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ABSTRACT 

The use of composite materials has spread over the years throughout the 

engineering areas of structures. The technological progress in this field has recently 

expanded, resulting in the design of new composite configurations, including 

multilayered composite materials and multifunctional nanostructured materials. Even 

though traditional and emerging composite materials offer wide potentialities for 

engineering, a significant challenge is still open with respect to damage phenomena. 

Driven by safety requirements and cost-effective optimization needs, damage modeling 

has gained a fundamental role for composite engineering. It represents a strong 

motivation to support design procedures by means of numerical methods, such as finite 

element analyses. Recently, multiscale computational analyses effectively gained a 

major role within the challenging task of damage prediction. Particularly, by bridging 

physical phenomena occurring at different scales, i.e. macro, meso, micro and even 

nano, damage evolution can be accurately predicted. 

The present work is collocated within this scenario with the aim of exploring and 

addressing different critical issues related to the failure mechanisms acting at different 

length scales of different composite systems. The multiscale procedures, proposed to 

evaluate the damage behavior of such materials, involved experimental, analytical and 

numerical tools. In detail, damage modeling has been performed for different case 

studies: i) GFRP composite laminates, ii) phenolic impregnated skins/honeycomb 

Nomex core sandwich structures, iii) Carbon Nanotube/Nanofiber modified S2-

Glass/epoxy composites. 

For the case study i), the activity concerned the damage occurred in case of low-

velocity impact tests, carried out on glass fabric/epoxy laminates. In this case, the 

multiscale modeling was implemented to account for both intralaminar and 

interlaminar levels of damage occurring within the composite laminate. This allowed to 

characterize the critical parameters acting at the smaller (interlaminar) scale which 

affect the macroscopic impact response of the composite laminate. 
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With reference to honeycomb sandwich structures of case ii), due to their 

hierarchical structure, a multiscale approach was necessary in order to suitably capture 

damage mechanisms occurring to the composite skins and honeycomb core. The study 

was firstly aimed at accurately addressing the out-of-plane compressive response; 

particularly, in order to evaluate the influence of imperfection variability on the 

buckling and crushing behavior, a statistics-based approach was proposed and applied 

to a detailed finite element model of a single representative honeycomb cell. 

Furthermore, the impact was also investigated. Finite element numerical models, based 

on the sandwich assembly structure, were progressively validated through experimental 

tests, both static and dynamic, performed from the coupon to the sandwich assembly 

length scale.  

In the case study iii) the multiscale damage modeling procedure was focused on 

some issues related to the Carbon Nanotube/Nanofiber length scale, including 

nanotube length and orientation characterization, stress transfer to the matrix and 

nanotube toughening mechanisms. A micromechanical model, taking into account 

CNT length and orientation distribution, was implemented in order to model mode I 

interlaminar fracture toughness of multiscale CNT/CNF S2-Glass/epoxy composites.  

For all the investigated case studies the adopted multiscale based strategies revealed 

to be mostly effective in capturing the most significant damage-related parameters at 

the lower scales, influencing the structural mechanisms, acting at the 

structure/component scale. 
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Chapter I 

INTRODUCTION 

1.1. Introduction 

  

Composite systems, such as fiber reinforced polymers, have increasingly advanced 

since early developments in the 1970s up to date, gaining the leadership in the 

lightweight structure engineering field. The aeronautics industry is certainly one of the 

major recipients of engineering and technological progresses of composite materials; in 

fact, today, aircrafts such as Boeing 787 and Airbus A380 represent the demonstration 

of such developments. The use of composite materials has over the years expanded 

beyond the aerospace applications to other areas of structures. Typical and emerging 

applications of composite materials include automotive, naval and wind energy sectors, 

whose future challenges are related to cost effectiveness, multiaxial fatigue resistance, 

long term durability and structural safety. 

The concept of composite systems has expanded over the years resulting in the 

design of new composite configurations. For instance, the demand for light-weight 

efficient and high-stiffness structures led to the introduction of multilayered composite 

configuration, such as sandwich structures. Sandwich structures experienced a wide 

expansion over the years, still active up to date, especially for applications requiring 

high stiffness-to-weight ratios; the exclusive properties of core materials, such as 

honeycomb and foam materials, as well as the high mechanical properties of fiber 

reinforced composite facesheets, can be suitably tailored and combined to produce 

cost-effective lightweight components of complex geometries, offering varied physical 
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and mechanical performances (e.g. energy absorption and stiffness optimization, 

thermal insulation, acoustic damping).  

In early 1990s, the development of nanotechnologies pushed research and 

engineering community to investigate the high potentialities of multifunctional 

nanostructured materials. In this way, the concept of “composite” material experienced 

a further evolution, with the possibility to incorporate nanofillers (e.g. carbon 

nanotubes, nanoparticles, nanoclay) to conventional composite systems, broadening the 

typical engineering applications of composites. However, the main concern related to 

these promisingly applications is associated with the small dimensional scale of the 

filler (the order of magnitude is between 5 and hundreds nm) that need great attention 

in order to have fully control of such type of innovative materials.  

Even though positive aspects related to the use of composite materials offer wide 

perspectives for engineering, a significant challenge is still open with respect to 

damage phenomena; these represent a source of complexity due to significant 

heterogeneities and interactions between composite constituents. In fact, it is well 

known that the characterization of failure behavior of composite structures depends on 

a very large number of variables. For instance, the possibility of having interacting 

failure modes in a composite laminate constraints the damage analysis to properly 

characterize intralaminar and interlaminar damage, in order to assess the composite 

damage behavior. Moreover, with regard to the behavior of sandwich structures, the 

specific morphology of a sandwich configuration shall be taken into account. The 

assessment of the global behavior and local stress fields of sandwich structures 

depends on the material properties of the constituents (skins, core, and adhesive if 

involved), geometric dimensions, and type of loading. On the contrary, an exhaustive 

comprehension of damage mechanisms occurring at nanoscale, is the key step for the 

future effective development and control of nanocomposites systems. 

In the light of these considerations, it appears that the modeling of damage and 

fracture plays an important role for composite engineering development affecting both 

design stages (to prevent in service damage) and the implementation of structural 

health monitoring systems (to predict the residual lifetime of structures). Therefore, the 

main challenge in any computational design procedure is to accurately incorporate 

damage and its effects on composite structure. In this context, the progress consists in 

taking advantages of properly modeling damage into computational design procedures 

with the final aim to reduce the cost of certification requirements and design safer and 

cost effective structures. 
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1.2.       Historical overview and multiscale damage analysis 

The mechanisms of damage taking place in a composite system and their effects on 

mechanical response represent the main challenging concern in the field of composite 

damage analysis and modeling. These issues developed starting in the 1980s. Before 

1980s, the composite failure analysis was mostly based on the continuum mechanics 

approach extended by previous theories valid for metals. In the 1980s the need to 

consider the heterogeneous nature of composite materials led to the introduction of 

micromechanics and continuum damage mechanics theories which were firstly applied 

to multiple cracking observed in composite materials. The first pioneering work in this 

field was provided by Aveston et al. [1] who evaluated the role of composite 

constituent properties, i.e. fibers and matrix properties, relative volume fractions and 

fiber diameter in resisting multiple cracks in steel fibers reinforced cement composites. 

From these concepts, two main advancements were subsequently presented in the 

approach, namely micro damage mechanics [2] (investigating local ply stress fields to 

evaluate the overall stiffness degradation) and macro damage mechanics [3] 

(investigating internal material discontinuities through the definition of a damage 

scalar variable). Homogenization techniques were then applied to composite materials 

[4]; according to this approach, the reinforcement in a composite is treated as a part of 

the microstructure and is homogenized in a representative volume element as an 

anisotropic medium in which damage entities are considered. Many further 

developments have taken place up to the current knowledge in composite material 

damage field. Clearly, complex structural geometries, composite configurations and 

load conditions require numerical structural analysis.  However the analysis of 

composite damage behavior, obtained by means of numerical approaches, is rather 

difficult due to the intrinsic complexity of the interaction of failure modes, damage 

development and multilayered configurations. 

Recently, the advancements achieved in the field of numerical methodologies as 

well as computational efficiency, have motivated the rise of the so called “multiscale” 

computational analysis. The key concept is that physical phenomena occurring at lower 

length scale control the material response at higher length scales. The heterogeneous 

nature of composite systems makes multiscale modeling methodologies optimal 

candidates for these materials. By formulating models at different scales, i.e. macro, 

meso, micro and even nano, damage evolution can be accurately predicted. A wide 

literature on multiscale modeling exists providing a wide range of results which point 

out the critical role of multiscale methods in achieving feasible and accurate 
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descriptions of the behavior of many complex systems [5-7].  

In industrial sectors, such as the aerospace industry, the issue of structural 

modeling, including static strength prediction, durability analysis and damage tolerance 

of composite and sandwich materials, is often addressed through a multiscale method 

based on a complex mix of testing and analysis. This process is also named building 

block approach or virtual testing which develops according to the flow chart reported 

in Figure 1.1a,b. Tests and numerical analyses are performed progressively at various 

levels of structural complexity, starting from small material coupons and moving 

through structural elements, sub-components, components, and, finally, up to the 

complete full-scale product. Each level uses the experimental/numerical outcomes 

gained at the previous level of analysis in order to generate composite material 

properties and appropriate analysis methods. For instance, in case of sandwich 

structures, the first level of analysis has the objective to characterize of basic material 

properties (including skins and core materials) to be used as input data at the assembly 

level of analysis. Then, tests and analyses performed at the element level are used to 

investigate and validate of both analytical and numerical predictions, with particular 

emphasis on the failure modes; at the sub-component level, tests and failure analysis 

are implemented to deal with specific geometrical, loading, and environmental 

conditions (e.g. fatigue, impact loading, hygrothermal aging). Finally, at the highest 

level of structural complexity, tests are used to validate the analysis methods developed 

during the previous levels. As the structural complexity rises up, testing costs increase 

as well, but the number of tests decreases and more reliable numerical simulations are 

validated.  

Recently, other features of multiscale approach have emerged in case 

nanocomposite systems. Nanofillers, thanks to their exceptional properties, offer the 

possibility to achieve outstanding improvements if added to polymer matrices at much 

lower concentrations than traditional (micro-sized) fillers. The resulting physical and 

chemical properties of nanocomposites can be related to the hierarchical structure of 

this kind of materials. Moreover, nanomodified polymers can be used for the 

development of nano-modified composite laminates achieving higher performance 

materials. The engineering progress in the field of nanocomposites requires models 

capable of accounting for their multiscale structure ranging from the nano to the macro 

length scales. 
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a) 

 

b) 

Figure 1.1: Multiscale procedure for the design and optimization of multilayered 

composite structures: a) increasing the scale levels of the composite component; b) type of 

tests and analyses to be performed as the length scale increases. 

 

In this way, characteristic phenomena acting at each length-scale could be taken 

into account and their effects bridged from the smaller scale to the macroscale. By 

accounting for these features, an effective modeling can be achieved. Quaresimin et al. 

[7] proposed a classification of the multiscale modeling strategies in the field of 

nanocomposites, as reported in Figure 1.2: 

- Micromechanical modeling strategies, based on micromechanical models only. 

The matrix and the nanofiller are described by means of continuum mechanics 

without accounting for interfacial interactions and nanostructure. 
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- Nanostructural modeling strategies, making use of both micromechanical 

models and nanostructural models. These methods account for the effects of 

the inherent nanostructure on the overall macroscopic properties, but 

chemical–physical interactions are not taken into account. 

- Molecular modeling strategies, making a combined use of all the above 

mentioned models. Intermolecular and supramolecular interactions are 

accounted for by means of discrete methodologies at the actual nanoscale 

level. 

 

 
a) 

 
 

 

b) 

Figure 1.2: Concept of multiscale strategies applied to nanostructures: a) [7]; multiscale 

simulation strategy for coarse-graining of surfactant molecules into beads b) [8].  

1.3. Research purposes and outline 

In the present work, different critical issues, related to damage assessment and 

modeling of advanced composite structures, are addressed through the analysis of 

different case studies in a multiscale procedure. Hereafter, an outline including each 

case study is presented. 

The activity presented in Chapter II is aimed at simulating the response of 

clamped circular GFRP plates of two different thickness values, struck at low-velocity 

by a rigid hemispherical projectile. The design of advanced composite structures or 

components subjected to impact loadings requires a deep understanding of the damage 

and degradation mechanisms occurring within the composite material. The multiscale 
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numerical analysis proposed in Chapter II is aimed at properly including the possible 

modes of failure of the GFRP composite laminates and quantify the energy dissipated 

by different mechanisms. Through the definition of suitable finite element models for 

both composite plies and interlaminar connections two levels of composite damage 

analysis are taken into account: 

- intralaminar level, related to the damage occurring to the matrix and fibers 

within a composite ply;  

- interlaminar level, related to the damage occurring within the matrix layer 

between two adjacent plies.  

This numerical approach allows to characterize the critical parameters acting at the 

smaller (interlaminar) scale, which affect the whole impact response of the composite 

laminate, at the larger scale. In this way, the energy absorbed by the composite 

laminate during impact (that is measurable at the larger scale) is related to damage 

mechanisms occurring within the laminate (that are analyzed at the smaller scale). 

The activities presented in Chapter II and Chapter III have the objective to 

model the mechanical behavior of E-glass phenolic skins/Nomex honeycomb core 

sandwich structures, particularly focusing on out of plane compressive properties 

(including buckling and crushing) and impact behavior. In detail, the damage analysis 

conducted in Chapter III focuses on the buckling and crushing behavior of hexagonal 

honeycomb structures; the multiscale numerical analysis moves from the meso scale 

level, focusing on Nomex paper material properties, including the sensitivity to 

material defects. Then, the numerical analyses are performed on a representative 

honeycomb cell enabling to transfer mechanical properties, predicted at the meso scale, 

to the macroscale of the whole sandwich structure, with the final aim of predicting the 

compressive strength and folding mechanism during the Nomex cell crushing. The key 

aspect proposed in the study is the inclusion of imperfections in terms of both material 

(elastic modulus variability) and geometrical (thickness variability) defects through a 

stochastic approach: random sampling at each element of the FE mesh are performed 

assuming different Young’s modulus values and different thickness properties, 

according to a pre-defined statistical distribution. The modeled cell is used to address 

several aspects of the compressive response, particularly focusing on the onset of 

buckling, the collapse limit and the crushing behavior. 

The damage analysis conducted in Chapter IV moves to the scale length of the 

sandwich assembly aimed at modeling the impact behavior of Nomex honeycomb core 

combined with E-glass phenolic facesheets. Since the impact damage occurring in 

composite sandwich structures affects both skins and core materials, the multiscale 
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approach involves the detailed (static and dynamic) modeling of both skin and core 

material properties. The adopted multiscale virtual testing procedure is based on the 

progressive validation of the composite facesheet and orthotropic honeycomb material 

models on the basis of experimental tests, ranging from coupon tests (for E-glass 

phenolic skins and Nomex core) to sandwich assembly tests. This allows to verify the 

capability of the model to take into account the main damage mechanisms taking place 

during impact. The dynamic impact behavior is then validated through different impact 

conditions; some important issues on the strain rate sensitiveness affecting the 

investigated materials are addressed, along with the assessment of energy absorption 

and damage mechanisms. 

Chapter V investigates the main issues related to the multiscale modeling of 

nanocomposite properties. In detail, the activity focuses on multiscale modeling of 

Mode I interlaminar fracture toughness of S2-glass fiber/epoxy laminated composite 

modified using nanofillers (Carbon NanoTubes, CNTs, and Carbon NanoFibers, 

CNFs) with/without surface functional groups and with different ranges of aspect ratio.

  The smaller scale of the analysis takes into account the toughening 

mechanisms acting at the nanoscale. A suitable analytical model describing the CNT 

pullout mechanism is then presented accounting for the CNTs properties within the 

matrix at the nanoscale, i.e. length and orientation distribution and stress transfer.Then, 

the result of this modeling is used to calibrate fracture energy models at the 

macroscale, by means of Mode I interlaminar fracture toughness tests on nanofilled S2-

glass fiber/epoxy laminated composites. Some important issues are discussed, 

including interfacial shear stress determination, CNT/CNT volume fraction as well as 

CNT critical length definition. 
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Chapter II 

IMPACT BEHAVIOR OF GFRP COMPOSITE 

LAMINATES 

2.1.  Introduction to framework 

The design of advanced composite structures or components subjected to impact 

loadings requires a deep understanding of the damage and degradation mechanisms 

occurring within the composite material. Despite years of extensive research around 

the world, a complete and validated methodology for predicting the behavior of 

composite structures, including the effects of damage, has not yet been fully achieved. 

This is largely due to the complexity of the physical phenomena involved, requiring an 

effective modeling of dynamic effects, material-projectile contact, failure modes 

development and interaction within the laminate, yet taking into account the influence 

of impactor geometry, velocity, and mass, and target geometry, constraint conditions, 

and lay-up. 

Damage in a composite laminate generally involves two levels of analysis: 

- intralaminar level, related to the damage occurring to the matrix and fibers 

within a composite ply;  

- interlaminar level, related to the damage occurring within the matrix layer 

between two adjacent plies.  

This peculiarity makes suitable a multiscale approach aimed at properly including the 

possible modes of failure of the laminate and quantifying the energy dissipated by the 

different mechanisms. The multiscale modeling approach presented in Chapter II is 

conducted including both levels of damage analysis through the definition of suitable 
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finite element models for the composite plies and interlaminar connections, as depicted 

in Figure 2.3.  

 

 

 

 

  

Figure 2.3: Scheme of multiscale damage analysis for GFRP laminates adopted within the 

study. 

By using this approach, the composite impact behavior is studied at two scales. 

This allows to characterize the critical parameters acting at the smaller (interlaminar) 

scale and affecting the whole impact response of the composite laminate at the larger 

scale. The energy absorbed by the composite laminate during impact (that is 

measurable at the larger scale) is related to damage mechanisms occurring within the 

laminate (that are analyzed at the smaller scale). 

In details, the present activity is aimed at simulating the response of clamped 

circular GFRP plates of two different thickness values, struck at low-velocity by a rigid 

hemispherical projectile. A finite element model, based on the commercial tool LS-

DYNA, is built and calibrated using the information gathered from a minimum of 

experimental data. Solid finite elements combined with orthotropic failure criteria are 

used to model the composite failure and stress based contact failure between plies are 

adopted to model the delamination mechanism.  

2.2.  Literature overview: impact on composite laminates 

The use of fiber-reinforced composite materials has increased over the last 

decades, due to their advantageous specific mechanical properties and corrosion 

resistance. Advanced composites have been used in many different engineering 

applications encompassing military, automotive and naval industry, and especially in 

aerospace, where weight reduction is one of the most important design parameters. 
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Although these materials offer very attractive properties, their application is often 

restricted by their vulnerability to transverse impact [1], forcing the adoption of large 

safety factors and resulting in significantly over-designed structures.  

Aeronautical components are prone during service to foreign object impact events 

[1], varying in the range of low to high velocities and impacting masses, consisting of 

dropping tools during production, repair or maintenance operations, ice particles or 

runway debris, bird strikes. At high velocity, the structural response is dominated by 

the stress wave propagation through the thickness of the laminate, and the resultant 

damage is quite localized. On the contrary, in a low-velocity impact the contact 

duration is long enough to excite the global structural response, leading to a more 

diffuse damage [2, 3]. 

The damage suffered by a composite laminate subjected to impact loading can 

affect the composite material within each lamina of the laminate, i.e. intralaminar 

damage, or it can develop between adjacent plies, i.e. interlaminar damage. Within this 

distinction, the damage can be divided into four distinct groups: 

 matrix cracking, where cracking occurs parallel to the fibers due to tension, 

compression or shear;  

 delamination between adjacent plies which is produced by interlaminar 

stresses;  

 fiber breakage due to tension fiber breakage and compression fiber buckling;  

 perforation, where the impactor completely perforates the impacted surface. 

Such order corresponds to the damage sequence occurring for increasing impact 

energies. Figure 2.4 reports SEM images depicting the typical damage occurring in a 

composite laminate as a consequence of impact, referring to fiber breakage (a), matrix 

cracking (b) and delamination (c), respectively. 

 
a) 

  
b)  
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c) 

Figure 2.4: Typical impact damage in a composite laminate: a) failure due to fiber 

breakage [4]; b) intralaminar matrix shear cracks [5]; c) delaminations between adjacent 

plies [4]. 

If the impact energy increases, the damage pattern develops as truncated 

conical shape with wider damage taking place at the bottom of the panel (Figure 2.5a). 

Matrix damage is the first type of failure that occurs during transverse low-velocity 

impact; it typically takes the form of matrix cracking but also debonding between fiber 

and matrix within the lamina. Matrix cracks take place due to property mismatching 

between the fiber and matrix, and are usually oriented in planes parallel to the fiber 

direction in unidirectional layers. Joshi and Sun [6] provided a typical shear (red), 

flexural (green) matrix crack and delamination pattern (blue), as shown in Figure 2.5b 

and c. 

 
a)  
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b) 

 
c)  

Figure 2.5: Illustration of impact damage development: a) damaged area through the 

thickness of the composite laminate; matrix cracks (red) and delamination (blue) pattern 

for transverse impact b), c) [6]. 

Delamination, occurring at moderately low energy levels, deserves serious 

considerations, being able to cause a significant decrease in the static material 

compression strength, or growing under cyclic loads leading to a gradual loss in 

strength and stiffness [7].  

2.3.  Impact modeling 

The impact response of composite laminates has been widely treated in the 

literature by experimental research works, analytical formulations and numerical 

implementations, with the objectives of understanding the tup-material interaction [8, 

9], predicting the extent of induced damage [10, 11], and estimating the residual 

properties of the structure [7, 12, 13]. In particular, many research efforts have been 

spent to model impact history. To this aim, quite simple closed-form solutions [14], 

easy to use and effective, but restricted to simple impact cases due to the underlying 

simplifying assumptions [10, 14, 15], have been often employed. 

In the last decades, an alternative to the analytical formulations has been offered by 

the numerical methodologies based on Finite Element (FE) approach. Since the onset 

of damage in a composite does not usually lead to ultimate failure, the ability of FE in 

simulating an impact event is critically dependent on its capacity to represent the 

sequence of damage modes, the conditions for delamination propagation, as well as the 

stiffness and strength degradation associated with the various damage states. FE 

simulation works available in the literature are based on different theoretical 
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formulations including failure criteria, plasticity theory, fracture mechanics, and 

damage mechanics. The main drawback of the failure criteria approach [16], initially 

adopted for unidirectional composites and developed for the static regime, is related to 

the impossibility to locate the position of the crack and to predict the crack sizes. 

Moreover, the progressive degradation of stiffness material properties cannot be taken 

into account. Plasticity approach can be appropriate for composites exhibiting ductile 

behavior (e.g. thermoplastic composites), in combination with the failure criteria 

approach for damage prediction [17]. For such materials, a generalized anisotropic 

model in large strains, based on the classical isotropic plasticity theory, was presented 

by Car et al. [18]. The fracture mechanics approach [19] is based on the comparison of 

the strain energy at a crack front of known size with critical values of strain energy 

release rate. Zerbst et al. [20] applied this approach to predict residual compression 

strength and delamination growth in composites, showing appreciable results. The 

main disadvantage of fracture mechanics analysis is that it requires the definition of a 

pre-existing crack region in the numerical model. The Continuum Damage Mechanics 

(CDM) approach, initially introduced by Kachanov [21] and Rabotnov [22], has grown 

considerably in the past twenty years. According to CDM, damage is considered as a 

deterioration process of the material, introduced as part of the material definition. 

Using CDM concept, Matzenmiller et al. [23] developed a mathematical model for 

damage of composite materials, connecting the damage level to the degraded elastic 

properties of the material, in turn depending on the particular damage mechanism 

(fiber breakage, fiber microbuckling, matrix cracking, etc.). This approach has been 

implemented in many research works [24-27], demonstrating promising results in 

predicting the impact response and damage extent. 

2.4.  Materials and experimental methods 

The GFRP panels considered in this work were obtained from prepreg layers made 

of E‐glass plain‐weave fabric, 295 g/m
2
 in areal weight, and Cycom 7701 epoxy resin. 

An overview of the mechanical properties of the ply material, drawn from the 

manufacturer’s technical data sheet, is given in Tab. I (values in parentheses). 

Two laminates, having stacking sequence [(0,90)n/(+45,‐45)n]s, with n=1,2 as 

depicted in Figure 2.6a and b, respectively, were obtained and press cured for 2 hours 

at 120°C temperature and 0.1 MPa pressure. The nominal thickness t was 0.96 mm and 

1.92 mm for n=1 and n=2, respectively.  
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a)                                                                b) 

Figure 2.6: Schematic representation of the GFRP stacking sequence with n=1, a) and 

n=2, b). 

 

From the laminates, square specimens 70 mm in side were cut, and subjected to 

low‐velocity impact tests using a Ceast MK4 instrumented testing machine, equipped 

with a DAS 4000 digital acquisition system. The samples were clamped on a steel plate 

with a circular opening 50 mm in diameter, and struck at their center using a 

hemispherical steel impactor, 16 mm in diameter and 3.6 kg in mass. Various energy 

levels U, in the range 0.4 to 20 J were adopted, appropriately setting the tup height.  

For each impact energy level, three experimental tests were performed. 

Thanks to the translucent appearance of GFRP, the projected damage area Ap of 

selected impacted samples was highlighted by an intense light source located at their 

back side, photographed, and the Ap extent was measured through an image analyzer. 

Then, the specimens were immersed in a blue ink bath, until Ap was fully darkened; 

after that, they were carefully deplied with the help of moderate heating, and the extent 

of the delaminated areas found in correspondence of each interface was computed as 

the average measures of upper and lower delaminated areas of each ply, Am; the total 

delaminated area, Ad, was computed as the sum of the delaminated surfaces in 

correspondence of each interface. 

2.5.  Experimental results and discussion 

Typical F-d curves recorded during the impact tests, obtained for the two panel 

thicknesses, are collected in Figure 2.7. At low displacement, the material behavior is 

substantially elastic, and disturbed by dynamic oscillations, more marked for the 

thicker panel. As discussed in previous works [28, 29], the curvature affecting the 
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thinner laminate during this step is due to membrane effects. Beyond a given load 

threshold, dependent on the target thickness, sudden load drops appear in the F-d 

curves, indicating damage beginning and propagation. Nevertheless, the general trend 

of the contact force increases further up to the maximum load, where a dramatic load 

drop, suggesting major damage, is observed. After that, the F-d curves flatten out until 

the maximum displacement, corresponding to a zero velocity, is achieved. During 

rebound, the elastic portion of the energy stored into the material is transferred back to 

the impactor, whereas another portion (represented by the area enclosed in the F-d 

curve) is irreversibly absorbed through material damage, heat, and vibrations. 

 

 
Figure 2.7: Effect of the laminate thickness, t, on the F-d curves. 

 

As previously specified, the different energy levels in the tests were obtained 

by suitably setting the drop height of the impactor, i.e. using different impact 

velocities. In Figure 2.8, different F-d curves, deriving from impact tests performed at 

increasing energy levels, are superposed. Despite some obvious differences, 

attributable to the experimental scatter, the superposition is good. This indicates that, 

within the experimental conditions adopted in the present tests, the material response is 

not sensitive to velocity, so that energy is the true parameter affecting its response. In 

Figure 2.9, the irreversibly absorbed energy Ud, measured as the area enclosed within 

the F-d curve, is plotted against U (full symbols). As also found by other researchers 
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[29], the trend is sensibly linear, with a slightly higher rate characterizing the thinner 

laminate.  

 
Figure 2.8: Effect of the energy level, U, on the F-d curves. Laminate thickness t=0.96mm. 

 
Figure 2.9: Absorbed energy, Ud, vs impact energy, U. 
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The visible delaminated area (Figure 2.10) was diamond-shaped, with the 

principal axes coinciding with the warp-weft directions of the surface fabric layers 

(horizontal and vertical directions in the figure), along which fiber fracture was found. 

 

 
Figure 2.10: Visible damaged area of an impacted panel. 

 

Apparently, delamination extent of the impacted specimens was larger when 

observed by the back face of the panel. This feature was confirmed by the 

measurements carried out after deplying, which also revealed fiber fractures, 

developing along the warp-weft directions, in the internal layers. However, for 

t=1.92 mm, delamination took place also between layers with the same orientation 

located at the mid-plane of the laminate, as shown by the black symbols in Figure 2.11, 

where the extent of ply-by-ply delaminated area Am is diagrammed for U=20.0 J. In 

particular, the average measured delaminated area was 251.53 mm
2
 and 482.80 mm

2
 

for the interface between layers (0;90)/(-45;+45) and (-45;+45)/(0;90) respectively, 

with the latter ≈ 92% larger than the former. This damage was expected since the 

interfaces between layers having different orientations are more prone to delamination, 

with the largest delaminated area located near the back face of the panel as often found 

in several impact studies [3, 11, 30]. Nevertheless, should be remarked that the amount 

of damage occurred at the mid-plane of the laminate, i.e. between layers with the same 

orientation (-45;+45)/ (-45;+45), although smaller than the others (105.83 mm
2
), is of 

the same order of magnitude compared with the other delaminated interfaces. 

 

d1 

d2 
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Figure 2.11: Extent of ply-by-ply delaminated area, Am. Panel thickness t=1.92mm; impact 

energy U=20.0 J. 

 

 
Figure 2.12: Characteristic dimension of projected delaminated area, d, vs impact energy, 

U. 
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axes indicated by d1, d2 in Figure 2.10, and the extent of projected delaminated area, 

Ap, are plotted, respectively, against U. 

 

 
Figure 2.13: Projected delaminated area, Ap, vs impact energy, U. 

2.6.  Numerical analysis 
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plane element lengths showing a mesh dependency. Specifically, the composite 

material failure behavior is influenced by the element size affecting the absorbed 

energy which varies with the element length and converges for small elements 

dimensions. Moreover, since the impact of the rigid hemisphere is very localized, a 

very fine mesh is required in order to achieve an accurate mechanical behaviour and a 

correct working of the contact algorithm. The selected in-plane element edge lengths 

were approximately 0.657 mm and the 90% of elements had an aspect ratio of 3:1 or 

less. 

Among the lamina constitutive models available in LS-DYNA, the Mat 

Composite Failure Option Model (Mat 059, Option = Solid) [31], able to model the 

progressive damage of the material on the basis of a three-dimensional stress-based 

failure criterion, was chosen in this work. Although the selection of MAT59 in shell 

formulation has been discussed in several applications available in literature [32], 

works or detailed descriptions investigating its behavior in 3D formulations are scarce 

and only few information can be found from informal documentation available from 

Livermore Software Technology Corp. (LSTC); nevertheless authors verified the 

behavior of the constitutive model through single element analysis. In particular, the 

composite failure model MAT059 simulates the 3-dimensional behavior of an 

orthotropic composite material and its progressive failure due to any of several failure 

criteria. The 3-D constitutive model is based on orthotropic elasticity up to failure, 

according to the following equation: 
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the compliance matrix, where 1 and 2 are the in plane directions, and 
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the six stress and strain components respectively. 

The presented material model implements a stress based failure criterion for solid 

elements derived by the Tsai-Wu theory [33], able to predict the onset of the major 

failure modes, including:  

 Longitudinal and transverse tensile failure (11>0, 22>0):  
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 longitudinal and transverse compressive failure (11<0, 22<0): 
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 through the thickness compressive failure (33<0): 
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 longitudinal and transverse through the thickness shear failure (11>0, 22>0): 
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being (   ,    ,    ), the longitudinal/transverse/normal stress components, 

respectively,     and (   ,    ) the in plane shear and out of plane shear stress 

components, respectively and Xt,c, Yt,c, Zc, S12, S23 and S13 the corresponding strength 
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values. In example, the longitudinal tensile failure is reached when the following 

relationship is fulfilled (equation 2.2): 
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When the criterion is satisfied, the corresponding stiffness (and consequently 

the load carrying capability of the material in that direction) is degraded to zero over a 

small computational time, corresponding to a rapid  decay of the stress-strain 

relationship; hence, the compliance matrix progressively reduces to: 
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The other failure modes act similarly according to threshold stress criteria, as 

that introduced in equation (2.2). Failure criteria act independently contributing to an 

ultimate failure of the composite system, that is, once a failure criterion is attained, 

degradation occurs only in the corresponding direction without affecting the other 

stress criteria computation. Element is removed from the calculation when the failure is 

attained in all the directions and can no longer carry any load. The input parameters 

needed for this material formulation are the orthotropic elastic parameters and the 

threshold values of the critical stresses for failure criteria. 

2.6.2. Delamination modeling 

Delamination damage was implemented in the simulation model through the 

use of a surface-to-surface tiebreak contact algorithm based on the knowledge of the 

interlaminar properties of the material in terms of normal and shear strengths. Among 

the different formulations available in LS-DYNA, the penalty contact formulation 

contact-automatic-one-way-surface-to-surface-tiebreak with failure law option 6 [31] 

was adopted between separate solid elements modeling solid plies. Using this 

approach, each ply is modeled as a solid layer of elements, but the nodes between plies 
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initially in contact are tied together, inhibiting sliding motions, until a failure criterion 

is reached, corresponding to delamination onset. In particular, the nodal stress is 

monitored throughout the analysis and implemented in the interface strength-based 

failure criterion: 
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 (
|  |
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   (2.9) 

where σn and σs are the current normal and shear stresses, respectively, and NFLS, 

SFLS the normal and shear interlaminar strengths to be set in the contact definition. 

When equation 2.9 is fulfilled, contact stress is linearly reduced to zero (Figure 2.14a) 

as a function of the distance between two points initially in contact. As soon as a 

defined critical crack opening (CCRIT) is reached, the tie contact definition for those 

nodes is released (Figure 2.14b). Once the tie component of the contact definition is 

deleted, the contact for those nodes converts into a standard surface-to-surface 

definition preventing interpenetration.  

a) b) 

Figure 2.14: Stress profile a) and damage evolution law b) of TieBreak contact [31]. 

The impactor was modeled as a hemispherical rigid body with rigid LS-DYNA 

material model (MAT-RIGID). Its initial velocity and mass were set depending on the 

energy level considered. Contact between the impactor and the whole laminate was 

simulated using the AUTOMATIC-SURFACE-TO-SURFACE penalty based contact 

algorithm. 

Ply element deleting criterion was added by using ADD-EROSION card, 

which allows elements to be deleted from the calculation if a certain condition based 

on values of stress, strain, pressure, etc. is met; in particular, a strain condition was set 

as a deleting criterion on the basis of reasonable maximum principal strain and shear 
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strain values occurring at fiber and matrix failure, in order to avoid excessive distortion 

of failed elements and consequent instabilities of the finite elements. A stiffness-based 

hourglass control was employed to improve the deformation behavior of the elements. 

The outer boundaries of the plates were considered to be clamped. Geometric and 

material symmetry allowed the analysis of one-quarter of the impactor and of the plate, 

as depicted in Figure 2.15. 

 

 
Figure 2.15: FE model set up adopted in the numerical analysis. 

2.7.  Assessment of the model 

The mechanical properties needed for MAT059 concern elastic moduli along the 

three principal directions, in-plane tensile, compressive and shear strength values, and 

interlaminar failure stresses (NFLS, SFLS). Only some of the input parameters 

requested for the numerical analysis were available from the manufacturer’s data sheet 

(values in parentheses in Table 2.1), so that a calibration procedure was followed to 

assign the unknown properties. In this section, first, some details on the calibration 

stage are given; then, the main topics of the work, i.e. predicting the F-d curve, and 

calculating the shape and extent of delaminated zone, are addressed separately. 
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Table 2.1: Mechanical properties of the calibrated model. 

Elastic 

Moduli  

(GPa) Shear Moduli  (GPa) Poisson 

ratios 

(-) 

E1 26 (26) G12 3.8 ν12 0.1 

E2 26 (26) G23 2.8 ν13 0.25 

E3 8 G13 2.8 ν23 0.25 

Tensile 

strengths 

(MPa) Compressive 

strengths 

(MPa) Shear 

strengths 

(MPa) 

XT 850 (414) XC 720 (458) S12 105 

YT 850 (414) YC 720 (458) S13 65 (65) 

ZT 120 ZC 500 S23 65 (65) 

Interlaminar 

Normal Failure 

Stress 

 (MPa) Interlaminar Shear 

Failure Stress 

(MPa) 

NFLS 35 SFLS 65 (65) 

2.7.1. Calibration analysis 

A sensitivity analysis showed that, within a quite large range of values, the 

influence of the Poisson’s ratios on the elastic response of the panels is negligible. 

Typical values, deriving from those adopted in [34, 35], where then employed in the 

calculations. The structural response was more sensitive to the through-the-thickness 

Young’s modulus, E3, as well as to the shear moduli. To find reasonable values for 

these parameters, the F-d curve recorded for U=0.41 J, t=0.96 mm (Fig. 10a), 

developing in the elastic range, was considered, and the constants E3, G12, G13=G23 

were calibrated requiring a satisfactory superposition of the predicted to the 

experimental curve. 

The sensitivity analysis also revealed that the compression strengths XC=YC do 

not sensibly affect the trend of the F-d curve. On the contrary, the first failure point 

(signaled by an evident load drop in the F-d curve) is critically dependent on XT=YT, 

S12, and NFLS. Assuming a value similar to the one adopted in [30] for S12, XT and 

NFLS were determined from the F-d curves concerning U=1.55 J, t=0.96 mm (Figure 

2.16b), imposing that: a) the experimental displacement in correspondence of which 
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first failure was found would be coincident with the numerical one; b) after load drop 

at first failure, the trend of the calculated and actual curve would overlap. 
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c) 
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e) 
Figure 2.16: Comparison of experimental and numerical F-d curves for the 0.96 mm thick 

laminate; a) U=0.4J; b) U=1.5J; c) U=3.3J; d) U=4.0J; e) U=6.0J.  

The calibrated values used in the numerical model are reported Table 2.1. 

Comparing them with the properties drawn from the producer’s data sheet (in 

parentheses in the Table 2.1), XT=YT is more than doubled. This is somehow 

anticipated, since the strength of GFRP is particularly sensitive to loading rate. Caprino 

et al. [36], conducting low-velocity impact tests on glass-polyester plates, noted a 70% 

increase in the maximum contact force with respect to static loading. Sims [37] 

reported an increase in flexural strength for glass mat/polyester laminates in the speed 

range 10-6 to 10-1 ms-1, while Asprone et al. [38] recorded an improvement in tensile 

mechanical properties in pultruded glass-polyester composites at strain rates ranging 

from 1 s-1 to 700 s-1. 

2.7.2. Force-displacement curves 

In Figure 2.16 and Figure 2.17, the experimental F-d curves (continuous lines) 

recorded at different impact energy levels are compared with those obtained by 

numerical analysis (dashed lines) for t=0.96 mm and t=1.92 mm, respectively. The 

agreement between experiments and FE in Figure 2.16a, b in the loading phase is 

obvious, since some information gathered from these curves was used to calibrate the 
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numerical model. However, the general trend of all other (completely unknown) curves 

is reasonably well captured by FE, not only in the loading, but also in the unloading 

stage of contact history. In particular, the elastic response of the thicker laminate 

(Figure 2.17a) is predicted with excellent accuracy. 

Indeed, two major phenomena, evident when the thicker laminate is considered 

(Figure 2.17), distinguished the numerical solutions from the actual cases: the 

oscillations pertaining to the elastic phase are not accurately described, and the 

predicted sudden load drops deriving from failures are much larger than observed. The 

first event is anticipated: since the F-d curve was verified to be substantially insensitive 

to velocity (Figure 2.8), the initial impact velocity V was held constant in the FE model 

(V=50 mm/s), and energy was set by suitably selecting the impactor mass. 

Consequently, the main features correlated with impact dynamics were lost. The entity 

of sudden load drops in the numerical F-d curve, determined by damage propagation, 

is critically dependent on the ability to effectively model the progressive damage 

within the ply, as well as the laminate response after equation 2.9 has been fulfilled. 

Probably, a more sophisticated law describing the behavior of tiebreak elements would 

be required to better reproduce the actual material behavior. 
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d) 

 

e) 
Figure 2.17: Comparison of experimental and numerical F-d curves for the 1.92 mm thick 

laminate; a) U=0.8J; b) U=8.3J; c) U=12.4J; d) U=15.5J; e) U=20.0J.  

The open symbols in Figure 2.9 represent the absorbed energy provided by FE 

analysis. The numerical values match satisfactorily the experimental data (full 

symbols), especially for small energy values. In particular, the FE simulations 

reproduce well both the linear dependence of Ud on impact energy and the effect of the 
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thickness on the slope of the straight line. With increasing U, the FE predictions tend to 

underestimate Ud. Of course, this reflects the approximations implicit in the modeling 

of material behavior during progressive damage. 

2.7.3. Damage assessment 

As previously specified, the simulation results indicate where interlaminar 

failures occur in terms of nodal restraint failures. In particular, once the failure 

criterion is reached, the force in contact restraint is linearly scaled down to zero. Then, 

nodal connection fails completely and nodal restraint is removed. Through the 

identification of the released node restraints, the delamination mapping can be defined 

for each laminate interface, in order to quantify interlaminar damage.  

The open symbols in Figure 2.12 represent the characteristic length d of the 

delaminated area provided by FE. Indeed, the numerical values are very close to the 

experimental ones (full symbols), confirming the reliability of FE model. Similar 

conclusions can be drawn from Figure 2.13, where the comparison between FE and 

measured values is carried out referring to the projected delaminated area, Ap. 

Further support to the numerical results is given in Figure 2.18, where a view 

of the bottom face of a damaged plate is illustrated (Figure 2.18a). In Figure 2.18b, the 

FE mesh of the portion enclosed within the dashed line in Figure 2.18a is shown; the 

bright area represents delamination, as predicted by the FE model. Clearly, not only the 

dimensions, but also the overall shape of delaminated area is well predicted by FE. In 

order to more deeply evaluate the capability of the model to estimate delamination, a 

comparison between the extent of experimentally determined and predicted ply-by-ply 

delaminated areas was carried out. An example of the results obtained is shown in 

Figure 2.11, where the open symbols refer to FE. 

The general trend of delamination development within the laminate is well 

reproduced by the numerical analysis. In particular, as often found in impact studies 

[3,8,35], the interfaces between layers having different orientations are recognized to 

be more prone to delamination, with the largest delaminated area located near the back 

face of the panel. Further, in agreement with the experimental observations, FE 

indicates that the critical conditions for delamination are also reached at interfaces 

between laminae with the same orientation. Among the latter, the mid-plane is 

correctly predicted to suffer the most extensive propagation. 



Chapter II – Impact behavior of GFRP composite laminates 

36 
 

 
a) 

 

 

 

 

 
b) 

Figure 2.18: Comparison of: a) experimental, and, b) calculated delaminated area. 

Laminate thickness t=0.96 mm; impact energy U=6.0 J. 

It is interesting to note that, when interlaminar surfaces between layers having 

the same orientation are concerned, the delamination extent calculated by FE is larger 

than its actual counterpart (Figure 2.11). A possible explanation is in the fact that, in 

the numerical analysis, the same interlaminar strength was assigned to all the 

interlayers. Probably, better agreement between experiments and calculated values 

could be achieved by assuming the normal and shear failure stresses at the interfaces as 

dependent on the relative orientations of the adjacent laminae. 

Figure 2.19 reports some representative images of intralaminar damage. Figure 

2.19a refers to the through the thickness shear failure that affects the matrix within the 

ply in case of 1.92 mm thick laminate impacted at U=15.5 J. The contour of the image 

(blue) highlights the elements which failed due to the through the thickness failure 

criterion (equation 2.7). It can be observed that the elements under the impactor 

undergo very high levels of through the thickness deformation, leading to localized 

matrix failure. Figure 2.19b and Figure 2.19c depict the exploded view and the bottom 

view of the 1.92 mm thick laminate impacted at U=15.5 J, respectively.  The tensile 

damage along the X direction is highlighted in blue and represents the longitudinal 

failure according to the criterion expressed by equation 2.2. It can be observed that this 

type of damage is mainly concentrated at the bottom layers with (0,90) orientation. The 

extension of the tensile failure roughly corresponds to the tensile fiber breakage 
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occurred within the laminate, as reported in Figure 2.10. Figure 2.19d reports the 

1.92 mm thick laminate impacted at U=15.5 J after the impact simulation. 

 

 

 
a) 

 
b) 

  

 
c) 

 
d) 

Figure 2.19: Interlaminar damage of the 1.92 mm thick laminate impacted at U=15.5J: a) 

through the thickness shear failure; b) exploded laminate view depicting longitudinal 

tensile failure, X direction; c) bottom view of composite laminate, longitudinal tensile 

failure, X direction; d) post impact view. 

2.8.  Closing remarks 

Low-velocity impact tests were carried out on glass fabric/epoxy laminates, 

adopting two panel thicknesses and different impact energies. The experimental tests 

were modeled through the explicit FE software LS-DYNA. 
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From the results obtained, FE estimated with sufficient accuracy the overall force-

displacement curve during the loading and rebound phases, as well as the irreversibly 

absorbed energy. Satisfactory agreement between numerical predictions and 

experiments was also verified with reference to the extent and shape of projected and 

ply-by-ply delaminated areas. In particular, as confirmed by the “post-mortem” 

analysis of the impacted panels, FE calculated considerable delamination at the 

interface located at the mid-plane of the specimens, characterized by two layers having 

same orientation. In general, the predicted delamination extent between laminae of 

identical orientation was larger than the actual one. Probably, this depends on the 

interlaminar strengths assigned in the calculations, which were assumed independent of 

the relative orientations of adjacent plies. Satisfactory agreement with test results was 

also found in terms of extension of extent of fiber breakage. However, when the impact 

energy was closer to penetration limit the predicted absorbed energy was slightly 

underestimated; in this case constitutive models based on damage accumulation will be 

desirable for future numerical analysis.  
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Chapter III 

OUT OF PLANE COMPRESSIVE BEHAVIOR 

OF HONEYCOMB SANDWICH STRUCTURES  

3.1.  Introduction to framework 

The use of honeycomb structures as core material in sandwich panels is widely 

diffused in many engineering applications, especially where high mechanical 

performances and low density are requested. The main key performance factors of 

honeycombs are represented by the capability to withstand through the thickness 

compression and to absorb energy by plastic deformation of the cell walls. Given the 

heterogeneous nature of honeycomb sandwich structures, damage may affect both 

composite skins and honeycomb core. Due to this hierarchical structure, a multiscale 

approach appears suitable in order to capture damage mechanisms in case of out of 

plane compressive loading conditions. In particular, the damage analysis may include 

the whole structure (macro scale) or the honeycomb-skins structures (meso scale). 

With the scope to move from the meso scale level, the analyses presented in 

Chapter III are aimed at accurately modeling the buckling and crushing behavior of 

hexagonal honeycomb structures. The damage analysis moves from the modeling of 

the honeycomb material properties, including the sensitivity to material defects, as 

depicted in Figure 3.20. Owing these damage characterizations, the numerical analyses 

are performed on a representative honeycomb cell enabling to transfer mechanical 

properties, predicted at the meso scale, to the macroscale of the whole sandwich 

structure, in order to predict the compressive strength and folding mechanism during 

the crushing. 
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             SANDWICH ASSEMBLY                     UNIT CELL          NOMEX MATERIAL                

                                                                                                               LEVEL OF ANALYSIS 

Figure 3.20: Scheme of multiscale analysis performed for the investigated Nomex 

honeycomb structure. 

The following sections firstly deal with the main theoretical concepts related to the 

out of plane compressive properties of hexagonal honeycomb core materials. Thus, a 

statistical-based method to include imperfections in the simulation is presented and 

applied to predict the compressive behavior of hexagonal Nomex honeycomb structure. 

A shell model of a representative single cell made of expanded Nomex has been 

created using the ABAQUS FE code (Simulia, Dassàult Systèmes, Providence, RI, 

USA). The key aspect proposed in the study is the inclusion of imperfections in terms 

of both material (elastic modulus variability) and geometrical (thickness variability) 

defects. To do this, a stochastic approach is proposed by performing random sampling 

at each element of the FE mesh, assuming different Young’s modulus values and 

different thickness properties, according to a pre-defined statistical distribution. The 

modeled cell is used to address several aspects of the compressive response, 

particularly focusing on the onset of buckling, the collapse limit and the crushing 

behavior. 

3.2.  Literature overview  

3.2.1. Sandwich structures: introduction 

Nowadays composite sandwich structures are widely used in many different 

engineering fields especially in the aerospace and mass transport industry where 

 

 
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 0.5 1 1.5 2 2.5



e
Es

y



Multiscale Damage Modeling of Advanced Composite Materials 

45 

weight reduction is one of the most significant design parameters. These materials 

offer many advantageous specific mechanical properties, such as stiffness-to-weight 

ratio, which make them suitable for component construction including secondary 

structural parts like flaps, wing-body fairings, engine cowls, spoilers, nacelles, 

radomes, etc. [1-3]. Sandwich structures are generally made of two thin and stiff skins, 

separated by a thick, lightweight core, which increases the inertia of the resulting 

section without significantly increasing the mass (Figure 3.21). The skins primarily 

carry tensile and compressive loads whereas the core carries transverse shear loads and 

gives the panel high specific bending stiffness. In addition, the core influences the out-

of-plane compressive behavior and the energy absorbing capability of the sandwich 

structure by its failure mechanisms. 

 
 

Figure 3.21: Schematic representation of a sandwich structure 

The skins are regularly made of lightweight materials such as aluminum or 

fiber reinforced composite laminates. Different types of sandwich core structures are 

commonly used in the aerospace and transportation industry including foam/solid core 

(ships, aircrafts), honeycomb (aircrafts, satellites), truss core (buildings, bridges), and 

web core [1, 2], which can be manufactured by using a variety of base materials, e.g., 

metal foils, plastic foils, or resin impregnated paper-like materials made of synthetic or 

natural fibers. 

The use of honeycomb is highly diffused in many engineering applications due 

to the high density-specific performances they can offer. The main key performance 

factors of honeycombs are represented by the ability to withstand through-thickness 
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compression and to absorb energy by plastic deformation of the cells. Generally, in the 

aerospace industry honeycomb structures are made of aluminum foils, phenolic-

impregnated Nomex® paper or carbon honeycomb, given their superior weight-

specific mechanical properties in terms of stiffness and structural weight reduction [4-

6]. Furthermore they offer design versatility and cost-efficient manufacturing [7]. 

However, the closed structure of honeycomb cells may lead to negative effects 

regarding condensed water trapped in the cells and trigger an increase in weight as well 

as a reduction of mechanical properties. To overcome this issue, new configurations for 

core structures, such as folded cores [8], have been recently introduced. In particular, 

the manufacturing process is described in [9] and a wide range of experimental results 

can be found in [10].  

Most honeycomb structures show a similar mechanical behavior under out-of-

plane (i.e., through-thickness direction) compression. In particular, they are 

characterized by: (i) an initial linear-elastic regime up to the buckling limit and a 

subsequent compressive strength reduction; (ii) a plateau of constant stress, named 

crush strength, corresponding to a progressive degradation of cell walls; (iii) a final 

segment of densification characterized by the compression of the cell wall itself. 

However, honeycomb structures can exhibit different features in their compressive out-

of-plane behavior depending on the nature of the honeycomb core constituent material. 

In particular, when the critical compressive stress is reached, the cells begin to collapse 

by elastic buckling, plastic yielding or brittle fracture, depending on the wall material 

type. Hanel et al. [11] investigated the influence of the different paper materials, i.e., 

Kevlar and Nomex, on the structural properties of wedge-shaped folded cores, whereas 

other authors investigated the structural behavior of a honeycomb structure made of 

Nomex paper material, making comparison with a honeycomb core made of aluminum 

[12]. They report that Nomex material is much more brittle than aluminum foil during 

the progressive failure mechanism and the crushing regime.  

In dealing with the modeling of flat-wise compressive behavior, several 

approaches have been proposed, encompassing analytical models [13, 14], macro 

mechanical finite element models adopting equivalent solid formulations [12], as well 

as meso-mechanical models focusing on the cellular honeycomb structure, both 

analytical and numerical [8, 15-18]. Nevertheless, the first two types of approaches 

present limiting drawbacks mainly related to the prediction of the shear behavior and 

the progressive collapse of the honeycomb cells. For these reasons, the problem is 

often tackled through detailed numerical models and/or through a virtual testing 

approach. In general, virtual testing consists of a step-by-step numerical procedure 
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where a detailed model is employed on the basis of experimental tests. Usually, this 

procedure begins from a small scale (as an example, from coupon material tests); once 

the mechanical behavior is properly calibrated at that scale, more complex tests can 

either be simulated or carried out scaling up to the scale of the component/assembly. 

As a consequence of this process, experimental tests can be limited to a preliminary 

stage supporting numerical implementations in subsequent steps. This procedure 

represents a key tool especially for composite materials exhibiting different behavior at 

different scales. In fact, by reproducing the exact shape of the core structure, this 

numerical technique gives the possibility to reproduce not only the elastic behavior 

prior to cell wall buckling but also the complex crushing behavior characterized by cell 

wall folding mechanisms at micro/meso scale, even though a large computational time 

may be required. Moreover, it allows to gather mechanical properties which are usually 

not available among experimental manufacturer databases. This kind of approach is 

usually pursued to model honeycomb or folded core materials by using different scales 

ranging from one single cell scale to large scale including the full honeycomb model. 

An example of this numerical approach can be found in recent studies performed by 

Heimbs and concerning virtual testing of sandwich panels manufactured with Nomex 

honeycomb and folded cores [8]. The author successfully simulated the cellular core 

behavior in different loading directions by adopting a very detailed finite element 

model and addressing numerical problems such as mesh and loading rate dependencies. 

3.2.2. Sandwich failure mode: skin failure 

The sandwich beam failure due to the skin includes three main failure modes: 

face ultimate strength (both compressive and tensile), face wrinkling and intra-cellular 

buckling (Figure 3.22a,b and c, respectively). The maximum stress levels reached in 

the face sheets can be derived by sandwich beam theory and used to predict the skin 

failure threshold. In a symmetric beam, the stress is the same in the compression and 

tension faces. For composite skins, the critical face is usually the compressive face. 

The failure occurs when the axial stress in either of the skins, f, reaches the in-plane 

ultimate strength, Fc. 

       
(3.1) 

The wrinkling of the compression face takes place when the wavelength of the 

buckled face is of the same order as the thickness of the core. This problem may is 
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usually handled as the buckling of a beam (the face sheet) supported transversely by an 

elastic foundation (the core). With three-point bending, wrinkling of the top skin 

occurs in the vicinity of the central load. Allen [19] gave the critical compressive stress 

fw that results in wrinkling: 

        

 
   

 
  (3.2) 

where: 

    [  (     )
 (     )

 ] (3.3) 

and cz and Ec are respectively the out-of-plane Poisson’s ratio and Young’s’s modulus 

of the core.   

When a honeycomb structure is used as core material within the sandwich 

structure, failure may arise by buckling of the face in a small region where it is 

unsupported by the walls of the honeycomb. The following expression has been 

proposed [20] for the in-plane stress fi in the skin at which intra-cellular buckling 

occurs: 
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where R is the cell size of the honeycomb core. 

 

a) b) c) 

Figure 3.22: Skin failure modes: a) compressive failure; b) intra-cell buckling; c) 

wrinkling failure [20]. 

3.2.3. Sandwich failure mode: core failure 

Sandwich structures loaded in bending can fail due to core failure. Related 

failure modes include: shear failure or indentation by local crushing in the vicinity of 

the loads application. 
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Shear failure (Figure 3.23a) occurs when the applied shear stress, c, equals the 

shear strength, cu, of the core:   

       (3.5) 

It should be pointed out that when honeycomb cores are used, two different values of 

the ultimate shear strength should be considered corresponding to shear strength in the 

two in-plane directions, depending on the direction of the honeycomb ribbon. 

Indentation failure (Figure 3.23b) is predicted when the out-of-plane 

compressive stress, z, equals the out-of-plane compressive strength, cc, of the core. 

Knowing the length of contact, , between the central loading bar and the top face 

sheet, it is assumed that the load is transferred uniformly to the core over this contact 

length. The out-of-plane compressive stress in the core is assumed to be given by: 

   
 

  
 (3. 6) 

To evaluate the core failure mechanism, stiffness and strength properties for 

the core structure are required. The data required for the failure analysis can be derived 

using the given relations between the properties of the core and its solid material 

reported in the following sections.  

  
a) b) 

Figure 3.23: Core failure modes: a) shear failure; b) indentation failure [20]. 

3.2.4. Sandwich failure mode: failure map 

A failure mode map is a useful tool that can be used to predict the critical 

failure mode for a particular beam design. The map is constructed as follows. Since 

each of the failure equations depends on the beam width b and the core depth c in the 

same way, the transition from one failure mode to another can be expressed in terms of 

two variables: the ratio t/L of the face thickness to the beam span and the relative 

density *
/s of the core. Moreover, the core shear properties can be expressed as 

function of the core relative density and solid characteristics, i.e. compressive strength 

sc, elastic Ec and shear modulus Gc. These two beam design parameters are used as the 
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axes of the failure mode map; by equating pairs of failure equations in turn, the 

transitions between one failure mode and another can be plotted on the failure map.  

Table 3.2 reports the failure equations in the case of a sandwich beam, with 

thin skins and weak core, loaded in three point bending. The equations of core failure 

are expressed as function of K1, n, K2, and m constants, which can be evaluated for 

both honeycomb and foam core on the basis of cellular structure and solid material. 

Table 3.2: Failure equation for three-point bending configuration [20]. 
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3.2.5. Honeycomb out of plane properties 

Honeycomb out-of-plane compressive properties are of interest for many 

applications since they influence the mechanical performance of the sandwich panel, 

such as local compression and impact resistance. For this reason, some of the most 

important results concerning out of plane honeycomb axial properties are summarized 

in the following paragraphs. 

Linear-Elastic deformation (Modulus) 
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One of the main functions of honeycomb core is to carry normal and shear 

loads in planes containing the axis of the hexagonal prisms, i.e. the Z(3) direction in 

Figure 3.21. When a hexagonal honeycomb structure is loaded in this direction, the cell 

walls are extended or compressed (rather than bent) and the resulting elastic 

(compressive and tensile) moduli are much larger than those calculated for in plane 

loading. Assuming a low density hexagonal honeycomb core (such as Nomex), so that 

t << l, the linear elastic regime of the honeycomb cell is governed by the elastic 

modulus E*3. The theoretical prediction for the sandwich structure Young’s’s modulus 

E*3 [20, 21] (reported in Equation 3.7), for normal loading into the through-the-

thickness direction, simply reflects the cell material Young’s’s modulus Es scaled by 

the area of the load-bearing section: 
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 (3. 7) 

 

for the honeycomb with uniform thickness (t), and  

  
 

  
 

 

    (      )
 
 

 
 

 

  
 (3. 8) 

 

for the honeycomb with one third double thickness (2t); where  is the angle between 

the inclined walls and the W(2) direction and ρ and ρs are the density of the honeycomb 

structure and of the solid cell wall material, respectively. In the case of perfect 

hexagonal cells with  = 30° and c=l√3, and with one third double thickness (2t), the 

relationship becomes: 

  
 

  
 

 

 
 
 

 
 

 

  
 (3. 9) 

 

The ultimate strength of a honeycomb structure describes the maximum 

resistance under the compressive load. Generally, the compressive strength of such 

structures is correlated not only to the compressive strength of the solid cell wall 

materials, but also to the buckling behavior of the honeycomb cell walls. For instance, 

[20], reported that failure under out of plane compressive stresses occurs due to 

fracture of the cell walls or due to elastic or plastic buckling of the cell walls. For 

Nomex honeycombs, failure is due to a “crushing” mechanism, initiated by elastic 
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buckling and developing as a plastic buckling process [20]. For this reason, some 

important results concerning different modes of collapse under out of plane 

compressive loads are following reported. 

Non-linear elasticity: elastic buckling 

The honeycomb compressive behavior is intrinsically related to the cell wall 

buckling behavior under in-plane compression. Experimental tests showed that an 

elastomeric honeycomb, compressed in the Z(3) direction, will eventually buckle with 

the cell walls bulging in a periodic way. By assuming a perfect geometry of the 

honeycomb with uniform cell wall thickness t, the elastic buckling collapse stress was 

derived from the thin plate elastic in-plane compressive buckling theory (developed by 

Timoshenko) by Gibson and Ashby [22], representing the sum of the loads carried by 

the individual cell walls: 

(   
 ) 
  

 
 

(    
 )

 

 
 
  

(
 
 
     )     

 (
 

 
)
 

 (3. 10) 

 

where s is the Poisson’s ratio of solid cell wall material. Zhang and Ashby [21] also 

developed the elastic buckling strength for the honeycomb with one third 2t cell walls:  
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 (3. 11) 

 

where K is a constant depending of the boundary constraint applied to the walls. For 

instance, K=5:73 and K=3.29 in case the four boundaries of any single cell wall are 

fully clamped and for the condition of simply supported boundaries, respectively. It 

should be pointed out that in honeycombs the cell wall is neither completely free nor 

rigid clamped. For this reason a mean value K=4 is often used. 

Plastic collapse 

If the net section stress in the plane of honeycomb cell wall exceeds the yield 

strength ys of the cell wall material, then the cell walls will yield axially [22]. This 

collapse mechanism mainly exists for honeycombs made of rigid-plastic materials. The 

upper limit for the plastic collapse strength of the honeycombs is: 
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 (3. 12) 

 

This equation properly describes the axial strength in tension whereas in compression 

this limit is reached only if plastic buckling does not occur first. Wierzbicky [23] 

treated the axial collapse of hexagonal honeycombs by plastic buckling. He stated that 

the cells progressively fold with a wavelength  which usually is equal to the cell side 

length l Figure 3.24a. The geometry of collapse is characterized by very little extension 

or tension and large bending of the cell wall. By equating the plastic work per unit 

depth of cell wall to the work done by the force P per cell in a displacement of (/2 -2t) 

it is possible to give an estimation of the plastic buckling stress: 
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 (3. 13) 

 

which, for regular hexagons, reduces to: 
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 (3. 14) 

 

Since this was a simplified calculation, Wierzbicky identified a compatible collapse 

mode which requires additional plastic hinges and limited amount of cell wall 

extension at the cell corners (Figure 3.24b).  

By minimizing the collapse load with respect to the wavelength , Wierzbicki’s 

method provided the stress limit for collapse caused by plastic buckling, as: 
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In case of hexagonal honeycomb with uniform thickness t, and 
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for honeycombs with two of the six cell walls having double thickness, 2t. The stress 

for collapse by plastic buckling provided by these equations may be less than that for 

simple plastic compression (equation 3.12) when t/l < 0.1 leading to a compressive 

collapse mode by plastic buckling. 

 

a) 

 

b)  

Figure 3.24: Schematization of the plastic buckling of a honeycomb loaded in Z(3) 

direction a); work dissipated in the plastic hinge b). 

 

Brittle failure 

The strength of brittle honeycombs is important both for bearing loads and 
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Z(3) exceeds the tensile fracture strength (approximately ts) of the cell wall material, a 

brittle honeycomb will fail in tension. The upper limit for tensile strength is then: 

(  
 ) 

   
 

 
 
  

 (
 
 
     )     

 (
 

 
)  

 

  
 (3. 17) 

 

This is an upper limit because it describes a defect-free condition; in fact, if the 

honeycomb contains a kind of defect it may fail at lower stresses. For brittle 

honeycomb under compression, the fracture strength of the cell wall solid material 

under compression should be used instead. 

3.2.6. Imperfections – classification and modeling 

The knowledge of core constituent material properties and the sensitivity of 

such structures to different sources of defects represent a fundamental concern for the 

development of a cellular- based finite element (FE) model able to capture the behavior 

of such structures, including the buckling limit and the folding mechanism occurring 

during the crushing mode.  

Generally, the usual source of material imperfections is the manufacturing 

process of honeycomb structures. The most common manufacturing method is the 

adhesive bonding followed by an expansion process [7], reported in Figure 3.25: 

honeycomb starts out as flat strips of material, or ribbons. Strips of adhesive are placed 

on the ribbons in a staggered pattern; for metallic cores, a corrosive resistant coating is 

applied to foil sheets before printing the adhesive lines.  

 

 
Figure 3.25: Expansion manufacturing process for honeycomb material [7]. 
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The sheets are cut to the required thickness and stacked, and the adhesive is 

cured under pressure at elevated temperature. Once cured, the blocks are cut to the 

desired thickness, and then the ribbons are pulled apart or expanded to form 

honeycomb. Fully expanded honeycomb forms the classical hexagon shape whereas if 

the expansion is stopped before or after the hexagons are fully formed, an under-

expanded or an over-expanded core can be obtained, respectively. When metallic cores 

are expanded, the sheets yield plastically and the node free wall joints thereby retain 

their expanded geometric shape. The procedure for nonmetallic honeycomb is slightly 

different. Here the honeycomb does not retain its shape after expansion and must be 

held in a rack. The block web material contains a small amount of resin which is heat-

set in an oven. Most paper cores will retain their expanded shape. Then, the 

honeycomb block is dipped in liquid resin (usually phenolic or polyamide) and oven 

cured. The dipping curing cycle is repeated until the block is at the desired density. The 

corrugated process of honeycomb manufacture is typically used to produce products in 

the higher density values. This process starts with the application of the adhesive to the 

corrugated nodes; then, the corrugated sheets are stacked into blocks and the node 

adhesive cured. Sheets of honeycomb material are cut from these blocks to the required 

core thickness (Figure 3.26). 

 

 
Figure 3.26: Corrugated manufacturing process for honeycomb material [7]. 

The different types of imperfections and irregularities which characterize these 

materials may affect the ideal structure of a cellular honeycomb core and modify its 

mechanical behavior. These are inevitably generated by the manufacturing process 

and/or loading conditions. A general classification of imperfections can be provided as 

follows [10, 24, 25]: 
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• Geometrical imperfections: i.e., shape defects, curvatures, non-perfect angular 

corners, surface roughness, wall thickness variability, uneven cells (global 

imperfections); 

• Material imperfections: i.e., variability of the material properties, for example 

due to the heterogeneity of the adopted composite system (e.g., Nomex paper or 

CFRP), resin accumulation in cell wall corners, pores, variation of fibre volume 

fraction (local imperfections); 

• Initial imperfections: i.e., prestress and prestrain conditions; 

• Loading imperfections: i.e., load misalignment, variation of loads. 

Typically, the actual case originates as a combination of the kinds of imperfections 

listed above.  

Defects are responsible for the initiation of damage and subsequent 

degradation (damage propagation, folding phase, tearing of the edges etc.) and, 

therefore, greatly influence the global and local mechanical response of the structure. 

Several studies have been conducted addressing this issue. An ideal model without 

imperfections tends to overestimate the mechanical properties, in particular critical 

buckling load and initial stiffness [26, 27]. Combescure [24] reported some results 

showing how initial shape imperfections, thickness defects, and boundary condition 

imperfections can lead to a drastic decrease of the load carrying capacity of a structure 

under compression. Baranger et al. [26] analyzed the influence of geometrical defects 

in folded cores and their consequences on buckling behavior with the final aim of 

performing a numerical optimization of the core geometry. They reported that 

geometrical defects may play a major role in the response of the structure in terms of 

stability problem involving both local and global buckling.  

In this context the modeling of imperfections represents a critical issue in the 

simulation process of cellular-based honeycomb structures. As a consequence of the 

variety of imperfections characterizing the manufactured core, different methods have 

been implemented to include imperfections into meso-scale honeycomb FE models for 

virtual testing simulations. Usually, FE analysis includes 2 main approaches: linear 

elastic buckling analysis (i.e. eigenvalue problem) and non-linear analysis (i.e. 

geometric-non-linear). The linear buckling analysis predicts the critical load that 

triggers the structure to buckle according to a certain shape of deformation for an ideal 

geometry of the structure. The result of this analysis is a bifurcation point in the load 

(e.g. compressive load) history of the structure dividing a first perfect elastic state to a 

secondary loading path of a quasi-equilibrium state. The linear buckling problem is 

formulated as the following eigenvalue problem:  
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          (3. 18) 

 

where K is the global element stiffness matrix, i is the ith eigenvalue or buckling load 

factor, i is the ith eigenvector or buckling mode vector of the displacement, M is the 

global geometric stiffness matrix which is also known as the initial stress stiffness 

matrix. However, a structure as honeycomb usually undergoes geometric non-linear 

behavior due to the existence of different sources of imperfections. Geometrical 

imperfections can be implemented on the basis of experimental observations or by the 

geometric scanning of the actual shape of a manufactured core [24, 27]. In addition, 

geometrical imperfections can be created in a model by performing random deviations 

from the ideal shape of nodal positions according to a fixed range of variability. This 

approach is generally called node shaking and is available in most of the commercial 

FE codes. Baranger [26] proposed a new method which differs from the 

aforementioned procedures, based on the modeling of the manufacturing folding 

process in order to reproduce physical defects, such as the out-of-straightness of the 

edges. Li et al. [28] studied honeycomb cell structures having irregular cell shapes and 

non-uniform cell wall thickness by using a Voronoi tessellation technique and the FE 

method. The effect of cell wall corrugation, curvature and missing cell walls was 

investigated by [29-31]. Moreover, Fan [32] investigated thermoplastic hexagonal 

honeycombs considering only that the vertical walls of the honeycombs were not 

perfectly straight (cell wall tilting angle of 0.2° from vertical position) for the non-

linear simulation of flat-wise compression test, obtaining a slightly overestimated final 

strength.  

Another technique used to model imperfections is to consider global modes of the 

cell on the basis of linear buckling analysis [33, 34]. More in detail, the ideal initial 

geometry (mesh) of the cell is distorted according to one of the computed global 

buckling modes (or eigenmodes) with amplitude scaled down of about 1-5% of the 

wall thickness. Xue and Hutchinson [35] generated eigenmodes by quasi-static 

buckling analysis with ABAQUS/Standard and applied them to perturb the perfect 

geometry of square metal honeycomb and initiate cell wall buckling. Other examples 

can be found in [33, 34], where hexagonal honeycomb cores are investigated by means 

of ABAQUS/Standard and LS Dyna (LSTC, Livermore, CA, USA) FE codes. In all 

cases it is reported that the eigenmodes had a strong influence on the resulting 

compressive stress-strain curve with particular emphasis on the nonlinear part of the 

curve. The choice of one of the dominant modes and the magnitude of the scale factor 
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may affect the global mechanical response, which sometimes can also be affected by 

the user’s sensibility. In particular, different imperfections corresponding to different 

buckling modes may lead to different collapse modes, affecting the effectiveness in 

determining the initial stiffness and the compressive peak load [26, 35]. Moreover, the 

use of the first buckling mode not necessarily allows to describe all types of defects 

and it may be not appropriate when constituent cell materials are not homogeneous.  

3.3.  Materials and methods 

The honeycomb sandwich material investigated within the present work is a 48 

kg/m3 hexagonal honeycomb core with a nominal cell size of 3.175 mm, made of 

Nomex phenolic resin-impregnated aramid paper. The trade name is HRH 10-1/8-3.0 

and it is manufactured by Hexcel [36]. Hexcel manufactures aramid-fiber reinforced 

honeycomb from three types of para-aramid substrates, including Nomex®, Kevlar®, 

and KOREX® materials. The analyzed honeycomb consists of Dupont’s Nomex 

aramid-fiber paper dipped in a heat-resistant phenolic resin to achieve the final density. 

It provides high strength, toughness and fire resistance properties in a small cell size. It 

is widely used as core material for sandwich panels throughout the aerospace industry 

and also in several other commercial areas. According to the datasheet of the 

manufacturer, the code name is referred to its geometrical and mechanical features: 

HRH 10 indicates the product type, 1/8 is the cell size in fractions of an inch and 3.0 is 

the nominal density in pounds per cubic foot.  

In Figure 3.21 and Figure 3.27a,b the geometry of the honeycomb is illustrated. All the 

honeycomb specimens considered in the following activities have been assembled with 

the L(1) direction of the honeycomb core along the primary direction. The Out-of-

plane crushing behavior of Nomex honeycomb has been investigated by flat-wise 

stabilized compressive tests according to ASTM C365M standard. The tests were run 

on 60x60x32.2 mm Nomex core coupons (five) bonded between two 1-mm-thick E-

glass fiber reinforced phenolic resin skins (with a cured ply thickness of 0.25 mm), 

with a constant cross head velocity of 0.5 mm/min. The specimens were laminated 

with external skins in order to prevent local crushing at the edges of the honeycomb 

cores. Compressive modulus of the elastic phase, stabilized compressive strength and 

strain, crush strength, fully compacted compressive modulus and strain values at which 

densification occurs have been derived by these tests. 
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3.3.1. Model features 

The elastic and failure behavior of the honeycomb structure is strongly 

influenced by cell wall mechanical properties and their modeling represents a crucial 

factor for the development of the FE honeycomb model. The manufacturing process 

generates an orthotropic material where aramid fibers embedded in the layers are 

oriented almost randomly. The material is characterized by two principal directions, 

called machine direction and cross direction. The principal material direction 

corresponds to the thickness direction T of the honeycomb structure.  

Foil thickness can be highly variable whereas porosity and lack of matrix can 

affect the ideal smoothness of the foil. The overall thickness is very difficult to 

estimate and can be detected directly from micrographics or SEM images. It should be 

mentioned that it is not straightforward to gather experimental data of such paper 

material due to the thin configuration of the specimen. Mechanical characterization of 

Nomex paper material can be found in experimental works performed by Tsujii et al. 

[37] as well as Foo et al. [5] while Fisher et al. [38] performed experimental tensile and 

compressive tests on Kevlar based paper material used for folded cores showing a 

mechanical performance similar to the Nomex paper. These experimental tests 

(including tension, compression, and bending) provided stress-strain curves as well as 

stiffness and strength values reporting a nonlinear behavior that can be estimated by a 

bilinear elasto-perfectly plastic material law in compression. Moreover, differences in 

the material constitutive behavior were found in different loading directions, machine, 

and cross direction. 

The development of the Nomex honeycomb FE model is based on the 

definition of representative cell geometry, its meshing, the definition of boundary and 

loading conditions, and the assignment of proper constitutive material laws including 

the implementation of imperfections. The periodicity of the idealized hexagonal 

microstructure allows to consider one representative hexagonal unit cell to simulate the 

buckling and compressive/crushing response of Nomex honeycomb observed in the 

experiments by assigning appropriate boundary conditions. The cell is extracted from 

the periodic microstructure of the honeycomb as highlighted in Figure 3.27a (dashed 

line). Residual stresses deriving from the mechanical expansion process through which 

the honeycomb is manufactured are assumed to be negligible. Additionally, the small 

rounding of the corners of the actual cells is not taken into account. The final idealized 

cell geometry is shown in Figure 3.27b in the L–W plane and it is depicted in a three-
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dimensional rendering in Figure 3.27c. The representative cell is represented by a 

perfect hexagonal cell of diameter  √ , paper thickness t and height h.  

 

 

 

a) 
 

b) 

 

c) 

Figure 3.27: a) in plane periodical honeycomb microstructure for hexagonal cells, W-L 

plane; b) single representative periodic cell; c) 3D finite element mesh rendering for a 

single Nomex honeycomb cell. 
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and a monolithic thickness of 2t is assumed in the model neglecting the bonding of the 

two walls. The hexagonal unit cell is discretized within the nonlinear FE code 

ABAQUS using 9000 S4 shell elements. The bottom edges of the unit cell are assumed 

to be fixed while the nodes of the top edges can only translate in the Z direction. To 

enforce periodicity, for the six lateral edges of the unit cell only displacements in the 

plane perpendicular to the wall direction and rotations around the radial direction are 

allowed. The cell is loaded by incrementally prescribing the Z displacement of the top 

surface, indicated as . 

According to the manufacturer, the cell walls are made of a 0.051 mm thick 

Nomex® T412 aramid paper with an additional phenolic resin coating, resulting in a 

total average wall thickness of roughly 0.063 mm. This value has been taken as a 

reference for the single wall thickness t in the honeycomb single cell model. The 

constitutive behavior of the implemented material model was assumed to be isotropic 

and linearly elasto-perfectly plastic until failure, on the basis of available experimental 

results for Nomex paper material [5, 37]. 

As previously mentioned the actual cellular structure of a honeycomb core is 

non-uniform in geometry and characterized by imperfections and irregularities. This 

feature inevitably affects the critical buckling load of the single cell and the overall 

strength of the honeycomb structure which would be overestimated in a model without 

imperfections. In Nomex® honeycomb cores both global and local imperfections are 

present arising from the manufacturing process, i.e., the expansion of the hexagonal 

cells and the dipping into phenolic resin.  

In the present work, since impregnated aramid-paper exhibits mainly variations 

in the material properties and paper thickness, two different sources of imperfections 

were investigated in the FE model of the Nomex cell:  

• foil thickness variability, 

• in-plane Young’s modulus variability. 

In fact, there are significant variations in the material properties and paper thickness, 

especially in case of impregnated aramid paper. In particular, experimental tensile tests 

on aramid-impregnated paper revealed, through observations by optical strain 

measurement, that there was a strongly varying in-plane strain distribution over the 

paper area. This was attributed to the variation of paper thickness, fiber dispensation 

within the phenolic matrix, rough surfaces, resin accumulation [39]. In addition, Fisher 

et al. [38] observed displacements varying over the paper area as well, and microscopic 

analysis revealed irregular properties of paper thickness, fiber distribution/orientation 
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with the presence of a quantity of voids in the phenolic resin. This evidence is 

important since the weakest or thinnest areas of a cell wall may initiate the global 

buckling, triggering damages. Other types of imperfections described in the previous 

sections are not handled for the development of the model. In Figure 3.28 two 

examples of imperfections are illustrated by means of SEM images. In Figure 3.28a it 

can be observed that within the same Nomex paper wall, the highlighted thicknesses 

(yellow and red markers) appear different whereas in Figure 3.28b some amount of 

glue appear collected on the surface of the paper Nomex material. 

 
 

 

a) 
 

b) 

Figure 3.28: SEM photos of Nomex™ core. a) Transverse section; b) detail of a vertex of a 

hexagonal cell [40]. 

 

According to the current approach, the properties of Nomex paper are modified 

in terms of wall thickness and material constitutive properties by stochastically 

distributing thickness and elastic modulus values over the finite elements of the 

numerical model. Values of thickness and elastic modulus were chosen according to a 

uniform distribution, defined by the average value and the coefficient of variation 

(CV). In detail, the average values have been assumed equal to 0.063 mm and 3.50 

GPa for the thickness and the Young’s modulus, respectively. In dealing with the CV, 

four different values have been considered, i.e., 10%, 15%, 20%, and 25%. All the 

adopted distributions are presented in combination with the results of the analysis 

(Figure 3.33 to Figure 3.35).  

This approach has been implemented through a model generation tool by 

extracting, for each finite element, a value for the thickness and the elastic modulus 

according to the adopted distribution.  
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Through this approach, three cases have been analyzed, using: a) only 

thickness variation; b) only Young’s modulus variation; c) a variation of both 

parameters.  Moreover, for each case five numerical samples have been generated. It 

should be specified that some configurations of the samples did not reach convergence 

in the analysis; in those cases, new extractions were made until convergence was 

attained. In Figure 3.29, a flowchart illustrates the adopted methodology depicting the 

final single cell with randomly assigned material properties in a three dimensional 

rendering.  

3.3.2. Approach validation 

 

The proposed approach has been validated on the basis of the out of plane 

compressive/crushing experiments and analyses performed by Wilbert et al. [33] on 

Hexcel Al-5052-H39 (aluminum) honeycomb having nominal cell size c of 9.53 mm, 

wall thickness t of 95 µm and height h of 15.9 mm. This case allowed to compare the 

current approach with a standard one where the critical buckling load was calculated 

by means of a linear buckling analysis, and post-buckling response (up to folding) was 

obtained by including some imperfections in the geometrical model according to the 

first buckling mode with a fixed amplitude of the displacement field. The buckling and 

post-buckling analyses performed by Wilbert et al. revealed that the out of plane 

mechanical response is initially stiff and linear elastic up to a level of stress close to 

2.95 MPa. From this limit, the plate-like walls of the cell buckle into the first mode 

characterized by three half waves along the height of the cell and symmetric about 

mid-height. This generates a bifurcation in the elastic response that develops, at 

slightly higher stress, with the second buckling mode characterized by an anti-

symmetric shape about mid-height with four half waves along the height of the cell. 

Further compression gives rise to plasticization in the cell wall concentrated around the 

cell middle height and, as a consequence, the compressive collapse load/stress of the 

structure is reached; particularly, in that case, it is equal to 4.93 MPa. 
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Figure 3.29: Schematic flow chart of the simulation strategy. 
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The authors noticed that the predicted value of collapse stress was higher than 

the average value measured in the experiments, i.e., 3.72 MPa, and, for this reason, 

they performed imperfection sensitivity studies aimed at investigating various sources 

of imperfections which tend to reduce the collapse load. 

Within the present approach, the mechanical properties of the honeycomb Al-

5052-H39 foil were assigned on the basis of the experimental results gathered in that 

work. Accordingly, an isotropic and linearly elasto-perfectly plastic until failure 

constitutive behavior has been adopted for the aluminum foil, with elastic modulus 

equal to 69 GPa, and yield stress as 248 MPa. The cell model was then generated 

considering only thickness variation and only Young’s Modulus variation into two 

limit cases for each one, corresponding to values of CV equal to 5%, and 20% (five 

samples for each case). 

3.4.  Result discussion 

3.4.1. Experimental behavior 

The compressive stress-strain relationship (Figure 3.30a) of the Nomex 

honeycomb core has been gained through an out-of-plane flat-wise compressive test 

previously illustrated. The nominal compressive stress has been derived as the 

reordered force divided by the projected area of the honeycomb specimen, i.e., L x W 

dimensions. The constitutive behavior consists of three stages: the elastic regime up to 

the stabilized compressive strength (c), the crushing regime at nearly constant plateau 

stress (crush strength, crush), and finally the densification regime, where the cellular 

structure is fully compacted resulting in a steep stress increase. Figure 3.30a reports the 

mean curve of five replicate specimens, where the three characteristic deformation 

stages are noticeable. The average values of the compressive elastic modulus, 

compressive strength, crushing strength, and densification strain computed on five 

specimens are reported in Table 3.3 with the corresponding coefficient of variation.  

Figure 3.30b depicts some highlights (points A-E) on the deformation phases 

undergone by the Nomex structure under compressive stress. In detail, after the initial 

linear elastic phase (with an average compressive elastic modulus of Ec=137.7 MPa), 

the axial deformation develops into different waves along the total height of the cells 

for a short range of deformation values, leading to a short non-linear elastic regime (an 
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instability failure) that is not easy to capture in the experiment. In fact, for Nomex 

honeycombs, failure is due to a crushing mechanism, initiated by elastic buckling and 

developing as a plastic buckling process [20, 21]. 

 

Table 3.3: Mechanical properties of Nomex Honeycomb – experimental results. 

Compressive behavior Average Coefficient of Variation (%) 

Young’s Modulus (MPa) 137.7 7.74 

Compressive Strength (MPa) 2.08 4.46 

Crush Strength (MPa) 1.31 2.27 

Densification strain (-) 0.76 1.63 

 

By proceeding with axial deformation, the previous phase is rapidly followed 

by the localization of the deformation in correspondence to a certain number of cells of 

the honeycomb and at different positions along the height of the cells, that triggers the 

attainment of the compressive collapse limit of the honeycomb, c; the experimental 

average value (computed on five specimens) is equal to c = 2.08 MPa with a 

coefficient of variation CVexp= 4.46%. It can be highlighted that the deformation does 

not localize into equal waves for all the cells of the honeycomb and does not develop 

symmetrically about the mid height of the cell. On the contrary, from Figure 3.30b 

point B, it can be seen that the waves develop with different shapes and the collapse 

takes place randomly along the height of different cells of the specimen where the local 

stress concentration is attained. The collapse is due to the failure of the deformed foils 

of the cell which is represented by a drop in the compressive load carrying capacity 

approximately equal to one third of the collapse stress value. The load slightly 

increases after reaching the minimum of the stress due to the resistance offered by the 

deformed cells that start to fold on the plasticized points along the cell height. The 

folding process develops consecutive folds with small in length, rapidly collapsing one 

on each other. Within this stage the stress is not able to step up and is kept almost at the 

constant value of the crush strength, crush = 1.31 MPa. When folding is completed 

throughout all the height of the cell, the densification regime takes place at an average 

value of strain of ed = 0.76. At this phase, the compressive resistance is offered by the 

compacted material leading to a step increase in the stress (point E Figure 3.30 2b). It 

should be noticed that the free edge of the specimen may play a major role in the 

position of the concentration of the strain. 



Chapter III –Out-of-plane compressive behavior of honeycomb sandwich structures 

68 
 

 

a) 

 

 

  

  

b) 

Figure 3.30: a) compressive stress – strain, c vs /h, response for HRH 10-1/8-3.0 

hexagonal Nomex honeycomb; b) sequence of photographs of honeycomb cells at different 

stages of axial compressive strain. 
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3.4.2. Numerical results: buckling failure mode 

The results of the implicit analysis conducted with ABAQUS/Standard on the 

aluminum honeycomb cell are compared in terms of experimental and estimated values 

of compressive strength, buckling limit and modes obtained by Wilbert et al. [33]. 

Figure 3.31a reports the compressive stress vs /h for the different cases whereas the 

inset in the same figure depicts the aluminum cell with variable material properties 

represented by different colors. Due to high repeatability in the results, only 2 of the 5 

sample curves have been reported in the graph. Dashed and solid lines correspond to 

CV equal to 5% and 20% respectively, whereas grey and black lines correspond to 

elastic modulus and thickness variability, respectively. Horizontal lines correspond to 

Wilbert’s result in terms of elastic buckling limit and compressive strength values from 

buckling analysis. The variation of elastic modulus and thickness with CV equal to 5% 

generates approximately the same compressive response, with a compressive strength 

value reaching approximately 4.87 MPa. On the contrary, in case of CV equal to 20%, 

the thickness variation is characterized by a critical compressive stress lower than the 

one obtained with the elastic modulus variation: 4.50 and 4.73 MPa, respectively. In all 

cases, the elastic stiffness, for both linear and nonlinear parts, is approximately the 

same since the curves appear almost superposed. Moreover, the response is 

characterized by an elastic critical buckling limit at a stress level of 3.0 MPa (A point 

in Figure 3.31a,b), that is very close to the one obtained by Wilbert et al. [33] by means 

of elastic buckling simulation. At this point, a bifurcation takes place and a 

deformation shape corresponding to the first buckling mode (with three waves) shows 

up (point A in Figure 3.31a,b); due to bifurcation, the post-buckling regime is held 

with a nonlinear trend, as found by Wilbert et al. [33] by adding shape imperfections to 

the cell. By slightly increasing the stress values, the cell deforms according to the 

second mode (with four waves point B in Figure 3.31a,b) and the deformation 

continues with this shape up to the plasticization of the cell wall around middle height 

(point C in Figure 3.31a,c).  In Figure 3a, the dashes blue line represents the response 

of an imperfect version of the unit cell obtained by Wilbert et al. [33] by assigning an 

initial deformation according to the first buckling mode with the point of maximum 

transverse deflection of amplitude equal to the cell thickness, t. In this case, the peak of 

the maximum compressive stress approximately corresponds to the one obtained in 

case of CV equal to 20% for thickness variation, whereas the elastic stiffness is not 

affected by a  reduction as it happens in case of first buckling mode imperfection. 
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Figure 3.31: a) compressive stress – strain, c vs /h, response for Hexcel Al-5052-H39 

hexagonal aluminum honeycomb; b) focus on critical buckling load; c) focus on 

compressive strength; d) first (A), second (B) buckling mode and plasticized cell (C) as a 

result of the current approach. 

 

The results of the implicit analysis on the Nomex honeycomb cell are 

presented in the following in terms of compressive stress c vs /h curves for the 

different implemented imperfections: thickness variability, elastic modulus variability, 

and both thickness and elastic modulus variability. All the analysis have been run up to 

contact between cell walls, as a consequence of the folding process, i.e., approximately 

at a /h value equal to 4-5%. Each of the three cases of imperfection has been applied 

to the five samples, considering four different coefficients of variation, namely, CV= 

10%, 15%, 20%, 25% (cf. Figure 3.33 to Figure 3.35). For each graph, the 

corresponding probability density functions (PDF, black line in the figures) are 

reported for the variability of thickness only, elastic modulus only, as well as of both 

thickness and elastic modulus. Moreover, the region of the graph corresponding to the 

attainment of the peak of compressive stress is highlighted in Figure 3.33 to Figure 

3.35 within the experimental statistical values (dashed lines in the figures), computed 

as: 

  
      

   
(       )           

      
   

(       ) (3. 19) 

 

where   
   

 and       are the average experimental compressive strength and the 

corresponding experimental coefficient of variation, respectively. The compressive 

behavior reproduced by the analysis is practically the same for the investigated cases. 

For this reason, the detailed description of the c vs /h curve is conducted only for the 

case of both elastic modulus and thickness variability with CV=10%, as depicted in 

Figure 3.32. The five samples generated within the above-mentioned imperfections, are 

characterized by a very similar compressive behavior with small differences in the 

values of the peak of compressive stress. The linear elastic regime of the honeycomb 

cell is governed by the elastic modulus   
  . 
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Figure 3.32: compressive stress – strain, c vs /h, response for HRH 10-1/8-3.0 hexagonal 

Nomex honeycomb up to folding with FE results of cell deformations corresponding to 

A=critical buckling limit, B=shape up to compressive strength, C1-C5=strain localization 

for the five cell samples, D=first fold of the cell. 

 

The theoretical prediction for the sandwich structure Young’s modulus   
  [20, 

21] reported in Figure 3.32, for normal loading into the through-the-thickness 

direction, simply reflects the cell material Young’s modulus Es scaled by the area of 

the load-bearing section (see also section 3.2.4 ): 
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 (3. 20) 

 

where  is the angle between the inclined walls and the W direction and   and   are 

the density of the honeycomb structure and of the solid cell wall material, respectively. 

In the case of perfect hexagonal cells with  = 30° and    √ , the relationship 

becomes: 

  
 

  
 

 

 
 
 

 
 

 

  
 (3. 21) 

 

The linear elastic regime terminates when the cell walls of the honeycomb 

buckle elastically at a value of compressive stress of approximately 1.20 MPa (Figure 

3.32-A). After reaching the critical buckling load a bifurcation takes place in the vs 

/h curve giving rise to the non-linear post buckling regime. At this point the cell 

bulges in a periodic way according to the shape depicted in Figure 3.32-B that evolves 

in a different manner at slightly higher level of stress. This is a common behavior 

among honeycomb structures; generally, the linear-elastic regime terminates when the 

cell walls of the honeycombs buckle elastically, or bend plastically, or fracture in a 

brittle manner [21], depending on the relative density 
 

  
: in low density flexible 

structural honeycombs it is usually elastic buckling that first leads to nonlinear 

behavior, although it is found that in intermediate and high density honeycombs, 

fracture can occur under compression into the through-the-thickness direction. 

Commonly, the initiation of elastic buckling does not make the honeycomb 

lose all of its stiffness and load-carrying capacity; failure of structural plates is 

typically defined by the ultimate strength, considering post buckling strength [21]. The 

configuration at point B is kept unchanged up to the attainment of the compressive 

peak of stress c where yielding is reached in some elements of the mesh along the 

height of the cell leading to a sudden drop in the compressive stress. In terms of 

physical behavior, the sampling generation having different values of Es and t within a 

statistical range of variation, is mainly reflected through different compressive strength 

values and different positions at which plasticization occurs rather than through 

different buckling mode sequences. Figure 3.32-C depicts five cells corresponding to 

the five different samples at the collapse deformation. It can be noticed that the 

position along the height at which compressive strain localizes is different for the five 
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cases as well as the initial direction of folding that can be even inclined with respect to 

the L direction. The folding mechanism begins from that point along the height of the 

cell, while the compressive stress slightly changes from case to case due the residual 

resistance offered by the deformed cells. The implicit analysis terminates when cell 

walls collapse one on each other due to progressive folding.  

 

 

a) 

 

 

 

b) 

 

 

0

0.5

1

1.5

2

2.5

0 2 4


(

M
P

a)

/h (%)

T_CV_10%

0

20

40

60

80

0 0.025 0.05 0.075 0.1 0.125

p
d

f 
[1

/m
m

]

Thickness [mm]

CoV_10%

1.25

1.5

1.75

2

2.25

0.75 1.15 1.55 1.95

(

M
P

a)

/h (%)

0

0.5

1

1.5

2

2.5

0 2 4


(

M
P

a)

/h (%)

T_CV_15%

0

20

40

60

80

0 0.025 0.05 0.075 0.1 0.125

p
d

f 
[1

/m
m

]

Thickness [mm]

CoV_15%

1.25

1.5

1.75

2

2.25

0.75 1.15 1.55 1.95


(

M
P

a)

/h (%)



Multiscale Damage Modeling of Advanced Composite Materials 

75 

 

c) 

 

 

 
d) 

 

 

0

0.5

1

1.5

2

2.5

0 2 4


(

M
P

a)

/h (%)

T_CV_20%

0

20

40

60

80

0 0.025 0.05 0.075 0.1 0.125

p
d

f 
[1

/m
m

]

Thickness [mm]

CoV_20%

1.25

1.5

1.75

2

2.25

0.75 1.15 1.55 1.95


(M

P
a)

/h (%)

0

0.5

1

1.5

2

2.5

0 2 4


(M

P
a)

/h (%)

T_CV_25%

0

20

40

60

80

0 0.025 0.05 0.075 0.1 0.125

p
d

f 
[1

/m
m

]

Thickness [mm]

CoV_25%

1.25

1.5

1.75

2

2.25

0.75 1.15 1.55 1.95


(M

P
a)

/h (%)



Chapter III –Out-of-plane compressive behavior of honeycomb sandwich structures 

76 
 

 

e) 

 

 

Figure 3.33: Effect of thickness variability on c vs /h curves for a) CV=10%, b) 

CV=15%, c) CV=20%, d) CV=25% with the corresponding PDF and focusing on the peak 

of compressive strength; e) superposition of CV=10% and CV=25% cases. 

 

In dealing with the three cases of imperfections, the cell wall thickness 

variability generates a compressive response that is very similar among the five 

samples in case of CV=10% with an average compressive strength c equal to 

2.084 MPa, that is well represented in the experimental range defined by   
      

    

(Figure 3.33a). By increasing the thickness variability CV, the average compressive 

strength (computed on 5 samples) decreases almost linearly up to a value of 1.864 MPa 

corresponding to the case of CV=25% (Figure 3.33b-d); in this case the c vs /h 

curves for the five samples appear very different each other. In detail, from Figure 

3.33e, where the cases CV=10% and CV=25% are superposed, it appears that a 

significant variation of t reduces the compressive strength values, the slope of 

nonlinear elastic regime, and the residual stress after collapse. 
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e) 

 

 
 

 

Figure 3.34: Effect of Young’s modulus variability on c vs /h curves for a) CV=10%, b) 

CV=15%, c) CV=20%, d) CV=25% with the corresponding PDF and focusing on the peak 

of compressive strength; e) superposition of CV=10% and CV=25% cases. 

A Young’s modulus variability gives rise to a compressive response that is 

very similar among the five samples and for all the CV adopted within the analysis. In 

particular, when the adopted Young’s modulus has a lower variability with respect to 

the initial one (i.e., 3.50 GPa), the five curves appear well superposed with an average 

compressive stress equal to 2.135 MPa that is slightly overestimated with respect to the 

average experimental one, but still within the experimental range defined by 

  
      

    (Figure 3.34b and Figure 3.34c). By increasing the CV of Young’s 

modulus (Figure 3.34c and Figure 3.34d), the average compressive strength decreases 

almost linearly up to the value of 2.036 MPa in case of CV=25% that is still 

characterized by small statistical variation. The nonlinear elastic regime is stiffer in 

case of little variability whereas the post peak behavior is not affected by the different 

CV (see Figure 3.34e).  

When both foil thickness and Young’s modulus variability are used to model 

imperfection in the honeycomb cell, the average compressive strength decreases in a 

nonlinear manner from 2.072 MPa to 1.815 MPa for CV=10% to CV=25%, 

respectively (see Figure 3.35a-e). From Figure 3.36a it can be highlighted that, when 

the variability in the material properties is high, the effect of both types of 

imperfections is amplified and a greater loss in the compressive load carrying capacity 

is experienced (with respect to the previous cases).  Moreover, in case of CV = 25%, 
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the vs /h curves show significant deviations for the five samples in terms of 

compressive strength and post peak behavior with a significant lower stiffness in the 

nonlinear elastic regime with respect to the case of CV=10%.  
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e) 

 

 

Figure 3.35: Effect of both thickness and Young’s modulus variability on c vs /h curves 

for a) CV=10%, b) CV=15%, c) CV=20%, d) CV=25% with the corresponding PDF and 

focusing on the peak of compressive strength; e) superposition of CV=10% and CV=25% 

cases. 

 

Figure 3.36 summarizes the results of the analysis in terms of average 

compressive strength c (a), and average Young’s modulus Ec (b). The increase of CV 

on thickness variability and Young’s modulus triggers a linear decrease of the average 

compressive strength that is much more noticeable in case of thickness variability. In 

fact, in the range of CV=10 and 25%, the compressive strength varies between 2.03 

and 2.13 MPa when imperfection on Young’s modulus are included in the model; on 

the contrary, the compressive strength decreases up to 1.86 MPa when an high level of 

statistical deviation is considered for the thickness variability. The combination of both 

types of imperfections gives rise to a nonlinear decrease of compressive strength with 

increasing CV, with a sensible underestimation in case of CV=25%, i.e., c Pa 

that is out of the experimental limits. It is interesting to notice (Figure 3.36c) that only 

thickness variability leads to a wide range of statistical deviation on the computed 

compressive strength: between 1% and 4% values of CV. On the contrary, the Young’s 

modulus variability of the Nomex paper produces samples very close to each other in 
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terms of compressive behavior, with a CV on the computed compressive strength 

always less than 1%.  
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c) 

Figure 3.36: a) average computed compressive strength vs CV adopted for Nomex 

properties; b) average computed Young’s modulus vs CV adopted for Nomex properties; 

c) CV on computed compressive strength vs CV adopted for Nomex properties.  

The compressive elastic modulus of the honeycomb structure (Figure 3.36b) 

appears slightly dependent on the CV when thickness and Young’s modulus 

imperfections are individually implemented in the cell model. However, in these cases 

the computed value of compressive elastic modulus of the honeycomb structure is 

overestimated compared to the experimental one. On the contrary, the combination of 

the two types of imperfections sensibly affects the compressive elastic modulus, 

especially in case of high CV. 

3.4.3. Numerical results: Crushing 

Honeycomb crushing regime takes place after reaching the maximum compressive 

load. This stage is characterized by severe local bending and contact between the 

folding walls. Thus, in contrast to the prebuckling and initial postbuckling calculations 

illustrated in Section 3.3.1, crushing was performed using ABAQUS/Explicit due to 

the computational efficiency that it affords, especially for contact issues. The 

numerical analysis involved the characteristic cell shown in Figure 3.27d with a mesh 

of 5850 S4 elements and the periodicity conditions described in section 3.3.1. For this 
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analysis, the cell configuration corresponding to CV=15% of thickness variation was 

chosen. The bottom edges were fixed whereas the top nodes were prescribed a 

downward displacement of 12 mm in the Z(3)-direction. Since crushing involves 

contact between folds of adjacent cell walls as well as self-contact, both sides of the 

cell walls were considered for self-contact in ABAQUS. The introduction of contact 

surfaces, along with the wide number of different elements with different properties, 

provides major contribution to the total computation time of the simulation.  

 

 
Figure 3.37: Full Stress-Strain relationship for Nomex honeycomb material – 

experimental (grey) vs simulation (red) results. 

Figure 3.37 shows the simulated crushing response (red line) along with four 

typical experimental responses (grey lines). The same figure reports the views of the 
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initial and a set of 7 deformed configurations of the unit cell corresponding to the 

numbered bullets marked on the graph.  

It should be pointed out that in this simulation no initial shape imperfection 

(e.g. corresponding to the first buckling mode) was adopted, but only thickness 

variability with CV=15% was considered. Within this approach, as specified in section 

3.4.2, the initial mode of collapse localizes in correspondence of a random point along 

the total height of the cell. Configurations 2, corresponds to the first descending part of 

the compressive response, showing localized deformation approximately about the 

mid-height of the cell; this is associated with the initial stages of collapse of the cell.  

The collapse continues with a folding mechanism that follows the local 

buckling shape; in this stage the compressive load reduces until a stress value of 

approximateli 1 MPa. In the region of configuration 2, contact between folds in 

adjacent walls develops for the first time Figure 3.38a; this is reflected with the lowest 

value of compressive stress in the ch curve after the initial cell collapse. After the 

stabilization of the self-contact in the folds, the compressive load starts an upward 

trend due to the resistance provided by the bent wall and the contact mechanism. The 

increasing load terminates when the intact part of the upper half of the cell gets a new 

destabilization (local collapse) leading to a second fold initiation. 

The folding mechanism continues with the same increasing/decreasing trend forming a 

total of six folds before densification. In fact, at higher strain, the opposing cell walls 

are folded on each other and further deformation compresses the resulting packed 

configuration Figure 3.38d. This final configuration approximately agrees with the 

experiment one, for which, a slightly higher number of folds appeared at the end of the 

test. 

 

 
a) 

 
b) 
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c) 

 
d) 

Figure 3.38: Folding mechanism during Nomex crushing regime; a) first fold (point 2), b) 

first contact between walls (point 3), c) double contact between walls (point 5), d) final 

deformed shape. 

Globally, the simulated crushing response reproduces reasonably the 

experimental one, with an average crushing stress of 1.20 MPa. It should be pointed 

out that the pronounced flattening behavior exhibited by the simulated cell throughout 

the crushing regime, somewhat disagrees with the nearly constant stress found in the 

experimental test. This can be attributed to the elastic-plastic constitutive law assigned 

to the cell wall material that is most probably more brittle in the actual case. In fact, 

plasticized walls provided a stiffer contribution to the compressive load (due to the 

plastic stress capability) leading to a higher peak before each progressive buckling 

collapse. Finally, it should be specified that in the experiments some debonding of 

double walls was observed at this stage. Wall separation was precluded in this model 

and this omission is expected to introduce some minor differences between the 

calculated and measured responses. 

3.5.  Closing remarks 

In the present activity, a statistics-based method for virtual testing of cellular 

sandwich core structures using FE simulations has been conducted. An hexagonal 

honeycomb core made of Nomex material has been investigated in order to cover some 

important aspects related to its out-of-plane compressive response, such as linear 

elastic response, onset of instability, collapse limit (and its localization and progressive 

folding). The proposed method deals with the random sampling of the elements of the 
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mesh in a FE numerical analysis on the basis of a normal distribution for thickness and 

Young’s modulus of the cell wall material. This allowed to incorporate material 

imperfections in the model and evaluate the influence of imperfection variability on the 

compressive response of Nomex honeycomb cells. All the simulations have been run 

through both ABAQUS/Standard and ABAQUS/Explicit. The analysis have revealed 

that the compressive behavior of the Nomex honeycomb is more sensitive to thickness 

imperfections rather than Young’s modulus variation:  a large CV on wall thickness 

tends to underestimate the compressive strength of the honeycomb if compared to the 

experimental values, whereas the Young’s modulus variation (within all the adopted 

CV) gives rise to compressive strength values always in the range of the experimental 

ones, even though the statistical variation on the numerical results is very limited. In 

general, when both the imperfections are included in the model in the range of CV=10-

15% a very good correlation to experimental results can be achieved with respect to 

compressive stress–strain relationships. Moreover, the detailed representation of the 

cell also allows for a deep investigation of the cell wall deformation patterns and 

failure modes to get a better understanding of the structural behavior, which can be 

expensive and sometimes difficult to study using only experimental observations. The 

present method can be potentially useful for the complete characterization of the 

mechanical behavior of honeycomb structures accounting for the influence of physical 

imperfections, especially when experimental characterization is not straightforward, 

such as in the case of tension and shear loading in both in-plane and out-of- plane 

directions. 

Finally, we would like to emphasize that the approach could also be successfully 

extended and applied to other mechanical problems where different sources of 

imperfections play a major role, as well as when experimental testing is difficult and a 

virtual testing analysis is desirable. 
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Chapter IV 

IMPACT BEHAVIOR OF HONEYCOMB 

SANDWICH STRUCTURES  

4.1.  Introduction to framework 

Composite sandwich structures are widely used in the high-performance 

applications, especially where weight reduction is one of the most desirable design 

objectives. However, structural sandwich components have low resistance to out-of-

plane impact due to the thin outer composite skins and the highly deformable cores, 

which make them vulnerable to transverse impact phenomena. Impact damage 

occurring in composite sandwich structures affects both skins and core materials. The 

higher scale level of the impact damage analysis is the sandwich assembly which 

includes all constituent sandwich materials. In order to evaluate the overall impact 

sandwich behavior, the multiscale approach has to involve the detailed (static and 

dynamic) modeling of both skin and core material. The activity presented in Chapter 

IV deals with a numerical strategy aimed at simulating the dynamic behavior of Nomex 

core sandwich structures combined with E-glass phenolic facesheet under impact load, 

through the finite element code LS-DYNA. The honeycomb core structure and the 

composite skins are modeled by means of solid and shell elements, respectively. It is 

pointed out that, unlike previous modeling strategy, presented in Chapter III, in this 

case the honeycomb has not been modeled up to the cell scale, since it would have led 

to large computational efforts. The adopted procedure is based on a multiscale virtual 

testing approach by means of the progressive validation of the composite facesheet and 

orthotropic honeycomb material models on the basis of experimental tests, ranging 
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from coupon tests (for E-glass phenolic skins and Nomex core material) to sandwich 

assembly tests, as illustrated in Figure 4.39.  

 

 

 

SANDWICH ASSEMBLY 

 

 
Figure 4.39: Scheme of multiscale damage analysis conducted on Honeycomb sandwich 

structure.  

This allows to verify the capability of the model to take into account the main 

damage mechanisms taking place during penetration. Finally, the dynamic impact 

behavior is modeled on this basis and validated through different impact conditions, 

emphasizing important issues on the strain rate sensitiveness affecting the investigated 

materials. The main outcomes in terms of force displacement curves, energy absorption 

and damage mechanisms are assessed and compared to the experimental results. 

4.2.  Literature overview: impact on sandwich structures  

Due to their advantageous specific mechanical properties (in terms of stiffness-to-

weight ratio) and corrosion resistance, composite sandwich structures are becoming an 

attractive alternative to metals in many different engineering applications, especially 

for mass transport applications where weight reduction is one of the most important 

design parameter. Although the peculiar morphology of sandwich structures offer very 

attractive properties, their application is often restricted by their vulnerability to 

transverse impact [1].  

Structural sandwich components generally exhibit a low resistance to out-of-plane 

impact due to the thin outer composite skins and the highly deformable cores. When 

Composite skin and Nomex honeycomb core 

LEVEL OF ANALYSIS 
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localized transverse loading is applied to a sandwich structure, the facesheet locally 

deflects up to failure and the core crushes, leading to a damage ranging from 

permanent indentation to complete penetration [1, 2]. The loss of load carrying 

capability they suffer as a consequence of impact events can be light or significantly 

injurious depending on the failure mechanisms which irreversibly have taken place. 

Hence in order to reliably predict the structural behavior and guarantee structural safety 

of composite sandwich structures, a deep understanding of the impact behavior (e.g. 

impact and penetration damage varying in the range of low to high velocities and 

impacting masses) has become essential. Available literature offers a wide range of 

studies on low velocity/energy impact response of sandwich structures in terms of 

experimental research, analytical formulations and numerical implementations [3-8]. 

Depending on the initial impact energy, impacts can induce damage of 

different entity to the skins, the core material, and the core-facing interface. However, 

the impact performance and the damage extent of sandwich composites depend on 

several factors (e.g. skin and core materials, geometries, boundary conditions [3]). 

Furthermore, the different damage mechanisms may take place individually or interact. 

In the case of low-energy impacts, the response of sandwich panels may be governed 

by bending and little damage occurs if the kinetic energy of the impacting object is 

absorbed elastically by the panel. For high-energy impacts, a failure condition is 

reached when local contact stress exceeds local strength triggering a damage sequence 

given by the laminate bending failure, core/skin interface delamination, core 

compression failure and its plastic deformation up to complete penetration [1]. Core 

deformation and failure represent therefore crucial factors for the energy absorption 

capability and impact behavior of sandwich panels [5].  

Experimental and analytical studies have been conducted to understand the 

mechanical response of honeycomb sandwich structures composed by different skins 

and core materials under various loadings [6-10]. Numerical methodologies based on 

finite element (FE) approach represent a standard tool in the development process of 

composite and sandwich application industries allowing time and test-prototyping cost 

savings. The main source of complexity associated with FE impact modelling of 

sandwich structures is related to the adequate material constitutive models, proper 

prediction of the damage level in each sandwich constituent, and the definition of 

interaction laws for various damage mechanisms. Several strategies have been 

developed in the FE simulation environment for this class of structural materials. A 

combination of testing and numerical analysis is provided by the multiscale approach 

[11], where various levels of structural complexity are progressively validated 
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numerically through associated experimental tests up to a complete prediction of the 

full scale product behavior. Especially for cellular based, folded core materials, virtual 

testing FE strategies are often developed. According to this approach, specific material 

properties of cellular cores with complex geometries are achieved with detailed FE 

simulation models on a parametric basis, overcoming the lack of experimental 

databases [12, 13].  

Furthermore, the design of sandwich panels for high dynamic loads requires to 

have information about the sandwich dynamic structural behavior and in particular on 

the influence of loading rate on the material properties. In case of high loading rate an 

increase in material stiffness and strength compared to the static behavior may occur. 

When this effect is neglected, dynamic FE simulations based on static material data 

often disagree with experimental dynamic results and therefore attention should be 

paid when design approaches are based on static data. Strain rate effects can affects 

both skins and core material. For former material types, especially when rate sensitive 

materials are used, a dynamic increase factor (DIF) may be characterized [14-16]. 

Concerning core materials, strain rate effects on axial behavior of both aluminum [17, 

18] and Nomex [19, 20] honeycomb structures have been experimentally investigated 

through dynamic compressive tests performed with different techniques (i.e. drop 

weight, gas gun, and split Hopkinson bar). These results reported that dynamic loading 

leads to a marginal increase of the initial stiffness and peak compressive strength, a 

significant increase of the crush strength and a reduction of the deformation for the 

fully compacted final region. 

4.3.  Materials and methods 

In the present study the impact behavior of phenolic-impregnated sandwich 

structures has been investigated. The composite skins were obtained from pre-

impregnated satin-weave E-glass fiber reinforced phenolic resin skins with a cured ply 

thickness of 0.25 mm. The sandwich core is made of 48 kg/m3 Nomex hexagonal 

honeycomb with a nominal cell size of 3.18 mm and made of phenolic resin-

impregnated aramid paper. Since the skins are pre-impregnated, there is no additional 

adhesive used to bond the skins to the core. The materials were laminated in an 

autoclave at a temperature of 135°C, a vacuum pressure of 2.5 bar and a curing time of 

90 min. All the sandwich specimens considered in the following experimental activities 

have been assembled with the L direction of the honeycomb core (Figure 4.40) along 
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the primary direction and different configurations (in terms of size and thickness) for 

skins and Nomex core are handled in the present study. Different experimental tests 

were performed in order to characterize the static and dynamic behavior of the 

examined sandwich structures. The results are used to get the basic information to 

build up the numerical sandwich model and to validate it. Further details about the 

experimental activity, which are not presented hereafter, are available in [21]. The 

experimental tests concern the sandwich constituent level (in plane mechanical 

characterization of the phenolic skins, compressive behavior of Nomex core) and the 

sandwich assembly (four point bending tests, indentation tests). 

 

 
Figure 4.40: Shape geometry of hexagonal honeycomb core. 

 

The numerical simulation of these tests allows to calibrate the constitutive models 

adopted for the sandwich materials at different scale level and to validate the capability 

of the model to predict the occurrence of damage mechanisms. The dynamic impact 

behavior is finally investigated through the simulation of the drop weight tests 

performed at different initial impact conditions. In the following sections, first the 

characteristics of the adopted material models are presented and afterwards, the details 

of the experimental tests and the numerical models are illustrated for each type of test. 

4.4.  Sandwich material modeling 

A finite element model has been built up through the commercial FE code LS 

DYNA (Version 971) in order to model the sandwich impact behavior. The FE 

sandwich model consists of two different sandwich materials including solids and shell 

elements. Particularly, in order to save computational time and avoid instabilities (due 
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to large deformations) homogeneous equivalent solid elements have been adopted for 

the Nomex honeycomb core, shell elements for the phenolic facesheets and solid 

elements for the rigid steel impactor. A failure based nodal connection has been used to 

model the bonding between the Nomex core and the phenolic facesheets. The material 

models adopted for the sandwich materials are described in the following sections. 

4.4.1. E-Glass phenolic skins 

In order to adequately model the complete process of penetration in a sandwich 

structure, the energy absorbing capability and the damage behavior of both skin and 

core material need to be known. During impact on sandwich structures, one of the 

significant mode of  absorbing energy is given by the perforations of the composite 

material skins (upper and lower) where a set of intralaminar, interlaminar failure 

modes can take place with increasing the impact energy, such as matrix cracking, 

delamination between adjacent plies, fiber breakage, ply failure etc. Therefore, a 

reliable model for the composite skin is required to study in depth the perforation 

stages. Since the onset of damage in a composite does not usually lead to ultimate 

failure, the ability of FE models in simulating an impact event is critically dependent 

on its capacity to represent the sequence of damage modes, the conditions for 

delamination propagation, the stiffness and strength degradation associated with the 

various damage states, as well as the residual composite properties. FE simulation 

works available in the literature are based on different theoretical formulations 

including failure criteria, plasticity theory, fracture mechanics, and damage mechanics. 

In the available commercial FE codes, several constitutive composite material models 

are adopted including shell and solid formulations. Generally they comprise 

progressive failure and continuum damage mechanics (CDM) based approaches [22, 

23]. In both cases the composite behavior is modeled as orthotropic linear elastic 

materials until a certain onset given by a criterion-based failure surface. Different 

failure criteria can be implemented in the numerical models for laminated composites, 

by means of strength, strain or mixed based criteria such as Tsai-Wu, Hashin, and 

Chang–Chang [23]. Beyond failure, elastic properties are degraded according to 

degradation laws given by the material model. 

In the present study, the composite skins, made by phenolic impregnated glass 

laminates, are modeled using shell elements combined with a continuum damage 

mechanics framework. In particular, the 



Multiscale Damage Modeling of Advanced Composite Structures 

99 

MAT_LAMINATE_COMPOSITE_FABRIC_058 material model was selected in the 

LS DYNA Code which implements a CDM model derived from the constitutive theory 

of anisotropic damage introduced by Matzenmiller–Lubliner–Taylor (MLT) [22]. This 

model allows to describe the anisotropic mechanical properties and the progressive 

failure mechanisms affecting the composite skins during the impact event. 

In detail, the composite elastic properties are described by four independent 

elastic constants, E11, E22, G12 and υ12 (where E, G, υ, stand for Young’s modulus, shear 

modulus and Poisson’s modulus, respectively), defined in the lamina plane, where the 

subscript 1 and 2 denotes parallel and transverse alignment with the fiber direction 

respectively. A damage level is related to the degraded elastic properties of the 

material, depending on the particular damage mechanism (fiber breakage, fiber 

microbuckling, matrix cracking, etc.). In the present model, three nonnegative internal 

variables are assumed to describe the evolution of the damage state caused by different 

failure mechanisms which lead to a progressive degradation of the material stiffness. In 

particular, five failure criteria for the composite material are used: tensile and 

compressive failure in the two normal directions, as well as in-plane shear failure; the 

corresponding damage is quantified by three damage variable (ω1, ω2 and ω12, where 

the subscript 1 and 2 denotes parallel and transverse alignment with the fiber direction 

respectively). The damage parameters ω vary from 0.0 to 1.0 values, corresponding to 

an undamaged state to a completely damaged state respectively. The in plane stress–

strain constitutive law for a damaged material is described as follow: 
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The exponential damage evolution law can be expressed by [26]: 
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where the index i represents tension and compression in 1 and 2 direction, and shear 

respectively, εfi are the corresponding failure strains, m is a Weibull shape parameter 

and e is the Naperian logarithm base. After the onset of damage, the damage 
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degradation law is implemented in MAT058 through two sets of parameters EiC,T,S 

and SLIMiC,T,S (C=Compression, T=Tension, S=Shear) [27]. EiC,T,S is defined as the 

strain at the maximum stress response and SLIMiC,T,S as the minimum residual stress 

of the damaged material up to the deletion of the element from the calculation.  

Figure 4.41a represents the stress-strain responses of the adopted material 

model (in the uniaxial tensile loading case) whereas the corresponding evolution of the 

damage parameter ω1 is given in Figure 4.41b varying the values of E1T (with E1Ta <  

E1Tb < E1Tc) at a fixed value of SLIM1T (i.e. 0.1).  
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b) 

Figure 4.41: a) Stress vs Strain relationship for single element tensile test (direction 1) for 

different values of E1T, b) correspondent damage variable ω1 vs strain relationship.  

The post-peak behavior and the corresponding damage parameter is affected by these 

two sets of values: EiC,T,S controls both the onset of the loading and the slope of the 

post-peak response, whereas SLIMiC,T,S sets the residual strength and the damage 

variable level ωi at which the final slope is achieved. In this way, the area underneath 

the stress strain constitutive curve can be modeled, representing the energy required to 

completely damage the finite element. 

The material model allows also to choose between three different failure 

surfaces [23]. Among them, the uncoupled failure surface is adopted in the current 

study (option FS=-1) since it appears more suitable in modeling fabric composite 

materials. In fact, in this case a nonlinear stress strain curve for the shear behavior can 

be also set within the model providing the appropriate couple τ1, γ1 representing the 

stress and strain limit respectively of the first slightly nonlinear part of the shear stress 

versus shear strain curve. 

4.4.2. Nomex core 

The typical feature of the Nomex honeycomb structure under transverse 

compressive load is given by the initial linear elastic behavior up to crushing limit, 
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volumetric crushing and final phase of hardening to full compaction. Almost all energy 

absorption is done in the volumetric crushing zone and this is true also in the impact 

cases. However, the interaction of the core failure modes (including transverse shear) 

within the sandwich structure should be carefully analyzed. Different numerical 

modeling strategies can be used for hexagonal honeycomb cores, encompassing 

analytical formulations [6], or in a FE framework, by using shell models for 

honeycomb cells [12, 24], homogeneous equivalent solid material [5], Smoothed 

Particle Hydrodynamics (SPH) [25]. Sometimes these strategies are limited and/or 

require material properties for paper/sheet materials [10, 26] which are not easy to 

achieve or need the definition of numerical parameters with no physical meaning; in 

addition, modeling of real cells structures of honeycomb cores requires also a 

characterization of manufacturing defects and reduction of instabilities due to large 

deflections.  

In the present study, the cellular Nomex honeycomb core structure is treated as a 

homogeneous solid material and material model MAT126 

(MAT_MODIFIED_HONEYCOMB) has been adopted in LS DYNA in combination 

with co-rotational solid element type. The material model has an orthotropic nonlinear 

elasto-plastic constitutive behavior based on the experimentally determined stress 

strain curves which are defined separately for all normal and shear stresses. The 

components of the stress tensor are considered to be fully uncoupled (ν =0). The elastic 

moduli, from their initial values to the fully compacted values, depend linearly on the 

relative volume [23]. Failure is reached when the element’s stress components under 

load exceed the allowable values dictated by the empirical load–displacement curves. 

Strain rate effect can be introduced in the model as a scale factor versus effective strain 

rate, (which is the Euclidean norm of the deviatoric strain rate tensor), scaling all the 

stress curves. 

4.5.  Calibration and numerical simulation 

Since composite material models adopted in a FE analysis require the definition of 

a set of parameters, an appropriate calibration is needed for a specific sandwich model 

in order to assign the unknown properties related to the definition of: (i) failure 

criterion; (ii) onset and propagation of damage through a degradation process; (iii) 

strain rate dependent materials. In the present study, the constitutive behavior of the 

materials involved in the sandwich impact simulation (phenolic E-glass skins and 
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Nomex core) is calibrated and validated through a set of experimental tests in the static 

case. The calibrations cover different steps going through the constituent sandwich 

materials to the sandwich assembly. The calibrated material properties are then used to 

simulate the impact behavior of a reference configuration of the examined sandwich 

(with 1 mm and 11 mm of thickness for phenolic skins and Nomex core respectively) 

and considerations on the strain rate effects are then addressed. The validation refers to 

both other different impact conditions and damage assessment. In the following 

sections, first the experimental procedure is illustrated and then the numerical model 

and calibration is presented for each step of the numerical analysis. 

4.5.1. E-Glass phenolic skins – Static tests 

In the present section, mechanical characterizations of glass phenolic skins are 

described in order to define the in-plane properties and validate the numerical 

composite model for the E-Glass phenolic skins.  

In detail, uniaxial tensile tests are conducted on composite laminate to determine the 

following properties: longitudinal and transverse Young’s moduli, Poisson’s ratios, 

longitudinal and transverse tensile strengths, longitudinal and transverse ultimate 

tensile strains. A full characterization of composite material in two dimensions requires 

also the determination of lamina properties under in-plane shear parallel to the fibers, 

that is, shear modulus, shear strength, and ultimate shear strain. A full description of 

the test specifications and adopted procedures is reported in Table 4.4. All laminate 

tests were run on a 10 kN universal test frame controlled by an electronic control unit 

which allows monitoring the applied load and the stroke of the top cross head. Strain 

signals were acquired by a digital data acquisition system. For both in plane tensile and 

shear characterization, tests were conducted at a constant cross head velocity of 2 

mm/min and three strain gauges were applied to each coupon, in order to monitor the 

longitudinal and transverse strain and the possible bending due to misalignment of the 

specimens.  

Compressive mechanical parameters of selected composite skin are evaluated as 90% 

of the tensile values, according to the manufacture’s suggestion. The compressive 

values have been compared by means of flexural tests on sandwich specimens in 

accordance with the ASTM C393 standard. Table 4.5 provides all the mechanical 

properties derived by the described tests.  
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Table 4.4: Test methods involved in the mechanical characterization of skin materials. 

Loading Configuration Test (ASTM 

Standard) 

Lt 

[mm

] 

Lg 

[mm

] 

L 

[mm

] 

w 

[mm

] 

t 

[mm

] 

 

 

Tensile test in warp 

direction (D3039) 

Stacking Sequence:  

All || loading 

direction 

 

 

30 

 

 

190 

 

 

250 

 

 

15 

 

 

1 

 

Tensile test in fill 

direction (D3039) 

Stacking Sequence:  

all ┴ loading 

direction 

 

 

30 

 

 

190 

 

 

250 

 

 

15 

 

 

1 

 

In plane shear tests 

by tensile loading 

(D3518) 

Stacking Sequence: 

[+45°/-45°]2s 

 

 

30 

 

 

190 

 

 

250 

 

 

25 

 

 

2 

 

Table 4.5: Mechanical properties of composite skins derived by experimental tests and 

calibrated parameters (in parenthesis) 

 E1 E2 G12 F1t F2t F6 eu
1t eu

2t u 12 
τ1  γ1 

 [GPa] [GPa] [GPa] [MPa] [MPa] [MPa] [-] [-] [-] [-] [MPa] [-] 

E-Glass 

Phenolic fabric 

 

25.54 

 

22.97 

 

3.41 

 

325.77 

 

288.21 

 

45.30 

 

1.53 

(1.73) 

1.56 

(1.76) 

7.67 

 

0.15 

 

(41.0) (0.0285) 

 

The outcomes of these experimental tests have been used to define the in plane 

properties of the material model adopted for the glass phenolic skin. However, in order 

to match the non linear tensile (in warp and weft direction) and shear behavior, 

exhibited by the facesheets, a calibration of the material parameters according to the 

constitutive material model has been needed. To do that, the static tensile and static 
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shear test for the phenolic laminates has been run numerically in LS DYNA explicit 

mode (Version 971). The numerical model of the specimens consists of one shell layer 

having dimensions of  250 mm(250 mm)x15 mm(25 mm) and 1 mm(2 mm) of 

thickness for the tensile(shear) tests. Two integration points have been assigned for 

each lamina (having 0.25 mm of thickness) in the composite laminates and the stacking 

sequence has been defined through the orientation of each integration point. The mesh 

size has been fixed with 2 mmx2 mm squared shell elements clumped at one and the 

analysis has been run with displacement control as reported in the experimental tests 

setup. Hence the values of EiC,T,S, SLIMiC,T,S, τ1, γ1 for tensile and shear constitutive 

behavior respectively have been derived.  

The calibration revealed that the final values for EiT,S are slightly higher (in 

parenthesis in the Table 4.5) than the experimental strain to failure since the fabric 

behavior deviates from the pure elastic behavior (Figure 4.42). The highlighted 

pictures in the Figure 4.42 represent the fringe level of the corresponding damage 

variables for the specific loading case. The final residual value of EiT,S has been 

chosen 0.1 as recommended [23, 27] and as resulted in the experiments. 
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b) 

 

  
c) 

Figure 4.42: Stress vs Strain relationship for tensile a) warp, b) weft, c) in plane shear 

direction and corresponding damage variable, ω, evolution ranging from 0 (blue) to 1 

(red).  
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4.5.2. Nomex Core – Static tests 

The input parameters requested for the Nomex honeycomb material model 

concern the stress-engineering strain curves defined in all directions, including both 

uncompacted and compacted material properties. The compressive stress engineering 

strain curve was derived from the experimental test whereas the remaining curves from 

the data sheet and experimental results reported in [28, 29]. Out-of-plane crushing 

behavior of Nomex honeycomb has been investigated by flat-wise stabilized 

compressive tests according to ASTM C365M standard. The tests were run on  

60x60x32.2 mm Nomex core coupons with a constant cross head velocity of 0.5 

mm/min. Compressive modulus of the elastic phase, stabilized compressive strength 

and strain, crush strength, fully compacted compressive modulus and strain values at 

which densification occurs have been derived by these tests. In order to validate the 

model with the experimentally based properties, the honeycomb out-of-plane crushing 

test is reproduced numerically in LS-DYNA, using 6 mm x 6 mm x 4mm brick 

elements (Figure 4.43) without the introduction of any strain rate scale factor. The 

loading plate is modeled using solid elements with rigid properties in contact with the 

Nomex core through automatic_surface_to_surface contact type.  

 

 
Figure 4.43: Compressive Stress vs Strain curve for the Nomex core.  
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The numerical results showed a good agreement with the experimental stress-strain 

curve and all the stages of the characteristic compressive behavior are well captured by 

the FE, Figure 4.43: the elastic regime up to the stabilized compressive strength, the 

crushing regime at nearly constant plateau stress (crush strength), and finally the 

densification regime, where the cellular structure is fully compacted resulting in a steep 

stress increase. 

4.5.3. Sandwich assembly – four point bending test 

The sandwich assembly, with the calibrated static constitutive material 

properties, has been build up through the use of tiebreak connection 

(contact_one_way_surface_to_surface_tiebreak) between shell skin and Nomex core 

solid elements on the basis of interlaminar properties derived from [28, 30]. Apart from 

the skin penetration, the failure mechanisms taking place during the transversal impact 

of Nomex core sandwich structures, are represented by shear in the transverse plane 

and compressive transverse failure, including crushing [1, 17]. These failure 

mechanisms have been investigated experimentally and numerically through 4 points 

bending tests, uniaxial compressive tests (reported in the previous section) and static 

indentation test respectively.  

Four-point bending tests have been run on sandwich specimens obtained 

combining phenolic/E-glass sandwich skins (1mm thickness) with hexagonal Nomex 

core (21.5 mm thickness) and assembling with the L direction of the honeycomb core 

along the primary direction. The selected test fixture provides a support span of 

420mm and a loading span of 140 mm.  Specimen deformations were monitored by 

four longitudinally-oriented electrical resistance strain gauges; the tests were 

conducted in stroke control with a cross-head speed of 6 mm/min. The load was 

applied by a 25 mm wide flat steel blocks. The experimental results showed that 

flexural behavior of the examined sandwich structures is governed by the shear failure 

of the Nomex core which occurs before any debonding between the core and the 

facesheets (Figure 4.44). 

The validation of this damage mechanism has been done through the FE 

assembly made up according to the selected test fixture, i.e. providing a support span 

of 420mm and a loading span of 140mm. The sandwich specimen is set up by 490 mm 

x 100 mm x 21.5 mm Nomex core between 1mm of E-glass phenolic skins. In detail, 

the Nomex core is modeled with solid brick elements (4mmx4mmx3.6mm) and the E-
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glass phenolic skins with shell elements (4 mm x 4 mm) i.e. coincident with the in 

plane mesh density of the modeled core. The load/support span were modeled as solid 

elements with rigid material properties and an automatic_surface_to_surface_contact 

type is adopted for the contact between upper and lower steel span and the sandwich 

structure. The final assembly for the 4 point bending test is reported in Figure 4.44 

where the superposition of the numerical load-deflection curve with the experimental 

ones (three) is reported. The initial rigidity is reproduced with satisfactory accuracy by 

the numerical simulation, as well as the onset of damage, caused by the Nomex shear 

failure in the WT plane for the attainment of the correspondent core shear strength. 

This numerical test validates also the performance of the connection between the two 

materials: no interface failure occurs in the numerical test. Figure 4.45a reports the 

core areas subjected to the LT shear during the loading phase, whereas the stress status 

in the skins at the onset of core failure (upper-compressive and lower-tensile) is 

illustrated in the Figure 4.45b where the onset of failure is not yet reached. 

 

Figure 4.44: Load vs Deflection curve for the four point bending test. 

 

 

 

  

0

1

2

3

4

0 2 4 6 8 10 12

W
 [

K
N

]

 [mm]

Experimental

Simulation

 

 



Chapter IV – Impact behavior of honeycomb sandwich structures 

110 
 

a) b) 
Figure 4.45: Contour of a) LT stress in the Nomex core, b) L direction stress in the upper 

and lower skin. 

 

4.6.  Sandwich Assembly – Indentation test 

In order to predict the contact force history, the dynamics of both the projectile and 

the target must be modeled accurately, and local indentation effects must also be 

accounted for. The local crushing behavior has been investigated through static 

indentation tests. 250x50mm sandwich beam specimens composed by 32.2 mm-thick 

Nomex core between two 1 mm thick glass/phenolic skins were supported by a steel 

substrate in order to avoid overall bending of the specimen. The indentation load was 

applied through a steel cylinder (20 mm in diameter) across the whole width of the 

beam cross-section. The tests were carried out under displacement control at a loading 

rate of 2 mm/min and, after a fixed depth of the cylinder displacement, the load was 

released and the face sheet flexed back but did not recover completely its undeformed 

shape: thus, a residual facesheet dent remained revealing an irreversible absorbing 

energy mode of failure. The FE model has been constructed by using solid brick 

elements (4mmx4mmx3.6mm) for the Nomex core and shell elements (4mmx4mm) for 

the E-glass phenolic skins, i.e. coincident with the in plane mesh density of the 

modeled core. The bottom face of the sandwich in supported by constraining the Z(3) 

degree of freedom. In Figure 4.46a the comparison between load and displacement 

curve for the experimental and simulated test is reported. Both curves show a linear 

behavior up to the peak load, i.e. until when the transverse normal stress remains low, 

the core behaves elastically and the Z(3) stress is spread throughout all the thickness 

dimension (Figure 4.46b). In the experimental test, the emission of a cracking sound at 
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the end of the linear domain is believed to be associated with the onset of core 

crushing. This means that the core behaves elastically as long as the compressive stress 

in the core does not exceed the critical value of core compression strength.  

 
a) 

 
b) 

 
c) 

Figure 4.46: Load vs Deflection numerical and experimental curve for the static 

indentation test a); through the thickness stress distribution before b) and after c) Nomex 

crushing.  

After this stress level, the stress distribution becomes more concentrated under the 

indentor (Figure 4.46c) and the force–displacement curve becomes nonlinear with a 

decrease in the stiffness. The nonlinear behavior was due to the progressive 

honeycomb crushing in the area under the indentor which corresponds to a plastic 

volumetric compression in the solid elements of the core. The global behavior is well 

captured by the numerical simulation, especially for the load peak which is very close 

to the experimental one whereas a slight mismatch in the non linear part is observable 
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in the numerical curve with respect to the experimental one, probably due to the shear 

component of the material model [23]. After releasing the steel indentor, the numerical 

unloading curve reaches a slightly higher residual damage (residual dent) because there 

is no way to modify the unloading law and the elastic release of the deformed cells in 

the constitutive material model. 

4.7.  Impact analysis 

A series of impact tests were carried out on specimens prepared with 11 mm-thick 

Nomex honeycomb and sandwiched between either t=1 mm or t=2 mm E-glass 

phenolic skins consisting of four or eight fabric plies, respectively. The specimens 

were clamped using cylindrical rings and impacted with a 16.8 kg mass at three 

different energy levels, achieved with three different velocities (v=1 m/s, v=4 m/s and 

v=8 m/s). The selected impact velocities allowed to provide top skin damage (v=1 m/s) 

and complete penetration (v=4 m/s and v=8 m/s). Moreover, two different 

hemispherical tips (d=12.7 mm and d=20 mm diameter) were adopted to provide their 

influences on the impact response. The variability of impact conditions has the 

principal aim of evaluating the effect of impact energy, skin thickness, impactor 

diameter, and impact velocity on the main outcomes of the impact tests, i.e. force-

displacement history (F-d) and impact damage (damaged area and through-thickness 

damage). 

For the numerical simulation, the impact test involving 11 mm of thickness for 

Nomex core combined with 1 mm of E-glass phenolic skins and stroked by 12.7 mm 

impactor diameter at 4 m/s (leading to complete penetration) has been taken as a 

baseline reference in order to identify the sensitive parameters which affects the 

analysis and to calibrate the model. Model validation has been performed by mean of 

results of the other impact tests. The FE model consists of a solid cylinder having 

40 mm of diameter and 11 mm of thickness to which the Nomex properties (defined in 

the previous sections) are assigned through MAT_MODIFIED_HONEYCOMB 

material type. The skins (upper and lower) are modelled as one or two circle shell in 

the case of t=1 mm and t=2 mm respectively, by assigning MAT058 material type and 

the corresponding calibrated static material properties whereas rigid properties have 

been assigned to the solid steel impactor. The clumped boundary conditions are 

achieved by fixing the outer edges of the sandwich constituents. 
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Within a quite large range of values, a sensitivity analysis showed significant 

influence of the following factors: (i) mesh size; (ii) values of SLIMiT; (iii) EROD 

values (principal strain level for element deletion for both skins and Nomex 

honeycomb); (iv) tensile skin material properties which control the stiffness and peak 

force of the F-d curves; (v) friction between impactor and target that slightly affects the 

shape of the f-d curve in the post peak phase. Convergence of results has been achieved 

by using approximately 1.2 mm squared elements for the shell skin elements and 1.2 

 mm x 1.2 mm x 1.6 mm solid elements for the Nomex core; whereas a more refined 

mesh may cause strain localization and a consequently reduction of absorbed energy 

[31].Values for the erosion of the skins shell elements have been based on fiber 

ultimate failure strains for glass composites.  

In Figure 4.47a the simulated F-d curve based on the derived static material 

properties is plotted with a dashed grey line for v=4 m/s impact test and compared to 

the experimental one.  Even though the global shape of the curve is captured by the FE 

simulation, the numerical response appears underestimated respect to the experimental 

one, in terms of both stiffness and peak force values. In the presented sandwich impact 

tests, the sandwich impact response is influenced by the strain rate sensitivity of the 

constituent sandwich materials which particularly affects the in plane facesheets 

material properties. In fact, by reporting the numerical fringe level of strain rate in 

warp direction for the upper skin next to first failure (Figure 4.48a), it can be observed 

that the in plane strain rate rises up to 1000s-1 of order of magnitude leading to a 

possible modification of material properties. Considering the constituent sandwich 

materials adopted within the present study, Heimbs et al. [20] characterized the strain 

rate dependent material properties for E-glass phenolic composites reporting an 

average increase of almost 90% compared to the static values for tensile strength in 

warp and weft direction with a marginally increase of the elastic moduli and an 

increase of around 50% of strain to failure values; similar results were obtained by 

Barré et al. [14] on satin wave glass-phenolic composites. A possibility to include 

material strain rate dependence for the skins is to adopt 

MAT_RATE_SENSITIVE_COMPOSITE_FABRIC_158 with a viscous stress tensor 

formulation based on an isotropic Maxwell model; however, this material model works 

reasonably well if the stress increases due to rate affects are up to 15% of the total 

stress [23] and consequently a calibration of strain rate dependent material properties 

was performed for the E-glass phenolic skins on the basis of the cited results. 
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a) 

  

b) 

Figure 4.47: a) Comparison of experimental and numerical F-d curves for t=1 mm, 

d=12.7 mm, v=4 m/s with numbered sequence of sandwich damage mechanisms; b) 

corresponding energy displacement curve. 
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a) 

 
b) 

Figure 4.48: Fringe level of strain rate in warp direction a) and distribution of effective 

strain rate on the upper skin (t=1 mm, d=12.7 mm, v=4 m/s). 

 

Concerning Nomex core behavior, compressive crush strength, plateau stress 

and strain to compaction are also affected by loading rate [19]; consequently, in order 

to fully calibrate the dynamic behavior of the Nomex core, the Dynamic Increase 

Factor (ratio of the dynamic property value over the static one) DIF versus strain rate 

and relative volume for compaction have been assigned to the material model on the 

experimental results of [29], where dynamic compressive tests at different loading rates 

were conducted using a drop weight tower apparatus. 

A good agreement between numerical and experimental results has been 

achieved with corrected skin material properties including 100% increase for 

maximum tensile strengths, 5% Elastic moduli (in warp and weft direction), 50% 

increase of strain to failure EiT and 40% increase for the shear behavior. In particular, 

in Figure 4.47a the F-d curve for the baseline impact test is reported by using the 

calibrated material properties showing a satisfactory superposition, also for the Energy-

displacement curve (in Figure 4.47b). The F-d curve in Figure 4.47 allows to identify 

the different damage stages during impact which are displayed in Figure 4.49: (1)) the 

crushing of the core is pointed out by a small drop in the load a and a slight changing 

in the slope of the F-d curve since the Nomex honeycomb structure attains its 

compressive strength. Successively, the core deflects with increasing the load and the 

skin locally fails until top skin perforation, (2)). The significant load drop caused by 

top skin failure, is followed by shear fracture in the Nomex core (3)), where the solid 

elements are eroded since they are too distorted. The compressive plastic deformation 
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in the Nomex core creates a small plug in the zone under the impactor (4)) which starts 

to deflect the lower skin in bending. In this way the load increases again and the final 

drop in the load curve is due to lower skin failure (5)) up to final perforation (6)). 

 

 
1) 

 
2) 

 
3) 

 
4) 

 
5) 

 
6) 

Figure 4.49: Simulated damage sequence occurring in the E-glass phenolic sandwich with 

t=1 mm, d=12.7 mm, v=4 m/s (contour of plastic strain): 1) Nomex crushing, 2) Top skin 
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failure, 3) Shear failure in the Nomex core, 4) Plug formation, 5) Bottom skin failure, 5) 

Complete penetration. 

Figure 4.50and Figure 4.51a,b report the numerical results for the other impact 

tests. By increasing the impact velocity to 8 m/s for t=1 mm and d=12.7 mm the peak 

forces in the F-d curve remains almost constant and the agreement with experiments is 

good (Figure 4.50). In Figure 4.51a, the comparison between numerical and 

experimental results is reported for t=2 mm, d=12.7 mm and v=1 m/s: the general trend 

of the contact force increases further up to the maximum load, where a significant load 

drop, suggesting major damage, is observed. After that, the F-d curve flatten out until 

the maximum displacement, corresponding to a zero velocity of the impactor, is 

achieved. During rebound, the elastic portion of the energy stored into the material is 

transferred back to the impactor, whereas another portion (represented by the area 

enclosed in the F-d curve) is irreversibly absorbed through material permanent 

damage, heat, and vibrations. The superposition shows good agreement in both loading 

and unloading phase. Compared with the case of t=1 mm, the increasing of the skin 

thickness produces an increase of the energy absorbed given by a significant increase 

in the peak force (from 2.16 kN to 3.79 kN) indicating that skins represent a significant 

factor responsible for the energy absorption and the energy absorbed by each skin is 

almost constant. By increasing impact energy level, the numerical results slightly 

differs from the experimental ones. In particular, with increase the initial impact 

velocity to 4 m/s Figure 4.51b, the model is not able to predict with sufficient accuracy 

the increase of both peak forces occurring in the experimental test, probably due to the 

strain rate sensitivity on the phenolic skins and the through the thickness shear 

components which cannot be taken into account with sufficient accuracy in the adopted 

shell-based material model. The energy absorbed by the facesheets and honeycomb 

core grow by passing from 12.7 mm to 20.0 mm impactor diameter and in the 

corresponding F-d curve (Figure 4.52) both peak force (from around 2.5 kN to 3.10 

kN) and central region governed by the core are increased whereas the overall shape of 

the curve is conserved.  With the larger diameter impactor, larger contact-areas and 

contact-time are involved triggering more work for skin fracture and plastic 

deformation of the core. 
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Figure 4.50: Comparison of experimental and numerical F-d curves for t=1mm, 

d=12.7mm, v=8m/s with evolution of damage variable ω1 and ω12. 

 

 
a) 

 
b) 

  
Figure 4.51: Comparison of experimental and numerical F-d curves for a) t=2 mm, 

d=12.7 mm, v=1 m/s and b) t=2 mm, d=12.7 mm, v=4 m/s. 
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Figure 4.52: Comparison of experimental and numerical F-d curves for t=1 mm, 

d=20.0 mm, v=8 m/s and corresponding top view of impacted specimens. 

4.7.1. Damage assessment 

Damage resulted in the impact tests involves upper/lower skin failure and 

penetration, Nomex crushing, interface failure, delamination. The damaged specimens 

showed a very localized damaged area with a circular shape and with the dimensions 

approximately coincident with the impactor diameter (as reported in the case of 

complete penetration for t=1 mm, d=12.7 mm and v=8 m/s in Figure 4.53a.  
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Figure 4.53: Comparison of experimental a) and numerical  b) top residual damage for E-

glass phenolic sandwich with  t=1 mm, d=12.7 mm, v=8 m/s. 

The main failure mode in the composite skins is fiber breakage, which 

represents the basic energy absorption mechanism. In particular, the principal axes of 

skin failure coincide with the warp-weft directions of the surface fabric layers 

(horizontal and vertical directions in the Figure 4.53a, along which fiber fracture was 

found. The impactor of 20.0 mm of diameter produced similar damage and the 

involved damaged area extends in a circular region of diameter slightly higher than the 

impactor diameter (Figure 4.52). The numerical model showed a good agreement in 

terms of the damage occurred in the sandwich as a consequence of the impact load. 

The evolution of damage variable ω1 and ω12, at the beginning of top skin perforation, 

is reported in the upper and lower inset of Figure 4.50 respectively, for t=1 mm, 

d=12.7 mm and v=8 m/s: the irreversible damage due to fiber fracture develops along 

the warp direction where the element deletion occurs since more deformed elements lie 

along that directions. Moreover, the in plane shear deformation and permanent damage 

(with ω12) spreads over a wide area under the impactor in contact with the top skin. 

The final residual damage of impacted sandwich specimens, in top view, is compared 

with the numerical results (Figure 4.53a,b) and in Figure 4.52 for the E-glass phenolic 

sandwich with  t=1 mm, d=12.7 mm, v=8 m/s and t=1 mm, d=20.0 mm, v=8 m/s. The 

good agreement achieved confirmed the reliability of the model and the element 

deleted during the analysis correspond with the principal direction of fiber fracture; 

moreover, the numerical damaged area reproduces the circular shape with permanent 

deflection of damaged skin.   

 

  
Figure 4.54: Comparison of experimental a) and numerical b), through the thickness 

residual damage for E-glass phenolic sandwich with t=2mm, d=12.7mm, v=1m/s. 
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Figure 4.54a,b display the experimental and numerical  through the thickness residual 

damages for specimen with  t=2mm, d=12.7mm, v=1m/s  respectively. Permanent 

deflection occurs in the upper skin (slightly higher in the numerical case) while 

crushing and permanent plastic deformation affect the Nomex core. 

4.8.  Closing remarks 

In the present study, high energy impact tests were carried out on E-glass phenolic 

impregnated sandwich structures, adopting two skin thickness values, two different 

impact diameters and different impact velocities. The experimental tests were modeled 

through the explicit FE software LS-DYNA. Homogeneous equivalent solid elements 

have been adopted for the Nomex honeycomb core and shell elements for the phenolic 

facesheets in combination with an orthotropic nonlinear elasto-plastic and a CDM 

based constitutive behavior, respectively. A FE based procedure based on different 

experimental tests was presented in order to obtain and calibrate the basic properties 

for the adopted material model to take into account the main damage mechanisms 

occurring during the impact tests. A wide calibration of material properties based on 

static experimental tests resulted in a non-satisfactory reproduction of the impact 

behavior of examined sandwich structures since dynamic conditions affect some 

crucial material properties. A further investigation on the strain rate sensitive material 

properties allowed to calibrate a reliable sandwich model on a reference impact test. 

From the results obtained on the unknown cases, FE estimated with sufficient accuracy 

the overall force-displacement curves during the loading-rebound phases and complete 

penetration case as well as the sequence of damage related to the penetrating phases. 

Satisfactory agreement between numerical predictions and experiments was also 

verified with reference to the extent and shape of damaged areas with a good 

correspondence in the onset and development of material damage. In particular, as 

confirmed by the analysis of the impacted sandwich panels, FE calculated considerable 

fiber fracture on top and bottom phenolic facesheets and plastic deformation of Nomex 

core. In general, the predicted results reproduce with a satisfactory accuracy the impact 

behavior of the analyzed sandwich structures; however a slight discrepancy was found 

when high impact velocities and thicker skins are involved. This circumstance 

probably depends on the possibility to accurately account for the dynamic behavior in 

the constitutive material model at different strain rates. So that, further developments 

will include a strain rate characterization of the GFRP in order to conduct reliable finite 
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element simulations. More work should be also done to investigate potential 

mechanisms and parameters involved in the dynamic behavior such as Nomex paper 

rate dependence, micro-inertial effects of the cellular structure, the influence of trapped 

air in case of stabilized compression. 
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CHAPTER V  

FRACTURE TOUGHNESS OF MULTISCALE 

CARBON NANOTUBE REINFORCED 

COMPOSITES 

5.1.  Introduction to framework 

In recent times, carbon nanotube (CNT)/polymer composites have emerged as 

a promising class of high performance materials because of extraordinary properties 

exhibited by CNTs, including: high specific modulus and strength, high electrical and 

thermal conductivity, low coefficient of thermal expansion. Due to these 

characteristics, the potential applications of these materials as structural and functional 

materials suitably comprise the aerospace, energy storage and electronic sector and 

other industries. However, even though experimental results have proved the high 

potential of such materials, the cost related to CNT production and the trial-and error 

approach used to develop suitable composites have made the complete control and 

modeling of effective properties of CNT reinforced polymer composites preferably 

desirable. The assessment and modeling of CNT based composite mechanical 

properties is rather complex and represents a challenging task. The main source of 

complexity is related to their hierarchical structure, which ranges from nano to macro 

length-scales. Therefore, it appears essential to address this issue according to a 

different approach form traditional ones, which is able to account for the characteristic 

phenomena of each length-scale and bridge their effects from the smaller scale to the 

macroscale [1].  
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Multiscale methods have recently gained an increasing attention to this field; 

the key feature of these methods is the possibility to combine simultaneously multiple 

modeling methods, from atomistic simulations to continuum theories, and span 

multiple time and length scales with the final goal of controlling and predicting the 

nanocomposite response. Within this modeling process, experimental characterization 

techniques play a major role for both understanding nanoscale mechanisms and 

determining modeling parameters. Within the discovery process of CNT-based 

composites, reliable modeling of nanocomposites properties allows a cheaper, faster 

and more efficient composite development when compared with pure experimental 

methods.  

The activities presented in Chapter V are focused on multiscale modeling of 

Mode I interlaminar fracture toughness of CNT-based composites. The approach 

moves from the investigation of analytical models describing the CNT pullout 

mechanism, at the nanoscale, whose validation is based on available experimental data 

(Figure 5.55).  

 
S2-glass fiber/epoxy laminated 

composite 

 
Nanofilled (CNT/CNF) resin 

interlayer 

 

 
CNT/CNF pullout 

mechanism 

 

Figure 5.55: Illustration of multiscale framework of damage analysis for Mode I 

interlaminar fracture toughness of CNT/CNF-based composites.  

In particular, these models are built to take into account the CNTs properties 

within the matrix at the nanoscale, i.e. length and orientation distribution, stress 

transfer. The first sections comprise a literature review on some critical CNT properties 

and experimental characterization techniques that are of fundamental concern for 

modeling purposes. Then, the literature review focuses on available models for CNT 

toughening mechanisms. A micromechanical model is then presented showing the 
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main assumptions, equations and some parametric analysis; finally the model is applied 

to a certain number of interlaminar Mode I fracture toughness experimental results. 

5.2.  Carbon Nanotubes – background and introduction 

Carbon nanotubes (CNTs) can be classified as mesoscale fillers having typical 

diameter values ranging between 1-100 nanometer and length values up to millimeters, 

resulting in high aspect ratios. The official CNT discovery dates back to 1991 with the 

publication of a research paper in which the author, Iijima [2], announced the 

preparation of “nanometre-size, needle-like tubes of carbon”. CNTs can exist into two 

main classes: single walled carbon nanotubes (SWCNTs) and multi-walled carbon 

nanotubes (MWCNTs). A SWCNT is a cylinder obtained by rolling up a portion of a 

graphite sheet with the tip of the roll-up vector (the chiral vector) connecting its tail, as 

shown in Figure 5.56. A MWCNT consists of concentric SWCNTs with different 

chirality and separated by a distance approximately coincident with the basal plane 

separation in graphite, i.e 0.36 nm [3]. These materials have increasingly attracted 

considerable attention because of their unique structure and remarkable mechanical, 

electrical, thermal and chemical properties [4, 5]. In fact, several research works have 

proved that Young’s modulus of single-walled nanotubes (SWNTs) is greater than 

1TPa [6-8] and the tensile strength is of the order of 100GPa [9-11]. Moreover, CNTs 

are able to undergo large deformations without exhibiting fracture as well as recover 

their original, straight structure [12]. In addition, CNTs have very high thermal 

conductivities and good electrical properties [13, 14]. Due to CNT dimensions and 

morphology, it is believed that CNTs represent ideal fillers for polymers to enhance 

their mechanical properties. In fact, the incorporation of this kind of nanoscale 

constituents into polymer matrices leads to property enhancements greater than those 

attainable using conventional fillers.  

Furthermore, such nanoscale reinforcements could make the resulting 

composites potentially suitable to be processed using traditional methods for plastic 

materials, which in general are more difficult or impossible with the larger, micron-

scale conventional fibers. Despite these advantageous aspects, a large amount of work 

will have to be done in the field of CNT composites before we can exhaustively take 

advantage of the exceptional properties of CNTs for polymer matrix composite 

materials. In fact, the enhancements currently achieved by using CNT fillers are often 

significantly less than those predicted by simple micromechanical models. 
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a) 

 
b) 

Figure 5.56: Schematic representation of the SWCNT and MWCNT structure: a) 

definition of chiral vectors and chiral angle [5], b) three dimensional rendering. 

This is often caused by a variety of factors, including CNT dispersion within 

the polymer, size, shape and orientation of CNTs, interaction between the polymer and 

the CNT, type of CNT used and CNT agglomeration within the polymer system; all 

these factors are usually assumed to be “idealized” within a model, such as perfectly 

straight or aligned elongated tubes, perfect CNT-matrix bond, perfect dispersion, etc. 

For example, Morcom et al. [15] reported that a 66% Young’s modulus increment 

could be achieved by improving the dispersion of CNTs in a high density polyethylene 

matrix, whereas Bose et al. [16] showed that nature of pre-treatment and agglomeration 

were responsible for the Young’s modulus variation when increasing the filler loading. 

Du et al. [17]reported that the dispersion and orientation of CNTs indeed were the two 

crucial parameters to determine the reinforcement of the CNT/polymer composites . It 

can be concluded that although wide efforts have been conducted to achieve a good 

control of CNT/composite preparation, the key challenge still remains the efficient 

transferring of the superior properties of CNTs to the nanocomposites. In the following 

sections, the most important parameters affecting the final properties of CNT/based 

composites are described. 

5.2.1. CNT length characterization 

Due to their extraordinary properties, CNTs are increasingly being investigated for 

use in polymer composite applications. However, the mechanical and electrical and 

properties of such CNTs-based composites are strongly affected by the properties of 

the CNTs themselves. Even though effective CNT synthesis methods have been widely 

developed in the last decades, at the synthesis level it is very difficult to control CNT 

geometric configurations, including length, chirality, number of walls, orientation. For 

1-100 nm 1-100 nm 

 
 

up to mm 

0.36 nm 
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this reason, one of the most important features of CNTs starting and dispersed material 

is that the tubes typically consist of diverse range of lengths, diameters and electronic 

properties, providing a widely heterogeneous initial system. As a consequence of this 

heterogeneity, the modeling of the effective properties of CNT-reinforced polymers is 

made complicated. The complex CNT micromechanical and nanoscale characteristics 

are mainly related to: 

 variability of the structure and properties of the CNTs; 

 dispersion and orientation of the CNTs within the polymer; 

 characteristics of the interface and load transfer between the CNTs and the 

polymer; 

 interphase between CNT and the polymer. 

The accurate characterization and understanding of how these issues act at the 

nanoscale level represent a necessary step in order to optimize the fabrication phase 

and predict the effective properties of CNT-reinforced polymer systems.  

Among these critical issues, a key step to optimize CNT industrial applications 

is the accurate measurement and characterization of CNT length, both during 

preparation and after composite processing. The exact determination of CNT lengths is 

difficult mainly due to a series of practical problems: CNT individualization without 

any damage, possibility to observe nanotubes as single tubes in microscopic 

techniques, entanglements of several nanotubes which restrict the individualization. In 

addition, due to the high CNT aspect ratio, it is a problem to follow long nanotubes in 

microscopic observations that may be also inclined with respect to the viewing plane. 

In general, dispersion characterization tools can be classified into two main types [18]: 

tools based on microscopy and tools based on spectroscopy. Four types of microscopy 

have been used to characterize CNT dispersion: transmission electron microscopy 

(TEM), scanning electron microscopy (SEM), atomic force microscopy (AFM), and 

optical microscopy, including confocal microscopy. Spectroscopic methods include 

Raman spectroscopy, UV–Vis spectroscopy, and scattering methods. All these methods 

can be applied to both low-viscosity liquids and polymers.  

In addition to the issues related to CNT length characterization, the 

understanding of residual CNT length within a polymer matrix after dispersion and/or 

processing represent a further key step aimed at determining the effective mechanical 

properties of CNT-based composites. In fact, CNTs might be brittle and thus damaged 

during processing due to exertion of high external forces on CNTs. Several studies 

reported that nanotube length reduction could be due to composite method of 
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preparation, dispersion techniques, CNT chemical modification, as well as processing. 

In fact, CNTs as raw materials, obtained by bulk synthesis methods, are characterized 

by a strong interaction which tends to bond each other through van der Waals forces 

(mainly due to large surface areas of CNT tubes). This consequently leads them to 

primarily exist in large aggregates, such as ropes or bundles. In order to achieve 

systems with individualized CNTs, it has been observed that CNTs can be dispersed in 

a large number of different materials, including several surfactants and polymers [19, 

20]. However, due to the fact that nanotubes are tightly bonded within a bundle, 

significant amount of energy may be required to detach nanotubes each other. For this 

reason, solutions of nanotubes are prepared through different dispersion procedures 

that usually include the use of sonication methods (comprising tip, bath, etc.), for 

which duration and intensity of ultrasound treatments are widely varied. Some 

dispersion procedures often employ a consecutive (ultra)centrifugation step to remove 

residual larger bundles, with the final aim of having primarily individual nanotubes and 

small bundles in the system. Several studies have reported that ultrasonic processing of 

CNTs may result in significant damage including buckling, bending and dislocations 

which affect the nanotube structure and become significant with longer periods of 

sonication [21]. In particular, these processes lead to a scission of the nanotubes into 

shorter segments with a rate of fragmentation that reduces with segment size. The 

mechanism that generates nanotube cutting is mostly related to fast collapsing 

cavitation bubbles which potentially produce a shear force able to exceed the tensile 

strength of the nanotube and thus cause its fragmentation [22]. The average length of 

the nanotubes has been shown to be reduced at a rate proportional to t
x
, where t is the 

sonication time and x is determined experimentally [23]. For instance, in [23] the 

scission of nanotubes was found to follow a power law such that the average length of 

the ensemble decreased proportional to t 
-0.38 

under continuous tip sonication. Other 

sonication parameters, such as frequency and power, influence the extent of nanotube 

scission as well, with lower frequencies producing forces of greater energy and high 

applied ultrasonication power increasing the defect density with a consequent reduction 

of the average length of the nanotubes. 

Numerous studies demonstrated the feature of CNT fragmentation during dispersion. 

Saito et al. [24] found MWCNT fragmentation up to final lengths shorter than 1 µm as 

a result of a sonication dispersion method in mixtures of sulfuric and nitric acid. CNT 

damage related to sonication time was investigated also by Hilding et al. [25] who 

reported that most length reduction occurred during the first few min of sonication, 

then, the rate of length reduction levels out. Blanch et al. [23] conducted a parametric 
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study in order to investigate the effect of the major controllable variables during CNT 

dispersion process. In particular, they considered the effect of ultracentrifugation 

temperature, duration and applied force on dispersion, using arc-discharge nanotubes in 

sodium dodecylbenzene sulfonate (0.5% mass percentage). Ultrasonication was 

performed using ultrasonic bath or alternatively with a probe sonicator. The solutions 

were characterized with UV–vis–NIR absorbance spectroscopy, Raman spectroscopy 

and atomic force microscopy AFM, with this latter analysis performed to determine the 

length and diameter distributions of each sample. As a result of the study, they reported 

that both length and diameter distribution of the populations of dispersed CNTs could 

be described by a log-normal distribution (Figure 5.57) with a greater number of 

nanotubes having shorter lengths and thinner diameters and a wide tail for longer 

dimensions. Moreover, they concluded that increasing sonication/centrifugation time, 

force and temperature, the fraction of individualized CNTs can be augmented, at the 

cost of a reduced CNT mean length.   

CNT chemical modification may represent also a source of length reduction as 

reported by Gojny et al. [26] who observed a reduction of MWCNT lengths in 

MWCNT/epoxy composites prepared by mechanical mixing. In that study, length 

reduction was attributed to the amino-functionalization process on the MWCNTs.  

Concerning CNT length reduction and distribution after nanocomposites 

processing, some authors reported that additional nanotube shortening can be 

experienced after melt processing. Fu et al. [27] investigated residual nanotube lengths 

after incorporation in an epoxy polymer matrix; the measurement of the MWCNT 

lengths was carried out using SEM and a shortening up to 1.4 µm was found (with 

respect to initial nanotube lengths of 10–20 µm). Chen et al. [28] measured CNT 

lengths after sonication assisted composite preparation and a surface oxidation step 

using field-emission SEM. The comparison between the as-grown and processed CNTs 

indicated a strong shortening of MWCNTs, up to 90% of the initial length. Duncan et 

al. [29] investigated the fragmentation aspect ratio of differently functionalized 

MWCNTs in polycarbonate (PC) composites prepared by a solvent precipitation 

method. For the fractured composites, PC was dissolved in tetrahydrofuran and a 

sample was placed on a TEM grid from which aspect ratio distributions of the partially 

broken nanotubes was showed based on over 100 tubes. 
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a) 

 

 
b) 

Figure 5.57: a) AFM analysis of dispersions of CNTs in 0.5% SDBS, b) simultaneous 

length and diameter measurements [23]. 
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Zaragoza-Contreras et al. [30] synthetized MWCNT/polystyrene composites 

by using in situ bulk-suspension polymerization, with three different MWCNT 

(without any treatment) concentrations: 0.04, 0.08 and 0.16 wt%. With the assistance 

of ultrasound sonication and mechanical agitation to avoid nanotube re-aggregation, 

they achieved encapsulation and exfoliation of the nanotubes into the polymer host. 

The most important characteristic was the visible short length of the nanotubes, which 

was apparently below to 10 µm attributed to the induction of strong cavitation due to 

the application of ultrasound during the synthesis. By solving some MWCNT-

composite particles in THF and then performing SEM observations it was found that 

the nanotubes presented lengths in the range of 2–15 µm which implicated a dramatic 

length reduction compared with the original size (120–140 µm) and average aspect 

ratio (around 1400). Thus, MWCNT degradation took place definitely as a 

consequence of the process of synthesis. In their study, Krause et al. [31] assessed the 

length distributions of pristine and processed MWCNTs using the same procedure, i.e. 

by dispersing them in a suitable solvent, applying TEM on individualized nanotubes 

and performing image analysis. This allowed them to evaluate the effects of processing 

dependent shortening in carbon nanotubes. In detail, two melt mixed composites based 

on PC with two kinds of commercially available MWCNTs were used, with 2 wt% and 

1% wt MWCNTs.  

 
a) 

 
b) 

Figure 5.58: Comparison of length distributions before (pristine MWCNTs) and after 

processing  of NanocylTM NC7000 a) and Baytube b) C150HP MWCNTs [31]. 

Figure 5.58 a) and b) show the comparison of length distributions of both nanotube 

materials before and after melt processing in the polycarbonate composites. The 
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authors found, for both cases, a significant nanotube shortening after melt processing 

of up to 30% of the initial mean length values. 

The reduction of CNT length during processing inevitably causes a reduction 

of the effective mechanical properties of the composite and should be necessary taken 

into account when modeling the effective properties of CNT-based polymer 

composites. Inam et al. [32] investigated the mechanical properties of cured epoxy–0.1 

wt% CNT/ nanocomposites having carbon nanotubes of different average lengths but 

same initial volume fraction. Carbon nanotubes were dispersed in the epoxy matrix 

using calendering technique and then shortened by means of severe tip-sonication with 

different duration, i.e. 5, 8, 11 and 14 minutes of ultrasonication. This dispersion 

procedure produced batches of MWCNTs having average lengths of 2.09 µm, 1.69 µm, 

1.33 µm, 0.99 µm and 0.50 µm, respectively. Field-emission SEM was used to analyze 

the residual length of CNTs (at least 5000 CNTs for each case). They reported that 

higher aspect ratios of CNTs were responsible for achieving higher mechanical 

properties since the nanocomposites containing long carbon nanotubes (2.09 µm, 

1.69 µm) showed higher tensile strength, elastic modulus, fracture strain and fracture 

toughness as compared to nanocomposites containing short carbon nanotubes 

(1.33 µm, 0.99 µm and  0.50 µm). This was attributed to both larger surface areas 

offered by longer nanotubes and the effectiveness of dispersion method, i.e. 

calendaring.  

As matter of fact, both length and diameter distribution of the populations of 

dispersed and/or processed CNTs are characterized by a greater number of nanotubes 

having shorter lengths and thinner diameters, with a wide tail for longer dimensions 

(for traditional short fiber composites it is the contrary). A wider variability in length 

rather than diameter has been observed experimentally; for instance, FE-SEM and HR-

TEM analysis revealed almost no change in the diameters of CNTs after tip sonication 

[32]. Moreover, these distributions appear narrower with increasing dispersion time in 

the direction of shorter lengths and thinner diameters. It has been reported that this 

kind of sample data can be successfully described by a log-normal distribution as well 

as a Weibull distribution [25]. The probability density function of a Lognormal 

distribution for LCNT is defined as: 
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where the parameters μ and σ denote the mean and standard deviation of the length’s 

natural logarithm, respectively. On a logarithmic scale, μ and σ can be defined as 

location and scale parameter, respectively. On the other hand, the probability density 

function of a Weibull distribution is formulated as follows: 

 (        )  
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 (5.2) 

where λ > 0 is the scale parameter and k > 0 is the shape parameter of the distribution. 

Ulrich et al. [33, 34] gave another form of Weibull distribution, expressed as follows: 

 (        )        
          

 
 (5.3) 

where b = k is the shape parameter and a = λ
-k
 is the scale parameter. Different 

parameter values affect the shape of both Lognormal and Weibull distribution, as 

reported in Figure 5.59. Both scale and shape parameters can be estimated by 

maximum likelihood estimation (MLE); one alternative method is to estimate the shape 

and scale parameters through the cumulative distribution function using linear 

regression. This method counts the cumulated frequency of SWNT lengths from the 

experimental sample to create an empirical distribution.  

These distribution functions have been successfully used to describe CNT 

length distributions and implemented into closed formulation to predict CNT 

composite properties. In their work, Wang et al. [34] described an effective method for 

quantifying the length distribution of large populations of single-wall carbon nanotubes 

using atomic force microscopy and SIMAGIS software. The quantified lengths were 

extracted from software analysis and plotted into a histogram (Figure 5.60). They 

found that the Weibull probability plot could reasonably describe the experimental 

sample distribution. The fitted Weibull distribution was used to predict the length 

effect factor and elastic modulus of CNT/epoxy nanocomposites.  

Jiang et al. [35] simultaneously considered the effects of orientation 

distribution and aspect ratio distribution on composite properties applying their model 

to predict the elastic properties of nanotube-reinforced composites. In their work CNT-

reinforced composites were produced starting from performs obtained by passing a 

suspension of SWNTs through a porous membrane;  a low viscosity Epon 862 resin 

solution was then infused through the thickness direction of the performs and cured to 

form. AFM was used to evaluate the aspect ratio distribution. The histogram of the 

aspect ratio distribution was successfully fitted by a lognormal distribution function, 
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with a resulting mean aspect ratio of the CNTs of about 140. They showed that, if the 

orientation and aspect ratio distribution does not have the symmetry of the normal 

distribution, the overall elastic properties of the composite may be significantly 

different varying in the range of 30% compared to the symmetric case. 

 

 
a) 

 
 

 
b) 

Figure 5.59: PDF for different scale and shape parameters: Lognormal a) and Weibull 

distribution b). 
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Figure 5.60: Histogram of dispersed SWNT lengths [34]. 

 

5.2.2. CNT orientation 

The extraordinarily high stiffness and strength of nanotubes could potentially 

make them suited as a reinforcing phase in future generation of composite materials. 

One of the most remarkable problems related with their use as reinforcement in 

polymer matrices concerns the degree of control of their alignment within a polymer 

system. For instance, CNTs usually exist in the form bundles; so that individual 

nanotube orientations within a bundle can be identical even if the average orientation 

within the whole domain may be random. Moreover, since carbon nanotubes are 

anisotropic objects, orientation is a significant factor of dispersion playing an important 

role in determining numerous properties of CNT-based composites. Therefore, since 

the overall properties of a composite are very sensitive to the orientation distribution, 

the issue of the Orientation Distribution Function (ODF) has to be addressed in order to 

accurately estimate the properties of the composite and optimize processing conditions. 

Generally, the same mathematical approaches used for quantifying polymer orientation 

can be used for characterizing nanotube orientation. In particular, in a representative 

volume of a composite CNT orientation is generally expressed in terms of the 

orientation of the long axis of the tube with respect to a reference system and can be 

characterized by the Euler angles [36], (α,β,γ), as shown in Figure 5.61.   
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Figure 5.61: Definition of Euler angles in SWNT nanocomposites [36]. 

Then, the problem can be formulated analytically by the probability of finding 

nanotubes with orientations between angles (α,β,γ) and (α+dα,β+dβ,γ+dγ), for which, 

the normalization condition is expressed as 

∫  
    

   

∫  
    

   

∫  (     )            
   

   

 (5.4) 

where f(α,β,γ) is the ODF as a function of the three Euler angles (α,β,γ). However, due 

to the cylindrical geometry of the CNT inclusions, the dependence of γ may be 

removed. In this way, the orientation of a straight CNT is characterized by the two 

Euler angles α and β; the base vectors ei and ei’ of the global (Xpolymer, Ypolymer, Zpolymer) 

and the local coordinate systems (XSWNT, YSWNT, ZSWNT) are related via the transformation 

matrix g:  

        
  

where g is given by:   

  [

                       
                       
         

] 

The orientation distribution of CNTs in a composite reduces to a probability density 

function f(α,β) satisfying the normalization condition: 
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∫  
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If CNTs are completely randomly oriented, the density function is f(α,β)=1/2π. Finally, 

for some loading conditions, it can be assumed that the CNT tube has no azimuthal 

dependence, and consequently the angle α may be disregarded in the ODF expression.  

Given the characteristics of the ODF, the methods used for the quantification 

of CNTs orientation are mainly based on three approaches: by measuring mechanical 

properties of the composite at different scale levels, image analysis, through physical-

based measurements.  

In the first approach, the dispersion and orientation of CNT fillers is derived 

from mechanical properties in a microstructural model [37]. The drawback of this 

method is related to the fact that the measured mechanical properties are usually the 

average value over large volumes, and sometimes do not effectively represent the local 

situation of individual CNTs. 

Direct microstructure observations and subsequent image analysis have been 

demonstrated to be a satisfactory way to characterize the dispersion and orientation of 

CNTs in polymer composites [38-40]. However, some authors [40] pointed out that 

this technique suffers some limitations mainly related to: (i) the various morphologies 

and large amount of CNTs in one image that require automatic and accurate CNT 

identification tools; (ii) heterogeneity of the background brightness; (ii) CNT 

orientation relative to the observation plane. With regard this approach, Cooper et al. 

[41] prepared CNT based composites by using a poly(methyl methacrylate) (PMMA) 

matrix and polymer extrusion technique. The orientation distribution of nanotubes in 

the composite was determined by image analysis and found to be maximized in the 

extrusion flow direction. This result was similar to the result obtained by [42] using 

conventional fibers which were found to be closely aligned to the mold flow direction. 

Gao et al. [43] successfully developed an image analysis technique able to 

automatically and accurately analyze CNT/composite images. They used CNT/silicone 

composites with a filler loading of 15 wt% (dispersed in the silicon matrix by three roll 

mill) to validate the developed method and to correlate the obtained dispersion and 

orientation indices with composite processing conditions and CNT/composite electrical 

properties. By means of this technique, in a first step, CNTs with different dimensions 

and shapes are automatically identified and extracted from the SEM images; this is 

achieved by measuring the tube-shape characteristics with Hessian matrices for each 

pixel in the image. Thus, all the pixels from the same CNT are grouped into one 
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connected object and pixels from different CNTs are identified as different connected 

objects. On the basis of a statistics inference framework, in a second step, the spatial 

dispersion of the extracted CNTs is computed by taking the center of the mass of each 

CNT as the representative point of its spatial location. The orientational dispersion is 

consequently computed by fitting the pixel locations of each extracted CNT with a line 

section that is mathematically represented by a linear regression problem. In detail, the 

points in the jth CNT are denoted as [(xi,yi) : i=1,…,Nj]; then the slope kj and intercept 

bj is found for the jth CNT with the minimum fitting error Ej: 

  (     )  ∑(          )
 

  

   

 (5.6) 

Then, the angle j of this CNT is computed as: 

        (  ) (5.7) 

The computation of the orientation angle for each CNT of the system produces an array 

of angles i, i:1,…,M which can be used to construct the histogram of the distribution 

of the i’s, giving the ODF the CNT orientations. By applying this technique, the 

authors found a substantial increase in the orientation index when the number of roll 

milling cycles increased, suggesting the alignment of CNTs due the strong and 

consistent shear force from the roll milling.  

Physical-based methods used to measure orientation of CNTs in bulk polymers 

include [18]: neutron or X-ray scattering, light scattering and, recently, Raman 

spectroscopy. Neutron or X-ray scattering can be classified as a semi-quantitative 

method; in the case of perfect uniaxial orientation, the scattering due to nanotubes in 

the direction perpendicular to the orientation direction will be maximum, while that in 

the parallel direction will be zero over the angular range that can be probed. The 

resulting peak width has been used to characterize the relative orientation  [44] in  

PVA-nanotube fibers:  nanotube distributions were found to be significantly narrowed 

after nanocomposite drawing. Light scattering can also be used to measure nanotube 

orientation [18]; however, this technique can be limited due to the fact that individually 

dispersed carbon nanotubes as well as small bundles will not contribute to the signal 

perpendicular to the nanotube axis, because the wavelength of light is much larger than 

that of the diameter. Furthermore, anisotropy of the signal can be experienced due to 

nonhomogeneous variations in nanotube concentration on the micron scale. 
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The implementation of polarized Raman spectroscopy has been recently 

adopted as an effective and powerful quantitative tool to characterize the orientation of 

CNTs inclusions in polymer nanocomposites [18]. The common approach is to have 

the directions of the incoming and scattered polarized radiations parallel to one another 

(Figure 5.62). In nanotubes, all Raman-active vibrations can be assumed to be active 

only in the direction of the nanotube axis. This makes use of the fact that the observed 

Raman intensity depends on the angle between the nanotube axis and the electric field 

vector of the excitation beam [45]. This method has been recently adopted for ODF 

characterization. Wood et al. 2001 [46] observed that nanotubes can be aligned in a 

polymer matrix by flowing the polymer prior to curing, or by stretching the specimen 

in simple tension. They employed Raman spectroscopy to measure the degree of 

alignment of the tubes in the polymer for specimens cut both parallel and perpendicular 

to the flow direction finding them to be significantly different, as a function of 

mechanical strain. Blighe et al. [47] investigated the effect of CNT content and 

orientation on the mechanical properties of polyvinylalcohol (PVA) –nanotube 

composite fibers. The study was focused on the characterization of the orientational 

effects on Young’s modulus and strength of composites filled with rodlike fillers. 

 
Figure 5.62: Incident and scattered intensities on the SWNT and related angles in the 

polymer and laboratory frames [36]. 

Nanotube orientation parameter and the nanotube effective modulus were monitored 

through Raman spectroscopy. They showed that continuum theory applies at the near-
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molecular level that both the Herman’s orientation parameter and the nanotube 

effective modulus increased with drawing, indicating that significant nanotube 

alignment occurred during composite fiber drawing. Pérez et al. [36] proposed a 

numerical methodology in order to derive the orientation distribution function ODF for 

a uniaxial-axially symmetric system using polarized Raman spectroscopy. In this way, 

the experimental information from the Raman intensity measurements were used to 

quantify the alignment of single wall nanotubes SWNTs in a urethane 

dimethacrylate/1,6 - hexanediol dimethacrylate UDMA/HDDMA polymer matrix, 

where β is the angle defined in equation 5.4. The numerical methodology was 

formulated in terms of Legendre polynomials and the principle of maximum 

information entropy [48]. The resulting ODF is a function of Legendre polynomials 

  (    ) as follows: 
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Where the average of the Legendre polynomial is defined according to: 

〈  (    )〉  
∫   (    )

   

   
 ( )      

∫  ( )      
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Coefficients   (    ) are called order parameters and are determined experimentally. 

Only one or two order parameters may be determined experimentally depending on the 

adopted specific high resolution technique. One order parameter may be obtained from 

XRD or FTIR and two order parameters from polarized Raman spectroscopy. The 

same functions may be used to relate the scattered Raman intensity to the orientation of 

SWNTs in the polymer. The scattered Raman intensities in the polymer are functions 

of the poling direction angle and the averaged Legendre polynomials   (    ), where 

i=2, 4. This is the reason why polarized Raman spectroscopy gives two order 

parameters of the ODF. The Raman spectroscopy technique allows determination of 

the average values of the Legendre polynomials leading to the definition of the 

distribution of all possible orientations: 

 ( )       [ (    (    )      (    ))] (5.10) 
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Order parameter   (    ) is also known as the Herman’s orientation parameter. When 

the orientation is random the Herman’s orientation parameter is 0. The Herman’s 

orientation parameter is 1 when there is perfect orientation in a system where the 

alignment coincides with the angle 0°; finally, when the alignment is at an angle of 

90°, this value is equal to 0.5. Herman’s orientation parameter   (    ) is the first 

term in the ODF equation containing the fundamental information related to the 

orientation of inclusions in the polymer. Order parameter   (    ) contributes with 

additional information to the ODF in terms of alignment.  

5.2.3. CNT waviness 

Several experiments conducted on CNT-based composites revealed only 

modest improvements in the resulting composite strength and stiffness. In numerous 

cases, one reason could be attributed to the waviness and agglomeration effects which 

affect CNTs. In fact, many experimental observations have shown that CNTs exist in a 

curved and entangled state within a composite [49]; this is mainly attributed to their 

low bending stiffness (due to the small diameter of the tubes) and small elastic 

modulus in the radial direction. Since this kind of reinforcement morphology affects 

the stress transfer between the reinforcing CNTs and the matrix materials at the 

interface, it greatly influences the critical properties of nanocomposites, such as 

stiffness, toughness and strength. The effects of nanotube waviness on CNT polymer 

composite stiffness have been investigated by several authors [50]. Shao et al. [51] 

showed that the waviness can significantly reduce the stiffening effect of the CNTs. 

Different strategies have been adopted to model waviness of nanotubes in order to 

predict mechanical properties of CNT polymer composites. Yi et al. [52] and Berhan 

and Sastry [53] considered waviness in nanotubes approximating them with a 

sinusoidal shape whereas Li and Chou [54] simulated wavy nanotubes using polygons. 

By using a combined micromechanics approach and finite element simulation, Li et al. 

[55] found that the nanotube waviness tends to reduce the elastic modulus but increase 

the ultimate strain of a composite. Shi et al. [56] developed a micromechanics-based 

model where nanotubes were assumed to have a helical shape. In detail, they 

considered a curved CNT as a helical spring, with D being the spring diameter,   the 

spiral angle, and  the polar angle. The length L of the curved CNT is related to these 

parameters by: 

  
  

     
 (5.11) 
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Figure 5.63: The spring model of a curved CNT [56]. 

Within the model, the waviness of the CNT was governed by the spiral angle, . The 

Mori-Tanaka [57] method was employed to estimate the stiffening effect of curved 

CNTs. Some important results came out:  the waviness of CNTs does not influence the 

effective elastic moduli of composites reinforced with randomly oriented CNTs but 

when spatial and orientation distribution of CNTs in the matrix is nonuniform it was 

found that waviness may significantly reduce the stiffening effect of nanotubes.  

In [32] the carbon nanotube was modeled as a continuum hollow cylindrical 

shape elastic material with some curvature in its shape. It was observed that waviness 

significantly reduces the effective reinforcement of the nanocomposites; moreover, 

through a parametric analysis conducted through finite element simulations it was 

found that by increasing the values of waviness indices, tensile strength of 

nanocomposites decreased. The influence of CNT waviness on ductility and fracture 

toughness was examined at different length scales by [58]; in their work, fiber 

curvature was added into a shear lag model to analyze the bonded stage in single 

curved-fiber pull-out. They observed that fibers with more curvature and longer 

embedded lengths can help toughen the composites since need higher debonding 

initiation force. Moreover in cases of large curvature, the matrix radial displacement 

should not be ignored compared with its axial displacement. Based on conventional 

fiber pull-out models, Yazdchi and Salehi [59] developed an analytical model to 

investigate the effects of nanotube waviness on interfacial stress transfer characteristics 

of single-walled carbon nanotubes (SWCNTs)/polymer composites. The wavy CNT 

was modeled with a solid cross-section and nanotube waviness was modeled by 

prescribing a sinusoidal CNT shape, y, of the form: 
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where A, k and z are the sinusoidal amplitude, sinusoidal wavelength and fiber 

longitudinal direction, respectively (Figure 5.64). 

 

Figure 5.64: RVE for wavy CNT embedded in polymer matrix [59]. 

Their numerical results showed that the waviness of CNTs significantly influences the 

interfacial stress transfer characteristics of CNT/polymer composites which tend to 

reduce the stiffening effect of the CNTs. In addition, the maximum interfacial shear 

stress of a wavy CNT was higher than that of straight ones and increases with 

increasing the waviness. 

5.2.4. CNT-polymer interfacial shear stress (load transfer) 

The load transfer effectiveness at the interfaces between nanotube and polymer 

is one of the most contributing factors for achieving superior mechanical performance 

in CNT-based nanocomposites. Generally, strong interfacial bonding gives rise to 

enhancements of Young’s modulus and stiffness, while weak interfacial bonding may 

positively influence energy dissipation. Moreover, different filler and matrix pairs 

show different interfacial bonding. For example, the MWCNT-matrix stress transfer 

efficiency is estimated to be at least one order of magnitude larger than that of 

conventional fiber-based composites [60]. The factors affecting the interfacial adhesion 

between the nanotubes and the matrix are: dispersion, alignment, and surface 

treatment/functionalization of the nanotubes. For instance, Xu et al. [61] attributed the 
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excellent obtained mechanical properties of MWCNT/epoxy composites to the partial 

alignment of the MWNTs the matrix. Gojny et al. [62] reported that amine 

functionalization of MWNTs positively enhanced bonding with the epoxy matrix. 

Moreover, experimental measurements have reported that strong interaction between 

the nanotubes and polymer results in an increase of Young’s modulus and toughness 

[63]. On the other hand, some authors observed that weak interactions between the 

nanotubes and polymer led to scarce improvement of composite properties [64].  

Traditional methods for determining the interfacial shear strength between 

fiber and matrix systems may be problematic to apply for CNT-polymer measurements 

because of the extremely small dimensions of CNTs. Therefore, the number of 

experimental studies on the interfacial properties of CNT-dispersed polymer 

composites is limited. Barber et al. performed reproducible pullout experiments on 

individual MWCNT embedded in a polyethylene-butene polymer matrix using atomic 

force microscopy (AFM) [65, 66]. In that study, a MWNT was bonded on an AFM 

cantilever tip using amorphous carbon deposition and then embedded in molten 

polyethylene-butene. Results showed that the IFSS was in the range 10–90 MPa 

decreasing with CNT diameter. Cooper et al. detached individual SWNT bundles and 

MWNTs from an epoxy matrix using a scanning probe microscope [67]. The resulting 

IFSS values exhibited considerable scattering, as 35–380 MPa. Ding et al. [68] 

attempted to make in situ observations of single-CNT pulling out testing using a nano-

manipulation system installed in a scanning electron microscope (SEM). They 

observed that the outer layer surface of pulled-out MWNTs was surrounded with epoxy 

polymer. Therefore, they concluded that the IFSS must be strong. Tsuda et al. [69] 

pulled out an individual MWNT from the fracture surface of a MWNT-

dispersed/PEEK composite film using a nano-pullout testing system installed in an 

SEM. Tensile loading was measured using the elastic deformation of an AFM 

cantilever. In this test, the pullout length was controlled by making a through-thickness 

hole near the specimen edge. They reported that the IFSS of MWNT/PEEK composite 

was in the range of 3.5–7 MPa; in addition the IFSS of the specimen treated at 573 K 

under 1 MPa for 1 h increased to 6–14 MPa because of the recovery in interfacial 

bonding. 

Even though experimental measurement of interfacial shear properties is a 

direct method, some technical problems may arise: resolution of the pull-out process 

observations; distinguishing CNT pull-out versus breakage; and measurement of the 

initial CNT embedded length. The alternative to these experimental methods is to 

perform atomic-scale modeling through molecular dynamics simulation. This approach 
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represents a valid tool to be employed at the small length scale of carbon nanotube, 

able to characterize the mechanical and thermal properties of CNT-based composites. 

Molecular dynamics simulations have been widely used on different CNT/polymer 

materials, including functionalized CNT. Frankland et al. [70] investigated 

polyethylene matrix with (10, 10) SWNTs. The estimated shear strength ranged from 

0.7 MPa to 2.8 MPa for a crystalline matrix and amorphous matrix, respectively. Liao 

and Li [71] simulated SWNT and DWNT pullout from a polystyrene matrix; the 

resulting critical shear stress was 160 MPa, which is much higher than the data 

obtained for the polyethylene matrix above. This was attributed to the CNT-matrix 

binding energies of aromatic groups that are larger than those of polyethylene matrices. 

Wong et al. [72], obtained much higher IFSS (>100 MPa) for polystyrene and epoxy 

matrix systems as well. Moreover, Lordi and Yao [73] suggested that helical polymer 

conformations in which chains can wrap around nanotubes might enhance nonbonded 

nanotube-polymer interactions. Yang et al. [74] performed MD simulations on 

MWCNT/epoxy system (Figure 5.65) in order to investigate the influence of diameter 

and length of a MWNT and the boundary and loading conditions on its pullout 

behavior from the polymer matrix. Even though MD can provide accurate local results, 

the accuracy is highly dependent on several factors [75]: initial boundary conditions, 

molecular model and adopted force field. In addition, the computation time might be 

very long for simulation of large systems of atoms. In [69], a list of experimental and 

MD simulation results concerning the critical interfacial shear stress for different CNT 

based composite systems is provided. 

 
a) 

 
 

 

 

b) 

Figure 5.65: Detail of an MD model: a) cross-sectional view of the model, b) CNT pull-out 

from polymer matrix [74]. 
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5.3. On nanocomposite toughness 

 

CNT/polymer composites have the potential to exhibit enhanced properties 

compared with composites containing conventional fillers. Numerous experimental 

measurements indicated that the fracture toughness of composite materials containing 

small amounts of nanotubes, properly dispersed in a polymer matrix, can be 

considerably enhanced. In addition, due to their small size, nanotubes overcome the 

problem of large local stress concentrations which often lead to a decrease of fracture 

toughness when microscale fillers are added to conventional composites. The potential 

applications of nanocomposites with high energy absorption capability mainly regard 

lightweight materials, protective armor, damping control, structural crashworthiness.  

Concrete evidence of increased toughness of CNT composites includes some 

composite properties: interlaminar shear strength, fracture mechanics, energy release 

rate for different modes of delaminaition and impact test data [76]. Lubineau and 

Rahaman [77] performed a review of the current strategies for improving the 

degradation properties of laminated continuous-fiber/epoxy composites using carbon-

based nanoreinforcements. From the analysis of their collected data, it was 

demonstrated that small loads of nanotubes (in the range of 0.5 – 1.0 wt%) were able to 

increase interlaminar shear strength and energy release rate for the different 

macroscopic delamination modes up to a hundred percent. 

Even though there are several promising results in this field, some other 

authors found only slight improvements in CNT/polymer composite toughness 

properties. For instance, experiments performed by Gibson et al. [78] yielded no 

improvement in Mode I interlaminar fracture toughness of unidirectional carbon/epoxy 

laminates when MWNTs were sprinkled at ply interfaces during the layup process. 

Reclustering of the tubes during curing process was suggested to be the responsible of 

the unsatisfactory toughness performance. Results such that suggest that the 

toughening process at the nanoscale is rather complex since it involves a large number 

of variables, such as nanofiller dispersion, toughening mechanisms, CNT-matrix 

interfacial properties. For this reason, while for micro-reinforced composites the 

toughness mechanisms have been widely investigated for many years, for 

nanocomposites they are still an open issue mainly related to the nanoscopic 

dimensions.  

The fracture toughness of a nanocomposite (but in general in a solid) is related 

to the amount of energy that needs to be spent to propagate a crack in the structure. 
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Different toughness mechanisms have been proposed to explain the increase of both 

stiffness and fracture toughness of nano-filler/polymer composites. Generally, these 

mechanisms depend on nanofiller shape, i.e. spherical, cylindrical or platelet shape. 

Table 5.1 reports the main toughening mechanisms for different type and size of 

nanofillers [79]: 

Table 5.6: Comparison of toughness mechanisms of micro- and nano-reinforced polymer 

matrix composites [79]. 

 Particle Fiber or tube Patelet 

 Micro 

(rigid) 

Micro 

(rubber) 

Nano 

(powder) 

Micro 

(fibers) 

Nanotube 

or fibers 

Micro 

platelet 

Nano-

clay 

Crack 

pinning 
Yes Yes Yes Yes Yes  No 

Crack 

deflection 
Yes Yes Yes Yes Yes Yes Yes 

Debonding 

or pullout 
Yes Yes Yes Yes Yes  No 

Matrix 

deformation 

or void 

nucleation 

Yes Yes Yes Yes Yes Yes No 

Fracture of 

fiber 
 Yes  Yes Yes  No 

Bridging Yes Yes  Yes Yes  Yes 

Microcracks Yes Yes Yes Yes Yes  Yes 

Shear 

banding 
 Yes      

It can be observed that crack deflection, microcracks and matrix deformation or void 

nucleation may appear in all kinds of micro-scale or nano-scale filler-reinforced 

composites. Nanotube or nanofibers are potentially involved in all kinds of 

mechanisms; among these, bridging with local debonding occurs only when the tensile 

load is parallel to the axis of the CNTs (i.e., the crack path is perpendicular to the 

CNT). CNT bringing is mainly related to the remarkable nanotube extension 

capability, which generally is unimportant in traditional brittle fiber based composites. 

After CNT debonding from the matrix, classical pull-out mechanism is believed to be 

one of the most important sources of toughening in CNT polymer composites. Figure 
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5.66 illustrates a schematic representation of possible toughening mechanisms which 

are active for CNTs, whereas Figure 5.67 reports concrete experimental evidence of this 

behavior.  

 
a)                     b)                    c)                        d)                      e) 

Figure 5.66: Schematic description of possible fracture mechanisms of CNTs [80]: (a) 

initial state of the CNT; (b) CNT pull-out due to CNT/matrix; (c) rupture of CNT ; (d) 

sword in sheath mechanism, i.e. fracture of the outer CNT layer and pull-out of the inner 

tube; (e) bridging and partial debonding of the interface. 

 

  
Figure 5.67: TEM micrographs of MWCNTs bridging a matrix crack; the inset highlights 

MWCNT pullout from the matrix [81]. 

Assuming that classical mechanics is valid at the nanoscale, the efficiency of 

the energy dissipation of nano sized fillers, such as nanotubes, can be evaluated if 

compared with microsized fibers for which filler pullout and filler fracture mechanisms 

are considered to be active. According to [76], a fair approach, to prove the CNT 

pullout energy dissipation capability, would consists in comparing the pull-out energy 

dissipated by a single microfiber of a given volume Vmf  and critical length Lcmf with the 

CNT pulled out from the 
surrounding matrix 
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pull-out energy dissipated by a certain number nCNTs of nanotubes having their own 

critical length LcCNT, volume of a single tube equal to VCNT and a total volume 

equivalent to that of the microfiber, Vmf ; for both cases, the microfiber/nanotubes are 

perfectly aligned with the perpendicular direction to the crack plane (Figure 5.68) 

because for a fiber-based composite, the condition of maximum toughness (due to 

pullout) is achieved when fibers lie perpendicular to the plane of the crack. It can be 

observed that the total surface area of nanotubes is much larger than the area of the 

fiber having micrometer size. Other assumptions are: matrix material is rigid plastic, 

the micro-fiber or nanotube material behavior is linear elastic, all stress transfer from 

matrix to micro-fiber or nanotube occurs only by interfacial shear around the periphery 

of the fiber/tube when fiber/tube bonds with the matrix, the micro-fiber/matrix 

interfacial shear strength mf and the nanotube/matrix interfacial shear strength, CNT  are 

constant values. The length of both types of filler has been chosen as the critical length 

since composite toughness is known to be maximized when the fiber length is equal to 

the critical length which separates the fibre pullout from the fiber fracture regime. In 

fact, within the cited assumptions, the micro fiber/nanotube fails under tension when a 

critical length condition is achieved [82]: 

     
      

   
   and         

        

    
 

 
(5.13) 

where rmf and rCNT are the fiber and nanotube radius, respectively and mf and CNT are 

the tensile strength of the microfiber and nanotube, respectively. Then, the upper limit 

for the pullout energy can be achieved by assuming that the volume of all CNTs is 

rearranged in the form of parallel tubes undergoing pull-out, as shown in Figure 5.68. 

 

 

Micro-
Fiber 

a) 

CNTs 

b) 

Micro-fiber 

a) 



Chapter V – Fracture toughness of multiscale carbon nanotube reinforced composites 

152 
 

Figure 5.68: Schematic representation of a crack propagating in a composite: through a 

micro-fiber a) and a certain number of CNTs b) having total volume equivalent to the 

volume of the microfiber. 

The required number of nanotubes having the same total volume Vmf in the same matrix 

is then: 

        
   

    
 

   
     

    
      

 

 

(5.14) 

The fiber length pulled out at fracture plane varies between 0 and Lc/2, as depicted in 

Figure 5.69. Being rf and f the radius and the interfacial shear strength of a generic 

fiber, respectively, the average pullout energy (at fracture), Gpf, per fiber is then [76]:  

 

 

 

 

 

 

 
Figure 5.69: Schematic illustration of a single fiber pullout. 

     
 

  
       

   

 

(5.15) 

which corresponds to the work done in separating the specimen into two halves [82]. 

The ratio of the total pull-out energy for a set of nCNTs nanotubes to the corresponding 

pullout energy for a single micro-fiber having the same volume Vmf is obtained using 

equation 5.14: 

  
           

    
 

                  
 

          
  

    

   
 (5.16) 

wheremf and CNT are the tensile strength of the microfiber and nanotube, 

respectively. Wichmann et al. [76] reported that the ratio CNT /mf is generally equal to 

Lc/2 

rf 

f f 
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4–100 for typical CNTs and carbon micro-fibers (Carbon fibers have strengths of the 

order of 1–7 GPa, whereas CNTs have experimental strengths of the order of 30–100 

GPa). Therefore, the energy absorption resulting from the pull-out mechanism for 

nanotubes is potentially much higher than that of conventional microfibers having an 

equivalent total volume.  

A similar analysis can be conducted to compare the energies for breakage of a 

microfiber and a set of nCNTs nanotubes having the same total volume, as assumed 

previously. The fracture energy of a generic fiber Gff with linear elastic properties is 

[79]: 

    
   

   
   

   
 (5.17) 

where Ef is the tensile modulus of the generic fiber. Then, the ratio of the fracture 

energy for a set of nCNTs nanotubes to the corresponding fracture energy Gfmf for a 

single microfiber having the same total volume is: 
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(5.18) 

where GfCNT, Gfmf and ECNT, Emf are the maximum fracture energy and the tensile 

modulus of a single nanotube/single micro fiber, respectively. In [79], the numerical 

value of this ratio is estimated to be at least 1000 for typical CNTs and carbon-fibers. 

This analysis suggests that the potential energy absorption in both fiber pull-

out and fiber fracture is expected to be much greater for a set of nanotubes than for a 

corresponding micro-fiber having an equivalent volume. However, this straightforward 

model provides an ideal quantification as well as an upper limit for CNT energy 

dissipation since a great number of limiting factors may significantly reduce the 

toughening capability of CNTs. For instance, the possibility of CNT agglomeration 

reduces this potentiality due to the decrease of available interface area between matrix 

and CNT; the orientation of tubes with respect the loading direction usually is rather 

than perpendicular to the crack tip and not uniform within the whole composite and 

along the length of the CNT; moreover, the high level of stress around nanotubes may 

cause matrix failure, increasing the absorbed energy contribution from micro cracking. 

There is also another important issue related to the characterization of the effect of 
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CNT aspect-ratio on energy absorption because of the difficulty in accurately control 

this ratio in the experiments. All these factors may contribute to the limited success and 

the wide range of experimentally observed results. This circumstances request a better 

understanding of the deformation mechanisms and CNT variables governing 

nanocomposite fracture in order to optimize the design of the nanocomposite 

microstructure (nanotube–polymer interface, nanotube volume fraction, etc.) for 

enhanced toughness. 

5.3.1.  CNT fracture toughness modeling 

Although MD simulations appear very suitable to describe interactions at 

CNT-matrix atomic level, they are sometimes limited by length and time scales when 

larger systems have to be analyzed, requiring very long simulation time. These 

limitations often make continuum micromechanics approaches more effective for 

analyses at length scales in the micron range. For this reason, in numerous past studies, 

CNT toughening mechanisms have been first identified and then modeled according to 

micromechanical approaches that were generally used for micro-fiber based 

composites. Particular emphasis has been given to the analytical shear leg model 

originally proposes by Cox [83], which was aimed at estimating of the stresses in the 

fiber transferred from the matrix through the interface; or to the modeling of single 

straight fiber pullout on the basis of the approach proposed by Kelly [82]. These 

micromechanical models may represent a valid starting point for understanding and 

modeling nanocomposites toughness.  

As mentioned in previous sections, at micromechanical level the fracture 

energy of CNT polymer composites is related to the energy dissipated by different 

toughening mechanisms: crack pinning, crack deflection, debonding or pullout, matrix 

deformation or void nucleation, CNT fracture, bridging, microcracks. Nevertheless, 

these mechanisms are influenced by several parameters, such as, volume fraction of 

CNTs, CNT size and shape, interfacial bonding, CNT orientation and are often difficult 

to distinguish. In addition, it is not necessary for all these contributions to act 

simultaneously for a certain nanocomposite system; in fact, in some cases, one of these 

toughness contributions may dominate the total fracture toughness of CNTs reinforced 

composites. It has been also proved that the most important toughness mechanism in 

CNT polymer composites are represented by nanotube pullout and nanotube fracture.  

As well as in conventional fiber pullout mechanism, there are three main stages 
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characterizing nanotube pullout. The first stage is called the bonded stage, in which the 

nanotube and the matrix are well bonded. As the pull-out force reaches a certain 

threshold value, the debonding stage begins. During this stage, part of the nanotube 

moves along the debonded interface resisted by a friction force, while the rest of the 

nanotube remains well bonded to the matrix. Nanotube sliding from the matrix occurs 

when debonding extends to the entire interface. In this final stage, the entire nanotube 

slides through the matrix resisted by frictional forces. The proper modeling of this 

mechanism is a fundamental concern since it is used to determine the effective traction 

law for the CNT bridging stress as well as the steady state bridging toughness 

increment. 

Different models have been proposed to describe the pullout behavior of 

CNTs, mainly based on continuum mechanics (including shear leg approach and J-

integral computation) with the final aim of predicting toughness enhancement of both 

CNT polymer composites and laminate composites. 

Gao and Li [84] developed a shear lag model for CNT/polymer composites by 

modeling a capped nanotube as an effective fiber based on molecular structure 

mechanics. The ‘free ends’ boundary conditions, reported in the original Cox [83] 

model, were modified to account for a fully embedded nanotube. They found that the 

large aspect ratio of nanotubes is responsible for an increase of interfacial stress 

transfer, improving the reinforcing effects of nanotubes. Tong et al. [85] developed two 

continuum-mechanics-based mechanistic models to characterize the pull-out behavior 

of a long MWCNTs from its surrounding matrix. Both models were employed to 

describe the bridging tractions provided by MWCNTs perpendicularly embedded in the 

matrix between the two adjacent layers of a laminated composite in a double cantilever 

beam (DCB) test specimen. In detail, one model was proposed to reproduce the 

mechanism of debonding and its propagation along the MWCNT–matrix interface due 

to weak interfacial shear strength; the simplified pull-out force, FMWCNT, and 

displacement,  relationship was assumed as in equation (5.19),  where Fd is the 

constant applied pull-out force for the whole debonding propagation process, d is the 

maximum pull-out displacement at the onset of a MWCNT fully debonded from its 

surrounding matrix, f is the friction shear stress between the MWCNT and the matrix, 

dc and l are the MWCNT diameter and length, respectively. 
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Figure 5.70: Relationship between the pull-out force and pull-out displacement for a 

MWCNT being pulled out from its surrounding matrix [85].  

The other model took into account the sword-in-sheath mechanism after the breakage 

of the outermost layer in a MWCNT. The pull-out force for the case of the inner layer 

of MWCNTs being pulled out from the outermost nanotube after the outermost layer 

breaks, was assumed as follow: 
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Figure 5.71: Pull-out force and displacement curve MWCNT sword in sheath mechanism 

[85]. 

where fW is the frictional stress between the outermost CNT of the MWCNT and the 

rest of the inner layers,          (   ),   ̅is chosen as l for approximation and s 

is the displacement limit for complete sliding between tubes. These relationships were 

applied to quantify the retard to the delamination crack propagation and the consequent 

enhanced delamination toughness. Their numerical results showed that an increase in 

the MWCNTs density, length, and interfacial shear stress as well as maximum pull–out 

displacement of MWCNTs, could lead to a higher mode I delamination toughness of 

composite laminates.  
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Blanco et al. [86] presented an analytical model for the Mode I interlaminar 

fracture of laminated composites reinforced with aligned carbon nanotubes (CNTs). 

The model was based on the crack-closure technique for fiber bridging, where the 

toughening mechanisms of the aligned CNTs were either pullout (frictional sliding) 

from the matrix or sword-in-sheath sliding. Particularly, to capture bridging due to 

pullout, the Dugdale model (a homogenized bridging zone law of continuously 

distributed nonlinear springs) was used, resulting in a linear and softening form of the 

bridging stress p(x) on the crack face as reported in equation 5.21, where c is the 

interfacial shear stress of the CNT being pulled out from the matrix,  r and LCNT are the 

radius and the length of the CNTs, respectively,  CNT is the volume fraction of the 

CNTs and u(x) is the crack opening of the bridged zone.   
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Figure 5.72: Linear bridging law for pullout of CNTs [86].:  

Concerning the sword-in-sheath mechanism, the mathematical formulation of the 

bridging stress p(x) law was expressed as:  
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Figure 5.73: Mathematical illustration of equations 5.21 and 5.22 (MWCNT pullout and 

sword in sheath mechanism) [86]. 

where in,out is the interfacial shear strength between the outer and the inner CNT and 1 

and 2 are taken from characteristic experimental values. By using these laws, Blanco 

et al. [86] obtained the normalized expression for the delamination resistance 

improvement in the steady-state regime, i.e. with  ( )   ̃        : 
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Then, the balance of energy when the crack propagates was expressed to the 

application of J integral introducing the previous bridging stress models. The authors 

demonstrated that fiber aspect ratio is critical in the bridging process, with longer 

stitching fibers allowing a better bridging of the crack. In addition, even though the 

pullout mechanism dissipates more energy than the sword-in-sheath mechanism, CNT 

fracture is a limiting factor on toughness enhancement when reducing fiber diameter. 

Chen et al. [87] proposed a CNT toughening model based on three levels of 

failure analysis: atomistic, meso and macroscale level. An atomistic-level failure model 

was used for characterizing CNT/matrix interfacial bond breaking whereas a 

mesoscopic-level model, based on shear leg theory, was adopted to study CNT-fiber 

failure and obtain the force–displacement relation of equivalent nonlinear springs; 

finally a macroscopic-level model, based on fracture mechanics, was used to express 

equivalent bridging nonlinear springs. The results of the study suggested that both 

longer CNTs and strong CNT/matrix interface do not definitely confer better fracture 

toughness on composites because the failure mode is converted from CNT pull-out to 

CNT breakage. The cited models were developed considering a unique (average) value 

for CNT length and fixed CNT orientation (i.e. aligned with respect to the loading 

direction).  

However, in actual CNT reinforced composites, CNTs are rather misaligned within 

the matrix, following an orientation distribution. In this condition, the crack surfaces 

are bridged by inclined CNTs which are pulled out at various angles. Hence, CNT 

pullout models which include these characteristics are desirable in order to correctly 

predict the mechanical properties CNT reinforced composite systems. Grimmer et al. 

[88] considered CNT orientation in their model; in particular, they developed an 

energy-based model (based on previous work in fracture of ceramic composites) to 

evaluate the expected losses due to CNT pull-out and CNT fracture with regard to the 

delamination fatigue resistance in carbon nanotube reinforced glass fiber/polymer 

composites. The CNT orientation was taken into account by considering a random 

distribution of CNTs within the matrix system. Mirjalili and Hubert [89] modeled 

CNTs bridging effect on the toughening of polymers by taking into account the 

orientation of CNTs with respect to the crack front and the nanotube rupture 
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contribution to the CNT bridging energy computation. Particularly, the fracture 

toughness of polymers was modeled considering two dominant toughening 

mechanisms acting within CNT-modified polymers, i.e. CNT pull-out and CNT 

rupture. The contributions to the bridging stress were calculated using the definition of 

the J-integral and taking into account the effect of aligned (with respect to the crack 

growth plane) and randomly oriented CNTs on the fracture toughness of CNT/polymer 

composites. This model is described next for comparison purposes that will be 

addressed in the subsequent paragraphs. The following assumptions have been made 

by Mirjalili and Hubert: 

- CNTs are straight with cylindrical geometry; 

- CNTs are assumed inextensible and sufficiently strong to enable complete 

pullout without rupture up to a critical length value; 

- CNT length is given as a unique value as an average length (rather than a 

length distribution); 

- CNT-matrix bond is assumed to be frictional and the interfacial shear stress 

between the nanotube and the polymer is assumed constant; 

- the pullout energy contribution is computed for CNT lengths less than a critical 

length value; 

- the value of Jrupture (J integral) representing the contribution of broken CNTs is 

computed as the area under the stress vs. displacement curve for rupturing a 

CNT. For this purpose a linear stress–strain curve for the CNTs is assumed. 

Within these assumptions, the total contribution of aligned CNTs to the bridging 

energy is: 
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(5.24) 

 

(5.25) 

where: 

-           is the CNT pullout energy contribution;  

-         is the energy associated with CNT failure; 

-      is the CNT volume fraction; 

-   is CNT radius; 

-      is the average CNT length; 
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-   is the (constant) interfacial shear stress between the nanotube and the 

polymer; 

-    is the nanotube ultimate strength; 

-      is the CNT elongation before failure; 

-    is the CNT critical length which represents the limit for CNT pullout and is 

defined in equation 5.13. 

The J contribution in case of      is derived assuming that CNTs are fully dispersed; 

this implies that only   
  

    
  portion of the CNTs will be pulled-out, and the rest of 

the CNTs,   (  
  

    
), will fracture. It should be noted that according to the value of 

   for CNTs, the pull-out portion of the nanotubes can be very small. The bridging 

effect of randomly oriented CNTs is then estimated assuming that CNTs have uniform 

orientation distribution. The contribution of randomly oriented CNTs is estimated 

through    ( ), which represents the energy contribution of a CNT bridging a crack 

with an angle  , and is expressed by means of a known orientation distribution 

function  ( ). The equation is then simplified assuming a critical angle,   , which 

divides the bridging contribution of randomly oriented nanotubes into those that do not 

contribute.  From a mathematical point of view,    represents the angle for which the 

area underneath the curve ( )       (           ) , over 0-90°, is equal to the 

area of the hatched rectangle over   -90°. The corresponding computed critical angle is 

      . Thus, the CNT bridging effect for randomly oriented CNTs in a 3D space 

can be found by multiplying the J expressions (equations 5.24 and 5.25) by the 

probability of having CNTs oriented between 50° and 90°. This probability is the area 

of a spherical cap having a height of LCNT/2 * (1-sin 50), divided by the area of a half 

sphere with diameter LCNT; the computed value corresponds to 0.23. This means that 

only 23% of randomly oriented CNTs will contribute to the bridging process. Finally, 

the CNT bridging effect for randomly oriented CNTs in a 3D space can be written by 

multiplying J expressions by 23%: 
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From the description of these pullout models, it can be observed that even 

though CNT effective length has been demonstrated to be highly variable within a 

polymer composite system  (see section 5.2.1), generally only an average length is used 

to describe the nanotube characteristic length. Moreover, CNT orientation is often 

handled considering CNT random distribution. The lack of this information (i.e. length 

and orientation distribution) may lead to poor effectiveness of theoretical modeling and 

final product performance analysis. In fact, it is well known that the final mechanical 

properties of CNT reinforced composites, such as tensile strength, elastic modulus, and 

fracture toughness, are strongly dependent on the whole nanotube length distribution 

rather than an average length and/or angle. An example of micromechanical model 

accounting for both CNT length and orientation distribution, can be found in [27] in 

case of prediction of CNT composite strength. In that study, CNT length after 

processing of composites was measured and then characterized using a two-parameter 

Weibull distribution function. The CNT strength was evaluated by means of the CNT 

reinforcing efficiency factor (λ) for the composite strength, which was estimated from 

the information about CNT length distribution and critical CNT length for randomly 

distributed CNT reinforced polymer composites. Recently, Chowdury et al. [90] 

developed a nano-mechanical model to calculate the tensile modulus and the tensile 

strength of randomly oriented short CNT reinforced nanocomposites considering the 

statistical variations of diameter and length of the CNTs. According to this model, the 

entire composite was assumed to be composed of a certain number of composite 

segments which contain CNTs of almost the same diameter and length. The tensile 

modulus and tensile strength of the composite were then calculated by the weighted 

sum of the corresponding modulus and strength of each composite segment. 

The last two aforementioned examples, consider both CNT length and 

orientation statistical variability (Fu work, [27]) and CNT length and diameter 

statistical variability (Chowdury [90] work) to predict CNT composite tensile elastic 

modulus and strength. As matter of fact, no analytical model, which includes statistical 

variability for both CNT length and orientation, has been proposed to predict fracture 

toughness of CNT based composites. The micromechanical model presented in the 

following section is based on these assumptions, i.e. CNT length and orientation 

variability, and is used to predict interlaminar mode I fracture toughness of nanofilled 

S2-glass fiber/epoxy laminated composites. 
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5.4. Current CNT pullout model 

In this section, a micromechanical-based model is presented in order to model 

interlaminar mode I fracture toughness of S2-glass fiber/epoxy laminated composites, 

modified using nanofillers (Carbon NanoTubes, CNTs, and Carbon NanoFibers, 

CNFs) with/without surface functional groups and with different ranges of aspect ratio 

[91]. 

The present model was originally developed by Jain et al. [92] (in turn derived 

by the work on fiber pullout mechanics provided by Li et al. [93]) and successively 

formulated, in a more general form, by Fu and Lauke [94]; both models have been 

successfully used for quantifying the fracture energy of short fiber-brittle matrix 

composites due to pullout. In particular, Fu and Lauke model is suitable for evaluating 

the fiber pull-out energy (but no fracture energy of broken fibers) of short fiber 

composites and takes into account fiber length variability as well as fiber orientation 

variability. The main scope of using Fu and Lauke model is firstly to implement, for 

CNT based composites, a formulation that includes both length and orientation 

distribution to predict interlaminar mode I fracture toughness of nanofilled S2-glass 

fiber/epoxy laminated composites. Moreover, further issues will be addressed by 

comparing Fu and Lauke model with a formulation suitably developed for CNT based 

composites  (rather than short fibers), for quantifying the enhancement of fracture 

toughness in CNT-modified polymers i.e. the Mirjalili model [89], illustrated in 

Section 5.3.1. 

In detail, Fu and Lauke [94] is used to determine the steady state bridging 

toughness increment when CNTs are added into a matrix interlayer between two 

adjacent glass fiber reinforced composite plies. The nanofilled interlayer is the region 

encompassing the CNTs and excluding the glass fibers, denoted with thickness Tmax, as 

reported in Figure 5.74b.  

 

a) 

 

b) 

Figure 5.74: Schematic representation of CNF/CNT filled epoxy resin interlayer placed at 

the midplane of the composite laminate (highlighted in red); a) S2-glass fiber/epoxy 

laminated composite, b) focus on the nanofilled epoxy interlayer placed at the midplane of 

the laminate.  

Tmax 

S2-glass fiber/epoxy composite ply 

CNFs/CNTs 
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Consider a double cantilever beam  (DCB) specimen with the CNTs of the 

matrix interlayer bridging the crack opening in a Mode I interlaminar shear test. The 

CNT orientation is assumed to be variable within the interlayer. Figure 5.75a depicts a 

schematic representation of the problem whereas Figure 5.75b illustrates the bridging 

action of CNTs/CNFs within the resin interlayer while crack propagates at the 

midplane of the laminate.  

In terms of Mode I interlaminar fracture energy as a function of crack opening, 

some characteristic stages can be identified during a Mode I test involving CNT 

reinforced composite laminates (which are assumed to be homogeneous orthotropic). 

The first energy limit that is reached, G0 (initial toughness), is due to fracture of neat 

resin; this energy contribution is assumed, as hypothesis, unchanged when the 

nanoreinforced layer is produced; afterwards, interlaminar fracture energy increases as 

crack opening proceeds as a consequence of bridging crack closure exerted by CNTs in 

the interlayer. In fact, for stable extension of the crack, the crack opening force must 

equal the resistance to crack propagation. The resistance to crack extension is the non-

recoverable work done per unit area in propagating the crack. This condition can be 

expressed through the balance of energy when crack propagates along the middle plane 

of the interlaminar matrix layer by the application of J-integral [86, 95]: 

  (  )      ∫  ( )
 ̃

 

   (5.28) 

where GR is the propagation fracture toughness as a function of crack growth, 

a,  ̃ is the crack opening at the mouth of the bridged zone (x=a) and P(x) is closure 

traction stress due to the action of the CNTs; this action is provided by the CNT 

toughening mechanisms described in Section 5.3. However, it is not necessary for all 

these mechanisms to act simultaneously for a given nanocomposite system, and in 

some of them, one of these toughness contributions may dominate the total fracture 

toughness of CNTs reinforced composites. Within the present model, the bridging 

traction P(x) is assumed to be due to simple CNT pullout from the matrix. For the 

steady state crack growth condition, the upper limit of the integral is known, i.e.  ̃  
    

 
, and the increase in fracture toughness due to bridging of CNTs, Gb, can be 

computed. Once the bridging traction stress P(x) acting on an infinitesimal element 

bxdx at a distance x from the crack tip is made explicit, a possible method to compute 

Gb is by finding the area under the effective crack opening-traction curve.  
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a)  

 

 

b) 

Figure 5.75: Illustration of the CNT-bridged Mode I IFT specimen, a); focus on the 

CNF/CNT bridging action during crack propagation, b).  
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An alternative method to compute the nanocomposite steady-state fracture energy 

increment from bridging of CNTs is by using the energy absorbed by the pullout of a 

single CNT and then integrating to incorporate contributions from all the CNTs 

bridging the crack [92]. Following the second method, Fu and Lauke [94] derived the 

expression for the nanocomposite steady-state fracture energy increment due to fiber 

pullout (we will assume CNT instead of a generic fiber). The computation has been 

conducted considering arbitrary CNT orientation and variable CNT length. The 

assumptions made within the model can be summarized as follows: 

- A mode I delamination crack propagates along the middle plane of the 

interlaminar matrix layer containing the CNTs, i.e. the load direction is normal 

to the face of the crack as in Figure 5.76; 

- Matrix crack is planar and CNTs will bridge this matrix crack; 

- CNTs are straight with cylindrical geometry; 

- CNTs are assumed inextensible and sufficiently strong to enable complete 

pullout without rupture up to a critical length value of the fiber; 

- the CNT embedded length may vary due both a length distribution and to the 

different orientation of the CNTs with respect to the loading direction; 

- CNT-matrix bond is assumed to be frictional and the elastic bond is neglected; 

- there will be a bridging traction only if the crack opening is less than the value 

of LCNT/2; 

- issues related to bundles of multiple CNTs are not addressed; 

- the effect of snubbing friction between CNTs and matrix at the CNT exit point 

during CNT pull-out is taken into account; 

- fracture stress of CNTs obliquely crossing the fracture plane (i.e. the 

equivalent case of inclined strength of micro-fibers) is considered; 

- the energy required for CNT breakage is not quantified. 

A schematic view of CNT pullout within the interlayer is reported in Figure 5.76a 

whereas the scheme of the CNT pullout problem is shown in Figure 5.76b where   is 

the slippage distance of the embedded end of the CNT, l is the CNT embedded length, 

 is the crack opening displacement and  is the CNT inclination angle with respect to 

the load direction, P.  

When the CNT is embedded between the two halves of the crack, only the 

shorter embedded length, l, undergoes pull out while the longer segment length (LCNT  -

 l) will not pull out. This implies that the CNT bridging action due to pullout will be 

active only if crack opening is less than the value of LCNT/2. 
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a) 

 

 

b) 

Figure 5.76: Scheme of CNT pullout problem: a) pullout of different CNTs within the 

resin interlayer; b) CNT pullout schematization where l is the CNT embedded length,  is 

the crack opening displacement and  is the CNT inclination angle with respect to the load 

direction, P. 

Moreover, the embedded length varies due to the CNT orientation (with 

respect to the loading direction) and to the position of the center of mass of each tube 

through the thickness of the interlayer. As previously mentioned, the model treats 

CNTs by taking into account the statistical variation of CNT lengths and orientation. 

CNT length distribution and the CNT orientation distribution are assumed to be 

independent. Concerning CNT length distribution  ( ) is the length probability density 

function, defined as: 

 (    )        
          

 
 (5.28) 

that is another form of a two parameter Weibull distribution, with     size and shape 

parameters, respectively (as reported in equation 5.2). From this distribution, the mean 

CNT length and the most probable length (mode length) are, respectively: 
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(5.30) 

where is the gamma function. In Section 5.2.1 this distribution was demonstrated to 

be suitable for describing CNT length sample data. The CNT orientation distribution is 

then described by means of the probability density function,  ( ), defined as [94]: 

CNTs 
Pullout 

Tmax 

S2-glass fiber/epoxy composite ply 

S2-glass fiber/epoxy composite ply 
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[    ]    [    ]    

∫ ([    ]    [    ]    )  
    

    

 (5.31) 

where min≤≤max and p and q are the shape parameters which can be used to 

determine the shape of the distribution curve, and p≥1/2 and q≥1/2. Figure 5.77 reports 

different CNT orientation distribution curves for different values of p and q. The mean 

CNT orientation and the most probable CNT orientation angle can be expressed in the 

following form, respectively: 

 ̅  ∫  
    

    

 ( )   (5.32) 
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(5.33) 

 

 
Figure 5.77: PDF for CNT orientation distribution: equation 5.31 reported for different 

scale and shape parameters. 

If Vf is the volume fraction of CNTs, the CNT length distribution allows 

determination of the average (total) number of CNTs within the matrix interlayer 

specimen. However, this number has to be modified in order to account for the 

probability for a CNT (with shorter embedded length between l and dl and an angle 

from  to  +d) to cross the crack plane. To compute this probability, a uniform 

distribution of CNT center of gravity along the specimen thickness direction is 

assumed.  Within these assumptions, the CNT pull-out energy is derived in a general 
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form as a function of CNT length distribution and CNT orientation distribution, as well 

as interfacial properties. Particularly, according to the Fu and Lauke model [94], the 

following expression can be used to evaluate the CNT pull-out energy: 
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(5.34) 

where: 

-   
  

 is nanocomposite steady-state fracture energy increment due to CNT 

pullout and computed by taking into account CNT length distribution and CNT 

orientation distribution; 

-      is the CNT volume fraction compared to the matrix in the interlayer 

region; 

-      is CNT diameter (assumed as a unique value rather than on a statistical 

base); 

-  ̅    is the mean CNT length; 

-          are constants determined empirically that characterize the interfacial 

friction shear stress providing the relationship between pull-out load and crack-opening 

displacement.  In detail, the interfacial frictional shear stress CNT, is assumed to have 

the following form [93]: 

    ( )            
  (5.35) 

with   being the slippage distance of the embedded end of the CNT. Within the 

assumption of inextensibility of the tube representing the CNT, the slippage distance 

corresponds to the crack opening displacement, thus: 

    ( )            
  (5.36) 

 

This expression accounts for a possible slip hardening-softening behavior at the CNT-

matrix interface. In case of constant interfacial shear stress,     ( )   ̅   . 

Moreover, it is possible to account for an additional “snubbing” frictional stress 

supplied to misaligned fibers as the exit from the matrix, according to a snubbing 

coefficient, as proposed by [93]. Hence, the pullout can be written as:  
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 (     )      ( )     (   )              

 

 (     )                                                           

(5.37) 

 

 

where   is the snubbing friction between fibers and matrix at the fiber exit point;  

-           are the lower and upper limit of the integration over the angles 

which contribute to pullout energy; 

-     
        

    are the lower and upper limit of the CNT length distribution, 

respectively; 

-     is the critical CNT length for an oblique CNT pulled out at an angle,  , 

with the loading direction. In the case         the fiber will break instead of being 

pulled out.     can be expressed as:  

    
        

  ̅      
 

 

(5.38) 

where      is the fracture stress of oblique CNT equivalent to the so-called fiber 

inclined strength for short fiber composites. For brittle fibers the fracture stress of 

oblique fibers is given by: 

        (       ) 

 (5.39) 

where     is the tensile strength of fibers which align in the loading direction,    the 

interfacial shear stress and A is a constant determining the fiber inclined strength. If    

is the critical transfer length of aligned fibers, therefore     can be rewritten as: 

      

(       )

   
 

 

(5.40) 

-      is the limit of fiber orientation angle defined by         

           (   ) 
 (5.41) 

When the inclined fiber strength effect is neglected, i.e. A=0, then the equation is 

reduced to the sum of three contributions (not reported here, see [94]). When the 

interfacial shear stress is assumed as a constant value  ̅    (i.e. not depending on the 

crack opening displacement with a1=a2=0) equation 5.34 reduces to: 
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(5.42) 

For aligned CNTs (i.e. =0) having a unique value of length LCNT<Lc (i.e. the 

hypotheses of CNT length and orientation statistical variations are removed), all CNTs 

undergo pullout; in this condition, for A==0, the steady state pullout energy reduces 

to: 

  
  

 
     ̅       

 

     
 

 

(5.43) 

This result corresponds to the pullout energy term Jpullout of equation 5.24 reported by 

Mirjalili and Jain [89, 92] within the same assumptions, including the variation of the 

embedded length along the interlayer thickness. If we do not assume a statistical 

variation of the CNT center of gravity along the direction of thickness interlayer, then 

the energy due to pullout becomes: 
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(5.44) 

i.e. six times higher than the previous case (equation 5.43). This expression 

corresponds to the pullout energy term computed by Blanco et [86] (reported in 

equation 5.23) and is derived considering the hypothesis of having all CNTs bridging 

the crack plane. Therefore, the aspect related to the CNT center of gravity position 

along the thickness of the nanoreinforced layer appears very important since it affects 

the final value of pullout energy. 

5.4.1. Experimental validation 

The model presented in the previous section, has been implemented on the 

basis of the experimental data available from [91, 96] for validation purposes. This 

experimental campaign adopted, as baseline material, S2-glass fiber/epoxy laminated 

composite made by the filament winding method. The baseline material system was 

modified using nanofillers with different surface functional groups (for the investigated 
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cases, the functionalization is made of carboxyl and 

glycidyloxypropyltrimethoxysilane, GPS) and with different ranges of aspect ratio by 

adding fillers in the interlayer region between plies. The experimental program 

concerned Mode I and Mode II interlaminar fracture toughness (IFT) tests and was 

originally designed to study the effect of nanofiller functionality, filler size or aspect 

ratio, filler placement method and filler alignment direction in order to achieve optimal 

improvement in the interlaminar fracture resistance of multi-scale reinforced 

composites. For the scope of the present study, only Mode I IFT tests will be analyzed. 

5.4.2. Materials and experimental results [91] 

Materials 

The baseline composite material was made of unidirectional fiber reinforced 

laminates made by wet filament winding method using type 449AA-750 S-2 Glass® 

fiber (AGY, Aiken, SC) and an epoxy resin matrix system.  

The nanofillers added to the epoxy resin were the following:  

 un-functionalized heat treated carbon nanofibers (UF-CNFs 

 short carboxyl-functionalized CNTs (COOH-CNTs)  

 short hydroxyl-functionalized CNTs (OH-CNTs) 

 un-functionalized vertical grown CNTs (VGCNTs) 

VGCNTs, UF-CNFs, and OH-CNTs were used as raw material for the in-house 

production of silane-functionalized nanofillers. The silane coupling agent used to 

functionalize the oxidized VGCNTs and CNFs and the as-received OH-CNTs is 3- 

glycidyloxypropyl-trimethoxysilane, referred to as GPS. Short GPS-CNTs, long 

GPSCNTs, and GPS-CNFs were used for manufacturing multi-scale reinforced 

composites. Additionally, multiscale composites were also manufactured using COOH-

CNTs and UF-CNFs in the as-received condition. All of the functionalized nanofillers 

used to manufacture the multiscale composites are summarized in Table 5.2.  

A total of seven types of CNT- or CNF-filled resin along with the baseline 

resin with no nanofiller have been considered and reported in the Table 5.8. The 

nanofiller concentrations were established on the basis of a previous studies where the 

nanofillers were dispersed using the bath sonication method; nanofiller concentrations 

used for the investigation were selected for each type of filler based on the resulting 
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maximum filler concentration for which no visual aggregate was detected and a 

uniform dispersion state was typically seen using the optical microscope. 

Table 5.7: Functionalized nanofillers used for making multi-scale reinforced composites 

Name in this 

investigation 

 

Functional group Raw material for 

functionalization 

 

Short COOH-CNT COOH-, OH- Used as-received 

Short GPS-CNT 3-Glycidyloxypropyl silane 
Short OH-CNTs 

 

Long GPS-CNTs 3-Glycidyloxypropyl silane 
VGCNTs 

 

GPS-CNFs 3-Glycidyloxypropyl silane 
UF-CNFs 

 

This condition may be useful for the assumption that not too many CNT 

bundles are present in the resin system after sonication. The particle-filled epoxide was 

sonicated in an ultrasonic bath operating at 45 W and 38.5 kHz for 2-8 hours as 

specified in Table 5.3. 

Unidirectional reinforced composite sheets were manufactured by wet-winding 

method. The composite consisted of 20 plies and cured in a hot press held under a 

pressure of 240 kPa at 80°C for 2 hours and then 125°C for 3 hours. 

Table 5.8: Multiscale nanofiler-composite composition and sonication time 

Composition Bath Sonication 

Case Resin system CNFs CNTs Time  

(h) 

Temperature 

(°C) 

1 0.5 wt% UF-CNF 

epoxy 
0.5 wt%  4 60 

2 0.5 wt% GPS-CNF 

epoxy  
0.5 wt%  2 60 

3 0.5 wt% short 

GPS-CNT epoxy  
 0.5 wt% 8 60 

4 0.25 wt% long 

GPS-CNT epoxy 
 0.25 wt% 8 60 
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The resulting fiber volume fraction of the cured composite was determined to be 

62±2%. The multiscale reinforced composites that will be considered within this study 

were made by adding a calculated amount of nanofilled resin (equivalent to the weight 

of resin in two plies of cured composite plate, ~14 grams) to the surfaces of both sheets 

facing the midplane to serve as a nanofilled interlayer region on the fracture plane. The 

nanofilled interlayer was uniformly spread onto the wet prepreg using a Nylon roller. 

Mode I IFT tests were conducted using double-cantilever beam (DCB) specimens 

(prepared according to ASTM standard D5528-01) having length, width, and thickness 

of approximately 150 × 25 × 3.5 mm. 

 

IFT Test results 

By adding CNF- or CNT-filled resin at the fracture plane of IFT specimens 

(made without any nanofillers in the prepregged matrix material) led to significant 

enhancement of fracture toughness, see Table 5.9 and Figure 5.78. The most relevant 

experimental outcome that will be considered for the purposes of the study, is the 

increment in critical strain energy release rate, GIo, for the mode I IFT test. This value 

represents the CNTs contribution to toughen the polymer matrix. In detail, a significant 

improvement in GIo was obtained by adding either the UF-CNF or GPS-CNF resin 

interlayer (30-39% relative to the baseline). However, GPS functionalization of CNFs 

showed relatively little improvement in all toughness measures in comparison to 

material made with a UF-CNF interlayer. The effects of interlayer nanofiller length on 

toughness were evaluated using short GPS-CNTs and long GPS-CNTs. The addition of 

the short GPS-CNT interlayer increased GIo by 52% compared to the baseline material. 

An even higher increase was obtained by using longer GPS-CNTs in the interlayer, i.e. 

80%. These results demonstrated that using high aspect ratio, small diameter and 

functionalized nanofillers in the interlayer produced the highest fracture toughness of 

the S2- Glass/epoxy composite.  

SEM observations revealed that for all composite samples made with or 

without a nanofilled interlayer, the glass fibers were uniformly packed throughout the 

entire thickness, showing no discrete resin-rich interlayer. This feature was attributed 

the resin in the interlayer that plausibly bled out during the consolidation process due 

to the low viscosity of the epoxy resin system used to manufacture the composites. 
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Table 5.9: Mode I IFT test results 

 

 

 

MATERIAL INTERLAYER 

Mode I Strain Energy Release Rate 

Onset Propagation 

GIo 

(J/m2) 

C.o.V. 

(%) 

Increm. 

(%) 

GIo incr. 

(J/m2) 

GIp 

(J/m2) 

C.o.V. 

(%) 

Increm. 

(%) 

GIp 

incr. 

(J/m2) 

 Baseline 

Composite  
127 4.2 0 - 616 1.9 0 - 

Case 1 0.5 wt% UF-CNF 

epoxy 
165 14 30 38 903 1.5 47 315 

Case 2 0.5 wt% GPS-

CNF epoxy 
176 8.4 39 49 968 4.1 57 282 

Case 3 0.5 wt% short 

GPS-CNT epoxy 
193 8.6 52 66 1025 1.3 66 585 

Case 4 0.25 wt% long 

GPS-CNT epoxy 
228 8.4 80 101 1201 1.5 95 742 

 

 

Figure 5.78: Increment of the onset of damage GIo for the mode I IFT test 

Nanofiller toughening mechanisms 

SEM images of fracture surfaces of IFT specimens allowed Zhu [91, 97] to analyze 

the effects of CNTs or CNFs on the fracture behavior of the multi-scale reinforced 

composites. Results from SEM observations can be summarized as follows: 
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- When nanofiller particles were added in the interlayer a high number of 

CNTs/CNFs was found on the  fracture surface, Figure 5.79a; 

- Although the long GPS-CNTs were not long enough to prevent glass fiber 

pullout, SEM images showed many long GPS-CNTs pulled from the matrix 

Figure 5.79b and bridging matrix cracks;  

- Concentration of filler was found in close proximity to the glass fibers at the 

fracture plane;  during the material consolidation process, the epoxy in the 

interlayer was plausibly bled out and the fillers were entrapped by glass fibers, 

Figure 5.79a; 

- Long CNTs can bridge the matrix crack in the narrow gaps between the glass 

fibers; 

- Based on the increased toughness of the composites with an interlayer, it 

appeared that dense concentrations of CNTs and CNFs trapped in between the 

glass fibers inhibited delamination propagation. 

- In case of functionalized CNTs/CNFs, an epoxy layer bonded to CNTs or 

CNFs was observed, (Figure 5.79d). Since this behavior was not typically 

observed for unfunctionalized fillers, plausibly a better adhesion between 

CNTs or CNFs with the epoxy matrix was obtained after functionalization.  

Apart from the previous results, some other issues were pointed out by Zhu 

[91]. During the composite consolidation, due to the low viscosity, the resin in a liquid 

state flowed both along the glass fiber length direction and across the glass fiber length 

direction before specimen cure. However, while the resin can flow freely in all 

directions within a composite, the nanofillers may not. Moreover, the high glass fiber 

volume fraction (>60%) within the composite reduces the free space between glass 

fibers, which is, in a cross-section of glass fiber bundles, approximately 0-10 μm 

(typically even smaller than the average length of long CNTs/CNFs). Hence, the glass 

fiber can restrict long CNTs/CNFs from migrating with the resin transverse to the 

fibers (leading to high concentration of filler in the interlayer) and favor the CNT 

migration along the fiber direction. Different CNT placement locations were 

investigated by Zhu [91] in order to understand the direction of CNT/matrix flow 

during the consolidation process. The results indicated that, during composite 

consolidation and cure, the short CNTs migrated along the fiber direction and towards 

the mid-plane when placed away from it.  
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5.4.3. CNT Pullout model application 

Input material data acquisition 

The fracture toughening model described in Section 5.4 requires several types 

of material input data. For CNT and CNF fillers, the most difficult issue is related to 

the variability of physical (e.g. diameter, length, multiple walls etc.) and mechanical 

properties (e.g. tensile strength, elastic modulus), that sometimes are properly 

described in the form of a statistical distribution. Moreover, some changes of the initial 

system (e.g. volume fraction, CNT length etc.) can be induced during functionalization, 

dispersion processes, manufacturing processes. In the following paragraphs the 

acquisition of CNT/CNF material input data is illustrated, based on vendor datasheets, 

 
a) 

 
b) 

 
c) 

 
d) 

 Figure 5.79: SEM images of mode I fracture surfaces [91]: a) composite with a long GPS-

CNT epoxy interlayer; b) long GPS-CNTs in the interlayer: cavities in circles were 

possibly created by CNT pull-out; c) composite with a GPS-CNF interlayer; d) GPS-CNFs 

with epoxy layers bonded to the CNF surface. 
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experimental measurements, and literature data. The experimental cases are divided 

into cases 1-2 and cases 3-4 for material properties concerning CNFs and CNTs, 

respectively.  

CNF material properties 

CNFs used in cases 1-2 were supplied by Applied Sciences Inc. (Cedarville, 

OH) in the form of Vapor-Grown Carbon NanoFibers (CNFs).  

 
a) 

 
b) 

 
 

 

c) 

 

 
PR-24-XT 

Production Full scale 

Diameter, 

nanometers 
60 to 150 

Length, 

nanometers 
30,000 to 100,000 

Comments 
As grown material essentially 

free of CVD carbon 

Figure 5.80: CNF details: a) 3D rendering; b) longitudinal section; c) TEM image and 

material characteristics - (from Applied Sciences Inc. (Cedarville, OH) 

http://apsci.com/?page_id=19). 

Three grades of VGNCFs (with the commercial name Pyrograf-III) are 

available by Applied Sciences: (I) as-grown VGCNFs subjected to post-fabrication 

pyrolytic stripping to remove polyaromatic hydrocarbon residues (commercially 

designated as PR-24-XT-PS), (II) high temperature heat treated VGCNFs with smooth 

surfaces (PR-24-XT-HHT-LD), and (III) surface functionalized VGCNFs (PR-24-XT-

HHT-LD-OX) produced by subjecting the high temperature heat treated fibers to an 

oxidative treatment in a wet chemical process that changes the surface oxygen and 

nitrogen contents and promotes bonded interactions with organic matrices. PR-24-XT-

HHT-LD CNFs were used to manufacture multiscale reinforced composites. 
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Concerning the mechanical properties of PR-24-XT-HHT-LD CNFs, Ozkan et 

al. [98] measured the mechanical strength and the elastic modulus of individual 

nanofibers of pyrolytically stripped, high temperature heat-treated and oxidized 

VGCNF by a MEMS (MicroelectromechanicalSystems tool) nanomechanical property 

characterization method. In another experimental work, Ozkan et al. [99] conducted 

nanoscale pull-out experiments in order to obtain the Interfacial Shear Strength (ISS) 

of individual VGCNF embedded in Epon 828™ difunctional bisphenol 

A/epichlorohydrin compounded with EPIKURE™ 3140 polyamide curing agent. 

 It is well known that dispersion processes reduce the length of 

nanotubes/nanofibers, as described in Section 5.2.1. For this reason, it is very 

important to know the CNF length distribution after sonication. From Zhu’s work [91] 

the measurements of length distribution after different bath sonication time were 

reported. The CNF-filled resin mixtures were sonicated in an ultrasonic bath operating 

at 45 W and 38.5 kHz for 4 and 2 hours for CNFs and GPS functionalized CNFs, 

respectively (before the placement of the interlayer).The results of 4 hours bath 

sonication were considered as length distribution input data for both CNFs and GPS-

CNFs cases. It should be noticed that in that case, the mass fraction of CNFs was equal 

to 0.05% wt whereas a weight percentage of 0.5% wt was used in the CNF reinforced 

interlayer for the reinforced composites Figure 5.81 reports experimental data (a) and 

fitted curves (b), according to the length distribution of equation 5.28. The resulting 

CNF average length was 3.7 µm, almost one order of magnitude less than the 

minimum initial value of CNF length according to the manufacturer. 

 
 

Figure 5.81: UF-CNF length distribution after 1 and 4 hours of bath sonication dispersion 

time according to the length distribution of equation 5.28.  
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CNT material properties 

CNTs used in cases 3-4 are were short hydroxyl-functionalized CNTs (OH-

CNTs) and un-functionalized vertical grown CNTs (VGCNTs), both supplied by 

Cheaptubes (Brattleboro, VT). VGCNTs grown aligned to each other in the length 

direction with minimal entanglement. The information reported in Figure 5.82 have 

been gathered from the datasheet of the vendor.   

 

 

Outer Diameter: 10-20nm 

Inside Diameter: 3-5nm 

Ash: <1.5 wt% 

Purity: >95 wt% 

Length: 0.5-2.0 m 

Specific Surface Area: 233 m
2
/g 

Electrical 

Conductivity: >100 S/cm 

Bulk density: 0.22 g/cm
3
 

True density: ~2.1 g/cm
3
 

 

 
Figure 5.82: Short OH Functionalized material properties and Short OH TEM image; 

provided by http://www.cheaptubesinc.com/shortohcnts.htm#ixzz2HkbOislo 

Outer Diameter: 8-15nm 

MWNTs Inside Diameter: 3-5nm 

Ash: <1.5 wt% 

Purity: >95 wt% 

Length: 10-50 m 

Specific Surface Area: 233 m
2
/g 

Electrical Conductivity: >100 

S/cm 

Bulk density: 0.15 g/cm
3
 

True density: ~2.1 g/cm
3
 

 

 

Figure 5.83: VGCNTs material properties and VGCNTs TEM image; provided by 

http://www.cheaptubesinc.com/shortohcnts.htm#ixzz2HkbOislo 

http://www.cheaptubesinc.com/shortohcnts.htm#ixzz2HkbOislo
http://www.cheaptubesinc.com/shortohcnts.htm#ixzz2HkbOislo
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Concerning the mechanical properties of OH-CNTs and VGCNTs, the values 

reported in Table 5.5 were implemented in the model, on the basis of the available 

experimental values. 

 

 

Table 5.10: Mechanical properties of CNTs used within the present study 

Reinforcement 
Diameter 

(nm) 

Young’s 

Modulus 

(GPa) 

Tensile 

Strength 

(GPa) 

Failure 

strain 

(%) 

MWCNT [10, 11] 10–40 800 20–50 2–12 

SWNT [100] 0.6–3 1000 10–52 5–10 

 

With regard to length distribution of CNTs, the CNT-filled resin mixtures 

(short GPS-CNT epoxy and long GPS-CNT epoxy) were sonicated in an ultrasonic 

bath operating at 45 W and 38.5 kHz for 8 hours at 60°C. Actually no length 

distribution data were available from Zhu’s work [91]. However, in case of long GPS-

CNT epoxy, it is assumed in the current investigation that the residual length 

distribution after sonication roughly corresponds to the length distribution reported in 

[96] where residual lengths of a-MWCNTs (the same VGCNTs as in Zhu’s work) after 

5 minutes of sonication in the mixture of epoxide and acetone were measured with the 

aim of predicting the modulus of MWCNT/epoxy composites. The weight fraction of 

a-MWCNTs in epoxide/acetone mixture was equivalent to 0.5 wt% in resin. The 

resulting average length was 0.77µm, almost one order of magnitude less than the 

initial value of VGCNT length (Figure 5.84). 

 

Figure 5.84: Probability density distribution of a-MWCNTs (i.e. VGCNTs) after 5 minutes 

of sonication in epoxide/acetone mixture [96]. 
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Volume Fraction of CNFs/CNTs 

The CNF/CNT volume fraction of, i.e. VCNF, VCNTs was calculated according to 

the rule of mixture: 

 

   
     

      (    )   
 

 

where Wf, is the CNF/CNT mass fraction and f and m are the CNF/CNT and matrix 

density, respectively.  However, this value may be affected by uncertainty. For 

example, fracture toughness specimens were fabricated starting from 356 by 305 mm 

impregnated sheets and consolidated in a press at room temperature. When the resin 

rich interlayer was placed, a calculated amount of nanofilled resin, equivalent to the 

weight of resin in two plies of cured composite plate, was added to the surfaces of both 

sheets facing the midplane to serve as a nanofilled interlayer region on the fracture 

plane. This amount was estimate as ~14 grams. By considering the following values: 
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Obviously, a reasonable amount of interlayer material was “lost” during the 

manufacturing process (for instance 2 grams). The “expected” thickness of the 

nanofilled resin interlayer would be: 
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       (     )            (
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         [          ]        [        ] 

However, since SEM observations revealed that the interlayer corresponded 

approximately to the space between glass fiber bundles (i.e. 0-20 μm), it is plausible 

that the epoxy in the interlayer was mostly bled out and the fillers were entrapped by 

glass fibers, leading to concentrated nanofillers at the fracture plane. This hypothesis is 

particularly true in case of CNFs, whose lengths (after sonication) are in the range of 2-
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10 μm limiting the CNF migration process. In the light of this consideration, the “true” 

(or “local”) CNF/CNT volume fraction in the interlayer could be comprised between 6-

10 times greater than the “initial” one. 

Experimental comparison 

After collecting available material data, the only unknown for cases 1-2 (UF-

CNFs and GPS-CNFs) was the interfacial shear stress  (assumed as constant) of GPS-

functionalized CNFs. For case 4 the length distribution of the VGCNTs was derived 

from [91] whereas the interfacial shear stress  for both cases 3 and 4 was unknown. In 

order to understand the dependence of the main variables adopted in the models and 

verify the assumptions made about the initial system, some parametric analyses have 

been conducted starting from a baseline nanocomposite system. Concerning the 

orientation, random distribution is assumed in the baseline nanocomposite system even 

though a partial alignment (with respect to glass fibers and through the thickness 

directions) may be experienced by nanofillers due to the composite consolidation 

process. 

 

Cases 1-2: 0.5 wt% UF-CNF epoxy and 0.5 wt% GPS-CNF epoxy 

Mode I IFT tests showed that the onset of mode I fracture toughness increased 

(on the average) of 38 and 49 J/m
2
 with respect to the baseline material (neat epoxy 

resin) when 0.5 wt% UF-CNFs and 0.5 wt% GPS-CNFs were added to the epoxy resin, 

respectively. This increase can be reasonably attributed to the toughening mechanisms 

induced by the nanofillers. Among them, the most relevant can be identified as CNF 

pullout and CNF breakage. In addition, assuming that the CNF length distribution is 

the same for both cases (i.e. that the CNF length distribution after 2 and 4 hours of 

sonication is the same), the GPS functionalization most likely improved the interfacial 

shear strength of CNFs resulting in a slight increase of fracture energy. For this reason, 

a reasonable way to compare theoretical-experimental results was to report the pullout 

energy (or bridging energy) as a function of the unknown GPS-based interfacial shear 

strength. In this way a reasonable value of  for GPS-CNFs can be estimated. The 

material properties for the baseline UF-CNF system are provided in Table 5.11. The 

baseline material data are implemented into the Fu and Lauke model  [94], and the 

Mirjalili model [89], with the assumption of random orientation distribution of CNFs 

and a fixed CNF length distribution. 
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Table 5.11: Input material data for case 1, 0.5 wt% UF-CNF epoxy, baseline material 

properties.  

Pullout model by Fu and Lauke [94] Bridging (pullout + CNF fracture)  

model by Mirjalili [89] 

Orientation = Random; 

A = 0.083; [27] 

µ = 0.15; [27] 

dCNF = 105 nm; (average outer CNF 

diameter from Applied Sciences DataSheet) 

ult = 2.85 GPa; (average) Table 5.6 

VCNF = 0.61%; [91] 

p = 0.5; (random orientation distribution) 

q = 0.5; (random orientation distribution) 

CNF center of gravity is assumed to be 

distributed uniformly trough the thickness 

direction of the interlayer 

b = 1.830; (fit of experimental CNF length 

distribution data, [91]computed with units of 

length: meters) 

a = 0.704*10^10;  (fit of experimental CNF 

length distribution data, [91] computed with 

units of length: meters) 

Lave = 3.73 µm; (fit of experimental CNF 

length distribution data, [91] as reported in  

Figure 5.81) 

Orientation = Random; 

f = 0.23; 

Lave = 3.73 µm; [91] 

rCNF = 0.5*105 nm; (average outer 

CNF diameter from Applied Sciences 

DataSheet) 

VCNFs = 0.61%; [91] 

ult = 2.85 GPa; (average) Table 5.6 

ECNF = 245 GPa; [98] 

εmax = ult /ECNF = 0.0116327 

Figure 5.85 reports the increment of fracture energy as a function of interfacial 

shear strength when the two theoretical models are implemented by using baseline 

material properties. Red dashed line and black dashed line denote the interfacial shear 

strength value (experimentally determined by Ozkan et al. [99]) and the average 

experimental increment of mode I fracture energy (onset), respectively. For both 
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models, the increment of fracture energy rises up to the value of interfacial shear 

strength that determines the attainment of a critical CNF length. After this point, the 

fracture energy decreases since it is due only to the pullout of CNFs having under-

critical length. Basically, within the assumptions made for the baseline systems, both 

models significantly underestimated the enhancement of fracture energy, whatever is 

the value for the CNF interfacial shear strength. Moreover, in correspondence of the 

CNF interfacial shear strength value provided by Ozkan et al. [99], the fracture energy 

enhancement is very small since a critical length condition is attained for smaller shear 

strength values.  

 
Figure 5.85: Increment of fracture energy (GIonset increment) as a function of interfacial 

shear strength : Case 1 (baseline material properties, Table 5.11). 

It should be pointed out that the Fu and Lauke model (green line) appears very 

effective compared with the Mirjalili model (blue line) since it computes the pullout 

contribution of CNFs according to a length distribution instead of a unique value of 

length. In fact, before reaching a critical length condition, the pullout contribution is 

much higher when the Fu and Lauke model is adopted. Following, some graphs 

obtained through parametric analysis implementing the Fu and Lauke model are 

reported. In these graphs, the red dashed line and black dashed line denote the 

interfacial shear strength value (experimentally determined by Ozkan et al. [99]) and 

the average experimental increment of mode I fracture energy (onset), respectively. 
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The CNFs length distribution was fixed as the experimental one (as reported in [91] 

and Table 5.11). 

Figure 5.86 reports the increment of mode I fracture energy for different 

“initial” values of VCNF. The experimental “initial” value is 0.61% derived by adding 

0.5wt% of UF-CNFs to the resin system. The 5 curves are obtained by multiplying the 

“initial” volume fraction by a factor 1, 3, 6, 9, 12, respectively, trying to take into 

account that the “true” CNF volume fraction can be higher than the initial one since 

dense concentrations of CNFs were observed after consolidation process.  

 
Figure 5.86: Increment of fracture energy (GIonset increment) as a function of interfacial 

shear strength : Case 1 (variation of VCNF). 

Figure 5.87 reports the increment of mode I fracture energy for different values 

of critical length. The initial critical length (i.e. the one obtained using baseline 

material properties) corresponds to 2.23µm. The four cases are obtained by multiplying 

the initial critical length by 1-4 (for instance, this can be achieved by increasing the 

ultimate CNF tensile strength). This may take into account uncertainties on tensile 

strength, diameter values or, in a more general way, on the analytical expression for the 

critical length. It can be observed that when critical length is longer, the pullout energy 

contribution increases due to the fact that more fibers (within the CNF length 

distribution) contribute to pullout. Simultaneously, the critical length condition is 

reached for higher interfacial shear strength values.  
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Figure 5.87: Increment of fracture energy (GIonset increment) as a function of interfacial 

shear strength : Case 1 (variation of LC). 

Figure 5.88 reports the increment of mode I fracture energy for different values 

of CNF outer diameter. In a system with constant VCNF, CNFs with smaller diameter 

values increase the available CNF surface to be pulled out (since a greater number of 

CNFs is required in order to fulfill the volume fraction constraint). However the critical 

length condition is reached for smaller values of interfacial shear strength when the 

CNF diameter is small. This can be observed for dmin= 60 nm (blue line) whose pullout 

energy contribution is the highest if the interfacial shear strength is less than 12.5 MPa. 

Figure 5.89 reports the increment of mode I fracture energy for different values 

of average CNF orientation angle, ave. Four cases are analyzed: random distribution 

(p= 0.5 and q= 0.5), CNFs almost aligned with respect to the trough the thickness load 

direction (i.e. ave=5° with p= 0.5 and q= 50), ave=20° (p= 1 and q= 7) and ave=65° 

(p= 30 and q= 7). This parametric analyses try to account for the possibility that CNF 

orientation in the consolidated composite system may be affected by the matrix flow 

during curing process, resulting in a partial alignment of the CNFs into the through the 

thickness direction and/or glass fiber direction. When CNFs are almost aligned with 

ave=5°, the pullout energy contribution is roughly doubled respect to the random case 

distribution; on the contrary, CNFs with an average orientation which tends to the glass 

fiber direction, reduce the pullout energy of one half if compared to the random case.  
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Figure 5.88: Increment of fracture energy (GIonset increment) as a function of interfacial 

shear strength : case 1 (variation of dCNT). 

 

 
Figure 5.89: Increment of fracture energy (GIonset increment) as a function of interfacial 

shear strength : case 1 (variation of CNT). 
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Moreover, when the alignment with the loading direction is achieved, the CNF 

critical length condition is reached for higher values of interfacial shear strength (in the 

Fu and Lauke model the critical length value takes into account the CNF orientation). 

From these parametric analyses, some critical issues needing to be addressed in 

order to properly use the presented fracture toughening model were identified:  

 the volume fraction of nanofiller in the zone of crack propagation can be 

significantly affected by the manufacturing process; in the experimental work 

used in with the present analysis, the CNF volume fraction in the resin prior to 

consolidation of the composite laminate may be lower than actual and lead to 

an underestimation of the pullout energy.  

 The critical length of CNFs/CNTs should be carefully determined, especially 

when different length values exist in the system. The exact value is strongly 

related to the CNF/CNT tensile strength that sometimes is reported in a wide 

range of values. The correct value of the critical length is also reasonably 

related to the assumptions of considering fibers/tubes as “inextensible”. 

 The average CNF/CNT orientation angle is, in some way dependent on the 

matrix flow during the consolidation or manufacturing process. This was 

confirmed by the tests performed by Ye Zhu [91]. It is plausible that short 

CNFs/CNTs “travel” through the thickness direction resulting in partial 

vertical alignment. On the contrary, long CNFs/CNTs are reasonably unable to 

cross glass fibers, resulting in a 2D-random orientation distribution mostly in 

the interlaminar plane.  

Based on these considerations and experimental evidences, some modifications to 

the baseline system input values have been made with the aim of considering a system 

closer to the actual one. 

VCNF : A VCNF value of roughly eigth times than the “initial” one   is adopted in order to 

simulate the dense concentration of CNFs at the fracture plane. Basically, the initial 

amount of nanofilled modified epoxy resin was 14 grams (to produce the interlayer) 

containing 0.5 wt% of CNFs. If we assume that approximately 3-4 grams were lost 

during placement operations, the initial interlayer would be made of 10-11 grams of 

0.5 wt% CNF modified resin.  Due to the length of CNFs, it is plausible to assume that 

only matrix bled out from the interlayer system, as a consequence of consolidation 

process. If we assume that around 5-6 grams of (sole) epoxy resin bled out from the 

CNF modified interlayer, the resulting VCNF of “trapped” CNFs would be between 6 

and 12 times higher than the initial VCNF value of 0.610%. Within this assumption, the 
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resulting interlayer thickness would be between 25 and 35 µm (closer to the SEM 

observations). Moreover, due to the fact that CNT lengths (for case 3-4) are smaller 

than CNFs ones, CNTs would easily “follow” the resin flow with a resulting “true” 

volume fraction less than the CNF one.  

dave : in his experimental campaign, Ozkan [99] performed pullout tests on PR-24-XT-

LHT-OX also varying the CNF diameter. Actually, the range of investigated outer 

diameter values was 200-450 nm. Instead of using an average value from datasheet (i.e. 

105 nm), dave was selected as 250 nm.  

Lc : in case of GPS-CNFs, if we attribute the fracture energy increment (from 39 to 49 

J/m
2
) to an ISS increase due to GPS functionalization, the GI onset () curve for UF-CNF 

should cross the lined corresponding to the experimental ISS value of 65.6 MPa (by 

Ozkan [99], see Figure 5.87) before the peak, i.e. before reaching a critical length 

condition. In this way, additional increases of ISS values, , compared to the UF-case 

(as an example, due to functionalization) would result in an incrementof fracture 

energy. For this reason,   a reasonable value of 1.5*initial critical length (i.e.  3.3 m) 

was used.  

ave : in Section 5.4.2, it was pointed out that the resin flow may partially align the 

CNTs. Reasonably, it can be assumed, as hypothesis, that the average orientation angle 

is less than 45° (i.e. the average angle of the random distribution) with respect to the 

interlaminar normal direction..  

The result of Fu and Lauke model, obtained implementing the above discussed 

“modified” material data, is reported in Figure 5.90, along with the result of Mirjalili 

model in order to appreciate the differences. In correspondence to the ISS value 

provided by Ozkan [99], the Mirjalili model always underestimates the average 

experimental increment of fracture energy both for aligned and especially for random 

orientation distribution. On the contrary, Fu and Lauke model provides an increment of 

fracture energy very close to the average experimental result when ISS is assumed 

equal to the one provided by Ozkan [99], i.e. 65.6 MPa (red dashed line in the graph). 

This result also indicates that when ISS rises up to ≈ 90 MPa, the fracture energy can 

be increased up to 52 J/m
2
. This value is very close to the experimental increment of 

mode I fracture energy obtained with the GPS-CNF epoxy system (grey dashed line in 

the graph). Further improvement of CNF interfacial properties may lead to a reduction 

of pullout energy due to the CNF fracture that involves more and more CNFs. 
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 Figure 5.92 reports the increment of mode I fracture energy for different 

“initial” values of VCNT. The experimental “initial” value is 1.805% and was derived by 

the addition of 0.25 wt% of long GPS-CNTs to the resin system. 

 
Figure 5.90: Increment of fracture energy (GIonset increment) as a function of interfacial 

shear strength : case 1-2, comparison of Fu and Lauke model and Mirjalili model by 

assuming modified input material data. 

Cases 3-4: 0.5 wt% short GPS-CNTs epoxy and 0.25 wt% long GPS-CNTs epoxy 

In order to predict the onset of mode I fracture energy of short and long GPS-

CNT based composites, the material properties for the baseline system of long GPS-

CNT (with a known length distribution) have been firstly defined. The data are 

reported in Table 5.12and implemented into the Fu and Lauke model and the Mirjalili 

model with the initial assumption of random orientation distribution of CNTs and a 

fixed length distribution.  

Figure 5.91 reports the results concerning the two theoretical models, 

implemented by using baseline material properties. Black dashed line denotes the 

average experimental increment of mode I fracture energy (onset) obtained in Case 4 

(long GPS-CNTs). Within the assumptions made for the baseline system, both models 

significantly underestimated the enhancement of fracture energy, regardless of the 

value of GPS-CNT interfacial shear strength.   Again in this case, the Fu and Lauke 

model (green line) provides a higher energy contribution for pullout energy, mainly 
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due to the fact that it is computed on the basis of a length distribution instead of a 

unique value of length. 

Table 5.12: Input material data for case 4, 0.25 wt% long GPS-CNTs epoxy, baseline 

material properties. 

Pullout model by Fu and Lauke [94] Bridging (pullout + CNT fracture)  

model by Mirjalili [89] 
Orientation = Random; 

A = 0.083; [27] 

µ = 0.15; [27] 

dCNT = 11.5 nm; (average outer CNT 

diameter from Cheaptubes DataSheet) 

ult = 35 GPa; [86, 89] 

VCNF = 1.805%; [91] 

p = 0.5; (random orientation distribution) 

q = 0.5; (random orientation distribution) 

b = 1.6856; [96] fit of experimental CNF 

length distribution data computed with 

units of length: meters 

a = 1.6607*10^10;  [96] fit of 

experimental CNF length distribution 

data computed with units of length: 

meters 

Lave = 0.77 µm; [96] 

Orientation = Random; 

f = 0.23; 

Lave = 0.77 µm; [96] 

r = 0.5*11.5 nm; (average outer CNT 

diameter from Cheaptubes DataSheet) 

VCNF = 1.805%; [91]  

ult = 35 GPa; [86, 89] 

ECNF = 800 GPa; [86, 89] 

εmax = ult /ECNF = 0.04375 

 

As was done for CNF-based cases, some parametric analyses implementing only the 

Fu and Lauke model are following reported. However, for GPS-CNT cases, we do not 

have an experimental value for the GPS-CNT ISS. The black dashed line in the graphs 

will always denote the average experimental increment of mode I fracture energy 

(onset) obtained in case of 0.25 wt% long GPS-CNTs epoxy. The VGCNTs length 

distribution was fixed as the experimental one reported in [96]. 
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Figure 5.91: Increment of fracture energy (GIonset increment) as a function of interfacial 

shear strength : Case 4 (baseline material properties, Table 5.12). 

 

 

 
Figure 5.92: Increment of fracture energy (GIonset increment) as a function of interfacial 

shear strength : Case 4 (variation of VCNF). 
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The four curves are obtained by multiplying the “initial” volume fraction by 1-4, trying 

to consider that the “true” CNF volume fraction can be higher than the “initial” one 

since dense concentrations of CNTs most likely arose during consolidation process. 

Figure 5.93 reports the increment of mode I fracture energy for different values 

of critical length. Three cases obtained by multiplying the initial critical length by 1-3 

(by increasing the ultimate CNT tensile strength) are reported. It can be observed that, 

the critical length condition is reached for higher interfacial shear strength values 

(between 100 and 370 MPa) if compared with the CNF cases.  

 

 
Figure 5.93: Increment of fracture energy (GIonset increment) as a function of interfacial 

shear strength : Case 4 (variation of LC). 
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Figure 5.94: Increment of fracture energy (GIonset increment) as a function of interfacial 

shear strength : Case 4 (variation of dCNT). 

 

 
Figure 5.95: Increment of fracture energy (GIonset increment) as a function of interfacial 

shear strength : Case 4 (variation of CNT). 
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Figure 5.95 reports the increment of mode I fracture energy for different values 

of average CNF orientation angle, ave. Four cases were analyzed, as reported in the 

previous paragraph: random distribution, CNTs almost aligned with respect to the 

interlaminar normal (i.e. ave=5°), ave=20° and ave=65°. When CNTs are almost 

aligned with the through-thickness direction, i.e. ave=5°, the pullout energy 

contribution is almost doubled with respect to the random case distribution. 

The results of the parametric analysis revealed that, for the baseline material properties, 

the increment of fracture energy is always underestimated. Hence, the following 

“modified” values have been implemented in the model:  

 

VCNT : the  VCNT value was roughly doubled with respect to the “initial” one  in order to 

simulate the dense concentration of long CNTs at the fracture plane. This value is 

smaller than the VCNFs used for CNF cases due to the hypothesis that longer CNFs are 

more likely to be trapped into the interlayer.  

dave : left as 11.5 nm as the average outer diameter provided by the manufacturer.  

Lc : as for CNT-based cases, a reasonable value of 1.5*initial critical length, was 

adopted.  

ave : also for CNT-based epoxy systems the assumption of ave =35° was made. 

 

Figure 5.96 reports the results of the application of the Fu and Lauke model 

and the Mirjalili model with the modified material properties. It can be observed that 

the Mirjalili model predicts the correct increment of mode I fracture energy (i.e. 

10 J/m
2
) only if a perfectly alignment is assumed for CNTs and for a ISS value of  

roughly 280 MPa (more than two times higher than ISS value estimated for GPS-

CNFs). A more realistic prediction is provided when the Fu and Lauke model is 

implemented with “modified” material data. In fact, it predicts the average 

experimental increment of mode I fracture energy for ISS values around 145 MPa, as it 

can be observed in Figure 5.96 in correspondence to the intersection between green 

line (Fu and Lauke model with modified material properties) and black dashed line 

(experimental GIonset increment). 
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Figure 5.96: Increment of fracture energy (GIonset increment) as a function of interfacial 

shear strength : Case 4, comparison of the Fu and Lauke model and the Mirjalili model 

by assuming modified input material data. 
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Table 5.13: Input material data for case 3, 0.5 wt% short GPS-CNTs epoxy, baseline 

material properties. 

Pullout model by Fu and Lauke [94] Bridging (pullout + CNT fracture)  

model by Mirjalili [89] 

Orientation : ave=35°; 

A = 0.083; [27] 

µ = 0.15; [27] 

dCNT = 10 nm; (outer CNT diameter 

from Cheaptubes DataSheet) 

ult = 1.5*35 GPa; [86, 89] 

VCNT = 2.2*2.451%; [91] 

p = 0.5;  

q = 2; 

b = 1.6356; (hypothesis) with units of 

length: meters 

a = 2.2807*10^10;  (hypothesis) with 

units of length: meters 

Lave = 0.4 µm; (hypothesis) 

 

Orientation = both random and 

aligned; 

f = 0.23; 

Lave = 0.4 µm; (hypothesis) 

r = 0.5*10 nm; (outer CNT diameter 

from Cheaptubes DataSheet) 

VCNT = 2.2*2.451% ; [91]  

ult = 1.5*35 GPa; [86, 89] 

ECNF = 800 GPa; [86, 89] 

εmax = ult /ECNF = 0.04375 

 

Figure 5.97 reports the results of the application of the Fu and Lauke model 

and the Mirjalili model to the short GPS-CNT system with the “modified” material 

properties. It can be observed that the Mirjalili model predicts the correct increment of 

mode I fracture energy (i.e. 66 J/m
2
) only if a perfect alignment through the thickness 

is assumed for CNTs and for a ISS value of  roughly 450 MPa that is approximately 

two times higher than ISS value estimated for long GPS-CNT. A more realistic 

prediction is provided when the Fu and Lauke model is implemented with “modified” 

material data. In fact, assuming a CNT average orientation angle distribution of 35° (, 

the model predicts the average experimental increment of mode I fracture energy for 
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ISS values of around 180 - 200 MPa (the highlighted red area in the graph), which are 

higher than long GPS-CNTs. 

 

 

Figure 5.97: Increment of fracture energy (GIonset increment) as a function of interfacial 

shear strength : Case 3, comparison of Fu and Lauke model and Mirjalili model by 

assuming modified input material data. 

The previous assumption on short GPS-CNT length distribution (i.e., with  

Lave = 0.4 µm) was verified by plotting the pullout energy as a function of average CNT 

length. In detail, the mode length of the CNT length distribution (i.e. the peak of the 

probability density function), i.e. equation 5.30, was fixed as 1/4 of the minimum CNT 

length value provided by the manufacturer (i.e. 0.5 µm), resulting in Lmod = 0.125 µm. 

With this constraint, the CNT length distribution of equation 5.28 can be changed by 

varying the values of the parameters a and b, resulting in different values of Lave 

(equation 5.29). Figure 5.98 reports the fracture energy due to pullout as a function of 

CNT average length in case of ISS equal to: 150, 200, 250 MPa. The smallest value of 

ISS permits the highest increment in mode I strain energy release rate (up to 180 J/m
2
) 

since it provides the highest critical length condition. It is interesting to note that the 
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average experimental increment of mode I fracture energy is correctly predicted when 

the CNT average length is approximately between 0.30 – 0.50 µm. 

 

Figure 5.98: Increment of fracture energy GIonset as a function of average CNT length, 

Laverage: Case 3, comparison of the Fu and Lauke model varying interfacial shear strength, 

 values. 

5.5. Concluding remarks  

 

In this chapter, an overview on the main issues related to CNT polymer 

composites has been firstly presented. Among them, aspects related to CNT length and 

orientation characterization, as well as geometry and stress transfer to the matrix, have 

been reviewed. A general overview on CNT/polymer fracture toughening behavior has 

been then provided focusing on CNT toughening mechanisms and their modeling. A 

micromechanical model, based on the work by Fu and Lauke [94] work (suitably 

developed for short fiber composites), has been presented in order to model mode I 

interlaminar fracture toughness of multiscale CNT- or CNF-filled S2-Glass/epoxy 

composites. Model predictions were compared to Mode I interlaminar fracture 

toughness test experimental data obtained by using different nanofiller types, lengths, 
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and functionalization. The analyses aimed to link the available experimental data to the 

micromechanical model. Different effects on CNT fracture toughness have been 

evaluated, including filler functionalization and length. When experimental available 

inputs for CNFs and CNTs are implemented in the Fu and Lauke model, the predicted 

onset of interlaminar fracture energy did not match the experimental one. A 

satisfactorily prediction was achieved by making further adjustments to the parameters 

like CNT/CNT critical length rather orientation distribution. 

The results obtained by Zhu’s experimental investigation [91] along with the use of 

theoretical models by Fu and Lauke [94] and Mirjalili  [89], allowed the identification 

of some critical problems related to the modeling of toughening mechanisms of 

nanofilled epoxy materials: 

 

- the Fu and Lauke model appeared more appropriate than Mirjalili model due to 

the possibility of using a nanofiller length distribution. According to this 

approach the resulting ISS value for GPS-CNF based systems was around 

90 MPa, whereas for long GPS-CNT systems it was around 150 MPa; this 

latter value was almost confirmed in case of short GPS-CNTs for which a 

statistical length distribution was hypothesized and then verified; 

- it appears essential to know the true length distribution of nanofillers mainly 

for two reasons: nanofillers lengths are inevitably reduced when a dispersion 

process is used; the use of a unique value of nanofiller length in a model may 

lead to significant underestimation or overestimation of the results; 

- when a resin rich interlayer is used to obtain a multiscale reinforced composite, 

a proper definition of a “true” nanofiller volume fraction should be provided. 

Nanofillers migration due to resin flow and composite fiber obstruction can 

represent a source of strong variation of “local” nanofiller volume fraction that 

triggers possible variations in toughening efficacy.  Moreover, the composite 

manufacturing process may influence the nanofiller orientation.  

- another issue is probably related to the critical length value. When CNT are 

pulled out from the matrix, the critical length value could be longer than the 

theoretical one. This may be due to a sort of “underestimation” of the true 

CNF/CNT tensile strength or to the fact that within the assumptions of these 

theoretical models, we are considering fibers/tubes as “inextensible”. In 
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addition, CNT waviness could have some influence on the determination of 

effective CNT critical length. 

In the light of these considerations, molecular dynamics (MD) simulations are 

ongoing in order to suitably enhance the presented micromechanical model (Figure 

5.99a,b). In fact, MD simulations of CNT pulled out at different angles would provide 

an accurate estimation of the pullout law to be implemented in the fracture energy 

micromechanical model. Moreover, further information concerning snubbing friction 

between CNT and matrix as well as critical CNT length definition could be provided.  

 

 
 

a) 
 

b) 

Figure 5.99: a) MD initial system for CNT pullout at an angle from an epoxy matrixb) 

three dimensional rendering.  
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CONCLUSIONS 

The work conducted in the present thesis concerns the damage modeling of 

composite materials by means of a mulstiscale approach. The most critical issues 

related to the failure mechanisms acting at different length scales of composites have 

been explored and discussed. The procedures proposed to evaluate the damage 

behavior of such materials involved both experimental, analytical and numerical tools. 

In detail, damage modeling has been performed for different case studies: GFRP 

composite laminates, phenolic impregnated skins/honeycomb Nomex core sandwich 

structures, Carbon Nanotube/Nanofiber modified S2-Glass/epoxy composites. 

The first level of analysis concerned the damage occurred in case of low-velocity 

impact tests (Chapter I), carried out on glass fabric/epoxy laminates, adopting two 

panel thicknesses and different impact energy values. In this case, the multiscale 

modeling is conducted including both intralaminar and interlaminar levels of damage 

occurring within a composite laminate, as a consequence of impact events. This has 

been possible through the definition of suitable finite element models for the composite 

plies and interlaminar connections, by means of the explicit finite element software 

LS-DYNA. This allowed to characterize the critical parameters acting at the smaller 

(interlaminar) scale and affecting the macroscopic impact response of the composite 

laminate. In detail, from the obtained results, finite element simulations estimated with 

sufficient accuracy the overall force-displacement curves during the loading and 

rebound phases, as well as the irreversibly absorbed energy. Numerical predictions and 

experiments revealed satisfactory agreement with reference to the extent of fiber 

breakage as well as extent and shape of projected and ply-by-ply delaminated areas. 

Particularly, numerical simulations predicted considerable delamination at the interface 

located at the mid-plane of the specimens (characterized by two layers having same 

orientation), as found in the impact tests. The modeling method adopted within this 
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study revealed that both level of composite damage should be taken into account for 

reliable numerical simulations able to interpret the macroscopic composite impact 

behavior. Following this strategy much effort should be made in terms of accurate 

models of ply connections and ply damage constitutive model. In fact, within the study, 

the predicted delamination extent between laminae of identical orientation was found 

to be larger than the actual one. Probably, this depended on the interlaminar strengths 

used for the calculations, which were assumed independent of the relative orientations 

on adjacent plies. Another limit was found when the impact energy was closer to 

penetration limit; in this case constitutive models based on damage accumulation will 

be desirable for future analysis.  

With reference to honeycomb sandwich structures, investigated in Chapter II and 

Chapter III, due to their hierarchical structure, a multiscale approach was necessary in 

order to suitably capture damage mechanisms occurring to the composite skins and 

Nomex honeycomb core. With the scope to move from the meso scale level, the 

analysis presented in Chapter III was aimed at accurately addressing some important 

aspects related to the out-of-plane Nomex honeycomb compressive response, such as 

linear elastic response, onset of instability, collapse limit and progressive folding 

during crushing. In order to evaluate the influence of imperfection variability on the 

compressive response of Nomex honeycomb structure, a statistics-based approach 

testing has been proposed and applied to a detailed finite element model of a single 

representative Nomex honeycomb cell. The proposed method dealt with the random 

sampling of the elements of the mesh in a finite element numerical analysis, on the 

basis of a normal distribution of thickness and Young modulus values of the cell wall 

material. All the simulations have been run through both ABAQUS/Standard and 

ABAQUS/Explicit. The analyses of the results revealed that the compressive behavior 

of the Nomex honeycomb is more sensitive to thickness imperfections rather than 

Young’s modulus variation: a large coefficient of variation (CV) on wall thickness 

values tends to underestimate the compressive strength of the honeycomb if compared 

to the experimental values, whereas the Young’s modulus variation provides 

compressive strength values always in the range of the experimental ones, even though 

the statistical variation on the numerical results resulted more limited. A very good 

correlation, in terms of experimental and numerical compressive stress–strain 

relationships, has been achieved when both the imperfections are included in the model 

in the range of CV=10-15%. The simulation of the crushing regime allowed to assess 

the cell wall folding mechanism, which is the responsible for the energy absorbing 

capability of honeycomb sandwich structures. The final folded pattern has been 
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demonstrated very close to the experimental one. It has been also shown that the 

repeated contact between adjacent folded walls led to a characteristic trend in the 

compressive strain curve. However, the simulation of this deformational stage drew the 

attention to the constitutive behavior assigned to the paper Nomex material. The 

assumption of linear elastic perfectly plastic behavior led to a pronounced increased of 

residual stress during wall contact that was slightly different from the more brittle 

actual one. It should be emphasized that the detailed representation of the cell allowed 

for a deep investigation of the cell wall deformation patterns and failure modes. For 

this reason, as future recommendation, the present method could be potentially 

extended for the cases of complex loading conditions, such as in the case of tension 

and shear loading in both in-plane and out-of-plane directions achieving reliable 

predictions of the mechanical behavior of honeycomb structures. 

A different multiscale modeling strategy was used in Chapter IV to model high 

energy impact tests carried out on E-glass phenolic Nomex honeycomb sandwich 

structures, adopting two skin thickness values, two different impact diameters and 

different impact velocities. The virtual testing approach was implemented through the 

explicit finite element software LS-DYNA by using homogeneous equivalent solid 

elements for the Nomex honeycomb core and shell elements for the phenolic 

facesheets. The method was based on different experimental tests and numerical 

simulation performed at both the sandwich constituent scale (skins and Nomex 

honeycomb core) and assembly scale. When calibrated material properties coming 

from static experimental tests were used in the sandwich assembly model, the energy 

absorption capability (in terms of force displacement curves) resulted underestimated, 

since dynamic conditions affected some crucial material properties. A further 

calibration based on strain rate sensitiveness of skins and honeycomb core allowed to 

satisfactorily estimate the overall force-displacement curves. Satisfactory agreement 

between numerical predictions and experiments was also found referring to the damage 

extent and shape including the onset and development of material damage. In detail, 

numerical analyses predicted wide fiber fracture on top and bottom phenolic facesheets 

and plastic deformation of Nomex core. The proposed multiscale procedure allowed to 

point out the issue of strain rate sensitiveness, when high impact velocities are 

considered. For this reason, future developments will include the possibility to achieve 

strain rate characterization of the phenolic skins and Nomex paper material as well as 

micro-inertial effects of the cellular structure with the aim of conducting more reliable 

finite element simulations.  
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When CNT/polymer composites were investigated (Chapter V), the multiscale 

damage modeling procedure was focused on aspects related to CNT scale, including 

length and orientation characterization, stress transfer to the matrix as well as CNT 

toughening mechanisms. A micromechanical model, taking into account CNT length 

and orientation distribution, was implemented in order to model mode I interlaminar 

fracture toughness of multiscale CNT/CNF S2-Glass/epoxy composites. The analyses 

aimed at investigating different effects on CNT fracture toughness, including CNT 

length and filler functionalization. The analysis of the results revealed some important 

issues. First of all, the use of CNT length distribution in the micromechanical model 

appeared to be a suitable way to consider the actual dispersion of CNTs within a 

polymer matrix. When a unique value of CNT length was used in the model, strong 

fracture energy underestimation was experienced. A proper computation of CNT 

volume fraction was needed when a resin rich interlayer is added between fiber 

reinforced composite plies. In fact, both resin flow and microsized fibers obstruction 

are responsible for CNT migration and agglomeration. Moreover, the consolidation 

process could be responsible for partial alignment of CNTs; these features were found 

to be a source of strong variation of “local” nanofiller volume fraction triggering 

possible variations of toughening energy. According to the proposed approach the 

resulting interlaminar shear strength value for GPS-CNF based systems was around 90 

MPa, whereas approximately 150MPa for long GPS-CNT systems; this latter value 

was also confirmed in case of short GPS-CNTs for which a statistical length 

distribution was hypothesized and then verified. A further issue was pointed out 

concerning the CNT critical length value to be considered in the model. A wrong 

estimation of this parameter (for instance due to the determination of CNF/CNT tensile 

strength rather the assumptions of inextensibility of tubes) would lead to possible 

underestimation of pullout energy. In order to overcome this issue, a molecular 

dynamics modeling approach was suggested for future developments, based on 

oriented CNT pullout virtual tests.  

 


