also by over-expressing the encoding genes 

in modified Trichoderma  or  other  microbes.  They  can  be considered as a potential improvement  

 



Introduction 
 

 5 
 

 

over the use of the living microorganism in commercial formulations because are easily 

characterized, resist desiccation, are stable at temperatures up to 60 °C, and are active over a wide 

range of pH and temperatures in the agricultural environment. 

 

 

3. Property and application of plant essential oil extracts 

 

Plant essential oils are hydrophobic concentrated mixtures principally containing volatile aromatic 

compounds and generally extracted by distillation. They are used in perfumes, cosmetics, soaps and 

other products, for flavouring food and drink, and for adding scents to incense and household 

cleaning products. Essential oils are also popular nowadays due to aromatherapy, a branch of 

alternative medicine claiming that essential oils and other aromatic compounds have curative 

effects. In the last decades, scientific studies associated beneficial properties (antioxidant, anti-

inflammatory, antiviral, antibacterial, stimulators of central nervous system, etc.) of several plants 

and herbs to some of the compounds found in the extracted essential oil. For example, the valerian-

extracted valerenic acid, a sesquiterpenoid compound, and its derivatives (acetoxyvalerenicacid, 

hydroxyvalerenic acid, valeranone, valerenal) are recognized as relaxant and sedative; lavender 

extract is used as antiseptic and anti-inflammatory for skin care; menthol is derived from mint and 

is used in inhalers, pills or ointments to treat nasal congestion; thymol, the major component of 

thyme essential oil is known for its antimicrobial activity; limonene and eucalyptol appear to be 

specifically involved in protecting the lung tissue. Therefore, essential oils have become a target for 

the recovery of natural bioactive substances useful for human treatments.  

Essential oils are composed of lipophilic substances, containing the volatile aroma components of 

the vegetal matter, which are also involved in the defence mechanisms of the plants. The essential 

oil represent a small fraction of plant composition, and is comprised mainly by monoterpenes and 

sesquiterpenes, and their oxygenated derivatives such as alcohols, aldehydes, ketones, acids, 

phenols, ethers, and esters. The amount of a particular substance in the essential oil composition 

varies from really high proportions (e.g. around 80–90% w/w of -limonene present in orange 

essential oil) to traces. Nevertheless, components present in traces are also important, since all of 

them are responsible for the characteristic odour, flavour and bioactive properties. Thus, it is 

important that the extraction procedure applied to recover essential oils from plant matrix maintains 

the natural proportion of its original components. Essential oils could be obtained  from   roots   and  

 



Introduction 
 

 6 
 

 

rhizomes (such as ginger), leaves (mint, oregano and eucalyptus), bark and branches (cinnamon, 

camphor), flowers (jasmine, rose, violet and lavender) and fruits and seeds (orange, lemon, pepper, 

nutmeg). In general, essential oil represents less than 5% of the vegetal dry matter. Although 

essential oils are present in all organs, their composition may vary when different parts of the plant 

are used as raw material. Other factors, such as cultivation, soil and climatic conditions as well as 

harvesting time, can also determine the composition and quality of the essential oil (Celiktas et al., 

2007).  

The main compounds of plant essential oils are terpenes, which are also called isoprenes since 

derived from isoprene (2- methyl-1,3-butadiene, chemical formula C5H8). Main hydrocarbon 

terpenes present in plant essential oil are monoterpenes (C10), which may constitute more than 80% 

of the essential oil, and sesquiterpenes (C15). They can present acyclic as well as mono-, bi- or 

tricyclic structures. Terpenoids are derived from these hydrocarbons, for example by oxidation or 

just reorganization of the hydrocarbon skeleton. Terpenoids present in essential oils have a wide 

variety of chemical organic properties, acting as alcohols, aldehydes, ketones, acids, phenols, 

ethers, or esters. 

Plant essential oils have antimicrobial activity against a variety of plant pathogens and pests. 

Several studies have explored the potential of essential oils as antifungal agents (Abd-Alla et al., 

2001; Abdolahi et al., 2010; Cowan, 1999; Grane and Ahmed 1988; Kurita et al., 1981; Wilson et 

al., 1997). Most of them have been reported to inhibit postharvest fungi in vitro (Hidalgo et al., 

2002; Kordali et al., 2005).The use of these volatile compounds has attracted an increasing interest 

in recent years. Also, the antifungal activity of essential oils from oregano and thyme showed 

significant efficacy in apple fruits infected with B. cinerea and P. Expansum (Lopez-Reyes et al., 

2010). In addition, the antifungal activity of clove oil in apples was evaluated against B. cinerea, M. 

fructigena, P. expansum and P. Vagabunda (Amiri et al., 2008). Moreover, because of plant 

essential oils have low mammalian toxicity, are biodegradable, multifunctional, non-persistent in 

the environment and cheap to produce, the possibility of developing their use in crop protection is 

considered an attractive possibility (Abdolahi et al., 2010). For example, essential oils of cinnamon 

and clove are known to have potent antibiotic activity and their application for controlling 

postharvest diseases has been suggested (Feng and Zheng 2007; Kishore et al., 2007).  

 

 

 

 



Introduction 
 

 7 
 

 

4.  Chitosan:  an antifungal, ISR inducer and emulsifier compound 

 

Chitosan is a high molecular weight carbohydrate polymer found in nature but also manufactured 

from chitin. It is a natural cationic polyelectrolyte formed by N-acetyl-D-glucosamine units with β 

(1–4) glycosidic bounds (Pinotti et al., 2001). Chitosan has excellent emulsifying properties and has 

received increased attention in terms of commercial applications in both the food (Li and Xia 2011) 

and plant protection (Badawy and Rabea 2011; Romanazzi 2010; Walker 2004) industries.  This has 

elicited a large number of research papers and patents related to chitosan (Badawy and Rabea 

2011). Commercial products based on chitosan are available and they have been shown 

effectiveness when dissolved in acid solution. Chitosan has a double mechanism of action: it 

reduces the development of decays caused by fungi, and induces resistance response in the plant 

tissues (Romanazzi 2010). Moreover, chitosan has been proven to control numerous pre- and post-

harvest diseases on various horticultural commodities. It has been reported that both soil and foliar 

plant pathogens among fungi, bacteria and virus can be controlled by chitosan applications 

(Bautista-Banos et al., 2006).  Perdones et al., (2012) reported that the use of chitosan-based films 

(alone or in combination with other natural compounds such) was effective in controlling the decay 

of cold-stored strawberries. In addition to the direct antifungal effect,  chitosan can also activate 

several biological processes in the treated plant, including the accumulation of chitinases, proteinase 

inhibitors and pathogenesis-related proteins (PR proteins), the synthesis of phytoalexins , the 

increase of cell wall lignification (El Ghaouth et al., 1994) and callose formation (El Hadrami et al., 

2010). Pre- and post-harvest chitosan treatment of table grapes, strawberries and sweet cherries 

reduces the decay in the field and during storage (1%) (Romanazzi 2010).   

 

 

5.  Proteomic analysis 

 

Biological sciences are experiencing an extensive revolution based on the use of ‘omics tools. 

Proteome-wide functional classification using bioinformatics approaches is becoming an important 

method for revealing unknown protein functions (Muturi et al., 2010). Proteomic involves the use 

of biological, biochemical, genetic and other techniques to simultaneous study thousands of 

proteins: It allows to catalogue, decipher the structure, speculate on the interaction and function of a 

large group of proteins produced in specific systems or associated to a studied process  (Pandey and  
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Mann 2000; Gorg et al., 2004). Moreover, comparative proteomics, based on two-dimensional 

electrophoresis (2-DE) coupled to tandem mass spectrometry, has the potential to screen many 

metabolic pathways simultaneously for alterations at the protein level. Nowadays, comparative 

proteomic is becoming attractive to plant biologists as the availability of nucleotide sequences 

increases, providing new opportunities for protein identification. The accumulation of nucleic acid 

data, in parallel to the advancements in sequencing technologies, has permitted the development of 

better performing methods for the analysis of protein content also with non-model plants (Bianco et 

al., 2013). In recent years, research on Arabidopsis thaliana demonstrated that proteomic is a very 

powerful tool for studying molecular mechanisms of plants. Although many methods have been 

reported, optimized protocols for the preparation of protein extracts suitable for 2-DE have mainly 

been developed for young vegetative plant tissues that have high protein content and low amounts 

of contaminants. However, it is very difficult to obtain high quality protein suitable for 2-DE 

analysis from fruits, because of the low protein content and the presence of extraction-interfering 

substances such as pigments, carbohydrates, polyphenols, polysaccharides and starch (Song et al., 

2006). 

 

 

6. Induction of systemic resistance (ISR) in the plant 

 

Induced resistance (IR) is a state of enhanced defensive capacity developed by a plant reacting to 

specific biotic or chemical stimuli (Van Loon et al., 1998). In the last decade, it has become clear 

that elicitation of ISR is a widespread phenomenon caused by a variety of non-pathogenic 

microorganisms including biological control agents. Induced resistance depends on the recognition 

of a stress by the plant. This generates a cascade of events, eventually leading to the expression of 

defence mechanisms that include physical barriers and/or metabolites and proteins interfering with 

the spread of the invading microorganism. IR may be expressed locally as well as in uninfected 

parts of the plant (ISR). In this case, the initial recognition event also leads to the production of an 

endogenous systemically translocated signal that can activate resistance mechanisms in remotely 

located tissues. Research on ISR- is focused on determining the factors involved in this process, in 

order to identify novel molecules that are useful for diagnostics, selective crop breeding, bio-

pesticide and biotechnological product development (Harman et al., 2004, Kuc 2001; Bakker et al., 

2003). Biocontrol agents and their metabolites can induce systemic resistance (ISR) as observed  in  
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planta, thus improving the control of different classes of pathogens. This phenomenon has been 

observed in many plant species, both dicotyledons and monocotyledions (Abadi 2008; Sticher et al., 

1997). Terry and Joyce (2004) indicated that induction of natural disease resistance (NDR) in 

harvested horticultural crops by using physical, biological and/or chemical elicitors should 

considered as one of the preferred strategies for disease management. In the post-harvest research 

field, studies indicated that also fruits respond to stresses by activating the production of 

phytoalexins and pathogenesis-related proteins (PR proteins) (Ben-Yehoshua 2003). Inducible 

defence-related proteins have been described in many plant species upon infection with oomycetes, 

fungi, bacteria, viruses or insect attack. They have been classified into 17 families (Van Loon et al., 

2006). PRs are defined as proteins coded by the host plant, that are induced specifically in 

pathological or stress conditions, do accumulate both locally and systemically in the infected plant, 

and are associated with the development of systemic acquired resistance (SAR) (Van Loon et al., 

1999). Several PR proteins have direct antimicrobial activity against plant pathogens (Van Loon et 

al., 1997).  

Plants synthesize an enormous variety of metabolites that can be classified into two groups based on 

their function: primary metabolites, which participate in nutrition and vital metabolic processes 

within the plant, and secondary metabolites (also referred to as natural products), which influence 

ecological interactions between plants and their environment (Rodriguez-Concepcion and Boronat 

2002). Phytoalexins are antimicrobial secondary metabolites produced ex-novo by the plants as a 

defence mechanism in response to biotic and abiotic stresses (Afek and Sztejnberg 1988; Ahmed 

2011; Beerhues 2011). They are extensively studied as promising plant disease-controlling 

molecules (Gonzalez-Lamothe et al., 2009). Phytoalexins accumulation and their role in fruit 

resistance to pathogens have been studied in banana, capsicum and citrus (Ben-Yehoshua et al., 

1992; Ahmed 2011). In apple tree, the biosynthesis of biphenyl and dibenzofuran phytoalexins has 

been confirmed (Beerhues 2011), but the accumulation of phytoalexins in apple fruits has been very 

poorly investigated so far. 
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Aim of the work 

 

 Essential oils of plants and herbs are important natural sources of bioactive substances. In 

fact, there are increasing scientific evidences that support the use of essential oil against human and 

plant diseases.  

 The BCA Trichoderma and its metabolites are widely used as biological tools for plant 

protection against different types of stresses.  

The aim of the present work was to design a new bio-formulation based on a synergistic mixture of 

plant essential oils and Trichoderma culture filtrates (CF) for the control of post-harvest disease of 

pome fruits.  

 The resulting commercially applicable product could be used against major post-harvest 

pathogens, produced cheaply, applied easily and safely with no harms for humans and the 

environment.  

  

 To reach this goal we used a variety of techniques in order to achieve:  

 

1. Extraction of essential oils from several plants, selected (in vitro and in vivo) on the base of 

toxic effects on important post-harvest pathogens of apples (P. expansum, B. cinerea and A. 

alternata), as well as on the fruit.  

2. Production of Trichoderma culture filtrates (CF) having a strong antifungal activity (in vitro 

and in vivo) against main post-harvest pathogens (P. expansum, B. cinerea and A. 

alternata). 

3. Induction of mechanisms of disease resistance in apple fruits by using the selected essential 

oils and the Trichoderma culture filtrates, as determined by phytopathological assays and 

molecular analyses of plant response (i.e. tests of phytoalexins and PR-proteins 

accumulations). 

4. Designing of a new bio-formulation made of a synergistic combination of plant extracts and 

fungal metabolites (CF), eventually potentiated by using additional natural products acting 

as adjuvants with multiple beneficial effects. 
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Materials and Methods 

 

 
1. Essential oils extraction, analysis and phytotoxicity 

 

1.1. Essential oils extraction using steam distillation   

 

We used cleaner production of essential oils by using the simple steam distillation method without 

using any solvents only water steam. Every 100 gm from cinnamon (trunk bark), cloves (dried 

flower buds), and black pepper (dried fruits) had been ground using WARING blinder HGBSSE, 

USA for 3 minutes. The distillation method was done using 400 ml water for 100 gm plant 

material. The mixture was allowed to stand overnight at room temperature for the hydrolysation 

and then hydrodistilled using a stationary distillatory (Falc distiller, Italy) at 100 °C. The distillate 

containing water and the essential oil was collected into several separatory funnels, and allowed to 

stand for 2 h to separate the oil from the water phase. The water phase was discarded.  

 

1.2. Gas chromatography-mass spectrometry (GC-MS) characterization 

 

Resolution gas-chromatographic (HRGC) analyses of essential oils and identification peaks with 

mass spectrometer detector (MS) were performed. 5 μl of the essential oils were dissolved using 95 

μl of ethyl acetate, then 1 µl from this mixture was injected into the gas chromatograph.  Perkin 

Elmer Autosystem XL gas chromatograph equipped with a fused silica capillary column SP 2380 

(Supelco, Bellefonte, USA) 100 m X 0.25 mm; 0.20 µm film thickness, was used. The column was 

held at 100°C for 5 min after injection, heated at 3 °C min
-1

 to 165 °C, held at 165 °C for 10 min, 

and then heated at 3 °C min
-1

 to 260 °C and held at the final temperature for 28 min. The injector 

temperature was initially set at 50 °C for 0.1 min, increased at 400 °C min
-1

 up to 260 °C and held 

for 10 min. Split ratio was 1:60, and gas carrier (H2) flow was set at 20 cm s
-1

, FID temperature was 

set at 260 °C (Romano et al., 2010). 
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1.3.  Phytotoxicity of cinnamon, clove and black pepper essential oils  
 

Tomato seed germination and root elongation test is used to assess the essential oils toxicity. Water 

agar media contains 0.05%, 0.025%, 0.012%, 0.006%, 0.003%, 0.0015% and 0.0008% from  each 

oil was applied in Petri dish (90 mm). After media solidification sterilized tomato seeds (agitated 

for 30 min in sodium hypochloride “NaClO”, 1 % as chlorine) were put in one row and each 

treatment had 15 replicates. The Petri dishes were then wrapped with Parafilm then were 

maintained for 7 days at 25 °C under dark conditions on horizontal position. Root elongation was 

recorded after seven days from incubation. 

 

2.  In vitro antifungal activity of cinnamon, clove and black pepper essential oils  
 

P. expansum was friendly donated from Dr. Simona Sanzani Department of Plant Protection and 

Applied Microbiology, Faculty of Agriculture, University of Bari, Italy. While   B. cinerea and A. 

alternata was friendly donated from Dr. Michelina Ruocco, Italian National Research Center 

(CNR), Napoli, Italy. 

The obtained fungi were used for pathogenesity test. The healthy apple fruits (Malus domestica, cv. 

golden delicious) were disinfected in sodium hypochloride (NaClO, 0.2 % as chlorine) for 5 min 

and rinsed under tap water, dried at room temperature and punctured with a sterile needle at the 

equatorial region (3 mm depth, 3–4 mm wide, 3 wounds per fruit). Wounds were inoculated by 

spore suspension (20 μ1 3 x 10
5
 spores/ml) from 15 days old cultures. The pathogens were 

reisolated after 7 days from the artificially diseased fruits using potato dextrose agar Petri dishes.  

 

2.1. Antifungal activity of pure essential oils by direct application  
 

The pathogens plugs were placed at the centre of Petri dishes containing one-fifths of PDA. Ten 

microlitre of the essential oil (25%, 10%, and 5% concentrations diluted by water then agitated for 

30s using vortex at 1800 rpm were applied on the top of each plug. The untreated pathogens plugs 

considered as controls. The pathogen growth was measured after 3 days as colony diameter. Each 

treatment was replicated three times. 

 

2.2. Volatile antifungal activity of pure essential oils 

 

This assay was done according to Wilson et al., (1997) with some modificatuions. Rapid assay using 

microtiter plates was used to determine the volatile fungicidal activity of the essential oils   on  spore  
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germination of the pathogens. Four μl of 100%, 50%, 25%. and 12.5% concentrations from the 

essential oils (diluted by mineral oil) were used as different treatments. The oil was applied on the 

attached parafilm for multi-well plate lid. In order to precisely align the oil droplet, the parafilm was 

attached to the top of the multi-well plate lid by pressing, so that an imprint of the top of the wells 

appeared on the parafilm. The oil droplets were then placed in the centre of each well imprint. After 

the oils were pipetted onto parafilm, the plate lid was placed over the multi-well plate with the 

parafilm down. Microtiter wells were inoculated with 200 l of the pathogen spore suspension (3 x 

10
5
 spores/ml). The untreated pathogens spores suspension considered as controls. Each treatment 

was replicated three times. Subsequent changes in optical density following spore germination in the 

wells was measured after 48 h using Thermo Sientific Multiscan FC microtiter reader by the 

program ScanIt for Multiscan FC 2.5.1. The results were recorded as spore germination inhibition 

(% of control). 

 

 

3. Post-harvest biocontrol of apple decay disease caused by Alternaria alternata, 

Penicillium expansum or Botrytis cinerea 
 

Essential oils and Trichoderma culture filtrate preparation:  

Two concentrations of the essential oils were done:- 

1-  10% of essential oil emulsion (10% essential oil, 89% sterilized water and 1% Tween 20; 

Sigma, USA). 

2-   5% of essential oil emulsion (5% essential oil emulsion, 94.5 % sterilized water and 0.5% 

Tween 20). 

The two concentrations were prepared from each essential oil. All the resultant emulsions were 

shaken for 30 s before application to ensure a homogeneous essential oil mixture. 

 

Trichoderma harzianum strain TMik was grown, left to sporulate and maintained on potato 

dextrose agar (PDA). Spores were collected by using 10 mL of distilled water with 0.1% Tween-20. 

T. harzianum TMik was grown in two-step liquid cultures. For inoculation fungus disks (PDA Perti 

dishes) used to inoculate 200mL of potato dextrose broth (PDB) in a 300-mL Erlenmeyer flask. 

Mycelia were grown at 25° C on a shaker at 120 rpm for 72 h. The mycelium, harvest by filtration 

through Whatman 3MM paper and washed with deionized water, was immediately used to inoculate 

a 500 mL  flask  containing  300 mL  defined  synthetic  media  (SM)  containing  per  liter:  680mg  
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KH2PO4, 870mg K2HPO4, 1g NH4NO3, 200mg KCl, 200mg CaCl2, 200mg MgSO4*7H2O, 2mg 

FeSO4, 2mg MnSO4 and 2mg ZnSO4) with supplementation of glucose 1% (w/v) as carbon source. 

To develop inexpensive substrates for the growth of T. harzianum and effective inducers for 

enzymatic production we used (1%) burley spent grain (BSG). The flasks were incubated at 25°C 

on a rotary shaker at 120 rpm for 96 h. All the above growth conditions were chosen in order to 

determine whether extracellular metabolites in culture broth were produced in vitro and, possibly, 

responsible for biological control of T. harzianum TMik against P. expansum, B. cinerea, and A. 

alternata

 

3.1 Direct inhibition of post-harvest pathogens on apple fruits 
 

 

 

Fig. 1. Direct application of the treatments, the wounded fruits were treated with 10 l (10 % and 5%) of cinnamon, 

clove, black pepper oils, or Tricoderma CF (100%), and after 1 h were inoculated with 20 l of P. expansum, B. 
cinerea, or A. alternata spore suspensions (3 x 105 spores/ml). 

 

 

Apple fruits obtained from the market were disinfected in sodium hypo-chloride (NaClO, 0.2 % as 

chlorine) for 5 min and rinsed under tap water, dried at room temperature and punctured with a 

sterile needle at the equatorial region (3mm depth, 3-4 mm wide, 3 wounds per fruit). Ten μl of the 

essential oils (10 % and 5 % concentrations) and of Trichoderma filtrate were dropped for each 

wound. The pathogens suspensions (20 μ1 3 x 10
5
 spores/ml) were applied after one hour from the 

treatments application in the same wound as described in (Fig. 1). Then the fruits were packed in 

growth chamber at 25 °C 60 % humidity and the decayed lesions were measured after 6 days. The 

inoculated fruits with the pathogens considered as controls. Each treatment was replicated three 

times, and the experiment repeated twice. 
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3.2 Induction of systemic resistance in apple fruit  
 

The fruits were sterilized, punctured as described in (3.1).  Then, the pathogens suspensions were 

applied  in a new wounds after 24 h from the treatments application, this wound is far away from 

the first one (treatments) by one centimetre as described in (Fig. 2). 

After that, the fruits were packed in growth chamber at 25 °C 60 % humidity and the decayed 

lesions were measured after 6 days. Each treatment was replicated three times, and the experiment 

repeated twice. 

 

 

Fig. 2. Indirect application of the treatments, the fruits wounds were treated with 10 l (10 % and 5% concentrations) of 

cinnamon, clove, black pepper oils, or Trichoderma CF (100%). After 24 h the fruits were inoculated with 20 l of P. 
expansum, B. cinerea, or A. alternata spore suspensions (3 x 105 spores/ml) at one centimetre distance from the 

treatment application. 
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4. Biofungicide formulation of black pepper essential oil and Trichoderma   filtrate by 

using chitosan as emulsifier 
 

Powdered chitosan and acetic acid 98% purity was obtained from SIGMA Chemical Co. (St. Louis, 

MO). The essential oils and Trichoderma CF were obtained as described before. Distilled water was 

used for the preparation of all solutions. The stock buffer solution was prepared by dispersing 100 

mM acetic acid in water and then adjusting the pH to 3 using 1 M HCl. The emulsifier solution was 

prepared by dispersing 2 % w/v powdered chitosan into stock buffer solution and agitated over 

night. The emulsion (mixture) was prepared by mixing of 1.25 % v/v black pepper oil and 50 % v/v 

Trichoderma CF with 48.75 % v/v emulsifier solution and homogenizing for 60s by using vortex. 

The emulsifier solution was used in order to create stable emulsion without droplet aggregation. 

 

 

4.1. Synergistic interactions between black pepper essential oil, Trichoderma culture 

filtrate and chitosan 
 

In vivo antifungal activity and synergistic effect of black pepper oil, Trichoderma CF and chitosan 

separately and all the possible combinations between them were tested in apple fruit infected by P. 

expansum. Limpel’s formula was used to asses the synergetic effect of combinations between black 

pepper oil, Trichoderma filtrate, and chitosan.  Limpel’s formula is  Ee = X+Y-(XY/100),  in which 

Ee is the expected effect from additive responses of two inhibitory agents and  X & Y are the 

percentages of inhibition relative to each agent used alone. Thus, if the combination of the two 

agents produces any value of inhibition greater than Ee then synergism exists. 

 

The used emulsions were (1)- 1.25 % v/v black pepper oil (2)-  50 % v/v Trichoderma filtrate  (3)-  

48.75 % v/v emulsifier solution (4) 1.25 % v/v black pepper oil + 50 % v/v Trichoderma filtrate  (5)  

1.25 % v/v black pepper oil + 48.75 % v/v emulsifier solution (6) 50 % v/v Trichoderma filtrate + 

48.75 % v/v emulsifier solution   (7)  the mixture of the three contents components. All the resultant 

emulsions were diluted by water except the mixture and shaken by vortex for 30 s before 

application to ensure a homogeneous essential oil mixture. Apple fruits were sterilized and 

punctured as shown in (Fig. 1), the fruits were sub-emerged in the emulsions and after 1 h 

inoculated by the pathogens. Non sub-emerged fruits were used as control. P. expansum pathogen 

suspension (20 μ1 3 x 10
5
 spores/ml) was   applied   after   one   hour from the treatments 

application  in  the  same wound. Then the fruits were packed  in  growth  chamber  at  25 °C  60 % 

humidity and the decayed lesions  were  measured  after  6 days.  The   inoculated   fruits   with   the  
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pathogen considered as controls. Each treatment was replicated three times, and the experiment 

repeated twice.   

 

 

4.3. Induction of systemic resistance in apple fruit 

 

As described before in the direct application (3.1), the indirect application experiment design was 

the same. But, in the indirect application the pathogens suspensions were applied in a new wounds 

after 24 h from the treatments application, this wound is far away from the first one (treatments) by 

one centimetre as described in (Fig. 2). 

 

 

 

 

5. Biochemical characterization of induced resistance in apple fruits caused by plant 

essential oils or a Trichoderma culture filtrate 

 

5.1 Phytoalexins detection and quantification 
 

The samples quantified by HPLC using SHAMAZU LC-10AD Liquid chromatography and 10 µl of 

the samples were injected to Phenomenex, Prodigy 5µ ODS3 100A, 4.6 X 250 mm diameter 

column after filtration by 0.45 µm syringe. 

The mobile phase A was made of HPLC water plus containing 0.1 % trifloroacetic acid (TFA); the 

mobile phase B was made of acetonitrile containing 0.1 % TFA. The elution gradient to obtain 

correct separation of the three deferent phytoalexins at solvent flow 0.5 ml/min was: 0-8 min, 80% 

(A) and 20% (B); 8-10 min, 65% (A) and 35% (B); 10-30 min, 55% (A) and 45% (B); 30-38 min, 

45% (A) and 55% (B); 38-40 min, 35% (A) and 65% (B); 40-45 min, 94% (A) and 6% (B). The 

phytoalexins were detected using a UV detector, SPD- M10A SHAMAZU   Diode Array Detector 

at extension and emission of wavelengths of 228, 324, and 341; respectively. The phytoalexins were 

identified by comparison to the retention  time of authentic calibration standards and quantified by 

peal area comparison using standard curves. Phytoalexins concentrations were calculated against 

authentic standards of scoparone, scopoletin, and umbilliferone ranging from 20-100 µg/ml. 
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5.2. The apple fruit proteome during the interaction with pathogen, essential oils 

and/or Trichoderma culture filtrate 

 

5.2.1. Fruits application and protein extraction of apple fruits using phenol extraction 

method  

                             
Apple fruits were sterilized, punctured as shown in (Fig. 3). Ten μl of the pathogens suspensions 

(20 μ1, 3 x 10
5
 spores/ml) were dropped in the centre wound; and 10 μl of essential oils (10 %) and 

of Trichoderma  were dropped in the other four wounds that surround the centre wound.  The 

distance between the centre wound and the other wounds is 2 centimetres. The control consisted of 

unwounded fruits, wounded fruits, wounded fruits treated with 1% tween, wounded fruits treated 

with the pathogen. Each treatment was replicated two times and each replicate consisted of two 

fruits. 

 

 

 

 
 

 
Fig. 3. Apple fruit central wound was inoculated with 20 μl of the pathogen suspension (3 x 105 spores/ml), then 10 μl 

of 10 l (10 % concentration) of cinnamon, clove, black pepper oils, or Trichoderma CF (100%) were dropped in the 
other four wounds surrounding the central one.  

 

 

5.2.2. Protein extraction, two dimensional electrophoresis (2-DE) and MALDI- TOF 

MS analysis 

 
Phenol-extracted proteins were done after 3 days from application accoeding to (Delaplace et al., 

2006). Approximately 2 g of apple fruit peels (fresh weight, FW) were collected from distance 

between the centre wound (pathogen)   and   the  treated  wounds  (treatment).  Then, homogenized 

using liquid nitrogen and incubated  on  ice  for  10  min  with  4 mL  of  extraction   buffer   (0.7 M  
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sucrose, 50 mMEDTA, 0.1 M KCl, 10 mM thiourea, 0.5 M Tris, pH 7.5 with 2 mM PMSF and 50 

mM DTT added sequentially). The homogenate was centrifuged (15 min, 13 0006 g, 4°C) and the 

supernatant was subsequently extracted (by vortexing at 1800 rpm) for 10 min with 5 mL of pH 8.0 

buffered phenol at room temperature  (RT). After centrifugation (10 min, 6000 g, 4°C), the phenol 

phase was re-extracted with 5 mL of extraction buffer during 10 min (RT) and centrifuged again 

using the same parameters. The buffer phase was removed. The proteins contained in the phenol 

phase were precipitated overnight at –20 °C by the addition of 20 mL of 0.15 M ammonium acetate 

in methanol and then centrifuged at 20 000 g for 20 min at 4°C. The pellet was washed twice with 4 

mL of 0.1  M cold ammonium acetate in methanol and once with 10 mM DTT cold acetone. The 

washed  pellet was air-dried for 30 min at RT and then solubilized in 200 µL of a rehydration buffer 

modified from (5 M urea, 2 M thiourea, 2% w/v CHAPS, 2% w/v 3-(4-heptyl)phenyl-3-hydroxy-

propyl-dimethylammonio-propanesulfonate (C7BzO), 20 mM DTT, 5 mM tris(2-carboxyethyl) 

phosphine hydrochloride (TCEP-HCl)) during 45 min at RT before storage at -80 °C. The 

rehydration buffer volume was added in one step to thoroughly wet the inner walls of a 2 mL 

eppendorf tubes   and dissolve the protein pellet using vortex 20 min. 

Protein concentration was measured using the Bio-Rad  protein assay dye reagent consisting of 

phosphoric acid and methanol (Bio-Rad Laboratories, Hercules, CA, USA) BSA was used  as a 

standard. The protein concentration was expressed as µg/ml. 

 

The purity and overall quality of protein extracts were evaluated with Laemmli buffer SDS-PAGE. 

Protein (1 mg) was suspended in 15 µL of loading buffer and transferred to Bio-Rad Mini-Protean 

TGX Gel. The protein marker which used was Precision plus protein standards BIO-RAD with 

molecular weight range (250, 100, 75, 50, 37, 25, 20, 15, and 10) kDs. Electrophoresis was 

conducted using a Bio-Rad mini-Protean™ II apparatus (Bio-Rad Laboratories) at 100 V for 1.5 h. 

The gel was then stained using EZBlue Gel Staining Reagent (Sigma, USA) overnight and 

destained with water according to the manufacturer instructions. 

 

Isoelectric focusing and two dimensional electrophoresis (2-DE).   Isoelectric focusing (IEF) was 

carried out by using 7 cm immobilised-pH-gradient (IPG) strips (Bio-Rad, Richmond, CA, USA) 

with a pH  4-7. IEF was performed on a Protean IEF Cell (BioRad), using 7cm ReadyStrip IPG 

strips with a linear pH gradient of 4–7 (BioRad).  Protein  samples  (750 mg  for preparative gels), 

were  loaded  onto   strips  and  soaked  in  rehydration  buffer   (final volume 150 µL)   as   passive  
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rehydration over night at room temperature, the rehydration buffer containing 5 M urea, 2 M 

thiourea, 2% w/v CHAPS, 2% w/v 3-(4-heptyl)phenyl-3-hydroxy-propyl-dimethylammonio-

propanesulfonate (C7BzO), 20 mM DTT, 5 mM tris (2-carboxyethyl) phosphine hydrochloride 

(TCEP-HCl))  and 0.2% v/v carrier ampholyte.  Prior to the second dimension, the gel strips were 

equilibrated in 6 M urea, 20% w/v glycerol, 2% w/v SDS, 50 mM Tris-HCl pH 8.8, and 2% w/v 

DTT for 10 min, followed by 10 min in the same buffer containing 2.5% w/v iodoacetamide.  

Electrophoresis in the second dimension was carried out using a Protean apparatus (BioRad) and 

12% polyacrylamide gels (7 cm) in 25 mM Tris pH 8.3, 0.192 M glycine and 0.1% w/v SDS, with 

100 V applied for 1.5 h. Two replicates for each sample were done. Gels were stained overnight 

with EZBlue Gel Staining Reagent and destained with deionised water 5h. Each protein extract was 

run on duplicate gels. Gel images were acquired by a GS-800 Imaging Densitometer (Bio-Rad) and 

analysed with the PD-Quest software. Image files were recorded by using a red filter (wavelength 

595-750 nm) and a resolution of 36,3 x 36,3 microns. The signal intensity of each spot was 

determined in pixel units (Optical Density, O.D.) and normalized to the sum of the intensities of all 

the spots included in the standard gel. Each spot is indicated with the SSP number (Standard Spot 

Number) assigned by PD-Quest software. Spot detection and matching between gels were 

performed. For quantitative analysis, after normalization of the spot densities against the whole-gel 

densities, the percentage volume of each spot was averaged for two different gels performed. 

 

MALDI-TOF MS analyses were performed as described by (Talamo et al., 2003) using Voyager 

DE-Pro spectrometer (PerSeptive BioSystems, Framingham, MA, USA) equipped with an N2 laser 

(λ = 337 nm). The protein spots were excised from gels and digested with bovine trypsin. Tryptic 

digested peptides were re-suspended in 10 ml of a 1% acetic acid solution. The samples were mixed 

(1:1) with a matrix of a saturated a-cyano-4-hydroxycinnaminic acid (HCCA) solution [10 mg/ml 

acetonitrile (ACN) / 0.2% trifluoroacetic acid (TFA), 70/30] (SIGMA). Then, 1ml of the mixture 

was deposited on the MALDI (matrix-assisted laser desorption/ionisation) plate and allowed to dry 

under vacuum.  

 

Peptide mass spectra were obtained on a Voyager-DE Pro MALDI-TOF (time of flight) mass 

spectrometer (Applied Biosystem, Foster City, CA, U.S.A.) equipped with a 337 nm laser and delay 

extraction, operated in positive-ion reflector mode for the mass range between 890 and 3500 Da. 

Mass calibration was performed with the  ions  from  human  adrenocorticotropic  hormone - ACTH  
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(fragment 18-39) (Sigma) at 2465,1989 Da, and Angiotensin III human (MP Biomedicals, Irvine, 

CA, USA) at 931,5154 Da as internal standards. Peptide mass fingerprint (PMF) data were matched 

to the National Centre Biotechnology Information (NCBI) non-redundant database entries against 

proteins from plant or all species, using Mascot software (Matrix Science, London, UK) 

(http://www.matrix-science.com). The following search parameters were applied: one missed 

cleavage by trypsin, mass tolerance: ± 1 kDa, alkylation of cysteine by carbamidomethylation was 

set as variable modification. The Mascot program compares theoretical and experimental peptides 

values derived by virtual hydrolysis of proteins present in the database with specific proteolytic 

agent, and then supplies a list of hypothetical candidates with the probability that the peptides found 

belong to that species. Similarities between the peptide fragmentation of apple protein clones and 

known proteins were determined. Moreover, Matrix science database 

(www.matrixscience.com/home.html) was used to determine if the known proteins were 

homologous to the analysed protein spots. 
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Results 
 

 

1.  Essential oils extraction, analysis and phytotoxicity 

 

1.1. Essential oils extraction using steam distillation  

  

One hundred grams of cinnamon dried bark, dried flower buds of clove, and dried fruits of 

black pepper used for extraction in yielded, by a steam distillation method, 0.9 g, 8.35 g and 

1.63 g of pure oil respectively.  

 

1.2. Gas chromatography-mass spectrometry (GC-MS) characterization 
 

Five microliters of each extracted essential oil were dissolved in 95 μl of ethyl acetate and 1 μl of 

this solution was analysed by gas chromatography mass spectrometry (GC-MS) to obtain the 

molecular profile (Tab. 2). We found 6 different molecules in cinnamon oil of which the main was 

the aromatic monoterpene cinnamaldehyde (73.2 %). In clove oil, only 4 different molecules were 

detected and the predominant one was the phenolic compound eugenol (55.1%). The black pepper 

was the most complex mixture: it contained 16 different molecules of which the most abundant was 

the sesquiterpene caryophyllene (21.4 %). Notably, cinnamaldehyde and eugenol were exclusively 

present in cinnamon and clove essential oil, while caryophyllene was identified in all the three 

essential oils analysed.  
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Table 2. GC-MS analysis of the essential oils extracted from cinnamon, clove, or black pepper. In the table 

are reported only the compounds >   1%. 

  
Major components of the essential oils assessed by GC-MS 

Compound 
Cinnamon 

oil (%) 

Clove 

oil (%) 

Black pepper 

oil (%) 

Eugenol 3,62 55,11 - 

  Cinnamaldehyde 73,24 - - 

  1,6-Octadien-3-ol, 3,7-dimethyl 1,13 - - 
  Caryophyllene 6,28 33,12 21,4 

  à-Caryophyllene 1,15 3,43 1,4 

  2-Propen-1-ol, 3-phenyl-, acetate 6,95 - - 

  Phenol, 2-methoxy-4-(2-propenyl)-, acetate - 5,77 - 

  Bicyclo[3.1.0]hexane, 4-methyl-1-(1-methylethyl) - - 2,35 

  1R-à-Pinene - - 7,19 
  à-Phellandrene - - 11,12 

  Bicyclo[3.1.1]heptane, 6,6-dimethyl-2-methylene - - 9,45 

  á-Myrcene - - 1,88 

  à-Phellandrene - - 2,77 

  Tricyclo[2.2.1.0(2,6)]heptane, 1,3,3-trimethyl - - 10,85 

  Benzene, 1-methyl-2-(1-methylethyl) - - 1,79 
  Limonene - - 15,53 

  Copaene - - 1,67 

  Cyclohexane, 1-ethenyl-1-methyl-2,4-bis(1-methylethenyl) - - 1 

  Naphthalene, decahydro-4a-methyl-1-methylene 

 
- - 1,86 

  Naphthalene, 1,2,3,4,4a,5,6,8a-octahydro-4a,8-dimethyl - - 1,29 

  Cyclohexene, 1-methyl-4-(5-methyl-1-methylene-4-hexenyl) - - 1,15 
  

 

 

 

 

1.3. Phytotoxicity of cinnamon, clove and black pepper essential oils  
 

In order to determine the phytotoxicity level of the essential oils, tests were conducted by seeding 

tomato on water agar added with 0.05%, 0.025%, 0.012%, 0.006%, 0.003%, 0.0015% and 0.0008% 

of each extract. Root elongation was recorded after seven days from incubation. The most 

phytotoxic oil extract was that from cinnamon, which inhibited root elongation by 55% when used 

at 0.0015% and 95% at 0.006%. The maximum cinnamon oil concentration that didn’t produce 

phytotoxicity on tomato seedlings was 0.0008%. Clove oil inhibited root elongation by 34% when 

used at 0.0015% and 97% when applied at 0.012%.  The maximum  clove  oil   concentration   that  
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didn’t produce phytotoxicity on tomato seedlings was 0.0008%. Pepper oil was not phytotoxic: it 

didn’t compromise the root elongation at any of the tested concentrations (Fig. 4). 
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Fig. 4. Effect of cinnamon, clove and black pepper essential oils on tomato root elongation. Tomato seeds were sown on 

water agar media containing the essential oils at different concentration (0.05%, 0.025%, 0.012%, 0.006%, 0.003%, 
0.0015% and 0.0008%). 

 

 

 

 

2.  In vitro antifungal activity of cinnamon, clove and black pepper essential oils  

 

Two different assays were performed in order to test the antifungal activity of the essential oils 

extracted from cinnamon, clove, or black pepper. 

 

2.1 Antifungal activity of pure essential oils by direct application  

 
Petri dishes containing 1/5 diluted PDA were inoculated in the centre with the pathogen plugs (P. 

expansum, B. cinerea, or A. alternata) then 10 µL of a dilution from the essential oils where added 

directly on the top of the growing colonies. Cinnamon essential oil showed the stronger antifungal 

activity against the three pathogens: 80% of radial growth inhibition (RGI) was obtained when it 

was applied at 5% concentration and 100% of RGI when used at 10%. Black pepper essential oil 

was more active in controlling A. alternata and B. cinerea than of P. expansum radial growth, in 

fact 80 % of RGI for A. alternata and B. cinerea was obtained at 5% concentration, while P. 

expansum was inhibited by only 20% of in the same condition (Figs. 5, 6 and 7). 
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Fig. 5. Radial Growth Inhibition (RGI) of P. expansum colony by plant essential oils (cinnamon, clove, or black 

pepper), 25%, 10%, and 5% were used as dose and the fungal colony diameter was measured 3 days after the 

inoculation. 

 

 Botrytis cinerea 

0%

20%

40%

60%

80%

100%

25% 10% 5%

Concentration (%)

In
h

ib
it

io
n

 (
%

) Cinnamon

Clove

Black pepper

 

Fig. 6. Radial Growth Inhibition (RGI) of B. cinerea colony by plant essential oils (cinnamon, clove, or black pepper), 

25%, 10%, and 5% were used as dose and the fungal colony diameter was measured 3 days after the inoculation. 
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Fig. 7. Radial Growth Inhibition (RGI) of A. alternata colony by plant essential oils (cinnamon, clove, or black pepper), 

25%, 10%, and 5% were used as dose and the fungal colony diameter was measured 3 days after the inoculation. 
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2.2 Volatile antifungal activity of pure essential oils 

 

To test the volatile antifungal activity of the three essential oils, a fast assay based on the optical 

density changes caused by spore germination in liquid media was performed. Four microliters of the 

essential oils diluted (100%, 50%, 25% and 12.5%) in mineral oil were used for treatments.  

The volatile component of cinnamon oil generated a Spore Germination Inhibition (SGI) of 55% on 

B. cinerea, 44% on A. alternata and 16% on P. expansum (Fig. 8). Similar results were obtained 

with the volatile component of clove oil (Fig. 9), while the volatile component of pepper had a 

stronger antifungal activity against the three tested pathogens (Fig. 10). 
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Fig. 8. Spore Germination Inhibition (SGI) of   P. expansum, B. cinerea, or A. alternata by the volatile fraction of 

100%, 50%, 25% and 12.5% cinnamon essential oil after 48 hours of interaction with pathogen spore suspension.  
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Fig. 9. Spore Germination Inhibition (SGI) of P. expansum, B. cinerea, or A. alternata by the volatile fraction of 100%, 

50%, 25% and 12.5% clove essential oil after 48 hours of interaction with pathogen spore suspension. 
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Fig. 10. Spore Germination Inhibition (SGI) of P. expansum, B. cinerea, or A. alternata by the volatile fraction of 

100%, 50%, 25% and 12.5% black pepper essential oil after 48 hours of interaction with pathogen spore suspension. 

 

 

 
3.  Post-harvest biocontrol of apple decay disease caused by Alternaria alternata, 

Penicillium expansum or Botrytis cinerea 

 
The efficacy of the three essential oils and a culture filtrate (CF) from the starin MK1 of T. 

harzianum in controlling the development of the pathogens P. expansum, B. cinerea, or A. alternata 

on apple fruits has been tested in vivo. Direct pathogen inhibition and systemic resistance induction 

in has been tested. 

 

 

3.1 Direct inhibition of post-harvest pathogens on apple fruits 
 

To assess the direct effect of the three essential oils or Trichoderma CF on the disease development, 

apples were wounded and loaded with 10 μl of the essential oils or Trichoderma CF. Twenty 

microliters of spore suspension of the pathogen (3 x 10
5
 spores/ml) were inoculated after one hour 

in the same wound were the treatment was applied. The diameter of the decayed lesions was 

recorded after six days. Pathogens development was completely blocked on apple fruits treated with 

cinnamon oil 10%. B. cinerea development was also strongly impaired by the treatments with 

cinnamon oil 5% and clove oil (10% and 5%). Black pepper oil and Trichoderma CF were the less 

active in controlling the decay of apple fruits reaching no more than a 11% of disease development 

inhibition (Figs. 11 and 12).  
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Fig. 11.  Direct effect of plant essential oil and Trichoderma CF application on decay disease development of apple 

fruits 6 days from treatments. The wounded fruits were treated with 10 l (10 % and 5%) of cinnamon, clove, black 

pepper oils, or Tricoderma CF (100%), and after 1 h were inoculated with 20 l of P. expansum, B. cinerea, or A. 
alternata spore suspensions (3 x 105 spores/ml). 

 

 
 

 
 

 
 

Fig. 12. Effect of cinnamon oil treatments on apple fruit decay development (direct effect on the pathogen). 

 



Results 
 

 29 
 

 

3.2 Induction of systemic resistance in apple fruit  
 

To verify if the application of essential oils or Trichoderma CF induces systemic resistance in 

apple, the fruits were first treated with the compound and then inoculated with the pathogen in a 

new wound after 24 h. A good induction of resistance, with up to 29 % reduction of disease 

development compared with the untreated control, was obtained against P. expansum and B. cinerea 

by using cinnamon and clove oils (10% and 5%). Trichoderma CF and black pepper oil induced 

lower level of systemic resistance (up to 8% of disease reduction compared with the control) against 

the three tested pathogens (Fig. 13). 
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Fig. 13. Effect of essential oil and Trichoderma CF on decay disease development of apple fruits by induced systemic 

resistance. The fruits wounds were treated with 10 l (10 % and 5% concentrations) of cinnamon, clove, black pepper 

oils, or Trichoderma CF (100%). After 24 h the fruits were inoculated with 20 l of P. expansum, B. cinerea, or A. 
alternata spore suspensions (3 x 105 spores/ml) at one centimetre distance from the treatment application, and the data 

collected after 6 days. 
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4.  Synergistic interactions between black pepper essential oil, Trichoderma culture  

     filtrate and chitosan 
 

 

A combination of essential oil, Trichoderma CF and chitosan (used as emulsifier) has been assayed 

in order to verify the possibility to develop a bio-formulation containing more components acting 

synergistically with different mechanisms of action synergic between them. Black pepper oil, 

Trichoderma CF and chitosan have been chosen: the first for its antifungal and decay control 

activities and lack of phytotoxicity, the second for the known direct and indirect antimicrobial 

activity and the third for its emulsifier property.  Apple fruits were sterilized and wounded, then 

submerged in the prepared emulsions containing the three components in the following ratio: black 

pepper oil 1.25 % v/v, Trichoderma CF 50 % v/v, chitosan 48.75 % v/v, alone or in all the possible 

combinations. The emulsifier solution (chitosan) was prepared by dispersing 2 % w/v powdered 

chitosan in 100 mM acetic acid. After 1 h the fruits were inoculated by using the pathogen 

suspension (20 μ1 of 3 x 10
5
 spores/ml). The incidence of decay, on treated apple, was recorded 

after six days from pathogen application (Fig. 14). 

A synergistic effect in controlling the disease development was found when black pepper oil or 

Trichoderma CF were mixed with chitosan (decay development was reduced by 35% and 22% 

respectively), but the stronger activity was shown by all the three components applied together. In 

this case the inhibition of apple decay caused by P. expansum was reduced up to 50% (Fig. 14).  

In the case of induction of systemic resistance, any of the mixture of the tested compounds showed 

a synergistic interaction (Fig.14). 
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Fig. 14. Inhibition of apple decay by black pepper oil (1.25%), Trichoderma CF (50%) and chitosan (48,75%), applied 

alone and in combination. Disease development was recorded 6 days after P. expansum application. Direct effect was 

tested by  submerging the wounded fruits in  the compounds and  inoculating them after  1 h with  20 l of P. expansum 
spore suspension (3 x 105  spores/ml). Induction of systemic resistance (indirect approach) was tested by inoculating the 

pathogen at a different sites of the treatment. 

 

 

 

 

 

 

 
 

 

 

  

  

 

 

 

 

 

 

 

 

Fig. 15. The direct (A) and indirect effect (B) of treatments with the biocontrol mixture (black pepper oil 1.25 % + 

Trichoderma CF 50 % + ES 48.75 %) on P. expansum development on apple fruits.  
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5.   Biochemical characterization of induced resistance in apple fruits caused by plant 

essential oils or a Trichoderma culture filtrate 

 

Induction of resistance in plant is the result of a complex modification of the molecular, 

biochemical and cellular status of the plant.  Several are the metabolites and proteins characterized 

in plant and know to be involved in these changes. Application of the three essential oils (black 

pepper, cinnamon, or clove) and of Trichoderma CF induced systemic resistance in apple fruits. In 

order to study the molecular mechanisms involved in the observed induction of resistance in apple 

fruit, proteome changes and phytoalexin accumulation have been analysed.  

 

 

5.1. Phytoalexins detection and quantification 
  

By using ethyl acetate, organic extracts were prepared from apples previously (24 and 72 hours) 

wounded and treated with each of the essential oils (black pepper, cinnamon, clove) or  

Trichoderma CF.  The organic extracts were examined by HPLC analysis to monitor the presence 

of the phytoalexins scopoletin, umbelliferone, and scoparone.  

 

The organic extracts were analysed by using HPLC (SHAMAZU LC-10AD Liquid chromatography  

"Phenomenex, Prodigy 5µ ODS3 100A, 4.6 X 250 mm diameter column") and the three 

phytoalexins were detected using florescent light detector. The retention time for the standards 

corresponding to scopoletin, umbelliferone, and scoparone was 19.3, 19.7, and 22.5 min 

respectively. The concentration of the three phytoalexins in the samples was calculated by 

interpolation with the standard curve. The accumulated levels of the phytoalexins were determined 

24 and 72 hours after the treatments application. Cinnamon and clove oil treatments induced the 

three phytoalexins 24 and 72 hours after the treatments (p.t.), while black pepper and Trichoderma 

CF induced umbelliferone and scoparone 24 hours p.t. and scopoletin and scoparone 72 hours p.t. 

(Fig. 16-17). 
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Fig. 16. Increasing ratio of the phytoalexins scopoletin, umbelliferone, and scoparone in apple fruits 24 hours after 

treatment with black pepper, cinnamon, clove or Trichoderma CF as compared with the untreated control. 
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Fig. 17. Increasing ratio of the phytoalexins scopoletin, umbelliferone, and scoparone in apple fruits 72 hours after 

treatment with black pepper, cinnamon, clove or Trichoderma CF as compared with the untreated control. 
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5.2. The apple fruit proteome during the interaction with pathogen, essential oils 

and/or Trichoderma culture filtrate 

 
Induction of systemic resistance in apple fruits by using essential oil extracts or Trichoderma CF 

has been assessed by in vivo tests (Fig. 3). Biotic and abiotic stresses can strongly modulate the 

proteome of specific tissues.  

 

 

5.2.1 Protein extraction and two-dimensional electrophoresis (2-DE) analysis 

 

Proteins of apple fruits were extracted from 21 different interactions (Tab. 3). Apples used for this 

experiment were treated in the same way as for in vivo disease control experiments. In detail, 

samples to be extracted were collected at sites distant 2 cm from the centre of the wound (where 

pathogen and/or molecules were applied) 3 days after treatments. Total proteins from apple tissues 

were obtained by using a phenol extraction method. We used this method followed by ammonium 

acetate/methanol precipitation because apple fruit tissue is recalcitrant to protein extraction for 2DE 

analysis. By using this method we obtained a good yield of protein (2 mg of total protein from 2 gr 

of fresh tissue) and avoided the interference caused by pigments, carbohydrates, polyphenols, 

polysaccharides, and starch. The passive rehydration and isoelectric focusing (IEF) was carried out 

by using 7 cm immobilised-pH-gradient strips with a pH gradient 4-7. IEF was performed on a 

Protean IEF Cell (first-dimensional electrophoresis), and the second dimension (2D) 

electrophoreses were run by using SDS-PAGE (8–12%); all the gels were stained with Brilliant 

Blue Comassie (CBB) (Fig. 18). 
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Table 3. Proteomic analysis experimental design.  

 

Apple treatments 

 

 

 

1- Unwounded fruit (control) 12- Wounded + Clove 10% + B. cinerea 

2- Wounded + Tween 1% 13- Wounded + Clove 10% + A. alternata 

3- Wounded + Penicillium expansum 14- Wounded + Black pepper 10% 

4- Wounded + Botrytis cinerea 15- Wounded + Black pepper 10% + P. expansum 

5- Wounded + Alternaria alternata 16- Wounded + Black pepper 10%  + B. cinerea 

6- Wounded + Cinnamon 10% 17- Wounded + Black pepper 10%  + A. alternata 

7- Wounded + Cinnamon 10% + P. expansum 18- Wounded + Trichoderma culture filtrate (CF) 

8- Wounded + Cinnamon 10% + B. cinerea 19- Wounded +  Trichoderma CF + P .expansum 

9- Wounded + Cinnamon 10% + A. alternata 20- Wounded + Trichoderma CF + B. cinerea 

10- Wounded + Clove 10% 21- Wounded + Trichoderma CF + A. alternata 

11- Wounded + Clove 10% + P. expansum  

 

 

 

 

 

   pH 4-7                                                                                                pH 4-7 

          

 

 

 

 

 

 

 

 

 
 

 

 

                                       (Cinnamon)                                                    (Trichoderma culture filtrate) 

Fig. 18. Two-dimensional electrophoreses gels (SDS-PAGE gradient 8–12%) of protein extracted from apple tissue. 

Panel A: proteins obtained from apple treated with cinnamon oil (10%). Panel B: proteins obtained from apple treated 

with Trichoderma CF (100%). Spot numbering refers to Table 5 showing protein identification as obtained by MALDI-
TOF MS analysis 
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5.2.2 Differential protein spots obtained from the PD-Quest analysis of 2D gels  

 
Two dimensional gel analyses performed with the PD-Quest software (Bio-Rad) was found to be 

useful to generate the 2D maps from the various conditions of interaction, and perform quantitative 

and qualitative analysis of the differential protein spots. The obtained gels allowed the separation of 

hundreds of proteins and provided a representative picture of the proteome, as shown in (Tab. 4).  

 

 
Table 4. Changes occurring in the proteome of apple fruit tissue when different interaction conditions (pathogen, 

essential oil or Trichoderma CF) were compared. 
 

Treatments TOT DTOT ON OFF INCR DECR 

1- Tween 1%  89 43 3 6 10 24 

2- Penicillium expansum 140 63 4 5 46 8 

3- Botrytis cinerea 133 107 59 21 26 1 

4- Alternaria alternata 180 75 8 5 58 4 

5- Cinnamon 10% 134 55 1 3 19 32 

6- Cinnamon 10% + P. expansum 195 80 11 22 0 47 

7- Cinnamon 10% + B. cinerea 153 60 9 3 46 2 

8- Cinnamon 10% + A. alternata 143 65 20 23 0 22 

9- Clove 10% 114 89 18 45 24 2 

10- Clove 10% + P. expansum 204 166 63 46 53 4 

11- Clove 10% + B. cinerea 129 105 34 52 9 10 

12- Clove 10% + A. alternata 224 136 47 45 18 26 

13- Black pepper 10% 246 152 59 47 35 11 

14- Black pepper 10% + P. expansum 175 139 41 56 37 5 

15- Black pepper 10%  + B. cinerea 164 128 29 54 20 25 

16- Black pepper 10%  + A. alternata 160 127 33 59 26 9 

17- Trichoderma culture filtrate (CF) 228 66 11 33 6 16 

18- Trichoderma filtrate + P .expansum 158 132 57 48 27 5 

19- Trichoderma filtrate + B. cinerea 103 80 27 36 13 4 

20- Trichoderma filtrate + A. alternata 141 106 36 38 30 2 

 

 
TOT = Total number of spots 
TOTD = Total number of deferential spots 
ON = Number of spots present in the treatment compared to the unwounded control 
OFF = Number of spots present in the unwounded control compared to the treatment 
INCR = Number of spots whose intensity in the treatment increased more than two fold compared to the unwounded control 
DECR = Number of spots whose intensity in the treatment decreased more than two fold compared to the unwounded control 
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We extracted a substantial number of proteins from all apple tissues analysed, and obtained a 

satisfactory 2D electrophoresis separation.  PD-Quest analysis showed a consistent modification of 

all the interactive proteomes taken into account. In fact, the obtained differential spots (TOTD) 

varied from a minimum of 43 in tween 1% up to 166 in clove plus P. expansum treatment (Tab. 4). 

The data are summarized as follow: 

 

A) Only pathogens treatment 

 

The protein profile of the interaction between apple fruit and pathogens compared with the 

unwounded control indicated different responses.  The apple proteome of the interaction with P. 

expansum showed 63 differential proteins (TOTD) of which 4 novel, 5 absent, 46 increased and 8 

decreased. The proteome of the interaction with B. cinerea presented 107 differentially accumulated 

proteins of which 59 novel, 21 absent, 26 increased and 1 decreased. A. alternata treatment 

produced an apple proteome containing at least 74 differentially produced proteins of which 8 

novel, 5 absent, 58 increased and 4 decreased.  

 

B) Essential oils or Trichoderma culture filtrate treatment 
 

The proteomes obtained from these interactions compared with the unwounded control were very 

different from each other. Proteome obtained from cinnamon oil treatment presented 55 

differentially accumulated proteins of which 1 novel, 3 absent, 19 increased and 32 decreased. The 

apple proteome obtained after clove oil treatment contained 89 differentially accumulated proteins 

of which 18 novel, 45 absent, 24 increased and 2 decreased. Notably in the proteome of black 

pepper oil-treated apple 152 differentially accumulated proteins were detected of which 59 novel, 

47 absent, 35 increased and 11 decreased. Similarly, the proteome obtained after Trichoderma CF 

treatment presented 66 differentially accumulated proteins of which 11 novel, 33 absent, 6 

increased and 16 decreased. 

 

C) Cinnamon oil plus pathogens treatment 

 

Data from proteome analysis of the interaction between apple fruits, cinnamon oil and the three 

pathogens compared with unwounded control were interesting as well. The proteome profile of 

apple treated with cinnamon plus P. expansum showed 80 differentially accumulated proteins of 

which  9 novel,  3 absent,  46 increased  and  2  decreased. Even  the  presence   of   B. cinerea   and  
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cinnamon produced changes in the apple proteome; we identified 60 differentially accumulated 

proteins of which 9 novel, 3 absent, 46 increased and 2 decreased spots. Apple proteome from 

cinnamon plus A. alternata treatment showed 65 differentially accumulated proteins by which 20 

novel, 23 absent, 0 increased and 22 decreased.  

 

D) Clove oil plus pathogens treatment 

 

Proteomes obtained from the interaction between apple fruits, clove oil and the three pathogens 

compared with unwounded control also indicated different responses by the fruit. Apple proteome 

after clove plus P. expansum treatment showed 166 differentially accumulated proteins of which 63 

novel, 46 absent, 53 increased and 4 decreased. Otherwise, when clove plus B. cinerea were applied 

to apple fruit the obtained proteome showed 105 differentially accumulated proteins of which 34 

novel, 52 absent, 9 increased and 10 decreased. Apple proteome obtained after clove plus A. 

alternata treatment presented 136 differentially accumulated proteins of which 47 novel, 45 absent, 

18 increased and 26 decreased.  

 

E) Black pepper oil plus pathogens treatment 

 

The interaction between apple fruit, black pepper oil and pathogens also strongly changed the 

proteome of apple fruit tissue when compared with untreated control. Proteome obtained from black 

pepper oil plus P. expansum treatment showed 139 differentially accumulated proteins of which  41 

novel, 56 absent, 37 increased and 5 decreased. In black pepper oil plus B. cinerea treated proteome 

we found 128 differentially accumulated proteins of which 29 novel, 54 absent, 20 increased and 25 

decreased. While, black pepper oil plus A. alternata treated proteome showed 127 differentially 

accumulated proteins of which 33 novel, 59 absent, 26 increased and 9 decreased.  

 

F) Trichoderma culture filtrate plus pathogens treatment 

 

The apple protein profile obtained with Trichoderma filtrate plus   P. expansum treatment showed 

132 differentially accumulated proteins of which 57 novel, 48 absent, 27 increased and 5 decreased. 

When Trichoderma CF and B. cinerea were added the proteome showed 80 differentially 

accumulated proteins of which 27 novel, 36 absent, 13 increased and 4 decreased. While, 

Trichoderma filtrate plus A. alternata treatment caused changes  in  proteome  of  106  differentially  
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accumulated  proteins  of  which 36 novel, 38 absent, 30 increased and 2 decreased.  

 

 

5.2.3 MALDI-TOF MS analysis of the most important protein spots 
 

By comparing between all the apple proteome obtained, 29 of the most interesting differentially 

accumulated proteins were further identified by MALDI-TOF MS. To determine protein identity, 

these protein spots manually picked, digested with trypsin and subjected to a MALDI-TOF MS 

analysis. Because of the poorly solved apple genome a precise identification was very difficult. In 

fact, this analysis allowed us to classify with a high score three proteins from Malus domestica, one 

from Fragaria ananassa, one from Arabidopsis thaliana, one from Allium cepa, one from Hordeum 

vulgare, two from Homo sapiens, and twenty from different microorganisms (Tab. 5). 
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Table 5. Spots/proteins identified in Malus domestica  cv Golden Delicious by peptide mass MALDI-TOF fingerprint (MF)  and classified 

according to functional categories. Spot number, protein name, gene ID number, peptide sequence coverage, organism, peptide molecular weight, 

gene code, and protin function are listed.  

 

Spot N Prottein name 
Gen Bank gi 

or Gene 3D 

Peptide 

sequence 

coverage 

Organism 

Nominal 

Mass - 

Molecular 

weight (Da) 

Gene Function 

7716 Mal d 1.0209 3.30.530.20 81 Malus domestica 17514 PR-10 
Pathogenesis-related protein (PR-

10)  and defence response protein 

5321 Mal d 1 (isoform 1) 3.30.530.20 45 Malus domestica 17528 PR-10 
Pathogenesis-related protein (PR-

10)  and defence response protein 

6707  Mal d 1 (isoform 2) 3.30.530.20 49 Malus  domestica 17528 PR-10 
Pathogenesis-related protein (PR-

10) and defence response protein 

6609 Allergen Fra a 1 3.30.530.20 58 Fragaria ananassa 11113 PR-10 
Pathogenesis-related protein (PR-

10) and defence response protein 

2407 Brevinin-2Dye - 75 Rana dybowskii 3673 - Antimicrobial  protein 

7309 Chalcone-flavonone isomerase 3.50.70.10 55 Allium cepa 24156 - 
It is one of the key enzymes in the 
flavonoid (antimicrobial) biosynthesis. 

3317 
Ribosomal RNA small subunit 

methyltransferase H 
4784173 44 Methylibium petroleiphilum  34315 rsmH 

Specifically methylates the N4 

position of cytidine in 16S rRNA 

4314 Ribosomal protein L10 5967423 100 Mycobacterium abscessus  18157 rplJ 
helps coordinate tRNA movement 
through the large subunit 

2318 Ribosomal protein S20 281416192 97 Rhodoferax ferrireducens 10783 rpsT 
Binds directly to 16S ribosomal 

RNA 

4318 50S ribosomal protein (isoform 1) 3.30.1390.20 39 Chlorobium sp. 6948 rpmD Translational repressor protein 

4211 30S ribosomal protein (isoform 1) 2736539 49 Bdellovibrio sp.  10172 
 

rpsQ 
Binds together with S18 to 16S 

ribosomal RNA 

2308 50S ribosomal protein (isoform 2) 3.30.190.20 37 Liberibacter asiaticus 24700 rplA Translational repressor protein 

6607 30S ribosomal protein (isoform 2) 7379047 29 Thermotoga neapolitana 18013 rpsG 
Binds together with S18 to 16S 

ribosomal RNA 

4417 
Bifunctional cystathionine 

gamma-lyase 
- 63 Arabidopsis thaliana 34304 DES1 

Involved in maintaining cysteine 

homeostasis through desulfuration 

of  L-cysteine.  

http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?lvl=0&id=3750
http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?lvl=0&id=420662
http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?lvl=0&id=561007
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6308 Alcohol dehydrogenase 269929286 74 Thermoplasma acidophilum 
35885 

 
- 

Alcohol dehydrogenase is our 

primary defense against alcohol. 

6307 Protein translocase subunit SecA 5424713 24 Xanthobacter autotrophicus  10180 secA ATP-driven molecular motor driving 

6408 
Tubulin polymerization-
promoting protein family 

395841984 80 Homo sapiens 25000 TPPP 
This family encodes a 25 kDa 
protein that is phosphorylated by a 

Ser/Thr-Pro kinase. 

6509 Junctional adhesion molecule A 338723351 64 Homo sapiens 32562 F11R 
Interacts with the orthoreovirus 

sigma-1 capsid protein 

4506 Virion infectivity factor 2.60.40.10 44 Simian immunodeficiency virus 26070 vif 
Counteracts the innate antiviral 

activity of APOBEC3G 

4520 Cysteine-tRNA ligase 1480253 25 Methanosarcina mazei  53827 cysS 
Has a role in aminoacyl-tRNA 

synthetase and ATP binding. 

5305 
dual-specificity RNA 

methyltransferase 
6319006 33 Clostridium botulinum  39746 rlmN 

Intermediate methylation of a 

conserved cysteine residue 

5520 
Dihydroorotate dehydrogenase 

(quinone) 
7062774 26 E. coli 36794 pyrD 

It catalyzes the conversion of 

dihydroorotate  to orotate with 

quinone. 

5524 Thiazole synthase 6332377 31 Sulfurihydrogenibium sp. 28689 thiG Has a role in thiamine biosynthesis. 

4408 Thiazole synthase 3.20.20.70 33 Salmonella choleraesius 26808 thiG Has a role in thiamine biosynthesis 

3210 Mycothiol acetyltransferase 9166933 21 Thermobispora bispora 32168 mshD 

The biosynthetic pathway for mycothiol is 

catalyzed by mycothiol synthase (MshD), 

which acetylates the cysteinyl amine of 

cysteine–glucosamine–inositol 

2415 Ornithine carbamoyltransferase - 85 Pseudomonas putida 4144 arcB 
It catalyzes the formation of the 

amino acid citrulline 

2409 Subtilisin-chymotrypsin inhibitor 3.30.10.10 80 Hordeum vulgare 8958 - 
Protease inhibitor and serine 

protease inhibitor 

2403 Ferrous iron transport protein 1.10.10.10 41 Klebsiella pneumoniae 8795 feoC 
It works as a transcriptional regulator 

that controls feoABC expression. 

7505 Flagellar transcriptional regulator 5816233 34 Bordetella petrii 11754 flhD 
Activates expression of class 2 

flagellar genes 

 

http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?lvl=0&id=78245
http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?id=9606
http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?lvl=0&id=192952
http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?lvl=0&id=508767
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5.2.4  In silico protein identification  

 

As expected, all the treatments modified the proteome of apple fruits by activating the accumulation 

of a variety of different proteins compared with the control. Between all the differential expressed 

proteins, 29 proteins were further analysed by using MALDI-TOF and identified by in silico 

analysis. They were subdivided in 4 groups: pathogenesis-related proteins belonging to PR-10 sub-

family, antimicrobial proteins, enzymes involved in the biosynthesis of antimicrobial compounds 

pathway and ribosomal proteins (Tab. 6). 
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Table 6.  Proteome spots of 29 deferentially accumulated proteins in apple fruits treated as indicated below. 

Spot N Protein name 
Treatments 

Wou. Twe. Pen. Bot. Alt. Cin. 
Cin.+  

Pen. 

Cin.+  

Bot.. 

Cin.+  

Alt. 
Clo. 

Clo.+ 

Pen. 

Clo.+ 

Bot. 

Clo.+ 

Alt. 
Pep. 

Pep.+ 

Pen. 

Pep.+ 

Bot. 

Pep.+ 

Alt. 
Fil. 

Filt.+ 

Pen. 

Filt.+ 

Bot. 

Filt.+ 

Alt. 

7716 Mal d 1.0209 17.5 14.5 35.8 35 3.7 29 4.3 39.9 12.4 12.5 40 5 39 9.4 21.2 7.9 26.1 0 0 0 0 

5321 Mal d 1 (isoform 1) 0 0 0 0 0 17.2 2.3 0 0 0 0 29.7 0 7.9 0 0 0 1.5 0 0 0 

6707 Mal d 1 (isoform 2) 0 0 0 0 2.2 0 0.5 0 0 0 0 0 0 2.6 1.2 0 0 3.4 0 0 0 

6609 Allergen Fra a 1 0.4 0 3.4 22.3 1.3 1.6 0 0 0 0 6.4 0 0 0 0 0 0 0 0 0 0 

2407 Brevinin-2Dye 0 0 0 0 0 0 0 0 2.6 0 0 0 22.2 67 0 0 34.6 2.2 3.8 0 0 

7309 Chalcone-flavonone isomerase 4.5 0 0 0 33 2 1 5.2 0 0 0 0 0 12.7 0 0 0 0.5 0 0 0 

3317 
Ribosomal RNA small subunit    

methyltransferase 
0 0 0 0 0 2 4.9 0 8.1 0 0 0 0 9.7 0 0 0 3.5 0 0 0 

4314 Ribosomal protein L10 5 0 0 8.4 0 10 0 40.9 0 0 0 0 0 46.7 0 36.5 0 0.2 18.1 0 0 

2318 Ribosomal protein S20 33.5 76.5 0 0 0 0.6 0 0 0  0 0 0 0 0 0 0 0 0 0 0 

4318 50S ribosomal protein 0 0 5 0 0 1.1 0 7.2 0 0 0 0 0 9.6 0 0 0 0 0.7 0 0 

4211 30S ribosomal protein 0 0 0 0 0 0 0 0 0 0 0 0 0 5.7 0 0 0 0 0 0 0 

2308 50S ribosomal protein 0 0 0 0 0 0.6 0 0 0 0 0 0 0 9.9 0 0 0 0.4 0 0 0 

6607 30S ribosomal protein 8.1 3.2 2 13 6.7 1.8 1.5 3.7 0 
6.4 

 
5.1 7.5 2.4 1.6 5.1 2.7 2 0.4 12.7 8.8 33.2 

4417 
Bifunctional cystathionine 

gamma-lyase 
0 9.9 0 0 0 1.5 1.2 11.3 5.7 0 0 6.1 0 9.4 0 0 0 1.2 0 0 0 

6308 Alcohol dehydrogenase 15 18.4 39 30 55 7.5 7.3 43 3.2 8.2 
3 

 
16.1 3.1 8.9 4.2 6.2 1.9 0.5 13.5 9.1 29.2 

6307 Protein translocase subunit SecA 0 55.9 0 71 40.2 23.5 5.3 0 0 55 28 45 20 0 0 14.3 30.1 4 55.5 36 48 

6408 Tubulin polymerization-promoting 0.9 0 0 0 15.2 1.1 0.5 20.8 0 0 0 0 0 0 0 0 0 0.4 0 0 0 

6509 Junctional adhesion molecule A 14.2 7.6 18 10.9 42 4.5 2.6 45 0 12.4 23 18.3 21 23.7 13.5 4.3 17.2 1.8 24.9 12.3 42.3 

4506 Virion infectivity factor 14.2 0 0 0 15.3 1.4 0 0 0 0 43 0 8.4 3.3 4.7 0 0 0.2 6.1 0 15.2 

4520 Cysteine-tRNA ligase 0 0 0 15.3 25.8 1.4 0.4 0 0 0 0 0 0 0 2.4 0 0 0 7.5 0 0 

5305 Dual-specificity RNA methyltransferas 18 13.8 34 5.1 16.5 5.1 0 45 11 41.4 34.7 17.2 20.6 31.1 39.1 8.4 5.6 3.7 32 8.1 38.2 

5520 Dihydroorotate dehydrogenase  5.1 0 0 0 0 2.1 0 10.7 0 6.7 0 0 0 13.1 5.6 0.6 0 1.2 1 0.3 0 

5524 Thiazole synthase 0 0 7.2 0 23.8 0 0 0 0 0 0 15.2 0 0 0 0 2.5 1.5 0 0 0 

4408 Thiazole synthase 27 0 56 76 0 50 0 80 0 12.3 15.4 23.3 0 45.2 0 0 0 40.5 50.5 0 0 

3210 Mycothiol acetyltransferase 0 0 0 0 0 1.3 1.2 0 0 0 0 0 0 0 0 2.5 0 1.5 0.5 0 0 

2415 Ornithine carbamoyltransferase 0 0 0 0 0 0 0 27.5 0 0 0 0 0 0 0 0 0.4 0.7 58.3 0 0 

2409 Subtilisin-chymotrypsin inhibitor 0.7 0 0 0 0 1 1 11.9 0 0 0 0 0 0 0 0 0 7.1 0 0 0 

2403 Ferrous iron transport protein 1.9 0 0 0 0 0 0 14.1 7.8 0 0 0 0 0 0 0 0 4.5 0 24.9 21.1 

7505 Flagellar transcriptional regulator 1.8 0 2.1 0 12.1 0 0.6 0 0.8 0 0 0 0 1.8 3.6 1.2 1.2 0.4 0.1 0 8.2 

The used treatments as following: 

(Unwou. = Unwounded fruit), (Twe. = Tween 1%), (Pen. = P. expansum), (Bot. = B. cinerea), (Alt. = A. alternata), (Cin. =  Cinnamon 10%), (Cin. + Pen. = Cinnamon 10% + P. expansum), (Cin. + Bot. = Cinnamon 10% + B. Cinerea), (Cin. + Alt. = 

Cinnamon 10% + A. Alternata), (Clo. = Clove 10%),  (Clo. + Pen. =  Clove 10% + P. expansum), (Clo. + Bot. =  Clove 10% + B. Cinerea), (Clo. + Alt. =  Clove 10% + A. Alternata),  (Pep. = Black pepper 10%), (Pep. + Pen. = Black pepper 10% + P. 

expansum, (Pep. + Bot. = Black pepper 10%  + B. Cinerea), (Pep. + Alt. = Black pepper 10%  + A. alternata, (Filt. = Trichoderma filtrate, (Filt.+ Pen. Trichoderma filtrate + P .expansum), (Filt. + Bot. =  Trichoderma filtrate + B. cinerea), and  (Filt. + 

Alt.  = Trichoderma filtrate + A. Alternata). 
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Pathogenesis-related protein (PR-10) 

 

We detected four proteins belonging to PR-10 sub-family. Protein spots n° 7716, 5321, 6707, and 

6609 were identified as Mal d 1.0209, Mal d 1 (isoform 1), Mal d 1 (isoform 2), and Allergen Fra a 

1 respectively (Tab. 6). These PR proteins were strongly overexpressed in the proteome of apple 

interacting with pathogens alone or in combination with the essential oils, while application of 

Trichoderma CF slightly overexpressed Mal d 1 isoform 1 and isoform 2, but this accumulation was 

lost when pathogens were applied. Interestingly, Mal d 1 isoform 1 accumulation was not existed in 

unwounded fruits but seemed to be specifically accumulated when cinnamon, black pepper or clove 

plus B. cinerea were applied to the wounded fruits. Also, Mal d 1 isoform 2 was not existed in 

unwounded fruits but specifically accumulated when cinnamon, cinnamon plus P. expansum, clove 

plus B. cinerea or black pepper were applied. In the same way the protein corresponding to 

Allergen fra 1 seemed to be exclusively induced by the three pathogens, cinnamon oil or clove plus 

P. expansum application (Tab. 6).  

 

Antimicrobial proteins  

 

The spot n° 2407 corresponding to the antimicrobial protein Brevinin-2Dye was found to be 

specifically accumulated in the proteomes obtained when A. alternata was treated  with the 3 

essential oils (cinnamon, clove or pepper) (Tab. 5). Spot n° 7309 corresponding to chalcone-

flavonone isomerase, an enzyme involved in the biosynthesis of antimicrobial compounds pathway, 

was found overexpressed only when A. alternata or pepper essential oil were applied to the 

wounded fruits (Tab. 6). 

 

Ribosomal proteins 

 

Between the 29 differential protein spots analysed, seven spots (3317, 4314, 2318, 4318, 4211, 

4211, 2308, 6607) corresponded to ribosomal protein were detected (Tab. 6). Ribosome is an 

intracellular organelle consisting of RNA and protein. It is the site of protein biosynthesis resulting 

from translation of messenger RNA (mRNA). It consists of two subunits, one large and one small, 

each containing only protein and RNA. Both the ribosome and its subunits are characterized by 

their sedimentation coefficients, expressed in  Svedberg  units  (symbol: S).  Hence, the prokaryotic  
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ribosome (70S) comprises a large (50S) subunit and a small (30S)  subunit,  while  the  eukaryotic  

ribosome (80S) comprises a large (60S) subunit and a small (40S) subunit. Two sites on the 

ribosomal large subunit are involved in translation, namely the aminoacyl site (A site) and peptidyl 

site (P site). Ribosomes from prokaryotes, eukaryotes, mitochondria, and chloroplasts have 

characteristically distinct ribosomal proteins. The ribosomal proteins are generally involved in the 

biosynthesis of constituent macromolecules, assembly, and arrangement of constituent parts of a 

large ribosomal subunit; includes transport to the sites of protein synthesis. Treatments with pepper 

essential oil are stronger inducer of this class of proteins with the exeption of the ribosomal protein 

S20 that was strongly activated only by the wounding and tween treatments. Cinnamon and 

cinnamon plus B. cinerea treatments strongly induced only the ribosomal protein L10 and 50S, 

while clove treatments were not inducer for this class of protein except for a 30S ribosomal protein.    

 

 

Other proteins 

 

Spot n° 6308 corresponded to an alcohol dehydrogenase. These enzymes convert alcohol to 

acetaldehyde, which is then quickly transformed into acetate and other molecules that are easily 

utilized by the cells. Alcohol dehydrogenase was strongly overexpressed in the proteome of apple 

interacting with pathogens, cinnamon plus B. cinerea or Trichoderma CF plus A. alternata. 

Spot n° 6307 corresponded to SecA protein which functions as an ATP-driven motor. Protein 

translocation and membrane protein insertion are essential processes for the biogenesis of any living 

cell. In bacteria, the main route for protein secretion and membrane protein insertion is formed by 

the Sec-pathway. We found that the protein translocase subunit SecA was strongly expressed when 

pathogens, clove plus pathogens or Trichoderma CF plus pathogens were applied to apple fruits.  

Spot n° 6408 corresponded to a tubulin polymerization-promoting protein was overexpressed in A. 

alternata and cinnamon plus P. expansum, while it disappeared in the majority of other treatments. 

Spot 6509 is a junctional adhesion molecule these are a family of glycoproteins, which bind to 

several ligands, in both a homophilic and heterophilic manner, and are associated with several 

cytoplasmic partners. Junctional adhesion molecule A protein was found  overexpressed   in   A. 

alternata,   cinnamon  plus  B. cinerea,   clove  plus   P. expansum,    black pepper, Trichoderma 

CF plus P. expansum or Trichoderma CF plus A. alternata treatment (Tab. 6).  

Spot n° 4506 was found to be similar to a virion infectivity factor protein. These kinds of proteins 

are viral virulence factors.  We found a similar protein  overexpressed   in  apple  fruits  when  clove  
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plus P. expansum were applied to the fruit.  

Spot 4520 corrsponded to a cysteine-tRNA ligase. This enzyme participates in cysteine metabolism 

and aminoacyl-tRNA biosynthesis. The accumulation of this protein was up-regulated when B. 

cinerea or A. alternata were applied to apple fruits.  

Spot n° 5305 is a RNA methyltransferase. It has the ability to intermediate methylation of a 

conserved cysteine residue. In apple fruits it was strongly accumulated especially when P. 

expansum, P. expansum  plus clove, black pepper or Trichoderma CF were applied to apple fruit.  

Spot n° 5520 corresponded to dihydroorotate dehydrogenase. This enzyme catalyzes the conversion 

of dihydroorotate to orotate with quinone. This protein spot showed over expression only in 

cinnamon plus B. cinerea and black pepper treatments, while it less accumulated or disappeared in 

the other treatments.   

Spot n° 4408 is a thiazole synthase; it has a role in thiamine biosynthesis. This protein spot 

exhibited over expression in P. expansum, B. cinerea, cinnamon, cinnamon plus B. cinerea, black 

pepper and Trichoderma CF plus P. expansum, while it less accumulated or disappeared in the other 

treatments.   

Spot n° 3210 is a mycothiol acetyltransferase. The biosynthetic pathway for mycothiol is catalyzed 

by mycothiol synthase, which acetylates the cysteinyl amine of cysteine–glucosamine–inositol. 

Mycothiol acetyltransferase protein was not existed in unwounded fruits, but accumulated in 

cinnamon, cinnamon plus P. expansum, black pepper plus B. cinerea, Trichoderma CF or 

Trichoderma CF plus P. expansum treatments. While it less accumulated or disappeared in the other 

treatments.   

Spot n° 2415 was found to be similar to ornithine carbamoyltransferase. It catalyzes the formation 

of the amino acid citrulline. This protein was not existed in unwounded fruits, but accumulated in 

cinnamon plus B. cinerea or Trichoderma CF treatments. 

Spot n° 2409 is a subtilisin-chymotrypsin inhibitor; it is a protease inhibitor enzyme. This protein 

overexpressed in cinnamon plus B. cinerea or Trichoderma CF treatments, while it disappeared in 

the majority of the other treatments.  

Spot n° 2403 corresponded to ferrous iron transport protein. It works as a transcriptional regulator 

that controls feoABC expression. It was strongly overexpressed in the proteome of apple interacting 

with cinnamon plus (B. cinerea or A. alternata), also it was highly overexpressed in the proteome of 

apple interacting with Trichoderma CF alone or plus (B. cinerea or A. alternata). 

Spot n° 7505 is a flagellar transcriptional regulator protein; it activates  the   expression   of   class 2  

 

http://en.wikipedia.org/wiki/Cysteine_metabolism
http://en.wikipedia.org/w/index.php?title=Aminoacyl-trna_biosynthesis&action=edit&redlink=1


Results 
 

 47 
 

 

flagellar genes. It was overexpressed in the proteome of apple interacting with A. alternata, black  

pepper plus P. expansum and Trichoderma CF  plus A. alternata.  
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Discussion 

 
 

Plant oil extracts have been used for a wide variety of purposes for many thousand years (Jones 

1996). Recently, essential oils and other extracts from plants have attracted interest as novel sources 

of natural products for agriculture use. They have also been screened for potential applications as 

alternative remedies to treat human infectious diseases and preserve commodities. Particularly, the 

antimicrobial activity of plant oils is considered for industrial applications. Plant essential oils can 

be extracted by using several different methods: in this study we used steam distillation because it is 

practical, inexpensive and generally regarded as a safe method. The yield of essential oil obtained 

by using the steam distillation may be variable because it depends on the distillation technique, the 

temperature, the pressure and the time of treatment, as well as  the plant part used for the extraction 

(Stanojevic et al., 2011; Yazdani et al., 2005). For example, the amount of cinnamon oil that can be 

extracted from leaves is different from that extractable by using the bark. In this study, we managed 

to obtain an average yield of 0.9 % of essential oil from cinnamon bark, 8.35 % from clove buds 

and 1.63 % from black pepper fruits. These results are in agreement with those reported in the most 

recent literature (Li et al., 2013; Makhaik et al, 2005; Rouatbi et al, 2007).  

We used gas chromatography to identify the major components of essential oil. In the case of 

cinnamon oil, our finding was in agreement with previous reports (Li et al., 2013). GC-MS analysis 

showed that cinnamaldehyde (73.2 %) is the most abundant component of cinnamon oil, followed 

by 2-Propen-1-ol,3-phenyl-,acetate (6.95 %), caryophyllene (6.28 %) and eugenol (3.62%). GC-MS 

analysis of clove oil, also in accordance with the  literature (Makhaik et al., 2004) indicated eugenol 

(55.1%) followed by caryophyllene (33,12 %) a the main components. In black pepper oil, we 

principally found caryophyllene (21.4 %), followed by limonene (15.53%) and α-pinene (7.19%). 

This result is different from the report of Fan et al. (2011), where they found 35.06% of limonene, 

4.31% of α-pinene and 3.98% of caryophyllene. These differences are probably due to the diverse 

plant material use, while many papers indicated that chemical composition of essential oils is 

affected by the origin or the vegetative stage of plant material used (Basu et al., 2009; Garcia et al., 

2002; Sangwan et al., 2001). In fact, Fan et al., (2011) prepared the essential oil from fresh fruits 

while we used dried fruits.  

Meyer and collaborator (2008) conducted studies on cucumber (Cucumis sativus), 

muskmelon    (Cucumis melo),    pepper    (Capsicum annuum)     and     tomato     (Solanum  
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lycopersicum) seedlings by applying to soil 0, 2, 5, and 7 days before transplant 0.1%, 0.2%, 

and 0.3% of clove oil, and found that tomato seedlings were the most sensitive. The 0.2% 

and 0.3% clove oil concentrations applied as a drench at transplant (0 day) were particularly 

toxic to seedlings on different vegetable species. Concerning phytotoxicity of cinnamon and 

black pepper oil, no data are available in the literature. In our study, cinnamon and clove oil, but not 

black pepper oil, showed a strong phytotoxicity on tomato seedlings.  

Plant essential oils have shown antimicrobial activity against a variety of plant pathogens and pests 

(Cowan 1999). Several studies have explored the potential usefulness of compounds contained in 

essential oils as antifungal agents (Abdolahi et al, 2010). Many of them are monoterpenes (d-

limonene, cineole, b-myrcene, anethole, anisaldehyde, carvacrol, carvone, α-felandreno, α-pinene), 

reported to be able to inhibit spore germination of several plant pathogens (Pereira et al., 2011).  

In general, we found the cinnamon oil to represent the most effective mixture in controlling 

pathogen development, both in vitro and in vivo. The antifungal activity of cinnamon oil is well 

known. Kishore et al, (2007) reported that cinnamon oil inhibits by 43.6% A. alternata growing in 

vitro. It is known that the main component (73.2 %) of cinnamon oil is cinnamaldehyde, an 

unsaturated aldehyde with a phenyl group attached to it. The most obvious application for 

cinnamaldehyde is as flavouring agent in chewing gum, ice cream, candy, and beverages, but it is 

also used as fungicide (Abd Alla et al., 2008) and insecticide. Previous studies showed that 

treatments with essential oils (1% and 10%) from oregano and thyme controlled apple fruits decay 

caused by B. cinerea and P. expansum (Lopez-Reyes et al, 2010). Cinnamon oil 0.16% (v/v) or 

clove oil 0.2% (v/v) were effective in controlling post-harvest fungal pathogens of banana 

(Ranasinghe et al., 2005). Similarly, our results demonstrated that the B. cinerea development on 

apple fruits can be completely blocked by using cinnamon oil at 10% (v/v) concentration. 

Furthermore, pathogen development was also strongly impaired by cinnamon oil at 5%.  

A good antifungal activity against the three tested pathogens was shown by clove oil applied in 

vitro and in vivo. The efficacy of clove oil as an antifungal agent has been previously reported for 

the control of P. citrinum (Xing et al., 2011) and A. alternata (Kishore et al., 2007). The main 

components of clove oil are eugenol (55.11%) and caryophyllene (33.12%); the first is well known 

for its antiseptic activity and the latter for its antinflammatory effect on mammal cells. Sukatta et 

al., (2008) suggested that the antimicrobial activity of pure eugenol oil is due to the presence of an 

aromatic nucleus and a phenolic OH group, which  is   known   to   be   highly  reactive  and able  to  
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deactivate enzymes in fungi by forming hydrogen bonds with –SH groups found in the active sites. 

Our results show that clove oil is effective in controlling B. cinerea development in vivo. In fact, 

clove oil at 10% inhibited decay of apple fruits up to 46 %. Also B. cinerea development was 

strongly impaired by treatment with clove oil at 5%. In in vitro antifungal assays clove oil 

applications were the less effective in controlling the three pathogens, especially in the direct 

application experiments.  

Also black pepper essential oil was active both in vitro and in vivo. In in vitro assays, black pepper 

oil was more active in controlling A. alternata and B. cinerea than P. expansum radial growth. In 

fact, 80% of RGI of A. alternata and B. cinerea was obtained when black pepper essential oil was 

applied at 5%, while P. expansum was only inhibited by 20% in the same condition. Singh et al., 

(2004) reported that black pepper oil was effective in controlling the mycelial growth of Fusarium 

graminearum in vitro. In this work, black pepper oil inhibited the decay development on apple 

fruits by more than 11%. We suggest that the weak antifungal activity of black pepper oil, as 

compared to cinnamon and clove oils, was due to the high quantity of volatile components present 

in the mixture. In fact, black pepper oil was the strongest inhibitor of spore germination on the three 

pathogens, as tested in the volatile antifungal assay (in vitro), compared to cinnamon and clove 

extracts.  

Trichoderma CF was active in controlling the decay of apple fruits; its direct applications produced a 

9% of decay reduction against the three pathogens. Application time of the antagonist is an 

important factor to consider for efficient biocontrol activity. Trichoderma CF exhibited its biocontrol 

activity strongly when applied prior to the pathogens. Chalutz and Wilson (1990) also reported that 

the efficacy of Debaryomyces hansenii in controlling rot in citrus fruit was maintained when applied 

simultaneously or prior to inoculation with the postharvest pathogen P. digitatum. Several papers 

have demonstrated the effectiveness of CF of Trichoderma spp. in inhibiting spore germination and 

germ-tube elongation of pathogenic fungi (Lorito et al., 1993a and 1993b; Lorito et al., 1994c; 

Ghisalberti and Rowland, 1993; Schirmbock 1994).  Furthermore, they inhibit or degrade pectinases 

and other enzymes that are essential for plant-pathogenic fungi, such as B. cinerea, to penetrate leaf 

surfaces (Harman et al., 2004). Moreover, Palmieri et al., (2012) mentioned that the severity of 

downy mildew was significantly reduced in grapevines treated with T. harzianum strain T39. 

Moreover, application of T. harzianum CF on rambutans fruits give a good control of major  fungal  

pathogens during post-harvest (Sivakumar et al., 2001). Also, it was effective against Pythium 

aphanidermatum in the production of baby beets (Pill et al., 2011). Few more paper  reported  results  
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of application of enzymatic preparations, obtained from BCAs, for post-harvest disease control of 

pome fruits (Jijakli and Lepoivre 1998). To our best knowledge there are no commercial products 

based on Trichoderma CF for post-harvest apple disease biocontrol. 

Induction of natural disease resistance (NDR) in harvested horticultural crops by using biological 

and/or chemical elicitors has received increasing attention in recent years, and it is considered a 

preferred strategy for disease management (Terry and Joyce 2004). The ability of Trichoderma spp. 

to induce both localized and systemic resistance in plants against a variety of pathogens was 

confirmed (Harman et al., 2004, 2006; Walters et al., 2005; Harman 2006). For instance, the yeast 

Candida oleophila applied to wounded lemon fruits was able to increase resistance to P. digitatum 

(Droby et al., 2001). Moreover, application of jasmonic acid can suppress P. digitatum on 

grapefruit through the enhancement of phytoalexin accumulation (Droby and Chalutz 1999).  

The ability of essential oils to increase resistance in apple fruits has not been studied so far. Our 

results provide evidence that cinnamon, clove and black pepper essential oils or Trichoderma CF 

applied to wounded apples are able to increase resistance to P. expansum, B. cinerea and A. 

alternata on apple fruits. A good level of induced resistance (up to 29 % disease development 

reduction) was obtained by using cinnamon and clove oils (at 10% and 5%) against P. expansum 

and B. cinerea. Trichoderma CF and black pepper oil also induced systemic resistance (up to 8% of 

disease reduction) against the three tested pathogens. Macarisin et al., (2010) observed that the 

application of the yeasts Metschnikowia fructicola (strain 277) and Candida oleophila (strain 182) 

generate greater levels of super oxide anion (O2
-
) on intact citrus and apple fruit. A recent study by 

Jin et al., (2009) showed that the increased resistance in peach to B. cinerea, P. expansum and 

Rhizopus stolonifer after application of methyl jasmonate was associated with a significant increase 

in H2O2 levels in the fruit exocarp. Our results demonstrate for the first time that cinnamon, clove or 

black pepper essential oils together with Trichoderma CF are able to induce systemic resistance in 

apple fruits during post harvest. This has been demonstrated by using in vivo antifungal tests and 

phytoalexins analysis. The HPLC analysis of apple fruits peel extracts showed that cinnamon and 

clove oil produce a significant increase in the accumulation of the three phytoalexins scopoletin, 

umbelliferone and scoparone 24 and 72 hours after treatment. Black pepper and Trichoderma CF 

induced, instead, umbelliferone and scoparone 24 hours after treatment, and scopoletin and 

scoparone  72  hours  after   treatment.  Phytoalexins  are   produced by  the   plants   as   a   defence  

mechanism in response to biotic and abiotic stresses  (Afek and Sztejnberg, 1988).  Both  scoparone  
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and scopoletin have been reported to be induced in citrus fruits by treatments with NaCo3 and Na2 

Co3 (Ahmed 2011). To the best of our knowledge no one reported before the phytoalexins induction 

by essential oils in apple fruits.  

The detected activation of systemic resistance in apple fruits treated with the three essential oils and 

Trichoderma CF was further investigated by proteomic analysis. Proteomics is a leading field of 

science with huge potential. Wilkins and co-workers conceptualised the term ‘proteome’ to define 

the expressed complement of a genome (Wasinger et al., 1995; Wilkins et al., 1995).  In recent 

years, research on A. thaliana and other plant species demonstrated that proteomic is a very 

powerful tool in the study of molecular mechanisms in plants (Song et al., 2006). Apple fruit tissues 

are notoriously recalcitrant to proteomic analysis, due to a low protein content and high 

concentration of interfering substances such as pigments, polyphenols and carbohydrates, including 

polysaccharides and starch (Guarino et al., 2007). To overcome this problem, we used phenol 

extraction followed by ammonium acetate/methanol precipitation. The protein yield obtained (1 mg 

of total protein from 1 gr of fresh tissue) was higher than that obtained by others researchers (Song 

et al, 2006). Moreover, the quality of the extracted proteins allowed the separation of hundreds of 

proteins by 2D-electrophoresis, which provided a representative picture of the proteins expressed 

during the interactions studied. All the treatments applied to the apples strongly modified the 

protein pattern as compared to the untreated controls. An interesting result concerned the PR-

proteins accumulation in apple fruits treated with pathogens as well as with essential oils and 

Trichoderma CF. The over-accumulated proteins, such as Mal d 1.0209, Mal d 1 (isoform 2) and 

Allergen Fra 1, belong to the PR-10 subfamily. Physical, chemical and biological stress factors, 

such as microbial infection, up-regulate the transcription levels of a number of plant genes, 

including those coding for the so-called pathogenesis-related (PR) proteins. PR-10 proteins have a 

wide distribution throughout the plant kingdom and the class members share size and secondary 

structure organization. PR-10 proteins are rather small (~ 160 amino acids) with a fold consisting of 

three α helices and seven antiparallel ß strands. These structural elements enclose a large 

hydrophobic cavity that is most probably the key to their functional relevance. Also, the outer 

surface of these proteins is of extreme interest, as epitopes from a PR-10 subclass cause allergic 

reactions in humans. Evidence that PR-10 proteins might be involved in general defence 

mechanisms comes from the observation that some of them are induced and accumulate around 

sites   of   invasion   by   viruses  (Xu et al, 2003),  bacteria  (Bahramnejad et al., 2010)  and  fungi  

(Puhringer et al., 2000). However, the biological function of class-10 PR proteins  remains  unclear,  
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despite two decades of scientific research (Fernandez et al., 2013). Our results demonstrate for the 

first time that essential oils and Trichoderma CF, similarly to pathogens, can strongly induce PR-10 

proteins. This finding is in according with the induction of resistance mechanisms found in apple 

fruits.  Many others proteins were found over-accumulated  in the proteomes of apple fruits 

interacting with pathogens, essential oils and Trichoderma CF. They include the antimicrobial 

proteins Brevinin (Xu et al., 2012) and Chalcone-flavonone isomerase, also correlated with the 

systemic resistance induction. Wurms and co-workers (2011) found that a significant decrease (80% 

reduction) of chalcone-flavonone isomerase (CHI) gene expression corresponded to a significant 

reduction of rot disease incidence in kiwi fruits.  

Recently, the use of bioactive carbohydrates, such as chitosan, to control post-harvest microbial 

diseases has attracted some attention (Badawy and Rabea 2011). Chitosan based commercial 

products are available and they have been shown the same effectiveness if formulated as 

biopolymers dissolved in acid solution. Chitosan is known to be able to trigger a defence response 

in the plant, leading to the formation of physical and chemical barriers against invading pathogens 

(Walker et al., 2004). Furthermore, chitosan has a double mechanism of action on postharvest 

diseases: it reduces the decay caused by fungi by direct inhibition and inducing resistance response 

in fruit tissues (Romanazzi 2010). In fact, Romanazzi et al., (2006) reported that incidence and 

disease severity of inoculated table grapes with B. cinerea were significantly reduced by pre-harvest 

treatment by chitosan (1%). Its antimicrobial activity depends on the type of chitosan (native or 

modified), its degree of polymerization, type of plant tissue treated, and environmental conditions. 

In some studies, the antimicrobial activity increased with the increase of molecular weight, with the 

effect being stronger on fungi than bacteria (El Hadrami et al., 2010). A new effective bio-

formulation has been designed by combining chitosan as emulsifier for black pepper oil and 

Trichoderma CF. The obtained mixture was particularly active against the most important post-

harvest pathogen of apple (P. expansum) by using very low, homeopathic-level doses. A synergistic 

interaction in controlling the disease development was found when black pepper oil or Trichoderma 

CF were mixed with chitosan, while the stronger activity was obtained when the three components 

were applied together. In this case the inhibition of apple decay caused by P. expansum was reduced 

up to 50%. Similarly, Perdones et al., (2012) enhanced the chitosan antifungal activity during cold 

storage in strawberries inoculated with a spore suspension of B. cinerea by adding lemon essential 

oil.   
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